

List of Symbols

Topic Symbol Meaning Page

LOGIC ∼ p negation of p 8
p ∨ q disjunction of p and q 7
p ∧ q conjunction of p and q 5
p XOR q exclusive or of p and q 18
p → q p implies q 9
p � q p if and only if q 14
p ≡ q p is logically equivalent to q 20
F contradiction 21
T tautology 21
p NAND q not p and q 30
p NOR q not p or q 30
p | q Sheffer stroke 31
P(x1, x2, . . . , xn) propositional function 33
(∃x)P(x) Existential quantification P(x) 32
(∀x)P(x) Universal quantification P(x) 32
∴ therefore 38

SETS {x1, x2, . . . , xn} set with elements x1, x2, . . . , and xn 68
{x | P(x)} set-builder notation 69
Ø empty set 70
U universal set 70
Z set of integers 73
N, Z+ set of positive integers 73
R set of real numbers 73
[a, b] closed interval 73
[a, b) closed-open interval 73
(a, b] open-closed interval 73
(a, b) open inteval 73
A = B equality of sets A and B 70
x ∈ A x is an element of A 68
x /∈ A x is not an element of A 68
A ⊆ B A is a subset of B 69
P(A) power set of A 72
|A| cardinality of A 98
(a, b) ordered pair 86
(a1, a2, . . . , an) ordered set 86
A ∪ B union of A and B 78
A ∩ B intersection of A and B 78
A − B difference of A and B 80
A′ complement of A 81
A ⊕ B symmetric difference of A and B 82
n∪

i=1
Ai union of sets Ai, i = 1, 2, . . . , n 86

n∩
i=1

Ai intersection of sets Ai, i = 1, 2, . . . , n 86

FUNCTIONS f (x) value of function f at x 119
f : A → B function f from A to B 118
f + g sum of functions f and g 123
fg product of functions f and g 123

Topic Symbol Meaning Page

iA identity function on A 136
f −1 inverse of f 153
f ◦ g composition of g and f 151
a mod b remainder when a is divided by b 132
a div b quotient when a is divided by b 132
�x� floor of x 126
�x� ceiling of x 127
sn nth term the sequence {sn} 157

n∑
i=m

ai am + am+1 + · · · + an 158

∑
i ∈ S

ai sum the terms ai, where i ∈ S 160

n∏
i=m

ai amam+1 · · · an 163

n! n factorial 241
f (x) = O(g(x)) f(x) is big-oh of g(x) 237
f (x) = �(g(x)) f(x) is big-omega of g(x) 243
f (x) = �(g(x)) f(x) is big-theta of g(x) 245
min {x, y} minimum of x and y 252
max {x, y} maximum of x and y 251

MATRICES (aij)m×n m × n matrix with entries aij 165
A + B sum of A and B 166
A − B difference of A and B 167
kA scalar multiplication of A by k 167
AB product of A and B 170
In identity matrix of order n 166
AT transpose of A 174

INTEGERS a | b a divides b 189
a � b a is not a factor of b 189
gcd {a, b} greatest common divisor a and b 191
lcm {a, b} least common divisor of a and b
(a1a2 · · · an)b base-b representation 197

COMBINATORICS P(n, r) number of r-permutations of a set with n elements 352
Dn number of derangements of n elements 361
C(n, r) number of r-combinations of a set with n elements 366(

n
r

)
binomial coefficient: coefficient of xn in expansion of (1 + x)n 366

N(Pi1 Pi2 . . . Pin) number of elements having each of the properties Pij , j = 1, 2, . . . , n 400

N(P′
i1

P′
i2

· · · P′
in

) number of elements not having any of the properties Pij , j = 1, 2, . . . , n 400

PROBABILITY P(E) probability of event E 410
P(E|F) conditional probability of E given F 417

BOOLEAN A ∨ B join of A and B 439
MATRICES A ∧ B meet of A and B 439

A � B boolean product of A and B 439
A[n] nth boolean power of A 441

continued

Topic Symbol Meaning Page

RELATIONS S ◦ R composite of relations S and R 463
Rn nth power of relation R 466
R−1 inverse relation 469
a ≡ b(mod m) a is congruent to b modulo m 484
a �≡ b(mod m) a is not congruent to b modulo m 484
[a]R equivalence class of a with respect to R 486
a ≺ b a is less than b 495
a � b a is less than or equal to b 495
a � b a is greater than b
a � b a is greater than or equal to b

GRAPHS {u, v} or {u − v} undirected edge 517
G = (V , E) graph with vertex set V and edge set E 517
deg(v) degree of vertex v 520
Kn complete graph with n vertices 524
Cn cycle with n vertices 526
Wn wheel with n + 1 vertices 526
Km,n complete bipartite graph 527
Qn n-cube 566
a-v1- · · · - vn−1-b path from a to b 546
G1 ∪ G2 union of G1 and G2 532
deg(R) degree of region R 581

BOOLEAN B {0, 1} 807
ALGEBRA x, y boolean variables 813

x′ complement of x
x + y boolean sum of x and y 814
x · y (or xy) boolean product of x and y 814
x ↑ y x NAND y 820
x ↓ y x NOR y 820

x

y

x

x x

x+y

xy

y

inverter 827

OR gate 826

AND gate 825

LANGUAGES xy concatenation of words x and y 76
λ empty string 75
||x|| length of the string x 75
wR reversal of w 113
AB concatenation of languages A and B 736
A∗ Kleene closure 739
� alphabet 75

FINITE-STATE σ start symbol 744
MACHINES w → w′ production 744

w ⇒ w′ w′ is directly derivable from w 746
〈A〉 nonterminal symbol 748
〈A〉 ::= 〈B〉| x Backus–Naur form 748
(S, I, O, f , g, s0) finite-state machine with output 772
s0 start state 760
(S, I, f , s0, F) finite-state machine with no output 761

This Page Intentionally Left Blank

Discrete Mathematics
with Applications

This Page Intentionally Left Blank

Discrete Mathematics
with Applications

Thomas Koshy
Framingham State College

Amsterdam Boston Heidelberg London New York Oxford Paris
San Diego San Francisco Singapore Sydney Tokyo

Senior Editor Barbara A. Holland
Project Manager Marcy Barnes-Henrie
Associate Editor Tom Singer
Marketing Manager Linda Beattie
Cover Design Hannus & Associates
Composition Cepha
Printer Quebecor World

Elsevier Academic Press
200 Wheeler Road, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the
Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and then
“Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application Submitted

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 0-12-421180-1

For all information on all Academic Press publications visit our website at
www.academicpressbooks.com

Printed in the United States of America
03 04 05 06 07 08 9 8 7 6 5 4 3 2 1

Dedicated to

the memory of a close friend and an
outstanding colleague Kenneth J.
Preskenis (1940–2002)

This Page Intentionally Left Blank

Table of Contents

Preface . xiii

A Word to the Student . xxi

The Language of Logic . 11 1.1 Propositions. 2
1.2 Logical Equivalences . 20
1.3 Quantifiers . 32

*1.4 Arguments (optional) . 38
1.5 Proof Methods. 49
Chapter Summary . 56
Review Exercises . 58
Supplementary Exercises . 62
Computer Exercises . 63
Exploratory Writing Projects . 63
Enrichment Readings . 64

The Language of Sets . 672 2.1 The Concept of a Set . 67
2.2 Operations with Sets . 78

*2.3 Computer Operations with Sets (optional) . 94
2.4 The Cardinality of a Set . 98
2.5 Recursively Defined Sets . 104
Chapter Summary . 109
Review Exercises . 111
Supplementary Exercises . 113
Computer Exercises . 114
Exploratory Writing Projects . 114
Enrichment Readings . 115

Functions and Matrices . 1173 3.1 The Concept of a Function. 117
3.2 Special Functions . 125
3.3 Properties of Functions . 136
3.4 The Pigeonhole Principle . 144
3.5 Composition of Functions . 150
3.6 Sequences and the Summation Notation . 157

vii

viii Contents

3.7 Matrices . 164
Chapter Summary . 175
Review Exercises . 177
Supplementary Exercises . 179
Computer Exercises . 181
Exploratory Writing Projects . 182
Enrichment Readings . 183

Induction and Algorithms . 1854 4.1 The Division Algorithm . 185
4.2 Divisibility Properties . 189
4.3 Nondecimal Bases . 197
4.4 Mathematical Induction . 207
4.5 Algorithm Correctness . 224
4.6 The Growth of Functions . 237

*4.7 Complexities of Algorithms (optional) . 247
Chapter Summary . 252
Review Exercises . 254
Supplementary Exercises . 256
Computer Exercises . 257
Exploratory Writing Projects . 259
Enrichment Readings . 259

Recursion . 2615 5.1 Recursively Defined Functions . 262
5.2 Solving Recurrence Relations . 278
5.3 Solving Recurrence Relations Revisited . 286
5.4 Generating Functions . 298
5.5 Recursive Algorithms . 307
5.6 Correctness of Recursive Algorithms . 316

*5.7 Complexities of Recursive Algorithms (optional) . 319
Chapter Summary . 333
Review Exercises . 334
Supplementary Exercises . 339
Computer Exercises . 340
Exploratory Writing Projects . 342
Enrichment Readings . 342

Combinatorics and Discrete Probability . 3436 6.1 The Fundamental Counting Principles . 344
6.2 Permutations . 351
6.3 Derangements . 360
6.4 Combinations . 365
6.5 Permutations and Combinations with Repetitions . 375
6.6 The Binomial Theorem . 386

Contents ix

*6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 399
*6.8 Discrete Probability (optional) . 409
*6.9 Additional Topics in Probability (optional) . 417
Chapter Summary . 427
Review Exercises . 429
Supplementary Exercises . 432
Computer Exercises . 434
Exploratory Writing Projects . 434
Enrichment Readings . 435

Relations . 4377 7.1 Boolean Matrices . 438
7.2 Relations and Digraphs . 443

*7.3 Computer Representations of Relations (optional) . 449
7.4 Properties of Relations . 454
7.5 Operations on Relations . 461

*7.6 The Connectivity Relation (optional) . 471
*7.7 Transitive Closure (optional) . 475
7.8 Equivalence Relations . 482
7.9 Partial and Total Orderings . 493
Chapter Summary . 506
Review Exercises . 508
Supplementary Exercises . 511
Computer Exercises . 512
Exploratory Writing Projects . 513
Enrichment Readings . 514

Graphs . 5158 8.1 Graphs . 516
*8.2 Computer Representations of Graphs (optional) . 538
8.3 Isomorphic Graphs . 541
8.4 Paths, Cycles, and Circuits . 546
8.5 Eulerian and Hamiltonian Graphs . 556
8.6 Planar Graphs. 576
8.7 Graph Coloring . 586
Chapter Summary . 598
Review Exercises . 601
Supplementary Exercises . 604
Computer Exercises . 606
Exploratory Writing Projects . 607
Enrichment Readings . 608

Trees . 6099 9.1 Trees . 610
9.2 Spanning trees . 614

x Contents

9.3 Minimal Spanning Trees . 626
9.4 Rooted Trees . 635
9.5 Binary Trees . 646
9.6 Binary Search Trees . 664

*9.7 Huffman Trees (optional) . 670
*9.8 Decision Trees (optional) . 676
Chapter Summary . 680
Review Exercises . 681
Supplementary Exercises . 686
Computer Exercises . 687
Exploratory Writing Projects . 688
Enrichment Readings . 688

Digraphs . 69110 10.1 Digraphs. 691
10.2 Dags . 707
10.3 Weighted Digraphs . 715
Chapter Summary . 726
Review Exercises . 727
Supplementary Exercises . 730
Computer Exercises . 731
Exploratory Writing Projects . 732
Enrichment Readings . 732

Formal Languages and Finite-State Machines 73311 11.1 Formal Languages . 734
11.2 Grammars . 743
11.3 Finite-State Automata . 759
11.4 Finite-State Machines . 771
11.5 Deterministic Finite-State Automata and Regular Languages 779
11.6 Nondeterministic Finite-State Automata . 782
11.7 Automata and Regular Languages . 787
Chapter Summary . 792
Review Exercises . 794
Supplementary Exercises . 798
Computer Exercises . 800
Exploratory Writing Projects . 801
Enrichment Readings . 802

Boolean Algebra and Combinatorial Circuits 80312 12.1 Boolean Algebra . 804
12.2 Boolean functions . 813
12.3 Logic Gates . 824
12.4 Combinatorial Circuits . 830
12.5 Minimization of Combinatorial Circuits . 840

Contents xi

12.6 Don’t Care Conditions . 851
Chapter Summary . 857
Review Exercises . 859
Supplementary Exercises . 862
Computer Exercises . 863
Exploratory Writing Projects . 864
Enrichment Readings . 864

Appendix A . 867
A.1 ASCII Character Set . 867
A.2 Determinants . 867
A.3 Exponential and Logarithmic Functions . 874
A.4 Generating Permutations and Combinations . 883
A.5 The Multinomial Theorem . 888
A.6 The Greek Alphabet . 894
A.7 Web Sites . 895

References . 899

Solutions to Odd-Numbered Exercises . 907

Credits .1029

Index .1031

This Page Intentionally Left Blank

Preface

A journey of a thousand miles
begins with a single step.

— A Chinese proverb

P eople often ask: What is discrete mathematics? It’s the mathematics
of discrete (distinct and disconnected) objects. In other words, it is the

study of discrete objects and relationships that bind them. The geometric
representations of discrete objects have gaps in them. For example, integers
are discrete objects, therefore (elementary) number theory, for instance, is
part of discrete mathematics; so are linear algebra and abstract algebra.

On the other hand, calculus deals with sets of connected (without any
gaps) objects. The set of real numbers and the set of points on a plane are
two such sets; they have continuous pictorial representations. Therefore,
calculus does not belong to discrete mathematics, but to continuous mathe-
matics. However, calculus is relevant in the study of discrete mathematics.
The sets in discrete mathematics are often finite or countable, whereas
those in continuous mathematics are often uncountable.

Interestingly, an analogous situation exists in the field of computers.
Just as mathematics can be divided into discrete and continuous mathe-
matics, computers can be divided into digital and analog. Digital computers
process the discrete objects 0 and 1, whereas analog computers process con-
tinuous data—that is, data obtained through measurement. Thus the terms
discrete and continuous are analogous to the terms digital and analog,
respectively.

The advent of modern digital computers has increased the need for
understanding discrete mathematics. The tools and techniques of discrete
mathematics enable us to appreciate the power and beauty of mathematics
in designing problem-solving strategies in everyday life, especially in com-
puter science, and to communicate with ease in the language of discrete
mathematics.

The Realization of a Dream
This book is the fruit of many years of many dreams; it is the end-product
of my fascination for the myriad applications of discrete mathematics to
a variety of courses, such as Data Structures, Analysis of Algorithms,
Programming Languages, Theory of Compilers, and Databases. Data struc-
tures and Discrete Mathematics compliment each other. The information
in this book is applicable to quite a few areas in mathematics; discrete

xiii

xiv Preface

mathematics is also an excellent preparation for number theory and abstract
algebra.

A logically conceived, self-contained, well-organized, and a user-friendly
book, it is suitable for students and amateurs as well; so the language
employed is, hopefully, fairly simple and accessible. Although the book
features a well-balanced mix of conversational and formal writing style,
mathematical rigor has not been sacrificed. Also great care has been taken
to be attentive to even minute details.

Audience
The book has been designed for students in computer science, electrical
engineering, and mathematics as a one- or two-semester course in discrete
mathematics at the sophomore/junior level. Several earlier versions of the
text were class-tested at two different institutions, with positive responses
from students.

Prerequisites
No formal prerequisites are needed to enjoy the material or to employ its
power, except a very strong background in college algebra. A good back-
ground in pre-calculus mathematics is desirable, but not essential. Perhaps
the most important requirement is a bit of sophisticated mathematical
maturity: a combination of patience, logical and analytical thinking, moti-
vation, systematism, decision-making, and the willingness to persevere
through failure until success is achieved.

Although no programming background is required to enjoy the discrete
mathematics, knowledge of a structured programming language, such as
Java or C++, can make the study of discrete mathematics more rewarding.

Coverage
The text contains in-depth coverage of all major topics proposed by pro-
fessional associations for a discrete mathematics course. It emphasizes
problem-solving techniques, pattern recognition, conjecturing, induction,
applications of varying nature, proof techniques, algorithm development,
algorithm correctness, and numeric computations.

Recursion, a powerful problem-solving strategy, is used heavily in both
mathematics and computer science. Initially, for some students, it can
be a bitter-sweet and demanding experience, so the strategy is presented
with great care to help amateurs feel at home with this fascinating and
frequently used technique for program development.

This book also includes discussions on Fibonacci and Lucas numbers,
Fermat numbers, and figurate numbers and their geometric representa-
tions, all excellent tools for exploring and understanding recursion.

Preface xv

A sufficient amount of theory is included for those who enjoy the beauty
in the development of the subject, and a wealth of applications as well for
those who enjoy the power of problem-solving techniques. Hopefully, the
student will benefit from the nice balance between theory and applications.

Optional sections in the book are identified with an asterisk (∗) in the
left margin. Most of these sections deal with interesting applications or
discussions. They can be omitted without negatively affecting the logical
development of the topic. However, students are strongly encouraged to
pursue the optional sections to maximize their learning.

Historical Anecdotes and Biographies
Biographical sketches of about 60 mathematicians and computer scien-
tists who have played a significant role in the development of the field
are threaded into the text. Hopefully, they provide a human dimension and
attach a human face to major discoveries. A biographical index, keyed to
page, appears on the inside of the back cover for easy access.

Examples and Exercises
Each section in the book contains a generous selection of carefully tailored
examples to clarify and illuminate various concepts and facts. The backbone
of the book is the 560 examples worked out in detail for easy understanding.

Every section ends with a large collection of carefully prepared and well-
graded exercises (more than 3700 in total), including thought-provoking
true-false questions. Some exercises enhance routine computational skills;
some reinforce facts, formulas, and techniques; and some require mastery
of various proof techniques coupled with algebraic manipulation. Often
exercises of the latter category require a mathematically sophisticated mind
and hence are meant to challenge the mathematically curious.

Most of the exercise sets contain optional exercises, identified by the
letter o in the left margin. These are intended for more mathematically
sophisticated students.

Exercises marked with one asterisk (∗) are slightly more advanced
than the ones that precede them. Double-starred (∗∗) exercises are more
challenging than the single-starred; they require a higher level of mathe-
matical maturity.

Exercises identified with the letter c in the left margin require a calculus
background; they can be omitted by those with no or minimal calculus.

Answers or partial solutions to all odd-numbered exercises are given at
the end of the book.

Foundation
Theorems are the backbones of mathematics. Consequently, this book
contains the various proof techniques, explained and illustrated in detail.

xvi Preface

They provide a strong foundation in problem-solving techniques, algorith-
mic approach, verification and analysis of algorithms, as well as in every
discrete mathematics topic needed to pursue computer science courses
such as Data Structures, Analysis of Algorithms, Programming Languages,
Theory of Compilers, Databases, and Theory of Computation.

Proofs
Most of the concepts, definitions, and theorems in the book are illustrated
with appropriate examples. Proofs shed additional light on the topic and
enable students to sharpen their problem-solving skills. The various proof
techniques appear throughout the text.

Applications
Numerous current and relevant applications are woven into the text, taken
from computer science, chemistry, genetics, sports, coding theory, banking,
casino games, electronics, decision-making, and gambling. They enhance
understanding and show the relevance of discrete mathematics to everyday
life. A detailed index of applications, keyed to pages, is given at the end of
the book.

Algorithms
Clearly written algorithms are presented throughout the text as problem-
solving tools. Some standard algorithms used in computer science are
developed in a straightforward fashion; they are analyzed and proved to
enhance problem-solving techniques. The computational complexities of a
number of standard algorithms are investigated for comparison.

Algorithms are written in a simple-to-understand pseudocode that can
easily be translated into any programming language. In this pseudocode:

• Explanatory comments are enclosed within the delimeters (* and *).

• The body of the algorithm begins with a Begin and ends in an End;
they serve as the outermost parentheses.

• Every compound statement begins with a begin and ends in an end;
again, they serve as parentheses. In particular, for easy readabil-
ity, a while (for) loop with a compound statement ends in endwhile
(endfor).

Chapter Summaries
Each chapter ends with a summary of important vocabulary, formulas,
and properties developed in the chapter. All the terms are keyed to the text
pages for easy reference and a quick review.

Preface xvii

Review and Supplementary Exercises
Each chapter summary is followed by an extensive set of well-constructed
review exercises. Used along with the summary, these provide a com-
prehensive review of the chapter. Chapter-end supplementary exercises
provide additional challenging opportunities for the mathematically sophis-
ticated and curious-minded for further experimentation and exploration.
The book contains about 950 review and supplementary exercises.

Computer Assignments
Over 150 relevant computer assignments are given at the end of chapters.
They provide hands-on experience with concepts and an opportunity to
enhance programming skills. A computer algebra system, such as Maple,
Derive, or Mathematica, or a programming language of choice can be
used.

Exploratory Writing Projects
Each chapter contains a set of well-conceived writing projects, for a total
of about 600. These expository projects allow students to explore areas
not pursued in the book, as well as to enhance research techniques and
to practice writing skills. They can lead to original research, and can be
assigned as group projects in a real world environment.

For convenience, a comprehensive list of references for the writing
projects, compiled from various sources, is provided in the Student’s
Solutions Manual.

Enrichment Readings
Each chapter ends with a list of selected references for further exploration
and enrichment. Most expand the themes studied in this book.

Numbering System
A concise numbering system is used to label each item, where an item can
be an algorithm, figure, example, exercises, section, table, or theorem. Item
m.n refers to item n in Chapter “m”. For example, Section 3.4 is Section 4
in Chapter 3.

Special Symbols
Colored boxes are used to highlight items that may need special attention.
The letter o in the left margin of an exercise indicates that it is optional,
whereas a c indicates that it requires the knowledge of calculus. Besides,
every theorem is easily identifiable, and the end of every proof and example

xviii Preface

is marked with a solid square (�). An asterisk (∗) next to an exercise indi-
cates that it is challenging, whereas a double-star (∗∗) indicates that it is
even more challenging. While “=” stands for equality, the closely related
symbol “≈” means is approximately equal to:

o optional exercises
c requires a knowledge of calculus
� end of a proof or a solution
∗ a challenging exercise
∗∗ a more challenging exercise
= is equal to
≈ is approximately equal to

Abbreviations
For the sake of brevity, four useful abbreviations are used throughout the
text: LHS, RHS, PMI, and IH:

LHS Left-Hand Side
RHS Right-Hand Side
PMI Principle of Mathematical Induction
IH Inductive Hypothesis

Symbols Index
An index of symbols used in the text and the page numbers where they
occur can be found inside the front and back covers.

Web Links
The World Wide Web can be a useful resource for collecting information
about the various topics and algorithms. Web links also provide biographies
and discuss the discoveries of major mathematical contributors. Some Web
sites for specific topics are listed in the Appendix.

Student’s Solutions Manual
The Student’s Solutions Manual contains detailed solutions of all odd-
numbered exercises. It also includes suggestions for studying mathematics,
and for preparing to take an math exam. The Manual also contains
a comprehensive list of references for the various writing projects and
assignments.

Preface xix

Instructor’s Manual
The Instructor’s Manual contains detailed solutions to all even-numbered
exercises, two sample tests and their keys for each chapter, and two sample
final examinations and their keys.

Acknowledgments
A number of people, including many students, have played a major role in
substantially improving the quality of the manuscript through its devel-
opment. I am truly grateful to every one of them for their unfailing
encouragement, cooperation, and support.

To begin with, I am sincerely indebted to the following reviewers for
their unblemished enthusiasm and constructive suggestions:

Gerald Alexanderson Santa Clara University
Stephen Brick University of South Alabama
Neil Calkin Clemson University
Andre Chapuis Indiana University
Luis E. Cuellar McNeese State University
H. K. Dai Oklahoma State University
Michael Daven Mt. St. Mary College
Henry Etlinger Rochester Institute of Technology
Jerrold R. Griggs University of South Carolina
John Harding New Mexico State University
Nan Jiang University of South Dakota
Warren McGovern Bowling Green State University
Tim O’Neil University of Notre Dame
Michael O’Sullivan San Diego State University
Stanley Selkow Worcester Polytechnic Institute

Thanks also go to Henry Etlinger of Rochester Institute of Technology
and Jerrold R. Griggs of the University of South Carolina for reading the
entire manuscript for accuracy; to Michael Dillencourt of the University of
California at Irvine, and Thomas E. Moore of Bridgewater State College for
preparing the solutions to the exercises; and to Margarite Roumas for her
excellent editorial assistance.

My sincere thanks also go to Senior Editor, Barbara Holland, Production
Editor, Marcy Barnes-Henrie, Copy Editor, Kristin Landon, and Associate
Editor, Thomas Singer for their devotion, cooperation, promptness, and
patience, and for their unwavering support for the project.

Finally, I must accept responsibility for any errors that may still
remain. I would certainly appreciate receiving comments about any unwel-
come surprises, alternate or better solutions, and exercises, puzzles, and
applications you have enjoyed.

Framingham, Massachusetts Thomas Koshy
September 19, 2003 tkoshy@frc.mass.edu

This Page Intentionally Left Blank

A Word to the Student

Tell me and I will forget.
Show me and I will remember.
Involve me and I will understand.

— Confucius

The SALT of Life
Mathematics is a science; it is an art; it is a precise and concise language;
and it is a great problem-solving tool. Thus mathematics is the SALT of
life.

To learn a language, such as Greek or Russian, first you have to learn
its alphabet, grammar, and syntax; you also have to build up a decent
vocabulary to speak, read, or write. Each takes a lot of time and practice.

The Language of Mathematics
Because mathematics is a concise language with its own symbolism, vocab-
ulary, and properties (or rules), to be successful in mathematics, you must
know them well and be able to apply them.

For example, it is important to know that there is a difference between
perimeter and area, area and volume, factor and multiple, divisor and divi-
dend, hypothesis and hypotenuse, algorithm and logarithm, reminder and
remainder, computing and solving, disjunction and destruction, conjunc-
tion and construction, and negation and negative. So you must be fluent in
the language of mathematics, just like you need to be fluent in any foreign
language. So keep speaking the language of mathematics.

Although mathematics is itself an unambiguous language, algebra is the
language of mathematics. Studying algebra develops confidence, improves
logical and critical thinking, and enhances what is called mathematical
maturity, all needed for developing and establishing mathematical facts,
and for solving problems.

This book is written in a clear and concise language that is easy to under-
stand and easy to build on. It presents the essential (discrete) mathematical
tools needed to succeed in all undergraduate computer science courses.

Theory and Applications
This book features a perfect blend of both theory and applications.
Mathematics does not exist without its logically developed theory; in fact,
theorems are like the steel beams of mathematics. So study the various

xxi

xxii A Word to the Student

proof techniques, follow the various proofs presented, and try to reproduce
them in your own words. Whenever possible, create your own proofs. Try
to feel at home with the various methods and proofs. Besides developing a
working vocabulary, pay close attention to facts, properties, and formulas,
and enjoy the beautiful development of each topic.

This book also draws on a vast array of interesting and practical
applications to several disciplines, especially to computer science. These
applications are spread throughout the book. Enjoy them, and appreciate
the power of mathematics that can be applied to a variety of situations,
many of which are found in business, industry, and scientific discovery in
today’s workplace.

Problem-Solving Strategies
To master mathematics, you must practice it; that is, you must apply and
do mathematics. You must be able to apply previously developed facts to
solve problems. For this reason, this book emphasizes problem-solving tech-
niques. You will encounter two types of exercises in the exercise sets: The
first type is computational, and the second type is algebraic and theoreti-
cal. Being able to do computational exercises does not automatically imply
that you are able to do algebraic and theoretical exercises. So do not get
discouraged, but keep trying until you succeed.

Of course, before you attempt the exercises in any section, you will need
to first master the section; know the definitions, symbols, and facts, and
redo the examples using your own steps.

Since the exercises are graded in ascending order of difficulty, always
do them in order; save the solutions and refine them as you become
mathematically more sophisticated.

The chapter-end review exercises give you a chance to re-visit the
chapter. They can be used as a quick review of important concepts.

Recursion
Recursion is an extremely powerful problem-solving strategy, used often
in mathematics and computer science. Although some students may need
a lot of practice to get used to it, once you know how to approach problems
recursively, you will certainly appreciate its great power.

Stay Actively Involved
Professional basketball players Magic Johnson, Larry Bird, and Michael
Jordan didn’t become superstars overnight by reading about basketball or
by watching others play on television. Besides knowing the rules and the
skills needed to play, they underwent countless hours of practice, hard
work, a lot of patience and perseverance, willingness to meet failures, and
determination to achieve their goal.

A Word to the Student xxiii

Likewise, you cannot master mathematics by reading about it or by sim-
ply watching your professor do it in class; you have to get involved and stay
involved by doing it every day, just as skill is acquired in a sport. You can
learn mathematics only in small, progressive steps, building on skills you
have already mastered. Remember the saying: Rome wasn’t built in a day.

Keep using the vocabulary and facts you have already studied. They must
be fresh in your mind; review them every week.

A Few Suggestions for Learning Mathematics
• Read a few sections before each class. You might not fully understand

the material, but you’ll follow it far better when your professor dis-
cusses it in class. In addition, you will be able to ask more questions in
class and answer more questions.

• Whenever you study the book, make sure you have a pencil and enough
paper to write down definitions, theorems, and proofs, and to do the
exercises.

• Return to review the material taught in class later in the same day. Read
actively; do not just read as if it was a novel or a newspaper. Write down
the definitions, theorems, and properties in your own words, without
looking in your notes or the book. Good note-taking and writing aid
retention. Re-write the examples, proofs, and exercises done in class,
all in your own words. If you find them too challenging, study them
again and try again; continue until you succeed.

• Always study the relevant section in the text and do the examples there;
then do the exercises at the end of the section. Since the exercises are
graded in order of difficulty, do them in order. Don’t skip steps or write
over previous steps; this way you’ll progress logically, and you can locate
and correct your errors. If you can’t solve a problem because it involves a
new term, formula, or some property, then re-study the relevant portion
of the section and try again. Don’t assume that you’ll be able to do every
problem the first time you try it. Remember, practice is the only way to
success.

Solutions Manual
The Student’s Solutions Manual contains additional helpful tips for study-
ing mathematics, and preparing for and taking an examination in math-
ematics. It also gives detailed solutions to all odd-numbered exercises
and a comprehensive list of references for the various exploratory writing
projects.

A Final Word
Mathematics is no more difficult than any other subject. If you have the
motivation, and patience to learn and do the work, then you will enjoy

xxiv A Word to the Student

the beauty and power of discrete mathematics; you will see that discrete
mathematics is really fun.

Keep in mind that learning mathematics is a step-by-step process.
Practice regularly and systematically; review earlier chapters every week,
since things must be fresh in your mind to apply and build on them. In this
way, you will enjoy the subject, feel confident, and to explore more. The
name of the game is practice, so practice, practice, practice.

I look forward to hearing from you with your comments and suggestions.
In the meantime, enjoy the beauty and power of mathematics.

Thomas Koshy

Chapter 1

The Language of Logic

Symbolic logic has been disowned by many logicians on the plea that its
interest is mathematical and by many mathematicians on the plea that its

interest is logical.
— A. N. WHITEHEAD

L ogic is the study of the principles and techniques of reasoning. It orig-
inated with the ancient Greeks, led by the philosopher Aristotle, who

is often called the father of logic. However, it was not until the l7th century
that symbols were used in the development of logic. German philoso-
pher and mathematician Gottfried Leibniz introduced symbolism into logic.
Nevertheless, no significant contributions in symbolic logic were made until
those of George Boole, an English mathematician. At the age of 39, Boole
published his outstanding work in symbolic logic, An Investigation of the
Laws of Thought.

Logic plays a central role in the development of every area of learning,
especially in mathematics and computer science. Computer scientists, for
example, employ logic to develop programming languages and to establish
the correctness of programs. Electronics engineers apply logic in the design
of computer chips.

This chapter presents the fundamentals of logic, its symbols, and rules to
help you to think systematically, to express yourself in precise and concise
terms, and to make valid arguments.

Here are a few interesting problems we shall pursue in this chapter:

• Consider the following two sentences, both true:
There are more residents in New York City than there are hairs on the
head of any resident. No resident is totally bald. What is your conclu-
sion: Is it true that at least two residents have the same number of
hairs? (R. M. Smullyan, 1978)

• There are two kinds of inhabitants, “knights” and “knaves,” on an
island. Knights always tell the truth, whereas knaves always lie. Every
inhabitant is either a knight or a knave. Tom and Dick are two residents.
Tom says, “At least one of us is a knave.” What are Tom and Dick?

1

2 Chapter 1 The Language of Logic

Aristotle (384–322 B.C.), one of the greatest philosophers in Western culture,
was born in Stagira, a small town in northern Greece. His father was the
personal physician of the king of Macedonia. Orphaned young, Aristotle was
raised by a guardian.

At the age of 18, Aristotle entered Plato’s Academy in Athens. He was
the “brightest and most learned student” at the Academy which he left when
Plato died in 347 B.C.

About 342 B.C., the king of Macedonia invited him to supervise the edu-
cation of his young son, Alexander, who later became Alexander the Great.
Aristotle taught him until 336 B.C., when the youth became ruler following
the assassination of his father.

Around 334 B.C., Aristotle returned to Athens and founded a school called
the Lyceum. His philosophy and followers were called peripatetic, a Greek

word meaning “walking around,” since Aristotle taught his students while walking with them.
The Athenians, perhaps resenting his relationship with Alexander the Great, who had conquered them,

accused him of impiety soon after the Emperor’s death in 323 B.C. Aristotle, knowing the fate of Socrates,
who had been condemned to death on a similar charge, fled to Chalcis, so the Athenians would not “sin
twice against philosophy.” He died there the following year.

What are they if Tom says, “Either I’m a knave or Dick is a knight”?
(R. M. Smullyan, 1978)

• Are there positive integers that can be expressed as the sum of two
different cubes in two different ways?

• Does the formula E(n) = n2 − n + 41 yield a prime number for every
positive integer n?

1.1 Propositions

A declarative sentence that is either true or false, but not both, is a propo-
sition (or a statement), which we will denote by the lowercase letter
p, q, r, s, or t. The variables p, q, r, s, or t are boolean variables (or logic
variables).

EXAMPLE 1.1 The following sentences are propositions:

(1) Socrates was a Greek philosopher.
(2) 3 + 4 = 5.
(3) 1 + 1 = 0 and the moon is made of green cheese.
(4) If 1 = 2, then roses are red.

The following sentences are not propositions:

• Let me go! (exclamation)

• x + 3 = 5 (x is an unknown.)

1.1 Propositions 3

Baron Gottfried Wilhelm Leibniz (1646–1716), an outstanding German
mathematician, philosopher, physicist, diplomat, and linguist, was born into
a Lutheran family. The son of a professor of philosophy, he “grew up to be a
genius with encylopedic knowledge.”

He had taught himself Latin, Greek, and philosophy before entering the
University of Leipzig at age 15 as a law student. There he read the works of
great scientists and philosophers such as Galileo, Francis Bacon, and René
Descartes. Because of his youth, Leipzig refused to award him the degree of the
doctor of laws, so he left his native city forever.

During 1663–1666, he attended the universities of Jena and Altdorf, and
receiving his doctorate from the latter in 1666, he began legal services for the
Elector of Mainz.

After the Elector’s death, Leibniz pursued scientific studies. In 1672, he
built a calculating machine that could multiply and divide and presented it to the Royal Society in London
the following year.

In late 1675, Leibniz laid the foundations of calculus, an honor he shares with Sir Isaac Newton. He
discovered the fundamental theorem of calculus, and invented the popular notations — d/dx for differ-
entiation and

∫
for integration. He also introduced such modern notations as dot for multiplication, the

decimal point, the equal sign, and the colon for ratio.
From 1676, until his death, Leibniz worked for the Duke of Brunswick at Hanover and his estate after

the duke’s death in 1680. He played a key role in the founding of the Berlin Academy of Sciences in 1700.
Twelve years later, Leibniz was appointed councilor of the Russian Empire and was given the title of

baron by Peter the Great.
Suffering greatly from gout, Leibniz died in Hanover. He was never married.
His works influenced such diverse disciplines as theology, philosophy, mathematics, the natural

sciences, history, and technology.

• Close the door! (command)

• Kennedy was a great president of (opinion)
the United States.

• What is my line? (interrogation) �

Truth Value

The truthfulness or falsity of a proposition is called its truth value,
denoted by T(true) and F(false), respectively. (These values are often
denoted by 1 and 0 by computer scientists.) For example, the truth value
of statement (1) in Example 1.1 is T and that of statement (2) is F.

Consider the sentence, This sentence is false. It is certainly a valid declar-
ative sentence, but is it a proposition? To answer this, assume the sentence
is true. But the sentence says it is false. This contradicts our assumption.
On the other hand, suppose the sentence is false. This implies the sentence

4 Chapter 1 The Language of Logic

George Boole (1815–1864), the son of a cobbler whose main interests were
mathematics and the making of optical instruments, was born in Lincoln,
England. Beyond attending a local elementary school and briefly a commercial
school, Boole was self-taught in mathematics and the classics. When his
father’s business failed, he started working to support the family. At 16, he
began his teaching career, opening a school of his own four years later in
Lincoln.

In his leisure time, Boole read mathematical journals at the Mechan-
ics Institute. There he grappled with the works of English physicist and
mathematician Sir Isaac Newton and French mathematicians Pierre-Simon
Laplace and Joseph-Louis Lagrange.

In 1839, Boole began contributing original papers on differential equations
to The Cambridge Mathematics Journal and on analysis to the Royal Society.

In 1844, he was awarded a Royal Medal by the Society for his contributions to analysis; he was elected a
fellow of the Society in 1857.

Developing novel ideas in logic and symbolic reasoning, he published his first contribution to symbolic
logic, The Mathematical Analysis of Logic, in 1847. His publications played a key role in his appointment
as professor of mathematics at Queen’s College, Cork, Ireland, in 1849, although he lacked a university
education.

In 1854, he published his most important work, An Investigation to the Laws of Thought, in which he
presented the algebra of logic now known as boolean algebra (see Chapter 12). The next year he married
Mary Everest, the niece of Sir George Everest, for whom the mountain is named.

In addition to writing about 50 papers, Boole published two textbooks, Treatise on Differential
Equations (1859) and Treatise on the Calculus of Finite Differences; both were used as texts in the United
Kingdom for many years.

A conscientious and devoted teacher, Boole died of pneumonia in Cork.

is true, which again contradicts our assumption. Thus, if we assume that
the sentence is true, it is false; and if we assume that it is false, it is true. It
is a meaningless and self-contradictory sentence, so it is not a proposition,
but a paradox.

The truth value of a proposition may not be known for some reason, but
that does not prevent it from being a proposition. For example, around
1637, the French mathematical genius Pierre-Simon de Fermat conjec-
tured that the equation xn + yn = zn has no positive integer solutions,
where n ≥ 3. His conjecture, known as Fermat’s Last “Theorem,” was
one of the celebrated unsolved problems in number theory, until it was
proved in 1993 by the English mathematician Andrew J. Wiles (1953–) of
Princeton University. Although the truth value of the conjecture eluded
mathematicians for over three centuries, it was still a proposition!

Here is another example of such a proposition. In 1742 the Prussian
mathematician Christian Goldbach conjectured that every even integer
greater than 2 is the sum of two primes, not necessarily distinct. For exam-
ple, 4 = 2 + 2, 6 = 3 + 3, and 18 = 7 + 11. It has been shown true for every

1.1 Propositions 5

Fermat (1601–1665) was born near Toulouse as the son of a leather
merchant. A lawyer by profession, he devoted his leisure time to mathemat-
ics. Although he published almost none of his discoveries, he did correspond
with contemporary mathematicians.

Fermat contributed to several branches of mathematics, but he is best
known for his work in number theory. Many of his results appear in margins
of his copy of the works of the Greek mathematician Diophantus (250 A.D.?).
He wrote the following about his famous conjecture: “I have discovered a
truly wonderful proof, but the margin is too small to contain it.”

Christian Goldbach (1690–1764) was born in Königsberg, Prussia. He studied medicine and mathe-
matics at the University of Königsberg and became professor of mathematics at the Imperial Academy of
Sciences in St. Petersburg in 1725. In 1728, he moved to Moscow to tutor Tsarevich Peter II and his cousin
Anna of Courland. From 1729 to 1763, he corresponded with Euler on number theory. He returned to the
Imperial Academy in 1732, when Peter’s successor Anna moved the imperial court to St. Petersburg.

In 1742, Goldbach joined the Russian Ministry of Foreign Affairs, and later became privy councilor
and established guidelines for the education of royal children.

Noted for his conjectures in number theory and work in analysis, Goldbach died in Moscow.

even integer less than 4×1014, but no one has been able to prove or disprove
his conjecture. Nonetheless, the Goldbach conjecture is a proposition.

Propositions (1) and (2) in Example 1.1 are simple propositions. A
compound proposition is formed by combining two or more simple
propositions called components. For instance, propositions (3) and (4)
in Example 1.1 are compound. The components of proposition (4) are 1 = 2
and Roses are red. The truth value of a compound proposition depends on
the truth values of its components.

Compound propositions can be formed in several ways, and they are
presented in the rest of this section.

Conjunction
The conjunction of two arbitrary propositions p and q, denoted by p ∧ q,
is the proposition p and q. It is formed by combining the propositions using
the word and, called a connective.

6 Chapter 1 The Language of Logic

EXAMPLE 1.2 Consider the statements

p: Socrates was a Greek philosopher
and q: Euclid was a Chinese musician.

Their conjunction is given by

p ∧ q: Socrates was a Greek philosopher and Euclid was a
Chinese musician. �

To define the truth value of p ∧ q, where p and q are arbitrary
propositions, we need to consider four possible cases:

• p is true, q is true.

• p is true, q is false.

• p is false, q is true.

• p is false, q is false.

(See the tree diagram in Figure 1.1 and Table 1.1.) If both p and q are
true, then p ∧ q is true; if p is true and q is false, then p ∧ q is false; if p is
false and q is true, then p ∧ q is false; and if both p and q are false, then
p ∧ q is also false.

Figure 1.1 Truth value
of p

T

T

F
T

F

F

Truth value
of q

Table 1.1 p q p ∧ q

T T
T F
F T
F F

This information can be summarized in a table. In the third column of
Table 1.1, enter the truth value of p∧q corresponding to each pair of truth
values of p and q. The resulting table, Table 1.2, is the truth table for
p ∧ q.

1.1 Propositions 7

Table 1.2

Truth table for p ∧ q
p q p ∧ q

T T T
T F F
F T F
F F F

Expressions that yield the value true or false are boolean expres-
sions, and they often occur in both mathematics and computer science. For
instance, 3 < 5 and 5 < 5 are boolean expressions. If-statements and while-
loops in computer programs often use such expressions, and their values
determine whether or not if-statements and while-loops will be executed,
as the next example illustrates.

EXAMPLE 1.3 Determine whether the assignment statement, sum ← sum + i + j,∗ will
be executed in the following sequence of statements:

i ← 3
j ← 5

sum ← 0
if (i < 4) and (j ≤ 5) then

sum ← sum + i + j

SOLUTION:
The assignment statement will be executed if the truth value of the boolean
expression (i < 4) and (j ≤ 5) is T. So, let us evaluate it. Since i ← 3, i < 4
is true; since j ← 5, j ≤ 5 is also true. Therefore, (i < 4) and (j ≤ 5) is true
(see row 1 of Table 1.2). Consequently, the given assignment statement will
be executed. �

Disjunction
A second way of combining two propositions p and q is by using the con-
nective or. The resulting proposition p or q is the disjunction of p and q
and is denoted by p ∨ q.

EXAMPLE 1.4 Consider the statements

p: Harry likes pepperoni pizza for lunch

and

q: Harry likes mushroom pizza for lunch.

∗The statement x ← y means the value of the expression y is assigned to x, where ← is
the assignment operator. The general form of an assignment statement is variable ←
expression.

8 Chapter 1 The Language of Logic

Their disjunction is given by

p ∨ q: Harry likes pepperoni pizza for lunch or Harry likes mushroom
pizza for lunch.

This sentence, however, is often written as
p ∨ q: Harry likes pepperoni or mushroom pizza for lunch. �

An interesting observation: In this example, Harry could like pepperoni
pizza or mushroom pizza, or both, for lunch. In other words, the connec-
tive or is used in the inclusive sense and/or to mean at least one, maybe
both. Such a disjunction is an inclusive disjunction.

Table 1.3 gives the truth table for an inclusive disjunction.

Table 1.3

Truth table for p ∨ q
p q p ∨ q

T T T
T F T
F T T
F F F

The disjunction of two propositions is true if at least one component is
true; it is false only if both components are false.

EXAMPLE 1.5 Consider the statements

r: Bernie will play basketball at 3 P.M. today

and
s: Bernie will go to a matinee at 3 P.M. today.

Then r ∨ s: Bernie will play basketball or go to a matinee at 3 P.M. today. �

In this example, Bernie cannot play basketball and go to a matinee at the
same time, so the word or is used in the exclusive sense to mean at least
one, but not both. Such a disjunction is an exclusive disjunction.
(See Exercise 31.) Throughout our discussion, we will be concerned
with only inclusive disjunction, so the word “disjunction” will mean
“inclusive disjunction.”

Negation
The negation of a proposition p is It is not the case that p, denoted by ∼p.
You may read ∼p as the negation of p or simply not p.

1.1 Propositions 9

EXAMPLE 1.6 Let p: Paris is the capital of France
and q: Apollo is a Hindu god.
The negation of p is

∼p: It is not the case that Paris is the capital of France.

This sentence, however, is often written as

∼p: Paris is not the capital of France.

Likewise, the negation of q is

∼q: Apollo is not a Hindu god. �
If a proposition p is true, then ∼p is false; if p is false, then ∼p is true.

This definition is summarized in Table 1.4.

Table 1.4

Truth table for ∼p
p ∼p

T F
F T

EXAMPLE 1.7 Evaluate each boolean expression, where a = 3, b = 5, and c = 6.
(1) [∼(a > b)] ∧ (b < c) (2) ∼[(a ≤ b) ∨ (b > c)]

SOLUTION:
(1) Since a > b is false, ∼(a > b) is true. Also, b < c is true. Therefore,

[∼ (a > b)] ∧ (b < c) is true. (See row 1 of Table 1.2.)

(2) a ≤ b is true; but b > c is false. So (a ≤ b) ∨ (b > c) is true. (See row 2
of Table 1.3.) Therefore, ∼[(a ≤ b) ∨ (b > c)] is false. �

Next we present another way of constructing new propositions.

Implication
Two propositions p and q can be combined to form statements of the form:
If p, then q. Such a statement is an implication, denoted by p → q. Since
it involves a condition, it is also called a conditional statement. The
component p is the hypothesis (or premise) of the implication and q the
conclusion.

EXAMPLE 1.8 Let p: &ABC is equilateral

and
q: &ABC is isosceles.

Then

p → q: If &ABC is equilateral, then it is isosceles.

10 Chapter 1 The Language of Logic

Likewise,

q → p: If &ABC is isosceles, then it is equilateral.

(Note: In the implication q → p, q is the hypothesis and p is the
conclusion.) �

Implications occur in a variety of ways. The following are some
commonly known occurrences:

• If p, then q.

• p only if q.

• If p, q.

• q if p.

• p implies q.

• p is sufficient for q.

• q is necessary for p.

Accordingly, the implication p → q can be read in one of these ways.
For instance, consider the proposition

p → q: If &ABC is equilateral, then it is isosceles.

It means exactly the same as any of the following propositions:

• If &ABC is equilateral, it is isosceles.

• &ABC is equilateral implies it is isosceles.

• &ABC is equilateral only if it is isosceles.

• &ABC is isosceles if it is equilateral.

• That &ABC is equilateral, is a sufficient condition for it to be
isosceles.

• That &ABC is isosceles, is a necessary condition for it to be
equilateral.

Warning: The statement p only if q is often misunderstood as having
the same meaning as the statement p if q. Remember, p if q means If q,
then p. So be careful. Think of only if as one phrase; do not split it.

To construct the truth table for an implication If p, then q, we shall
think of it as a conditional promise. If you do p, then I promise to do q. If
the promise is kept, we consider the implication true; if the promise is not
kept, we consider it false. We can use this analogy to construct the truth
table, as shown below.

Consider the following implication:

p → q: If you wax my car, then I will pay you $25.

1.1 Propositions 11

If you wax my car (p true) and if I pay you $25 (q true), then the implication
is true. If you wax my car (p true) and if I do not pay you $25 (q false), then
the promise is violated; hence the implication is false. What if you do not
wax my car (p false)? Then I may give you $25 (being generous!) or not. (So
q may be true or false). In either case, my promise has not been tested and
hence has not been violated. Consequently, the implication has not been
proved false. If it is not false, it must be true. In other words, if p is false,
the implication p → q is true by default. (If p is false, the implication is
said to be vacuously true.)

This discussion is summarized in Table 1.5.

Table 1.5

Truth table for p → q
p q p → q

T T T
T F F
F T T
F F T

In the ordinary use of implications in the English language, there is
a relationship between hypothesis and conclusion, as in the car waxing
example. This relation, however, does not necessarily hold for formal impli-
cations. For instance, in the implication, If the power is on, then 3 + 5 = 8,
the conclusion 3 + 5 = 8 is not even related to the hypothesis; however, from
a mathematical point of view, the implication is true. This is so because the
conclusion is true regardless of whether or not the power is on.

From an implication we can form three new implications — its converse,
inverse, and contrapositive — as defined below.

Converse, Inverse, and Contrapositive
The converse of the implication p → q is q → p (switch the premise and
the conclusion in p → q). The inverse of p → q is ∼p → ∼q (negate the
premise and the conclusion). The contrapositive of p → q is ∼q → ∼p
(negate the premise and the conclusion, and then switch them).

EXAMPLE 1.9 Let p → q: If &ABC is equilateral, then it is isosceles.
Its converse, inverse, and contrapositive are given by:

Converse q → p: If &ABC is isosceles, then it is equilateral.

Inverse ∼p → ∼q: If &ABC is not equilateral, then it is not
isosceles.

Contrapositive ∼q → ∼p: If &ABC is not isosceles, then it is not
equilateral. �

A word of caution: Many people mistakenly think that an implication
and its converse mean the same thing; they usually say one to mean

12 Chapter 1 The Language of Logic

the other. In fact, they need not have the same truth value. You will,
however, learn in Example 1.18 that an implication and its contra-
positive have the same truth value, and so do the converse and the
inverse.

Thus far, we have presented four boolean operators: ∧, ∨, →, and ∼.
The first three enable us to combine two propositions; accordingly, they are
binary operators. On the other hand, we need only one proposition to per-
form negation, so ∼ is a unary operator. These operators can be employed
to construct more complex statements, as the next example demonstrates.

EXAMPLE 1.10 Construct a truth table for (p → q) ∧ (q → p).

SOLUTION:
We construct the proposition (p → q) ∧ (q → p) step-by-step. From the
propositions p and q, we can form p → q and q → p; then take their con-
junction to yield the given statement. Thus, the truth table for (p → q) ∧
(q → p) requires five columns: p, q, p → q, q → p, and (p → q) ∧ (q → p) in
that order (see Table 1.6). As before, first enter the possible pairs of truth
values for p and q in columns 1 and 2. Then use the truth tables for impli-
cation (Table 1.5) and conjunction (Table 1.2) to complete the remaining
columns. The resulting table is displayed in Table 1.6. It follows from the
table that (p → q) ∧ (q → p) is true if both p and q have the same truth
values. �

Table 1.6 p q p → q q → p (p → q) ∧ (q → p)

T T T T T
T F F T F
F T T F F
F F T T T

The Island of Knights and Knaves
The next two examples∗ illustrate the power of truth tables in decision-
making and in arriving at logical conclusions in the midst of seemingly
confusing and contradictory statements.

EXAMPLE 1.11 Faced with engine problems, Ellen Wright made an emergency landing on
the beach of the Island of Knights and Knaves. The island is inhabited by
two distinct groups of people, knights and knaves. Knights always tell the
truth and knaves always lie. Ellen decided that her best move was to reach
the capital and call for service.

∗Based on C. Baltus, “A Truth Table on the Island of Truthtellers and Liars,” Mathematics
Teacher, Vol. 94 (Dec. 2001), pp. 730–732.

1.1 Propositions 13

Walking from the beach, she came to an intersection, where she saw two
men, A and B, working nearby. After hearing her story, A told Ellen, “The
capital is in the mountains, or the road on the right goes to the capital.”
B then said, “The capital is in the mountains, and the road on the right goes
to the capital.” Then A looked up and said, “That man is a liar.” Shrugging
his shoulders, B then said, “If the capital is in the mountains, then the road
to the right goes to the capital.” Ellen then made a table on the back of her
guidebook, thanked the two men, and walked down the road on the left.
Did Ellen make the correct decision?

SOLUTION:
Let c: The capital is in the mountains

and
r: The road on the right goes to the capital.

Now we build a truth table, as Table 1.7 shows. Since B could not give both
false and true statements (see rows 3 and 4 in columns 4 and 5), the last
two rows of the table do not fit the given scenario; so they can be ignored.

Table 1.7 c r A: c ∨ r B: c ∧ r B: c → r
T T T T T
T F T F F
F T T F T
F F F F T

It now follows from the rest of column 3 that A is a knight. So his state-
ment that “B is a liar” is true; thus B is a knave. Consequently, we can
ignore row 1 also. This leaves us with row 2. Therefore, the statement r is
false; that is, the road on the left goes to the capital. Thus Ellen made the
correct decision. �

The following example is a continuation of Ellen’s saga.

EXAMPLE 1.12 Walking up the road to the left, Ellen encountered a group of people gath-
ered at what she thought to be a bus stop. She approached three women, C,
D, and E, and asked them whether the road went to the capital and whether
the location was indeed a bus stop. She received three different responses:

C: “The road goes to the capital, and the bus stop is not here.”

D: “The road does not go to the capital, and the bus stop is here.”

E: “The road does not go to the capital, and the bus stop is not here.”

Confused and somewhat perplexed, Ellen asked them whether they are
knights or knaves. To this they all answered, “Two of us are knights, and
one is a liar.” How many of the three women are knights? Does the road go
to the capital? Is the location where Ellen met them a bus stop?

14 Chapter 1 The Language of Logic

SOLUTION:
Once again, we build a truth table. To this end, we let

g: The road goes to the capital

and

b: The bus stop is here.

Table 1.8 shows the resulting table, where only some columns are shown
for convenience.

Table 1.8 g b C: g ∧ ∼b D: ∼g ∧ b E: ∼g ∧ ∼b

T T F F F
T F T F F
F T F T F
F F F F T

Since all three women made the same statement, “Two of us are knights,
and one is a liar,” they must all be knaves. Consequently, we can discard
rows 2–4 in Table 1.8. (It now follows from row 1 that the three women are
all knaves.) So the road does indeed go to the capital and the location is a
bus stop. �

Ellen’s story is continued further in the exercises. See Exercises 76–78.
Next we present yet another method of combining propositions.

Biconditional Statement
Two propositions p and q can be combined using the connective if and
only if. The resulting proposition, p if and only if q, is the conjunction of
two implications: (1) p only if q, and (2) p if q, that is, p → q and q → p.
Accordingly, it is called a biconditional statement, symbolized by p ↔ q.

EXAMPLE 1.13 Let p: &ABC is equilateral
and q: &ABC is equiangular.

Then the biconditional statement is given by

p ↔ q: &ABC is equilateral if and only if it is equiangular. �
Since the biconditional p ↔ q means exactly the same as the statement

(p → q) ∧ (q → p), they have the same truth value in every case. We can
use this fact, and columns 1, 2, and 5 of Table 1.6 to construct the truth
table for p ↔ q, as in Table 1.9.

Notice that the statement p ↔ q is true if both p and q have the same
truth value; conversely, if p ↔ q is true, then p and q have the same
truth value.

1.1 Propositions 15

Table 1.9

Truth table for p ↔ q
p q p ↔ q

T T T
T F F
F T F
F F T

Here is a simple application of this fact with which you are already
familiar (see Section 7.8).

EXAMPLE 1.14 Let S denote the sum of the digits in 2034. If 3 is a factor of S, then 3 is
a factor of 2034 also. Conversely, if 3 is a factor of 2034, then 3 is a factor
of S also. Thus the biconditional, 2034 is divisible by 3 if and only if S is
divisible by 3, is a true proposition. Consequently, if one component — say,
S is divisible by 3 — is true, then the other component is also true. �

Order of Precedence

To evaluate complex logical expressions, you must know the order of
precedence of the logical operators. The order of precedence from the
highest to the lowest is: (1) ∼ (2) ∧ (3) ∨ (4) → (5) ↔. Note that paren-
thesized subexpressions are always evaluated first; if two operators have
equal precedence, the corresponding expression is evaluated from left
to right. For example, the expression (p → q) ∧ ∼q → ∼p is evaluated
as [(p → q) ∧ (∼q)] → (∼p), and p → q ↔ ∼q → ∼p is evaluated as
(p → q) ↔ [(∼q) → (∼p)].

The next example involves constructing a truth table for a conditional
statement and we shall use it shortly to make a few definitions.

EXAMPLE 1.15 Construct a truth table for (p → q) ↔ (∼p ∨ q).

SOLUTION:
We need columns for p, q, p → q, ∼p, ∼p ∨ q, and (p → q) ↔ (∼p ∨ q).
First, fill in the first two columns with the four pairs of truth values for
p and q. Then use the truth tables for implication, negation, disjunction,
and biconditional to complete the remaining columns. Table 1.10 shows the
resulting table.

Table 1.10 p q p → q ∼p ∼p ∨ q (p → q) ↔ (∼p ∨ q)

T T T F T T
T F F F F T
F T T T T T
F F T T T T

↑ always true!

16 Chapter 1 The Language of Logic

Tautology, Contradiction, and Contingency
An interesting observation: It is clear from Table 1.10 that the compound
statement (p → q) ↔ (∼p∨q) is always true, regardless of the truth values
of its components. Such a compound proposition is a tautology; it is an
eternal truth. For example, p ∨ ∼p is a tautology. (Verify this.)

On the other hand, a compound statement that is always false is a
contradiction. For instance, p ∧ ∼p is a contradiction (Verify this).
A compound proposition that is neither a tautology nor a contradiction
is a contingency. For example, p ∨ q is a contingency.

Next we show that there is a close relationship between symbolic logic
and switching networks.

Switching Network (optional)
A switching network is an arrangement of wires and switches connecting
two terminals. A switch that permits the flow of current is said to be closed;
otherwise, it is open. Likewise, a switching network is closed if current
can flow from one end of the network to the other; otherwise, it is open.

Two switches A and B can be connected either in series (see Figure 1.2)
or in parallel (see Figure 1.3). The switching network in Figure 1.2 is
closed if and only if both A and B are closed; accordingly, it is symbolically
denoted by A ∧ B. The network in Figure 1.3 is closed if and only if at least
one of the two switches is closed; consequently, it is denoted by A ∨ B.

Figure 1.2

Switches connected in
series, A ∧ B.

A B

Figure 1.3

Switches connected in
parallel, A ∨ B.

B

A

An electrical network may contain two switches A and A′ (A prime) such
that if one is closed, then the other is open, and vice versa. (The operator ′
corresponds to the logical operator ∼.)

A switching network, in general, consists of series and parallel connec-
tions and hence can be described symbolically using the operators ∧, ∨,
and ′, as the following example illustrates.

EXAMPLE 1.16 Find a symbolic representation of the switching network in Figure 1.4.

SOLUTION:
Switches A and B′ are connected in series; the corresponding portion of the
circuit is symbolized by A ∧ B′. Switch B is in parallel with A ∧ B′; so we
have (A ∧ B′) ∨ B. Since A′ and C are connected in series, the correspond-
ing portion of the network is described by A′ ∧ C. The circuits (A ∧ B′) ∨ B
and (A′ ∧ C) are connected in parallel. Therefore, the given network is

1.1 Propositions 17

Figure 1.4 A

B

B′

A′ C

symbolized by [(A ∧ B′) ∨ B] ∨ (A′ ∧ C). Since the operation ∨ is associa-
tive (see Table 1.13), this expression can be rewritten as (A ∧ B′) ∨ B ∨
(A′ ∧ C). �

Exercises 1.1

Which of the following are propositions?

1. The earth is flat.

3. What a beautiful day!

2. Toronto is the capital of Canada.

4. Come in.

Find the truth value of each compound statement.

5. (5 < 8) and (2 + 3 = 4)

7. If 1 = 2, then 3 = 3.

6. Paris is in France or 2 + 3 = 4.

8. &ABC is equilateral if and only if it is equiangular.

Negate each proposition.

9. 1 + 1 = 0. 10. The chalkboard is black.

Let x, y, and z be any real numbers. Represent each sentence symbolically,
where p: x < y, q: y < z, and r: x < z.

11. (x ≥ y) or (y < z)

13. (x ≥ y) and [(y < z) or (z > x)]

12. (y ≥ z) or (x ≥ z)

14. (x < y) or [(y ≥ z) and (z > x)]

Evaluate each boolean expression, where a = 2, b = 3, c = 5, and d = 7.

15. [∼(a > b)] ∨ [∼(c < d)]

17. ∼[(a > b) ∨ (b ≤ d)]

16. [∼(b < c)] ∧ [∼(c < d)]

18. ∼{(a ≤ b) ∧ [∼(c > d)]}

Let t be a tautology and p an arbitrary proposition. Give the truth value of
each proposition.

19. ∼ p ∨ t

21. ∼ t ∧ p

20. ∼ p ∧ ∼ t

22. ∼ (∼ p ∧ ∼ t)

Construct a truth table for each proposition.

23. ∼ p ∨ ∼ q 24. ∼(∼ p ∨ q)

25. (p ∨ q) ∨ (∼ q) 26. p ∧ (q ∧ r)

18 Chapter 1 The Language of Logic

Give the truth value of each proposition, using the given information.

27. p ∧ q, where q is not true.

29. p ∨ q, where ∼ p is false.

28. p ∧ q, where ∼ q is not false.

30. p ∨ q, where ∼ p is not true.

31. The exclusive disjunction of two propositions p and q is denoted by
p XOR q. Construct a truth table for p XOR q.

Write each sentence in if–then form.

32. An equiangular triangle is isosceles.

33. Lines perpendicular to the same line are parallel.

34. x2 = 16 is necessary for x = 4.

35. x = 1 is sufficient for x2 = 1.

Write the converse, inverse, and contrapositive of each implication.

36. If the calculator is working, then the battery is good.

37. If London is in France, then Paris is in England.

Let x, y, and z be any real numbers. Represent each sentence symbolically,
where p: x < y, q: y < z, and r: x < z.

38. If x ≥ y and x < z, then
y < z.

40. x < z if and only if x < y
and y < z.

39. If z ≥ y and x < y, then
z > x.

41. x ≥ y and y ≥ z if and only
if x ≥ z.

Determine whether or not the assignment statement x ← x + 1 will be
executed in each sequence of statements, where i ← 2, j ← 3, k ← 6, and
x ← 0.

42. If (i < 3) ∧ (j < 4) then
x ← x + 1

else
y ← y + 1

44. While ∼(i ≤ j) do
begin

x ← x + 1
i ← i + 1

endwhile

43. If (i < j) ∨ (k > 4) then
x ← x − 1

else
x ← x + 1

45. While ∼(i + j ≥ k) do
x ← x + 1

Let t be a tautology and p an arbitrary proposition. Find the truth value of
each.

46. (∼t) → p

50. (p ∧ t) → p

47. p → t

51. p → (p ∧ t)

48. (p ∨ t) → t

52. t ↔ (p ∨ t)

49. (p∨t)→(∼t)

53. p ↔ (p ∧ t)

1.1 Propositions 19

Construct a truth table for each proposition.

54. p → (p ∨ q)

56. (p ∧ q) → (p ∨ q)

55. (p ∧ q) →∼ p

57. (p ∨ q) ↔ (p ∧ q)

Determine whether or not each is a tautology.

58. p ∨ (∼ p)

60. [(p → q) ∧ (∼ q)] →∼ p

59. [p ∧ (p → q)] → q

61. [(p ∨ q) ∧ (∼ q)] → p

Determine whether or not each is a contradiction.
62. p ∧ (∼p)

64. ∼(p ∨ ∼p)

63. p ↔ ∼p

65. ∼p ↔ (p ∨ ∼p)

Indicate the order in which each logical expression is evaluated by properly
grouping the operands using parentheses.

66. p ∨ q ∧ r

68. p ∨ q ↔ ∼p ∧ ∼q

67. p ∧ q → ∼p ∨ ∼q

69. p → q ↔ ∼p ∨ q

◦ Represent each switching network symbolically.

70.
A

B C′

B′

A′

C

71. A′

B′

C′

A B

C

◦ Draw a switching network with each representation.

72. (A ∨ B) ∧ (A ∨ C)

74. (A ∧ B′) ∨ (A′ ∧ B)

73. (A ∨ B′) ∨ (A ∨ B)

75. (A ∧ B) ∨ (A′ ∧ B) ∨ (B′ ∧ C)

76. (Examples 1.11 and 1.12 continued) At the bus stop, Ellen noticed signs
for three buses, B1, B2, and B3, and approached another trio of women,
F, G, and H. A conversation ensued:

Ellen: Where do the buses go?

F: At least one of B1 and B2 goes to the capital.

G: B1 goes to the capital.

H: B2 and B3 go to the capital.

F: B3 goes to the beach.

G: B2 and B3 go to the beach.

H: B1 goes to the beach.

Which bus did Ellen take?

20 Chapter 1 The Language of Logic

77. After reaching the bus terminal at the capital, Ellen saw three personal
computers. She asked a young woman, I, whether the computers had
Internet connections. She replied, “Computer 1 is not connected to
the Internet. Ask that man, J; he is a knight.” When Ellen approached
the man, he told her, “Computer 2 has an Internet connection, but
computer 3 does not.” A second man, K, who overheard the conver-
sation, then said, “If computer 2 has an Internet connection, then so
does computer 1. Computer 3 is not connected to the Internet.” Which
computer had an Internet connection?

78. At the bus terminal, Ellen overheard the following conversation
between two baseball fans, L and M:

L: I like the Yankees.

M: You do not like the Yankees. You like the Dodgers.

L: We both like the Dodgers.

Does fan L like the Yankees? Who likes the Dodgers?

1.2 Logical Equivalences

Two compound propositions p and q, although they may look different, can
have identical truth values for all possible pairs of truth values of their
components. Such statements are logically equivalent, symbolized by
p ≡ q; otherwise, we write p �≡ q. If p ≡ q, the columns headed by them in
a truth table are identical.

The next two examples illustrate this definition.

EXAMPLE 1.17 Verify that p → q ≡ ∼p ∨ q.

SOLUTION:
Construct a truth table containing columns headed by p → q and ∼p ∨ q,
as in Table 1.11. Use the truth tables for implication, negation, and disjunc-
tion to fill in the last three columns. Since the columns headed by p → q
and ∼p ∨ q are identical, the two propositions have identical truth values.
In other words, p → q ≡ ∼p ∨ q.

Table 1.11 p q p → q ∼p ∼ p∨ q

T T T F T
T F F F F
F T T T T
F F T T T

↑ identical columns ↑

1.2 Logical Equivalences 21

(Note: This example shows that an implication can be expressed in terms
of negation and disjunction.)

EXAMPLE 1.18 Show that p → q ≡ ∼q → ∼p; that is, an implication is logically equivalent
to its contrapositive.

SOLUTION:
Once again, construct a truth table, with columns headed by p, q, p → q,
∼q, ∼p, and ∼q → ∼p. Use the truth tables for implication and negation to
complete the last four columns. The resulting table (see Table 1.12) shows
that the columns headed by p → q and ∼q → ∼p are identical; therefore,
p → q ≡ ∼q → ∼p.

Table 1.12 p q p → q ∼q ∼p ∼ q → ∼p

T T T F F T
T F F T F F
F T T F T T
F F T T T T

↑ identical columns ↑ �
This is an extremely useful, powerful result that plays an important role

in proving theorems, as we will see in Section 1.5.

It follows by this example that q → p ≡ ∼p → ∼q (Why?); that is, the
converse of an implication and its inverse have identical truth values.

Using truth tables, the laws of logic in Table 1.13 can be proved. We shall
prove one of the De Morgan laws and leave the others as routine exercises.

Table 1.13 Laws of Logic
Let p, q, and r be any three propositions. Let t denote a tautology and f a
contradiction. Then:

Idempotent laws

1. p ∧ p ≡ p 2. p ∨ p ≡ p

Identity laws

3. p ∧ t ≡ p 4. p ∨ f ≡ p

Inverse laws

5. p ∧ (∼p) ≡ f 6. p ∨ (∼p) ≡ t

Domination laws

7. p ∨ t ≡ t 8. p ∧ f ≡ f

Continued

22 Chapter 1 The Language of Logic

Table 1.13

(continued)
Commutative laws

9. p ∧ q ≡ q ∧ p 10. p ∨ q ≡ q ∨ p

Double negation

11. ∼ (∼p) ≡ p

Associative laws

12. p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r 13. p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Distributive laws

14. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 15. p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

De Morgan’s laws

16. ∼ (p ∧ q) ≡ ∼p ∨ ∼q 17. ∼ (p ∨ q) ≡ ∼p ∧ ∼q

Implication conversion law

18. p → q ≡ ∼p ∨ q

Contrapositive law

19. p → q ≡ ∼q → ∼p

Reductio ad absurdum law

20. p → q ≡ (p ∧ ∼q) → f

We can make a few observations about some of the laws. The com-
mutative laws imply that the order in which we take the conjunction (or
disjunction) of two propositions does not affect their truth values. The asso-
ciative laws say that the way we group the components in a conjunction (or
disjunction) of three or more propositions does not alter the truth value of
the resulting proposition; accordingly, parentheses are not needed to indi-
cate the grouping. In other words, the expressions p ∧ q ∧ r and p ∨ q ∨ r
are no longer ambiguous, but do make sense.

Nonetheless, parentheses are essential to indicate the groupings in the
distributive laws. For instance, if we delete the parentheses in law 14,
then its left-hand side (LHS) becomes p ∧ q ∨ r ≡ (p ∧ q) ∨ r, since ∧
has higher priority than ∨. But (p ∧ q) ∨ r �≡ p ∧ (q ∨ r). (You may verify
this.)

We now verify De Morgan’s law 16 in the following example.

EXAMPLE 1.19 Verify that ∼(p ∧ q) ≡ ∼p ∨ ∼q.

SOLUTION:
Construct a truth table with columns headed by p, q, p∧q, ∼(p∧q), ∼p, ∼q,
and ∼p ∨ ∼q. Since columns 4 and 7 in Table 1.14 are identical, it follows
that ∼(p ∧ q) ≡ ∼p ∨ ∼q. �

1.2 Logical Equivalences 23

Augustus De Morgan (1806–1871) was born in Madurai, Tamil Nadu, India,
where his father was a colonel in the Indian army. When the young De Morgan
was 7 months old, the family moved to England. He attended private schools,
where he mastered Latin, Greek, and Hebrew and developed a strong interest
in mathematics. After graduating in 1827 from Trinity College, Cambridge,
he pondered a career either in medicine or law, but pursued mathematics. His
professional career began in 1828 at University College, London. Three years
later, however, when the college dismissed a colleague in anatomy without
explanation, De Morgan resigned on principle. He returned to Trinity in 1836
when his successor died and remained there until a second resignation in 1866.

A fellow of the Astronomical Society and a founder of the London Mathe-
matical Society, De Morgan greatly influenced the development of mathematics
in the 19th century. He exuded his passion for the subject in his teaching,

stressing principles over techniques.
An incredibly prolific writer, De Morgan authored more than 1000 articles in more than 15 journals,

as well as a number of textbooks, all characterized by clarity, logical presentation, and meticulous detail.
De Morgan’s original contributions to mathematics were mainly in analysis and logic. In 1838, he

coined the term mathematical induction and gave a clear justification to this proof method, although it
had been in use. His The Differential and Integral Calculus (1842) gives the first precise definition of a
limit and some tests for convergence of infinite series.

De Morgan was also interested in the history of mathematics. He wrote biographies of Sir Isaac Newton
and Edmund Halley. His wife wrote De Morgan’s biography in 1882.

His researches into all branches of knowledge and his prolific writing left him little time for social or
family life, but he was well-known for his sense of humor.

Table 1.14 p q p ∧ q ∼(p ∧ q) ∼p ∼q ∼ p ∨ ∼q

T T T F F F T
T F F T F T F
F T F T T F T
F F F T T T T

↑ identical columns ↑

De Morgan’s laws, although important, can be confusing, so be care-
ful when you negate a conjunction or a disjunction. The negation of
a conjunction (or disjunction) of two statements is the disjunction (or
conjunction) of their negations.

The next two examples illustrate De Morgan’s laws.

EXAMPLE 1.20 Let p: Peter likes plain yogurt

and
q: Peter likes flavored yogurt.

24 Chapter 1 The Language of Logic

Then
p ∧ q: Peter likes plain yogurt and flavored yogurt.

p ∨ q: Peter likes plain yogurt or flavored yogurt.

By De Morgan’s laws,

∼(p ∧ q) ≡ ∼p ∨ ∼q: Peter does not like plain yogurt or does not like
flavored yogurt

and

∼(p ∨ q) ≡ ∼p ∧ ∼q: Peter likes neither plain yogurt nor
flavored yogurt. �

De Morgan’s laws can be used in reverse order also; that is, ∼p ∨ ∼q ≡
∼(p ∧ q) and ∼p ∧ ∼q ≡ ∼(p ∨ q). For instance, the sentence, Claire does
not like a sandwich or does not like pizza for lunch can be rewritten as
It is false that Claire likes a sandwich and pizza for lunch. Likewise, the
sentence, The earth is not flat and not round can be restated as It is false
that the earth is flat or round.

EXAMPLE 1.21 Determine whether or not the statement x ← x + 1 will be executed in the
following sequence of statements:

a ← 7; b ← 4
if ∼[(a < b) ∨ (b ≥ 5)] then

x ← x + 1

SOLUTION:
The statement x ← x + 1 will be executed if the value of the boolean
expression ∼[(a < b) ∨ (b ≥ 5)] is true. By De Morgan’s law,

∼[(a < b) ∨ (b ≥ 5)] ≡ ∼(a < b) ∧∼(b ≥ 5)

≡ (a ≥ b) ∧ (b < 5)

Since a = 7 and b = 4, both a ≥ b and b < 5 are true; so, (a ≥ b) ∧ (b < 5)
is true. Therefore, the assignment statement will be executed. �

One of the elegant applications of the laws of logic is employing them to
simplify complex boolean expressions, as the next example illustrates.

EXAMPLE 1.22 Using the laws of logic simplify the boolean expression (p ∧ ∼q) ∨ q ∨
(∼p ∧ q).

SOLUTION:
[The justification for every step is given on its right-hand-side (RHS).]

(p ∧ ∼q) ∨ q ∨ (∼p ∧ q) ≡ [(p ∧ ∼q) ∨ q] ∨ (∼p ∧ q) assoc. law

≡ [q ∨ (p ∧ ∼q)] ∨ (∼p ∧ q) comm. law

1.2 Logical Equivalences 25

≡ [(q ∨ p) ∧ (q ∨ ∼q)] ∨ (∼p ∧ q) dist. law

≡ [(q ∨ p) ∧ t] ∨ (∼p ∧ q) q ∨ ∼q ≡ t

≡ (q ∨ p) ∨ (∼p ∧ q) r ∧ t ≡ r

≡ (∼p ∧ q) ∨ (p ∨ q) comm. law

≡ [∼p ∨ (p ∨ q)] ∧ [q ∨ (p ∨ q)] dist. law

≡ [(∼p ∨ p) ∨ q] ∧ [q ∨ (p ∨ q)] assoc. law

≡ (t ∨ q) ∧ [q ∨ (p ∨ q)] ∼p ∨ p ≡ t

≡ t ∧ [q ∨ (p ∨ q)] t ∨ q ≡ t

≡ q ∨ (p ∨ q) t ∧ r ≡ r

≡ q ∨ (q ∨ p) comm. law

≡ (q ∨ q) ∨ p assoc. law

≡ q ∨ p idem. law

≡ p ∨ q comm. law �

For any propositions p, q, and r, it can be shown that p → (q ∨ r) ≡
(p∧∼q) → r (see Exercise 12). We shall employ this result in Section 1.5.

Here are two elementary but elegant applications of this equivalence.
Suppose a and b are any two real numbers, and we would like to prove

the following theorem: If a · b = 0, then either a = 0 or b = 0. By virtue of
the above logical equivalence, we need only prove the following proposition:
If a · b = 0 and a �= 0, then b = 0 (see Exercise 43 in Section 1.5).

Second, suppose a and b are two arbitrary positive integers, and p a
prime number. Suppose we would like to prove the following fact: If p|ab,∗
then either p|a or p|b. Using the above equivalence, it suffices to prove the
following equivalent statement: If p|ab and p� | a, then p|b (see Exercise 37
in Section 4.2).

We shall now show how useful symbolic logic is in the design of switching
networks.

Equivalent Switching Networks (optional)
Two switching networks A and B are equivalent if they have the same
electrical behavior, either both open or both closed, symbolically described
by A ≡ B. One of the important applications of symbolic logic is to replace
an electrical network, whenever possible, by an equivalent simpler net-
work to minimize cost, as illustrated in the following example. To this end,

∗x|y means “x is a factor of y.”

26 Chapter 1 The Language of Logic

let A be any circuit, T a closed circuit, and F an open circuit. Then A ∧ T ≡
A, A ∧ A′ ≡ F, A ∨ T ≡ T, and A ∨ A′ ≡ T (see laws 3 through 8). Likewise,
laws 1 through 11 can also be extended to circuits in an obvious way.

EXAMPLE 1.23 Replace the switching network in Figure 1.5 by an equivalent simpler
network.

Figure 1.5 A

A B

C

B′

SOLUTION:
The given network is represented by (A ∧ B′) ∨ [(A ∧ B) ∨ C]. Let us simplify
this expression using the laws of logic. (The reason for each step is given
on its RHS.)

(A ∧ B′) ∨ [(A ∧ B) ∨ C] ≡ [(A ∧ B′) ∨ (A ∧ B)] ∨ C assoc. law

≡ [A ∧ (B′ ∨ B)] ∨ C dist. law

≡ (A ∧ T) ∨ C B′ ∨ B ≡ T

≡ A ∨ C A ∧ T ≡ A

Consequently, the given circuit can be replaced by the simpler circuit in
Figure 1.6.

Figure 1.6

C

A

�
We close this section with a brief introduction to fuzzy logic.

Fuzzy Logic (optional)
“The binary logic of modern computers,” wrote Bart Kosko and Satoru
Isaka, two pioneers in the development of fuzzy logic systems, “often falls
short when describing the vagueness of the real world. Fuzzy logic offers
more graceful alternatives.” Fuzzy logic, a branch of artificial intelligence,
incorporates the vagueness or value judgements that exist in everyday life,
such as “young,” “smart,” “hot,” and “cold.”

The first company to use a fuzzy system was F. L. Smidth and Co., a con-
tracting company in Copenhagen, Denmark, which in 1980 used it to run a

1.2 Logical Equivalences 27

Bart Kosko holds degrees in philosophy and economics from the Universityof Southern California, an
M.S. in applied mathematics, and a Ph.D. in electrical engineering from the University of California,
Irvine. Currently, he is on the faculty in electrical engineering at the University of Southern California.

Satoru Isaka received his M.S. and Ph.D. in systems science from the University of California, San Diego.
He specializes in fuzzy information processing at Omron Advanced Systems at Santa Clara, and in
the application of machine learning and adaptive control systems to biomedical systems and factory
automation.

cement kiln. Eight years later, Hitachi used a fuzzy system to run the sub-
way system in Sendai, Japan. Since then Japanese and American companies
have employed fuzzy logic to control hundreds of household appliances,
such as microwave ovens and washing machines, and electronic devices,
such as cameras and camcorders. (See Figure 1.7.) It is generally believed
that fuzzy, common-sense models are far more useful and accurate than
standard mathematical ones.

Figure 1.7

In fuzzy logic, the truth value t(p) of a proposition p varies from 0 to
1, depending on the degree of its truth; so 0 ≤ t(p) ≤ 1. For example, the
statement “The room is cool” may be assigned a truth value of 0.4; and the
statement “Sarah is smart” may be assigned a truth value of 0.7.

28 Chapter 1 The Language of Logic

Let 0 ≤ x, y ≤ 1. Then the operations ∧, ∨, and ′ are defined as follows:

x ∧ y = min{x, y}
x ∨ y = max{x, y}

x′ = 1 − x

where min{x, y} denotes the minimum of x and y, and max{x, y} denotes the
maximum of x and y.

Not all properties in propositional logic are valid in fuzzy logic. For
instance, the law of excluded middle, p ∨ ∼p is true, does not hold in
fuzzy logic. To see this, let p be a simple proposition with t(p) = 0. 3. Then
t(p′) = 1−0. 3 = 0. 7; so t(p∨p′) = t(p)∨t(p′) = 0. 3∨0. 7 = max{0. 3, 0. 7} =
0. 7 �= 1. Thus p∨p′ is not a tautology in fuzzy logic. [In propositional logic,
t(p ∨ p′) = 1; so p ∨ p′ is a tautology. Think of 1 representing a T and 0
representing an F.]

Likewise, t(p ∧ p′) = t(p) ∧ t(p′) = 0. 3 ∧ 0. 7 = min{0. 3, 0. 7} = 0. 3 �= 0;
so p ∧ p′ is not a contradiction, unlike in propositional logic.

Next we present briefly an interesting application∗ of fuzzy logic to deci-
sion making. It is based on the Yager method, developed in 1981 by Ronald
R. Yager of Iona College, and employs fuzzy intersection and implication
→, defined by p → q ≡ ∼p ∨ q.

Fuzzy Decisions
Suppose that from among five U.S. cities — Boston, Cleveland, Miami,
New York, and San Diego — we would like to select the best city to live
in. We will use seven categories C1 through C7 to make the decision; they
are climate, cost of housing, cost of living, outdoor activities, employment,
crime, and culture, respectively, and are judged on a scale 0–6: 0 = terri-
ble, 1 = bad, 2 = poor, 3 = average, 4 = fairly good, 5 = very good, and
6 = excellent. Table 1.15 shows the relative importance of each criterion on
a scale 0–6 and the rating for each city in each category.

Table 1.15 Category Impor- Boston Cleveland Miami New York San Diego
tance

C1 6 3 2 5 1 6
C2 3 1 5 4 0 1
C3 2 3 4 3 1 5
C4 4 5 3 6 2 6
C5 4 4 3 3 4 3
C6 5 2 4 0 1 3
C7 4 6 3 3 6 5

∗Based on M. Caudill, “Using Neural Nets: Fuzzy Decisions,” AI Expert, Vol. 5 (April 1990),
pp. 59–64.

1.2 Logical Equivalences 29

The ideal city to live in will score high in the categories considered most
important. In order to choose the finest city, we need to evaluate each
city by each criterion, weighing the relative importance of each category.
Thus, given a particular category’s importance, we must check the city’s
score in that category; in other words, we must compute the truth value
of i → s ≡ ∼i ∨ s for each city, where i denotes the importance ranking
for a particular category and s the city’s score for that category. Table 1.16
shows the resulting data.

Now we take the conjunction of all scores for each city, using the min
function (see Table 1.16). The lowest combined score determines the city’s
overall ranking. It follows from the table that San Diego is clearly the
winner.

Table 1.16 Category ∼i Boston Cleveland Miami New York San Diego
s ∼i ∨ s s ∼i ∨ s s ∼i ∨ s s ∼i ∨ s s ∼i ∨ s

C1 0 3 3 2 2 5 5 1 1 6 6
C2 3 1 3 5 5 4 4 0 3 1 3
C3 4 3 4 4 4 3 4 1 4 5 5
C4 2 5 5 3 3 6 6 2 2 6 6
C5 2 4 4 3 3 3 3 4 4 3 3
C6 1 2 2 4 4 0 1 1 1 3 3
C7 2 6 6 3 3 3 3 6 6 5 5

Intersection 2 2 1 1 3

︸ ︷︷ ︸
next best choices

↑
winner

Finally, suppose we add a sixth city, say, Atlanta, for consideration. Then
the Yager method ensures that the revised choice will be the existing choice
(San Diego) or Atlanta; it can’t be any of the others. Thus the procedure
allows incremental decision making, so manageable subdecisions can be
combined into an overall final choice.

Exercises 1.2

Give the truth value of p in each case.

1. p ≡ q, and q is not true. 2. p ≡ q, q ≡ r, and r is true.

Verify each, where f denotes a contradiction. (See Table 1.14.)

3. ∼(∼p) ≡ p

6. p ∧ q ≡ q ∧ p

9. ∼(p → q) ≡ p∧∼q

4. p ∧ p ≡ p

7. p ∨ q ≡ q ∨ p

5. p ∨ p ≡ p

8. ∼(p∨q) ≡ ∼p∧∼q

30 Chapter 1 The Language of Logic

10. p → q ≡ (p ∧ ∼q) → f

12. p → (q ∨ r) ≡ (p ∧ ∼q) → r

11. p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

13. (p∨q) → r ≡ (p → r)∧ (q → r)

Use De Morgan’s laws to evaluate each boolean expression, where x = 2,
y = 5, and z = 3.

14. ∼[(x < z) ∧ (y < z)]
16. ∼[(x ≥ y) ∨ (y < z)]

15. ∼[(y < x) ∧ (z < x)]
17. ∼[(x < z) ∨ (z < y)]

Determine whether the assignment statement c ← c + 1 will be executed
by the if-statement or while-loop, where x ← 5, y ← 3, and z ← 7.

18. If ∼[(x < y) ∧ (y ≤ z)] then
c ← c + 1

20. If ∼[(x ≥ y) ∨ (x < z)] then
c ← c + 1

22. While ∼[(x ≤ z) ∨ (x < 3)] do
c ← c + 1

24. While ∼[(x = y) ∨ (y = z)] do
c ← c + 1

19. If ∼[(x = z) ∧ (x ≤ y)] then
c ← c + 1

21. If ∼[(x ≤ z) ∨ (y = z)] then
c ← c + 1

23. While ∼[(x > 6) ∧ (y = 4)] do
c ← c + 1

25. While ∼[(x = 6) ∨ (y = z)] do
c ← c + 1

The logical operators NAND (not and) and NOR (not or) are defined as
follows:

p NAND q ≡ ∼(p ∧ q)

p NOR q ≡ ∼(p ∨ q)

Construct a truth table for each proposition.

26. p NAND q 27. p NOR q

Mark each sentence as true or false, where p, q, and r are arbitrary
statements, t a tautology, and f a contradiction.

28. p ∧ q ≡ q ∧ p

32. p ∨ ∼p ≡ t

29. p ∨ q ≡ q ∨ p

33. p ∧ ∼p ≡ f

30. p ∧ t ≡ p

34. ∼(p ∧ q) ≡
31. p ∨ f ≡ p

∼p ∧ ∼q

35. ∼(p ∨ q) ≡ ∼p ∨ ∼q

37. p ≡ p

39. If p ≡ q and q ≡ r, then p ≡ r.

41. If p ∨ q ≡ p ∨ r, then q ≡ r.

36. p → q ≡ q → p

38. If p ≡ q, then q ≡ p.

40. If p ∧ q ≡ p ∧ r, then q ≡ r.

Use De Morgan’s laws to verify each. (Hint: p → q ≡ ∼p ∨ q).

42. ∼(∼p∧∼q) ≡ p∨q

45. ∼(p∧∼q) ≡ ∼p∨q

43. ∼(∼p∨q) ≡ p∧∼q

46. ∼(p → q) ≡ p∧∼q

44. ∼(∼p∨∼q) ≡ p∧q

47. p → ∼q ≡ ∼(p∧q)

1.2 Logical Equivalences 31

48. Show that the connectives ∧, →, and ↔ can be expressed in terms of
∨ and ∼. (Hint: Use Exercise 44, law 18, and Tables 1.6 and 1.7.)

Simplify each boolean expression.

49. p ∧ (p ∧ q)

51. p ∨ (∼p ∧ q)

*53. p ∧ (p ∨ ∼q) ∧ (∼p ∨ ∼q)

50. p ∨ (p ∨ q)

52. (p ∧ ∼q) ∨ (p ∧ q) ∨ r

*54. (p ∧∼q) ∨ (∼p ∧ q) ∨ (∼p ∧∼q)

◦ Construct an equivalent, simpler network for each switching network.

55. A

A

C

B

B′

56. A

A

B′ B′

A′

The Sheffer stroke | is a binary operator∗∗ defined by the following truth
table.

p q p|q

T T F
T F T
F T T
F F T

(Note: On page 25 we used the vertical bar | to mean is a factor of. The
actual meaning should be clear from the context. So be careful.) Verify
each. (Note: Exercise 58 shows that the logical operators | and NAND are
the same.)

57. ∼p ≡ p|p
59. p ∧ q ≡ (p|q)|(p|q)

61. p → q ≡ ((p|p)|(p|p))|(q|q)

58. p|q ≡ ∼(p ∧ q)

60. p ∨ q ≡ (p|p)|(q|q)

62. ∼(p ∨ q) ≡ ((p|p)|(q|q))|((p|p)|(q|q))

*63. Express p XOR q in terms of the Sheffer stroke.
(Hint: p XOR q ≡ [(p ∨ q) ∧ ∼(p ∧ q)].)

∗∗The Sheffer stroke, named after the American logician Henry M. Sheffer (1883–1964), was
devised by the American logician Charles S. Peirce (1839–1914).

32 Chapter 1 The Language of Logic

*64. Express p ↔ q in terms of the Sheffer stroke. (Hint: p ↔ q ≡
(p → q) ∧ (q → p).) [Note: Exercises 57–64 indicate that all boolean
operators can be expressed in terms of the Sheffer stroke!]

Exercises 65–78 deal with propositions in fuzzy logic.

◦ Let p, q, and r be simple propositions with t(p) = 1, t(q) = 0. 3, and t(r) =
0. 5. Compute the truth value of each, where s′ denotes the negation of the
statement s.

65. (p′)′

69. q ∧ q′

73. (p ∨ q)′

66. p ∧ q

70. p′ ∨ q

74. p ∧ q′

67. p ∨ r

71. (p ∧ q)′

75. q ∨ r′

68. q ∨ q′

72. p′ ∨ q′

76. (p∨q)∧(p′∨q)

Let p be a simple proposition with t(p) = x and p′ its negation. Find each.

77. t(p ∨ p′) 78. t(p ∧ p′)

1.3 Quantifiers

We now investigate a class of propositions different from those presented
in the preceding sections.

Take a good look at the following propositions:

• All people are mortal.

• Every computer is a 16-bit machine.

• No birds are black.

• Some people have blue eyes.

• There exists an even prime number.

Each contains a word indicating quantity such as all, every, none, some,
and one. Such words, called quantifiers, give us an idea about how many
objects have a certain property.

There are two different quantifiers. The first is all, the universal quan-
tifier, denoted by ∀, an inverted A. You may read ∀ as for all, for each, or for
every. The second quantifier is some, the existential quantifier, denoted
by ∃, a backward E. You may read ∃ for some, there exists a, or for at least
one. Note that the word some means at least one.

The next two examples demonstrate how to write quantified propositions
symbolically.

EXAMPLE 1.24 Let x be any apple. Then the sentence All apples are green can be written as
For every x, x is green. Using the universal quantifier ∀, this sentence can
be represented symbolically as (∀x)(x is green) or (∀x)P(x) where P(x) : x is
green. (Note: x is just a dummy variable.) �

1.3 Quantifiers 33

Predicate
Here P(x), called a predicate, states the property the object x has. Since
P(x) involves just one variable, it is a unary predicate. The set of all values
x can have is called the universe of discourse (UD). In the above example,
the UD is the set of all apples.

Note that P(x) is not a proposition, but just an expression. However, it
can be transformed into a proposition by assigning values to x. The truth
value of P(x) is predicated on the values assigned to x from the UD.

The variable x in the predicate P(x) is a free variable. As x varies over
the UD, the truth value of P(x) can vary. On the other hand, the variable x
in (∀x)P(x) is a bound variable, bound by the quantifier ∀. The proposition
(∀x)P(x) has a fixed truth value.

EXAMPLE 1.25 Rewrite the sentence Some chalkboards are black, symbolically.

SOLUTION:
Choose the set of all chalkboards as the UD. Let x be an arbitrary
chalkboard. Then the given sentence can be written as:

There exists an x such that x is black.

Using the existential quantifier, this can be symbolized as (∃ x)b(x), where
b(x): x is black. �

The next example illustrates how to find the truth values of quantified
propositions.

EXAMPLE 1.26 The absolute value of a real number x, denoted by |x|, is defined by

|x| =
⎧⎨
⎩

x if x ≥ 0

−x if x < 0

Determine the truth value of each proposition, where the UD = set of all
real numbers:
(1) (∀x) (x2 ≥ 0) (2) (∀x) (|x| > 0)

SOLUTION:
(1) Since the square of every real number is nonnegative, the truth value

of (∀x) (x2 ≥ 0) is T.
(2) It is not true that the absolute value of every number is positive, since

|0| = 0, not greater than zero. So the truth value of (∀x) (|x| > 0)
is F. �

A predicate may contain two or more variables. A predicate that con-
tains two variables is a binary predicate. For instance, P(x, y) is a binary
predicate. If a predicate contains n variables, it is an n-ary predicate.

The next two examples involve binary predicates.

34 Chapter 1 The Language of Logic

EXAMPLE 1.27 Rewrite each proposition symbolically, where UD = set of real numbers.

(1) For each integer x, there exists an integer y such that x + y = 0.
(2) There exists an integer x such that x + y = y for every integer y.
(3) For all integers x and y, x · y = y · x.
(4) There are integers x and y such that x + y = 5.

SOLUTION:
(1) (∀x)((∃y)(x + y = 0)), which is usually written as (∀x)(∃y)(x + y = 0).
(2) (∃ x)(∀y)(x + y = y)
(3) (∀x)(∀y)(x · y = y · x)
(4) (∃ x)(∃y)(x + y = 5) �

The order of the variables x and y in (∀x)(∀y) and (∃ x)(∃y) can be changed
without affecting the truth values of the propositions. For instance,
(∀x)(∀y)(xy = yx) ≡ (∀y)(∀x)(xy = yx). Nonetheless, the order is impor-
tant in (∀x)(∃y) and (∃y)(∀ x). For example, let P(x, y): x < y where x
and y are integers. Then (∀x)(∃y)P(x, y) means For every integer x, there
is a suitable integer y such that x < y; y = x + 1 is such an integer.
Therefore, (∀x)(∃y)P(x, y) is true. But (∃y)(∀x)P(x, y) means There exists an
integer y, say, b, such that (∀x)P(x,b); that is, every integer x is less than b.
Clearly, it is false. Moral? The proposition (Q1x)(Q2y)P(x, y) is evaluated as
(Q1x)[(Q2y)P(x, y)], where Q1 and Q2 are quantifiers.

A graphical approach can be helpful in finding the truth values of propo-
sitions in the form (Q1x)(Q2y)P(x, y), where x and y are real numbers, as
the next example illustrates.

EXAMPLE 1.28 (optional∗) Determine the truth value of each proposition, where P(x, y):
y < x2, and x and y are real numbers.

(1) (∀x)(∀y)P(x, y)
(4) (∀y)(∃ x)P(x, y)

(2) (∃ x)(∃y)P(x, y)
(5) (∃ x)(∀y)P(x, y)

(3) (∀x)(∃y)P(x, y)
(6) (∃y)(∀x)P(x, y)

SOLUTION:
The graph of the equation y = x2 is a parabola, as shown in Figure 1.8.
The parabola is shown as a broken graph since no points on it satisfy
the inequality y < x2. The shaded region represents the solutions of the
inequality.

(1) Is y < x2 for all x and y? In other words, is the entire plane shaded?
Since this is not the case, proposition (1) is false.

(2) (∃ x)(∃y)P(x, y) is true if y < x2 for some real numbers x and y; that is,
if and only if some portion of the cartesian plane is shaded. Since this
is true, proposition (2) is true.

∗Based on E. A. Kuehls, “The Truth-Value of {∀, ∃, P(x, y)}: A Graphical Approach,”
Mathematics Magazine, Vol. 43 (Nov. 1970), pp. 260–261.

1.3 Quantifiers 35

Figure 1.8

x

y

y�x2

y �x2

O

(3) (∀x)(∃y)P(x, y) is true if there is a point (x, y) in the shaded area corre-
sponding to every x; that is, it is true if every vertical line intersects
the shaded area. Since this is the case, the proposition is true.

(4) (∀y)(∃ x)P(x, y) is true since every horizontal line intersects the shaded
area.

(5) (∃ x)(∀y)P(x, y) means there is an x such that y < x2 for all y. Therefore,
the proposition is true if there is a vertical line which lies wholly within
the shaded region. Since no such line exists, the proposition is false.

(6) (∃y)(∀x)P(x, y) is true if there is a horizontal line which lies wholly
within the shaded area. Since there are such lines, the proposition is
true.

Note: This graphical approach elucidates the difference between (∀x)(∃y)
and (∃ x)(∀y), and also between (∀y)(∃ x) and (∃ x)(∀y). (∃ x)(∀y) demands
a fixed x, whereas (∀x)(∃y) does not demand such a fixed x.

Next we discuss how to negate quantified propositions.
Recall from Example 1.24 that the proposition All apples are green can

be symbolized as (∀x)P(x), where P(x): x is green. Its negation is: It is
false that all apples are green. That is, there exists an apple that is not
green. In symbols, this can be written as (∃ x)(∼P(x)). Thus, ∼[(∀x)P(x)] ≡
(∃ x)[∼P(x)]. Similarly, ∼[(∃ x)P(x)] ≡ (∀x)[∼P(x)]. These two properties are
De Morgan’s laws for negating quantifiers.

De Morgan’s laws
• ∼[(∀x)P(x)] ≡ (∃ x)[∼P(x)]
• ∼[(∀x)P(x)] ≡ (∀x)[∼P(x)] �

36 Chapter 1 The Language of Logic

By virtue of these laws, be careful when negating quantified
propositions. When you negate the universal quantifier ∀, it becomes
the existential quantifier ∃; when you negate the existential quantifier,
it becomes the universal quantifier. In Section 1.5, we discuss a nice
application of the first law to disproving propositions.

EXAMPLE 1.29 Negate each proposition, where the UD = set of integers.

(1) (∀x) (x2 = x) (2) (∃ x) (|x| = x)

SOLUTION:
• ∼[(∀x)(x2 = x)] ≡ (∃ x)[∼(x2 = x)]

≡ (∃ x)(x2 �= x).

• ∼[(∃ x)(|x| = x)] ≡ (∀x)[∼(|x| = x)]
≡ (∀x)(|x| �= x).

EXAMPLE 1.30 Negate each quantified proposition.

(1) Every computer is a 16-bit machine.
(2) Some girls are blondes.
(3) All chalkboards are black.
(4) No person has green eyes.

SOLUTION:
Their negations are:

(1) Some computers are not 16-bit machines.
(2) No girls are blondes.
(3) Some chalkboards are not black.
(4) Some people have green eyes. �

In closing, we should point out that what we discussed in Sections 1.1
and 1.2 is propositional logic; it deals with unquantified propositions.
However, as we saw throughout this section, not all propositions
can be symbolized in propositional logic, so quantifiers are needed.
The area of logic that deals with quantified propositions is predicate
logic.

Exercises 1.3

Determine the truth value of each proposition, where the UD consists of
the numbers ±1, ±2, and 0.

1. (∀x)(x2 = 4)

4. (∀y)(y4 + 3y2 = 2)

2. (∃ x)(x3 + 2x2 = x + 2)

5. ∼(∀x)(x3 = x)

3. (∀x)(x5 + 4x = 5x3)

6. (∀x)[∼(x5 = 4x)]

1.3 Quantifiers 37

Let P(x): x2 > x, Q(x): x2 = x, and the UD = set of integers. Determine the
truth value of each proposition.

7. (∀x)[∼P(x)]
10. (∀x)[P(x) ∧ Q(x)]

8. (∃ x)[∼P(x)]
11. (∃ x)[P(x) ∨ Q(x)]

9. (∃ x)[P(x) ∧ Q(x)]
12. (∀x)[P(x) ∨ Q(x)]

Rewrite each sentence symbolically, where P(x): x is a 16-bit machine,
Q(x): x uses the ASCII∗∗ character set, and the UD = set of all computers.

13. There is a computer that is a 16-bit machine and uses the ASCII
character set as well.

14. We can find a 16-bit computer that does not use the ASCII character
set.

15. We can find a computer that is either a 16-bit machine or does not use
the ASCII character set.

16. There exists a computer that is neither a 16-bit machine nor uses the
ASCII character set.

Negate each proposition, where x is an arbitrary integer.

17. (∀x)(x2 > 0)

18. (∃ x)(x2 �= 5x − 6)

19. Every supercomputer is manufactured in Japan.

20. There are no white elephants.

Rewrite each sentence symbolically, where the UD consists of real
numbers.

21. The product of any two real numbers x and y is positive.

22. There are real numbers x and y such that x = 2y.

23. For each real number x, there is some real number y such that x ·y = x.

24. There is a real number x such that x + y = y for every real number y.

25–28. Find the truth value of each proposition in Exercises 21–24.

Rewrite each in words, where UD = set of integers.

29. (∀x)(x2 ≥ 0)

32. (∀x)(∃y)(xy = 3)

30. ∼(∃ x)(x2 = 2)

33. (∃ x)(∀y)(y − x = y)

31. (∃ x)(∃y)(x + y = 7)

34. (∀x)(∀y)(x + y = y + x)

35–40. Find the truth value of each proposition in Exercises 29–34.

Let UD = set of integers, P(x, y): x is a multiple of y, and Q(x, y) : x ≥ y.
Determine the truth value of each proposition.

∗∗ASCII is the acronym for American Standard Code for Information Interchange.

38 Chapter 1 The Language of Logic

41. (∃ x)P(15, x) 42. (∀x)P(x, 2) 43. ∼(∃ x)P(x, 5)

44. (∃ x)[P(x, 3) ∧ Q(x, 3)]
46. (∀x)(∃y)P(x, y)

48. (∀x)[P(x, 3) → Q(x, 3)]

45. (∃ x)[P(x, 2) ∨ Q(x, 6)]
47. (∀x)(∃y)Q(x, y)

49. (∃ x)[Q(x, 3) → P(x, 3)]
Let UD = set of real numbers and P(x, y): y2 < x. Determine the truth value
of each proposition.

50. (∀x)(∀y)P(x, y)

53. (∀y)(∃ x)P(x, y)

51. (∃ x)(∃y)P(x, y)

54. (∃ x)(∀y)P(x, y)

52. (∀x)(∃y)P(x, y)

55. (∃y)(∀x)P(x, y)

A third useful quantifier is the uniqueness quantifier ∃!. The proposition
(∃!x)P(x) means There exists a unique (meaning exactly one) x such that
P(x). Determine the truth value of each proposition, where UD = set of
integers.

56. (∃!x)(x + 3 = 3)

59. (∃!x)(∀y)(x + y = y)

57. (∃!x)(x2 = 1)

60. (∃!x)(∃!y)(2x = 3y)

58. (∃!x)(∃!y)(xy = 1)

61. (∀x)(∃!y)(x + y = 4)

Determine the truth value of each, where P(s) denotes an arbitrary
predicate.

62. (∃ x)P(x) → (∃!x)(P(x)

64. (∀x)P(x) → (∃!x)P(x)

66. (∀x)P(x) → (∃ x)P(x)

63. (∃!x)P(x) → (∃ x)P(x)

65. (∃ x)P(x) → (∀x)P(x)

67. (∃!x)P(x) → (∃!y)P(y)

*68. Define the quantifier ∃! in terms of the quantifiers ∃ and ∀.

*1.4 Arguments (optional)

Suppose we are given a finite set of propositions (called hypotheses) H1,
H2, . . . , Hn, all assumed true. Also assume that from these premises, we
can arrive at a conclusion C through reasoning (or argument). Such a dis-
cussion can be written in inferential form as follows, where the symbol
∴ means therefore:

H1

H2
...

Hn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

hypotheses

∴ C ← conclusion

1.4 Arguments (optional) 39

What does it mean to say that our reasoning in such a discussion is logical —
that is, that the argument is valid?

Valid and Invalid Arguments
An argument is valid if the conjunction of the hypotheses H1, H2, . . . , Hn
logically implies the conclusion C: that is, the implication H1 ∧ H2 ∧ · · · ∧
Hn → C is a tautology. Otherwise, the argument is invalid, a fallacy.

Thus, an argument is valid if and only if the conclusion is a logical con-
sequence of the hypotheses. In other words, if the hypotheses are assumed
true, then the conclusion must follow logically from them. True hypotheses
always lead to a true conclusion by a valid argument.

We begin checking the validity of arguments by using a well-known logic
puzzle, due to R. M. Smullyan.

EXAMPLE 1.31 Test the validity of the following argument.

H1 : There are more residents in New York City than there are hairs
in the head of any resident.

H2 : No resident is totally bald.

∴ At least two residents must have the same number of hairs on their
heads.

SOLUTION:
(The argument contains two hypotheses. We always assume they are true
and need to check whether the given conclusion follows logically from
them.)

Suppose there are n residents in New York City. By H1, the number of
hairs on the head of every resident is less n; by H2 every resident has at least
one hair on his head. If each person has a different number of hairs, there
must be n positive integers less than n, which is impossible. Therefore, at
least two residents must have the same number of hairs on their heads.

Since the logical conclusion agrees with the given conclusion, the argu-
ment is valid. (This example is an application of the pigeonhole principle
presented in Section 3.4.) �

The next example presents another well-known logic puzzle, again due
to Smullyan.

EXAMPLE 1.32 There are two kinds of inhabitants, knights and knaves, on an island.
Knights always tell the truth, whereas knaves always lie. Every inhabitant
is either a knight or a knave.

One day three inhabitants — A, B, and C — were standing together in a
garden. A nomad came by and asked A, “Are you a knight or a knave?”
Since A answered rather indistinctly, the stranger could make nothing out
of his reply. So he asked B, “What did A say?” B replied, “A said, he is

40 Chapter 1 The Language of Logic

Henry Ernest Dudeney (1857–1930), England’s greatest puzzlist and perhaps
the greatest puzzlist who ever lived, was born in Mayfield, Sussex, Eng-
land. Dudeney and Sam Loyd, the American puzzle genius, used to exchange
puzzles and collaborate on puzzle articles in magazines and newspapers. Dudeney
authored six books on puzzles, beginning with The Canterbury Puzzles (1907).
Three of his collections were published posthumously.

a knave.” At this point C jumped into the conversation and said, “Don’t
believe B; he is lying.” What are B and C?

SOLUTION:
A knight would never say, “I’m a knave,” since he never lies. A knave would
not say that either since he never tells the truth. Therefore, A did not say
he was a knave. So B lied to the nomad and hence is a knave. Consequently,
C was telling the truth, so C is a knight.

Thus B is a knave and C is a knight. (This example is pursued further in
the exercises.) �

The next puzzle∗ is a variation of a brainteaser developed by the English
puzzlist, Henry Dudeney. Its solution does not employ any logic variables,
but illustrates a clever problem-solving technique.

EXAMPLE 1.33 Smith, Jones, and Robinson are the brakeman, engineer, and fireman on a
train, not necessarily in that order. Riding on the train are three passengers
with the same last names who are identified by a “Mr.” before their names.
Assuming the following premises are true, determine who the engineer is.

H1 : No two passengers live in the same city.
H2 : Mr. Robinson lives in New York.
H3 : The brakeman lives in Dallas.
H4 : Mr. Jones has forgotten all the algebra he learned in high school.
H5 : The passenger whose last name is the same as the brakeman’s

lives in Los Angeles.
H6 : The brakeman and one of the passengers, a mathematical genius,

attend the same local church.
H7 : Smith beats the fireman in golf.

∗Based on M. Gardner, Mathematical Puzzles and Diversions, The University of Chicago
Press, Chicago, 1987.

1.4 Arguments (optional) 41

SOLUTION:
We begin with two three-by-three arrays of empty cells with labels as in
Figure 1.9. Use the premises to fill in the cells with 0’s and 1’s; enter a 1 in
a cell with headings x and y if x has property y and enter a 0 otherwise.

Premise H7 implies Smith is not a fireman, so enter a 0 in the upper
right cell in Figure 1.9b. Since Mr. Robinson lives in New York (H2), place
a 1 in the lower left cell in Figure 1.9a and 0’s in the remaining cells of the
same row and column (why?).

It now follows that either Mr. Smith or Mr. Jones lives in Dallas. Does
Mr. Jones live there?

Figure 1.9

Mr. Smith

Mr. Jones

Mr. Robinson

New
 Yo

rk

Dall
as

Los
 A

nge
les

Bra
kem

an

Engin
ee

r

Fire
m

an

Smith

Jones

Robinson

(a) (b)

Since Mr. Jones cannot be a mathematical genius by H4, the passenger
genius must be Mr. Smith. By H6, Mr. Smith and the brakeman live in the
same city. Since it must be Dallas by H3, enter a 1 in the upper middle cell
in Figure 1.9a and 0’s in the remaining cells of the same row and column.

It now follows that Mr. Jones lives in Los Angeles, so place a 1 in the
middle cell of the third column in Figure 1.9a and 0’s everywhere else.
Figure 1.10a displays the resulting array.

By premise H5, the brakeman and the passenger who lives in Los Angeles
have the same last name, so the brakeman must be Jones; therefore, put a
1 in the first cell of the middle row in Figure 1.9b and 0’s in the remaining
cells of the same row and column.

By now, the top row in Figure 1.9b contains two 0’s, so the middle cell
must occupy a 1 (why?); so the middle cell in the bottom row a 0; hence the
lower right cell must occupy a 1. Figure 1.10b shows the resulting array.

Figure 1.10
Mr. Smith

Mr. Jones

Mr. Robinson

Smith

Jones

Robinson

(a) (b)

0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

0 0 1

It follows from Figure 1.10b that Smith is the engineer. �

42 Chapter 1 The Language of Logic

Bertrand Arthur William Russell (1872–1970), a British philosopher
and mathematician, was born into a prominent, aristocratic, and
progressive-minded family near Trelleck, Wales. His mother died in
1874 and his father two years later; so the young Russell was brought up
by his father’s parents.

Russell was home-educated by tutors. In 1890 he entered Trinity College,
Cambridge, where he excelled in both mathematics and the moral sciences.
In 1895, he was awarded a fellowship for his original dissertation on the
foundations of geometry, published in 1897. After graduation, he worked
briefly in the British embassy in Paris and then he went to Germany, where
he wrote his first book, German Social Democracy (1896). In 1910, Trinity
appointed him a lecturer in logic and the philosophy of mathematics.

Russell’s outspokenness and liberal views often landed him in controversies. Around 1907, Russell
fought hard for women’s suffrage in the United Kingdom. During World War I, he was dismissed by
Trinity for his protests and pacifist views. In 1918, he was imprisoned for 6 months for an article that
was branded seditious. While in prison, he wrote Introduction to Mathematical Philosophy. When he was
about 90 years old, he was imprisoned again for campaigning for nuclear disarmament.

In 1925, Trinity, realizing that the 1916 dismissal was excessively harsh, invited Russell back. He
served there as a fellow from 1944 until his death.

Russell wrote more than 40 books on diverse subjects, including philosophy and physics; his greatest
work is the three-volume Principia Mathematica (1910–1913), which he coauthored with the Cambridge
philosopher Alfred North Whitehead (1861–1947). It describes the logical construction of the foundations
of mathematics from a set of primitive axioms.

Russell won the 1950 Nobel prize for literature “as a defender of humanity and freedom of thought.”

The following example is yet another well-known puzzle, the barber
paradox, presented by the British mathematician and philosopher
Bertrand Russell in 1918.

EXAMPLE 1.34 There is a male barber in a certain town. He shaves all those men and only
those men who do not shave themselves. Does the barber shave himself?

SOLUTION:
Suppose the barber shaves himself. Then he belongs to the class of men
who shave themselves. But no one in this class is shaved by the barber, so
the barber does not shave himself, which is a contradiction.

On the other hand, suppose the barber does not shave himself. Since
the barber shaves all those men who do not shave themselves, he shaves
himself, again a contradiction.

Thus either case leads to a paradox: If the barber shaves himself, he
does not shave himself; and conversely if he does not shave himself, then
he shaves himself. So, logically, no such barber exists. �

The symbols and the laws of logic can often be applied to check the
validity of an argument, as the next two examples illustrate. To this end,
follow the steps below:

• Rewrite the hypotheses symbolically.

1.4 Arguments (optional) 43

• Assume the hypotheses are true.

• If the inference rules in Table 1.17 and/or the laws of logic can be
used to reach the given conclusion, then the given argument is valid;
otherwise, it is invalid; that is, the argument contains a flaw.

Table 1.17 Inference Rules

1. p ∧ q → (p ∧ q) conjunction
2. p ∧ q → p simplification
3. p → p ∨ q addition
4. [p ∧ (p → q)] → q law of detachment
5. [(p → q) ∧ (∼q)] → ∼p law of the contrapositive
6. [(p ∨ q) ∧ (∼p)] → q disjunctive syllogism
7. [(p → q) ∧ (q → r)] → (p → r) hypothetical syllogism

A few words of explanation about each rule: The conjunction rule says
that if both p and q are true, then p ∧ q is true — a fact you already knew.
According to the simplification rule, if p ∧ q is true, then p is true. The
addition rule says that if p is true, then p∨q is true regardless of the truth
value of q. By the law of detachment, if an implication p → q is true and
the premise p is true, then you can always conclude that q is also true; in
other words, a true premise leads to a true conclusion logically. The law
of the contrapositive says that if an implication p → q is true, but the
conclusion q is false, then the premise p must be false. The two syllogisms
can be interpreted similarly.

It is obvious that the inference rules play a central role in determining
the validity of an argument. These rules, which are tautologies, can be
established using truth tables. Try a few.

Each of the inference rules can be written in inferential form. For
instance, the law of detachment can be rewritten as follows:

p

p → q

∴ q

EXAMPLE 1.35 Check the validity of the following argument.

If the computer was down Saturday afternoon, then Mary went to a
matinee.

Either Mary went to a matinee or took a nap Saturday afternoon.
Mary did not take a nap that afternoon.

∴ The computer was down Saturday afternoon.

44 Chapter 1 The Language of Logic

SOLUTION:
To avoid our emotions’ playing any role in the way we reason, first translate
the discussion into symbols. Let

p: The computer was down Saturday afternoon.
q: Mary went to a matinee Saturday afternoon.
r: Mary took a nap Saturday afternoon.

Then the given argument can be symbolized as follows:

H1 : p → q

H2 : q ∨ r

H3 : ∼r

⎫⎪⎪⎬
⎪⎪⎭ hypotheses

∴ p ← conclusion

Every step in our logical reasoning and the corresponding justification are
given below:

1. ∼r is true. hypothesis H3
2. q ∨ r is true. hypothesis H2
3. q is true. step 1, step 2, and disjunctive syllogism
4. p → q is true. hypothesis H1
5. Then p may be true or false. step 4, step 5, and definition of

implication.

Since our logical conclusion does not agree with the given conclusion,
the given argument is invalid. (Using a truth table you may verify that
[(p → q) ∧ (q ∨ r) ∧ (∼r)] → p is not a tautology. This provides an alternate
demonstration that this argument is invalid.)

Note: Trivial steps may be omitted from such a reasoning without
jeopardizing the logical progression. �

We conclude this section with an example from Lewis Carroll’s famous
book Symbolic Logic. Two additional examples appear in the exercises.

EXAMPLE 1.36 Check the validity of the following argument.

Babies are illogical.
Nobody is despised who can manage a crocodile.
Illogical persons are despised.

∴ Babies cannot manage crocodiles.

SOLUTION:
First translate the sentences into if-then form using symbols, so we let

p: Harry is a baby.
q: Harry is illogical.
r: Harry can manage a crocodile.
s: Harry is despised.

1.4 Arguments (optional) 45

Lewis Carroll (1832–1898) (a pseudonym of Charles Lutwidge Dodgson) was
the son of a clergyman and was born in Daresbury, England. He graduated from
Christ Church College, Oxford University, in 1854 and began teaching mathe-
matics at his alma mater in 1855, where he spent most of his life. He became a
deacon in the Church of England in 1861.

Carroll’s famous Alice in Wonderland and its sequel, Through the Looking-
Glass and What Alice Found There, have provided a lot of pleasure to both
children and adults all over the world. Alice in Wonderland is available in
more than 30 languages, including Arabic and Chinese, and also in braille. The
character is named for Alice Liddell, a daughter of the dean of Christ Church
College.

Then the argument can be written as:

H1: p → q
H2: r → ∼s
H3: q → s

∴ p → ∼r

Every step of our logical reasoning is given below:

1. (p → q) ∧ (q → s) is true. conjunction rule
2. p → s is true. hypothetical syllogism
3. s → ∼r is true. law of the contrapositive
4. (p → s) ∧ (s → ∼r) is true. conjunction rule
5. p → ∼r is true. hypothetical syllogism

Since the given conclusion agrees with the logical conclusion, the argument
is valid. �

Exercises 1.4

Rewrite each implication in inferential form.

1. [(p → q) ∧ (∼q)] → ∼p 2. [(p → q) ∧ (q → r)] → (p → r)

Verify that each inference rule is a tautology.

3. p → (p ∨ q) 4. [(p → q) ∧ (q → r)] → (p → r)

Test the validity of each argument.

5. p ∨ q
q ∨ r
∼r
——
∴ p

6. p ↔ q
∼p ∨ r
∼r
———
∴ ∼q

46 Chapter 1 The Language of Logic

7. If Bill likes cats, he dislikes dogs.
Bill likes dogs.
———————————————
∴ Bill dislikes cats.

8. If Pat passes this course, she will graduate this year.
Pat does not pass this course.
————————————————————————
∴ Pat will not graduate this year.

9. Frank bought a personal computer or a video cassette recorder (VCR).
If he bought a VCR, then he likes to watch movies at home.
He does not like to watch movies at home.
———————————————————————————————–
∴ Frank bought a personal computer.

10. If Peter is married, he is happy.
If he is happy, then he does not read the computer magazine.
He does read the computer magazine.
———————————————————————————–
∴ Peter is unmarried.

(Exercises 11 and 12 come from Lewis Carroll’s Symbolic Logic.)

*11. All philosophers are logical.
An illogical person is always obstinate.
——————————————————————
∴ Some obstinate persons are not philosophers.

*12. No ducks waltz.
No officers ever decline to waltz.
All my poultry are ducks.
——————————————–
∴ My poultry are not officers.

Give the simplest possible conclusion in each argument. Assume each
premise is true.

13. p ↔ q
∼p ∨ r
∼r

14. p → q
p ∨ ∼r
r

15. p → ∼q
∼r → q
p

16. p → q
∼r → ∼q
∼r

17. The program is running if and only if the computer is working.
The computer is working or the power is off.
The power is on.

18. Linda has a video cassette recorder (VCR).
If she has a personal computer, then she does not have a VCR.
If she does not have a personal computer, then she has a calculator.

1.4 Arguments (optional) 47

19. Carol is a baby if and only if she is illogical.
Either she is illogical or unhappy.
But she is happy.

20. Three persons took a room for $30 at a hotel. Soon after they checked
out, the room clerk realized she had overcharged them since the room
rents for $25. She sent a bellhop to them with a $5 reimbursement, but
he returned to them only $3, keeping $2 for himself. Thus the room
cost $30 − $3 = $27 and $27 + $2 = $29, so what happened to the
extra dollar?

21. Aaron, Benjamin, Cindy, and Daphne are all friends. They are 34, 29,
28, and 27 years old, not necessarily in that order. Cindy is married
to the oldest person. Aaron is older than Cindy, but younger than
Daphne. Who is married to whom and how old are they? (Mathematics
Teacher, 1990)

22. A family party consisted of one grandfather, one grandmother, two
fathers, two mothers, four children, three grandchildren, one brother,
two sisters, two sons, two daughters, one father-in-law, one mother-in-
law, and one daughter-in-law. A total of 23 people, apparently. But no;
there were only seven people at the party. How could this be possible?
(B. Hamilton, 1992)

23. Three gentlemen — Mr. Blue, Mr. Gray, and Mr. White — have shirts
and ties that are blue, gray, and white, but not necessarily in that order.
No person’s clothing has the same color as his last name. Mr. Blue’s
tie has the same color as Mr. Gray’s shirt. What color is Mr. White’s
shirt? (Mathematics Teacher, 1986)

24. Three men and their wives were given $5400. The wives together
received $2400. Sue had $200 more than Jan, and Lynn had $200
more than Sue. Lou got half as much as his wife, Bob the same as his
wife, and Matt twice as much as his wife. Who is married to whom?
(Mathematics Teacher, 1986)

There are seven lots, 1 through 7, to be developed in a certain city. A builder
would like to build one bank, two hotels, and two restaurants on these lots,
subject to the following restrictions by the city planning board (The Official
LSAT PrepBook, 1991):

If lot 2 is used, lot 4 cannot be used. If lot 5 is used, lot 6 cannot be used.
The bank can be built only on lot 5, 6, or 7. A hotel cannot be built on
lot 5. A restaurant can be built only on lot 1, 2, 3, or 5.

25. Which of the following is a possible list of locations for building them?

A. The bank on lot 7, hotels on lots 1 and 4, and restaurants on lots 2
and 5.

48 Chapter 1 The Language of Logic

B. The bank on lot 7, hotels on lots 3 and 4, and restaurants on lots 1
and 5.

C. The bank on lot 7, hotels on lots 4 and 5, and restaurants on lots 1
and 3.

26. If a restaurant is built on lot 5, which of the following is not a possible
list of locations?

A. A hotel on lot 2 and lot 4 is left undeveloped.

B. A restaurant on lot 2 and lot 4 is left undeveloped.

C. A hotel on lot 2 and lot 3 is left undeveloped.

Exercises 27–31 refer to Example 1.32 and are based on Smullyan’s
What is the name of this book?
A and B are inhabitants of the island. What are they if A says each of the
following?

27. “At least one of us is a knave.”

28. “Either I’m a knave or B is a knight.”

29. A, B, and C are inhabitants of the island. Two residents are of the same
type if they are both knights or both knaves. A says, “B and C are of
the same type.” Someone then asks C, “Are A and B of the same type?”
What does C answer?

30. A says, “All of us are knaves,” and B says, “Exactly one of us is a
knight.” What are A, B, and C?

31. A says, “All of us are knaves,” and B says, “Exactly one of us is a
knave.” What is C?

Every inhabitant on a mysterious planet is either red or green. In addition,
each inhabitant is either male or female. Every red man always tells the
truth, whereas every green man always lies. The women, on the other hand,
are opposite: every green woman tells the truth and every red woman lies.
Since the natives always disguise their voices, and wear masks and gloves,
it is impossible to identify their sex or color. But a clever anthropologist
from Mathland met a native who made a statement from which he was
able to deduce that the native was a green woman. (R. Smullyan, Discover,
1993)

32. What could the native have said? Justify your answer.

33. The second native the anthropologist interviewed also made a state-
ment from which he was able to conclude that the native was a man
(but not his color). Give a statement that would work. Again, justify
your answer.

1.5 Proof Methods 49

Four women, one of whom was known to have committed a serious crime,
made the following statements when questioned by the police: (B. Bissinger,
Parade Magazine, 1993)

Fawn: “Kitty did it.”
Kitty: “Robin did it.”

Bunny: “I didn’t do it.”
Robin: “Kitty lied.”

34. If exactly one of these statements is true, identify the guilty woman.

35. If exactly one of these statements is false, identify the guilty woman.

*36. “How is it, Professor Whipple,” asked a curious student, “that some-
one as notoriously absentminded as you are manages to remember
his telephone number?” “Quite simple, young man” replied the
professor. “I simply keep in mind that it is the only seven-digit num-
ber such that the number obtained by reversing its digits is a factor
of the number.” What is Professor Whipple’s telephone number?
(A. J. Friedland, 1970)

*37. Five angry cowgirls, standing in a field, accuse each other of rustling.
No two distances between every two women are the same. Each has
one bullet in her gun. At the count of ten, each shoots the nearest
person in the toe. Will any cowgirl be shot or will at least one escape
injury? (M. Gardner, Parade Magazine, 1993)

1.5 Proof Methods

Proofs, no matter how simple or complicated they are, are the heart and soul
of mathematics. They play a central role in the development of mathematics
and guarantee the correctness of mathematical results and algorithms (see
Chapters 4 and 5). No mathematical results or computer algorithms are
accepted as correct unless they are proved using logical reasoning.

A theorem in mathematics is a true proposition. Many theorems are
implications H1 ∧ H2 ∧ · · · ∧ Hn → C. Proving such a theorem means ver-
ifying that the proposition H1 ∧ H2 ∧ · · · ∧ Hn → C is a tautology. This
section presents six standard methods for proving theorems: vacuous
proof, trivial proof, direct proof, indirect proof, proof by cases,
and existence proof. Vacuous and trivial proofs are, in general, parts of
larger and complicated proofs, as will be seen in Chapters 4 and 5.

Vacuous Proof
Suppose the hypothesis H of the implication H → C is false. Then the
implication is true regardless of whether C is true or false. Thus if the

50 Chapter 1 The Language of Logic

hypothesis H can be shown to be false, the theorem H → C is true by
default; such a proof is a vacuous proof. Vacuous proofs, although rare,
are necessary to handle special cases, as will be seen in Chapter 5.

EXAMPLE 1.37 Since the hypothesis of the statement If 1 = 2, then 3 = 4 is false, the
proposition is vacuously true. �

Trivial Proof
Suppose the conclusion c of the implication H → C is true. Again, the
implication is true irrespective of the truth value of H. Consequently, if C
can be shown to be true, such a proof is a trivial proof.

EXAMPLE 1.38 Let P(n): If x is a positive real number and n any nonnegative integer, then
(1 + x)n ≥ 1 + nx. Since (1 + x)0 ≥ 1 + 0 · x always, the proposition P(0) is
true. Thus the theorem is trivially true when n = 0. In this trivial proof we
did not use the premise that x > 0. �

Next we pursue another proof method.

Direct Proof
In the direct proof of the theorem H1 ∧ H2 ∧ · · · ∧ Hn → C, assume
the given hypotheses Hi are true. Using the laws of logic or previously
known facts, establish the desired conclusion C as the final step of a chain
of implications: H → C1, C1 → C2, . . . ,Cn → C. Then, by the repeated
application of the hypothetical syllogism, it follows that H → C. The next
example illustrates this method.

Often, theorems are stated in terms of sentences, so we need to first
rewrite them symbolically and then work with the symbols, as the next
example demonstrates.

EXAMPLE 1.39 Prove directly that the product of any two odd integers is an odd integer.

PROOF:
Let x and y be any two odd integers. Then there exist integers m and n such
that x = 2m + 1 and y = 2n + 1. Thus,

x · y = (2m + 1) · (2n + 1)

= 4mn + 2m + 2n + 1

= 2(2mn + m + n) + 1

= 2k + 1

where k = 2mn + m + n is an integer. Therefore, xy is an odd integer.
This concludes the proof. (Can you rewrite this proof as a chain of
implications?) �

1.5 Proof Methods 51

Indirect Proof
There are two kinds of indirect proofs for the theorem H1 ∧ H2 ∧ · · · ∧
Hn → C: proof of the contrapositive and proof by contradiction. The
first method is based on the law of the contrapositive, H1 ∧ H2 ∧ · · · ∧ Hn →
C ≡ ∼C → ∼(H1 ∧ H2 ∧ · · · ∧ Hn). [You may recall, by De Morgan’s law, that
∼(H1 ∧ H2 ∧ · · · ∧ Hn) ≡ ∼H1 ∨ ∼H2 ∨ · · · ∨ ∼Hn.] In this method, assume
the desired conclusion C is false; then using the laws of logic, establish that
some hypothesis Hi is also false. Once you have done this, the theorem is
proved. The next example enlightens this method.

EXAMPLE 1.40 Prove indirectly: If the square of an integer is odd, then the integer is odd.

PROOF OF THE CONTRAPOSITIVE
Let x be any integer such that x2 is odd. We would like to prove that x
must be an odd integer. In the indirect method, we assume the conclusion
is false; that is, x is not odd; in other words, assume x is an even integer.
Let x = 2k for some integer k. Then x2 = (2k)2 = 4k2 = 2(2k2), which is
an even integer. This makes our hypothesis that x2 is an odd integer false.
Therefore, by the law of the contrapositive, our assumption must be wrong;
in other words, x must be an odd integer. Thus, if x2 is an odd integer, then
x is also an odd integer. �

Proof by contradiction, the other variation of indirect proof, is based
on the law of reductio ad absurdum: H1 ∧ H2 ∧ · · · ∧ Hn → C ≡ [H1 ∧ H2
∧ · · · ∧ Hn ∧ (∼C)] → F. In this method, assume the given hypotheses Hi
are true, but the conclusion C is false. Then argue logically and reach a
contradiction F. The next example illustrates this method, where a prime
number p is a positive integer with exactly two positive factors, 1 and p.

EXAMPLE 1.41 Prove by contradiction: There is no largest prime number; that is, there
are infinitely many prime numbers.

PROOF BY CONTRADICTION
(Notice that the theorem has no explicit hypothesis.) Suppose the given
conclusion is false; that is, there is a largest prime number p. So the
prime numbers we have are 2, 3, 5, . . . , p; assume there are k such primes,
p1, p2, . . . , and pk.

Let x denote the product of all of these prime numbers plus one:
x = (2 · 3 · 5 . . . p) + 1. Clearly, x > p. When x is divided by each of the
primes 2, 3, 5, . . . , p, we get 1 as the remainder. So x is not divisible by any
of the primes. Hence either x must be a prime, or if x is composite then x is
divisible by a prime q �= pi. In either case, there are more than k primes.

But this contradicts the assumption that there are k primes, so
our assumption is false. In other words, there is no largest prime
number. �

Now we turn to yet another proof technique.

52 Chapter 1 The Language of Logic

Proof by Cases
Suppose we would like to prove a theorem of the form H1 ∨ H2 ∨ · · · ∨
Hn → C. Since H1 ∨ H2 ∨ · · · ∨ Hn → C ≡ (H1 → C) ∧ (H2 → C) ∧ · · · ∧
(Hn → C), the statement H1 ∨ H2 ∨ · · · ∨ Hn → C is true if and only if each
implication Hi → C is true. Consequently, we need only prove that each
implication is true. Such a proof is a proof by cases, as illustrated in the
following example, due to R. M. Smullyan.

EXAMPLE 1.42 Let A, B, and C be three inhabitants of the island described in
Example 1.32. Two inhabitants are of the same type if they are both knights
or both knaves. Suppose A says, “B is a knave,” and B says, “A and C are
of the same type.” Prove that C is a knave.

PROOF BY CASES
Although this theorem is not explicitly of the form H1 ∨ H2 ∨ · · · ∨
Hn → C, we artificially create two cases, namely, A is a knight and A is
a knave.

Case 1 Suppose A is a knight. Since knights always tell the truth, his
statement that B is a knave is true. So B is a knave and hence B’s statement
is false. Therefore, A and C are of different types; thus C is a knave.

Case 2 Suppose A is a knave. Then his statement is false, so B is a knight.
Since knights always tell the truth, B’s statement is true. So A and C are
of the same type; thus C is a knave.

Thus in both cases, C is a knave. �

Existence Proof
Finally, theorems of the form (∃ x)P(x) also occur in mathematics. To prove
such a theorem, we must establish the existence of an object a for which
P(a) is true. Accordingly, such a proof is an existence proof.

There are two kinds of existence proofs: the constructive existence
proof and the nonconstructive existence proof. If we are able to find
a mathematical object b such that P(b) is true, such an existence proof is a
constructive proof. The following example elucidates this method.

EXAMPLE 1.43 Prove that there is a positive integer that can be expressed in two different
ways as the sum of two cubes.

CONSTRUCTIVE PROOF
By the discussion above, all we need is to produce a positive integer b that
has the required properties. Choose b = 1729. Since 1729 = 13 + 123 =
93 + 103, 1729 is such an integer.∗ �

∗A fascinating anecdote is told about the number 1729. In 1919, when the Indian mathematical
genius Srinivasa Ramanujan (1887–1920) was sick in a nursing home in England, the eminent

1.5 Proof Methods 53

A nonconstructive existence proof of the theorem (∃ x)P(x) does not
provide us with an element a for which P(a) is true, but rather establishes
its existence by an indirect method, usually contradiction, as illustrated by
the next example.

EXAMPLE 1.44 Prove that there is a prime number > 3.

NONCONSTRUCTIVE PROOF
Suppose there are no primes > 3. Then 2 and 3 are the only primes. Since
every integer ≥ 2 can be expressed as a product of powers of primes, 25
must be expressible as a product of powers of 2 and 3, that is, 25 = 2i3 j

for some integers i and j. But neither 2 nor 3 is a factor of 25, so 25 cannot
be written in the form 2i3 j, a contradiction. Consequently, there must be
a prime >3. �

We invite you to give a constructive proof of the statement in the
example. We conclude this section with a brief discussion of counter-
examples.

Counterexample
Is the statement Every girl is a brunette true or false? Since we can find at
least one girl who is not a brunette, it is false!

More generally, suppose you would like to show that the statement
(∀x)P(x) is false. Since ∼[(∀x)P(x)] ≡ (∃ x)[∼P(x)] by De Morgan’s law, the
statement (∀x)P(x) is false if there exists an item x in the UD for which the
predicate P(x) is false. Such an object x is a counterexample. Thus, to dis-
prove the proposition (∀x)P(x), all we need is to produce a counterexample
c for which P(c) is false, as the next two examples demonstrate.

EXAMPLE 1.45 Number theorists dream of finding formulas that generate prime numbers.
One such formula was found by the Swiss mathematician Leonhard Euler
(see Chapter 8), namely, E(n) = n2 − n + 41. It yields a prime for n =
1, 2, . . . , 40. Suppose we claim that the formula generates a prime for every
positive integer n. Since E(41) = 412 − 41 + 41 = 412 is not a prime, 41 is
a counterexample, thus disproving the claim. �

EXAMPLE 1.46 Around 1640, Fermat conjectured that numbers of the form f (n) = 22n + 1
are prime numbers for all nonnegative integers n. For instance, f (0) = 3,
f (1) = 5, f (2) = 17, f (3) = 257, and f (4) = 65,537 are all primes. In 1732,
however, Euler established the falsity of Fermat’s conjecture by produc-
ing a counterexample. He showed that f (5) = 225 + 1 = 641 × 6700417, a
composite number. (Prime numbers of the form 22n + 1 are called Fermat
primes.) �

English mathematician Godfrey Harold Hardy (1877–1947) visited him. He told Ramanujan
that the number of the cab he came in, 1729, was “a rather dull number” and hoped that it
wasn’t a bad omen. “No, Hardy,” Ramanujan responded, “It is a very interesting number. It
is the smallest number expressible as the sum of two cubes in two different ways.”

54 Chapter 1 The Language of Logic

Exercises 1.5

Determine if each implication is vacuously true for the indicated value of n.

1. If n ≥ 1, then 2n ≥ n; n = 0

2. If n ≥ 4, then 2n ≥ n2; n = 0, 1, 2, 3

Determine if each implication is trivially true.

3. If n is a prime number, then n2 + n is an even integer.

4. If n ≥ 41, then n3 − n is divisible by 3.

Prove each directly.

5. The sum of any two even integers is even.

6. The sum of any two odd integers is even.

7. The square of an even integer is even.

8. The product of any two even integers is even.

9. The square of an odd integer is odd.

10. The product of any two odd integers is odd.

11. The product of any even integer and any odd integer is even.

12. The square of every integer of the form 3k+1 is also of the same form,
where k is an arbitrary integer.

13. The square of every integer of the form 4k+1 is also of the same form,
where k is an arbitrary integer.

14. The arithmetic mean a+b
2 of any two nonnegative real numbers a

and b is greater than or equal to their geometric mean
√

ab.
[Hint: consider (

√
a − √

b)2 ≥ 0.]

Prove each using the law of the contrapositive.

15. If the square of an integer is even, then the integer is even.

16. If the square of an integer is odd, then the integer is odd.

17. If the product of two integers is even, then at least one of them must
be an even integer.

18. If the product of two integers is odd, then both must be odd integers.

Prove by contradiction, where p is a prime number.

19.
√

2 is an irrational number.

21.
√

p is an irrational number.

20.
√

5 is an irrational number.

*22. log102 is an irrational number.

Prove by cases, where n is an arbitrary integer and |x| denotes the absolute
value of x.

1.5 Proof Methods 55

23. n2 + n is an even integer. 24. 2n3 + 3n2 + n is an even integer.

25. n3 −n is divisible by 3. (Hint: Assume that every integer is of the form
3k, 3k + 1, or 3k + 2.)

26. | − x| = |x| 27. |x · y| = |x| · | y| 28. |x + y| ≤ |x| + | y|
Prove by the existence method.

29. There are integers x such that x2 = x.

30. There are integers x such that |x| = x.

31. There are infinitely many integers that can be expressed as the sum of
two cubes in two different ways.

32. The equation x2 + y2 = z2 has infinitely many integer solutions.

Give a counterexample to disprove each statement, where P(x) denotes an
arbitrary predicate.

33. The absolute value of every real number is positive.

34. The square of every real number is positive.

35. Every prime number is odd.

36. Every month has exactly 30 days.

37. (∃ x)P(x) → (∃!x)P(x)

38. (∃ x)P(x) → (∀x)P(x)

39. Find the flaw in the following “proof”:

Let a and b be real numbers such that a = b. Then ab = b2.

Therefore, a2 − ab = a2 − b2

Factoring, a(a − b) = (a + b)(a − b)

Cancel a − b from both sides:

a = a + b

Since a = b, this yields a = 2a.

Cancel a from both sides.

Then we get 1 = 2.

Let a, b, and c be any real numbers. Then a < b if and only if there
is a positive real number x such that a + x = b. Use this fact to prove
each.

40. If a < b and b < c, then a < c. (transitive property)

41. If a < b, then a + c < b + c.

56 Chapter 1 The Language of Logic

42. If a + c < b + c, then a < b.

43. Let a and b be any two real numbers such that a · b = 0. Then either
a = 0 or b = 0. [Hint: p → (q ∨ r) ≡ (p ∧ ∼q) → r.]

*44. The formula f (n) = n2 − 79n + 1601 yields a prime for 0 ≤ n ≤ 10.
Give a counterexample to disprove the claim that the formula yields
a prime for every nonnegative integer n.

*45. Prime numbers of the form f (n) = 2n − 1, where n is a positive inte-
ger, are called Mersenne primes, after the Franciscan monk Marin
Mersenne (1588–1648). For example, f (2) = 3, f (3) = 7, and f (5) = 31
are Mersenne primes. Give a counterexample to disprove the claim
that if n is a prime, then 2n − 1 is a prime.

Chapter Summary

This chapter presented the fundamentals of symbolic logic and the standard
techniques of proving theorems.

Proposition
• A proposition is a declarative sentence that is either true or false, but

not both (page 2).

• A compound proposition can be formed by combining two or
more simple propositions, using logical operators: ∧, ∨, ∼, →, and
↔ (page 5).

• The conjunction of two propositions is true if and only if both compo-
nents are true; their disjunction is true if at least one component is
true. An implication is false only if the premise is true and the con-
clusion is false. A biconditional is true if and only if both components
have the same truth value (pages 5–14).

• The truth tables for the various logical operations can be combined into
a single table, as in Table 1.18.

Table 1.18 p q p ∧ q (p ∨ q) ∼p p → q p ↔ q

T T T T F T T
T F F T F F F
F T F T T T F
F F F F T T T

• Three new implications can be constructed from a given implication:
converse, inverse, and contrapositive (page 11).

Chapter Summary 57

• Various types of sentences and propositions can be summarized in a
tree diagram, as in Figure 1.11.

Figure 1.11 sentence

interrogative

imperative

exclamatory

declarative

compoundsimple

conjunction negation

disjunction

inclusive exclusive implication converse inverse contrapositive

conditional

biconditional

proposition non-proposition

• A tautology is a compound statement that is always true. A contra-
diction is a compound statement that is always false. A contingency
is a proposition that is neither a tautology nor a contradiction (page 16).

• Two compound propositions, p and q, are logically equivalent if they
have identical truth values, symbolized by p ≡ q (page 20).

• The important laws of logic are listed in Table 1.13 on page 21.

Argument
• An argument H1 ∧ H2 ∧ · · · ∧ Hn → C is valid if the implication is a

tautology; otherwise, it is invalid (page 39).

• The important inference rules are listed in Table 1.15 on page 43.

Quantifiers
• There are two quantifiers: universal quantifier (∀) and existential

quantifier (∃) (page 32).

• A predicate P(x) is a sentence about the properties of the object x. The
set of all values of x is the universe of discourse (UD) (page 33).

• De Morgan’s laws: ∼[(∀x)P(x)] ≡ (∃ x)[∼P(x)] (page 35)
∼[(∃ x)P(x)] ≡ (∀x)[∼P(x)]

58 Chapter 1 The Language of Logic

Proof Methods
• There are six commonly used proof techniques: vacuous proof, trivial

proof, direct method, indirect method, proof by cases, and
existence proof (pages 49–53).

Figure 1.12 proof

vacuous

contrapositive contradiction constructive nonconstructive

trivial direct indirect by cases existence

• In a direct proof, assume the given hypotheses are true. Then try to
reach the given conclusion logically (page 50).

• For indirect proof by contrapositive, assume the given conclusion is
false. Then establish directly that the given hypothesis is also false
(page 51).

• For indirect proof by contradiction, assume the given hypothesis is true,
but the given conclusion is false. Then try to reach a contradiction
(page 51).

• For a constructive existence proof of a theorem (∃ x)P(x), produce an
element b such that P(b) is true (page 52). In a nonconstructive exis-
tence proof, establish the existence of such an element b by an indirect
method (page 53).

Counterexample
• To disprove the proposition (∀x)P(x), it suffices to produce an object c

for which P(c) is false (page 53).

Review Exercises

Construct a truth table for each proposition.

1. (p∨q)∧(∼q) 2. (p → q) → r 3. p → (q → r) 4. (p ↔ q) ∨ r

Evaluate each boolean expression, where a = 3, b = 7, c = 2, and d = 11.

5. (a ≤ d) ∧ [(a > c) ∨ (b > d)]
7. (c > d) ∨ [(b ≤ c) ∧ (d < b)]

6. [(a > b) ∧ (b ≤ c)] ∨ (c < d)

8. (b < c) ∨ ∼[(a < c) ∧ (c < d)]
Represent each sentence symbolically, where w, x, y, and z are real
numbers.

9. If w < x and y < z, then w + y < x + z.

Chapter Summary 59

10. If w = x and y = z, then w · y = x · z.

Determine if the assignment statement x ← y + z will be executed in each
sequence of statements, where i ← 5, j ← 3, and k ← 7.

11. If (i ≤ j) ∨ (j ≤ k) then
x ← y + z

13. If ∼[(i > j) ∨ (j < k)] then
x ← y − z

else
x ← y + z

12. If (i > j) ∧ (j ≥ k) then
x ← y + z

14. Odd ← 0
while (odd ≤ 2) ∧ (i ≤ 4) do

x ← y + z

Represent each network symbolically.

15.
A

A′

B

A B′

16. B′

C

B

D
E

A′

A

Let t be a true statement and p an arbitrary statement. Find the truth value
of each.

17. p ∨ ∼t → p 18. p ∨ t ↔ ∼t 19. t ∧ (p ∨ t) 20. p ∧ t → p ∨ t

Use the given information to determine the truth value of each statement.

21. p → q, if p ∨ q is false.

23. p → ∼q, if q → ∼p is false.

25. p ∨ q, if p → q is false.

27. p ↔ q, if p ∧ ∼q is true.

22. p → q, if ∼p ∨ q is false.

24. p ∧ q, if p → q is false.

26. p ↔ q, if p ∧ q is true.

28. p ∨ ∼q, if q ∧ ∼p is true.

29. p ∧ (q ∧ r), if r ≡ s and s is not true.

Give the converse, inverse, and contrapositive of each implication.

30. If Pat is a girl, then she has green eyes.

31. If x < y, then x + z < y + z.

60 Chapter 1 The Language of Logic

Write the contrapositive of each implication.

32. If |x| < 3, then x < 3 and x > −3.

33. If |x| > 3, then either x > 3 or x < −3.

Determine if each is a logical equivalence.

34. p ∧ q ≡ ∼(p → ∼q)

36. p ∧ (p ∨ q) ≡ p ∨ (p ∧ q)

35. ∼(p ∧ ∼q) ≡ ∼p ∨ q.

37. p → (q → r) ≡ (p → q) → r

Determine if each is a tautology.

38. p ∨ (p ∧ q) ↔ p

40. (p ∧ q) ↔ ∼(p ↔ ∼q)

39. p ∧ (p ∨ q) ↔ p

41. (p → ∼q) ↔ (q → ∼p)

Mark true or false, where p, q, r, and s are arbitrary statements.

42. If q ≡ r, then p ∧ q ≡ p ∧ r.

44. If p ≡ q, then p → r ≡ q → r.

46. If p ↔ q is a tautology, then
p ≡ q.

43. If q ≡ r, then p ∨ q ≡ p ∨ r.

45. If q ≡ r, then p → q ≡ p → r.

47. If p → q ≡ p → r, then q ≡ r.

◦ Construct an equivalent simpler switching network for each circuit.

48. A B

A B′

49. BA′

B′A′

B′A

Test the validity of each argument.

50. p ∨ q
q → r
∼r
——–
∴ ∼p

51. p → ∼q
(q ∧ r) → ∼s
r ∧ s
—————
∴ ∼p

52. Either Jane is not John’s sister or Mary is not Harry’s wife.
Mary is Harry’s wife or Jane is not married.
John goes to school if and only if Jane is not married.
John does not go to school.
————————————————————
∴ Jane is not John’s sister.

Determine the truth value of each, where the UD consists of the integers 0
and 1.

53. (∃ x)(x3 �= x)

55. (∃y)[(y − 1)2 �= y2 − 1]
54. (∀x)[(x + 1)2 = x2 + 1]
56. (∀x)(∀y)[(x + y)2 = x2 + y2]

Chapter Summary 61

Let UD = set of integers, P(x): x < 3, and Q(x): x ≥ 3. Determine the truth
value of each.

57. (∀x)[P(x) ∧ Q(x)]
60. (∃z)[P(z) ∨ Q(z)]

58. (∀x)[P(x) ∨ Q(x)]
61. (∀x)[∼P(x)]

59. (∃y)[P(y) ∧ Q(y)]
62. (∃z)[∼Q(z)]

Prove each, where a, b, c, d, and n are any integers.

63. The product of two consecutive integers is even.

64. n3 + n is divisible by 2.

65. n4 − n2 is divisible by 3.

66. If a < b and c < d, then a + c < b + d.

67. If a + b > 12, then either a > 6 or b > 6.

68. If ab = ac, then either a = 0 or b = c. [Hint: p → (q∨r) ≡ (p∧∼q) → r.]

69. If a2 = b2, then either a = b or a = −b.
[Hint: p → (q ∨ r) ≡ (p ∧ ∼q) → r.]

70. Give a counterexample to disprove the following statement: If n is a
positive integer, then n2 + n + 41 is a prime number.
[Note: In 1798 the eminent French mathematician Adrien-Marie
Legendre (1752–1833) discovered that the formula L(n) = n2 + n + 41
yields distinct primes for 40 consecutive values of n. Notice that
L(n) = E(−n); see Example 1.45.]

◦ The propositions in Exercises 71–81 are fuzzy logic.

Let p, q, and r be simple propositions with t(p) = 1, t(q) = 0. 3, and
t(r) = 0. 5.
Compute the truth value of each, where s′ denotes the negation of the
statement s.

71. p ∧ (q ∨ r)

73. (p ∧ q) ∨ (p ∧ r)

75. p′ ∧ q′

77. (p ∨ q′)′ ∨ q

72. p ∨ (q ∧ r)

74. (p ∨ q) ∧ (p ∨ r)

76. (p ∨ q′) ∨ (p ∧ q)

78. (p ∧ q)′ ∧ (p ∨ q)

79. Let p be a simple proposition with t(p) = x and p′ its negation. Show
that t(p ∨ p′) = 1 if and only if t(p) = 0 or 1.

Let p and q be simple propositions with t(p) = x and t(q) = y, where
0 ≤ x, y ≤ 1. Verify each.

80. (p ∧ q)′ ≡ p′ ∨ q′ [Hint: Show that t((p ∧ q)′) = t(p′) ∨ t(q′).]

81. (p ∨ q)′ ≡ p′ ∧ q′ [Hint: Show that t((p ∨ q)′) = t(p′) ∧ t(q′).]

62 Chapter 1 The Language of Logic

Supplementary Exercises

Write the converse, inverse, and contrapositive of each implication.

1. If |x| < a, then −a < x < a. 2. If |x| > a, then x < −a or x > a.

Simplify each boolean expression.

3. (p ∨ ∼q) ∧ ∼(p ∧ q)

*5. (p ∧∼q) ∨ (∼p ∧ q) ∨ (∼p ∧∼q)

*4. [p ∨ q ∨ (∼p ∧ ∼q)] ∨ (p ∧ ∼q)

*6. (p ∨ q) ∧ ∼(p ∧ q) ∧ (∼p ∨ q)

7. Let p ≡ q and r ≡ s. Determine if p → (p ∧ r) ≡ q → (q ∧ s).

Negate each proposition, where UD = set of real numbers.

8. (∀x)(∃y)(xy ≥ 1)

10. (∀x)(∀y)(∃z)(x + y = z)

9. (∀x)(∀y)(xy = yx)

11. (∀x)(∃y)(∃z)(x + y = z)

Prove each.

12. The equation x3 + y3 = z3 has infinitely many integer solutions.

*13. Let n be a positive integer. Then n(3n4 + 7n2 + 2) is divisible by 12.

*14. Let n be a positive integer. Then n(3n4 + 13n2 + 8) is divisible by 24.

*15. In 1981 O. Higgins discovered that the formula h(x) = 9x2 −
471x + 6203 generates a prime for 40 consecutive values of x. Give a
counterexample to show that not every value of h(x) is a prime.

*16. The formula g(x) = x2−2999x+2248541 yields a prime for 80 consec-
utive values of x. Give a counterexample to disprove that every value
of g(x) is a prime.

In a three-valued logic, developed by the Polish logician Jan Lukasiewicz
(1878–1956), the possible truth values of a proposition are 0, u, and 1,
where 0 represents F, u represents undecided, and 1 represents T. The
logical connectives ∧, ∨, ′, →, and ↔ are defined as follows:

∧ 0 u 1

0 0 0 0
u 0 u u
1 0 u 1

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

′

0 1
u u
1 0

→ 0 u 1

0 1 1 1
u u 1 1
1 0 u 1

↔ 0 u 1

0 1 u 0
u u 1 u
1 0 u 1

Let p and q be arbitrary propositions in a three-valued logic, where r′
denotes the negation of statement r and t(r) denotes the truth value of r.

Chapter Summary 63

17. If t(p ∨ p′) = 1, show that t(p) = 0 or 1.

18. Show that p ∧ q → p ∨ q is a three-valued tautology.

19. Show that (p → q) ↔ (p′ ∨ q) is not a three-valued tautology.

20. Show that (p → q) ↔ (∼q → ∼p) is a three-valued tautology.

21. Determine if [p ∧ (p → q)] → q is a three-valued tautology.

Verify each.

22. (p ∧ q)′ ≡ p′ ∨ q′ [Hint: Show that t((p ∧ q)′) = t(p′) ∨ t(q′).]
23. (p ∨ q)′ ≡ p′ ∧ q′ [Hint: Show that t((p ∨ q)′) = t(p′) ∧ t(q′).]

Computer Exercises

Write a program to perform each task.
Construct a truth table for each proposition.

1. (p ∨ q) ∧ ∼q

4. (p → q) ↔ (∼p∨q)

2. p NAND q

5. (p → q) → r

3. p NOR q

6. (p → q) ↔ (∼q → ∼p)

Determine if each proposition is a tautology, by constructing a truth table.

7. p ∧ (p → q) → q

9. p ∧ (p ∨ q) ↔ p

11. p ∧ q → p ∨ q

8. (p ∨ q) ∧ (∼q) → p

10. (p → q) ∧ (∼q) → ∼p

12. (p → q) ∧ (q → r) → (p → r)

Determine if the given propositions are logically equivalent, by constructing
truth tables.

13. ∼(p ∧ q), ∼p ∧ ∼q

15. p ∧ (q ∧ r), (p ∧ q) ∧ r

17. (p → q) → r, p → (q → r)

14. p → q, ∼q → ∼p

16. p ∧ (q ∨ r), (p ∧ q) ∨ (p ∧ r)

18. p → (q ∨ r), p ∧ (∼q) → r

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Write an essay on the contributions of G. Boole and W. Leibniz to
mathematical logic.

2. Explain how (symbolic) logic helps you in everyday life. Give concrete
examples.

3. Explain why proofs are important in mathematics and computer
science. Do they help you in everyday life? In problem-solving? In a
work environment? Give examples of proofs in computer science.

64 Chapter 1 The Language of Logic

4. Give a detailed history of Fermat’s last theorem. Include biographies
of mathematicians who have worked on the problem.

5. Collect a number of well-known conjectures from number theory and
explain recent advances toward establishing them or disproving them.

Study a number of puzzles from R. M. Smullyan’s Alice in Puzzle-land,
What is the name of this book?, and The Lady or the Tiger.

6. Write each as an argument and test the validity of it.

7. Write each as a theorem and establish it.

8. List a number of applications of fuzzy logic to everyday life. How do
they enrich our lives?

9. Write a biography of H. M. Sheffer, C. S. Peirce, and A. M. Legendre.

10. Collect several examples on arguments from Lewis Carroll’s Symbolic
Logic and test the validity of each. Explain with examples the use of
Euler diagrams in the analysis of arguments.

11. Collect several logic puzzles from recent issues of Discover magazine
and Parade magazine. Solve each.

12. Study logic problems in the recent edition of The official LSAT
PrepBook and solve them.

13. List several attempts to develop formulas for generating prime
numbers.

14. Write an account of Fermat primes, Mersenne primes, the infinitude
of each family, and their applications.

15. Investigate the pentomino puzzle, developed in 1954 by S. W. Golomb
of the University of Southern California.

Enrichment Readings

1. L. Carroll, Symbolic Logic and the Game of Logic, Dover, New York,
1958.

2. L. Carroll, Alice’s Adventures in Wonderland and Through the
Looking-Glass and What Alice Found There, Oxford, New York, 1982.

3. N. Falletta, The Paradoxicon, Wiley, New York, 1990.

4. M. Gardner, Mathematical Puzzles and Diversions, The University of
Chicago Press, Chicago, 1987.

5. J. T. Johnson, “Fuzzy Logic,” Popular Science, Vol. 237 (July 1990),
pp. 87–89.

6. B. Kosko and S. Isaka, “Fuzzy Logic,” Scientific American, Vol. 269
(July 1993), pp. 76–81.

Chapter Summary 65

7. H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, 2nd
ed., Chapman and Hall/CRC, Boca Raton, FL, 2000.

8. R. M. Smullyan, Alice in Puzzle-land, Penguin, New York, 1984.

9. R. M. Smullyan, What is the name of this book?, Prentice Hall,
Englewood Cliffs, NJ, 1978.

10. R. M. Smullyan, The Lady or the Tiger?, Random House, New York,
1992.

11. D. Solow, How to Read and Do Proofs, Wiley, New York, 1982.

This Page Intentionally Left Blank

Chapter 2

The Language of Sets

The essence of mathematics lies in its freedom.

— GEORG CANTOR

T he concept of a set is so fundamental that it unifies mathematics and
its cognates. It has revolutionized mathematical thinking, enabling

us to express ourselves in clear and concise terms.
The foundation of set theory was laid by the eminent German mathe-

matician Georg Cantor during the latter part of the 19th century. “Today,
Cantor’s set theory has penetrated into almost every branch of mathemat-
ics,” as the mathematical historian Howard Eves writes in An Introduction
to the History of Mathematics.

In this chapter we present the language of sets. We introduce the concept
of a set, the various ways of describing a set and of constructing new sets
from known sets, a variety of applications, and a brief introduction to fuzzy
sets.

The following are some of the problems we shall pursue in this chapter:

• Find the number of positive integers ≤ N and divisible by a, b, or c.

• How many subsets does a finite set with n elements have?

• How would you define the set of legally paired parentheses?

• How many sequences of legally paired parentheses can be formed using
n pairs of left and right parentheses?

2.1 The Concept of a Set

This section introduces the concept of a set, various methods of defining
sets, and relationships between sets.

67

68 Chapter 2 The Language of Sets

Georg Cantor (1845–1918) was born in St. Petersburg, Russia, where
his father was a successful merchant and broker. Cantor showed great interest
in mathematics from early childhood. In 1856, the family moved to Ger-
many. Six years later, he entered the University of Zurich, but in the following
year he moved to the University of Halle to study mathematics, physics, and
philosophy. There he was greatly influenced by the eminent mathematician
Karl Weierstrass (1815–1897). Although his father wanted him to become an
engineer, Cantor relentlessly pursued his interest in mathematics and received
his doctorate of philosophy at 22 from the University of Berlin for his work in
number theory.

In 1869, Cantor began his professional career as an unsalaried lecturer at
the University of Halle. Five years later, he published his revolutionary work
on set theory. Cantor developed an arithmetic of transfinite numbers analo-

gous to that of finite numbers, thus creating another area of mathematical study. He proved that the set of
real numbers is uncountable and he also established the existence of infinitely many different transfinite
cardinal numbers by ingenious methods. He also made significant contributions to indeterminate equa-
tions and trigonometric series. Deeply religious, Cantor was also interested in art, music, and philosophy.

Being unhappy with his low salary at the University, Cantor tried to secure a better-paid position at the
University of Berlin, but was sabotaged by Leopold Kronecker (1823–1891), an eminent mathematician at
the University, who severely criticized Cantor’s views on sets.

Relentless attacks by contemporary mathematicians intensified the manic depression he suffered from.
Cantor died in a mental hospital in Halle in 1918.

Cantor was “one of the greatest intellects of the nineteenth century,” according to Bertrand Russell.
He “was an imaginative genius whose work has inspired [every aspect of] mathematical thought,” Hazel
Perfect of the University of Sheffield wrote in 1994.

Set
A set is a collection of well-defined objects,∗ called elements (or members)
of the set.

There should be no ambiguity in determining whether or not a given
object belongs to the set. For example, the vowels of the English alphabet
form a (well-defined) set, whereas beautiful cities in the United States do
not form a set since its membership would be debatable.

Sets are denoted by capital letters and their elements by lowercase
letters. If an object x is an element of a set A, we write x ∈ A; other-
wise x /∈ A. For example, let A be the set of New England states. Then
Connecticut ∈ A, whereas Michigan /∈ A.

There are two methods of defining sets.

Listing Method
A set can sometimes be described by listing its members within braces.
For instance, the set B of New England states can be described as
B = {ME, VT, NH, MA, CT, RI}.
∗To be precise, this is a circular definition; set is an undefined term, like point and line in
geometry.

2.1 The Concept of a Set 69

The order in which the elements are enumerated is immaterial. Thus B
can also be written as {VT, RI, MA, CT, NH, ME}. If an element is repea-
ted, it is not counted more than once. For example, {x, x, y, x, y, z} =
{x, y, z}.

A set with a large number of elements that follow a definite pattern is
often described using ellipses (. . .) by listing a few elements at the beginning.
For example, the set of letters of the alphabet can be written as {a, b, c, . . . , z}
and the set of odd positive integers as {1, 3, 5, . . .}.

Set-Builder Notation
Another way of describing a set is by using the set-builder notation. Its
general form is {x|P(x)}, where P(x) is a predicate indicating the property
(or properties) the object x has. You may read {x|P(x)} as the set consisting
of all objects x such that x has the property P(x). Here the vertical bar “|”
means such that. (Again, the meaning of the vertical bar should be clear
from the context.)

EXAMPLE 2.1 Let B be the set of all months of the year with exactly 30 days. Then

B = {x|x is a month of the year with exactly 30 days }
= {September, April, June, November} �

Next we present another of Russell’s paradoxes introduced in 1901,
which is quite similar to the barber paradox.

Russell’s Paradox
Let S = {X |X /∈ X}; that is, S consists of all sets that do not belong to
themselves as elements. Does S ∈ S? If S ∈ S, then, by definition, S /∈ S; on
the other hand, if S /∈ S, then, again by definition, S ∈ S. Thus, in either
case, we have a contradiction. This paradox shows, not every predicate
defines a set; that is, there is no set of all sets.

Next we present several relationships between sets.

Subset
If every element of A is also an element of B, A is a subset of B, denoted
by A ⊆ B. In symbols, (A ⊆ B) ↔ (∀x)(x ∈ A → x ∈ B). If A ⊆ B, we also
say that B contains A and write B ⊇ A. If A is not a subset of B, we write
A �⊆ B; thus (A �⊆ B) ↔ (∃ x)(x ∈ A ∧ x /∈ B).

EXAMPLE 2.2 Let A = set of states in the United States, B = set of New England states,
and C = set of Canadian provinces. Then B ⊆ A, but B �⊆ C and A �⊆ C. �

To show that a set X is a subset of Y, select an arbitrary element x in X;
then using the laws of logic and known facts, show that x is in Y also.
We shall apply this technique in later sections. To show that X �⊆ Y , all
you need is to find an element x ∈ X which does not belong to Y.

70 Chapter 2 The Language of Sets

Equal Sets

Two sets A and B are equal, denoted by A = B, if they contain the same
elements. In other words, A = B if (A ⊆ B) ∧ (B ⊆ A). (We shall use this
property to prove the equality of sets.) If A ⊆ B and A �= B, then A is a
proper subset of B, denoted by A ⊂ B.

EXAMPLE 2.3 Consider the sets A = {x|x is a vowel of the alphabet}, B = {a, e, i, o, u},
C = {2, 3, 4}, and D = {x|x is a digit in the numeral 23432.} Then A = B,
and C = D. �

Does a set have to contain any element? Can there be a set with no
elements? Suppose Fred went hunting in a nearby jungle and returned
home with great tales, but no animals. The set of animals he caught is null.
This leads us to the following definition.

Empty Set
The set containing no elements is the empty (or null) set; it is denoted by
Ø or {}.

EXAMPLE 2.4 The set of pink elephants is empty. So are the set of mountains on the
earth that are 50,000 feet tall and the set of prime numbers between 23
and 28. �

Many people mistakenly believe that {Ø} = Ø; this is not true, since
{Ø} contains an element Ø, whereas Ø = {} contains no elements. Thus
{Ø} �= Ø.

Logically, it can be proved that Ø is a subset of every set; that is, Ø ⊆ A
for every set A. Besides, although many people think that there are many
empty sets, it can be proved that it is unique, meaning there is exactly
one empty set. (See Exercises 53 and 54.)

Universal Set
It is always possible to choose a special set U(�= Ø) such that every set under
discussion is a subset of U. Such a set is called a universal set, denoted
by U. Thus A ⊆ U for every set A.

EXAMPLE 2.5 Suppose we wish to discuss something about the sets {a}, {b, c, d}, and
{b, d, e, f }. Then U = {a, b, c, d, e, f } may be chosen as a valid universal set.
(There are other valid choices also.) �

2.1 The Concept of a Set 71

EXAMPLE 2.6◦ (optional) Programming languages such as Pascal support the data type
SET, although the implementations have a limit on the number of elements
on the base-type of the set, that is, on the size of the universal set. For
example, consider the Pascal declarations:

TYPE
MONTHS = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC);
SETOFMONTHS = SET OF MONTHS;

VAR
SPRING,SUMMER,FALL,WINTER: SETOFMONTHS;

Here the universal set is

SETOFMONTHS = {JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC}.

The above variable declarations define four set variables, namely,
SPRING, SUMMER, FALL, and WINTER. The set values assigned to them
must be subsets of SETOFMONTHS. For instance,

SPRING := [JAN,FEB,MAR];

is a legal Pascal assignment, although it is preposterous.
The set membership operator in Pascal is IN and can be used to deter-

mine if an element belongs to a set. For example, FEB IN SPRING is a legal
boolean expression. Likewise, the set inclusion and containment operators
are <= and >=, respectively. �

Disjoint Sets
Sets need not have common elements. Two such sets are disjoint sets.

For example, the sets {Ada, BASIC, FORTRAN} and {C++, Java} are
disjoint; so are the sets {+, −, ∗, /} and {∧, ∨, →, ↔}.

Venn Diagrams
Relationships between sets can be displayed using Venn diagrams, named
after the English logician John Venn. In a Venn diagram, the universal
set U is represented by the points inside a rectangle and sets by the points
enclosed by simple closed curves inside the rectangle, as in Figure 2.1.
Figure 2.2 shows A ⊆ B, whereas Figure 2.3 shows they are not disjoint.

Figure 2.1 U

A

72 Chapter 2 The Language of Sets

Figure 2.2

A ⊆ B.
U

BA

Figure 2.3

A and B may have
common elements.

U

A B

John Venn (1834–1923) was born into a philanthropic family in Hull, England.
After attending the high schools at Highgate and Islington, in 1853 he entered
Gonville and Caius College, Cambridge, and graduated in mathematics three
years later. He was elected a fellow of the College, a position he held until his
death.

In 1859 Venn was ordained in the Church of England, but after a brief
period of church work, he returned to Cambridge as a lecturer on moral
sciences. In 1883 he gave up his priesthood. The same year, he received a D.Sc.
from Cambridge and was elected a fellow of the Royal Society of London.

Venn was greatly influenced by Boole’s work in symbolic logic. Venn’s mas-
terpiece, Symbolic Logic (1881), clarifies the inconsistencies and ambiguities
in Boole’s ideas and notations. He employed geometric diagrams to represent
logical arguments, a technique originated by Leibniz and developed further by

Euler. Venn added a rectangle to represent the universe of discourse.
Venn published two additional books, The Logic of Chance (1866) and The Principles of Empirical

Logic (1889).

Can the elements of a set be sets? Certainly. {{a}, {b, c}}, and {Ø, {Ø},
{a, b}} are two such sets. In fact, the subsets of a set can be used to build a
new set.

Power Set
The family of subsets of a set A is the power set of A, denoted by P(A).

EXAMPLE 2.7 Find the power set P(A) of the set A = {a, b}.

2.1 The Concept of a Set 73

SOLUTION:
Since Ø is a subset of every set, Ø ∈ P(A). Also, {a} and {b} are subsets
of A. Further, every set is a subset of itself, so A ∈ P(A). Thus, the various
elements of P(A) are Ø, {a}, {b}, and A; that is, P(A) = {Ø, {a}, {b}, A}. �

Sets can be classified as finite and infinite sets, as defined below.

Finite and Infinite Sets
A set with a definite number of elements is a finite set. A set that is not
finite is infinite.

EXAMPLE 2.8 The sets {a,b,c} and the set of computers in the world are finite, but the
set of integers and the set of points on a line are infinite. �

It may sometimes be difficult to know the exact number of elements in
a finite set. But that does not affect its finiteness. For example, the set
of residents in California at a given time is finite, although it is difficult
to determine the actual count.

It is impossible to list all the elements of an infinite set. Consequently,
the enumeration method with ellipsis or the set-builder notation is used to
define infinite sets. In the former case, the ellipsis would come at the end
of the list, for example, N = {1, 2, 3, . . .}.

The following are some special infinite sets we will be using frequently:

Z = set of integers = {. . . , −2, −1, 0, 1, 2, . . .}
N = Z+ = set of positive integers = {1, 2, 3, . . .}
Z− = set of negative integers = {. . . , −3, −2, −1}
W = set of whole numbers = {0, 1, 2, 3, . . .}
Q = set of rational numbers = {p/q|p, q ∈ Z ∧ q �= 0}
R = set of real numbers

R+ = set of positive real numbers = {x ∈ R|x > 0}
R− = set of negative real numbers = {x ∈ R|x < 0}

A few additional subsets of R, called intervals, will prove useful in our
discussions. They are given below, where a < b:

closed interval [a, b] = {x ∈ R|a ≤ x ≤ b}
closed–open interval [a, b) = {x ∈ R|a ≤ x < b}
open–closed interval (a, b] = {x ∈ R|a < x ≤ b}
open interval (a, b) = {x ∈ R|a < x < b}

74 Chapter 2 The Language of Sets

David Hilbert (1862–1943) was born and educated in Königsberg,
Germany (now in Russia). He made significant contributions to algebra,
analysis, geometry, and mathematical physics. He described the importance
of set theory in the development of mathematics: “No one shall expel us from
the paradise which Cantor has created for us.”

A bracket at an endpoint indicates it is included in the set, whereas a
parenthesis indicates it is not included.

The set {x ∈ R|x ≥ a} is denoted by [a, ∞) using the infinity symbol ∞.
Likewise, the set {x ∈ R|x ≤ a} is denoted by (−∞, a].

Next we present two interesting paradoxes related to infinite sets and
proposed in the 1920s by the German mathematician David Hilbert.

The Hilbert Hotel Paradoxes
Imagine a grand hotel in a major city with an infinite number of rooms, all
occupied. One morning a visitor arrives at the registration desk looking for
a room. “I’m sorry, we are full,” replies the manager, “but we can certainly
accommodate you.” How is this possible? Is she contradicting herself?

To give a room to the new guest, Hilbert suggested moving the guest
in Room 1 to Room 2, the guest in Room 2 to Room 3, the one in Room 3
to Room 4, and so on; Room 1 is now vacant and can be given to the new
guest. The clerk is happy that she can accommodate him by moving each
guest one room down the hall.

The second paradox involves an infinite number of conventioneers arriv-
ing at the hotel, each looking for a room. The clerk realizes that the hotel
can make a fortune if she can somehow accommodate them. She knows she
can give each a room one at a time as above, but that will involve moving
each guest constantly from one room to the next, resulting in total chaos
and frustration.

So Hilbert proposed the following solution: move the guest in Room 1 to
Room 2, the guest in Room 2 to Room 4, the one in Room 3 to Room 6, and
so on. This puts the old guests in even-numbered rooms, so the new guests
can be checked into the odd-numbered rooms.

Notice that in both cases the hotel could accommodate the guests only
because it has infinitely many rooms.

2.1 The Concept of a Set 75

A third paradox: Infinitely many hotels with infinitely many rooms are
leveled by an earthquake. All guests survive and come to Hilbert Hotel.
How can they be accommodated? See Example 3.23 for a solution.

We close this section by introducing a special set used in the study of
formal languages.

Every word in the English language is an arrangement of the letters of
the alphabet {A, B, . . . , Z, a, b, . . . , z}. The alphabet is finite and not every
arrangement of the letters need make any sense. These ideas can be
generalized as follows.

Alphabet
A finite set � of symbols is an alphabet. (� is the uppercase Greek letter
sigma.) A word (or string) over � is a finite arrangement of symbols
from �.

For instance, the only alphabet understood by a computer is the binary
alphabet {0,1}; every word is a finite and unique arrangement of 0’s and
1’s. Every zip code is a word over the alphabet {0, . . . ,9}.

Sets such as {a, b, c, ab, bc} are not considered alphabets since the string
ab, for instance, can be obtained by juxtaposing, that is, placing next to
each other, the symbols a and b.

Length of a Word
The length of a word w, denoted by ‖w‖, is the number of symbols in it.
A word of length zero is the empty word (or the null word), denoted by
the lowercase Greek letter λ (lambda); It contains no symbols.

For example, ‖ab‖ = 2, ‖aabba‖ = 5, and ‖λ‖ = 0.
The set of words over an alphabet � is denoted by�∗. The empty word λ

belongs to �∗ for every alphabet �. In particular, if � denotes the English
alphabet, then �∗ consists of all words, both meaningful and meaningless.
Consequently, the English language is a subset of �∗. More generally, we
make the following definition.

Language
A language over an alphabet � is a subset of �∗.

The following two examples illustrate this definition.

EXAMPLE 2.9 The set of zip codes is a finite language over the alphabet � = {0, . . . , 9}.
�

EXAMPLE 2.10 Let� = {a, b}. Then�∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .},
an infinite set. Notice that {aa, ab, ba, bb} is a finite language over �,
whereas {a, aa, aba, bab, aaaa, abba, . . .} is an infinite language. �

Words can be combined to create new words, as defined below.

76 Chapter 2 The Language of Sets

Concatenation
The concatenation of two words x and y over an alphabet, denoted by xy,
is obtained by appending the word y at the end of x. Thus if x = x1 . . . xm
and y = y1 . . . yn, xy = x1 . . . xm y1 . . . yn.

For example, let� be the English alphabet, x = CAN, and y = ADA; then
xy = CANADA. Notice that concatenation is not a commutative operation;
that is, xy �= yx. It is, however, associative; that is, x(yz) = (xy)z = xyz.

Two interesting properties are satisfied by the concatenation operation:

• The concatenation of any word x with λ is itself; that is, λ x = x = xλ
for every x ∈ �∗.

• Let x, y ∈ �∗. Then ‖xy‖ = ‖x‖ + ‖y‖. (See Section 5.1 for a proof.)

For example, let � = {a,b}, x = aba, and y = bbaab. Then xy = ababbaab
and ‖xy‖ = 8 = 3 + 5 = ‖x‖ + ‖y‖.

A useful notation: As in algebra, the exponential notation can be
employed to eliminate the repeating of symbols in a word. Let x be a symbol
and n an integer ≥ 2; then xn denotes the concatenation xx . . . x to n − 1
times. Using this compact notation, the words aaabb and ababab can be
abbreviated as a3b2 and (ab)3, respectively. Notice, however, that (ab)3 =
ababab �= a3b3 = aaabbb.

Exercises 2.1

Rewrite each set using the listing method.

1. The set of months that begin with the letter A.

2. The set of letters of the word GOOGOL.

3. The set of months with exactly 31 days.

4. The set of solutions of the equation x2 − 5x + 6 = 0.

Rewrite each set using the set-builder notation.

5. The set of integers between 0 and 5.

6. The set of January, February, May, and July.

7. The set of all members of the United Nations.

8. {Asia, Australia, Antarctica}

Determine if the given sets are equal.

9. {x, y, z}, {x, z, y}
11. {x|x2 = x}, {0, 1}

10. {x|x2 = 1}, {x|x2 = x}
12. {x, {y}}, {{x}, y}

Mark each as true or false.

13. a ∈ {alfa} 14. b ⊆ {a,b,c} 15. {x} ⊆ {x, y, z}

2.1 The Concept of a Set 77

16. {0} = Ø

19. {Ø} = Ø

22. {x|x �= x} = Ø

17. 0 ∈ Ø

20. Ø ⊆ Ø

23. {x, y} = { y, x}

18. {Ø} = 0

21. Ø ∈ {Ø}
24. {x} ∈ {{x}, y}

25. Ø is a subset of every set. 26. Every set is a subset of itself.

27. Every nonempty set has at least two subsets.

28. The set of people in the world is infinite.

29. The set of words in a dictionary is infinite.

Find the power set of each set.

30. Ø 31. {a} 32. {a, b, c}
33. Using Exercises 30–32, predict the number of subsets of a set with n

elements.

In Exercises 34–37, n denotes a positive integer less than 10. Rewrite each
set using the listing method.

34. {n|n is divisible by 2}

36. {n|n is divisible by 2 and 3}

35. {n|n is divisible by 3}

37. {n|n is divisible by 2 or 3}

Find the family of subsets of each set that do not contain consecutive
integers.

38. {1, 2} 39. {1, 2, 3}
40. Let an denote the number of subsets of the set S = {1, 2, . . . , n} that do

not contain consecutive integers, where n ≥ 1. Find a3 and a4.

In Exercises 41–46, a language L over � = {a, b} is given. Find five words
in each language.

41. L = {x ∈ �∗| x begins with and ends in b.}
42. L = {x ∈ �∗| x contains exactly one b. }
43. L = {x ∈ �∗| x contains an even number of a’s. }
44. L = {x ∈ �∗| x contains an even number of a’s followed by an odd

number of b’s.}

Compute the length of each word over {a, b}.

45. aab

47. ab4

46. aabbb

48. a3b2

Arrange the binary words of the given length in increasing order of
magnitude.

49. Length two. 50. Length three.

78 Chapter 2 The Language of Sets

A ternary word is a word over the alphabet {0, 1, 2}. Arrange the ternary
words of the given length in increasing order of magnitude.

51. Length one. 52. Length two.

Prove each.

*53. The empty set is a subset of every set.
(Hint: Consider the implication x ∈ Ø → x ∈ A.)

*54. The empty set is unique.
(Hint: Assume there are two empty sets, Ø1 and Ø2. Then use
Exercise 53.)

*55. Let A, B, and C be arbitrary sets such that A ⊆ B and B ⊆ C. Then
A ⊆ C.
(transitive property)

*56. If � is a nonempty alphabet, then �∗ is infinite.
(Hint: Assume �∗ is finite. Since � �= Ø, it contains an element a.
Let x ∈ �∗ with largest length. Now consider xa.)

2.2 Operations with Sets

Just as propositions can be combined in several ways to construct new
propositions, sets can be combined in different ways to build new sets. You
will find a close relationship between logic operations and set operations.

Union
The union of two sets A and B, denoted by A ∪ B, is obtained by merging
them; that is, A ∪ B = {x|(x ∈ A) ∨ (x ∈ B)}.

Notice the similarity between union and disjunction.

EXAMPLE 2.11 Let A = {a, b, c}, B = {b, c, d, e}, and C = {x, y}. Then A ∪ B = {a, b, c, d, e} =
B ∪ A and B ∪ C = {b, c, d, e, x, y} = C ∪ B. �

The shaded areas in Figure 2.4 represent the set A∪B in three different
cases.

Intersection
The intersection of two sets A and B, denoted by A ∩ B, is the set of
elements common to both A and B; that is, A ∩ B = {x|(x ∈ A) ∨ (x ∈ B)}.

2.2 Operations with Sets 79

Figure 2.4 U U U

A BA

A�B A�B�BA�B, where A and
B are disjoint

B A B

Notice the relationship between intersection and conjunction.

EXAMPLE 2.12 Let A = {Nov, Dec, Jan, Feb}, B = {Feb, Mar, Apr, May}, and C = {Sept,
Oct, Nov, Dec}. Then A∩B = {Feb} = B∩A and B∩C = Ø = C∩B. (Notice
that B and C are disjoint sets. More generally, two sets are disjoint if and
only if their intersection is null.) �

Figure 2.5

Berkeley Street

intersection

M
ai

n
 S

tr
ee

t

Figure 2.5 shows the intersection of two lines and that of two streets,
and Figure 2.6 displays the set A ∩ B in three different cases.

Figure 2.6

A�B A�B�AA�B��

U U U

A BA B A B

EXAMPLE 2.13 Let A = {a, b, c, d, g}, B = {b, c, d, e, f }, and C = {b, c, e, g, h}. Find A∪ (B∩C)
and (A ∪ B) ∩ (A ∪ C).

80 Chapter 2 The Language of Sets

SOLUTION:
(1) B ∩ C = {b, c, e}

A ∪ (B ∩ C) = {a, b, c, d, e, g}
(2) A ∪ B = {a, b, c, d, e, f , g}

A ∪ C = {a, b, c, d, e, g, h}
(A ∪ B) ∩ (A ∪ C) = {a, b, c, d, e, g}

= A ∪ (B ∩ C)

See the Venn diagram in Figure 2.7.

Figure 2.7
U

A

C

a b
c

g e

f

h

d B

�

A third way of combining two sets is by finding their difference, as
defined below.

Difference
The difference of two sets A and B (or the relative complement of B
in A), denoted by A − B (notice the order), is the set of elements in A that
are not in B. Thus A − B = {x ∈ A|x /∈ B}.

EXAMPLE 2.14 Let A = {a, . . . , z, 0, . . . , 9}, and B = {0, . . . , 9}. Then A − B = {a, . . . , z} and

B − A = Ø.
The shaded areas in Figure 2.8 represent the set A−B in three different

cases.

Figure 2.8

A�B A�BA�B�A

U U U

BB B AAA

�
For any set A �= U, although A − U = Ø, the difference U − A �= Ø. This

shows yet another way of obtaining a new set.

2.2 Operations with Sets 81

Complement
The difference U − A is the (absolute) complement of A, denoted by A′
(A prime). Thus A′ = U − A = {x ∈ U |x /∈ A}.

Figure 2.9 represents the complement of a set A. (Complementation
corresponds to negation.)

Figure 2.9

A

U

A′

EXAMPLE 2.15 Let U = {a, . . . , z}. Find the complements of the sets A = {a, e, i, o, u} and
B = {a, c, d, e, . . . , w}. Then A′ = U − A = set of all consonants in the
alphabet, and B′ = U − B = {b, x, y, z}. �

EXAMPLE 2.16 Let A = {a, b, x, y, z}, B = {c, d, e, x, y, z}, and U = {a, b, c, d, e, w, x, y, z}.
Find (A ∪ B)′ and A′ ∩ B′.

SOLUTION:
(1) A ∪ B = {a, b, c, d, e, x, y, z}

(A ∪ B)′ = {w}

(2) A′ = {c, d, e, w}
B′ = {a, b, w}

A′ ∩ B′ = {w} = (A ∪ B)′

See Figure 2.10.

Figure 2.10 U

BA
a

b
w

c

d
e

x

y
z

�

Since as a rule, A − B �= B − A, by taking their union we can form a
new set.

82 Chapter 2 The Language of Sets

Symmetric Difference
The symmetric difference of A and B, denoted by A ⊕ B, is defined by
A ⊕ B = (A − B) ∪ (B − A).

EXAMPLE 2.17 Let A = {a, . . . , z, 0, . . . , 9} and B = {0, . . . , 9, +, −, ∗, /}. Then A − B =
{a, . . . , z} and B − A = {+, −, ∗, /}. So A ⊕ B = (A − B) ∪ (B − A) =
{a, . . . , z, +, −, ∗, /}. �

The symmetric difference of A and B is pictorially displayed in
Figure 2.11 in three different cases.

Figure 2.11

A�B�A�B�A�B A�B�A�BA�B�A�B

U U U

B AAA BB

Set and Logic Operations

Set operations and logic operations are closely related, as Table 2.1
shows.

Table 2.1 Set operation Logic operation

A ∪ B p ∨ q
A ∩ B p ∨ q

A′ ∼p
A ⊕ B p XOR q

The important properties satisfied by the set operations are listed in
Table 2.2. (Notice the similarity between these properties and the laws of
logic in Section 1.2.) We shall prove one of them. Use its proof as a model
to prove the others as routine exercises.

We shall prove law 16. It uses De Morgan’s law in symbolic logic, and
the fact that X = Y if and only if X ⊆ Y and Y ⊆ X.

PROOF:
In order to prove that (A∪B)′ = A′ ∩B′, we must prove two parts: (A∪B)′ ⊆
A′ ∩ B′ and A′ ∩ B′ ⊆ (A ∪ B)′.

• To prove that (A ∪ B)′ ⊆ (A′ ∩ B′):
Let x be an arbitrary element of (A ∪ B)′. Then x /∈ (A ∪ B). Therefore,
by De Morgan’s law, x /∈ A and x /∈ B; that is, x ∈ A′ and x ∈ B′. So
x ∈ A′ ∩ B′. Thus every element of (A ∪ B)′ is also an element of A′ ∩ B′;
that is, (A ∪ B)′ ⊆ A′ ∩ B′.

2.2 Operations with Sets 83

Table 2.2 Laws of Sets

Let A, B, and C be any three sets and U the universal set. Then:

Idempotent laws
1. A ∪ A = A 2. A ∩ A = A

Identity laws

3. A ∪ Ø = A 4. A ∩ U = A

Inverse laws

5. A ∪ A′ = U 6. A ∩ A′ = Ø

Domination laws

7. A ∪ U = U 8. A ∩ Ø = Ø

Commutative laws

9. A ∪ B = B ∪ A 10. A ∩ B = B ∩ A

Double complementation law

11. (A′)′ = A

Associative laws

12. A ∪ (B ∪ C) = (A ∪ B) ∪ C 13. A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive laws

14. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 15. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

De Morgan’s laws

16. (A ∪ B)′ = A′ ∩ B′ 17. (A ∩ B)′ = A′ ∪ B′

Absorption laws

18. A ∪ (A ∩ B) = A 19. A ∩ (A ∪ B) = A

(Note: The following laws have no names.)

20. If A ⊆ B, then A ∩ B = A.

22. If A ⊆ B, then B′ ⊆ A′.
24. A ⊕ B = A ∪ B − A ∩ B

21. If A ⊆ B, then A ∪ B = B.

23. A − B = A ∩ B′

• To prove that A′ ∩ B′ ⊆ (A ∪ B)′:

Let x be any element of A′ ∩ B′. Then x ∈ A′ and x ∈ B′. Therefore,
x /∈ A and x /∈ B. So, by De Morgan’s law, x /∈ (A ∪ B). Consequently,
x ∈ (A ∪ B)′. Thus, since x is arbitrary, A′ ∩ B′ ⊆ (A ∪ B)′.

Thus, (A ∪ B)′ = A′ ∩ B′. See the Venn diagrams in Figure 2.12 also.

Note: Law 23 is a very useful result and will be used in the next
section.

A few words of explanation: The commutative laws imply that the order
in which the union (or intersection) of two sets is taken is irrelevant. The
associative laws imply that when the union (or intersection) of three or more

84 Chapter 2 The Language of Sets

Figure 2.12 U

A B

U

A B

(A�B)′�shaded area A′�B′�cross-shaded area �

sets is taken, the way the sets are grouped is immaterial; in other words,
such expressions without parentheses are perfectly legal. For instance,
A∪B∪C = A∪(B∪C) = (A∪B)∪C is certainly valid. The two De Morgan’s
laws in propositional logic play a central role in deriving the corresponding
laws in sets.

Again, as in propositional logic, parentheses are essential to indicate
the groupings in the distributive laws. For example, if you do not paren-
thesize the expression A ∩ (B ∪ C) in law 15, then the LHS becomes
A ∩ B ∪ C = (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) �= (A ∩ B) ∪ (A ∩ C).

Notice the similarity between the set laws and the laws of logic. For
example, properties 1 through 19 and 22 have their counterparts in
logic. Every corresponding law of logic can be obtained by replacing sets
A, B, and C with propositions p, q, and r, respectively, the set operators
∩, ∪, and ′ with the logic operators ∧, ∨, and ∼ respectively, and equality
(=) with logical equivalence (≡).

Using this procedure, the absorption law A ∪ (A ∩ B) = A, for instance,
can be translated as p ∨ (p ∧ q) ≡ p, which is the corresponding absorption
law in logic.

Just as truth tables were used in Chapter 1 to establish the logical equiv-
alence of compound statements, they can be applied to verify set laws as
well. The next example illustrates this method.

EXAMPLE 2.18 Using a truth table, prove that (A ∪ B)′ = A′ ∩ B′.

SOLUTION:
Let x be an arbitrary element. Then x may or may not be in A. Likewise, x
may or may not belong to B. Enter this information, as in logic, in the first
two columns of the table, which are headed by x ∈ A and x ∈ B.

The table needs five more columns, headed by x ∈ (A ∪ B), x ∈ (A ∪ B)′,
x ∈ A′, x ∈ B′, and x ∈ (A′ ∩ B′) (see Table 2.3). Again, as in logic, use the
entries in the first two columns to fill in the remaining columns, as in the
table.

2.2 Operations with Sets 85

Table 2.3 x ∈ A x ∈ B x ∈ (A ∪ B) x ∈ (A ∪ B)′ x ∈ A′ x ∈ B′ x ∈ (A′ ∩ B′)

T T T F
F
F
T

F F F
F
F
T

T F T F T
F T T T F
F F F T T

Note: The shaded columns are identical

Since the columns headed by x ∈ (A ∪ B)′ and x ∈ (A′ ∩ B′) are identical,
it follows that (A ∪ B)′ = A′ ∩ B′. �

Using truth tables to prove set laws is purely mechanical and ele-
mentary. It does not provide any insight into the development of a
mathematical proof. Such a proof does not build on previously known
set laws, so we shall not resort to such proofs in subsequent discussions.

Just as the laws of logic can be used to simplify logic expressions and
derive new laws, set laws can be applied to simplify set expressions and
derive new laws. In order to be successful in this art, you must know
the laws well and be able to apply them as needed. So, practice, practice,
practice.

EXAMPLE 2.19 Using set laws, verify that (X − Y) − Z = X − (Y ∪ Z).

PROOF:
(X − Y) − Z = (X − Y) ∩ Z′ A − B = A ∩ B′

= (X ∩ Y ′) ∩ Z′ A − B = A ∩ B′

= X ∩ (Y ′ ∩ Z′) associative law 13

= X ∩ (Y ∪ Z)′ De Morgan’s law 16

= X − (Y ∪ Z) A − B = A ∩ B′ �

EXAMPLE 2.20 Simplify the set expression (A ∩ B′) ∪ (A′ ∩ B) ∪ (A′ ∩ B′).

SOLUTION:
(You may supply the justification for each step.)

(A ∩ B′) ∪ (A′ ∩ B) ∪ (A′ ∩ B′) = (A ∩ B′) ∪ [(A′ ∩ B) ∪ (A′ ∩ B′)]
= (A ∩ B′) ∪ [A′ ∩ (B ∪ B′)]
= (A ∩ B′) ∪ (A′ ∩ U)

= (A ∩ B′) ∪ A′

86 Chapter 2 The Language of Sets

= A′ ∪ (A ∩ B′)
= (A′ ∪ A) ∩ (A′ ∪ B′)
= U ∩ (A′ ∪ B′)
= A′ ∪ B′ �

Often subscripts are used to name sets, so we now turn our attention to
such sets.

Indexed Sets
Let I, called the index set, be the set of subscripts i used to name the sets Ai.
Then the union of the sets Ai as i varies over I is denoted by ∪

i ∈ I
Ai. Similarly,

∩
i ∈ I

Ai denotes the intersection of the sets Ai as i runs over I. In particular,

let I = {1, 2, . . . , n}. Then ∪
i ∈ I

Ai = A1∪A2∪· · ·∪An, which is often written as
n∪

i=1
Ai or simply

n∪
1

Ai. Likewise, ∩
i ∈ I

Ai = n∩
i = I

Ai = n∩
1

Ai = A1 ∩ A2 ∩ · · · ∩An.

If I = N, the expression ∪
i ∈N

Ai is written as
∞∪

i ∈ 1
Ai =

∞∪
1

Ai, using the infinity

symbol ∞; similarly, ∩
i ∈N

Ai = ∞∩
i = 1

Ai = ∞∩
1

Ai.

Before we proceed to define a new binary operation on sets
∞∩

i=1
, we define

an ordered set.

Ordered Set
Recall that the set {a1, a2, . . . , an} is an unordered collection of elements.
Suppose we assign a position to each element. The resulting set is an
ordered set with n elements or an n-tuple, denoted by (a1, a2, . . . , an).
(Notice the use of parentheses versus braces.) The set (a1, a2) is an ordered
pair.

Two n-tuples are equal if and only if their corresponding elements are
equal. That is, (a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if ai = bi for
every i.

EXAMPLE 2.21 Every numeral and word can be considered an n-tuple. For instance,

345 = (3, 4, 5)
↑ ↑ ↑ ones

tens
hundreds

computer = (c, o, m, p, u, t, e, r)

1001011 = (1, 0, 0, 1, 0, 1, 1) ← ASCII∗ code for letter K

11010010 = (1, 1, 0, 1, 0, 0, 1, 0) ← EBCDIC∗∗ code for letter K �
∗American Standard Code for Information Interchange.
∗∗Extended Binary Coded Decimal Interchange Code.

2.2 Operations with Sets 87

René Descartes (1596–1650) was born near Tours, France. At eight, he
entered the Jesuit school at La Fleche, where because of poor health he
developed the habit of lying in bed thinking until late in the morning;
he considered those times the most productive. He left the school in 1612
and moved to Paris, where he studied mathematics for a brief period.

After a short military career and travel through Europe for about 5 years,
he returned to Paris and studied mathematics and philosophy. He then
moved to Holland, where he lived for 20 years writing several books. In 1637
he wrote Discours, which contains his contributions to analytic geometry.

In 1649 Descartes moved to Sweden at the invitation of Queen Christina.
There he contracted pneumonia and died.

We are now ready to define the next and final operation on sets.

Cartesian Product
The cartesian product of two sets A and B, denoted by A × B, is the
set of all ordered pairs (a, b) with a ∈ A and b ∈ B. Thus A × B = {(a, b)|
a ∈ A ∧ b ∈ B}. A × A is denoted by A2.

It is named after the French philosopher and mathematician René
Descartes.

EXAMPLE 2.22 Let A = {a, b} and B = {x, y, z}. Then

A × B = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}
B × A = {(x, a), (x, b), (y, a), (y, b), (z, a), (z, b)}

A2 = A × A = {(a, a), (a, b), (b, a), (b, b)}

(Notice that A × B �= B × A.) �
The various elements of A × B in Example 2.22 can be displayed in a

rectangular fashion, as in Figure 2.13, and pictorially, using dots as in
Figure 2.14. The circled dot in row a and column y, for instance, represents
the element (a, y). The pictorial representation in Figure 2.14 is the graph
of A × B.

Figure 2.13 (a, x)a

b (b, x)

x y

Elements of B

Elements
of A

z

(a, y)

(b, y)

(a, z)

(b, z)

88 Chapter 2 The Language of Sets

Figure 2.14

Pictorial
representation
of A × B. x

a

b

y z

Figure 2.15 shows the graph of the infinite set N2 = N × N. The circled
dot in column 4 and row 3, for instance, represents the element (4,3). The
horizontal and vertical dots indicate that the pattern is to be continued
indefinitely in both directions.

Figure 2.15

1

1

2

3

2 3 4

More generally, R2 = R × R consists of all possible ordered pairs (x, y) of
real numbers. It is represented by the familiar xy-plane or the cartesian
plane used for graphing (see Figure 2.16).

Figure 2.16

The cartesian plane
R2.

x

y

0 (5, 0)

(0, 3)
(�3, 4)

The following example presents an application of cartesian product.

EXAMPLE 2.23 Linda would like to make a trip from Boston to New York and then to
London. She can travel by car, plane, or ship from Boston to New York,
and by plane or ship from New York to London. Find the set of various
modes of transportation for the entire trip.

SOLUTION:
Let A be the set of means of transportation from Boston to New York and
B the set from New York to London. Clearly A = {car, plane, ship} and
B = {plane, ship}. So the set of possible modes of transportation is given by

2.2 Operations with Sets 89

Figure 2.17

Boston

New York

car
ship

ship

ship

ship

plane

plane

plane

plane

London

A×B = {(car, plane), (car, ship), (plane, plane), (plane, ship), (ship, plane),
(ship, ship)}. See Figure 2.17. �

The definition of the product of two sets can be extended to n sets. The
cartesian product of n sets A1, A2, . . . , An consists of all possible n -tuples
(a1, a2, . . . , an), where ai ∈ Ai for every i; it is denoted by A1 × A2 ×· · ·×An.
If all Ai’s are equal to A, the product set is denoted by An.

EXAMPLE 2.24 Let A = {x}, B = { y, z}, and C = {1, 2, 3}. Then

A × B × C = {(a, b, c)|a ∈ A, b ∈ B, and c ∈ C}
= {(x, y, 1), (x, y, 2), (x, y, 3), (x, z, 1), (x, z, 2), (x, z, 3)}

Finally, take a look at the map of the continental United States in
Figure 2.18. It provides a geographical illustration of partitioning, a concept
that can be extended to sets in an obvious way.

Figure 2.18

MT

WY

CO
UT

NV

A2 NM

TX LA
MS AL GA

SC
NC

VA

NO

WV

CH
PA

NY

ME

RI

DE

CT
MA
NH

NU

IN

MI

IL

WI

MN

IA

PL

WA

OR

CA

ND

SD

NR

KS MO

OK AR

KY

TN

�

Partition
Consider the set S = {a, b, c, d, e, f , g, h, i} and the subsets S1 = {a, b}, S2 =
{c}, S3 = {d, e, f}, S4 = {g, h}, and S5 = {i}. Notice that these subsets have
three interesting properties: (1) They are nonempty; (2) they are pairwise
disjoint; that is, no two subsets have any common elements; (3) their union

90 Chapter 2 The Language of Sets

is S. (See Figure 2.19.) The set P = {S1, S2, S3, S4, S5} is called a partition
of S.

Figure 2.19

S1

S2
a

b

c

S3

S4

S5

d
g

h
i

e
f

More generally, let I be an index set and P a family of subsets Si of a
nonempty set S, where i ∈ I. Then P is a partition of S if:

• Each set Si is nonempty.

• The subsets are pairwise disjoint; that is, Si ∩ Sj = Ø if i �= j.

• The union of the subsets Si is S; that is, ∪
i ∈ I

Si = S.

(Each subset Si is a block of the partition.) Thus a partition of S is a
collection of nonempty, pairwise disjoint subsets of S whose union is S.

EXAMPLE 2.25 Let Zr denote the set of integers which, when divided by 5, leave r as the
remainder. Then 0 ≤ r < 5 (see Section 4.1):

Z0 = {. . . , −5, 0, 5, . . .}
Z1 = {. . . , −4, 1, 6, . . .}
Z2 = {. . . , −3, 2, 7, . . .}
Z3 = {. . . , −2, 3, 8, . . .}
Z4 = {. . . , −1, 4, 9, . . .}

P = {Z0, Z1, Z2, Z3, Z4} is a partition of the set of integers. See Figure 2.20.
(This example is discussed in more detail in Section 7.4.) �

Figure 2.20

Set of integers Z.
Z0

Z2

Z3

Z1

Z4

2.2 Operations with Sets 91

The sports pages of newspapers provide fine examples of partitions, as
the next example illustrates.

EXAMPLE 2.26 In 2003, the set of teams S in the National Football League was divided into
two conferences, American and National, and each conference into four
divisions — East, South, North, and West. Let E1, S1, N1, and W1 denote
the set of teams in East, South, North, and West Divisions in the American
Conference, respectively, and E2, S2, N2, and W2 the corresponding sets in
the National Conference. Then:

E1 = {Buffalo, Miami, New England, NY Jets}

S1 = {Indianapolis, Tennessee, Houston, Jacksonville}

N1 = {Baltimore, Cincinnati, Cleveland, Pittsburgh}

W1 = {Denver, Kansas City, Oakland, San Diego}

E2 = {Washington, Philadelphia, Dallas, NY Giants}

S2 = {Atlanta, Tampa Bay, Carolina, New Orleans}

N2 = {Chicago, Detroit, Minnesota, Green Bay}

W2 = {Arizona, Seattle, St. Louis, San Francisco}

Clearly, P = {E1, S1, N1, W1, E2, S2, N2, W2} is a partition of S.

We close this section with a brief introduction to fuzzy sets.

Fuzzy Sets (optional)
Fuzzy sets, a generalization of ordinary sets, were introduced in 1965
by Lotfi A. Zadeh of the University of California at Berkeley. They have
applications to human cognition, communications, decision analysis, psy-
chology, medicine, law, information retrieval, and, of course, artificial intel-
ligence. Like fuzzy logic, they model the fuzziness in the natural language —
for example, in terms like young, healthy, wealthy, and beautiful.

In fuzzy set theory, every element x in the universal set U has a certain
degree of membership dU (x), where 0 ≤ dU (x) ≤ 1; dU (x) indicates the
degree of fuzziness. Accordingly, a fuzzy set S is denoted by listing its
elements along with their degrees of membership; an element with zero
degree of membership is not listed.

For example, let U be the fuzzy set of wealthy people and S = {Tom 0.4,
Dick 0.7, Harry 0.6}. Then Harry belongs to S with degree of membership
0.6; dS(Harry) = 0.6 measures Harry’s degree of wealthiness.

The concept of an ordinary subset can be extended to fuzzy sets also.

Fuzzy Subset
Let A and B be fuzzy sets. Then A is a fuzzy subset of B if A ⊆ B and
dA(x) ≤ dB(x) for every element x in A.

92 Chapter 2 The Language of Sets

Lotfi A. Zadeh (1921–) was born in Baku, Azerbaijan. An alumnus of the
University of Tehran (1942) and the Massachusetts Institute of Technology
(1946), he received his Ph.D. from Columbia University in 1949 for his disserta-
tion on frequency analysis of time-varying networks. He began his professional
career in the Department of Electrical Engineering at Columbia. In 1959, he
joined the Department of Electrical Engineering and Computer Science at the
University of California, Berkeley, serving as its chair during the years 1963–
1968. Currently, he is a professor at Berkeley and Director of Berkeley Initiative
in Soft Computing.

Zadeh’s earlier “work was centered on systems analysis, decision analysis,
and information systems. Since then his current research has shifted to the the-
ory of fuzzy sets and its applications to artificial intelligence (AI). His research
interest now is focused on fuzzy logic, soft computing, computing with words,

and the newly developed computational theory of perceptions and precisiated natural language,” according
to the University of California Web site.

A truly gifted mind and an expert on AI, Zadeh has authored about 200 journal articles on a wide variety
of subjects relating to the conception, design, and analysis of information/intelligent systems. He serves
on the editorial boards of more than 50 journals and on the advisory boards of a number of institutions
related to AI.

Zadeh is a recipient of numerous awards and medals, including the IEEE Education Medal, IEEE
Richard W. Hamming Medal, IEEE Medal of Honor, the ASME Rufus Oldenburger Medal, B. Bolzano
Medal of the Czech Academy of Sciences, Kampe de Feriet Medal, AACC Richard E. Bellman Central
Heritage Award, the Grigore Moisil Prize, Honda Prize, Okawa Prize, AIM Information Science Award,
IEEE-SMC J. P. Wohl Career Achievement Award, SOFT Scientific Contribution Memorial Award of the
Japan Society for Fuzzy Theory, IEEE Millennium Medal, and the ACM 2000 Allen Newell Award. He
has received honorary doctorates from many universities from around the world.

For example, let S = {Betsey 0.6, Mat 0.5} and T = {Betsey 0.8, Jonathan
0.3, Mary 0.5, Mat 0.7} by fuzzy sets of smart people. Then S is a fuzzy
subset of T.

Operations on ordinary sets can be extended to fuzzy sets as well.

Operations on Fuzzy Sets
Let A and B be any fuzzy set. The union of A and B is A ∪ B,
where dA ∪ B(x) = max{dA(x), dB(x)}; their intersection is A ∩ B, where
dA ∩ B(x) = min{dA(x), dB(x)}; and the complement of A is A′, where
dA′(x) = 1 − dA(x); in A′ only the degrees of membership change.

Using the sets S and T above,

S ∪ T = {Betsey 0.8, Jonathan 0.3, Mary 0.5, Mat 0.7}

S ∩ T = {Betsey 0.6, Mat 0.5}

S′ = {Betsey 0.4, Mat 0.5}

Additional opportunities to practice the various operations are given in
the exercises.

2.2 Operations with Sets 93

Exercises 2.2

Let A = {a, e, f , g, i}, B = {b, d, e, g, h}, C = {d, e, f , h, i}, and U = {a, b, . . . , k}.
Find each set.

1. C′

5. (B ∩ C)′

9. (A − B) − C

2. B ∩ C′

6. (A ∪ C′)′

10. A − (B − C)

3. C ∩ A′

7. (B ∩ C′)′

11. (A ∪ B) − C

4. (A ∪ B)′

8. A ⊕ B

12. (A ∩ B) − C

Using the Venn diagram in Figure 2.21 find each set.

13. (A ∪ B) ∩ C

16. (A ⊕ B) ∪ C

14. A ∩ (B ∪ C)

17. A ∩ (B ⊕ C)

15. A − (B − C)

18. A − (B ⊕ C)

Figure 2.21 U

A

C

a

b

w

y
z

c

f

e
gd

x
B

Let A = {b, c}, B = {x}, and C = {x ,z}. Find each set.

19. A × B

23. A × (B ∪ C)

20. B × A

24. A × (B ∩ C)

21. A × Ø

25. A × B × C

22. A × B × Ø

26. A × C × B

Mark each as true or false, where A, B, and C are arbitrary sets and U the
universal set.

27. A − Ø = A

30. A − A = 0

33. (A′)′ = A

36. A ⊆ A ∪ B

28. Ø − A = −A

31. A − B = B − A

34. (A ∩ B)′ = A′ ∩ B′

37. A ⊆ A ∩ B

29. Ø − Ø = 0

32. A − A′ = Ø

35. (A ∪ B)′ = A′ ∪ B′

38. B ∩ (A − B) = Ø

Give a counterexample to disprove each proposition.

39. (A − B) − C = A − (B − C)

41. A ∪ (B ⊕ C) = (A ∪ B) ⊕ (A ∪ C)

40. A ∪ (B − C) = (A ∪ B) − (A ∪ C)

42. A ⊕ (B ∩ C) = (A ⊕ B) ∩ (A ⊕ C)

Determine if each is a partition of the set {a, . . . , z, 0, . . . , 9}.
43. {{a, . . . , z}, {0, . . . , 9}, Ø}
44. {{a, . . . , j}, {i, . . . , t}, {u, . . . , z}, {0, . . . , 9}}

94 Chapter 2 The Language of Sets

45. {{a, . . . , l}, {n, . . . , t}, {u, . . . , z}, {0, . . . , 9}}
46. {{a, . . . , u}, {v, . . . , z}, {0, 3}, {1, 2, 4, . . . , 9}
Prove each, where A, B, and C are any sets.

47. (A′)′ = A

49. A ∩ (A ∪ B) = A

51. A ⊕ A = Ø

53. A ⊕ B = B ⊕ A

55. (A ∪ B ∪ C)′ = A′ ∩ B′ ∩ C′

48. A ∪ (A ∩ B) = A

50. (A ∩ B)′ = A′ ∪ B′

52. A ⊕ U = A′

54. A − B = A ∩ B′

56. (A ∩ B ∩ C)′ = A′ ∪ B′ ∪ C′

Simplify each set expression.

57. A ∩ (A − B)

60. (A ∪ B) ∪ (A ∩ B′)′

63. (A ∩ B)′ ∪ (A ∪ B′)

58. (A − A′) ∪ (B − A)

61. (A ∪ B) − (A ∩ B)′

64. (A ∪ B′)′ ∩ (A′ ∩ B)

59. (A − B′) − (B − A′)

62. (A ∪ B)′ ∩ (A ∩ B′)

65. (A′ ∪ B′)′ ∪ (A′ ∩ B)

*66. State De Morgan’s laws for sets Ai, i ∈ I. (I is an index set.)

*67. State the distributive laws using the sets A and Bi, i ∈ I.

◦ The sum of two fuzzy sets A and B is the fuzzy set A ⊕ B, where dA ⊕ B(x) =
1∧[dA(x)+dB(x)]; their difference is the fuzzy set A−B, where dA−B(x) =
0 ∨ [dA(x) − dB(x)]; and their cartesian product is the fuzzy set A × B,
where dA × B(x, y) = dA(x) ∧ dB(x). Use the fuzzy sets A = {Angelo 0.4, Bart
0.7, Cathy 0.6} and B = {Dan 0.3, Elsie 0.8, Frank 0.4} to find each fuzzy
set.

68. A ∪ B

72. A ∩ B′

76. B − A

69. A ∩ B

73. A ∩ A′

77. A × B

70. A′

74. A ⊕ B

78. B × A

71. A ∪ B′

75. A − B

79. A × A

◦ Let A and B be any fuzzy sets. Prove each.

*80. (A ∪ B)′ = A′ ∩ B′ *81. (A ∩ B)′ = A′ ∪ B′

*2.3 Computer Operations with Sets (optional)

Sets and the various set operations can be implemented in a computer in
an elegant manner.

Computer Representation
Although the elements of a set have no inherent order, when the set
is represented in a computer, an order is imposed upon them to permit

2.3 Computer Operations with Sets (optional) 95

implementation. The universal set U with n elements is represented as an
array with n cells, each containing a 1:

n − 1 2 1 0

U 1 1 . . . 1 1 1 1

The elements are represented by the binary digits (or bits) 0 and 1 in the
right-to-left fashion.

Subsets of U are represented by assigning appropriate bits to the various
cells. A bit 1 in a cell indicates the corresponding element belongs to the
set, whereas a 0 would indicate the element does not belong to the set.

EXAMPLE 2.27 Using U = {a, b, . . . , h}, represent the sets A = {a, b, g} and B = {c, e, h} as
8-bit strings.

SOLUTION:
Remember, the elements are represented in the right-to-left order. Thus:

h g f e d c b a

U 1 1 1 1 1 1 1 1

A 0 1 0 0 0 0 1 1

B 1 0 0 1 0 1 0 0 �

Next we discuss how the various subsets of a finite set can be found
methodically.

Table 2.4 Subset Bit String

Ø 000
{x} 001
{ y} 010
{x, y} 011
{z} 100
{x, z} 101
{ y, z} 110
{x, y, z} 111

Interestingly enough, there is a close relationship between sets and bit
strings. Table 2.4, for instance, lists the various subsets of the set {x, y, z}.
Notice that the table contains all possible three-bit strings and their decimal

96 Chapter 2 The Language of Sets

values increase from 0 to 7. (See Section 4.3 for a discussion of nondecimal
bases.)

Next we present a systematic procedure to find the bit string of the
subset that “follows” a given subset with bit string b2b1b0. Such a recipe
for solving a problem in a finite number of steps is called an algorithm.∗

Next-Subset Algorithm
Take a good look at each string in Table 2.4. Can you find a rule to obtain
each, except 000, from the preceding string? It is fairly simple: From right
to left, locate the first 0. Change it to 1 and the 1’s to its right to 0’s.

For example, suppose you would like to find the subset following {x, y}
with bit string b2b1b0 = 011. From right to left, the first 0 is b2. Change it
to 1, and b1 and b0 to 0’s. The resulting string is 100 and the corresponding
subset is {z}.

This rule can be generalized and translated into an algorithm. See
Algorithm 2.1. Use it to find the subsets following {z} and { y, z}.

Algorithm next-subset (bn–1bn–2 ... b0)
(* This algorithm finds the bit string of the subset that

follows a given subset of an n-element set S. *)
Begin (* next-subset *)

find the first 0 from the right
change it to 1
replace the bits to its right with 0’s

End (* next-subset *)

Algorithm 2.1

The next-subset algorithm can be employed to find all subsets of a finite
set S. Algorithm 2.2 shows the steps involved. Use it to find the subsets of
{x, y, z}.

Algorithm subsets (S)
(* Using the next-subset algorithm, this algorithm finds the bit

representations of all subsets of an n-element set S. *)
Begin (* subsets *)

bn−1bn−2 ... b0 ← 00 ... 0 (* initialize string *)
done ← false (* boolean flag *)
while not done do
begin (* while *)

find the subset following bn−1bn−2 ... b0.

∗The word algorithm is derived from the last name of the ninth-century Arabian astronomer
and mathematician Abu-Abdullah Muhammed ibn-Musa al-Khowarizmi (Muhammed, the
father of Abdullah and the son of Moses of Khwarizm). He was a teacher in the mathemat-
ical school in Baghdad, Iraq. His last name indicates he or his family originally came from
Khwarizm (now called Khiva) in Uzbekistan.

His books on algebra and Indian numerals had a significant influence in Europe in the 12th
century through their Latin translations. The term algebra is derived from the title of his
algebra book Kitab al-jabr w’al-muqabalah.

2.3 Computer Operations with Sets (optional) 97

if every bit bi = 1 then (* terminate the loop *)
done ← true

endwhile
End (* subsets *)

Algorithm 2.2

Next we show how the set operations can be implemented in a computer.

Computer Operations
The representation of sets as n-bit strings allows us to use logic opera-
tions to perform set operations. They are implemented through the bit
operations — AND, OR, XOR, COMP — defined by Table 2.5, where COMP
indicates one’s complement: comp(1) = 0 and comp(0) = 1.

Table 2.5 bit AND OR XOR COMP

y�
� �

x 0 1 0 1 0 1
← logic operators

0 0 0 0 1 0 1 1
1 0 1 1 1 1 0 0

The various set operations are accomplished by performing the corre-
sponding logic operations, as shown in Table 2.6. Notice that the logic
operation corresponding to A − B makes sense since A − B = A ∩ B′, by law
23 in Table 2.2.

Table 2.6 Set operations Logic operations

A ∩ B A AND B
A ∪ B A OR B

A′ COMP(A)
A ⊕ B A XOR B
A − B A AND (COMP(B))

EXAMPLE 2.28 Let U = {a, b, . . . , h}, A = {a, b, c, e, g}, and B = {b, e, g, h}. Using bit
representations, find the sets A∩B, A∪B, A⊕B, B′, and A−B as 8-bit words.

SOLUTION:

A = 0 1 0 1 0 1 1 1

B = 1 1 0 1 0 0 1 0

98 Chapter 2 The Language of Sets

Using Tables 2.5 and 2.6, we have:

(1) A ∩ B = 0 1 0 1 0 0 1 0
(3) A ⊕ B = 1 0 0 0 0 1 0 1
(5) A = 0 1 0 1 0 1 1 1

B′ = 0 0 1 0 1 1 0 1
So A − B = A AND (COMP(B))

= 0 0 0 0 0 1 0 1

(2) A ∪ B = 1 1 0 1 0 1 1 1
(4) B′ = 0 0 1 0 1 1 0 1

Using the bit representations, you may verify that A ∩ B = {b, e, g},
A ∪ B = {a, b, c, e, g, h}, A ⊕ B = {a, c, h}, B′ = {a, c, d, f }, and A − B =
{a, c}. �

Exercises 2.3

Using the universal set U = {a, . . . , h}, represent each set as an 8-bit word.

1. {a, c, e, g} 2. {b, d, f } 3. {a, e, f , g, h} 4. Ø

Use Algorithm 2.1 to find the subset of the set {s0, s1, s2, s3} that follows the
given subset.

5. {s3} 6. {s0, s3} 7. {s2, s3} 8. {s0, s2, s3}
Using Algorithm 2.2, find the subsets of each set.

9. {s0, s1} 10. {s0, s1, s2, s3}
Using the sets A = {a, b, e, h}, B = {b, c, e, f , h}, C = {c, d, f , g}, and
U = {a, . . . , h}, find the binary representation of each set.

11. A ∩ B

15. C − B

19. A ∩ C′

23. A − (B ⊕ C)

12. A ∪ B

16. A ⊕ B

20. A ∪ B′

24. (A ⊕ B) − C

13. B′

17. B ⊕ C

21. A ∩ (B ∩ C)

25. A ⊕ (B ⊕ C)

14. A − B

18. C ⊕ A

22. A ∪ (B ∩ C)

26. (A ⊕ B) ⊕ C

2.4 The Cardinality of a Set

This section presents four formulas involving finite sets, which we shall
use frequently. Recall that every finite set has a fixed number of elements,
so we make the following definition.

Cardinality
The cardinality of A, denoted by |A|, is the number of elements in it.∗

∗It should be clear from the context whether the symbol “| |” refers to absolute value or
cardinality.

2.4 The Cardinality of a Set 99

For example, |Ø| = 0, |{Ø}| = 1, and |{a, b, c}| = 3.
Let A and B be any two finite sets. How is |A ∪ B| related to |A| and |B|?

First, let’s study an example.

EXAMPLE 2.29 Let A = {a, b, c} and B = {b, c, d, e, f }. Clearly, |A| = 3, |B| = 5, |A ∪ B| = 6,
and |A ∩ B| = 2, so |A ∪ B| = |A| + |B| − |A ∩ B|. �

More generally, we have the following result:

THEOREM 2.1 (Inclusion–Exclusion Principle) Let A and B be two finite sets. Then
|A ∪ B| = |A| + |B| − |A ∩ B|.
PROOF:
Suppose |A ∩ B| = k. Since A ∩ B ⊆ A and A ∩ B ⊆ B, we can assume
that |A| = k + m and |B| = k + n for some nonnegative integers m and n
(see Figure 2.22). Then:

|A ∪ B| = m + k + n

= (m + k) + (n + k) − k

= |A| + |B| − |A ∩ B|

Figure 2.22 U

A

m n

B
k

This completes the proof. �

In addition, if A and B are disjoint sets, then |A ∩ B| = |Ø| = 0, so
|A ∪ B| = |A| + |B|. Thus we have the following result.

COROLLARY 2.1
(Addition Principle) Let A and B be finite disjoint sets. Then |A∪B| =
|A| + |B|.

The next example demonstrates the inclusion–exclusion principle.

EXAMPLE 2.30 Find the number of positive integers ≤ 300 and divisible by 2 or 3.

SOLUTION:
Let A = {x ∈ N|x ≤ 300 and is divisible by 2} and B = {x ∈ N|x ≤ 300
and is divisible by 3}. Then A ∩ B consists of positive integers ≤ 300 that
are divisible by 2 and 3, that is, divisible by 6. Thus A = {2, 4, . . . , 300},

100 Chapter 2 The Language of Sets

B = {3, 6, . . . , 300}, and A ∩ B = {6, 12, . . . , 300}. Clearly, |A| = 150, |B| =
100, and |A ∩ B| = 50, so by Theorem 2.1,

|A ∪ B| = |A| + |B| − |A ∩ B|
= 150 + 100 − 50 = 200

Thus there are 200 positive integers ≤ 300 and divisible by 2 or 3.
(See Examples 3.11, and 3.12 in Section 3.2.)

Theorem 2.1 can be extended to any finite number of finite sets. For
instance, the next example derives the formula for three finite sets.

EXAMPLE 2.31 Let A, B, and C be three finite sets. Prove that

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|.
PROOF:
|A ∪ B ∪ C| = |A ∪ (B ∪ C)|

= |A| + |B ∪ C| − |A ∩ (B ∪ C)| by Theorem 2.1

= |A| + |B ∪ C| − |(A ∩ B) ∪ (A ∩ C)| by the distributive law

= |A| + (|B| + |C| − |B ∩ C|) − [|A ∩ B| + |A ∩ C|
− |(A ∩ B) ∩ (A ∩ C)|]

= |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|,

since A ∩ C = C ∩ A and (A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C. �
The next example shows how useful sets are in data analysis.

EXAMPLE 2.32 A survey among 100 students shows that of the three ice cream flavors
vanilla, chocolate, and strawberry, 50 students like vanilla, 43 like choco-
late, 28 like strawberry, 13 like vanilla and chocolate, 11 like chocolate and
strawberry, 12 like strawberry and vanilla, and 5 like all of them. Find the
number of students surveyed who like each of the following flavors.

(1) Chocolate but not strawberry.
(2) Chocolate and strawberry, but not vanilla.
(3) Vanilla or chocolate, but not strawberry.

SOLUTION:
Let V, C, and S symbolize the set of students who like vanilla, chocolate,
and strawberry flavors, respectively. Draw three intersecting circles to
represent them in the most general case, as in Figure 2.23.

Our first goal is to distribute the 100 students surveyed into the various
regions. Since five students like all flavors, |V ∩C∩S| = 5. Twelve students
like both strawberry and vanilla, so |S ∩ V | = 12. But five of them like
chocolate also. Therefore, |(S ∩ V) − C| = 7. Similarly, |(V ∩ C) − S| = 8
and |(C ∩ S) − V | = 6.

2.4 The Cardinality of a Set 101

Figure 2.23 U
CV

S

67
5

8

30
24

10 10

Of the 28 students who like strawberry, we have already accounted for
7 + 5 + 6 = 18. So the remaining 10 students belong to the set S − (V ∪ C).
Similarly, |V − (C ∪ S)| = 30 and |C − (S ∪ V)| = 24.

Thus far, we have accounted for 90 of the 100 students. The remaining
10 students lie outside the region V ∪S∪C, as in Figure 2.23. The required
answers can now be directly read from this Venn diagram:

(1) |C − S| = 24 + 8 = 32. So 32 students like chocolate but not
strawberry.

(2) |(C ∩ S) − V | = 6. Therefore, 6 students like both chocolate and
strawberry, but not vanilla.

(3) 30 + 8 + 24 = 62 students like vanilla or chocolate, but not
strawberry. They are represented by the region (V ∪ C) − S. �

Finally, suppose a set contains n elements. How many subsets does it
have? Before we answer this partially, let us study the next example, which
uses the addition principle.

EXAMPLE 2.33 Let s3 denote the number of subsets of the set S = {a, b, c}. Let S∗ = S−{b}.
We shall use the subsets of S∗ in a clever way to find s3 and all subsets of S.
Let A denote the subsets of S∗. Then A = {Ø, {a}, {c}, {a, c}}. Clearly every
element of A is also a subset of S.

Now add b to every element in A. Let B denote the resulting set:
B = {{b}, {b, a}, {b, c}, {b, a, c}}. Every subset of S either contains b or does
not contain b; so, by the addition principle, s3 = |A| + |B| = 4 + 4 = 8. �

More generally, we have the following result.

THEOREM 2.2 Let sn denote the number of subsets of a set S with n elements. Then
sn = 2sn−1, where n ≥ 1.

PROOF:
Let x ∈ S. Let S∗ = S−{x}. Then S∗ contains n−1 elements and hence has
sn−1 subsets by definition. Each of them is also a subset of S. Now insert x
in each of them. The resulting sn−1 sets are also subsets of S. Since every
subset of S either contains x or does not contain x, the addition principle
indicates a total of sn−1 + sn−1 = 2sn−1 subsets of S. (Notice that s0 = 1.
Why?) �

102 Chapter 2 The Language of Sets

Consequently, if you know the number of subsets of a set with n − 1
elements, this theorem can be employed to compute the number of subsets
of a set with n elements. For instance, by Example 2.33, a set with three
elements has eight subsets; therefore, a set with four elements has 2·8 = 16
subsets.

The technique used in the proof of Theorem 2.2 can be applied to write
an algorithm for finding the power set of a set S. See Algorithm 2.3. It uses
the fact that if A is a subset of S and s ∈ S, then A ∪ {s} is also a subset
of S.

Algorithm subsets(S)
(* This algorithm finds the power set of a set S with n elements

s1, s2, ..., sn. Sj denotes the jth element in the power set. *)
Begin (* subsets *)

power set ← {Ø} (* initialize power set *)
numsubsets ← 1 (* initialize the number of subsets *)
for i = 1 to n do (* si denotes the ith element in S *)
begin (* for *)

j ← 1 (* j-th element in P(S) *)
temp ← numsubsets (* temp is a temporary variable*)
while j ≤ temp do (* construct a new subset *)
begin (* while *)

add Sj ∪ {si} to the power set
j ← j + 1
numsubsets ← numsubsets + 1

endwhile
endfor

End (* subsets *)

Algorithm 2.3 �

Although Theorem 2.2 does not give us an explicit formula for the
number of subsets, it can be used to find the formula. The next theo-
rem gives us the explicit formula, which we shall prove in Section 4.4
(see Example 4.18).

THEOREM 2.3 A set with n elements has 2n subsets, where n ≥ 0. �

For example, a set with four elements has 24 = 16 subsets!

Exercises 2.4

Find the cardinality of each set.

1. The set of letters of the English alphabet.

2. The set of letters of the word TWEEDLEDEE.

3. The set of months of the year with 31 days.

4. The set of identifiers in Java that begin with 3.

2.4 The Cardinality of a Set 103

Let A and B be two sets such that |A| = 2a − b, |B| = 2a, |A ∩ B| = a − b,
and |U| = 3a + 2b. Find the cardinality of each set.

5. A ∪ B 6. A − B 7. B′ 8. A − A′

9. Find |A| if |A| = |B|, |A ∪ B| = 2a + 3b, and |A ∩ B| = b.

10. Find |A ∩ B| if |A| = a + b = |B| and |A ∪ B| = 2a + 2b.

11. Find |A ∩ B| if |A| = 2a, |B| = a, and |A ∪ B| = 2a + b.

Let A and B be finite sets such that A ⊆ B, |A| = b, |B| = a + b. Find the
cardinality of each set.

12. A ∪ B 13. A − B 14. B − A 15. A ∩ B

Let A and B be finite disjoint sets, where |A| = a, and |B| = b. Find the
cardinality of each set.

16. A ∪ B 17. A − B 18. B − A

19–21. Find the cardinality of each set in Exercises 16–18, where A ⊆ B,
B is finite, |A| = a, and |B| = b.

22. A survey conducted recently among 300 adults in Omega City shows
160 like to have their houses painted green, and 140 like them blue.
Seventy-five adults like both colors. How many do not like either
color?

23. A survey was taken to determine the preference between two laundry
detergents, Lex and Rex. It was found that 15 people liked Lex only, 10
liked both, 20 liked Rex only, and 5 liked neither of them. How many
people were surveyed?

Find the number of positive integers ≤ 500 and divisible by:

24. Two or three.

26. Two or three, but not six.

25. Two, three, or five.

27. Neither two, three, nor five.

Find the number of positive integers ≤ 1776 and divisible by:

28. Two, three, or five.

30. Two, three, or five, but not 15.

29. Two, three, or five, but not six.

31. Two, three, or five, but not 30.

According to a survey among 160 college students, 95 students take a course
in English, 72 take a course in French, 67 take a course in German, 35 take a
course in English and in French, 37 take a course in French and in German,
40 take a course in German and in English, and 25 take a course in all
three languages. Find the number of students in the survey who take a
course in:

32. English, but not German. 33. English, French, or German.

104 Chapter 2 The Language of Sets

34. English or French, but not
German.

35. English and French, but not
German.

36. English, but neither French nor German.

37. Neither English, French, nor German.

A recent survey by the MAD corporation indicates that of the 700 families
interviewed, 220 own a television set but no stereo, 200 own a stereo but
no camera, 170 own a camera but no television set, 80 own a television set
and a stereo but no camera, 80 own a stereo and a camera but no television
set, 70 own a camera and a television set but no stereo, and 50 do not have
any of these. Find the number of families with:

38. Exactly one of the items.

40. At least one of the items.

39. Exactly two of the items.

41. All of the items.

Using Algorithm 2.3, find the power set of each set. List the elements in
the order obtained.

42. {a, b} 43. {a, b, c}
A finite set with a elements has b subsets. Find the number of subsets of a
finite set with the given cardinality.

44. a + 1 45. a + 2 46. a + 5 47. 2a

Let A, B, and C be subsets of a finite set U. Derive a formula for each.

48. |A′ ∩ B′| 49. |A′ ∩ B′ ∩ C′|
*50. State the inclusion–exclusion principle for four finite sets Ai, 1 ≤

i ≤ 4. (The formula contains 15 terms.)

*51. Prove the formula in Exercise 50.

**52. State the inclusion–exclusion principle for n finite sets Ai, 1 ≤ i ≤ n.

2.5 Recursively Defined Sets

A new way of defining sets is using recursion. (It is a powerful problem-
solving technique discussed in detail in Chapter 5.)

Notice that the set of numbers S = {2, 22, 222
, 2222

, . . .} has three
interesting characteristics:

(1) 2 ∈ S.

(2) If x ∈ S, then 2x ∈ S.

(3) Every element of S is obtained by a finite number of applications of
properties 1 and 2 only.

2.5 Recursively Defined Sets 105

Property 1 identifies explicitly the primitive element in S and hence
ensures that it is nonempty. Property 2 establishes a systematic procedure
to construct new elements from known elements. How do we know, for
instance, that 222∈ S? By property 1, 2 ∈ S; then, by property (2), 22 ∈ S;
now choose x = 22 and apply property 2 again; so 222∈ S. Property 3 guar-
antees that in no other way can the elements of S be constructed. Thus the
various elements of S can be obtained systematically by applying the above
properties.

These three characteristics can be generalized and may be employed to
define a set S implicitly. Such a definition is a recursive definition.

Recursively Defined Set
A recursive definition of a set S consists of three clauses:

• The basis clause explicitly lists at least one primitive element in S,
ensuring that S is nonempty.

• The recursive clause establishes a systematic recipe to generate new
elements from known elements.

• The terminal clause guarantees that the first two clauses are the only
ways the elements of S can be obtained.

The terminal clause is generally omitted for convenience.

EXAMPLE 2.34 Let S be the set defined recursively as follows.

(1) 2 ∈ S. (2) If x ∈ S, then x2 ∈ S.

Describe the set by the listing method.

SOLUTION:

• 2 ∈ S, by the basis clause.

• Choose x = 2. Then by the recursive clause, 4 ∈ S.

• Now choose x = 4 and apply the recursive clause again, so 16 ∈ S.
Continuing like this, we get S = {2, 4, 16, 256, 65536, . . .}. �

The next three examples further elucidate the recursive definition.

EXAMPLE 2.35 Notice that the language L = {a, aa, ba, aaa, aba, baa, bba, . . .} consists of
words over the alphabet� = {a, b} that end in the letter a. It can be defined
recursively as follows.

• a ∈ L.

• If x ∈ L, then ax, bx ∈ L.

For instance, the word aba can be constructed as follows:

• a ∈ L. Choosing x = a, bx = ba ∈ L.

106 Chapter 2 The Language of Sets

• Now choose x = ba. Then ax = aba ∈ L.

The tree diagram in Figure 2.24 illustrates systematically how to derive the
words in L.

Figure 2.24 a

baaa

aaa baa aba bba

�

EXAMPLE 2.36 (Legally Paired Parentheses) An important problem in computer
science is to determine whether or not a given expression is legally paren-
thesized. For example, (()), () (), and (() ()) are validly paired sequences of
parentheses, but) (), () (, and) () (are not. The set S of sequences of legally
paired parentheses can be defined recursively as follows:

• () ∈ S.

• If x, y ∈ S, then xy and (x) belong to S.

The tree diagram in Figure 2.25 shows the various ways of constructing
the elements in S.

Figure 2.25 ()

(())() ()

() () ()

() () () ()

() () () (() ()) ((()))(()) ()

(()) (())

() (())

�

A simplified recipe to determine if a sequence of parentheses is legally
paired is given in Algorithm 2.4.

Algorithm Legally Paired Sequence
(* This algorithm determines if a nonempty sequence of parentheses is

legally paired. Count keeps track of the number of parentheses. It is
incremented by 1 if the current parenthesis is a left parenthesis.
and decremented by 1 if it is a right parenthesis. *)
Begin (* algorithm *)

count ← 0 (* initialize *)
read a symbol
if symbol = left paren then

2.5 Recursively Defined Sets 107

while not the end of the sequence do
begin (* while *)

if symbol = left paren then
count ← count + 1

else (* symbol = right parenthesis *)
count ← count – 1

read the next symbol
endwhile
if count = 0 then

legal sequence
else

invalid sequence
else

invalid sequence (* begins with a right paren *)
End (* algorithm *)

Algorithm 2.4

This example is studied further in Chapters 6 and 9. �

EXAMPLE 2.37 A legal expression in propositional logic is called a well-formed formula
(wff). For convenience, we restrict our discussion to the logical variables
p, q, and r, and the operators ∧, ∨, and ∼. Then the set of well-formed
formulas can be defined recursively:

• The logic variables are wffs.

• If x and y are wffs, then so are (x), ∼(x), (x ∧ y), and (x ∨ y).

For instance, the expression ((p) ∧ ((∼(q)) ∨ (r))) is a wff, but (q ∧ (∼r)) is
not (why?). (Parentheses are often omitted when ambiguity is impossible.)

�

Exercises 2.5

In Exercises 1–6, a set S is defined recursively. Find four elements in each
case.

1. i) 1 ∈ S
ii) x ∈ S → 2x ∈ S

3. i) e ∈ S
ii) x ∈ S → ex ∈ S

5. i) λ ∈ L
ii) x ∈ L → xbb ∈ L

2. i) 1 ∈ S
ii) x ∈ S → 2x ∈ S

4. i) 3 ∈ S
ii) x ∈ S → lg x ∈ S†

6. i) λ ∈ L
ii) x ∈ L → axb ∈ L

†lg x means log2 x.

108 Chapter 2 The Language of Sets

In Exercises 7–10, identify the set S that is defined recursively.

7. i) 1 ∈ S
ii) x, y ∈ S → x + y ∈ S

9. i) 2 ∈ S
ii) x, y ∈ S → x ± y ∈ S

8. i) 1 ∈ S
ii) x, y ∈ S → x ± y ∈ S

10. i) Ø ∈ S
ii) x ∈ X, A ∈ S → {x} ∪ A ∈ S

Define each language L over the given alphabet recursively.

11. {0, 00, 10, 100, 110, 0000, 1010, . . .}, � = {0, 1}.
12. L = {1, 11, 111, 1111, 11111, . . .}, � = {0, 1}.
13. L = {x ∈ �∗|x = bnabn, n ≥ 0}, � = {a, b}.
14. The language L of all palindromes over � = {a, b}. (A palindrome

is a word that reads the same both forwards and backwards. For
instance, abba is a palindrome.)

*15. {b, bb, bbb, bbbb, . . .}, � = {a, b}.
*16. {b, aba, aabaa, aaabaaa, . . .}, � = {a, b}.
*17. {a, aaa, aaaaa, aaaaaaa, . . .}, � = {a, b}.
*18. {1, 10, 11, 100, 101, . . .}, � = {0, 1}.
Determine if each sequence of parentheses is legal.

19. (()()) 20. (())(21. (()() 22. (()())()

The nth Catalan number Cn, named after the Belgian mathematician,
Eugene Charles Catalan (1814–1894), is defined by

Cn = (2n)!
n!(n + 1)! , n ≥ 0

where n! (n factorial) is defined by n! = n(n − 1) . . . 3 · 2 · 1 and 0! = 1.
Catalan numbers have many interesting applications in computer science.
For example, the number of well-formed sequences of n pairs of left and
right parentheses is given by the nth Catalan number. Compute the number
of legally paired sequences with the given pairs of left and right parentheses.

23. Three 24. Four 25. Five 26. Six

27. List the well-formed sequences of parentheses with three pairs of left
and right parentheses.

28. Redo Exercise 27 with four pairs of left and right parentheses.

Using Example 2.37, determine if each is a wff in propositional logic.

29. (p ∧ ((∼(q)) ∨ r)) 30. ((∼(p)) ∨ ((q) ∧ (∼r))

Chapter Summary 109

31. (((∼p) ∨ q) ∧ (∼q) ∨ (∼p))) 32. ((p ∨ q) ∧ ((∼(q)) ∨ (∼(r))))

33. Determine if the following recursive definition yields the set S of
legally paired parentheses. If not, find a validly paired sequence that
cannot be generated by this definition.

i) () ∈ S. ii) If x ∈ S, then ()x, (x), x() ∈ S.

34. Define the set of words S over an alphabet � recursively. Assume
λ ∈ S.
(Hint: use concatenation.)

35. Let � be an alphabet. Define �∗ recursively.
(Hint: use concatenation.)

*36. Define the language L of all binary representations of nonnegative
integers recursively.

Chapter Summary

This chapter presented the concept of a set, different ways of describing a
set, relations between sets, operations with sets and their properties, and
formal languages. How sets and set operations work in a typical computer
were also discussed.

Set
• A set is a well-defined collection of objects (page 68).

• A set can be described using words, listing the elements, or by the
set-builder notation (page 69).

• A ⊆ B if and only if every element of A is also an element
of B (page 69).

• (A = B) ↔ (A ⊆ B) ∧ (B ⊆ A) (page 70).

• The null set Ø contains no elements (page 70).

• The universal set U contains all elements under discussion
(page 70).

• A and B are disjoint sets if A ∩ B = Ø (page 71).

• The power set P(A) of a set A is the family of all subsets of A
(page 72).

• A set with a definite number of elements is finite; if a set is not finite,
it is infinite (page 73).

110 Chapter 2 The Language of Sets

Formal Language
• An alphabet � is a finite set of symbols; {0,1} is the binary alphabet

(page 75).

• A word over � is a finite arrangement of symbols from �. A word of
length zero is the empty word λ (page 75).

• �∗ consists of all possible words over � (page 75).

• A formal language over � is a subset of �∗ (page 75).

• The concatenation of two words x and y is the word xy. (page 76).

Set Operations
• Union A ∪ B = x|(x ∈ A) ∨ (x ∈ B) (page 78).

• Intersection A ∩ B = {x|(x ∈ A) ∧ (x ∈ B)} (page 78).

• Difference A − B = {x ∈ A|x /∈ B} (page 80).

• Complement A′ = U − A = {x ∈ U|x /∈ A} (page 81).

• Symmetric difference A ⊕ B = (A − B) ∪ (B − A) (page 82).

• Cartesian product A × B = {(a, b)|(a ∈ A) ∧ (b ∈ B)} (page 87).

• The fundamental properties of set operations are listed in Table 2.2
(page 83).

Partition
• A partition of a set S is a finite collection of nonempty, pairwise

disjoint subsets of S whose union is S (page 90).

Computer Implementation
• Set operations are implemented in a computer using the bit operations

in Table 2.5 and the logic operations in Table 2.6. (page 97).

Cardinality
• Inclusion–exclusion principle |A ∪ B| = |A| + |B| − |A ∩ B|

(page 99).

• Addition principle |A ∪ B| = |A| + |B|, where A ∩ B = Ø (page 99).

• A set with n elements has 2n subsets (page 102).

Recursion
• The recursive definition of a set consists of a basis clause, recursive

clause, and a terminal clause (page 105).

Chapter Summary 111

Review Exercises

Using the Venn diagram in Figure 2.26, find each.

1. A − (B ∩ C)

4. (A − B) − C

7. A − (B ⊕ C)

2. (A ∪ B) − C

5. A ⊕ B

8. A ∪ (B ⊕ C′)

3. A − (B − C)

6. (A − B) × (B − C)

Figure 2.26 U

A

Ca

b

y z

cf

d

x

B

9. Find the sets A and B if A ∩ B′ = {a, c}, B ∩ A′ = {b, e, g}, A ∩ B =
{d, f}, and A′ ∩ B′ = {i}.

Let A, B, and C be sets such that A − (B ∪ C) = {b,e}, B − (C ∪ A) = {k},
C − (A ∪ B) = {h}, A ∩ B = {f, g}, B ∩ C = {j}, C ∩ A = {i}, and A ∩ B ∩ C
= Ø. Find each set.

10. A − (B ∩ C) 11. (A ⊕ B) − C 12. A ⊕ (B ⊕ C)

Find the power set of each set.

13. {Ø,{Ø}} *14. {2,{3},{2, 3}}

15. Let A = {n ∈ N|n < 20 and n is divisible by 2}, B = {n ∈ N|n < 20
and n is divisible by 3}, and C = {n ∈ N|n < 20 and n is divisible by
5}. Determine if they form a partition of the set {n ∈ N|n < 20}.

◦ Let U = {1, . . . , 8}, A = {1, 3, 5, 7, 8}, and B = {2, 3, 6, 7}. Find the binary
representation of each set.

16. A − (A ∩ B) 17. A − B′ 18. A − (A ⊕ B) 19. A ⊕ (A ⊕ B)

A survey found that 45% of women like plain yogurt, 55% like flavored
yogurt, and 23% like both. Compute the percentage of women who like
each.

20. Plain yogurt, but not flavored.

21. Plain or flavored yogurt, but not both.

A survey was taken among the students on campus to find out whether they
prefer vanilla or strawberry ice cream and whether they prefer chocolate or

112 Chapter 2 The Language of Sets

Table 2.7 Pudding

Chocolate Tapioca Neither Total

Ice
Cream

Vanilla 68 53 12 133

Strawberry 59 48 9 116

Neither 23 21 7 51

Total 150 122 28 300

tapioca pudding. The results are summarized in Table 2.7. Find the number
of students who:

22. Like strawberry ice cream and tapioca pudding.

23. Do not like pudding.

24. Like at least one of the ice cream flavors.

25. Like neither ice cream nor pudding.

Find the number of positive integers ≤ 4567 and divisible by:

26. Two, three, or five. 27. Two, five, or seven, but not 35.

Find four elements in each set S defined recursively.

28. i) 1 ∈ S

ii) x ∈ S → 1 + x ∈ S

30. i)
√

2 ∈ S

ii) x ∈ S → √
2 + x ∈ S

29. i) 3 ∈ S

ii) x ∈ S → lg x ∈ S

31. i) 1 ∈ S

ii) x ∈ S → √
1 + 2x ∈ S

Define each set S recursively.

32. {2, 4, 16, 256, . . .}
34. {b, ba2, ba4, ba6, . . .}

33. {1, 3, 7, 15, 31, . . .}
35. {λ, ba, b2a2, b3a3, . . .}

Find five words in each language L over the alphabet � = {a, b}.
36. {x ∈ �∗|x contains exactly one a}

37. {x ∈ �∗|x contains an odd number of a’s}

Define each language L over the given alphabet recursively.

38. {x ∈ �∗|x contains exactly one a}, � = {a, b}.
39. {x ∈ �∗|x ends in ab}, � = {a, b}.
40. {2, 3, 4, 5, 6, . . .}, � = {2, 3}.
41. {1, 010, 00100, 0001000, 000010000, . . .}, � = {0, 1}.

Chapter Summary 113

Determine if each is a well-formed formula.

42. (p ∧ ((∼(q)) ∨ (r))) 43. (((p) ∧ (q)) ∨ (∼(q) ∧ (r)))

Let A, B, and C be any sets. Prove each.

*44. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

*45. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

*46. A ∪ (B − C) = (A ∪ B) − (C − A)

*47. A ∩ (B − C) = (A ∩ B) − (A ∩ C)

Simplify each set expression.

48. (A′ ∪ B′)′ ∪ (A′ ∩ B) *49. [A − (B ∪ C)] ∩ [(B ∩ C) − A]

◦ Consider the fuzzy sets, where A = {Mike 0.6, Andy 0.3, Jeff 0.7} and
B = {Jean 0.8, June 0.5}. Find each fuzzy set.

50. A ∪ B′ 51. A′ ∩ B 52. A ⊕ B′ 53. A × B

◦ Let A and B be any fuzzy sets. Prove each.

*54. (A ∪ B)′ = A′ − B *55. (A − B)′ = A′ ∪ B

Supplementary Exercises

Prove each, where A, B, and C are arbitrary sets.

1. A − (B ∪ C) = (A − B) ∩ (A − C)

2. [A ∩ (A − B)] ∪ (A′ ∪ B)′ = A − B

*3. A ∩ (B ⊕ C) = (A ∩ B) ⊕ (A ∩ C)

*4. A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

Simplify each set expression.

5. (A ∩ B) ∩ (B ∩ C) ∩ (C ∩ A)

*7. (A ∪ B′) ∩ (A′ ∪ B) ∩ (A′ ∪ B′)

*6. [(A ∪ B) ∩ C] ∪ [A ∩ (B ∪ C)]

*8. [(A ∪ B′) ∪ (A′ ∪ B)]′ ∩ (A′ ∩ B′)

Find the number of positive integers ≤ 1000 and not divisible by:

9. 2, 3, or 5. *10. 2, 3, 5, or 7.

11. Define recursively the language {0n1n|n ≥ 0} over � = {0, 1}.
12. Define recursively a word w over a finite alphabet �.

Let x = x1x2 . . . xn ∈ ∑∗. Then the string xn . . . x2x1 is called the reverse
of x, denoted by xR. For example, the reverse of the binary word 01101 is
10110. Let x, y ∈ ∑n. Prove each.

13. (xy)R = yRxR

114 Chapter 2 The Language of Sets

14. The string x is palindromic if and only if xR = x.

15. The word xxR is palindromic.

Computer Exercises

Write a program to do each task, where n denotes a positive integer ≤ 20.

1. Read in k subsets of the set S = {1, 2, . . . , n} and determine if the subsets
form a partition of S.

2. Read in two sets A and B, where U ={1, 2, 3, . . . , n}. Print the bit-
representations of A and B. Use them to find the elements in A ∪ B,
A ∩ B, A′, A − B, A ⊕ B, and A × B, and their cardinalities.

3. Find all subsets of the set {1, 2, . . . , n}.
4. Read in sequences of left and right parentheses, each containing at

most 25 symbols. Determine if each word consists of legally paired
parentheses.

5. Print the Catalan numbers C0 through Cn.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Write an essay on the life and contributions of G. Cantor.

2. Explain the various occurrences of the ordered pair notation in
everyday life.

3. Explain how the addition principle is used to define the addition of
positive integers. Give concrete examples.

4. Explain how the concept of partitioning is used in everyday life. In
sports. In computer science. Give concrete examples.

5. Study a number of mathematical paradoxes and explain them.

6. Discuss the various string operations and list the programming lan-
guages that support them.

7. Describe fuzzy sets and their applications, and L. A. Zadeh’s contribu-
tions to them.

8. Write a biography of Abu-Abdullah Muhammed ibn-Musa al-
Khowarizmi and the origin of the word algorithm.

9. Extend the concept of the cardinality of a finite set to infinite sets.
Describe the arithmetic of transfinite cardinal numbers.

10. Discuss the halting problem.

Chapter Summary 115

Enrichment Readings

1. R. R. Christian, Introduction to Logic and Sets, Blaisdell, Waltham, MA,
1965.

2. M. Guillen, Bridges to Infinity: The Human Side of Mathematics,
J. P. Tarcher, Inc., Los Angeles, 1983, pp. 41–60.

3. P. R. Halmos, Naive Set Theory, Van Nostrand, New York, 1960.

4. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 93–111.

5. P. C. Suppes, Axiomatic Set Theory, Van Nostrand, New York, 1960.

6. R. L. Wilder, Evolution of Mathematical Concepts: An Elementary Study,
Wiley, New York, 1968.

This Page Intentionally Left Blank

Chapter 3

Functions and Matrices
To know him [Sylvester] was to know one of the historic figures of all time,

one of the immortals; and when he was really moved to speak, his
eloquence equaled his genius.

— G. B. HALSTED

T his chapter presents two mathematical entities in some detail: func-
tions and matrices. The concept of a function is central to every branch

of mathematics and to many other areas of learning as well. We will look
at the notion of a function and study a few exotic functions. In addition,
we will discuss a few important properties of special functions and a few
techniques for constructing new functions from known ones.

Matrices find their applications in diverse fields such as computer
science, engineering, the natural sciences, and the social sciences.

A few of the interesting problems we shall study in this chapter are:

• Find the number of leap years beyond 1600 and not exceeding a given
year N.

• Find the first day and the number of Friday-the-thirteenths in a given
year, and the date for Easter Sunday of the year.

• If we select 367 students from a campus, will at least two of them have
the same birthday?

• Suppose every pair of nonadjacent vertices of a hexagon is joined by a
line segment, and each line segment is colored red or blue. Will the line
segments form at least one monochromatic triangle?

3.1 The Concept of a Function

The concept of a function is so fundamental that it plays the role of a
unifying thread that intertwines every branch of mathematics.

It is used in your everyday life as well. For example, when you compute
your electric or water bill, you are using the concept of a function, perhaps
unknowingly.

117

118 Chapter 3 Functions and Matrices

Here is an example of a function from the academic world. Consider
five mathematics majors — Benson, Goldberg, Hall, Rawlings, and Wilcox.
Their quality-point averages (QPA) on a 0–4 scale are 3.56, 3.80, 2.65,
3.56, and 2.23, respectively. Each element in the set A = {Benson,
Goldberg, Hall, Rawlings, Wilcox} is assigned a unique element from the
set B = {2.23, 2.65, 3.56, 3.80}, as shown in Figure 3.1.

Figure 3.1
Benson

2.23

2.65

3.56

3.80

Goldberg

Hall

Rawlings

Wilcox

A B

This assignment has two interesting properties:

• Every major is assigned a QPA.

• Every major has a unique (meaning exactly one) QPA. Such an
assignment is a function.

More generally, we make the following definition.

Function
Let X and Y be any two nonempty sets. A function from X to Y is a rule
that assigns to each element x ∈ X a unique element y ∈ Y. Functions are
usually denoted by the letters f, g, h, i, etc. If f is a function from X to Y,
we write f : X → Y . The set X is the domain of the function f and Y the
codomain of f, denoted by dom(f) and codom(f), respectively. If X = Y,
then f is said to be a function on X.

The next example elucidates these definitions.

EXAMPLE 3.1 Determine whether or not the assignments in Figures 3.2–3.4 are functions.

Figure 3.2
a

b

c

d

1

2

3

4

X Y

3.1 The Concept of a Function 119

Figure 3.3
a

b

c

d

1

2

3

4

X Y

Figure 3.4
a

b

c

d

1

2

3

4

X Y

SOLUTION:
• The assignment in Figure 3.2 describes a function f from X to Y, since

every element in X is assigned to exactly one element in Y. Dom(f) = X
and codom(f) = Y. (Notice that the definition does not prohibit two or
more distinct elements in X being paired with the same element in Y.
Also, it does not require that every element of Y be used.)

• On the other hand, the assignment in Figure 3.3 is not a function since
not every element in X is assigned an element in Y.

• The “pairing” in Figure 3.4 is also not a function since b ∈ X is not
assigned a unique element in Y. �

Let f : X → Y , so every element x ∈ X is paired with a unique element
y ∈ Y, as in Figure 3.5. Then y is the value (or image) of the function f at
x, denoted by f(x), and x is a pre-image of y under f (see Figure 3.5); y is
also known as the output corresponding to the input (or argument) x.
Thus y = f(x).∗ Read f(x) as f of x.

Figure 3.5

x y�f(x)

X Y

f

input (or argument)

output

∗This functional notation is due to Euler. See Chapter 8 for a biography of Euler.

120 Chapter 3 Functions and Matrices

Warning: (1) f(x) does not mean f times x. It simply denotes the item y
∈ Y that x ∈ X is paired with. (2) Let f : X → Y and x any element in
X. Then, for convenience, we may call f(x) the function, although it is
incorrect. Remember, f is the function and f(x) is just a value!

There is an alternate way of defining a function f : X → Y . Since every
x ∈ X determines a unique element y = f(x) in Y, we can form the ordered
pair (x,y) which belongs to X × Y. The set of all such pairs (x, y) can be
used to define f.

Next we define a useful subset of the codomain of a function.

Range of a Function
Let f : X → Y and A ⊆ X. Then f(A) denotes the set {f(a)|a ∈ A}. In parti-
cular, f(X) is the range of f, denoted by range(f). Thus range(f) = f(X) =
{f(x)|x ∈ X}. Notice that range(f) ⊆ Y.

EXAMPLE 3.2 Consider the function f in Figure 3.2. Then f(a) = f(c) = f(d) = 2 and
f(b) = 3. Let A = {b, c}. Then f(A) = {f(b), f(c)} = {3, 2}. Also, range(f) =
{2, 3} �= codom(f). �

Programming languages provide built-in functions. For example,
ROUND and TRUNC are two such functions. Both are functions from
R to Z; ROUND rounds off a real number to the nearest integer, whereas
TRUNC chops off the fractional part. The FORTRAN, C++, and Java func-
tions MAX and MIN select the largest and the smallest of n integers (or
real numbers); they are functions from Zn to Z (or Rn to R).

Functions are often defined using formulas; that is, by stating their
general behavior. Many of the formulas you are familiar with are, in fact,
examples of functions. For instance, the formula C(r) = 2πr (circumference
of a circle of radius r) defines a function.

We now present a few examples of abstract functions defined by
formulas.

EXAMPLE 3.3 Let � = {a, b, c}. Let f : �∗ → W, defined by f(x) = ‖x‖. Then f(λ) = 0,
f(abc) = 3, and f(aib jck) = i + j + k. �

EXAMPLE 3.4 Let S be the set of binary words defined recursively as follows:

i) 1 ∈ S. ii) If x ∈ S then x0, x1 ∈ S.

S consists of binary representations of positive integers with no leading
zeros. (See Section 4.3 for a discussion of binary numbers.) Let g : S → N
defined by g(x) = decimal value of x. Then g(100) = 4, g(110) = 6, and
g(101001) = 41. �

3.1 The Concept of a Function 121

EXAMPLE 3.5 The character sets ASCII, multinational 1, box drawing, typographical sym-
bols, math/scientific symbols, and Greek symbols, used by WordPerfect∗ are
denoted by the character set numbers 0, 1, 2, 3, 4, 6, and 8, respectively (see
Appendix A.1). Let A = {0, 1, 2, 3, 4, 6, 8}. Each character in a character set
is associated with a unique decimal number, called its ordinal number
(or its relative position). For example, the ordinal number of the character
‘&’ in ASCII is 38.∗∗ Let B = {32, 33, 34, . . . , 60}, the set of ordinal numbers.
Then we can define a function f : A × B → C defined by f(i, j) = c, where c
is the character with ordinal number j in the character set i. For example,
f(0,36) = ‘$’ and f(8,38) = ‘�’. �

Piecewise Definition
The above definitions of functions consist of just one formula. In fact, the
definitions of many of the real-world functions consist of more than one
formula. Such a definition is a piecewise definition.

EXAMPLE 3.6 A town in Massachusetts charges each household a minimum of $75 for
up to 4000 cubic feet (ft3) of water every 6 months. In addition, each house-
hold has to pay 60¢ for every 100 ft3 of water in excess of 4000 ft3. Express
the water bill f(x) as a function of the number of cubic feet of water x used
for 6 months.

SOLUTION:
The minimum charge is $75 for up to 4000 ft3 of water, so f(x) = 75 if
0 ≤ x ≤ 4000.

Suppose you used more than 4000 ft3 of water. Then

Cost for the excess = x − 4000
100

(0.60) = 0.006(x − 4000)

Then

Total cost = minimum charge + cost for the excess = 75 + 0.006(x − 4000)

Thus, the water bill f(x) in dollars can be computed using the piecewise
definition:

f (x) =
{

75 if 0 ≤ x ≤ 4000

75 + 0. 006(x − 4000) if x > 4000 �

∗WordPerfect is a wordprocessing program marketed by Corel Corporation.
∗∗A character within single quotes indicates a literal character.

122 Chapter 3 Functions and Matrices

EXAMPLE 3.7 Let A = {0, 1, . . . , 127}, the set of ordinal numbers in ASCII. Let f : A →
ASCII be defined by

f (n) =

⎧⎪⎪⎨
⎪⎪⎩

nonprintable control character if 0 ≤ n ≤ 31 or n = 127
uppercase letter if 65 ≤ n ≤ 90
lowercase letter if 97 ≤ n ≤ 122
other printable character otherwise

Clearly, f is defined piecewise. �
Functions defined piecewise are written as if-then-else statements in

most programming languages. For example, the function in Example 3.6
can be written as follows:

if (x ≥ 0) and (x ≤ 4000) then
f(x) ← 50

else
f(x) ← 50 + 0.006(x − 4000)

The geometrical representation of a function, called a graph, is often
used to study functions. Remember, a picture is worth a thousand words.
Since every function f : X → Y is a set of ordered pairs (x, y), the graph of
f consists of points corresponding to the ordered pairs in f, as the next
example illustrates.

EXAMPLE 3.8 Graph each function.

(1) Let f : Z → Z defined by f(x) = x2.
(2) Let g : R → R defined by

g(x) =
⎧⎨
⎩

x2 if x ≥ 0
−1 if −2 ≤ x < 0
3x + 4 otherwise

SOLUTION:
The graphs of the functions are displayed in Figures 3.6 and 3.7, respec-
tively. Notice that the graph of f is a discrete collection of points.

Figure 3.6

0
x

y

3.1 The Concept of a Function 123

Figure 3.7

0
x

y

�
Next we define and illustrate two ways to construct new functions from

known ones.

Sum and Product
Let f : X → R and g : Y → R. They can be combined to construct new
functions. The sum and product of f and g, denoted by f + g and fg,
respectively, are defined as follows:

(f + g)(x) = f (x) + g(x)

(fg)(x) = f (x) · g(x)

The functions f + g and fg are defined wherever both f and g are defined.
Thus dom(f + g) = dom(fg) = dom(f) ∩ dom(g).

EXAMPLE 3.9 Let f(x) = x2 and g(x) = √
x − 1, where dom(f) = (−∞,∞) and dom(g) =

[1,∞). Then

(f + g)(x) = f (x) + g(x) = x2 + √
x − 1

and (fg)(x) = f (x) · g(x) = x2√x − 1

Since dom(f) ∩ dom(g) = [1,∞), both f(x) and g(x) are defined only when
x ≥ 1, so dom(f + g) = dom(fg) = [1,∞). �

Finally, two functions f : A → B and g : C → D are equal if A = C,
B = D, and f(x) = g(x) for every x ∈ A. We shall use this definition in the
next section.

Exercises 3.1

The Celsius and Fahrenheit scales are related by the formula F = 9
5C + 32.

1. Express −40◦C on the Fahrenheit scale.

124 Chapter 3 Functions and Matrices

2. Express 131◦F on the Celsius scale.

Let g(x) =
⎧⎨
⎩

2|x| + 3 if x ≤ 0
5 if 0 < x ≤ 3. Compute each.
−x2 otherwise

3. g(−3.4) 4. g(0) 5. g(0.27) 6. g(4.5)

Using Example 3.6 compute the water bill for each amount of water.

7. 1000 ft3 8. 4000 ft3 9. 5600 ft3 10. 7280 ft3

Let � = {0, 1}. Let f : �∗ → W defined by f(x) = ‖x‖. Evaluate f(x) for each
value of x.

11. 000101 12. 1010100 13. 0001000 14. 00110011

Let� denote the English alphabet. Let f : �∗×�∗ → �∗ defined by f (x, y) =
xy, the concatenation of x and y. Find f(x,y) for each pair of words x and y.

15. combi, natorics 16. net, work

Let A = {32, 33, . . . , 126}. Let f : A → ASCII defined by f(n) = character with
ordinal number n. Find f(n) for each value of n.

17. 38 18. 64 19. 90 20. 123

Let g : ASCII → A defined by g(c) = n, where A = {32, 33, . . . , 126} and n
denotes the ordinal number of the character c. Find g(c) for each character c.

21. ‘+’ 22. ‘<’ 23. ‘z’ 24. ‘{’

Let f : Z×Z → Z defined by f(x,y) = 2x + 3y − 6xy. Compute the following.

25. f(2,3) 26. f(−3,0) 27. f(−2,3) 28. f(−3,−5)

Let � denote the English alphabet. Let g :�∗ → �∗ defined by f(w) = awa.
The function prefixes and suffixes each word with a. Find f(w) for each
word w.

29. zale 30. mbrosi 31. rom 32. nesthesi

Using the function in Example 3.4 evaluate each, if defined.

33. f(101) 34. f(1010) 35. f(001) 36. f(11011)

Let n ∈ N. A positive integer d is a proper factor of n if d is a factor of
n and d < n. For example, the proper factors of 12 are 1, 2, 3, 4, and 6.
Let σ : N → N defined by σ (n) = sum of the proper factors of n. (σ is the
lowercase Greek letter, sigma.) Compute σ (n) for each value of n, where
p and q are distinct primes. [A positive integer n such that σ (n) = n is a
perfect number.]

37. 6 38. 12 39. pq 40. p2

3.2 Special Functions 125

Using the functions f(x) = 2x + 3 and g(x) = x2 − 1, find the following.

41. (f + g)(−3) 42. (fg)(2) 43. (f + g)(x) 44. (fg)(x)

Let f : X → Y and A, B ⊆ X †. Prove each.

*45. f(A ∪ B) = f(A) ∪ f(B)

*47. If B ⊆ A ⊆ X, then f(A) − f(B)

*46. f(A ∩ B) ⊆ f(A) ∩ f(B)

⊆ f(A − B).

3.2 Special Functions

Here we turn our attention to some important functions used in discrete
mathematics.

Polynomial Function
A function f : R → R defined by f(x) = an xn + an−1xn−1 + · · ·+ a1 + a0,
where a0, a1, . . . , an ∈ R, n ∈ W, and an �= 0, is a polynomial function. The
expression anxn + an−1xn−1 + · · ·+ a1x + a0 is a polynomial of degree
n in x. When n = 1, f is a linear function; when n = 2, f is a quadratic
function.

Exponential and Logarithmic Functions
Let a ∈ R+, a �= 1, and x any real number. The function f : R → R+ defined
by f(x) = ax is an exponential function with base a. The most frequently
used base in computer science is two. Figure 3.8 shows the graph of the
exponential function f(x) = 2x.

Figure 3.8

x
0

y

y�2x

Let a ∈ R+, a �= 1, and x and y any real numbers such that y = ax.
Then x is called the logarithm of y to the base a, denoted by log ay.
Thus (log ay = x) ↔ (y = ax). Accordingly, the function f : R+ → R defined

†S, T ⊆ X means S ⊆ X and T ⊆ X.

126 Chapter 3 Functions and Matrices

by f(x) = log ax is the logarithmic function with base a. (See Appendix
A.3 for a brief discussion of exponential and logarithmic functions.)

Remember that the most commonly used base in computer science is
two. The corresponding logarithm is denoted by lg. Thus lg x = log2 x, and
Figure 3.9 shows the graph of the logarithmic function f(x) = lg x.

Figure 3.9

x
0

y

y�lg x

Absolute Value Function
The absolute value function is a function f : R → R defined by f(x) = |x|.
Its graph is displayed in Figure 3.10. (Languages such as FORTRAN and
Java provide a built-in function, ABS, for finding absolute values.)

Figure 3.10

0
x

y

y��x�

Floor and Ceiling Functions
The floor and ceiling functions are often used in the study of algorithms, as
will be seen in the next two chapters. The floor of a real number x, denoted
by �x�, is the greatest integer ≤ x. The ceiling of x, denoted by �x�, is the
least integer ≥ x. The floor of x rounds down x while the ceiling of x rounds
up. Accordingly, if x /∈ Z, the floor of x is the nearest integer to the left
of x on the number line and the ceiling of x is the nearest integer to the
right of x, as shown in Figure 3.11. The floor function f(x) = �x� and the

Figure 3.11

x

x �1x

�1x x

3.2 Special Functions 127

Kenneth E. Iverson (1920 –) was born at Camrose, Alberta, Canada.
After graduating from Queen’s University, Kingston, Ontario, in 1950, he
received his M.A. from Harvard University in the following year. Three
years later, he received his Ph.D. in applied mathematics from Harvard,
where he taught until 1960.

The programming language APL (A Programming Language) was his
brainchild. He conceived the idea while a student at Harvard. After joining
IBM in 1960, Iverson and Adin D. Falkoff developed APL into a full-fledged
programming language.

Iverson’s many honors include the Harry Goode Award from American
Federation of Information Processing Society (1975), the Turing Award
from the Association of Computing Machinery (1979), and an honorary
degree from York University, Toronto (1997).

ceiling function g(x) = �x� are also known as the greatest integer
function and the least integer function, respectively.

For example, �π� = 3, �lg 3� = 1, �−3. 5� = −4, �−2. 7� = −3, �π� = 4,
�lg 3� = 2, �−3. 5� = −3, �−2. 7� = −2, and �3� = 3 = �3�.

These two notations and the names floor and ceiling were introduced by
Kenneth E. Iverson in the early 1960s. Both notations are variations of the
notation [x], which was used in number theory.

Figures 3.12 and 3.13 show the graphs of the floor and ceiling functions.
The programming languages PL/1, C, and Java provide the floor and

ceiling functions as built-in functions, namely, FLOOR and CEIL. BASIC
supports an intrinsic function called INT, which is in fact the floor function.

The floor function comes in handy when real numbers are to be truncated
or rounded off to a desired number of decimal places. For example, the real
number π = 3.1415926535 . . . truncated to three decimal places is given by
�1000π�/1000 = 3141/1000 = 3.141; on the other hand, π rounded to three
decimal places is �1000π + 0. 5�/1000 = 3.142.

Figure 3.12

Graph of the floor
function.

x
0

y

128 Chapter 3 Functions and Matrices

Figure 3.13

Graph of the ceiling
function.

x
0

y

The next example presents an application of the ceiling function to
everyday life.

EXAMPLE 3.10 (The post-office function) In 2003, the postage rate for a first-class let-
ter of weight x not more than 1 ounce was 37¢; the rate for each additional
ounce or a fraction thereof up to 11 ounces was an additional 23¢. Thus,
the postage p(x) for a first-class letter is given by p(x) = 0.37 + 0.23�x − 1�,
where 0 < x ≤ 11.

For instance, the postage for a letter weighing 7.8 ounces is p(7.8) =
0.37 + 0.23�7. 8 − 1� = $1.98. �

Some properties of the floor and ceiling functions are listed below. We
shall prove part 3, leaving the other parts as routine exercises.

THEOREM 3.1 Let x be any real number and n any integer. Then:

(1) �n� = n = |n|
(3) �x + n� = �x� + n

(5)
⌊

n
2

⌋
= n − 1

2
if n is odd

(2) �x� = �x� + 1 (x /∈ Z)
(4) �x + n� = �x� + n

(6)
⌈

n
2

⌉
= n + 1

2
if n is odd

PROOF:
3) Every real number x can be written as x = k + x′ where k = �x� and 0 ≤
x′ < 1. Then

x + n = k + n + x′ = (n + k) + x′

So �x + n� = n + k, since 0 ≤ x′ < 1

= �x� + n

as desired. �
The floor function can be used to determine the number of positive inte-

gers less than or equal to a positive integer a and divisible by a positive
integer b, as the next theorem shows.

3.2 Special Functions 129

THEOREM 3.2 Let a and b be any positive integers. Then the number of positive integers
≤ a and divisible by b is �a/b�.

PROOF:
Suppose there are k positive integers ≤ a and divisible by b. We need to
show that k = �a/b�. The positive multiples of b less than or equal to a are
b, 2b, . . . , kb. Clearly, kb ≤ a or k ≤ a/b. Further, (k + 1)b > a. So k + 1 >
a/b or a/b − 1 < k. So

a
b

− 1 < k ≤ a
b

Thus k is the largest integer contained in a/b, so k = �a/b�. �

For example, the number of positive integers ≤ 1776 and divisible by 13
is �1776/13� = �136.615 . . .� = 136.

The next two examples employ Theorem 3.2 and the inclusion–exclusion
principle.

EXAMPLE 3.11 Find the number of positive integers ≤ 3000 and not divisible by 7 or 8.

SOLUTION:
Let A = {x ∈ N|x ≤ 3000 and divisible by 7} and B = {x ∈ N|x ≤ 3000 and
divisible by 8}. We need to find |A′ ∩ B′|:

|A′ ∩ B′| = |(A ∪ B)′|
= |U| − |A ∪ B|
= |U| − |A| − |B| + |A ∩ B|
= 3000 − �3000/7� − �3000/8� + �3000/56�
= 3000 − 428 − 375 + 53 = 2250 �

EXAMPLE 3.12 Find the number of positive integers ≤ 2076 and divisible by 3, 5, or 7.

SOLUTION:
Let A, B, and C denote the sets of positive integers ≤ 2076 and divisible by
3, 5, and 7, respectively. By the inclusion–exclusion principle,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|

=
⌊

2076
3

⌋
+
⌊

2076
5

⌋
+
⌊

2076
7

⌋
−
⌊

2076
15

⌋
−
⌊

2076
35

⌋

−
⌊

2076
21

⌋
+
⌊

2076
105

⌋

= 692 + 415 + 296 − 138 − 59 − 98 + 19 = 1127 �

130 Chapter 3 Functions and Matrices

In October 1582, Fr. Christopher Clavius and Aloysius Giglio introduced
the Gregorian calendar at the request of Pope Gregory XIII to rectify the
errors of the Julian calendar. In the Gregorian calendar, which is univer-
sally accepted, a nonleap year contains 365 days and a leap year contains
366 days. (A year is a leap year if it is a century divisible by 400, or if it
is a noncentury and divisible by 4. For example, 1600 and 1976 were leap
years, whereas 1778 and 1900 were not.)

The next example shows how to derive a formula to compute the number
of leap years beyond 1600 and not exceeding a given year y.

EXAMPLE 3.13 Prove that the number of leap years � after 1600 and not exceeding a given
year y is given by

� =
⌊ y

4

⌋
−
⌊ y

100

⌋
+
⌊ y

400

⌋
− 388

PROOF:
Let n be a year such that 1600 < n ≤ y. To derive the formula for � we
proceed step-by-step:

• To find the number of years n in the range divisible by 4:
Let 4n1 be such a year. Then 1600 < 4n1 ≤ y; that is, 400 < n1 ≤ y

4 .

Therefore, there are n1 =
⌊ y

4

⌋
− 400 such years.

• To find the number of centuries in the range 1600 < n ≤ y:
Let 100n2 be a century such that 1600 < 100n2 ≤ y.
Then 16 < n2 ≤ y

100
.

Therefore, there are n2 =
⌊ y

100

⌋
− 16 centuries beyond 1600 and ≤ y.

• To find the number of centuries in the range divisible by 400:
Since they are of the form 400n3, we have 1600 < 400n3 ≤ y. Then
4 < n3 ≤ y

400
, so n3 =

⌊ y
400

⌋
− 4.

• Therefore,

� = n1 − n2 + n3

=
⌊ y

4

⌋
− 400 −

⌊ y
100

⌋
+ 16

⌊ y
400

⌋
− 4

=
⌊ y

4

⌋
−
⌊ y

100

⌋
−
⌊ y

400

⌋
− 388

�

The technique employed for computer representation of sets (Section 2.3)
is a consequence of the next function.

3.2 Special Functions 131

Characteristic Function
Let U be a universal set and S an arbitrary subset of U. Then we can define
a function fS : U → {0, 1} as follows:

fS(x) =
{

1 if x ∈ S

0 otherwise

The function fS is called the characteristic function of S.
The following example illustrates this definition.

EXAMPLE 3.14 Let U = {a, b, c, d, e, f }, A = {a, c, d, e}, and B = {a, b, d}. Then

fA(x) =
{

1 when x = a, c, d, e

0 otherwise

In other words, fA(a) = fA(c) = fA(d) = fA(e) = 1 and fA(b) = fA(f) = 0
(see Figure 3.14). Similarly, fB(a) = fB(b) = fB(d) = 1 and fB(c) = fB(e) =
fB (f) = 0. �

Figure 3.14

a
b
c
d

0

1
e
f

fA

A B

The characteristic function fS assigns the value 1 or 0 to each element
of the universe. So fS and hence the set S can be uniquely identified by an
n-bit word and vice versa, where |U| = n. This fact enabled us to represent
sets as n-bit words in Section 2.3.

For example, the characteristic function fA and hence the set A in the
above example uniquely determine the 6-bit word 011101, where we have
listed the bits from right to left for consistency. Similarly, fB determines
the word 001011.

The characteristic function satisfies the following properties.

THEOREM 3.3 Let A and B be any two sets, and U the universe. Let fS denote the char-
acteristic function of a subset S of U and x an arbitrary element in U.
Then:

(1) fA∩B(x) = fA(x) · fB(x)
(2) fA∪B(x) = fA(x) + fB(x) − fA∩B(x)
(3) fA′(x) = 1 − fA(x)
(4) fA⊕B(x) = fA(x) + fB(x) − 2fA∩B(x)

132 Chapter 3 Functions and Matrices

PROOF:
We shall prove part 1 and leave the other parts as exercises.

Case 1 Let x ∈ A ∩ B.
Then fA∩B(x) = 1, by the definition of the characteristic function. Since
x ∈ A ∩ B, x ∈ A and x ∈ B. Therefore, fA(x) = 1 = fB(x); so, fA(x) · fB(x)
= 1 · 1. Thus fA∩B(x) = 1 = fA(x) · fB(x).

Case 2 Let x /∈ A ∩ B.
Then fA∩B(x) = 0. Since x /∈ A ∩ B, x /∈ A or x /∈ B. Therefore, either
fA(x) = 0 or fB(x) = 0. So, in any case, fA(x) · fB(x) = 0. Thus fA∩B(x) = 0 =
fA(x) · fB(x).

Thus fA ∩ B(x) = fA(x) · fB(x) for every x ∈ U. �

Mod and Div Functions
The mod function f(x, y) = x mod y denotes the remainder when an integer
x is divided by a positive integer y. The div function g(x,y) = x div y denotes
the quotient when x is divided by y. Programming languages often provide
two such built-in operators, mod and div; in C++, the mod operator is
denoted by the percent symbol %, and the div operator by the forward
slash /.

For example, 23 mod 5 = 3, 18 mod 6 = 0, 23 div 5 = 4, and 5 div 6 = 0.
A scientific calculator, such as the TI-86, can be used to compute x mod y

using the keys MATH , Num , MORE , and F4 . Consult the manual for
your calculator to check if it supports the operator.

The mod function can determine the day of the week in n days from a
given day. In 7 days, 14 days, and so on from a given day, it will again be the
same day. Consequently, all we need do is remove the maximum number
of 7’s from n. Let r be the remainder when n is divided by 7. Then the rth
day from the given day is the day we are looking for, as the next example
demonstrates.

EXAMPLE 3.15 Today is Thursday. What day of the week will it be in 100 days from today?

SOLUTION:
100 mod 7 = 2. Two days from Thursday is Saturday, so it will be Saturday
in 100 days from Thursday. �

The following example is a simple application of both div and mod
operators.

Card Dealing
Consider a standard deck of 52 playing cards. They are originally assigned
the numbers 0 through 51 in order. Use the suit labels 0 = clubs, 1 =
diamonds, 2 = hearts, and 3 = spades to identify each suit, and the card
labels 0 = ace, 1 = deuce, 2 = three, . . . , and 12 = king to identify the cards

3.2 Special Functions 133

in each suit. Suppose card x is drawn at random from a well-shuffled deck,
where 0 ≤ x ≤ 51. How do we identify the card?

First, we need to determine the suit to which the card belongs. It is
given by x div 13. Next, we need to determine the card within the suit; this
is given by x mod 13. Thus card x is card (x mod 13) in suit (x div 13).

For example, let x = 50. Since 50 div 13 = 3, the card is a spade. Now 50
mod 13 = 11, so it is a queen. Thus card 50 is the queen of spades. �

Next we pursue an intriguing application of the floor function and the
mod operator to the game of chess.

The Two Queens Puzzle
There are two queens on an 8 × 8 chessboard. One can capture the other
if they are on the same row, column, or diagonal. The 64 squares on the
board are numbered 0 through 63. Suppose one queen is in square x and
the other in square y, where 0 ≤ x, y ≤ 63. Can one queen capture the other?

Since the squares are labeled 0 through 63, we can label each row with the
numbers 0 through 7, and each column with the same numbers 0 through 7.
In fact, each row label = �r/8� and each column label = c mod 8, where 0
≤ r, c ≤ 63. See Figure 3.15. Thus, the queen in square x lies in row �x/8�
and column x mod 8, and that in square y lies in row � y/8� and column y
mod 8. Consequently, the two queens will be in the same row if and only if
�x/8� = � y/8� and in the same column if and only if x mod 8 = y mod 8. For
example, if x = 41 and y = 47, the two queens lie on the same row.

Figure 3.15

00 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 column label

81 9 10 11 12 13 14 15

162 17 18 19 20 21 22 23

243 25 26 27 28 29 30 31

324 33 34 35 36 37 38 39

405 41 42 43 44 45 46 47

486 49 50 51 52 53 54 55

567

row label

57 58 59 60 61 62 63

How do we determine if they lie on the same diagonal? There are 15
northeast diagonals and 15 southeast diagonals. With a bit of patience, we
can show that the queens lie on the same diagonal if and only if the absolute
value of the difference of their row labels equals that of the difference of
their column labels; that is, if and only if |�x/8� − � y/8�| = |x mod 8 −
y mod 8|.

134 Chapter 3 Functions and Matrices

For example, let x = 51 and y = 23; see Figure 3.15. Then |�51/8� −
�23/8�| = |6−2| = 4 = |3−7| = |51 mod 8−23 mod 8|, so one queen captures
the other. On the other hand, if x = 49 and y = 13, then |�49/8�− �13/8�| �=
|49 mod 8 − 13 mod 8|; so one queen cannot capture the other. �

Exercises 3.2

Evaluate each, where n is an integer.

1. �n + 1/2� 2. �n/2� 3. �n + 1/2� 4. �n/2�
Let x = 3.456 and y = 2.789. Compute each.

5. �x + y�
9. �−x�

6. �x� + �y�
10. −�x�

7. �xy�
11. �x + y�

8. �x��y�
12. �x� + �y�

Find the range of each function on R.

13. f(x) = �x� + �−x� 14. f(x) = �x� + �−x�
Find the number of positive integers ≤ 3076 and divisible by:

15. 3 or 4 16. 3, 5, or 7 17. 3, 5, or 6 18. Neither 3 nor 5

Compute the number of leap years after 1600 and not beyond each year.

19. 2000 20. 2020 21. 3076 22. 4050

Let U = {a, . . . , g}. Define the characteristic function h of each set.

23. {a, c, d, f } 24. {a, e, g} 25. {b, c, g} 26. {a, c, d, f , g}
Let U = {a, . . . , h}. In Exercises 27–30, a characteristic function fS is given
as an 8-bit word. Find the corresponding set S.

27. 11010100 28. 00101101 29. 10101010 30. 01010101

Find the day of the week in each case.

31. 234 days from Monday

33. 1776 days from Wednesday

32. 365 days from Friday

34. 2076 days from Saturday

Let S = {true, false}. Define a boolean function f : N → S by f(n) = true
if year n is a leap year and false otherwise. Find f (n) for each year n.

35. 1996 36. 2020 37. 2076 38. 3000

39. January 1, 2000, falls on a Saturday. What day of the week will
January 1, 2020, be?
(Hint: Look for leap years.)

40. January 1, 1990, was a Monday. What day of the week was January 1,
1976?
(Hint: Again, look for leap years.)

3.2 Special Functions 135

Each day of the week, beginning with Sunday, can be identified by a code
x, where 0 ≤ x ≤ 6. January 1 of any year y can be determined using the
following formula∗∗.

x ≡
(

y +
⌊

y − 1
4

⌋
−
⌊

y − 1
100

⌋
+
⌊

y − 1
400

⌋)
mod 7 (3.1)

Using this formula determine the first day in each year.

41. 2000 42. 2020 43. 2076 44. 3000

The number of Friday-the-thirteenths in a given year y can be computed
using formula (1) above and Table 3.1. For example, suppose that January 1
of a year y falls on a Sunday(0). If it is not a leap year, there will be two
Friday-the-thirteenths: January 13 and October 13; if it is a leap year, there
will be three: January 13, April 13, and July 13. Compute the number of
Friday-the-thirteenths in each year.

45. 2000 46. 2020 47. 2076 48. 3076

Table 3.1 Code January 1 Nonleap year Leap year
x y y

0 Sunday January, October January, April, July
1 Monday April, July September, December
2 Tuesday September, December June
3 Wednesday June March, November
4 Thursday February, March, November February, August
5 Friday August May
6 Saturday May October

(Easter Sunday) The date for Easter Sunday in any year y can be com-
puted as follows. Let a = y mod 19, b = y mod 4, c = y mod 7, d = (19a + 24)
mod 30, e = (2b + 4c + 6d + 5) mod 7, and r = (22 + d + e). If r ≤ 31, then
Easter Sunday is March r; otherwise, it is April [r (mod 31)]. Compute the
date for Easter Sunday in each year.

49. 1996 50. 2000 51. 2076 52. 3000

Prove each, where x ∈ R and n ∈ Z.

53.
⌊n

2

⌋
= n − 1

2
if n is odd. 54.

⌈n
2

⌉
= n + 1

2
if n is odd.

∗∗Based on G. L. Ritter et al., “An Aid to the Superstitious,” Mathematics Teacher, Vol. 70,
May 1977, pp. 456–457.

136 Chapter 3 Functions and Matrices

55.

⌊
n2

4

⌋
= n2 − 1

4
if n is odd.

57.
⌊n

2

⌋
+
⌈n

2

⌉
= n

59. �x� = −�−x�

56.

⌈
n2

4

⌉
= n2 + 3

4
if n is odd.

58. �x� = �x� + 1 (x /∈ Z)

60. �x + n� = �x� + n

Let A and B be any two sets, and U the universe. Let fS denote the charac-
teristic function of a subset S of U and x an arbitrary element in U. Prove
each.

*61. fA ∪ B(x) = fA(x) + fB(x) − fA ∩ B(x)

*62. fA′(x) = 1 − fA(x)

*63. fA ⊕ B(x) = fA(x) + fB(x) − 2fA ∩ B(x)

Let x, y ∈ R. Let max{x, y} denote the maximum of x and y, and min{x, y}
denote the minimum of x and y. Prove each.

*64. max{x,y} + min{x,y} = x + y *65. max{x,y} − min{x,y} = |x − y|

3.3 Properties of Functions

Functions satisfy a number of properties and we begin with the identity
function.

Identity Function
A function f on X is the identity function if f(x) = x for every x in X. It is
denoted by 1x and leaves every input unchanged. The graph of the identity
function on R is the 45◦-line y = x.

EXAMPLE 3.16 Let S be an ordered set. ORD(x) denotes the ordinal number of each ele-
ment x in S, the first ordinal number being 0. For example, using ASCII,
ORD(‘<’)† = 60 and ORD(‘$’) = 36. (Pascal, for instance, provides such a
built-in function.) If the argument x, however, is an integer n, ORD(n) = n.
Thus ORD is the identity function on W. �

Injection
A function f : X → Y is an injection (or one-to-one function) if differ-
ent input values yield different output values. Thus f is injective, if x1 �=
x2 implies f(x1) �= f(x2); equivalently, f is injective if f(x1) = f(x2) implies
x1 = x2 (why?).

The next two examples illustrate this definition.

†x within single quotes indicates the character x.

3.3 Properties of Functions 137

EXAMPLE 3.17 Let A = {0, 1, 2, . . . , 127}. Let CHR: A → ASCII defined by CHR(n) = ASCII
character with ordinal number n. For example, CHR(59) = ‘;’ and CHR(43)
= ‘+’. Since distinct ordinal numbers correspond to different characters,
CHR is injective. (C, C++, and Java, for instance, provide such a built-in
function.) �

EXAMPLE 3.18 Let f : �∗ → W defined by f(x) = ‖x‖, where � = {a, b, c}. The words aaa
and bab are distinct words with the same length, so f is not injective. �

How do you characterize the graph of an injective function f : R → R?
The function is not injective if there are two distinct input elements a, b ∈ R
such that f(a) = f(b), that is, if a horizontal line intersects its graph in
two distinct points (a,f(a)) and (b,f(b)). Thus f is injective if and only if no
horizontal line intersects the graph in more than one point. For example,
the function f(x) = x2 is not injective (see Figure 3.16).

Figure 3.16

x

y

0

y�x2

(a, f(a))(b, f(b))

Surjection
A function f : X → Y is a surjection (or an onto function) if for every y in
Y there exists an x in X such that f(x) = y, that is, if every element in Y has
at least one pre-image in X. In other words, f is surjective if range(f) = Y.

The following two examples clarify this definition.

EXAMPLE 3.19 Let � be a nonempty alphabet. Let f :�∗ → W defined by f(x) = ‖x‖. Let
n ∈ W. Then xn ∈ �∗ and ‖xn‖ = n. Thus, given any n ∈ W, there exists an
element u = xn ∈ �∗ such that f(u) = n. Consequently, f is surjective. �

EXAMPLE 3.20 Determine if the function f(x) = x2 on R is surjective.

SOLUTION:
For every y in R, does there exist a real number x such that x2 = y? No,
for instance, there is no real number x such that x2 = −1, so f is not
surjective. �

Bijection
A function f : X → Y is a bijection (or one-to-one correspondence) if
it is both injective and surjective.

138 Chapter 3 Functions and Matrices

EXAMPLE 3.21 Let A be the set of printable ASCII characters and B = {32, 33, . . . , 126}.
Let f : A → B defined by f(c) = ordinal number of character c. Since f is
both injective and surjective, f is bijective. (Notice the deliberate choice of
B to make the function surjective.) �

Notice that 23 mod 5 = 3 = 48 mod 5, but 23 �= 48; therefore, the mod
function is not injective. However, when an integer a is divided by m, there
are m possible remainders, namely, 0, 1, 2, . . . , m − 1 (see Section 4.1); so,
given any nonnegative integer r less than m, we can always find an integer
a such that r = a mod m; thus the mod function is surjective.

Hashing
We are now ready to examine an interesting application of the mod function
in everyday life.

EXAMPLE 3.22 Banks use nine-digit account numbers to create and maintain customer
accounts. Customer records are stored in an array in a computer and can
be accessed fairly easily and quickly using their unique keys, which in
this case are the account numbers. Access is often accomplished using the
hashing function h(x) = x mod m, where x denotes the key (account
number) and m the number of cells in the array; h(x) denotes the hash
address of the customer record with key x. See Figure 3.17.

Figure 3.17

0 1 2
x mod m

hash address

customer record with key x

m�1

In particular, let m = 1009 and x = 207630764. The corresponding
record is stored in location

h(207630764) = 207630764 mod 1009

= 762

Likewise,

h(307620765) = 307620765 mod 1009

= 881

Since the hashing function is not injective (why?), theoretically different
customer records can be assigned to the same location. For example,

h(207630764) = 762 = h(208801204)

This results in a collision.

3.3 Properties of Functions 139

One simple way to resolve a collision is to do a sequential search for
the next available cell, beginning with the cell where the collision has
occurred. Then we store the item in the available cell. If we come to the
end of the array without any success, then we would continue the search
back at the beginning of the array, as if the array were circular. This way
of resolving a collision is called linear probing. So we would store the
data with the account number 208801204 in location 763 (assuming that is
available). �

Obviously, the technique illustrated in this example can be adapted to
a variety of situations. For example, the various identifiers in a computer
program can be stored in a symbol table using their first letters as keys;
student records can be stored in a hash table using their social security
numbers; and patients’ medical records can be maintained in a table using
their social security numbers as keys.

Next we present a few simple and useful properties of functions associ-
ated with finite sets.

THEOREM 3.4 Let X and Y be any two finite sets with |X| = |Y| = n. A function f : X → Y
is injective if and only if f is surjective.

PROOF:
Let X = {x1, x2, . . . , xn} and Y = { y1, y2, . . . , yn}. Suppose f is injective. Then
f (x1), . . . , f (xn) are n distinct elements. So they must be the same elements
y1, . . . , yn in some order. Therefore, f is surjective.

Conversely, suppose f is surjective. Then f(x1), . . . , f (xn) = Y. Since |Y| =
n, the elements f (x1), . . . , f (xn) must be different, so f must be injective. �

Let A and B be two finite sets with the same cardinality. Suppose we
would like to show that a function f : A → B is bijective. Then, by
Theorem 3.4, it suffices to show that f is either injective or surjective.

THEOREM 3.5 Two finite sets have the same cardinality if and only if there exists a
bijection between them.

PROOF:
Let X and Y be two finite sets with |X| = m and |Y| = n. Let X =
{x1, . . . , xm}. Let f : X → Y be bijective. Since f is injective, f(x1), . . . , f (xm)
are m distinct elements in Y. Consequently, m ≤ n. Since f is surjective,
every element y in Y has at least one input in X, so n ≤ m. Thus |X| = |Y|.

Conversely, suppose m = n and Y = {y1, . . . , ym}. Define a function f :
X → Y by f(xi) = yi for every i. We will now show that f is injective. Let
xj and xk be two elements in X such that f (xj) = f (xk). Then, by definition,
yj = yk; so, j = k and hence xj = xk. Therefore, f is injective and hence, by
Theorem 3.4, f is bijective. �

Let f : X → Y , where X and Y are finite sets and |X| > |Y|. Then what
can we say about the function f ? (Obviously, f can’t be bijective.) This is
answered in the next section.

140 Chapter 3 Functions and Matrices

Cardinality of an Infinite Set (optional)
Before closing this section, we extend the concept of cardinality of finite sets
to infinite sets, a topic of great importance to theoretical computer science
and certainly to mathematics. Recall that two finite sets have the same
cardinality if there is a bijection between them. This leads to the following
definition.

Two sets X and Y have the same cardinality if there exists a bijection
from X to Y, denoted by |X| = |Y|.

This definition can be used to partition the family of infinite sets into
two disjoint classes. To this end, we make the following definition.

Countable and Uncountable Sets
A set S is countably infinite if there exists a bijection between S and
N. A set that is finite or countably infinite is countable. A set that is not
countable is uncountable.

The cardinality of N is denoted by ℵ0 (read “aleph-naught,” “aleph”
being the first letter of the Hebrew alphabet. This symbol was introduced
by Cantor). Thus a set S is countably infinite if |S| = ℵ0 = |N|.

If A and B are finite sets such that A ⊂ B, then |A| < |B|. This, however,
need not be true in the case of infinite sets. For example, E ⊂ N, where E
denotes the set of even positive integers; nonetheless, |E| = |N| = ℵ0, as
shown by the pairings in Figure 3.18.

Figure 3.18 1 2 3 4 5 n

2 4 6 8 10 2n

EXAMPLE 3.23 Show that N × N is countably infinite.

PROOF:
Although we shall not give a formal proof, the arrows in Figure 3.19 show
how the various elements of N × N can be listed as the first, second, third,
and so on in a systematic way, showing that N × N is countably infinite.

Figure 3.19
. . .
. . .
. . .
.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1)

(5, 1)

(4, 2) (4, 3) (4, 4) . .

.
.

.

�

3.3 Properties of Functions 141

It follows by Example 3.22 that the set of positive rational numbers
is countable. Consequently, the set of negative rational numbers is also
countable. Since the union of two countable sets is countable (see Exercise
49), it follows that Q is countable.

It may seem improbable that there exist infinite sets that are uncount-
able. For instance, the open interval (0,1) is such a set, as the next example
shows.

EXAMPLE 3.24 Show that the open interval (0,1) is uncountable.

PROOF (by contradiction): Assume that the interval (0,1) is countable.
Then every real number between 0 and 1 can be listed as a1, a2, a3, . . . Each
ai has a unique decimal expansion (for numbers with two different decimal
expansions, choose the expansion with trailing 9’s. For example, although
0.5 = 0.5000. . . = 0.4999. . ., select 0.4999. . . for our discussion.):

a1 = 0. a11a12a13a14 . . .

a2 = 0. a21a22a23a24 . . .

a3 = 0. a31a32a33a34 . . .

a4 = 0. a41a42a43a44 . . .

...

where each aij is a digit.
Now construct a real number b = 0.b1b2b3b4 . . . as follows:

bi =
{

1 if aii �= 1

2 if aii = 1

Clearly, 0 < b < 1; therefore b must be one of the numbers in the above list
a1, a2, a3, a4, However, since bi �= aii for every i, b cannot be in the list.
This leads to a contradiction. Therefore, the real numbers between 0 and 1
cannot be listed and hence the interval (0,1) is uncountable. (The technique
employed is called Cantor’s diagonalization procedure.) �

Since the interval (0,1) is uncountable, it follows that R is also uncount-
able. So, although both N and R are infinite, |R| > ℵ0.

Exercises 3.3

Determine if each function is the identity function.

1.
x a b c d

f (x) a b c d
2.

x a b c d

f (x) b c d a
3.

x a b c d

f (x) a b c c

142 Chapter 3 Functions and Matrices

Determine if each function is injective, where trunc(x) denotes the integral
part of the real number of x.

4. f(x) = |x|, x ∈ R

6. h(x) = lg x, x ∈ R+

8. g(x) = �x�, x ∈ R

5. g(x) = 2x, x ∈ R

7. f(x) = �x�, x ∈ R

9. h(x) = trunc(x), x ∈ R

10. f : S → W defined by f(A) = |A|, where S is the family of all finite sets.

Determine if each function from R to Z is surjective.
11. f(x) = |x|

13. h(x) = �x�
12. g(x) = �x�
14. h(x) = lg |x|, x �= 0

15. ORD: ASCII → W defined by ORD(c) = ordinal number of the
character c.

16. Let f : R → R defined by f(x) = ax + b, where a,b ∈ R and a �= 0. Show
that f is surjective; that is, find a real number x such that f(x) = c.

Determine if each function f : A → B is bijective.

17. f(x) = x2, A = B = R

19. f(x) = |x|, A = B = R

21. f(x) = �x�, A = B = R

18. f(x) = √
x, A = R+, B = R

20. f(x) = �x�, A = B = R

22. f(x) = 2|x|, A = B = R

Determine if the functions in Exercises 23–30 are bijective. If they are not
bijective, explain why.
23. f : �∗ → W defined by f(x) = decimal value of x, where �={0,1}.

24. f : �∗ ×�∗ → �∗ defined by f(x,y) = xy, where � denotes the English
alphabet.

25. g : �∗ → �∗ defined by g(w) = awa, where � = {a,b,c}.

26. f : R × R → R × R defined by f(x, y) = (x,−y).

27. The ORD function on ASCII.

28. The predecessor function (PRED) and successor function
(SUCC) are two important functions used in computer science. They
are defined on ordered sets. If c is a printable ASCII character, PRED(c)
denotes the predecessor of c and SUCC(c) denotes the successor of c;
for example, PRED(‘?’) = ‘@’ and SUCC(‘:’) = ‘;’. Determine if PRED
and SUCC are bijective.

Using the hash function in Example 3.2, compute the location correspond-
ing to the given key.

29. 012398745 30. 430358856

Student records are maintained in a table using the hashing function
h(x) = x mod 9767, where x denotes the student’s social security number.

3.3 Properties of Functions 143

Compute the location in the table corresponding to the given key, where
the record is stored.

31. 012-34-5678 32. 876-54-3210

33–34. Redo Exercises 31 and 32 if h(x) = first part in x mod 13.

35. Store the following two-letter abbreviations of states in the United
States in a hash table with 26 cells, using the hashing function
h(x) = first letter in x:

NY, OH, FL, AL, MA, CA, MI, AZ

36. Redo Exercise 35 with the following state abbreviations: MD, CT, ID,
MA, NB, NJ, MI, WI, CA, IA, WA, MN, NH, IN, NC, WY, NM, MS,
MO, CO, NY, IL, NV, WV, ND, MT

Two sets A and B are equivalent, denoted by A ∼ B, if there exists a
bijection between them. Prove each.

37. A ∼ A (reflexive property)

38. A ∼ A × {1}

39. If A ∼ B, then A × {1} ∼ B × {2}

40. Z ∼ O, the set of odd integers

Prove each.

41. A bijection exists between any two closed intervals [a, b] and [c, d],
where a < b and c < d.
(Hint: Find a suitable function that works.)

42. The set of odd positive integers is countably infinite.

43. The set of integers is countably infinite.

44. Any subset of a countable set is countable.

45. A set A is infinite if and only if there exists a bijection between A and
a proper subset of itself.

46. The open interval (a,b) is uncountable.
[Hint: Find a suitable bijection from (0,1) to (a,b).]

47. The set Q+ of positive rational numbers is countable.

48. The set of irrational numbers is uncountable.
(Hint: Prove by contradiction.)

*49. A countable union of countable sets is countable.

*50. The cartesian product of two countable sets is countable.

*51. If � is a finite alphabet, then �∗ is countable.

144 Chapter 3 Functions and Matrices

3.4 The Pigeonhole Principle

Suppose m pigeons fly into n pigeonholes to roost, where m > n. Then obvi-
ously at least two pigeons must roost in the same pigeonhole (see Figures
3.20 and 3.21). This property, called the pigeonhole principle, can be stated
in terms of functions, as the next theorem shows.

Figure 3.20

Figure 3.21

THEOREM 3.6 (The Pigeonhole Principle)Let f : X → Y , where X and Y are finite sets,
|X| = m, |Y| = n, and m > n. Then there exist at least two distinct elements
x1 and x2 in X such that f(x1) = f(x2).

PROOF:
Let X = {x1, . . . , xm}. Suppose f is injective. Then f (x1), . . . , f (xm) are dis-
tinct elements in Y. So m ≤ n. But this contradicts the assumption that
m > n. Therefore, f is not injective and there must be at least two distinct
elements x1 and x2 such that f(x1) = f(x2). Hence the theorem. �

The pigeonhole principle is a simple but important counting principle
that we shall use in Chapters 4, 7, and 8.

The pigeonhole principle, which can be applied in a variety of situations,
can be restated as follows: If m objects are placed into n boxes, then at
least one box must contain two or more objects, where m > n. Accordingly,
the pigeonhole principle is also called the Dirichlet Box Principle after
the German mathematician Peter Gustav Lejeune Dirichlet, who used it
extensively in his work on number theory.

Although the principle looks simple and straightforward, to apply it
successfully you must choose the pigeons and pigeonholes appropriately,
as the next few examples illustrate.

EXAMPLE 3.25 Suppose we select 367 students from campus. Show that at least two of
them must have the same birthday.

SOLUTION:
The maximum number of days in a year is 366, and this occurs in a leap
year. Think of students as pigeons and days of the year as pigeonholes. Let
A be the set of students and B the set of days, where |A| = m = 367 and
|B| = n = 366. Let f : A → B defined by f(a) = birthday of student a.

3.4 The Pigeonhole Principle 145

Gustav Peter Lejeune Dirichlet (1805–1859) was born in Duren,
Germany. The son of a postmaster, he first attended a public school and
then a private school that emphasized Latin. After attending the Gymna-
sium in Bonn for 2 years, Dirichlet entered a Jesuit college in Cologne
where he received a strong background in theoretical physics under the
physicist Georg Simon Ohm. In May 1822, he moved to the University of
Paris.

In 1826, Dirichlet returned to Germany and taught at the University
of Breslau. Three years later, he moved to the University of Berlin where
he spent the next 27 years.

Dirichlet’s primary interest in mathematics was number theory,
inspired by Gauss’ masterpiece, Disquisitiones Arithmeticae (1801). He
established Fermat’s Last Theorem for n = 14. Among the many results

he discovered include the proof of a theorem presented to the Paris Academy of Sciences on algebraic
number theory in 1837: The sequence {an + b} contains infinitely many primes, where a and b are
relatively prime.

In 1855, when Gauss died, Dirichlet moved to the University of Göttingen. Three years later, he went
to Montreaux, Switzerland, to deliver a speech in honor of Gauss. While there, he suffered a heart attack
and was barely able to return home. During his illness his wife succumbed to a stroke, and Dirichlet died.

Since m > n, by the pigeonhole principle, there should be at least two
students a1 and a2 such that f(a1) = f(a2); that is, at least two students
have the same birthday. �

The next example∗ is geometric, demonstrating that the pigeonhole
principle can pop up in seemingly unusual situations.

EXAMPLE 3.26 Suppose five lattice points, that is, points with integer coordinates, are
selected on the cartesian plane and each pair of points is joined by a line
segment. Show that at least one of the line segments must contain a lattice
point between its endpoints.

SOLUTION:
The set of lattice points can be partitioned into four nonempty disjoint
classes according to the parity (evenness or oddness) of their coordinates:
(odd,odd), (odd,even), (even,odd), and (even,even). Since there are five
points (pigeons) and four classes (pigeonholes), by the pigeonhole prin-
ciple, at least two of them — say, A(a,b) and B(c,d)—must belong to the
same class.

By the midpoint formula in analytic geometry, the midpoint M of the
line segment AB is

(
a+c

2 , b+d
2

)
. Since the sum of any two odd or even integers

is an even integer, it follows that M is also a lattice point. Thus AB contains
a lattice point M different from its endpoints. �

∗Based on C. T. Long, “On Pigeons and Problems,” Mathematics Teacher, Vol. 81 (January
1988), pp. 28–30, 64.

146 Chapter 3 Functions and Matrices

It is well known that the decimal expansions of rational numbers are
periodic. Using the pigeonhole principle, we shall establish this, but first a
few words of explanation may be helpful.

Using the familiar long division method, you may verify that

4111
33300

= 0. 12345345345345 . . .

Although the decimal expansion is nonterminating, it is periodic; that
is, a certain block of digits, namely, 345, gets repeated. Accordingly, the
expansion is usually written as 0.12345, using a bar over the first repeating
block. The number of digits in the smallest repeating block is the period of
the expansion; here it is 3. We are now ready to prove the above proposition.

EXAMPLE 3.27 Prove that the decimal expansion of a rational number is periodic.

PROOF:
Consider, for convenience, a positive rational number

a
b

, where 0 < a < b.

Let
a
b

= 0. d1d2d3 . . . where, by the division algorithm (see Section 4.1), we

have:

10a = bd1 + r1

10r1 = bd2 + r2

10r2 = bd3 + r3

...
10rj = bdj+1 + rj+1

...

(3.2)

and 0 ≤ ri < b for every i. (Note: The digits d1, d2, . . . in the decimal
expansion are the quotients when 10a, 10r1, . . . are divided by b. Since
a remainder has only b choices, by the pigeonhole principle, two of the
remainders r1, r2, . . . , rb+1 must be equal; that is, rj = rk for some j and
k, where 1 ≤ j < k ≤ b + 1. Consequently, dk+1 = dj+1, dk+2 = dj+2, . . . ,
d2k−j = dk, d2k−j+1 = dj+1, and so on. Thus dj+1 . . . dk is the smallest block
getting repeated and the period of the decimal expansion is k – j. �

The next example, a rather sophisticated application of the pigeonhole
principle, is due to the Hungarian mathematician Paul Erdös.

EXAMPLE 3.28 (Erdös Theorem) If n + 1 integers are selected from the set {1, 2, . . . , 2n},
one of them divides another integer that has been selected.

PROOF:
Let a1, a2, . . . , an+1 denote the integers selected. Write each of them as a
product of a power of 2 and an odd integer; that is, ai = 2eibi, where 1 ≤ i ≤
n+1 and ei ≥ 0. The integers b1, b2, . . . , bn+1 are odd positive integers ≤ 2n.

3.4 The Pigeonhole Principle 147

Paul Erdös (1913–1996) was born in Budapest, Hungary. Except for
about three years in schools, Erdös (pronounced air-dosh) was taught at
home, mostly by his father, who had returned from a Siberian prison after
6 years.

A child prodigy, Erdös, at age 3, discovered negative numbers for
himself. In 1930 Erdös entered the Peter Pazmany University in Budapest.
Three years later, he discovered a beautiful proof of the celebrated
Chebyshev theorem that there is a prime between any positive integer n
and 2n. In 1934 he received his Ph.D. from the university.

An author of about 1500 articles and coauthor of about 500, Erdös was
one of the most prolific writers in mathematics. A tribute in 1983 described

him as “the prince of problem-solvers and the absolute monarch of problem-posers.” As “the Euler of our
time,” he contributed extensively to number theory, combinatorics, function theory, complex analysis, set
theory, group theory, and probability, the first two areas being closest to his heart.

“Always searching for mathematical truths,” he deemed worldly possessions a nuisance, so he never
had a home, a car, checks, or even an address. Always traveling from meeting to meeting, carrying a
half-empty suitcase, he would stay with mathematicians wherever he went and donate the honoraria he
earned as prizes to students.

A recipient of many honors, Erdös died of a heart attack while attending a mathematics meeting in
Warsaw.

Since there are exactly n odd positive integers ≤ 2n, by the pigeonhole
principle, two of the elements b1, b2, . . . , bn+1 must be equal, say, bi = bj.
That is, aj = 2ejbj = 2ejbi. Thus, if ei < ej then ai|aj, and if ej < ei then
aj|ai.∗ �

The pigeonhole principle tells us that if m pigeons are distributed into
n pigeonholes, where m > n, at least two pigeons must share the same
pigeonhole. In fact, if more than 2m pigeons are assigned to m pigeon-
holes, then at least three pigeons must share the same pigeonhole. Thus
the pigeonhole principle can be generalized as follows.

THEOREM 3.7 (The Generalized Pigeonhole Principle) If m pigeons are assigned to
n pigeonholes, there must be a pigeonhole containing at least �(m−1)/n�+1
pigeons.

PROOF (by contradiction):
Suppose no pigeonhole contains more than �(m − 1)/n� pigeons. Then:

maximum number of pigeons = n · �(m − 1)/n�

≤ n · m − 1
n

= m − 1

∗a/b means a is a factor of b. See Section 4.2.

148 Chapter 3 Functions and Matrices

This contradicts our assumption that there are m pigeons. Thus, one
pigeonhole must contain at least �(m − 1)/n� + 1 pigeons. �

This generalized version of the pigeonhole principle is illustrated in the
following examples.

EXAMPLE 3.29 If we select any group of 1000 students on campus, show that at least three
of them must have the same birthday.

SOLUTION:
The maximum number of days in a year is 366. Think of students as pigeons
and days of the year as pigeonholes. Then, by the generalized pigeonhole
principle, the minimum number of students having the same birthday is
�(1000 − 1)/366� + 1 = 2 + 1 = 3. �

The next example provides an interesting application of the generalized
version to geometry. We shall revisit it in Chapter 8.

EXAMPLE 3.30 Suppose every pair of vertices of a hexagon is joined by a line segment,
which is colored red or blue. Prove that the line segments form at least
one monochromatic triangle, that is, a triangle with all its sides having the
same color.

PROOF:
Let the letters A through F denote the vertices of a hexagon. Five line
segments (pigeons) emanate from each vertex (see Figure 3.22). Without
loss of generality, consider the line segments at A. Since there are exactly
two colors (pigeonholes), by the generalized pigeonhole principle, at least
three of the line segments at A must be monochromatic, say, red. Suppose
they are AB, AD, and AF, indicated by the solid line segments in Figure 3.23.

Figure 3.22 DE

C

BA

F

Figure 3.23

B

DE

F

A

C

Case 1 Suppose DF is colored red. Then 	ADF is monochromatic.

3.4 The Pigeonhole Principle 149

Case 2 Suppose DF is not red. Then it is blue, indicated by the broken
line segment in Figure 3.23. If BD is red, the 	ABD is monochromatic. If
BD is not red, consider BF. If BF is red, the 	ABF is a red triangle. If BF
is blue, then 	BDF is a blue triangle.

Thus the line segments form at least one monochromatic triangle. �

Additional examples of the pigeonhole principle are presented in
Section 3.7, as well as Chapters 4, 6, 7, and 8. Look for them.

Exercises 3.4

1. Show that in any 11-digit integer, at least two digits are the same.

2. Show that in any 27-letter word, at least two letters are the same.

3. Six positive integers are selected. Show that at least two of them will
have the same remainder when divided by five.

◦ 4. A C++ identifier contains 37 alphanumeric characters. Show that
at least two characters are the same.

5. Show that in any group of eight people, at least two must have been
born on the same day of the week.

6. Show that in any group of 13 people, at least two must have been born
in the same month.

7. There are six matching pairs of gloves. Show that any set of seven
gloves will contain a matching pair.

8. The sum of nine integers in the range 1–25 is 83. Show that one of
them must be at least 10.

9. The total cost of 13 refrigerators at a department store is $12,305.
Show that one refrigerator must cost at least $947.

10. Mrs. Zee has 19 skirts and would like to arrange them in a chest that
has four drawers. Show that one drawer must contain at least five
skirts.

11. Show that the repeating decimal 0. a1a2 . . . aib1b2 . . . bj is a rational
number.

12. Let n ∈ N. Suppose n elements are selected from the set {1, 2, . . . , 2n}.
Find a pair of integers in which one is not a factor of another integer.

Use the pigeonhole principle to prove the following.

13. If five points are chosen inside a unit square, then the distance
between at least two of them is no more than

√
2/2.

14. Five points are chosen inside an equilateral triangle of unit side. The
distance between at least two of them is no more than 1/2.

150 Chapter 3 Functions and Matrices

15. If 10 points are selected inside an equilateral triangle of unit side,
then at least two of them are no more than 1/3 of a unit apart.

16. Let f : X → Y and y ∈ Y . Define f −1(y) = {x ∈ X |f (x) = y}. In other
words, f −1(y) consists of all pre-images of y. Use Example 3.1 to find
f −1(y) for every y ∈ Y .

*17. Prove the following alternate version of the generalized pigeonhole
principle: Let f : X → Y , where X and Y are finite sets, |X | > k · |Y |,
and k ∈ N. Then there is an element t ∈ Y such that f −1(t) contains
more than k elements.

18. Prove that any set S of three integers contains at least two integers
whose sum is even.
(Hint: Define a suitable function f : S → {0, 1} and use Exercise 17.)

*19. Using the pigeonhole principle, prove that the cardinality of a finite
set is unique.

3.5 Composition of Functions

Besides adding and multiplying functions, there is a very fundamental way
of constructing new functions.

Consider the functions f , g : R → R defined by f (x) = 2x+3 and g(x) = x2.
Let x be an input into f . Then f (x) = 2x+3 is a real number and hence can be
considered an input into g. The resulting output is g(f (x)) (see Figure 3.24).
Thus the functions f and g can be employed to define a new function, called
the composite of f and g, as shown in Figure 3.25.

Figure 3.24 f

g

x f(x)

g(f(x))

Figure 3.25

x

f

g � f

g

f(x) g(f(x))

�

�
�

This leads us to the following definition.

3.5 Composition of Functions 151

Composition
Let f : X → Y and g : Y → Z. The composition of f and g, denoted by g ◦ f
(notice the order of the functions), is a function from X to Z, defined by
(g ◦ f)(x) = g(f (x)). Read g ◦ f as g circle f or the composition of f and g.
[In general, dom(g) need not be the same as codom(f); all that is needed is
that range (f) ⊆ dom(g).]

EXAMPLE 3.31 Let f , g : R → R† defined by f (x) = 2x + 3 and g(x) = x2. Find (g ◦ f)(x) and
(f ◦ g)(x).

SOLUTION:

• f (x) = 2x + 3

Then (g ◦ f)(x) = g(f (x))

= g(2x + 3) = (2x + 3)2

• g(x) = x2

So (f ◦ g)(x) = f (g(x))

= f (x2) = 2(x2) + 3

= 2x2 + 3 �

It follows from Example 3.31 that, in general, f ◦ g �= g ◦ f ; in
other words, composition is not a commutative operation. For instance,
putting clothes in a washing machine and then in a dryer does not
yield the same result as putting them in a dryer and then in a washing
machine!

EXAMPLE 3.32 (optional) Composition is easily accomplished in computer science. To
illustrate this, study the following algorithm fragment, where x ∈ R:

1. if x ≤ 4 then
2. x ← x + 2
3. else
4. x ← x – 3
5. if x ≤ 5 then
6. x ← x2

7. else
8. x ← 2x – 1

Find the value of x resulting from the execution of this fragment with the
initial values of x = 2 and x = 5.

†f, g : X → Y is an abbreviation for f : X → Y and g : X → Y .

152 Chapter 3 Functions and Matrices

SOLUTION:
• Suppose x = 2. Since 2 ≤ 4, line 2 is executed and hence x ← 4. Then

the condition in line 5 is tested. Since 4 ≤ 5, line 6 is executed. So x gets
the value 16 from line 6.

• Suppose x = 5 initially; then line 2 is skipped. So x ← 2 by line 4. Since
2 ≤ 5, line 6 is executed. Therefore, x ← 4. �

To see that this example employs composition, let f (x) and g(x) denote
the functions defined by the if-then-else statements in the above algorithm
fragment. Then:

f (x) =
{

x + 2 if x ≤ 4

x − 3 if x > 4
and g(x) =

{
x2 if x ≤ 5

2 x − 1 if x > 5

The output resulting from the fragment is given by the composition of f
and g. You may verify that (g ◦ f) (2) = 16 and (g ◦ f)(5) = 4; in fact g ◦ f
is defined by

(g ◦ f)(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x + 2)2 if x ≤ 3

2x + 3 if 3 < x ≤ 4

(x − 3)2 if 4 < x ≤ 8

2x − 7 otherwise

(See Exercise 54.)
A few simple properties satisfied by the composition operation follow.

Their proofs are fairly straightforward; we shall prove part 3 and leave the
others as exercises.

THEOREM 3.8 Let f : X → Y and g : Y → Z. Then:

(1) f ◦ 1X = f (2) 1Y ◦ f = f
(3) If f and g are injective, then g ◦ f is injective.
(4) If f and g are surjective, then g ◦ f is surjective.
(5) If f and g are bijective, then g ◦ f is bijective.

PROOF:
(3) Let x1, x2 ∈ X such that (g ◦ f)(x1) = (g ◦ f)(x2). Then

g(f (x1)) = g(f (x2)), by definition.

Then f (x1) = f (x2), since g is injective.

Consequently, x1 = x2, since f is injective.

Thus, if (g ◦ f)(x1) = (g ◦ f)(x2), then x1 = x2, so g ◦ f is injective.
(Exercises 44–46 provide partial converses to the results 3 through 5.) �

3.5 Composition of Functions 153

Before we define the inverse of a function and discuss its properties, let
us study the next example.

EXAMPLE 3.33 Let f (x) = ax + b and g(x) = x−b
a on R, where a �= 0. Find (g ◦ f)(x) and

(f ◦ g)(x).

SOLUTION:
Let x ∈ R. Then:

(1) (g ◦ f)(x) = g(f (x)) (2) (f ◦ g)(x) = f (g(x))

= g(ax + b) = f
(

x − b
a

)

= (ax + b) − b
a

= a
(

x − b
a

)
+ b

= x = x

In this example, (g ◦ f)(x) = x = (f ◦g)(x) for all x. That is, g ◦ f = f ◦g =
1R, the identity function. In other words, one function undoes what the
other has done. This leads to the following definition. �

Inverse Function
Let f : X → Y . Suppose there is a function g : Y → X such that (g◦ f)(x) = x
for every x ∈ X and (f ◦ g)(y) = y for every y ∈ Y ; it is called the inverse
of f , denoted by f −1; that is, g = f −1. [Note: dom(f) = codom(f −1) and
codom(f) = dom(f −1); also f −1(x) �= 1/f (x).] It can be shown that the
inverse of f is unique (see Exercise 52). The function f −1 does just the
opposite of what f has done, as illustrated in Figure 3.26. A function that
has an inverse is said to be invertible.

Figure 3.26

x

f

g�f �1

y

X Y

The next two examples illustrate this definition.

EXAMPLE 3.34 With the functions f and g in Figure 3.27, notice that: (g◦ f)(a) = g(f (a)) =
g(3) = a, (g ◦ f)(b) = g(f (b)) = g(2) = b, (g ◦ f)(c) = g(f (c)) = g(1) = c, and
(g ◦ f)(d) = g(f (d)) = g(0) = d. Thus, (g ◦ f)(x) = x for every x in X and,
similarly, (f ◦ g)(y) = y for every y in Y . So g = f −1. �

EXAMPLE 3.35 Consider the functions ORD : ASCII → {0, 1, . . . , 127} and CHR: {0, 1, . . . ,
127} → ASCII. ORD(c) gives the ordinal number of the character c in ASCII,
whereas CHR(n) returns the character with ordinal number n.

154 Chapter 3 Functions and Matrices

Figure 3.27

a

b

c

d

a

b

c

d

0

1

2

3

0

1

2

3

f

X Y

g

Y X

Let CH denote a character variable and n a valid ordinal number. Then
CHR(ORD(CH)) = CH and ORD(CHR(n)) = n. Thus CHR and ORD are
inverse functions. �

Unfortunately, not every function is invertible. The next theorem gives
a necessary and sufficient condition for invertibility.

THEOREM 3.9 A function f : X → Y is invertible if and only if it is bijective.

PROOF:
Suppose f is invertible. We would like to show f is bijective.

• To prove that f is injective:
Let x1 and x2 be any two elements in X such that f (x1) = f (x2). Since f
is invertible, f −1 exists. Then

f −1(f (x1)) = f −1(f (x2))

(f −1 ◦ f)(x1) = (f −1 ◦ f)(x2)

x1 = x2

Therefore, f is injective.

• To prove that f is surjective:
Let y be any element in Y. We have to produce a suitable element x
in X such that f (x) = y. Choose x = f −1(y) (see Figure 3.26). Then
f (x) = f (f −1(y)) = (f ◦ f −1)(y) = y.
Thus f is both injective and surjective; therefore, it is bijective.

Conversely, suppose f is bijective. Then every element x in X is paired
with a unique element y in Y and vice versa. Define a function g : Y → X
as follows: g(y) = the unique element x in X such that f (x) = y. Then
(g ◦ f)(x) = g(f (x)) = g(y) = x and (f ◦ g)(y) = f (g(y)) = f (x) = y.
Therefore, g = f −1 and hence f is invertible. �

The next two examples use Theorem 3.9 to determine the invertibility
of a function.

3.5 Composition of Functions 155

EXAMPLE 3.36 The exponential function f : R → R+ defined by f (x) = 2x is bijective, so it
is invertible. Its inverse is the logarithmic function g : R+ → R defined by
g(x) = lg x. �

EXAMPLE 3.37 Let f :�∗ → W defined by f (x) = ‖x‖, where� denotes the English alphabet.
Since f is not bijective (why?), f is not invertible. �

We close this section with a list of additional properties satisfied by the
inverse of a function and leave their proofs as exercises for you to pursue.

THEOREM 3.10 Let f : X → Y and g : Y → Z be invertible functions. Then:

• f −1 ◦ f = 1X

• (f −1)−1 = f

• f ◦ f −1 = 1Y

• (g ◦ f)−1 = f −1◦
• f −1 is bijective.

g−1 �

Exercises 3.5

Let f , g : R → R be defined by f (x) = 2x − 1 and g(x) = x2 + 1. Find:

1. (g ◦ f)(2) 2. (f ◦ g)(−1) 3. (g ◦ f)(x) 4. (f ◦ g)(x)

Let f (x) = �x� and g(x) = �x�, where x ∈ R. Compute each.

5. (g◦f)(−2. 3) 6. (f ◦g)(−2. 3) 7. (g◦f)(−4. 1) 8. (f ◦g)(−3. 9)

Let f , g : W → W defined by f (x) = x mod 5 and g(x) = x div 7. Evaluate
each.

9. (g ◦ f)(17) 10. (f ◦ g)(23) 11. (g ◦ f)(97) 12. (f ◦ g)(78)

Determine if the function g is the inverse of the corresponding function f .

13. f (x) = x2, x ≥ 0; g(x) = √
x, x ≥ 0

14. f (x) = x2, x ≤ 0; g(x) = −√
x, x ≥ 0

Define the inverse g of each function f .

15.
x a b c d

f (x) 4 1 3 2
16.

x a b c d

f (x) b c d a

Determine if the given function is invertible. If it is not invertible, explain
why.

17. ORD on Z.

18. f : ASCII → W defined by f (c) = ordinal number of the character c.

19. f : W → W defined by f (n) = n (mod 5).

20. f :�∗ → �∗ defined by f (w) = awa, where � = {a, b, c}.

21. f : S → N defined by f (x) = decimal value of x, where S is the set of
binary representations of positive integers with no leading zeros.

156 Chapter 3 Functions and Matrices

22. f : �∗ → W defined by f (x) = decimal value of x, where � = {0,1}.

23. Let f : �n → W defined by f (x) =
n∑

i=1
xi, where �n denotes the set

of words of length n over � = {0, 1, 2} and x = x1x2 · · · xn. [f (x) is the
weight of x; for example, f (10211) = 5.]

Mark each sentence as true or false. Assume the composites and inverses
are defined:

24. The composition of two injections is injective.

25. The composition of two surjections is surjective.

26. The composition of two bijections is a bijection.

27. Every function is invertible.

28. Every injective function is invertible.

29. Every invertible function is injective.

30. Every invertible function is surjective.

31. Every invertible function is bijective.

32. Every bijection is invertible.

33. The composition of two invertible functions is invertible.
Using the algorithm fragment in Example 3.32, compute the output
resulting from each initial value of x.

34. −5 35. 0 36. 3 37. 7

Let f : X → Y and g : Y → Z. Prove each.

38. f ◦ 1X = f 39. 1Y ◦ f = f

40. If f and g are injective, then g ◦ f is injective.

41. If f and g are surjective, then g ◦ f is surjective.

42. If f and g are bijective, then g ◦ f is bijective.

43. The identity function 1X is bijective.

44. If g ◦ f is injective, then f is injective.

45. If g ◦ f is surjective, then g is surjective.

46. If g ◦ f is bijective, then f is injective and g is surjective.

Let f : X → Y and g : Y → Z be invertible functions. Prove each.

47. f −1 ◦ f = 1X

49. f −1 is bijective.

51. (g ◦ f)−1 = f −1 ◦ g−1

48. f ◦ f −1 = 1Y

50. (f −1)−1 = f

*52. The inverse of f is unique.

3.6 Sequences and the Summation Notation 157

53. Let f : A → B, g : B → C, and h : C → D. Prove that h ◦ (g ◦ f) =
(h ◦ g) ◦ f (associative property).
[Hint: Verify that (h ◦ (g ◦ f))(x) = ((h ◦ g) ◦ f)(x) for every x in A.]

◦ *54. Let f and g denote the functions defined by the if-then-else state-
ments in Example 3.31. Show that g ◦ f is defined as given in the
example.
(Hint: Consider the cases x ≤ 4 and x > 4, and then two subcases in
each case.)

Prove each, where X ∼ Y implies set X is equivalent to set Y .

*55. If A ∼ B, then B ∼ A (symmetric property).

*56. If A ∼ B and B ∼ C, then A ∼ C (transitive property).

Let f : X → Y be bijective. Let S and T be subsets of Y . Prove each.

*57. f −1(S ∪ T) = f −1(S) ∪ f −1(T) *58. f −1(S ∩ T) = f −1(S) ∩ f −1(T)

3.6 Sequences and the Summation Notation

Sequences and the summation notation play a key role in the next three
chapters, so we present them here.

Let a be a whole number and X = {a, a + 1, a + 2, . . .}. A function s
with domain X or a subset of X is called a sequence. Let n ∈ X . Then
s(n) is called a term of the sequence, denoted by sn. The various terms
of the sequence can be listed as sa, sa+1, sa+2, . . . in increasing order of
subscripts.

In particular, let X = N. Then the terms of the sequence are:

s1, s2, s3, . . . , sn, . . .
↑

general term

The nth term sn is the general term of the sequence; the sequence is
often denoted by {sn}∞1 or simply {sn}. (It should be clear from the context
whether the braces indicate a set or a sequence.) The general term is often
used to define a sequence.

EXAMPLE 3.38 Consider the sequence {sn}, where sn = 2n − 1. The various terms of the
sequence are 1, 3, 5, 7, Formally, the sequence is the function s : N → N
defined by s(n) = 2n − 1. �

EXAMPLE 3.39 Let an be the binary representation of the positive integer n with no leading
zeros. The various terms of the sequence {an} are 1, 10, 11, 100, 101, 110,
111, �

Sequences can be classified as finite or infinite, as the next definition
shows.

158 Chapter 3 Functions and Matrices

Finite and Infinite Sequences
A sequence is finite if its domain is finite; otherwise, it is infinite.

Thus, a finite sequence is made up of a finite number of terms, and an
infinite sequence contains infinitely many terms. Both types are useful in
mathematics and computer science as well.

Every word over an alphabet can be considered a finite sequence. For
instance, the binary word 010110111 is a finite sequence containing nine
terms. The elements of a finite language form a finite sequence; for example,
the words of length ≤ 2 over the alphabet {a, b, c} form a finite sequence,
namely, λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc; on the other hand, λ, a,
a2, a3, . . . is an infinite sequence.

We now turn to the summation notation you will find very useful
throughout the remainder of the book.

The Summation Notation
Often we need to work with sums of terms of number sequences {an}. Sums
such as ak + ak+1 + · · · + am can be written in a compact form using the
summation symbol

∑
, which denotes the word sum. The summation

notation was introduced in 1772 by the brilliant French mathematician
Joseph Louis Lagrange. (Recall that � denoted an alphabet in Chapter 2;
its actual meaning should be clear from the context.)

A typical term in the above sum can be denoted by ai, so it is the sum of

the terms ai as i runs from k to m. It is denoted by
i=m∑
i=k

ai. Thus

i=m∑
i=k

ai = ak + ak+1 + · · · + am

The variable i is the summation index. The values k and m are the
lower and upper limits of the index i. The “i =” above the

∑
is usually

omitted; in fact, the indices above and below the
∑

are also omitted when
there is no confusion. Thus

i=m∑
i=k

ai =
m∑

i=k

ai =
m∑
k

ai

For example,

6∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 = 21

3.6 Sequences and the Summation Notation 159

Joseph Louis Lagrange (1736–1813) ranks with Leonhard Euler (see
Chapter 8) as one of the greatest mathematicians of the 18th century. The
eldest of 11 children in a wealthy family in Turin, Italy, Lagrange was forced
to pursue a profession after his father, an influential cabinet official, lost all
his wealth by engaging in unsuccessful financial speculations.

While studying the classics at the College of Turin, the 17-year-old Lagrange
found his interest in mathematics kindled by an essay by the astronomer
Edmund Halley on the superiority of the analytical methods of calculus over
geometry in the solution of optical problems. In 1754, he began correspond-
ing with several outstanding mathematicians in Europe. The following year,
he was appointed professor of mathematics at the Royal Artillery School in
Turin. Three years later, he helped to found a society that later became the
Turin Academy of Sciences. While at Turin, Lagrange developed revolution-

ary results in the calculus of variations, mechanics, sound, and probability, winning the prestigious Grand
Prix of the Paris Academy of Sciences in 1764 and 1766.

In 1766, when Euler left the Berlin Academy of Sciences, Frederick the Great wrote to Lagrange that
“the greatest king in Europe” would like to have “the greatest mathematician of Europe” at his court.
Accepting the invitation, Lagrange moved to Berlin to head the Academy and remained there for 20 years.
When Frederick died in 1786, Lagrange moved to Paris at the invitation of Louis XVI. He was appointed
professor at the École Normale and then at the École Polytechnique, where he taught until 1799. He died
in Paris.

Lagrange made significant contributions to analysis, analytic mechanics, calculus, probability, and
number theory, as well as helping to establish the French metric system.

2∑
i=−1

i(i − 1) = (−1)(−1 − 1) + 0(0 − 1) + 1(1 − 1) + 2(2 − 1) = 4

The index i is a dummy variable; you can use any variable as the index
without affecting the value of the sum, so

m∑
i=�

ai =
m∑

j=�
aj =

m∑
k=�

ak

EXAMPLE 3.40 Evaluate
3∑

i=−2
i2.

SOLUTION:
3∑

i=−2

i2 = (−2)2 + (−1)2 + 02 + 12 + 22 + 32 = 19 �

The following results are extremely useful in evaluating finite sums.
They can be proved using mathematical induction (Section 4.4).

160 Chapter 3 Functions and Matrices

THEOREM 3.11 Let n ∈ N and c ∈ R. Let a1, a2, . . . , and b1, b2, . . . , be any two number
sequences. Then:

•
n∑

i=1

c = nc (3.3)

•
n∑

i=1

(cai) = c

(n∑
i=1

ai

)
(3.4)

•
n∑

i=1

(ai + bi) =
(n∑

i=1

ai

)
+
(n∑

i=1

bi

)
(3.5)

(These results can be extended for any lower limit k ∈ Z.) �
The next example illustrates this theorem.

EXAMPLE 3.41 Evaluate
2∑

j=1
[(5j)3 − 2j].

SOLUTION:
2∑

j=−1

[(5j)3 − 2j] =
⎛
⎝ 2∑

j=−1

(5j)3 − 2
2∑

j=−1

j

⎞
⎠

= 125

⎛
⎝ 2∑

j=−1

j3

⎞
⎠− 2

2∑
j=−1

j

= 125[(−1)3 + 03 + 13 + 23] − 2(−1 + 0 + 1 + 2)

= 996 �

Indexed Summation
The summation notation can be extended to sequences with index sets I
as their domains. For instance,

∑
i∈I

ai denotes the sum of the values ai as i

runs over the various values in I.
As an example, let I = {0, 1, 3, 5}. Then

∑
i∈I

(2i + 1) represents the sum of

the values of 2i + 1, so∑
i∈I

(2i + 1) = (2 · 0 + 1) + (2 · 1 + 1) + (2 · 3 + 1) + (2 · 5 + 1) = 22

Often we need to evaluate sums of the form
∑
p

aij, where the subscripts i

and j satisfy certain properties P. (Such summations are used in Chapters 4
and 6.)

3.6 Sequences and the Summation Notation 161

For example, let I = {1, 2, 3, 4}. Then
∑

1≤i<j≤4
(2i + 3j) denotes the sum

of the values of 2i + 3j, where 1 ≤ i < j ≤ 4. This can be abbreviated as∑
i<j

(2i + 3j) provided the index set is obvious from the context. To find this

sum, we must consider every possible pair (i, j), where i, j ∈ I and i < j.
Thus: ∑

i<j

(2i + 3j) = (2 · 1 + 3 · 2) + (2 · 1 + 3 · 3) + (2 · 1 + 3 · 4)

+ (2 · 2 + 3 · 3) + (2 · 2 + 3 · 4) + (2 · 3 + 3 · 4)

= 80

EXAMPLE 3.42 Evaluate
∑
d ≥ 1

d|6

d, where d|6 indicates that d is a factor of 6.

SOLUTION:∑
d ≥ 1

d|6

d = sum of positive integers d, where d is a factor of 6.

= sum of positive factors of 6

= 1 + 2 + 3 + 6 = 12 �

Multiple summations arise often in mathematics. They are evaluated
in the right-to-left fashion. For example, the double summation

∑
i

∑
j

aij

is evaluated as
∑
i

(∑
j

aij
)

and the triple summation
∑
i

∑
j

∑
k

aijk as∑
i

[∑
j

(∑
k

aijk
)]

.

We close this section with an example of a double summation.

EXAMPLE 3.43 Evaluate
1∑

i=−1

2∑
j=0

(2i + 3j).

SOLUTION:
1∑

i=−1

2∑
j=0

(2i + 3j) =
1∑

i=−1

⎡
⎣ 2∑

j=0

(2i + 3j)

⎤
⎦

=
1∑

i=−1

[(2i + 3 · 0) + (2i + 3 · 1) + (2i + 3 · 2)]

=
1∑

i=−1

(6i + 9)

= [6 · (−1) + 9] + (6 · 0 + 9) + (6 · 1 + 9)

= 27 �

162 Chapter 3 Functions and Matrices

Exercises 3.6

Evaluate each sum.

1.
6∑

i=1
i

4.
4∑

i=−1
3

7.
4∑

k=−2
3k

10.
5∑

k=1
(3 − 2k)k

2.
4∑

k=0
(3 + k)

5.
4∑

n=0
(3n − 2)

8.
3∑

k=−2
3(k2)

11.
4∑

j=−1
(j − 2)2

3.
4∑

j=0
(j − 1)

6.
2∑

j=−2
j(j − 2)

9.
3∑

k=−1
(3k)2

12.
5∑

i=0
(0. 1)i(0. 9)5−i

Rewrite each sum using the summation notation.

13. 1 + 3 + 5 + · · · + 23

15. 1 · 2 + 2 · 3 + · · · + 11 · 12

14. 31 + 32 + · · · + 310

16. 1(1+2)+2(2+2)+· · ·+5(5+2)

Determine if each is true or false.

17.
n∑

i=m

i =
n∑

i=m

(n + m − i) 18.
n∑

i=m

xi =
n∑

i=m

xn+m−i

19. Sums of the form S =
n∑

i=m+1

(ai − ai−1) are telescoping sums. Show
that S = an − am.

20. Using Exercise 19 and the identity
1

i(i + 1)
= 1

i
− 1

i + 1
, derive a

formula for
n∑

i=1

1
i(i + 1)

.

21. Using Exercise 19 and the identity (i+1)2 − i2 = 2i+1, find a formula

for
n∑

i=1

i.

Evaluate each sum, where δij is defined as follows.

δij =
{

1 if i = j

0 otherwise

[δij is called Kronecker’s delta, after the German mathematician Leopold
Kronecker (1823–1891).]

3.6 Sequences and the Summation Notation 163

22.
5∑

i=1

6∑
j=1

(2i + 3j)

24.
6∑

j=1

5∑
i=1

(2i + 3j)

26.
5∑

i=1

6∑
j=1

(i2 − j + 1)

28.
5∑

i=1

5∑
j=1
δij

30.
6∑

i=1

7∑
j=1

(i2 − 3i + δij)

23.
3∑

i=1

i∑
j=1

(j + 3)

25.
6∑

i=1

5∑
j=1

(i2 − i)

27.
6∑

j=1

5∑
i=1

(i2 − j + 1)

29.
3∑

i=1

5∑
j=1

(2 + 3δij)

Just as
∑

is used to denote sums, the product akak+1 . . . am is denoted by
m∏

i=k
ai. The product symbol � is the Greek capital letter pi. For example,

n! =
n∏

i=1
i. Evaluate each product.

31.
3∏

i=1
(i + 1) 32.

5∏
j=3

(j2 + 1) 33.
50∏

j=−5
1 34.

50∏
k=0

(−1)k

Evaluate each sum and product, where p is a prime and I = {1, 2, 3, 5}.
35.

3∑
k=0

k!

38.
∏
i∈I

(3i − 1)

41.
∑
d≥1

d|18

1

44.
∏
i, j∈I

i≤j

i j

36.
∑

p≤10
p

39.
∑

d≥1

d|12

d

42.
∑

p≤25
1

45.
∑
i, j∈I

i| j

(2i + 3j)

37.
∏

p≤10
p

40.
∑
d≥1

d|12

(
12
d

)

43.
∏

i, j∈I

i< j

(i + 2j)

46.
4∑

j=1
(3 j − 3 j−1)

Expand each.

47.
3∑

i=1
aij

49.
3∑

i=1

2∑
j=1

aij

51.
∑

1≤i<j≤3
(ai + aj)

48.
2∑

j=1
aij

50.
2∑

j=1

3∑
i=1

aij

52.
∑

1≤i≤j<3
(ai + aj)

164 Chapter 3 Functions and Matrices

Arthur Cayley (1821–1895) was born in Richmond, England. At 14 he
entered King’s College, London. His teachers, recognizing his superb math-
ematical talents, encouraged him to be a mathematician.

At 17, Cayley entered Trinity College, Cambridge, where he was rated to
be in a class by himself, “above the first.” By age 25, he had published 25
papers, the first one at age 20.

In 1846, he left his position at Cambridge to study law and became a suc-
cessful lawyer. Feeling unfulfilled, he left the law after 14 years, although
during this period he had published more than 200 papers.

In 1863 Cayley rejoined the faculty at Cambridge University. He pursued
his mathematical interests, until his death.

James Joseph Sylvester (1814–1897) attended Cambridge University,
which for several years denied him the degrees he earned, because he was
Jewish.

At 24, he became professor of natural philosophy at the University of
London. Three years later, he taught at the University of Virginia for a year
and then returned to England to become an actuary while continuing his
mathematical investigations.

Sylvester was professor of mathematics at Johns Hopkins Univer-
sity from 1876 to 1883. In 1878 he founded The American Journal of
Mathematics.

53.
∑

1≤i<j≤3
|Ai ∩ Aj| 54.

∑
1≤i<j<k≤3

|Ai ∩ Aj ∩ Ak|

3.7 Matrices

Matrices were discovered jointly by two English mathematicians, Arthur
Cayley and James Joseph Sylvester. Matrix notation allows data to be
summarized in a very compact form and manipulated in a convenient way.

The sports pages of every newspaper provide fine examples of matrices.
For example, during the National Hockey League 2001–2002 regular sea-
son, the Boston Bruins won 43 games, lost 24 games, tied 6 games, and
had 9 overtime losses; the New York Rangers won 36 games, lost 38 games,
tied 4 games, and had 4 overtime losses; the Detroit Red Wings won 51
games, lost 17 games, tied 10 games, and had 4 overtime losses; and the
Los Angeles Kings won 40 games, lost 27 games, tied 11 games, and had 4
overtime losses. These data can be arranged in a compact form:

won lost tied overtime loss

Boston 43 24 6 9
New York 36 38 4 4
Detroit 51 17 10 4
Los Angeles 40 27 11 4

3.7 Matrices 165

Suppose you know that the first row refers to Boston, the second row to
New York, and so on, and the first column refers to the number of wins, the
second column to the number of ties, and so on. Then the row and column
headings can be deleted. Call the resulting arrangement A:

A =

⎡
⎢⎢⎣

43 24 6 9
37 11 36 4
39 10 35 4
51 7 26 4

⎤
⎥⎥⎦

Such a rectangular arrangement of numbers is called a matrix. More
generally, we have the following definition.

Matrix
A matrix is a rectangular arrangement of numbers enclosed by brackets.
A matrix with m rows and n columns is an m × n (read m by n) matrix, its
size being m × n. If m = 1, it is a row vector; and if n = 1, it is a column
vector. If m = n, it is a square matrix of order n. Each number in
the arrangement is an element of the matrix. Matrices are denoted by
uppercase letters.

For example, let

A =
[

3 −5 6

1 0 4

]
and B =

⎡
⎢⎢⎣

1 0 −3

−6 4 −2

2 7 −1

⎤
⎥⎥⎦

A is a 2 × 3 matrix, whereas B is a square matrix of order 3. The elements
of the row vector [0 3 −7] are 0, 3, and −7.

The double subscript notation is extremely useful in naming the ele-
ments of an m×n matrix A. Let aij denote the element in row i and column
j of A. Then the matrix has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

.
ai1 ai2 . . . aij . . . ain
.

am1 am2 . . . amj . . . amn

⎤
⎥⎥⎥⎥⎥⎥⎦←− row i

↑ column j

For convenience, it is abbreviated as A = (aij)m×n, or simply (aij) if the
size is clear from the context.

How do we determine if two matrices are equal? This is answered by the
next definition.

166 Chapter 3 Functions and Matrices

Equality of Matrices
Two matrices A = (aij) and B = (bij) are equal if they have the same size
and aij = bij for every i and j. For example, if[

1 x −3

2 0 y

]
=
[

1 0 −3

z 0 −1

]

then x = 0, y = 1, and z = 2.
The following definition presents two special matrices.

Zero and Identity Matrices
If every element of a matrix is zero, then it is a zero matrix, denoted by O.

Let A = (aij)n×n. Then the elements a11, a22, . . . , ann form the main
diagonal of the matrix A. Suppose

aij =
{

1 if i = j

0 otherwise

Then A is the identity matrix of order n; it is denoted by In, or I when
there is no ambiguity.

For example, [0 0 0] and
[
0 0
0 0

]
are zero matrices.

A = (aij)n×n is the identity matrix In if every element on its main diagonal

is 1, and every element above and below it is 0. For example,
[
1 0
0 1

]
is the

identity matrix of order 2, namely, I2.
Just as propositions and sets can be combined to construct new proposi-

tions and new sets, matrices also can be combined to produce new matrices.
The various matrix operations are presented and illustrated below.

Matrix Addition
The sum of the matrices A = (aij)m×n and B = (bij)m×n is defined by A+B =
(aij + bij)m×n. (We can add only matrices of the same size.)

EXAMPLE 3.44 Let

A =
[

2 −3 7

0 1 1

]
and B =

[
1 5 0

2 0 −1

]

Then

A + B =
[

2 + (−1) (−3) + 5 7 + 0

0 + 2 1 + 0 1 + (−1)

]
=
[

1 2 7

2 1 0

]
�

3.7 Matrices 167

Negative of a Matrix
The negative or (additive inverse) of a matrix A = (aij), denoted by −A,
is defined by −A = (−aij).

For instance, the negative of

A =
[

2 3 −4

0 −5 6

]
is − A =

[−2 −3 4

0 5 −6

]

You may verify that A + (−A) = O.

Matrix Subtraction
The difference A − B of the matrices A = (aij)m×n and B = (bij)m×n is
defined by A − B = (aij − bij)m×n. (We can subtract only matrices of the
same size.)

For example, using the matrices A and B in Example 3.44,

A − B =
[

2 − (−1) (−3) − 5 7 − 0

0 − 2 1 − 0 1 − (−1)

]
=
[

3 −8 7

−2 1 2

]

The next example introduces us to the fourth matrix operation.

EXAMPLE 3.45 Suppose you bought 12 coconut donuts, 15 butternut donuts, and 6 cinna-
mon donuts from shop I, and you bought 9 coconut donuts, 12 butternut
donuts, and 16 cinnamon donuts from shop II. Then the number of donuts
of each kind you bought from each shop is given by the matrix

A =
coconut butternut cinnamon

shop I

shop II

[
12 15 6

9 12 16

]

Suppose each donut costs 75¢. Then the cost of each type of donut at each
shop is obtained by multiplying each entry of A by 75. The resulting matrix
is denoted by 75A. Thus

75A =
[

75 · 12 75 · 15 75 · 6

75 · 9 75 · 12 75 · 16

]
=
[

900 1125 450

675 900 1200

]
�

This example leads to the next definition.

Scalar Multiplication
Let A = (aij) be any matrix and k any real number (called a scalar). Then
kA = (kaij).

168 Chapter 3 Functions and Matrices

The fundamental properties of the various matrix operations are stated
in the following theorem. We shall prove two of them, and leave the others
as routine exercises.

THEOREM 3.12 Let A, B, and C be any m × n matrices, O the m × n zero matrix, and c and
d any real numbers. Then:

• A + B = B + A

• A + O = A = O + A

• (−1)A = −A

• (c + d)A = cA + dA

• A + (B + C) = (A + B) + C

• A + (−A) = O = (−A) + A

• c(A + B) = cA + cB

• (cd)A = c(dA)

PROOF:
Let A = (aij)m×n.

• To prove that A + (−A) = O = (−A) + A:

A + (−A) = (aij)m×n + (−aij)m×n negative of A

= (aij + (−aij))m×n matrix addition

= (0)m×n aij + (−aij) = 0

= O zero matrix

Similarly, (−A) + A = O. Thus A + (−A) = O = (−A) + A.

• To prove that (c + d)A = cA + dA:

(c + d)A = (c + d)(aij)m×n definition of A

= ((c + d)aij)m×n scalar multiplication

= (caij + daij)m×n dist. prop. of numbers

= (caij)m×n + (daij)m×n matrix addition

= c(aij)m×n + d(aij)m×n scalar multiplication

= cA + dA definition of A

This concludes the proofs. �

Before we define matrix multiplication, let us study the next example.

EXAMPLE 3.46 Discount Gas sells regular, unleaded, and premium gasoline at two gasoline
stations X and Y. Matrix A shows the price (in dollars) of a gallon of each
kind of gasoline; matrix B, the average number of gallons sold at each

3.7 Matrices 169

location:

regular unleaded premium

A = [2.50 2.75 3.00]
X Y

regular

B = unleaded

premium

⎡
⎢⎢⎣

3000 3500

4000 3750

1500 2000

⎤
⎥⎥⎦

SOLUTION:
Notice that:

Revenue from location X = 2.50(3000) + 2.75(4000) + 3.00(1500)

= $23,000.00

Revenue from location Y = 2.50(3500) + 2.75(3750) + 3.00(2000)

= $25,062.50

These two values can be used to form the matrix

X Y

[23,000.00 25,062.50]

Each of its elements can be obtained by multiplying each element of A by
the corresponding element in each column of B and adding them up, as
shown below:

[2.50 2.75 3.00]

⎡
⎢⎣ 3000 3500

4000 3750
1500 2000

⎤
⎥⎦

= 2. 50(3000) + 2. 75(4000) + 3. 00(1500)

= 23,000. 00

[2.50 2.75 3.00]

⎡
⎢⎣3000 3500

4000 3750
1500 2000

⎤
⎥⎦

= 2.50(3500) + 2.75(3750) + 3.00(2000)

= 25,062.50

170 Chapter 3 Functions and Matrices

The matrix [23,000.00 25,062.50] is the product of the matrices A and B,
denoted by AB. Thus

3000 3500
4000 3750
1500 2000

= [23,000.000 25,062.50]AB = [2.50 2.75 3.00]

More generally, we define the product of two matrices as follows. �

Matrix Multiplication
The product AB of the matrices A = (aij)m×n and B = (bij)n×p is the matrix
C = (cij)m×p, where cij is the sum of the products of the corresponding
elements in row i of A and column j of B, as shown below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

.

ai1 ai2 . . . ain

.

am1 am2 . . . amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 . b1j

b2j

.

bij

.

bnj

. b1p

b21 b22 . . b2p

.

bi1 bi2 . . bip

.

bn1 bn2 . . bnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

. . . cij . . .

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where cij = ai1b1j + ai2b2j + · · · + ainbnj=
n∑

k=1
aikbkj.

The product C = AB is defined only if the number of columns in A equals
the number of rows in B. The size of the product is m × p.

The next example illustrates this definition.

EXAMPLE 3.47 Let

A =
[
1 −2 3
0 4 −1

]
and B =

⎡
⎣ 3 −2

0 1
−1 0

⎤
⎦

Find AB and BA, if defined.

3.7 Matrices 171

SOLUTION:
Since the number of columns of A equals the number of rows of B, the
product AB is defined. Furthermore, the size of AB is 2 × 2:

AB =
[
1 −2 3
0 4 −1

]⎡⎣ 3 −2
0 1

−1 0

⎤
⎦

=
[
1 · 3 + (−2) · 0 + 3 · (−1) 1 · (−2) + (−2) · 1 + 3 · 0
0 · 3 + 4 · 0 + (−1) · (−1) 0 · (−2) + 4 · 1 + (−1) · 0

]

=
[
0 −4
1 4

]

The product BA is also defined (why?) and its size is 3×3:

BA =
⎡
⎣ 3 −2

0 1
−1 0

⎤
⎦[

1 −2 3
0 4 −1

]

=
⎡
⎣ 3 · 1 + (−2) · 0 3 · (−2) + (−2) · 4 3 · 3 + (−2) · (−1)

0 · 1 + 1 · 0 0 · (−2) + 1 · 4 0 · 3 + 1 · (−1)
(−1) · 1 + 0 · 0 (−1) · (−2) + 0 · 4 (−1) · 3 + 0 · (−1)

⎤
⎦

=
⎡
⎣ 3 −14 11

0 4 −1
−1 2 −3

⎤
⎦

You may notice that AB �= BA. �

We can use the definition of matrix multiplication to develop an
algorithm to find the product of two matrices in an obvious way, as
Algorithm 3.1 shows.

Algorithm product (A,B,C)
(* Let A = (aij)m × n and B = (bij)n × p. This algorithm shows

how to find their product C = (cij)m × p. *)
Begin (* product *)

for i = 1 to m do
for j = 1 to p do
begin (* for j *)

cij ← 0 (* initialize *)
for k = 1 to n do

cij ← cij + aikbkj (* update cij *)
endfor

End (* product *)

Algorithm 3.1

172 Chapter 3 Functions and Matrices

The fundamental properties of matrix multiplication are stated in the
next theorem. They can be proved without much difficulty using the
summation notation.

THEOREM 3.13 Let A, B, and C be three matrices. Then:

(1) A(BC) = (AB)C
(3) A(B + C) = AB + AC

(2) AI = A = IA
(4) (A + B)C = AC + BC

provided the indicated sums and products are defined. �
We close this section with an example to illustrate part 3 of

Theorem 3.13.

EXAMPLE 3.48 Let

A =
[
2 −3
5 0

]
, B =

[
1 0 −1
2 −3 5

]
, and C =

[
0 −2 1

−3 0 4

]

Show that A(B + C) = AB + AC.

SOLUTION:
First notice that both B and C are the same size, so B + C is defined and is
of size 2 × 3. Furthermore, since A is 2 × 2 and B + C is 2 × 3, A(B + C) is
defined. Similarly, AB + AC is also defined.

B + C =
[
1 0 −1
2 −3 5

]
+
[

0 −2 1
−3 0 4

]
=
[

1 −2 0
−1 −3 9

]

A(B + C) =
[
2 −3
5 0

] [
1 −2 0

−1 −3 9

]
=
[
5 5 −27
5 −10 0

]

AB =
[
2 −3
5 0

] [
1 0 −1
2 −3 5

]
=
[−4 9 −17

5 0 −5

]

AC =
[
2 −3
5 0

] [
0 −2 1

−3 0 4

]
=
[
9 −4 −10
0 −10 5

]

AB + AC =
[−4 9 −17

5 0 −5

] [
9 −4 −10
0 −10 5

]
=
[
5 5 −27
5 −10 0

]
= A(B + C) �

Exercises 3.7

Solve the following equations.

1.

⎡
⎣ x − 1 2 0

0 y + 3 4
−3 1 z + 2

⎤
⎦ =

⎡
⎣ −2 2 0

0 −1 4
−3 1 −2

⎤
⎦

3.7 Matrices 173

2.

⎡
⎣ x − y −1 0

−3 y − z 2
4 −5 z − x

⎤
⎦ =

⎡
⎣ 3 −1 0

−3 −4 2
4 −5 1

⎤
⎦

Find the additive inverse of each matrix.

3.
[
2 −3
0 4

]
4.

[
1 −2 3
3 3 −1

]
5.

⎡
⎣0 −3 −2

1 −2 4
2 −5 6

⎤
⎦

Let A =
[
1 0 −1
0 2 3

]
, B =

[
0 −2 5
0 0 1

]
, and C =

[−3 0 0
0 1 2

]
. Find each.

6. A − B

10. 2B − C

7. B + C

11. 2A + 3B

8. A + 2C

12. 3B − 2C

9. −2B

13. 3A + (−2)B

Let A be an m × n matrix, B a p × q matrix, and C an r × s matrix. Under
what conditions is each defined? Find the size of each when defined. (Note:
A2 means AA.)

14. A + B

18. A(B + C)

15. B − C

19. AB − AC

16. BC

20. AB + C

17. A2

21. A(BC)

22. A team in the NHL earns 2 points, 1 point, or 0 points for a win, tie or
overtime loss, or a loss, respectively. Using matrices, find the number
of points earned by each team listed at the beginning of this section.

A summer vacation lodge in sunny California expects four guests: A, B, C,
and D. They plan to stay at the lodge for 7, 14, 21, and 28 days, respectively.
Each of them has diabetes. Since the nearest drugstore is several miles
away, the manager of the lodge decides to store three different types of
insulin — semi-lente, lente, and ultra — needed by these guests. Their daily
insulin requirements are summarized in Table 3.2.

Table 3.2 Guests

Insulin A B C D

Semi-lente 25 40 35 0
Lente 20 0 15 15
Ultra 20 0 30 40

Each gram of insulin of the three types costs 10, 11, and 12 cents,
respectively†. Using matrices, compute each:

†Based on R. F. Baum, “Insulin Requirements as a Linear Process in Time,” in Some
Mathematical Models in Biology, R. M. Thrall, ed., The University of Michigan Press, Ann
Arbor, MI, 1967, pp. 0L2.1–0L2.4.

174 Chapter 3 Functions and Matrices

23. The number of grams of each type of insulin needed.

24. The total cost of the insulin.

25. The insulin requirements if the guests decide to stay an additional 3,
5, 8, and 13 days, respectively.

26. The insulin requirements if the guests decide to stay three times their
original time.

Let A, B, and C be any m × n matrices, O the m × n zero matrix, and c and
d any real numbers. Prove each (see Theorem 3.12).

27. A + B = B + A

29. A + O = A = O + A

31. c(A + B) = cA + cB

28. A + (B + C) = (A + B) + C

30. (−1)A = −A

32. (cd)A = c(dA)

Let A, B, and C be any square matrices of order 2. Prove each.

33. A(BC) = (AB)C

34. A(B + C) = AB + AC

35. (A + B)C = AC + BC

The transpose of a matrix A = (aij)m×n, denoted by AT, is defined as
AT = (aji)n×m. Find the transpose of each.

36.

⎡
⎢⎣ 1 2 3

2 0 −1
−2 1 0

⎤
⎥⎦ 37.

⎡
⎢⎣a b c

d e f
f g h

⎤
⎥⎦

38. A square matrix A is symmetric if AT = A. What can you say about
the elements of a symmetric matrix A?

39. Let A be a square matrix. Prove that (AT)T = A.

Let A, B, and C be square matrices of order 2. Prove each.

40. (A + B)T = AT + BT

42. (AAT)T = AAT

41. (AB)T = BTAT

43. (ABC)T = CTBTAT

A square matrix A of order n is invertible if there is a matrix B such that
AB = In = BA. Then B is the inverse of A, denoted by A−1. In Exercises
44 and 45, verify that B = A−1. Assume that k = ad − bc �= 0.

44. A =
[

a b
c d

]
, B = 1

k

[
d −b

−c a

]

Chapter Summary 175

45. A =
⎡
⎣ 1 −2 0

3 1 −1
1 2 −3

⎤
⎦, B = 1

17

⎡
⎣ 1 6 −2

−8 3 −1
−5 4 −7

⎤
⎦

Find each product.

46.
[

1 2
2 3

] [
x
y

]
47.

[
1 0
0 1

] [
x
y

]
48.

⎡
⎣ 1 1 1

1 −2 3
2 −3 4

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦

Rewrite each linear system as a matrix equation AX = B.

49. 2x + 3y = 4
4x + 5y = 6

50. x − 2y = 4
3x + y − z =−5

x + 2y − 3z = 6

51–52. Using Exercises 44 and 45, solve the linear systems in Exercises 49
and 50, respectively.

Let M denote the set of 2 × 2 matrices over W. Let f : N → M defined by

f (n) =
[
1 1
1 0

]n

. Compute f (n) for each value of n.

53. 2 54. 3 55. 4 56. 5

Prove each.

*57. The inverse of a square matrix A is unique.
(Hint: Assume A has two inverses B and C. Show that B = C.)

*58. If A is an invertible matrix, then (A−1)−1 = A.

*59. If A and B are two invertible matrices of order n, then (AB)−1 =
B−1A−1.

60. Write an algorithm to compute the sum of the matrices A = (aij)m×n
and B = (bij)m×n.

Chapter Summary

This chapter presented the concept of a function, the summation nota-
tion, and matrices. Functions can be defined by the ordered pair notation,
tables, or graphs. Several properties of functions and some exotic func-
tions were examined, including how to construct new functions from known
ones.

Function
• A function f : X → Y is a pairing of every element x in X with a

unique element y in Y . Dom(f) = X , codom(f) = Y , and range(f) =
{f (x) ∈ Y |x ∈ X} (page 118).

176 Chapter 3 Functions and Matrices

Special Functions

• Polynomial function f (x) =
n∑

l=0
aixi (an �= 0) (page 125).

• Exponential function f (x) = ax (a > 0, a �= 1) (page 125).

• Logarithmic function f (x) = loga x (a > 0, a �= 1) (page 126).

• Absolute value function f (x) = |x| (page 126).

• Floor function f (x) = �x� (page 126).

• Ceiling function f (x) = �x� (page 126).

• Characteristic function fA(x) =
{

1 if x ∈ A
0 otherwise

(page 131).

• Mod function f (x, y) = x mod y (page 132).

• Div function g(x, y) = x div y (page 132).

Properties of Functions
• A function f : X → X is the identity function on X if f (x) = x for

every x ∈ X (page 136).

• f : X → Y is injective, if x1 �= x2 → f (x1) �= f (x2) (page 136).

• f : X → Y is surjective, if range(f) = Y (page 137).

• f : X → Y is bijective, if it is both injective and surjective (page 137).

• If X and Y are finite sets with |X| = |Y|, f : X → Y is injective if and
only if it is surjective (page 139).

• Two sets have the same cardinality if and only if a bijection exists
between them (page 140).

The Pigeonhole Principle
• Simple version If m pigeons fly into n pigeonholes to roost, where

m > n, then at least two pigeons must roost in the same pigeonhole
(page 147).

• Generalized version If m pigeons fly into n pigeonholes to roost,
where m > n, one pigeonhole must contain at least �(m − 1)/n� + 1
pigeons (page 147).

Composition
• The composition of the functions f : X → Y and g : Y → Z is given

by (g ◦ f)(x) = g(f (x)) for every x in X (page 151).

Chapter Summary 177

• The composition of two bijections is bijective (page 152).

• The function g : Y → X is the inverse of the function f : X → Y if
g ◦ f = 1X and f ◦ g = 1Y (page 153).

• A function is invertible if and only if it is bijective (page 154).

Sequences and the Summation Notation
• A sequence {sn} is a function with domain X = {a, a + 1, a + 2, . . .}

or a finite subset of X , where a ∈ W (page 157).

• Using the summation symbol
∑

, the sum ak+ak+1+ · · · +am is written

as
i=m∑
i=k

ai (page 158).

Matrix
• An m × n matrix (aij)m×n is a rectangular arrangement of elements,

where aij denotes the element in row i and column j (page 165).

Review Exercises

Find the number of positive integers ≤ 1776 and divisible by each:

1. 5 or 7

3. 5, 6, or 7

2. 5 but not 7

4. 3 or 5, but not 7

Find the day of the week in each case.

5. 1024 days from Sunday 6. 1948 days from Thursday

Find the month of the year in each case.

7. 256 months from March 8. 1976 months from August

Using formula (3.1) in Exercises 3.2, determine the first day in each year.

9. 2048 10. 4076 11. 7776 12. 7997

Using the formula in Exercises 3.2, compute the date for Easter Sunday in
each year.

13. 2550 14. 3443 15. 4076 16. 6666

Determine if each function is injective.

17. f (x) = − |x|, x ∈ R 18. g(x) = √
x, x ∈ R+

Determine if each function f : A → B is surjective.

19. f (x) = −√
x, A = R+, B = R− 20. f (x) = 2x, A=R, B = R+

178 Chapter 3 Functions and Matrices

Determine if each function f : A → B is bijective.

21. f (x) = 2|x|, A = B = R 22. f = ORD, A = B = Z

Let A and B be finite sets with |A| = 3 and |B| = 2. Find the number of:

23. Functions that can be defined from A to B.

24. Constant functions that can be defined from A to B.

25. Injections that can be defined from A to B.

26. Surjections that can be defined from A to B.

27. Bijections that can be defined from A to B.

Student records are maintained in a table using the hashing function h(x) =
x mod 9767, where x denotes the student’s social security number. Compute
the location in the table corresponding to the given key, where the record
is stored.

28. 011-53-1212 29. 212-44-7557

30–31. Redo Exercises 28 and 29 if h(x) = first part in x mod 23.

32. The confirmation number for flight reservations made with an
airline over the Internet consists of three letters followed by a
digit and then two letters. Store the following confirmation numbers
in a hash table of 26 cells using the hashing function h(x) = first letter
in x:

VPS3SL, NBC4GK, CBS1AA, AQX5CD, CBA3BA, NCR4SK,

CNN1TK, ABC5ZZ

33. Redo Exercise 32 if h(x) = last letter in x.

34. Redo Exercise 32 using a hash table of 10 cells and h(x) = digit in x.

35. Redo Exercise 32 using a hash table of 10 cells and h(x) = digit in
x mod 5.

36. Show that in any group of seven positive integers, at least two of them
leave the same remainder when divided by six.

37. The total cost of mailing six letters is $19. Show that the mailing charge
for at least one letter is $3 or more.

Let f , g : R → R defined by f (x) = 2�x�+ 1 and g(x) = 3�x� − 2. Compute
each.

38. (g ◦ f)(2.56)

40. (g ◦ f)(−4.67)

39. (f ◦ g)(−3.45)

41. (f ◦ g)(−5.73)

Chapter Summary 179

Let f , g : W → W defined by f (x) = x mod 6 and g(x) = x div 6. Evaluate
each.

42. (g ◦ f)(31)

44. (f ◦ g)(176)

43. (f ◦ f)(49)

45. (g ◦ g)(1331)

Mark each sentence as true or false, where x and y are arbitrary real
numbers.

46. �x + y� = �x� + �y�
48. �xy� = �x��y�

47. �x + y� = �x� + �y�
49. �xy� = �x��y�

Give a counterexample to disprove each proposition, where x, y ∈ R and
n ∈ Z.

50. �x + y� = �x� + �y�
53. �xy� = �x��y�

51. �x + y� = �x� + �y�
54. �nx� = n�x�

52. �xy� = �x��y�
55. �nx� = n�x�

Find the first four terms of the sequence with the given general term, where
α = (1 + √

5)/2 and β = (1 − √
5)/2. (The number α is the golden ratio.)

56. an =
⌊
αn√

5
+ 1

2

⌋
, n ≥ 1

58. Ln = αn + βn , n ≥ 1

57. bn =
⌈
αn√

5
− 1

2

⌉
, n ≥ 1

59. fn = 1√
5
(αn − βn)

60. Arrange the terms of the sequence of ternary words of length ≤ 2 over
the alphabet {0,1,2} in increasing order of their numeric values.

Evaluate each.

61.
10∑

i=1

⌊
i
2

⌋
62.

10∑
i=1

⌈
i
2

⌉
63.

17∑
i=1

⌊
i
2

⌋
64.

17∑
i=1

⌈
i
2

⌉

65. Let f : A → B and g : B → A such that f ◦ g = 1B. Prove that g is
injective.

66. Let f : A → B and g : B → A such that g ◦ f = 1A. Prove that g is
surjective.

Supplementary Exercises

Let A = (aij)n×n and B = (bij)n×n. Prove each.

1. (A+B)T = AT+BT 2. (AB)T = BTAT 3. AAT is symmetric.

4. Let G = {0, 1} and d: Gn × Gn → W defined by d(x, y) = number
of components in which the words x and y differ. d(x, y) is called the
Hamming distance between the n-bit words x and y. Is d bijective?

180 Chapter 3 Functions and Matrices

Richard Wesley Hamming (1915–1998) was born in Chicago, graduated
from the University of Chicago in 1937, and received an M.S. from the Uni-
versity of Nebraska 2 years later. After receiving his Ph.D. in mathematics in
1942 from the University of Illinois, he began his teaching career at the univer-
sity and moved to the university of Louisville until 1945. After a year working
on the Manhattan project at Los Alamos Science Laboratory, he joined the tech-
nical staff at Bell Telephone Labs in 1946; he headed the numerical methods
research department from 1964 to 1967, and then the computer science research
department until 1977. He left Bell in 1977 and became an adjunct professor in
computer science at the Naval Postgraduate School, Monterey, California.

Recipient of numerous awards, Hamming made significant contributions to
algebraic coding theory, numerical methods, statistics, and digital filters.

5. Let a1, a2, . . . , an ∈ R+. Prove that at least one of them is greater than

or equal to their average 1
n (

n∑
1

ai).

Evaluate each sum and product.

6.
2∑

i=0

3∑
j=1

1∑
k=0

(i + j + k)

8.
3∑

i=1

4∑
j=2

5∑
k=1

2i+j−k

10.
2∏

i=0

3∏
j=1

(i − j)

7.
1∑

i=0

1∑
j=−1

2∑
k=0

(i + 2j + 3k)

9.
3∏

i=1

2∏
j=0

2i+j

11.
5∏

i=2

3∏
j=0

2

An arithmetic sequence is a number sequence in which every term except
the first is obtained by adding a fixed number, called the common differ-
ence, to the preceding term. For example, 1, 3, 5, 7, . . . is an arithmetic
sequence with common difference 2. Let an denote the nth term of the
arithmetic sequence with first term a and common difference d.

12. Find a formula for an.

13. Let Sn denote the sum of the first n terms of the sequence. Prove that
Sn = n

2 [2a + (n − 1)d].
A geometric sequence is a number sequence in which every term except
the first is obtained by multiplying the previous term by a constant, called
the common ratio. For example, 2, 6, 18, 54, . . . is a geometric sequence
with common ratio 3. Let an denote the nth term of the geometric sequence
with first term a and common ratio r.

Chapter Summary 181

14. Find a formula for an.

15. Let Sn denote the sum of the first n terms of the sequence. Prove that
Sn = a(rn−1)

r−1 (r �= 1).

*16. Let f : X → Y be injective and A ⊆ B ⊆ X . Prove that f (A ∩ B) =
f (A) ∩ f (B).

*17. Let f : X → Y and A ⊆ B ⊆ X such that f (A ∩ B) = f (A) ∩ f (B). Give
a counterexample to show that f need not be injective.

*18. Suppose a1 + a2 + · · · + an − n + 1 pigeons occupy n pigeonholes
Hi, 1 ≤ i ≤ n. Prove that either H1 contains ≥ a1 pigeons, or H2
contains ≥ a2 pigeons, . . ., or Hn contains ≥ an pigeons.

Use Exercise 18, prove each.

19. The pigeonhole principle.

20. The generalized pigeonhole principle.

21. The sequence {an}∞1 satisfies the property that an =
∞∑

i=n+1
ai for every

n ≥ 1. Show that an+1 = 1
2an, n ≥ 1. (T. Fletcher, 1978).

Computer Exercises

Write a program to perform each task.

1. Read in the amount of water used by a household for 6 months and
compute the water bill, using the rate in Example 3.6.

2. Read in a positive integer n ≤ 1000 and print all perfect numbers ≤ n.
(There are three perfect numbers ≤ 1000. See Exercises 3.1.)

3. Read in a year y > 1600 and determine each:

• Whether or not it is a leap year.

• The number of leap years > 1600 and ≤ y.

4. Read in a year y and find the following (see Exercises 3.2):

• The day of January 1 in year y and year y + 1.

• The number of Friday-the-thirteenths in year y.

5. January 1, 2000, fell on a Saturday. Determine the day of the week of
January 1, 1776, and January 1, 3000. Print the calendar for January
in each year.

6. Read in a series of years greater than 2000 and determine the Easter
date in each year. (See Exercises 3.2.)

182 Chapter 3 Functions and Matrices

7. The discrete probability p(r) that two people in a group of r people
selected at random have the same birthday is given by

p(r) = 1 − 365.364 . . . (365 − r + 1)
365r

assuming 365 days in a year. Compute the probability for each value
of r: 10, 20, 30, . . ., 100, including 23. (You will see that if 23 people are
selected at random, there is a better than 50% chance that two have
the same birthday. This is known as the birthday paradox.)

8. Assign the numbers 0–51 in order to the 52 playing cards in a stan-
dard deck. Read in a number x, where 0 ≤ x ≤ 51. Identify the card
numbered x. Use the suit labels 0 = clubs, 1 = diamonds, 2 = hearts,
and 3 = spades, and the card labels 0 = ace, 1 = deuce, 2 = three, . . . ,
in each suit.

9. Assign the numbers 0–63, row by row, to the various squares on an
8 × 8 chessboard. Read in two numbers x and y, where 0 ≤ x, y ≤ 63.
Determine if the queen at square x can capture the queen at square y.

10. Read in n customers’ nine-digit account numbers at a bank, where n is
a positive integer ≤ 100. Store them in a hash table using the hashing
function h(x) = x mod 113, where x denotes an account number. Print
the hash table.

11. Read in n students’ social security numbers and store them in a hash
table using the hashing function h(x) = x mod 109, where x denotes
a social security number and n is a positive integer ≤ 100. Print the
hash table.

12. Read in the two-letter abbreviations of all states in the United States.
Store them in a hash table of 26 cells, using the hash function h(x) =
first letter in x.

13. Read in a positive integer n ≤ 15 and a square matrix A of order n.
Determine if it is symmetric.

14. Read in an m × n matrix A and a p × q matrix B. Find A + B, A − B,
and AB if they are defined.

15. The trace of a matrix (aij)n×n is
n∑

i=1
aii. Read in a positive integer

n ≤ 20 and an n × n matrix, and print the trace of the matrix.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Discuss the development of the concept of a function.

Chapter Summary 183

2. Collect the various rates for water and electricity consumption from
neighboring towns and cities. Write each as a word problem and then
define each as a function.

3. Describe the history of perfect numbers and their relationship to
Mersenne primes. Comment on the existence of odd perfect numbers.

4. Give a number of applications of the floor and ceiling functions to
everyday life.

5. Investigate the two-queens puzzle on an n × n chessboard, where
2 ≤ n ≤ 10.

6. Examine the various classes of infinite sets, their properties, and their
cardinalities.

7. Describe the origin of the pigeonhole principle and give several
applications to everyday life. Comment on the power of the principle.

8. List the various built-in functions in your favorite programming
language. Determine whether each is injective, surjective, or bijective.

9. Investigate the origin of the summation notation.

10. Describe the various mathematical structures and operations hidden
on the sports pages of a national newspaper.

11. Give a brief introduction to coding theory.

12. Discuss the Leontief input-output model, developed by Wassily
Leontief, who won the Nobel Prize in Economic Science in 1973.

Enrichment Readings

1. W. T. Bailey, “Friday-the-Thirteenth,” Mathematics Teacher, Vol. 62
(May 1969), pp. 363–364.

2. D. R. Camp, “Secret Codes with Matrices,” Mathematics Teacher,
Vol. 78 (Dec. 1985), pp. 676–680.

3. D. I. A. Cohen, Basic Techniques of Combinatorial Theory, Wiley,
New York, 1978, pp. 144–178.

4. R. L. Graham et al., Concrete Mathematics, Addison-Wesley, Reading,
MA, 1989, pp. 397–424.

5. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD, 1978.

6. F. S. Koltz, “When Is a Program Like a Function?” Mathematics
Teacher, Vol. 79 (Nov. 1986), pp. 648–651.

7. Z. Usiskin, “The Greatest Integer Symbol,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 739–743.

This Page Intentionally Left Blank

Chapter 4

Induction and Algorithms

God created the natural numbers; all else is the work of man.

— L. KRONECKER

T his chapter presents the well-ordering principle, the division algo-
rithm with which you are already familiar, and some fundamental

divisibility properties. In addition, through the well-ordering principle we
will establish an additional proof technique, the principle of mathemat-
ical induction. Interesting applications of this principle, as well as the
pigeonhole principle from Chapter 3, will be investigated.

Some of the intriguing problems pursued in this chapter lie below:

• Are there integers between 0 and 1?

• If n is a positive integer ≥ 2 and a1, a2, . . . , an ∈ Z, are there consecutive
elements ak+1, ak+2, . . . , a� such that ak+1 + ak+2 + · · · + a� is divisible
by n, where k < �?

• If a1, a2, . . . , an are the first n positive integers in some order, arranged
around a circle, is it true that there must be a set of k consecu-
tive elements in the cyclic arrangement whose sum is greater than
�[kn(n + 1) − 2]/2n�?

• Can any postage of n ≥ 2 cents be paid using two- and three-cent stamps?

4.1 The Division Algorithm

The division algorithm, with which you are already familiar, is often
employed to verify the correctness of a division problem. Its proof is based
on the following cardinal fact, which is accepted as an axiom. (An axiom is
a proposition that is accepted as true. It is usually a self-evident proposition
and is consistent with known facts.)

185

186 Chapter 4 Induction and Algorithms

The Well-Ordering Principle
Every nonempty set of positive integers has a least element. �

For example, the set {13, 5, 8, 23} has a least element, 5. The well-
ordering principle applies to any nonempty subset S of T = {n ∈ Z | n ≥ n0},
where n0 is any integer. To see this, let S∗ = {n − n0 + 1 | n ∈ S} and
T∗ = {n − n0 + 1 | n ∈ T}. Since S∗ ⊆ T∗ and T∗ ⊆ N, by the well-ordering
principle, S∗ contains a least element �∗. Then n0 +�∗ −1 is a least element
of S (why?).

For example, let S = {−3, −1, 0, 1, 3, 5} and T = {n ∈ Z | n ≥ −5}. Then
S∗ = {3, 5, 6, 7, 9, 11} has a least element �∗ = 3, so n0+�∗−1 = −5+3−1 =
−3 is the least element of S.

Next we present the division algorithm. Its proof is a bit complicated,
so we omit it here; but a proof, using the well-ordering principle, can be
established (see, for instance, the author’s number theory book).

The Division Algorithm
When an integer a is divided by a positive integer b, we get a unique (integer)
quotient q and a unique (integer) remainder r, where 0 ≤ r < b. The
integer a is the dividend and b the divisor. This is formally stated as
follows.

THEOREM 4.1 (The Division Algorithm) Let a be any integer and b any positive
integer. Then there exist unique integers q and r such that

a � b � q � r

Dividend Remainder

Divisor Quotient

where 0 ≤ r < b. �
Although this theorem does not present an algorithm for finding q and r,

it has been traditionally called the division algorithm. The values of q and
r can be found using the familiar long division method.

Notice that the equation a = bq + r can be written as

a
b

= q + r
b

so q = a div b = �a/b� and r = a − bq = a mod b.
The next example shows that we should be careful in finding the quotient

and the remainder when the dividend is negative.

4.1 The Division Algorithm 187

EXAMPLE 4.1 Find the quotient q and the remainder r when −23 is divided by 5.

SOLUTION:
Since −23 = 5 · (−4) + (−3), you might be tempted to say that q = −4 and
r = −3. Recall that the remainder can never be negative, so we rewrite
−23 as −23 = 5 · (−5) + 2, where 0 ≤ r(= 2) < 5 (see the number line
in Figure 4.1). Thus q = −5 and r = 2; in other words, −23 div 5 = −5
and −23 mod 5 = 2.

Figure 4.1

�25

�23

�25 �15 �10 5 0

We close this section with two applications of the division algorithm and
the pigeonhole principle. �

EXAMPLE 4.2 Let b be an integer ≥ 2. If b + 1 distinct integers are randomly selected,
prove that the difference of some two of them must be divisible by b.

PROOF
Let q be the quotient and r the remainder when an integer a is divisible
by b. Then, by the division algorithm, a = bq + r where 0 ≤ r < b. The
b+1 distinct integers yield b+1 remainders (pigeons); but there are only b
possible remainders (pigeonholes). Therefore, by the pigeonhole principle,
two of the remainders must be equal.

Let x and y be the corresponding integers. Then x = bq1 + r and
y = bq2 + r for some quotients q1 and q2. Then

x − y = (bq1 + r) − (bq2 + r)

= b(q1 − q2)

Thus, x − y is divisible by b. �

EXAMPLE 4.3 Let n be an integer ≥ 2 and let a1, a2, . . . , an ∈ Z. Prove that there exist
integers k and � such that ak+1 + ak+2 + · · · + a� is divisible by n, where
1 ≤ k < � ≤ n; that is, there exist consecutive elements ak+1, ak+2, . . . , a�
whose sum is divisible by n.

PROOF (by cases):
Consider the n sums Si = a1 + a2 + · · · + ai, where 1 ≤ i ≤ n.

Case 1 If any of the sums Si is divisible by n, then the statement is true.

188 Chapter 4 Induction and Algorithms

Case 2 Suppose none of the sums Si is divisible by n. When Si
is divided by n, the remainder must be nonzero. So, by the division
algorithm, the possible remainders are 1, 2, . . . , (n − 1). Since there are
n sums and n − 1 possible remainders, by the pigeonhole principle, two
of the sums Sk and S� must yield the same remainder r when divided by n,
where k < �.

Therefore, there must exist integers q1 and q2 such that a1 + a2 + · · · +
ak = nq1 + r and a1 + a2 + · · · + a� = nq2 + r, where k < �. Subtracting,
we get ak+1 + ak+2 + · · · + a� = n(q1 − q2). Thus ak+1 + ak+2 + · · · + a� is
divisible by n. �

To cite a specific example, consider the seven integers 2, 3, 8, 15, 23, 29,
and 57. Then S1 = a1 = 2 = 0 · 7 + 2 and S5 = a1 + a2 + a3 + a4 + a5 =
2 + 3 + 8 + 15 + 23 = 51 = 7 · 7 + 2. Then S5 − S1 = a2 + a3 + a4 + a5 =
3+8+15+23 = 49 is divisible by 7. Here k = 1 and � = 5. (You may notice
that S4 = a1 + a2 + a3 + a4 = 2 + 3 + 8 + 15 is also divisible by 7.)

Exercises 4.1

1. Is the set of positive odd integers well-ordered?

2. Is the set of positive even integers well-ordered?

In Exercises 3–6, find the quotient and the remainder when the first integer
is divided by the second.

3. 137, 11 4. 15, 23 5. −43, 16 6. −37, 73

Find the set of possible remainders when an integer is divided by the given
integer.

7. Two 8. Five 9. Seven 10. Twelve

11. Prove that there exists no integer between 0 and 1.

12. Let a ∈ Z. Prove that no integer exists between a and a + 1.

13. Let n0 ∈ Z, S be a nonempty subset of the set T = {n ∈ Z | n ≥ n0},
and �∗ be a least element of the set T∗ = {n − n0 + 1 | n ∈ T}. Prove
that n0 + �∗ − 1 is a least element of S.

14. Using the well-ordering principle, prove that 1 is the smallest positive
integer.
(Hint: Prove by contradiction.)

*15. Let a ∈ Z, S = {a, a + 1, . . .}, T ⊆ S, and a ∈ T. Let k be any element
of S such that whenever k ∈ T, k + 1 ∈ T. Prove that S = T.

*16. Let a ∈ Z and S = {a, a + 1, . . .}. Let P(n) be a predicate on S such
that the following conditions are satisfied: (1) P(a) is true; (2) If P(a),

4.2 Divisibility Properties 189

P(a + 1), . . . , P(k) are true for any k ≥ a, then P(k + 1) is also true.
Prove that P(n) is true for every n ≥ a.

4.2 Divisibility Properties

The celebrated euclidean algorithm can be used to find the greatest common
divisor of two positive integers, but first a very few properties of prime and
composite numbers, and some divisibility properties.

Let a and b (�= 0) be any two integers. If there is an integer q such that
a = bq, we say b divides a, b is a factor of a, a is divisible by b, or a is a
multiple of b. We then write b | a; otherwise, b� | a. (Again, the meaning of
the vertical bar should be clear from the context.) For instance, 3 | 6, 8 | 24,
but 6� | 14.

A positive factor b of a positive integer a is a proper factor of a if b �= a.
For example, the proper factors of 6 are 1, 2, and 3.

There are positive integers with exactly two positive factors. Accordingly,
we make the following definition.

Prime Numbers and Composite Numbers
A positive integer > 1 is a prime number (or simply a prime) if its only
positive factors are 1 and itself. A positive integer > 1 is a composite
number if it is not a prime.

For example, 2 and 19 are primes, whereas 6 and 21 are composite
numbers (why?).

There is a systematic procedure for determining whether or not a positive
integer n ≥ 2 is a prime. It is based on the next theorem.

THEOREM 4.2 Any composite number n has a prime factor ≤ �√n�.

PROOF (by contradiction):
Since n is composite, there are positive integers a and b such that n = ab
where 1 < a < n and 1 < b < n. Suppose a >

√
n and b >

√
n. Then

n = ab >
√

n · √n = n, which is impossible. Therefore, either a ≤ √
n or

b ≤ √
n. Since both a and b are integers, it follows that either a ≤ �√n� or

b ≤ �√n�.
By the fundamental theorem of arithmetic (see Theorem 4.13), every

positive integer has a prime factor. Any such factor of a or b is also a factor
of a · b = n, so n must have a prime factor �√n�. �

It follows from Theorem 4.2 that if n has no prime factors ≤ �√n�,
then n is a prime; otherwise, it is a composite number.

This fact can be used to determine whether or not an integer n ≥ 2 is a
prime, as the next example illustrates.

190 Chapter 4 Induction and Algorithms

EXAMPLE 4.4 Determine if 1601 is a prime number.

SOLUTION:
First list all primes ≤ �√1601�. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, and 37. None of them is a factor of 1601 (verify); so 1601 is a prime. �

An algorithm for determining the primality of a positive integer n ≥ 2 is
given in Algorithm 4.1.

Algorithm prime number(n)
(* This algorithm determines if a positive integer n ≥ 2 is

prime or not using Theorem 4.2. *)
Begin (* algorithm *)

list all primes ≤ �√n�
if any of them is a factor of n then

n is not a prime
else

n is a prime
End (* algorithm *)

Algorithm 4.1

In the remainder of this section we discuss some useful divisibility
properties. We begin with a simple and straightforward property.

THEOREM 4.3 If a and b are positive integers such that a | b and b | a, then a = b. �

Notice that this theorem does not hold if a and b are any integers. For
example, 3 | (−3) and (−3) | 3, but 3 �= −3.

THEOREM 4.4 Let a, b, and c be any integers. Then:

(1) If a | b and b | c, then a | c (transitive property).
(2) If a | b and a | c, then a | (b + c).
(3) If a | b and a | c, then a | (b − c).
(4) If a | b, then a | bc.

PROOF:
We shall prove properties 1 and 2, and leave the others as exercises.

(1) Since a | b, there exists an integer q1 such that b = aq1. Similarly,
there exists an integer q2 such that c = bq2. Then c = bq2 = (aq1)q2 =
a(q1q2). Thus, there exists an integer q = q1q2 such that c = aq.
Therefore, a | c.

(2) As above, we have b = aq1 and c = aq3. Then b + c = aq1 + aq3 =
a(q1 + q3). Since q1 + q3 is an integer, it follows that a | (b + c). �

4.2 Divisibility Properties 191

The Greatest Common Divisor
A positive integer can be a factor of two positive integers a and b. Such
a positive integer is a common factor of a and b. The largest such com-
mon factor is the greatest common divisor (gcd) of a and b, denoted by
gcd{a, b}.

For instance, gcd{6, 9} = 3, gcd{12, 24} = 12, and gcd{6, 35} = 1.
This definition of gcd, although simple and clear, is not practical, so we

give an alternate, equivalent definition below.

An Alternate Definition of GCD
A positive integer d is the gcd of two positive integers a and b if:

• d | a and d | b; and

• if d′ | a and d′ | b, then d′ | d, where d′ is a positive integer.

Thus, d is gcd{a, b} if (1) d is a common divisor of both a and b; and
(2) any common divisor of a and b is also a divisor of d.

The next theorem, an extremely useful and powerful result, can be
applied to develop an algorithm to compute gcd{a, b}.

THEOREM 4.5 Let a and b be any positive integers, and r the remainder when a is divided
by b. Then gcd{a, b} = gcd{b, r}.
PROOF
Let gcd{a, b} = d and gcd{b, r} = d′. To prove that d = d′, it suffices to show
that d | d′ and d′ | d. By the division algorithm, a unique quotient q exists
such that

a = bq + r (4.1)

To show that d | d′:
Since d = gcd{a, b}, d | a and d | b. Therefore, d | bq, by Theorem 4.4. Then
d | (a − bq), again by Theorem 4.4. In other words, d | r, by Equation (4.1).
Thus, d | b and d | r. Therefore, d | gcd{b, r}; that is, d | d′.

Similarly, it can be shown that d′ | d. (See Exercise 33.) Thus, by
Theorem 4.3, d = d′; that is, gcd{a, b} = gcd{b, r}. �

EXAMPLE 4.5 Illustrate Theorem 4.5, using a = 108 and b = 20.

SOLUTION:
gcd{108, 20} = 4 (verify). When 108 is divided by 20, the remainder is 8.
gcd{20, 8} = 4 (verify). Thus, gcd{108, 20} = gcd{20, 8}. �

Euclidean Algorithm
Among several procedures for finding the gcd of two positive integers,
one efficient algorithm is the euclidean algorithm, named after the

192 Chapter 4 Induction and Algorithms

Little is known about Euclid’s life. He taught at the University of Alexandria
and founded the Alexandrian School of Mathematics. When the Egyptian ruler
King Ptolemy I asked Euclid if there were an easier way to learn geometry than
by studying The Elements, he replied, “There is no royal road to geometry.”
Euclid is called the father of geometry.

No work, except for the Bible, has been more widely read, studied, or edited,”
according to J. E. Lightner of Western Maryland College, Westminister,
Maryland. “More than 2000 editions of the work have appeared since the
first printed one in 1482; however, no extant copy of The Elements dates from
Euclid’s own time.”

Greek mathematician Euclid (330?–275 b.c.), who included it in his extra-
ordinary work The Elements. The algorithm repeatedly applies the division
algorithm and Theorem 4.5. Before formally discussing the algorithm, we
illustrate it in the next example.

EXAMPLE 4.6 Find gcd{1976, 1776}.

SOLUTION:
Apply the division algorithm with 1976 (the larger of the two numbers) as
the dividend and 1776 as the divisor:

1976 = 1 · 1776 + 200

Apply the division algorithm again with 1776 and 200, using 1776 as the
dividend and 200 as the divisor:

1776 = 8 · 200 + 176

Continue this procedure until a zero remainder is obtained:

1976 = 1 · 1776 + 200
1776 = 8 · 200 + 176
200 = 1 · 176 + 24
176 = 7 · 24 + 8 ←− last nonzero remainder
24 = 3 · 8 + 0

The last nonzero remainder in this procedure is the gcd. Thus
gcd{1976, 1776} = 8. �

Will this method work for any two positive integers a and b? If a = b,
then gcd{a, b} = a. So assume, for convenience, a > b. (If this is not true,

4.2 Divisibility Properties 193

simply switch them.) Let r0 = b. Then by successive application of the
division algorithm, we get a sequence of equations:

a = q0r0 + r1 0 ≤ r1 < r0

r0 = q1r1 + r2 0 ≤ r2 < r1

r1 = q2r2 + r3 0 ≤ r3 < r2

...

Continuing like this, we get the following sequence of remainders:

b = r0 > r1 > r2 > r3 > · · · ≥ 0

Since the remainders are nonnegative and getting smaller and smaller, this
sequence must eventually terminate with remainder rn = 0. Thus, the last
two equations in the above procedure are:

rn−2 = qn−1rn−1 + rn 0 ≤ rn < rn−1

and

rn−1 = qnrn

It then follows that gcd{a, b} = gcd{a, r0} = gcd{r0, r1} = gcd{r1, r2} = · · · =
gcd{rn−1, rn} = rn, the last nonzero remainder. (This can be established by
using mathematical induction; see Exercise 56 in Section 4.4.)

EXAMPLE 4.7 Apply the euclidean algorithm to find gcd{2076, 1024}.

SOLUTION:
By the successive application of the division algorithm, we get:

2076 = 2 · 1024 + 28
1024 = 36 · 28 + 16

28 = 1 · 16 + 12
16 = 1 · 12 + 4 ←− last nonzero remainder
12 = 3 · 4 + 0

Since the last nonzero remainder is 4, gcd{2076, 1024} = 4. �
The euclidean algorithm is formally presented in Algorithm 4.2.

Algorithm Euclid(x,y,divisor)
(* This algorithm returns gcd{x,y} in divisor, where

x ≥ y > 0. *)
0. Begin (* algorithm *)
1. dividend ← x
2. divisor ← y

194 Chapter 4 Induction and Algorithms

3. remainder ← dividend mod divisor
4. while remainder > 0 do (* update dividend,

divisor, and remainder *)
5. begin (* while *)
6. dividend ← divisor
7. divisor ← remainder
8. remainder ← dividend mod divisor
9. endwhile

10. End (* algorithm *)

Algorithm 4.2

The euclidean algorithm provides a procedure for expressing the
gcd of two positive integers in terms of themselves, as the next example
shows.

EXAMPLE 4.8 Example 4.7 showed that gcd{2076, 1024} = 4. Express the gcd in terms of
2076 and 1024.

SOLUTION:
We use the equations in Example 4.7 in the reverse order:

4 = 16 − 1 · 12 = 16 − 1 · (28 − 1 · 16)
= 2 · 16 − 1 · 28 = (1024 − 36 · 28) − 1 · 28
= 2 · 1024 − 72 · 28 − 1 · 28 = 2 · 1024 − 73 · 28
= 2 · 1024 − 73(2076 − 2 · 1024) = 2 · 1024 − 73 · 2076 + 146 · 1024
= (−73) · 2076 + 148 · 1024

(You may verify this by direct computation.) �
Example 4.8 can be generalized as in the following theorem. We omit its

proof.

THEOREM 4.6 Let a and b be any positive integers, and d = gcd{a, b}. Then there exist
integers s and t such that d = sa + tb. �

Note: (1) The expression sa + tb is called a linear combination of a and
b. (2) The integers s and t are not unique. For example, gcd{28, 12} = 4
and 4 = 1 · 28 + (−2) · 12 = (−2) · 28 + 5 · 12. (3) The integers s and t can
be found by using the various equations in the euclidean algorithm, or
by trial and error especially when a and b are fairly small.

Theorem 4.6 can be used to derive other divisibility properties. To this
end, we define two positive integers to be relatively prime if their gcd is
1. For example, 6 and 35 are relatively prime, whereas 12 and 18 are not
relatively prime.

4.2 Divisibility Properties 195

THEOREM 4.7 Let a and b be relatively prime numbers. If a | bc, then a | c.

PROOF:
Since a and b are relatively prime, Theorem 4.6 indicates integers s and t
exist such that sa + tb = 1. Then sac + tbc = c. By Theorem 4.4, a | (sac)
and a | (tbc). Therefore, by Theorem 4.4, a | (sac + tbc); that is, a | c. �

The following exercises offer additional divisibility properties to verify;
again, consult a number theory book.

Exercises 4.2

Determine if each positive integer is a prime.

1. 727 2. 1001 3. 1681 4. 1723

5. Prove or disprove: Every prime is a perfect number.

Using the euclidean algorithm, find the gcd of the given integers.

6. 2024, 1024 7. 2076, 1076 8. 2076, 1776 9. 3076, 1976

In Exercises 10–13, express the gcd of the given integers as a linear
combination of them.

10. 12, 9 11. 18, 28 12. 12, 29 13. 28, 15

14. Two prime numbers that differ by 2 are called twin primes. For
example, 5 and 7 are twin primes. Prove that one more than the prod-
uct of two twin primes is a perfect square. (Twin primes played a key
role in 1994 in establishing a flaw in the Pentium chip, manufactured
by Intel Corporation.)

Evaluate each sum, where d is a positive integer.

15.
∑
d | 6

d 16.
∑

d | 12
1 17.

∑
d | 18

(
1
d

)
18.

∑
d | 18

(
18
d

)
Disprove each statement, where a, b, and c are arbitrary integers.

19. If a | (b + c), then a | b and a | c. 20. If a | bc, then a | b and a | c.

(Easter Sunday) Here is a second method∗ for determining Easter Sunday
in a given year N. Let a = N mod 19, b = N div 100, c = N mod 100,
d = b div 4, e = b mod 4, f = (b+8) div 25, g = (b− f +1) div 3, h = (19a+
b − d − g + 15) mod 30, i = c div 4, j = c mod 4, k = (32 + 2e + 2i − h − j)
mod 7, � = (a + 11h + 22k) div 451, m = (h + k − 7� + 114) div 31, and
n = (h + k − 7�+ 114) mod 31. Then Easter Sunday falls on the (n + 1)st

∗Based on “To Find Easter,” Nature (April 20, 1876). For bringing this method to his attention,
the author would like to thank Thomas Moore of Bridgewater State College.

196 Chapter 4 Induction and Algorithms

day of the mth month of the year. Compute the date for Easter Sunday in
each year.

21. 2000 22. 2076 23. 3000 24. 3663

Euler’s phi-function ϕ is another important number-theoretic function
on N, defined by ϕ(n) = number of positive integers ≤ n and relatively prime
to n. For example, ϕ(1) = 1 = ϕ(2),ϕ(3) = 2 = ϕ(4), and ϕ(5) = 4. Evaluate
ϕ(n) for each value of n.

25. 10 26. 15 27. 17 28. 24

29. Compute
∑
d|n
ϕ(d) for n = 5, 6, 10, and 12.

30. Using Exercise 29, predict a formula for
∑
d | n

ϕ(d).

Let a, b, c, and n be any positive integers and p be any prime. Prove each.

31. If a | b and a | c, then a | (b − c).

32. If a | b, then a | bc.

33. Let r be the remainder when a is divided by b. Let d = gcd{a, b} and
d′ = gcd{b, r}. Then d′ | d.

34. Let a > b. Then gcd{a, b} = gcd{a, a − b}.

35. Let a > b. Then gcd{a, b} = gcd{b, a + b}.

36. The gcd of a and b is unique.
(Hint: Assume two gcd’s d and d′; show that d = d′.)

37. If p | ab, then p | a or p | b.
[Hint: Assume p | ab and p� | a. Since p� | a, gcd{p, a} = 1.]

38. Any two consecutive integers are relatively prime.

39. Let d = gcd{a, b}. Then a/d and b/d are relatively prime.

40. gcd{na, nb} = n · gcd{a, b} 41. gcd{gcd{a, b},c} = gcd{a, gcd{b, c}}

42. Let a | c and b | c, where a and b are relatively prime numbers. Then
ab | c.

43. 2 and 3 are the only two consecutive integers that are primes.

44. 3, 5, and 7 are the only three consecutive odd integers that are primes.

45. If p and p2 +8 are primes, then p3 +4 is also a prime. (D. L. Silverman,
1968)

46. If p and p + 2 are twin primes, then p must be odd.

47. Suppose p and q are primes such that p − q = 3. Then p = 5.

48. Every odd prime is of the form 4n + 1 or 4n + 3.

4.3 Nondecimal Bases 197

Disprove each statement.

49. If gcd{a, b} = 1 and gcd{b, c} = 1, then gcd{a, c} = 1, where a, b, and c
are positive integers.

50. n! + 1 is a prime for every n ≥ 0.

51. En = p1p2 · · · pn + 1 is a prime, where pi denotes the ith prime and
i ≥ 1.

52. Let n be a positive integer. Prove that (n + 1)! + 2, (n + 1)! + 3, . . . ,
(n + 1)! + (n + 1) are n consecutive composite numbers.

4.3 Nondecimal Bases

In everyday life we use the decimal notation, base ten, to represent any
real number. For example, 234 = 2(102) + 3 (101) + 4(100), which is the
decimal expansion of 234. Likewise, 23 ·45 = 2(101)+3(100)+4(10−1)+
5(10−2). Computers use base two (binary), and very long binary numbers
are often handled by humans (as opposed to computers) using bases eight
(octal) and sixteen (hexadecimal).

Actually, any positive integer b ≥ 2 is a valid choice for a base. This is
a consequence of the following fundamental result.

THEOREM 4.8 Let b be a positive integer ≥ 2. Then every positive integer a can be
expressed uniquely in the form a = akbk+ ak−1 bk−1 + · · · + a1b + a0, where
a0, a1, . . . , ak are nonnegative integers less than b, ak �= 0, and k ≥ 0. �
This leads us to the following definition.

Base-b Representation
The expression akbk + ak−1bk−1 + · · · + a1b + a0 is the base-b expansion
of the integer a. Accordingly, we write a = (akak−1 · · · a1a0)b in base b. The
base is omitted when it is 10.

For example, 234 = 234ten and 22 = 10110two (see Example 4.9).
When the base is greater than 10, to avoid confusion we use the letters

A, B, C, . . . to represent the digits 10, 11, 12, . . . , respectively. It is easy to
find the decimal value of an integer from its base-b representation, as the
next example illustrates.

EXAMPLE 4.9 Express 10110two in base 10.

SOLUTION:

10110two = 1(24) + 0(23) + 1(22) + 1(21) + 0(20) ←− binary expansion

= 16 + 0 + 4 + 2 + 0

= 22 �

198 Chapter 4 Induction and Algorithms

Conversely, suppose we are given a decimal integer. How do we express
it in another base b? By Theorem 4.8, all we have to do is express it as a
sum of powers of b, then simply collect the coefficients in the right order.
Always remember to account for missing coefficients.

A Brainteaser
Take a look at the tablets A, B, C, D, and E in Figure 4.2. Assuming
you are under 32 years old, identify the tablets on which your age appears;
we can then easily tell your age. For example, if your age appears on
tablets A, B, C, and E, then you must be 23. Can you explain how this
puzzle works?

Figure 4.2

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

2

3

6

7

10

11

14

15

18

19

22

23

26

27

30

31

4

5

6

7

12

13

14

15

20

21

22

23

28

29

30

31

8

9

10

11

12

13

14

15

24

25

26

27

28

29

30

31

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

A B C D E

Returning to nondecimal representations, a simple algorithm expresses
an integer a in any nondecimal base b: divide a, and its successive quo-
tients by b until a zero quotient is reached, then pick the remainders
in the reverse order. These steps can be translated into the elegant
algorithm given in Algorithm 4.3.

Algorithm nondecimal base(n,b)
(* This algorithm finds the base-b representation (amam−1 . . . a1a0)b

of a positive integer n. The variables q and r denote the quotient
of the remainder of the division algorithm, and i is a subscript. *)

Begin (* algorithm *)
(* initialize the variables q, r, and i *)
q ← n; i ← 0
while q > 0 do
begin (* while *)

r ← q mod b
ai ← r
q ← q div b

4.3 Nondecimal Bases 199

i ← i + 1
endwhile

End (* algorithm *)

Algorithm 4.3

The next example illustrates this algorithm.

EXAMPLE 4.10 Represent 15,036 in the hexadecimal system, that is, in base 16.

SOLUTION:
Applying Algorithm 4.3 we have:

15036 = 939 · 16 + 12
939 = 58 · 16 + 11 ↑
58 = 3 · 16 + 10 read up
3 = 0 · 16 + 3

12
11
10
3

Thus 15,036 = 3ABCsixteen. �

Addition in Base b
Before we discuss how to add nondecimal numbers, let us examine the
familiar addition algorithm in base 10.

To find the sum of any two decimal digits a and b, we find the remainder
r = (a + b) mod 10 and the quotient q = (a + b) div 10. Then a + b = (qr)ten;
q is the carry resulting from the addition of a and b. Using this idea we
can add any two decimal integers.

Fortunately, the addition algorithm can be extended to any nondecimal
base b in an obvious way. For example, let x = (xm . . . x0)b and y = (yn . . . y0)b
where m ≥ n. If m > n, we could assume that yn+1 = · · · = ym = 0.
We add the corresponding digits in x and y in a right-to-left fashion. Let
si = (xi + yi + ci) mod b and ci+1 = (xi + yi + ci) div b, where c0 = 0. Then
x + y = (sm+1sm . . . s0)b where sm+1 may be 0 or 1. (Leading zeros are deleted
from the answer.)

These steps translate into a straightforward algorithm, as in
Algorithm 4.4.

Algorithm addition (x,y,s,b)
(* This algorithm computes the sum s = (sm+1sm . . .s0) of two

integers x = xm . . .x0 and y = yn . . .y0 in base b, where m ≥ n. *)
Begin (* algorithm *)

carry ← 0 (* initialize carry *)
for i = 0 to n do
begin (* for *)

si ← (xi + yi + carry) mod b
carry ← (xi + yi + carry) div b

endfor
for i = n + 1 to m do

200 Chapter 4 Induction and Algorithms

begin (* for *)
si ← (xi + carry) mod b
carry ← (xi + carry) div b

endfor
if carry > 0 then

sm+1 ← carry
End (* algorithm *)

Algorithm 4.4

This algorithm is illustrated in the next two examples.

EXAMPLE 4.11 Add the binary integers 10110two and 1011two.

SOLUTION:
First write the integers one below the other in such a way that the corre-
sponding bits are vertically aligned. See Figure 4.3. (For convenience, the
base two is not shown.)

Figure 4.3 1 0 1 1 0
+ 1 0 1 1

Figure 4.4 �0
1 0 1 1 0

+ 1 0 1 1

1

Figure 4.5 �1 �0
1 0 1 1 0

+ 1 0 1 1

0 1

Figure 4.6 �1 �1 �1 �1 �0
1 0 1 1 0

+ 1 0 1 1

1 0 0 0 0 1

Add the corresponding bits from right to left, beginning with the one’s
column: 0 + 1 = 1. Since 1 mod 2 = 1, enter 1 as the one’s bit in the sum.
Since 1 div 2 = 0, the resulting carry is 0, shown circled in Figure 4.4.
(In practice when the carry is 0, it is simply ignored.) Now add the bits
0, 1, and 1 in the twos column: 0 + 1 + 1 = 2. Since 2 mod 2 = 0 and 2 div
2 = 1, enter 0 in the twos column and the new carry is 1 (see Figure 4.5).
Continuing like this, we get the sum 100001two. See Figure 4.6. �

4.3 Nondecimal Bases 201

The addition of binary numbers can be made easy by observing that
0 + 0 = 0, 0 + 1 = 1 = 1 + 0, and 1 + 1 = 10, all in base two.

Next we illustrate the multiplication algorithm in base b.

Multiplication in Base b
The traditional algorithm for multiplying two integers x and y works for
any base in an obvious way: multiply every digit in x by every digit in y as
in base b and add up the partial products, as in Example 4.12.

EXAMPLE 4.12 Multiply 1011two and 101two.

SOLUTION:
The various steps unfold in Figures 4.7–4.9. The product is 110111two.

Figure 4.7 1 0 1 1
× 1 0 1

1 0 1 1 ← multiply 1011 by 1

Figure 4.8 1 0 1 1
× 1 0 1

1 0 1 1
0 0 0 0 ← multiply 1011 by 0

1 0 1 1 ← multiply 1011 by 1

Figure 4.9 1 0 1 1
× 1 0 1

1 0 1 1
0 0 0 0

1 0 1 1

1 1 0 1 1 1

⎫⎪⎬
⎪⎭ add the partial products

�

Shifting and Binary Multiplication
If you found these two examples confusing, don’t be discouraged. Fortu-
nately, most computers do binary multiplications using a technique called
shifting, as discussed below.

202 Chapter 4 Induction and Algorithms

Consider the binary number x = (xmxm−1 . . . x1x0)two =
m∑

i=0
xi2i. What is

the effect of multiplying x by 2 j? Since

x2j =
m∑

i=0

xi2i+j = xm . . . x1x000 . . . 0︸ ︷︷ ︸
j zeros

two,

every bit in x is shifted to the left by j columns.
More generally, let a be any bit. Then

x(a2j) =
m∑

i=0

(axi)2i+j = (axm) . . . (ax0)00 . . . 0︸ ︷︷ ︸
j zeros

two

The bit axi equals xi if a = 1 and equals 0 if a = 0. Thus, the effect of
multiplying the number x = (xm . . . x0)two by the bit yj in the multiplicand
y = (yn . . .yj . . .y0)two is the same as multiplying each bit xi by yj and shifting
the result to the left by j columns. Then add the partial products to get the
desired product, as illustrated below.

EXAMPLE 4.13 Evaluate 1011two × 101two.

SOLUTION:
The various steps are displayed in Figures 4.10–4.13. It follows from
Figure 4.13 that the resulting product is 110111two.

Figure 4.10 1 0 1 1
× 1 0 1

1 0 1 1 ← multiply 1011 by 1; no shifting.

Figure 4.11 1 0 1 1
× 1 0 1

1 0 1 1
0 0 0 0 ← multiply 1011 by 0; shift by one column.

Figure 4.12 1 0 1 1
× 1 0 1

1 0 1 1
0 0 0 0

1 0 1 1 ← multiply 1011 by 1; shift by 2 columns.

4.3 Nondecimal Bases 203

Figure 4.13 1 0 1 1
× 1 0 1

1 0 1 1
0 0 0 0

1 0 1 1

1 1 0 1 1 1

⎫⎪⎬
⎪⎭ add the partial products.

�

The shifting method of multiplication leads to Algorithm 4.5 for multi-
plying two binary numbers.

Algorithm binary multiplication (x, y, p)
(* This algorithm computes the product p = (pm+npm+n−1 . . .p0)two

of the binary numbers x = (xmxm−1 . . .x1x0)two and
y = (ynyn−1 . . . y1y0)two, using shifting. *)

Begin (* algorithm *)
for j = 0 to n do

begin (* for *)
multiply each bit xi by yj
shift the resulting binary word to the left
by j columns
wj ← resulting binary word

endfor
add the partial products wj
p ← resulting sum

End (* algorithm *)

Algorithm 4.5

Binary Subtraction
We can subtract binary numbers without the bother of “borrows,” using
one’s complement and addition. The one’s complement x′ of a binary
number x is obtained by replacing each 0 in x with a 1 and vice versa. For
example, the one’s complement of 1011two is 0100two and that of 1001two
is 0110two. The two’s complement of x is x′ + 1. For instance, the two’s
complement of 1011two is 0100two + 1 = 0101two.

The next example illustrates this new technique step-by-step before it is
justified in a formal discussion.

EXAMPLE 4.14 Subtract 1011two from 100001two.

SOLUTION:
For convenience, we shall drop the base two.

Step 1 Find the one’s complement of the subtrahend 1011. Since the
minuend 100001 contains six bits, keep the same number of bits in the sub-
trahend by padding it with two 0’s at the beginning. The one’s complement
of 1011 = 001011 is 110100.

204 Chapter 4 Induction and Algorithms

Step 2 Find the two’s complement by adding 1 to the one’s complement:
110100 + 1 = 110101.

Step 3 Add the two’s complement in step 2 to the minuend 100001:

1 0 0 0 0 1
+ 1 1 0 1 0 1

�1 0 1 0 1 1 0

delete ——↑

Step 4 Delete the leading carry 1. The resulting number 010110 = 10110
is the desired answer.

Thus 100001two − 1011two = 10110two. (To check this, you may verify
that 1011two+10110two =100001two.) �

How can this technique work? To justify the algorithm illustrated, first
notice that x − y = x + (−y); that is, subtracting y from x is equivalent to
adding the additive inverse −y of y to x. This is the basic idea behind the
binary subtraction algorithm.

Now how to find −y? First, assume that ‖x‖ = ‖y‖ = n. (If ‖y‖ < ‖x‖,
pad y with enough 0’s at the beginning so the length of the resulting word
is n.) Let y′ denote the one’s complement of y. Then y + y′ is an n-bit word
w containing all 1’s:

n − 1 n − 2

w = 1 1 1 . . . 1 1 1

For example, let y = 10110. Then y′ = 01001, so y + y′ = 11111.
The value of the n-bit word w is 2n − 1 (see Section 4.4). Thus y + y′ =

w = 2n − 1, so −y = y′ + 1 − 2n = y′′ − 2n, where y′′ = y′ + 1 denotes the
two’s complement of y. Therefore, x + (−y) = x + y′′ − 2n = (x + y′′) − 2n.
Thus, to subtract y from x, it suffices to add y′′ to x and drop the leading
carry 1. This explains why the above subtraction algorithm works.

The algorithm for the case ‖x‖ < ‖y‖ is complicated, so we omit its
discussion here.∗

We close this section with an intriguing numeric puzzle that will test
your mastery of both nondecimal addition and subtraction.

∗For a discussion of negative binary numbers, see A. S. Tanerbaum, Structured Computer
Organization, Prentice Hall, Englewood, NJ, 1976, pp. 420–423.

4.3 Nondecimal Bases 205

A Nondecimal Puzzle
Write down a three-digit number in base eight. Reverse its digits. Subtract
the smaller number from the other (in base eight); save all leading zeros.
Reverse its digits. Add the last two numbers. Is your answer 1067eight? Now
redo the puzzle in base 12; your answer should be 10ABtwelve.

Exercises 4.3

Express each number in base 10.

1. 1101two 2. 11011two 3. 1776eight 4. 1976sixteen

Express each decimal number as required.

5. 1076 = ()two 6. 676 = ()eight

7. 1776 = ()eight 8. 2076 = ()sixteen

The binary representation of an integer can conveniently be used to find its
octal representation. Group the bits in threes from right to left and replace
each group with the corresponding octal digit. For example,

243 = 11110011two = 011 110 011two = 363eight

Using this short cut, rewrite each binary number as an octal integer.

9. 1101two 10. 11011two 11. 111010two 12. 10110101two

The binary representation of an integer can also be used to find its hexa-
decimal representation. Group the bits in fours from right to left and then
replace each group with the equivalent hexadecimal digit. For instance,

243 = 11110011two = 1111 0011two = F3sixteen

Using this method express each binary number in base 16.

13. 11101two 14. 110111two 15. 1110101two 16. 10110101two

The techniques explained in Exercises 9–12 are reversible; that is, the octal
and hexadecimal representations of integers can be used to find their binary
representations. For example,

345eight = 011 100 101two = 11100101two

Using this technique, rewrite each number in base two.

17. 36sixteen 18. 237eight 19. 237sixteen 20. 3ADsixteen

In Exercises 21–28, perform the indicated operations.

206 Chapter 4 Induction and Algorithms

21. 1111two 22. 1076eight 23. 3076sixteen 24. 101101two

+ 1011two + 2076eight + 5776sixteen − 10011two

25. 11000two 26. 10111two 27. 1024eight 28. 3ABCsixteen

− 100two × 1101two × 2776eight × 4CBAsixteen

29. Arrange the binary numbers 1011, 110, 11011, 10110, and 101010 in
order of increasing magnitude.

30. Arrange the hexadecimal numbers 1076, 3056, 3CAB, 5ABC, and
CACB in order of increasing magnitude.

31. What can you say about the ones bit in the binary representation of an
even integer? An odd integer?

Find the value of the base b in each case.

32. 54b = 64 33. 1001b = 9 34. 1001b = 126 35. 144b = 49

36. Suppose a space investigative team to Venus sends back the picture
of an addition problem scratched on a wall, as shown in Figure 4.14.
The Venusian numeration system is a place value system, just like
ours. The base of the system is the same as the number of fingers
on a Venusian hand. Determine the base of the Venusian numeration
system. (This puzzle is due to H. L. Nelson.∗∗)

Figure 4.14

The sum in
“Venusian” notation.

Define recursively each set S of binary words.

37. Set of binary words that represent even positive integers.

38. Set of binary words that represent odd positive integers.

∗∗M. Gardner, “Mathematical Games,” Scientific American, Vol. 219, Sept. 1968, pp. 218–230.

4.4 Mathematical Induction 207

39. Set of binary words that represent positive integers with no leading
zeros.

40. Set of palindromic binary words.

Polynomials can be evaluated efficiently using the technique of nested
multiplication, called Horner’s method. [This method is named after
the English schoolmaster, William G. Horner (1786–1837), who published
it in 1819.] For instance, the polynomial f (x) = 4x3 + 5x2 + 6x + 7 can be
evaluated as f (x) = ((4x + 5)x + 6)x + 7. Using this method, express each
integer as a decimal integer.

41. 245eight 42. 101101two 43. 1100101two 44. 43BCsixteen

*45. Let x be a three-digit hexadecimal number with distinct digits.
Reverse the digits. Subtract the smaller number from the other num-
ber (save all the digits in your answer). Reverse the digits in the
difference. Add this number to x. Find the sum.

4.4 Mathematical Induction

The principle of mathematical induction† (PMI) is a frequently used proof
technique in both mathematics and computer science, as will be seen
shortly.

Many interesting results in mathematics hold true for all positive inte-
gers. For example, the following statements are true for every positive
integer n, where x, y, and xi are any positive real numbers:

• (x · y)n = xn · yn
• log(x1 . . . xn) =

n∑
i=1

log xi

•
n∑

i=1
i = n(n+1)

2 •
n−1∑
i=0

ri = rn−1
r−1 (r �= 1)

How do we prove that these results hold for every positive integer n?
Obviously, it is impossible to substitute each positive integer for n and
verify that the formula holds. The principle of induction can establish the
validity of such formulas.

To begin with, suppose the orange cans in a collection can be arranged
as in Figure 4.15. Row 1 contains one can, row 2 contains two cans, . . ., row
n contains n cans. Can you predict a formula for the total number of cans
in the collection? See Example 4.15 for a formula.

†Although the Venetian scientist Francesco Maurocylus (1491–1575) applied it in proofs in
a book he wrote in 1575, the term mathematical induction was coined by De Morgan.

208 Chapter 4 Induction and Algorithms

Figure 4.15

The next result is the cornerstone of the principle of induction. Its proof,
as we shall see shortly, follows by the well-ordering principle in Section 4.1.

THEOREM 4.9 Let S be a subset of N satisfying the following properties:

(1) 1 ∈ S.
(2) If k is an arbitrary positive integer in S, then k + 1 ∈ S. Then S = N.

PROOF (by contradiction):
Suppose S �= N. Let S′ = n ∈ N | n /∈ S. Since S′ �= ø, by the well-ordering
principle, S′ contains a least element �′. Then �′ > 1 by condition 1. Since �′
is the least element in S′, �′−1 /∈ S′; so �′−1 ∈ S. Consequently, by condition
2, (�′ − 1) + 1 = �′ ∈ S. This contradiction establishes the theorem. �

This theorem can be generalized as in Theorem 4.10. We leave its proof
as an exercise.

THEOREM 4.10 Let n0 be a fixed integer. Let S be a subset of Z satisfying the following
conditions:

• n0 ∈ S.

• If k is an arbitrary integer ≥ n0 such that k ∈ S, then k + 1 ∈ S.

Then S ⊇{n ∈ Z | n ≥ n0}. �

Weak Version of Induction
Before we formalize the principle of induction, let’s look at a trivial example.
Consider an infinite number of dominoes arranged in a row (see Figure
4.16a). Suppose we knock down the first domino.

What happens to the rest of the dominoes? Do they all fall? Not
necessarily; see Figures 4.16b and c.

So let’s further assume the following: If the kth domino is knocked down,
then the (k + 1)st domino also falls down. If we topple the first domino, what
would happen to the rest? They all would fall; see Figure 4.16d.

This illustration can be expressed in symbols. Let P(n) denote the pred-
icate that the nth domino falls. (Note: UD = N.) Assume the following
propositions are true:

• P(1).

• P(k) → P(k + 1) for every positive integer k.

4.4 Mathematical Induction 209

Figure 4.16

a b c d

Then P(n) is true for every positive integer n; that is, every domino would
fall. This leads us to the weak version of the principle.

THEOREM 4.11 (The Principle of Mathematical Induction) Let P(n) be a predicate
satisfying the following conditions, where n is an integer:

(1) P(n0) is true for some integer n0.
(2) If P(k) is true for an arbitrary integer k ≥ n0, then P(k + 1) is also

true.

Then P(n) is true for every integer n ≥ n0.

PROOF:
Let S denote the set of integers ≥ n0 for which P(n) is true. Since P(n0)
is true, n0 ∈ S. By condition 2, whenever k ∈ S, k + 1 ∈ S. Therefore, by
Theorem 4.10, S consists of all integers ≥ n0. Consequently, P(n) is true for
every integer n ≥ n0. This establishes the validity of the principle. �

Condition 1 assumes the proposition P(n) is true when n = n0. Look at
condition 2: If P(n) is true for an arbitrary integer k ≥ n0, it is also true for
n = k + 1. Then, by the repeated applications of condition 2 and the law of
detachment, it follows that P(n0 + 1), P(n0 + 2), . . . all hold true. In other
words, P(n) holds for every n ≥ n0.

Proving a result by PMI involves two key steps:

1. Basis step Verify that P(n0) is true.
2. Induction step Assume P(k) is true for an arbitrary integer

k ≥ n0 (inductive hypothesis).
Then verify that P(k + 1) is also true.

210 Chapter 4 Induction and Algorithms

A word of caution: A question frequently asked is, “Isn’t this cyclic
reasoning? Are you not assuming what you are asked to prove?” The
confusion stems from misinterpreting step 2 for the conclusion. The
induction step involves showing that the implication P(k) → P(k + 1) is
a tautology; that is, if P(k) is true, then so is P(k + 1). The conclusion is
“P(n) is true for every n ≥ n0.” So be careful.

A variety of interesting examples will show how useful this important
proof technique is.

The next example gives a nice formula for computing the total number
of cans in the collection in Figure 4.15.

EXAMPLE 4.15 Using PMI, prove that, for every positive integer n,

1 + 2 + 3 + · · · + n = n(n + 1)
2

PROOF (by induction):

Let P(n):
n∑

i=1
i = n(n + 1)

2
.

Basis step To verify that P(1) is true (Note: Here n0 = 1):

When n = 1, RHS = 1(1+1)
2 = 1 =

1∑
i=1

i = LHS; so P(1) is true.

Induction step Let k be an arbitrary positive integer. We would like to
show that P(k) → P(k + 1): Assume P(k) is true; that is,

k∑
i=1

i = k(k + 1)
2

←− inductive hypothesis

To establish that P(k) → P(k + 1) is true, that is,∑
i = (k + 1)(k + 2)

2

we start with the LHS of this equation:

LHS =
k+1∑
i=1

i =
k∑

i=1

i + (k + 1)

⎛
⎝Note :

k+1∑
i=1

xi =
k∑

i=1

xi + xk+1

⎞
⎠

= k(k + 1)
2

+ (k + 1), by the inductive hypothesis

= (k + 1)(k + 2)
2

= RHS

4.4 Mathematical Induction 211

Thus, if P(k) is true, then P(k + 1) is also true.
Therefore, by PMI, P(n) is true for every n ≥ 1; that is, the formula holds

for every positive integer n. �

Figure 4.17 provides a geometric proof of this formula without words.

Figure 4.17

�

S �

�

S

S

�

�

n(n�1)

n(n�1)
2

�

The next example, again an application of induction, employs a divisi-
bility property, so we follow it in some detail.

EXAMPLE 4.16 Prove that 2n3 + 3n2 + n is divisible by 6 for every integer n ≥ 1.

PROOF (by PMI):
Let P(n): 2n3 + 3n2 + n is divisible by 6.

Basis step When n = 1, 2n3 + 3n2 + n = 2(1) + 3(1) + 1 = 6 is clearly
divisible by 6. Therefore, P(1) is true.

Induction step Assume P(k) is true, that is, 2k3 + 3k2 + k is divis-
ible by 6 for any k ≥ 1. Then 2k3 + 3k2 + k = 6m for some integer m
(inductive hypothesis). We must show that P(k + 1) is true; that is,
2(k + 1)3 + 3(k + 1)2 + (k + 1) is divisible by 6. Notice that

2(k + 1)3 + 3(k + 1)2 + (k + 1)

= 2(k3 + 3k2 + 3k + 1) + 3(k2 + 2k + 1) + (k + 1)

= (2k3 + 3k2 + k) + 6(k2 + 2k + 1)

= 6m + 6(k2 + 2k + 1) by the inductive hypothesis

= 6(m + k2 + 2k + 1),

which is clearly divisible by 6. Thus P(k + 1) is true.
Thus, by induction, the given statement is true for every n ≥ 1. �

Notice that in the above examples, n0 = 1, but it need not always be 1,
as the next example shows.

212 Chapter 4 Induction and Algorithms

Jacob I. Bernoulli (1654–1705), a member of the most distinguished
family of mathematicans (see the family tree in Section 9.1), was born in
Basel, Switzerland. His grandfather, a pharmacist in Amsterdam, had
become a Swiss through marriage, and his father was a town councilor
and a magistrate.

Bernoulli received his M.A. in philosophy in 1671 and a theological
degree 5 years later. During this time, he studied mathematics and astron-
omy against his father’s will. He spent the next 2 years tutoring in Geneva.
In 1687 he became professor of mathematics at the University of Basel,
remaining there until his death. His brother Johann succeeded him at
Basel.

In May 1690 he used the term integral in the calculus sense known
today. Bernoulli’s most famous work, Ars Conjectandi, was published posthumously in 1713. It contains
significant contributions to probability theory, the theory of series, and gravitational theory.

EXAMPLE 4.17 (Bernoulli’s Inequality) Let x be any real number greater than −1.
Prove that (1 + x)n ≥ 1 + nx for every n ≥ 0.

PROOF (by PMI):
Let x be any real number > −1. Let P(n): (1 + x)n ≥ 1 + nx. (Note:
The induction is on the discrete variable n and not on the “continuous”
variable x.)

Basis step To verify that P(0) is true: Notice that

(1 + x)0 = 1

≥ 1 + 0x

So P(0) is true. (Note: Here n0 = 0.)

Induction step Assume P(k) is true; that is, (1 + x)k ≥ 1 + kx for an
arbitrary integer k ≥ 0. We need to show that P(k + 1) is true; that is,
(1 + x)k+1 ≥ 1 + (k + 1)x.

By the inductive hypothesis, we have (1 + x)k ≥ 1 + kx. Then

(1 + x)k+1 = (1 + x)(1 + x)k,

≥ (1 + x)(1 + kx), by IH and since 1 + x > 0

= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x, since kx2 ≥ 0

Therefore, P(k + 1) is also true.
Thus, by PMI, (1 + x)n ≥ 1 + nx for every n ≥ 0. �

The next example inductively establishes Theorem 2.3 from Chapter 2.

4.4 Mathematical Induction 213

EXAMPLE 4.18 A finite set A with n elements has exactly 2n subsets.

PROOF (by PMI):

Basis step When n = 0, A = ø, so A has exactly 1 = 20 subset. Thus the
result is true when n = 0.

Induction step Assume any finite set with k elements has 2k subsets,
where k ≥ 0. Let A be a set with k+1 elements. We would like to show that
A has 2k+1 subsets.

To this end, let x ∈ A. Let B = A − {x}. Since | B | = k, B has 2k subsets
by the inductive hypothesis. Each of the subsets of B is a subset of A. Now
add x to each of them. The resulting 2k sets are also subsets of A. Since
every subset of A either contains x or does not contain x, by the addition
principle, A has 2k + 2k = 2k+1 subsets.

Thus, by the principle of induction, the result holds for every finite set.
�

Both the basis and the induction steps are essential in the principle of
induction, as the next two examples illustrate.

EXAMPLE 4.19 Let g(n) denote the maximum number of nonoverlapping regions formed
inside a circle by joining n distinct points on it. Figures 4.18–4.22 show the
cases n = 1, 2, 3, 4, and 5, where the various regions are numbered 1, 2, 3,
etc. The results are summarized in Table 4.1.

Figure 4.18

1

Figure 4.19

1

2

214 Chapter 4 Induction and Algorithms

Figure 4.20
1

2

43

Figure 4.21

2
3

5

7

64

1

8

Figure 4.22

1

16

2 3 4

5

6 7
8

15 14 12
11

9 10

13

Figure 4.23

It appears from the table that g(n) = 2n−1. Then g(1) = 20 = 1, which is
true (basis step). Nonetheless, this does not guarantee that g(n) = 2n−1 for
every n ≥ 1. If the formula were true, there would be g(6) = 25 = 32 nonover-
lapping regions with six points. Unfortunately, there are only 31 such
regions (see Figure 4.23) We shall derive the correct formula in Chapter 6.

4.4 Mathematical Induction 215

Table 4.1 Number of points n 1 2 3 4 5 6

Maximum number
of nonoverlapping
regions g(n)

1 2 4 8 16 ?

We can conclude that the truthfulness of the basis step and an apparent
pattern do not ensure that P(n) is true for every n. �

The following example shows that the validity of the induction step is
necessary, but not sufficient, to guarantee that P(n) is true for all integers
in the UD.

EXAMPLE 4.20 Consider the “formula” P(n) : 1 + 3 + 5 + · · · + (2n − 1) = n2 + 1. Suppose

P(k) is true:
k∑

i=1
(2i − 1) = k2 + 1. Then:

k+1∑
i=1

(2i − 1) =
k∑

i=1

(2i − 1) + (2k + 1)

= (k2 + 1) + (2k + 1)

= (k + 1)2 + 1

So if P(k) is true, P(k + 1) is true. Nevertheless, the formula does not hold
for any positive integer n. Try P(1) (see Exercise 5). �

Using induction, the next example “proves” that every person is of the
same sex.

EXAMPLE 4.21 “Prove” that every person in a set of n people is of the same sex.

“PROOF”:
Let P(n): Everyone in a set of n people is of the same sex. Clearly, P(1)
is true. Let k be a positive integer such that P(k) is true; that is, every-
one in a set of k people is of the same sex. To show that P(k + 1) is true,
consider a set A = {a1, a2, . . ., ak+1} of k+1 people. Partition A into two
overlapping sets, B = {a1, a2, . . ., ak} and C = {a2, . . ., ak+1}, as in Figure
4.24. Since | B | = k = | C |, by the inductive hypothesis, everyone in B is of
the same sex and everyone in C is of the same sex. Since B and C overlap,
everyone in B ∪ C must be of the same sex; that is, everyone in A is of the
same sex.

Thus, by PMI, P(n) is true for every n ≥ 1. This concludes the “proof.”
�

Note: The assertion that everyone is of the same sex is clearly false.
Can you find the flaw in the “proof”? See Exercise 46.

216 Chapter 4 Induction and Algorithms

Figure 4.24

a1 ak�1

a2
a3

ak
B C

Before discussing the second version of the principle of induction,
we will look at a few applications of the formula in Example 4.15. First
a definition.

Polygonal Number
A polygonal number is a positive integer n that can be represented by n
dots in a polygonal array in a systematic fashion. For example, the integers
1, 3, 6, 10, . . . are triangular numbers since they can be represented by
triangular arrays, as shown in Figure 4.25; the number of pins in a bowling
alley and that of balls in the game of pool are triangular numbers. Let tn
denote the nth triangular number. Then

tn = 1 + 2 + 3 + · · · + n = n(n + 1)
2

Figure 4.25

t1�1 t2�3 t3�6 t4�10

Triangular numbers manifest delightful properties. For example,
tn + tn−1 = n2; Figures 4.26 and 4.27 provide a nonverbal, geometric proof
of this result. See Exercises 47–50.

Figure 4.26

4.4 Mathematical Induction 217

Figure 4.27

The next example is another application of the formula in Example 4.15
and the generalized pigeonhole principle.

EXAMPLE 4.22 Let a1, a2, . . ., an be the first n positive integers in some order. Suppose
they are arranged around a circle (see Figure 4.28). Let k be any positive
integer ≤ n. Prove that there exists a set of k consecutive elements in the
arrangement with a sum �[kn(n + 1) − 2]/2n�, where �x� denotes the floor
of x.

Figure 4.28

a3

a2

a1
an

an�1

PROOF:
Consider the following sums:

S1 = a1 + a2 + · · · + ak

S2 = a2 + a3 + · · · + ak+1

...

Sn = an + a1 + · · · + ak−1

Each of the first n positive integers appears k times in this set of sums.
Then

n∑
i=1

Si = k

(n∑
i=1

ai

)
= k

(n∑
i=1

i

)
= kn(n + 1)

2
, by Example 4.15

218 Chapter 4 Induction and Algorithms

Consider kn(n + 1)/2 pigeons. We would like to distribute them
among n pigeonholes, called S1, S2, . . . , Sn. By the generalized pigeon-
hole principle, at least one of the pigeonholes Si must contain more
than �kn(n + 1)/2n − 1/n�= �[kn(n + 1 − 2)]/2n� pigeons. In other words,
si > �kn(n + 1) − 2/2n�, as desired. �

In particular, if numbers 1 through 10 are randomly placed around a
circle, at least three consecutive integers in the arrangement must have a
sum exceeding �[3 · 10 · 11 − 2]/(2 · 10)� = 16.

We now discuss the strong version of the principle of induction.

Strong Version of Induction
Sometimes the truth of P(k) might not be enough to establish that of
P(k + 1). In other words, the truthfulness of P(k + 1) may require more
than that of P(k). In such cases, we have to assume a stronger inductive
hypothesis that P(n0), P(n0 + 1), . . . , P(k) are all true; then verify that
P(k + 1) is also true. This strong version, which can be proved using the
weak version (see Exercise 57), is stated as follows.

THEOREM 4.12 (The Second Principle of Mathematical Induction) Let P(n) be a
predicate satisfying the following conditions, where n is any integer:

• P(n0) is true for some integer n0.

• If k is an arbitrary integer ≥ n0 such that P(n0) ∧ P(n0 + 1) ∧ · · · ∧ P(k)
is true, then P(k + 1) is also true. Then P(n) is true for every n ≥ n0.

The next theorem illustrates this proof technique. �

THEOREM 4.13 (The Fundamental Theorem of Arithmetic) Every positive integer
n ≥ 2 either is a prime or can be written as a product of primes.

PROOF (by strong induction):
Let P(n) denote the given predicate.

Basis step Choose n0 = 2. Since 2 is itself a prime, P(2) is true.

Inductive step Let k be a positive integer ≥ 2 such that P(2), P(3), . . . ,
P(k) are true; that is, assume that integers 2 through k are primes or can
be written as products of primes. We would like to show that P(k + 1) is
also true; that is, integer k + 1 is a prime or can be expressed as a product
of primes.

If k + 1 is itself a prime, then we are done. If k + 1 is not a prime, it must
be the product of two positive integers x and y, where 1 < x, y < k + 1. By
the inductive hypothesis, both x and y are primes or products of primes.
Therefore, k + 1 = x×y is also a product of two or more prime numbers.
In other words, P(k + 1) also holds:

Thus, by the strong version of induction, P(n) is true for every n ≥ 2. �

4.4 Mathematical Induction 219

We now present an interesting application of the fundamental theorem
of arithmetic, which is the cornerstone of number theory, and the floor
function.

EXAMPLE 4.23 Find the number of trailing zeros in 123!

SOLUTION:
By the fundamental theorem of arithmetic, 123! can be factored as 2a5bc,
where c denotes the product of primes other than 2 and 5. Clearly a > b.
Each trailing zero in 123! corresponds to a factor of 10 and vice versa.

∴ Number of trailing zeros =
(

Number of products of the form
2 · 5 in the prime factorization

)
= minimum of a and b

= b, since a > b

We proceed to find b:

Number of positive integers ≤ 123 and divisible by 5 = �123/5� = 24

Each of them contributes a 5 to the prime factorization of 123!

Number of positive integers ≤ 123 and divisible by 25 = �123/25� = 4

(See Figure 4.29.) Each of them contributes an additional 5 to the prime
factorization. Since no higher power of 5 contributes a 5 in the prime fac-
torization of 123!, the total number of 5’s in the prime factorization equals
24 + 4 = 28. Thus the total number of trailing zeros in 123! is 28.

Figure 4.29

123! � 123 � � � 120 � � � 115 � � � 100 � � � 95 � � � 75 � � � 50 � � � 25 � � � 10 � � � 5 � � � 1

each contributes a 5

each contributes an additional 5

�
The next example is another interesting application of the floor function.

It employs the following facts from number theory:

• Every positive integer that is not a square has an even number of positive
factors. For example, 18 has six positive factors: 1, 2, 3, 6, 9, 18; 21 has
four: 1, 3, 7, 21; 19 has two: 1, 19.

• Every perfect square has an odd number of positive factors. For exam-
ple, 25 has three positive factors, namely, 1, 5, and 25; 64 has seven:
1, 2, 4, 8, 16, 32, and 64.

220 Chapter 4 Induction and Algorithms

• There are �√n� perfect squares ≤ n.

• For example, there are �√27�= 5 perfect squares not exceeding
27 : 1, 4, 9, 16, 25; there are �√68�= 8 perfect squares < 68 : 1, 4, 9, 16,
25, 36, 49, 64.

EXAMPLE 4.24 There are 1000 rooms in a hotel and every room is occupied by a guest. The
first guest opens the door to every room. The nth guest closes every nth
door if it is open and opens it otherwise, where 2 ≤ n ≤ 1000. How many
doors will be open at the end?∗

SOLUTION:
Before applying these results to solve the puzzle, let us study a mini-version
with 10 tenants and 10 apartments. The first tenant opens all 10 doors; the
second tenant closes the 2nd, 4th, 6th, 8th, and 10th doors; the third closes
the 3rd door, opens the 6th door, and closes the 9th door; the fourth tenant
opens the 4th and 8th doors. Continuing like this, the 10th tenant closes
the 10th door. These data are summarized in Table 4.2, where O indicates
the door is open and C indicates the door is closed.

Table 4.2 Door

Tenant 1 2 3 4 5 6 7 8 9 10

1 O O O O O O O O O O
2 . C . C . C . C . C
3 . . C . . O . . C .
4 . . . O . . . O . .
5 C O
6 C
7 C . . .
8 C . .
9 O .

10 C

It follows from the table that doors 1, 4, and 9 remain open at the end,
so the number of such doors is three. (Notice that 3 = �√10�; so can you
predict the answer to the given problem? Construct tables like Table 4.2
for 13 tenants and 13 apartments, 18 tenants and 18 apartments, and 25
tenants and 25 apartments, and look for a pattern.)

Let us now return to the original problem. The first tenant opens all
doors. Consider the kth tenant, where 2 ≤ k ≤ 1000.

Case 1 Let n be a perfect square, where n2 ≤ 1000. Since n has an odd
number of positive factors, the last person to touch the door will open it.
Thus every nth door will remain open if n is a perfect square. The number

∗Based on M. vos Savant, Ask Marilyn, St. Martin Press, New York, 1992, p. 228.

4.4 Mathematical Induction 221

of such doors equals the number of perfect squares ≤ 1000, namely,
�√1000� = 31.

Case 2 Suppose n is not a perfect square, where n2 ≤ 1000. Since n has an
even number of positive factors, the last person to touch the door will close
it. In other words, every nth door will remain closed if n is not a perfect
square.

Thus, by the addition principle, 31 + 0 = 31 doors will remain open. They
are doors numbered 1, 4, 9, 16, 25, . . ., 900, and 961. �

More generally, suppose there are m tenants and m apartments, and the
first tenant opens all doors. The jth tenant closes every jth door if it is open,
and opens it otherwise, where 2 ≤ j ≤ m. How many doors will remain open
at the end?

Exercises 4.4

1. Compute the 36th triangular number. (It is the so-called beastly
number.)

2. Prove that the sum of two consecutive triangular numbers is a perfect
square.

(Twelve Days of Christmas) Suppose you sent your love 1 gift on the
first day of Christmas, 1 + 2 gifts on the second day, 1 + 2 + 3 gifts on the
third day and so on.

3. How many gifts did you send on the 12th day of Christmas?

4. How many gifts did your love receive in the 12 days of Christmas?
Using PMI, prove each for every integer n ≥ 1.

5.
n∑

i=1
(2i − 1) = n2 6.

n∑
i=1

i2 = (n + 1)(2n + 1)
6

7.
n∑

i=1
i3 =

[
n(n + 1)

2

]2
8.

n∑
i=1

ari−1 = a(rn − 1)
r − 1

(r �= 1)

9. n2 + n is divisible by 2. 10. n4 + 2n3 + n2 is divisible by 4.

11. The number of lines formed by joining n (≥ 2) distinct points in a plane,
no three of which being collinear, is n(n − 1)/2.

12. The number of diagonals of a convex n-gon∗ is n(n − 1)/2 ≥ 3.

13. Let a be a positive integer and p a prime number such that p | an. Then
p | a, where n ≥ 1.
(Hint: Use Exercise 37 in Section 4.2.)

∗An n-gon is a polygon with n sides. An n-gon such that the line segment joining any two
points inside it lies within it is a convex polygon.

222 Chapter 4 Induction and Algorithms

14. Prove that 1 + 2 + · · · + n = n(n + 1)/2 by considering the sum in the
reverse order.∗ (Do not use induction.)

Evaluate each sum.

15.
30∑

k=1
(3k2 − 1) 16.

50∑
k=1

(k3 + 2) 17.
n∑

i=1
�i/2� 18.

n∑
i=1

�i/2�

Find the value of x resulting from executing each algorithm fragment.

19. x ← 0
for i = 1 to n do

x ← x + (2i − 1)

20. x ← 0
for i = 1 to n do

x ← x + i(i + 1)

21. x ← 0
for i = 1 to n do

for j = 1 to i do
x ← x + 1

Evaluate each sum and product.

22.
n∑

i=1

i∑
j=1

i 23.
n∑

i=1

i∑
j=1

j 24.
n∑

i=1

i∑
j=1

j2 25.
n∑

i=1

i∑
j=1

(2 j − 1)

26.
n∏

i=1
22i 27.

n∏
i=1

i2 28.
n∏

i=1

n∏
j=1

i j 29.
n∏

i=1

n∏
j=1

2 i+j

30. A magic square of order n is a square arrangement of the positive
integers 1 through n2 such that the sum of the integers along each
row, column, and diagonal is a constant k, called the magic constant.
Figure 4.30 shows two magic squares, one of order 3 and the other of
order 4. Prove that the magic constant of a magic square of order n is
n(n2 + 1)/2.

Figure 4.30

k�15
k�34

8 1 14 15 4
12 7 6 9
8 11 10 5

13 2 3 16

1 6
3 5 7
4 9 2

∗An interesting anecdote is told about Karl Frederich Gauss (1777–1855), one of the great
mathematicians. When he was a child, his teacher asked his pupils to compute the sum of the
first 100 positive integers. According to the story, the teacher did so to get some time to grade
his papers. To the teacher’s dismay, Gauss found the answer in a few moments by pairing the
numbers from both ends:

1 + 2 + 3 + · · ·+ 50 + 51 + · · · + 98 + 99 + 100| || ||| || ||| || || |
The sum of each pair is 101 and there are 50 pairs. So the total sum is 50 · 101 = 5050.

4.4 Mathematical Induction 223

Let p, q, and r be prime numbers, and i, j, and k whole numbers. Find the
sum of the positive divisors of each.

31. pi 32. piqj 33. piqjrk

34. Let p be a prime and n ∈ N. Prove that pn is not a perfect number.
(Hint: Prove by contradiction.)

Find the number of times the statement x ← x + 1 is executed by each
loop.

35. for i = 1 to n do
for j = 1 to i do

x ← x + 1

36. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
x ← x + 1

37. for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
x ← x + 1

38. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
for l = 1 to i do

x ← x + 1

According to legend, King Shirham of India was so pleased with the inven-
tion of chess that he offered to reward its inventor Sissa Ben Dahir with
anything he wished. His request was a seemingly modest one: one grain
of wheat on the first square of a chessboard, two on the second, four on
the third, and so on. The king was delighted with this simple request,
but soon realized he could not fulfill it. The last square alone would take
263 = 9,223,372,036,854,775,808 grains of wheat. Find each for an n × n
chessboard.

39. The number of grains on the last square.

40. The total number of grains on the chessboard.

41. Let an denote the number of times the statement x ← x + 1 is executed
in the following loop:

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

Show that

an =

⎧⎪⎪⎨
⎪⎪⎩

n2

4
if n is even

n2 − 1
4

if n is odd

Find the number of trailing zeros in the decimal value of each.

42. 100! 43. 378! 44. 500! 45. 1000!

224 Chapter 4 Induction and Algorithms

46. Find the flaw in the “proof” in Example 4.21.

Prove each, where tn denotes the nth triangular number and n ≥ 2.

47. 8tn + 1 = (2n + 1)2 48. 8tn−1 + 4n = (2n)2

49. t2
n−1 + t2

n = tn2 50.
n∑

i=1
ti = n(n + 1)(n + 2)

6

Let A, A1, A2, . . . , An, B1, B2, . . ., Bn be any sets, and p1, p2, . . ., pn, q, q1,
q2, . . . , qn be any propositions. Using induction prove each.

*51. A ∪
(

n⋂
i=1

Bi

)
=

n⋂
i=1

(A ∪ Bi) *52. A
n⋂

i=1
(∪Bi) =

n⋃
i=1

(A ∩ Bi)

*53. ∼ (p1 ∧ p2 ∧ · · · ∧ pn) ≡ (∼ p1) ∨ (∼ p2) ∨ · · · ∨ (∼ pn)

*54. ∼ (p1 ∨ p2 ∨ · · · ∨ pn) ≡ (∼ p1) ∧ (∼ p2) ∧ · · · ∧ (∼ pn)

*55. Prove that any postage of n (≥ 2) cents can be made using two- and
three-cent stamps. (Hint: Use the division algorithm and induction.)

*56. Let a and b be any two positive integers with a ≥ b. Using
the sequence of equations in the euclidean algorithm prove that
gcd{a, b} = gcd{rn−1, rn}, n ≥ 1.

*57. Prove the strong version of mathematical induction, using the weak
version.

*58. Prove the weak version of induction, using the well-ordering
principle.

**59. Let Sn denote the sum of the elements in the nth set of the sequence
of sets of squares {1}, {4, 9}, {16, 25, 36}, Find a formula for Sn.
(J. M. Howell, 1989)

**60. Redo Exercise 59 using the sequence of triangular numbers {1},
{3, 6}, {10, 15, 21}, (J. M. Howell, 1988)

4.5 Algorithm Correctness

Suppose we wrote an algorithm to solve a problem and translated the algo-
rithm into a computer program. Since it is impossible to test the program
for all sets of input values, we rely on a mathematical proof to ensure that
the program will always yield the correct output. The principle of induction
can certify the correctness of algorithms.

Correct Program
A correct program yields the correct result for all legal input values,
assuming the program contains no compilation and execution errors.

4.5 Algorithm Correctness 225

Proving the correctness of a program, especially a complex one, is not at all
an easy task. It consists of two steps:

(1) Proving that the program will always terminate; and
(2) proving that it will always produce the correct result. The second step

constitutes the partial correctness of the program.

Loop Invariant
First, we will establish the partial correctness of simple while loops. Let
n denote the number of iterations of a while loop. Assume a predicate
P(n). A relationship among the variables holds true before the loop is exe-
cuted and after each iteration of the loop, no matter how large n is. As
the algorithm execution progresses, the values of the variables in the loop
may vary, but the relationship remains unaffected. Such a predicate is a
loop invariant.

To prove that P(n) is a loop invariant, we apply PMI, as the next two
examples demonstrate.

EXAMPLE 4.25 Algorithm 4.6 computes the product of two positive integers x and y. Notice
that the values of the variables x and y are not affected by the loop in lines
3–7. But the values of i and answer do get changed during each iteration of
the loop.

Algorithm multiplication(x,y)
(* This algorithm computes the product of the positive integers x and y,

and prints the answer. *)
0. Begin (* algorithm *)
1. answer ← 0 (* initialize answer *)
2. i ← 0 (* counter *)
3. while i < x do
4. begin (* while *)
5. answer ← answer + y
6. i ← i + 1
7. endwhile
8. End (* algorithm *)

Algorithm 4.6

Let an and in denote the values of answer and i at the end of n itera-
tions. Let P(n): an = in· y. We shall prove that the predicate P(n) is a loop
invariant.

PROOF (by PMI):
Let P(n): an = in· y, n ≥ 0.

Basis step The value n = 0 means zero iterations; it corresponds to the
situation before the loop is entered. When n = 0, a0 = 0 and i0 = 0.
Therefore, a0 = i0 · y; so, P(0) is true.

226 Chapter 4 Induction and Algorithms

Induction step Assume P(k) is true; that is, ak = ik · y after k iterations.
Then ak+1 = ak + y and ik+1 = ik + 1, by lines 5 and 6. Thus:

ak+1 = ik · y + y, by the inductive hypothesis

= (ik + 1)y

= ik+1 · y

So P(k + 1) is true.
Thus, by PMI, P(n) is true for every n ≥ 0; that is, P(n) is a loop invariant.

�

How is the property that P(n) is a loop invariant useful? Since an = in · y
after n iterations, it must be true even when we exit the loop. The loop is
terminated when in = x. Then answer = an = x · y, as expected. Since P(n)
is a loop invariant, the algorithm does indeed work correctly.

What exactly is the iteration method? Suppose we would like to com-
pute the value f(n) of a function f at an integer n ≥ n0. In the iteration
method, we use f(n0) to compute f(n0 + 1), then use the successive val-
ues f(n0 + 2), f(n0 + 3), . . . to evaluate f(n). For instance, to evaluate
n! by iteration, we successively evaluate 0!, 1!, 2!, . . ., (n − 1)! and then
evaluate n!.

EXAMPLE 4.26 Algorithm 4.7 is an iterative algorithm for computing n!, where n ≥ 0. Let
fact(n) be the value of factorial at the end of n iterations of the loop. Prove
that P(n): fact(n) = n! is a loop invariant.

Algorithm factorial (n)
(* This algorithm computes and prints the value of

n! for every n ≥ 0. *)
0. Begin (* algorithm *)
1. factorial ← 1 (* initialize *)
2. i ← 1 (* counter *)
3. while i < n do
4. begin (* while *)
5. i ← i + 1
6. factorial ← factorial * i
7. endwhile
9. End (* algorithm *)

Algorithm 4.7

PROOF (by PMI):
Let P(n): fact(n) = n!, n ≥ 0.

Basis step When n = 0, fact(0) = 1 = 1! by line 1; so P(0) is true.

4.5 Algorithm Correctness 227

Induction step Assume P(k) is true: fact(k) = k!. Then:

fact(k + 1) = fact(k) · (k + 1), by line 6

= k! · (k + 1), by the inductive hypothesis

= (k + 1)!
Therefore, P(k + 1) is true.

Thus, by induction, P(n) holds true for every n ≥ 0; that is, P(n) is a loop
invariant and hence the algorithm correctly computes the value of n!, for
every n ≥ 0. �

Searching and Sorting Algorithms
The remainder of this section establishes the partial correctness of a few
standard searching and sorting algorithms. We begin with two searching
algorithms, linear and binary.

Linear Search Algorithm
Let X = [x1, x2, . . ., xn] be an unordered list (also known as a one-dimensional
array or simply an array) of n distinct items. We would like to search the
list for a specific item, called key. If key exists in the list, the algorithm
should return the location of key.

We search the list from right to left for convenience. Compare xn and
key. If xn = key, key occurs and location = n. Otherwise, compare xn−1 and
key. If they are equal, we are done. Otherwise, continue the search until
it is successful or the list is empty. This algorithm is the linear search
algorithm.

For example, let X = [Dallas, Boston, Nashville, Albany, Portland] and
key = Albany. Then key occurs in the list at location 4.

In general, we cannot assume key occurs in the list. To make the search
process always successful, we store key in location 0: x0 ← key. So if the
search routine returns the value zero for location, it implies key does not
occur in the list.

An iterative version of the linear search algorithm is given in
Algorithm 4.8.

Algorithm linear search (X,n,key,location)
(* This algorithm searches a list by the linear search method for

a key and returns its location in the list. To make the search
always successful, we store key in x0. If the algorithm returns
the value 0 for location, key does not occur in the list. *)

0. Begin (* algorithm *)
1. x0 ← key
2. i ← n
3. while xi �= key do
4. i ← i − 1

228 Chapter 4 Induction and Algorithms

5. location ← i
6. End (* algorithm *)

Algorithm 4.8

EXAMPLE 4.27 Prove that the linear search algorithm in Algorithm 4.8 works correctly for
every n ≥ 0.

PROOF (by PMI):
Let P(n): The algorithm returns the correct location for every list of size
n ≥ 0.

Basis step When n = 0, the while loop is skipped. The algorithm returns
the value 0 in location by line 5, which is correct. So P(0) is true.

Induction step Assume P(k) is true for an arbitrary integer k ≥ 0; that
is, the algorithm works when the list contains k items.

To show that P(k + 1) is true, consider a list X with k + 1 elements.

Case 1 If xk+1 = key in line 3, the while loop will not be entered and the
algorithm returns the correct value k + 1 for location in line 5.

Case 2 If xk+1 �= key, i = k at the end of the first iteration. This restricts
us to a sublist with k elements. By the inductive hypothesis, the algorithm
works correctly for such a list.

In both cases, P(k + 1) holds. Thus, by induction, P(n) is true for n ≥ 0.
In other words, the algorithm returns the correct location for every list
with n ≥ 0 elements.

Binary Search Algorithm
The binary search algorithm searches for a given key if the list X is
ordered. The technique employed is divide and conquer. First compute
the middle (mid) of the list, where mid =�(1 + n)/2�. The middle item is
xmid.

Now partition the list into three disjoint sublists: [x1, . . . , xmid−1],
[xmid], and [xmid+1, . . . , xn]. If xmid = key, the search is successful and
location = mid. If they are not equal, we search only the lower half or the
upper half of the list. If key < xmid, search the sublist [x1, . . . , xmid−1];
otherwise, search the sublist [xmid+1, . . . , xn]. Continue like this until the
search is successful or the sublist is empty.

EXAMPLE 4.28 Use the binary search algorithm to search the list
X = [3, 5, 8, 13, 21, 34, 55, 89] for key = 5.

SOLUTION:
Let xi denote the ith element of the list X, where 1 ≤ i ≤ n and n = 8.

4.5 Algorithm Correctness 229

Step 1 Compute mid for the list X:

mid = �(1 + n)/2� = �(1 + 8)/2� = 4.

Therefore, the middle term is xmid = 13.

Step 2 Compare xmid and key:
Since x4 �= 5, key, if it occurs, must exist in the lower sublist

[x1, x2, x3]= [3, 5, 8] or in the upper sublist [x5, x6, x7, x8]= [21, 34, 55, 89].
Since key < x4, search the first sublist and continue steps 1 and 2 until
either key is located or the sublist becomes empty.

Step 3 Compute mid for the list [x1, x2, x3]:
mid = �(1 + 3)/2� = 2

So xmid = x2 = 5.

Step 4 Compare xmid and key:
Since xmid = key, the search is successful. Key occurs at location 2 and

we are done. (As an exercise, use the algorithm to search the list X with
key = 23.) �

The steps in this example can be translated into an algorithm. See
Algorithm 4.9.

Algorithm binary search(X,1,n,key,mid)
(* This algorithm searches an ordered list X of n elements for a special

item (key). It returns the location of key if the search is
successful and zero otherwise. The variable mid returns such a value.
The variables low and high denote the lower and upper indices of the
list being searched. *)

0. Begin (* algorithm *)
1. low ← 1
2. high ← n
3. while low ≤ high do (* list is nonempty *)
4. begin (* while *)
5. mid ← �(low + high)/2�
6. if key = xmid then (* key exists in the list*)
7. exit the loop
8. else if key < xmid then (* search lower half*)
9. high ← mid – 1

10. else (* search the upper half *)
11. low ← mid + 1
12. endwhile
13. if low > high then (* search is unsuccessful *)
14. mid ← 0
15. End (* algorithm *)

Algorithm 4.9

230 Chapter 4 Induction and Algorithms

The next example establishes the partial correctness of this algorithm
using strong induction.

EXAMPLE 4.29 Prove that the binary search algorithm (Algorithm 4.9) works correctly for
every ordered list of size n ≥ 0.

PROOF (by strong induction):
Let P(n): The algorithm works for every ordered list of size n.

Basis step When n = 0, low = 1 and high = 0. Since low ≤ high is false in
line 3, the while loop is not executed. So the algorithm returns the correct
value 0 from line 14, as expected, and P(0) is true.

Induction step Assume P(i) holds for every i ≤ k, where k ≥ 0; that is,
the algorithm returns the correct value for any list of size i ≤ k.

To show that P(k + 1) is true, consider an ordered list X of size k + 1.
Since high = k + 1 ≥ 1 = low, the loop is entered and the middle index is
computed in line 5.

Case 1 If key = xmid, we exit the loop (line 7) and the value of mid is
returned, so the algorithm works.

Case 2 If key < xmid, search the sublist x1, . . . , xmid−1; otherwise, search
the sublist xmid+1, . . . , xn. In both cases, the sublists contain fewer than
k + 1 elements, so the algorithm works in either case by the inductive
hypothesis.

Thus P(k + 1) is true. So, by PMI, P(n) is true for n ≥ 0; that is, the
algorithm works correctly for every ordered list of zero or more items. �

Next we present two standard sorting algorithms and prove their
correctness.

Sorting Algorithms
Suppose we are given a list of n items and would like to sort them in “ascend-
ing order.” Several methods are available. Two algorithms that can do the
job are bubble sort and selection sort.

Bubble Sort
Bubble sort is a simple, elegant algorithm for sorting a list of n items. It
“bubbles up” smaller items to the top and pushes larger items to the bottom:
Compare consecutive elements, beginning with the first pair. Swap them if
they are out of order. Compare the next pair and swap them if necessary.
Continue like this to the end of the list. This ends the first pass. Now place
the largest element at the end of the list. Repeat these steps with all but
the largest element until the resulting sublist consists of one element. The
list is now ordered.

4.5 Algorithm Correctness 231

The following example demonstrates this method.

EXAMPLE 4.30 Using bubble sort, sort the list X = [34, 13, 21, 3, 89].
SOLUTION:
Let xi denote the ith element in the list, where 1 ≤ i ≤ 5. The given list is

1 2 3 4 5

X 34 13 21 3 89

Step 1 Compare x1 and x2. Since x1 > x2, swap them. This yields the list

1 2 3 4 5

X 13 34 21 3 89

Now compare x2 and x3. Since x2 > x3, interchange x2 and x3. This produces
the list

1 2 3 4 5

X 13 21 34 3 89

Since x3 > x4, switch them, yielding the list

1 2 3 4 5

X 13 21 3 34 89

Compare x4 and x5. Since x4 < x5, they are in the correct order
and no interchanging is needed. This completes the first pass. At the
end of the first pass, the largest element in the list is placed in proper
position:

1 2 3 4 5

X 13 21 3 34 89︸ ︷︷ ︸ ↑ in correct position
to be sorted

Step 2 In the second pass, compare the elements x1 through x4 and swap
them if necessary. This results in the two largest elements being placed
correctly:

1 2 3 4 5

X 13 3 21 34 89︸ ︷︷ ︸ ︸ ︷︷ ︸
to be sorted correctly sorted

232 Chapter 4 Induction and Algorithms

Step 3 The third pass involves the elements x1 through x3. At the end of
this pass, the three largest elements are correctly placed:

1 2 3 4 5

X 3 13 21 34 89︸ ︷︷ ︸ ︸ ︷︷ ︸
to be sorted in correct order

Step 4 At the end of the fourth pass the list is completely sorted:

1 2 3 4 5

X 3 13 21 34 89︸ ︷︷ ︸
all in correct order

Two important observations:

• At the end of the ith pass, the i largest elements are correctly placed
at the end of the list, where 1 ≤ i ≤ n. So the (i + 1)st pass involves
the elements x1 through xn−i.

• Bubble sort takes n − 1 passes to sort a list of n items, even if the
list becomes ordered at the end of the ith pass, where i < n − 1.
Once the list is sorted, it makes no sense to go through the remain-
ing passes, so the additional passes can be avoided with a boolean
variable.

The various steps in Example 4.30 can be developed into an algorithm
for bubble sort, as presented in Algorithm 4.10.

Algorithm bubble sort(X,n)
(* This algorithm sorts a list X of n elements

using the bubble algorithm. *)
0. Begin (* algorithm *)
1. for i = 1 to n − 1 do
2. for j = 1 to n − i do
3. if xj > xj+1 then
4. swap xj and xj+1
5. End (* algorithm *)

Algorithm 4.10

4.5 Algorithm Correctness 233

EXAMPLE 4.31 Establish the correctness of the bubble sort algorithm.

PROOF (by PMI):
Let P(n): The algorithm sorts every list of size n ≥ 1.

Basis step When n = 1, the list contains just one element and hence is
clearly sorted, so P(1) is true.

Induction step Assume P(k) is true; that is, the algorithm sorts correctly
every list of k (≥ 1) items.

To show that P(k + 1) is true, consider a list X = [x1, x2, . . . , xk+1].
Since k + 1 ≥ 2, the for loop in line 1 is entered. When i = 1, j runs from 1
through n − 1. Lines 3 and 4 are executed: the consecutive elements xj and
xj+1 are compared and swapped if out of order. The inner for loop places
the largest of the elements x1, x2, . . ., xk+1 in position k + 1. This leaves
a sublist of k elements, [x1, x2, . . . , xk]. By the inductive hypothesis, the
algorithm correctly sorts it. It follows that the algorithm correctly sorts
the entire list X; that is, P(k + 1) is true.

Thus, by the principle of induction, P(n) is true for n ≥ 1; that is, the
bubble sort algorithm always works. �

Selection Sort
Unlike bubble sort, selection sort finds the largest element and swaps it
with xn if xn is not the largest element. Find the largest of the remaining
elements x1, x2, . . ., xn−1, and switch it with xn−1 if it isn’t xn−1. Continue
like this until the list is completely sorted.

In each pass, unlike in bubble sort, if two elements are out of order, we
do not swap them right away but wait to find the largest element of the
sublist. At the end of the ith pass, the largest of the elements x1, x2, . . . ,
xn−i+1 is swapped with xn−i+1, where 1 ≤ i < n.

This outline of the selection sort algorithm can be a bit refined. In the
ith pass, initially assume xn−i+1 is the largest element. Find the largest of
the elements x1, x2, . . . , xn−i. Swap it with xn−i+1 if necessary. Algorithm
4.11 results.

Algorithm selection sort(X,n)
(* This algorithm sorts a list X of n items using the iterative version

of selection sort. Maxindex denotes the index of the largest element
in a given pass. *)

0. Begin (* algorithm *)
1. if n > 1 then(* list contains at least two elements *)
2. for i = 1 to n − 1 do

234 Chapter 4 Induction and Algorithms

3. begin (* for *)
4. maxindex ← n − i + 1 (* assume xn−i+1 is the

largest element; save its index. *)
5. for j = 1 to n − i do
6. if xj > xmaxindex, then (* update maxindex *)
7. maxindex ← j
8. if maxindex �= n − i + 1, then (* found a larger

element; swap the corresponding elements *)
9. swap xmaxindex and xn−i+1

10. endfor
11. End (* algorithm *)

Algorithm 4.11

EXAMPLE 4.32 Establish the correctness of Algorithm 4.11.

PROOF (by PMI):
Let P(n): The algorithm works correctly for every list of size n ≥ 1.

Basis step When n = 1, the list contains one element and is clearly sorted,
so P(1) is true.

Induction step Assume P(k) is true; that is, the algorithm sorts correctly
every list of size k ≥ 1.

To show that P(k + 1) is true, consider a list X = [x1, x2, . . . , xk+1] with
k + 1 elements, where k + 1 ≥ 2. Since k + 1 ≥ 2, the condition in line 1 is
satisfied, and we enter the loop in line 2. When i = 1, maxindex = (k + 1) −
1 + 1 = k + 1. The for loop in lines 5–7 compares each of the elements x1,
x2, . . . , xk with xmaxindex and updates it as needed. Line 8 updates maxindex
if we have found an element larger than xk+1. If maxindex �= k + 1, then
the elements xk+1 and xmaxindex are swapped. This stores the largest of the
k + 1 elements in position k + 1, leaving a sublist of k elements, namely,
x1, x2, . . . , xk to be sorted.

Therefore, by the inductive hypothesis, the algorithm sorts correctly the
list X containing k + 1 elements.

Thus, by induction, P(n) is true for every n ≥ 1; that is, the algorithm
correctly sorts every list of size n. �

These searching and sorting algorithms are pursued again in Section 4.7.
Additional sorting algorithms appear in the exercises.

Exercises 4.5

Prove that the given predicate P(n) in each algorithm is a loop invariant.

1. Algorithm exponential(x,n)
(* This algorithm computes
xn, where x ∈ R

+ and
n ∈ W. *)

2. Algorithm division(x,y)
(* This algorithm computes
the quotient and the
remainder when a positive

4.5 Algorithm Correctness 235

0. Begin (* algorithm *)
1. answer ← 1
2. while n > 0 do
3. begin (* while *)
4. answer ← answer · x
5. n ← n − 1
6. endwhile
7. End (* algorithm *)
P(n): an = xn, where an
denotes the value of answer
after n iterations of the
while loop.

3. Algorithm Euclid(x,y,divisor)
(* See Algorithm 4.2 *)
P(n): gcd{xn,yn} = gcd{x,y}
where xn and yn denote
the values of x = dividend
and y = divisor after n
iterations.

4. Algorithm gcd(x,y)
(* This algorithm computes
the gcd of two positive
integers x and y. *)
0. Begin (* algorithm *)
1. while x �= y do
2. if x > y then
3. x ← x − y
4. else
5. y ← y − x
6. gcd ← x
7. End (* algorithm *)
P(n): gcd{xn, yn} = gcd{x, y},
where xn and yn denote the
values of x and y at the end
of n iterations of the loop.

integer x is
divided by a positive
integer y using addition and
subtraction. *)
0. Begin (* algorithm *)
1. dividend ← x
2. divisor ← y
3. quotient ← 0
4. remainder ← dividend
5. while dividend ≥

divisor do
6. begin (* while *)
7. dividend ← dividend

− divisor
8. quotient ← quotient + 1
9. remainder ← dividend

10. endwhile
11. End (* algorithm *)

5. Algorithm sum (x,y) (* This
algorithm prints the sum of
two nonnegative integers x
and y. *)
0. Begin (* algorithm *)
1. sum ← x
2. count ← 0 (* counter *)
3. while count < y do
4. begin (* while *)
5. sum ← sum + 1
6. count ← count + 1
7. endwhile
8. End (* algorithm *)
P(n): x = qny + rn, where qn
and rn denote the quotient
and the remainder after n
iterations.

6. Algorithm square (x) (* This algorithm prints the square of x ∈ W. *)
0. Begin (* algorithm *)
1. answer ← 0
2. i ← 0 (* counter *)
3. While i < x do
4. begin (* while *)
5. answer ← answer + (2i + 1):
6. i ← i + 1
7. endwhile
8. End (* algorithm *)
P(n): an = n2, where an denotes the value of answer at the end of n
iterations.

236 Chapter 4 Induction and Algorithms

Using the algorithm in Exercise 4, compute the gcd of each pair of
integers.

7. 18, 3 8. 28, 12 9. 28, 48 10. 24, 112

Sort the following lists using the bubble sort algorithm.

11. 23, 7, 18, 19, 53 12. 19, 17, 13, 8, 5

13–14. Sort each list in Exercises 11 and 12 using the selection sort
algorithm.

Write an iterative algorithm to do the tasks in Exercises 15–17.

15. Compute n!, n ≥ 0.

16. Determine if two n × n matrices A and B are equal.

17. Compute the product of two n × n matrices A and B.

18. Let A = (aij)n×n and B = (bij)n×n. A is less than or equal to B,
denoted by A ≤ B, if aij ≤ bij for every i and j. Write an algorithm
to determine if A ≤ B.

Consider a list X of n numbers x1, x2, . . . , xn. Write iterative algorithms to
do the tasks in Exercises 19–25.

19. Find the sum of the numbers.

20. Find the product of the numbers.

21. Find the maximum of the numbers.

22. Find the minimum of the numbers.

23. Print the numbers in the given order x1, x2, . . . , xn.

24. Print the numbers in the reverse order x1, x2, . . . , xn.

25. Write an algorithm to determine if a string S of n characters is a
palindrome.

26–36. Establish the correctness of each algorithm in Exercises 15–25.

Use the insertion sort algorithm in Algorithm 4.12 to answer Exercises
37–39.

Algorithm insertion sort(X,n)
(* This algorithm sorts a list X of n elements into

ascending order by inserting a new element in the
proper place at the end of each pass. *)

0. Begin (* algorithm *)
1. for i = 2 to n do
2. begin (* for *)
3. temp ← xi (* temp is a temporary variable *)
4. j ← i − 1
5. while j ≥ 1 do

4.6 The Growth of Functions 237

6. begin (* while *)
7. if xj > temp then
8. xj+1 ← xj
9. j ← j − 1

10. endwhile
11. xj+1 ← temp
12. endfor
13. End (* algorithm *)

Algorithm 4.12

Sort each list.

37. 3, 13, 8, 6, 5, 2 38. 11, 7, 4, 15, 6, 2, 9

39. Establish the correctness of the algorithm.

4.6 The Growth of Functions

The growth of functions can be investigated using three important nota-
tions: the big-oh (O), the big-omega (�), and the big-theta (�) notations.∗
We will employ it in Sections 4.7 and 5.7 to analyze some standard
algorithms.

Suppose we have developed two algorithms to solve a problem. To deter-
mine if one is better than the other, we need some type of yardstick to
measure their efficiency. Since the complexity of an algorithm is a function
of the input size n, we measure efficiency in terms of n. To this end, we begin
with the big-oh notation, introduced in 1892 by the German mathematician
Paul Gustav Heinrich Bachmann. The big-oh symbol is also known as the
Landau symbol after the German mathematician Edmund Landau who
popularized it.

The Big-Oh Notation
Let f, g: N → R. Then f(n) is of order at most g(n), if a positive constant
C and a positive integer n0 exist such that | f(n)| ≤ C|g(n)| for every n ≥ n0.
In symbols, we write f(n) = O(g(n)). (Read this as f(n) is big-oh of g(n).)

In this definition, if we can find one value for C, any value greater than
that also will work, so the value of C is not unique.

When we say the time needed to execute an algorithm is O(g(n)), it
simply means the time needed is not more than some constant times |g(n)|
when n is sufficiently large. For instance, let cn denote the maximum
number of element comparisons required in line 3 of the linear search
algorithm (Algorithm 4.8), where n denotes the input size. Using cn as an

∗� and � are the uppercase Greek letters omega and theta, respectively.

238 Chapter 4 Induction and Algorithms

Paul Gustav Heinrich Bachmann (1837–1920), the son of a
Lutheran minister, was born in Berlin. He inherited a pious attitude and
a great love for music. During his early years, he had difficulties in math-
ematical studies, but his talent was discovered by one of his teachers.

After recovering from tuberculosis in Switzerland, Bachmann studied
mathematics, first at the University of Berlin and then at the University of
Göttingen, where he attended Dirichlet’s lectures. In 1862 he received his
doctorate from Berlin under the guidance of the famous German math-
ematician Ernst Kummer, for a thesis on group theory. He became a
professor at Breslau and later at Munster.

Around 1890, he resigned his position and moved to Weimar, Germany,
where he continued his mathematical writing, composed music, played
the piano, and wrote music criticism for newspapers. His writings include
several volumes on number theory and a book on Fermat’s Last Theorem.
Bachmann died in Weimar.

Edmund Landau (1877–1938), the son of a gynecologist, was born in
Berlin. After attending high school, he studied mathematics at the University
of Berlin, receiving his doctorate under the German mathematician Georg
Frobenius in 1899. He taught at Berlin until 1909 and then moved to the
University of Göttingen, where both David Hilbert and Felix Klien were col-
leagues. After the Nazis forced him to quit teaching, he never gave another
lecture in Germany.

Landau’s principal contributions were to analytic number theory, espe-
cially to the distribution of primes. He wrote several books and more than 250
papers, and exercised tremendous influence on the development of number
theory. Landau died suddenly in Berlin.

estimate of the execution of the algorithm, it can be shown that cn = O(n)
(see Example 4.44). This means cn grows no faster than n, when n is
sufficiently large.

Before we analyze the execution times of algorithms, we will study a few
simple examples to show how to use the big-oh notation.

EXAMPLE 4.33 Let f(n) = 50n3 − 6n + 23. Show that f(n) = O(n3).

SOLUTION:
f(n) = 50n3 − 6n + 23

Therefore,

| f (n) | = | 50n3 − 6n + 23 |
≤ | 50n3 | + | −6n | + | 23 |, by the triangle inequality

4.6 The Growth of Functions 239

= 50n3 + 6n + 23

≤ 50n3 + 6n3 + 23n3, when n ≥ 1 (Note : n0 = 1)

= 79n3

Thus, by taking C = 79, it follows that f(n) = O(n3). �
More generally, we have the following result.

THEOREM 4.14 Let f (n) =
m∑

i=0
aini be a polynomial in n of degree m. Then f (n) = O(nm).

PROOF:
f (n) = amnm + am−1nm−1 + · · · + a1n + a0. By the triangle inequality,
we have:

|f (n)| ≤ |am|nm + |am−1|nm−1 + · · · + |a1|n + |a0|
≤ |am|nm + |am−1|nm + · · · + |a1|nm + |a0|nm, n ≥ 1

=
(m∑

i=1

|ai|
)

nm = Cnm, where C =
m∑

i=1

|ai|

= O(nm)

Thus, when n is sufficiently large, the leading term dominates the
value of the polynomial. �

In Example 4.33, although f(n) = O(n3), it is also true that f (n) ≤ 79n5

and f (n) ≤ 79n6. So we could say correctly, but meaninglessly, that
f(n) = O(n5) and also f(n) = O(n6). To make comparisons meaningful,
however, we shall always choose the smallest possible order of magnitude.

Commonly Used Order Functions
The most common order functions and their names are listed below,
arranged in increasing order of magnitude:

• Constant O(1)

• Logarithmic O(lg n)

• Linear O(n)

• (no name exists) O(n lg n)

• Quadratic O(n2)

• Cubic O(n3)

• Polynomial O(nm)

240 Chapter 4 Induction and Algorithms

• Exponential O(2n)

• Factorial O(n!)

When we say that the order of magnitude of an algorithm is a constant,
we mean that the execution time is bounded by a constant; that is, it is
independent of the input size n. If the order is linear, the execution time
grows linearly; it is directly proportional to the input size.

Approximate values of some of the order functions are given in Table 4.3
for comparison; the graphs of a few of them are given in Figure 4.31.

Table 4.3 lg n n n lg n n2

3 10 30 100
6 100 600 10,000
9 1,000 9,000 100,000

13 10,000 130,000 100,000,000
16 100,000 1,600,000 10,000,000,000
19 1,000,000 19,000,000 one trillion

Figure 4.31

1

1

2

4

8

16

32

64

128

2 3 4 5 6 7 8 9 10

y�n!

y�n

y�2n

y�n2

y�n lg n

y�n lg n

y�1
n

y

The order functions satisfy the following relationships among the fre-
quently used execution times, when n is sufficiently large: O(1) < O(lg n)
< O(n) < O(n lg n) < O(n2) < O(n3) < O(2n) < O(n!). They give us an
idea of how long algorithms of varying orders will take to execute jobs.

4.6 The Growth of Functions 241

For instance, if two algorithms solve a problem, one with O(n) and the
other with O(lg n), then (other things being equal) the second algorithm
will work faster.

The next two examples also illustrate how to estimate the growth of
functions.

EXAMPLE 4.34 Show that n! = O(nn) and lg n! = O(n lg n).

SOLUTION:

• n! = n(n−1) · · · 3 · 2 · 1
≤ n · n · · · n · n · n, where n ≥ 1
= nn

= O(nn) (Note: Use C = 1.)

• Since n! ≤ nn from above,
lg n! ≤ n lg n (Note: If 0 < x ≤ y, then lg x ≤ lg y.)

= O(n lg n)

�
The following example shows how to estimate in a nested for loop the

growth of the number of times an assignment statement is executed.

EXAMPLE 4.35 Estimate f(n), the number of times the statement x ← x + 1, is executed in
the following for loop.

for i = 1 to n do
for j = 1 to i do

x ← x + 1

SOLUTION:
Since the statement x ← x+1 is executed i times for each value of i, where
1 ≤ i ≤ n,

f (n) =
n∑

i=1

i = n(n + 1)
n

= O(n2)

As n increases, f(n) grows as n2. �

The Growth of a Sum of Two Functions
Imagine an algorithm consisting of two subalgorithms. Suppose the orders
of execution times of the subalgorithms are given by f1(n) = O(g1(n)) and
f2(n) = O(g2(n)). The next theorem shows how to compute the order of the
algorithm.

THEOREM 4.15 Let f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Then (f1 + f2)(n) =
O(max{|g1(n)|, |g2(n)|}).

242 Chapter 4 Induction and Algorithms

PROOF
By definition, there exist positive constants C1, C2, n1, and n2 such that
| f1(n)| ≤ C1 |g1(n)| for n ≥ n1, and | f2(n)| ≤ C2|g2(n)| for n ≥ n2. Let
C = max{C1, C2}, n0 = max{n1, n2}, and g(n) = max{|g1(n)|, |g2(n)|}. Then:

| f1(n) + f2(n)| ≤ C1|g1(n)| + C2|g2(n)|
≤ C|g(n)| + C|g(n)|, where n ≥ n0

= 2C|g(n)|
Thus f1(n) + f2(n) = O(g(n)); that is, (f1 + f2)(n) = O(max{|g1(n)|, |g2(n)|}).

�

It follows by this theorem that if f1(n) = O(g(n)) and f2(n) = O(g(n)), then
(f1 + f2)(n) = O(g(n)). Why?

The Growth of a Product of Two Functions
The next theorem helps us to estimate the growth of (f1 · f2)(n), the product
of the functions f1 and f2.

THEOREM 4.16 Let f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Then (f1·f2)(n) = O(g1(n)·g2(n)).

PROOF
Again, by definition, there are constants C1, C2, n1, and n2 such that
| f1(n)| ≤ C1|g1(n)| for n ≥ n1, and | f2(n)| ≤ C2|g2(n)| for n ≥ n2. Let
C = C1C2 and n0 = max{n1, n2}. Then:

|(f1 · f2)(n)| = | f1(n) · f2(n)|
= | f1(n)| · | f2(n)|
≤ C1|g1(n)| · C2|g2(n)|
= C|g1(n)g2(n)|, where n ≥ n0

Thus (f1 · f2)(n) = O(g1(n)g2(n)). �

The next two examples employ this handy theorem along with the earlier
theorems.

EXAMPLE 4.36 Let f (n) = 6n2 + 5n + 7 lg n!. Estimate the growth of f(n).

SOLUTION:
Since 6n2 = O(n2) and 5n = O(n), 6n2 + 5n = O(n2) by Theorem 4.15.
Furthermore, 7 = O(1), and lg n! = O(n lg n) by Example 4.34. So

7 lg n! = O(1) · O(n lg n)

= O(1 · n lg n), by Theorem 4. 16

= O(n lg n)

4.6 The Growth of Functions 243

Since lg n ≤ n, n lg n ≤ n2 for n ≥ 1 (see Figure 4.31), it follows by
Theorem 4.15 that f(n) = O(n2) + O(n lg n) = O(n2). �

EXAMPLE 4.37 Let f (n) = (3n2 + 4n − 5) lg n. Estimate the growth of f(n).

SOLUTION:
3n2 + 4n − 5 = O(n2), by Theorem 4.14
Clearly,

lg n = O(lg n)

So

f (n) = (3n2 + 4n − 5) lg n

= O(n2) · O(lg n)

= O(n2 lg n), by Theorem 4. 16 �

We now turn to the big-omega and the big-theta notations for investi-
gating the growth of functions.

The Big-Omega and Big-Theta Notations
The big-oh notation has been widely used in the study of the growth of func-
tions; however, it does not give us an exact order of growth. For instance,
f (n) = O(g(n)) just implies that the function f does not grow any faster
than g. In other words, it simply provides an upper bound for the size of
f(n) for large values of n, but no lower bound.

When we need the lower bound, we employ the big-omega notation.
When we need both bounds to estimate the growth of f, we use the big-
theta notation. Both notations were introduced in the 1970s by Donald
Knuth of Stanford University.

We now pursue the big-omega notation. As you could imagine by now, its
definition closely resembles that of the big-oh notation; it can be obtained
by simply changing ≤ to ≥.

The Big-Omega Notation
Let f, g : N → R. Suppose there is a positive constant C and a positive
integer n0 such that |f(n)| ≥ C|g(n)| for every n ≥ n0. Then f(n) is �(g(n));
that is, f(n) =�(g(n)). [As above, read this as f (n) is big-omega of g(n).]

The following example illustrates this definition.

EXAMPLE 4.38 Let f(n) = 50n3 − 6n + 23. When n ≥ 0, 50n3 − 6n + 23 ≥ 50n3. So, with
C = 50 and g(n) = n3, it follows that f(n) ≥ C· g(n) for every n ≥ 0. Thus
f (n) = �(n3). (Notice that here n0 = 0.) �

244 Chapter 4 Induction and Algorithms

Donald Ervin Knuth (1938–), a pioneer in the development of the theory of
compilers, programming languages, and the analysis of algorithms, is also
a prolific writer in computer science. He was born in Milwaukee, Wisconsin,
where his father, the first college graduate in the Knuth family, taught
bookkeeping at a Lutheran high school; his talent for mathematics and music
played a significant role in the intellectual development and pursuit of the
young Knuth.

As a youngster, Knuth had a marvelous gift for solving complex problems.
As an eighth grader, he entered the Ziegler’s Candies Contest to find the
number of words that can be formed from the letters in Ziegler’s Giant Bar.
Knuth listed 4500 such words, 2000 more than in Ziegler’s master list. This
won a television set for the school and enough Ziegler candy for the entire
student body.

In high school, Knuth entered the prestigious Westinghouse Science Talent Search (now Intel Science
Talent Search) with his project, The Prtrzebie System of Weights and Measures, that would replace the
cumbersome British system. His project won an honorable mention, and $25 from MAD Magazine for
publishing it. When he graduated from high school, he was already an accomplished mathematician,
musician, and writer.

He majored in physics at the Case Institute of Technology (now Case Western Reserve University) and
was introduced to an IBM 650 computer, one of the earliest mainframes. After studying the manual from
cover to cover, he decided that he could do better and wrote assembler and compiler code for the school’s
IBM 650.

In 1958, Knuth developed a system for analyzing the value of a basketball player, which the coach then
used to help the team win a league championship. Newsweek wrote an article about Knuth’s system and
Walter Cronkite carried it on the CBS Evening News.

In his sophomore year, Knuth switched his major to mathematics. His work at Case was so distin-
guished that when he was awarded his B.S. in 1960, the faculty made an unprecedented decision to grant
him an M.S. concurrently.

Knuth then entered the California Institute of Technology for graduate work and received his
Ph.D. in mathematics 3 years later. He joined the faculty there, also consulting for the Burroughs
Corporation writing compilers for various programming languages, including ALGOL 58 and
FORTRAN II.

From 1968–1969, he worked at the Institute for Defense Analyses, Princeton, New Jersey. In 1969,
Knuth joined the faculty at Stanford University.

Knuth’s landmark project, The Art of Computer Programming, was initiated by Addison-Wesley
Publishing Co. in early 1962, while he was still in graduate school. Dedicated to the study of algorithms,
it would be a seven-volume series when completed. A revered work, it was the pioneer textbook in the
1970s and continues to be an invaluable resource. Knuth developed two computer languages to deal with
mathematics typography, TEX, a typesetting program, and Metafont, a program to develop the shapes of
letters.

He has received numerous honorary degrees from universities around the world: the Grace Murray
Hopper Award (1971), the Alan M. Turing Award (1974), the Lester R. Ford Award (1975), the National
Medal of Science (1979), the McDowell Award (1980), the Computer Pioneer Award (1982), and the Steele
Prize (1987).

An accomplished church organist and composer of music for the organ, Knuth retired from Stanford
in 1992.

4.6 The Growth of Functions 245

We now make an interesting observation. To this end, let f (n) = �(g(n));
so |f (n)| ≥ C|g(n)| for n ≥ n0. Then |g(n)| ≤ C′|f (n)| for some positive
constant C′ = 1/C; so g(n) = O(f (n)). Conversely, let g(n) = O(f (n)).
By retracing these steps, it follows that f (n) = �(g(n)). Thus f (n) =
�(g(n)) if and only if g(n) = O(f (n)).

We now define the big-theta notation, using the big-oh and big-omega
notations.

The Big-Theta Notation
Let f , g : N → R such that f(n) = O(g(n)) and f(n) =�(g(n)). Then f(n) is
said to be of order g(n). We then write f(n) =�(g(n)); read this as f(n) is
big-theta of g(n).

The next two examples illustrate this definition.

EXAMPLE 4.39 Let f (n) = (3n2 + 4n − 5) lg n. By Example 4.37, f (n) = O(n2 lg n). When
n ≥ 1, we also have:

(3n2 + 4n − 5)lg n ≥ 3n2 lg n

That is,

f (n) ≥ 3(n2 lg n)

So

f (n) = �(n2 lg n)

Thus f(n) = O(n2 lg n) =�(n2 lg n), so f(n) =�(n2 lg n). �

EXAMPLE 4.40 Let f(n) show the number of times the assignment statement x ← x + 1
is executed by the nested for loops in Example 4.35. Recall that f (n) =
n(n + 1)/2 = O(n2).

Since n + 1 ≥ n for every n ≥ 1, it follows that n(n + 1)/2 ≥ n2/2;
so f(n) =�(n2). Thus f(n) = �(n2). �

We now make two interesting observations from Examples 4.39 and
4.40:

• If f(n) is a polynomial in n of degree m, then f(n) = θ(nm).

• f(n) =�(g(n)) if and only if A|g(n)| ≤ |f (n)| ≤ B | g(n) | for some
constants A and B.

See Exercises 50 and 51.

246 Chapter 4 Induction and Algorithms

Before closing this section, we add that the definitions of the big-oh, big-
omega, and big-theta notations remain valid even if the domain of f consists
of real numbers.

Exercises 4.6

Using the big-oh notation, estimate the growth of each function.

1. f (n) = 2n + 3

4. f (n) = 3 + lg n

7. f (n) = lg (5n)!

10. f (n) =
n∑

k=1
k3

2. f (n) = 4n2 + 2n − 3

5. f (n) = 3 lg n + 2

8. f (n) = 23

11. f (n) =
n∑

i=1
�i/2�

3. f (n) = 2n3 − 3n2 + 4n

6. f (n) = (3n)!

9. f (n) =
n∑

k=1
k2

12. f (n) =
n∑

i=1
�i/2�

Verify each.

13. 2n = O(n!)

16.
n∑

i=1

1
i(i+1) = O(1)

14.
n−1∑
i=0

2i = O(2n)

17.
n∑

i=1
i(i + 1) = O(n3)

15.
n∑

i=0
ik = O(nk+1)

18.
n∑

i=1
(2i − 1)2 = O(n3)

19–22. Let an denote the number of times the statement x ← x + 1 is
executed by each loop in Exercises 35–38 in Section 4.4. Using the
big-oh notation, estimate the growth of an in each case.

23–32. Using the big-omega notation, estimate the growth of each function
in Exercises 1–5 and 8–12.

Verify each.

33. (3n)! = �(6n) 34.
n∑

i=1
i(i + 1) = �(n3)

35.
n∑

i=1
(2i − 1) = �(n2) 36.

n∑
i=1

(2i − 1)2 = �(n3)

37. 2n + 3 = �(n) 38. 4n2 + 2n − 3 = �(n2)

39. 2n3 − 3n2 + 4n = �(n3) 40. 3 + lg n = �(lg n)

41. 3 lg n + 2 = �(lg n)

43.
n∑

i=1
�i/2� = �(n2)

42. 23 = �(1)

44.
n∑

i=1
�i/2� = �(n2)

4.7 Complexities of Algorithms (optional) 247

45. Let f1(n) = O(g(n)) and f2(n) = kf 1(n), where k is a positive constant.
Show that f2(n) = O(g(n)).

46. Consider the constant function f (n) = k. Show that f (n) = O(1).

Let f (n) = O(h(n)) and g(n) = O(h(n)). Verify each.

47. (f + g)(n) = O(h(n)) 48. (f · g)(n) = O((h(n))2)

49. Let f, g, and h be three functions such that f (n) = O(g(n)) and g(n) =
O(h(n)). Show that f (n) = O(h(n)).

50. Let f(n) =
m∑

i=0
aini, where each ai is a real number and am �= 0. Prove

that f(n) = �(nm).

51. Let f , g : N → R. Prove that f (n) = �(g(n)) if and only if A | g(n) | ≤
| f (n) | ≤ B | g(n) | for some constants A and B.

4.7 Complexities of Algorithms (optional)

The time complexities of standard algorithms can be used to estimate theo-
retically using the big-oh and big-theta notations. Before beginning to code
an algorithm we should make sure it will do its job. Why is analyzing the
algorithm important? Several routines can perform the same task, but not
necessarily with the same efficiency, so we should employ the one that is
most efficient.

Two norms are used to measure the efficiency of an algorithm: space
complexity and time complexity.

Space Complexity
Space complexity refers to how much storage space the algorithm needs.
Since this depends on factors such as the computer used and methods of
data storage, we restrict our discussion to time complexity.

Time Complexity
The time complexity of an algorithm refers to the time it takes to run the
algorithm. It is often measured by the number of fundamental operations
performed by the algorithm. In the case of a sorting or searching algorithm,
we shall use element-comparison as the basic operation. Since the time
required by an algorithm depends on the input size n, we measure time
complexity in terms of n.

Often we are interested in three cases:

• The best-case time is the minimum time needed to execute an
algorithm for an input of size n.

248 Chapter 4 Induction and Algorithms

• The worst-case-time is the maximum time needed to execute the
algorithm for an input of size n.

• The average-case-time is the average time needed to execute the
algorithm for an input of size n. Estimating the average time is often a
difficult task, involving probability.

We begin our analysis with the algorithm for matrix multiplication.

EXAMPLE 4.41 Estimate the number an of operations (additions and multiplications)
needed to compute the product C of two matrices A and B of order n.

SOLUTION:

Let A = (aij)n×n, B = (bij)n×n, and C = (cij)n×n. Since cij =
n∑

k=1
aikbkj, it takes

n multiplications and n − 1 additions to compute each cij. There are n2

elements in C and each takes a total of n + (n − 1) = 2n − 1 operations.
Therefore, an = n2(2n − 1) = O(n3) = �(n3). Thus the product takes
O(n3) = �(n3) operations. �

Next we estimate the number of operations required to compute the
product of two binary integers.

EXAMPLE 4.42 Use Algorithm 4.5 to estimate the maximum number an of operations
(shifting and additions) required to compute the product of two binary
integers x = (xn . . . x0)two and y = (yn . . . y0)two.

SOLUTION:
The worst case occurs when yj = 1 for every j. Each yj contributes a shift of j

places to the left. Therefore, the total number of shifts =
n∑

j=0
j = n(n + 1)/2,

by Example 4.15.
There are n + 1 partial products. Adding them involves an (n + 1)-bit

integer, an (n + 2)-bit integer, . . . , a (2n + 1)-bit integer. Therefore, the
total number of bit additions required is 2n + 1. Thus:

an = (maximum no. of shifts) + (maximum no. of additions)

= n(n + 1)
2

+ 2n + 1

= O(n3) = �(n3) �

Next, we estimate the number of comparisons required by the bubble
sort algorithm, so review it before proceeding any further.

EXAMPLE 4.43 Let cn denote the number of comparisons required in line 3 of the bubble
sort algorithm (see Algorithm 4.10). Estimate the order of magnitude of cn.

SOLUTION:
In line 3 of the algorithm, the consecutive elements xj and xj+1 are
compared for every value of j. Since j varies from 1 to n − i, the

4.7 Complexities of Algorithms (optional) 249

number of comparisons is n − i, by virtue of the inner loop, where 1 ≤
i ≤ n − 1. So

cn =
n−1∑
i=1

(n − i) =
n−1∑
i=1

n −
n−1∑
i=1

i

= n(n − 1) − (n − 1)n
2

, by Example 4.15

= n(n − 1)
2

= O(n2) = �(n2)

Thus the bubble sort algorithm takes O(n2) =�(n2) comparisons. �
We turn our analysis to the search algorithms presented in Section 5.

Review them before proceeding any further.

EXAMPLE 4.44 Use the linear search algorithm (Algorithm 4.8) to estimate the best time,
the worst time, and the average time required to search for a key in a list
X of n elements.

SOLUTION:
Let an, bn, and cn denote the number of element comparisons needed in
line 3 in the average case, the best case, and the worst case, respectively.

• The best case is realized if xn = key. Since this takes only one comparison
for all inputs of size n, bn = 1. So bn = O(1) and the execution time is a
constant.

• To compute cn, notice that the worst case occurs when key does not
exist in the list, in which case the while loop is executed n + 1 times.
Therefore,

cn = n + 1

≤ n + n, when n ≥ 1

= 2n = O(n)

Thus, in the worst case, the linear search algorithm takes O(n)
comparisons. The run time varies linearly with input size.

• To compute the average time an, we need to consider two cases: key
occurs or does not occur in the list. If key occurs in position i, n−i+1
element comparisons will be required, where 1 ≤ i ≤ n. If key does not
occur in the list, n + 1 comparisons will be needed. So the average time

250 Chapter 4 Induction and Algorithms

taken is given by

an = (1 + 2 + · · · + n) + (n + 1)
n + 1

≤ (n + 1)(n + 2)
2(n + 1)

= n
2

+ 1 = O(n)

Again, it takes O(n) element comparisons. Thus, the average case, from the
complexity point, is no better than the worst case in linear search. �

Note: In the average case analysis, we assumed key could occur in any of
the n positions with an equal chance. We also assumed that it had the same
chance of not occurring in the list. If that were not the case, we would need
to apply the concept of expected value in probability theory to compute an.

Next we examine the complexity of the binary search algorithm.

EXAMPLE 4.45 Let cn denote the maximum number of comparisons in lines 6 through 8 of
the binary search algorithm (Algorithm 4.9). Show that cn = O(lg n).

SOLUTION:

Case 1 Let n be a power of 2, say, n = 2k where k ≥ 0. Initially, mid =�(low
+ high)/2�= �(1 + 2k)/2�= 2k−1, so the lower sublist contains 2k−1 − 1 ele-
ments and the upper sublist 2k−1 elements. By now two comparisons have
taken place, one in line 6 and the other in line 8. Since the upper sublist
contains more elements, partition it into three sublists. This time the max-
imum number of elements in a sublist is 2k−2 and two more comparisons
are needed. At the next stage, two more comparisons are needed. Continue
like this until the list contains one element, when k = 0. Again, two more
comparisons ensue.

Thus, in the worst case, two comparisons are needed for each power i
of 2, where 0 ≤ i ≤ k. Therefore,

cn = 2(k + 1) = 2k + 2

= 2 lg n + 2, since n = 2k

= O(lg n)

Case 2 Suppose n is not a power of 2. Let n be an integer such that
2 j < n < 2 j+1. Then j < lg n. Let N = 2 j+1. Clearly, cn < cN . By the above
analysis, cN = 2(j + 2). Thus:

cn < cN

= 2(j + 2)

4.7 Complexities of Algorithms (optional) 251

< 2(lg n + 2)

≤ 2(lg n + lg n), when n ≥ 4

= 4 lg n

= O(lg n)

Thus, whether or not n is a power of 2, cn = O(lg n), so the algorithm
takes O(lg n) comparisons in the worst case. �

Additional examples of analyzing the complexities of algorithms appear
in the exercises and the next chapter.

Exercises 4.7

1. Show that it takes O(n2) additions to compute the sum of two square
matrices of order n.

2. Let A and B be two square matrices of order n. Let cn denote the
number of comparisons needed to determine whether or not A ≤ B.
Show that cn = O(n2).

Let A be a square matrix of order n. Let sn denote the number of swappings
of elements needed to find the transpose AT of A.

3. Find a formula for sn. 4. Show that sn = O(n2).

5. Show that the number of additions of two n-bit integers is O(n).

Let an denote the number of additions (lines 5 and 6) required to compute
the square of an integer using the algorithm in Exercise 6 of Section 5.

6. Find a formula for an. 7. Show that an = O(n).

Algorithm 4.13 finds the maximum value in a list X of n items. Use it to
answer Exercises 8 and 9.

Algorithm findmax(X,n,max)
(* This algorithm returns the largest item in a list X of n

items in a variable called max. *)
0. Begin (* algorithm *)
1. max ← x1 (* initialize max *)
2. i ← 2
3. while i ≤ n do
4. begin (* while *)
5. if xi > max then (* update max *)
6. max ← xi
7. i ← i + 1
8. endwhile
9. End (* algorithm *)

Algorithm 4.13

252 Chapter 4 Induction and Algorithms

8. Establish the correctness of the algorithm.

9. Let cn denote the number of comparisons needed in line 5. Show that
cn = O(n).

10. Let cn denote the number of element-comparisons in line 6 of the
insertion sort algorithm in Algorithm 4.12. Show that cn = O(n2).

Use the minmax algorithm in Algorithm 4.14 to answer Exercises 11–13.

Algorithm iterative minmax(X,n,min,max)
(* This algorithm returns the minimum and the maximum

of a list X of n elements. *)
0. Begin (* algorithm *)
1. if n ≥ 1 then
2. begin (* if *)
3. min ← x1
4. max ← x1
5. for i = 2 to n do
6. begin (* for *)
7. if xi < min then
8. min ← xi
9. if xi > max then

10. max ← xi
11. endfor
12. endif
13. End (* algorithm *)

Algorithm 4.14

11. Find the maximum and the minimum of the list 12, 23, 6, 2, 19, 15,
37.

12. Establish the correctness of the algorithm.

13. Using the big-oh notation, estimate the number cn of comparisons in
lines 7 and 9 of the algorithm.

14. Let cn denote the maximum number of comparisons in lines 6 through 8
of the binary search algorithm (Algorithm 4.9). Show that cn = �(lg n).

Chapter Summary

This chapter provided a quick introduction to number theory, one of the
oldest branches of mathematics. By accepting the well-ordering principle as
an axiom, we established the principle of induction. We saw many examples
of how pivotal induction is in proving loop invariants.

We also illustrated how to add and multiply any two nondecimal
numbers, and how to subtract binary integers using complements.

Chapter Summary 253

Finally, we established the partial correctness of algorithms and dis-
cussed the time complexities of some standard algorithms using the big-oh
and big-theta notations.

The Well-Ordering Principle
• Every nonempty subset of N has a least element (page 186).

The Division Algorithm
• The division algorithm When an integer a is divided by a positive

integer b, there exist a unique quotient q and a unique remainder r
such that a = bq + r, where 0 ≤ x < b (page 186).

• An integer p ≥ 2 is a prime if its only positive factors are 1 and p
(page 189).

The Greatest Common Divisor (gcd)
• A positive integer d is the gcd of two positive integers a and b if:

• d | a and d | b; and

• if d′ | a and d′ | b, then d′ | d. (page 191).

• The euclidean algorithm, which uses successive applications of
the division algorithm, provides a procedure to compute gcd{a,b}
(page 193).

• Two positive integers a and b are relatively prime if gcd{a,b} = 1
(page 194).

• Every decimal integer has a unique nondecimal representation in a
given base and every nondecimal integer has a unique decimal value
(page 197).

• Binary subtraction can be performed using two’s complement
(page 203).

Mathematical Induction
• Weak version Let P(n) be a predicate such that

• P(n0) is true; and

• for every k ≥ n0, if P(k) is true, P(k + 1) is also true.

Then P(n) is true for every n ≥ n0 (page 209).

• Strong version Let P(n) be a predicate such that

• P(n0) is true; and

254 Chapter 4 Induction and Algorithms

• for every k ≥ n0, if P(n0), P(n0 + 1), . . . , P(k) are true, P(k + 1) is
also true. Then P(n) is true for n ≥ n0 (page 218).

• The Fundamental Theorem of Arithmetic Every positive
integer ≥ 2 is either a prime or can be expressed as a product of primes
(page 218).

Algorithm Correctness
• Using induction, we verified the partial correctness of several standard

algorithms: linear search (page 228), binary search (page 230), bubble
sort (page 233), and selection sort (page 234).

The Big-0h Notation
• f(n) = O(g(n)), if there are positive constants C and n0 such that

| f(n) | ≥ C | g(n) | for every n ≥ n0 (page 237).

• f(n) = �(g(n)), if | f(n) | ≥ C | g(n) | for every n ≥ n0 (page 243).

• f(n) = �g(n), if f(n) = O(g(n)) and f(n) = �(g(n)) (page 245).

• The time complexity of an algorithm is the execution time of the
algorithm (page 245).

Review Exercises

Using the euclidean algorithm, find the gcd of each pair of integers.

1. 18, 28 2. 36, 12 3. 15, 24 4. 1024, 3076

Express each number in base 10.

5. 2000eight 6. 2345sixteen 7. BADsixteen *8. BAD.CAsixteen

Rewrite each number in the indicated base b.

9. 245, b = 2 10. 348, b = 8 11. 1221, b = 8 12. 1976, b = 16

In Exercises 13–16, perform the indicated operation.

13. 11010two 14. 5768sixteen 15. 5AB8sixteen 16. 110110two

+111two +78CBsixteen ×BADsixteen −11011two

Rewrite each binary integer in base eight.

17. 10110101 18. 1101101101 19. 100110011 20. 10011011001

21–24. Rewrite the binary integers in Exercises 17–20 in base 16.

Find the value of x resulting from the execution of each algorithm
fragment.

Chapter Summary 255

25. x ← 0
for i = 1 to n do

for j = 1 to n do
x ← x + 1

26. x ← 0
for i = 1 to n do

for j = 1 to i do
for k = 1 to j do

x ← x + 1

27. Find a formula for the number an of times the statement x ← x + 1 is
executed by the following loop:

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

28. Let a,b,c,d ∈ N. Let d | ab, d | ac, and b and c be relatively prime
numbers. Prove that d | a.

29. Let a,b ∈ N and gcd{a,b} = 1. Prove that gcd{a − b,a + b} = 1 or 2.

Using induction prove each, where n is a positive integer.

30. n2 − n is divisible by 2. 31. n3 − n is divisible by 3.

32.
n∑

i=1
(2i − 1)2 = n(4n2 − 1)

3
33.

n∑
i=1

1
(2i − 1)(2i + 1)

= n
2n + 1

34. The product of any two consecutive positive integers is even.

35. Suppose you have an unlimited supply of identical black and white
socks. Using induction and the pigeonhole principle, show that you
must select at least 2n + 1 socks in order to ensure n matching pairs.
(C. T. Long)

Evaluate each sum and product.

36.
n∑

i=1
i(i + 1) 37.

n∑
i=1

n∑
j=1

(2i + 3j)

38.
n∑

i=1

n∑
j=1

2i3 j 39.
n∑

i=1

n∑
j=1

2 j

40.
n∏

i=1

n∏
j=1

2i3 j 41.
n∏

i=1

n∏
j=1

32 j

42.
n∏

i=1

n∏
j=1

2i *43.
n∑

i=1
i

i∏
j=1

j

44. Let Sn denote the value of sum after n iterations of the while loop in
Algorithm 4.15. Prove that P(n): Sn = n(n + 1) is a loop invariant.

Algorithm evensum (n)
(* This algorithm computes the sum of the first x

positive even integers. *)
0. Begin (* algorithm *)
1. sum ← 0

256 Chapter 4 Induction and Algorithms

2. i ← 0 (* counter *)
3. while i < n do
4. begin (* while *)
5. i ← i + 1
6. sum ← sum + 2 * i
7. endwhile
8. End (* algorithm *)

Algorithm 4.15

45. Using Example 4.23 predict a formula for the number of trailing zeros
in n!, where n ≥ 1.

46. Let an denote the number of operations (additions and multiplications)
in line 6 of the algorithm in Exercise 44. Find the order of magnitude
of an.

47. Add two lines to the following number pattern, where tn denotes the
nth triangular number.

t1 + t2 + t3 = t4

t5 + t6 + t7 + t8 = t9 + t10

t11 + t12 + t13 + t14 + t15 = t16 + t17 + t18

Prove each, where tn denotes the nth triangular number.

48. t2
n − t2

n−1 = n3 49. t2
n = tn + tn−1tn+1 50. 2tntn−1 = tn2−1

Supplementary Exercises

1. Prove that (m2 − n2, 2mn, m2 + n2) is a solution of the equation
x2 + y2 = z2.

2. Prove that the product of the sums of two squares of two integers
can be written as a sum of two squares.

3. Let tk denote the kth triangular number and n any triangular num-
ber. Prove that (2k + 1)2n + tk is also a triangular number. (R. F.
Jordan, 1991)

4. In 1950, P. A. Piza discovered the following formula about sums of

powers of triangular numbers ti : [3
n∑

i=1
ti]3 =

n∑
i=1

t3
i + 2

n∑
i=1

t4
i . Verify

it for n = 3 and n = 4.

5. Show that 111 cannot be a square in any base.

*6. Prove that one more than the product of four consecutive integers
is a perfect square, and the square root of the resulting number is
the average of the product of the smaller and larger numbers and
the product of the two middle integers. (W. M. Waters, 1990)

Chapter Summary 257

A composite number n is Duffinian if none of its positive factors, except
1, is a factor of the sum s of its proper factors. For example, let n = 21.
The sum of its proper factors = 1 + 3 + 7 = 11. Since both 3 and 7 are not
factors of 11, 21 is Duffinian. (You may verify that 10 is not Duffinian.)

7. Determine if 18, 25, 36, and 43 are Duffinian.

8. Let p be a prime and k a positive integer ≥ 2. Prove that pk is
Duffinian.

9. Prove that n is Duffinian if and only if none of the factors of n, except
1, is a factor of n.

10. Prove or disprove: The product of two Duffinian numbers is
Duffinian.

Prove each, where n is a positive integer.

*11. n(3n4+ 7n2+ 2) is divisible by 12.

*12. n(3n4+ 13n2+ 8) is divisible by 24.

**13. Let Sn denote the sum of the elements in the nth set in the sequence
of sets of positive integers {1}, {3, 5}, {7, 9, 11}, {13, 15, 17, 19},
Find a formula for Sn. (R. Euler, 1988)

**14. Let Sn denote the sum of the elements in the nth set in the sequence
of positive integers {1}, {2, 3, . . . , 8}, {9, 10, . . . , 21}, {22, 23, . . . , 40},
Find a formula for Sn. (C. W. Trigg, 1980)

**15. Three schools in each state, Alabama, Georgia, and Florida, enter
one person in each of the events in a track meet. The number of
events and the scoring system are unknown, but the number of
points for the third place is less than that for the second place,
which in turn is less than the number of points for the first place.
Georgia scored 22 points, and Alabama and Florida tied with 9 each.
Florida won the high jump. Who won the mile run? (M. vos Savant,
1993)

Computer Exercises

Write a program to perform each task.

1. Read in an integer b ≥ 2 and select b + 1 integers at random. Find two
integers in the list such that their difference is divisible by b.

2. Read in an integer n ≥ 2 and select n positive integers at random. Find
a sequence of integers from the list whose sum is divisible by n.

3. Read in a positive integer ≥ 2 and determine if it is a prime.

258 Chapter 4 Induction and Algorithms

4. Determine if each value of f (n) = n2 − n + 41 is a prime, where 0 ≤
n ≤ 41.

5. Redo Program 4 with f (n) = n2 − 79n + 1601, where 0 ≤ n ≤ 80.

6. Determine if the nth Fermat number f (n) = 22n +1 is a prime, where
0 ≤ n ≤ 4.

7. Find all perfect numbers ≤ 1000. (There are three such numbers.)

8. Find the gcd{x, y} using the euclidean algorithm.

9. Read in a sequence of pairs of integers n and b. For each integer
n, determine its base-b representation and use this representation
to compute the corresponding decimal value. Print each integer n,
base b, base-b representation, and its decimal value in a tabular
form.

10. Read in a positive integer n and find the number of trailing zeros
in n!.

11. A palindrome is a positive integer that reads the same backward and
forward. Find the eight palindromic triangular numbers < 1000.

12. Compute the total number of grains of wheat needed for each of the
squares on an 8×8 chessboard, as in Exercises 39 and 40 in Section 4.4.
(Hint: The answer is 18,446,744,073,709,551,6l5 grains, which may be
too large for an integer variable to hold, so think of a suitable data
structure.)

13. Read in a positive integer N ≤ 1000. Using Example 4.24, determine
how many doors will remain open at the end. Do not use the fact that
there are �√n� perfect squares ≤ n.

14. Print the ages 1–31 on five tablets A, B, C, D, and E, as in Figure 4.2.
Read in some tablets at random and compute the corresponding age.
Extend the puzzle to six tablets to include ages through 63.

15. Read in a positive integer n and determine if it is a prime.

16. Construct a table of values of the function E(n) = n2 − n + 41, where
0 ≤ n ≤ 41, and identify each value as prime or composite.

17. Redo program 16 with L(n) = n2 + n + 41, where 0 ≤ n ≤ 41, and
identify each value as prime or composite.

18. Redo program 16 with H(n) = 9n2 − 471n + 6203, where 0 ≤ n ≤ 39,
and identify each value as prime or composite.

19. Redo program 16 with G(n) = n2 − 2999n + 2248541, where 1460 ≤
n ≤ 1539, and identify each value as prime or composite.

20. Read in a positive integer n, and list all primes ≤ n and are of the form
k2 + 1.

Chapter Summary 259

21. Read in a positive integer n and find a prime between:

(a) n and 2n. (b) n2 and n2 + 1.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Describe how twin primes were used in 1994 by Thomas Nicely of
Lynchburg College, Virginia, to detect defects in the Pentium chip.

2. Explain how to construct Tables A–E in Figure 4.2 and how the puzzle
works. Extend the puzzle to cover ages through 63.

3. Describe the origin of mathematical induction. Include biographies of
those who developed this proof technique. Comment on its importance
in computer science.

4. Describe the origin of figurate numbers. Explain the various types
and their properties. Include the relationships between the 12 days of
Christmas puzzle, and polygonal numbers and tetrahedral numbers.

5. Explore the history of magic squares. Do they have any practical
applications?

6. Describe the origin of the big-oh, big-omega, and big-theta notations.
Include biographies of mathematicians who developed them.

7. Investigate the various classes of prime numbers.

8. Describe the history of finding larger and larger primes, and their
practical applications. Comment on the Greatest Internet Mersenne
Prime Search (GIMPS), founded in 1996 by George Woltman.

9. Discuss the game of Nim and its relationship to binary numbers.

10. Discuss Eleusis, a card game devised by R. Abbott of New York.

Enrichment Readings

1. R. G. Archibald, An Introduction to the Theory of Numbers, Merrill,
Columbus, OH, 1970, pp. 1–95.

2. G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice
Hall, Englewood Cliffs, NJ, 1988.

3. J. Dugle, “The Twelve Days of Christmas and Pascal’s Triangle,”
Mathematics Teacher, Vol. 75 (Dec. 1982), pp. 755–757.

4. G. H. Hardy, A Mathematician’s Apology, Cambridge University Press,
Cambridge, 1941.

260 Chapter 4 Induction and Algorithms

5. T. Koshy, Elementary Number Theory with Applications, Harcourt/
Academic Press, Boston, 2002, pp. 1–189.

6. C. Oliver, “The Twelve Days of Christmas,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752–754.

7. H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs,
NJ, 1986, pp. 8–22, 137–175.

Chapter 5

Recursion
It is common sense to take a method and try it. If it fails, admit it frankly

and try another. But above all, try something.
— FRANKLIN ROOSEVELT

R ecursion is an elegant and powerful problem-solving technique, used
extensively in both discrete mathematics and computer science. Many

programming languages, such as ALGOL, FORTRAN 90, C++, and Java,
support recursion. This chapter investigates this powerful method in detail.

In addition, we will study three simple methods for solving recurrence
relations: iteration, characteristic equations, and generating functions.

We also will establish the validity of recursive algorithms using induction
and analyze their complexities using the big-oh and big-theta notations.

Some of the interesting problems we pursue in this chapter are:

• There are three pegs X, Y, and Z on a platform and 64 disks of increasing
sizes at X. We would like to move them from X to Z using Y as an
auxiliary peg subject to the following conditions:

Only one disk can be moved at a time.
No disk can be placed on the top of a smaller disk.

If it takes one second to transfer a disk from one peg to another, how
long will it take to solve the puzzle?

• Is there a formula for the number of n-bit words containing no two
consecutive 1’s?

• Suppose we introduce a mixed pair (male and female) of 1-month-old
rabbits into a large enclosure on January 1. By the end of each month,
the rabbits become mature, and each pair produces k − 1 mixed pairs
of offspring at the beginning of the following month. Find the average
age of the rabbit pairs at the beginning of the nth month.

• Can we estimate the number of divisions required to compute gcd{a, b}
by the euclidean algorithm?

• What is a divide-and-conquer algorithm? If f (n) denotes the number of
operations required by such an algorithm, what can you say about its
order of complexity?

261

262 Chapter 5 Recursion

5.1 Recursively Defined Functions

Recall that in Section 2.5 we employed recursion to define sets; we invoked
the recursive clause to construct new elements from known elements. The
same idea can be applied to define functions, and hence sequences as well.

This section illustrates how powerful a problem-solving technique recur-
sion is. We begin with a simple problem:

There are n guests at a sesquicentennial ball. Each person shakes hands
with everybody else exactly once. How many handshakes are made?

Suppose you would like to solve a problem such as this. (See Example 5.3.)
The solution may not be obvious. However, it may turn out that the problem
could be defined in terms of a simpler version of itself. Such a definition is a
recursive definition. Consequently, the given problem can be solved pro-
vided the simpler version can be solved. This idea is pictorially represented
in Figure 5.1.

Figure 5.1

The given
complex
problem

this
simpler
version can
be solved

this
simpler
version can
be solved

can be

solved
if

can be

solved
if

can be

solved
if

This is
solvable.

Recursive Definition of a Function
Let a ∈ W and X = {a, a + 1, a + 2, . . .}. The recursive definition of a
function f with domain X consists of three parts, where k ≥ 1:

• Basis clause A few initial values of the function f (a), f (a + 1), . . . ,
f (a + k − 1) are specified. An equation that specifies such initial values
is an initial condition.

• Recursive clause A formula to compute f (n) from the k preced-
ing functional values f (n − 1), f (n − 2), . . . , f (n − k) is made. Such a
formula is a recurrence relation (or recursion formula).

• Terminal clause Only values thus obtained are valid functional
values. (For convenience, we drop this clause from our recursive
definition.)

5.1 Recursively Defined Functions 263

Thus the recursive definition of f consists of one or more (a finite number
of) initial conditions, and a recurrence relation.

Is the recursive definition of f a valid definition? In other words, if the k
initial values f (a), f (a+1), . . . , f (a+k−1) are known and f (n) is defined in
terms of k of its predecessors f (n−1), f (n−2), . . . , f (n−k), where n ≥ a + k,
is f (n) defined for n ≥ a? Fortunately, the next theorem comes to our rescue.
Its proof uses strong induction and is complicated, so we omit it.

THEOREM 5.1 Let a ∈ W, X = {a, a + 1, a + 2, . . .}, and k ∈ N. Let f : X → R such that
f (a), f (a + 1), . . . , f (a + k − 1) are known. Let n be any positive integer
≥ a + k such that f (n) is defined in terms of f (n − 1), f (n − 2), . . . and
f (n − k). Then f (n) is defined for every n ≥ a. �

By virtue of this theorem, recursive definitions are also known as
inductive definitions.

The following examples illustrate the recursive definition of a function.

EXAMPLE 5.1 Define recursively the factorial function f.

SOLUTION:
Recall that the factorial function f is defined by f (n) = n!, where f (0) = 1.
Since n! = n(n − 1)!, f can be defined recursively as follows:

f (0) = 1 ← initial condition

f (n) = n · f (n − 1), n ≥ 1 ← recurrence relation �

Suppose we would like to compute f (3) using this recursive definition.
We then continue to apply the recurrence relation until the initial condition
is reached, as shown below:

f (3) � 3 � f (2)

return value

return value

return value

f (2) � 2 � f (1)

f (1) � 1 � f (0)

f (0) � 1

re
cu

rsi
ve

 ca
ll

re
cu

rsi
ve

 ca
ll

re
cu

rsi
ve

 ca
ll

(5.1)

(5.2)

(5.3)

(5.4)

264 Chapter 5 Recursion

Since f (0) = 1, 1 is substituted for f (0) in Equation (5.3) and f (1) is
computed: f (1) = 1 · f (0) = 1 · 1 = 1. This value is substituted for f (1) in
Equation (5.2) and f (2) is computed: f (2) = 2 · f (1) = 2 ·1 = 2. This value is
now returned to Equation (5.1) to compute f (3): f (3) = 3 · f (2) = 3 · 2 = 6,
as expected.

EXAMPLE 5.2 Judy deposits $1000 in a local savings bank at an annual interest rate of
8% compounded annually. Define recursively the compound amount A(n)
she will have in her account at the end of n years.

SOLUTION:
Clearly, A(0) = initial deposit = $1000. Let n ≥ 1. Then:

A(n) =
⎛
⎝ compound amount

at the end of the
(n − 1)st year

⎞
⎠+

⎛
⎝ interest earned

during the
nth year

⎞
⎠

= A(n − 1) + (0.08) A(n − 1)

= 1.08 A(n − 1)

Thus A(n) can be defined recursively as follows:

A(0) = 1000 ← initial condition

A(n) = 1.08 A(n − 1), n ≥ 1 ← recurrence relation �
For instance, the compound amount Judy will have at the end of three

years is

A(3) = 1.08 A(2)

= 1.08 [1.08 A(1)] = 1.082A(1)

= 1.08 2[1.08 A(0)] = 1.083(1000)

≈ $1259.71∗

The next two examples illustrate an extremely useful problem-solving
technique, used often in discrete mathematics and computer science.

EXAMPLE 5.3 (The handshake problem) There are n guests at a sesquicentennial
ball. Each person shakes hands with everybody else exactly once. Define
recursively the number of handshakes h(n) that occur.

SOLUTION:
Clearly, h(1) = 0, so let n ≥ 2. Let x be one of the guests. By definition,
the number of handshakes made by the remaining n − 1 guests among
themselves is h(n − 1). Now person x shakes hands with each of these

∗The symbol ≈ means is approximately equal to.

5.1 Recursively Defined Functions 265

n − 1 guests, yielding n − 1 additional handshakes. So the total number of
handshakes made equals h(n − 1) + (n − 1), where n ≥ 2.

Thus h(n) can be defined recursively as follows:

h(1) = 0 ← initial condition

h(n) = h(n − 1) + (n − 1), n ≥ 2 ← recurrence relation �

EXAMPLE 5.4 (Tower of Brahma∗) According to a legend of India, at the beginning of
creation, God stacked 64 golden disks on one of three diamond pegs on a
brass platform in the temple of Brahma at Benares† (see Figure 5.2). The
priests on duty were asked to move the disks from peg X to peg Z using Y
as an auxiliary peg under the following conditions:

• Only one disk can be moved at a time.

• No disk can be placed on the top of a smaller disk.

The priests were told that the world would end when the job was completed.

Figure 5.2

X Y Z

Suppose there are n disks on peg X. Let bn denote the number of moves
needed to move them from peg X to peg Z, using peg Y as an intermediary.
Define bn recursively.

SOLUTION:
Clearly b1 = 1. Assume n ≥ 2. Consider the top n − 1 disks on peg X. By
definition, it takes bn−1 moves to transfer them from X to Y using Z as
an auxiliary. That leaves the largest disk at peg X; it takes one move to
transfer it from X to Z. See Figure 5.3.

Now the n − 1 disks at Y can be moved from Y to Z using X as an
intermediary in bn−1 moves, so the total number of moves needed is
bn−1 + 1 + bn−1 = 2bn−1 + 1. Thus bn can be defined recursively as follows:

bn =
{

1 if n = 1
2bn−1 + 1 otherwise

← initial condition

← recurrence relation �

∗A puzzle based on the Tower of Brahma was marketed in 1883 under the name Tower of
Hanoi.
†Benares is now known as Varanasi.

266 Chapter 5 Recursion

Figure 5.3

X Y Z

For example,

b4 = 2b3 + 1 = 2[2b2 + 1] + 1

= 4b2 + 2 + 1 = 4[2b1 + 1] + 2 + 1

= 8b1 + 4 + 2 + 1 = 8(1) + 4 + 2 + 1

= 15

so it takes 15 moves to transfer 4 disks from X to Z, by this strategy.
The next example also illustrates the same technique. We will take it a

step further in Chapter 6.

EXAMPLE 5.5 Imagine n lines in a plane such that no two lines are parallel, and no three
are concurrent.∗ Let fn denote the number of distinct regions into which
the plane is divided by them. Define fn recursively.

SOLUTION:
If there is just one line �1 in the plane, then f1 = 2 (see Figure 5.4). Now
consider a second line �2; it is intersected at exactly one point by �1. Each
half of �2 divides an original region into two, adding two more regions (see
Figure 5.5). Thus f2 = f1 + 2 = 4. Suppose we add a third line �3. It is

Figure 5.4

1

2

l1

Figure 5.5

1

34
2

l1

l2

∗Three or more lines in a plane are concurrent if they intersect at a point.

5.1 Recursively Defined Functions 267

intersected by �1 and �2 in two points; in other words, line �3 is divided by
�1 and �2 into three parts. Each portion divides an existing region into two,
yielding three new regions (see Figure 5.6). So f3 = f2 + 3 = 7.

Figure 5.6

1
34
56

7

2

l3

l2

l1

More generally, suppose there are n−1 lines �1, �2, . . . , �n−1 in the plane.
They divide the plane into fn−1 disjoint regions, by definition. Now add one
more line �n (see Figure 5.7). Since no three lines are concurrent, line �n
must intersect lines �1, �2, . . . , �n−1 at new points and hence is divided by

Figure 5.7

l1 l2
l3

ln

ln–1

them into n segments. Each segment divides an existing region into two
subregions, contributing n more regions, so fn = fn−1 + n. Thus fn can be
defined recursively as follows:

fn =
{

1 if n = 0
fn−1 + n otherwise �

The next example illustrates how to define recursively the number of
times an assignment is executed by nested for loops.

EXAMPLE 5.6 Let an denote the number of times the assignment statement x ← x + 1 is
executed by the following nested for loops. Define an recursively.

for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
x ← x + 1

SOLUTION:
• First, we must find the initial condition satisfied by an. When n = 1,

i = j = k = 1, so the assignment statement is executed exactly once.
Thus a1 = 1.

268 Chapter 5 Recursion

• To find the recurrence relation satisfied by an:
Let n ≥ 2. As i runs from 1 through n − 1, by definition, the statement
is executed an−1 times.
When i = n, the inner loops become:

for j = 1 to n do
for k = 1 to j do

x ← x + 1

For each value of j, where 1 ≤ j ≤ n, the innermost loop executes the

statement j times. So these nested loops execute it
n∑

j=1
j = n(n + 1)

2
times. Therefore,

an =
⎛
⎝ no. of times the statement

is executed as i runs from
1 through n − 1

⎞
⎠+

⎛
⎝ no. of times the

statement is executed
when i = n

⎞
⎠

= an−1 + n(n + 1)
2

Thus an can be defined as follows:

a1 = 1

an = an−1 + n(n + 1)
2

, n ≥ 2

(We shall pursue this definition in Example 5. 11.) �
The next example provides a recursive definition with two initial

conditions. We shall use it often in the following sections and in the next
chapter.

EXAMPLE 5.7 (Fibonacci) Leonardo Fibonacci, the most outstanding Italian math-
ematician of the Middle Ages, proposed the following problem around
1202:

Suppose there are two newborn rabbits, one male and the other female.
Find the number of rabbits produced in a year if:

• Each pair takes one month to become mature.

• Each pair produces a mixed pair every month, from the second month.

• No rabbits die.

Suppose, for convenience, that the original pair of rabbits was born on
January 1. They take a month to become mature. So there is still only
one pair on February 1. On March 1, they are 2 months old and produce
a new mixed pair, a total of two pairs. Continuing like this, there will be
three pairs on April 1, five pairs on May 1, and so on. See the last row of
Table 5.1.

5.1 Recursively Defined Functions 269

Table 5.1 No. of
pairs Jan Feb March April May June July Aug

Adults 0 1 1 2 3 5 8 13
Babies 1 0 1 1 2 3 5 8
Total 1 1 2 3 5 8 13 21 ←

Leonardo Fibonacci (1170?–1250?), also known as Leonardo of Pisa,
was born in the commercial center of Pisa, Italy, into the Bonacci family. His
father, a customs manager, expected the son to become a merchant and took
him to Bougie, Algeria, to receive good training in arithmetic with Indian
numerals. Leonardo’s subsequent business trips to Egypt, Syria, Greece,
and Sicily brought him closer to Indian mathematics.

In 1202, shortly after his return, convinced of the elegance of the Indian
methods of computation, Fibonacci published his famous work, Liber Abaci.
(The word abaci in the title does not refer to the old abacus, but to computa-
tion in general.) This book, devoted to arithmetic and elementary algebra,
introduced the Indian notation and arithmetic algorithms to Europe.

Fibonacci wrote three additional books: Practica Geometriae, a collec-
tion of results in geometry and trigonometry; Liber Quadratorum, a major

work on number theory; and Flos, also on number theory.
Fibonacci’s importance and usefulness to Pisa and its citizenry through his teaching and services were

honored by Emperor Frederick II of Pisa.

The numbers 1, 1, 2, 3, 5, 8, . . . are Fibonacci numbers.∗ They have
a fascinating property: Any Fibonacci number, except the first two, is the
sum of the two immediately preceding Fibonacci numbers. (At the given
rate, there will be 144 pairs of rabbits on December 1.)

This yields the following recursive definition of the nth Fibonacci
number Fn:

F1 = F2 = 1 ← initial conditions

Fn = Fn−1 + Fn−2, n ≥ 3 ← recurrence relation �
The next example illustrates recursion and also shows that Fibonacci

numbers occur in quite unexpected places.

EXAMPLE 5.8 Let an denote the number of n-bit words containing no two consecutive 1’s.
Define an recursively.

∗See author’s Fibonacci and Lucas Numbers with Applications for a thorough discussion of
Fibonacci numbers.

270 Chapter 5 Recursion

SOLUTION:
First, let us find the n-bit words containing no two consecutive 1’s corre-
sponding to n = 1, 2, 3, and 4 (see Table 5.2). It follows from the table that
a1 = 2, a2 = 3, a3 = 5, and a4 = 8.

Table 5.2 n = 1 n = 2 n = 3 n = 4

0 00 000 0000
1 01 010 0100

10 100 1000
001 0010
101 1010

0001
0101
1001

Now, consider an arbitrary n-bit word. It may end in 0 or 1.

Case 1 Suppose the n-bit word ends in 0. Then the (n − 1)st bit can be a
0 or a 1, so there are no restrictions on the (n − 1)st bit:

Therefore, an−1 n-bit words end in 0 and contain no two consecutive 1’s.

Case 2 Suppose the n-bit word ends in 1. Then the (n − 1)st bit must be
a zero. Further, there are no restrictions on the (n − 2)nd bit:

Thus an−2 n-bit words end in 1 and contain no two consecutive 1’s.
Since the two cases are mutually exclusive, by the addition principle, we

have:

a1 = 2, a2 = 3 ← initial conditions

an = an−1 + an−2, n ≥ 3 ← recurrence relation

5.1 Recursively Defined Functions 271

Notice that the above recurrence relation is exactly the same as the
Fibonacci recurrence relation, but with different initial conditions! The
resulting numbers are the Fibonacci numbers 2, 3, 5, 8, 13, … . �

Notice that this example does not provide a constructive method for sys-
tematically listing all n-bit words with the required property. It is given in
Exercise 19.

Interestingly enough, the delightful Fibonacci numbers occur in numer-
ous totally unexpected places. For instance, the numbers of spiral arrays
of seeds in mature sunflowers in the clockwise and counterclockwise direc-
tions are often consecutive Fibonacci numbers, usually 34 and 55, or 55
and 89. See Figures 5.8 and 5.9.

Figure 5.8

Figure 5.9

272 Chapter 5 Recursion

Before closing this section, we establish an important result from the the-
ory of formal languages. First, recall that �∗ denotes the set of words over
an alphabet�. Also�∗ can be defined recursively as follows (see Exercise 35
in Section 2.6):

• λ ∈ �∗.

• If w ∈ �∗ and s ∈ �, then ws ∈ �∗.

Furthermore, the length ‖w‖ of a word w over � can be defined
recursively as follows:

• ‖λ‖ = 0.

• If w ∈ �∗ and s ∈ �, then ‖ws‖ = ‖w‖ + 1.

Using these definitions and induction, we prove below that ‖xy‖ = ‖x‖ +
‖y‖ for any two words x and y in �∗.

EXAMPLE 5.9 Let x and y be any two words over an alphabet �. Prove that ‖ xy ‖ =
‖x‖ + ‖y‖.

PROOF (by induction):
Let x be any element in �∗. Let P(y) denote the predicate that ‖xy‖ =
‖x‖ + ‖y‖, where y ∈ �∗. Since y ∈ �∗, y can be the null word λ or a
nonempty word.

Basis step To show that P(λ) is true; that is, ‖xλ‖ = ‖x‖ + ‖λ‖:

Since xλ = x, ‖xλ‖ = ‖x‖ = ‖x‖ + 0 = ‖x‖ + ‖λ‖. So P(λ) is true.

Induction step Assume P(y) is true, that is, ‖xy‖ = ‖x‖ + ‖y‖ (inductive
hypothesis). We must show that P(ys) is true, that is, ‖xys‖ = ‖x‖ + ‖ys‖.
Notice that:

xys = (xy)s assoc. prop. of concatenation

Then

‖xys‖ = ‖(xy)s‖ length is a function

= ‖xy‖ + 1 recursive def. of length

= (‖x‖ + ‖y‖) + 1 inductive hypothesis

= ‖x‖ + (‖y‖ + 1) assoc. prop. of addition

= ‖x‖ + ‖ys‖ recursive def. of length

Therefore, P(ys) is true. Thus P(y) implies P(ys).

Therefore, by induction, P(y) is true for every y ∈ �∗; that is, ‖xy‖ =
‖x‖ + ‖y‖ for every x, y ∈ �∗. �

5.1 Recursively Defined Functions 273

Finally, we emphasize that the immediate predecessor fn−1 need not
appear in the recursive definition of a function f at n. For example,
consider the function f : W → W defined by

f0 = 1, f1 = 0, f2 = 1

fn = fn−2 + 2fn−3, n ≥ 3

Clearly, fn−1 is not needed to compute fn, when n ≥ 3. Try f6 as an
exercise.

Exercises 5.1

In Exercises 1–6, an denotes the nth term of a number sequence satisfying
the given initial condition(s) and the recurrence relation. Compute the first
four terms of the sequence.

1. a1 = 1

an = an−1 + 3, n ≥ 2

3. a1 = 1

an = n
n − 1

an−1, n ≥ 2

5. a1 = 1, a2 = 1, a3 = 2

an = an−1 + an−2 + an−3, n ≥ 4

2. a0 = 1

an = an−1 + n, n ≥ 1

4. a1 = 1, a2 = 2

an = an−1 + an−2, n ≥ 3

6. a1 = 1, a2 = 2, a3 = 3

an = an−1 + an−2 + an−3, n ≥ 4

7. The nth Lucas number Ln, named after the French mathematician
François-Edouard-Anatole Lucas, is defined recursively as follows:

L1 = 1, L2 = 3

Ln = Ln−1 + Ln−2, n ≥ 3

(The Lucas sequence and the Fibonacci sequence satisfy the same recur-
rence relation, but have different initial conditions.) Compute the first six
Lucas numbers.
The gcd of two integers x (> 0) and y (≥ 0) can be defined recursively as
follows:

gcd{x, y} =

⎧⎪⎨
⎪⎩

gcd{ y, x} if y > x
x if y ≤ x and y = 0
gcd{ y, x mod y} if y ≤ x and y > 0

Using this definition, compute the gcd of each pair of integers.

8. 28, 18 9. 24, 75

274 Chapter 5 Recursion

François-Edouard-Anatole Lucas (1842–1891) was born in Amiens,
France. After completing his studies at the École Normale in Amiens, he
worked as an assistant at the Paris Observatory. He served as an artillery
officer in the Franco-Prussian war and then became professor of mathe-
matics at the Lycée Saint-Louis and Lycée Charlemagne, both in Paris. A
gifted and entertaining teacher, Lucas died of a freak accident at a ban-
quet: His cheek was gashed by a piece of a plate that was accidentally
dropped, and he died from infection within a few days.

Lucas loved computing and developed plans for a computer that never
materialized. Besides his contributions to number theory, he is known for
his four-volume classic on recreational mathematics. Best known among
the problems he developed is the Tower of Brahma.

A person deposits $1000 in a bank at an annual interest rate of 6%. Let
A(n) denote the compound amount she will receive at the end of n interest
periods. Define A(n) recursively if interest is compounded:

10. Semiannually 11. Quarterly 12. Monthly

Ned deposits a certain amount A0 in a bank at an annual interest rate of
12% compounded annually. The compound amount he would receive at the
end of n years is given by An = 1.12 An−1, where n ≥ 1. Determine the
initial deposit A0 if he would receive:

13. $1804.64 at the end of 5 years. 14. $3507.00 at the end of 6 years.

Define recursively each sequence of numbers. (Hint: Look for a pattern and
define the nth term an recursively.)

15. 1, 4, 7, 10, 13 …

17. 0, 3, 9, 21, 45 …

16. 3, 8, 13, 18, 23 …

18. 1, 2, 5, 26, 677 …

19. An n-bit word containing no two consecutive ones can be constructed
recursively as follows: Append a 0 to such (n − 1)-bit words or append
a 01 to such (n − 2)-bit words. Using this procedure construct all 5-bit
words containing no two consecutive ones. There are 13 such words.

Define each recursively, where n ≥ 0.

20. The nth power of a positive real number x.

21. The union of n sets.

22. The intersection of n sets.

23. The number Sn of subsets of a set with n elements.

24. The nth term an of an arithmetic sequence with first term a and
common difference d.

5.1 Recursively Defined Functions 275

John McCarthy (1927–), one of the fathers of artificial intelligence (AI), was
born in Boston. He graduated in mathematics from the California Institute
of Technology, receiving his Ph.D. from Princeton in 1951. After teaching
at Princeton, Stanford, Dartmouth, and MIT, he returned to Stanford as a
full professor. While at Princeton, he was named a Proctor Fellow and later
the Higgins Research Instructor in mathematics. At Stanford, he headed the
Artificial Intelligence Laboratory.

During his tenure at Dartmouth, McCarthy coined the term artificial intel-
ligence (AI). He developed LISP (LISt Programming), one of the most widely
used programming languages in AI. He also helped develop ALGOL 58 and
ALGOL 60. In 1971 he received the prestigious Alan M. Turing award for
his outstanding contributions to data processing.

25. The nth term an of a geometric sequence with first term a and common
ratio r.

26. Let f : X → X be bijective. Define f n recursively, where f 2 = f ◦ f .

The 91-function f, invented by John McCarthy, is defined recursively on
W as follows.

f (x) =
⎧⎨
⎩

x − 10 if x > 100

f (f (x + 11)) if 0 ≤ x ≤ 100

Compute each

27. f (99) 28. f (98) 29. f (f (99)) 30. f (f (91))

31. Show that f (99) = 91.

32. Prove that f (x) = 91 for 90 ≤ x ≤ 100.

33. Prove that f (x) = 91 for 0 ≤ x < 90.

(Triangulation of convex polygons) The nth Catalan number Cn
denotes the number of ways to divide a convex (n + 2)-gon into triangles
by drawing nonintersecting diagonals. For instance, there are five ways
of triangulating a convex pentagon, as shown in Figure 5.10; therefore,

C3 = 5. Cn is given recursively by Cn+1 =
n∑

i=0
CiCn−i, where C0 = 1.

Compute each.

Figure 5.10

34. C6 35. C7

276 Chapter 5 Recursion

36. The sequence defined by an+1 = 1
2

(an + N
an

) can be used to approxi-

mate
√

N to any desired degree of accuracy, where a1 is an estimate
of

√
N. Use this fact to compute

√
19 correct to six decimal places.

Use a1 = 4.

37. Let Fn denote the nth Fibonacci number. Compute
Fn+1

Fn
correct to

eight decimal places for 1 ≤ n ≤ 10. Compare each value to (1 + √
5)/2

correct to eight decimal places.

38. (For those familiar with the concept of limits) Use Exercise 37 to

predict lim
n→∞

Fn+1

Fn
.

Prove each, where Fn is the nth Fibonacci number, Ln the nth Lucas
number, and α = (1 + √

5)/2, the golden ratio.

39. Fn = 2Fn−2 + Fn−3, n ≥ 4

40. F2
n − Fn−1Fn+1 = (−1)n−1, n ≥ 2

41. F5n is divisible by 5, n ≥ 1.

42. Fn < αn−1, n ≥ 3

43. Fn ≤ 2n, n ≥ 1

44. Let A =
[
1 1
1 0

]
. Then An =

[
Fn+1 Fn
Fn Fn−1

]
, n ≥ 1. Assume F0 = 0.

45. Using Exercise 44, deduce that Fn+1Fn−1 − F2
n = (−1)n.

(Hint: Let A be a square matrix. Then |An| = |A|n, where |A| denotes
the determinant of A.)

46. Ln = Fn+1 + Fn−1, n ≥ 2 47. L2n = 3 +
2n−2∑
k=1

Lk

The nth term bn of a number sequence is defined by bn = αn − βn

α − β , where

α = (1 +√
5)/2 and β = (1 −√

5)/2 are solutions of the equation x2 = x + 1.
Verify each.

48. b1 = 1 49. b2 = 1 50. bn = bn−1 + bn−2, n ≥ 3

(It follows from Exercises 48–50 that bn = Fn. It is called the Binet form
of the nth Fibonacci number, after the French mathematician Jacques-
Phillipe-Marie Binet.)
With α and β as above, let un = αn + βn, n ≥ 1. Verify each.

51. u1 = 1 52. u2 = 3 53. un = un−1 + un−2, n ≥ 3

[These exercises indicate that un = Ln, the nth Lucas number. Accordingly,
un = αn + βn is the Binet form of Ln.]

5.1 Recursively Defined Functions 277

Jacques Phillippe Marie Binet (1786–1865), a French mathematician
and astronomer, was born at Rennes, Brittany. In 1804, he entered the
Ecole Polytechnique in Paris, graduated 2 years later, and took a job in
the Department of Bridges and Roads of the French government. In 1807,
Binet became a teacher at the École Polytechnique, and the following
year became assistant to the professor of applied analysis and descriptive
geometry. In 1814, he was appointed examiner of descriptive geometry,
then professor of mechanics (1815), and then inspector general of studies
(1816). In 1821, he was awarded the Chevalier de la Légion d’Honneur.
Two years later, Binet was appointed chair of astronomy at the Collège de
France.

But the July 1830 revolution was not kind to him. A strong supporter of
Charles X, Binet became a victim of Charles’ abdication; he was dismissed

from École Polytechnique by King Louis-Phillipe in November, 1830.
Binet made many contributions to mathematics, physics, and astronomy. In 1812, he discovered the

rule for matrix multiplication and, in 1840, discovered the explicit formula for the nth Fibonacci number.
In 1843, he was elected to the Academy of Sciences and later became its president. A devout Catholic,
Binet died in Paris.

54. Let a1, a2, . . . , an ∈ N, where n ≥ 2. Prove that
gcd{a1, a2, . . . , an} = gcd{gcd{a1, a2, . . . , an−1}, an}.

Using Exercise 54 compute the gcd of each set of numbers.

55. 6, 12, 20, 38 56. 12, 28, 48, 104, 252

Let an denote the number of times the assignment statement x ← x + 1 is
executed by each nested for loop. Define an recursively.

57. for i = 1 to n do
for j = 1 to i do

x ← x + 1

58. for i = 1 to n do
for j = 1 to i do

for k = 1 to i do
x ← x + 1

59. Let an denote the number of rectangles that can be formed on a 1 × n
rectangular board. Find the recurrence relation satisfied by an.
(Hint: Look for a pattern. Every square is also a rectangle.)

A subset of the set S = {1, 2, . . . , n} is alternating if its elements, when
arranged in increasing order, follow the pattern odd, even, odd, even, etc.
For example, {3}, {1, 2, 5}, and {3, 4} are alternating subsets of {1, 2, 3, 4, 5},
whereas {1, 3, 4} and {2, 3, 4, 5} are not; Ø is considered alternating.∗ Let
an denote the number of alternating subsets of S.

60. Define an recursively.

61. Prove that an = Fn+2, where Fn denotes the nth Fibonacci number.

∗Proposed by Olry Terquem (1782–1862).

278 Chapter 5 Recursion

Stirling numbers of the second kind, denoted by S(n, r) and used in
combinatorics, are defined recursively as follows, where n, r ∈ N:

S(n, r) =

⎧⎪⎪⎨
⎪⎪⎩

1 if r = 1 or r = n

S(n − 1, r − 1) + rS(n − 1, r) if 1 < r < n

0 if r > n

They are named after the English mathematician James Stirling (1692–
1770). Compute each Stirling number.

62. S(2, 2) 63. S(5, 2)

A function of theoretical importance in the study of algorithms is the
Ackermann’s function, named after the German mathematician and
logician Wilhelm Ackermann (1896–1962). It is defined recursively as
follows, where m, n ∈ W:

A(m, n) =

⎧⎪⎪⎨
⎪⎪⎩

n + 1 if m = 0

A(m − 1, 1) if n = 0

A(m − 1, A(m, n − 1)) otherwise

Compute each.

64. A(0, 7)

66. A(4, 0)

65. A(1, 1)

67. A(2, 2)

Prove each for n ≥ 0.

68. A(1, n) = n + 2 69. A(2, n) = 2n + 3

*70. Predict a formula for A(3, n).

*71. Prove the formula in Exercise 70, where n ≥ 0.

5.2 Solving Recurrence Relations

The recursive definition of a function f does not provide us with an explicit
formula for f (n), but establishes a systematic procedure for finding it. This
section illustrates the iterative method of finding a formula for f (n) for a
simple class of recurrence relations.

5.2 Solving Recurrence Relations 279

Solving the recurrence relation for a function f means finding an
explicit formula for f (n). The iterative method of solving it involves
two steps:

• Apply the recurrence formula iteratively and look for a pattern to
predict an explicit formula.

• Use induction to prove that the formula does indeed hold for every
possible value of the integer n.

The next example illustrates this method.

EXAMPLE 5.10 (The handshake problem continued) By Example 5.3, the number of
handshakes made by n guests at a dinner party is given by

h(1) = 0

h(n) = h(n − 1) + (n − 1), n ≥ 2

Solve this recurrence relation.

SOLUTION:

Step 1 To predict a formula for h(n):

Using iteration, h(n) = h(n − 1) + (n − 1)

= h(n − 2) + (n − 2) + (n − 1)

= h(n − 3) + (n − 3) + (n − 2) + (n − 1)

...

= h(1) + 1 + 2 + 3 + · · · + (n − 2) + (n − 1)

= 0 + 1 + 2 + 3 + · · · + (n − 1)

= n(n − 1)
2

Step 2 To prove, by induction, that h(n) = n(n − 1)
2

, where n ≥ 1:

Basis step When n = 1, h(1) = 1 · 0
2

= 0, which agrees with the initial

condition. So the formula holds when n = 1.

Induction step Assume h(k) = k(k − 1)
2

for any k ≥ 1. Then:

h(k + 1) = h(k) + k, by the recurrence relation

280 Chapter 5 Recursion

= k(k − 1)
2

+ k, by the induction hypothesis

= k(k + 1)
2

Therefore, if the formula holds for n = k, it also holds for n = k + 1.
Thus, by PMI, the result holds for n ≥ 1. �
More generally, using iteration we can solve the recurrence relation

an = an−1 + f (n) (5.5)

as follows:

an = an−1 + f (n)

= [an−2 + f (n − 1)] + f (n) = an−2 + f (n − 1) + f (n)

= [an−3 + f (n − 2)] + f (n − 1) + f (n)

= an−3 + f (n − 2) + f (n − 1) + f (n)

...

= a0 +
n∑

i=1

f (i) (5.6)

You can verify that this is the actual solution of the recurrence relation (5.5).
For example, in the handshake problem f (n) = n − 1 and h(0) = 0, so

the solution of the recurrence relation is

h(n) = h(0) +
n∑

i=1

f (i) = 0 +
n∑

i=1

(i − 1)

=
n−1∑
i=1

i = n(n − 1)
2

, n ≥ 1

which is exactly the solution obtained in the example.

EXAMPLE 5.11 Solve the recurrence relation in Example 5.6.

SOLUTION:
Notice that an can be redefined as

an = an−1 + n(n + 1)
2

, n ≥ 1

5.2 Solving Recurrence Relations 281

where a0 = 0. Comparing this with recurrence relation (5.5), we have

f (n) = n(n + 1)
2

. Therefore, by Equation (5.6),

an = a0 +
n∑

i=1

f (i)

= a0 +
n∑

i=1

i(i + 1)
2

= 0 + 1
2

n∑
i=1

(i2 + i)

= 1
2

(n∑
i=1

i2 +
n∑

i=1

i

)

= 1
2

[
n(n + 1)(2n + 1)

6
+ n(n + 1)

2

]

= n(n + 1)
2

(
2n + 1

6
+ 1

2

)
= n(n + 1)

2
· 2n + 4

6

= n(n + 1)(n + 2)
6

, n ≥ 0 �

The following illustration of the iterative method brings us again to the
Tower of Brahma puzzle.

EXAMPLE 5.12 Recall from Example 5.4 that the number of moves needed to transfer n
disks from peg X to peg Z is given by

b1 = 1

bn = 2bn−1 + 1, n ≥ 2

Solve this recurrence relation.

SOLUTION:

Step 1 To predict a formula for bn:
Using iteration,

bn = 2bn−1 + 1

= 2[2bn−2 + 1] + 1 = 22bn−2 + 2 + 1

= 22[2bn−3 + 1] + 2 + 1 = 23bn−3 + 22 + 2 + 1

...

= 2n−1b1 + 2n−2 + · · · + 22 + 2 + 1

= 2n−1 + 2n−2 + · · · + 2 + 1

= 2n − 1, by Exercise 8 in Section 4.4.

282 Chapter 5 Recursion

Step 2 You may prove by induction that bn = 2n − 1, where n ≥ 1. �

More generally, you may verify that the solution of the recurrence
relation an = can−1 + 1, where c is a constant (�= 1), is

an = cna0 + cn − 1
c − 1

For instance, in Example 5.12, b0 = 0 and c = 2, so

bn = 2n · 0 + 2n − 1
2 − 1

= 2n − 1

as expected.
Let us pursue Example 5.12 a bit further. Suppose there are 64 disks at

peg X, as in the original puzzle, and it takes 1 second to move a disk from
one peg to another. Then it takes a total of 264 − 1 seconds to solve the
puzzle.

To get an idea how incredibly large this total is, notice that there are
about 365 · 24 · 60 · 60 = 31,536,000 seconds in a year. Therefore,

Total time taken = 264 − 1 seconds

≈ 1. 844674407 × 1019 seconds

≈ 5. 84942417 × 1011 years

≈ 600 billion years!

Intriguingly, according to some estimates, the universe is only about
18 billion years old.

Exercises 5.2

Using the iterative method, predict a solution to each recurrence relation
satisfying the given initial condition.

1. s0 = 1

sn = 2sn−1, n ≥ 1

3. a0 = 1

an = an−1 + n, n ≥ 1

5. a0 = 0

an = an−1 + 4n, n ≥ 1

2. a1 = 1

an = an−1 + n, n ≥ 2

4. a1 = 1

an = an−1 + (2n − 1), n ≥ 2

6. s1 = 1

sn = sn−1 + n3, n ≥ 2

5.2 Solving Recurrence Relations 283

7. s1 = 1

sn = sn−1 + n2, n ≥ 2

8. a1 = 1

an = 2an−1 + (2n − 1), n ≥ 2

9–16. Using induction, verify the solutions to Exercises 1–8.

17. Using the data in Example 5.2, show that the compound amount Judy
will receive at the end of n years is given by A(n) = 1000(1.08)n, where
n ≥ 0.

Use the recursive definition of fn in Example 5.5 to answer Exercises 18
and 19.

18. Predict a formula for fn.

19. Prove that the formula holds for n ≥ 1.

20. Using induction, establish the explicit formula for bn in Example 5.12.

Using induction, prove that each is a solution to the corresponding
recurrence relation, where c is a constant and f (n) a function of n.

21. an = a0 +
n∑

i=1
f (i), an = an−1 + f (n)

22. an = cna0 + cn − 1
c − 1

, an = can−1 + 1 (assume c �= 1)

23. an = cna0 +
n∑

i=1
cn−if (i), an = can−1 + f (n)

Let an denote the number of times the statement x ← x + 1 is executed by
the following loops.

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

24. Define an recursively.

25. Show that an =
⎧⎨
⎩

0 if n = 1
an−1 + n/2 if n > 1 and even
an−1 + (n − 1)/2 if n > 1 and odd

26. Solve the recurrence relation satisfied by an.

Let an denote the number of times the statement x ← x + 1 is executed by
the following for loops:

for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

27. Define an recursively.

28. Show that an =
⎧⎨
⎩

1 if n = 1
an−1 + n/2 if n > 1 and even
an−1 + (n + 1)/2 if n > 1 and odd

284 Chapter 5 Recursion

29. Solve the recurrence relation satisfied by an.

Let an denote the number of times the statement x ← x + 1 is executed by
the nested for loops in Exercise 35 in Section 4.4.

30. Define an recursively.

31. Solve the recurrence relation satisfied by an.

32–33. Redo Exercises 30 and 31 using the loops in Exercise 36 in
Section 4.4.

34–35. Redo Exercises 30 and 31 using the loops in Exercise 37 in
Section 4.4.

36–37. Redo Exercises 30 and 31 using the loops in Exercise 38 in
Section 4.4.

Let tn denote the nth triangular number.

38. Define tn recursively.

39. Find an explicit formula for tn.

40. Prove that 8tn + 1 is a perfect square.

The nth pentagonal number pn is obtained from its predecessor by
adding three rows of dots plus one. The first four pentagonal numbers
are represented pictorially in Figure 5.11.

Figure 5.11

p1 � 1 p2 � 5 p3 � 12 p4 � 22

41. Represent p5 pictorially.

42–43. Redo Exercises 38 and 39 using pn.

The nth hexagonal number hn is obtained from its predecessor by adding
four rows of dots plus one dot. The first four hexagonal numbers are shown
pictorially in Figure 5.12.

44–46. Redo Exercises 41–43 using hn.

47. Prove that hn = pn + tn − n, using the explicit formulas for pn and tn.

48. Prove that hn = pn + tn − n, using the recurrence relations for pn
and tn.

5.2 Solving Recurrence Relations 285

Figure 5.12

h1 � 1 h2 � 6 h3 � 15 h4 � 28

Triangular pyramidal numbers Tn (or tetrahedral numbers) are
positive integers that can be represented by triangular pyramidal shapes.
The first four tetrahedral numbers are 1, 4, 10, and 20; see Figure 5.13.

Figure 5.13

T1 � 1 T2 � 4 T3 � 10 T4 � 20

49. Define Tn recursively.

50. Conjecture an explicit formula for Tn.

51. Establish the formula in Exercise 50.

Square pyramidal numbers Sn are positive integers that can be rep-
resented by pyramidal shapes, where the base is a square. The first four
square pyramidal numbers are 1, 5, 14, and 30; see Figure 5.14.

52–54. Redo Exercises 49–51 with Sn.

Let an denote the number of subsets of the set S = {1, 2, . . . , n} that contain
no consecutive integers, where n ≥ 0. When n = 0, S = Ø.† Compute each.

55. a0 56. a1 57. a2 58. a3

†Proposed by Irving Kaplansky of The University of Chicago.

286 Chapter 5 Recursion

Figure 5.14

S1 � 1 S2 � 5 S3 � 14 S4 � 30

59. Define an recursively.

60. Solve the recurrence relation satisfied by an.

Suppose we introduce a mixed pair of 1-month-old rabbits into a large enclo-
sure on the first day of a certain month. By the end of each month, the
rabbits become mature and each pair produces k−1 mixed pairs of offspring
at the beginning of the following month. (Note: k ≥ 2.) For instance, at the
beginning of the second month, there is one pair of 2-month-old rabbits and
k − 1 pairs of 0-month-olds; at the beginning of the third month, there is
one pair of 3-month-olds, k − 1 pairs of 1-month-olds, and k(k − 1) pairs of
0-month-olds. Assume the rabbits are immortal. Let an denote the average
age of the rabbit pairs at the beginning of the nth month. (P. Filipponi,
1990)

**61. Define an recursively.

**62. Predict an explicit formula for an.

**63. Prove the formula in Exercise 64.

64. (For those familiar with the concept of limits) Find lim
n→∞ an.

5.3 Solving Recurrence Relations Revisited

Unfortunately, the iterative method illustrated in the preceding section
can be applied to only a small and simple class of recurrence relations. The
present section develops a method for solving two large, important classes
of recurrence relations.

5.3 Solving Recurrence Relations Revisited 287

Linear Homogeneous Recurrence Relations with Constant Coefficients (LHRRWCCs)
A kth-order linear homogeneous recurrence relation with con-
stant coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k (5.7)

where c1, c2, . . . , ck ∈ R and ck �= 0.

First, a few words of explanation: The term linear means that every
term on the RHS of Equation (5.7) contains at most the first power
of any predecessor ai. A recurrence relation is homogeneous if every
term on the RHS is a multiple of some ai; in other words, the rela-
tion is satisfied by the sequence {0}; that is, an = 0 for every n. All
coefficients ci are constants. Since an depends on its k immediate pre-
decessors, the order of the recurrence relation is k. Accordingly, to
solve a kth-order LHRRWCC, we will need k initial conditions, say,
a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

The next example illustrates in detail the various terms in this definition.

EXAMPLE 5.13 • The recurrence relation sn = 2sn−1 is a LHRRWCC. Its order is one.

• The recurrence relation an = nan−1 is linear and homogeneous. But
the coefficient on the RHS is not a constant. Therefore, it is not a
LHRRWCC.

• hn = hn−1 + (n − 1) is a linear recurrence relation. But it is not
homogeneous because of the term n − 1.

• The recurrence relation an = a2
n−1 + 3an−2 is homogeneous. But it is

not linear since the power of an−1 is 2.

• an = an−1 + 2an−2 + 3an−6 is a LHRRWCC of order six. �
Before we discuss solving second-order LHRRWCCs, notice that the solu-

tion of the recurrence relation sn = 2sn−1, where s0 = 1, is sn = 2n, n ≥ 0
(see Exercise 1 in Section 5.2). More generally, you may verify that the
solution of the recurrence relation an = αan−1, where a0 = c, is an = cαn,
n ≥ 0.

We now turn our attention to the second-order LHRRWCC

an = aan−1 + ban−2 (5.8)

where a and b are nonzero constants. If it has a nonzero solution of the form
cαn, then cαn = acαn−1 +bcαn−2. Since cα �= 0, this yields α2 = aα+b; that
is, α2 −aα−b = 0, so αmust be a solution of the characteristic equation

x2 − ax − b = 0 (5.9)

288 Chapter 5 Recursion

of the recurrence relation (5.8). The roots of Equation (5.9) are the
characteristic roots of recurrence relation (5.8).

Theorems 5.2 through 5.4 show how characteristic roots help solve
LHRRWCCs.

THEOREM 5.2 Let α and β be the distinct (real or complex) solutions of the equation
x2 − ax − b = 0, where a, b ∈ R and b �= 0. Then every solution of the
LHRRWCC an = aan−1 + ban−2, where a0 = C0 and a1 = C1, is of the form
an = Aαn + Bβn for some constants A and B.

PROOF:
The proof consists of two parts:

• First, we will show that an = Aαn + Bβn is a solution of the recurrence
relation for any constants A and B.

• We will then find the values of A and B satisfying the given initial
conditions.

First, notice that since α and β are solutions of equation (5.9), α2 = aα + b
and β2 = aβ + b.

• To show that an = Aαn + Bβn is a solution of the recurrence relation:

aan−1 + ban−2 = a(Aαn−1 + Bβn−1) + b(Aαn−2 + Bβn−2)

= Aαn−2(aα + b) + Bβn−2(aβ + b)

= Aαn−2 · α2 + Bβn−2 · β2

= Aαn + Bβn

= an

Thus an = Aαn + Bβn is a solution of the recurrence relation (5.8).

• Secondly, let an = Aαn + Bβn be a solution of (5.8). To find the values
of A and B, notice that the conditions a0 = C0 and a1 = C1 yield the
following linear system:

C0 = A + B (5.10)

C1 = Aα + Bβ (5.11)

Solving this system, we get (Verify.)

A = C1 − C0β

α − β and
C0α − C1

α − β (Remember, α �= β.)

With these values for A and B, an satisfies the initial conditions and the
recurrence relation. Since the recurrence relation and the initial conditions
determine a unique sequence, {an}, an = Aαn + Bβn is indeed the unique
solution of the recurrence relation. �

5.3 Solving Recurrence Relations Revisited 289

A few interesting observations:

• The solutions α and β are nonzero, since α = 0, for instance, would
imply that b = 0.

• Theorem 5.2 cannot be applied if α = β. However, it works even if α
and β are complex numbers.

• The solutions αn and βn are the basic solutions of the recurrence
relation. In general, the number of basic solutions equals the order of
the recurrence relation. The general solution an = Aαn + Bβn is a
linear combination of the basic solutions. The particular solution is
obtained by selecting A and B in such a way that the initial conditions
are satisfied, as in Theorem 5.2.

The next three examples illustrate how to solve second-order
LHRRWCCs using their characteristic equations.

EXAMPLE 5.14 Solve the recurrence relation an = 5an−1 −6an−2, where a0 = 4 and a1 = 7.

SOLUTION:
• To find the general solution of the recurrence relation:

The characteristic equation of the recurrence relation is x2 −5x+6 = 0;
the characteristic roots are 2 and 3. Therefore, by Theorem 5.2, the
general solution of the recurrence relation is an = A · 2n + B · 3n. (This
solution is used in Examples 5.19 and 5.20.)

• To find the values of A and B:
Using the initial conditions we find:

a0 = A + B = 4
a1 = 2 A + 3B = 7

Solving this linear system yields A = 5 and B = −1 (Verify this.).

Thus the solution of the recurrence relation satisfying the given condi-
tions is an = 5 · 2n − 3n, n ≥ 0. �

The next example finds an explicit formula for the nth Fibonacci number
Fn, which we have been waiting for.

EXAMPLE 5.15 Solve the Fibonacci recurrence relation Fn = Fn−1 + Fn−2, where
F1 = 1 = F2.

SOLUTION:
The characteristic equation of the recurrence relation is x2 −x−1 = 0, and

its solutions are α = 1 + √
5

2
and β = 1 − √

5
2

. You may verify α + β = 1
and αβ = −1.

The general solution is Fn = Aαn + Bβn. To find A and B, we have:

F1 = Aα + Bβ = 1

F2 = Aα2 + Bβ2 = 1

290 Chapter 5 Recursion

Solving these two equations, we get (Verify):

A = α

1 + α2 = (1 + √
5)/2

(5 + √
5)/2

= 1 + √
5

5 + √
5

= (1 + √
5)(5 − √

5)

(5 + √
5)(5 − √

5)
= 5 + 5

√
5 − √

5 − 5
25 − 5

= 1√
5

and similarly B = β

1 + β2 = − 1√
5

(Verify this.).

Thus the solution of the recurrence relation satisfying the given condi-
tions is

an = αn − βn
√

5
= αn − βn

α − β
which is the Binet form for the nth Fibonacci number Fn. (See Example 5.26
for a different method.) �

The next example, proposed by Irving Kaplansky of The University of
Chicago, also illustrates solving second order LHRRWCCs and is closely
related to Example 5.15.

EXAMPLE 5.16 Let an denote the number of subsets of the set S = {1, 2, . . . , n} that do not
contain consecutive integers, where n ≥ 0. When n = 0, S = Ø. Find an
explicit formula for an.

SOLUTION:
To get an idea about an, let us find its value for n = 0, 1, 2, 3, and 4 by
constructing a table, as in Table 5.3. It appears from the table that an is a
Fibonacci number and an = Fn+2.

Table 5.3 n Subsets of S that do not an
contain consecutive integers

0 Ø, 1
1 Ø, {1} 2
2 Ø, {1}, {2} 3
3 Ø, {1}, {2}, {3}, {1,3} 5
4 Ø, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4} 8

↑
Fn+2

We shall, in fact, prove that an = Fn+2 in two steps: First we shall define
an recursively and then solve the recurrence relation to obtain this explicit
formula.

• To define anrecursively:
From Table 5.3, a0 = 1 and a1 = 2. So let n ≥ 2. Let A be a subset of S
that does not contain two consecutive integers. Then either n ∈ A or
n /∈ A.

5.3 Solving Recurrence Relations Revisited 291

Case 1 Suppose n ∈ A. Then n − 1 /∈ A. By definition, S∗ =
{1, 2, . . . , n − 2} has an−2 subsets not containing two consecutive inte-
gers. Add n to each of the subsets. The resulting sets are subsets of S
satisfying the desired property, so S has an−2 such subsets.

Case 2 Suppose n /∈ A. By definition, there are an−1 such subsets of
S having the required property.
Since these two cases are mutually exclusive, by the addition principle,
an = an−1 + an−2.

Thus an can be defined recursively as

a0 = 1, a1 = 2

an = an−1 + an−2, n ≥ 2.

• To solve the recurrence relation:

This recurrence relation is exactly the same as the Fibonacci one with
the initial conditions a0 = 1, a1 = 2. So instead of going through a
complete solution, as in Example 5.15, notice that this definition yields
the Fibonacci numbers 1, 2, 3, 5, 8, It follows that an = Fn+2,
n ≥ 0.

Using the values of α and β from Example 5.15,

an = Fn+2 = αn+2 − βn+2

α − β , n ≥ 0

(Verify this. See Exercise 13.) �
Theorem 5.2 does not work if the characteristic roots α and β are equal,

that is, if α is a root with degree of multiplicity two. The following theorem,
however, comes to our rescue. It shows that, in addition to αn, nαn is a
basic solution.

THEOREM 5.3 Let a, b ∈ R and b �= 0. Let α be a real or complex solution of the equation
x2 − ax − b = 0 with degree of multiplicity two. Then an = Aαn + Bnαn is
the general solution of the LHRRWCC an = aan−1 + ban−2.

PROOF:
Since α is a root of the equation x2 − ax − b = 0 with degree of multipli-
city two,

x2 − ax − b = (x − α)2

= x2 − 2αx + α2

Therefore,

a = 2α and b = −α2 (5.12)

292 Chapter 5 Recursion

• To show that an = nαn satisfies the recurrence relation:
Notice that

aan−1 + ban−2 = a[(n − 1)αn−1] + b[(n − 2)αn−2]
= 2α[(n − 1)αn−1] + (−α2)[(n − 2)αn−2]

by (5.12)

= αn[2(n − 1) − (n − 2)]
= nαn = an

Therefore, nαn is a solution of the recurrence relation.

Then an = Aαn + Bnβn is the general solution of the given recurrence
relation, where A and B are selected in such a way that the initial conditions
are satisfied. (The values of A and B can be found using initial conditions,
as in Theorem 5.2.) �

The next example illustrates Theorem 5.3.

EXAMPLE 5.17 Solve the recurrence relation an = 6an−1 −9an−2, where a0 = 2 and a1 = 3.

SOLUTION:
The characteristic equation of the recurrence relation is x2 − 6x + 9 = 0;
its solution is 3 with degree of multiplicity two. Therefore, by Theorem 5.3,
the general solution of the recurrence relation is an = A · 3n + B · n3n. (We
use this in Example 5.21.)

The initial conditions a0 = 2 and a1 = 3 yield the equations

A · 30 + B · 0 · 30 = 2

and A · 3 + B · 1 · 3 = 3.

Solving these equations, we get A = 2 and B = −1. (Verify).
Thus the solution of the recurrence relation satisfying the given condi-

tions is an = 2 · 3n − n · 3n, n ≥ 0. �
Theorems 5.2 and 5.3 can be combined to yield the following general

result.

THEOREM 5.4 Let α be a characteristic root of the LHRRWCC (5.7).

• If the degree of multiplicity of α is 1, then αn is a basic solution of the
LHRRWCC.

• If the degree of multiplicity of α is m, then αn, nαn, . . . , nm−1αn are basic
solutions of the LHRRWCC. (Note: A kth-order LHRRWCC has k basic
solutions.)

• The general solution of the LHRRWCC is a linear combination of all
basic solutions. �

The following example illustrates this general theorem.

5.3 Solving Recurrence Relations Revisited 293

EXAMPLE 5.18 Solve the recurrence relation an = 7an−1 −13an−2 −3an−3 +18an−4, where
a0 = 5, a1 = 3, a2 = 6, and a3 = −21.

SOLUTION:
The characteristic equation of the LHRRWCC is x4−7x3+13x2+3x−18 = 0.
Since x4 − 7x3 + 13x2 + 3x − 18 = (x + 1)(x − 2)(x − 3)2, the characteristic
roots are:

−1 and 2 with degree of multiplicity one each

and 3 with degree of multiplicity two

Since 3 is a root with degree of multiplicity two, it yields two basic
solutions, 3n and n3n. Thus the general solution of the LHRRWCC is a
linear combination of the basic solutions (−1)n, 2n, 3n, and n3n; that is,
an = A(−1)n + B2n + C3n + Dn3n.

To find the values of A, B, C, and D:
Since a0 = 5, a1 = 3, a2 = 6, and a3 = −21, we have

A + B + C = 5

−A + 2B + 3C + 3D = 3

A + 4B + 9C + 18D = 6

and − A + 8B + 27C + 81D = −21

Solving this linear system, we get A = 2 = C, B = 1, and D = −1 (Verify
this.). Thus the solution of the LHRRWCC satisfying the initial conditions
is an = 2(−1)n + 2n + 2 · 3n − n3n, n ≥ 0. �

The technique of solving LHRRWCCs cannot be applied to the seemingly
simple recurrence relations fn = fn−1 +n (Example 5.5) and bn = 2bn−1 +1
(Example 5.4), which are linear, but nonhomogeneous. So we now turn to
solving linear nonhomogeneous recurrence relations with constant
coefficients (LNHRRWCCs).

LNHRRWCCs
The general form of a LNHRRWCC is

an = c1an−1 + c2an−2 + · · · + ckan−k + f (n) (5.13)

where c1, c2, . . . , ck ∈ R, ck �= 0, and f (n) is not identically zero. Its solution
depends on that of the associated linear homogeneous recurrence
relation with constant coefficients (ALHRRWCCs)

an = c1an−1 + c2an−2 + · · · + ckan−k (5.14)

we studied earlier.

294 Chapter 5 Recursion

Solving LNHRRWCCs
To solve the LNHRRWCCs (5.13), let a(h)

n denote the general solution of the
ALHRRWCCs (5.14). Suppose we know some solution a(p)

n of the recurrence
relation (5.13); a(p)

n is a particular solution of the LNHRRWCCs (5.13).
Then the general solution of (5.13) is given by

an = a(h)
n + a(p)

n

This fact is confirmed by the following theorem; we leave its proof as an
exercise (see Exercise 44).

THEOREM 5.5 Let a(h)
n denote the general solution of the ALHRRWCCs (5.14) and a(p)

n a
particular solution of the LNHRRWCC (5.13). Then an = a(h)

n + a(p)
n is the

general solution of the LNHRRWCCs (5.13). �
It follows from this theorem that solving the LNHRRWCCs (5.13)

depends on finding a particular solution a(p)
n . Although no general algo-

rithm exists for solving an arbitrary LNHRRWCCs, two special cases can
be handled fairly easily. When f (n) is a polynomial in n or is of the form
Cαn, a particular solution can be extracted with ease, as the next two exam-
ples demonstrate, where C and α are constants. The techniques we employ
are similar to those used to solve linear nonhomogeneous differential
equations.

EXAMPLE 5.19 Solve the LNHRRWCCs an = 5an−1 − 6an−2 + 8n2, where a0 = 4 and
a1 = 7.

SOLUTION:
It follows from Example 5.14 that the general solution of the ALHRRWCCs
an = 5an−1 − 6an−2 is given by a(h)

n = A · 2n + B · 3n. Since f (n) = 8n2 is
a quadratic polynomial in n, it seems reasonable to look for a particular
solution of the same form, say, an = an2+bn+c. Then the given recurrence
relation yields

an2 + bn+ c = 5[a(n−1)2 + b(n−1)+ c]−6[a(n−2)2 + b(n−2)+ c]+8n2

= (8−a)n2 + (14a− b)n−19a+7b− c

Equating the coefficients of like terms, we get the linear system:

a = 8 − a

b = 14a − b

c = −19a + 7b − c

Solving the system, we get a = 4, b = 28, and c = 60 (Verify). We now claim
that a(p)

n = 4n2 + 28n + 60 is a particular solution (Verify).

5.3 Solving Recurrence Relations Revisited 295

Thus, by Theorem 5.5, the general solution of the given recurrence
relation is

an = a(h)
n + a(p)

n

= A · 2n + B · 3n + 4n2 + 28n + 60

Using the two given initial conditions, this yields the linear system:

A + B = −56

2A + 3B = −85

This yields A = −83 and B = 27 (Verify this also.).
Thus the desired solution is

an = (−83) · 2n + 27 · 3n + 4n2 + 28n + 60, n ≥ 0 �

The next example illustrates how to solve the LNHRRWCCs (5.13) when
f (n) is of the form Cαn, where C and α are constants.

EXAMPLE 5.20 Solve the LNHRRWCCs an = 5an−1 − 6an−2 + 3 · 5n, where a0 = 4 and
a1 = 7.

SOLUTION:
As in Example 5.19, the general solution of the ALHRRWCCs an = 5an−1 −
6an−2 is given by a(h)

n = A · 2n + B · 3n. Since f (n) = 3 · 5n, we search for a
particular solution of the form an = c · 5n. Then we must have

c · 5n = 5(c · 5n−1) − 6(c · 5n−2) + 3 · 5n

Canceling 5n−2 from both sides, the resulting equation yields c = 25/2.
We now claim that an = (25/2)5n is a particular solution of the recurrence
relation (Verify this.).

Thus the general solution of the LNHRRWCCs is

an = A · 2n + B · 3n + (25/2)5n

Using the initial conditions, we get the linear system:

A + B = −17/2

2A + 3B = −111/2

Solving this system, we get A = 30 and B = −77/2 (Verify this.).
Thus the solutions of the given recurrence relation are given by

an = (30) · 2n − (77/2) · 3n + (25/2) · 5n, n ≥ 0

(Verify this also.) �

296 Chapter 5 Recursion

An important observation: In this example, notice that the 5 in f (n) is
not a characteristic root of the ALHRRWCCs. If it were, we would have
needed to make adjustments in our search for a particular solution, as
in Theorem 5.3. We shall pursue this case shortly.

The following theorem justifies the techniques demonstrated in these
two examples; we omit its proof in the interest of brevity.

THEOREM 5.6 In the LNHRRWCCs (5.13), suppose f (n) = (bknk + bk−1nk−1 + · · · + b1n +
b0)αn. If α is not a characteristic root of the ALHRRWCCs (5.14), then a
particular solution is of the form (dknk + dk−1nk−1 + · · · + d1n + d0)αn.
If α is a characteristic root with multiplicity m, then a particular solution
is of the form nm(eknk + ek−1nk−1 + · · · + e1n + e0)αn. �

We conclude this section with the following example, which illustrates
this theorem when α is a characteristic root of the ALHRRWCCs.

EXAMPLE 5.21 Solve the LNHRRWCCs an = 6an−1 − 9an−2 + 4(n + 1)3n, where a0 = 2
and a1 = 3.

SOLUTION:
From Example 5.17, the general solution of the ALHRRWCCs is a(h)

n =
A ·3n +B ·n3n, where n ≥ 0. Since 3 is a characteristic root with multiplicity
2, we search for a particular solution of the form n2(cn + d)3n, where the
constants c and d are to be determined. Then we must have

n2(cn + d)3n = 6{(n − 1)2[c(n − 1) + d]3n−1}
− 9{(n − 2)2[c(n − 2) + d]3n−2} + 4(n + 1)3n

Equating the coefficients of like terms, this yields c = 2/3 and d = 4 (Verify);
so a(p)

n = 2n2(n + 6)3n−1.
Thus the general solution of the recurrence relation is

an = A · 3n + B · n3n + 2n2(n + 6)3n−1, n ≥ 0

Using the initial conditions, this yields

an = (6 − 19n) · 3n−1 + 2n2(n + 6)3n−1, n ≥ 0 �

(You can confirm this.)

Exercises 5.3

Determine if each recurrence relation is a LHRRWCC.

1. Ln = Ln−1 + Ln−2

3. an = 1. 08an−1

2. Dn = nDn−1 + (−1)n

4. bn = 2bn−1 + 1

5.3 Solving Recurrence Relations Revisited 297

5. an = an−1 + n

7. an = an−1 + 2an−2 + 3an−5

6. an = 2an−1 + (2n − 1)

8. an = an−1 + 2an−3 + n2

Solve each LHRRWCC.

9. an = an−1 + 2an−2, a0 = 3, a1 = 0

10. an = 5an−1 − 6an−2, a0 = 4, a1 = 7

11. an = an−1 + 6an−2, a0 = 5, a1 = 0

12. an = 4an−2, a0 = 2, a1 = −8

13. an = an−1 + an−2, a0 = 1, a1 = 2

14. an = an−1 + an−2, a0 = 2, a1 = 3

15. Ln = Ln−1 + Ln−2, L1 = 1, L2 = 3

16. an = 4an−1 − 4an−2, a0 = 3, a1 = 10

17. an = 6an−1 − 9an−2, a0 = 2, a1 = 3

18. an = 3an−1 + 4an−2 − 12an−3, a0 = 3, a1 = −7, a2 = 7

19. an = 8an−1 − 21an−2 + 18an−3, a0 = 0, a1 = 2, a2 = 13

20. an = 7an−1 − 16an−2 + 12an−3, a0 = 0, a1 = 5, a2 = 19

21. an = −an−1 + 16an−2 + 4an−3 − 48an−4, a0 = 0, a1 = 16, a2 = −2,
a3 = 142

22. an = 13an−2 − 36an−4, a0 = 7, a1 = −6, a2 = 38, a3 = −84

23. an = 9an−1 − 30an−2 + 44an−3 − 24an−4, a0 = 5, a1 = 12, a2 = 38,
a3 = 126

24. an = 8an−1 − 24an−2 + 32an−3 − 16an−4, a0 = 1, a1 = 4, a2 = 44,
a3 = 272

Find the general form of a particular solution of the LNHRRWCCs (5.13)
corresponding to each function f (n).

25. f (n) = n

28. f (n) = 3n

26. f (n) = 1

29. f (n) = n2n

27. f (n) = 3n2

30. f (n) = 43n25n

Find the general form of a particular solution of the LNHRRWCCs
an = 4an−1 − 4an−2 + f (n) corresponding to each function f (n).

31. f (n) = 3 · 2n

33. f (n) = 23n22n

32. f (n) = n2n

34. (17n3 − 1)2n

Solve each LNHRRWCCs.

35. an = 2an−1 + 1, a0 = 1

36. an = 7an−1 − 10an−2 + n2, a0 = 0, a1 = 1

298 Chapter 5 Recursion

37. an = 7an−1 − 12an−2 + 3n, a0 = 0, a1 = 2

38. an = 7an−1 − 12an−2 + 3n4n, a0 = 0, a1 = 2

*39. an = an−1 + n, a0 = 1

*40. an = an−1 + n − 1, a1 = 0

41. Let rn and sn be two solutions of the recurrence relation (5.8). Prove
that an = rn + sn is also a solution.

42. Let α be a solution of the equation xk − c1xk−1 − · · · − ck = 0. Show
that αn is a solution of LHRRWCC (5.7).

43. Let α be a characteristic root of the LHRRWCC an = aan−1 +ban−2 +
can−3 with degree of multiplicity three. Show that αn, nαn, n2αn are
solutions of LHRRWCC.

44. Let a(h)
n denote the general solution of the ALHRRWCCs (5.14) and

a(p)
n a particular solution of the LNHRRWCCs (5.13). Prove that

an = a(h)
n + a(p)

n is the general solution of the LNHRRWCCs (5.13).

5.4 Generating Functions

Generating functions provide a powerful tool for solving LHRRWCCs, as
will be seen shortly. They were invented in 1718 by the French mathe-
matician Abraham De Moivre, when he used them to solve the Fibonacci
recurrence relation (see Example 5.26). Generating functions can also solve
combinatorial problems, as the next chapter shows.

To begin with, notice that the polynomial 1 + x + x2 + x3 + x4 + x5 can

be written as
x6 − 1
x − 1

. You may verify this by either cross-multiplication,

the familiar long division method, or Exercise 8 in Section 4.4. Accord-

ingly, f (x) = x6 − 1
x − 1

is called the generating function of the sequence of

coefficients 1, 1, 1, 1, 1, 1 in the polynomial.
More generally, we make the following definition.

Generating Function
Let a0, a1, a2, . . . be a sequence of real numbers. Then the function

g(x) = a0 + a1x + a2x2 + · · · + anxn + · · · (5.15)

is the generating function for the sequence {an}. Generating functions
for the finite sequence a0, a1, . . . , an can also be defined by letting ai = 0 for
i > n; thus g(x) = a0 + a1x + a2x2 + · · · + anxn is the generating function
for the finite sequence a0, a1, . . . , an.

5.4 Generating Functions 299

Abraham De Moivre (1667–1754), son of a surgeon, was born in Vitry-le-
Francois, France. His formal education began at the Catholic village school,
and then continued at the Protestant Academy at Sedan and later at Saumur.
He did not receive good training in mathematics until he moved to Paris in
1684, where he studied Euclid’s later books and other texts.

Around 1686, De Moivre emigrated to England, where he began his life-
long profession, tutoring in mathematics, and mastered Newton’s Principia
Mathematica. In 1695 he presented a paper, his first, on Newton’s theory
of fluxions to the Royal Society of London and 2 years later he was elected a
member of the Society. Unfortunately, despite his influential friends, he could
not find an academic position. He had to earn a living as a tutor, author, and
expert on applications of probability to gambling and annuities.

He dedicated his first book, a masterpiece, The Doctrine of Chances, to
Newton. His most notable discovery concerns probability theory: The binomial probability distribution can
be approximated by the normal distribution.

De Moivre died in London.

For example,

g(x) = 1 + 2x + 3x2 + · · · + (n + 1)xn + · · ·

is the generating function for the sequence of positive integers and

f (x) = 1 + 3x + 6x2 + · · · + n(n + 1)
2

x2 + · · ·

is the generating function for the sequence of triangular numbers. Since

xn − 1
x − 1

= 1 + x + x2 + · · · + xn−1

g(x) = xn − 1
x − 1

is the generating function for the sequence of n ones.

A word of caution: The RHS of Equation (5.15) is a formal power
series in x. The letter x does not represent anything. The various powers
xn of x are simply used to keep track of the corresponding terms an of
the sequence. In other words, think of the powers xn as placeholders.
Consequently, unlike in calculus, the convergence of the series is of no
interest to us.

Equality of Generating Functions
Two generating functions f (x) =

∞∑
n=0

anxn and g(x) =
∞∑

n=0
bnxn are equal if

an = bn for every n ≥ 0.

300 Chapter 5 Recursion

For example, let f (x) = 1 + 3x + 6x2 + 10x3 + · · · and

g(x) = 1 + 2 · 3
2

x + 3 · 4
2

x2 + 4 · 5
2

x3 + · · · . Then f (x) = g(x).

A generating function we will use frequently is

1
1 − ax

= 1 + ax + a2x2 + · · · + anxn + · · · (5.16)

Then
1

1 − x
= 1 + x + x2 + · · · + xn + · · · (5.17)

Can we add and multiply generating functions? Yes! Such operations are
performed exactly the same way as polynomials are combined.

Addition and Multiplication of Generating Functions
Let f (x) =

∞∑
n=0

anxn and g(x) =
∞∑

n=0
bnxn be two generating functions. Then

f (x) + g(x) =
∞∑

n=0

(an + bn)xn and f (x)g(x) =
∞∑

n=0

(n∑
i=0

aibn−i

)
xn

For example,

1
(1 − x)2 = 1

1 − x
· 1

1 − x

=
(∞∑

i=0

xi

)(∞∑
i=0

xi

)
=

∞∑
n=0

(n∑
i=0

1 · 1

)
xn

=
∞∑

n=0

(n + 1)xn

= 1 + 2x + 3x2 + · · · + (n + 1)xn + · · · (5.18)

and

1
(1 − x)3

= 1
1 − x

· 1
(1 − x)2

=
(∞∑

n=0

xn

)[∞∑
n=0

(n + 1)xn

]

=
∞∑

n=0

[n∑
i=0

1 · (n + 1 − i)

]
xn

=
∞∑

n=0

[(n + 1) + n + · · · + 1] xn

5.4 Generating Functions 301

=
∞∑

n=0

(n + 1)(n + 2)
2

xn

= 1 + 3x + 6x2 + 10x3 + · · · (5.19)

Before exploring how valuable generating functions are in solving
LHRRWCCs, we illustrate how the technique of partial fraction decom-
position, used in integral calculus, enables us to express the quotient
p(x)
q(x)

of two polynomials p(x) and q(x) as a sum of proper fractions, where

deg p(x) < deg q(x).†

For example,

6x + 1
(2x − 1)(2x + 3)

= 1
2x − 1

+ 2
2x + 3

Partial Fraction Decomposition Rule for
p(x)
q(x)

, where deg p(x) < deg q(x)

If q(x) has a factor of the form (ax + b)m, then the decomposition contains
a sum of the form

A1

ax + b
+ A2

(ax + b)2 + · · · + Am

(ax + b)m

where Ai is a rational number.
Examples 5.22–5.24 illustrate the partial fraction decomposition tech-

nique. We use their results to solve the recurrence relations in Examples
5.25–5.27.

EXAMPLE 5.22 Express
x

(1 − x)(1 − 2x)
as a sum of partial fractions.

SOLUTION:
Since the denominator contains two linear factors, we let

x
(1 − x)(1 − 2x)

= A
1 − x

+ B
1 − 2x

To find the constants A and B, multiply both sides by (1 − x)(1 − 2x):

x = A(1 − 2x) + B(1 − x)

Now give convenient values to x. Setting x = 1 yields A = −1 and setting
x = 1/2 yields B = 1. (The values of A and B can also be found by equating

†deg f (x) denotes the degree of the polynomial f (x).

302 Chapter 5 Recursion

coefficients of like terms from either side of the equation and solving the
resulting linear system.)

x
(1 − x)(1 − 2x)

= −1
1 − x

+ 1
1 − 2x

(You may verify this by combining the sum on the RHS into a single
fraction.) We use this result in Example 5.25. �

EXAMPLE 5.23 Express
x

1 − x − x2 as a sum of partial fractions.

SOLUTION:
First, factor 1 − x − x2:

1 − x − x2 = (1 − αx)(1 − βx)

where α = 1 + √
5

2
and β = 1 − √

5
2

. (Notice that α + β = 1,αβ = −1, and
α − β = √

5.)
Let

x
1 − x − x2 = A

1 − αx
+ B

1 − βx

Then

x = A(1 − βx) + B(1 − αx)

Equating coefficients of like terms, we get:

A + B = 0

−βA − αB = 1

Solving this linear system yields A = 1√
5

= −B (Verify this.).

Thus

x
(1 − x − x2)

= 1√
5

[
1

1 − αx
− 1

1 − βx

]

We use this result in Example 5.26. �

EXAMPLE 5.24 Express
2 − 9x

1 − 6x + 9x2 as a sum of partial fractions.

SOLUTION:
Again, factor the denominator:

1 − 6x + 9x2 = (1 − 3x)2

5.4 Generating Functions 303

By the decomposition rule, let

2 − 9x
1 − 6x + 9x2 = A

1 − 3x
+ B

(1 − 3x)2

Then

2 − 9x = A(1 − 3x) + B

This yields A = 3 and B = −1 (Verify this.).

Thus
2 − 9x

1 − 6x + 9x2 = 3
1 − 3x

− 1
(1 − 3x)2

We use this result in Example 5.27. �
Now we are ready to use partial fraction decompositions and generating

functions to solve recurrence relations in the next three examples.

EXAMPLE 5.25 Use generating functions to solve the recurrence relation bn = 2bn−1 + 1,
where b1 = 1.

SOLUTION:
First, notice that the condition b1 = 1 yields b0 = 0. To find the sequence
{bn} that satisfies the recurrence relation, consider the corresponding
generating function

g(x) = b0 + b1x+ b2x2 + b3x3+ · · ·+ bnxn+ · · ·
Then

2xg(x) = 2b1x2 + 2b2x3+ · · ·+ 2bn−1xn+ · · ·
Also,

1
1 − x

= 1 + x+ x2 + x3+ · · ·+ xn+ · · ·

Then
g(x) − 2xg(x) − 1

1 − x
= −1 + (b1 − 1)x + (b2 − 2b1 − 1)x2 + · · ·

+ (bn − 2bn−1 − 1)xn + · · ·
= −1

since b1 = 1 and bn = 2bn−1 + 1 for n ≥ 2. That is,

(1 − 2x)g(x) = 1
1 − x

− 1 = x
1 − x

Then

g(x) = x
(1 − x)(1 − 2x)

304 Chapter 5 Recursion

= − 1
1 − x

+ 1
1 − 2x

, by Example 5.22

= −
(∞∑

n=0

xn

)
+
(∞∑

n=0

2nxn

)
, by (5.16)

=
∞∑

n=0

(2n − 1)xn

But g(x) =
∞∑

n=0
bnxn, so bn = 2n − 1, n ≥ 1. (Notice that this is the same

solution obtained in Example 5.12.) �

EXAMPLE 5.26 Using generating functions, solve the Fibonacci recurrence relation Fn =
Fn−1 + Fn−2, where F1 = 1 = F2.

SOLUTION:
Notice that the two initial conditions yield F0 = 0. Let

g(x) = F0 + F1x + F2x2 + · · · + Fnxn + · · ·

be the generating function of the Fibonacci sequence. Since the orders of
Fn−1 and Fn−2 are 1 and 2 less than the order of Fn, respectively, we find
xg(x) and x2g(x):

xg(x) = F1x2 + F2x3 + F3x4 + · · · + Fn−1xn + · · ·
x2g(x) = F1x3 + F2x4 + F3x5 + · · · + Fn−2xn + · · ·

Then

g(x) − xg(x) − x2g(x) = F1x + (F2 − F1)x2 + (F3 − F2 − F1)x3 + · · ·
+ (Fn − Fn−1 − Fn−2)xn + · · ·

= x

since F2 = F1 and Fn = Fn−1 + Fn−2.
That is,

(1 − x − x2)g(x) = x

g(x) = x
1 − x − x2

= 1√
5

[
1

1 − αx
− 1

1 − βx

]
, by Example 5.23

where α = 1 + √
5

2
and β = 1 − √

5
2

5.4 Generating Functions 305

Then

√
5g(x) = 1

1 − αx
− 1

1 − βx

=
∞∑

n=0

αnxn −
∞∑

n=0

βnxn =
∞∑

n=0

(αn − βn)xn

So

g(x) =
∞∑

n=0

(αn − βn)√
5

xn

Therefore, by the equality of generating functions,

Fn = αn − βn
√

5
= αn − βn

α − β

(Recall that this is the Binet form of Fn.) �
We close this section with the following example.

EXAMPLE 5.27 Using generating functions, solve the recurrence relation an = 6an−1 −
9an−2, where a0 = 2 and a1 = 3.

SOLUTION:
Let

g(x) = a0 + a1x + a2x2 + · · · + anxn + · · ·
Then

6xg(x) = 6a0x + 6a1x2 + 6a2x3 + · · · + 6an−1xn + · · ·
9x2g(x) = 9a0x2 + 9a1x3 + 9a2x4 + · · · + 9an−2xn + · · ·

Then

g(x) − 6xg(x) + 9x2g(x) = a0 + (a1 − 6a0)x + (a2 − 6a1 + 9a0)x2 + · · ·
+ (an − 6an−1 + 9an−2)xn + · · ·

= 2 − 9x

using the given conditions. Thus

(1 − 6x + 9x2)g(x) = 2 − 9x

Therefore,

g(x) = 2 − 9x
1 − 6x + 9x2

306 Chapter 5 Recursion

= 3
1 − 3x

− 1
(1 − 3x)2 , by Example 5.24

= 3

(∞∑
n=0

3nxn

)
−

∞∑
n=0

(n + 1)3nxn

=
∞∑

n=0

[3n+1 − (n + 1)3n]xn

=
∞∑

n=0

3n(2 − n)xn

Thus

an = (2 − n)3n, n ≥ 0 �

The following exercises provide ample practice in this problem-solving
technique.

Exercises 5.4

Express each quotient as a sum of partial fractions.

1.
x + 7

(x − 1)(x + 3)

3.
5

1 − x − 6x2

5.
x(x + 2)

(2 + 3x)(x2 + 1)

7.
x3 + x2 + x + 3

x4 + 5x2 + 6

9.
3x3 − x2 + 4x

x4 − x3 + 2x2 − x + 1

2.
4x2 − 3x − 25

(x + 1)(x − 2)(x + 3)

4.
2 + 4x

1 + 8x + 15x2

6.
−2x2 − 2x + 2

(x − 1)(x2 + 2x)

8.
−x3 + 2x2 + x
x4 + x3 + x + 1

*10.
x3 + x2 + 5x − 2
x4 − x2 + x − 1

Using generating functions, solve each LHRRWCC.

11. an = 2an−1, a0 = 1

12. an = an−1 + 1, a1 = 1

13. an = an−1 + 2, a1 = 1

14. an = an−1 + 2an−2, a0 = 3, a1 = 0

15. an = 4an−2, a0 = 2, a1 = −8

16. an = an−1 + 6an−2, a0 = 5, a1 = 0

5.5 Recursive Algorithms 307

17. an = 5an−1 − 6an−2, a0 = 4, a1 = 7

18. an = an−1 + an−2, a0 = 1, a1 = 2

19. an = an−1 + an−2, a0 = 2, a1 = 3

20. Ln = Ln−1 + Ln−2, L1 = 1, L2 = 3

21. an = 4an−1 − 4an−2, a0 = 3, a1 = 10

22. an = 6an−1 − 9an−2, a0 = 2, a1 = 3

23. an = 3an−1 + 4an−2 − 12an−3, a0 = 3, a1 = −7, a2 = 7

24. an = 8an−1 − 21an−2 + 18an−3, a0 = 0, a1 = 2, a2 = 13

25. an = 7an−1 − 16an−2 + 12an−3, a0 = 0, a1 = 5, a2 = 19

26. an = 3an−1 + 4an−2 − 12an−3, a0 = 3, a1 = −7, a2 = 7

27. an = 6an−1 − 12an−2 + 8an−3, a0 = 0, a1 = 2, a2 = −2

28. an = 13an−2 − 36an−4, a0 = 7, a1 = −6, a2 = 38, a3 = −84

29. an = −an−1 +3an−2 +5an−3 +2an−4, a0 = 0, a1 = −8, a2 = 4, a3 = −42

5.5 Recursive Algorithms

Recall that the recursive definition of the factorial function f expresses
f (n) in terms of itself with a smaller argument n − 1. Accordingly, it can be
employed to write a simple algorithm to compute n! This algorithm has the
interesting property that it invokes itself with a smaller argument. Such
an algorithm is a recursive algorithm.

Recursive Algorithm
An algorithm is recursive if it invokes itself with a smaller argument; that
is, if it invokes a reduced version of itself. (See Figure 5.1.)

Recursive definitions invariably lead to recursive algorithms. This sec-
tion translates some of the examples discussed in Section 5.1 into recursive
algorithms and presents a few new ones — gcd, binary search, and merge
sort.

EXAMPLE 5.28 Write a recursive algorithm to compute n!, where n ≥ 0.

SOLUTION:
When n = 0, the algorithm must terminate and yield the value 1. When
n > 0, the recurrence relation f (n) = n · f (n − 1) must be applied: the
algorithm must invoke itself with n−1 as the new argument. The recursive
algorithm is given in Algorithm 5.1.

308 Chapter 5 Recursion

Algorithm factorial(n)
(* This algorithm computes n! using recursion *)
0. Begin (* algorithm *)
1. if n = 0 then (* base case *)
2. factorial ← 1
3. else (* invoke the algorithm *)
4. factorial ← n · factorial(n - 1)
5. End (* algorithm *)

Algorithm 5.1 �

Figure 5.15 shows the result of invoking the factorial algorithm with
n = 3, where f means factorial.

Figure 5.15 f (3)

.

.

.

.

.

.

f 3·f (2)

f (2)

.

.

.

.

.

.

f 2·f (1)

recursive
call

returns
value

recursive
call

returns
value

recursive
call

returns
value

gets the value 3·2�6

f (1)

.

.

.

.

.

.

f 1·f (0)

f (0)

.

.

.

.

.

.

f 1← ← ←←

Every recursive algorithm has two important characteristics, or cases:

• The base case ensures the sequence of recursive calls will terminate
after a finite number of steps. This case corresponds to the initial
condition(s) of a recursive definition.

• The general case continues to call itself so long as the base case is not
satisfied.

The next example presents an algorithm for computing the number of
handshakes made by n guests, discussed in Example 5.3.

EXAMPLE 5.29 Using Example 5.3 write a recursive algorithm to compute the number of
handshakes made by n guests.

SOLUTION:

Base case The algorithm terminates when n = 1, in which case the
number of handshakes made is zero.

General case When n ≥ 2, the algorithm invokes itself using the
recurrence relation h(n) = h(n − 1) + (n − 1).

These two cases lead to Algorithm 5.2.

Algorithm handshake(n)
(* This algorithm computes the number of handshakes made

by n guests at a party by recursion. *)
0. Begin (* algorithm *)

5.5 Recursive Algorithms 309

1. if n = 1 then (* basis case *)
2. handshake ← 0
3. else (* general case *)
4. handshake ← handshake(n - 1) + (n - 1)
5. End (* algorithm *)

Algorithm 5.2 �

EXAMPLE 5.30 Write a recursive algorithm to print the moves and the total number of
moves needed to transfer the n disks from peg X to peg Z in the Tower of
Brahma puzzle in Example 5.4.

SOLUTION:
Recall that solving the puzzle involves three steps:

• Move the top n −1 disks from X to Y using Z as an auxiliary peg;

• Move disk n from X to Z; and

• Move the n −1 disks from Y to Z using X as an auxiliary.

We also must count the moves made. The resulting Algorithm 5.3 follows.

Algorithm tower (X,Z,Y,n,count)
(* This algorithm, using recursion, prints the various moves

needed to solve the Tower of Brahma puzzle and returns
the total number of moves needed in the global variable count.
Count must be initialized to 0 in the calling module. *)

0. Begin (* algorithm *)
1. if n = 1 then (* base case *)
2. begin (* if *)
3. move disk 1 from X to Z
4. count ← count + 1
5. endif
6. else (* general case *)
7. begin (* else *)
8. tower(X,Y,Z,n - 1,count) (* move the top n - 1 disks *)
9. move disk n from X to Z

10. count ← count + 1
11. tower(Y,Z,X,n - 1,count)
12. endelse
13. End (* algorithm *)

Algorithm 5.3 �

Suppose we invoke this algorithm by tower (X,Y,Z,3,count). The tree
diagram in Figure 5.16 illustrates the various recursive calls, where t stands
for tower and c for count. Seven moves are needed:

move 1 from X to Z; move 2 from X to Y; move 1 from Z to Y; move 3
from X to Z; move 1 from Y to X; move 2 from Y to Z; move 1 from X
to Z.

You may verify this.

310 Chapter 5 Recursion

Figure 5.16 t (X,Z,Y,3,c)

t (X,Y,Z,2,c)

t (X,Z,Y,1,c) t (Z,Y,X,1,c)

t (Y,Z,X,2,c)

t (Y,X,Z,1,c) t (X,Z,Y,1,c)

The next example displays a Fibonacci algorithm.

EXAMPLE 5.31 Write a recursive algorithm to compute the nth Fibonacci number Fn.

SOLUTION:
Recall from Example 5.7 that the recursive definition of Fn involves two
initial conditions F1 = 1 = F2, and the recurrence relation Fn = Fn−1 +
Fn−2, where n ≥ 3. These two cases can be combined into straightforward
Algorithm 5.4.

Algorithm Fibonacci(n)
(* This algorithm computes the nth Fibonacci number

using recursion. *)
0. Begin (* algorithm *)
1. if n = 1 or n = 2 then (* base cases *)
2. Fibonacci ← 1
3. else (* general case *)
4. Fibonacci ← Fibonacci(n - 1) + Fibonacci(n - 2)
5. End (* algorithm *)

Algorithm 5.4 �
The tree diagram in Figure 5.17 illustrates the recursive computing of

F5, where each dot represents an addition.

Figure 5.17 F5

F4

F2 F2 F1F3

F3

F1F2

5.5 Recursive Algorithms 311

The next example shows how we can use recursion to compute the gcd
of two positive integers x and y.

EXAMPLE 5.32 Write a recursive algorithm to compute the gcd of two positive integers x
and y.

SOLUTION:
If x > y, gcd{x, y} = gcd{x − y, y}. (See Exercise 34 in Section 4.2.) We use
this fact to write Algorithm 5.5.

Algorithm gcd(x,y)
(* This algorithm computes the gcd of two positive

integers x and y using recursion. *)
0. Begin (* algorithm *)
1. if x > y then
2. gcd ← gcd{x - y, y}
3. else if x < y then
4. gcd ← gcd{y, x}
5. else
6. gcd ← x
7. End (* algorithm *)

Algorithm 5.5

(As an exercise, use this algorithm to compute gcd{x, y} with x = 28 and
y = 12, x = 13 and y = 20, and x = 17 and y = y.) �

We now turn our attention to the recursive version of the binary search
algorithm, presented in Example 4.28 in Section 4.5. Recall that binary
search, a divide-and-conquer technique, is an efficient method for searching
an ordered list for a key (say, for example, a certain name in your local
telephone directory).

EXAMPLE 5.33 (Binary Search Algorithm) Write a recursive algorithm to search an
ordered list X of n items and determine if a certain item (key) occurs in the
list. Return the location of key if the search is successful.

SOLUTION:
Because the algorithm is extremely useful, we first outline it:

compute the middle index.
if key = middle value then

we are done and exit
else if key < middle value then

search the lower half
else

search the upper half.

The algorithm is given in Algorithm 5.6.

Algorithm binary search(X,low,high,key,found,mid)
(* The algorithm returns the location of key in the

variable mid in the list X if the search is successful.

312 Chapter 5 Recursion

Low, mid, and high denote the lowest, middle, and highest
indices of the list. Found is a boolean variable;
it is true if key is found and false otherwise. *)

0. Begin (* algorithm *)
1. if low ≤ high then (* list is nonempty *)
2. begin (* if *)
3. found ← false (* boolean flag *)
4. mid ← �(low + high)/2�
5. if key = xmid then
6. found ← true (* we are done. *)
7. else
8. if key < xmid then (* search the lower half *)
9. binary search(X,low,mid - 1,key,found,mid)

10. else (* search the upper half *)
11. binary search(X,mid + 1,high,key,found,mid)
12. endif
13. End (* algorithm *)

Algorithm 5.6

(As an exercise, use this algorithm to search the list [3, 5, 8, 13, 21, 34,
55, 89] with key = 5 and key = 23.) �

The Merge Algorithm
Before presenting the merge sort algorithm that sorts a list into ascending
order, we show how the merge algorithm works. It combines two ordered
lists A and B into an ordered list C, eliminating all duplicate elements.

Consider the two lists A and B:

1 2 3

2 3 5A

1 2 3 4 5

1 3 5 8 13B

Clearly, the combined sorted list contains at most 8 elements.
Let ai denote the ith element of A, bj the jth element of B, and ck the kth

element of C, where 1 ≤ i ≤ 3, 1 ≤ j ≤ 5, and 1 ≤ k ≤ 8.

Step 1 Initially, compare a1 and b1. Since b1 < a1, store b1 in c1. This
yields the following

1 2 3 4 5 6 7 8

1C

Step 2 Compare a1 and b2. a1 < b2. So store a1 in c2:

1 2 3 4 5 6 7 8

1 2C

5.5 Recursive Algorithms 313

Step 3 Compare a2 and b2. Since they are equal, store a2 in c3:

1 2 3 4 5 6 7 8

1 2 3C

Step 4 Since a3 = b3, store a3 in c4:

1 2 3 4 5 6 7 8

1 2 3 5C

Step 5 There are no more elements left in A, so copy the remaining
elements of B into C. This yields the following sorted list:

1 2 3 4 5 6 7 8

1 2 3 5 8 13C

We now explore the merge sort algorithm, which uses both recursion
and the merge algorithm.

The Merge Sort Algorithm
The merge sort algorithm sorts a list X of n elements into increasing
order. First, partition the list into one-element sublists by successively
dividing lists in two. Then invoke the merge algorithm successively to
merge the sublists, a pair at a time, into increasing order until the entire
list is sorted.

For instance, suppose the one-element sublists after successive division
are x1, x2, . . ., and xn; then merge the sublists x1 and x2, x3 and x4, etc., to
form new sublists x12, x34, etc.; now merge the sublists x12, x34, . . . pair by
pair; continue like this until there is a single ordered list.

The following example illustrates this method.

EXAMPLE 5.34 Using the merge sort algorithm, sort the list 13, 8, 3, 5, 2 into ascending
order.

SOLUTION:
Divide the given list into two sublists of equal or about the same size:
[13, 8, 3] and [5, 2]. Split each sublist into two sublists, resulting in four
sublists: [13, 8], [3], [5], [2]. Now divide the first sublist into two sublists,
resulting in five one-element sublists: [13], [8], [3], [5], [2].

The tree diagram in Figure 5.18 illustrates this splitting process.
Now the merge algorithm combines them successively in pairs into sorted

sublists until the original list is sorted, as shown by the upside-down tree
in Figure 5.19.

The recursive merge sort algorithm is given in Algorithm 5.7. Use it to
sort the list [13, 55, 3, 8, 34, 5, 2, 31, 29, 6].

314 Chapter 5 Recursion

Figure 5.18 13, 8, 3, 5, 2

5, 2

5 2

13, 8, 3

 313, 8

813

original list

first splitting

second splitting

third splitting into
one-element sublists

Figure 5.19

2, 3, 5, 8, 13

2, 5

25

3, 8, 13

8, 13

13 8

3

start merging in pairs

merge

merge again

sorted list �
Algorithm merge sort(X,low,high)
(* This recursive algorithm successively divides a list X of

high - low + 1 elements into sublists of one element. Then it
continues to merge sublists in pairs into ordered sublists by
invoking the merge algorithm until the whole list is ordered. *)

0. Begin (* algorithm *)
1. if low < high then(*list contains more than one element*)
2. begin (* if *)
3. middle ← �(low + high)/2�
4. merge sort(X,low,middle) (* sort the lower sublist *)
5. merge sort(X,middle + 1,high) (* sort the upper list*)
6. merge the two sublists
7. endif
8. End (* algorithm *)

Algorithm 5.7

Exercises 5.5

Using Algorithm 5.4, compute the nth Fibonacci number for each value
of n.

1. 3 2. 6 3. 7 4. 10

5.5 Recursive Algorithms 315

Using Algorithm 5.4, find the number of computations needed to com-
pute the nth Fibonacci number Fn for each value of n. (Hint: Draw a tree
diagram.)

5. 4 6. 5 7. 6 8. 7

9. Let an denote the number of additions needed to compute Fn using
recursion. Use Exercises 5–8 to predict a formula for an.

10. Using induction, prove the formula in Exercise 9 for every n ≥ 1.

11. Write an iterative algorithm to compute the nth Fibonacci number.

12. Mrs. Zee deposits A dollars at a bank at an annual interest rate of r%
compounded semiannually. Write a recursive algorithm to compute
the compound amount she will receive at the end of n years.

Using the recursive binary search algorithm in Example 5.33, determine if
the given key occurs in the corresponding list. Show the successive values
of low, high, and mid.

13. 2, 3, 5, 8, 13, 21; key = 13 14. 3, 5, 7, 8, 10; key = 9

Using the merge sort algorithm, arrange each list into ascending order.

15. 9, 5, 2, 7, 19, 17, 3, 11 16. 9, 11, 6, 2, 12, 3, 8, 5, 31, 13

17. Write an algorithm to compute the nth Lucas number Ln using
recursion.

18. Let x be a positive real number and n a nonnegative integer. Write a
recursive algorithm to compute xn.

Let X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn] be two lists of numbers.
Write a recursive algorithm to accomplish the tasks in Exercises 19–31.

19. Find the sum of the numbers from left to right.

20. Find the sum of the numbers from right to left.

21. Compute the product of the numbers from left to right.

22. Compute the product of the numbers from right to left.

23. Find the maximum of the numbers in the list.

24. Find the minimum of the numbers in the list.

25. Print the numbers in the given order x1, x2, . . . , xn.

26. Print the numbers in the reverse order xn, xn−1, . . . , x2, x1.

27. (Linear search) Search the list for a specific item (key). Return the
location of key if the search is successful.

28. Determine if two lists X and Y of n items of the same type are identical.

316 Chapter 5 Recursion

29. Determine if a word of n alphanumeric characters is a palindrome.

30. Evaluate Ackermann’s function A(x, y), where x and y are nonnegative
integers. See Exercises 5.1 for a definition of A(x, y).

31. Sort the list X using bubble sort.

32. Use the recursive bubble sort algorithm to sort the list 13, 5, 2, 8, 3.

Quicksort, invented in 1962 by C. Anthony R. Hoare of Oxford University,
is an extremely efficient technique for sorting a large list X of n items
x1, x2, . . . , xn. It is based on the fact that it is easier to sort two small lists
than one large list. Choose the first element x1 as the pivot. To place the
pivot in its final resting place, compare it to each element in the list. Move
the elements less than x1 to the front of the list and those greater than x1 to
the rear. Now place pivot in its final position. Partition the list X into two
sublists such that the elements in the first sublist are less than x1 and the
elements in the second sublist are greater than x1. Continue this procedure
recursively with the two sublists.

*33. Use quicksort to sort the list 7, 8, 13, 11, 5, 6, 4.

*34. Use quicksort to write a recursive algorithm to sort a list X of n
elements.

5.6 Correctness of Recursive Algorithms

We now use induction to establish the correctness of two well-known recur-
sive algorithms, linear search and bubble sort. We begin with the linear
search algorithm.

Recall that the linear search algorithm searches a list X of n elements for
a given key. If the search is successful, the algorithm returns the location of
key; otherwise, it returns zero. A recursive version is given in Algorithm 5.8.
Again, as an exercise, use it to search the list X = [13, 5, 47, 7, 11, 8, 3] for
key = 11.

Algorithm linear search (X,n,key,location)
(* This algorithm returns the position of key in the

variable location. If location = 0, then key does
not exist in the list. *)

0. Begin (* algorithm *)
1. if n = 0 then (* unsuccessful search *)
2. location ← 0
3. else if xn = key then
4. location ← n
5. else
6. linear search(X,n - 1,key,location)
7. End (* algorithm *)

Algorithm 5.8

5.6 Correctness of Recursive Algorithms 317

EXAMPLE 5.35 Establish the correctness of Algorithm 5.8.

PROOF (by PMI):
To prove the correctness of the algorithm, we must show that it works
correctly for n ≥ 0. Let P(n): The algorithm returns the correct value of
location for every list of size n.

Basis step When n = 0, lines 3 through 6 in the algorithm are skipped
and the algorithm returns the value 0 from line 2. So the algorithm works
correctly when n = 0.

Induction step Let k be an arbitrary integer k ≥ 0 such that P(k) is
true; that is, assume the algorithm works correctly for a list of arbitrary
size k ≥ 0. To prove that P(k + 1) is true, invoke the algorithm for a list X
of size k + 1. Note that k + 1 ≥ 1.

Case 1 If xk+1 = key, the algorithm returns the value k + 1 from
line 4.

Case 2 If xk+1 �= key, line 6 is executed; so the algorithm is invoked for a
list with k elements. By our inductive hypothesis, the algorithm works for
such a list.

Thus in both cases, the algorithm returns the correct value of location.
Therefore, P(k + 1) is true.

Consequently, P(n) holds for n ≥ 0 by induction; that is, the algorithm
works correctly for every list. �

Next we verify the correctness of the recursive version of the bubble sort
algorithm, given in Algorithm 5.9. To get used to it, you may use it to sort
the list X = [13, 5, 47, 7, 11, 8, 3].

Algorithm Bubble Sort(X,n)
(* This algorithm sorts a list X of n items using recursion. *)
0. Begin (* algorithm *)
1. if n > 1 then (* list contains at least two elements *)
2. begin (* if *)
3. for i = 1 to n - 1 do
4. if xi > xi + 1 then (* they are out of order *)
5. swap xi and xi + 1
6. bubble sort(X,n - 1)
7. endif
8. End (* algorithm *)

Algorithm 5.9

EXAMPLE 5.36 Establish the correctness of Algorithm 5.9.

PROOF (by PMI):
Let P(n): The algorithm works for every list of size n.

318 Chapter 5 Recursion

Basis step When n = 0, the list contains no elements. So the algorithm
works by default. Thus, P(0) is true.

Induction step Assume P(k) is true for an arbitrary integer k ≥ 0; that
is, the algorithm correctly sorts every list of k (≥ 0) elements. To prove that
P(k+1) is true, invoke the algorithm for a list X with k+1 elements, where
k + 1 ≥ 1.

If k + 1 = 1, the for loop is not entered. So P(k+1) is true, by default.
If k + 1 > 1, the for loop is entered. Consecutive elements xi and xi+1

are compared in line 4 and switched in line 5 if necessary. When we exit
the loop, the largest of the k + 1 elements is placed in the correct position,
in location k + 1.

This leaves a sublist of k elements, x1, . . . , xk. By the inductive hypothe-
sis, the algorithm correctly sorts such a list.

Thus if P(k) is true, then P(k+1) is also true.
Therefore, by induction, P(n) is true for every n ≥ 0: the algorithm sorts

every list of every size n ≥ 0. �

The following exercises provide additional opportunities to establish the
correctness of recursive algorithms.

Exercises 5.6

Establish the correctness of each algorithm.

1. The factorial algorithm in Example 5.28.

2. The handshake algorithm in Example 5.29.

3. The Tower of Brahma algorithm in Example 5.30.

4. The Fibonacci algorithm in Example 5.31.

5. The binary search algorithm in Example 5.33.

6. The merge sort algorithm in Algorithm 5.7.

7–17. The algorithms in Exercises 19–29 of Section 5.5.

Algorithm 5.10 computes the nth power of a positive real number x, where
n ≥ 0. Use it to answer Exercises 18–24.

Algorithm exponentiation(x,n)
(* This algorithm computes the nth power of x using recursion

and returns the value in the variable answer. *)
0. Begin (* algorithm *)
1. if n = 0 then
2. answer ← 1
3. else if n = 1 then
4. answer ← x
5. else

5.7 Complexities of Recursive Algorithms (optional) 319

6. begin (* else *)
7. value ← exponentiation(x,�n/2�)
8. answer ← value · value
9. if n is odd then

10. answer ← answer · x
11. endelse
12. End (* algorithm *)

Algorithm 5.10

Let an denote the number of multiplications (lines 7–10) required by the
algorithm to compute xn. Compute each.

18. a0 19. a1 20. a4 21. a5

22. Find the recurrence relation satisfied by an.

23. Solve the recurrence relation in Exercise 22, where n = 2k.

24. Establish the correctness of Algorithm 5.10.

25. Prove the correctness of the iterative Fibonacci algorithm in
Exercise 11 of Section 5.5.

*5.7 Complexities of Recursive Algorithms (optional)

Using the big-oh and big-theta notations, we now investigate the com-
plexities of a few standard recursive algorithms: linear search, Fibonacci,
selection sort, binary search, and merge sort. In addition, using Fibonacci
numbers, we estimate the number of divisions needed to compute gcd{a, b}
using the euclidean algorithm.

We begin our analysis with the recursive linear search algorithm.

EXAMPLE 5.37 Use the recursive linear search in Algorithm 5.8 to estimate the worst time
required to search for a key in a list X of n items.

SOLUTION:
Let cn denote the maximum number of element comparisons needed in
line 3 of the algorithm. To find a big-oh estimate of cn, first define it
recursively.

Clearly, c0 = 0. When n ≥ 1

cn =
⎛
⎝maximum number of calls

from the recursive call in
line 6

⎞
⎠+

⎛
⎝number of

comparisons
in line 3

⎞
⎠

= cn−1 + 1

320 Chapter 5 Recursion

Thus
c0 = 0

cn = cn−1 + 1, n ≥ 1

Solving this recurrence relation (try) yields cn = n, n ≥ 0; so cn = O(n) =
�(n). Thus, in the worst case, the algorithm takes O(n) =�(n) comparisons
to locate the key, the same as the iterative version. �

Next we analyze the recursive and iterative Fibonacci algorithms.

EXAMPLE 5.38 Using the recursive algorithm in Example 5.31, estimate the number of
additions an needed to compute the nth Fibonacci number.

SOLUTION:
By Exercises 9 and 10 in Section 5.5, an = Fn −1, n ≥ 1. But, by Exercise 43
in Section 5.1, Fn ≤ 2n, where n ≥ 1. Therefore,

an ≤ 2n − 1

< 2n

= O(2n)

Thus, the recursive Fibonacci algorithm takes O(2n) additions. �
For comparison, we now study the complexity of the iterative version of

the Fibonacci algorithm.

EXAMPLE 5.39 Estimate the number of additions an required in line 5 to compute the nth
Fibonacci number Fn by Algorithm 5.11.

Algorithm iterative Fibonacci(n)
(* This iterative algorithm uses the values of the

variables of the last and the current Fibonacci
numbers to compute the next Fibonacci number. *)

0. Begin (* algorithm *)
1. last ← 1
2. current ← 1
3. for i = 2 to n do
4. begin (* for *)
5. next ← last + current
6. last ← current
7. current ← next
8. endfor
9. End (* algorithm *)

Algorithm 5.11

SOLUTION:
The first two Fibonacci numbers need no computations; therefore, a1 =
0 = a2. Suppose n > 2. It takes one addition to compute the next item

5.7 Complexities of Recursive Algorithms (optional) 321

Fn from the current term Fn−1. So an = an−1 + 1. Solving this recurrence
relation (try), we get

an = n − 2, n ≥ 2

= �(n)

Thus the iterative version takes �(n) additions to compute Fn. �
The time it takes to compute Fn by the recursive algorithm grows expo-

nentially with n, whereas by the iterative algorithm it grows only linearly.
As n gets larger and larger, it takes more time to compute Fn by recursion
than by iteration. Thus, by dividing and conquering the problem, we have
made it complicated.

Should we prefer the iterative method to the recursive method? Since
every recursive algorithm has a nonrecursive version, if the algorithm
makes just one recursive call to itself, as in the factorial algorithm, the
iterative approach will, in general, save time. On the other hand, if the
problem has a recursive definition, it will be easy to write a recursive algo-
rithm for the problem. Writing the nonrecursive version of a recursive
algorithm is often a painful task and the resulting algorithm is often much
longer, complicated, and difficult to understand. For instance, the nonre-
cursive version of the Tower of Brahma algorithm is longer and that of
quicksort is rather complicated.

Next we estimate the number of element-comparisons required by
the recursive selection sort algorithm presented in Algorithm 5.12. (See
Algorithm 4.11 in Chapter 4 for an iterative version.)

Algorithm selection sort(X,n)
(* This algorithm invokes a subalgorithm called swap

which switches two elements. Maxindex denotes the
index of the largest of the n elements. *)

0. Begin (* algorithm *)
1. maxindex ← n (*initialize maxindex at each pass *)
2. for i = 1 to n - 1 do
3. if xi > xmaxindex then
4. maxindex ← i
5. if maxindex �= n then (* swap the corresponding items *)
6. swap xmaxindex and xn
7. selection sort(X,n - 1)
8. End (* algorithm *)

Algorithm 5.12

EXAMPLE 5.40 Estimate the number cn of comparisons (lines 3 and 5) required by
Algorithm 5.12.

SOLUTION:
To estimate cn, first define it recursively.

If the list contains just one element, lines 3 and 5 are not executed;
therefore, c1 = 0.

322 Chapter 5 Recursion

Suppose n ≥ 2. Since the for loop is executed n − 1 times, line 3 is
executed n − 1 times. Furthermore, line 5 is executed once. Therefore,

cn =cn−1 + (n − 1) + 1

=cn−1 + n, n ≥ 2

Solving the recurrence relation by the iterative method, we get

cn = n(n + 1)
2

− 1, n ≥ 1

= �(n2)

Thus the algorithm takes �(n2) comparisons to sort a list of n items, as in
the iterative version. �

Example 5.41 investigates one of the many properties of Fibonacci num-
bers. Example 5.42 uses the property to estimate the number of divisions
in the euclidean algorithm.

EXAMPLE 5.41 Let Fn denote the nth Fibonacci number and α = 1 + √
5

2
. Prove that

αn−2 < Fn < αn−1, n ≥ 3.

PROOF (by strong induction):
(We shall prove that αn−2 < Fn and leave the other half as an exercise.)
You may verify that α is a solution of the equation x2 = x+1, so α2 = α+1.
Let P(n): αn−2 < Fn, where n ≥ 3.

Basis step Since the induction step below uses the recurrence relation
Fk+1 = Fk + Fk−1, the basis step involves verifying that both P(3) and P(4)
are true.

• To show that P(3) is true: When n = 3,

αn−2 = α = 1 + √
5

2
<

1 + 3
2

= 2 = F3

So P(3) is true.

• To show that P(4) is true:

α2 =
(

1 + √
5

2

)2

= 3 + √
5

2

<
3 + 3

2
= 3 = F4

Thus P(4) is also true.

5.7 Complexities of Recursive Algorithms (optional) 323

Induction step Assume P(3), P(4), . . . , P(k) are true; that is, assume
αi−2 < Fi for 3 ≤ i ≤ k. We must show that P(k + 1) is true; that is,
αk−1 < Fk+1.

We have

α2 = α + 1.

Multiplying both sides by αk−3,

αk−1 = αk−2 + αk−3 (Note: k − 3 ≥ 2.)

< Fk + Fk−1, by the inductive hypothesis

= Fk+1, by the recurrence relation

Thus P(k + 1) is true.

Therefore, by the strong version of induction, P(n) is true for n ≥ 3; that
is, αn−2 < Fn for every n ≥ 3. �

Now we can estimate the number of divisions required by the euclidean
algorithm to compute gcd{a, b}.

EXAMPLE 5.42 (Lamé’s Theorem) The number of divisions needed to compute g{a, b} by
the euclidean algorithm is no more than five times the number of decimal
digits in b, where a ≥ b ≥ 2.

PROOF:
Let Fn denote the nth Fibonacci number, a = r0, and b = r1. By the repeated
application of the division algorithm we have:

r0 = r1q1 + r2 0 ≤ r2 < r1

r1 = r2q2 + r3 0 ≤ r3 < r2

...

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1

rn−1 = rnqn

Clearly, it takes n divisions to evaluate gcd{a, b} = rn. Since ri < ri−1,
qi ≥ 1 for 1 ≤ i ≤ n. In particular, since rn < rn−1, qn ≥ 2; so rn ≥ 1 and
rn−1 ≥ 2 = F3. Consequently, we have:

rn−2 = rn−1qn−1 + rn

≥ rn−1 + rn

≥ F3 + 1

= F3 + F2 = F4

324 Chapter 5 Recursion

rn−3 = rn−2qn−2 + rn−1

≥ rn−2 + rn−1

≥ F4 + F3 = F5

Continuing like this,
r1 = r2q2 + r3

≥ r2 + r3

≥ Fn + Fn−1 = Fn+1

That is,
b ≥ Fn+1

By Example 5.41, Fn+1 > αn−1, where α = 1 + √
5

2
. Therefore,

b > αn−1

Then

log b > (n − 1) log α

Since α = 1 + √
5

2
≈ 1.618033989, log α ≈ 0.2089876403 >

1
5

. So

log b >
n − 1

5

Suppose b contains k decimal digits. Then b < 10k. Therefore, log b < k

and hence k >
n − 1

5
. Thus n < 5k + 1 or n ≤ 5k. That is, the number of

divisions needed by the algorithm is no more than five times the number
of decimal digits in n. �

Let us pursue this example a bit further. Since log b >
n − 1

5
, n <

1 + 5 log b. Also, since b ≥ 2,

5 log b ≥ 5 log 2

> 1

Thus
n < 1 + 5 log b

< 5 log b + 5 log b

= 10 log b

= O(log b)

Thus it takes O(log b) divisions to compute gcd{a, b} by the euclidean
algorithm.

5.7 Complexities of Recursive Algorithms (optional) 325

Gabriel Lamé (1795–1870) was born in Tours, France. After graduating from
the École Polytechnique in 1817, he continued his studies at the École des Mines,
from which he graduated in 1820.

The same year Lamé was appointed director of the School of Highways and
Transportation in St. Petersburg, Russia. There he taught mathematics, physics,
and chemistry and planned roads and bridges in and around the city. In 1832, he
returned to Paris to form an engineering firm. Within a few months, however, he
left it to become the chair of physics at the École Polytechnique, where he remained
until 1844. While teaching, he served as a consulting engineer, becoming the chief
engineer of mines in 1836. He helped build the railroads from Paris to Versailles
and to St. Germain.

In 1844, Lamé became graduate examiner for the University of Paris in math-
ematical physics and probability, and professor 7 years later. In 1862, he became

deaf and resigned his positions. He died in Paris.
Although Lamé did original work in number theory and mathematical physics, his greatest contribu-

tion was the development of the curvilinear coordinates and their applications. His work on the curvilinear
system led him to number theory. In 1840, he proved Fermat’s Last Theorem for n = 7.

Gauss considered Lamé the foremost French mathematician of his time. French mathematicians,
however, considered him too practical, and French scientists, too theoretical.

The next example, due to S. H. Friedberg, explores the number of multi-
plications needed to compute the determinant of an n×n matrix by cofactor
expansion. (It may be omitted by those not familiar with determinants and
calculus.)

EXAMPLE 5.43◦ (optional) Let fn denote the number of multiplications needed to compute
det A, the determinant of an arbitrary n × n matrix A = (aij) by cofactor
expansion. Estimate fn.

SOLUTION:
We estimate fn in three steps:

• Define fn recursively.

• Solve the recurrence relation.

• Use the solution to estimate fn.

• To define fn recursively:
Let Cij denote the (n − 1) × (n − 1) determinant obtained from det A by
deleting its ith row and jth column. By expanding det A with respect to
the first row, we have

det A =
n∑

j=1

(−1) j+1a1jC1j ← cofactor expansion by row 1

326 Chapter 5 Recursion

In particular, let A =
[
a b
c d

]
. Then det A = aC11 − bC12 = ad − bc.

Clearly, two multiplications are needed to evaluate det A and hence
f2 = 2. Also f1 = 0.
Suppose n ≥ 3. Then, by definition, it takes fn−1 multiplications to
compute C1j. Therefore, it takes fn−1 + 1 multiplications to evaluate
a1jC1j and hence n(fn−1 + 1) multiplications to compute det A.

Thus fn can be defined recursively as follows:

f1 = 0
fn = n(fn−1 + 1), n ≥ 2 (5.20)

(This is a linear nonhomogeneous recurrence relation with nonconstant
coefficients.)

• To solve the recurrence relation (5.20):
Let fn = n!gn. Since f1 = 0, g1 = 0. Substituting for fn in
Equation (5.20), we get

n!gn = n[(n − 1)!gn−1 + 1]
= n!gn−1 + n

So

(gn − gn−1)n! = n

gn − gn−1 = 1
(n − 1)! (Note: g1 = 0.)

Solving this yields (see Exercise 64)

gn =
n−1∑
k=1

1
k! , since g1 = 0

So,

fn = n!gn = n!
(n−1∑

k=1

1
k!

)

= n!
(n∑

k=1

1
k!

)
− 1

Therefore,

fn ≤n!
(∞∑

k=1

1
k!

)
− 1

= n!(e − 1) − 1, by calculus
≤ en!
= O(n!)

5.7 Complexities of Recursive Algorithms (optional) 327

Thus the evaluation of det A by cofactor expansion takes O(n!)
multiplications. �

Divide-and-Conquer Algorithms
We can now analyze the complexities of a special class of recursive
algorithms called divide-and-conquer algorithms.

The binary search algorithm presented in Algorithm 5.6 is based on the
divide-and-conquer approach. To search an ordered list of n items for a
given key, we divide the list into two smaller and similar sublists of about
the same size. If the middle value �= key, then we search either the lower
half or the upper half, and continue this procedure until we are done. This
exemplifies a divide-and-conquer algorithm.

More generally, consider a problem of size n. Suppose the problem can
be solved for a small initial value of n, and it can be broken up into a smaller
and similar subproblems of approximately the same size, usually �n/b� or
�n/b�, where a, b ∈ N, 1 ≤ a < n, and 1 < b < n. Assume that we can solve
each of the subproblems and employ their solutions to solve the original
problem. Such an algorithm is a divide-and-conquer algorithm.

Let f (n) denote the number of operations required to solve the original
problem and g(n) the number of operations resulting from the splitting.
Then, assuming b is a factor of n,

f (n) = af (n/b) + g(n)

This is the divide-and-conquer recurrence relation resulting from the
algorithm.

The binary search algorithm manifests the complexities of the divide-
and-conquer technique.

EXAMPLE 5.44 (binary search) Using the recursive binary search in Algorithm 5.6, let
cn denote the maximum number of element comparisons needed to search
for a given item (key) in an ordered list X of n items. If n = 1, then low =
high = mid = 1 and the condition in line 5 is tested exactly once; so c1 = 1.

Suppose n > 1. Then the middle term is x�(n+1)/2�. Compare key to
x�(n+1)/2�. If they are not equal, search the lower sublist or the upper sub-

list, but not both. If n is even,
⌊n + 1

2

⌋
=

⌊n
2

⌋
; so the upper half contains

n
2

=
⌊n

2

⌋
elements and the lower half contains

n
2

− 1
(

<
⌊n

2

⌋)
elements.

On the other hand, if n is odd, then
⌊n + 1

2

⌋
= n + 1

2
; so both sublists con-

tain
n − 1

2
=
⌊n

2

⌋
elements each. Thus, in any case, the maximum number

of comparisons needed is c�n/2� + 1. So

c1 = 1
cn = c�n/2� + 1, n ≥ 2 (5.21)

328 Chapter 5 Recursion

To solve this recurrence relation, assume, for convenience, that n is
a power of 2, say n = 2k, where k ≥ 0. Let cn = ak. Then the recurrence
relation (5.21) becomes ak = ak−1+1, where a0 = 1. Solving this recurrence
relation yields ak = k + 1, k ≥ 0 (Verify.). Since n = 2k, k = lg n, so
cn = 1 + lg n, n ≥ 1. Thus, if n is a power of 2, then cn = �(lg n).

Suppose n is not a power of 2. Then, by induction, it can be shown that
cn = 1 + �lg n�, where n ≥ 1 (see Exercise 44), so cn = �(lg n).

Thus, in both cases, the algorithm takes�(lg n) element comparisons in
the worst case. �

The preceding example is a special case of the following theorem. Since
the proof is somewhat complicated, we skip it (see Exercises 65 and 66).

THEOREM 5.7 Let a, b ∈ N and c, d ∈ R+ with b ≥ 2. Let f be a nondecreasing function∗
such that f (n) = af (n/b) + c and f (1) = d. Then

f (n) =
{

O(lg n) if a = 1
O(nlogb a) otherwise �

For example, let f be a nondecreasing function such that f (n) =
3f (n/2) + 5 and f (1) = 8. Then, by Theorem 5.7, f (n) = O(nlg 3).

The next theorem is a generalization of Theorem 5.7. We state it without
proof (see Exercises 67–69 for special cases of the theorem) and apply it in
Example 5.45.

THEOREM 5.8 Let a, b ∈ N and c, d ∈ R+ with b ≥ 2. Let f be a nondecreasing function
such that f (n) = af (n/b) + cnd. Then

f (n) =

⎧⎪⎨
⎪⎩

O(nd) if a < bd

O(ndlg n) if a = bd

O(nlogb a) if a > bd �

EXAMPLE 5.45 (optional) Let A = (aij) and B = (bij) be two n × n matrices. Let C =
(cij) be their product where cij =

n∑
k=1

aikbkj. Since C has n2 entries and

each takes n multiplications, the product C can be computed using n3 =
O(n3) multiplications; in fact, it can be computed using O(n3) computations
(additions and multiplications), as Exercises 40 and 41 indicate. �

We close this section with an analysis of the merge sort algorithm, a
divide-and-conquer strategy.

EXAMPLE 5.46 (merge sort) The merge sort method in Algorithm 5.7 sorts a list of n
elements. Assume, for convenience, that n is a power of 2, say, n = 2k, k ≥ 0.

∗Let S ⊆ R. A function f : S → R+ is said to be nondecreasing if x < y implies f (x) ≤ f (y).

5.7 Complexities of Recursive Algorithms (optional) 329

Let cn denote the maximum number of element comparisons needed in line
6. Show that cn = O(n lg n).

SOLUTION:
When n = 2, one comparison is needed in line 6; therefore, c2 = 1. So, let
n > 2. The list is split into two, with each sublist containing n/2 elements.
In the worst case, the number of comparisons resulting from line 4 is cn/2,
as it is from line 5. When the merge algorithm is invoked in line 6, each
sublist contains n/2 elements; so the maximum number of comparisons
from line 6 is n − 1. Thus

c2 = 1

cn = 2cn/2 + (n − 1), n ≥ 3

Let ak = cn where n = 2k, k ≥ 0. Then

a1 = 1

ak = 2ak−1 + (2k − 1), k ≥ 2

This recurrence relation (see Exercise 8 in Section 5.2) yields

ak = (k − 1)2k + 1, k ≥ 1

= k · 2k − 2k + 1

Thus

cn = (lg n)n − n + 1

≤ n lg n + 1

< 2n lg n, n ≥ 2

= O(n lg n) �

More generally, it can be shown that in the worst case the merge sort
requires O(n lg n) element comparisons for a list of n elements. This time
estimate is the best among all sorting algorithms.

Exercises 5.7

Find a big-oh estimate for each.

1. The number h(n) of handshakes made by n guests at a party, using
Example 5.3.

2. The number bn of moves needed to transfer n disks in the Tower of
Brahma puzzle in Example 5.4.

3. The number fn of regions formed by n lines, using Example 5.5.

330 Chapter 5 Recursion

Estimate the solution fn of each recurrence relation (see Exercises 5.2).

4. f1 = 1

fn = fn−1 + (2n − 1), n ≥ 2

6. f1 = 2

fn = fn−1 + n, n ≥ 2

5. f0 = 0

fn = fn−1 + 4n, n ≥ 1

7. f1 = 1

fn = 2fn−1 + (2n − 1), n ≥ 2

Find the number of comparisons needed to search for key = 13 in each
ordered list using the recursive binary search algorithm in Example 5.33.

8. 1, 2, 3, 5, 8, 13

10. 3, 7, 8, 13, 21

9. 5, 8, 13, 21, 34

11. 15, 16, 19, 21

Compute the maximum number of comparisons needed to search for a par-
ticular item in an ordered list containing the following number of items,
using the recursive binary search algorithm.

12. 8 13. 20 14. 25 15. 31

Let bn denote the number of multiplications needed to compute n! using
the recursive factorial algorithm in Example 5.1.

16. Define bn recursively.

17. Solve the recurrence relation satisfied by bn.

18. Show that bn = O(n).

19–22. Estimate the number of times an the assignment statement, x ←
x + 1, is executed by the nested for loops in Exercises 35–38 of
Section 4.4.

Estimate the number an of times the statement, x ← x + 1, is executed by
each nested for loop.

23. for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

*25. for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
for l = 1 to j do

x ← x + 1

24. for i = 1 to n do
for j = 1 to �i/2� do

x ← x + 1

*26. for i = 1 to n do
for j = 1 to i do

for k = 1 to j do
for l = 1 to k do

x ← x + 1

Let bn denote the number of element-comparisons needed by the bubble
sort algorithm in Algorithm 5.9.

27. Define bn recursively.

28. Solve the recurrence relation.

29. Find a big-oh estimate of bn.

5.7 Complexities of Recursive Algorithms (optional) 331

30. Let an denote the number of additions needed to compute the nth

Fibonacci number Fn, using Algorithm 5.4. Prove that an =
n−2∑
i=1

Fi,

n ≥ 3.

Solve each recurrence relation.

31. c0 = 1

cn = cn−1 + b, n ≥ 1

33. c1 = 0

cn = cn−1 + bn, n ≥ 2

32. a2 = 0

an = an−1 + b, n ≥ 3

34. c1 = a

cn = cn−1 + bn3, n ≥ 2

The number of operations f (n) required by an algorithm is given by
f (n) = f (n − 1) + (n − 1) + (n − 2), where f (1) = 1.

35. Find an explicit formula for f (n).

36. Show that f (n) = O(n2).

Let f (n) denote the number of bits in the binary representation of a positive
integer n.

37. Find a formula for f (n). 38. Show that f (n) = O(lg n).

39. Let x ∈ R+ and n ∈ N. The technique of successive squaring can be
applied to compute xn faster than multiplying x by itself n − 1 times.
For example, to find x43, first evaluate x2, x4, x8, x16, and x32; then
multiply x32, x8, x2, and x1: x43 = x32 · x8 · x2 · x1. This process takes
only 5 + 3 = 8 multiplications instead of the conventional method’s
42. The powers of x used in computing xn are the place values of the
bits in the binary representation of n; in fact, the number of powers of
x used equals the number of nonzero bits in the binary representation
of n. Let f (n) denote the number of multiplications needed to compute
xn by successive squaring. Show that f (n) = O(lg n).

Let A = (aij) and B = (bij) be two n × n matrices. Let fn denote the number
of computations (additions and multiplications) to compute their product

C = (cij), where cij =
n∑

k=1
aikbkj.

40. Evaluate fn. 41. Estimate fn.

42. Solve the recurrence relation Cn = 2Cn/2 + 1, where C1 = a and n is a
power of 2.

43. Show that Cn = O(n).

44. Let cn denote the maximum number of comparisons needed to search
for a key in an ordered list X of n elements, using the recursive binary
search algorithm. Prove that cn = 1 + �lg n�, for every n ≥ 1.

332 Chapter 5 Recursion

45. Let a, b, k ∈ N, b ≥ 2, and n = bk. Consider the function f defined by

f (n) = af (n/b) + g(n). Show that f (n) = akf (1) +
k−1∑
i=0

aig(n/bi).

46. Solve the recurrence relation an = 2an/2 +n, where a1 = 0 and n = 2k.

47. Use Exercise 46 to show that an = O(n lg n).

Let f be a function defined by f (n) = af (n/b) + cn, where a, b ∈ N, b ≥ 2,
c ∈ R+, and f (1) = d. Assume n is a power of b.

48. Solve the recurrence relation.

49. Let a = b and d = 0. Show that f (n) = O(n lg n).

Consider the recurrence relation cn = c�n/2� + c�(n+1)/2� + 2, where c1 = 0.

50. Compute c3 and c4.

51. Solve the recurrence relation when n is a power of 2.

52. Find the order of magnitude of cn when n is a power of 2.

Let t be a function defined by

t(n) =
{

a if n = 1

t(�n/2�) + t(�n/2�) + bn otherwise

where a, b ∈ R+. (Such a function occurs in the analysis of merge sort.)

53. Evaluate t(5) and t(6).

54. Prove that t(n) is a nondecreasing function; that is, t(n) ≤ t(n + 1),
where n ≥ 1.

55. Show that t(n) = O(n lg n), where n is a power of 2.

Let f (n) = 2f (n/2) + cn2, where f (1) = d and n is a power of 2.

56. Solve the recurrence relation. 57. Show that f (n) = O(n2).

The number hn =
n∑

i=1

(1
i

)
, called the harmonic number, occurs fre-

quently in the analysis of algorithms.

58. Compute h4 and h5. 59. Define hn recursively.

60. Prove that
n∑

i=1
hi = (n + 1)hn − n, n ≥ 1.

61. Prove that h2m ≥ 1 + m
2

, m ≥ 0.

62. Prove that hn ≤ n + 1
2

.

Chapter Summary 333

*63. (For those familiar with calculus) Let hn denote the nth harmonic

number hn =
n∑

i=1

(1
i

)
. Show that hn = O(lg n).

(Hint: Use integration.)

64. Solve the recurrence relation gn − gn−1 = 1/(n − 1)!, where g1 = 0.

Let a, b ∈ N and c, d ∈ R+ with b ≥ 2. Let f be a nondecreasing function
such that f (n) = af (n/b) + c and f (1) = d. Prove each.

**65. If a = 1, then f (n) = O(lg n).

**66. If a �= 1, then f (n) = O(nlogb a).

Let a, b, n ∈ N, b ≥ 2, c, d ∈ R+, f (1) = d, and n is a power of b. Let f be a
nondecreasing function such that f (n) = af (n/b) + cn2. Prove each.

**67. If a = b2, then f (n) = n2d + cn2 logb n.

**68. If a �= b2, then f (n) = An2 + Bnlogb a, where A = b2c
b2 − a

and

B = d + b2c
a − b2 .

**69.

f (n) =

⎧⎪⎪⎨
⎪⎪⎩

O(n2) if a < b2

O(n2 lg n) if a = b2

O(nlogb a) if a > b2

Chapter Summary

This chapter presented a new class of functions and hence sequences: recur-
sively defined functions. The definitions of such functions can be translated
into recursive algorithms. Just as the big-oh and big-theta notations worked
well in analyzing the time complexities of algorithms, so does induction in
proving the correctness of recursive algorithms.

Recursion
• The recursive definition of a function consists of one or more initial

conditions and a recurrence relation (page 262).

Solving Recurrence Relations
• A simple class of recurrence relations can be solved using the iterative

method (page 279).

• Every solution of the recurrence relation an = an−1 + f (n) is of the form

an = a0 +
n∑

i=1
f (i) (page 280).

334 Chapter 5 Recursion

• Every solution of the recurrence relation an = can−1 + 1 is of the form

an = cna0 + cn − 1
c − 1

, where c �= 1 (page 282).

• A kth-order LHRRWCC is of the form an =
k∑

i=1
cian−i, where ck �= 0

(page 287).

• The characteristic equation of this recurrence relation is xk −
k∑

i=1
cixk−i = 0 (page 287).

• The characteristic roots of a LHRRWCCs can be used to solve the
LHRRWCCs (page 288).

• The general solution of a LNHRRWCCs is given by an = a(h)
n + a(p)

n
(page 294).

Generating Functions

• g(x) =
∞∑

n=0
anxn is the generating function of the real number seque-

nce a0, a1, a2, . . . (page 298).

• Generating functions and the partial fraction decomposition rule can
be used to solve LHRRWCCs (page 301).

Recursive Algorithms
• A recursive algorithm consists of two cases: base case(s) and a

general case (page 307).

• Lamé’s Theorem The euclidean algorithm for computing gcd{a, b}
takes no more than five times the number of decimal digits in b, where
a ≥ b ≥ 2 (page 323).

Divide-and-Conquer Algorithms
• The recurrence relation of a divide-and-conquer algorithm is of the form

f (n) = af (n/b) + g(n) (page 327).

Review Exercises

In Exercises 1 and 2, the nth term an of a number sequence is defined
recursively. Compute a5.

1. a1 = a2 = 1, a3 = 2

an = an−1 + an−2 + an−3, n ≥ 4

Chapter Summary 335

2. a1 = 0, a2 = a3 = 1

an = an−1 + 2an−2 + 3an−3,n ≥ 4

3. The number of additions an needed to compute the nth Fibonacci num-
ber Fn by recursion is given by an = Fn −1, n ≥ 1. Find the recurrence
relation satisfied by an.

(A modified handshake problem) Mr. and Mrs. Matrix hosted a party
for n married couples. At the party, each person shook hands with everyone
else, except the spouse. Let h(n) denote the total number of handshakes
made.

4. Define h(n) recursively.

5. Predict an explicit formula for h(n).

6. Prove the formula obtained in Exercise 5, where n ≥ 1.

Using the iterative method, predict an explicit formula satisfied by each
recurrence relation.
7. a1 = 1 · 2

an = an−1 + n(n + 1), n ≥ 2

9. a1 = 1

an = an−1 + 2n−1, n ≥ 2

8. a1 = 2 · 3

an = 3an−1, n ≥ 2

10. a0 = 0

an = an−1 + (3n − 1), n ≥ 1

11–14. Using induction, prove the formulas obtained in Exercises 7–10.

Solve each recurrence relation.

15. an = an−1 + an−2, a1 = 2, a2 = 3

16. an = an−1 + an−2, a1 = a2 = a

17. an = 2an−1 +7an−2 −8an−3 −12an−4, a0 = 4, a1 = 10, a2 = 18, a3 = 58

18. an = 4an−1 + 2an−2 − 12an−3 − 9an−4, a0 = 4, a1 = 0, a2 = 4, a3 = −32

19. an = 10an−1 − 21an−2 + 5n, a0 = 0, a1 = 3

20. an = 8an−1 − 15an−2 + 4n5n, a0 = 1, a1 = 3

21. Let an denote the number of multiplications (lines 7–10) in Algo-
rithm 5.10. Show that an = O(n).

Let cn denote the number of element comparisons made (line 4) by the
recursive bubble sort algorithm in Algorithm 5.9.

22. Define cn recursively.

23. Solve the recurrence relation.

24. Show that cn = O(n2).

336 Chapter 5 Recursion

Algorithm 5.13 evaluates the polynomial f (x) =
n∑

i=0
aixi at x = α. Use it for

Exercises 25–29.

Algorithm evaluate poly(f,n,α,answer)
(* This algorithm returns the value of a polynomial f

of degree n at α in the variable answer. *)
0. Begin (* algorithm *)
1. answer ← a0
2. power ← 1
3. for i = 1 to n do
4. begin (* for *)
5. power ← power * α
6. answer ← answer + ai * power
7. endfor
8. End (* algorithm *)

Algorithm 5.13

Evaluate each polynomial at x = −1.

25. f (x) = x3 + 2x2 − 3x + 4 26. f (x) = 2x3 + 5x − 6

Let cn denote the number of operations (lines 5–6) required to evaluate a
polynomial at x = α.

27. Define cn recursively.

29. Show that cn = O(n2).

28. Solve the recurrence relation.

Use Horner’s algorithm (Algorithm 5.14) to evaluate the polynomial

f (x) =
n∑

i=0
aixi at x = α for Exercises 30–35.

Algorithm Horner(f,n,i,α)
(* This algorithm evaluates a polynomial f of degree n at

x = α by recursion and is invoked by Horner(f,n,0,α). *)
0. Begin (* algorithm *)
1. if i = n then
2. Horner ← an
3. else
4. Horner ← Horner(f,n,i + 1,α) · α + ai
5. End (* algorithm *)

Algorithm 5.14

Evaluate each polynomial at x = 2.

30. f (x) = 3x2 + 4x − 5 31. f (x) = 2x3 − 5x + 3

Let bn denote the number of operations (addition and multiplication)
needed in line 4.

32. Define bn recursively.

33. Solve the recurrence relation.

Chapter Summary 337

34. Show that bn = O(n).

35. Let an denote the number of n-bit words that do not contain the pattern
111. Define an recursively.

Let an denote the number of ways a 2×n rectangular board can be covered
with 2 × 1 dominoes.

36. Define an recursively. 37. Find an explicit formula for an.
(Hint: Consider 2 × (n − 1) and 2 × (n − 2) boards.)

Write a recursive algorithm to compute each sum.

38. The sum of the first n even positive integers.

39. The sum of the first n odd positive integers.

40–41. Establish the correctness of the algorithms in Exercises 38 and 39.

42. Write an iterative algorithm to find the minimum and the maximum
of a list X of n elements.

Let cn denote the number of element comparisons made by the minmax
algorithm in Exercise 42.

43. Define cn recursively.

45. Show that bn = O(n).

44. Solve the recurrence relation.

Prove each, where α and β are the solutions of the equation x2 = x + 1,
Fn the nth Fibonacci number, and Ln the nth Lucas number. Identities in
Exercises 46–53 were discovered in 1876 by Lucas.

46.
n∑

i=1
Fi = Fn+2 − 1

48.
n∑

i=1
F2i = F2n+1 − 1

50.
n∑

i=1
L2i−1 = L2n − 2

52. F2
n+1 + F2

n = F2n+1

54. gcd{Fn, Fn+1} = 1, n ≥ 1

56. Fn = αn − βn

α − β , n ≥ 1

47.
n∑

i=1
F2i−1 = F2n

49.
n∑

i=1
Li = Ln+2 − 3

51.
n∑

i=1
L2i = L2n+1 − 1

53. F2
n+1 − F2

n−1 = F2n

55. xn = Fnx + Fn−1, n ≥ 2

Let C(n) denote the number of comparisons needed by quicksort to sort
a list of n items. In the worst case, C(n) = C(n − 1) + (n − 1), where
C(0) = 0 = C(1).

57. Solve the recurrence relation. 58. Show that C(n) = O(n2).

(Note: This shows that, in the worst case, quicksort is as bad as selection
sort.)

338 Chapter 5 Recursion

Let A(n) denote the average number of comparisons needed by quicksort.

Then A(n) = (n + 1) + 1
n

n∑
i=1

[A(i − 1) + A(n − i)], where A(0) = 0 = A(1).

Use this fact to answer Exercises 59 and 60.

*59. Show that
A(n)
n + 1

= 2
n+1∑
i=3

(
1
i

)
.

c *60. Show that A(n) = O(n lg n).
(Hint: Use integration.)

Supplementary Exercises

A side of the equilateral triangle in Figure 5.20 is n units long. Let an denote
the number of triangles pointing north.

Figure 5.20

1. Define an recursively. 2. Solve the recurrence relation.

The nth Fermat number fn is defined by fn = 22n + 1, n ≥ 0.

3. Prove that fn+1 = f 2
n − 2fn + 2. (J. M. Schram, 1983)

4. Using Exercise 3, compute f1, f2, f3, and f4.

5. Let an be an infinite sequence with a1 = 1, a5 = 5, a12 = 144, and
an + an+3 = 2an+2. Prove that an = Fn. (H. Larson, 1977)

6. Let α = 1 + √
5

2
and Fn the nth Fibonacci number. Prove that

lim
n→∞

Fn+1

Fn
= α.

*7. Let Sn denote the sum of the numbers in the nth term of the
sequence of sets of pentagonal numbers {1}, {5, 12}, {22, 35, 51},
{70, 92, 117, 145}, Find a formula for Sn.

*8. Let Sn denote the sum of the numbers in the nth term of the sequence
of sets of Fibonacci numbers {1}, {1, 2}, {3, 5, 8}, {13, 21, 34, 55},
Find a formula for Sn.

Chapter Summary 339

Describe the behavior of each number sequence {an}, where a0 = a, a1 = b,
and a2 = c are positive numbers. (R. L. Graham, 1991)

9. an+2 = (1 + an+1)/an 10. an+3 = (1 + an+1 + an+2)/an

Let n ∈ N and ϕ Euler’s phi-function. Define ϕk = ϕk−1 ◦ ϕ, where ϕ1 = ϕ

and ◦ denotes composition. Let f (n) = ϕ(n) + ϕ2(n) + ϕ3(n) + · · · + ϕ(1).
(D. L. Silverman, 1981)

11. Compute f (5) and f (8).

12. Prove that if n = 2k, then f (n) = n.

13. Prove that f (n) is even. [Hint: ϕ(n) is even for n > 2.]

14. Consider the sequence of right triangles Tn, n ≥ 1, with legs An and
Bn, and hypotenuse Cn such that An+1 = Bn and Bn+1 = Cn. Compute

lim
n→∞

Bn

An
and lim

n→∞
Cn

Bn
. (M. Flavio, 1980)

A set of integers A is fat if each of its elements is ≥ |A|. For example,
{5, 7, 91} is a fat set, but {3, 7, 36, 41} is not. Ø is considered a fat set. Let
fn denote the number of fat subsets of the set {1, 2, . . . , n}. (G. F. Andrews)

*15. Define fn recursively. *16. Find an explicit formula for fn.

Let f (n, k) denote the number of k-element subsets of the set S =
{1, 2, . . . , n} that do not contain consecutive integers. Let fn denote the
total number of subsets of S that do not contain consecutive integers.
(I. Kaplansky)

*17. Define f (n, k) recursively. *18. Find an explicit formula for fn.

Computer Exercises

Write a program to perform each task.

1. Read in a positive integer n ≤ 20, and print the various moves and the
number of moves needed to transfer n disks from peg X to peg Z, using
the rules in Example 5.4.

2. Read in a positive integer n, and print the first n triangular and
tetrahedral numbers.

3. Print the triangular numbers ≤ 1000 that are perfect squares.

4. Print the triangular numbers ≤ 1000 that are primes.

5. There are eight palindromic triangular numbers < 1000. Find them.

6. Search for two triangular numbers tn such that tn and n are palin-
dromic, where 9 ≤ n ≤ 100.

7. Read in a positive integer n and print the first n Fibonacci numbers,
using recursion and iteration.

340 Chapter 5 Recursion

8. Read in a positive integer n ≤ 20 and print the first n Lucas numbers.

9. Read in a positive integer n ≤ 25 and print the values of
Fn+1

Fn
and

Ln+1

Ln
correct to 10 decimal places, where Fn denotes the nth Fibonacci

number and Ln the nth Lucas number.

Read in a list of n positive integers. Use recursion to print each.

10. Their sum, product, maximum, and minimum.

11. The list in the given order.

12. The list in the reverse order.

13. Read in a key and search the list for key. Print the location if the search
is successful; otherwise, print a suitable message.

14. Read in a key and a sorted list of n items; determine if key occurs in
the list using recursion and iteration. Print the location of key if the
search is successful.

15. Read in a list of n words and determine if each is a palindrome, using
recursion.

16. Read in two lists of n integers. Determine if they are identical, using
recursion.

17. Read in a nonnegative real number x and a nonnegative integer n;
compute the nth power of x.

18. Read in a positive integer n ≤ 100 and a positive real number x ≤ 2.
Use the binary representation of n and the technique of successive
squaring to compute xn. Print the number of multiplications needed
to compute it.

19. Read in a number α, and a polynomial
n∑

i=0
aixi (that is, coefficients and

the corresponding exponents); print the value of the polynomial at α,
using Horner’s method.

20. Read in n positive integers and print their minimum and maximum,
using both iteration and recursion.

21. Read in a positive integer n ≤ 10 and arrange the Stirling numbers of
the second kind S(n, r) in a triangular form, where 1 ≤ r ≤ n.

22. Read in n positive integers and sort them using bubble sort, selection
sort, and insertion sort. Print the number of element-comparisons
needed by each algorithm.

23. Read in n four-letter words. Sort them, using merge sort and quick-
sort. Print the number of element comparisons needed by each
sort.

Chapter Summary 341

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Describe the properties of Fibonacci numbers, their occurrences in
nature, applications to various disciplines, and relationships to Lucas
numbers.

2. Explain how the golden ratio is related to Fibonacci and Lucas
numbers. Describe its various occurrences in nature.

3. Describe the various forms of Ackermann’s function. Investigate its
importance in the study of recursive functions and the analysis of
algorithms.

4. Investigate the Josephus problem, named for the first century Jewish
historian Flavius Josephus (37?–100?).

5. Describe how, using Fibonacci numbers Fn (n ≥ 2) as bases, non-
negative integers can be represented as binary numbers with no two
adjacent 1’s. Express the integers 1–25 as such binary numbers.

6. Define continued fractions and describe their relationship to Fibonacci
numbers.

7. Describe the Game of Life, invented in 1970 by British mathematician
John H. Conway, now at Princeton University.

8. Describe the Game of Halma, invented in 1883 by George H. Monks,
a Harvard Medical School graduate.

9. Examine the history of Catalan numbers and their properties and
applications. Include a biography of E. C. Catalan.

10. Write an essay on the Tower of Brahma (Hanoi).

11. Write an essay on Quicksort.

12. Discuss the fifteen puzzle, invented by American puzzlist Samuel Loyd
(1841–1911).

13. Discuss Markov chains, named after Russian mathematician Andrei A.
Markov (1856–1922), who developed the theory of stochastic processes,
and their applications to business.

Enrichment Readings

1. G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice-
Hall, Englewood Cliffs, NJ, 1986, pp. 26–34, 48–61.

342 Chapter 5 Recursion

2. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction, 4th edition, Addison-Wesley, Boston, MA, 1999, pp. 351–
403.

3. B. W. Jackson and D. Thro, Applied Combinatorics with Problem
Solving, Addison-Wesley, Reading, MA, 1990, pp. 226–252.

4. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley,
New York, 2001.

5. C. Oliver, “The Twelve days of Christmas,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752–754.

6. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 205–335.

7. R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, Reading, MA,
1988, pp. 3–189.

8. K. B. Strangeman, “The Sum of n Polygonal Numbers,” Mathematics
Teacher, Vol. 67 (Nov. 1974), pp. 655–658.

9. C. W. Trigg, “Palindromic Triangular Numbers,” J. Recreational
Mathematics, Vol. 6 (Spring 1973), pp. 146–147.

10. A. Tucker, Applied Combinatorics, Wiley, New York, 1984, pp.
222–298.

11. H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood
Cliffs, NJ, 1986, pp. 26–34, 48–61.

Chapter 6

Combinatorics and Discrete
Probability

The theory of probability affords an excellent illustration of the
application of the theory of permutations and combinations which is the

fundamental part of the algebra of discrete quantity.

— G. CRYSTAL

C ombinatorics is a fascinating branch of discrete mathematics, which
deals with the art of counting. Very often we ask the question, In how

many ways can a certain task be done? Usually combinatorics comes to our
rescue. In most cases, listing the possibilities and counting them is the least
desirable way of finding the answer to such a problem. Often we are not
interested in enumerating the possibilities, but rather would like to know
the total number of ways the task can be done.

For instance, consider the following combinatorial problem:

One type of automobile license plate number in Massachusetts
consists of one letter and five digits.
Find the number of such license plate numbers possible.

• 5HO515 •
• MASSACHUSETTS •

Suppose you are willing to list all the possibilities and count them to find
the answer. Assuming you know how to enumerate them systematically
and that it would take a second to count each, it would take about 6 months
to complete the counting alone. Obviously, this is an inefficient way to
find the answer, especially when combinatorics can do the job in seconds.
(See Example 6.6.)

A few other interesting problems we examine in this chapter are:

• A secretary types up 10 different letters and 10 envelopes. In how many
different ways can she place each letter in an envelope so that no letter
is placed in the correct envelope?

343

344 Chapter 6 Combinatorics and Discrete Probability

• Eleven guests would like to order soft drinks with their dinner. There
are five choices for a soft drink: Coke Classic, Diet Coke, root beer,
Pepsi, and Sprite. Find the number of different beverage selections
possible.

• What is the maximum number of nonoverlapping regions formed inside
a circle by joining n points on it?

• In how many ways can n married couples be seated at a round table so
that men and women sit on alternate chairs and no wife sits next to her
husband?

This chapter presents the fundamentals of combinatorics.∗ In several
instances, you will find recursion and generating functions useful in solving
combinatorial problems, so review them as needed.

6.1 The Fundamental Counting Principles

This section, a natural continuation of Section 2.4, presents three funda-
mental principles that form the foundation of combinatorics.

The addition and the inclusion–exclusion principles discussed in
Section 2.4 have fine applications to combinatorics, as will be seen shortly.

EXAMPLE 6.1 Find the number of ways of drawing a red queen or a black king from a
standard deck of playing cards.

SOLUTION:
Let A denote the set of red queens and B the set of black kings. Clearly,
|A| = 2 = |B|. Since A and B are disjoint sets, by the addition principle,
|A ∪ B| = |A| + |B| = 2 + 2 = 4. Thus there are four different ways of
drawing a red queen or a black king. �

In this example, drawing a red queen can be considered a task, say,
task A. Likewise, drawing a black king can be considered task B. Since
the two tasks cannot occur simultaneously, they are mutually exclusive.
So finding the number of ways of drawing a red queen or a black king
is equivalent to finding the number of ways task A or task B can be
performed.

Accordingly, the addition principle can be restated in terms of tasks as
follows.

THEOREM 6.1 (Addition Principle) Let A and B be two mutually exclusive tasks.
Suppose task A can be done in m ways and task B in n ways. Then task A
or task B can take place in m + n ways. �

∗The first book on combinatorics is Ars Conjectandi, written by the Swiss mathematician,
Jakob Bernoulli (1654–1705) and published posthumously in 1713.

6.1 The Fundamental Counting Principles 345

The addition principle can be extended to any finite number of pairwise
mutually exclusive tasks, using induction. For instance, let T1, . . . , Tn be
n pairwise mutually exclusive tasks. Suppose task Ti can be done in mi
ways, where 1 ≤ i ≤ n. Then task T1, T2, . . . , or Tn can be done in m1 + m2
+ · · · + mn ways, as the next example illustrates.

EXAMPLE 6.2 A freshman has selected four courses and needs one more course for the
next term. There are 15 courses in English, 10 in French, and 6 in German
she is eligible to take. In how many ways can she choose the fifth course?

SOLUTION:
Let E be the task of selecting a course in English, F the task of selecting
a course in French, and G that of selecting a course in German. These
tasks can be done in 15, 10, and 6 ways, respectively, and are mutually
exclusive, so, by the addition principle, the fifth course can be selected in
|E| + |F| + |G| = 15 + 10 + 6 = 31 ways. �

Like the addition principle, the inclusion–exclusion principle can be
restated in terms of tasks in an obvious way. It can also be extended to
a finite number of tasks (see Theorem 6.19).

THEOREM 6.2 (Inclusion–Exclusion Principle) Suppose a task A can be done in m
ways, task B in n ways, and both can be accomplished in k different ways.
Then task A or B can be done in m + n − k ways. �

The next problem exemplifies this.

EXAMPLE 6.3 In how many ways can you deal a king or a black card from a standard deck
of cards?

SOLUTION:
A king can be selected in four different ways and a black card in 26 different
ways. These two tasks can be done simultaneously in two ways, namely,
by selecting a black king; so, by Theorem 6.2, a king or a black card can be
selected in 4 + 26 − 2 = 28 ways. �

Before stating the next counting principle, let us return to Example 2.23
in Chapter 2. The task of selecting a mode of transportation for the trip
from Boston to London via New York consists of two subtasks A and B: A is
selecting a mode of transportation from Boston to New York — car, plane,
or ship — and B is selecting a mode of transportation from New York to Lon-
don — plane or ship. They can be done in |A| = 3 and |B| = 2 ways. Recall
that the trip can be made in 6 = |A| · |B| ways; that is, |A×B| = 6 = |A| · |B|.

More generally, we have the following result.

THEOREM 6.3 (Multiplication Principle) Suppose a task T is made up of two subtasks,
subtask T1 followed by subtask T2. If subtask T1 can be done in m1 ways
and subtask T2 in m2 different ways for each way subtask T1 can be done,
then task T can be done in m1m2 ways. �

The next four examples illustrate this principle.

346 Chapter 6 Combinatorics and Discrete Probability

EXAMPLE 6.4 Find the number of two-letter words that begin with a vowel — a, e, i, o,
or u.

SOLUTION:
The task of forming a two-letter word consists of two subtasks T1 and T2:
T1 consists of selecting the first letter and T2 selecting the second letter,
as Figure 6.1 shows.

Figure 6.1 number of choices

? ?

subtask T1 subtask T2

Since each word must begin with a vowel, T1 can be accomplished in
five ways. There are no restrictions on the choice of the second letter, so
T2 can be done in 26 ways (see Figure 6.2). Therefore, by the multiplication
principle, the task can be performed in 5 · 26 = 130 different ways. In
other words, 130 two-letter words begin with a vowel.

Figure 6.2 number of choices

subtask T1 subtask T2

5 26

�

The various two-letter words in this example can be enumerated system-
atically by constructing a tree diagram, as in Figure 6.3. All desired words
can be obtained by traversing the various branches of the tree, as indicated.

Figure 6.3

a

e

u

.

.

.

.

.

.

a

z

.

a

z

.

a

z

.

.

.

.

aa

az

.

ea

ez

.

ua

uz

.

first element second element word

←
←
←

←
←
←
←
←
←

6.1 The Fundamental Counting Principles 347

The multiplication principle can also be extended to any finite number
of subtasks. Suppose a task T can be done by n successive subtasks, T1,
T2, . . . , Tn. If subtask Ti can be done in mi different ways after Ti−1 has
been completed, where 1 ≤ i ≤ n, then task T can be done in m1m2 · · · mn
ways.

The multiplication principle can be applied to prove that a set with size n
has 2n subsets, as shown below.

EXAMPLE 6.5 Show that a set S with n elements has 2n subsets.

SOLUTION:
Every subset of S can be uniquely identified by an n-bit word (see
Figure 6.4). The task of forming an n-bit word can be broken down to n sub-
tasks: selecting a bit for each of the n positions. Each position in the word

Figure 6.4

? ? ? ? ?_ _ ?_ _ _ _. . .

n bits

number of choices

has two choices, 0 or 1; so, by the multiplication principle, the total num-
ber of n-bit words that can be formed is 2 · 2 · · · · · 2︸ ︷︷ ︸

n times

= 2n (see Figure 6.5).
In other words, S has 2n subsets.

Figure 6.5

2 2 2 2 2 2_ _ __ _ _
. . . .

.. .

.. .

number of choices

�

We now turn to solving the problem posed at the beginning of the chapter.

EXAMPLE 6.6 One type of automobile license plate number in Massachusetts consists
of one letter and five digits. Compute the number of such license plate
numbers possible.

SOLUTION:
For convenience, we decompose the task into three subtasks:

• Choosing a letter. It can be done in 26 ways.

• Choosing the position of the letter. It has six possible slots.

348 Chapter 6 Combinatorics and Discrete Probability

• Choosing the five digits. They can be selected in 10 · 10 · 10 · 10 · 10 =
100,000 ways.

Now we are ready to find the final answer. By the multiplica-
tion principle, the total number of license plates is 26 · 6 · 100000 =
15,600,000. �

The next example depends on the multiplication and addition principles.

EXAMPLE 6.7 (optional) An identifier in a programming language consists of a letter fol-
lowed by alphanumeric characters.∗ Find the number of legal identifiers of
length at most 10.

SOLUTION:
Let Si denote the set of identifiers of length i, where 1 ≤ i ≤ 10. Then |Si| =
26 · 36i−1 (see Figure 6.6). Since the subtasks S1, . . . , S10 are mutually

Figure 6.6
26 36 36 36

letter (i – 1) alphanumeric characters

.

exclusive, by the addition principle, the total number of identifiers of length
≤ 10 is given by

10∑
i = 1

|Si| =
10∑

i=1

26 · 36i−1 = 26

(9∑
i=0

36i

)

= 26 · (3610 − 1)
36 − 1

= 26(3610 − 1)
35

= 2,716,003,412,618,210

≈ 2.7 quadrillion! �

The final example in this opening section employs the multiplication and
the inclusion–exclusion principles.

EXAMPLE 6.8 An eight-bit word is called a byte. Find the number of bytes with their
second bit 0 or the third bit 1.

SOLUTION:
Number of bytes with second bit 0 = 2 · 1 · 2 · 2 · 2 · 2 · 2 · 2 = 27

Number of bytes with third bit 1 = 2 · 2 · 1 · 2 · 2 · 2 · 2 · 2 = 27

Since these two subtasks are not mutually exclusive, we cannot add these
two partial answers and claim that the answer is 27 + 27 = 128 + 128 = 256.

∗An alphanumeric character is a letter or a digit.

6.1 The Fundamental Counting Principles 349

So, we must find the number of bytes that have both properties. The num-
ber of bytes with second bit 0 and third bit 1 equals 2 · 1 · 1 · 2 · 2 · 2 · 2 · 2 =
26 = 64, so, by the inclusion–exclusion principle, the number of bytes with
the given properties is 27 + 27 − 26 = 128 + 128 − 64 = 192. �

Exercises 6.1

Find the number of positive integers ≤ 1976 and divisible by:

1. 2 or 3. 2. 3 or 5. 3. 2, 3, or 5. 4. 3, 5, or 7.

◦ 5. In one version of BASIC, a variable name consists of a letter, or a
letter followed by a digit, or the dollar sign ($). Find the total number
of possible variable names.

Find the number of terms in the expansion of each expression.

6. (a + b)(c + d + e)(x + y)

8.
(2∑

i=0
ai

)(4∑
i=1

bi

)(5∑
i=2

ci

) 7. (b + c)(d + e + f)(x + y + z)

9.
(5∑

i=−2
ai

)(3∑
i=−1

bi

)(4∑
i=0

ci

)
10. Find the number of palindromes of length n over the English

alphabet.

◦ 11. Find the number of palindromic alphanumeric identifiers of length n.
(See Example 6.7.)

12. Find the total number of bytes. (See Example 6.8.)

13. A word over the alphabet {0, 1, 2} is called a ternary word. Find the
number of ternary words of length n that can be formed.

A typical automobile license plate in New York contains three letters
followed by three digits. Find the number of license plates of this kind
that:

14. Can be formed.

16. Begin with a vowel.

15. Begin with the word BAT.

17. Begin with the digit 6.

18. Repeat no letters or digits.

19. Contain the same letters and the same digits.

20. Have the property that both words and numbers are palindromes.

An old zip code in the United States consists of five digits. Find the total
number of possible zip codes that:

21. Have no repetitions.

23. End in K.

22. Begin with 0.

24. Are palindromes.

350 Chapter 6 Combinatorics and Discrete Probability

A zip code in Canada consists of three letters and three digits. Each zip code
begins with a letter. The letters and digits alternate; for instance, A1B2C3.
Find the number of zip codes that:

25. End in 6.

27. End in Z.

26. Begin with A and end in 3.

28. Are possible.

◦ The password for a computer system consists of six alphanumeric char-
acters and begins with a letter. Find the total number of passwords
that:

29. Are possible.

31. Contain the word BAT.

30. End in RED.

32. End in 2076.

33. Every radio and television station in the United States has a unique
call name. Each contains three or four letters, beginning with K or W.
For example, KEY and WASP are legal call names. Find the number
of possible call names.

Find the number of bytes that:

34. Begin with 101. 35. End with 110.

36. Begin with and end in the same bit.

37. Begin with and end in different bits.

38. Have the same third and fourth bits.

39. Have third bit or fifth bit 1. 40. Have second bit 0 or third bit 1.

41. Are palindromes.

Find the number of positive divisors of the following positive integers.

42. 2i · 3 j · 5k 43. 600

44. A number-theoretic function used in the study of perfect numbers is
the tau function τ on N. (τ is the Greek letter, tau.) τ (n) denotes
the number of positive divisors of n ∈ N. Let n = pe1

1 pe2
2 · · · pek

k , where
p1, p2, . . . , pk are distinct primes and e1, e2, . . . , ek ∈ W. Find τ (n).

45. Find the number of n × n matrices that can be constructed using bits.

Find the number of ternary words that have:

46. Length at most 3.

48. Length at most n.

50. Length 4 and are palindromes.

47. Length at most 5.

49. Length 3 and are palindromes.

51. 4 ≤ length ≤ 6

In an alphabet of m characters, how many words have:

52. Length 3?

6.2 Permutations 351

53. Length not more than 2?

54. Length at least 2, but not more than 4?

55. Length not more than n?

Let A and B be two finite sets with |A| = m and |B| = n. How many:

56. Functions can be defined from A to B?

57. Bijections can be defined from A to B (assume m = n)?

58. Invertible functions can be defined from A to B (assume m = n)?

59. Injections can be defined from A to B (assume m ≤ n)?

Let τ denote the tau function. Prove each.

60. τ (n) is odd if and only if n is a square.

*61. If m and n are relatively prime numbers, then τ (mn) = τ (m) · τ (n).

*62. The harmonic mean m of the numbers a1, a2, . . . , an is the reciprocal
of the arithmetic mean of their reciprocals; that is,

1
m

= 1
n

n∑
i=1

(
1
ai

)

Prove that the harmonic mean of the positive factors of a perfect
number N is an integer.
(Hint: If d is a factor of N, then so is N/d.) (R. Euler, 1987)

6.2 Permutations

The concept of ordered arrangements was familiar to Chinese mathemati-
cians as early as 1100 B.C. This section introduces the concept of ordered
arrangements and shows how to find the number of such arrangements.

Suppose a photographer would like to arrange 10 cats in a row for a
television commercial. She can arrange them in any order she likes. In
how many ways can she accomplish this? Although we could use the mul-
tiplication principle to arrive at an answer, we shall apply the concept of a
permutation (see Example 6.11).

Recall that the elements of an ordered set are assigned unique positions.
For convenience, let us denote the ordered set (a,b,c) as the arrangement
abc. The words acb and bac are two different arrangements of the very
same letters. (Remember, the order makes a difference.) Each of these
arrangements is a permutation of the three letters taken all at a time, or
a 3-permutation.

352 Chapter 6 Combinatorics and Discrete Probability

Permutation
A permutation of a set of n (distinct) elements taken r (0 ≤ r ≤ n) at
a time is an arrangement of r elements of the set. For convenience, it is
called an r-permutation. If r = n, then the r-permutation is called simply
a permutation. The number of r-permutations of a set of size n is denoted
by P(n, r).

We begin our discussion with a simple example.

EXAMPLE 6.9 Find the number of permutations; that is, 3-permutations of the elements
of the set {a, b, c}.
SOLUTION:
By the multiplication principle, the number of 3-permutations of three
elements is 3 · 2 · 1 = 6. Thus P(3, 3) = 6. �

The various permutations in Example 6.9 can be obtained systematically
using a tree diagram, as Figure 6.7 shows. They are abc, acb, bac, bca, cab,
and cba.

Figure 6.7

a
b

c

a

c

a

b

b

c

first
element

second
element

third
element

permutations

cbaa ←

cabb ←

bcaa ←

bacc ←

acbb ←

abcc ←

EXAMPLE 6.10 Find the number of 2-permutations of the elements of the set {a, b, c}.
SOLUTION:
Again, by the multiplication principle, the number of 2-permutations is
3 · 2 = 6; that is, P(3, 2) = 6. �

The various 2-permutations in Example 6.10 are ab, ac, ba, bc, ca, and
cb. They can be obtained using the tree diagram in Figure 6.8.

Examples 6.9 and 6.10 can be interpreted as follows: Suppose you have
three books in your hands and would like to arrange them in a bookcase. If
there is enough room for three books, they can be arranged in 3 · 2 · 1 = 6
different ways. On the other hand, if there is room for only two books, they
can be arranged in 3 · 2 = 6 different ways.

6.2 Permutations 353

Figure 6.8

a

b

c

first
element

second
element

permutations

b ab←

c ac←

a ba←

c bc

←

b cb←

a ca

←

More generally, we have the following result.

THEOREM 6.4 The number of r-permutations of a set of n (distinct) elements is given by

P(n, r) = n!
(n − r)! .

PROOF:
Since there are n elements, the first element can be chosen in n ways. Now
n − 1 elements are left; so the second element can be chosen in n − 1 ways.
Continue like this until the rth element is ready to be chosen. At this point
there are n − r + 1 elements left. Consequently, the rth element can be
chosen in n − r + 1 ways. Thus, by the multiplication principle,

P(n, r) = n(n − 1)(n − 2) · · · (n − r + 1)

= n(n − 1) · · · (n − r + 1)(n − r) · · · 2 · 1
(n − r) · · · 2 · 1

= n!
(n − r)! �

Although it is easy to remember the value of P(n, r) using this for-
mula, P(n, r) is often computed using the formula P(n, r) = n(n − 1)
(n − 2) · · · (n − r + 1). The values n! and (n − r)! may be too large even
for a calculator to compute. Then the value n!/(n − r)! may not be exact.
You will find the fact that n! = n(n−1)! useful in computing P(n, r). For
example,

P(25, 5) = 25!
(25 − 5)! = 25!

20! = 25 · 24 · 23 · 22 · 21 · 20!
20!

= 25 · 24 · 23 · 22 · 21 = 6,375,600

354 Chapter 6 Combinatorics and Discrete Probability

Suppose we let r = n in Theorem 6.4. Then

P(n, n) = n!
(n − n)! = n!

0! = n!
1

= n!

Accordingly, we have the following result.

THEOREM 6.5 The number of permutations of a set of size n is given by P(n, n) = n!. That
is, n elements can be arranged in n! ways. �

Interestingly enough, applications of this formula appear in the anony-
mous Hebrew book Sefer Yetzirah (The Book of Creation), written between
300 and 600 A.D.

The next two examples illustrate this theorem.

EXAMPLE 6.11 A photographer would like to arrange 10 cats for a television commercial.
How many ways can she arrange them in a row?

SOLUTION:
Since all the cats have to be in the commercial at the same time, r = n =
10. Therefore, the number of possible arrangements is P(10, 10) = 10! =
3,628,800. �

EXAMPLE 6.12 Find the number of words that can be formed by scrambling the letters
of the word SCRAMBLE. (Remember, a word is just an arrangement of
symbols; it need not make sense.)

SOLUTION:
The word SCRAMBLE contains eight distinct letters. Therefore, the num-
ber of words that can be formed equals the number of arrangements of the
letters in the word, namely, P(8, 8) = 8! = 40,320. �

The next example uses the multiplication principle, as well as
Theorem 6.5.

EXAMPLE 6.13 A salesperson at a computer store would like to display six models of per-
sonal computers, five models of computer monitors, and four models of
keyboards. In how many different ways can he arrange them in a row if
items of the same family are to be next to each other?

SOLUTION:
There are three types of items: personal computers, monitors, and key-
boards. Think of the items in each family as tied together into one unit.
These families can be arranged in P(3, 3) = 3! ways. Now the items within
each family can be rearranged. The six models of personal computers can
be arranged in P(6, 6) = 6! ways, the monitors in P(5, 5) = 5! ways, and
the keyboards in P(4, 4) = 4! different ways. Thus, by the multiplica-
tion principle, the total number of possible arrangements is 3! 6! 5! 4! =
12,441,600. �

6.2 Permutations 355

Permutations of elements arranged in a circle work somewhat differently
from the linear situations we have investigated up to this point.

Cyclic Permutation
In how many different ways can you place five beads on a necklace? The
answer is not 5! = 120, but far less, since it contains a lot of dupli-
cate arrangements. For instance, the two circular arrangements shown
in Figure 6.9 are identical. (Look at the relative positions of the beads p1
through p5.) Each circular arrangement is a cyclic permutation.

Figure 6.9 p3p3

p5

p5
p1

p1

p2

p2

p4

p4

Before we find the number of cyclic permutations of the five beads in
Example 6.14, the following general result will be useful to prove.

THEOREM 6.6 The number of cyclic permutations of n (distinct) items is (n − 1)!.
PROOF:
To avoid duplicates, let us assign a fixed position to the first item a1 around
the circle (see Figure 6.10). Now n−1 positions are left. So the second item
a2 can be placed in any one of the n − 1 positions. Now n − 2 positions

Figure 6.10

a1

are left. Therefore, the third item a3 can be placed in any of the n − 2
positions. Continue like this until all items have been placed. Thus, by the
multiplication principle, the number of cyclic permutations is 1 · (n − 1)
(n − 2) · · · 2 · 1 = (n − 1)! �

The next example illustrates this result.

EXAMPLE 6.14 Find the number of different ways five zinnias can be planted in a
circle.

356 Chapter 6 Combinatorics and Discrete Probability

SOLUTION:(
Number of ways of planting
five zinnias in a circle

)
=
(

Number of cyclic permutations
of five items

)
= (5 − 1)! = 24 �

Let us return to “linear” permutations. We would like to find the recur-
rence relation satisfied by P(n, r). We will use a combinatorial argument
to find it, leaving the straightforward algebraic proof as a routine exercise
(see Exercise 45).

THEOREM 6.7 The number of r-permutations of n distinct elements satisfies the recur-
rence relation P(n, r) = P(n − 1, r) + rP(n − 1, r − 1), where 0 < r < n.

PROOF:
Let X be a set with n elements and x an arbitrary element in it. The set
of r-permutations of X can be partitioned into two subsets: A, the set of
permutations not containing x, and B, the set of permutations containing x.

• To find the number of elements in A: Since no permutations in A con-
tain x, every element in A is an r-permutation of n − 1 elements. The
number of such permutations is P(n − 1, r).

• To find the number of elements in B: Since every permutation in B
contains x, n − 1 candidates are left in X for the remaining r − 1
positions. They can be arranged in P(n − 1, r − 1) ways. Now the posi-
tion of x in a permutation has r choices. Therefore, by the multiplication
principle, rP(n − 1, r − 1) permutations contain x.

Since A and B are disjoint sets, by the addition principle,

P(n, r) = |A| + |B|
= P(n − 1, r) + rP(n − 1, r − 1) �

Note that it’s much easier to compute P(n, r) using the explicit formula
in Theorem 6.4 rather than by using the recursive. Try P(5, 3) both ways
to see the difference.

Fibonacci Numbers Revisited
The following example presents an interesting confluence of permutations
and Fibonacci numbers.

EXAMPLE 6.15 Let pn denote the number of permutations f of the set Sn = {1, 2, . . . , n}
such that |i − f (i)| ≤ 1 for all 1 ≤ i ≤ n, where n ≥ 1. So pn counts the
number of permutations that move each element no more than one position
from its natural position.

6.2 Permutations 357

Figure 6.11 shows the various such permutations for n = 1, 2, 3, and 4.

Figure 6.11

n�2

n�4

1 1

n�1

1

2

3

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2 2

1

n�3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

1

2

3

1

2 2

1

1

2

3

4

1

2

3

4

1

2

3

1

2

3

Table 6.1 summarizes these data. It appears from the table that
pn = Fn+1. We can in fact confirm this.

Table 6.1 n 1 2 3 4 … n

pn 1 2 3 5 … ?

358 Chapter 6 Combinatorics and Discrete Probability

Case 1 Let f (n) = n. Then the remaining n − 1 elements can be used to
form pn−1 permutations such that |i − f (i)| ≤ 1 for all i.

Case 2 Let f (n) �= n. Then f (n) = n − 1 and f (n − 1) = n. The remaining
n−2 elements can be employed to form pn−2 permutations with the desired
property.

Thus, by the addition principle, pn = pn−1 + pn−2, where p1 = 1 and
p2 = 2. It now follows that pn = Fn+1, where n ≥ 1, as conjectured. �

Since the total number of permutations of Sn is n!, it follows from this
example that there are n!−Fn+1 permutations f of Sn such that |i−f (i)| > 1
for some integer i, where 1 ≤ i ≤ n. Thus there are n!−Fn+1 permutations
of Sn that move at least one element of Sn by two spaces from its natural
position.

In particular, there are 3!−F4 = 3 such permutations of the set {1, 2, 3},
as Figure 6.12 depicts.

Figure 6.12
1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Exercises 6.2

Evaluate each.

1.
5!
4! 2.

10!
3! 7!

3. P(5, 3) 4. P(6, 6)

Mark each sentence as true or false, where n is an arbitrary nonnegative
integer and 0 ≤ r ≤ n.

5. 0! = 0

7. 5 · 4! = 5!
9. (2 + 3)! = 2! + 3!

11. (2 · 3)! = 2! 3!
13. P(n, 0) = 0

15. P(n, r) = P(n, n − r)

6. 1! = 1

8. (m + n)! = m! + n!
10. (mn)! = m! n!
12. n(n − 1)! = n!
14. P(n, 1) = P(n, n − 1)

16. n! is divisible by 10 if n > 4.

17. Find the number of two-digit numerals that can be formed using the
digits 2, 3, 5, 6, and, 9 and that contain no repeated digits.

18. Find the number of three-digit numerals that can be formed using the
digits 2, 3, 5, 6, and 9, if repetitions are not allowed.

6.2 Permutations 359

Find the number of words that can be formed by scrambling the letters in
each word.

19. algorithm 20. word 21. computer 22. logic

◦ The password for a computer system consists of eight distinct alphabetic
characters. Find the number of passwords possible that:

23. End in the string MATH. 24. Begin with the string CREAM.

25. Contain the word COMPUTER as a substring.

26. Contain the letters WORD together, but in any order.

27. Contain the string BLACK or the string WHITE.

28. Contain the strings BLACK and WHITE.

29. Do not contain the string SAMPLE.

A botanist would like to plant three coleus, four zinnias, and five dahlias in
a row in her front garden. How many ways can she plant them if:

30. They can be planted in any order.

31. Plants of the same family must be next to each other.

32. The family of zinnias must be in between the other two families.

Find the number of ways seven boys and three girls can be seated in a
row if:

33. A boy sits at each end of the row.

34. A girl sits at each end of the row.

35. The girls sit together at one end of the row.

36. Show that P(n, 0) = 1.

Using the recursive definition of P(n, r), evaluate each.

37. P(5, 4) 38. P(6, 0) 39. P(3, 2) 40. P(6, 3)

Solve each equation.

41. P(n, 1) = 6

43. P(n, n − 1) = 5040

42. P(n, 2) = 42

44. P(5, r) = 20

45. Using Theorem 6.4, prove that P(n, r) = P(n − 1, r) + rP(n − 1, r − 1).

Verify each.

46. (n + 1)! + n! = (n + 2)n! 47. (n + 1)! − n! = n(n!)
48. Prove by induction that 1 · 1! + 2 · 2! + · · · + n · n! = (n + 1)! − 1, n ≥ 1.

49. Write an algorithm to compute P(n, r), using Theorem 6.4.

360 Chapter 6 Combinatorics and Discrete Probability

50. Write a recursive algorithm to compute P(n, r).

*51. Show that (n!)! > (2n)!, if n > 3.

6.3 Derangements

At the beginning of the 18th century, the following problem was proposed:

A secretary had written n different letters and addressed n different
envelopes for them. Unfortunately, a wind storm mixed up the letters
and the envelopes. After the storm was over, each letter was placed in an
envelope. In how many ways can the letters be placed in the envelopes,
so that every letter is in a wrong envelope?

This problem has several variations. One involves n couples attending a
dance. In how many ways can the men dance with women other than their
own wives?

A second variation involves n guests checking in their coats at the coat
room of a fancy restaurant. In how many ways can the attendant return
their coats, so no person gets the right coat?

Before answering these problems, we make the following definition.

Derangement
A permutation of n distinct items a1, a2, . . . , an in which no item ai appears
in its original position i for any i, 1 ≤ i ≤ n, is called a derangement.

We would like to find the number of possible derangements of n items,
so we begin with an example.

EXAMPLE 6.16 Find the number of derangements of the elements 1, 2, 3, and 4.

SOLUTION:
There are nine derangements of the four elements, namely:

2143 3142 4123

2341 3412 4312

2413 3421 4321

The permutation 2314 is not a derangement since 4 appears in its natural
position. �

6.3 Derangements 361

Let Dn denote the number of derangements of n items. Then D0 = 1,
since there is one derangement with no elements. (This will be verified
later.) There is no derangement with one element, so D1 = 0. There is
exactly one derangement of the elements 1 and 2, namely, 21; therefore,
D2 = 1. There are two derangements of the elements 1, 2, and 3: 231
and 312; therefore, D3 = 2. It follows by Example 6.15 that D4 = 9.

To find an explicit formula for Dn, first we derive a recurrence relation
satisfied by Dn.

THEOREM 6.8 Let Dn denote the number of derangements of n distinct items. Then

Dn = (n − 1)(Dn−1 + Dn−2), n ≥ 2 (6.1)

PROOF:
Let a1, a2, . . . , an denote the n items. Item an can be placed in any one of
the positions 1, 2, . . . , (n − 1), so the location of an has n −1 choices.

Suppose it is placed in position 1 (see Figure 6.13). Let us now consider
the following two cases:

Figure 6.13

_ _ _ _
1 2 3 n

. . .
an

available

positions

Case 1 Suppose a1 is placed in position n (see Figure 6.14). Then n −2
items are left, namely, a2, a3, . . . , an−1 and also n − 2 positions, namely,
positions 2 through n − 1. The number of derangements of n − 2 items,
by definition, is Dn−2. Thus, if a1 is placed in position n, there are Dn−2
derangements.

Figure 6.14

_ _ _ _ _ _

1 2 3 n
. . .an

available

positions

a1

362 Chapter 6 Combinatorics and Discrete Probability

Case 2 Suppose a1 is not placed in position n (see Figure 6.15). Then a1
must occupy one of the positions 2 through n − 1 and one of the items
a2 through an−1 must occupy position n. Thus, we have n − 1 items and
n − 1 positions, yielding Dn−1 derangements.

Figure 6.15

_ _ _ _ _
1 2 3 n

. . .
an

available

positions

?

not a1

_

Thus, with an in position 1, a total of Dn−1 + Dn−2 derangements are
possible, by the addition principle. Since an may occupy any one of the
n − 1 positions, the total number of derangements is (n − 1)(Dn−1 + Dn−2).
Thus Dn = (n − 1)(Dn−1 + Dn−2), n ≥ 2. �

Using Theorem 6.8, Dn can be defined recursively as follows.

A Recursive Definition of Dn

D0 = 1, D1 = 0

Dn = (n − 1)(Dn−1 + Dn−2), n ≥ 2 (6.1)

The recurrence relation (6.1) can prove that D0 must be 1. Using the
recurrence relation, D2 = (2 − 1)(D1 + D0). Since D2 = 1 and D1 = 0,
this yields 1 = 1(0 + D0). For this to be true, D0 must be 1, as in the
above definition.

The next example illustrates this recursive definition.

EXAMPLE 6.17 Use the recursive definition of Dn to compute D3 and D4.

SOLUTION:

D3 = (3 − 1)(D2 + D1) D4 = (4 − 1)(D3 + D2)

= 2(1 + 0) = 3(2 + 1)

= 2 = 9

Notice that these answers agree with those obtained earlier. �
The above recursive definition can be used to derive an alternate

definition of Dn.

6.3 Derangements 363

Notice that the recurrence relation (6.1) can be rewritten as

Dn − nDn−1 = (−1)[Dn−1 − (n − 1)Dn−2]

To simplify this, we substitute dn = Dn − nDn−1. Then it becomes dn =
−dn−1, where d1 = D1 − 1D0 = 0 − 1(1) = −1.

Solving this recurrence relation (see Exercise 9),

dn = (−1)n, n ≥ 1

Thus

Dn − nDn−1 = (−1)n

That is,

Dn = nDn−1 + (−1)n, n ≥ 1 (6.2)

Accordingly, Dn can be defined recursively as follows:

An Alternate Recursive Definition of Dn

D0 = 1

Dn = nDn−1 + (−1)n, n ≥ 1 (6.3)

The next example uses this alternate definition.

EXAMPLE 6.18 With the alternate definition (6.3), compute D3 and D4.

SOLUTION:

D3 = 3D2 + (−1)3 D4 = 4D3 + (−1)4

= 3(1) + (−1) = 4(2) + 1

= 2 = 9 �

The recurrence relation (6.2) can be solved using the iteration method
(see Exercise 10). The solution is given in the following theorem.

THEOREM 6.9 The number of derangements of n distinct elements is

Dn = n!
[
1 − 1

1! + 1
2! − 1

3! + 1
4! − · · · + (−1)n

n!
]

, n ≥ 0 �

An interesting observation: It is shown in calculus that e−1 =
∞∑

n=0

(−1)n

n! ,

so the expression inside the brackets in the formula is the sum of the
first (n + 1) terms in the expansion of e−1. See Exercise 40.

364 Chapter 6 Combinatorics and Discrete Probability

The next example illustrates this theorem.

EXAMPLE 6.19 Using Theorem 6.9, compute D5.

SOLUTION:

D5 = 5!
(

1 − 1
1! + 1

2! − 1
3! + 1

4! − 1
5!
)

= 120
(

1 − 1 + 1
2

− 1
6

+ 1
24

− 1
120

)
= 44 �

Returning to the 18th-century problem, n letters can be placed in wrong
envelopes in Dn ways, where the value of Dn is given by Theorem 6.9.

Exercises 6.3

Using the recursive definition (6.1), compute the number of derangements
Dn for each value of n.

1. 5 2. 6 3. 7 4. 10

Using Theorem 6.9, compute each.

5. D2 6. D4 7. D6 8. D7

9. Solve the recurrence relation dn = −dn−1, n ≥ 2, where d1 = −1.

10. Solve the recurrence relation (6.2).

Prove each.

11. Dn is even if n is an odd integer.

12. Dn is odd if n is an even integer.

Let bn denote the number of computations (additions and multiplica-
tions) needed to find Dn, using the recursive definition (6.1). Compute the
following.

13. b2 14. b3 15. b4 16. b5

17. Define bn recursively.

Using the recursive definition of bn, compute each.

18. b4 19. b5 20. b6 21. b8

22. Prove that bn is an even integer for every n ≥ 0.

Let cn denote the number of computations (additions and multiplications)
needed to find Dn, using the recursive definition (6.3). Compute each.

23. c2 24. c3 25. c4 26. c5

6.4 Combinations 365

27. Define cn recursively.

Using the recursive definition of cn, compute each.

28. c4 29. c5 30. c6 31. c8

32. Solve the recurrence relation obtained in Exercise 27.

33. Show that cn = O(n).

34. Show that Dn = 3 · 4 · · · · · n − 4 · 5 · · · · · n + · · · + (−1)n−1n + (−1)n.

35. Let an denote the number of multiplications needed to compute Dn,
using the formula in Exercise 34. Show that an = O(n2).

Let pn = Dn

n! . Compute the value of pn correct to six decimal places for each

value of n.

36. 5 37. 6 38. 7 39. 10

*40. (For those familiar with the concept of a limit) Using Exercises 36–39,
predict lim

n→∞ pn.

41. Show that pn − pn−1 = (−1)n

n! .

42. Using Exercise 41, derive the explicit formula for Dn.
(Hint: Solve the recurrence relation in Exercise 41.)

The formula in Exercise 41 can be derived in a slightly different way also.
Verify each.

43. pn = n − 1
n

pn−1 + 1
n

pn−2 44. pn − pn−1 = 1
n

− (pn−1 − pn−2)

45. pn − pn−1 = (−1)n

n!
(Hint: Let gn = pn − pn−1 in Exercise 44.)

46. Write a nonrecursive algorithm to compute Dn.

47. Write a recursive algorithm to compute Dn.

6.4 Combinations

Recall that a permutation is an ordered arrangement of elements in a set.
Sometimes, however, the order of elements is irrelevant; only their mem-
bership is important. We will investigate such unordered arrangements in
this section.

For example, a committee such as A = {Costa, Shea, Weiss, Hall,
Chen} is just a set, and the order in which the names are listed
is immaterial. Suppose we would like to form a subcommittee of A

366 Chapter 6 Combinatorics and Discrete Probability

consisting of three members. Three such subcommittees are: {Costa, Shea,
Weiss}, {Costa, Shea, Hall}, and {Costa, Shea, Chen} (see Example 6.20).
Each is a combination of the five elements taken three at a time, or a
3-combination.

More generally, we make the following definition.

Combination
An r-combination of a set of n elements, where 0 ≤ r ≤ n, is a subset
containing r elements.

The number of r-combinations of a set with n elements is denoted by

C(n, r) or
(

n
r

)
.∗ Both notations frequently appear in combinatorics. The

number of combinations is also called the binomial coefficient∗∗ for
reasons that will be clear from Section 6.6.

Before deriving a formula for C(n, r), let us study the following example.

EXAMPLE 6.20 Find the number of r-combinations of the set {a, b, c}, when r = 0, 1, 2,
or 3.

SOLUTION:
• Exactly one subset contains zero elements: the null set.

Number of 0-combinations = C(3, 0) = 1.

• Three subsets contain one element each: {a}, {b}, and {c}.
Number of 1-combinations = C(3, 1) = 3.

• Three subsets contain two elements each: {a, b}, {b, c}, and {c, a}.
Number of 2-combinations = C(3, 2) = 3.

• Finally, exactly one subset contains three elements: the set itself.
Number of 3-combinations = C(3, 3) = 1. �

We now derive a formula for C(n, r).

THEOREM 6.10 The number of r-combinations of a set of n elements is given by C(n, r) =
n!

r!(n − r)! , 0 ≤ r ≤ n.†

∗This two-level parenthesis notation was introduced by German mathematician and physicist
Baron Andreas von Ettinghausen (1796–1878). Von Ettinghausen was born in Heidelberg,
attended the University of Vienna, and for two years worked as an assistant in mathematics
and physics at the University. In 1821 he became professor of mathematics, and in 1835,
professor of physics and director of the Physics Institute. Thirteen years later, he became the
director of the Mathematical Studies and Engineering Academy in Vienna.

A pioneer in mathematical physics, von Ettinghausen worked in analysis, algebra,
differential geometry, mechanics, optics, and electromagnetism.

∗∗The term binomial coefficient was introduced by the German algebraist Michel Stifel
(1486–1567). In Arithmetica Integra (1544), his best-known work, Stifel gives the binomial
coefficients for n ≤ 17.

†Rabbi Ibn Ezra was familiar with this formula in 1100, and shortly thereafter, it appeared in
primitive form in Chinese, Indian, and Arabic works.

6.4 Combinations 367

PROOF:
By definition, there are C(n, r) r-combinations of a set of n elements.
Each combination contains r elements and contributes P(r, r) = r!
r-permutations, so the total number of r-permutations is r!C(n, r). But,

by definition, there are P(n, r) = n!
(n − r)! r-permutations. Therefore,

r!C(n, r) = n!
(n − r)!

That is,

C(n, r) = n!
r!(n − r)! �

In particular, C(n, 0) = n!
0!(n − 0)! = n!

0! n! = 1. That is, the number of

0-combinations of a set with n elements is one (see Example 6.20). Also,

C(n, n) = n!
n!(n − n)! = n!

n! 0! = 1. That is, the number of n-combinations

of a set with n elements is also one (see Example 6.20).

A word of caution: To compute C(n, r) when n is fairly large, do not
compute n! and r!(n − r)!, and then divide. The value of n! may be very
large for your calculator to hold without approximating it, so you will
find the following fact useful:

C(n, r) = n(n − 1) · · · (n − r + 1)
r!

EXAMPLE 6.21 Compute the number of subcommittees of three members each that can be
formed from a committee of 25 members.

SOLUTION:

(
Number of subcommittees
of three people each

)
=
(

number of 3-combinations
of a set of 25 people

)
= C(25, 3)

= 25 · 24 · 23
3!

= 2300 �

The next example is an interesting close relative of Example 5.5 in
Chapter 5.

368 Chapter 6 Combinatorics and Discrete Probability

EXAMPLE 6.22 (The Pizza problem) Let fn denote the maximum number of places into
which a pizza can be divided with n cuts. Find a formula for fn.

SOLUTION:
Clearly, the maximum number of regions can be realized when every two
chords, that is, cuts, intersect and no three chords are concurrent.

It follows by Example 5.5 in Chapter 5 that fn can be defined recur-
sively as

f0 = 1

fn = fn−1 + n, n ≥ 1

Solving this recurrence relation (see Exercise 3 in Section 5.2) yields

fn = 1 + n(n + 1)
2

(Verify this.)

This formula can be rewritten as

fn = 1 + n + n(n − 1)
2

(Verify this.)

= C(n, 0) + C(n, 1) + C(n, 2), n ≥ 0

(You may prove this using induction and Pascal’s identity in Theorem 6.12.
We shall pursue this example in Section 6.6.) �

Example 6.23 employs the multiplication principle, as well as
Theorem 6.10.

EXAMPLE 6.23 How many committees of three blondes and four brunettes can be formed
from a group of five blondes and six brunettes?

SOLUTION:
Three blondes can be selected from five blondes in C(5, 3) = 10 different
ways and four brunettes from six brunettes in C(6, 4) = 15 different ways.
Therefore, by the multiplication principle, the number of committees with
three blondes and five brunettes is 10 · 15 = 150. �

The following example is an interesting application of the pigeonhole
principle.

EXAMPLE 6.24 Let A be a 10-element subset of the set {1, 2, . . . , 15}. Let As be a subset
of A containing three elements, where the subscript s denotes the sum of
the elements in As. For example, the subset {2, 4, 5} is denoted by A11.
Determine if each subset of A can be identified by a unique name As. In
other words, does every sum i + j + k have a unique value s, where 1 ≤ i <
j < k ≤ 15?

6.4 Combinations 369

SOLUTION:
We let the pigeonhole principle do the job for us. The least value of s is
1 + 2 + 3 = 6 and the largest value of s is 13 + 14 + 15 = 42. Thus
6 ≤ s ≤ 42; there are at most 37 possible values of s.

There are C(10, 3) = 120 three-element subsets (pigeons) of A and only
37 possible sums (pigeonholes), so, by the pigeonhole principle, at least two
subsets must yield the same sum; that is, not every three-element subset
of A can have a unique name.

For example, let A = {1, 2, . . . , 10}. Since subsets, {1, 2, 5} and {1, 3, 4},
yield the same sum, 8, they have the same name, A8. �

The next theorem will in many cases reduce your workload with
combinations, as seen in Example 6.25.

THEOREM 6.11 C(n, r) = C(n, n − r), where 0 ≤ r ≤ n.

PROOF:

C(n, n − r) = n!
(n − r)![n − (n − r)]!

= n!
(n − r)!r! = C(n, r) �

According to Theorem 6.11, the number of r-combinations of a set with
n elements equals that of the (n − r)-combinations of the set; for exam-
ple, C(5, 2) = C(5, 3) = 10. This result can be used to cut down the
amount of work needed to compute the number of combinations in
several applications.

The next example takes advantage not only of this theorem, but also of
the addition principle.

EXAMPLE 6.25 Find the number of groups that can be formed from a group of seven
marbles if each group must contain at least three marbles.

SOLUTION:
Since each group must contain at least three marbles, it can contain three,
four, five, six, or seven marbles.

Number of groups containing three marbles = C(7, 3) = 35

Number of groups containing four marbles = C(7, 4) = C(7, 3) = 35

Number of groups containing five marbles = C(7, 5) = 21

Number of groups containing six marbles = C(7, 6) = C(7, 1) = 7

Number of groups containing seven marbles = C(7, 7) = 1

Total number of groups = 35 + 35 + 21 + 7 + 1 = 99 �

370 Chapter 6 Combinatorics and Discrete Probability

This problem can be done in a clever, shorter way as follows:(
number of groups containing
at most two marbles

)
=
(

number of groups containing
0, 1, or 2 marbles

)
= C(7, 0) + C(7, 1) + C(7, 2)

= 1 + 7 + 21 = 29

So

⎛
⎝number of groups

containing at least
three marbles

⎞
⎠ =

⎛
⎝total number

of possible
groups

⎞
⎠−

⎛
⎜⎜⎜⎜⎝

number of
groups
containing
at most two
marbles

⎞
⎟⎟⎟⎟⎠

= 27 − 29 = 99

We can now proceed to find a recurrence relation satisfied by C(n, r). As
before, we will give a combinatorial argument to establish the formula and
leave the algebraic proof as a standard exercise (see Exercise 39).

THEOREM 6.12 C(n, r) = C(n − 1, r − 1) + C(n − 1, r), where 0 < r < n. (6.4)

PROOF:
Let X be a set of n elements. There are C(n, r) r-element subsets of X. Let
x be any element of X. Let Y = X − {x}; it contains n − 1 elements. The
r-element subsets of X can be partitioned into two disjoint families: family A
of r-element subsets that contain x, and family B of r-element subsets that
do not contain x.

• To find |A|: Each subset in A contains x and hence contains r − 1
elements excluding x. Therefore, they are the (r − 1)-element subsets
of Y containing x. There are C(n − 1, r − 1) such subsets.

• To find |B|: The r-element subsets not containing x are the r-element
subsets of Y. There are C(n − 1, r) such subsets.

Thus, by the addition principle, the total number of r-element subsets
equals |A| + |B| = C(n − 1, r − 1) + C(n − 1, r). That is, C(n, r) = C(n − 1,
r − 1) + C(n − 1, r). �

The recurrence relation (6.4) is called Pascal’s identity, after Blaise
Pascal, an outstanding French mathematician and physicist.

The next example uses recursion to derive a formula for the maximum
number of nonoverlapping regions formed by joining n distinct points on a
circle, a problem presented in Example 4.19.

EXAMPLE 6.26◦ (The Circle Problem — optional) Let gn denote the maximum number
of nonoverlapping regions formed inside a circle by joining n distinct points
on it. Derive a formula for gn.

6.4 Combinations 371

Blaise Pascal (1623–1662) was born in Clermont-Ferrand, France.
Although he showed phenomenal mathematical ability at an early age, he
was encouraged by his father to pursue subjects such as ancient languages.
His father even refused to teach him any sciences until he found that Pascal
by himself at age 12 had discovered many theorems in elementary geometry.
At 14 he attended the weekly meetings of a group of French mathematicians
that later became the French Academy. At 16 he developed important results
in conic sections and wrote a book on it.

Observing that his father spent long hours auditing government accounts
and feeling that intelligent people should not waste their time doing
mundane things, Pascal at age 19 invented the first mechanical calculating
machine.

In 1650, suffering from failing health, Pascal left his mathematical and
scientific work to pursue religion. Three years later, he returned briefly to mathematics. During this
period, working with Fermat, he laid the foundation for probability theory. Most of his life was spent in
physical pain.

The programming language Pascal is named after him.

SOLUTION∗
We derive an explicit formula for gn, using recursion. Let P1, P2, . . . , Pn
be n points on a circle such that no three chords PrPs are concurrent,

where 1 ≤ r, s ≤ n. Choose a new point Q on arc

(

Pn−1Pn. Join Q to each of
the points P1 through Pn. The chord QPn introduces an extra region (see
Figure 6.16).

Figure 6.16

P2

P3

P4

P5 � Pn–2

P6 � Pn–1

P7 � Pn

P1

Q

Now consider the chord QPi, 1 ≤ i ≤ n−1. It intersects each of the chords
obtained by joining one of the i points Pn, P1, . . . , Pi−1 to one of the n−1− i
points Pi+1, Pi+2, . . . , Pn−1. Each intersection corresponds to a new region.

∗Based on A. V. Boyd and M. J. Glencorss, “Dissecting a Circle by Chords through n Points,”
Mathematics Teacher, Vol. 84 (April 1991), pp. 318–319.

372 Chapter 6 Combinatorics and Discrete Probability

Consequently, the number of regions formed by the chord QPi is one more
than the total number of points of intersection, namely, 1 + i(n − 1 − i),
1 ≤ i ≤ n − 1.

Thus the total number of regions formed by the introduction of the
(n + 1)st point Q is

1 +
n−1∑
i=1

[1 + i(n − 1 − i)] =
(n∑

i=1

1

)
+

n−1∑
i=1

[i(n − 1 − i)]

This yields the recurrence relation

gn+1 − gn =
(n∑

i=1

1

)
+

n−1∑
i=1

[i(n − 1 − i)]

The RHS of this equation can be simplified as follows:

= n +
n−1∑
i=1

i(n − 1) −
n−1∑
i=1

i2

= n + (n − 1)
n−1∑
i=1

i −
n−1∑
i=1

i2

= n + (n − 1) · (n − 1)n
2

− (n − 1)n[2(n − 1) + 1]
6

= n + n(n − 1)2

2
− n(n − 1)(2n − 1)

6

= n + n(n − 1)(n − 2)
6

= C(n, 1) + C(n, 3) (Verify this.)

Solving this recurrence relation by iteration (see Exercise 40) yields
gn = C(n, 0) + C(n, 2) + C(n, 4), n ≥ 0.

In particular, g5 = C(5, 0) + C(5, 2) + C(5, 4) = 1 + 10 + 5 = 16 and
g6 = C(6, 0) + C(6, 2) + C(6, 4) = 1 + 15 + 15 = 31, as expected. We shall
pursue this example a bit further in Section 6.6. �

Exercises 6.4

A committee consists of nine members. Find the number of subcommittees
that can be formed of each size.

1. Two 2. Five 3. Six 4. Seven

6.4 Combinations 373

5. Find the number of ways a committee of three students and five
professors can be formed from a group of seven students and 11
professors.

6. Find the number of ways a committee of four students, four professors,
and three administrators can be formed from a group of six students,
eight professors, and five administrators.

7. Find the number of lines that can be drawn using 10 distinct points,
no three being collinear.

8. Find the number of triangles that can be drawn using 10 points, no
three being collinear.

9. Solve the recurrence relation in Example 6.22.

10. Prove the formula in Example 6.22, using induction.

Let A be a 10-element subset of the set {1, 2, . . . , 20}.
11. Determine if A has two five-element subsets that yield the same sum

of the elements.

12. Determine if A has two eight-element subsets that yield the same sum
of the elements.

(Twelve Days of Christmas) Suppose that on the first day of Christmas
you sent your love 1 gift, 1 + 2 gifts on the second day, 1 + 2 + 3 gifts on
the third day, and so on.

13. Find the number of gifts sent on the 12th day.

14. Find the total number of gifts sent in 12 days.

15. Show that the number of gifts sent on the nth day is C(n+1, 2), where
1 ≤ n ≤ 12.

16. Show that the total number of gifts sent by the nth day is C(n + 2, 3),
where 1 ≤ n ≤ 12.

Solve each equation, where n ≥ 0.

17. C(n, 0) = 1

19. C(n, 2) = 28

18. C(n, 1) = 10

20. C(n, n − 2) = 55

21. Find the number of ways of dividing a set of size n into two disjoint
subsets of sizes r and n − r.

A collection plate contains four nickels, five dimes, and seven quarters. In
how many ways can you:

22. Choose three coins? 23. Form a sum of 40 cents?

374 Chapter 6 Combinatorics and Discrete Probability

Find the number of ways each sum can be formed from a collection of 10
nickels and 5 quarters.

24. 25 cents 25. 30 cents

Jane has two nickels, four dimes, three quarters, and two half-dollars in
her handbag. Find the number of ways she can tip the waiter if she would
like to give him:

26. Exactly three coins.

27. At least three coins, but not more than five coins.

28. Not more than three coins. 29. Exactly 50 cents.

30. Not more than 50 cents, using only one type of coin.

Find the number of ways a committee of five can be formed from a group
of five boys and four girls, if each committee must contain:

31. Exactly two boys.

32. At least two boys.

33. At least two girls.

34. At least one boy and at least one girl.

35. At most one boy.

36. At most one girl.

37. Verify that
(

n
r

)
= n

r

(
n − 1
r − 1

)
, where n ≥ r ≥ 1.

38. Prove that C(2n, n) is an even integer for every n ≥ 1.
(Hint: Use Exercise 37.)

39. Prove Pascal’s identity algebraically.

40. Solve the recurrence relation in Example 6.26.

41. Prove the explicit formula for gn in Example 6.26, using induction.

42. Using the explicit formula in Example 6.26, verify that gn =
4∑

k=0
C(n − 1, k).

Let A(n, r) denote the number of additions needed to compute C(n, r) by
its recursive definition. Compute each.

43. A(3, 2) 44. A(5, 3)

45. Define A(n, r) recursively.

46. Prove that A(n, r) = C(n, r) − 1, using induction.

6.5 Permutations and Combinations with Repetitions 375

Recall that the nth Catalan number Cn is defined by Cn = (2n)!
n!(n + 1)! , n ≥ 0

47. Show that Cn = C(2n, n) − C(2n, n − 1).

Prove each.

48. Cn = 1
n + 1

C(2n, n), n ≥ 0 49. Cn = 2(2n − 1)
n + 1

Cn−1, n ≥ 1

50. Define Cn recursively.

51. Show that Cn = 3Cn−1 +
(
Cn−1 − 6

n + 1
Cn−1

)
, n ≥ 1

The nth Catalan number satisfies the recurrence relation Cn =
n−1∑
i=0

CiCn−1−i,

n ≥ 2. (Note: This relation can be used to compute Cn using n multiplica-
tions, n − 1 additions, and no divisions.) Use it to compute each Catalan
number.

52. C4 53. C5

54. Write an algorithm to compute C(n, r) using Theorem 6.10.

Write a recursive algorithm to compute each.

55. C(n, r) 56. Cn

Stirling numbers of the second kind S(n, r) are also given by the
formula

S(n, r) = 1
r!

r−1∑
k=0

(−1)k
(

r
k

)
(r − k)n

Compute each Stirling number.

57. S(3, 2) 58. S(4, 2)

The number of surjections that can be defined from a finite set A to a finite
set B is given by r!S(n, r), where |A| = n and |B| = r. Compute the number
of possible surjections from A to B if:

59. |A| = 3, |B| = 2.

61. |A| = n, |B| = 2.

60. |A| = 4, |B| = 2.

62. |A| = n, |B| = 3.

6.5 Permutations and Combinations with Repetitions

The permutations and combinations examined so far involved unrepeated
items. If the items repeat, then computations become a bit more compli-
cated. This section explores such permutations and combinations.

376 Chapter 6 Combinatorics and Discrete Probability

Permutations with Repetitions
Consider the word REFERENCE. If we swap the second E with the fourth
E in the word, we do not get a new word. How can we compute the number
of permutations in such cases?

EXAMPLE 6.27 Find the number of different arrangements of the letters of the word
REFERENCE.

SOLUTION:
The word REFERENCE contains nine letters. If they were all distinct, the
answer would be 9! = 362,880. But, since duplicate letters exist, the answer
is indeed much less.

Let N denote the number of different words. We shall find the value of
N in an indirect way.

The word REFERENCE contains two R’s and four E’s; the remaining
letters are distinct. Think of the two R’s as two distinct letters, R1 and R2,
and the four E’s as four distinct letters, E1 through E4. The letters R1 and
R2 can be arranged in 2! ways and the four E’s in 4! ways. Therefore, if all
the letters were distinct, there would be a total of 2! 4! N different words.
Thus 2! 4! N = 9!; so

N = 9!
2! 4! (6.5)

= 7560 �

An interesting observation: The number 9 in the numerator of Equation
(6.5) indicates the number of letters in the word. Each number in the
denominator indicates the frequency of each repeating letter.

This REFERENCE problem exemplifies the next theorem.

THEOREM 6.13 The number of permutations of n items of which n1 items are of one type,
n2 are of a second type, . . . , and nk are of a kth type, is n!/(n1! n2! · · · nk!).
PROOF:
Let N denote the total number of permutations. As in Example 6.27, we
shall find the value of N indirectly.

Let A1, . . . , An1 denote the items of the first type; B1, . . . , Bn2 items of
the second type; . . .; and Z1, . . . , Znk items of the kth type. If all items were
distinct, the total would be n! permutations.

If items A1, . . . , An1 are distinct, they can be arranged in n1! ways. Items
B1, . . . , Bn2 , if distinct, can be arranged in n2! ways, and so on. Items
Z1, . . . , Znk , if distinct, can be arranged in nk! ways. Thus, by the multi-
plication principle, if all items are distinct, there would be (n1! n2! · · · nk!)N
permutations. So n! = (n1! n2! · · · nk!)N. Thus

N = n!
n1! n2! · · · nk! �

6.5 Permutations and Combinations with Repetitions 377

This theorem works well in solving the next two problems.

EXAMPLE 6.28 Find the number of bytes containing exactly three 0’s.

SOLUTION:(
number of bytes containing
exactly three 0’s

)
=
(

number of bytes containing
three 0’s and five 1’s

)

=

⎛
⎜⎜⎝

number of permutations of
eight symbols of which
three are alike (0’s) and
five are alike (1’s)

⎞
⎟⎟⎠

= 8!
3! 5! , by Theorem 6.13

= 56 �
The next example pertains to the layout of a planned city.

EXAMPLE 6.29 (Lattice-Walking) Figure 6.17 shows a portion of a city map.

Figure 6.17

5 blocks

6 blocks

A

B

C

E

D
F

N

E

Suppose you would like to travel from point A to point B, covering exactly
8 blocks. You can travel in the easterly or northerly direction only. Two
possible routes are shown in the figure. How many such routes are possible?

SOLUTION:
The heavy route in the figure can be represented by the string EENNENEE;
it means, travel 2 blocks east, 2 blocks north, 1 block east, 1 block north, and
2 blocks east. The second route shown, NEEEENEN, can be interpreted
similarly.

Every route from A to B can be represented by an eight-letter word, of
which five letters are alike (E’s) and three are alike (N’s). Therefore,

total number of paths from A to B =
⎛
⎝total number of 8-letter words

of which five letters are alike
and the other three are alike

⎞
⎠

378 Chapter 6 Combinatorics and Discrete Probability

= 8!
5! 3! ,

= 56 �

Abracadabra
A related problem was proposed in 1966 by G. Polya of Stanford Univer-
sity: Find the number of ways the word ABRACADABRA can be read using
the rhombic array in Figure 6.18, beginning at the apex A and ending at
the bottommost A. It follows from Example 6.29 that this problem can be
translated into a city-walking problem, walking around the blocks in the
city in Figure 6.19. One-half of the streets run from northeast (NE) to
southwest (SW) and the rest from northwest to southeast. Each path from
S to E consists of 10 blocks: 5 blocks in the NW–SE direction and the rest

Figure 6.18 A

B B

R R R

A A A A

C C C C C

A

A A A A

B B B

R R

A

D D D D D

A A A A A

Figure 6.19 S

E

6.5 Permutations and Combinations with Repetitions 379

in the NE–SW direction. So the total number of paths from S to E equals
the number of combinations of 10 items, of which five are alike and the

other five are alike, namely,
10!
5! 5! = 252. Thus there are 252 different ways

we can read the magic word in Figure 6.18. (We shall revisit this problem
in Section 6.6.)

Combinations with Repetitions
Just as permutations can deal with repeated elements, so can combinations
(called selections). For example, suppose five friends go to a local restau-
rant for beverages: iced tea, hot tea, or coffee. The waitress puts all five
requests on the same order. How many different orders for the table are
possible? The order in which the beverages are selected is immaterial and
the same beverage can be selected by more than one person. Also, not every
beverage need be selected.

Before returning to this problem in Example 6.32, let us study a couple
of simple ones.

EXAMPLE 6.30 Find the number of 3-combinations of the set S = {a, b}.
SOLUTION:
S contains n = 2 elements. Since each combination must contain three
elements, r = 3. Since r > n, the elements of each combination must be
repeated. Consequently, a combination may contain three a’s, two a’s
and one b, one a and two b’s, or three b’s. Using the set notation, the
3-combinations are {a, a, a}, {a, a, b}, {a, b, b} and {b, b, b}. So there are
four 3-combinations of a set of two elements. �

EXAMPLE 6.31 Find the number of 3-combinations of the set {a, b, c}, where the elements
may be repeated.

SOLUTION:
Again, using the set notation, the various 3-combinations are:

{a, a, a} {a, a, b} {a, a, c} {a, b, b} {a, b, c} {a, c, c}
{b, b, b} {b, b, c} {b, c, c}
{c, c, c}

Thus the set {a, b, c} has 10 3-combinations. �
Before developing a formula for the number of combinations with

repetitions, let us return to the beverage problem posed earlier.

EXAMPLE 6.32 Five friends would like to order beverages with their dinner at a local
restaurant that serves iced tea, hot tea, or coffee. Find the number of
beverage orders possible.

SOLUTION:
A convenient notation will prevent confusion.

380 Chapter 6 Combinatorics and Discrete Probability

Denote each type of beverage by a dash and separate them using two
slashes, as shown below:

iced tea
/

hot tea
/

coffee

Mark each person’s selection by an X in the appropriate area.
For instance, the distribution XX / X / XX indicates that two people

selected iced tea, one selected hot tea, and two selected coffee; the distribu-
tion XXX / / XX means, three people selected iced tea, none ordered hot tea,
and two selected coffee.

Thus the number of possible beverage orders equals the number of
permutations of seven items (five X’s and two /’s) of which five are alike
(X’s) and the other two are alike (/’s):

7!
5! 2! = 21 �

This solution strategy produces the following theorem.

THEOREM 6.14 The number of r-combinations with repetitions from a set of n elements is
C(n + r − 1, r).

PROOF:
Each r-combination with repeated elements from a set of n elements can
be considered a string of r X’s and (n−1) slashes, as in Example 6.32. Each
string contains r + n − 1 = n + r − 1 symbols, of which r are alike (X’s) and
n − 1 are alike (slashes). Therefore, by Theorem 6.13, the number of such
strings, that is, r-combinations, equals

(n + r − 1)!
r!(n − 1)! = C(n + r − 1, r) �

This theorem helps solve the next example.

EXAMPLE 6.33 There are five types of soft drinks at a fast food restaurant: Coke Classic,
Diet Coke, root beer, Pepsi, and Sprite. Find the number of beverage orders
11 guests can make.

SOLUTION:
Since there are five types of soft drinks, n = 5. Each beverage order is a
selection containing 11 items, that is, an 11-combination with repeating
elements. Therefore, by Theorem 6.14, the number of possible beverage
orders equals

C(n + r − 1, r) = C(5 + 11 − 1, 11)

= C(15, 11)

= 15!
11! 4! = 1365 �

6.5 Permutations and Combinations with Repetitions 381

This problem has a nice interpretation. Let xi denote the number of
guests ordering soft drink i, where 1 ≤ i ≤ 5. Then x1+x2+x3+x4+x5 = 11,
where xi ≥ 0. The number of nonnegative integer solutions of this equation
is the same as the number of possible beverage orders, so the number of
integer solutions of this equation is C(5 + 11 − 1, 11) = C(15, 11) = 1365.

The next theorem generalizes this result, simply restating Theorem 6.14.

THEOREM 6.15 Let x1, x2, . . . , xn be n nonnegative integer variables and r a nonnegative
integer. The equation x1 + x2 + · · · + xn = r has C(n + r − 1, r) integer
solutions. �

EXAMPLE 6.34 Find the number of solutions of the equation

x1 + x2 + x3 = 5 (6.6)

where x1, x2, and x3 are nonnegative integer variables.

SOLUTION:
Here r = 5 and n = 3. By Theorem 6.15, the number of solutions is

C(n + r − 1, r) = C(3 + 5 − 1, 5)

= C(7, 5) = 21

(Can you list all the solutions? See Example 6.35 also.) �
Taking this example a step further, suppose you would like to find all

solutions of Equation (6.6), where x1, x2, x3 ≥ 1. Make the substitution
yi = xi − 1, 1 ≤ i ≤ 3. Clearly, yi ≥ 0. Equation (6.6) becomes

y1 + y2 + y3 = 2

By Theorem 6.15, this equation has C(n + r − 1, r) = C(3 + 2 − 1, 2) =
C(4, 2) = 6 solutions: (0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 0), (0, 2, 0), and (0, 0, 2).
Consequently, Equation (6.6) with xi ≥ 1 has six solutions: (1, 2, 2),
(2, 1, 2), (2, 2, 1), (3, 1, 1), (1, 3, 1), and (1, 1, 3).

For Loops Revisited
The following two examples provide applications of both these formulas to
for loops.

EXAMPLE 6.35 Find the number of times the assignment statement x ← x + 1 is executed
by the following nested for loops:

For i = 1 to n do
For j = 1 to i do

x ← x + 1

382 Chapter 6 Combinatorics and Discrete Probability

SOLUTION:
Notice that the assignment statement is executed for each pair (j, i), where
1 ≤ j ≤ i ≤ n. For example, the statement is executed when j = 3, i = 5;
j = 3, i = 3; but not when j = 3 and i = 2. Thus the number of executions
equals the number of pairs (j, i) with repetitions allowed; in other words,
it equals the number of 2-selections of the set {1, 2, 3, . . . , n}. The number
of such 2-selections is C(n + 2 − 1, 2), so the assignment is executed in
C(n + 2 − 1, 2) = C(n + 1, 2) = tn different ways. �

We now pursue this example with one more level added to the for loops.

EXAMPLE 6.36 Find the number of times the assignment statement x ← x + 1 is executed
by the following nested for loops:

For i = 1 to n do
For j = 1 to i do

For k = 1 to j do
x ← x + 1

SOLUTION:
The assignment statement is executed for each triplet (k, j, i), where
1 ≤ k ≤ j ≤ i ≤ n and where repetitions are allowed. The number of such
3-selections of the set {1, 2, 3, . . . , n} is C(n + 3 − 1, 3), so the assignment is
executed C(n + 3 − 1, 3) = C(n + 2, 3) = Tn different ways. �

A Generalization
More generally, consider the following nested sequence of for loops:

For i1 = 1 to n do
For i2 = 1 to i1 do

For i3 = 1 to i2 do
...

For ir = 1 to ir - 1 do
x ← x + 1

It follows from the combinatorial arguments in Examples 6.35 and 6.36
that the number of times the assignment statement x ← x+1 is executed is
given by the number of r-selections of the set {1, 2, 3, . . . , n} with repetitions
allowed, that is, C(n + r − 1, r).

Triangular and Tetrahedral Numbers Revisited
Returning to triangular numbers tn and tetrahedral numbers Tn, we find
that their formulas fit into the one in Theorem 6.14:

tn = n(n + 1)/2 = C(n + 1, 2) = C(n + 2 − 1, 2)

Tn = n(n + 1)(n + 2)/6 = C(n + 2, 3) = C(n + 3 − 1, 3)

6.5 Permutations and Combinations with Repetitions 383

Generating Functions and Combinations
Generating functions, introduced in Chapter 5, are a valuable tool in solv-
ing combinatorial problems involving repeated elements. The next three
examples illustrate this method.

EXAMPLE 6.37 Using generating functions, find the number of beverage orders possible in
Example 6.32.

SOLUTION:
Suppose the three beverages are ordered by i, j, and k patrons. Then every
beverage order can be considered a 3-tuple (i, j, k), where i, j, k ≥ 0 and
i + j + k = 5. Let xi denote that iced tea was ordered by i customers.
Since 0, 1, 2, 3, 4, or 5 people can order iced tea, we use the polynomial
1 + x + x2 + x3 + x4 + x5 to represent the various possibilities. (Notice the
exponents.) Both hot tea and coffee can also be ordered by 0, 1, 2, 3, 4,
or 5 people; correspondingly, the polynomials 1 + y + y2 + y3 + y4 + y5

and 1 + z + z2 + z3 + z4 + z5 represent these possibilities. Consequently,
we want products of the form xiy jzk, where i + j + k = 5 in the product(5∑

i=0
xi
)(5∑

j=0
y j
)(5∑

k=0
zk
)

For convenience, let x = y = z. Thus the total number of beverage orders

possible is the coefficient of x5 in the product
(5∑

i=0
xi
)3

.

You may verify that it is 21. Table 6.2 shows the various possible
beverage orders.

Table 6.2 Iced tea Hot tea Coffee Iced tea Hot tea Coffee

0 0 5 2 0 3
0 1 4 2 1 2
0 2 3 2 2 1
0 3 2 2 3 0
0 4 1 3 0 2
0 5 0 3 1 1
1 0 4 3 2 0
1 1 3 4 0 1
1 2 2 4 1 0
1 3 1 5 0 0
1 4 0

�

The next problem resembles Example 6.34, with additional constraints
on the variables.

EXAMPLE 6.38 Find the number of solutions of the equation x1 + x2 + x3 + x4 = 11, where
x1 ≥ 7, 1 ≤ x2, x3 ≤ 3, and 0 ≤ x4 ≤ 3.

384 Chapter 6 Combinatorics and Discrete Probability

SOLUTION:
Again, generating functions can do the job for us. Since x1 ≥ 7, x1 can be
7, 8, 9, 10, or 11, represented by the polynomial x7 + x8 + · · · + x11. The
polynomials corresponding to the constraints 1 ≤ x2, x3 ≤ 3 are x + x2 + x3

and x + x2 + x3. For 0 ≤ x4 ≤ 3, we have the polynomial 1 + x + x2 + x3.
Thus the number of solutions is the coefficient of x11 in the product(11∑

i=7

xi

)⎛
⎝ 3∑

i=1

xi

⎞
⎠
⎛
⎝ 3∑

i=1

xi

⎞
⎠
⎛
⎝ 3∑

i=0

xi

⎞
⎠

(6.7)

that is, the coefficient of x2 in the product(4∑
i=0

xi

)(2∑
i=0

xi

)(2∑
i=0

xi

)⎛
⎝ 3∑

i=0

xi

⎞
⎠

You can verify that it is 10. Thus the equation has 10 solutions satisfy-
ing the given conditions. [The various solutions (i, j, k, l) can be obtained
by picking the exponents in the products xix jxkxl that yield x11 in the
product (6.7).] �

We close this section with an example that is closely related to
Example 6.38.

EXAMPLE 6.39 In how many ways can 11 cookies be distributed among four children —
Amy, Betsy, Carol, and Daisy — so that Amy gets at least seven cookies,
both Betsy and Carol get at least one cookie each but not more than three,
and Daisy gets no more than three cookies?

SOLUTION:
Since Amy gets at least seven cookies, this case yields the polynomial
x7 + x8 + x9 + x10 + x11. Similarly, the other three constraints yield the
polynomials x+ x2 + x3, x+ x2 + x3, and 1+ x+ x2 + x3. Thus the number of
ways of distributing 11 cookies under the given conditions is the coefficient
of x11 in the product (6.7) above, namely, 10. �

Exercises 6.5

Find the number of distinct words that can be formed by scrambling the
letters in each word.

1. CALCULUS 2. TALLAHASSEE

Find the number of bytes that:

3. Contain exactly two 0’s.

5. Contain at least five 0’s.

7. Contain exactly eight 0’s.

4. Contain exactly five 0’s.

6. Contain not more than two 0’s.

8. Contain exactly nine 0’s.

6.5 Permutations and Combinations with Repetitions 385

Find the number of ternary words over the alphabet {0, 1, 2} that are of
length four and:

9. Contain exactly three 0’s. 10. Contain at least six 0’s.

11. Contain at most two 0’s.

12. Contain two 0’s, three 1’s, and three 2’s.

In Exercises 13–16, use Figure 6.17 to find the number of possible routes
from A to the given point, traveling easterly or northerly for the given
number of blocks.

13. Point F and 5 blocks.

15. Point D and 9 blocks.

14. Point C and 8 blocks.

16. Point E and 11 blocks.

List the 4-combinations of each set.

17. {a} 18. {a, b}

19. There are five types of desserts available at a restaurant. Find the
number of ways eight people can select them, if order does not matter.

20. A restaurant offers six choices for the main dish. How many ways can
a group of nine women select the main dish? Assume that order does
not matter.

21. In how many ways can 10 quarters in a piggy bank be distributed
among 7 people?

Find the number of solutions to each equation, where the variables are
nonnegative integers.

22. x1 + x2 + x3 = 3

24. x1 + x2 + x3 + x4 = 10

23. x1 + x2 + x3 + x4 = 7

25. x1 + x2 + x3 + x4 + x5 = 11

Find the number of solutions to each equation, where xi ≥ 1.

26. x1 + x2 + x3 + x4 = 11 27. x1 + x2 + x3 + x4 + x5 = 13

Use generating functions to solve the following counting problems.

28. Use generating function (6.7) to find the various solutions of the
equation in Example 6.38.

Find the number of solutions to each equation.

29. x1 + x2 + x3 = 10, x1 ≥ 3, 1 ≤ x2 ≤ 3, x3 ≥ 5

30. x1 + x2 + x3 = 12, x1, x2 ≥ 5, 1 ≤ x3 ≤ 4

31. x1 + x2 + x3 + x4 = 10, x1, x2 ≥ 2, x3 ≥ 0, x4 ≥ 5

32. x1 + x2 + x3 + x4 = 11, x1, x2 ≥ 2, 2 ≤ x3 ≤ 4, x4 ≥ 3

33–34. Find the solutions to the equations in Exercises 29 and 30.

386 Chapter 6 Combinatorics and Discrete Probability

35. Find the number of ways 10 quarters can be distributed among three
people — Aaron, Beena, and Cathy — so that both Aaron and Beena
get at least one quarter, Beena gets no more than three, and Cathy
gets at least two.

36. Find the number of ways 11 raisins can be distributed among four
children — Daisy, Emily, Francis, Gail — so that Daisy, Emily, and
Francis get at least two raisins, Francis gets no more than four, and
Gail gets at least three.

6.6 The Binomial Theorem

The binomial coefficients satisfy a vast array of properties. We shall visit a
few of them shortly.

Pascal’s Triangle

The various binomial coefficients
(

n
r

)
, where 0 ≤ r ≤ n, can be arranged in

the form of a triangle, called Pascal’s triangle,∗ as shown in Figures 6.20
and 6.21.

Figure 6.20 � �0
0

� �1
1� �1

0

� �2
2� �2

1� �2
0

� �4
0 � �4

1 � �4
2 � �4

3 � �4
4

� �3
0 � �3

1 � �3
2 � �3

3

row 0←

row 1←

row 2←

row 3←

row 4←

Figure 6.21 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

row 0←

row 1←

row 2←

row 3←

row 4←

Pascal’s triangle has many intriguing properties:

• Every row begins with and ends in 1. This is no coincidence, since
C(n, 0) = 1 = C(n, n).

∗Although Pascal’s triangle is named after Pascal, it appeared in a 1303 work by the Chinese
mathematician Chu Shi-Kie.

6.6 The Binomial Theorem 387

• Pascal’s triangle is symmetric about a vertical line through the middle.
This is so since C(n, r) = C(n, n − r).

• Any interior number in each row is the sum of the numbers immediately
to its left and to its right in the preceding row. This is so by virtue of
Pascal’s identity.

• Recall that, by Example 6.22, the maximum number of places fn
into which a pizza can be divided with n distinct cuts is given by
fn = C(n, 0) + C(n, 1) + C(n, 2). It is the sum of the first three numbers
in row n of Pascal’s triangle (see Figure 6.22).

Figure 6.22 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

f0
f1
f2
f3
f4

←

←

←
←
←

• By Example 6.26, the maximum number of nonoverlapping regions
formed inside a circle by joining n distinct points on it is given by
gn = C(n, 0) + C(n, 2) + C(n, 4). Using Pascal’s identity, this formula
can be rewritten as gn = C(n − 1, 0) + C(n − 1, 1) + C(n − 1, 2) +
C(n − 1, 3) + C(n − 1, 4). (Verify this.) Consequently, the value of gn
can be obtained by adding the first five numbers in row n−1 of Pascal’s
identity (see Figure 6.23).

Figure 6.23 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1

g1

g2

g3

g4

g5

g6 1 5 10 10 5

←

←

←

←

←

←

Pascal’s Triangle and Abracadabra
Next we show how Polya’s abracadabra problem is related to Pascal’s tri-
angle. Beginning with a 1 at the apex and using Pascal’s identity, build the
rhombic array in Figure 6.24. Each entry in Figure 6.24 gives the num-
ber of paths from the apex to the corresponding location. So there are
252 = C(10, 5) possible paths from the apex to the bottommost point in the
array.

388 Chapter 6 Combinatorics and Discrete Probability

Figure 6.24 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1

21 35 35 21

56 70 56

126 126

252

6 15 20 15 6

5 10 10 5 1

Next we show how Catalan numbers 1, 1, 2, 5, 14, 42, . . . can be extracted
from Pascal’s triangle.

Pascal’s Triangle and Catalan Numbers
In Chapter 2 we defined the nth Catalan number Cn as

Cn = (2n)!
(n + 1)! n! , n ≥ 0

Since
(2n)!
n! n! =

(
2n
n

)
, this can be rewritten as

Cn = 1
n + 1

(
2n
n

)
, n ≥ 0

Consequently, Cn can be obtained by dividing the central binomial coeffi-

cient
(

2n
n

)
by n + 1.

For example, C4 = 1
5

(
8
4

)
= 70

5
= 14; thus C4 is obtained by dividing by

5 the central element 70 in row 8 in Pascal’s triangle.
Figure 6.25 shows the first five central binomial coefficients; we can use

them to compute the first five Catalan numbers.
Catalan numbers, like Fibonacci and Lucas numbers, have a propensity

to appear in quite unexpected places. We shall pursue a few such delightful
occurrences later in this Section and in Section 9.6.

The next theorem shows how the binomial coefficients and Theorem 6.13
are useful in finding the binomial expansion of (x + y)n. We shall
prove it using a combinatorial argument (see Exercise 43 for an algebraic
method).

6.6 The Binomial Theorem 389

Figure 6.25

The central binomial
coefficients.

1 1

1 1

1 3 3 1

1 4 4 1

1

1 6 15 15 6

1 7 21 35 35 21 7

1 8 28 56 56 28 8

5 10 10 5 1

1

1

1

20

70

6

2

1

THEOREM 6.16 (The Binomial Theorem)∗ Let x and y be any real numbers, and n any

nonnegative integer. Then (x + y)n =
n∑

r=0

(
n
r

)
xn−ryr.

PROOF:
Since (x + y)n = (x + y)(x + y) . . . (x + y) to n factors, (x + y)n is expanded
by multiplying an x from some of the factors on the RHS and a y from the
remaining factors. That is, every term is obtained by selecting an x from any
of the n − r factors and a y from the remaining r factors. Thus, every term
in the expansion is of the form Cxn−ryr, where C denotes the coefficient and
0 ≤ r ≤ n.

Notice that the coefficient of xn−ryr is the number of ways of selecting
an x from any n − r of the n factors (and hence a y from the remaining
r factors). Therefore,

Coefficient of xn−ryr =
(

n
n − r

)

=
(

n
r

)

So, every term in the expansion is of the form
(

n
r

)
xn−ryr, where

0 ≤ r ≤ n. Thus

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr

�

The next example illustrates the binomial theorem.

∗The binomial theorem for n = 2 can be found in Euclid’s work (ca. 300 B.C.).

390 Chapter 6 Combinatorics and Discrete Probability

EXAMPLE 6.40 Find the binomial expansion of (2a − 3b)4.

SOLUTION:
Here x = 2a, y = −3b, and n = 4. Using the binomial theorem,

(2a − 3b)4 =
(

4
0

)
(2a)4(−3b)0 +

(
4
1

)
(2a)3(−3b)1 +

(
4
2

)
(2a)2(−3b)2

+
(

4
3

)
(2a)1(−3b)3 +

(
4
4

)
(2a)0(−3b)4

= (2a)4 + 4(2a)3(−3b) + 6(2a)2(−3b)2 + 4(2a)(−3b)3 + (−3b)4

= 16a4 − 96a3b + 216a2b2 − 216ab3 + 81b4 �

The next example illustrates how to employ the binomial theorem to
determine a particular coefficient in the expansion of (ax + by)n.

EXAMPLE 6.41 Find the coefficient of x3y4 in the expansion of (x + y)7.

SOLUTION:
By the binomial theorem, the coefficient of xn−ryr is

(
n
r

)
, where n = 7 and

r = 4. So

Coefficient of x3y4 =
(

7
4

)
= 35 �

Pascal’s Triangle and the Nondecimal Bases Nine and Three
The binomial theorem and hence Pascal’s triangle can be used to express
any positive integer in bases nine and three. For example, by the binomial
theorem,

10n = (9 + 1)n

=
n∑

r=0

(
n
r

)
9n−r

In particular,

103 =
3∑

r=0

(
3
r

)
93−r

=
(

3
0

)
93 +

(
3
1

)
92 +

(
3
2

)
91

(
3
3

)
90

= 1 · 93 + 3 · 92 + 3 · 9 + 1 · 90

= 1331nine

Likewise, 104 = 14641nine (Verify this.)

6.6 The Binomial Theorem 391

Since 9 = 32, by the binomial theorem, we have

10n =
n∑

r=0

(
n
r

)
32n−2r

For example,

103 =
(

3
0

)
36 +

(
3
1

)
34 +

(
3
2

)
32 +

(
3
3

)
30

= 1 · 36 + 3 · 34 + 3 · 32 + 1 · 30

= 1 · 36 + 1 · 35 + 0 · 34 + 1 · 33 + 0 · 32 + 0 · 31 + 1 · 30

= 1101001three

This ternary expansion can be obtained from row 3 of Pascal’s triangle,
after converting each entry into base three and inserting zeros in between
the entries.

The binomial theorem can conveniently establish several interesting
combinatorial identities. Among them is one already seen in Chapter 2.

THEOREM 6.17 n∑
r=0

(
n
r

)
= 2n

That is, the sum of the binomial coefficients is 2n; in other words, a set with
n elements has 2n subsets.

PROOF:
By the binomial theorem,

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr

Let x = y = 1. Then

2n = (1 + 1)n =
n∑

r=0

(
n
r

)
1n−r1r

That is,
n∑

r=0

(
n
r

)
= 2n

�

Submatrices of a Matrix
The following example, an interesting application of Theorem 6.17, was
proposed in 1943 by the well-known mathematics historian Howard Eves

392 Chapter 6 Combinatorics and Discrete Probability

while at Syracuse University. The elegant solution, by A. Wayne of Flush-
ing, New York, employs the addition and multiplication principles also.

EXAMPLE 6.42 Find the total number of submatrices of an m × n matrix.

SOLUTION:
Any r rows can be selected in

(
m
r

)
ways. So, by Theorem 6.17, the total

number of combinations of rows from m rows equals
m∑

r=1

(
m
r

)
= 2m − 1,

Similarly, the total number of columns we can choose is 2n − 1. Thus there
are (2m − 1)(2n − 1) ways of choosing rows and columns; that is, there are
(2m − 1)(2n − 1) submatrices in an m × n matrix. �

Another identity emerging from the binomial theorem is given in the
next theorem.

THEOREM 6.18 (
n
0

)
+
(

n
2

)
+
(

n
4

)
+ · · · =

(
n
1

)
+
(

n
3

)
+
(

n
5

)
+ · · · (6.8)

where n ≥ 1. That is, the sum of the “even” binomial coefficients equals
that of the “odd” binomial coefficients.

PROOF:
Again by the binomial theorem,

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr

Set x = 1 and y = −1. Then, for n ≥ 1,

0 = [1 + (−1)]n =
n∑

r=0

(
n
r

)
1n−r(−1)r

=
(

n
0

)
−
(

n
1

)
+
(

n
2

)
−
(

n
3

)
+
(

n
4

)
−
(

n
5

)
+ · · ·

That is, (
n
0

)
+
(

n
2

)
+
(

n
4

)
+ · · · =

(
n
1

)
+
(

n
3

)
+
(

n
5

)
+ · · · �

We now make an interesting observation. Recall that the binomial coeffi-
cient C(n, r) denotes the number of subsets of size r of a set with n
elements, so the LHS of Equation (6.8) represents the total number of
subsets with an even number of elements and the RHS represents that
with an odd number of elements. Since the total number of subsets is
2n, each equals 2n−1, by Equation (6.8).

6.6 The Binomial Theorem 393

Next we turn to two interesting occurrences of Catalan numbers.

Catalan Numbers Revisited
The great Swiss mathematician Leonhard Euler (see Chapter 8) discov-
ered Catalan numbers. He found them in his study of triangulations of
convex polygons, that is, dividing the interior of a convex polygon into
triangular areas by drawing nonintersecting diagonals. Let Cn denote the
number of triangulations of convex (n+2)-gon, where n ≥ 1. It follows from
Figure 6.26 that C1 = 1, C2 = 2, C3 = 5, and C4 = 14. More generally,
Euler established that

Cn = 2 · 6 · 10 · · · (4n − 2)
(n + 1)!

Figure 6.26

Triangulations of
convex (n + 2)-gons.

C1�1 C2�2

C3�5

C5�14

In 1759, the German mathematician Johann Andreas von Segner
(1707–1777), a contemporary of Euler, established a recursive procedure
to compute Cn:

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−1C0

where C0 = 1. For example, C4 = 1 · 5 + 1 · 2 + 2 · 1 + 5 · 1 = 14.

394 Chapter 6 Combinatorics and Discrete Probability

Catalan’s Parenthesization Problem
Interestingly, Euler’s triangulation problem is essentially the same as Cata-
lan’s parenthesization problem, which he solved in 1838: using n pairs of
left and right parentheses, how many different ways we can parenthesize
a sequence of n + 1 symbols for a binary nonassociative operation?

For example, with two symbols, there is one possibility: (ab); with three
symbols, there are two possibilities: ((ab)c) and (a(ab)); and with four sym-
bols, there are five ways: ((ab) (cd)), (((ab)c)d), (a(b(cd))), (a((bc)d), and
((a(bc))d); they yield the Catalan numbers 1, 2, and 5; and so on.

In 1961, H.G. Forder of the University of Auckland, New Zealand,
showed that every triangulation of convex polygon yields a correctly paren-
thesized expression, and vice versa. This close relationship becomes clear
if we consider the triangulation of the hexagon in Figure 6.27. We have
labeled five of its sides a through e, leaving the base unlabeled. Label every
diagonal spanning two adjacent sides with the concatentation of the cor-
responding labels in parentheses. Continue this algorithm until the base
gets a label, as in Figure 6.28. Thus the triangulation in Figure 6.27 yields
the correctly parenthesized expression (((ab)c)(de)). Retracing the steps,
we can recover the triangulation from the expression.

Figure 6.27

Triangulation of a
hexagon.

a

b

e

d

c

Figure 6.28

Parenthesized
triangulation of a
hexagon.

a

b

e

d

c

(ab)
(de)

((ab)c)

(((ab)c) (de))

Triangulations, Parenthesized Expressions, and Binary Numbers
Each triangulation of a convex polygon and by extension the corresponding
parenthesized expression, can be uniquely represented by a binary number.
For instance, consider the expression (((ab)c)(de)) in Figure 6.28. If we
replace each left parenthesis with a 1 and each letter with a 0 and ignore
all right parentheses, the expression yields the binary number 111000100.
We do not need to store the right parentheses, because if we know the
left parentheses, we can insert the matching right parentheses correctly.

6.6 The Binomial Theorem 395

Thus such a binary number is a compact way of representing the expression
and hence the triangulation.

We shall revisit this binary designation in Section 9.6 on binary trees.
Before closing this section, we derive the explicit formula for Cn. The

proof employs the following generating function.

(1 − 4x)1/2 = 1 − 2
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn

An Explicit Formula for the nth Catalan Number (optional)
Let Pn denote the number of ways of parenthesizing n + 1 symbols using n
pairs of left and right parentheses. Then P1 = 1. So, let n ≥ 2. The first i
symbols can be parenthesized in Pi ways and the next n− i symbols in Pn−i
ways, where 1 ≤ i ≤ n−1. Using the multiplication and addition principles,
we have the following recurrence relation for Pn:

Pn = P1Pn−1 + P2Pn−2 + · · · + Pn−1P1

(It follows from Segner’s formula that Pn = Cn−1.)
Now consider the generating function

f (x) = P1x + P2x2 + · · · + Pnxn + · · ·

Then

[f (x)]2 = P2
1x2 + (P1P2 + P2P1)x3 + · · · + (P1Pn−1 + P2Pn−2

+ · · · + Pn−1P1)xn + · · ·
= x2 + P3x3 + · · · + Pnxn + · · ·
= f (x) − x

So

[f (x)]2 − f (x) + x = 0

Solving,

f (x) = 1 ± √
1 − 4x
2

Since Pn > 0 for every n, we take the minus sign, so

f (x) = 1 − √
1 − 4x
2

396 Chapter 6 Combinatorics and Discrete Probability

Using the above power series expansion, this yields

f (x) =
∞∑

n=1

1
n

(
2n − 2
n − 1

)
xn

Thus

Pn = 1
n

(
2n − 2
n − 1

)
= Cn−1

So

Cn = 1
n + 1

(
2n
n

)
, n ≥ 0

as desired.

Exercises 6.6

Find the coefficient of each.

1. x3y5 in the expansion of (x + y)8

2. x4y6 in the expansion of (x − y)10

3. x2y6 in the expansion of (2x + y)8

4. x4y5 in the expansion of (2x − 3y)9

Using the binomial theorem, expand each.

5. (x + y)4 6. (x − y)5 7. (2x − 1)5 8. (x + 2y)6

Find the middle term in the binomial expansion of each.

9.
(

x + 1
x

)4

11.
(

2x + 2
x

)8

10.
(

x − 1
x

)6

12.
(

x2 + 1
x2

)10

Find the largest binomial coefficient in the expansion of each.

13. (x + y)5 14. (x + y)6 15. (x + y)7 16. (x + y)8

17. Using Exercises 13–16, predict the largest binomial coefficient in the
expansion of (x + y)n.

Use Pascal’s triangle in Figure 6.21 to answer Exercises 18 and 19.

18. Find the sum of the numbers along the northeast diagonals.

19. What do you notice about them?

6.6 The Binomial Theorem 397

The nth Fibonacci number Fn is given by the sum of the numbers along the
nth northeast diagonal of Pascal’s triangle; that is,

Fn =
�(n−1)/2�∑

i=0

(
n − i − 1

i

)

Using this formula, compute each Fibonacci number.

20. F1 21. F2 22. F5 23. F6

The Bell numbers Bn, named after the English mathematician Eric T. Bell
(1883–1960) and used in combinatorics, are defined recursively as follows:

B0 = 1

Bn =
n−1∑
i=0

(
n − 1

i

)
Bi, n ≥ 1

Compute each Bell number.

24. B2 25. B3 26. B4 27. B5

Using the binomial theorem, prove each.

28. 24n + 3n − 1 is divisible by 9. (Hint: 2 = 3 − 1.)

29. 42n + 10n − 1 is divisible by 25. (Hint: 4 = 5 − 1.)

30.
n∑

r=0

(
2n
2r

)
=

n∑
r=1

(
2n

2r − 1

)
(Hint: Use Theorem 6.18.)

31.
n∑

r=0
2r

(
n
r

)
= 3n

32.
n∑

r=0

(
n
r

)(
n

n − r

)(
2n
n

)
[Hint: Consider (1 + x)2n = (1 + x)n(1 + x)n. Equate the coefficients of
xn from either side.]

33.
n∑

i=1

(
n

i − 1

)(
n
i

)
=
(

2n
n + 1

)
[Hint: Consider (1 + x)2n = (x + 1)n(1 + x)n. Equate the coefficients of
xn+1 from both sides.]

Evaluate each sum.

34. 1
(

n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)
(Hint: Let S denote the sum. Use S and the sum in the reverse order
to compute 2S.)

398 Chapter 6 Combinatorics and Discrete Probability

35. a
(

n
0

)
+ (a + d)

(
n
1

)
+ (a + 2d)

(
n
2

)
+ · · · + (a + nd)

(
n
n

)
(Hint: Use the same hint as in Exercise 34.)

36. Show that C(n, r − 1) < C(n, r) if and only if r <
n + 1

2
, where

0 ≤ r < n.

37. Using Exercise 36, prove that the largest binomial coefficient C(n, r)
occurs when r = �n/2�.

Using induction, prove each.

38.
(

n
0

)
+
(

n + 1
1

)
+
(

n + 2
2

)
+ · · · +

(
n + r

r

)
=
(

n + r + 1
r

)
(Hint: Use Pascal’s identity.)

39. 1
(

n
1

)
+ 2

(
n
2

)
+ · · · + n

(
n
n

)
= n2n−1

40.
(

n
0

)2

+
(

n
1

)2

+
(

n
2

)2

+ · · · +
(

n
n

)2

=
(

2n
n

)

From the binomial expansion (1 + x)n =
n∑

r=0

(
n
r

)
xr, it can be shown using

calculus that n(1 + x)n−1 =
n∑

r=1

(
n
r

)
rxr−1. Using this result, prove each.

41. 1
(

n
1

)
+ 2

(
n
2

)
+ 3

(
n
3

)
+ · · · + n

(
n
n

)
= n2n−1

42. 1
(

n
1

)
+ 3

(
n
3

)
+ 5

(
n
5

)
+ · · · = 2

(
n
2

)
+ 4

(
n
4

)
+ 6

(
n
6

)
+ · · · = n2n−2

43. Prove the binomial theorem, using mathematical induction.

*44. Using a combinatorial argument prove that

(
n
m

)(
m
r

)
=
(

n
r

)(
n − r
m − r

)
(Newton’s identity)

(Hint: Select an r-element subset of an n-element set in two ways.)

45. Prove the result in Exercise 44 algebraically.

The following result is known as Vandermonde’s identity, after the
German mathematician Abnit-Theophile Vandermonde (1735–1796):

(
m + n

r

)
=
(

m
0

)(
n
r

)
+
(

m
1

)(
n

r − 1

)
+
(

m
2

)(
n

r − 2

)
+ · · · +

(
m
r

)(
n
0

)

6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 399

*46. Prove Vandermonde’s identity, using a combinatorial argument.
(Hint: Consider the ways of selecting r people from a group of m men
and n women.)

47. Prove Vandermonde’s identity algebraically.
[Hint: Consider (1 + x)m(x + 1)n = (1 + x)m+n.]

48. Find a formula for
n∑

i=2

(
i
2

)
.

49. Using induction, establish the formula guessed in Exercise 48.

50. Find a formula for
n∑

i=3

(
i
3

)
.

51. Using induction, establish the formula guessed in Exercise 50.

52. Using Exercises 48–51, predict a formula for
n∑

i=k

(
i
k

)
.

*6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional)

The generalized version of the inclusion–exclusion principle has interesting
applications to number theory, surjections, and derangements, as will be
seen shortly.

THEOREM 6.19 (GIEP) Let A1, A2, . . . , An be n finite sets. Then

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj| +
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · ·

+ (−1)n+1

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ (6.9)

PROOF:
To prove this formula, we show that every element on the LHS is counted
exactly once by the expression on the RHS of Equation (6.9).

Let x be an arbitrary element that occurs in exactly r of the sets
A1, A2, . . . , An. Then x is counted C(r, 1) times in

∑ |Ai|, C(r, 2) times in∑ |Ai ∩ Aj|, C(r, 3) times in
∑ |Ai ∩ Aj ∩ Ak|, and so on. Therefore, the

number of times x is counted on the RHS of Equation (6.9) is

C(r, 1) − C(r, 2) + C(r, 3) − · · · + (−1) r+1C(r, r) =
r∑

k=1

(−1) k+1C(r, k)

400 Chapter 6 Combinatorics and Discrete Probability

But r∑
k=0

(−1) kC(r, k) = 0, by Equation (6.8)

That is,

C(r, 0)−
r∑

k=1

(−1)k+1C(r, k) = 0

r∑
k=1

(−1) k+1C(r, k) = C(r, 0)

That is,
r∑

k=1

(−1)k+1C(r, k) = 1

Consequently, every element x is counted exactly once on the RHS of
equation (6.9). This completes the proof. �

In many applications, an alternate form of the inclusion–exclusion prin-
ciple works nicely. For instance, it can find the number of primes not
exceeding a positive integer, as will be seen shortly.

An Alternate Inclusion–Exclusion Formula
Let S be a finite set. We would like to find the number of elements in S that
have none of the properties P1, P2, . . . , Pn. Let Ai be the set of elements
in S that have property Pi. Let N(Pi1 , Pi2 , . . . , Pik) denote the number of
elements in S that have properties Pi1 , Pi2 , . . . , Pik . Let N(P′

1, P′
2, . . . , P′

n)
denote the number of elements in S that have none of the properties
P1, P2, . . . , Pn. Then

N(Pi1 , Pi2 , . . . , Pik) = |Ai1 ∩ Ai2 ∩ · · · ∩ Aik |
So N(P′

1P′
2 · · · P′

n) = |S| − |A1 ∪ A2 ∪ · · · ∪ An|

= |S| −
[∑

1≤i≤n

N(Pi) −
∑

1≤i<j≤n

N(PiPj) +
∑

1≤i<j<k≤n

N(PiPjPk) − · · ·

+ (−1)n+1N(P1P2 · · · Pn)
]

= |S| −
∑

1≤i≤n

N(Pi) +
∑

1≤i<j≤n

N(PiPj) −
∑

1≤i<j<k≤n

N(PiPjPk) + · · ·

+ (−1)nN(P1P2 · · · Pn)

This is the alternate inclusion–exclusion principle.

6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 401

This formula can find the number of primes not exceeding a positive
integer n, as the next example demonstrates.

EXAMPLE 6.43 Find the number of primes ≤ 100.

SOLUTION:
Let S = {n ∈ N | 1 < n ≤ 100}. By Theorem 4.2, a positive integer n is a
prime if and only if it has no prime factors ≤ �√n�. Therefore, an element
in S is prime if and only if it has no prime factors ≤ 10. There are four
primes ≤ 10, namely, 2, 3, 5, and 7. Thus the primes ≤ 100 are these four
primes, and those integers in S not divisible by 2, 3, 5, or 7.

Let P2 be the property that an integer in S is divisible by 2, P3 the
property that an integer in S is divisible by 3, P5 the property that an
integer in S is divisible by 5, and P7 the property that an integer in S is
divisible by 7. Then N(P′

2 P′
3 P′

5 P′
7) denotes the number of integers in S not

divisible by 2, 3, 5, or 7. Thus there are 4 + N(P′
2 P′

3 P′
5 P′

7) primes in S.

To find N(P′
2 P′

3 P′
5 P′

7): First notice that |S| = 99. Secondly, let r, s, t ∈
{2, 3, 5, 7}. Since r and s are primes, an integer has property Pr Ps if it has
both properties Pr and Ps. This process can be extended to PrPsPt and
P2 P3 P5 P7. Therefore, the number of elements in S having property Pr Ps
is given by �100/rs�, the number of elements in S having property Pr Ps Pt
is given by �100/rst�, and those with P2 P3 P5 P7 by �100/2 · 3 · 5 · 7�.

By the alternate inclusion–exclusion principle,

N(P′
1, P′

2, . . . , P′
n)=|S|−

∑
N(Pi)+

∑
N(PiPj)−

∑
N(PiPjPk)

+N(P2P3P5P7)

=99−[N(P2)+N(P3)+N(P5)+N(P7)]
+[N(P2P3)+N(P2P5)+N(P2P7)+N(P3P5)+N(P3P7)

+N(P5P7)]−[N(P2P3P5)+N(P2P3P7)+N(P3P5P7)]
+N(P2P3P5P7)

=99−(�100/2�+�100/3�+�100/5�+�100/7�)+(�100/2·3�
+�100/2·5�+�100/2·7�+�100/3·5�+�100/3·7�
+�100/5·7�)−(�100/2·3·5�+�100/2·3·7�+�100/3·5·7�)

+�100/2·3·5·7�
=99−(50 + 33 + 20 + 14)+(16 +10 + 7 + 6 + 4 + 2)

−(3+2+1)+0

=21

Thus, there are 4 + 21 = 25 primes ≤ 100. �
We now present two delightful applications of the generalized inclusion–

exclusion principle and the binomial theorem.

402 Chapter 6 Combinatorics and Discrete Probability

Counting Surjections
First, we develop an explicit formula for the number N of surjections f from
a finite set A to a finite set B. To this end, let |A| = m and |B| = n, where
|S| denotes the cardinality of the set S. If m < n, no surjections from A to
B can be defined; so we let m ≥ n.

Let a be any element in A. Since f (a) has n choices, a total of nm functions
can be defined from A to B. It now follows that

N = nm − (number of functions that are not surjective)

So it suffices to count the number of functions from A to B that are not
surjective; this is where we shall invoke the GIEP.

For convenience, let A = {1, 2, 3, . . . , m} and B = {b1, b2, b3, . . . , bn}. Let
Si denote the set of all functions from A to B that do not produce bi as an
output, where 1 ≤ i ≤ n. Then S = S1 ∪ S2 ∪ · · · ∪ Sn denotes the set of all
functions from A to B that do not output at least one element of B. In other
words, S = S1 ∪ S2 ∪ · · · ∪ Sn denotes the set of nonsurjections from A to
B, so |S| = |S1 ∪ S2 ∪ · · · ∪ Sn| denotes the number of nonsurjections from
A to B. By Theorem 6.19,

|S| =
n∑

i=1

|Si| −
∑
i<j

|Si ∩ Sj| +
∑

i<j<k

|Si ∩ Sj ∩ Sk| − · · · ± |S1 ∩ S2 ∩ · · · ∩ Sn|

To begin with, consider S1. It consists of all functions that do not output
b1; in other words, S1 consists of all functions from A to {b2, b3, . . . , bn}.
There are (n−1)m such functions; so |S1| = (n−1)m. Similarly, S2 consists
of all functions from A to {b1, b3, . . . , bn}. There are (n−1)m such functions;
so |S2| = (n − 1)m. More generally, |Si| = (n − 1)m, where 1 ≤ i ≤ n.
Therefore,

n∑
i=1

|Si| = n(n − 1)m =
(

n
1

)
(n − 1)m

To compute |Si∩Sj|, where i < j, let us first investigate S1∩S2. It consists
of all functions from A to B that do not output b1 or b2. So it consists of
all functions from A to {b3, b4, . . . , bn}. There are (n − 2)m such functions;
so |S1 ∩ S2| = (n − 2)m. Similarly, S2 ∩ S3 consists of all functions from A
to {b1, b4, . . . , bn}; so |S2 ∩ S3| = (n − 2)m. Continuing like this, it follows

that |Si ∩ Sj| = (n − 2)m, where i < j. Since there are
(

n
2

)
pairs of sets S1

through Sn, it follows that

∑
i<j

|Si ∩ Sj| =
(

n
2

)
(n − 2)m

6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 403

Let us now compute |Si ∩ Sj ∩ Sk|, where i < j < k. For convenience, we
begin with S1 ∩ S2 ∩ S3. It consists of all functions from A to B that do not
output b1, b2, or b3. Thus S1 ∩ S2 ∩ S3 consists of all functions from A to
{b4, b5, . . . , bn}; so |S1 ∩ S2 ∩ S3| = (n − 3)m. Using the same argument, it

follows that |S1 ∩ S2 ∩ S3| = (n − 3)m, where i < j < k. Since there are
(

n
3

)
triplets of the sets S1 through Sn, it follows that∑

i<j<k

|Si ∩ Sj ∩ Sk| =
(

n
3

)
(n − 3)m

Slowly but surely, a pattern is emerging. In lieu of conjecturing the for-
mula for the intersection S1 ∩ S2 ∩ · · · ∩ Sj of j (distinct) sets S1 through
Sj, let us apply the same argument as above. As before, |S1 ∩ S2 ∩ · · · ∩ Sj|
denotes the number of functions from A to {bj+1, bj+2, . . . , bn}, so

|S1 ∩ S2 ∩ · · · ∩ Sj| = (n − j)m. Since there are
(

n
j

)
such intersections of

n sets, it follows that∑
|S1 ∩ S2 ∩ · · · ∩ Sj| =

(
n
j

)
(n − j)m

Finally, we would like to make sure that the same argument works for
the last term |S1 ∩ S2 ∩ · · · ∩ Sn|. The set S1 ∩ S2 ∩ · · · ∩ Sn consists of all
functions that output none of the elements b1 through bn. But there are no
such functions, so

|S1 ∩ S2 ∩ · · · ∩ Sn| = 0 =
(

n
n

)
(n − n)m

Collecting all the pieces together, by Theorem 6.19, we have

|S| =
(

n
1

)
(n − 1)m −

(
n
2

)
(n − 2)m +

(
n
3

)
(n − 3)m − · · ·

+ (−1)n+1
(

n
n

)
(n − n)m

=
n∑

r=1

(−1)r+1
(

n
r

)
(n − r)m

Thus
N = nm − |S|

= nm −
n∑

r=1

(−1)r+1
(

n
r

)
(n − r)m

=
n∑

r=0

(−1)r
(

n
r

)
(n − r)m (6.10)

404 Chapter 6 Combinatorics and Discrete Probability

For example, let A = {1, 2, 3} and B = {x, y}; so a total of 23 = 8 functions
can be defined from A to B. They are pictured in Figure 6.29.

Figure 6.29

Functions from
{1, 2, 3} to {x, y}. 1

2

3

x

y

f1

f1

1

2

3

x

y

f2

1

2

3

x

y

f3

1

2

3

x

y

f4

1

2

3

x

y

f2

1

2

3

x

y

f3

1

2

3

x

y

f4

1

2

3

x

y

Of these functions, two are not surjective; they are displayed in
Figure 6.30.

Figure 6.30

Nonsurjections from
{1, 2, 3} to {x, y}. 1

2

3

x

y

1

2

3

x

y

f1 f2

Thus there are

2∑
r=0

(−1)r
(

2
r

)
(2 − r)r = 8 − 2 + 0 = 6

surjections from A to B; they are displayed in Figure 6.31.

Counting Derangements
Next, we develop an explicit formula for the number of derangements Dn,
again using Theorem 6.19. The technique employed is similar to the one
we used for counting surjections.

6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 405

Figure 6.31

Surjections from
{1, 2, 3} to {x, y}. 1

2

3

x

y

f2

1

2

3

x

y

f5

1

2

3

x

y

f6

1

2

3

x

y

f7

f3

1

2

3

x

y

f4

1

2

3

x

y

Suppose the n elements are 1, 2, 3, . . . , n. They can be arranged in n!
ways, so

Dn = n! − (number of permutations that leave at least one element fixed)

To find the number of permutations that are not derangements, let Si
denote the set of permutations that leave the element i in position i, where

1 ≤ i ≤ n. Then S = n∪
i=1

Si denotes the set of all permutations of the ele-

ments 1 through n that are not derangements, so Dn = n!−|S|. To compute
the value of |S|, as before, we apply Theorem 6.19.

To begin with, consider S1. It consists of all permutations that leave 1 in
position 1. The remaining n − 1 elements can be anywhere else and hence
can be arranged in (n − 1)! ways, so |S1| = (n − 1)! Similarly, S2 consists of
all permutations that leave 2; then also the remaining n − 1 elements can
be arranged in (n − 1)! ways; so |S2| = (n − 1)! In general, |Si| = (n − 1)!,
where 1 ≤ i ≤ n. Therefore,

n∑
i=1

|Si| = n(n − 1)! =
(

n
1

)
(n − 1)!

We now compute |Si ∩ Sj|, where i < j. S1 ∩ S2, for instance, consists of
all permutations that leave both 1 and 2 fixed. The remaining n−2 elements
can be rearranged in (n − 2)! ways, so |S1 ∩ S2| = (n − 2)! More generally,

|Si ∩ Sj| = (n−2)!, where i < j. There are
(

n
2

)
such pairs of intersections, so

∑
i<j

|Si ∩ Sj| =
(

n
2

)
(n − 2)!

406 Chapter 6 Combinatorics and Discrete Probability

We now compute |Si ∩ Sj ∩ Sk|, where i < j < k. The set Si ∩ Sj ∩ Sk
consists of all permutations that leave the elements i, j, and k fixed. The

remaining n − 3 elements can be permuted in (n − 3)! ways. There are
(

n
3

)
such triplets of intersections, so

∑
i<j<k

|Si ∩ Sj ∩ Sk| =
(

n
3

)
(n − 3)!

More generally, |S1 ∩ S2 ∩· · ·∩Sj| = (n−j)!, since the elements 1, 2, . . . , j
remain fixed and the remaining n− j elements can be rearranged in (n− j)!
ways. Since there are

(
n
j

)
such intersections, it follows that

∑
|S1 ∩ S2 ∩ · · · ∩ Sj| =

(
n
j

)
(n − j)!

Finally, S1 ∩ S2 ∩ · · · ∩ Sn consists of all permutations that leave every
element fixed. There is only one such permutation, so

|S1 ∩ S2 ∩ · · · ∩ Sn| = 1 =
(

n
n

)
(n − n)!

Tying all the pieces together, we get

|S|=
n∑

i=1

|Si|−
∑
i<j

|Si ∩Sj|+
∑

i<j<k

|Si ∩Sj ∩Sk|−·· ·±|S1 ∩S2 ∩ ··· ∩Sn|

=
(

n
1

)
(n−1)!−

(
n
2

)
(n−2)!+

(
n
3

)
(n−3)!−·· ·+(−1)n+1

(
n
n

)
(n−n)!

=
n∑

r=1

(−1)r+1
(

n
r

)
(n−r)!

Thus

Dn = n! − |S|

= n! −
n∑

r=1

(−1)r+1
(

n
r

)
(n − r)!

=
(

n
0

)
(n − 0)! −

n∑
r=1

(−1)r+1
(

n
r

)
(n − r)!

=
n∑

r=0

(−1)r
(

n
r

)
(n − r)! (6.11)

6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional) 407

For example,

D4 =
4∑

r=0

(−1)r
(

4
r

)
(4 − r)!

=
(

4
0

)
4! −

(
4
1

)
3! +

(
4
2

)
2! −

(
4
3

)
1! +

(
4
3

)
0!

= 24 − 4 · 6 + 6 · 2 − 4 · 1 + 1

= 9

as we found in Example 6.17.
Figures 6.32–6.34 represent the three major steps in the development of

formula (6.11) for n = 4.
Figure 6.32

Permutations of four
elements.

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

408 Chapter 6 Combinatorics and Discrete Probability

Figure 6.33

Permutations that are
not derangements.

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

Figure 6.34

Derangements of four
elements.

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

1

2
3
4

Notice that formula (6.11) can be rewritten as

Dn = n!
n∑

r=0

(−1)r

r! (6.12)

Exercises 6.7

1. A survey conducted among 300 adults shows that 160 like to have
their houses painted white and 140 like blue. Seventy-four like both
colors. How many do not like either color?

6.8 Discrete Probability (optional) 409

2. A survey among 100 consumers shows that of the two laundry deter-
gents, Lex and Rex, 45 like Lex, 60 like Rex, and 20 like both. How
many surveyed do not like either of them?

Find the number of positive integers ≤ 1000 and not divisible by:

3. 3 or 5 4. 5 or 6 5. 2, 3, or 5 6. 3, 5, or 7

Using the alternate inclusion–exclusion formula, find the number of primes
not exceeding:

7. 75 8. 110 9. 125 10. 129

Find the number of solutions to each equation with nonnegative integer
variables.

*11. x + y + z = 11, x ≤ 3, y ≤ 4, z ≤ 5

*12. w + x + y + z = 13, w ≤ 3, x, y ≤ 4, z ≤ 7

13. In 1984, E. T. H. Wang of Wilfrid Laurier University, Waterloo,
Ontario, Canada, established that

n∑
r=1

r3
(

n
r

)
Dn−r = 5n!

Verify the formula for n = 5 and n = 6.

*6.8 Discrete Probability∗ (optional)

The groundwork for probability theory was laid by chance in 1654 when an
aristocratic gambler, Chevalier de Mere, asked Blaise Pascal the following
question: If two players of equal skill are forced to quit a game before it is
over, how should the stakes be divided between them? The problem sounds
simple — the stakes should be divided so the person who had the greater
chance to win the game when they stopped playing gets more than his
opponent. Pascal communicated this problem to Pierre de Fermat and they
solved it independently. This began probability theory.

Suppose you flip a coin. It can land heads up (H) or tails up (T) with
equal likelihood. Each of them, H or T, is an outcome of the experiment
of tossing the coin. The set {H, T} of possible outcomes of the experiment
is the sample space of the experiment.

∗Based on T. Koshy, Finite Mathematics and Calculus with Applications, Scott, Foresman
Glenview, IL, 1979, pp. 87–134.

410 Chapter 6 Combinatorics and Discrete Probability

Sample Space and Event
The set of all possible outcomes of an experiment is the sample space of
the experiment, denoted by S. (Throughout, we assume S is nonempty and
finite.) An event E is a subset of the sample space. An outcome in E is a
favorable outcome (or success); an outcome not in E is an unfavorable
outcome (or failure). If E = Ø, E is an impossible event. If |E| = 1, then
E is a simple event. The event E′ = S−E is the complement of event E.

For example, consider the experiment of tossing three coins. By the mul-
tiplication principle, the sample space S consists of 2 · 2 · 2 = 8 possible
outcomes: S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. Let A be
the event of obtaining exactly two heads, B that of obtaining at least two
heads, and C that of obtaining four heads. Then A = {HHT, HTH, THH}
and B = {HHT, HTH, THH, HHH}. Clearly, C = Ø, an impossible event.

The definition of the probability of an event was given by the outstanding
French mathematician Pierre-Simon Laplace.

Probability of an Event
Let E be an event of a finite sample space S consisting of equally likely
outcomes. Then the probability of the event, denoted by p(E), is defined by

p(E) = |E|
|S| = number of ways E can occur

total number of possible outcomes

The next three examples illustrate this definition.

EXAMPLE 6.44 Suppose a card is drawn at random from a standard deck of playing cards.
Find the probability that it will be a spade.

SOLUTION:
Since a standard deck contains 52 cards, the number of possible outcomes
of drawing a card is 52. There are 13 spades in the deck; so a spade can be
chosen in 13 ways. Hence, the probability that the card drawn is a spade is
given by

p(E) = |E|
|S| = number of ways E can occur

total number of possible outcomes

= 13
52

= 1
4 �

EXAMPLE 6.45 A Massachusetts state weekly lottery number is divided into three boxes,
colored yellow, blue, and white. These boxes contain a three-digit number,
a two-digit number, and a one-digit number, respectively. Assume that
000-00-0 is a valid lottery number and this week’s winning number is

123
YELLOW

45
BLUE

6
WHITE

6.8 Discrete Probability (optional) 411

Pierre-Simon Laplace (1749–1827), one of the most influential mathe-
maticians and scientists of all time, was born in Beaumont-en-Auge,
Normandy, France, into a prosperous family of farmers and merchants.
After graduating from school, he entered the University of Caen to study
theology as his father had planned. During 2 years at Caen, Laplace
discovered his mathematical talents and left for Paris to pursue a career in
mathematics. With the help of mathematician and philosopher Jean le Rond
d’Alembert, he became professor of mathematics at the École Militaire. At the
age of 24, Laplace was elected a member of the Paris Academy of Sciences.

Laplace is one of the founders of probability theory and is best known for
his outstanding contributions to celestial mechanics, the study of motions of
celestial bodies. In addition, he did significant work in applied mathematics
and mathematical statistics.

Laplace published two monumental treatises, Traité de Méchanique Céleste (five volumes, 1799–1825)
and Théorie Analytique des Probabilités (1812). The former, one of the greatest scientific works of the
19th century, earned him the title the Newton of France, while the latter was the first comprehensive book
on probability.

Laplace was a strong advocate of the metric system and played an important role in reorganizing the
École Polytechnique, a prestigious engineering school founded in 1795.

Indifferent to political conditions, Laplace remained loyal to every party in power, which enabled him
to preserve his high scientific status throughout the turbulent era in which he lived.

He died in Paris.

Table 6.3 summarizes the payoffs. Each winning ticket is allowed only
one prize, the largest for which it is eligible. Suppose you buy a ticket for
50¢. Find the probability that you will win $50,000.

Table 6.3 Yellow Blue White Payoff

— — 6 Eligible for drawing
— 45 — $5
— 45 6 $10

123 — — $10
123 — 6 $100
123 45 — $1000
123 45 6 $50,000

SOLUTION:
Since each of the six digits could be any one of the 10 digits, the total
number of possible outcomes is 106 = 1,000,000. Of these, there is exactly
one way of drawing the winning number; so, the probability of winning the
Megabucks lottery is

1
1,000,000

= 0.000001 �

412 Chapter 6 Combinatorics and Discrete Probability

A few important observations arise from the definition of the probability
of an event E. Since 0 ≤ |E| ≤ |S|, 0 ≤ p(E) ≤ 1 for any event E.
Consequently, an event E is certain to occur if p(E) = 1, and will not
occur if p(E) = 0.

Also, since E′ = S − E, p(E′) = 1 − p(E) (Why?). The next two examples
use this property.

EXAMPLE 6.46 Find the probability of obtaining at least one head when three coins are
tossed.

SOLUTION:
Let E be the event of obtaining at least one head. Then E′ denotes the event
of obtaining no heads and p(E′) = 1/8. Therefore,

p(E) = 1 − p(E′) = 1 − 1
8

= 7
8 �

EXAMPLE 6.47 (The Birthday Paradox) Suppose r people are selected at random. Find
the probability that at least two of them have the same birthday. Do not
distinguish between leap years and nonleap years.

SOLUTION:
Let E be the event that at least two of the r people have the same birthday.
Then E′ denotes the event that no two of them have the same birthday.

To compute p(E), first find p(E′). Since there are 365 possibilities for a
birthday, there are 365r possibilities for the birthdays of the r people. Now
the first person has 365 possibilities for his birthday, the second person has
364 possibilities, the third person has 363 possibilities, and so on; the rth
person has 365 − (r − 1) possibilities for his birthday. Thus

p(E′) = 365 · 364 · · · (365 − r + 1)
365r

So

p(E) = 1 − p(E′)

= 1 − 365 · 364 · · · (366 − r)
365r , 1 ≤ r ≤ 365

Table 6.4 gives the values of p(E) for various values of r.
It follows from the table that if 23 people are selected at random, chances

are better than 50% that at least two of them have the same birthday! This
is known as the birthday paradox.

6.8 Discrete Probability (optional) 413

Table 6.4 Number of people p(E)
selected r

5 0.027135574
10 0.116948178
20 0.411438384
22 0.475695308
23 0.507297234
25 0.568699704
30 0.706316243
40 0.891231810
50 0.970373580
60 0.994122661
70 0.999159576
80 0.999914332
90 0.999993848

100 0.999999693 �

Combinatorics and the multiplication principle often help in computing
probabilities, as the next example shows.

EXAMPLE 6.48 Five marbles are drawn at random from a bag of seven green marbles and
four red marbles. Find the probability that three are green and two are red.

SOLUTION:
Since there are 7 + 4 = 11 marbles, any five of them can be drawn in C(11, 5)
ways.

Let A be the event that three marbles are green and two are red. Three
green marbles can be selected in C(7, 3) ways and two red marbles in
C(4, 2) ways; so, by the multiplication principle, the event A can occur in
C(7, 3) · C(4, 2) ways. So,

p(A) = C(7, 3) · C(4, 2)
C(11, 5)

=
7!

3! 4! · 4!
2! 2!

11!
5! 6!

= 7! 4! 5! 6!
3! 4! 2! 2! 11! = 5

11
. (Verify this.) �

If the outcomes of an experiment are not equally likely, Laplace’s
definition has to be modified.

A Modified Definition of the Probability of an Event
Let E = {a1, a2, . . . , an} be an event of a finite sample space consisting of not
necessarily equally likely outcomes. Let p(ai) denote the probability that
the outcome ai will occur.

414 Chapter 6 Combinatorics and Discrete Probability

Then the probability of E is defined by p(E) =
n∑

i=1
p(ai). Thus, p(E) is the

sum of the probabilities of the outcomes in E.

EXAMPLE 6.49 Suppose the probability of obtaining a prime number is twice that of obtain-
ing a non-prime number, when a certain loaded die is rolled. Find the
probability of obtaining an odd number when it is rolled.

SOLUTION:
There are six possible outcomes when a die is rolled, of which three are
primes: 2, 3, and 5. The probability of obtaining a prime is twice that of a
nonprime; that is, p(prime) = 2p(nonprime). Since the sum of the probabil-
ities of the various possible outcomes is 1, 3p(prime) + 3p(nonprime) = 1.
That is,

6p(nonprime) + 3p(nonprime) = 1

So
p(nonprime) = 1

9
Thus

p(prime) = 2p(nonprime) = 2
9

Then

p(odd number) = p(1) + p(3) + p(5)

= 1
9

+ 2
9

+ 2
9

= 5
9 �

We now proceed to the inclusion–exclusion and addition principles in
probability. So we begin with a familiar definition.

Mutually Exclusive Events
Two events A and B are mutually exclusive if A ∩ B = Ø, that is, if they
cannot occur simultaneously.

For example, suppose a card is drawn from a standard deck of cards.
Drawing a red queen and drawing a black king are mutually exclusive
events.

The inclusion–exclusion principle and the addition principle in probabil-
ity come into service for such circumstances. (Outcomes of any experiment
are assumed equally likely, unless noted otherwise.)

THEOREM 6.20 (Inclusion–Exclusion Principle) If A and B are any two events of a
finite sample space S, the probability that at least one of them will occur is
given by p(A ∪ B) = p(A) + p(B) − p(A ∩ B).

PROOF:
By the inclusion–exclusion principle on sets,

|A ∪ B| = |A| + |B| − |A ∩ B|

6.8 Discrete Probability (optional) 415

Then
|A ∪ B|

|S| = |A|
|S| + |B|

|S| − |A ∩ B|
|S|

That is,

p(A ∪ B) = p(A) + p(B) − p(A ∩ B) �

In particular, if A and B are mutually exclusive, A ∩ B = Ø and hence
p(A ∩ B) = 0. Therefore, p(A ∪ B) = p(A) + p(B), which can be stated
formally as follows.

THEOREM 6.21 (Addition Principle) If A and B are two mutually exclusive events of a
finite sample space, p(A ∪ B) = p(A) + p(B). �

As in sets, these two results can be extended to any finite number of
events of a finite sample space.

The following example uses the inclusion–exclusion principle.

EXAMPLE 6.50 A survey among 50 housewives about the two laundry detergents Lex (L)
and Rex (R) shows that 25 like Lex, 30 like Rex, 10 like both, and 5 like
neither. A housewife is selected at random from the group surveyed. Find
the probability that she likes neither Lex nor Rex.

SOLUTION:
Using the Venn diagram in Figure 6.35, we have:

p(L) = 25
50

= 1
2

, p(R) = 30
50

= 3
5

, and p(L ∩ R) = 10
50

= 1
5

p(L ∪ R) = p(L) + p(R) − p(L ∩ R)

= 1
2

+ 3
5

− 1
5

= 9
10

So

p(L′ ∩ R′) = 1 − p(L ∪ R)

= 1 − 9
10

= 1
10

Figure 6.35

L
15

L

S

5

2010

(We could read this answer directly from the Venn diagram.) �

416 Chapter 6 Combinatorics and Discrete Probability

Exercises 6.8

A card is drawn at random from a standard deck of cards. Find the
probability of obtaining:

1. A king.

3. A king or a queen.

2. A club.

4. A club or a diamond.

Two dice are rolled. Find the probability of obtaining:

5 Two fives.

7. A sum of four.

6. A five and a six.

8. A sum less than five.

Using Example 6.45, find the probability that you will:

9. Win $1000. 10. Win $100. 11. Win $10. 12. Win $5.

13. Be eligible for a drawing.

Two cards are drawn at random from a standard deck of cards. Find the
probability that:

14. Both are kings.

15. Both are clubs.

16. One is a king and the other a queen.

17. One is a club and the other a diamond.

Five marbles are selected at random from a bag of seven white and six red
marbles. Find the probability of each event.

18. All are white balls.

20. Three are white and two are
red.

19. All are red balls.

21. Two are white and three are
green.

Let U = {a, b, c, d, e} be the sample space of an experiment, where the
outcomes are equally likely. Find the probability of each event.

22. {a} 23. {a, b} 24. {a, c, d} 25. Ø

A survey of 475 customers at Chestnut Restaurant shows that of the
three ice cream flavors — chocolate, strawberry, and vanilla — 65 like only
chocolate, 75 like only strawberry, 85 like only vanilla, 100 like chocolate
but not strawberry, 120 like strawberry but not vanilla, 140 like vanilla
but not chocolate, and 65 like none of the flavors. A customer is selected at
random from the survey. Find the probability that he likes:

26. All flavors.

28. Exactly two flavors.

27. Chocolate.

29. Exactly one flavor.

6.9 Additional Topics in Probability 417

*6.9 Additional Topics in Probability (optional)

This section presents a few additional topics in probability, namely, condi-
tional probability, expected value, Bernoulli trials, binomial probabilities,
as well as the average-case complexity of the linear search algorithm.

The ensuing dice problem manifests conditional probability.
Let E be the event of rolling a sum of seven with two dice. Then p(E) =

6/36 = 1/6. Suppose a 3 comes up on one of the dice. This reduces the sample
space to {(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6)}.
Consequently, a sum of 7 can be obtained in two ways: (3, 4) and (4, 3).
Therefore, the probability of getting a sum of seven, knowing that a three
has been rolled, is 2/11. Thus the additional information has indeed affected
the probability of E. Accordingly, we make the following definition.

Conditional Probability
The probability that an event A will occur, knowing that a certain other
event B (�= Ø) has already occurred, is the conditional probability of A,
given B. It is denoted by p(A | B).

EXAMPLE 6.51 In Example 6.50, find the probability that a housewife selected at random
from the survey likes Lex knowing that she likes Rex.

SOLUTION:
Since the housewife likes Rex, the sample space has 10 + 20 = 30 outcomes,
of which 10 are favorable to the event L. Therefore,

p(L | R) = 10
30

= 1
3 �

In this example, you may note that

p(L ∩ R)
p(R)

= 10/50
30/50

= 1
3

= p(L|R)

A more general powerful result arises.

THEOREM 6.22 Let A and B be any two events of a finite sample space with p(B) �= 0. Then

p(A|B) = p(A ∩ B)
p(B)

.

PROOF:
Let |A ∩ B| = k, |A| = m + k, and |B| = n + k (see the Venn diagram in
Figure 6.36). Then

P(A | B) = k
n + k

418 Chapter 6 Combinatorics and Discrete Probability

Figure 6.36

A

m

B

n

S

k

and
p(A ∩ B)

p(B)
= k/|S|

(n + k)/|S| = k
n + k

= p(A | B) �

EXAMPLE 6.52 A study conducted recently in a rural area shows that the probability of
a randomly selected person being allergic to oak pollen is 7/24 and the
probability of being allergic to both oak and birch pollen is 3/20. Find the
probability that he is allergic to birch pollen, given that he is allergic to oak
pollen.

SOLUTION:
Let B and K denote the events of being allergic to birch pollen and oak
pollen, respectively. p(K) = 7/24 and p(B ∩ K) = 3/20. Therefore,

p(B | K) = p(B ∩ K)
p(K)

= 3/20
7/24

= 18
35 �

By Theorem 6.22, p(B | A) = p(A ∩ B)
p(A)

. That is, p(A ∩ B) = p(A) · p(B | A).

This result expresses the probability both A and B will occur, that is, the
event A ∩ B in terms of p(A) and p(B | A). Accordingly, we have the following
result.

THEOREM 6.23 (Multiplication Theorem) Let A and B be any two events of a finite
sample space. Then the probability that both A and B will occur is given by
p(A ∩ B) = p(A) · p(B|A). �

This result works for any finite number of events of a finite sample space.
For example, if p1 is the probability of an event A, p2 the probability of an
event B after A has occurred, and p3 the probability of an event C after
both A and B have occurred, the probability that the events A, B, and C
will occur in that order is p1p2p3.

EXAMPLE 6.53 Two marbles are drawn successively from a box of three black and four
white marbles. Find the probability that both are black if the first marble
is not replaced before the second drawing.

6.9 Additional Topics in Probability 419

SOLUTION:
Let B1 be the event of drawing the first black marble. Then p(B1) = 3/7. Let
B2 be the event of drawing a second black marble. Since the first marble is
not replaced before the second is drawn, there are only two black balls left in
the box at the second drawing. Therefore, p(B2 | B1) = 2/6. Consequently,
the probability of drawing two black balls successively without replacement
is given by

p(B1 ∩ B2) = p(B1) · p(B2 | B1) = 3
7

· 2
6

= 1
7

�

Dependent and Independent Events
Two events are dependent if the occurrence of one event affects the
probability of the other event occurring; otherwise, they are independent.

In Example 6.53, the events B1 and B2 are dependent. On the other
hand, if the first marble is replaced before the second is drawn, then two
events would be independent.

If A and B are independent events, p(A | B) = p(A) and p(B | A) = p(B).
Therefore, p(A ∩ B) = p(A) · p(B | A) = p(A) · p(B). Accordingly, we have the
following result.

THEOREM 6.24 Let A and B be two independent events of a finite sample space. Then
p(A ∩ B) = p(A) · p(B). �

EXAMPLE 6.54 Redo Example 6.53 with the first marble replaced before the second
drawing.

SOLUTION:
Let B1 be the event of drawing the first black marble. Then p(B1) = 3/7. Let
B2 be the event of drawing the second black marble. Since the first marble
is replaced before the second is drawn, p(B2) = 3/7. Since B1 and B2 are
independent events, the probability of drawing two black balls successively
with replacement is given by

p(B1 ∩ B2) = p(B1) · p(B2) = 3
7

· 3
7

= 9
49 �

A concept very closely related to probability is expected value; it was
introduced by the brilliant Dutch mathematician Christian Huygens (1629–
1695). It can predict the number of occurrences of a possible outcome if an
experiment is performed many times.

Suppose you toss a coin 100 times. How many times would you expect it
come up heads? Intuitively, you would expect a head 50 times. In practice,
however, you might get a head 59 times and a tail 41 times, or a head
43 times and a tail 57 times. Nevertheless, on an average, you would expect
it to fall heads 50% of the time.

More generally, we make the following definition.

420 Chapter 6 Combinatorics and Discrete Probability

Expected Value
If a1, a2, . . . , an are the numerical values of the distinct outcomes of an
experiment, and p1, p2, . . . , pn are the corresponding probabilities of the
corresponding outcomes, the expected value E of the experiment is given
by E = a1 p1 + a2 p2 + · · · + an pn.

EXAMPLE 6.55 A coin is tossed four times. How many times would you expect it falls heads?

SOLUTION:
The possible outcomes when a coin is tossed four times are 0, 1, 2, 3, or

4 heads. The corresponding probabilities are
1

16
,

4
16

,
6
16

,
4
16

, and
1
16

,

respectively. So the expected number of heads is 0 · 1
16

+ 1 · 4
16

+ 2 · 6
16

+
3 · 4

16
+ 4 · 1

16
= 2, which seems intuitively right. �

The concept of expected value plays a key role in gambling. For instance,
to play the numbers game,∗ you bet a dollar on one of the whole numbers,
000 through 999. If yours is the winning number, you win $700; otherwise,

you lose your dollar. Clearly, p(winning) = 1
1000

and p(losing) = 999
1000

.

Therefore, the average expected profit of the game is

E = $699
(

1
1000

)
+ (−$1)

(
999
1000

)
= −30¢

That E = −30¢ simply means if this game is played many times, you can
expect to lose an average of 30¢ per game.

In keno, an unbiased machine selects 20 numbers without replacement
from the positive integers 1 through 80. You predict a number in advance
that will be selected by the machine. To play the game, you pay $1. If your
number is one of the 20 selected by the machine, you will win $3.20.

p(winning) = 20
80

= 1
4

and p(losing) = 60
80

= 3
4

∴ Average expected profit = $2. 20
(

1
4

)
+ (−1)

(
3
4

)
= −20¢

We now show how the concept of expected value is important in analyzing
the average-case complexities of algorithms.

Average-Case Complexity of an Algorithm
To compute the average-case complexity of an algorithm, let s1, s2, . . . , sn
denote the input values to the algorithm. Then {s1, s2, . . . , sn} denotes the

∗Based on A. Sterrett, “Gambling Doesn’t Pay!,” Mathematics Teacher, Vol. 60 (March 1967),
pp. 210–214.

6.9 Additional Topics in Probability 421

sample space of an experiment. Let ai denote the number of operations
required by input si and pi the probability assigned to ai. The expected value

E =
n∑

i=1
aipi measures the average-case time complexity of the algorithm.

To illustrate this definition, we turn to the linear search algorithm.

Average-Case Complexity of the Linear Search Algorithm
To compute the average-case complexity of the linear search algorithm, we
return to Algorithm 4.8. Although the list contains n elements, there are
n + 1 cases for the algorithm: key occurs in the list (n cases) and key does
not occur in the list (one case). Assume all the n items in the list are distinct
and are equally likely with probability p; that is, if key occurs in the list,
it can be any one of the n elements with probability p. Let q denote the
probability that key does not occur in the list. Then np + q = 1.

If key occurs in position i, the algorithm takes i element comparisons to
locate it with probability pi = p and ai = i, where 1 ≤ i ≤ n. Also, pn+1 = q
and an+1 = n. Thus the average-case complexity of the algorithm is the
average number of comparisons:

E =
n+1∑
i=1

aipi =
n∑

i=1

aipi + an+1pn+1

=
(n∑

i=1

ip

)
+ nq = p

(n∑
i=1

i

)
+ nq

= p · n(n + 1)
2

+ nq

In particular, if q = 0, that is, if key occurs in the list, np = 1 and hence

E = n + 1
2

= O(n). If q = 1, that is, if key does not occur in the list, p = 0

and E = n = O(n). If 0 < q < 1, then np < 1 and

E < (1) · n + 1
2

+ n

= 3n + 1
2

= O(n)

Thus, in all cases 0 ≤ q ≤ n, E = O(n).
Note: In Example 4.44, we proved that the average-case complexity of

the algorithm is

an = (1 + 2 + · · · + n) + (n + 1)
n + 1

= O(n)

422 Chapter 6 Combinatorics and Discrete Probability

The analysis employed in Example 4.44 is a special case of the above analysis

with p = q = 1
n + 1

; in other words, all the n+1 cases were assumed equally

likely with probability
1

n + 1
.

We now turn to the discussion of probability of an event in a special class
of experiments.

Bernoulli Trials
Notice that the experiment of tossing a coin three times consists of three
repeated subexperiments: tossing the coin the first time, the second time,
and the third time. Each is called a trial. The two outcomes in a trial are
called success and failure, with probabilities p and q = 1−p, respectively.
For instance, if getting a five is considered a success when a die is rolled,
then not getting a five is a failure; here p = 1/6 and q = 5/6.

Repeated trials are called Bernoulli trials, after the outstanding Swiss
mathematician Jakob Bernoulli (1654–1705), if:

• The trials are independent, and

• Each trial has exactly two outcomes, success or failure.

For example, the experiment of rolling a (fair) die three times consists of
three independent trials. Let obtaining a five be a success in each trial. Each
trial has exactly two outcomes: obtaining a five (success) and not obtaining
a five (failure). In each trial, p(success) = 1/5 and p(failure) = 5/6. Thus the
experiment consists of three Bernoulli trials.

EXAMPLE 6.56 A (fair) die is rolled three times. Let obtaining a five be a success (S)
and a non-five a failure (F). Find the probability of obtaining exactly two
successes.

SOLUTION:
Figure 6.37 indicates the sample space for the experiment: {SSS, SSF, SFS,
SFF, FSS, FSF, FFS, FFF}. Each branch of the tree is labeled with its cor-
responding probability. These probabilities can be used to compute the
probabilities of the various outcomes. For instance,

p(SFS) = 1
6

· 5
6

· 1
6

= 5
6

·
(

1
6

)2

p(exactly two successes) = p(SSF) + p(SFS) + p(FSS)

= 1
6

· 1
6

· 5
6

+ 1
6

· 5
6

· 1
6

+ 5
6

· 1
6

· 1
6

= 3 ·
(

1
6

)2

·
(

5
6

)
=
(

3
2

)(
1
6

)2

·
(

5
6

)

6.9 Additional Topics in Probability 423

Figure 6.37

S

S

F

S

F

SSS

SFS

SFF

FSS

FSF

FFF

F

SSF

FFS

first trial second trial third trial outcomes
S

F

S

F

S

F

S

F

←

←

←

←

←

←

←

←
�

The next theorem generalizes these results.

THEOREM 6.25 Let p and q denote the probabilities of success and failure, respectively, in
a Bernoulli trial. The probability of exactly k successes in a sequence of n
Bernoulli trials is given by C(n, k)pkqn−k.

PROOF:
Since the trials are independent, the probability of obtaining k successes
(and hence n − k failures) is pkqn−k. But there are C(n, k) ways of obtain-
ing exactly k successes. Therefore, the probability of exactly k successes is
C(n, k)pkqn−k. �

The probability C(n, k)pkqn−k is usually denoted by b(n, k, p); it is called
the binomial probability.

EXAMPLE 6.57 Ten percent of the population in a suburban town are allergic to ragweed.
Five people of the town are selected at random. Find the probability that
exactly two of them are allergic to ragweed.

SOLUTION:
The probability that a person selected at random is allergic to ragweed is
p = 0.1. Therefore, by Theorem 6.25,

p(exactly two are allergic) = C(5, 2)(0.1)2(0.9)3

= 0.0729 �

EXAMPLE 6.58 Chuck-a-luck is a dice game in which three dice in an enclosed cage
are thoroughly mixed. You select one of the numbers 1, 2, 3, 4, 5, or 6
before the dice come to rest, and bet $1 that this number will appear on

424 Chapter 6 Combinatorics and Discrete Probability

at least one die. Suppose you choose five. If one or more fives appear, the
dollar is returned, plus $1 for each five. Compute the expected profit of the
game.∗

SOLUTION:
First, compute the probabilities of obtaining no fives, exactly one five,
exactly two fives, and exactly three fives. The game can be considered a
sequence of three Bernoulli trials. Let getting a five be a success. Then

p(success) = 1
6

and p(failure) = 5
6

. Therefore, by Theorem 6.25, the

binomial probability of exactly k successes is C(3, k)
(

1
6

)k (5
6

)3 − k

, where

k = 0, 1, 2, or 3. Thus

p(no fives) = C(3, 0)
(

1
6

)0 (5
6

)3

= 125
216

p(exactly one five) = C(3, 1)
(

1
6

)(
5
6

)2

= 75
216

p(exactly two fives) = C(3, 2)
(

1
6

)2 (5
6

)
= 15

216

p(all fives) = C(3, 3)
(

1
6

)3 (5
6

)0

= 1
216

∴ Expected profit = (−$1)
(

125
216

)
+ ($1)

(
75
216

)
+ ($2)

(
15
216

)

+ ($3)
(

1
216

)
≈ −7.9¢ �

Finally, what can we say about the sum of the binomial probabilities in
a sequence of Bernoulli trials? Since p + q = 1, we have

n∑
k=0

b(n, k, p) =
n∑

k=0

C(n, k)pkqn−k

= (p + q)n by the binomial theorem

= 1

Thus the sum of the binomial probabilities is always 1.

∗Based on A. Sterrett, “Gambling Doesn’t Pay!,” Mathematics Teacher, Vol. 60 (March 1967),
pp. 210–214.

6.9 Additional Topics in Probability 425

For example, the sum of the binomial probabilities in Example 6.58 is

125
216

+ 75
216

+ 15
216

+ 1
216

= 1

Exercises 6.9

Two dice are rolled. Find the probability of obtaining each event.

1. A sum of 11, knowing that a six has occurred on one die.

2. A sum of 11, knowing that one die shows an odd number.

It is found that 65% of the families in a town own a house, 25% own a house
and a minivan, and 40% own a minivan. Find the probability that a family
selected at random owns each of the following.

3. A house, given that it owns a minivan.

4. A minivan, given that it owns a house.

The Sealords have three children. Assuming that the outcomes are equally
likely and independent, find the probability that they have three boys,
knowing that:

5. The first child is a boy.

7. The second child is a boy.

9. One child is a girl.

6. At least one child is a boy.

8. The first two children are boys.

A survey of 475 customers at Chestnut Restaurant shows that of the three
ice cream flavors — chocolate, strawberry, and vanilla — 65 customers like
only chocolate, 75 like only strawberry, 85 like only vanilla, 100 like choco-
late but not strawberry, 120 like strawberry but not vanilla, 140 like vanilla
but not chocolate, and 65 like none of the flavors. Find the probability that
a customer selected at random from the survey:

10. Likes chocolate, given that she likes strawberry.

11. Likes strawberry, given that she likes vanilla.

12. Likes chocolate, given that she does not like strawberry.

13. Likes vanilla, given that she does not like chocolate.

14. Likes chocolate, given that she does not like strawberry or vanilla.

15. Does not like chocolate, given that she does not like strawberry or
vanilla.

Two cards are drawn at random successively from a standard deck. The
first card is replaced before the second is drawn. Find the probability that:

16. Both are queens.

426 Chapter 6 Combinatorics and Discrete Probability

17. Both are clubs.

18. The first is a club and the second a spade.

19. The first is a heart and the other a green ace.

20–23. Redo Exercises 16–19 assuming no replacement.

There are 15 rabbits in a cage. Five of them are injected with a certain
drug. Three of the 15 rabbits are selected successively at random for an
experiment. Find the probability that:

24. Only the first rabbit is injected with the drug.

25. Only the second rabbit is injected with the drug.

26. Only the first two rabbits are injected with the drug.

27. Only the last two rabbits are injected with the drug.

28. Ted and Ned are rolling a die. If a five appears Ned receives $3 from
Ted; otherwise, he loses 50¢ to Ted. Compute Ned’s expected winnings.

29. Two dice are rolled. If a sum of six appears, Randy gets $6 from Wanda;
otherwise, he loses $3 to her. Compute Randy’s expected winnings.

30. A typical roulette wheel contains 38 slots. Two of them are numbered
0 and 00, and the others are numbered 1 through 36. The slots 0 and
00 are green; of the remaining 36 slots, 18 are red and the others black.
A rolled ball has an equal chance of falling into any of the slots. If you
bet $1 on a number and the ball lands in that slot, then you receive
$35 in addition to the bet. Find your expected winnings.

31. In Exercise 30, if you bet $1 on a red number and the ball lands there,
you receive $1 plus your bet. Find your expected profit.

A die is rolled four times. Find the probability of obtaining:

32. All sixes.

34. Exactly two sixes.

36. At least one six.

33. Exactly one six.

35. Exactly three sixes.

37. Not more than two sixes.

A survey shows that 20% of the adults in Simpleton have high blood pres-
sure. A sample of four adults is selected at random. Find the probability
that:

38. They all have high blood pressure.

39. Exactly one of them has high blood pressure.

40. Not more than two of them have high blood pressure.

41. Not all of them have high blood pressure.

42. For the casino game football pools, a list of 10 football games is
printed on a ticket. If one team is considered weaker than its opponent

Chapter Summary 427

by the people who run the pool, that team is given enough points to
make the game a tossup. Thus the probability of picking a winning
team is 0.5. You pay $1 to play the game and select all 10 winners.
If all your selections win, you get $150; if nine win, you receive a
consolation prize of $20; otherwise, you lose your dollar. Compute
your expected profit. (A. Sterrett, 1967)

*43. Let p denote the probability of success in a Bernoulli trial. Prove that
the expected number of successes in a sequence of n Bernoulli trials
is np. (Hint: Use the binomial theorem.)

Chapter Summary

This chapter presented the fundamentals of combinatorics and discrete
probability. The counting principles in Section 6.1 are the cornerstone of
combinatorics.

The Fundamental Counting Principles
• Addition Principle If A and B are two mutually exclusive tasks and

can be done in m and n ways, respectively, task A or B can be done in
m + n ways (page 344).

• Inclusion–Exclusion Principle Suppose task A can be done in m
ways and task B in n ways. If both can be done in k ways, task A or B
can be done in m + n − k ways (page 345).

• Multiplication Principle If task T1 can be done in m1 ways and task
T2 in m2 ways corresponding to each way T1 can occur, these two tasks
can be done in that order in m1m2 ways (page 345).

Permutations
• An r-permutation of a set of n distinct elements is an ordered arrange-

ment of r elements of the set. The number of r-permutations of a set of
size n is denoted by P(n, r) (page 352).

• P(n, r) = n!
(n − r)! (page 000); P(n, n) = n! (page 353).

• A cyclic permutation is a circular arrangement. The number of cyclic
permutations of n distinct items is (n − 1)! (page 355).

• P(n, r) = P(n − 1, r) + rP(n − 1, r − 1) (page 356).

Derangements
• A derangement is a permutation of n distinct items a1, a2, . . . , an such

that no item ai occupies position i, where 1 ≤ i ≤ n (page 360).

428 Chapter 6 Combinatorics and Discrete Probability

• The number of derangements Dn of n items satisfies two recurrence
relations:

Dn = (n − 1)(Dn−1 + Dn−2), n ≥ 2
where D0 = 1 and D1 = 0 (page 362)

Dn = nDn−1 + (−1)n, n ≥ 1
where D0 = 1 (page 363)

• Dn = n!
[
1 − 1

1! + 1
2! · · · + (−1)n

n!
]
, n ≥ 0 (page 363).

Combinations
• An r-combination of a set of n elements is a subset with size r, where

0 ≤ r ≤ n. The number of r-combinations is denoted by C(n, r)

or
(

n
r

)
(page 366).

• C(n, r) = n!
r!(n − r!) (page 366) C(n, r) = C(n, n − r) (page 369)

• Pascal’s identity C(n, r) = C(n − 1, r − 1) + C(n − 1, r) (page 370).

• Permutations with Repetitions The number of permutations of n
items where n1 are alike, n2 are alike, . . ., and nk are alike, is given by

n!
n1! n2! · · · nk! (page 376).

• Combinations with Repetitions The number of r-combinations
with repetitions from a set with size n is C(n + r − 1, r) (page 380).

• Let x1, x2, . . . , xn be n nonnegative integer variables. The equation
x1 + x2 + · · · + xn = r has C(n + r − 1, r) integer solutions (page 381).

• The binomial theorem Let x and y be real variables and n any
nonnegative integer. Then

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr (page 389)

•
n∑

r=0
C(n, r) = 2n (page 391)

• The number of surjections N from a finite set A to a finite set B is
given by

N =
n∑

r=0

(−1)r
(

n
r

)
(n − r)m

where |A| = m, |B| = n, and m ≥ n (page 403).

Chapter Summary 429

• The number of derangements N of n items is given by

N =
n∑

r=0

(−1)r
(

n
r

)
(n − r)! (page 406)

Discrete Probability
• Let E be an event of a finite sample space S consisting of equally likely

outcomes. Then p(E) = |E|/|S| (page 410).

• If the outcomes are not equally likely, p(E) = ∑
p(ai), where p(ai)

denotes the probability of outcome ai ∈ E (page 414).

• Inclusion–Exclusion Principle If A and B are any two events, then
p(A ∪ B) = p(A) + p(B) − p(A ∩ B) (page 414).

• Addition Principle If A and B are mutually exclusive events, then
p(A ∪ B) = p(A) + p(B) (page 415).

Conditional Probability
• Multiplication Theorem p(A ∩ B) = p(A) · p(B|A) (page 418).

• The expected value E of an experiment with numerical outcomes

a1, . . . , an is given by E =
n∑

i=1
aip(ai) (page 420).

Bernoulli Trials
• Repeated trials of an experiment are Bernoulli trials if:

They are independent;

Each trial has exactly two outcomes; and

P(outcome) remains the same in every trial (page 422).

• The binomial probability of exactly k successes in a sequence
of n Bernoulli trials is given by b(n, k, p) = C(n, k)pkqn−k, where
p = p(success) and q = p(failure) (page 423).

Review Exercises

Find the number of positive integers ≤ 2076 and divisible by:

1. 3 or 4.

3. 2, 3, or 5, but not 30.

2. 3 or 4, but not 12.

4. 3, 4, or 5, but not 60.

◦ 5. In FORTRAN 77, a variable name consists of six alphanumeric char-
acters, beginning with a letter. Find the total number of legal variable
names possible.

430 Chapter 6 Combinatorics and Discrete Probability

◦ In C++, an identifier consists of a letter followed by any number of
alphanumeric characters. How many such identifiers of length six:

6. End in a letter?

8. Are palindromes?

7. End in a digit?

9. Are not palindromes?

A license plate number in Connecticut consists of two letters followed by
four digits. Find each.

10. The total number of license plates possible.

11. The number of license plates that end in GREEN.

12. The number of license plates that end in JAVA.

Find the number of terms in the expansion of each.

13.

(
3∑

i=0
ai

)(
3∑

i=0
bi

)(
3∑

i=−1
ci

)
14.

(
3∑

i=−2
ai

)(
3∑

i=−1
bi

)(
3∑

i=0
ci

)

Master Mind is a fascinating logic game played by two players, the code
maker and the code breaker. There are 72 pegs, available in six colors. The
code maker creates a secret code pattern using four pegs in a row. The code
breaker tries to figure out the code. Find the number of coding patterns
possible if:

15. There are no restrictions on the use of colors.

16. The same color cannot be repeated.

17–18. Redo Exercises 15 and 16 if pegs are available in seven colors.

Find the number of ways three dahlias, four cannas, and five zinnias can
be planted:

19. In a row such that all plants of the same family are next to each other.

20. In a row such that the zinnias are planted in between the other two
families of plants.

21. In a circle.

22. In a circle such that all plants of the same family are next to each other.

Find the number of ternary words that can be formed of:

23. Length 10. 24. Length at most 10.

Find the number of subcommittees that can be formed from a 10-member
committee such that each contains:

25. At least seven members. 26. At most five members.

A standard deck of playing cards contains 52 cards. Find the total
number of:

27. Poker hands (five cards).

Chapter Summary 431

28. Flushes (all cards of the same suit).

29. Full houses (three of one kind and two of another).

Find the number of ways the letters of each word can be scrambled.

30. TENNESSEE 31. MISSISSIPPI

How many words of length six over the alphabet {a, b, c, d, e} contain:

32. Two a’s, three b’s, and one c. 33. Three a’s and three b’s.

(A modified handshake problem) Mr. and Mrs. Matrix hosted a party for
n married couples. Each person shook hands with everyone else, excluding
his or her spouse. No person shook hands with himself or herself. Let h(n)
denote the number of handshakes made.

34. Using induction, prove that h(n) = C(2n − 1, 2) + (n − 1), n ≥ 0.

35. Derive a recurrence relation satisfied by h(n).

36. Show that h(n) = 2n(n − 1), n ≥ 0.

A local fast food restaurant serves four types of pizza — pepperoni, mush-
room, cheese, and onion. Find the number of different pizza orders
possible by:

37. Six students. 38. Seven students.

39–40. Redo Exercises 37 and 38, using generating functions.

Find the number of nonnegative integer solutions of each equation.

41. x1 + x2 + x3 + x4 = 8 42. x1 + x2 + x3 + x4 + x5 = 12

Find the coefficient of each.

43. x4y7 in the expansion of (x − y)11

44. x5y5 in the expansion of (2x + 3y)10

Using the binomial theorem, expand each.

45. (x + y)6 46. (x − 2y)4 47. (3x − y)5 48. (2x + 3y)5

49. Prove that C(n, r) is an integer for every integer n ≥ 0, where 0 ≤ r ≤ n.

50. Prove by induction that
n∑

i=r
C(i, r) = C(n + 1, r + 1).

(Twelve days of Christmas) Suppose you sent your love 1 gift on the first
day of Christmas, 1 + 2 gifts on the second day, 1 + 2 + 3 gifts on the third
day, and so on. Show that the number of gifts:

51. Sent on the nth day is C(n + 1, 2).

52. Received by your love in the first n days is C(n + 2, 3).

432 Chapter 6 Combinatorics and Discrete Probability

Let Dn denote the number of derangements of n items. Prove each.

53. The number of permutations of n items with exactly k of them in their
natural positions is C(n, k)Dn−k, where 0 ≤ k ≤ n.

54. C(n, 0)D0 + C(n, 1)D1 + · · · + C(n, n)Dn = n!, n ≥ 0

55. Find the sum of the numbers in rows 0 through n − 1 of Pascal’s
triangle.

Let A(n, r) denote the number of additions needed to compute C(n, r) using
recursion.

56. Find A(n, 0) and A(n, n).

57. Find an explicit formula for A(n, 1).

*58. Find the recurrence relation satisfied by A(n, r).

*59. Prove that A(n, r) = C(n, r) − 1.

◦ *60. Find the probability of obtaining no two consecutive heads when a
coin is tossed n times.

◦ 61. A contractor bids to construct a shopping plaza. It has been estimated
that there is a 5/8 probability that she would make a profit of $3
million, and a 3/8 probability that she would lose $4 million. Compute
her expected profit.

◦ 62. A construction company is bidding on two contracts to build apart-
ment complexes in Janesville and Jeansville. The probabilities that
the two bids will be accepted are 60% and 80%, respectively, and
the bidding expenses are $100,000 and $150,000, respectively. It is
estimated that the company will make profits of $3 million from
Janesville and $2.3 million from Jeansville. In which location should
the company be more interested?

◦ It is found that 10% of the snow blowers manufactured by a certain com-
pany need repair before they can be sold. Five snow blowers are selected at
random. Find the probability that:

63. At least one needs repair. 64. Not all need repair.

Supplementary Exercises

Prove each, where Cn denotes the nth Catalan number.

1. The product of any r consecutive positive integers is divisible by r!.

2. C(2n, n) is an integer for every n ≥ 0.

3. (n + 1) | C(2n, n) for every n ≥ 0.

4. p | C(p, r), where p is a prime and 0 < r < p.

Chapter Summary 433

5. Cn = C(2n + 1, n)
2n + 1

6. Cn = 2(2n − 1)
n + 1

Cn−1, n ≥ 1

7. (Probleme des Menages) Let Mn denote the number of ways n
married couples can be seated around a round table with men and
women in alternate chairs and no wife next to her husband. It can
be shown that

Mn = n! +
n∑

k=1

(−1)k 2n
2n − k

(
2n − k

k

)
(n − k)! (E. Lucas)

Compute M5 and M6.

8. Prove that

(
n − i
r − i

)(
n

r + i

)(
n + i

r

)
=
(

n − i
r

)(
n + i
r + i

)(
n

r − i

)

Evaluate each.

9.
n∑

k=0

(
n
k

)
k2

*10.
n∑

k=0

(
n
k

)
k3 (N. J. Kuenzi and B. Prielipp, 1985)

**11.
n−1∑
d=1

d∑
j=0

n−d−1∑
k=0

(
j + k

j

)
(U.S.A Mathematical Olympiad, 1991)

*12. Guess the number of odd binomial coefficients in row n of Pascal’s
triangle.
(Hint: Compare the number of odd binomial coefficients in row n
and the binary expansion of n.)

13. Let a, b ∈ W, a = (anan−1 · · · a0)two, and b = (bnbn−1 · · · b0)two. If
ai ≥ bi for every i, we say a implies b and write a ⇒ b; otherwise
a ⇒/ b. Determine if 43 ⇒ 25 and 47 ⇒ 29.

14. The binomial coefficient C(n, r) is odd if and only if n ⇒ r. Using
this fact, determine the parity (oddness or evenness) of C(25, 18)
and C(29, 19). (See Exercise 13.)

Let f (n, k) denote the number of k-element subsets of the set S =
{1, 2, . . . , n} that do not contain consecutive integers. (I. Kaplansky)

15. Define f (n, k) recursively.

16. Prove that f (n, k) = C(n − k + 1, k).

434 Chapter 6 Combinatorics and Discrete Probability

17. Prove that the total number of subsets of S that do not contain
consecutive integers is Fn+2, where Fn denotes the nth Fibonacci
number.

An ordered pair of subsets (A, B) of the set Sn = {1, 2, . . . , n} is admissible
if a > |B| for every a ∈ A and b > |A| for every b ∈ B. For example,
({2, 3}, {4}) is an admissible pair of subsets of S4.

18. Find the various admissible ordered pairs of subsets of the sets S0,
S1, and S2.

*19. Predict the number of admissible ordered pairs of subsets of Sn.

Computer Exercises

Write a program to perform each task, where n ∈ N and n ≤ 20.

1. Read in positive integers n and r, where r ≤ n ≤ 10, and compute P(n, r),
using Theorem 6.4 and recursion.

2. Print the number of derangements Dn of n distinct items using the
recursive definition (6.1), the alternate recursive definition (6.3), and
the explicit formula in Theorem 6.9.

3. Print the values of pn = Dn

n! and e−1 correct to 10 decimal places, for

comparison.

4. Read in positive integers n and r, where 0 < r ≤ n , and compute C(n, r)
using Theorem 6.10 and recursion.

5. Print all solutions of the equation x1 + x2 + x3 = 5, where x1, x2, x3 ∈ W.
Also print all solutions if x1, x2, x3 ∈ N.

6. Compute the nth Catalan number, using recursion.

7. Print all bytes in increasing order.

8. Print in tabular form all binary words of length n and the corresponding
subsets of the set {1, 2, 3, . . . , n}.

9. Print Pascal’s triangle, as indicated below:

• As in Figure 6.21

• Right-justified

• Left-justified

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

Chapter Summary 435

1. Study the number of plates on automobiles in your state and neigh-
boring states. Create a combinatorial problem that will generate such
license plate numbers in each system.

2. Investigate the origin of binomial coefficients and the two-level paren-
theses notation.

3. Study the numerous properties of binomial coefficients, including their
parity.

4. Examine the history of Pascal’s triangle. Why is Pascal’s triangle
named after Pascal?

5. Investigate the numerous properties of Pascal’s triangle. Explain how
figurate numbers, Fibonacci numbers, and Catalan numbers can be
extracted from it.

6. Extend Pascal’s triangle upward, the definition of the binomial coef-
ficient C(n, r) to include negative and fractional values of n, and the
binomial theorem to fractional exponents.

7. Discuss the number of ways n rooks of n different colors can be placed
on an n × n chessboard such that no two rooks can attack each other.

8. Investigate the properties of Bell numbers and their applications to
combinatorics. Include a biography of E. T. Bell.

9. Define Stirling numbers of the first and second kind. Include their
applications to combinatorics and a biography of J. Stirling.

10. Discuss Eulerian numbers and their relationships to Stirling numbers.

11. Discuss Bernoulli numbers, named after Jakob Bernoulli (1654–1705),
and their relationships with power series and the tangent function.

12. Write an essay on the inclusion–exclusion principle.

13. Study the origin of discrete probability.

14. Describe the various casino games and compute the expected value of
each.

15. Examine the Hardy–Weinberg probabilities in population genetics,
named for the English mathematician Godfrey. H. Hardy (1877–
1947) and the German physician Wilhelm Weinberg (1862–1937) who
published them independently in 1980.

Enrichment Readings

1. G. Berman and K. D. Fryer, Introduction to Combinatorics, Academic
Press, New York, 1972, pp. 35–125.

2. K. P. Bogart, Introductory Combinatorics, Pitman, Boston, MA, 1983.

436 Chapter 6 Combinatorics and Discrete Probability

3. P. Z. Chinn, “Inductive Patterns, Finite Differences, and a Missing
Region,” Mathematics Teacher, Vol. 81 (Sept. 1988), pp. 446–449.

4. D. I. A. Cohen, Basic Techniques of Combinatorial Theory, Wiley,
New York, 1978, pp. 13–178.

5. J. Dugle, “The Twelve Days of Christmas and Pascal’s Triangle,”
Mathematics Teacher, Vol. 75 (Dec. 1982), pp. 755–757.

6. P. O. Eckhardt, “Discretely Deranged Squares,” Mathematics Teacher,
Vol. 83 (April 1990), pp. 318–320.

7. A. W. F. Edwards, Pascal’s Arithmetical Triangle, The Johns Hopkins
University Press, Baltimore, MD, 2002.

8. M. Eng and J. Casey, “Pascal’s Triangle — A Serendipitous Source for
Programming Activities,” Mathematics Teacher, Vol. 76 (Dec. 1983),
pp. 686–690.

9. B. W. Jackson and D. Thoro, Applied Combinatorics with Problem
Solving, Addison-Wesley, Reading, MA, 1990, pp. 42–133.

10. B. H. Litwiller and D. R. Duncan, “Poker Probabilities,” Mathematics
Teacher, Vol. 70 (Dec. 1977), pp. 766–771.

11. C. Oliver, “The Twelve Days of Christmas,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 752–754.

12. J. Varnadore, “Pascal’s Triangle and Fibonacci Numbers,” Mathemat-
ics Teacher, Vol. 84 (April 1991), pp. 314–316, 319.

Chapter 7

Relations

The invention of the symbol ≡ by Gauss affords a striking example of the
advantage which may be derived from an appropriate notation, and

marks an epoch in the development of the science of arithmetic.

— G. B. MATHEWS

F unctions are a special case of relations, which are also used in everyday
life. Relations have applications to many disciplines, including biology,

computer science, psychology, and sociology. The EQUIVALENCE state-
ment in FORTRAN, for example, is based on the relation has the same
location as (see Example 7.42). Graphs, digraphs, formal languages, finite
state machines — all to be discussed in the next four chapters — are closely
related to the theory of relations.

In this chapter we will examine the concept of a relation, its com-
puter representations and properties, and different ways to construct new
relations from known ones.

We will deal with the following problems, as well as others:

• Is it possible to arrange all n-bit words around a circle in such a way
that any two adjacent words differ by exactly one bit?

• Can we determine the day corresponding to a given date m/d/y, where
y > 1582, the year the Gregorian calendar was adopted?

• Five sailors and a monkey are marooned on a desert island. During the
day they gather coconuts for food. They decide to divide them up in the
morning and retire for the night. While the others sleep, one sailor gets
up and divides them into equal piles, with one left over that he throws
out for the monkey. He hides his share, puts the remaining coconuts
together, and goes back to sleep. Later a second sailor gets up and
divides the pile into five equal shares with one coconut left over, which
he discards for the monkey. He also hides his share, puts the remaining
coconuts together, and goes back to sleep. Later the remaining sailors
repeat the process. Find the smallest possible number of coconuts in
the original pile.

437

438 Chapter 7 Relations

• The computer science courses required for a computer science major
at a college are given in Table 7.1. In which order can a student take
them?

Table 7.1 Number Course Prerequisite

CS 100 Computer Science I None
CS 150 Computer Science II CS 100
CS 200 Computer Organization CS 150
CS 250 Data Structures CS 150
CS 300 Computer Architecture CS 200
CS 350 Programming Languages CS 250
CS 400 Software Engineering CS 250
CS 450 Operating Systems CS 250, CS 300

A special class of matrices called boolean matrices is used to study
relations, so we begin with a brief discussion of such matrices.

7.1 Boolean Matrices

(This section is closely related to Section 3.7 on matrices; you will probably
find that section useful to review before reading further.)

A boolean matrix is a matrix with bits as its entries. Thus A = (aij)m×n

is a boolean matrix if aij = 0 or 1 for every i and j. For instance,
[
1 0 1
0 1 0

]
is a boolean matrix, whereas

[
1 −3
0 2

]
is not.

Boolean Operations and and or
The boolean operations and (∧) and or (∨), defined by Table 2.1, signal
the combining of boolean matrices to construct new ones. Listed below are
several properties of these bit operations. They can be verified easily, so try
a few.

THEOREM 7.1 Let a and b be arbitrary bits. Then:

• a ∧ a = a

• a ∨ a = a

• a ∧ (b ∧ c) = (a ∧ b) ∧ c

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

• a ∧ b = b ∧ a

• a ∨ b = b ∨ a

• a ∨ (b ∨ c) = (a ∨ b) ∨ c

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) �

Using the two bit-operations, we now define two operations on boolean
matrices.

7.1 Boolean Matrices 439

Join and Meet
The join of the boolean matrices A = (aij)m×n and B = (bij)m×n, denoted
by A ∨ B, is defined by A ∨ B = (aij ∨ bij)m×n. Each element of A ∨ B
is obtained by oring the corresponding elements of A and B. The meet
of A and B, denoted by A ∧ B, is defined by A ∧ B = (aij ∧ bij)m×n. Every
element of A ∧ B is obtained by anding the corresponding elements of A
and B.

The following example illustrates these two definitions.

EXAMPLE 7.1 Let

A =
[
1 0 1
0 1 0

]
and B =

[
0 0 1
1 0 1

]
Find A ∨ B and A ∧ B.

SOLUTION:

• A ∨ B =
[
1 ∨ 0 0 ∨ 0 1 ∨ 1
0 ∨ 1 1 ∨ 0 0 ∨ 1

]
=
[
1 0 1
1 1 1

]

• A ∧ B =
[
1 ∧ 0 0 ∧ 0 1 ∧ 1
0 ∧ 1 1 ∧ 0 0 ∧ 1

]
=
[
0 0 1
0 0 0

]
�

Boolean Product
The boolean product of the boolean matrices A = (aij)m×p and B =
(bjk)p×n, denoted by A � B, is the matrix C = (cij)m×n, where cij =
(ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ · · · ∨ (aip ∧ bpj). (See Figure 7.1).

Figure 7.1

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1p
.

ai1 ai2 . . . aip
.

am1 am2 . . . amp

⎤
⎥⎥⎥⎥⎦�

⎡
⎢⎢⎢⎢⎣

b11 . . . b1j
.

bij
.

bpj

. . . b1n
.

bi1 bin
.

bp1 bpn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c11 . . . c1j . . . c1n
.

ci1 . . . cij . . . cin
.

cm1 . . . cmj . . . cmn

⎤
⎥⎥⎥⎥⎦

Notice the similarity between this definition and that of the usual
product of matrices.

The next example clarifies this definition.

EXAMPLE 7.2 Let

A =
[

1 0 1
0 1 0

]
and B =

⎡
⎣1 1

1 0
0 0

⎤
⎦

Find A � B and B � A, if defined.

440 Chapter 7 Relations

SOLUTION:
(1) Since the number of columns in A equals the number of rows in B,

A � B is defined:

A � B =
[

1 0 1
0 1 0

]
�
⎡
⎣ 1

1
0

0
1
0

⎤
⎦

=
[
(1 ∧ 1) ∨ (0 ∧ 1) ∨ (1 ∧ 0) (1 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 0)
(0 ∧ 1) ∨ (1 ∧ 1) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0)

]

=
[

1 0
1 1

]

(2) Number of columns in B = 2 = Number of rows in A. Therefore, B�A
is also defined:

B � A =
⎡
⎣1 0

1 1
1 0

⎤
⎦�

[
1
0

0 1
1 0

]

=
⎡
⎣(1 ∧ 1) ∨ (0 ∧ 0) (1 ∧ 0) ∨ (0 ∧ 1) (1 ∧ 1) ∨ (0 ∧ 0)

(1 ∧ 1) ∨ (1 ∧ 0) (1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0)
(0 ∧ 1) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 1) ∨ (0 ∧ 0)

⎤
⎦

=
⎡
⎣1 0 1

1 1 1
0 0 0

⎤
⎦

�
The fundamental properties of the boolean matrix operations are listed

in the following theorem. Their proofs being fairly straightforward, appear
as routine exercises (see Exercises 36–43).

THEOREM 7.2 Let A, B, and C be three boolean matrices. Then:

• A ∨ A = A

• A ∨ B = B ∨ A

• A ∨ (B ∨ C) = (A ∨ B) ∨ C

• A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

• A � (B � C) = (A � B) � C

• A ∧ A = A

• A ∧ B = B ∧ A

• A ∧ (B ∧ C) = (A ∧ B) ∧ C

• A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

The sizes of the matrices are assumed compatible for the corresponding
matrix operations. �

7.1 Boolean Matrices 441

Boolean Power of a Boolean Matrix
Let A be an m × m boolean matrix and n any positive integer. The nth
boolean power of A, denoted by A[n], is defined recursively as follows:

A[0] = Im (the identity matrix)

A[n] = A[n−1] � A if n ≥ 1

The following example illustrates this definition.

EXAMPLE 7.3 Let

A =
⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦

Compute A[2] and A[3].

SOLUTION:

A[2] = A[1] � A = A � A =
⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦�

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦ =

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦

A[3] = A[2] � A =
⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦�

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦ =

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦

(You can verify that in this case, A[n] = A for every n ≥ 1.) �
You will find boolean matrices and their properties useful in the next

few sections, so review them as needed.

Exercises 7.1

Using the boolean matrices

A =
[
1 1
0 0

]
, B =

[
0 1
1 0

]
, and C =

[
0 0
1 0

]

find each.

1. A ∨ B 2. A ∧ B 3. A � C 4. C � A

5. A ∨ (B ∨ C) 6. A ∧ (B ∧ C) 7. A � (B � C) 8. (A � B) � C

Using the boolean matrices

A =
⎡
⎣1 0 1

0 0 0
1 1 0

⎤
⎦ , B =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ , and C =

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦

find each.

442 Chapter 7 Relations

9. A ∧ (B ∨ C) 10. A ∨ (B ∧ C) 11. (A ∧ B) ∨ (A ∧ C)

12. (A ∨ B) ∧ (A ∨ C) 13. (A ∧ B) ∨ (A ∨ C) 14. A � (B � C)

15. (A � B) � C 16. B � C � A 17. A � A � A

18. Using the boolean matrix

A =
⎡
⎣1 0 1

1 1 0
0 0 1

⎤
⎦

find A[3] and A[5].

Let A and B be any two n×n boolean matrices. Find the number of boolean
operations needed to compute each.

19. A ∨ B 20. A ∧ B 21. A � B

22. Find the number of m × n boolean matrices that can be defined.

23. Let A be an m × p boolean matrix and B a p × n boolean matrix. Find
the number of boolean operations needed to compute A � B.

24. For the boolean matrix A in Example 7.3, prove that A[n] = A for every
n ≥ 1.

The complement of a boolean matrix A, denoted by A′, is obtained by
taking the one’s complement of each element in A, that is, by replacing 0’s
with 1’s and 1’s with 0’s. Use the boolean matrices A, B, and C in Exercises
1–8 to compute each.

25. A′ 26. B′ 27. (A ∨ B)′ 28. A′ ∧ B′

29. (A ∧ B)′ 30. A′ ∨ B′ 31. A ∧ (B′ ∨ C′) 32. (A � B) � C′

Let A and O be two m × n boolean matrices such that every entry of A is
1 and every entry of O is 0. Let B be any m × n boolean matrix. What can
you say about each?

33. A ∨ B 34. A ∧ B 35. A′

Let A, B, and C be any n × n boolean matrices. Prove each.

36. A ∨ A = A 37. A ∧ A = A 38. A ∨ B = B ∨ A 39. A ∧ B = B ∧ A

40. A ∨ (B ∨ C) = (A ∨ B) ∨ C 41. A ∧ (B ∧ C) = (A ∧ B) ∧ C

42. A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) 43. A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

Write an algorithm to find each.

44. The join of two boolean matrices A and B.

45. The meet of two boolean matrices A and B.

7.2 Relations and Digraphs 443

46. The complement of a boolean matrix A.

47. The boolean product of two boolean matrices A and B.

48. The nth boolean power of an m × m boolean matrix A.

7.2 Relations and Digraphs

Clearly many relationships exist in the world around us. On the human
level, they are parent–child, husband–wife, student–teacher, doctor–
patient, and so on. Relationships exist between numbers also; the equality
relation (=) and the less-than relation (<) are two such relationships. In
fact, relationships can exist between any two sets; they are known as
relations.

This section presents the concept of a relation and discusses how
relations can be represented using matrices and graphs.

Before formally defining a binary relation, let us study an example.

EXAMPLE 7.4 Consider the sets A = {Tom, Dick, Harry} and B = {Amy, Betsy, Carol,
Daisy}. Suppose Tom is married to Daisy, Dick to Carol, and Harry to Amy.
Let R = {(Tom, Daisy), (Dick, Carol), (Harry, Amy)}. Using the set-builder
notation, it can also be defined as

R = {(a, b) ∈ A × B| a is married to b}

Notice that R ⊆ A × B. It is defined using the relation is married to. The
set R is a binary relation from A to B. �

More generally, we make the following definition.

Binary Relation
A binary relation R from a set A to a set B is a subset of A×B. The domain
of the relation consists of the first elements in R and the range con-
sists of the second elements; they are denoted by dom(R) and range(R),
respectively. A binary relation from A to itself is a binary relation on A.

The following example illustrates these terms.

EXAMPLE 7.5 Let A = {2, 3, 5} and B = {2, 3, 4, 6, 7}. Define a relation R from A to B as
follows:

R = {(a, b)|a is a factor of b}
Then R = {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6)}, dom(R) = {2, 3}, and range(R) =
{2, 3, 4, 6}. �

444 Chapter 7 Relations

Let R be a relation from A to B. If (a, b) ∈ R, we say a is related to b
by the relation R; in symbols, we write aRb. If a is not related to b, we
write a�Rb. For instance, 3 < 5, but 7 ≮ 6. (Here the relation is <.) The
next example illustrates this further.

EXAMPLE 7.6 Let A be the set of cities and B the countries in the world. Define a relation
R from A to B, using the phrase is the capital of. So R = {(a, b) ∈ A × B| a
is the capital of b}. Then Paris R France, but Toronto �R Canada. �

Relations from a finite set to a finite set can be represented by boolean
matrices, as defined below.

Adjacency Matrix of a Relation
A relation R from a set {a1, a2, . . . am} to a set {b1, b2, . . . bn} can be
represented by the m × n boolean matrix MR = (mij), where

mij =
{

1 if aiRbj
0 otherwise

MR is the adjacency matrix of the relation R.

EXAMPLE 7.7 Define a relation R from A = {chicken, dog, cat} to B = {fish, rice, cotton}
by R = {(a, b)| a eats b}. Then R = {(chicken, fish), (chicken, rice),
(dog, fish), (dog, rice), (cat, fish), (cat, rice)}. Its adjacency matrix is

fish rice cotton

MR =
chicken
dog
cat

⎡
⎣1 1 0

1 1 0
1 1 0

⎤
⎦

�

Figure 7.2

Tom

Dick

Harry

Amy

Betsy

Carol

Daisy

R

A B

Relations can also be represented pictorially. For instance, the relation
in Example 7.4 is displayed in Figure 7.2; an arrow from an element a in A
to an element b in B indicates that a is related to b.

7.2 Relations and Digraphs 445

Figure 7.3

The circle x2 + y2 = 9.

0
x

y

3

Relations can be displayed using familiar graphs as well. For example,
the graph of the relation {(x, y) ∈ R × R | x2 + y2 = 9} is the circle x2+y2 = 9
with center at the origin and radius 3 (see Figure 7.3).

Digraphs
Relations R on a finite set A can be represented pictorially in yet another
way. We denote every element of A by a point, called a vertex (or node),
and each ordered pair (a, b) in R by a directed arc or a directed line segment,
called an edge, from a to b. The resulting diagram is a directed graph or
simply a digraph. If an edge (a, b) exists, we say that vertex b is adjacent
to vertex a. (Notice the order of the vertices.)

The next two examples illustrate these definitions.

EXAMPLE 7.8 Represent the relation R defined on A = {2, 3, 4, 6} by the phrase is a factor
of in a digraph.

SOLUTION:
Notice that

R = {(a, b) ∈ A × A | a is a factor of b}
= {(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}

Figure 7.4 shows its digraph. It contains four vertices: 2, 3, 4, and 6.
Since 3R6, vertex 6 is adjacent to vertex 3.

Figure 7.4
2 3

6 4
�

446 Chapter 7 Relations

Notice that the digraph in Figure 7.4 contains an edge (x, x) leaving and
terminating at the same vertex x. Such an edge is a loop. The digraph in
Figure 7.4 contains four loops.

We now turn to the concept of a path in a relation, and hence in a
digraph.

Paths in Digraphs and Relations
Let R be a relation on a set A, and let a, b ∈ A. A path in R, that
is, in the digraph of R, from a to b is a finite sequence of edges
(a, x1), (x1, x2), . . . , (xn−1, b); the vertices xi’s need not be distinct. The path
from a to b is also denoted by a-x1-x2- · · · -xn−1-b. The number of edges
in the path is its length. A path that begins and terminates at the same
vertex is a cycle. A cycle of length one is a loop.

The next example clarifies these terms.

EXAMPLE 7.9 Notice that the relation in Figure 7.5 contains a path of length three from
a to b, namely, a-c-d-b. The path b-c-d-b is a cycle of length three. The cycle
b-b is a loop.

Figure 7.5
a b

cd
�

The next example presents an interesting relation in the language of
binary words.

EXAMPLE 7.10 (Gray Codes) Suppose a switching network is composed of n switches ai,
where 1 ≤ i ≤ n. Let ai = 1 denote that switch ai is closed and ai = 0 denote
that it is open. Every state of the network can be denoted by the n-bit word
a1a2 . . . an. Let �n denote the set of n-bit words, that is, the set of all states
of the network. For example, �3 = {000, 001, 010, 100, 011, 101, 110, 111}.
Naturally, we are tempted to ask: Is it possible to test every state of the
circuit by changing the state of exactly one switch? That is, is it possible to
list every n-bit word by changing exactly one bit?

Another definition can lead to rewording the question. Two n-bit words
are adjacent if they differ in exactly one bit, that is, if the Hamming
distance between them is one. For example, 010 and 011 are adjacent,
whereas 001 and 110 are not.

Define a relation R on�n as αRβ if α and β are adjacent. We can rephrase
this: Is it possible to arrange the elements αi of �n in such a way that
αiRαi+1 where 1 ≤ i ≤ m − 1,αmRα1, and m = 2n? That is, is it possible
to arrange the n-bit words around a circle in such a way that any two
neighboring words are adjacent?

7.2 Relations and Digraphs 447

Figure 7.6

000

100

101

111

110

010

011

001

Interestingly enough, the elements of�3 can be arranged in this fashion
(see Figure 7.6): 000, 001, 011, 010, 110, 111, 101, 100. Such an ordering
is called a Gray code for �3. More generally, a Gray code for �n is an
arrangement of its elements α1,α2, . . . ,αm such that αiRαi+1 and αmRα1,
where 1 ≤ i ≤ m − 1. Gray codes are named for Frank Gray, who invented
them in the 1940s at what was then AT&T Bell Labs.

We can restate our original question again: Is there a Gray code for �n

for every n ≥ 1? Induction leads to an affirmative answer.

PROOF (by induction):
Let P(n): There exists a Gray code for every �n.

Basis step When n = 1, {0, 1} is clearly a Gray code; so P(1) is true.

Induction step Assume P(k) is true; that is, there is a Gray code for �k.
Suppose {α1,α2, . . . ,αr} is a Gray code, where r = 2k.

To show that P(k+1) is true:
Consider the (k + 1)-bit words 0α1, 0α2, . . . , 0αr, 1αr, 1αr−1, . . . , 1α1.

Clearly they form the 2r = 2k+1 elements of�k+1. Call them β1,β2, . . . ,β2r,
respectively, for convenience. Since αiRαi+1 and αrRα1,βjRβj+1 and
β2rRβ1, so {β1,β2, . . . ,β2r} is a Gray code; that is, P(k + 1) is true.

Thus, by induction, a Gray code exists for every �n.
(Notice that the induction step provides a smooth method for construct-

ing a Gray code for �k+1 from that of �k. This example will be taken a bit
further in Chapter 8.) �

Finally, we will see how relations and functions are closely related,
if we recall that a function f : A → B is a set of ordered pairs
(a, b) ∈ A×B such that every element a in A is assigned a unique element
b in B. Consequently, every function can be redefined as a relation, as
follows.

448 Chapter 7 Relations

An Alternate Definition of a Function
A function f : A → B is a relation from A to B such that:

• Dom(f) = A; and

• If (a, b) ∈ f and (a, c) ∈ f , then b = c.

We close this section with an example that illustrates this definition.

EXAMPLE 7.11 Which of the relations R, S, and T in Figure 7.7 are functions?

Figure 7.7

a

b

c

1

2

3

R

A B A B A B

S T

a

b

c

1

2

3

a

b

c

1

2

3

SOLUTION:
The relation R is a function, whereas S is not since dom(S) �= A. T is also
not a function since the same element b in A is paired with two distinct
elements in B, namely, 2 and 3. �

Exercises 7.2

List the elements in each relation from A = {1, 3, 5} to B = {2, 4, 8}.
1. {(a, b) | a < b}
4. {(a, b) | a is a factor of b}

2. {(a, b) | b = a + 1}
5. {(a, b) | a + b ≤ 3}

3. {(a, b) | a + b = 5}
6. {(a, b) | a = b}

7–12. Find the domain and range of each relation in Exercises 1–6.

13–18. Find the adjacency matrix of each relation in Exercises 1–6.

Represent each relation R on the given set A in a digraph.

19. {(a, b)|a < b}, {2, 3, 5} 20. {(a, b)|a ≤ b}, {2, 3, 5}
21. {(a, b)|a is a factor of b}, {2, 4, 5, 8}
22. {(a, b)|b = a + 2}, {2, 4, 5, 6}
Using the relation R = {(x, y)|2x + 3y = 12} on R, determine whether or not
each is true.

23. 3R2 24. 2R3 25. −3R5 26. −5R6

Using the relation R = {(x, y)|x2 + y2 = 4} on R, determine if each is true.

27. 2R0 28. 2R2 29. −2R0 30. 4R0

7.3 Computer Representations of Relations (optional) 449

Define a relation R on Z by xRy if and only if x − y is divisible by 5.
Determine if:

31. 9R4 32. 13R6 33. 3R8 34. 23R3

List the elements in the relation R represented by each digraph.

35.

a

b

c

36.

a c

b

d

37–38. Find the adjacency matrix of each relation in Exercises 35 and 36.

39. Construct a Gray code for �4, where � = {0, 1}.
Using the relation in Figure 7.5, find each.

40. Paths of length one starting at a.

41. Paths of length two starting at b.

42. Number of paths of length one.

44. Number of cycles of length
three.

43. Number of paths of length two.

45. Number of loops.

Determine if each relation from {a, b, c, d} to {0, 1, 2, 3, 4} is a function.

46. {(a, 0), (b, 1), (c, 0), (d, 3)}
48. {(a, 3), (b, 3), (c, 3), (d, 3)}

47. {(a, 3), (b, 3), (b, 4), (c, 1), (d, 0)}
49. {(a, 1), (b, 2), (c, 3)}

Let A and B be finite sets with |A| = m and |B| = n. Find the number of
binary relations that can be defined:

50. From A to B. 51. On A.

52. A relation R on the set {1, 2, . . . , n} is given in terms of its elements.
Write an algorithm to find its adjacency matrix A.

53. Write an algorithm to print the elements of a relation R on {1, 2, . . . , n}
using its adjacency matrix A.

*7.3 Computer Representations of Relations (optional)

Since relations from a finite set to a finite set can be represented by boolean
matrices, the most straightforward way of implementing a relation and its
digraph in a computer is by its adjacency matrix.

The second method involves linked lists. Since some programming lan-
guages such as FORTRAN do not support dynamic linked lists, the array

450 Chapter 7 Relations

representation of linked lists serves well. (Note: Arrays are nothing but
matrices.) For example, the digraph in Figure 7.8 contains seven edges,
arbitrarily numbered 1 through 7. Store the tails and the corresponding
heads of each edge in two parallel one-dimensional arrays, T = (ti) and
H = (hi), respectively (see Figure 7.9). Notice that t3 = 1 and h3 = 2, so
an edge exists from vertex 1 to vertex 2, namely, edge 1. Since t7 = 3 and
h7 = 2, there is also an edge from vertex 3 to vertex 2, namely, edge 5. The
other edges can be read similarly.

Figure 7.8 2

1 3

3

4

1

2 5

4

67

Figure 7.9
TAIL HEAD

1 2 2

2 4 3

3 1 2

4 2 3

5 2 1

6 1 4

7 3 2

The enumeration of the edges need not begin with edge 1. In this exam-
ple, edge 1 is stored in t3 and h3. Accordingly, index 3 is stored in a variable
called START (see Figure 7.10). Further, the edges can be stored in any
order. To find the edge following each edge, an array N (for NEXT) is used.
The element ni+1 locates the successor of edge ni, 1 ≤ i ≤ 6. We store 0 in
n6 to indicate the end of the linked list representation of the digraph, as in
Figure 7.11.

7.3 Computer Representations of Relations (optional) 451

Figure 7.10
T H

1 2 2

2 4 3

3
3

1 2

4 2 3

5 2 1

6 1 4

7 3 2

START

Figure 7.11

Static linked list
representation of the
relation.

T H N

1 2 2 4

2 4 3 6

3
3

1 2 5

4 2 3 7

5 2 1 1

6 1 4 0

7 3 2 2

START

Most modern programming languages support dynamic data structures.
In this type of language, a linked list consists of a set of nodes and each
node contains (at least) two fields: a data field and a link field (or pointer
field) (see Figure 7.12). The data field contains a data item, whereas the link
field contains the address of the next node in the list. For instance, consider
the linked list in Figure 7.13. HEADER contains the address of the first
node in the list; it corresponds to START in the previous discussion. The
link field of the last node contains a special pointer called the nil pointer
that signals the end of the list. This pointer corresponds to 0 in the static
representation; a slash (/) in the field signifies it.

452 Chapter 7 Relations

Figure 7.12

A typical node.
Data Link
Field Field

Figure 7.13 Link

Data

a1 a2 a3

HEADER

The relation in Figure 7.13 illustrates the dynamic linked list representa-
tion. First, for each vertex, create a linked list of vertices adjacent to it. Then
store the header nodes in an array. The resulting linked representation
appears in Figure 7.14.

Figure 7.14
1 1 2 4

2 2 1 2 3

3 3 2

4 4 3

We can abbreviate this representation by storing the header nodes in
an array of pointers, as in Figure 7.15. This simplified version is the
adjacency list representation of the digraph and hence of the relation.

The next example shows how to find the adjacency matrix of a relation
from its adjacency list representation.

EXAMPLE 7.12 Using the adjacency list representation of the relation in Figure 7.15, find
its adjacency matrix.

SOLUTION:
The figure indicates vertex 1 is related to 2 and 4; vertex 2 is related to 1,
2, and 3; vertex 3 is related to 2; and vertex 4 is related to 3. Thus, the

7.3 Computer Representations of Relations (optional) 453

adjacency matrix of the relation is

1 2 3 4

MR =
1
2
3
4

⎡
⎢⎢⎣

0 1 0 1
1 1 1 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

�

Figure 7.15
1 2 4

2 1 2 3

3 2

4 3

Array of
pointers �

Exercise 7.3

Find the static linked list representation of each relation.

1. 1

2

1 2

3

5
56

3

2.

1
1

2

2

3
3

4

4

5

7

6

3–4. Find the adjacency list representation of the relations in Exercises 1
and 2.

Find the adjacency matrix of the relation with each adjacency list
representation.

5.
1 2

2 32

1 2 33

454 Chapter 7 Relations

6.
1 2 4

2

1 2 3

3 3

4

7–8. Draw the digraphs of the relations represented by the adjacency lists
in Exercises 5 and 6.

Find the adjacency list representation of the relation with the given
adjacency matrix.

1 2 3

9.
1
2
3

⎡
⎣0 1 0

1 0 1
0 1 1

⎤
⎦

1 2 3 4

10.

1
2
3
4

⎡
⎢⎢⎣

1 0 1 1
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

Write an algorithm to find the adjacency list representation of a relation R
on the set {1, 2, . . . , n} using:

11. The relation, given in terms of ordered pairs.

12. Its adjacency matrix A.

13. Write an algorithm to find the adjacency matrix A of a relation on the
set {1, 2, . . . , n} from its adjacency list representation.

7.4 Properties of Relations

Since relations on finite sets can be represented by matrices, their prop-
erties can be identified from their adjacency matrices. In this section we
will study the properties of reflexivity, symmetry, antisymmetry, and
transitivity.

To begin with, consider the relation R, is logically equivalent to, on the
set of propositions. Since every proposition is logically equivalent to itself,
it has the property that xRx for every proposition x. Such a relation is
reflexive.

7.4 Properties of Relations 455

Reflexive Relation
A relation R on a set A is reflexive if xRx for every element x in A, that is,
if xRx for every x ∈ A.

Since every set A is a subset of itself, the relation is a subset of on its
power set is reflexive. Similarly, the equality relation (=) is also reflexive;
it is denoted by 	. Thus, a relation is reflexive if and only if 	 ⊆ R.

The next two examples illustrate additional reflexive relations.

EXAMPLE 7.13 Since x ≤ x for every real number x, the relation ≤ on R is reflexive. No
number is less than itself, so the less than relation is not reflexive. �

EXAMPLE 7.14 Which of the following relations on A = {x, y, z} are reflexive?

• R1 = {(x, x), (x, y), (y, y), (z, z)}
• R3 = Ø [the empty relation]

• R2 = {(x, x), (y, y), (y, z), (z, y)}
• R4 = {(x, x), (y, y), (z, z)}

SOLUTION:
For a relation R on A to be reflexive, every element in A must be related to
itself, that is, (a, a) ∈ R for every a ∈ A. The element a has three choices,
namely, x, y, and z; therefore, the ordered pairs (x, x), (y, y), and (z, z) must
be in the relation for it to be reflexive. Consequently, the relations R1 and
R4 are reflexive, whereas R2 and R3 are not. �

How can we characterize the adjacency matrix M = (mij) of a reflexive
relation on the set A = {a1, a2, . . . an}? A relation R on A is reflexive if
and only if aiRai for every ai in A. Thus, R is reflexive if and only if
mii = 1 for every ij that is, if and only if the main diagonal elements of
MR are all 1’s, as Figure 7.16 shows.

Figure 7.16

MR =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

·
·

·
1

⎤
⎥⎥⎥⎥⎥⎥⎦

The digraph of a reflexive relation must contain a loop at each vertex,
since every element of A is related to itself; see Figure 7.16.

456 Chapter 7 Relations

Number of Reflexive Relations
We can use the adjacency matrix MR of a relation R on a set A to compute
the number of reflexive relations that can be defined on A, as the following
example demonstrates.

EXAMPLE 7.15 Find the number of reflexive relations R that can be defined on a set with
n elements.

SOLUTION:
Since R is reflexive, every element on the main diagonal of MR is 1; there are
n such elements. Since MR contains n2 elements, there are n2−n = n(n−1)
elements that do not lie on the main diagonal; each can be a 0 or 1; so each
such element mij has two choices. Thus, by the multiplication principle, we
can form 2n(n−1) such adjacency matrices, that is, 2n(n−1) reflexive relations
on A. �

For an exploration of symmetric and antisymmetric relations, again let R
be the relation, is logically equivalent to, on the set of propositions. If x and
y are any two propositions such that xRy, then yRx. Thus xRy implies yRx.

On the other hand, let x and y be any two real numbers such that x ≤ y
and y ≤ x. Then x = y. Thus the relation R(≤) has the property that if xRy
and yRx, then x = y.

These two examples lead us to the next definitions.

Symmetric and Antisymmetric Relations
A relation R on a set A is symmetric if aRb implies bRa; that is, if (a, b) ∈
R, then (b,a) ∈ R. It is antisymmetric if aRb and bRa imply a = b.

By the law of the contrapositive, the definition of antisymmetry can be
restated as follows: A relation R on A is antisymmetric if whenever a �= b,
either a�Rb or b�Ra, that is, ∼(aRb ∧ bRa). Thus R is antisymmetric if there
are no pairs of distinct elements a and b such that aRb and bRa.

The next three examples demonstrate symmetric and antisymmetric
relations.

EXAMPLE 7.16 Which of the following relations on {x, y, z} are symmetric? Antisymmetric?

• R1 = {(x, x), (y, y), (z, z)}
• R2 = {(x, y)}
• R3 = {(x, y), (y, x)}
• R4 = {(x, x), (x, z), (z, x), (y, z)}

SOLUTION:
The relations R1 and R3 are symmetric. R2 is not symmetric, since (y, x)
is not in R2. Similarly, R4 is not symmetric. R1 and R2 are antisymmetric,
but R3 and R4 are not. �

7.4 Properties of Relations 457

EXAMPLE 7.17 The relation is logically equivalent to on the set of propositions is symmet-
ric. Is it antisymmetric? Suppose p ≡ q and q ≡ p; this does not imply that
p = q, so the relation is not antisymmetric. �

EXAMPLE 7.18 The relation ≤ on R is not symmetric, since x ≤ y does not imply that y ≤ x.
If, however, x ≤ y and y ≤ x, then x = y, so the relation is antisymmetric.

�

These two examples demonstrate that a symmetric relation need not be
antisymmetric and vice versa.

As for the adjacency matrix of a symmetric relation, a relation R on
{a1, a2, . . . , an} is symmetric only if ai�Raj implies aj�Rai; that is, only
if, mij = mji. Thus, R is symmetric if and only if MR is symmetric; see
Figure 7.17.

Figure 7.17
�

�
�

�

MR =

⎡
⎢⎢⎣

0
0 1

1 0
0

⎤
⎥⎥⎦

Graphically, this means if a directed edge runs from ai to aj, then one
should run from aj to ai. In other words, every edge must be bidirectional.

For a relation R to be antisymmetric, if ai �= aj either ai�Raj or aj�Rai.
In other words, if i �= j and mij = 1, then mji = 0; that is, either mij = 0
or mji = 0; see Figure 7.18.

Figure 7.18
�

�
�

�

MR =

⎡
⎢⎢⎣

0
0 0

1 1
0

⎤
⎥⎥⎦

Geometrically, if a directed edge runs from ai to aj, one should not run
from aj to ai; that is, no edges are bidirectional.

EXAMPLE 7.19 Determine if the relation R on {a, b, c} defined by

MR =
⎡
⎣1 1 0

0 0 0
0 1 1

⎤
⎦

is antisymmetric.

458 Chapter 7 Relations

SOLUTION:
Consider the cases i �= j and mij = 1, where 1 ≤ i, j ≤ 3. Clearly, m12 =
1 �= 0 = m21 and m32 = 1 �= 0 = m23. Thus, when i �= j, either mij = 0 or
mji = 0. Therefore, the relation is antisymmetric; see Figure 7.19. (Notice
that m11 = m33 = 1 and m22 = 0, but this does not violate the condition
for antisymmetry.)

Figure 7.19 a b

c �

Number of Symmetric Relations
Again, the adjacency matrix of a relation on a set A can be effectively used
to determine the number of symmetric relations that can be defined on A.
The following example demonstrates this.

EXAMPLE 7.20 Find the number of symmetric relations that can be defined on a set with
n elements.

SOLUTION:
Let R be a relation on the set and let MR = (mij)n×n. Then mij = 1 if and
only if mji = 1 for every i and j. So each element mij below the main diag-
onal determines uniquely the corresponding element mji above the main
diagonal; in other words, each mji has one choice (see Figure 7.20).

Figure 7.20
�

�
�

�
�

�
�

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
1 . . . 1

·
·

1 1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 7.21

Each element has two
choices.

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎣

. 1 1 . . . 1

. . 1 . . . 1

. . . .

. . . .
1

.

⎤
⎥⎥⎥⎥⎥⎥⎦

Now, each element on or below the main diagonal has two choices: 0 or
1 (see Figure 7.21). There are 1 + 2 + · · · + n = n(n + 1)/2 such elements.
So, by the multiplication principle, the number of such adjacency matrices
equals 2n(n+1)/2; that is, we can define 2n(n+1)/2 symmetric relations on the
set. �

7.4 Properties of Relations 459

Notice that the less-than relation on R has the property that if x < y and
y < z, then x < z. Accordingly, the order relation < is said to be transitive.

More generally, we make the following definition.

Transitive Relation
A relation R on A is transitive if aRb and bRc imply aRc; that is, whenever
a is related to b and b is related to c, a is related to c.

The next three examples illuminate this definition.

EXAMPLE 7.21 Once again, consider the relation is logically equivalent to on the set of
propositions. If p ≡ q and q ≡ r, then p ≡ r, so the relation ≡ is transitive.

�

EXAMPLE 7.22 Let A be the set of courses offered by a mathematics department. Define a
relation R on A as follows: xRy if course x is a prerequisite for course y. The
relation R is transitive (Why?). (R is the precedence relation.) �

Determining if a relation R is transitive can be time-consuming, espe-
cially if the relation contains many elements. We must look at all possible
ordered pairs of the form (a,b) and (b,c), then ascertain if the element
(a,c) is also in R, as the next example illustrates.

EXAMPLE 7.23 Which of the following relations on {a, b, c} are transitive?

• R1 = {(a, b), (b, c), (a, c)} • R3 = {(a, a), (b, b), (c, c)}
• R2 = {(a, a), (a, b), (a, c), (b, a), (b, c)} • R4 = {(a, b)}

SOLUTION:
The relation R1 is transitive; so are R3 and R4 by default. In relation R2,
(b, a) ∈ R2 and (a, b) ∈ R2, but (b, b) /∈ R2. So, R2 is not transitive. �

As for the digraph of a transitive relation R, whenever there is a directed
edge from a to b and one from b to c, one also runs from a to c.

Transitive relations are explored further in Section 7.7.

Exercises 7.4

Determine if the given relation on {a, b, c, d} is reflexive, symmetric,
antisymmetric, or transitive.

1. {(a, a), (b, b)}
3. Ø

2. {(a, a), (a, b), (b, b), (c, c), (d, d)}
4. {(a, b), (a, c), (b, c)}

460 Chapter 7 Relations

Is the relation has the same color hair as on the set of people:

5. Reflexive?

7. Antisymmetric?

6. Symmetric?

8. Transitive?

9–12. Redo Exercises 5–8 using the relation lives within 5 miles of on the
set of people.

13–16. Let �n denote the set of n-bit words. Define a relation R on �n as
xRy if the Hamming distance between x and y is one. Redo Exercises
5–8 using the relation R.

In Exercises 17–19, the adjacency matrices of three relations on {a, b, c} are
given. Determine if each relation is reflexive, symmetric, or antisymmetric.

17.

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ 18.

⎡
⎣0 1 1

1 0 1
1 0 0

⎤
⎦ 19.

⎡
⎣1 0 0

1 1 0
0 1 1

⎤
⎦

When is a relation on a set A not:

20. Reflexive? 21. Symmetric? 22. Transitive?

Give an example of a relation on {a, b, c} that is:

23. Reflexive, symmetric, and transitive.

24. Reflexive, symmetric, but not transitive.

25. Reflexive, transitive, but not symmetric.

26. Symmetric, transitive, but not reflexive.

27. Reflexive, but neither symmetric nor transitive.

28. Symmetric, but neither transitive nor reflexive.

29. Transitive, but neither reflexive nor symmetric.

30. Neither reflexive, symmetric, nor transitive.

31. Symmetric, but not antisymmetric.

32. Antisymmetric, but not symmetric.

33. Symmetric and antisymmetric.

34. Neither symmetric nor antisymmetric.

In Exercise 35–38, complete each adjacency matrix of a relation on {a, b, c}
in such a way that the relation has the given property.

35.

⎡
⎣− 1 0

0 − 1
1 0 −

⎤
⎦ , reflexive 36.

⎡
⎣1 − 0

1 0 1
− − 1

⎤
⎦ , symmetric

7.5 Operations on Relations 461

37.

⎡
⎣0 − 1

1 1 −
− 1 0

⎤
⎦ , antisymmetric 38.

⎡
⎣− 1 −
− 1 1
1 − −

⎤
⎦ , transitive

39. When will a relation R on a set A be both symmetric and anti-
symmetric?

A relation R on a set A is irreflexive if no element of A is related to itself,
that is, if (a,a) /∈ R for every a ∈ A. Determine if each relation is irreflexive.

40. The less-than relation on R. 41. The relation is a factor of on N.

42. The relation is a parent of on the set of people.

Determine if each relation on {a, b, c} is irreflexive.

43. {(a, a)}
45. {(b, a), (c, a)}

44. {(a, b), (b, b), (a, c)}
46. Ø

Characterize each for an irreflexive relation on a finite set:

47. Its adjacency matrix. 48. Its digraph.

A relation R on a set A is asymmetric if whenever aRb, b�Ra. Determine
if each relation is asymmetric.

49–51. The relations in Exercises 40–42.

52. {(a, a), (b, b), (c, c)} on {a, b, c} 53. {(a, b), (a, c), (b, b)} on {a, b, c}
54. {(a, b), (b, c), (c, a)} on {a, b, c}

For an asymmetric relation on a finite set, characterize:

55. Its adjacency matrix. 56. Its digraph.

Find the number of binary relations that can be defined on a set of two
elements that are:

*57. Reflexive. *58. Symmetric.

*59. Reflexive and symmetric. *60. Antisymmetric.

*61. Irreflexive. *62. Asymmetric.

*63. Prove: A relation R on a finite set is transitive if M[2]
R ≤ MR, where

(aij) ≤ (bij) means aij ≤ bij for every i and j.

7.5 Operations on Relations

Just as sets can be combined to construct new sets, relations can be com-
bined to produce new relations. This section presents five such operations,
three of which are analogous to the set operations of union, intersection,
and complementation.

462 Chapter 7 Relations

Union and Intersection
Let R and S be any two relations from A to B. Their union and intersec-
tion, denoted by R ∪ S and R ∩ S, respectively, are defined as R ∪ S =
{(a, b) | aRb ∨ aSb} and R ∩ S = {(a, b) | aRb ∧ aSb}. Thus a(R ∪ S)b if aRb
or aSb. Likewise, a(R ∩ S)b if aRb and aSb.

The next two examples illustrate these definitions.

EXAMPLE 7.24 Consider the relations R = {(a, a), (a, b), (b, c)} and S = {(a, a), (a, c), (b, b),
(b, c), (c, c)} on {a, b, c} (see Figures 7.22 and 7.23). Then R ∪ S = {(a, a),
(a, b), (a, c), (b, b), (b, c), (c, c)} and R ∩ S = {(a, a), (b, c)}.

Figure 7.22

Digraph of R.

a

b

c

Figure 7.23

Digraph of S.

a

b

c

Figure 7.24

Digraph of R ∪ S.

a

b

c

Figure 7.25

Digraph of R ∩ S.

a

b

c

Graphically, R ∪ S consists of all edges in R together with those in
S (see Figure 7.24), whereas R ∩ S consists of all common edges (see
Figure 7.25). �

7.5 Operations on Relations 463

EXAMPLE 7.25 Let R and S be the relations ≤ and ≥ on R, respectively. Then R∪S consists
of all possible ordered pairs R × R and R ∩ S is the equality relation. �

We can use the adjacency matrices of relations R and S to find those of
their union and intersection. By definition, an entry in MR∪S is 1 if and
only if the corresponding element of MR or MS is 1; that is, if and only if
the corresponding element of their join, MR ∨ MS, is 1. Since MR∪S and
MR ∨ MS are of the same size, MR∪S = MR ∨ MS. Similarly, an element
of MR∩S is 1 if and only if the corresponding element of MR ∧ MS is 1, so
MR∩S = MR ∧ MS.

Theorem 7.3 summarizes these conclusions. We leave a formal proof as
an exercise (see Exercise 62).

THEOREM 7.3 Let R and S be relations on a finite set. Then MR∪S = MR∨MS and MR∩S =
MR ∧ MS. �

The following example illustrates this theorem.

EXAMPLE 7.26 Using the adjacency matrices of the relations R and S in Example 7.24 find
MR∪S = MR ∨ MS and MR∩S = MR ∧ MS.

SOLUTION:
We have

MR =
⎡
⎣1 1 0

0 0 1
0 0 0

⎤
⎦ and MS =

⎡
⎣1 0 1

0 1 1
0 0 1

⎤
⎦

By Theorem 7.3,

MR∪S = MR ∨ MS =
⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦ and MR∩S = MR ∧ MS =

⎡
⎣1 0 0

0 0 1
0 0 0

⎤
⎦

These matrices can recover the actual elements of R∪S and R∩S obtained
in Example 7.24. �

Another way to combine two relations is quite similar to the composition
of functions we studied in Section 3.5.

Composition of Relations
Let R be a relation from A to B, and S a relation from B to C. The compo-
sition of R and S, denoted by R � S, is defined as follows. Let a ∈ A and
c ∈ C. Then a(R � S)c if there exists an element b in B such that aRb and
bSc, as in Figure 7.26.

464 Chapter 7 Relations

Figure 7.26

a b c

R�S

R S

A B C

The next example illustrates this definition.

EXAMPLE 7.27 Let A = {a, b, c}, B = {1, 2, 3, 4}, and C = {w, x, y, z}. Using the relations
R = {(a, 1), (a, 3), (b, 2)} from A to B and S = {(1, x), (1, y), (2, w), (2, z), (4, y)}
from B to C (see Figure 7.27), find R � S.

SOLUTION:
Since aR1 and 1Sx, a(R�S)x. Similarly, a(R�S)y, b(R�S)w, and b(R�S)z.
Thus, R � S = {(a, x), (a, y), (b, w), (b, z)}.

Pictorially, all we need to do is simply follow the arrows from A to C in
the figure. (Try this approach.)

Figure 7.27 R�S

R S

A B C

a
b
c

1
2
3
4

w
x
y
z

�

Databases
The next example gives an interesting application of the composition
operation to the theory of databases.

EXAMPLE 7.28 Suppose a database consists of two files F1 and F2, given by Tables 7.2
and 7.3, respectively. File F1 can be considered a relation from the set
of names to the set of telephone numbers and file F2 a relation from the
set of telephone numbers to the set of telephone bills. Then F1 � F2 is
a relation from the set of names to the set of telephone bills. In other
words, F1 � F2 is a file of names and their corresponding telephone bills
(see Table 7.4).

7.5 Operations on Relations 465

Table 7.2
Name Telephone number

Hall 123-4567
Berkowitz 225-5061
Chand 124-3987
Benson 239-3883
Scott 534-3434
Abrams 345-5678

Table 7.3
Telephone number Bill

123-4567 39.45
123-0011 25.00
243-1111 47.50
124-3987 23.35
124-8958 73.30
534-3434 95.65
345-5678 51.95
128-9876 64.85

Table 7.4
Name Bill

Hall 39.45
Chand 23.15
Scott 95.65
Abrams 51.95

The adjacency matrices of the relations R, S, and R � S display an
intriguing connection. To see this, from Example 7.27, we have:

MR =
⎡
⎣1 0 1 0

0 1 0 0
0 0 0 0

⎤
⎦ MS =

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , and

MR�S =
⎡
⎣0 1 1 0

1 0 0 1
0 0 0 0

⎤
⎦

466 Chapter 7 Relations

Then

MR � MS =
⎡
⎣1 0 1 0

0 1 0 0
0 0 0 0

⎤
⎦�

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦

=
⎡
⎣0 1 1 0

1 0 0 1
0 0 0 0

⎤
⎦ = MR�S

�

More generally, we have the following result.

THEOREM 7.4 Let A, B, and C be finite sets. Let R be a relation from A to B, and S a relation
from B to C. Then MR�S = MR � MS.

PROOF:
Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn}, and C = {c1, c2, . . . , cp}. Then
the matrices MR, MS, MR�S, and MR � MS are of sizes m × n, n × p, m × p,
and m × p, respectively.

Let MR�S = (xij) and MR � MS = (yij). Then xij = 1 if and only if
ai(R � S)cj. But ai(R � S)cj if and only if aiRbk and bkScj for some bk in B.
Thus, xij = 1 if and only if yij = 1, so xij = yij for every i and j. Consequently,
MR�S = MR � MS. �

The definition of composition can be extended to a finite number of
relations. Accordingly, we now define the nth power of a relation using
recursion.

Recursive Definition of Rn

Let R be a relation on a set A. The nth power of R, denoted by Rn, is
defined recursively as

Rn =
{

R if n = 1

Rn−1 � R otherwise

Geometrically, Rn consists of the endpoints of all possible paths of length
n. Thus aRnb if a path of length n exists from a to b.

The next two examples illuminate this definition

7.5 Operations on Relations 467

EXAMPLE 7.29 Using the relation R = {(a, b), (b, b), (c, a), (c, c)} on {a, b, c}, find R2 and R3.

SOLUTION:

• R2 = R � R = {(a, b), (b, b), (c, a), (c, b), (c, c)}
• R3 = R2 � R = {(a, b), (b, b), (c, a), (c, b), (c, c)} = R2

The digraphs of the relations R and R2 are displayed in Figures 7.28 and
7.29, respectively.

Figure 7.28

Digraph of R.
b

a c

Figure 7.29

Digraph of R2 = R3.
b

a c
�

EXAMPLE 7.30 Define a relation R on the set of all U.S. cities as follows: xRy if there is
a direct flight from city x to city y. Then xR2y if there is a direct flight
from city x to some city z and a direct flight from city z to city y. Thus R2

consists of the endpoints of all airline routes in R passing through exactly
one city. More generally, Rn consists of the endpoints of all airline routes
in R passing through exactly n − 1 cities. �

Let R be a relation on a finite set. Then, by Theorem 7.4, MR�R =
MR � MR; that is, MR2 = (MR)[2].

More generally, we have the following result.

THEOREM 7.5 Let R be a relation on a finite set and n any positive integer. Then MRn =
(MR)[n]. �

EXAMPLE 7.31 For the relation R in Example 7.29, find MR2 and MR3 .

SOLUTION:
Notice that

MR =
⎡
⎣0 1 0

0 1 0
1 0 1

⎤
⎦

468 Chapter 7 Relations

MR2 = (MR)[2] =
⎡
⎣0 1 0

0 1 0
1 0 1

⎤
⎦�

⎡
⎣0 1 0

0 1 0
1 0 1

⎤
⎦ =

⎡
⎣0 1 0

0 1 0
1 1 1

⎤
⎦

MR3 = (MR)[3] = M[2]
R � MR

=
⎡
⎣0 1 0

0 1 0
1 1 1

⎤
⎦�

⎡
⎣0 1 0

0 1 0
1 0 1

⎤
⎦ =

⎡
⎣0 1 0

0 1 0
1 1 1

⎤
⎦

Notice that MR2 and MR3 are the adjacency matrices of the relations R2

and R3, obtained in Example 7.29. �
The next theorem tells us more about powers of transitive relations, and

we will use it in Section 7.7.

THEOREM 7.6 Let R be a transitive relation on a set A. Then Rn ⊆ R for every positive
integer n.

PROOF (by PMI):
When n = 1, R1 ⊆ R, which is true. Suppose Rk ⊆ R for an arbitrary
positive integer k.

To show that Rk+1 ⊆ R:
Let (x, y) ∈ Rk+1. Since Rk+1 = Rk � R, (x, y) ∈ Rk � R. Then, by defi-

nition, there is a z in A such that (x, z) ∈ Rk and (z, y) ∈ R. But Rk ⊆ R,
by the inductive hypothesis. Consequently, (x, z) ∈ R. Thus (x, z) ∈ R and
(z, y) ∈ R, so (x, y) ∈ R by transitivity. Thus Rk+1 ⊆ R.

Thus, by induction, Rn ⊆ R for every n ≥ 1. �

We conclude this section with an example to illustrate this theorem.

EXAMPLE 7.32 Notice that the relation R ={(a, a), (a, b), (a, c), (b, c)} on {a, b, c} (see
Figure 7.30) is transitive. You may verify that:

R2 = R � R = {(a, a), (a, b), (a, c)} ⊆ R

R3 = R2 � R = {(a, a), (a, b), (a, c)} ⊆ R

R4 = R3 � R = {(a, a), (a, b), (a, c)} ⊆ R

(In fact, Rn = R2 for every integer n ≥ 2, so Rn ⊆ R for every n ≥ 1. See
Exercise 7.38.)

Figure 7.30

Digraph of R. a

b

c
�

7.5 Operations on Relations 469

Exercises 7.5

1. Using the relations R = {(a, b), (a, c), (b, b), (b, c)} and S = {(a, a), (a, b),
(b, b), (c, a)} on {a, b, c}, find R ∪ S and R ∩ S.

2. Redo Exercise 1 using the relations R = {(a, a), (a, b), (b, c), (b, d)} and
S = {(a, b), (b, b), (b, c), (c, a), (d, a)} on {a, b, c, d}.

3. Let R and S be the relations < and = on R, respectively. Identify R∪S
and R ∩ S.

4. With the adjacency matrices of the relations R and S in Exercise 1, find
those of the relations R ∪ S and R ∩ S.

5. Redo Exercise 4 using the relations in Exercise 2.

Using the relations R = {(a, a), (a, b), (b, c), (c, c)} and S = {(a, a), (b, b), (b, c),
(c, a)} on {a, b, c}, find each.

6. R � S 7. S � R 8. R2 9. R3

Let R be a relation from {a, b, c} to {1, 2, 3, 4} and S a relation from {1, 2, 3, 4}
to {x, y, z}. Find R � S in each case.

10. R = {(a, 2), (a, 3), (b, 1), (c, 4)} and S = {(1, x), (2, y), (4, y), (3, z)}
11. R = {(a, 1), (b, 2), (c, 1)} and S = {(3, x), (3, y), (4, z)}
Using the following adjacency matrices of relations R and S on {a, b, c}, find
the adjacency matrices in Exercises 12–19.

MR =
⎡
⎣1 0 1

0 1 0
0 1 1

⎤
⎦ MS =

⎡
⎣0 1 1

0 0 0
1 0 1

⎤
⎦

12. MR�S 13. MS�R 14. MR4 15. (MR)[4]

16. Define a relation R on the set of U.S. cities as follows: xRy if a
direct communication link exists from city x to city y. How would you
interpret R2? Rn?

17. Redo Exercise 16 using the relation R on the set of all countries in
the world, defined as follows: xRy if country x can communicate with
country y directly.

The complement and inverse of a relation R from a set A to a set
B, denoted by R′ and R−1 respectively, are defined as follows: R′ =
{(a, b) | a�Rb} and R−1 = {(a, b) | bRa}. So R′ consists of all elements in
A × B that are not in R, whereas R−1 consists of all elements (a, b),
where (b, a) ∈ R. Using the relations R = {(a, a), (a, b), (b, c), (c, c)} and
S = {(a, a), (b, b), (b, c), (c, a)} on {a, b, c}, find each.

470 Chapter 7 Relations

18. R′ 19. R−1 20. MR1 21. (MR)′

22. MR−1 23. (MR)T 24. MS1 25. (MS)T

Using the relations R = {(a, 1), (b, 2), (b, 3)} and S = {(a, 2), (b, 1), (b, 2)}
from {a, b} to {1, 2, 3}, find each.

26. R′ 27. R−1 28. (R′)′ 29. (R−1)−1

30. R′ ∩ S′ 31. (R ∩ S)′ 32. R′ ∪ S′ 33. (R ∪ S)′

34. (R ∪ S)−1 35. R−1 ∪ S−1 36. R−1 ∩ S−1 37. (R ∩ S)−1

38. For the relation R in Example 7.32, prove that Rn = R2 for every n ≥ 2.

Let R and S be relations on a finite set. Prove each.

39. MR = (MR1) 40. MR−1 = (MR)T

Let R and S be relations from A to B. Prove each.

41. (R−1)−1 = R 42. If R ⊆ S, then S′ ⊆ R′

43. If R ⊆ S, then R−1 ⊆ S−1 44. (R ∪ S)′ = R′ ∩ S′

45. (R ∩ S)′ = R′ ∪ S′ 46. (R ∪ S)−1 = R−1 ∪ S−1

47. (R ∩ S)−1 = R−1 ∩ S−1

Let R and S be relations on a set. Prove each.

48. R is reflexive if and only if R−1 is reflexive.

49. R is symmetric if and only if R′ is symmetric.

50. R is symmetric if and only if R−1 is symmetric.

51. R is symmetric if and only if R−1 = R.

52. If R and S are symmetric, R ∪ S is symmetric.

53. If R and S are symmetric, R ∩ S is symmetric.

54. If R and S are transitive, R ∩ S is transitive.

55. Disprove: The union of two transitive relations on a set is transitive.

56. Let A, B, C, and D be any sets, R a relation from A to B, S a relation from
B to C, and T a relation from C to D. Prove that R�(S�T) = (R�S)�T.
(associative property)

Let R and S be two relations from A to B, where |A| = m and |B| = n. Using
their adjacency matrices, write an algorithm to find the adjacency matrix
of each relation.

57. R ∪ S 58. R ∩ S 59. R′ 60. R−1

61. Let X = (xij) be the adjacency matrix of a relation R from A to B
and Y = (yij) that of a relation S from B to C, where |A| = m, |B| = n,

7.6 The Connectivity Relation (optional) 471

and |C| = p. Write an algorithm to find the adjacency matrix Z = (zij)
of the relation R � S.

*62. Prove Theorem 7.3.

7.6 The Connectivity Relation (optional)

We can use the various powers Rn of a relation R to construct a new relation,
called the connectivity relation. This section defines that new relation and
then shows how to compute it.

Connectivity Relation
Let R be a relation on a set A. The connectivity relation of R, denoted
by R∞, is the union of all powers of R:

R∞ = R ∪ R2 ∪ R3 ∪ R4 ∪ . . . ∪ Rn ∪ . . .

=
∞⋃

n=1

Rn

So MR∞ = MR ∨ MR2 ∨ MR3 ∨ . . .

Geometrically, aR∞b if there is a path of some length n from a to b. The
connectivity relation consists of the endpoints of all possible paths in R.

The next two examples show how to find R∞.

EXAMPLE 7.33 Find the connectivity relation R∞ of the relation R = {(a, a), (a, b), (a, c),
(b, c)} on {a, b, c}.
SOLUTION:
From Example 7.32, Rn = R2 for every integer n ≥ 2. So

R∞ = R ∪ R2 ∪ R3 ∪ R4 ∪ . . .

= R ∪ R2

= {(a, a), (a, b), (a, c), (b, c)} �

EXAMPLE 7.34 Find the connectivity relation R∞ of the relation R = {(a, b), (b, a), (b, b),
(c, b)} on {a, b, c}.

472 Chapter 7 Relations

SOLUTION:
R2 = R � R = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} (see Figures 7.31
and 7.32.).

Figure 7.31

Digraph of R.

a

c

b

Figure 7.32

Digraph of R2.
a

c

b

R3 = R2 � R = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} = R2

R4 = R3 � R = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} = R2

In fact Rn = R2 for every n ≥ 2. Thus,

R∞ = R ∪ R2 = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)} �

We can also determine connectivity using the adjacency matrix of a
relation.

EXAMPLE 7.35 Using the adjacency matrix of the relation R in Example 7.34, find its
connectivity relation.

SOLUTION:
Since R = {(a, b), (b, a), (b, b), (c, b)},

MR =
⎡
⎣0 1 0

1 1 0
0 1 0

⎤
⎦ MR2 = MR � MR =

⎡
⎣1 1 0

1 1 0
1 1 0

⎤
⎦

MR3 = MR2 � MR =
⎡
⎣1 1 0

1 1 0
1 1 0

⎤
⎦ MR4 = MR3 � MR =

⎡
⎣1 1 0

1 1 0
1 1 0

⎤
⎦

7.6 The Connectivity Relation (optional) 473

Then

MR∞ = MR ∨ MR2 ∨ MR3 ∨ . . .

= MR ∨ MR2

=
⎡
⎣1 1 0

1 1 0
1 1 0

⎤
⎦ (Verify this.)

Thus R∞ = {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}, as in Example 7.34. �
Theorem 7.7 comes in handy when computing R∞. With the theorem,

only the first n powers of R are needed to compute it, where n = |A|.
THEOREM 7.7 Let R be a relation on a set with size n. Then

R∞ = R ∪ R2 ∪ R3 ∪ . . . ∪ Rn

MR∞ = MR ∨ MR2 ∨ MR3 ∨ . . . ∨ MRn

= MR ∨ (MR)[2] ∨ (MR)[3] ∨ . . . ∨ (MR)[n] �

The next example illustrates this theorem.

EXAMPLE 7.36 Find R∞ of the relation R on {a, b, c, d} defined by

MR =

⎡
⎢⎢⎣

0 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦

SOLUTION:

MR2 = MR � MR =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ MR3 = MR2 � MR =

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 0
1 0 1 0

⎤
⎥⎥⎦

MR4 = MR3 � MR =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦

474 Chapter 7 Relations

By Theorem 7.7,

MR∞ = MR ∨ MR2 ∨ MR3 ∨ MR4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

Thus R∞ = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b),
(c, c), (c, d), (d, a), (d, b), (d, c), (d, d)}. (You may verify this using the digraph
of R.) �

We can use Theorem 7.7 to develop an algorithm for computing MR∞ ,
which yields the connectivity relation of a relation R. It is given in
Algorithm 7.1.

Algorithm Connectivity Relation (MR,MR∞)
(* This algorithm uses the adjacency matrix MR of a relation R on a set

with size n and computes that of its connectivity relation, using
Theorem 7.7. *)

0. Begin (* algorithm *)
(* Initialize MR∞ and B, where B denotes the ith boolean

power of MR. *)
1. MR∞ ← MR

B ← MR
2. for i = 2 to n do (* find the ith boolean power of MR*)
3. begin (* for *)
4. B ← B � MR
5. MR∞ ← MR∞ ∨ B (* update MR *)
6. endfor (* for *)
7. End (* algorithm *)

Algorithm 7.1

We close this section with an analysis of the complexity of this algorithm.
Let bn denote the number of boolean operations needed to compute R∞.
Each element in line 4 takes n meets and n − 1 joins, a total of 2n − 1
operations. Since the product contains n2 elements, the total number of
bit-operations in line 4 is (2n − 1)n2. The join of the two n × n matrices
in line 5 takes n2 boolean operations. Since the for loop is executed n − 1
times, the total number of boolean operations is given by

bn = (n − 1)[(2n − 1)n2 + n2]
= 2(n − 1)n3

= �(n4)

Thus the connectivity algorithm takes �(n4) = bit operations.

7.7 Transitive Closure (optional) 475

Exercises 7.6

Find the connectivity relation of each relation on {a, b, c}.
1. {(a, a)}
4. {(a, a), (a, b), (c, a)}

2. {(a, a), (b, b)}
5. Ø

3. {(a, a), (b, b), (c, c)}
6. {(a, b), (a, c), (b, a), (c, a)}

Find the connectivity relation of the relation on {a, b, c} with each adjacency
matrix.

7.

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ 8.

⎡
⎣1 1 0

0 1 1
1 0 1

⎤
⎦ 9.

⎡
⎣1 0 1

1 1 1
1 1 0

⎤
⎦

Find the connectivity relation of the relation on {a, b, c, d} with each
adjacency matrix.

10.

⎡
⎢⎢⎣

0 1 1 0
0 0 0 1
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦ 11.

⎡
⎢⎢⎣

0 1 0 1
0 0 1 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ 12.

⎡
⎢⎢⎣

1 0 0 0
0 1 1 0
0 0 1 1
1 0 0 0

⎤
⎥⎥⎦

*7.7 Transitive Closure (optional)

The connectivity relation of a relation R is closely associated with its
transitive closure. First, we define the closure of R.

A relation R may not have a desired property, such as reflexivity, sym-
metry, or transitivity. Suppose it is possible to find a relation containing R
and having the desired property. The smallest such relation is the closure
of R with respect to the property. Accordingly, we make the next definition.

Transitive Closure
Suppose a relation R on A is not transitive. The smallest transitive relation
that contains R is the transitive closure of R, denoted by R∗.

How do we find R∗? If R is not transitive, it should have ordered pairs
(a, b) and (b, c) such that (a, c) �∈ R; so add (a, c) to R. We can continue
this with every such pair in the new relation. The resulting relation is
transitive, the transitive closure of R.

The next example illustrates this method.

476 Chapter 7 Relations

EXAMPLE 7.37 Find the transitive closures of the relations R = {(a, b), (b, a), (b, c)}, S =
{(a, a), (b, b), (c, c)}, and T = Ø on {a, b, c}.
SOLUTION:

• R = {(a, b), (b, c), (b, a)}. Since (a, b) ∈ R and (b, c) ∈ R, it needs (a, c)
to be transitive. So add (a, c) to R. The new relation is R1 =
{(a, b), (a, c), (b, c), (b, a)}. It contains both (a, b) and (b, a), but not (a, a)
or (b, b). Add them to R1: R2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c)}.
It is transitive and contains R, so it is the transitive closure of R.

• The relation S is transitive, by default, so S∗ = S.

• The transitive closure of Ø is itself. �

The transitive closure R∗ of the relation R in Example 7.37 has practi-
cal applications. Suppose the relation indicates the communication links
in a network of computers a, b, and c, as in Figure 7.33. The transitive
closure R∗ shows the possible ways one computer can communicate with
another, perhaps through intermediaries. For instance, computer a cannot
communicate directly with c, but it can through b. Figure 7.34 displays the
transitive closure R∗.

Figure 7.33

Digraph of R.

a c

b

Figure 7.34

Digraph of R.∗

a c

b

The close link between the transitive closure of a relation and its
connectivity relation can be illustrated as follows.

THEOREM 7.8 The connectivity relation R∞ of a relation R is its transitive closure R∗.

PROOF:
The proof unfolds in two parts. First, we must show that R∞ is transitive
and then show it is the smallest transitive relation containing R.

• To prove that R∞is transitive: Let (a, b) ∈ R∞ and (b, c) ∈ R∞. Since
(a, b) ∈ R∞, a path runs from a to b. Similarly, one runs from b to c.

7.7 Transitive Closure (optional) 477

Combining these two paths produces a path from a to c. So (a, c) ∈ R∞
and R∞ is transitive.

• To prove that R∞ is the smallest transitive relation containing R:
Suppose there is a transitive relation S such that R ⊆ S ⊆ R∞. We
will show that S = R∞. Since S is transitive, by Theorem 7.6, Sn ⊆ S
for every n ≥ 1. So

S∞ = ∪∞
n=1

Sn ⊆ S

Thus

S∞ ⊆ S

By assumption, R ⊆ S; so R∞ ⊆ S∞, since every path in R is also a path
in S. Therefore, R∞ ⊆ S.

Consequently, S ⊆ R∞ and R∞ ⊆ S. Therefore, S = R∞. In other
words, there are no transitive relations in between R and R∞. So R∞ is the
smallest transitive relation containing R. �

It follows by Theorems 7.7 and 7.8 that

R∗ = R ∪ R2 ∪ · · · ∪ Rn

and hence

MR∞ = MR ∨ MR2 ∨ · · · ∨ MRn

To illustrate this, using Example 7.36, the transitive closure of the rela-
tion R = {(a, b), (b, a), (b, c), (c, d), (d, a)} on {a, b, c, d} is R∗ = R∞ = {(a, a),
(a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b),
(d, c), (d, d)}.

Since R∞ = R∗, the connectivity relation algorithm can be used to com-
pute MR∗ , but it is not efficient, especially when MR∗ is fairly large. A better
method to find R∗ is Warshall’s algorithm, named in honor of Stephen
Warshall, who invented it in 1962.

Warshall’s Algorithm
Let a-x1-x2- · · · -xm-b be a path in a relation R on a set A = {a1, a2, . . . , an}.
The vertices x1, x2, . . . , xm are the interior points of the path. For instance,
vertices c and d are the interior points on the path a-c-d-b of the digraph
in Figure 7.5.

The essence of Warshall’s algorithm lies in constructing a sequence of
n boolean matrices W1, . . . , Wn, beginning with W0 = MR. Let Wk = (wij),
where 1 ≤ k ≤ n. Define wij = 1 if a path runs from ai to aj in R whose
interior vertices, if any, belong to the set {a1, a2, . . . , ak}. Since the ijth

478 Chapter 7 Relations

element of Wn equals 1 if and only if a path exists from ai to aj whose
interior points belong to the set {a1, a2, . . . , an}, Wn = WR∗.

In fact, the matrix Wk = (wij) can be constructed from its predecessor
Wk−1 = (vij) as follows. When can wij = 1? For wij = 1, there must be a
path from ai to aj whose interior vertices belong to the set {a1, a2, . . . , ak}.
Case 1 If ak is not an interior vertex, all interior vertices must belong to
the set {a1, a2, . . . , ak−1}, so vij = 1.

Case 2 Suppose ak is an interior vertex (see Figure 7.35). If a cycle exists
at ak, eliminate it to yield a shorter path. (This guarantees that the vertex
ak occurs exactly once in the path.) Therefore, all interior vertices of the
paths ai- · · · -ak and ak- · · · -aj belong to the set {a1, a2, . . . ak−1}. In other
words, vik = 1 and vkj = 1.

Figure 7.35

ai

ak

aj

Consequently, wij = 1 only if vij = 1, or vik = 1 and vkj = 1. This is the
crux of Warshall’s algorithm. Thus the ijth element of Wk is 1 if:

• The corresponding element of Wk−1 is 1 or

• Both the ikth element and the kjth element of Wk−1 are 1; that is, the
ith element in column k of Wk−1 and the jth element in row k of Wk−1
are 1.

Use this property to construct W1 from W0 = MR, W2 from W1, . . ., and
Wn from Wn−1. Since Wn = MR∗ , the actual elements of R∗ can be read
from Wn.

The next two examples clarify this algorithm.

EXAMPLE 7.38 Using Warshall’s algorithm, find the transitive closure of the relation
R ={(a, b), (b, a), (b, c)} on A = {a, b, c}.
SOLUTION:
Step 1 Find W0.

W0 = MR =
⎡
⎣0 1 0

1 0 1
0 0 0

⎤
⎦

Step 2 Find W1.
If the ijth element of W0 is 1, the ijth element of W1 is also 1. In other
words, every 1 in W0 stays in W1. To find the remaining 1’s in W1, locate

7.7 Transitive Closure (optional) 479

the 1’s in column 1(= k); there is just one 1; it occurs in position i = 2. Now
locate the 1’s in row 1(= k). Again, there is just one 1, namely, in position
j = 2. Therefore, the ijth entry in W1 should be 1, where i = 2 and j = 2.
Thus

W1 =
⎡
⎣0 1 0

1 1 1
0 0 0

⎤
⎦

Step 3 Find W2.
Again, all the 1’s in W1 stay in W2. To find the other 1’s, if any, locate the
1’s in column 2(= k) and row 2(= k). They occur in positions 1 and 2 of
column 2 and in positions 1, 2, and 3 of row 2, so the ijth entry of W2 must
be 1, where i = 1, 2 and j = 1, 2, 3. So change the 0’s in such locations of
W1 to 1’s. Thus

W2 =
⎡
⎣1 1 1

1 1 1
0 0 0

⎤
⎦

Step 4 Find W3.
All the 1’s in W2 remain in W3. To find the remaining 1’s, if any, locate the
1’s in column 3 — namely, positions 1 and 2 — and the 1’s in row 3. Because
no 1’s appear in row 3, we get no new 1’s, so W3 = W2.

Since A contains three elements, WR∗ = W3. Thus,

WR∗ =
⎡
⎣1 1 1

1 1 1
0 0 0

⎤
⎦

which agrees with the transitive closure obtained in Example 7.37. �

EXAMPLE 7.39 Using Warshall’s algorithm, find the transitive closure of the relation
R ={(a, a), (a, b), (a, d), (b, a), (c, b), (c, c), (d, b), (d, c), (d, d)} on {a, b, c, d}.
SOLUTION:
Step 1 Find W0.

W0 = MR =

⎡
⎢⎢⎣

1 1 0 1
1 0 0 0
0 1 1 0
0 1 1 1

⎤
⎥⎥⎦

480 Chapter 7 Relations

Step 2 Find W1.
Locate the 1’s in column 1 and row 1; positions 1 and 2 in column 1; and
positions 1, 2, and 4 in row 1. Therefore, W1 should contain a 1 in locations
(1,1), (1,2), (1,4), (2,1), (2,2), and (2,4):

W1 =

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
0 1 1 0
0 1 1 1

⎤
⎥⎥⎦

(All the 1’s in W0 remain in W1.)

Step 3 Find W2.
Locate the 1’s in column 2 and in row 2; positions 1, 2, 3, and 4 in column
2, and positions 1, 2, and 4 in row 2. So W2 should contain a 1 in locations
(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), and (4,4).
Again, since all the 1’s in W1 stay in W2,

W2 =

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

Step 4 Find W3.
The 1’s of column 3 occur in positions 3 and 4; those of row 3 in positions
1, 2, 3, and 4. Consequently, W3 should contain a 1 in locations (i, j) where
i = 3, 4 and j = 1, 2, 3, 4:

W3 =

⎡
⎢⎢⎣

1 1 0 1
1 1 0 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

Step 5 Find W4.
The 1’s of column 4 appear in positions 1, 2, 3, and 4; the 1’s of row 4 in
positions 1, 2, 3, and 4. So W4 should contain a 1 in locations (i, j) where
i = 1, 2, 3, 4 and j = 1, 2, 3, 4:

W4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

Since MR∗ = W4, this is the adjacency matrix of the transitive closure.
(Finding the connectivity relation of R will verify this.) �

7.7 Transitive Closure (optional) 481

Warshall’s algorithm is presented in Algorithm 7.2. It is based on the
discussion preceding Example 7.38.

Algorithm Warshall(MR,W)
(* This algorithm employs the adjacency matrix of a relation R on

finite set with n elements to find the adjacency matrix MR* of its
transitive closure. *)

0. Begin (* algorithm *)
(* Initialize W = (wij) *)

1. W ← MR
2. for k = 1 to n do (* compute Wk *)
3. for i = 1 to n do
4. for j = 1 to n do
5. wij ← wij ∨ (wik ∧ wkj) (*compute the ij-th element *)
6. MR ← W
7. End (* algorithm *)

Algorithm 7.2

A Comparison of Warshall’s Algorithm with the Connectivity Algorithm
Why is this algorithm far more efficient than the connectivity relation algo-
rithm? Notice that the number of boolean operations in line 5 is 2, so the
total number of boolean operations in lines 2 through 5 (and hence in the
algorithm) is 2 ·n ·n ·n = 2n3 = �(n3), whereas the connectivity algorithm
takes �(n4) bit operations.

Exercises 7.7

Find the transitive closure of each relation on A = {a, b, c}.
1. {(a, b), (b, a)}
3. {(b, a), (b, c), (c, b)}

2. {(a, b), (b, c), (c, a)}
4. {(a, a), (a, c), (b, c), (c, a)}

Find the transitive closure of each relation on A = {a, b, c, d}.
5. {(a, a), (a, b)} 6. {(a, b), (b, c), (c, a)}
In Exercises 7–9, find the adjacency matrix of the transitive closure of each
relation R on {a, b, c} with the given adjacency matrix.

7.

⎡
⎣0 1 1

0 0 1
0 0 0

⎤
⎦ 8.

⎡
⎣1 0 1

0 1 0
0 1 1

⎤
⎦ 9.

⎡
⎣0 1 0

0 1 1
1 0 0

⎤
⎦

10–12. Using the connectivity relation algorithm, find the transitive
closure R∗ of each relation in Exercises 7–9.

482 Chapter 7 Relations

13–15. For the relation R on {a, b, c} with each adjacency matrix in
Exercises 7–9, compute the boolean matrix W1 in Warshall’s
algorithm.

In Exercises 16–18, the adjacency matrix of a relation R on {a, b, c, d} is
given. In each case, compute the boolean matrices W1 and W2 in Warshall’s
algorithm.

16.

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ 17.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 1 0 1
0 1 0 1

⎤
⎥⎥⎦ 18.

⎡
⎢⎢⎣

0 1 0 1
1 0 1 0
0 0 0 1
1 0 0 1

⎤
⎥⎥⎦

19–24. Using Warshall’s algorithm, find the transitive closure of each
relation in Exercises 7–9 and 16–18.

25–33. The reflexive closure of a relation on a set is the smallest reflexive
relation that contains it. Find the reflexive closures of the relations
in Exercises 1–9.

Find the reflexive closure of each relation on R.

34. The less-than relation. 35. The greater-than relation.

36–44. The symmetric closure of a relation on a set is the smallest sym-
metric relation that contains it. Find the symmetric closures of the
relations in Exercises 1–9.

Let R be any relation on a set A. Prove each.

45. R is reflexive if and only if 	 ⊆ R.

46. R ∪	 is reflexive.

*47. R ∪	 is the smallest reflexive relation containing R .
(Hint: Assume there is a reflexive relation S such that R ⊆ S ⊆ R∪	.
Prove that S = R or S = R ∪	.)

*48. R ∪ R−1 is symmetric.
[Hint: Consider (R ∪ R−1)−1.]

*49. R ∪ R−1 is the smallest symmetric relation that contains R.
(Hint: Suppose there is a symmetric relation S such that R ⊆ S ⊆
R ∪ R−1.)

7.8 Equivalence Relations

Section 7.4 introduced relations that are reflexive, symmetric, and
transitive. Naturally we can now ask: Are there relations that
simultaneously manifest all three properties? The answer is yes;
for instance, the relation is logically equivalent to on the set of

7.8 Equivalence Relations 483

propositions has all these properties. Such a relation is an equivalence
relation.

Equivalence Relation
A relation on a set is an equivalence relation if it is reflexive, symmetric,
and transitive.

Examples 7.40–7.42 explore equivalence relations.

EXAMPLE 7.40 The relation has the same color hair as on the set of people is reflexive,
symmetric, and transitive. So it is an equivalence relation. �

EXAMPLE 7.41 Let � denote an alphabet. Define a relation R on �∗ by xRy if ‖x‖ = ‖y‖,
where ‖w‖ denotes the length of the word w. Is R an equivalence relation?

SOLUTION:
• Since every word has the same length as itself, R is reflexive.

• Suppose that xRy. Then ‖x‖ = ‖y‖, so ‖y‖ = ‖x‖. Consequently, yRx.
Thus R is symmetric.

• If xRy4 and yRz, then ‖x‖ = ‖y‖ and ‖y‖ = ‖z‖. Therefore, ‖x‖ = ‖z‖
and hence xRy. In other words, R is transitive.

Thus, R is an equivalence relation. �

EXAMPLE 7.42 (optional) Is the relation has the same memory location as on the set of
variables in a program an equivalence relation?

SOLUTION:
• Since every variable has the same location as itself, the relation is

reflexive.

• If a variable x has the same location as a variable y, then y has the same
location as x, so the relation is symmetric.

• Suppose x has the same location as y and y has the same location as z.
Then x has the same location as z, so the relation is transitive.

Thus the relation is an equivalence relation. �
FORTRAN provides an equivalence statement, so called since the

relation has the same location as is an equivalence relation. We can see this
in the following FORTRAN statement:

EQUIVALENCE (A,B),(C,D,E),(F,G,H)

It means the variables A and B share the same memory location; the vari-
ables C, D, and E share the same memory location; and so do the variables
F, G, and H.

The congruence relation, an important relation in mathematics, is a
classic example of an equivalence relation. It is closely related to the
equality relation and partitions of a finite set, as will be seen shortly.

484 Chapter 7 Relations

Karl Friedrich Gauss (1777–1855), son of a laborer, was born in
Brunswick, Germany. A child prodigy, he detected an error in his father’s
bookkeeping when he was 3. The Duke of Brunswick, recognizing his
remarkable talents, sponsored his education. Gauss received his doctorate
in 1799 from the University of Helmstedt. In his doctoral dissertation, he
gave the first rigorous proof of the fundamental theorem of algebra, which
states, “Every polynomial of degree n (≥ 1) with real coefficients has at least
one zero.” Newton and Euler, among other brilliant minds, had attempted
to prove it, but failed.

He made significant contributions to algebra, number theory, geome-
try, analysis, physics, and astronomy. His impressive work Disquisitiones
Arithmeticae of 1801 laid the foundation for modern number theory.

From 1807 until his death, he was the director of the observatory and
professor of mathematics at the University of Göttingen.

Called the “prince of mathematics” by his contemporary mathematicians, Gauss made the
famous statement, “Mathematics is the queen of the sciences and the theory of numbers the queen of
mathematics.”

The congruence symbol ≡ was invented around 1800 by Karl Friedrich
Gauss, the greatest mathematician of the 19th century.

Congruence Relation
Let a, b, m ∈ Z, where m ≥ 2. Then a is congruent to b modulo m,
denoted by a ≡ b(mod m), if a − b is divisible by m. The integer m is the
modulus of the congruence relation. (This definition provides the basis
of the mod operator we studied in Chapter 3.) If a is not congruent to b
modulo m, we write a �≡ b (mod m).

For example, since 5|(13−3), 13 ≡ 3 (mod 5). Also, −5 ≡ 3 (mod 4) since
4|(−5 − 3). But 17 �≡ 4 (mod 6), since 6 � (17 − 4).

The congruence relation has several useful properties, some of which are
given below.

THEOREM 7.9 Let a, b, c, d, m ∈ Z with m ≥ 2. Then:

(1) a ≡ a (mod m). (reflexive property)
(2) If a ≡ b (mod m), then b ≡ a (mod m). (symmetric property)
(3) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m). (transitive

property)
(4) Let r be the remainder when a is divided by m. Then a ≡ r(mod m).

PROOF:
We shall prove part 3 and leave the other parts as exercises.

(3) Suppose a ≡ b (mod m) and b ≡ c (mod m). Then m|(a − b) and
m|(b − c). Consequently, a − b = mq1 and b − c = mq2 for some

7.8 Equivalence Relations 485

integers q1 and q2. Then

a − c = (a − b) + (b − c)

= mq1 + mq2

= m(q1 + q2)

Therefore, m|(a − c) and a ≡ c (mod m). �

It follows by the theorem that the congruence relation is an equivalence
relation.

The Congruence Relation and the Mod Operator
Suppose a ≡ r (mod b), where 0 ≤ r ≤ b. Then it can be shown that r = a
mod b. Conversely, if r = a mod b, then a ≡ r (mod b). Thus a ≡ r (mod b)
if and only if r = a mod b, where 0 ≤ r ≤ b. See exercises 49 and 50.

For example, 43 ≡ 3 (mod 5) and 0 ≤ 3 < 5; clearly, 3 = 43 mod 5. Let
us digress briefly to look at an interesting application of congruences∗.

Friday-the-13th
Congruences can be employed to find the number of Friday-the-13ths in
a given year. Whether or not Friday-the-13th occurs in a given month
depends on two factors: the day on which the 13th fell in the previous
month and the number of days in the previous month.

Suppose that this is a non–leap year and that we would like to find
the number of Friday-the-13ths in this year. Suppose also that we know
the day the 13th occurred in December of last year. Let Mi denote
each of the months December through November in that order and
Di the number of days in month Mi. The various values of Di are
31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, and 30, respectively.

We label the days Sunday through Saturday by 0 through 6 respectively;
so day 5 is a Friday.

Let Di ≡ di (mod 7), where 0 ≤ di < 7. The corresponding values of di
are 3, 3, 0, 3, 2, 3, 2, 3, 3, 2, 3, and 2, respectively. Each value of di indicates
the number of days the day of the 13th in month Mi must be advanced to
find the day the 13th falls in month Mi+1.

For example, December 13, 2000, was a Wednesday. So January 13,
2001, fell on day (3 + 3) = day 6, which was a Saturday.

∗T. Koshy, Elementary Number Theory with Applications, Harcourt/Academic Press, Boston,
MA, 2002.

486 Chapter 7 Relations

Let ti ≡
i∑

j=1
dj (mod 7), where 1 ≤ i ≤ 12. Then ti represents the

total number of days the day of December 13 must be moved forward to
determine the day of the thirteenth in month Mi.

For example, t3 ≡ d1 + d2 + d3 = 3 + 3 + 0 ≡ 6 (mod 7). So, the day of
December 13, 2000 (Wednesday) must be advanced by six days to determine
the day of March 13, 2001; it is given by day (3 + 6) = day 2 = Tuesday.

Notice that the various values of ti modulo 7 are 3, 6, 6, 2, 4, 0, 2, 5, 1, 3, 6,
and 1, respectively; they include all the least residues modulo 7. Given the
day of December 13, they can be used to determine the day of the thirteenth
of each month Mi in a non–leap year.

Table 7.5 summarizes the day of the 13th of each month in a non-leap
year, corresponding to every choice of the day of December 13 of the pre-
vious year. You may verify this. Notice from the table that there can be at
most three Friday-the-13ths in a non–leap year.

Table 7.5

Day of the 13th in Each
Month in a Non–leap
Year.

ti Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.�
�Dec.13 3 6 6 2 4 0 2 5 1 3 6 1

Sun 3 6 6 2 4 0 2 5 1 3 6 1
Mon 4 0 0 3 5 1 3 6 2 4 0 2
Tue 5 1 1 4 6 2 4 0 3 5 1 3
Wed 6 2 2 5 0 3 5 1 4 6 2 4
Thu 0 3 3 6 1 4 6 2 5 0 3 5
Fri 1 4 4 0 2 5 0 3 6 1 4 6
Sat 2 5 5 1 3 6 1 4 0 2 5 0

For a leap year, the various values of di are 3, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3,
and 2; and the corresponding values of ti are 3, 6, 0, 3, 5, 1, 3, 6, 2, 4, 0, and
2. Using these, we can construct a similar table for a leap year.

Returning to the congruence relation, we now explore a close relation-
ship between equivalence relations and partitions; but first we make the
following definition.

Equivalence Class
Let R be an equivalence relation on a set A and let a ∈ A. The equivalence
class of a, denoted by [a], is defined as [a] = {x ∈ A | xRa}. It consists of all
elements in A that are linked to a by the relation R. If x ∈ [a], then x is a
representative of the class [a].

The next two examples explore equivalence relations.

EXAMPLE 7.43 The relation R = {(a, a), (a, b), (b, a), (b, b), (c, c)} on A = {a, b, c} is an
equivalence relation. Find the equivalence class of each element in A.

7.8 Equivalence Relations 487

SOLUTION:
(1) [a] = {x ∈ A|xRa}

= {a, b}
(2) [b] = {x ∈ A|xRb}

= {a, b}
= [a]

(3) [c] = {x ∈ A|xRc}
= {c}

Two distinct equivalence classes exist, [a] and [c]. Class [a] has two
representatives and class [c] one representative. �

EXAMPLE 7.44 The relation R on the set of words over the alphabet {a, b}, defined by xRy
if ‖x‖ = ‖y‖, is an equivalence relation (see Example 7.41). Infinitely many
equivalence classes exist for R, such as {λ}, {a, b}, and {aa, ab, ba, bb}. �

EXAMPLE 7.45 Find all equivalence classes of the congruence relation mod 5 on the set of
integers.

SOLUTION:
Let r be the remainder when an integer a is divided by 5. Then a ≡ r(mod 5).
Since the possible values of r, by the division algorithm, are 0, 1, 2, 3, and
4, there are five distinct equivalence classes:

[0] = {. . . , −10, −5, 0, 5, 10, . . .}
[1] = {. . . , −9, −4, 1, 6, 11, . . .}
[2] = {. . . , −8, −3, 2, 7, 12, . . .}
[3] = {. . . , −7, −2, 3, 8, 13, . . .}
[4] = {. . . , −6, −1, 4, 9, 14, . . .} �

These three examples lead us to the following observations:

• Every element belongs to an equivalence class.

• Any two distinct equivalence classes are disjoint.

These results can be stated more formally as follows.

THEOREM 7.10 Let R be an equivalence relation on a set A, with a and b any two elements
in A. Then the following properties hold:

(1) a ∈ [a].
(3) If [a] �= [b], then [a] ∩ [b] = Ø.

(2) [a] = [b] if and only if aRb.

PROOF:
(1) Since R is reflexive, aRa for every a ∈ A, so a ∈ [a].
(2) Suppose [a] = [b]. Since a ∈ [a] by part (1), a ∈ [b]. Therefore, by

definition, aRb.

488 Chapter 7 Relations

Conversely, let aRb. To show that [a] ⊆ [b]:
Let x ∈ [a]. Then xRa. Since xRa and aRb, xRb by transitivity. Therefore,
x ∈ [b] by definition. Thus [a] ⊆ [b].
Similarly, [b] ⊆ [a]. Thus, [a] = [b].

(3) We will prove the contrapositive of the given statement: If [a]∪[b] �= Ø,
then [a] = [b]. Suppose [a] ∪ [b] �= ø. Then an element x should be
in [a] ∩ [b]. Then x ∈ [a] and x ∈ [b]. Since x ∈ [a], xRa and hence
aRx by symmetry. In addition, since x ∈ [b], xRb. Thus aRx and xRb.
Therefore, aRb by transitivity. Thus [a] = [b], by part 2.

This concludes the proof. �
It follows by Theorem 7.10 that any two equivalence classes are either

identical or disjoint, but not both.
Notice that Example 7.43 has two disjoint equivalence classes, [a] and

[c]; their union is the whole set A. Therefore, {[a], [c]} is a partition of A.
In fact, every equivalence relation on a set induces a partition of the set, as
given by the next theorem.

THEOREM 7.11 Let R be an equivalence relation on a set A. Then the set of distinct
equivalence classes forms a partition of A. �

The next four examples illuminate this theorem.

EXAMPLE 7.46 The relation belongs to the same division as is an equivalence relation on the
set of teams in the American (National) League of major-league baseball.
Let x denote a certain team in the American League. Then the class [x]
consists of all teams that belong to the same division as x. By Theorem 7.11,
the set of teams in the league can be partitioned as {[Yankees], [White Sox],
[Mariners]}. �

EXAMPLE 7.47 By Example 7.41, the relation has the same length as on the set of
words �∗ over the alphabet � = {a, b} is an equivalence relation. Then the
set of equivalence classes formed is {[λ], [a], [aa], [aaa], . . .}; it is a partition
of �∗. �

EXAMPLE 7.48 (optional) Suppose a FORTRAN program contains the variables A through
J and the equivalence statement:

EQUIVALENCE (A,B),(C,D),(F,A,G),(C,J),(E,H)

By Example 7.42 the relation shares the same memory location as is
an equivalence relation on the set of variables V . Let V1 = {A,B,F,G},
V2 = {C,D,J}, V3 = {E,H}, and V4 = {I}. The partition of V induced by
this relation is {V1, V2, V3, V4}. See Figure 7.36.

7.8 Equivalence Relations 489

Figure 7.36

Set of variables V .
V1

V2

V3

V4

�

EXAMPLE 7.49 By Example 7.45, the distinct equivalence classes formed by the congruence
relation modulo 5 on Z are [0], [1], [2], [3], and [4]. They form a partition
of the set of integers, as shown in Figure 7.37.

Figure 7.37

A partition of the set of
integers Z.

[0]

[1]
[2]

[3]

[4]

�
Conversely, does every partition yield an equivalence relation? The next

theorem shows that every partition does.

THEOREM 7.12 Every partition of a set induces an equivalence relation on it.

PROOF:
Let P = {A1, A2, . . .} be a partition of a set A. Define a relation R on A as:
aRb if a belongs to the same block as b. We shall show that R is indeed an
equivalence relation.

• Since every element in A belongs to the same block as itself, R is
reflexive.

• Let aRb. Then a belongs to the same block as b. So b belongs to the
same block as a. Thus R is symmetric.

• Let aRb and bRc. Then a belongs to the same block as b and b to the
same block as c. So a belongs to the same block as c. Therefore, R is
transitive.

Thus R is an equivalence relation. �

How can we find the equivalence relation corresponding to a partition of
a set? The next example demonstrates how to accomplish this.

EXAMPLE 7.50 Find the equivalence relation on A = {a, b, c} corresponding to the partition
{{a, b}, {c}}.

490 Chapter 7 Relations

SOLUTION:
Define a relation R on A as follows (see the above proof): xRy if x belongs to
the same block as y. Since a and b belong to the same block, aRa, aRb, bRa,
and bRb. Similarly, cRc. Thus R = {(a, a), (a, b,), (b, a), (b, b), (c, c)}. �

Example 7.50 can serve to develop an algorithm for finding the equiva-
lence relation corresponding to a partition P of a finite set A. It is given in
Algorithm 7.3.

Algorithm Equivalence Relation (P,A,R)
(* This algorithm determines the equivalence relation R

corresponding to a partition P of a finite set A. *)
Begin (* algorithm *)

while P �= ø do
begin (* while *)
extract a block B
pair each element in B with every element in B
P ← P − B (* update P *)
endwhile

End (* algorithm *)

Algorithm 7.3

Theorems 7.11 and 7.12 indicate a bijection between the family of
partitions of a set and the family of equivalence relations on it.

Number of Partitions of a Finite Set
There is a delightful formula for computing the number of partitions (and
hence the number of equivalence relations) of a set with size n. It is given

by
n∑

r=1
S(n, r), where S(n, r) denotes a Stirling number of the second kind,

defined by

S(n, 1) = 1 = S(n, n)

S(n, r) = S(n − 1, r − 1) + rS(n − 1, r), 1 < r < n

See Exercises 33–40.

Exercises 7.8

Determine if each is an equivalence relation.

1. The relation ≤ on R.

2. The relation is congruent to on the set of triangles in a plane.

3. The relation is similar to on the set of triangles in a plane.

7.8 Equivalence Relations 491

4. The relation lives within 5 miles of on the set of people.

5. The relation takes a course with on the set of students on campus.

Determine if each is an equivalence relation on {a, b, c}.
6. {(a, a), (b, b), (c, c)}
8. Ø

7. {(a, a), (a, c), (b, b), (c, a), (c, c)}
9. {(a, a), (b, b), (b, c), (c, b)}

Using the equivalence relation {(a, a), (a, b), (b, a), (b, b), (c, c), (d, d)} on
{a, b, c, d}, find each equivalence class.

10. [a] 11. [b] 12. [c] 13. [d]
A FORTRAN program contains 10 variables, A through J, and the following
equivalence statement: EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H). Find
each class.

14. [A] 15. [B] 16. [E] 17. [J]
Using the equivalence relation in Example 7.47, find the equivalence class
represented by:

18. a 19. b 20. aa 21. aaa

Using the relation has the same length as on the set of words over the
alphabet {a, b, c}, find the equivalence class with each representative.

22. λ 23. a 24. ab 25. bc

26. Find the set of equivalence classes formed by the congruence relation
modulo 4 on the set of integers.

Find the partition of the set {a, b, c} induced by each equivalence relation.

27. {(a, a), (b, b), (c, c)} 28. {(a, a), (a, c), (b, b), (c, a), (c, c)}
A FORTRAN program contains the variables A through J. Find the
partition of the set of variables induced by each equivalence statement.

29. EQUIVALENCE (A,B,C),(D,E),(F,B),(C,H)

30. EQUIVALENCE (A,B),(B,J),(C,J),(D,E,H)

Find the equivalence relation corresponding to each partition of the set
{a, b, c, d}.

31. {{a}, {b, c}, {d}} 32. {{a, b}, {c, d}}

The number of partitions of a set with size n is given by
n∑

r=1
S(n, r), where

S(n, r) denotes a Stirling number of the second kind. Compute the number
of partitions of a set with the given size.

33. Two 34. Three 35. Four 36. Five

492 Chapter 7 Relations

37–40. The number of partitions of a set with size n is also given by the
Bell number Bn. Using Bell numbers, compute the number of
partitions of a set with each of the sizes in Exercises 33–36.

Give a counterexample to disprove each.

41. The union of two equivalence relations is an equivalence relation.

42. The composition of two equivalence relations is an equivalence
relation.

We can compute the day of the week corresponding to any date since 1582,
the year the Gregorian calendar was adopted. The day d of the week for
the rth day of month m in year y (> 1582) is given by

d = r + �2. 6m − 0. 2� − 2C + D + �C/4� + �D/4�(mod 7)

where C = �y/100� and D = y mod 100; d = 0 denotes Sunday; and m = 1
denotes March, m = 11 January, and m = 12 February. This formula
is called Zeller’s formula, after Christian Julius Johannes Zeller (1849–
1899). Find the Christmas day of each year.

43. 2000 44. 2020 45. 2345 46. 3000

Let a, b, c, d, m ∈ Z with m ≥ 2. Prove each.

47. If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m).

48. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

49. Let r be the remainder when a is divided by m. Then a ≡ r (mod m).

50. If a ≡ r (mod m) and 0 ≤ r < m, r is the remainder when a is divided
by m.

51. Let r1 and r2 be the remainders when a and b are divided by m,
respectively. Then a ≡ b (mod m) if and only if r1 ≡ r2 (mod m).

52. A positive integer N is divisible by 3 if and only if the sum of its digits
is divisible by 3. [Hint: 10 ≡ 1 (mod 3).]

53. A positive integer N is divisible by 9 if and only if the sum of its digits
is divisible by 9. [Hint: 10 ≡ 1 (mod 9).]

Using the congruence relation, find the remainder when the first integer is
divided by the second.

54. 256, 3 55. 657, 3 56. 1976, 9 57. 389, 276, 9

(Hint: Use Exercise 52 or 53.)

58. The United Parcel Service assigns to each parcel an identification
number of nine digits and a check digit. The check digit is the
remainder mod 9 of the 9-digit number. Compute the check digit for
359,876,015.

7.9 Partial and Total Orderings 493

59. Every bank check has an 8-digit identification number d1d2 . . . d8
followed by a check digit d given by d ≡ (d1d2, . . . , d8) ·
(7, 3, 9, 7, 3, 9, 7, 3) mod 10, where (x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
n∑

i=1
xiyi. (It is the dot product of the two n-tuples.) Compute the

check digit for 17,761,976.

60. Libraries use a sophisticated code-a-bar system to assign each
book a 13-digit identification number d1, d2 . . . d13 and a check digit
d. Let k denote the number of digits among d1, d3, d5, d7, d9,
d11, and d13 greater than or equal to 5. Then d is computed as
d ≡ [−(d1, d2, . . . , d13) · (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2) − k] mod 10,
where the dot indicates the dot product. Compute the check digit for
2,035,798,008,938.

*61. (The coconuts and monkey problem)∗ Five sailors and a monkey
are marooned on a desert island. During the day they gather coconuts
for food. They decide to divide them up in the morning and retire for
the night. While the others are asleep, one sailor gets up and divides
them into equal piles, with one left over that he throws out for the
monkey. He hides his share, puts the remaining coconuts together,
and goes back to sleep. Later a second sailor gets up and divides the
pile into five equal shares with one coconut left over, which he discards
for the monkey. Later the remaining sailors repeat the process. Find
the smallest possible number of coconuts in the original pile.

7.9 Partial and Total Orderings

Just as we used the concepts of reflexivity, symmetry, and transitivity to
define equivalence relations, we can use reflexivity, antisymmetry, and
transitivity to introduce a new class of relations: partial orders. We begin
this section with an example.

Building a house can be broken down into several tasks, as Table 7.6
shows. Define a relation R on the set of tasks as follows: Let x and y be
any two tasks; then xRy if x = y or must be done before y. This relation is
reflexive, antisymmetric, and transitive (verify). Such a relation is a partial
order.

∗Writer Ben Ames Williams used this problem in a short story titled “Coconuts,” which
appeared in the October 9, 1926, issue of The Saturday Evening Post. The story concerned a
contractor who wanted to bid on a large contract. Knowing of their competitor’s strong passion
for recreational mathematics, one of his employees gave him this problem. The competitor
became so obsessed with solving the puzzle that he forgot to enter his bid before the deadline.

494 Chapter 7 Relations

Table 7.6 Task Requires the
completion of

(1) Building the foundation (t1) None
(2) Framing (t2) t1
(3) Subflooring (t3) t1, t2
(4) Partitioning into rooms (t4) t1, t2, t3
(5) Roofing (t5) t1, t2
(6) Plumbing (t6) t1, t2
(7) Wiring (t7) t1, t2
(8) Siding (t8) t1, t2, t5, t9
(9) Flooring (t9) t1, t2, t6

(10) Interior painting (t10) t1 through t5, t7
(11) Exterior painting (t11) t1, t2, t8, t9
(12) Carpeting (t12) t1 through t7, t9, t10
(13) Installing fixtures (t13) t1 through t11

Partial Order
A relation R on a set A is a partial order if it is reflexive, antisymmetric,
and transitive. The set A with its partial order R is a partially ordered
set (or poset), denoted by (A, R). When the partial order is clear from the
context, call the poset A.

The next three examples illustrate these definitions.

EXAMPLE 7.51 The relation ≤ on R is reflexive, antisymmetric, and transitive, so ≤ is a
partial order on R and (R, ≤) a poset. Similarly, the divisibility relation |
on N is a partial order, so (N, |) is also a poset. �

EXAMPLE 7.52 Let � = {a, b}. Define a relation R on �∗ as: xRy if x is a prefix of y. Is R a
partial order?

• Every word is a prefix of itself, so R is reflexive.

• Let xRy and yRx. Then y = sx and x = ty for some s, t ∈ �∗, so x =
t(sx) = (ts)x.
Consequently, ts = λ and hence t = s = λ. So x = y and the relation is
antisymmetric.

• Suppose xRy and yRz. Then y = sx and z = ty for some s, t ∈ �∗.
Therefore, z = t(sx) = (ts)x. Consequently xRz, and the relation is
transitive.

Thus, R is a partial order on �∗ and (�∗, R) is a poset. �

EXAMPLE 7.53 The relation has the same color hair as on the set of people is reflexive, but
not antisymmetric. Therefore it is not a partial order. �

7.9 Partial and Total Orderings 495

Just as an equivalence relation generalizes the equality relation, a partial
order generalizes the relation ≤. Accordingly, a partial order is denoted
by �. x � y means x precedes or equals y. If x � y and x �= y, we write
x ≺ y, meaning x precedes y.

Comparable Elements
Two elements x and y in a poset are comparable if either x � y or y � x;
otherwise, they are noncomparable.

EXAMPLE 7.54 Let x and y be any two real numbers. Then either x ≤ y or y ≤ x. So any two
real numbers can be compared using the relation ≤: they are comparable.

Using the divisibility relation | on N, the positive integers 3 and 6 are
comparable, since 3 | 6. But 3 and 8 are not comparable, since 3 � 8 and
8 � 3. �

Example 7.54 indicates that a poset may contain noncomparable ele-
ments, which justifies the word partial in partial order. This leads us to
the next definition.

Total Order
If any two elements in a poset are comparable, such a partial order is a
total order or a linear order. The poset is then a totally ordered set
or a linearly ordered set.

Notice that ≤ is a total order on R, whereas the divisibility relation is
not a total order on N.

Just as sets can be used to construct new sets, posets can be combined to
construct new posets. In order to do this, we first define a relation on the
cartesian product of two posets.

Lexicographic Order
Let (A, �1) and (B, �2) be two posets. Define a relation � on A×B as (a, b) �
(a′, b′) if a ≺1 a′, or a = a′ and b �2 b′. The relation �, an extension of the
alphabetic order, is the lexicographic order.

The lexicographic order is a partial order on A×B. If A and B are totally
ordered sets, so is A × B. The lexicographic order can be extended to the
cartesian product A1 × A2 × · · · × An of n posets and n totally ordered sets.
The next two examples illustrate this.

EXAMPLE 7.55 Consider the cartesian product N × N × N, where the partial order is the
usual ≤. Then (2, 5, 3) ≤ (3, 2, 1) since the first element in the triplet (2, 5, 3)
is less than that in the second triplet (3, 2, 1). Also, (2, 4, 5) ≤ (2, 4, 7). This
ordering mirrors the familiar sequencing of three-digit numbers. �

496 Chapter 7 Relations

EXAMPLE 7.56 Let � be a partially ordered alphabet with the partial order � and �n

denote the set of words of length n over �. Since every word in �n can be
considered an n-tuple, the lexicographic order on the cartesian product on
n posets can be applied to �n also.

Let x = a1a2 . . . an and y = b1b2 . . . bn be any two elements in �n. Then
x ≺ y if:

• Either a1 � b1, or

• An integer i exists such that a1 = b1, a2 = b2, . . . , ai = bi, and ai+1 ≺
bi+1.

In particular, let � denote the English alphabet, a totally ordered set:
a ≺ b ≺ c ≺ · · · ≺ z. Clearly, computer≺ demolish, compress ≺ computer,
contend ≺ content, and content≺ context.

This lexicographic order can work for �∗ in a familiar way. Let x and y
be any two words over �. Then x ≺ y in lexicographic order if one of two
conditions holds:

• x = λ, the empty word.

• If x = su and y = sv, where s denotes the longest common prefix of x
and y, the first symbol in u precedes that in v in alphabetic order.

For example, marathon ≺ marble, margin ≺ market, limber ≺ timber,
and creation ≺ discretion. �

Hasse Diagrams
We can simplify the digraph of a finite poset by omitting many of its edges.
For instance, since a partial order is reflexive, each vertex has a loop, which
we can delete. In addition, drop all edges implied by transitivity. For exam-
ple, if the digraph contains the edges (a, b) and (b, c), it has the edge (a, c),
which we can omit. Finally, draw the remaining edges upward and drop
all arrows. The resulting is the Hasse diagram, named for the German
mathematician Helmut Hasse.

Examples 7.57–7.60 generate Hasse diagrams.

EXAMPLE 7.57 Construct the Hasse diagram for the poset (A,|), where A = {1, 2, 3, 6, 8, 12}
and | denotes the divisibility relation.

SOLUTION:
The digraph of the poset is Figure 7.38.

Step 1 Delete the loop at each vertex. The result is Figure 7.39.

Step 2 Delete all edges implied by transitivity. Figure 7.40 shows the
ensuing diagram.

Step 3 Omit all arrows and draw the edges “upward.” The Hasse diagram
appears in Figure 7.41.

7.9 Partial and Total Orderings 497

Helmut Hasse (1898–1979), a celebrated number theorist and dedicated
teacher, was born in Kassel, Germany. His father was a judge. While study-
ing at the gymnasiums in Kassel and later Berlin, he decided on a career in
mathematics. After the gymnasiums, he entered the navy. While in the navy
in the Baltic he studied number theory and then mathematics at the Univer-
sity of Kiel. Leaving the navy in December 1918, Hasse went to Göttingen to
pursue his mathematical interest and then to Marburg, receiving his Ph.D.
in 1921.

His teaching career began in Kiel in 1922. Three years later, he became
a professor at Halle, then moved to Marburg, Göttingen, Berlin, and finally
Hamburg in 1950, where he remained until his retirement in 1966. Earlier
he had been director of the Mathematics Institute at Göttingen. But he was
dismissed by the British occupation authorities in September 1945.

Hasse was a member of several academies of science and author of numerous articles and books. Hasse
received a number of awards including the German National prize for Science and Technology (1953) and
the Cothenius Medal of the Academia Leopoldina (1968).

Figure 7.38

1

12

8

6

3

2

Figure 7.39

1

12

8

6

3

2

498 Chapter 7 Relations

Figure 7.40

1

12

8

6

3

2

Figure 7.41

Hasse diagram for the
poset.

1

2

3

8

12

6

�

EXAMPLE 7.58 Draw the Hasse diagram for the poset (A, ⊆), where A denotes the power
set of the set {a, b, c}.
SOLUTION:
The set {a, b, c} has eight subsets: ø, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, and
{a, b, c}. Following steps 1–3, as in Example 7.57, produces the Hasse
diagram in Figure 7.42.

Figure 7.42

{a}

{b}

{c,a}
{a,b} {b,c}

{a,b,c}

{c}

φ �

EXAMPLE 7.59 The relation R = {(a, a), (a, c), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c), (c, e), (d, d),
(d, e), (e, e)} is a partial order on {a, b, c, d, e}. Figure 7.43 displays its Hasse
diagram.

7.9 Partial and Total Orderings 499

Figure 7.43

a b

c d

e

�

EXAMPLE 7.60 Consider the alphabet � = {a, b}. The relation � on �∗, defined by x � y
if x is a prefix of y, is a partial order. The Hasse diagram for all words of
maximum length two appears in Figure 7.44.

Figure 7.44

a

λ

aa ab ba bb

b

�
Extremal elements in a poset are important, especially in linear ordering.

Extremal Elements
An element a in a poset (A, �) is a maximal element if A has no element
b such that a ≺ b. Similarly, an element a in A is a minimal element if A
has no element b ≺ a.

The maximal and minimal elements in a finite poset can easily be read
from its Hasse diagram, like the ones in Figures 7.41 and 7.42.

EXAMPLE 7.61 The poset in Figure 7.41 has two maximal elements, 8 and 12, and one
minimal element, 1.

Figure 7.43 has one maximal element, e; it has two minimal elements,
a and b. �

A poset may exhibit the following properties:

• A poset may have more than one maximal element and more than
one minimal element (see Example 7.61).

• A poset need not have any maximal or minimal elements. For
instance, the poset (Z,≤) has no maximal or minimal elements.

• A poset may have a maximal element but no minimal elements, or a
minimal element but no maximal elements. For example, the poset
(Z−, ≤) has a maximal element but no minimal elements, whereas
the poset (Z+, ≤) has a minimal element but no maximal elements.

Two special extremal elements are the greatest and the least.

500 Chapter 7 Relations

Greatest and Least Elements
If a poset A contains an element a such that b � a for every element b in
A, a is the greatest element of the poset. If it contains an element a such
that a � b for every b in A, a is the least element.

The greatest element of a poset, if it exists, is unique; likewise, the
least element. They are the topmost and the bottommost elements in
the Hasse diagram.

For example, the poset in Figure 7.41 has no greatest element, but has
a least element, 1. Figure 7.43, on the other hand, has a greatest element,
e, but no least element.

Although an arbitrary poset need not have a minimal element, every
nonempty finite poset has a minimal element, as Theorem 7.13 shows.

THEOREM 7.13 Every finite nonempty poset (A, �) has a minimal element.

PROOF:
Let a1 be any element in A. If a1 is not minimal, there must be an element
a2 in A such that a2 ≺ a1. If a2 is minimal, then we have finished. If a2
is not minimal, A must have an element a3 such that a3 ≺ a2. If a3 is not
minimal, continue this procedure. Since A contains only a finite number of
elements, it must terminate with some element an. Thus an ≺ an−1 ≺ · · · ≺
a3 ≺ a2 ≺ a1. Consequently, an is a minimal element. �

This result forms the cornerstone of the topological sorting technique.

Topological Sorting
Study the tasks t1 through t13 for building a house, given in Table 7.6.
(Recall that the relation precedes or is the same as is a partial order on A).
For these tasks to be entered in a computer, the elements of the poset must
be arranged in a linear order consistent with the partial order. If a � b,
then enter task a before task b in linear order. This technique is called
topological sorting.

To topologically sort a finite nonempty poset (A, �) with n elements,
proceed as follows. By Theorem 7.13, the poset contains a minimal ele-
ment, say, a1. Exclude it from A. Then A − {a1} is also a finite poset. If it
is nonempty, it contains a minimal element a2. Delete a2 from A − {a1}.
Then A − {a1, a2} is a finite poset with minimal element a3. Continue this
procedure until the poset becomes null. This procedure yields the desired
linear order, a1 ≺ a2 ≺ a3 ≺ · · · ≺ an.

A simple algorithm can handle this organizing (see Algorithm 7.4).

7.9 Partial and Total Orderings 501

Algorithm Topological Sort (S)
(* This algorithm sorts a finite nonempty poset S into a linear order

using topological sorting. *)
Begin (* algorithm *)

while S �= ø do
begin (* while *)

find a minimal element a in S
S ← S − {a} (* delete a from S *)

endwhile
End (* algorithm *)

Algorithm 7.4

We can establish the validity of this algorithm using induction and
Theorem 7.13. We leave its verification as an exercise.

EXAMPLE 7.62 Topologically sort the elements of the poset in Example 7.57.

SOLUTION:
The poset given by the Hasse diagram in Figure 7.41 has one minimal

element, 1. Delete it from the poset and hence from the Hasse diagram. The
diagram turns into Figure 7.45 with a poset of two minimal elements, 2 and
3. Delete one of them, say, 3. The resulting poset appears in Figure 7.46;
it has two minimal elements, 2 and 6. Delete one of them, say, 2. The
new poset in Figure 7.47 also has two minimal elements, 6 and 8. Extract,
say, 8. The resulting poset is shown in Figure 7.48. Extract its minimal
element, 6; this leaves just one element, 12 (see Figure 7.49). Deleting it
yields the empty set, and the procedure terminates. Thus, we can sort the
elements of the poset in a linear order compatible with the partial order:
1 ≺ 3 ≺ 2 ≺ 8 ≺ 6 ≺ 12.

Figure 7.45

2
6

3

128

Figure 7.46

2
6

128

502 Chapter 7 Relations

Figure 7.47

6

128

Figure 7.48

6

12

Figure 7.49 •12

�

In this example, we could have chosen a minimal element in more
than one way on three occasions; in other words, the output from the
topological sorting need not be unique.

We close this section with another sorting example.

EXAMPLE 7.63 Topologically sort the elements of the poset in Example 7.59.

SOLUTION:
Figures 7.50–7.54 track the steps of the sorting algorithm. The resulting
output is a ≺ b ≺ d ≺ c ≺ e.

Figure 7.50

Extract a.

c d

e

ba

Figure 7.51

Extract b.

c d

e

b

7.9 Partial and Total Orderings 503

Figure 7.52

Extract c.

c d

e

Figure 7.53

Extract d.

c

e

Figure 7.54

Extract e.

e

�

Exercises 7.9

Determine if each is a partial order.

1. The relation < on R 2. The relation ≥ on R

3. The relation ≥ on Z 4. The relation | on Z

Determine if each is a partial order on {a, b, c}.
5. {(a, a), (b, b), (c, c)} 6. {(a, a), (a, b), (b, a), (b, b), (c, c)}
7. {(a, a), (b, b), (b, c), (c, c)} 8. {(a, a), (a, b), (b, b), (b, c), (c, c)}

Determine if each is a partial order.

9.

a

b

c

10. a b

d c

11. a b

d c

Determine if the given elements are comparable in the poset (A, |), where
A = {1, 2, 3, 6, 9, 18} and | denotes the divisibility relation.

12. 2, 3 13. 2, 6 14. 2, 9 15. 3, 18

504 Chapter 7 Relations

Determine if the given elements are comparable in the poset (A, ⊆), where
A denotes the power set of {a, b, c} (see Example 7.58).

16. {a, b}, {b, c} 17. {a, b}, {b}
Arrange the following pairs from the poset N × N in lexicographic order.

18. (3, 5), (2, 3) 19. (3, 5), (2, 6)

20. Find three ordered pairs of positive integers that precede the pair (2, 3)
in lexicographic order.

21. Find three triplets of positive integers that precede the triplet (2, 3, 5).

Arrange the following words over the English alphabet in lexicographic
order.

22. mat, rat, bat, cat, eat, fat

23. neighbor, neophyte, neglect, moment, luxury, maximum

24. custom, custody, custard, cushion, curtain, culvert

25. discreet, discrete, discount, discourse, diskette, discretion

26. Arrange all words of length ≤ 2 over the alphabet {a, b} in lexicographic
order. Construct a Hasse diagram for each poset.

27. (A, |), where A = {1, 2, 3, 6, 9, 18} and | denotes the divisibility relation.

28. (A, |), where A = {1, 2, 3, 6, 8, 24} and | is the divisibility relation.

29. (A, R), where A = {a, b, c} and R = {(a, a), (a, b), (b, b), (b, c), (c, c)}.
30. (A, ⊆), where A denotes the power set of the set {a, b}.
31. Let A denote the set of words of length ≤ 3 over the binary alphabet.

The relation R, defined on A by xRy if x is a prefix of y, is a partial
order. Draw a Hasse diagram for the poset (A, R).

Find the maximal and minimal elements in the poset with each Hasse
diagram.

32.

a b c

d e

f 33.

a

b

c d 34.

a

b

c

d

Find the maximal and minimal elements, if they exist, in each poset.

35. (A, ≤), where A denotes the set of positive even integers.

36. (A, ≤), where A denotes the set of negative even integers.

7.9 Partial and Total Orderings 505

37. (A, |), where A = {1, 2, 3, 6, 9, 18} 38. (A, |), where A = {1, 2, 3, 6, 8, 24}
39–42. Find the greatest and least elements, if they exist, in the posets of

Exercises 35–38.

Mark each statement as true or false.

43. Every poset has a maximal element.

44. Every poset has a minimal element.

45. The maximal element in a poset, if it exists, is unique.

46. The minimal element in a poset, if it exists, is unique.

47. Every poset has a greatest element.

48. Every poset has a least element.

Give a counterexample to disprove each statement.

49. Every poset has a maximal element.

50. Every poset has a minimal element.

51. Every poset has a greatest element.

52. Every poset has a least element.

Topologically sort the elements of each poset.

53. The poset in Figure 7.43.

55. The poset in Exercise 32.

57. (A, |), where A = {1, 2, 3, 6, 9, 18}

54. The poset in Figure 7.44.

56. The poset in Exercise 33.

58. (A, |), where A = {1, 2, 3, 6, 8, 24}
59. Topologically sort the tasks t1 through t13 in building a house, given

by Table 7.6.

60. A project contains six subprojects, A through F. Results from some
of the subprojects are needed by others, as Table 7.7 shows. Find the
ways the subprojects can be sequentially arranged.

Table 7.7
Subproject Requires results from

A B, D
B C
C None
D C, E
E None
F A

506 Chapter 7 Relations

61. Seven tasks, A through G, comprise a project. Some of them can only
be started after others are completed, as indicated by Table 7.8. How
many ways can the tasks be arranged sequentially, so the prerequi-
sites of each task will be completed before it is started? List one of
them.

Table 7.8
Task Requires the completion of

A B, C
B G
C None
D A, F
E None
F B, E
G None

*62. Let(A, �1) and (B, �2) be two posets. Define a relation �3 on A × B
as follows: (a, b) �3 (a′, b′) if a �1 a′ and b �2 b′. Prove that �3 is a
partial order.

Prove each.

*63. The greatest element of a poset (A, �), if it exists, is unique.

*64. The least element of a poset (A, �), if it exists, is unique.

*65. Every finite nonempty poset (A, �) contains a maximal element.

*66. Establish the correctness of Algorithm 7.4.

Chapter Summary

We studied the fundamentals of the theory of relations and explored how
relations on finite sets can be represented by graphs and boolean matrices.

Boolean Matrix
• A boolean matrix has bits for entries (page 438).

• The join A ∨ B and meet A ∨ B of two boolean matrices A and B
are obtained by oring and anding the corresponding bits, respectively

(page 439).

• The boolean product A�B of two boolean matrices A = (aij)m×p and
B = (bjk)p×n is the matrix C = (cij)m×n, where cij = (ai1 ∧ b1j) ∨ (ai2 ∧
b2j) ∨ · · · ∨ (aip ∧ bpj) (page 439).

Chapter Summary 507

• The complement A′ of a boolean matrix A results from swapping 0’s
and 1’s (page 442).

Binary Relation
• A binary relation R from A to B is a subset of A × B. If (a, b) ∈ R, we

write aRb; otherwise, we write ab (page 443).

• A relation R from a finite set to a finite set can be represented by its
adjacency matrix, MR (page 444).

• A relation on a finite set can be represented by a digraph (page 445).

• Every function f : A → B is a binary relation from A to B such that (1)
dom(f) = A; and (2) if (a, b) ∈ f and (a, c) ∈ f , then b = c (page 448).

Properties of Relations
• A relation R on A is reflexive if aRa for every a ∈ A (page 455).

• A relation R on A is symmetric if aRb implies bRa (page 456).

• A relation R on A is antisymmetric if aRb ∧ bRa implies a = b
(page 456).

• A relation R on A is transitive if aRb ∧ bRc implies aRc (page 459).

Constructing New Relations
• The union and intersection of two relations R and S from A to B are

R ∪ S = {(a, b)|aRb ∨ aSb}; R ∧ S = {(a, b)|aRb ∨ aSb} (page 462).

• If R and S are relations on a finite set, MR ∪ S = MR ∨ MS and MR ∩ S =
MR ∧ MS (page 463).

• Let R be a relation from A to B and S a relation from B to C. Their
composition is R � S = {(a, c) ∈ A × C | aRb ∧ bRc for some b in B}

(page 463).

• In particular, if A, B, and C are finite sets, then MR�S = MR � MS
(page 466).

• For a relation R on a finite set, MRn = (MR)[n] (page 467).

• For a transitive relation R, Rn ⊆ R for every n ≥ 1 (page 468).

• The connectivity relation R∞ is the union of all powers of R:

R∞ =
∞⋃

n=1

Rn; MR∞ = MR ∨ MR2 ∨ MR3 ∨ . . . (page 471).

508 Chapter 7 Relations

• In particular, let R be a relation on a set with size n. Then

R∞ =
n⋃

i=1

Ri and MR = MR ∨ MR2 ∨ · · · ∨ MRn (page 473).

Transitive Closure
• The transitive closure R∗ of a relation R is the smallest transitive

relation containing it (page 475).

• R∗ = R∞ (page 477).

• Warshall’s algorithm systematically finds MR∗ (page 477).

Equivalence Relations and Partitions
• An equivalence relation is reflexive, symmetric, and transitive

(page 483).

• An equivalence relation on a set induces a partition of the set and vice
versa (page 488).

Partial and Total Orders
• A partial order � is reflexive, antisymmetric, and transitive. A set

together with a partial order is a poset (page 494).

• Two elements, x and y, in a poset are comparable if either x � y or
y � x (page 495).

• If any two elements in a poset are comparable, the partial order is a
total order or linear order (page 495).

• The lexicographic order is an extension of the alphabetical order to
posets (page 495).

• The Hasse diagram of a finite poset contains no loops, edges implied
by transitivity, or arrows; its edges are drawn upward (page 496).

• The elements of a finite nonempty poset can be sorted topologically
(page 500).

Review Exercises

Determine if each relation on {a, b, c} is reflexive, symmetric, antisymmet-
ric, or transitive.

1. {(a, a), (b, c), (c, b), (c, c)} 2. {(a, b), (b, a), (b, c), (c, b)}

Chapter Summary 509

Using the relations R = {(1, 1), (1, 2), (2, 2), (3, 2)} and S = {(1, 1), (2, 2),
(2, 3), (3, 2)} on {1, 2, 3}, find each.

3. (R ∪ S)′

7. (R ∪ S)−1

11. R � S

4. R′ ∩ S′

8. R−1 ∪ S−1

12. R2

5. (R ∩ S)′

9. (R ∩ S)−1

13. R3

6. R′ ∪ S′

10. R−1 ∩ S−1

14. R∞

With the adjacency matrices of the relations R = {(1, 1), (1, 2), (2, 2), (3, 2)}
and S = {(1, 1), (2, 2), (2, 3), (3, 2)} on {1, 2, 3}, find each.

15. (MR)′

19. R � S

16. (MR)T

20. R2

17. MR�S

21. MR∗

18. MR2

22. R∗

Find the transitive closure of the relation on A = {a, b, c} with each
adjacency matrix.

23.

⎡
⎣0 0 1

1 0 0
0 1 1

⎤
⎦ 24.

⎡
⎣1 0 0

0 1 1
1 0 1

⎤
⎦

Since 1972 every book published commercially has a 10-digit identification
number, its International Standard Book Number (ISBN). The ISBN con-
sists of four parts: a group code (one digit), a publisher code (two digits),
a book code (six digits), and a check digit. For instance, the ISBN of an
earlier text by this author is 0-12-421171-2. The group code 0 indicates
that the book was published in an English-speaking country. The pub-
lisher code (12) identifies the publisher, Academic Press, and the book code
(421171) is assigned by the publisher to the book. The check digit d, where
0 ≤ d ≤ 10 and 10 is denoted by X, is used to detect errors and is computed
as follows: Let x1, x2, . . . , x9 denote the first nine digits in the ISBN. Let
s denote the dot product of the 9-tuples (x1, x2, x3, x4, x5, x6, x7, x8, x9) and
(10, 9, 8, 7, 6, 5, 4, 3, 2). Then d ≡ −s (mod 11). Compute the check digit if
the first 9 digits of the ISBN are:

25. 0-12-421171 26. 0-87-620321

Determine if each is an equivalence relation on {a, b, c}.
27. {(a, a), (a, b), (b, a), (c, c)} 28. {(a, a), (a, c), (b, b), (c, a), (c, c)}
Using the equivalence relation {(a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (d, b),
(d, d)} on A = {a, b, c, d}, find each equivalence class.

29. [a] 30. [b] 31. [c] 32. [d]

33. Find the partition of A induced by the above relation.

Find the equivalence relation corresponding to each partition of the set
{2, 3, 4, 7}.
34. {{2, 4, 7}, {3}} 35. {{2, 4}, {3}, {7}}

510 Chapter 7 Relations

Find the number of partitions of a set with the given size.

36. Two 37. Seven

Mark each statement as true or false, where A is an arbitrary set, R an
arbitrary relation, and 	 the equality relation.

38. The null relation is reflexive.

39. The null relation is symmetric.

40. The null relation is transitive.

41. A relation R on A is reflexive if and only if 	 ⊆ R.

42. The less-than relation on R is irreflexive.

43. The less-than relation on R is antisymmetric.

44. If R is transitive, R∗ = R.

45. If R∗ = R, R is transitive.

46. The less-than relation on R is a partial order.

47. The less-than relation on R is a total order.

48. Arrange all binary words of length 3 in lexicographic order, where
0 ≺ 1.

49. Arrange all binary words of length ≤ 3 in lexicographic order, where
0 ≺ 1.

The relation � on the set A of required courses given in Table 7.1 by x � y
if x is a prerequisite of or the same as y is a partial order on A.

50. Draw the Hasse diagram for the poset.

51. Topologically sort the required computer science courses.

Use the poset in Figure 7.55 to find the following.

Figure 7.55

a

b c

d e f

52. The maximal and minimal elements, if they exist.

53. The greatest and least elements, if they exist.

54. Topologically sort the elements in the poset.

Chapter Summary 511

Let R and S be any two relations on a set A. Prove each.

55. (R ∩ S)2 ⊆ R2 ∩ S2 56. (R ∩ S)n ⊆ Rn ∩ Sn, n ≥ 1

57. R is antisymmetric if and only if R ∩ R−1 ⊆ 	.

58. The intersection of two equivalence relations is an equivalence
relation.

Supplementary Exercises

Let D denote any day of the week, where 0 ≤ D ≤ 6 and D = 0 denotes
Sunday. The day of the week corresponding to any day (m/d/y) in the
Gregorian calendar is given by

D ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌊
23m

9

⌋
+ d + 4 + y +

⌊
y − 1

4

⌋
−
⌊

y − 1
100

⌋
+
⌊

y − 1
400

⌋
(mod 7) if m < 3

⌊
23m

9

⌋
+ d + 4 + y +

⌊ y
4

⌋
−
⌊ y

100

⌋
+
⌊ y

400

⌋
− 2 (mod7) otherwise

(M. Keith and T. Carver, 1990)
Compute the day of each date.

1. July 4, 1776 2. December 25, 2076

Prove each.

3. Let p be a prime. Then p|(p
k

)
for 0 < k < p.

4. (Fermat’s theorem) Let a ∈ N and p a prime. Then a p ≡ a (mod p).
(Hint: Use induction.)

Let a, b ∈ R and p a prime. Prove that (a + b) p ≡ a p + b p (mod p) using:

5. The binomial theorem and Exercise 3.

6. Fermat’s theorem.

Evaluate each.

7. 51000 (mod 7) 8. 124000 (mod 5)

9. Prove that the product of any three consecutive integers is divisible
by 3.

10. Let n ∈ W. Prove that the number formed by concatenating the deci-
mal values of 2n and 2n+1 is divisible by 3. (For example, when n = 5,
both 3264 and 6432 are divisible by 3.) (D. Burns, 1977)

512 Chapter 7 Relations

11. Around 1760, John Wilson (1741–1793), an English mathematician,
proved that (p − 1)! ≡ −1 (mod p; that is, the quotient

W (p) = (p − 1)! + 1
p

is an integer. This is known as Wilson’s theorem.) p is a Wilson
prime if W (p) ≡ 0 (mod p); that is, if (p − 1)! ≡ −1 (mod p2). Find
the two Wilson’s primes < 20. (The third and largest known Wilson
prime is 563. It is not known whether or not there are infinitely many
Wilson primes.)

12. (Lucas’ Theorem) Let p be a prime, n = (atat−1 . . . a0)p and k =
(btbt−1 . . . b0)p. Then

(n
k

) ≡ (at
bt

)(at−1
bt−1

)
. . .

(a0
b0

)
(mod p). Using Lucas’ the-

orem, find the remainders when the binomial coefficients C(234,19)
and C(3456,297) are divided by 5.

*13. Let a and b be relatively prime integers. Prove that aϕ(b) + bϕ(a) ≡ 1
(mod ab).
(Hint: Let n ∈ N and a an integer relatively prime to n. Then aϕ(n) ≡ 1
(mod /n). This is Euler’s theorem.) (M. Charosh, 1983)

*14. Show that a set with n elements must have at least 2n relations with
the same reflexive closure.
(Hint: Use the pigeonhole principle.)

*15. Show that a set with size n must have at least 2n(n−1)/2 relations with
the same symmetric closure.
(Hint: Use the pigeonhole principle.)

Computer Exercises

Write a program to perform each task, where n denotes a positive integer
≤ 20 and A = {1, 2, . . . , n}.
1. Read in two boolean matrices. Print their join, meet, complement, and

boolean product, if defined.

2. Read in the elements of a relation R on A. Print its adjacency matrix
MR. Use MR to enumerate the elements in the relation.

3. Read in the adjacency matrix of a relation on A. Determine if the relation
is reflexive, symmetric, antisymmetric, or transitive.

4. Read in the adjacency matrices of two relations on A. Print the adjacency
matrices of their union, intersection, complements, and inverses.

5. Read in the adjacency matrix of a relation R from A to B and that of a
relation S from B to C. Print MR�S.

Chapter Summary 513

6. Read in the adjacency matrix of a relation R on A. Print MR∗ , using
the connectivity relation algorithm and Warshall’s algorithm, and
compare the number of bit operations required by them.

7. Read in the adjacency matrix of a relation on A. Determine if the
relation is an equivalence relation.

8. Read in two positive integers r and n, where r ≤ n ≤ 10. Print the
number of equivalence relations that can be defined on a set of size n,
using Stirling numbers of the second kind and Bell numbers.

9. Read in the adjacency matrix of a partial order on a poset A.

• Determine if it is a partial order.
• Print the boolean matrix corresponding to its Hasse diagram.
• Topologically sort the elements of the poset.

10. Determine the most likely day on which the 13th of a month will fall
in the Gregorian calendar. Since the Gregorian calendar repeats every
400 years, you need only consider a period of 400 years.

11. Read in a positive integer n ≤ 1000 and print all Wilson primes ≤ n.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Explain and illustrate the various relational operations in the theory of
databases.

2. Describe the algorithm employed by the United States Postal Service to
encode the nine-digit zip code into barcodes, and decode the barcodes
(62 bars) into zip codes.

3. Describe how modular arithmetic can be used to construct m-pointed
stars.

4. Explain the coding scheme for creating European Article Numbering
(EAN) barcodes to uniquely identify books. Extend it to include the
five-digit add-on code to provide price information.

5. Describe the origins of the Julian and Gregorian calendars.

6. Develop a formula to determine the day d of the week for the rth day in
a given month m of any given year y in the Gregorian calendar, where
y > 1600.

7. Study the algorithms of assigning driver’s license numbers in various
states.

514 Chapter 7 Relations

8. State and prove the Chinese Remainder Theorem. Illustrate it using
ancient examples from China and India.

9. Write an essay on the various cryptosystems.

Enrichment Readings

1. A. V. Aho et al., Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983.

2. W. T. Bailey, “Friday-the-Thirteenth,”Mathematics Teacher, Vol. 62
(May l969), pp. 363–364.

3. J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics
Magazine, Vol. 64 (Feb. 1991), pp. 13–22.

4. J. A. Gallian, “The Mathematics of Identification Numbers,” The
College Mathematics Journal, Vol. 22 (May 1991), pp. 194–202.

5. J. A. Gallian and S. Winters, “Modular Arithmetic in the Market-
place,” The American Mathematical Monthly, Vol. 95 (June–July
1988), pp. 548–551.

6. D. W. Hardy and C. L. Walker, Applied Algebra: Codes, Ciphers, and
Discrete Algorithms, Prentice-Hall, Upper Saddle River, NJ, 2003.

7. T. Koshy, Elementary Number Theory with Applications, Harcourt/
Academic Press, Boston, MA, 2002, pp. 210–436.

8. P. Lefton, “Number Theory and Public-Key Cryptology,” Mathematics
Teacher, Vol. 84 (Jan. 1991), pp. 54–62.

9. R. E. Lewand, Cryptological Mathematics, Math. Association of
America, Washington, D.C., 2000.

10. J. E. Shockley, Introduction to Number Theory, Holt, Rinehart and
Winston, New York, 1967, pp. 36–69.

11. J. R. Snow, “An Application of Number Theory to Cryptology,”
Mathematics Teacher, Vol. 82 (Jan. l989), pp. 18–26.

12. P. M. Tuchinsky, “International Standard Book Number,” The UMAP
Journal, Vol. 5 (1985), pp. 41–54.

Chapter 8

Graphs

Euler calculated without effort, as men breathe,
or as eagles sustain themselves in the wind.

— FRANÇOIS ARAGO

G raph theory, a fascinating branch of mathematics, has numerous
applications to such diverse areas as computer science, engineering,

linguistics, and management science, as well as the natural and social
sciences.

Like many important discoveries, graph theory grew out of an inter-
esting physical problem, the celebrated Königsberg Bridge Puzzle (see
Section 8.1). The outstanding Swiss mathematician Leonhard Euler solved
the puzzle in 1736, thus laying the foundation for graph theory and earning
his title as the father of graph theory.

This chapter presents the fundamentals of the field he created, with
its assortment of new terms. Since graph terminology is not yet standard,
definitions of basic terms can vary from book to book, an important fact to
remember.

We will study the following interesting problems as well as others:

• The City of Königsberg (see Figure 8.1) comprises the river banks A and
C and the islands B and D. These four land areas are connected by seven
bridges. Could a Königsbergian take a walk through his beloved city,
passing over each bridge exactly once? Could he take a walk through
the city passing over each bridge exactly once and return home?

• At a sesquicentennial ball, there are n guests and each person shakes
hands with everybody else exactly once. How would you represent the
handshakes pictorially? How many handshakes are made?

• Three married couples want to cross a river in a rowboat which can
carry only two people at a time. No husband will allow his wife to be
in the boat or on the shore in the presence of another man unless he
is also present. The women can, of course, row well. How can they all
cross? (S. Gudder, 1976)

515

516 Chapter 8 Graphs

Leonhard Euler (1707–1783) was born in Basel, Switzerland. His father,
a mathematician and a Calvinist pastor, wanted him also to become a pastor.
Although Euler had different ideas, he followed his father’s wishes, entering
the University of Basel to study Hebrew and theology. His hard work at the
University and remarkable ability brought him to the attention of the well-
known mathematician Johann Bernoulli (1667–1748). Recognizing young
Euler’s talents, Bernoulli persuaded the boy’s father to change his mind,
and Euler was allowed to pursue his studies in mathematics.

At age 19 Euler brought out his first paper. Although it failed to win the
Paris Academy Prize in 1727, he eventually won the prize 12 times.

Euler was the most prolific mathematician, significantly contributing to
every branch of mathematics. With his phenomenal memory, he had perfect
recall for every formula. A genius, he could work anywhere and under any
conditions. Euler belongs in a class by himself.

• A developer is building three new houses on one side of a street. If she
would like to connect three utilities to each of them from the other side,
can she lay the utility lines without any crossings?

8.1 Graphs

The Prussian city of Königsberg (called Kaliningrad during the era of the
Soviet Union) lies on the Pregel river (see Figure 8.1). It consists of the two
river banks A and C, and the two islands B and D. Seven bridges connect
the four land areas of the city.

Figure 8.1

The City of
Königsberg.

A

B D

C

Residents of the city used to take evening walks from one part of the city
to another. This, naturally, suggested the following question: Is it possible
to walk through the city, traversing each bridge exactly once?

The problem sounds simple, and you might want to try a few possible
paths before going any further. After all, by the multiplication principle,
the maximum number of possible paths is 7! = 5040.

In 1736, Euler, while at St. Petersburg Academy, published a solution
to the problem: No such walk is possible. In fact, he proved a far more

8.1 Graphs 517

general result, of which the Königsberg bridge puzzle is a special case.
Euler constructed a mathematical model like Figure 8.2 for the problem
in which points A and C represent the two river banks; B and D the two
islands. The arcs or line segments joining them represent the seven bridges.

Figure 8.2

A mathematical model
for the Königsberg
bridge puzzle.

A

C

B D

The Königsberg bridge problem can now be stated in layman’s language
as follows: Beginning at one of the points A, B, C, or D, is it possible to trace
the figure without lifting your pencil or traversing the same edge twice?
Section 8.5 will explore this further.

The Königsberg bridge model in Figure 8.2 consists of four points — A,
B, C, and D — and the arcs or line segments joining them. Such a figure is
called a graph.

Graph
A graph (or undirected graph) G consists of a nonempty finite set V of
points (called vertices or nodes) and a set E of unordered pairs of elements
in V (called edges). The graph G is the ordered pair (V , E) : G = (V , E).
An edge connecting the vertices u and v is denoted by {u, v}, u-v, or some
label. Geometrically, edges are denoted by arcs or line segments.

The next example uses these terms to apply graphs to the theory of
communications.

EXAMPLE 8.1 A taxpayer files his federal tax return at an Internal Revenue Service (IRS)
center located in the region in which he lives. Six of the IRS centers in the
continental United States are (1) Atlanta, (2) Holtsville, (3) Philadelphia,
(4) Cincinnati, (5) Austin, and (6) Fresno. A computer at each center can
communicate with a computer at any other center over a telephone line.
This network of computers can be modeled by a graph, as in Figure 8.3.

Figure 8.3
3

2 5

1

4

6

e1

518 Chapter 8 Graphs

The graph has six vertices: 1, 2, 3, 4, 5, and 6. Each vertex represents a
computer and each edge a telephone link. Since each computer can commu-
nicate with every other computer, an edge runs between any two vertices;
e1 denotes edge {3, 4}. �

Figure 8.4 displays more graphs. The one in Figure 8.4a contains
three vertices — a, b, and c : V = {a, b, c}. Its three edges are e1 = {a, a},
e2 = {a, b}, and e3 = {b, c} : E = {e1, e2, e3} = {{a, a}, {a, b}, {b, c}}.

Figure 8.4

c c

b

b

b

aa

a
e1

e1
e1

e2

e2

e2 e3
e3 e3e4 e5

(a) (b) (c)

c

Airline route maps provide a fine paradigm of a graph, with each vertex
representing a city and every edge a direct flight from one city to another.

We now introduce several special classes of graphs: simple, complete,
bipartite, complete bipartite, and weighted graphs.

Simple Graph
An edge {a, a} emanating from and terminating at the same vertex a is a
loop.∗ Parallel edges have the same vertices. A simple graph contains
no loops or parallel edges.

For example, the graphs in Figures 8.4a and b display a loop at a, while
the ones in Figures 8.5 and 8.6 have two parallel edges, e2 and e3, connecting
vertices a and b. Figure 8.3 is a simple graph, unlike the graphs in Figure 8.4
(why?).

By means of graphs, modular arithmetic can construct aesthetically
pleasing designs, as the next example demonstrates.

EXAMPLE 8.2 Choose V = {0, 1, 2, 3, 4}, the set of integers modulo 5.

Figure 8.5

A pentagram.

1 3

2

0 4

∗Although {a, a} = {a} as sets, the loop at a is denoted by {a, a} or a-a.

8.1 Graphs 519

Figure 8.6

1 3

2

0 4

(a) (b)

Mark the vertices at equal intervals on a circle. An edge exists between
the vertices x and y if y ≡ x + 2 (mod 5). For instance, 1 ≡ 4 + 2 (mod 5);
so an edge runs between the vertices 4 and 1. A simple graph, called a
pentagram, materializes in Figure 8.5. Coloring the various wedge-shaped
regions creates the pleasing design in Figure 8.6a. The pentagram reminds
us of the point-to-point communication system in Figure 8.6b. �

Graphs can also facilitate the study of hydrocarbons.

EXAMPLE 8.3 Arthur Cayley used graphs in studying isomers of hydrocarbons. A hydro-
carbon molecule consists of carbon and hydrogen atoms. Each hydrogen
atom (H) is bonded to a single carbon atom (C), whereas a carbon atom
bonds with two, three, or four atoms which can be carbon or hydrogen.

Figure 8.7

Ethane, C2H6.

H

H C C H

H

H H

Figure 8.8

Cyclobutane, C4H8.

H

H C C
H

H C C H

H

H H

An ethane molecule, for instance, consists of two carbon atoms and
six hydrogen atoms. Its structural formula appears as the graph in
Figure 8.7, representing the molecular formula C2H6. Figures 8.8 and 8.9

520 Chapter 8 Graphs

Figure 8.9

Cyclopentane, C5H10.
H

H

H

H H

C

C C

C

C

HH
H H

H

show the structural formulas of cyclobutane and cyclopentane
molecules. �

It is not necessary to have edges between any two vertices in a graph,
so we make the following definition.

Adjacency and Incidence
Two vertices v and w in a graph are adjacent if an edge runs between
them; if a loop occurs at v, v is adjacent to itself. An isolated vertex is not
adjacent to any vertex. Adjacent edges have a common vertex. An edge
is incident with a vertex v if v is an endpoint of the edge.

For example, in the graph in Figure 8.4a, vertices a and b are adjacent,
but a and c are not. Edges {a, b} and {b, c} are adjacent. Edge e2 is incident
with vertices a and b. The graph contains no isolated vertices.

The concept of the degree of a vertex is important in the study of graphs,
as will be seen later.

Degree of a Vertex
The degree of a vertex v in a graph is the number of edges meeting at v;
it is denoted by deg (v).

Clearly, a vertex v is isolated if deg (v) = 0. In addition, a loop at v
contributes two to its degree.

For example, in Figure 8.4b, deg (a) = 5, deg (b) = 3, and deg (c) = 2. In
Figure 8.4c, deg (a) = 3, deg (b) = 2, and deg (c) = 1.

We have seen that digraphs can arise from matrices; graphs also can
arise from them.

Adjacency Matrix
The adjacency matrix of a graph with n vertices v1, v2, . . . , vn is an n × n
matrix A = (aij), where aij = number of edges from vi to vj.

Because every edge in a graph is undirected, aij = aji for every i and j,
so the adjacency matrix of every graph is symmetric. If the graph is simple,
A is a boolean matrix.

8.1 Graphs 521

For example, the adjacency matrix of the Königsberg bridge model in
Figure 8.2 is

A B C D row sum

A =
A
B
C
D

⎡
⎢⎢⎣

0 2 0 1
2 0 2 1
0 2 0 1
1 1 1 0

⎤
⎥⎥⎦

3
5
3
3

← deg (B)

The sum of the numbers along each row gives the degree of the
corresponding vertex. For instance, deg (A) = 3 and deg (B) = 5.

Theorem 8.1 shows a close relationship between the sum of the degrees
of the vertices of a graph and the number of edges in it.

THEOREM 8.1 Let e denote the number of edges of a graph G with n vertices v1, v2, . . . , vn.

Then
n∑

i=1
deg (vi) = 2e.

PROOF:
Every nonloop edge is incident with exactly two (distinct) vertices. On the
other hand, every loop edge is incident with the vertex twice. Thus every
edge, whether it is a loop or not, contributes a two to the sum of the degrees

of the vertices; so
n∑

i=1
deg (vi) = 2e. �

According to Theorem 8.1, the sum of the degrees in a graph is always
an even integer. This fact can determine if a given number of edges
and vertices with known degrees can generate a graph (and hence a
hydrocarbon).

The next two examples employ this test.

EXAMPLE 8.4 Is a graph with four vertices a, b, c, and d with deg (a) = 4, deg (b) = 5 =
deg (d), and deg (c) = 2 possible?

SOLUTION:
Sum of the degrees = 4+5+2+5 = 16. Since the sum is even, there might
be such a graph with 16/2 = 8 edges. In fact, Figure 8.10 demonstrates one
(see Exercise 65).

Figure 8.10

a c

b

d �

522 Chapter 8 Graphs

Example 8.5 applies Theorem 8.1 to hydrocarbon molecules.

EXAMPLE 8.5◦ (optional) In a hydrocarbon molecule, a hydrogen atom is bonded to exactly
one carbon atom. If a carbon atom bonds to four atoms, carbon or hydrogen,
can a hydrocarbon molecule with three carbon atoms and five hydrogen
atoms exist?

SOLUTION:
Suppose there is such a molecule. Its structural formula is a graph with
vertices representing atoms and edges representing bonds. The sum of the
degrees of the vertices of the graph is 3 · 4 + 5 · 1 = 17. Since this sum is
not an even integer, such a graph and hence such a hydrocarbon molecule
cannot exist. �

Another useful consequence of Theorem 8.1 lies below.

THEOREM 8.2 The number of odd degree vertices in a graph is an even integer.

PROOF:
Let G be a graph with e edges. Let x denote the sum of the degrees of even
degree vertices and y the sum of the degrees of odd degree vertices. By
Theorem 8.1, x + y = 2e. Since x is the sum of even integers, x is even, so
y = 2e−x is also an even integer. But y is the sum of odd integers, so for y to
be even, the number of addends in the sum must be even. In other words,
the number of odd degree vertices must be even. �

For example, the Königsberg model in Figure 8.2 contains four vertices
of odd degree.

Just as a set can have subsets, a graph can have subgraphs.

Subgraph of a Graph
A subgraph of a graph G = (V , E) is a graph G1 = (V1, E1) where V1 ⊆ V
and E1 ⊆ E.

EXAMPLE 8.6 The graphs G1 and G2 in Figure 8.12 are subgraphs of the graph G in
Figure 8.11 (Why?).

Figure 8.11 c

f

b d

a e

Graph G (Star of David)

8.1 Graphs 523

Figure 8.12
c b d

a e f

Graph G1 Graph G2 �

Next we present two fascinating occurrences of Fibonacci and Lucas
numbers in the study of hydrocarbons.∗

Fibonacci and Paraffins
Delete the hydrogen atoms from the structural formulas of saturated
hydrocarbon molecules CnH2n+2. This yields graphs consisting of only
carbon atoms and edges between adjacent vertices.

The topological index of such a graph G with n vertices is the
total number of different ways the graph can be partitioned into disjoint
subgraphs containing all vertices and exactly k edges, where k ≥ 0. For
example, Figure 8.13a shows the carbon atom skeleton for the paraffin,
pentane C5H12, and Figure 8.13b shows its various possible partitionings.
Consequently, the topological index of pentane is 1 + 4 + 3 = 8.

Figure 8.13

k=0 k=1

(b)(a)

k=2

Table 8.1 shows the carbon atom graphs Gn and their topological indices
of 10 paraffins CnH2n+2, n ≥ 1. For a graph consisting of a single vertex,
the index is defined as one. It appears from the table that the index of Gn
is Fn+1.

To confirm this observation, let tn denote the topological index of the
carbon atom graph Gn of a paraffin with n vertices, as Figure 8.14 shows.

Case 1 Suppose the edge vn−1-vn is not included. Then the edge vn−2-
vn−1 may or may not be included. Consequently, the topological index of
the remaining graph Gn−1 is tn−1.

∗T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.

524 Chapter 8 Graphs

Table 8.1

Topological indices of
paraffins CnH2n+2.

Paraffin n Graph k Total

0 1 2 3 4 5

Methane 1 1 1
Ethane 2 1 1 2
Propane 3 1 2 3
Butane 4 1 3 1 5
Pentane 5 1 4 3 8
Hexane 6 1 5�6 1 13↓
Heptane 7 1 6 10 4 21
Octane 8 1 7 15 10 1 34
Nonane 9 1 8 21 20 5 55
Decane 10 1 9 28 35 15 1 89

↑
Fn+1

Figure 8.14
V1 V2 V3 Vn�2 Vn�1 Vn

Case 2 Suppose the edge vn−1-vn is included. Then the edge vn−2-vn−1 is
not included. This yields the graph Gn−2 and its index is tn−2.

Thus, the addition principle, tn = tn−1 + tn−2. But t1 = 1 and t2 = 2, so,
tn = Fn+1.

Lucas and Cycloparaffins
Table 8.2 shows the carbon atom skeleton Gn of 10 cycloparaffins CnH2n
and the corresponding indices. A similar argument shows that the index of
Gn = index of Gn + index of Gn−2 = Fn+1 + Fn−1 = Ln, where n ≥ 3.

Five important classes of simple graphs receive attention below: com-
plete, cycle, wheel, bipartite, and weighted.

Complete Graph
A simple graph with an edge between every two distinct vertices is a
complete graph. A complete graph with n vertices is denoted by Kn.

The complete graphs K1 through K5 appear in Figure 8.15. Notice that
Figure 8.3 displays K6. The complete graph Kn has C(n, 2) edges and each
vertex has degree n − 1 (Why?).

The next example revisits the handshake problem from Chapter 5.

EXAMPLE 8.7 (The handshake problem) At a sesquicentennial ball, each of n guests
shakes hands with everybody else exactly once. Find the number of
handshakes hn made.

8.1 Graphs 525

Table 8.2

Topological indices of
cycloparaffins CnH2n.

Cycloparaffin n Graph k Total

0 1 2 3 4 5

· 1 · 1 1

· 2 · · 1 2 3

Cyclopropane 3 1 3 4

Cyclobutane 4 1 4 2 7

Cyclopentane 5 1 5

�
��

5 11−→

Cyclohexane 6 1 6 9 2 18

Cycloheptane 7 1 7 14 7 29

Cyclooctane 8 1 8 20 16 2 47

Cyclononane 9 1 9 27 30 9 76

Cyclodecane 10 1 10 35 50 25 2 123

↑
Ln

Figure 8.15

The complete graphs
K1 through K5.

K1 K2 K3 K4 K5

SOLUTION:
Represent each guest by a vertex of a graph and each handshake by an
edge. Since each person shakes hands with everyone else exactly once, the
complete graph Kn is generated. Therefore,

hn = number of handshakes made

= number of edges in Kn

= C(n, 2) �

526 Chapter 8 Graphs

Complete graphs are also useful in modeling round-robin tourna-
ments, where every team plays every other team exactly once. With n
teams entering the tournament, Kn provides the model.

Cycle and Wheel Graphs
The cycle graph Cn of length n(≥3) consists of n vertices v1, . . . , vn and
edges {vi, vi+1}, where 1 ≤ i ≤ n and vn+1 = v1. Figure 8.16 displays cycle
graphs C3, C4, and C5.

Figure 8.16

C3 C4 C5

The wheel graph Wn(n ≥ 3) is obtained from Cn by adding a vertex v
inside Cn and connecting it to every vertex in Cn. Figure 8.17 shows the
wheel graphs W3, W4, and W5.

Figure 8.17

W3 W4 W5

Next we present another type of simple graph.

Bipartite Graph
If the vertex set V of a simple graph G = (V , E) can be partitioned into two
disjoint (nonempty) sets V1 and V2, so every edge in G is incident with a
vertex in V1 and a vertex V2, then G is bipartite.

The graph in Figure 8.18 is bipartite, since the vertex set V = {a, b, c, d,
e, f } unites the disjoint sets V1 = {a, b, c} and V2 = {d, e, f }, and every edge
has one vertex in V1 and the other in V2. But the graph in Figure 8.19 is
not bipartite (Why?).

Figure 8.18

A bipartite graph.
a b c

d e f

8.1 Graphs 527

Figure 8.19

Not bipartite.

a b

d c

Complete Bipartite Graph
Let G be a bipartite graph with |V1| = m and |V2| = n. If an edge runs
between every vertex in V1 and V2, G is a complete bipartite graph,
denoted by Km,n.

The complete bipartite graph K2,3 is shown in Figure 8.20. An interest-
ing application of K3,3 will be made in Example 8.36.

Figure 8.20

The complete bipartite
graph K2,3.

a b

c d e

The last important class of simple graphs handled in this section follows.

Weighted Graph
A simple graph in which each edge e is assigned a positive real number w is a
weighted graph. The number w is the weight of edge e. Thus a weighted
graph may be considered an ordered triplet (V , E, f), where f : E → R is a
function.

Route maps often provide examples of weighted graphs, as the following
example shows.

EXAMPLE 8.8 Figure 8.21 presents a weighted graph, where the weights represent
distances in miles between the cities.

Figure 8.21

A weighted graph.
Chicago

Houston Washington, D.C.

Philadelphia New York

Buffalo
525

745 350 215

230140

1410

1080

1550

90

445 Boston

�

528 Chapter 8 Graphs

The weights in a weighted graph may represent distances, travel times,
fares, transportation costs, etc. Every entry aij of the adjacency matrix A
of a weighted graph denotes the weight of the edge {i, j}. Accordingly, A is
the weighted adjacency matrix of the graph.

Graphs have interesting and useful applications in communications.

Graphs and Telecommunications
Suppose, for example, there are n telephones in a city and there is a
dedicated line between every two telephones. Such an arrangement of com-
munication lines, called a network, can be modeled by the complete graph
Kn. Such a telephone network is inefficient and expensive. (How many
cables are needed to link n customers? What if a new subscriber needs to
be added to the network?)

So the local telephone company uses a network, called star topology,
which links each subscriber to a central office switch (or exchange). It can
be represented by the bipartite graph K1,n, as in Figure 8.22, where the
symbol � indicates a central office switch. The star topology takes just
n cables to connect n phones, much less than the C(n, 2) cables needed
for Kn.

To accommodate a large number of customers, two or more star topolo-
gies are linked by trunks in cities and large towns. Figure 8.23, for example,
shows a network with two exchanges, 863 and 891.

Figure 8.22

A star topology.

2001

2000 2004

358

2003

Figure 8.23

The star topologies
linked by a trunk.

1001

1000 1005

trunk863

1003 1002

1001 1004

891

1003

8.1 Graphs 529

Graphs and Local Area Networks
Star topology is also used in the design of local area networks (LANs),
which are arrangements of personal computers and peripheral devices such
as printers and plotters in a building or on a campus. See Figure 8.24. All
devices in the network are connected to a host computer at the center of
the network, which directs the flow of communications between devices.

Figure 8.24

A local area network.

Printer

Printer

Router Router

Router
Printer

Scanner

Scanner

Scanner

Bus topology, illustrated in Figure 8.25, links devices in the network
via a single trunk. This topology is simple and takes the least amount of
cable to install. Furthermore, it is easy to add a device to the network by
simply tapping into the trunk.

Figure 8.25

A bus topology.

PC 6

PC 4

Letter-quality printer Dot-matrix printer

PC 3

PC 1 PC 2 PC 5

Ring topology, no longer in use, connects computers in a circle, so each
computer is linked to exactly two others. Such a LAN can be represented
by the cycle graph Cn. See Figure 8.26.

Some LANs employ a star-ring topology, a hybrid of star and ring
topologies, as in Figure 8.27. A star-ring topology can be modeled by the

530 Chapter 8 Graphs

Figure 8.26

A ring topology.

Letter-quality printer

PC 3

PC 2 PC 4

Hard disk drive

PC 1

wheel graph Wn. In such a network, messages are sent around a circle or
thorough a central host device.

Figure 8.27

A star-ring topology.

Among the sundry places graphs crop up are in games. Two such games
follow.

EXAMPLE 8.9◦ (optional) The game of Yashima∗ is played on the Yashima board (see
Figure 8.28) by two players using two tokens, one red and the other white.
(The graph is called the Petersen graph, after the Danish mathematician
Julius Petersen, who developed it in 1891.) Initially, the tokens are placed

∗Proposed by F. H. Kierstead, Jr., and solved by B. J. Schwartz, J. Recreational Mathematics.
Vol. 14, 1981–1982, p. 309.

8.1 Graphs 531

at two vertices of the graph. The players alternately move their tokens
from one vertex to an unoccupied adjacent vertex, erasing the edge tra-
versed. The game ends when a player lands at an isolated vertex. Find the
maximum number of moves each player can make.

Figure 8.28

Petersen graph (the
Yashima board).

red white

SOLUTION:
Notice that the degree of each vertex is three. Two edges are deleted at
each vertex along the path taken by each player except at the initial and
terminal vertices, where only one edge disappears. Thus a maximum of
four vertices (two for each player) lose an odd number of edges, and when
the game ends, at most four vertices can remain isolated; in other words,
at most 12 of the 15 edges can be deleted. So each player can last six
moves.

To achieve this maximum number, one player must travel along the
pentagon and the other along the star. (Try this with a friend.) �

The next example is related to Example 3.29, so review it before going
any further.

EXAMPLE 8.10 The graph-theoretic game of SIM, invented by Gustavus J. Simmons of
Sandia Corporation in 1969, is played by two players using the complete
graph K6. Player R has a red pencil and player B a blue one. They alternately
color the edges of the graph. The first player to complete a monochromatic
triangle loses the game.

Three nontrivial ways of playing the game are given in Figure 8.29, where
solid edges indicate red edges and broken ones, blue.

How long can a game of SIM go on? Suppose player R uses his first three
moves to color the edges of a triangle. By then player B will have made two
moves, so player R can color a monochromatic triangle in five moves and
the game ends. Such a sequence is clearly suicidal for R.

Can the game end in a draw? Since the edges form at least one monochro-
matic triangle, by Example 3.29, the game cannot end in a draw. In at most
15 moves, one player will lose by completing a monochromatic triangle. �

This example has an intriguing application, as the next example
shows.

532 Chapter 8 Graphs

Julius Petersen (1839–1910) was born in Soro, Denmark. He graduated
from Copenhagen University in 1866 and 5 years later received his Ph.D. from
Copenhagen. In 1887, he became a professor at the university, a position he
held until 1909.

An author of several textbooks translated into several languages, Petersen
strongly influenced mathematics education in Denmark. Although he is best
known for his work in graph theory, he worked in algebra, analysis, geometry,
mechanics, and number theory.

Figure 8.29

Player B losses in
13 moves

Player R losses in
14 moves

Player B losses in
15 moves

EXAMPLE 8.11 Show that any group of six people contains three mutual friends or three
mutual strangers.

PROOF:
Represent each person in the group by a vertex of a graph. Draw a red edge
between two vertices if the corresponding persons are friends; otherwise
draw a blue edge. When all edges are drawn, we get the complete graph K6.
By Example 8.10, the edges form a monochromatic triangle, so the group
contains three mutual friends or three mutual strangers. �

We close this section with a technique of combining two graphs and an
interesting application to the modified handshake problem.

Union of Simple Graphs
The union of two simple graphs, G1 = (V1, E1) and G2 = (V2, E2), is the
simple graph G = (V , E), where V = V1 ∪ V2 and E = E1 ∪ E2; it is denoted
by G1 ∪ G2.

For example, the Star of David in Figure 8.11 is the union of the graphs
G1 and G2 in Figure 8.12.

8.1 Graphs 533

We now present an application of this operation. To this end, we return
to the handshake problem in Example 5.3.

Recall from Example 5.10 that the number of handshakes made by n
people is given by h(n) = n(n − 1)/2 = C(n, 2), where n ≥ 1. Geometrically,
h(n) denotes the number of edges in the complete graph Kn.

A Generalized Handshake Problem
More generally, suppose a group of r (≥0) people hosts a party and there are
n guests at the party. Everyone shakes hands with everybody else exactly
once, except that no host shakes hands with any other host. Then

h(n) =
(

number of handshakes
made by the n guests

)
+ r

(
number of handshakes
made by a host H

)
= c(n, 2) + rn

See Figure 8.30.

Figure 8.30

n guests

. H r hosts→

The formula h(n) = C(n, 2)+rn has an interesting graph-theoretic inter-
pretation. As in the original simple version, the handshakes made among
the guests can be represented by the edges in Kn. Likewise, rn handshakes
between the guests and the hosts can be represented by the edges in the
complete bipartite graph Kr,n.

Thus h(n) denotes the number of edges in the union Kn ∪Kr,n of the two
graphs (see Figure 8.31), where n = 4 and r = 3. Consequently, h(n) =
e(Kn) + e(Kr,n) = e(Kn ∪ Kr,n), where e(G) denotes the number of edges in
a graph G.

Exercises 8.1

Determine if each graph is simple.

534 Chapter 8 Graphs

Figure 8.31

guests

hosts

guests

hosts

K3, 4
e (K3, 4)�12

K3 � K3, 4
e (K3 � K3, 4)�18

K4
e (K4)�6

Four guests shaking hands
with every other guest

1.

c

ba

3. a

b c

2.

cb

a

4. b

e

a c

f d

5–6. Find the number of vertices and edges of the graphs in Exercises 1–2.

7–8. Find the degrees of the vertices of the graphs in Exercises 3–4.

9–10. Find the adjacency matrix of the graphs in Exercises 1 and 2.

Draw the graph with the given adjacency matrix.

11. a b c d
a
b
c
d

⎡
⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎤
⎥⎥⎦

12. a b c d
a
b
c
d

⎡
⎢⎢⎣

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤
⎥⎥⎦

8.1 Graphs 535

13. The adjacency matrix of a simple graph has the form

A =
[
A1 0
0 A2

]∣∣∣∣
What can you say about the graph?

14–15. Verify Theorem 8.1 for each graph in Exercises 1 and 2. Find the
number of edges of a graph that has:

16. Exactly three vertices with degrees 1, 3, and 2.

17. Exactly five vertices with degrees 1, 1, 1, 1, and 4.

Could there could be a graph that has:

18. Three vertices with degrees 2, 3, and 4?

19. Four vertices with degrees 2, 2, 2, and 2?

Find the number of bonds in each hydrocarbon molecule. (Assume each
carbon atom is bonded to four atoms.)

20. A propane molecule C3H8

22. An ethylene molecule C2H4

21. A butane molecule C4H10

23. A cyclobutane molecule C4H8

24. Find the number of subgraphs of the graph in Exercise 3. Compute the
number of edges in each complete graph.

25. K6 26. K7 27. K10 28. K11

29. Characterize the adjacency matrix of the complete graph Kn.

Is each graph bipartite? If so, identify the vertex sets V1 and V2.

30. b

e

a c

f d

31. b

e

a c

d

32. Find the number of vertices in the bipartite graph Km,n.

33. Find the number of edges in the bipartite graph Km,n.

34. Identify the general form of the adjacency matrix for Km,n.

35. Let G be a graph with n vertices and e edges. Let M and m denote the
maximum and minimum of the degrees of vertices in G, respectively.
Prove that m ≤ 2e/n ≤ M.

536 Chapter 8 Graphs

A simple graph G is regular if every vertex has the same degree. If every
vertex has degree r, G is r-regular with r the degree of the graph. Draw
a regular graph with the given properties.

36. r = 1 and two vertices.

38. r = 2 and four vertices.

40. r = 1 and not complete.

37. r = 2 and three vertices.

39. r = 3 and four vertices.

41. r = 2 and not complete.

42. Is the Petersen graph in Figure 8.28 r-regular? If yes, find the value
of r.

43. Is the complete graph Kn regular? If so, find its degree.

44. How many edges does an r-regular graph with n vertices have?
(Hint: Use Exercise 35.)

45. Let G be an r-regular graph with n vertices. Prove that nr is even.
(Hint: Use Exercise 44.)

46. Can there be a 1-regular graph with three vertices?

47. Can there be a 3-regular graph with five vertices?

The complement of simple graph G is a simple graph G′ containing all
vertices in G; two vertices are adjacent in G′ if they are not adjacent in G.
For example, the graphs in Figures 8.32 and 8.33 are complements of each
other. Find the complements of the graphs in Exercises 48–50.

Figure 8.32 b

a c

d

Figure 8.33 b

a c
d

48. a b

c

49.

a

b

c

50.

a

c

b e

f

d

51. How are the adjacency matrices of G and G′ related?

8.1 Graphs 537

Characterize the complement of each graph.

52. Kn 53. Km,n

54. Let n and e denote the numbers of vertices and edges in a sim-
ple graph G and e′ the number of edges in G′. How are e and e′
related?

Find the union of each pair of graphs.

55.

a b e

d

c

ba

d

c

56.

a
a

c
c

d

b

Characterize each graph.

57. K2,3 ∪K ′
2,3 58. K2,4 ∪K ′

2,4 59. K3,3 ∪K ′
3,3 60. Km,n ∪K ′

m,n

61. Let G be a simple graph with n vertices. What can you say about
G ∪ G′?

62. A company wishes to schedule 1-hour meetings beginning at 7 a.m.
between every two of its six regional managers—A, B, C, D, E,
and F—so each can spend an hour with each of the other five for
better acquaintance. Find the various possible schedule pairings.
(This is a round-robin tournament in disguise.) (S. W. Golomb,
1993)

63. Five basketball teams, a through e, enter a round-robin tournament.
Create a schedule so that every team plays every other team exactly
once.
(Hint: Since the number of teams is odd, add a dummy team x. If a
team is paired with x, the team draws a bye in that round.)

64. Show that any simple graph with two or more vertices has at least
two vertices of the same degree.
(Hint: Use the pigeonhole principle.)

538 Chapter 8 Graphs

*65. Let v1, . . . , vn be n vertices with degrees deg (v1), . . . , deg (vn), respec-

tively, such that
n∑

i=1
deg (vi) is even. Prove that there exists a graph

satisfying these conditions.

[Hint: Let
n∑

i=1
deg (vi) = 2e. Use induction on e.]

*8.2 Computer Representations of Graphs (optional)

Like relations and digraphs, graphs can be computer-implemented by
arrays and linked lists. A graph with n vertices can materialize by means
of its adjacency matrix A.

Since many of the n2 elements in A are frequently zero, a more efficient
way to implement a graph is by linked lists. For each node, create a linked
list of all nodes adjacent to it and store their header nodes in an array of
pointers. The result is the adjacency list representation of the graph.

For example, the Königsberg bridge model in Figure 8.34, with the ver-
tices labeled 1 through 4, has two edges from vertex 1 to vertex 2 and one
to vertex 4. So the linked list headed by 1 contains three nodes and the
lists headed by 2, 3, and 4 contain five, three, and three nodes, respectively.
Figure 8.35 shows the adjacency list representation of the graph.

Figure 8.34 1

3

2 4

Figure 8.35

Adjacency list
representation.

1

2

3

4

2

1

2

1

2

1

2

2

4

3 3 4

4

3

Vertices

8.2 Computer Representations of Graphs (optional) 539

In the linked list representation of a weighted graph, each node contains
three fields, as shown in Figure 8.36. For example, the weighted graph in
Figure 8.37 yields the adjacency list representation in Figure 8.38.

Figure 8.36

A typical node in a
weighted graph.

vertex weight pointer

Figure 8.37 1

4 37

6

3

5 5

2

Figure 8.38
1

2

3

4

2

1

2

1

3

3

5

5

4

3

4

2

5

5

7

6 3 7

4 6

Exercises 8.2

Find the adjacency list representation of each graph.

1.

3

2

1

3.

2

1

3

2.
3

1 2

4. 2

1 3

4

540 Chapter 8 Graphs

5.

3

2

1

6. 1 2

3 4 5

Find the adjacency list representation of each graph.

7. K3 8. K4 9. K ′
3 10. K2,3′

11–16. Find the adjacency matrices of the graphs in Exercises 1-6.

Draw the graph with the given list representation.

17.
1

2

3

2

1

1

3

3

2

18.
1

2

3

4

2

1

1

2

1

1

4

4

2

4

Find the adjacency list representation of the given weighted graph.

19. 2

1

8

3
13

5

20.

1

2 3

3

9

2

25 4

3

5 7

21. 1 2

3 4 5

5

2

8
13

1

8.3 Isomorphic Graphs 541

8.3 Isomorphic Graphs

Two simple graphs can have a closer relationship than just being com-
plements. Isomorphic graphs, which we will study in this section, share
identical properties.

Some graphs may seem to differ, but have essentially the same prop-
erties. Graphs G1 and G2 in Figure 8.39, for example, although they look
different, have the same properties: both contain the same number of ver-
tices and edges. Two vertices of degree two and two of degree three appear
in both. Besides, we can redraw G2 in such a way that it will look exactly
like G1. Where you place the vertices and how you draw the edges do not
affect the structure of a graph and do not produce a different graph.

Figure 8.39 v

u x

w

Graph G2
Graph G1

b c

a d

Isomorphic Graphs
Two simple graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic if
a bijection f : V1 → V2 exists such that {a, b} is an edge in E1 if and only
if { f (a), f (b)} is an edge in E2, for any two elements a and b in V1. The
function f is an isomorphism∗ between G1 and G2.

For two graphs G1 and G2 to be isomorphic, the following conditions
must be satisfied:

• |V1| = |V2| • |E1| = |E2|
• A bijection f : V1 → V2 should preserve the adjacency relationship:

if {a, b} is an edge in E1 then { f (a), f (b)} must be an edge in E2, and
vice versa. Consequently, the corresponding vertices in G1 and G2
will have the same degree.

EXAMPLE 8.12 The graphs G1 = (V1, E1) and G2 = (V2, E2) in Figure 8.39 clearly satisfy
conditions 1 and 2. Define a function f : V1 → V2 as follows: f (a) = u,
f (b) = v, f (c) = w, and f (d) = x. Clearly, f is bijective. Does f preserve the

∗The word isomorphism comes from the Greek words iso (the same as) and morphe (form).

542 Chapter 8 Graphs

adjacency relationship? {a, b} is an edge in E1, so is {f (a), f (b)} = {u, v} an
edge in E2? Yes. Similarly, Table 8.3 verifies the other correspondences of
edges. Thus G1 and G2 are isomorphic.

Table 8.3 Edge {x, y} {f (x), f (y)} Is {f (x), f (y)} an
in E1 edge in E2?

{a, b} {f (a), f (b)} = {u, v} Yes
{a, c} {f (a), f (c)} = {u, w} Yes
{b, c} {f (b), f (c)} = {v, w} Yes
{b, d} {f (b), f (d)} = {v, x} Yes
{c, d} {f (c), f (d)} = {w, x} Yes

�
If two graphs are isomorphic, one can be obtained from the other by

renaming its vertices (and edges) and redrawing it if necessary. In any
case, they share exactly the same structure and hence the same properties.
For instance, both have the same number of vertices and edges. Besides,
deg (v) = deg (f (v)) for every v ∈ V1. For the isomorphic graphs in
Figure 8.39, deg (a) = 2 = deg (f (a)), deg (b) = 3 = deg (f (b)), deg (c) =
3 = deg (f (c)), and deg (d) = 2 = deg (f (d)). Such a common property is an
isomorphism invariant.

Isomorphism Invariant
A property shared by isomorphic graphs is called an isomorphism
invariant.

EXAMPLE 8.13 Are the pentagon G1 = (V1, E1) and the pentagram G2 = (V2, E2) in
Figure 8.40 isomorphic?

Figure 8.40

ba

e c

d v1 v2

v5 v3

v4

Pentagon G1 Pentagon G2

SOLUTION:
First |V1| = 5 = |V2| and |E1| = 5 = |E2|. Define a function f : V1 → V2
as f (a) = v1, f (b) = v3, f (c) = v5, f (d) = v2, and f (e) = v4. It is certainly a
bijection. To determine if f preserves the adjacency relationship, construct
Table 8.4. The table shows that f preserves the adjacency relationship; so G1
and G2 are isomorphic.

8.3 Isomorphic Graphs 543

Table 8.4 Edge {x, y} {f (x), f (y)} Is {f (x), f (y)}
in E1 an edge in E2?

{a, b} {f (a), f (b)} = {v1, v3} Yes
{b, c} {f (b), f (c)} = {v3, v5} Yes
{c, d} {f (c), f (d)} = {v5, v2} Yes
{d, e} {f (d), f (e)} = {v2, v4} Yes
{e, a} {f (e), f (a)} = {v4, v1} Yes �

Isomorphism invariants can detect if two graphs G1 = (V1, E1) and
G2 = (V2, E2) are not isomorphic. If |V1| �= |V2| or |E1| �= |E2|, then G1
and G2 are not isomorphic. For example, the graphs in Figure 8.41 are not
isomorphic (Why?).

Figure 8.41

a e c

b

d v1

v2

v4

v5

v3

On the other hand, suppose two graphs share the same invariants.
Unfortunately, this does not guarantee isomorphism, as the next example
demonstrates.

EXAMPLE 8.14 Determine if graphs G1 and G2 in Figure 8.42 are isomorphic.

Figure 8.42

w1v1

v2

v4

v5

v3 w2

w5

w3

w4

Graph G1 Graph G2

SOLUTION:
Both graphs have five vertices and five edges. Each contains one vertex of
degree one, three vertices of degree two, and one vertex of degree three.
Nonetheless, they are not isomorphic. Let us see why.

Suppose they are isomorphic. Since there is exactly one vertex of degree
one in G1 and G2, namely, v1 and w5, v1 must match w5. Now v1 is adjacent
to v2 and degree (v2) = 2, so the vertex w1 adjacent to w5 must correspond

544 Chapter 8 Graphs

to v2. But deg (w1) = 3 �= deg (v2), which is a contradiction. Thus, G1 and
G2 are not isomorphic. �

Conclusion? If the invariants of two graphs do not agree, they cannot
be isomorphic. If they do agree, however, the graphs need not be iso-
morphic. Unfortunately, no simple tests exist for determining graph
isomorphism.

Exercises 8.3

In Exercises 1–14, determine if the simple graphs are isomorphic. When
they are, determine an isomorphism f.

1.

a c d f

d e

2. b d

a

c

e

f j

g
h

i

3.

a b

c e f

h

g

d

4. a

c d

b f

g he

5. a b e f

h gd c

8.3 Isomorphic Graphs 545

6.

f g

ij

h

a c

b

de

7.
e d

a

f c

b

i

l

h j

g k

8. a g

i

kj

h

l

b

d e f

c

9.

a
b

c

d

g h

f j ie

10. d f

c

c

b

a

11. gb

e
a

d

c h

f j
i

12.

a

b e

d

c f i l

g

n

h k

j m

a1 n1

b1

d1

e1 k1

m1

c1 f1 l1

j1g1

i1

h1

546 Chapter 8 Graphs

13.

a

b e

d

c f h

g

i j

k o

m

l n p

q

r

14.

a

b e

d

c f i

g

k

h

j

m

l
n q

v

o r t

p

u
s

15. Show that isomorphism of simple graphs with n vertices is an equiva-
lence relation.

8.4 Paths, Cycles, and Circuits

Reexamine the network of computers in Figure 8.3. The computer in
Atlanta can communicate with that in Holtsville, and the computer in
Holtsville can communicate with that in Philadelphia, so the computer
in Atlanta can communicate with that in Philadelphia: in the graph model,
a path runs from vertex 1 to vertex 3.

Paths, with their subclasses of cycles and circuits, carry great impor-
tance in graph theory since they can answer many questions about mod-
els of real-world situations, so we begin this section with the definition
of a path.

Path
Let v0 and vn be two vertices in a graph. A path of length n from v0 to
vn is a sequence of vertices vi and edges ei of the form v0-e1-v1-e2- · · · -en-vn
where each edge ei is incident with the vertices vi−1 and vi, 1 ≤ i ≤ n. The
vertices v0 and vn are the endpoints of the path. If the graph is simple,
the path is unique and is denoted by just listing the vertices along the path:
v0-v1- · · · -vn. A simple path from v0 to vn contains no repeated vertices,
with one possible exception: its endpoints could be the same.

The next example illustrates these definitions.

EXAMPLE 8.15 In the graph in Figure 8.43, the sequence a-e1-b-e4-c-e5-b-e3-d is a path of
length 4 from a to d; so is the sequence a-e1-b-e5-c-e4-b-e3-d. Thus the path
from a to d is not unique. The path a-e1-b-e3-d is even shorter, with a length
of only two. (However, it is not the shortest path.) The path a-e7-d-e3-b is
simple, because no one vertex reappears.

8.4 Paths, Cycles, and Circuits 547

Figure 8.43

a c

b

d

e1 e2 e3 e4

e7 e6

e5

e8 �

EXAMPLE 8.16 In Figure 8.44, the sequence a-e1-b-e3-c-e4-d is a path of length
three from a to d. Since the graph is simple, it can also be given by the

Figure 8.44

a c

b

d

e1 e2 e3

e5 e4
e6

sequence a-b-c-d. (Notice that, in Figure 8.43, the sequence a-b-c-d does
not define a unique path.) �

Before we present yet another delightful occurrence of Fibonacci num-
bers, we make a simple definition.

Independent Subset of the Vertex Set
Let V denote the set of vertices of a graph. A subset S of V is independent
if no two vertices in S are adjacent. Thus, S is independent if x, y ∈ S, but
the edge x-y does not exist, where x �= y.

For example, consider the pentagon G1 in Figure 8.40. Then S = {a, c}
is an independent subset of the vertex set V = {a, b, c, d, e}; so is {a, d}, but
not {a, c, e}.

We are now ready to present the application.∗

EXAMPLE 8.17 Let Pn denote the path v0-v1-v2- · · · -vn of length n connecting the vertices
v0, v1, v2, . . . , and vn in a simple graph, where n ≥ 0. Let An denote the
number of independent subsets of vertices in the path.

When n = 0, the path P0 consists of a single point v0, so there are two
possible independent subsets: Ø, {v0}.

When n = 1, the path is v0-v1. Then there are three independent subsets
of {v0, v1}, namely, Ø, {v0}, and {v1}.

When n = 2, the path P2 contains three vertices: v0, v1, and v2. So, there
are five independent subsets: Ø, {v0}, {v1}, {v2}, and {v0, v2}.

∗T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.

548 Chapter 8 Graphs

These data are summarized in Table 8.5. Clearly, a pattern emerges.
It seems safe to conjecture that An = Fn+3, where n ≥ 0. We invite you to
confirm this.

Table 8.5 n Path Pn Independent subsets An

0 • Ø, {v0} 2
v0

1 • • Ø, {v0}, {v1} 3
v0 v1

2 • • • Ø, {v0}, {v1}, {v2}, {v0, v2} 5
v0 v1 v2

3 • • • • Ø, {v0}, {v1}, {v2}, {v3} 8
v0 v1 v2 v3

{v0, v2}, {v0, v3}, {v1, v3}
↑

Fn+3 �
A simple path may repeat vertices if they be its endpoints. Such a

phenomenon carries a special label.

Cycle and Circuit
A path with endpoints v0 and vn is closed if v0 = vn; otherwise, it is open.
A simple closed path is a cycle; a closed path with no repeated edges is a
circuit.

Table 8.6 summarizes and illustrates the basic terms introduced thus
far in this section. Refer to it as often as needed.

Table 8.6 Term Meaning Example from
Figure 8.43

Path Sequence v0-e1-v1- · · · -en-vn, where
ei = {vi−1, vi}, 1 ≤ i ≤ n

a-e7-d-e6-c-e4-b-e5-c

Simple path All vertices are distinct; endpoints
could be the same

a-e7-d-e6-c-e4-b

Closed path Endpoints are the same a-e2-b-e4-c-e5-b-d-e7-a

Open path Endpoints are not the same a-e8-c-e4-b-e5-c

Cycle Simple closed path a-e1-b-e4-c-e8-a

Circuit Closed path; no repeated edges a-e1-b-e4-c-e3-b-e3-d-e7-a

In a network of computers, every computer could communicate with
every other computer either directly or indirectly. If a path runs from every
vertex (computer) to every other vertex (computer), such a graph is said to
be connected, as defined below.

8.4 Paths, Cycles, and Circuits 549

Connected Graph
A graph is connected if there is a path between every two distinct vertices
of the graph; otherwise, it is disconnected.

EXAMPLE 8.18 The Königsberg bridge model in Figure 8.2 is a connected graph, as are the
graphs in Figures 8.43 and 8.44; but the Star of David in Figure 8.11 is not
(Why?). �

The next theorem shows a simple path exists between every two vertices
in a connected graph.

THEOREM 8.3 There is a simple path between any two distinct vertices in a connected
graph.

PROOF:
Let u and v be any two vertices in a connected graph G. Since G is connected,
a path x0-e1-x1-e2-· · · -xn−1-en-xn runs between x0 = u and xn = v. If the path
is not simple, some of the vertices x0, x1, . . . , xn must be the same, say, for
example, xi = xj, where i < j. Consequently, there must be a cycle xi-ei+1-
xi+1- · · · -ej-xj, as in Figure 8.45. Eliminate this cycle to yield a shorter path.

Figure 8.45

ei�1 ej

en

xj�1

xj�2

xi�2

xi�1

xi�xj xi�1 xn�v

e1 e2

x1

u�x0 x2

Similarly, eliminating all cycles in the path yields a shorter path from u to
v. It contains no repeated vertices and therefore is simple. This completes
the proof. �

How long can a simple path between any two distinct vertices of a
connected graph be? The next theorem provides a partial answer.

THEOREM 8.4 The length of a simple path between any two distinct vertices of a connected
graph with n vertices is at most n − 1. �

How can we compute the number of paths between any two vertices vi
and vj in a connected graph? Theorem 8.5 answers this.

THEOREM 8.5 Let A be the adjacency matrix of a connected graph with n vertices
v1, v2, . . . , vn and k a positive integer ≤ n − 1. The ijth entry of the matrix
Ak gives the number of paths of length k from vi to vj.

550 Chapter 8 Graphs

PROOF (by induction):

Basis step By definition, the ijth entry in A is the number of edges from
vi to vj. But an edge from vi to vj is a path of length one. Consequently, the
ijth entry in A equals the number of paths of length 1 from vi to vj. Thus
the result holds when k = 1.

Induction step Assume that the number of paths of length k from vi to vj

equals the ijth entry in Ak (inductive hypothesis). We have Ak+1 = Ak · A.

Let Ak+1 = (cij), Ak = (bij), and A = (aij). Then cij =
n∑

p=1
bipapj. By the

inductive hypothesis, bip paths of length k run from vi to vp; but there
are apj paths of length 1 from vp to vj. Therefore, by the multiplication
principle, bipapj paths of length k + 1 from vi to vj pass through vp. Now vp
can be any one of the n vertices. Thus, by the addition principle, the total
number of paths of length k + 1 from vi to vj (passing through v1, v2, . . . ,

or vn) is
n∑

p=1
bipapj, which equals cij. Thus, by induction, the result holds for

every positive integer ≤ (n − 1). �

The following example demonstrates this theorem.

EXAMPLE 8.19 Figure 8.46 shows the direct telephone lines connecting cities a, b, c, and d.
Each edge in the graph represents a direct telephone link.

Figure 8.46

A communication
model.

e2

e3

e4

e1 e5

a d

cb

The adjacency matrix of the graph is

a b c d

A =
a
b
c
d

⎡
⎢⎢⎣

0 1 1 0
1 0 2 0
1 2 0 1
0 0 1 0

⎤
⎥⎥⎦

No direct lines run between a and d. However, a can communicate with d
via c. This communication line, called a 2-stage communication link, is
the path a-e4-c-e5-d, a link between a and d passing through exactly one city,

8.4 Paths, Cycles, and Circuits 551

namely, c. Likewise, two 2-stage communication links run between b and
d: b-e2-c-e5-d and b-e3-c-e5-d. By Theorem 8.5, the number of 2-stage links,
lines passing through exactly one city, are the various entries in A2:

a b c d

A2 =
a
b
c
d

⎡
⎢⎢⎣

2 2 2 1
2 5 1 2
2 1 6 0
1 2 0 1

⎤
⎥⎥⎦

There are five 2-stage links between city b and itself: b-e1-a-e1-b, b-e2-c-e2-b,
b-e2-c-e3-b, b-e3-c-e2-b, and b-e3-c-e3-b. No 2-stage links connect c and d. �

Theorems 8.4 and 8.5 lead us to the next result.

THEOREM 8.6 Let A be the adjacency matrix of a connected graph with n vertices and k
a positive integer ≤ n − 1. The ijth entry of the matrix A + A2 + · · · + Ak

gives the number of paths of length ≤ k from vertex vi to vertex vj. �
As an example, for the communication graph in Figure 8.46,

a b c d

A + A2 =
a
b
c
d

⎡
⎢⎢⎣

2 3 3 1
3 5 3 2
3 3 6 1
1 2 1 1

⎤
⎥⎥⎦

The entries of this matrix give the number of 1- or 2-stage communica-
tion links between two cities, links passing through at most one city. For
instance, three links between cities b and c go through at most one city:
b-e2-c, b-e3-c, and b-e1-a-e4-c. �

The next example relates graph theory to combinatorics.

EXAMPLE 8.20◦ (optional∗) A prime circle of order n is a cyclic permutation of the inte-
gers 1 through n such that the sum of any two adjacent integers is a prime
number. For instance, 143256 is a prime circle of order 6. Find all prime
circles of order n ≤ 10.

SOLUTION:
Since the sum of any two even or odd integers is even, the numbers in prime
circles must alternate between odd and even. Consequently, there are no
prime circles of odd order.

To find all prime circles of (even) order n ≤ 10, draw a graph G with 10
vertices, labeled 1 through 10. Two vertices v and w in G are adjacent if

∗Proposed by A. Filz and solved by B. Barwell, J. Recreational Mathematics, Vol. 15,
1982–1983, pp. 70–71.

552 Chapter 8 Graphs

v + w is a prime. Such a graph is shown in Figure 8.47. To find the various
prime circles of order n from the graph, delete vertices n + 1, n + 2, . . . , 10
and edges incident with them. Now look for all distinct cycles that pass
through the integers 1 through n in the resulting subgraph; the vertices
along them form prime circles.

Figure 8.47

1 2

34

7 8

56

910

For example, to find the prime circles of order 8, delete vertices 9 and 10,
and edges incident with them. The resulting subgraph in Figure 8.48 shows
two distinct prime circles of order 8, namely, 12385674 and 12583476.
(Without loss of generality, we list the permutations beginning with 1.)

Figure 8.48

1 2

34

7 8

56

You may verify that there is exactly one prime circle of order two, one of
order four, and one of order six. They are 12, 1234, and 143256, respectively.

There are 48 prime circles of order 10. Four of them are listed below,
where X denotes 10:

123456789X 12347X9856 123498567X 123856749X

Can you find the others? �
We conclude this section with two examples illustrating how useful

graphs and their paths can be in solving familiar and interesting puzzles.

EXAMPLE 8.21 (The cabbage–goat–wolf puzzle) A farmer with a rowboat needs to
transport a cabbage, a goat, and a wolf across a river. The rowboat has
just enough room for him and either the cabbage, the goat, or the wolf.
Since the wolf can eat the goat, they cannot be left alone in the absence of
the farmer. Likewise, the goat and the cabbage also cannot be left alone.
How can he transfer them across the river?

SOLUTION:
We shall represent the progress of a solution in a graph and update it at
every step until a solution emerges. An edge indicates a transfer across the
river.

8.4 Paths, Cycles, and Circuits 553

Initially the cabbage (C) and the goat (G) or the goat and the wolf (W)
cannot be left unattended by the farmer (F). The cabbage and the wolf,
however, can be left alone. So the first step is to transfer the goat across
the river. We represent this by an edge connecting the vertices “start” (S)
and FG, meaning both the farmer and the goat must go across the river (see
Figure 8.49). Now the man must return to the original side (see Figure 8.50)
and has then two choices: transport the cabbage or the wolf to the other
side (see Figure 8.51).

Figure 8.49 FGS

Figure 8.50 FGS F

Figure 8.51

FGS F

FC

FW

Case 1 Suppose the farmer moves the cabbage across the river. Then he
cannot leave the cabbage and the goat on the same side, so he must return
with the goat (see Figure 8.52). Continuing like this yields the graph in
Figure 8.53.

Figure 8.52

FGS F

FC FG

FW

Figure 8.53

FGS F

FC FG FW F FG

FW

Case 2 Suppose the man transfers the wolf across the river. Continuing
as in case 1 produces the graph in Figure 8.54.

Figure 8.54

FGS F

FC FG FW

FG FC

F FG

F FGFW

554 Chapter 8 Graphs

It follows from this graph that the puzzle has exactly two solutions,
given by the two paths beginning at S. �

EXAMPLE 8.22 Three married couples want to cross a river in a rowboat which can carry
only two people at a time. No husband will allow his wife to be in the boat
or stay ashore in the presence of another man unless he is also present. The
women can, of course, row well. How can they cross the river?∗

SOLUTION:
Let A, B, and C be the three husbands, and a, b, and c their wives, respec-
tively. We shall denote the development of a solution by a graph in which
each edge represents a strategy and each vertex indicates the person(s)
crossing the river.

Since there are six people and only two can be in the boat at a time, there
are C(6, 2) = 15 possibilities for the first move. Nine of them, however, are
unacceptable: Ab, Ac, Ba, Bc, Ca, Cb, AB, AC, and BC. So the first acceptable
strategy is Aa, Bb, Cc, ab, ac, or bc.

Figure 8.55 shows six of 12 possible solutions with ab first crossing the
river. (Note: The path S-ab-a, for instance, indicates both a and b cross the

Figure 8.55

ab as

aA A AB

c cC

aA AC

cC C BC bB AB

C AB

A aA

c cC

C cC

C cC A aA

A aA B bB

B bB A aA

BC a aA

ac

river, b gets off the boat, and a returns to the original side.) With ac
or bc making the first move, 24 additional solutions can be obtained.
(Does a solution exist if initially a husband takes his wife across the river?
See Exercise 36.) �

Exercises 8.4

Find the length of each path in the graph in Figure 8.43.

1. b-e4-c-e8-a

3. d-e7-a-e2-b-e1-a-e8-c

2. b-e4-c-e6-d-e7-a

4. d-e7-a-e2-b-e5-c-e6-d

Use the graph in Figure 8.43 to find each.

5. The number of paths of length three from a to d.

∗Based on S. Gudder, A Mathematical Journey, McGraw-Hill, New York, 1976, pp. 12,205.

8.4 Paths, Cycles, and Circuits 555

6. All simple paths of length three from a to d.

7. The length of the shortest path from a to d.

8. All distinct cycles of length three beginning at a.

9. All distinct cycles of length three beginning at b.

10. All distinct circuits in the graph.

Determine if each is a connected graph.

11.

14.

12.

15.

13.

16.

Use Figure 8.56 to answer Exercises 17 and 18.

Figure 8.56

a
d e

fb

gc

17. Find the length n of a longest open simple path.

18. Find all open simple paths of length n.

Find the number of distinct simple paths of length n in K5, where n is:

19. 1 20. 2 21. 3 22. 4

23–26. Find the number of distinct cycles of length n in K5 for each value
in Exercises 19–22.

27–30. Find the number of distinct circuits of length n in K5 for the values
in Exercises 19–22.

The direct communication links between cities a, b, c, and d are represented
in Figure 8.57. Find the number of communication links between a and d
passing through:

Figure 8.57 a b

d c

556 Chapter 8 Graphs

31. Exactly one city. 32. At most one city.

33–34. Redo Exercises 31 and 32 for cities b and d.

35. Find two solutions to the puzzle in Example 8.22 if both a and b cross
the river first.

36. Redo Exercise 35 if both A and a cross the river first.

37. A farmer has 2n + 1 animals, a1, a2, . . . , a2n+1, and wishes to get
them across a river in a boat that can hold only n animals at a time.
Animals ai and aj cannot be left alone whenever |i − j| = 1. How can
she accomplish this task?
(G. Gannon and M. Martelli, 1993)

*38. Prove that a connected graph with n vertices has at least n − 1 edges.
(Hint: Use induction.)

39. Using the adjacency matrix of a graph, write an algorithm to
determine if it is connected.

8.5 Eulerian and Hamiltonian Graphs

The Königsberg bridge problem, considered earlier, raises two interesting
questions:

• Can one walk through the city crossing each bridge exactly once?

• Can one walk through the city using each bridge exactly once and return
home?

These two questions can be stated in terms of a connected graph:

• Does the Königsberg bridge model contain an open path that includes
every edge exactly once?

• Does it contain a circuit that includes every edge?

We shall answer these questions a bit later, but first a few definitions.

Eulerian Graph
A path in a connected graph is an Eulerian path if it contains every edge
exactly once. A circuit in a connected graph is an Eulerian circuit if it con-
tains every edge of the graph. A connected graph with an Eulerian circuit
is an Eulerian graph.

EXAMPLE 8.23 Study the graphs G1, G2, and G3 in Figure 8.58. G1 is Eulerian since it con-
tains an Eulerian circuit, for example, a-b-c-e-f-g-c-d-a; in fact, it contains
several Eulerian circuits. (Can you find another one?) G2 has an Eulerian

8.5 Eulerian and Hamiltonian Graphs 557

Figure 8.58
b

a f

d

e

g

e

c

d e

b
c

d
f

g

a
bac

G1 G2 G3

path, namely, a-b-c-e-d-b, but no Eulerian circuits. G3 has no Eulerian
paths or circuits. �

Theorem 8.7 provides a necessary and sufficient condition for character-
izing Eulerian graphs.

THEOREM 8.7 A connected graph G is Eulerian if and only if every vertex of G has even
degree.

PROOF:
Suppose G is Eulerian. Then G contains an Eulerian circuit, say, from
v0 to v0: v0-e1-v1-e2- · · · -vn−1-en-v0. Both edges e1 and en contribute a 1 to
the degree of v0; so deg (v0) is at least two. Each time the circuit passes
through a vertex (including v0), the degree of the vertex is increased by
2. Consequently, the degree of every vertex, including v0, is an even
integer.

Conversely, suppose every vertex of G has even degree. Actually con-
structing an Eulerian circuit will prove G Eulerian. Let v0 be an arbitrary
vertex in G. Beginning with v0, form a circuit C1 = v0-v1-v2- · · · -vn−1-v0.
(The longer the circuit, the smaller the number of steps involved.) This is
possible since every vertex has even degree and a vertex (�= v0) can be left
by an edge not used to enter it. If C1 is Eulerian, G is too.

If C1 is not Eulerian, consider the subgraph H obtained by deleting all
the edges in C1 and vertices not incident with the remaining edges. Note
that all vertices of H have even degree. Since G is connected, H and C1
must have a common vertex b. Beginning with b, construct a circuit C2
for H.

Now combine C1 and C2 to form a larger circuit C. If it is Eulerian, then
G is. If it is not, continue this procedure to form an Eulerian circuit. This
procedure must terminate since the number of edges in G is finite. Thus G
contains an Eulerian circuit and hence is Eulerian. �

The next two examples illustrate this powerful theorem.

EXAMPLE 8.24 Recall that in Figure 8.58, G1 is Eulerian. By Theorem 8.7, every vertex
must have even degree: deg (a) = deg (b) = deg (d) = deg (e) = deg (g) =
deg (f) = 2 and deg (c) = 4. Not every vertex in G2 has even degree, so G2,
as expected, is not Eulerian. �

558 Chapter 8 Graphs

EXAMPLE 8.25 In the Königsberg bridge puzzle, the degree of every vertex in Figure 8.2
is odd, so the graph is not Eulerian. Consequently, it is impossible to walk
through the city crossing each bridge exactly once and return home. �

Next we present a graph-theoretic solution to an ancient chess problem.
The solution is ascribed to Dudeney, who knew little about graph theory and
who called it the “buttons and string method.” It exemplifies how valuable
a tool a graph is in solving seemingly difficult problems. We find both beauty
and elegance in the solution.∗

EXAMPLE 8.26 Two white knights occupy the upper corner squares and two black knights
occupy the lower corner squares of a 3 × 3 chessboard (see Figure 8.59).
How can the white knights swap their places with the black knights in the
smallest number of moves? (Try this yourself before studying the solution.)

Figure 8.59

SOLUTION:
Knights move in an L-shaped pattern [a knight on a chessboard can move
either two squares horizontally and one square vertically, or two squares
vertically and one square horizontally, so a knight at position (i, j) has eight
possible moves: (i ± 1, j ± 2) and (i ± 2, j ± 1). See Figure 8.60.

Figure 8.60

So no knight can move into the central square, and therefore we are
interested only in the eight outside squares.

Number them 1 through 8, represent each by a vertex (button) and every
possible move from square u to square v by an edge (string) from vertex u
to vertex v. For example, the knight in square 1 can move to squares 5 and
7, so draw edges from vertex 1 to vertices 5 and 7; similarly, draw all other
possible edges. Figure 8.61 shows the resulting graph.

Notice that every vertex has even degree, so the graph is Eulerian and
1-5-6-2-8-4-3-7-1 is an Eulerian circuit. As a result, the graph can be
redrawn as (that is, it is isomorphic to) the one in Figure 8.62 that shows
the puzzle has a solution (Why?).

∗M. Gardner, Mathematical Puzzles and Diversions, University of Chicago Press, Chicago,
1987.

8.5 Eulerian and Hamiltonian Graphs 559

Figure 8.61 1 2 3

6 7 8

4 5

Figure 8.62

3 6

57

4 2

1

8

To find a solution, all you have to do now is move the knights to adjacent
vertices cyclically (in either clockwise or counterclockwise direction) along
the circuit until the black and white knights are swapped. (Try this, list all
moves, and convince yourself.) �

Using the adjacency matrix of a connected graph, Theorem 8.7 can pro-
duce an algorithm to determine whether or not the graph is Eulerian. It is
given in Algorithm 8.1.

Algorithm Eulerian Graph(G,A)
(* Let G be a connected graph G with n vertices and adjacency matrix

A = (aij)n×n. This algorithm, using Theorem 8.7, determines if G is
Eulerian. Odd is a counter that keeps a count of the number of odd
vertices in G.*)

Begin (* algorithm *)
odd ← 0 (* initialize the counter *)
for i = 1 to n do (* find each row sum *)
begin (* for *)

sum ← 0
for j = 1 to n do (* compute deg (vi) *)

sum ← sum + aij
if sum is odd then (* update the counter *)

odd ← odd + 1
endfor

560 Chapter 8 Graphs

if odd = 0 then
graph is Eulerian

else
graph is not Eulerian

End (* algorithm *)

Algorithm 8.1

The next example shows how an Eulerian circuit can be constructed in
an Eulerian graph.

EXAMPLE 8.27 The vertices of the graph in Figure 8.63 represent the various cities a sales-
person must visit, and the edges represent the various airline routes. Based
at a, she would like to fly each route exactly once and return home. Find a
sequence of routes she could take for the round trip. In other words, find
an Eulerian circuit for the graph.

Figure 8.63

a g

d

c

b

e

f

SOLUTION:
First, notice that the graph is Eulerian. To find an Eulerian circuit, use the
construction method in the proof of Theorem 8.7.

Step 1
Find a circuit C1 beginning with a, such as a-d-g-a, indicated by broken
edges in Figure 8.64. C1 is not Eulerian.

Figure 8.64

a g

d

c

b

e

f

Step 2
Look for a vertex that lies on both C1 and a solid edge. Vertices a and g are
two such vertices. Beginning with one of them, say, g, build up a circuit C2

8.5 Eulerian and Hamiltonian Graphs 561

using only solid edges: g-e-a-b-f-c-g. Indicate this also using broken edges,
as in Figure 8.65.

Figure 8.65

a g

d

c

b

e

f

Figure 8.66

g-e-a-b-f-c-ga-d-g-a

substitute here

Since no more solid edges remain, the procedure stops here, with two
circuits C1 and C2. Since C2 begins with g, combine them as shown in
Figure 8.66. The resulting is an Eulerian circuit, a-d-g-e-a-b-f-c-g-a, that
the salesperson can fly and return home. �

From Example 8.27 and the second half of the proof of Theorem 8.7,
a simple algorithm evolves for finding an Eulerian circuit in an Eulerian
graph. It is given in Algorithm 8.2.

Algorithm Eulerian Circuit (G,a)
(* Using Theorem 8.7, this algorithm finds an Eulerian circuit C in an

Eulerian graph G, beginning with vertex a. *)
Begin (* algorithm *)

find a circuit C beginning with vertex a.
from G delete all edges in C and vertices incident only with edges
in C. Call the resulting graph H.
while there are edges in H do
begin (* while *)

select a vertex v that is common to C and H.
find a circuit CH in H beginning with vertex v.
update the subgraph H
update the circuit C using CH.

endwhile
End (* algorithm *)

Algorithm 8.2

For a non-Eulerian connected graph, the next theorem can be used to
determine if it contains an Eulerian path.

THEOREM 8.8 A connected graph contains an Eulerian path, but not an Eulerian circuit,
if and only if it has exactly two vertices of odd degree.

562 Chapter 8 Graphs

PROOF:
Let G be a connected graph. Suppose it contains an Eulerian path from
v0 to vn, say, v0-e1-v1-e2- · · · -vn−1-en-vn. Edges e1 and en contribute a 1 to
the degrees of v0 and vn, respectively. Every time the path passes through
a vertex, it contributes a 2 to its degree. So every time the path passes
through v0, its degree is increased by 2; similarly for vn. Consequently, the
degrees of v0 and vn are odd. The degree of each internal vertex v1, v2, . . .,
vn−1 remains even. Thus the graph contains exactly two vertices of odd
degree.

Conversely, suppose G contains exactly two vertices of odd degree, say,
v0 and vn. Adding a new edge {v0, vn} to G results in a graph G1 with all
even degree vertices. Therefore, by Theorem 8.7, G1 is Eulerian. Removing
edge {v0, vn} from G1 shows that G contains an Eulerian path from v0
to vn. �

A useful observation: The proof of Theorem 8.8 implies that an Eulerian
path in a connected graph must begin and end at a vertex of odd degree.

The following two examples illustrate Theorem 8.8.

EXAMPLE 8.28 The Königsberg bridge model in Figure 8.2 contains four vertices, all odd
degree. Therefore, by Theorem 8.8, no Eulerian path exists. In other
words, no walk through the city, traversing each bridge exactly once, is
possible. �

EXAMPLE 8.29 Determine if each graph in Figure 8.67 has an Eulerian path. If so, find it.

Figure 8.67

d
b

a

a

c d

d

b

e

a c
b

c

e

G1 G2 G3

SOLUTION:
Both G1 and G2 contain exactly two vertices of odd degree, namely, a and
b. Therefore, by Theorem 8.8, both contain Eulerian paths. For example,
a-b-c-d-e-b is an Eulerian path in G1 and a-d-b-c-a-b is an Eulerian path
in G2. G3 contains four vertices of odd degree, So G3 does not contain an
Eulerian path. �

The next example, although quite simple and straightforward, is a nice
application of Eulerian paths.

8.5 Eulerian and Hamiltonian Graphs 563

EXAMPLE 8.30 Figure 8.68 shows the floor plan of a haunted house. Jeff enters it through
the front door and the door locks behind him. In fact, every time he passes
through a door, it locks behind him. Is it possible for him to visit every
room exactly once and exit through the back door?∗

Figure 8.68 front door

back door

SOLUTION:
(The answer is obvious by inspection.) First, we construct a graph model,
as in Figure 8.69, where F denotes the front yard, B the back yard, and
every edge a door. Thus the problem can be restated as: Does the graph in
Figure 8.69 contain an Eulerian path?

Figure 8.69
F 1

3 4

f
e

c
b

a

d
5 7

6 B

2 8

h

g

Since the graph has exactly two odd vertices, F and B, by Theorem 8.8,
it contains an Eulerian path; one such path is F-1-2-4-1-3-e-5-f-3-6-5-7-g-
8-a-2-b-8-h-7-6-B. (Can you find all Eulerian paths in the graph?) �

∗Based on “Calendar Problems,” Mathematics Teacher, Vol. 85 (Dec. 1992), p. 736.

564 Chapter 8 Graphs

With the above set of necessary and sufficient conditions for a connected
graph to have an Eulerian circuit and an Eulerian path, we examine two
strikingly similar questions:

• Under what conditions will a connected graph have a cycle that includes
every vertex of the graph?

• Under what conditions will it have a simple path that includes every
vertex?

Before exploring answers, let us study the following puzzle.

EXAMPLE 8.31 (Around the World Puzzle) In 1857, the Irish mathematician Sir
William Rowan Hamilton invented a puzzle. It consisted of a wooden regu-
lar dodecahedron (a polyhedron with 12 regular pentagonal faces), a peg at
each of the 20 vertices of the dodecahedron, and a string (see Figure 8.70).
Each peg represented a major city in the world and each edge of the deca-
hedron a route between two cities. The problem was: Beginning at an arbi-
trary city, find a route for a round trip that would take a person to every other
city exactly once. The route was identified using the pegs and the string.

Figure 8.70

Around the world
puzzle.

The same problem can be expressed as: Does the graph model in
Figure 8.71 have a cycle containing every vertex? (Try to find such a cycle.)
Hamilton’s puzzle has a solution, indicated by the solid edges in Figure 8.72.

Figure 8.71

A graph model of
Hamilton’s puzzle.

Figure 8.72

A solution to
Hamilton’s puzzle.

�

8.5 Eulerian and Hamiltonian Graphs 565

Sir William Rowan Hamilton (1805–1865) was born in Dublin, Ireland.
By the age of 3 he had mastered Greek, Hebrew, and Latin, and by 10 he had
also learned Arabic, Persian, Bengali, Chaldee, Hindustani, Malay, Marathi,
and Sanskrit. By 17 he had mastered calculus and astronomy without any
formal training. At 18 he entered Trinity College, Dublin, where he excelled,
winning extraordinary honors in classics and science. At 22 he was appointed
the Astronomer Royal of Ireland, a position he held until his death. At age 30,
he was knighted.

Hamilton made significant contributions to abstract algebra, dynamics, and
optics. He is well known for his development of the noncommutative system of
quarternions (or Icosian calculus as he called it).

In 1875 Hamilton invented The Icosian Game, based on his work on
quarternions. He sold the idea to a dealer of games and puzzles for 25 pounds,
but it was a bad investment for the dealer. The Around the World Puzzle is
a variant of this game.

This example and the two questions posed above naturally lead to the
next definitions named in honor of Hamilton for obvious reasons.

Hamiltonian Graph
A simple path in a connected graph is Hamiltonian if it contains
every vertex. A cycle in a connected graph that contains every vertex is
Hamiltonian. A connected graph that contains a Hamiltonian cycle is a
Hamiltonian graph.

The following example illuminates these definitions.

EXAMPLE 8.32 Are the graphs in Figure 8.73 Hamiltonian? If a graph is not Hamiltonian,
does it contain a Hamiltonian path?

Figure 8.73

a

a f

c

b e

d
c

a

b

e

g

f
dh

c

f

b g
e

d

Graph G1 Graph G2 Graph G3

SOLUTION:
Graph G1 contains a Hamiltonian cycle, for example, a-c-d-g-h-f-e-b-a, so
it is Hamiltonian.

566 Chapter 8 Graphs

In G2, suppose we start at a, b, or c. Then we have to pass through d
to visit vertices e, f, and g. So, to return to the home vertex, we have to
pass through d again. Thus G2 contains no Hamiltonian cycles that begin at
a, b, or c. Suppose we start at d. Then again after visiting a, b, and c, we have
to pass through d to visit e, f, or g before returning to d. Consequently, G2
contains no Hamiltonian cycles that begin at d either. Suppose we start at e,
f, or g. This also yields no Hamiltonian cycles. Thus G2 is not Hamiltonian.
Nonetheless, it does contain a Hamiltonian path, a-b-c-d-e-f-g.

In G3, to visit a, c, d, or f, we must enter and leave both b and c at
least twice, so it is not Hamiltonian. By a similar argument, it has no
Hamiltonian paths. �

Example 8.33 uses Gray codes introduced in Chapter 7.

EXAMPLE 8.33 Let �n denote the set of n-bit words. The graph with each vertex repre-
senting one of the n-bit words is called the n-cube, denoted by Qn. Two
edges in Qn are adjacent if the Hamming distance between them is one.
Figure 8.74 shows the n-cube for n = 1, 2, and 3.

Figure 8.74 011 111

100000

001 101

110
010

00 10

1101

0 1

Q1 Q2 Q3

Is the n-cube Hamiltonian? By Example 7.10, a Gray code exists for
every �n; that is, a cycle with every vertex of the n-cube does exist, so
Qn is Hamiltonian. For instance, Figure 8.75 shows a Hamiltonian cycle
for Q3.

Figure 8.75 011 111

100000

001 101

110
010

8.5 Eulerian and Hamiltonian Graphs 567

Using matrices, a Hamiltonian cycle Hn for Qn can be defined recur-
sively, where each element in Hn represents a vertex:

H1 =
[
0
1

]

Hn =
[

0Hn−1

1HR
n−1

]
, n ≥ 2

where HR
n−1 denotes the list Hn−1 in the reversed order.

For example,

H2 =

⎡
⎢⎢⎣

00
01
11
10

⎤
⎥⎥⎦

Then

H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000
001
011
010
110
111
101
100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This clearly agrees with the Hamiltonian cycle in Figure 8.75. (Can you
find such a cycle for Q4 using recursion? See Exercise 60.) �

Qn serves as a fine model of parallel computation, where each vertex
represents a processor. Since Qn is Hamiltonian, it follows that every
processor can communicate with every other processor, either directly or
indirectly.

Hamiltonian cycles are a misnomer because Hamilton was certainly not
the first person to look for them. One earlier reference to them can be found
in the famous Knight’s tour problem stated below.

Knight’s Tour Problem
Is it possible for a knight to visit each square on a chessboard exactly once
and return to the home square?

To see how this problem is related to finding Hamiltonian cycles in a
graph, represent each square by a vertex and the two squares connecting
a knight’s move by an edge. Then a knight’s tour is possible if and only if
the corresponding graph is Hamiltonian.

568 Chapter 8 Graphs

Figure 8.76

Figure 8.77

For example, Figure 8.76 shows a 4 × 4 chessboard and Figure 8.77
a graph representing a set of legal moves by a knight; unfortunately,
it lands at some squares more than once; therefore, the graph is not
Hamiltonian.

With a bit of patience, we will find that a knight’s tour is impossible
on a 4 × 4 board. Furthermore, no solution exists on an n × n board if n
is odd.

In 1759, Euler published an algorithm for finding a tour on an 8 × 8 chess-
board, and 12 years later Alexandre-Théophile Vandermonde presented
another one. Figure 8.78 shows a solution. (Finding a knight’s tour is a
good exercise in “backtracking”; see Section 9.2.)

Figure 8.78

An interesting observation: Using the tour in Figure 8.78, suppose we
number the squares 1 through 64 in the order they are visited. The
resulting square (see Figure 8.79) is a pseudo-magic square: the row
sums and column sums are equal, each being 260, but the diagonal
sums are different.

8.5 Eulerian and Hamiltonian Graphs 569

Alexandre-Théophile Vandermonde (1735–1796) was born in Paris. Music was his first love and he
developed an interest in mathematics later in life. His entire mathematical contribution consists of four
papers published in the Histoires of the Academy of Sciences during 1771–1772. They are concerned with
the theory of equations, theory of determinants, factorials, and the knight’s tour.

Vandermonde died in Paris.

Figure 8.79 35 26 37 14 63 24 11 50

38 15 34 25 12 51 62 23

27 36 13 40 21 64 49 10

16 39 28 33 52 9 22 61

29 54 41 20 1 60 7 48

42 17 32 53 8 45 4 59

55 30 19 44 57 2 47 6

18 43 56 31 46 5 58 3

Hamiltonian paths have interesting applications to combinatorics, as the
next example shows.

EXAMPLE 8.34◦ (optional) A power chain of order n is a permutation of the first n (≥ 2)
natural numbers such that the sum of every pair of adjacent elements is a
power. For example, 81726354 is a power chain of order 8. Find all power
chains of order 7.∗

SOLUTION:
A systematic procedure for finding all power chains of order n follows. Draw
a graph with n vertices, labeled 1 through n. Two vertices i and j in the
graph are adjacent if i + j is a power. Each Hamiltonian path yields a power
chain.

In particular, consider the graph in Figure 8.80 with n = 7. Since the
degree of vertex 4 is 1, it is easier to list all Hamiltonian paths beginning
with 4. For convenience, redraw the graph as in Figure 8.81. It follows from
this graph that there are exactly two power chains of order 7: 4531726 and
4536271.

∗Proposed by H. L. Nelson and solved by B. Barwell, J. Recreational Mathematics, Vol. 12:1,
1979–1980, pp. 67–68.

570 Chapter 8 Graphs

Figure 8.80 4

5
3

2 6

1 7

Figure 8.81

6 2

1

354

7

�
Although a simple test will determine whether or not a connected graph

has an Eulerian circuit or an Eulerian path, nothing similar exists for
determining if it contains a Hamiltonian cycle or path. Finding such a
test, without an exhaustive search of all n! possible paths, remains a major
unsolved problem in graph theory.

A host of sufficient conditions exist, however, for a connected graph to
be Hamiltonian. Two lie below, without proofs, but illustrated.

THEOREM 8.9 (Dirac’s Theorem) A simple connected graph G with n ≥ 3 vertices is

Hamiltonian if deg (v) ≥ n
2

for every vertex v in G. �

Notice that the condition in Theorem 8.9 does not apply to the graph
G1 in Figure 8.73 and the 3-cube in Figure 8.75. Nonetheless, both are
Hamiltonian. So even if the condition is not satisfied, the graph may be
Hamiltonian.

The next theorem provides another sufficient criterion for a graph to be
Hamiltonian.

THEOREM 8.10 (Ore’s Theorem) Let G be a simple connected graph with n ≥ 3 vertices.
If deg (u) + deg (v) ≥ n for every pair of nonadjacent vertices u and v, then
G is Hamiltonian. �

You may verify that deg (u) + deg (v) ≥ 5 for every pair of nonadjacent
vertices u and v of the graph G3 in Figure 8.67. Consequently, by Theorem
8.10, G3 is Hamiltonian, as expected. The condition in the theorem is not
satisfied by the 3-cube in Figure 8.75; nonetheless, Q3 is Hamiltonian.

Next we present the well-known traveling salesperson problem, which
employs Hamiltonian cycles and has interesting applications to the theory
of communications.

8.5 Eulerian and Hamiltonian Graphs 571

Gabriel Andrew Dirac (1925–1984), a pioneer in graph theory, was born
in Budapest. He moved to England in 1937 when his mother married Paul Adrien
Maurice Dirac, a Nobel Laureate in physics. In 1942, he began his studies at
Cambridge University. After a two-year interruption by the war, he continued his
studies at Cambridge and London, receiving his Ph.D. in mathematics from the
University of London (1951). That same year he was awarded the Rayleigh Prize
by Cambridge University.

Dirac taught at the universities of London, Toronto, Hamburg, Wales, and
Aarhus. He was a member of the editorial board of the Journal of Graph Theory
and the European Journal of Combinatorics.

Besides his work with graph theory, he made outstanding contributions to
number theory and geometry. He was also a passionate art connoisseur.

Oystein Ore (1899–1968), a Norwegian mathematician, was born in Oslo. He received his Ph.D. from
Oslo University in 1924 and taught there for 2 years. He joined Yale University in 1927 and taught there
until his retirement in 1967, holding the chair of the mathematics department from 1936 to 1945.

Ore served on the board of American Relief for Norway from 1942 to 1947 and chaired the Relief Mission
in 1945–1946.

Recognizing his contributions to Norway, King Haakon VII decorated him Knight of St. Olaf in 1947.
As an author of numerous articles and several books, Ore made outstanding contributions to graph

theory, abstract algebra, number theory, and probability.

Traveling Salesperson Problem
Study the weighted graph in Figure 8.82. The vertices represent cities and
the weights represent the distances between them. A salesperson assigned
to city a would like to visit every other city exactly once and return to the
home city so that the total distance traveled is a minimum. In other words,
beginning at a, he would like to find a Hamiltonian cycle, so the sum of
the weights along the cycle is a minimum. This is the celebrated traveling
salesperson problem.

Figure 8.82

a e

b d

c
11 18

17 15
13

16 12

9

11 10

572 Chapter 8 Graphs

When the graph contains only a few vertices, you can list all possible
cycles, compute the sum of the weights along each, and find the shortest
Hamiltonian cycle.

For example, the graph in Figure 8.82, by the multiplication princi-
ple, has 4!/2 = 12 distinct Hamiltonian cycles, each containing five edges.
You may verify that the cycle with least weight is a-d-b-c-e-a; so the total
distance traveled is 60 miles.

Finding a Hamiltonian cycle in a complete graph Kn without search-
ing through all distinct (n − 1)!/2 Hamiltonian cycles remains an unsolved
problem.

We close this section with another graph-theoretic game.

EXAMPLE 8.35◦ (optional) The game of Ham (for Hampton Court) is a graph-theoretic
game quite similar to SIM, invented by B. Recaman in 1977. Like SIM,
Ham is also a two-person game. Two players, R (for red) and B (for blue),
take turns coloring an edge of the complete graph Kn. (A game on Kn is
a game of order n.) Player R’s objective is to obtain a Hamiltonian cycle
made up entirely of red edges while B’s goal is to prevent R from doing it.
Whoever achieves his\her goal wins the game.

The game of order 3 has a trivial winning strategy for player B. She
can always block R from completing a Hamiltonian cycle. (So B wins.) See
Figure 8.83, where solid edges indicate red edges and broken edges, blue.

Figure 8.83

Player B wins.

Figure 8.84

Player B wins.

Figure 8.85

Player B wins.

Player B can always win games of orders 4 and 5, as in Figures 8.84
and 8.85.

The game of order 6, although a bit more complicated, can also be won
by player B. After R has colored the first edge {x, y}, B colors an edge {u, v}
not incident with x or y. Thereafter, B colors four more edges incident with
x or y. At this stage, if R has at least two edges incident with both u and v,
she can win (see Figure 8.86). But B can avoid this by coloring one of the
two edges missing in the Hamiltonian cycle (see Figure 8.87).

Is player B favored to win if the game is of order 7 or more? It is
conjectured so.

8.5 Eulerian and Hamiltonian Graphs 573

Figure 8.86

Player R wins.

u v

x y

Figure 8.87

Player B wins.

u v

x y �

Exercises 8.5

Determine if each graph is Eulerian.

1. 2. 3.

4. 5. 6.

Construct an Eulerian circuit for each Eulerian graph.

7.

a c

e1 e2e3

e4

e5

b 8.

a c

b

d

e1 e4

e8

e2 e3
e7 e6

e5

9.

a c

b

d

e1 e4

e8

e3

e5
e6

e2

e7 e9

574 Chapter 8 Graphs

10.
e1

e2

e3 e5

e4 e6

a
b

a

d

e

12.
e1

e2

e3 e5 e7

e8e4 e6
b

a

c

d

e
f

11. e1 e5

e6
e7

e3

e3 e4
a

b

c

de

13. Is the Petersen graph in Figure 8.28 Eulerian?

14–19. Do the non-Eulerian graphs in Exercises 1–6 have an Eulerian
path?

Find an Eulerian path in each graph, if possible.

20.
a b

e1

e2e3 e4

c

21.

a

c

d

b
e

22.

a c

d

b

e

Under what conditions will each graph be Eulerian?

23. Kn 24. Km,n

25–26. Under what conditions will each graph in Exercises 23 and 24
contain an Eulerian path, but not an Eulerian circuit?

27. If a connected r-regular graph is Eulerian, what can you say about r?

28–42. Are the graphs in Exercises 1–12 and 20–22 Hamiltonian? If one
is not Hamiltonian, determine if it has a Hamiltonian path; if so,
find it.

43. Under what conditions will the complete graph Kn be Hamiltonian?

44. If G is a connected graph containing a vertex with degree 1, can it be
Hamiltonian?

Determine if each complete bipartite graph Km,n is Hamiltonian. If a graph
is not Hamiltonian, does it contain a Hamiltonian path?

45. K2,3 46. K3,3 47. K2,4 48. K3,4

49. For what values of m and n will Km,n be Hamiltonian?

50. Is the Petersen graph in Figure 8.28 Hamiltonian?

8.5 Eulerian and Hamiltonian Graphs 575

Consider the triangle graph Tn, where T1, T2, T3 are shown in
Figure 8.88.∗

Figure 8.88

T1 T2 T3

51. When will Tn be Eulerian? 52. When will Tn be Hamiltonian?

Consider the square graph Sn, where S1, S2, S3 are pictured in
Figure 8.89.

Figure 8.89

S1 S2 S3

53. When will Sn be Eulerian? 54. When will Sn be Hamiltonian?

Give an example of a graph that is:

55. Both Eulerian and Hamiltonian.

56. Eulerian, but not Hamiltonian.

57. Hamiltonian, but not Eulerian.

58. Neither Eulerian nor Hamiltonian.

59. Figure 8.90 shows five cities, a through e, and the distances between
them. A salesperson based at a would like to visit each city exactly once
and return to a, covering the fewest miles. Find the route she should
take and the minimum distance she would travel.

60. Display a Hamiltonian cycle for the 4-cube.

◦ Find all power chains of order n, if they exist, for each value of n.

61. 6 62. 8 63. 9 64. 15

∗Exercises 51–54 are based on A. Guckin et al., The Euler Circuit Project, COMAP, Inc.,
Lexington, MA, 1989.

576 Chapter 8 Graphs

Figure 8.90

e

d

c

b

10 12
14

12
13

13

15 16

6

5a

◦ *65. A power cycle of order n is a cyclic permutation of the first n (≥ 2)
positive integers such that the sum of every pair of adjacent elements
is a power. Find a power cycle of order 17.

66. Write an algorithm to determine if a connected graph is Eulerian,
using its adjacency list representation.

67. Write an algorithm to determine if a connected graph contains an
Eulerian path, using its adjacency matrix.

8.6 Planar Graphs

Take a good look at every graph presented so far. In some cases, the edges
meet only at the vertices, whereas in the other cases the edges meet at non-
vertices. For example, the edges of the Königsberg bridge model (Figure 8.2)
meet only at its vertices, whereas the edges of the pentagram in Figure 8.5
intersect at points that are not necessarily vertices. However, the confusion
can be resolved. The pentagram can be redrawn in such a way that its edges
intersect only at its vertices, as Figure 8.91 shows. The graphs in Figures
8.5 and 8.91 are clearly isomorphic. You are invited to verify this.

Figure 8.91

1

3

4

0

2

From these observations arises the following definition.

Planar Graph
A graph is planar if it can be drawn in the plane, so its edges meet only at
the vertices. Such a drawing is a planar representation of the graph.

8.6 Planar Graphs 577

The previous discussion indicates the pentagram is planar. The graph
in Figure 8.92 is planar since it can transform to Figure 8.93; they are
isomorphic graphs. The graph in Figure 8.94 is also planar; Figure 8.95
shows its planar representation.

Figure 8.92 a b

cd

Figure 8.93 a b

dc

Figure 8.94

a

b

ce

d

Figure 8.95

a
b

c

d

e

Planarity is an important concept with fine, real-world applications.
For example, it figures prominently in designing circuit boards.

The following example answers a problem posed at the beginning of the
chapter.

EXAMPLE 8.36 (The Three Houses–Utilities Puzzle) A developer is building three new
houses — A, B, and C — on one side of a street. She would like to con-
nect three utilities — electricity (E), telephone (T), and water (W) — to each
house. This situation can be modeled by the complete bipartite graph K3,3
in Figure 8.96.

Can the developer lay the utility lines without any crossings? To answer
this, try to make a planar representation of K3,3. Draw eight of the nine
edges in K3,3 (see the solid edges in Figure 8.97). How can we draw the edge
from W to A? Notice that W lies on the circuits W-C-T-B-W and W-C-E-B-W.
Consider the regions bounded by them. Since A lies outside both, any edge

578 Chapter 8 Graphs

Figure 8.96 A B C

E T W

from W to A must cross a boundary (see the broken edges in the figure).
Thus K3,3 is nonplanar and the puzzle has no solution. The utility lines will
cross. (Example 8.41 will prove this algebraically.)

Figure 8.97

A B C

?

?

R1

R2E T W

�

An argument like this geometric proof can show that the complete graph
K5 is also nonplanar.

Notice that any planar representation of a connected graph divides the
plane into regions, including the unbounded region. For instance, the pla-
nar graph in Figure 8.98 divides the plane into five regions, marked 1
through 5. The graph has six edges and and three vertices. Let r denote
the number of regions formed by e edges and v vertices. Then r = e − v + 2.
In fact, this relationship is not a coincidence, but is always true.

Figure 8.98

4

2

1 3 5

THEOREM 8.11 (Euler’s formula) Let G be a connected planar graph with e edges and v
vertices. Let r be the number of regions formed by a planar representation
of G. Then r = e − v + 2.

8.6 Planar Graphs 579

PROOF (by induction on e):
Let P(n): Euler’s formula holds for every connected planar graph with n
edges.

Basis step Clearly, P(0) is true. Suppose the graph contains one edge.
Then there are two possibilities: The edge may or may not be a loop (see
Figure 8.99). In the first case, e = 1, v = 1, and r = 2. In the second case,
e = 1, v = 2, and r = 1. In both cases, r = e − v + 2. Consequently, P(1) is
also true.

Figure 8.99

Induction step Assume P(k) is true for some k ≥ 0; that is, assume the
formula holds for every connected planar graph with k edges. Consider a
connected planar graph G with k + 1 edges, v vertices, and r regions. G
either has a cycle or does not.

Case 1 Suppose G does not contain a cycle. Then G must contain a vertex
u of degree 1. To find such a vertex, build a path from any vertex until
you cannot go any further. The last vertex visited is such a vertex u. (See
Figure 8.100.) Let a be the edge incident with u. Let H be the graph obtained
by deleting vertex u and edge a from G. H contains e′ = k edges and v′ =
v − 1 vertices. Since G is connected, so is H. Therefore, by the inductive
hypothesis, the formula holds for H; the number of regions r′ formed by H
satisfies the formula r′ = e′ − v′ + 2. But r′ = r. So

r′ = (e − 1) − (v − 1) + 2

That is,

r = e − v + 2

Figure 8.100

a u

Case 2 Suppose G contains a cycle. Let a be an edge in the cycle (see
Figure 8.101). Let L be the subgraph obtained by deleting edge a from G.
(Note: Deleting edge a merges regions R1 and R2.) This subgraph contains
e′ = k edges and v′ = v vertices; therefore, by the induction hypothesis, the
number of regions r′ formed by L is given by r′ = e′ − v′ + 2. But r′ = r − 1,
e′ = e − 1, and v′ = v. So

r − 1 = (e − 1) − v + 2

580 Chapter 8 Graphs

That is,

r = e − v + 2

Figure 8.101

R1
a

R2

By cases 1 and 2, P(k + 1) is true. Therefore, by PMI, the formula holds
for every connected planar graph. �

The next two examples illustrate Euler’s formula.

EXAMPLE 8.37 Verify Euler’s formula for the connected planar graph in Figure 8.102.

Figure 8.102

SOLUTION:
The graph contains 22 edges and 13 vertices, which form 11 regions. So
e − v + 2 = 22 − 13 + 2 = 11 = r. �

EXAMPLE 8.38 A connected planar graph has 17 edges, dividing the plane into nine regions.
How many vertices does the graph have?

SOLUTION:
Here e = 17 and r = 9. By Euler’s formula,

v = e − r + 2 = 17 − 9 + 2 = 10 �

Euler’s formula can generate simple relationships in special cases. One
such formula is given in the following theorem.

THEOREM 8.12 If G is a simple, connected, planar graph that contains e (≥2) edges and v
vertices, then e ≤ 3v − 6.

PROOF:
Suppose the plane is divided into r regions by a planar representation of
the graph. First, we shall show that 2e ≥ 3r.

If e = 2, then r = 1. So 2e ≥ 3r.

8.6 Planar Graphs 581

Suppose e > 2. Let s be the total number of edges along the bound-
aries of the various regions. Every edge appears on the boundary of two
regions, so every edge is counted twice in this sum and s = 2e. Now every
region, including the unbounded region, is bounded by at least three edges.
Therefore, s ≥ 3r and 2e ≥ 3r.

By Euler’s formula,

r + v − 2 = e

Then

3r + 3v − 6 = 3e

3r + 3v − 6 − e = 2e

So

3r + 3v − 6 − e ≥ 3r

That is,

e ≤ 3v − 6 �

This theorem can prove that K5 is nonplanar.

EXAMPLE 8.39 Prove that the complete graph K5 is nonplanar.

PROOF (by contradiction):
Recall that K5 contains 5 vertices and 10 edges. It is a simple connected
graph. If it is planar, e ≤ 3v − 6, by Theorem 8.12. But 3v − 6 = 3(5) − 6 =
9 < e, which is a contradiction; so K5 is not planar. �

Is the converse of Theorem 8.12 true? That is, if e ≤ 3v − 6 in a simple
connected graph, is it planar? To answer this, recall that in K3,3, v = 6 and
e = 9, so e ≤ 3v − 6. Nonetheless, Example 8.36 showed K3,3 is nonplanar;
so the converse is false.

In the analysis of planar graphs, the degree of a region becomes useful.

Degree of a Region
For a region R formed by a planar representation of a connected graph, the
degree of a region R, denoted by deg (R), is the number of edges in a closed
path bordering R.

EXAMPLE 8.40 Find the degree of each region formed by the graphs in Figures 8.103
and 8.104.

Figure 8.103

R4R1

R3

R2

a

c d

b

582 Chapter 8 Graphs

Figure 8.104 a

c d

b R2

R1

SOLUTION:
• In Figure 8.103, each region is bounded by three edges. So deg (R1) =

deg (R2) = deg (R3) = deg (R4) = 3.

• In Figure 8.104, R2 is bounded by three edges, so, deg(R2) = 3. R1 is
bounded by the closed path a-c-d-a-b-a which contains edge {a, b} twice.
So deg (R1) = 5. �

The next theorem establishes a straightforward relationship between
the sum of the degrees of the regions and e.

THEOREM 8.13 The sum of the degrees formed by a planar representation of a connected
graph G with e edges equals 2e; that is,

∑
i

deg (Ri) = 2e.

PROOF:
Every edge in a planar representation of G either bounds two regions (see
Figure 8.103) or lies within a region (see Figure 8.104), so it is counted
twice in computing the degree of the region. So

∑
i

deg (Ri) = 2e. �

Through Euler’s formula and Theorem 8.13, the proof that K3,3 is
nonplanar emerges algebraically.

EXAMPLE 8.41 Prove that K3,3 is nonplanar.

PROOF (by contradiction):
Assume K3,3 is planar. Since K3,3 has six vertices and nine edges, a planar
representation must yield r = e − v + 2 = 9 − 6 + 2 = 5 regions, by Euler’s
formula.

If K3,3 were planar, each region Ri would be bounded by at least four
edges. Then the sum of the degrees of the regions in a planar representation
would be at least 5 · 4 = 20; that is,

∑
i

deg (Ri) ≥ 20.

By Theorem 8.13, 2e = ∑
i

deg (Ri). This yields 18 ≥ 20, which is a

contradiction, so K3,3 is not planar. �

Thus both K5 and K3,3 are nonplanar, and any graph containing one of
them as a subgraph is also nonplanar. In fact, every nonplanar graph
must contain a subgraph derived from K5 or K3,3 through elementary
operations defined below.

8.6 Planar Graphs 583

Homeomorphic Graphs
Let {u, w} be an edge in a graph. Make a vertex v of degree two by deleting
the edge {u, w} and adding two edges {u, v} and {v, w} incident with v. Now,
delete v and replace the two edges with an edge {u, w}. Such inserting and
deleting of vertices of degree two are elementary operations on a graph.
Two graphs are homeomorphic if one can be obtained from the other by
a sequence of elementary operations.

For example, the graphs in Figure 8.105 are homeomorphic. Why?

Figure 8.105

a ec

b

f

d a ec
g

b

f

d a ec
g h

i j

b

k

f

d

Fortunately, the elementary operations do not affect the planarity of a
graph. A criterion for planarity was proved by the Polish mathematician
Kazimierz Kuratowski in 1930.

THEOREM 8.14 (Kuratowski’s theorem) A graph is planar if and only if it does not con-
tain a subgraph homeomorphic to K5 or K3,3. (Equivalently, a graph is
nonplanar if and only if it contains a subgraph homeomorphic to K5 or
K3,3.) �

We close this section with an example that illustrates this theorem.

EXAMPLE 8.42 Is the graph in Figure 8.106 planar?

SOLUTION:
The graph in Figure 8.106 contains K5 as a subgraph (see Figure 8.107);
so it is not planar. �

Although Kuratowski’s theorem gives a necessary and sufficient condi-
tion for a graph to be planar, it does not provide an algorithm to determine
if a graph with n vertices is planar. Such algorithms do exist, however,
which can be executed using O(n) time.

Figure 8.106

b h i

g j

ea

c

f

d

584 Chapter 8 Graphs

Kazimierz Kuratowski (1896–1980), a Polish mathematician and son of a
well-known lawyer, was born in Warsaw. After completing his secondary
education, he studied engineering at the University of Glasgow in Scotland in
1913. When he returned home during the summer of 1914, World War I broke
out, so he could not return to Glasgow.

In 1915, Kuratowski studied mathematics at the University of Warsaw
where he was a student of the Polish logician Jan Lukasiewicz (see Section
9.5). He graduated from the University in 1919 and received his Ph.D. in 1921.

In 1927, Kuratowski became professor of mathematics at Lvov Technical
University. Six years later, he returned to the University of Warsaw where he
had both academic and administrative responsibilities; he worked there until
1966.

In 1928, he joined the editorial board of Fundamenta Mathematicae and
became its editor-in-chief in 1952, a position he held until his death. From

1957 to 1968 he was vice president of the Polish Academy of Sciences, as well as founder and later director
of the Institute of Mathematics.

Kuratowski wrote numerous articles for professional journals, making significant contributions to
topology, graph theory, and analysis.

Figure 8.107 h

g j

f

i

Exercises 8.6

Draw a planar representation of each graph.

1.

c d e

ba 2. a b

d c

3. a

b c

e d
f

4. d

e c

a b

5. Draw a planar representation of the 3-cube.

8.6 Planar Graphs 585

Are the following graphs planar? If one is, draw a planar representation.

6.

a

b

f

d e

c

g

8. c

b

a

d

e

f

7.

a
d

b

e

c

9.

a

b

d

e

c

Verify Euler’s formula for each connected planar graph.

10. 11.

12–13. Verify Theorem 8.12 for the simple, connected, planar graphs in
Exercises 10 and 11.

14. A connected, planar graph contains 10 vertices and divides the plane
into seven regions. Compute the number of edges in the graph.

15. A connected, planar graph contains 24 edges. It divides the plane into
13 regions. How many vertices does the graph have?

16. Find the maximum number of edges in a simple, connected, planar
graph with six vertices. With seven vertices.

17. Find the minimum number of vertices in a simple, connected, planar
graph with 12 edges. With 19 edges.

Find the degree of each region formed by these planar graphs.

18.

R1
R2

19.

R1

R2

R3

586 Chapter 8 Graphs

Verify that each graph is nonplanar by finding K5 or K3,3 as a subgraph.

20.

a f

c

b e

d 21. b c da

w x y z

22. For what values of n will the complete graph Kn be planar?

23. For what values of m and n will the complete bipartite graph Km,n be
planar?

Find the minimum number of edges that must be removed from each
complete graph, so the resulting graph is planar.

24. K5 25. K6

*26. Find the minimum number of vertices in a simple, connected, planar
graph with e edges.

*27. Show that the Petersen graph (Figure 8.28) is nonplanar.
(Hint: Find a subgraph homeomorphic to K3,3.)

8.7 Graph Coloring

Have you ever observed the traffic light pattern at intersections and calcu-
lated the number of different light patterns? Or have you ever wondered
if the final examinations at a college can be scheduled so that no student
would have a time conflict? Surprisingly, both problems can be modeled by
graphs and solved by a technique called graph coloring.

To begin with, take a careful look at any map — for example, the map
of the continental United States. Have you ever wondered how many dif-
ferent colors are needed to color it, so no two adjacent states are assigned
the same color? (Two states that meet at a single point are not consid-
ered adjacent.) For instance, consider the map of a portion of the United
States in Figure 8.108. Since it contains 11 states, the map can be col-
ored with 11 colors. But this is inefficient. Can we do better? That is,
can we color the map with fewer colors? First, you can verify that it can
be done with four colors; no fewer than four will work because the five
states around Nevada — Idaho, Oregon, California, Arizona, and Utah —
must have three different colors. So with Nevada, at least four colors are
needed. Figure 8.109 shows a possible coloring of the map using exactly
four colors.

8.7 Graph Coloring 587

Figure 8.108
WA

OR ID

MT

WY

COUT

AZ NW

NV
CA

Figure 8.109

green

green

blue

blue

blue greenyellow

red

red red

red

To see how map coloring is a graph-theoretic problem, represent each
state by a vertex. Two vertices are adjacent if the states have a common
border. Figure 8.110 shows the resulting graph. Thus the map coloring
problem is equivalent to assigning a color to each vertex of the graph so
that no two adjacent vertices have the same color. Figure 111 shows such a
coloring, where “R” represents red; “B”, blue; “G”, green; and “Y”, yellow.
(Verify this.)

This discussion brings us to the next definition.

Graph Coloring
A coloring of a simple graph is an assignment of colors to its vertices, so no
two adjacent vertices are assigned the same color.

Since a graph with n vertices can be colored with n colors, often we are
interested in a coloring that takes the least number of colors. For example,
notice that in Figure 8.108 vertices ID, OR, and NV are mutually adjacent;
that is, they form a triangular subgraph, so three colors are needed to color
them, meaning any coloring of the graph will take at least three colors.

Will three colors suffice? No, and let us see why. Notice that the vertices
ID, OR, CA, UT, and AZ of the cycle subgraph must be assigned three
colors. Since NV is adjacent to each one of them, it must be assigned a
different color, meaning at least four colors are needed to color the graph.

588 Chapter 8 Graphs

Figure 8.110 MT

ID
WY

WA

CA

AZ
NM

COUT

NV

OR

Figure 8.111 MT

ID
WY

WA G

R

B G

BR

G

Y

R

RB

CA

AZ
NM

COUT

NV

OR

Figure 8.111 shows such a coloring, so the least number of colors needed is
four.

Accordingly, we make the next definition.

Chromatic Number
The chromatic number of a graph is the minimum number of colors
needed for a coloring of the graph.

Thus the chromatic number of the graph in Figure 8.110 is four.

8.7 Graph Coloring 589

Francis Guthrie (1831–1899) was born in London, England. After graduating
from University College, London, he pursued law and became a barrister.

Around 1850, after coloring the counties of England on a map with four colors,
Guthrie conjectured the four-color problem to his younger brother Frederick. At
that time Frederick Guthrie (1833–1866) was a student of Augustus De Morgan,
and showed the problem to De Morgan, who in turn communicated it to William
Hamilton in 1852. Hamilton did not take any interest in the problem. In 1878,
however, the problem was popularized by Arthur Cayley with an announcement
at a meeting of The London Mathematical Society.

In 1861, Guthrie was appointed professor of mathematics at Graaff-Reinet
College, Cape Colony, South Africa, and in 1876 he moved to South African
University, Cape Town.

Besides mathematics, Guthrie was also interested in botany. He is known for
his work on the genus Erica.

Guthrie died in Cape Town.

The Four-Color Problem
The map coloring problem pursued above is a special case of the cele-
brated four-color problem, conjectured by Francis Guthrie: Every planar
graph has a coloring using at most four distinct colors. Its solution eluded
the brilliance of mathematicians around the world for over a century.
In 1890 the English mathematician Percy John Heawood (1861–1955) of
Durham University proved that five colors are sufficient to color any map.
In 1968 the problem was solved by O. Ore and J. Stemple, where the num-
ber of countries was at most 40. In 1976, two American mathematicians,
Kenneth Appel and Wolfang Haken, using an exhaustive computer anal-
ysis, answered the problem affirmatively. Thus every planar graph has
chromatic number ≤ 4.

The next three examples determine the chromatic numbers of Kn, Km,n,
and Cn.

EXAMPLE 8.43 Find the chromatic number of the complete graph Kn.

SOLUTION:
Every vertex in Kn is adjacent to each of the remaining n − 1 vertices, so
exactly n distinct colors are needed for a coloring of Kn. Thus the chromatic
number of Kn is n. Figure 8.112 shows a coloring of K4 and K5. �

According to this example, the chromatic number of K5 is five. Does this
contradict the four-color theorem? Certainly not. Since K5 is nonplanar,
the theorem does not apply to K5.

590 Chapter 8 Graphs

Figure 8.112

A coloring of K5

BR

GY

A coloring of K4

GY

R

B
P

EXAMPLE 8.44 Find the chromatic number of Km,n.

SOLUTION:
You may recall that the vertex set in Km,n can be partitioned into two
nonempty disjoint subsets A and B such that every vertex in A is adjacent
to every vertex in B and vice versa; also, no vertices in A and in B are
adjacent. So every vertex in A can be assigned one color (red), and every
vertex in B a second color (blue). Thus the chromatic number of Km,n is
two. Figure 8.113 shows a coloring of K2,3.

Figure 8.113 RR

BB B

A coloring of K2,3 �

EXAMPLE 8.45 Find the chromatic number of the cycle graph Cn.

SOLUTION:
Suppose n is even and the vertices are v1, v2, . . . , v2n. Then the odd-
numbered vertices v1, v3, . . . , v2n−1 can be assigned red and the even-
numbered vertices v2, v4, . . . , v2n blue (see Figure 8.114). So, if n is even,
exactly two colors are needed.

Figure 8.114

A coloring of C6

RB

R B

R B

8.7 Graph Coloring 591

Figure 8.115

RG

B
R

B

R B

A coloring of C7

Suppose n is odd and the vertices are v1, v2, . . . , v2n+1. If we assign red
to the odd-numbered vertices and blue to the even-numbered ones, then
v1 and v2n+1, which are adjacent vertices, would receive the same color.
Since this is unacceptable, the chromatic number is ≥3. However, we can
assign red to v1, v3, . . . , v2n−1 and blue to v2, v4, . . . , v2n. Since v2n+1 cannot
be red or blue, it must be assigned a third color, green (see Figure 8.115).
So exactly three colors are needed.

Thus the chromatic number of Cn is two if n is even, and three
otherwise. �

A useful observation: Suppose the chromatic number of a subgraph H of
graph G is h. Then the chromatic number of G is ≥h. For example, the
graph in Figure 8.110 contains C3 as a subgraph with vertices WA, OR,
and ID; so, by Example 8.45, the chromatic number of the graph is ≥3.

The next example shows how graph coloring is useful in scheduling
conflict-free final examinations.

EXAMPLE 8.46 Table 8.7 lists the students taking the various courses at Königsberg
College. The registrar would like to develop a conflict-free final exam
schedule using as few time slots as possible. How can we help her?

Table 8.7
Course Course Course Course Course Course Course

A B C D E F G

Boole Cantor Clinton Boole Boole Abel Abel
Bourbaki Euler Euler Ford Cantor Ford Boole
Cantor Newton Gauss Hamilton Cauchy Gauss Cauchy
Ford Pascal Newton Hardy Fibonacci Nobel Cayley
Hamilton Russell Nobel Pascal Newton Russell Hardy
Williams

592 Chapter 8 Graphs

SOLUTION:
First we construct a graph model for the problem. To this end, represent
each course by a vertex. Two vertices are adjacent if the corresponding
courses are incompatible, that is, they have a common student. Figure 8.116
shows the ensuing graph.

Figure 8.116 G

A

B

C

D

E

F

Figure 8.117 G

A

B

C

D

E

F

R

B

R

B
Y

Y

G

Apply coloring to it. Since the graph contains K4 as a subgraph (with
vertices A, B, D, and E), its chromatic number is ≥4. Figure 8.117 shows a
coloring with exactly four colors.

How do we interpret this result? Since the chromatic number is four, the
final exams can be scheduled conflict-free using four time slots, as Table 8.8
shows.

Table 8.8
Block 1 2 3 4

Course (s) A, C B, G D E, F

�
We close this section with the next example, which illustrates how graph

coloring can be employed to design traffic light patterns at intersections.

EXAMPLE 8.47 Figure 8.118 shows the intersection of two divided avenues, California and
New York, where all left and right turns are permitted. The arrows indicate

8.7 Graph Coloring 593

the traffic flows along each avenue. Assuming they are equally heavy in each
direction, design a traffic signal pattern for the intersection.∗

Figure 8.118

N
ew

 Y
or

k
A

ve
.

California Ave.

SOLUTION:
Since the four right turns do not interfere with the other traffic flows, they
can safely be dropped from our discussion. The remaining traffic directions
are pictured in Figure 8.119 and are labeled A through H. We need to
develop a traffic pattern so that vehicles can pass through the intersection
without interfering with other traffic flows.

Figure 8.119

N
ew

 Y
or

k
A

ve
.

California Ave.

G

F
E

A
B

DC

H

∗Based on J. Burling et al., “Using Graphs to Solve the Traffic Light Problem,” FAIM Module,
COMAP, Inc., Lexington, MA, 1989.

594 Chapter 8 Graphs

Figure 8.120

F

A

H

B
D

E

C

G

To this end, represent each traffic flow with a vertex. Two vertices are
adjacent if the corresponding traffic flows cross each other. For instance,
directions C and E intersect, so vertices C and E are adjacent. Figure 8.120
shows the resulting graph.

Now color its vertices. Since the graph contains C3 as subgraph (verify),
its chromatic number is ≥3. Is it in fact three? Let us see.

Figure 8.121

F

A

H
Y

B
D

E

C

G

R

B

G

R

Y

G
B

Suppose we color A red, C blue, and H yellow (see Figure 8.121). Then
B cannot be blue or yellow, but can be red; so color it red. Then E must be
yellow; this forces F to be blue. D, being adjacent to B, F, and H can’t be
red, blue, or yellow, so it must be assigned a new color, say, green. Thus
the graph takes at least four colors.

Figure 8.121 shows a coloring of the graph with exactly four colors, which
depicts an efficient way of designing the traffic signal pattern. It consists
of four phases:

• Vertices B and F are green, so traffic flows B and F proceed, while others
are waiting.

• Vertices D and H are yellow; that is, only traffic directions D and H
proceed simultaneously.

8.7 Graph Coloring 595

• Vertices A and E are red; that is, traffic flows A and E continue at the
same time, while others are stopped.

• Vertices C and G are blue, so only traffic directions C and G proceed
simultaneously.

See Table 8.9 also.

Table 8.9 Traffic light pattern

Phase 1 Phase 2 Phase 3 Phase 4

Only B and Only D and Only A and Only C and
F proceed. H proceed. E proceed. G proceed. �

Exercises 8.7

Find the chromatic number of each map or graph.

1.

2.

3. 4.

596 Chapter 8 Graphs

5.

Figure 8.122

Continental United
States.

MT

WY

CO
UT

NV

A NM

TX LA
MS AL GA

SC
NC

VA

NO

WV

CH
PA

NY

ME

RI

DE

CT
MA
NH

NU

IN

MI

IL

WI

MN

IA

PL

WA

OR

CA

ND

SD

NR

KS MO

OK AR

KY

TN

6. Figure 8.5

9. Graph G1 in Figure 8.73

12. Petersen graph

7. Figure 8.18

10. Figure 8.102

13. The Star of David

8. Figure 8.56

11. Figure 8.106

14. Wheel graph Wn

15. 3-cube Q3

16. Characterize graphs with chromatic number 1.

17. Let G be the union of two simple disconnected subgraphs H1 and H2
with chromatic numbers m and n, respectively. What can you say about
the chromatic number c of G?

In Exercises 18 and 19, schedule conflict-free committee meetings using
the smallest number of blocks. Identify such a schedule.

18.

Committee Committee Committee Committee Committee
1 2 3 4 5

B A C A B
D E D C G
E G F E H
F H H F I

19.

Committee Committee Committee Committee Committee Committee
1 2 3 4 5 6

B D A B A C
D E C C E G
E G D E G H
F H F H H I

H I

8.7 Graph Coloring 597

A zoo curator would like to add new open “islands” for seven species of
animals to roam about freely. Unfortunately, some species prey on some
others, as given by the incompatibility array in Table 8.10.

Table 8.10 Species 1 2 3 4 5 6 7

1 · · · · ·
2 · · · · · ·
3 · · ·
4 · · · ·
5 · · · · ·
6 · · · · ·
7 · ·

20. Determine the minimum number of islands needed to keep them.

21. Find a possible way of accommodating the animals on those islands.

A pet shop owner just received a shipment of 10 species of tropical fish.
Since some species are incompatible, that is, they fight with some other
species, they cannot be kept in the same tank. Table 8.11 summarizes the
incompatibility of the various species, where a dot in row i and column j
indicates species i and j are incompatible.

Table 8.11
Species 1 2 3 4 5 6 7 8 9 10

1 · · · · ·
2 · · · ·
3 · · · · · ·
4 · · ·
5 · · ·
6 · · · ·
7 · · · · · ·
8 · · ·
9 ·

10 · · ·

22. Determine the minimum number of tanks needed to store the fish.

23. Find a possible way of storing them among those tanks.

Figure 8.123 shows the traffic flows at an exit from a shopping center into
a two-way street. (J. Williams, 1992)

24. Represent this information in a graph.

598 Chapter 8 Graphs

25. Develop a traffic light pattern so that traffic will flow smoothly at the
exit.

Figure 8.123

Shopping Center A

D

B C

Figure 8.124

Shopping Center

B

C

A

F

D
E

Figure 8.124 shows the traffic flows from a two-way street into a shopping
center and from the shopping center into the street.

26–27. Redo Exercises 8.24 and 8.25.

*28. Let G be a simple graph with n vertices. Let k denote the maximum
degree of any vertex in G. Prove that the chromatic number of G is
≤ k + 1.
(Hint: Apply induction on n.)

Chapter Summary

This chapter presented the rudiments of graph theory, a fast-growing
branch of mathematics. The cornerstone of graph theory was laid by Euler
when he solved the Königsberg bridge puzzle in 1736.

Chapter Summary 599

Graph
• A graph G consists of a nonempty, finite set V of vertices and a set E of

edges connecting them: G = (V , E). An edge connecting vertices u and
v is denoted by {u, v} (page 517).

• A graph with no loops or parallel edges is a simple graph (page 518).

Adjacency
• Two vertices v and w in a graph G are adjacent if {v, w} is an edge in

G (page 520).

• The degree of a vertex v is the number of edges meeting at v (page 520).

• The adjacency matrix of G is an n × n matrix A = (aij), where aij =
the number of edges from vertex vi to vertex vj (page 520).

• Let e denote the number of edges of a graph with n vertices v1, v2, . . . , vn.

Then
n∑

i=1
deg(vi) = 2e (page 521).

Special Graphs
• A subgraph of a graph G = (V , E) is a graph H = (V1, E1), where

V1 ⊆ V and E1 ⊆ E (page 522).

• A simple graph with n vertices is a complete graph Kn if every pair
of distinct vertices is connected by an edge (page 524).

• Let G = (V , E) be a simple graph such that V = V1 ∪ V2, V1 ∩ V2 = Ø,
and every edge is incident with a vertex in V1 and a vertex V2. G is a
bipartite graph. If every vertex in V1 is adjacent to every vertex in
V2, G is a complete bipartite graph. If |V1| = m and |V2| = n, then
G is denoted by Km,n (page 527).

• A weighted graph is a simple graph in which every edge is assigned a
positive number, called the weight of the edge (page 527).

• An r-regular graph is a simple graph in which every vertex has the
same degree r (page 536).

• The complement G′ = (V , E′) of a simple graph G = (V , E) contains
all vertices in G. An edge {u, v} ∈ E′ if and only if {u, v} /∈ E (page 536).

Isomorphic Graphs
• Two simple graphs, G1 = (V1, E1) and G2 = (V2, E2), are isomorphic

if a bijection f : V1 → V2 exists such that {u, v} ∈ E1 if and only if
{f (u), f (v)} ∈ E2. The function f is an isomorphism between G1 and
G2. If G1 and G2 are isomorphic, they have exactly the same properties

(page 541).

600 Chapter 8 Graphs

• An isomorphism invariant is a property shared by isomorphic graphs
(page 542).

Paths, Cycles, and Circuits
• A path of length n from a vertex v0 to a vertex vn is a sequence of

vertices vi and edges ei of the form v0-e1-v1- · · · -en-vn, where each edge
ei is incident with the vertices vi−1 and vi (1 ≤ i ≤ n). A simple path
contains no repeated vertices, except perhaps the endpoints(page 546).

• A path from v0 to vn is closed if v0 = vn. Otherwise, it is open
(page 548).

• A cycle is a simple closed path (page 548).

• A circuit is a simple closed path with no repeated edges (page 548).

Connected Graph
• A connected graph contains a path between any two distinct vertices

(page 549).

• The length of a simple path between any two vertices of a connected
graph is at most n − 1 (page 549).

• If A is the adjacency matrix of a connected graph, the number of paths
of length k from a vertex vi to vj is given by the ijth entry of Ak, where
1 ≤ k ≤ n − 1 (page 549).

Eulerian Graphs
• A path in a connected graph is Eulerian if it contains every edge exactly

once (page 556).

• A circuit in a connected graph is Eulerian if it contains every edge
exactly once (page 556).

• A connected graph is Eulerian if it contains an Eulerian circuit
(page 556).

• A connected graph is Eulerian if and only if every vertex of the graph
has even degree (page 557).

• A connected graph contains an Eulerian path if and only if it has exactly
two vertices of odd degree (page 561).

Hamiltonian Graphs
• A simple path in a connected graph is Hamiltonian if it contains every

vertex (page 565).

Chapter Summary 601

• A cycle in a connected graph is Hamiltonian if it contains every vertex
(page 565).

• A connected graph that contains a Hamiltonian cycle is Hamiltonian
(page 565).

Planar Graph
• A graph is planar if it can be drawn in the plane, so no two edges cross

(page 576).

• K3,3 and K5 are nonplanar graphs (page 578).

• Euler’s formula If a connected planar graph with e edges and v vertices
partitions the plane into r regions, then r = e − v + 2 (page 578).

• Kuratowski’s theorem A graph is planar if and only if it does not
contain a subgraph homeomorphic to K5 or K3,3 (page 583).

Review Exercises

Find the adjacency matrix of each graph.

1.

a b

c 2.

a b

cd 3.

a b

ce

d

4. Verify Theorem 8.1 for the Petersen graph in Figure 8.28.

Could there be a graph with six vertices of the following degrees?

5. 4, 4, 5, 2, 3, 1 6. 4, 4, 5, 2, 3, 2

Could a hydrocarbon molecule of the following compositions exist? Assume
that a carbon atom has degree four.

7. Six carbon atoms and 19 hydrogen atoms.

8. Six carbon atoms and six hydrogen atoms.

9. Find the number of subgraphs of the complete graph K3.

10. Can there be an n-regular graph with n ≥ 1 vertices?

11. Let n be a positive integer ≥ 2. What can you say about an (n − 1)-
regular graph with n vertices?

12. Is the complete graph K4 bipartite? Complete bipartite?

13. Under what conditions will the graph Km,n be regular?

14. Is Km,n a complete graph?

602 Chapter 8 Graphs

15–17. Find the adjacency list representation of each graph in Exercises
1–3.

In Exercises 18 and 19, are the given graphs isomorphic? Find an
isomorphism f for any that are.

18.

c

a b

d

G1 G2

e
j

igf

h

19.

a b

d

e
f

g
h

c i j

l k
p o

nm

G1 G2

Are the following connected graphs?

20. 21. K3,4

Determine if each graph is Eulerian. If yes, find an Eulerian circuit.

22.

c

d

e2e1

e6e5

e3

e4

b

a

23.

a

b f

e

d

c

g

Does each graph contain an Eulerian path, but not an Eulerian circuit? If
a graph contains an Eulerian path, find such a path.

24.

e

a

b

c
f d

25.

e
fd

a

b c

Chapter Summary 603

Is the graph with each adjacency matrix Eulerian?

26.

a b c d e
a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 0 2 2 0
0 0 1 1 0
2 1 0 1 2
2 1 1 0 2
0 0 2 2 0

⎤
⎥⎥⎥⎥⎦ 27.

a b c d e
a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦

28–31. Determine if the graphs in Exercises 24–27 are Hamiltonian.

32. The weights in the graph in Figure 8.125 represent the distances
between cities a through e. A saleswoman based at city a would like to
visit every other city exactly once and return to the home city, keeping
her total travel to a minimum. What route should she take and how
far will she travel?

Figure 8.125

a e

16 15

18 11
10

14
12

12 13

13

db

c

Draw a planar representation of each planar graph.

33.

eb

dc

fa

34.

f e

a
c

b d

Are the following graphs planar? Draw a planar representation of any that
are.

35.

f ea

c

b d

36.

f

e

d

cg

a b

Verify Euler’s formula for each connected, planar graph.

604 Chapter 8 Graphs

37. 38.

39. A connected, planar graph has seven vertices, and partitions the plane
into eight regions. How many edges does it have?

40. A connected, planar graph has 10 edges. It does not divide the plane
into smaller regions. Compute the number of its vertices.

Determine if each bipartite graph is planar.

41. K2,2 42. K3,4

Let G be a simple bipartite planar graph with e ≥ 2 edges and v ver-
tices. Then e ≤ 2v − 4. Using this fact, show that each bipartite graph
is nonplanar.

43. K3,3 44. K3,4 45. K3,5 46. K4,5

Supplementary Exercises

1. Find the number of vertices in Cn, Wn, and Qn. (See Figures 8.16, 8.17,
and 8.75.)

2. Find the number of edges in Cn, Wn, and Qn.

3. For what value(s) of n is Cn a regular graph?

*4. Prove that if Wn is regular, then n = 3.

A graph G with n vertices and e edges is graceful if the vertices can be
labeled 1, 2, . . . , n in such a way that the values |i− j| are different for every
pair of adjacent vertices i and j. For example, the graph in Figure 8.126 is
graceful.

Figure 8.126 1 2

5 4

3

Are the following graphs graceful?

5. 6. 7.

Chapter Summary 605

8. Prove that every open path with n vertices is graceful.

9. Prove that K1,n is graceful.

A graph G = (V , E) is complete n-partite if the following conditions are
satisfied:

• V = V1 ∪ V2 ∪ · · · ∪ Vn, where Vi �= Ø for every i and Vi ∩ Vj = Ø for
i �= j; and

• If u ∈ Vi and v ∈ Vj, then {u, v} ∈ E, where i �= j.

10. What can you say about G if |Vi| = 1 for every i?

11. Let |Vi| = vi, 1 ≤ i ≤ n. Find |V | and |E|.
12. Prove that if the degree of every vertex of a regular graph G = (V , E)

is odd, |V | is even.

*13. Prove that two simple graphs are isomorphic if and only if their
complements are isomorphic.

A simple graph G is self-complementary if G is isomorphic to G′.
Figure 8.127 shows a graph G and its complement G′. Verify G and G′
are isomorphic; so G is self-complementary.

Figure 8.127

a

d

b

G

c

c′

a′

d′

G′

b′

14. Prove that there cannot be a self-complementary graph with three
vertices.

15. Draw a self-complementary graph with five vertices.

16. Find the number of edges in a self-complementary graph with n
vertices.

*17. Let n (≥ 2) denote the number of vertices in a self-complementary
graph. Show that n ≡ 0 (mod 4) or n ≡ 1 (mod 4).

18. Delete any vertex and edges incident with it in the Petersen graph.
Show that the resulting subgraph is Hamiltonian.

19. Find the number of distinct Hamiltonian cycles in Kn, where n ≥ 3.

*20. Find the number of distinct Hamiltonian cycles in Kn,n, where n ≥ 2.

*21. Find the number of distinct Hamiltonian paths in Kn+1,n, where
n ≥ 1.

22. Delete any edge from K5. Show that the resulting subgraph is planar.

606 Chapter 8 Graphs

23. Delete any edge from K3,3. Show that the resulting subgraph is
planar.

Computer Exercises

Let G be a graph with n vertices, labeled 1 through n, where 1 ≤ n ≤ 10.
Write a program to do each task.

1. Read in n and the various edges {i, j} of G, where 1 ≤ i, j ≤ n.

• Print the adjacency matrix.

• Print the degree of each vertex.

• Print the linked list representation of G.

• Determine if G is a simple graph.

• Determine if G is a complete graph.

2. Let G be a weighted graph. Read in n, the various edges {i, j} of the
graph, and their weights w.

• Print the weighted adjacency matrix.

• Print the adjacency list representation.

3. Read in the adjacency matrix of G. Print its adjacency list represen-
tation. Use the adjacency list representation to print the adjacency
matrix of G.

4. Read in the adjacency matrix of a simple graph and determine if it is
r-regular.

5. Read in two positive integers m and n, where m, n ≤ 10; the vertex
sets V1 and V2 of a bipartite graph G, where |V1| = m and |V2| = n;
and the edges {i, j} in G, where i, j ≤ 10. Using the adjacency matrix
and adjacency list representation of G, determine if it is the complete
bipartite graph Km,n.

6. Read in the adjacency matrix of G. Determine if G is connected. Find
how many simple paths run from vertex i to vertex j, where 1 ≤ i,
j ≤ 10 and i �= j.

7. Read in the adjacency matrix of a graph and determine if the graph is
Eulerian. If it is not, see if it contains an Eulerian path.

8. Read in the edges {i, j} of a graph, where 1 ≤ i, j ≤ n. With the linked
list representation of the graph, determine if it is Eulerian. If it is not
Eulerian, determine if it contains an Eulerian path.

9. Let G be a complete weighted graph whose vertices and weights rep-
resent cities and distances between them, respectively. Read in the

Chapter Summary 607

weighted adjacency matrix of G. Find a Hamiltonian cycle so that the
sum of the weights along the cycle is a minimum.

10. Solve the knights puzzle in Example 8.26. List all moves.

11. Read in the various class lists in Example 8.46. Find a conflict-free
final exam schedule for the courses.

12. Read in the adjacency matrix for the 48 states of the continental United
States. Assign a coloring to them in such a way that adjacent states
receive different colors.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Explain the applications of graph theory to various disciplines.

2. Describe the history of the traveling salesperson problem. Name a few
practical applications.

3. Give a historical background of the four-color problem. Include a
biography of K. Appel and W. Haken.

4. Explain the Chinese Postman Problem.

5. Explain how de Bruijn sequences, named after Nicolaas G. de Bruijn,
can be generated from Eulerian circuits.

6. Explain the relationship between Hamiltonian cycles and the Tower
of Brahma.

7. Example 8.11 is an application of Ramsey’s theorem, developed by the
English logician Frank P. Ramsey (1903–1930). The theorem laid the
foundation for a branch of combinatorics called Ramsey theory. Give a
brief introduction to Ramsey theory.

8. Discuss the Instant Insanity Puzzle.

9. Discuss the relationship between n-cubes and parallel computers. How
can two (n−1)-cubes be used to construct an n-cube? Also, discuss the
relationship between an n-cube and Gray code.

10. Write an essay on graceful graphs, a term coined by S. W. Golomb of
the University of Southern California.

11. Write an essay on the game of SIM.

12. Write an essay on the game DIM, a three-dimensional variation of SIM
invented in 1972 by D. Engel.

13. Describe the game of Hackenbush.

14. Write an essay on chromatic polynomials.

608 Chapter 8 Graphs

15. Write an essay on the Petersen graph.

16. Investigate rook polynomials.

17. Write an essay on matching theory.

18. Write an essay on parallel algorithms.

Enrichment Readings

1. K. Appel and W. Haken, “Every Planar Map is 4-Colorable,” Bulletin
of the American Mathematical Society, Vol. 82 (1976), pp. 711–712.

2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
Elsevier, New York, 1976.

3. R. A. Brualdi, Introductory Combinatorics, 3rd ed., Prentice-Hall,
Upper Saddle River, NJ, 1999.

4. N. Cristofides, Graph Theory: An Algorithmic Approach, Academic
Press, New York, 1975.

5. B. W. Jackson and D. Thoro, Applied Combinatorics with Problem
Solving, Addison-Wesley, Reading, MA, 1990, pp. 134–200.

6. J. A. McHugh, Algorithmic Graph Theory, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

7. A. Ralston, “Debruijn Sequences — A Model Example of the Interac-
tion of Discrete Mathematics and Computer Science,” Mathematics
Magazine, Vol. 55 (May 1982), pp. 131–143.

8. S. S. Skieno, Implementing Discrete Mathematics, Addison-Wesley,
Reading, MA, 1990.

9. K. Thulasiraman and M. N. S. Swamy, Graphs: Theory and Algo-
rithms, Wiley, New York, 1992.

10. A. Tucker, Applied Combinatorics, 2nd ed., Wiley, New York, 1984,
pp. 3–79, 389–410.

11. D. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper
Saddle River, NJ, 2001.

12. R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach,
Wiley, New York, 1990.

Chapter 9

Trees

An expert problem solver must be endowed with two incompatible qualities
— a restless imagination and a pertinent pertinacity.

— HOWARD W. EVES

T rees are the most important class of graphs and they make fine mod-
eling tools. In 1847, the German physicist Gustav Robert Kirchoff

used them to solve systems of linear equations for electrical networks.
Ten years later, Arthur Cayley studied the isomers of saturated hydro-
carbons CnH2n+2 with them. Today trees are widely used in mathematics
and computer science, as well as in linguistics and the social sciences.

This chapter presents the concept of a tree, and two necessary and suffi-
cient conditions for a graph to be a tree. In addition, it presents the concept
of a spanning tree for a connected graph, algorithms for finding it, and the
important class of rooted trees.

Trees facilitate sorting and searching, representing and computing
numeric expressions, and constructing efficient coding schemes and algo-
rithms, as will be seen in Sections 9.5 and 9.6.

Some of the interesting problems trees handle well are:

• Can four queens be placed on a 4 × 4 chessboard, so they are not
attacking each other?

• A utility company would like to lay pipelines for natural gas between
five towns, a through e, as in Figure 9.1. The weights of the edges
represent the costs of building the various pipelines. How cheaply can
the company build them, so natural gas can be sent from any town to
any other town?

• There are 64 entrants in a singles tennis tournament. The winner of
each round is advanced to the next round and plays another. Find the
number of matches and rounds played to determine the champion.

• There are eight coins in a collection plate. Although they look identical,
one of them is counterfeit and heavier. Identify it, using an equal arm
balance and a minimum number of weighings.

609

610 Chapter 9 Trees

Gustav Robert Kirchoff (1824–1887), an outstanding German
physicist and son of a lawyer, was born in Königsberg, Prussia. After
graduating from the local gymnasium, Kirchoff entered the University of
Königsberg at the age of 18 and received his doctorate 5 years later.

In 1848, his teaching career began in Berlin. Two years later he joined
the faculty of the University of Breslau, where he met his future research
collaborator, the well-known chemist Robert Bunsen. In 1854, they both
moved to Heidelberg. While there, with Bunsen’s collaboration, Kirchoff
made his greatest contributions to science.

In 1875, he accepted the chair of theoretical physics at the University of
Berlin, a position he held with great distinction until his death.

Although Kirchoff made significant contributions to every branch of
physics, he is best known for his pioneering work in spectroscopy.

Figure 9.1 c

13 13

1512
11

12

167

10
10

a

b d

e

As in graph theory, tree terminology is not standardized, so be aware of
this when you refer to different texts on the topic.

9.1 Trees

Notice that the graphs in Figures 9.2 and 9.3 are connected; each is acyclic,
meaning it does not contain a cycle. Such a graph is a tree.

Figure 9.2

Propane C3H8.
C C C HH

H

H

H

H

H

H

Figure 9.3 a

b

d e f g

c

9.1 Trees 611

Tree
A connected, acyclic graph is a tree.

Trees are everywhere. You have seen several examples of trees in earlier
chapters. Figure 1.1 , Figures 5.16–5.19, and Figures 6.7, 6.8, and 6.14 offer
fine cases.

The graph in Figure 9.4 is not a tree, since it contains a cycle. The graphs
in Figures 9.2 and 9.3 are connected; each is acyclic, so each is a tree.
The graph in Figure 9.5 is not a tree, either, because it is not connected.
Nonetheless, it is a set of disjoint trees, called a forest.

Figure 9.4

Ethylene C2H4.
C C

H

H

H

H

Figure 9.5

A forest.

Figure 9.6 shows the family tree of the Bernoullis of Switzerland, the
most distinguished family of mathematicians.

Figure 9.6

The Bernoulli family.

Nicolaus

NicolausJakob I Johann

Nicolaus Nicolaus Daniel Johann II

Johann III Daniel II

Christoph

Jakob II

Figure 9.7 depicts a tree of a corporation’s top management.
The tree in Figure 9.8 shows a partial hierarchical chart for teams in the

National Hockey League (NHL) during the 2002–2003 season.
To qualify as a tree, a connected graph must fulfill path and edge

requirements. First we present the path requirement.

612 Chapter 9 Trees

Figure 9.7 Chief Executive Officer

President

Vice President
Finance

Vice President
Manufacturing

Vice President
Marketing

Vice President
Research and
Development

Figure 9.8

NHL

Eastern Conference

Atlantic Northeast Southeast Central Northwest Pacific

San JoseDevils

Western Conference

THEOREM 9.1 A connected graph is a tree if and only if there is a unique, simple path
between any two vertices.

PROOF:
Let G be a tree, and v and w any two of its vertices. Since G is connected,
by Theorem 8.3, a simple path must run between them. If there are two
distinct simple paths between them, then one path followed by the other
in reverse order would form a cycle. This, however, is impossible since G is
a tree; so G contains a unique, simple path between v and w.

Conversely, let G be a graph with a unique, simple path between any two
vertices. Clearly, G is connected. Suppose G contains a cycle, and v and w
are two vertices in it. Then the cycle can be split into two distinct simple
paths between v and w, a contradiction, so G is acyclic. Being connected
and acyclic, G is a tree. �

You may verify that the graph in Figure 9.2 is connected and contains a
unique, simple path between any two vertices. Therefore, by Theorem 9.1,
it is a tree. The same holds for Figure 9.3.

Next we establish the edge requirement for a connected graph to be a
tree.

9.1 Trees 613

THEOREM 9.2 A connected graph with n vertices is a tree if and only if it has exactly n−1
edges.

PROOF:
First we prove by strong induction that a tree with n vertices has n − 1
edges.

Let P(n): A tree T with n vertices has n − 1 edges.

Basis step Suppose T contains one vertex. Since T is acyclic, it is loop-
free; consequently, T contains no edges and P(1) is true.

Induction step Suppose the result is true for every tree with k or fewer
vertices. Let T be a tree with k + 1 vertices and e an edge in T. Deleting
e from T yields two connected disjoint graphs, T1 and T2. Each is a tree.
Suppose T1 has p vertices; then T2 has q = k + 1 − p vertices. By the
inductive hypothesis, T1 contains p − 1 edges and T2 contains q − 1 edges;
so T contains (p − 1)+ (q − 1) + 1 = (p − 1) + (k − p) + 1 = k edges.

Thus by strong induction, P(n) is true for every n ≥ 1.
Conversely, let G be a connected graph with n vertices and n − 1 edges.

If it were not a tree, it would have a cycle. Remove an edge from this cycle.
The resulting graph is still connected. If it is not acyclic, remove an edge
from a cycle. Continue this procedure to get an acyclic graph H. Thus H
is connected and acyclic; it must be a tree with n vertices. So, by the first
part, H has n − 1 edges and hence G has more than n − 1 edges, which is a
contradiction. Thus G is connected and acyclic, and hence a tree. �

For example, the graph in Figure 9.2 is connected and has 11 vertices,
so it must contain 10 edges to be a tree, which is true.

Exercises 9.1

Determine if each graph is a tree.

1.

4.

2.

5.

3.

6.

7. Is the graph in Figure 8.4b a tree? If not, why?

8. Determine if the Petersen graph in Figure 8.28 is a tree. If it isn’t,
explain why.

614 Chapter 9 Trees

Let n denote the number of vertices of a tree and e the number of edges.
Verify that e = n − 1 for each tree.

9. 10. 11.

12. How many bonds does the hydrocarbon molecule CnH2n+2 have?
Assume a carbon molecule has degree four.

13. Let T be a tree with vertices v1, . . . , vn. Show that
n∑

i=1
deg (vi) = 2n−2.

14. For what values of n is Kn a tree?

Determine if each complete bipartite graph is a tree.

15. K1,2 16. K1,3 17. K2,2 18. K2,3

19. For what values of m and n is Km, n a tree?

20. Let G be an r-regular tree with n vertices. Prove that n = 1 or n = 2.

Draw all nonisomorphic trees with the given number of vertices n.

21. 2 22. 3 23. 4 24. 5

25. The eccentricity of a vertex v in a tree is the length of the longest
simple path from v. Find the eccentricity of each vertex of the tree in
Figure 9.9.

Figure 9.9 e h

c f k

a

b g j

i
d

26. The center of a tree is a vertex with the least eccentricity. Find the
center(s) of the tree in Figure 9.9.

27. Using the adjacency matrix of a connected graph with n vertices, write
an algorithm to determine if it is a tree.

9.2 Spanning trees

All connected graphs have trees that span them. We will discuss three
ways to find them, as well as solve the 4-queens problem stated at the

9.2 Spanning trees 615

beginning of the chapter, but first a more pressing practical job needs to be
done.

A county’s five towns, A through E, are connected by roads (see
Figure 9.10), but 2 feet of snow cover them. The county would like to plow
as few roads as possible, so one can travel between the towns. Figure 9.11
displays one possible solution.

Figure 9.10

Graph G.

A

B

C

D

E

Figure 9.11

Graph H.

A

B

C

D

E

You may notice that the graph H in Figure 9.11 is a subgraph of G. In
fact, it is a tree containing every vertex of G. It is called a spanning tree
of G.

Spanning Tree
A subgraph H of a connected graph G is a spanning tree of G if H is a tree
containing every vertex of G.

Using this definition, we can solve the snow-plowing problem by finding
a spanning tree for the graph G.

Two additional spanning trees are given in Figure 9.12, indicating that
the spanning tree of a graph need not be unique.

Figure 9.12

A A

B B
C C

D D

E E

Does every connected graph have a spanning tree? Theorem 9.3 affirms
that it does.

616 Chapter 9 Trees

Joseph Bernard Kruskal (1928–) was born in New York City. He graduated
from the University of Chicago in 1948 and received his Ph.D. from Prince-
ton in 1954. After being an instructor at Princeton and at the University of
Wisconsin, he became an assistant professor at the University of Michigan in
1958. The following year he joined the technical staff at Bell Telephone Labs,
a position he still holds. Kruskal has served as visiting professor at Yale,
Columbia, and Rutgers.

THEOREM 9.3 Every connected graph has a spanning tree.

PROOF:
Let G be a connected graph. If G is a tree, we are done.

If G is not a tree, it must contain a cycle. Remove an edge from the cycle.
The new graph is still connected. If it is acyclic, then it is a tree and hence
a spanning tree. Otherwise, it must have another cycle. Remove an edge
from this cycle. Continue this procedure until a subgraph H is acyclic. Since
H is both connected and acyclic, it is a tree. H also contains every vertex of
G, so it is a spanning tree of G. �

Three algorithms to find a spanning tree in a connected graph are given
below: Kruskal’s, the Depth-First Search, and the Breadth-First Search.
Kruskal’s algorithm represents a special case of an algorithm for a minimal
spanning tree that we will examine in the next section. It was developed by
the American mathematician Joseph Bernard Kruskal in 1956.

Kruskal’s Algorithm for a Spanning Tree
Although the proof of Theorem 9.3 can find a spanning tree, Kruskal’s
algorithm takes advantage of Theorem 9.2. It is given in Algorithm 9.1.

Algorithm Spanning Tree (G,T)
(* G = (V, E) is a connected graph with n vertices and T denotes a

spanning tree. Numedges denotes the number of edges selected.
0. Begin (* algorithm *)
1. T ← Ø (* initialize tree *)
2. numedges ← 0 (* initialize numedges *)
3. while numedges < n − 1 do
4. begin (* while *)
5. select an edge e in G
6. E ← E − {e}

9.2 Spanning trees 617

7. if e does not create a cycle in T then
8. begin
9. T ← T ∪ {e}

10. numedges ← numedges + 1
11. endif
12. else
13. discard e
14. endwhile
15. End (* algorithm *)

Algorithm 9.1

The next example illuminates this algorithm.

EXAMPLE 9.1 Using Kruskal’s algorithm, find a spanning tree for the graph G in
Figure 9.13.

Figure 9.13

a

b

c
e

e1

e2
e3

e4 e6

e7

e8

e9
e10e11

e5

d

fg

SOLUTION:
We construct a spanning tree for G step-by-step, as in Table 9.1, which
shows each step involved. Figure 9.14 depicts the resulting spanning tree.

Table 9.1 Edge Edges selected Edges in Number of edges
in G form a cycle? tree in tree Done?

e1 No e1 1 No
e2 No e1, e2 2 No
e3 Yes e1, e2 2 No
e4 No e1, e2, e4 3 No
e5 Yes e1, e2, e4 3 No
e6 No e1, e2, e4, e6 4 No
e7 No e1, e2, e4, e6, e7 6 No
e8 No e1, e2, e4, e6, e7, e8 5 Yes

Figure 9.14

a

b

c

d

e

f
g

e1
e4

e8

e7

e6

e2

�

618 Chapter 9 Trees

A Big-Oh Estimate
To find a big-oh estimate of the total number of comparisons required by
Kruskal’s algorithm, notice that the while loop takes n iterations and line 7
takes e comparisons in the worst case, where e denotes the number of edges
in G. So the algorithm takes O(ne) comparisons in the worst case, where
0 ≤ e ≤ n(n − 1)/2.

This is unacceptable. Two simple and elegant methods, called Depth-
First Search (DFS) and Breadth-First Search (BFS), provide remedies.

The Depth-First Search (DFS) Algorithm
For the DFS algorithm, beginning at a vertex u, traverse the graph as far as
possible, marking each vertex visited. Once you reach a vertex from which
no more paths are available, backtrack to the last vertex visited; continue
traversing in this manner until all vertices are visited.

An outline of this recursive DFS algorithm follows.

• Start at a vertex u.

• Mark it as visited.

• Pick a vertex v adjacent to u and not yet visited.

• Call DFS from v.

• If a vertex w is reached such that all its adjacent vertices have been
visited, back up to the last vertex x visited and call DFS from x.

• Stop when you have visited all vertices.

The DFS method, also called backtracking, is given in Algorithm 9.2.

Algorithm DFS(G,v)
(* G is a connected graph with n vertices. A is an n × 1 boolean matrix;

Au indicates whether or not vertex u has been visited. This algorithm
visits all vertices in G, beginning with v. *)

Begin (* algorithm *)
Av ← true (* mark vertex v as visited *)

for each vertex w adjacent to v do
if Aw = false then (* vertex w not yet visited *)

DFS(G,w)
End (* algorithm *)

Algorithm 9.2

The following example clarifies this algorithm.

EXAMPLE 9.2 Using the DFS method, find a spanning tree for the graph in Figure 9.13,
beginning at vertex a.

SOLUTION:
Step 1 There are two vertices, b and g, adjacent to vertex a, neither
visited yet.

9.2 Spanning trees 619

Step 2 Choose b. (We shall follow the alphabetic order when a choice
exists.) Look at the vertices adjacent to b: a, c, and g. Only a has been
visited.

Step 3 Select c. Of the vertices adjacent to c, b has been visited, but not
d, f, or g.

Step 4 Choose d. Continuing like this, visit vertices e and f.

Now all vertices adjacent to f have been visited. So backtrack to e. All
vertices adjacent to it have been visited. Continue backing up to d and to c.
A vertex adjacent to c has not yet been visited, namely g. Visit g. All vertices
adjacent to g have been visited. So backtrack to c, to b, and finally to a.

Now all vertices have been visited, and the algorithm terminates.
Figure 9.15 shows the resulting spanning tree.

Figure 9.15

a

b

c

d

e

fg

(You can verify this using the adjacency list representation of the graph.)
Notice that this spanning tree differs from the one in Figure 9.14. �

Next we demonstrate how the n-queens problem can be solved using
DFS, if a solution exists.

EXAMPLE 9.3 (The four-queens puzzle) Place four queens on a 4 × 4 chessboard so
that no two queens attack each other. (A queen attacks another queen if
they are in the same row, column, or diagonal.)

SOLUTION:
First, place a queen (Q) in row 1 and column 1 (Figure 9.16). The next
queen can be placed in row 3 and column 2 (Figure 9.17). Unfortu-
nately, the third queen cannot be placed in column 3, so backtrack to the
previous location and move the queen to the next available location, namely,

Figure 9.16 Q

Figure 9.17 Q

Q

620 Chapter 9 Trees

row 4 and column 2 (Figure 9.18). Now the third queen can be placed in
row 2 and column 3 (Figure 9.19). However, this move does not properly

Figure 9.18 Q

Q

Figure 9.19 Q

Q

Q

place the fourth queen in the column 4, so backtrack and try to move the
third queen. It has no more legal moves. So backtrack to the second queen,
which also turns out to have no further legal moves. Therefore, backtrack
to the first queen and place it in position (2,1). Continuing as before, we
get a solution, as shown in Figure 9.20.

Figure 9.20

Q
Q

Q

Q

Q
Q

Q

Q
Q

Q
Q a solution

Q

Q

Q

Q

Q
Q

Q

�
Clearly, the backtracking technique can solve the n-queens puzzle,

if a solution exists. For instance, try to solve the eight-queens puzzle:
Place eight queens on an 8 × 8 chessboard, so no two queens attack each
other. There are 92 solutions.

Next we turn our attention to analyzing the DFS algorithm.

9.2 Spanning trees 621

An Analysis of the DFS Algorithm
Suppose we apply Algorithm 9.2 to a graph G with n vertices and e edges.
If G is represented by its adjacency matrix, it takes O(n) time to identify
vertices adjacent to a given vertex. Since at most n vertices are visited, the
algorithm takes O(n2) time for this search.

On the other hand, if G is implemented by adjacency lists (Section 8.2),
the DFS examines each vertex at most once. Since there are 2e vertices
in the adjacency list representation, the algorithm takes O(e) time for the
search.

The Breadth-First Search (BFS) Algorithm
The other elegant remedy besides the DFS method to find a spanning tree is
the Breadth-First Search method. In the BFS method, visit the vertices
level by level until all are visited. An outline of the BFS algorithm follows.

• Start at a vertex u.

• Mark it as visited.

• Visit all unvisited vertices adjacent to u.

• Visit all unvisited vertices adjacent to each of them.

• Repeat step 4 until all vertices are visited.

In step 4, we visit all unvisited vertices adjacent to the unvisited vertices
found in step 3. The algorithm is given in Algorithm 9.3. (It uses a data
structure called a queue; omit it if you are not familiar with queues.)

Algorithm BFS (G,v)
(* G is a connected graph with n vertices. A is an n × 1 boolean matrix;

it is initialized to false for every w in G; Aw indicates whether or
not vertex w has been visited. Q denotes a queue used to store
vertices adjacent to a given vertex. Beginning with v, the algorithm
visits all vertices of G using the BFS method. *)
Begin (* algorithm *)

Aw ← true
insert v in Q
while Q not empty do
begin (* while *)

delete a vertex w from Q
for each vertex x adjacent to w do

if Ax = false then (* x not yet visited *)
begin (* if *)

insert x in Q
Ax ← true

endif
endwhile

End (* algorithm *)

Algorithm 9.3

622 Chapter 9 Trees

The following example illustrates this algorithm.

EXAMPLE 9.4 Using the BFS method, construct a spanning tree for the graph in
Figure 9.13, beginning at vertex a.

SOLUTION:
Step 1 Beginning at a, there are two vertices adjacent to it, b and g. Visit
them.

Step 2 Visit the unvisited vertices adjacent to b. There is only one such
vertex, c. There are no unvisited vertices adjacent to g.

Step 3 Visit the unvisited vertices adjacent to c, namely, d, e, and f. There
are no more unvisited vertices; so we are done.

The resulting spanning tree appears in Figure 9.21.

Figure 9.21

a

b

g

c

d

e

f

(Notice that this spanning tree differs from the ones obtained earlier.) �
Next we present an analysis of the BFS method.

An Analysis of the BFS Algorithm
Let G be a graph with n vertices and e edges. If it is represented by its adja-
cency matrix, the while loop is executed at most n times. Corresponding
to each element in the queue, the for loop is executed at most n times, so
the total time taken is O(n2).

On the other hand, if G is represented by adjacency lists, the algorithm
examines each vertex once. Since the list contains a total of 2e vertices, it
takes O(e) time for the search.

Notice that the BFS method takes as long as the DFS method in the
worst case.

We close this section with yet another refreshing occurrence of Lucas
numbers, but first a definition.

The Complexity of a Graph
The complexity∗ of a graph G, denoted by k(G), is the number of distinct
spanning trees of G.

∗See the author’s Fibonacci and Lucas Numbers with Applications for a detailed discussion.

9.2 Spanning trees 623

For instance, the graph G in Figure 9.22 has three spanning trees, as
Figure 9.23 shows, so its complexity is 3; that is, k(G) = 3.

Figure 9.22

Figure 9.23

Spanning trees of G.

An investigation of the complexity of the wheel graph Wn (see
Figure 8.17) yields a surprising dividend.

Lucas and the Wheel Graph
Recall that Wn has n + 1 vertices; n of them lie on a rim and the remaining
vertex (the hub) is connected to every vertex on the rim. In 1969 J. Sedlacek
of the University of Calgary, Canada, proved that k(Wn) = L2n − 2, where
Lm denotes the mth Lucas number; two years later, B. R. Myers of the
University of Notre Dame rediscovered the formula.

For example, k(W3) = L6 − 2 = 18 − 2 = 16; that is, W3 has 16 different
spanning trees. See Figure 9.24.

Figure 9.24

Spanning trees of W3.

624 Chapter 9 Trees

Exercises 9.2

How many edges does a spanning tree of each graph have?

1. Kn 2. Km,n 3. Figure 9.1 4. The Petersen graph

Using Kruskal’s algorithm, construct a spanning tree for each graph,
starting at a.

5. a b 6.

a c

b 7.

a
c

d

b

8. a b

e f

dc

9. a

b

d
e f

g h

i

c

10.

a
c f

h

b e

d g

11. a b

d

e h

f g

c

12.

a
b

d

f h

ig

e

c

13.

a

b

d

e

h j

i

k
g

fc

14–22. Using the DFS method, construct a spanning tree for each graph
in Exercises 5–13.

23–31. Using the BFS method, construct a spanning tree for each graph
in Exercises 5–13.

◦ Using the DFS method, construct a spanning tree for each graph with the
given adjacency list.

32. 1 2 4

2 1 3

3 2 4

4 1 3

9.2 Spanning trees 625

33.
1 2 4 5

2 1 3 4

3 2 4 5

4 1 2 3 5

5 1 2 3 4

5

34–35. Using the BFS algorithm, construct a spanning tree for each graph
in Exercises 32 and 33.

Using backtracking, solve the n-queens puzzle, if a solution exists, for each
value of n.

36. 2 37. 3 38. 5 39. 6

Find a spanning tree for each complete graph.

40. K2 41. K3 42. K4 43. K5

How many nonisomorphic spanning trees does each complete graph
have?

44. K1 45. K2 46. K3 47. K4

*48. Using Exercises 40–47, predict the number of nonisomorphic span-
ning trees for the complete graph Kn.

Find a spanning tree for each complete bipartite graph.

49. K1,1 50. K2,2 51. K2,3 52. K3,3

53–56. How many nonisomorphic spanning trees do the complete bipartite
graphs in Exercises 49–52 have?

◦ Let G be a simple graph with n vertices v1, v2, . . . , vn and adjacency matrix
A = (aij)n×n. Let B = (bij)n×n, where

bij =
{−aij if i �= j

deg(vi) if i = j

Let C be the (n−1)×(n−1) matrix obtained by deleting row 1 and column 1
of B. Then the number of nonisomorphic spanning trees of G is the deter-
minant |C|. Using this fact, find the number of nonisomorphic spanning
trees for each graph.

626 Chapter 9 Trees

57.

a

b

c

d

e

58.

a e

c

d

b 59. K5

*60. (Cayley’s formula) Using the statement preceding Exercises 57–
59, prove that the number of nonisomorphic spanning trees for Kn
is nn−2.

9.3 Minimal Spanning Trees

Finding a minimal spanning tree in a connected weighted graph can fre-
quently be useful. This section presents two such algorithms, but first an
example.

A utility company would like to lay pipelines for natural gas between five
towns, a through e, as in Figure 9.25. The weights (in millions) of the edges
represent the cost of building the various pipelines. They must be laid in
such a way that natural gas can be sent from any town to any other town,
holding construction costs to a minimum. In other words, the company
needs to find a spanning tree for the weighted graph with the sum of the
weights of the tree’s edges at a minimum. Such a tree is a minimal spanning
tree.

Figure 9.25 c

13 13

12

151211
167

10

10
a

b d

e

Minimal Spanning Tree
Let G be a connected weighted graph. The weight of a spanning tree of
G is the sum of the weights of its edges. A minimal spanning tree of G
weighs the least.

Several algorithms can find a minimal spanning tree T of a connected
weighted graph G. Two of them are Kruskal’s and Prim’s.

Kruskal’s Algorithm
Kruskal’s algorithm is an extension of his algorithm presented in the
preceding section:

• Arrange the edges in G in nondecreasing order of their weights.

9.3 Minimal Spanning Trees 627

• Choose an edge in G with the minimum weight.

• Add an edge of least weight to T if it does not form a cycle with the
edges already selected.

• Repeat step 3 until the number of edges selected is n − 1, where n
denotes the number of vertices in G.

The following example illustrates these steps.

EXAMPLE 9.5 Using Kruskal’s algorithm, find a minimal spanning tree for the graph in
Figure 9.25.

SOLUTION:
Step 1 Arrange the edges in nondecreasing order of their weights, as in

Table 9.2.

Table 9.2
Weight 7 10 10 11 12 12 13 13 15 16

Edge {a, b} {a, d} {b, d} {b, e} {a, e} {c, e} {b, c} {c, d} {d, e} {a, c}

Step 2 Choose edge {a, b} since it has the smallest weight; include it in T.

Step 3 An edge with the next smallest weight is {a, d}. It does not form a
cycle with the edge in T, so include it in T.

Step 4 Edge {b, d} forms a cycle with the edges in T; discard it.

Step 5 Edge {b, e} does not produce a cycle with the edges in T; include it
in T.

Step 6 Edge {a, e} creates a cycle; reject it.

Step 7 Edge {c, e} is selected.

Having selected four edges, we are done, by Theorem 9.2. Figure 9.26
shows the resulting spanning tree.

Figure 9.26 c

b d

ea 10

11

12

7

628 Chapter 9 Trees

Table 9.3 summarizes these steps, indicating 40 as the weight of a
minimal spanning tree, so it would cost $40 million to build the pipelines.

Table 9.3
Edge Weight Decision Spanning Weight Number of Done?

tree T of T edges in T

{a, b} 7 Select
a

b 7 1 No

{a, d} 10 Select
a

db 17 2 No

{b, d} 10 Reject — 17 2 No

{b, e} 11 Select
a

b

e

d 28 3 No

{a, e} 12 Reject — 28 3 No

{c, e} 12 Select

a

b
c

e

d
40 4 Yes

�

Algorithm 9.4 presents Kruskal’s algorithm.

Algorithm Kruskal (G,T)
(* Using Kruskal’s algorithm, this algorithm constructs a minimal

spanning tree T for a connected weighted graph G = (V,E) with n
vertices and computes the minimum weight. Numedges denotes the
number of edges in T. *)
Begin (* algorithm *)

T ← Ø (* initialize tree *)
numedges ← 0 (* initialize numedges in T *)
weight ← 0 (* initialize weight of T *)
while (numedges < n− 1) and (E �= Ø) do
begin (* while *)

select an edge e in E with the smallest weight.
E ← E − {e} (* delete e from E *)
if e does not form a cycle in T then

begin (* if *)
T ← T ∪ {e} (* add e to T *)
weight ← weight + weight of edge e
numedges ← numedges + 1

endif
else

discard it
endwhile

End (* algorithm *)

Algorithm 9.4

9.3 Minimal Spanning Trees 629

Robert Clay Prim (1921–), an engineer and mathematician, was born in Sweetwater, Texas. He received
his B.S. in electrical engineering in 1941 from the University of Texas and his Ph.D. in mathematics from
Princeton in 1949.

After working for a year at the University of Texas, he has held a variety of positions: engineer at the
General Electric Co., engineer and mathematician at the U. S. Naval Ordinance Lab, research associate at
Princeton, research mathematician and director of mathematics and mechanics at Bell Telephone Labs,
vice president for research at Sandia Corporation, and executive director of research at Bell Labs.

Prim’s Algorithm
Another method for finding a minimal spanning tree T, Prim’s algorithm,
was discovered by the American engineer Robert Clay Prim in 1957. The
following steps outline it.

• Choose an edge with the least weight.

• Include it in T.

• Select an edge of least weight that is incident with a vertex of an edge
in T.

• If it does not create a cycle with the edges in T, then include it in T;
otherwise, discard it.

• Repeat steps 3 and 4 until T contains n − 1 edges.

The next example illustrates these steps.

EXAMPLE 9.6 Using Prim’s algorithm, construct a minimal spanning tree for the graph
in Figure 9.25.

SOLUTION:
Arrange the edges in nondecreasing order of weights, as in Table 9.2.

Step 1 Choose an edge with the least weight: {a, b}.

Step 2 Include it in T. See Figure 9.27.

Figure 9.27 b

7

a

Step 3 Select a lightest edge incident with a or b. Edges {a, d} and {b, d}
are two candidates. Neither of them forms a cycle {a, b}, so select one of
them, say, {b, d}.

630 Chapter 9 Trees

Step 4 Adjoin it to T (see Figure 9.28).

Figure 9.28
b d

7

10

a

Step 5 Look for a lightest edge incident with a vertex in T: {a, d}.

Step 6 Edge {a, d} creates a cycle in T; reject it.

Step 7 Edge {b, e} is the next candidate.

Step 8 Add it to T (see Figure 9.29).

Figure 9.29 10

11
b d

7

a
e

Step 9 Look for a lightest edge incident with a vertex in T; {a, e} and
{c, e} are two possibilities.

Step 10 Edge {a, e} forms a cycle in T, so discard it.

Step 11 {c, e} does not produce a cycle, so include it in T (see Figure 9.30).
T now contains 4 edges; so by Theorem 9.2, T is a minimal
spanning tree weighing 7 + 10 + 11 + 12 = 40.

Figure 9.30

12
11

10
db

7

a
e

c

Table 9.4 summarizes these steps.

An important observation: Examples 9.5 and 9.6 indicate that a con-
nected weighted graph may have more than one minimal spanning tree.
Nonetheless, they weigh the same.

9.3 Minimal Spanning Trees 631

Table 9.4
Edge Weight Decision Spanning Weight Number of Done?

tree T of T edges in T

{a, b} 7 Select
a

b 7 1 No

{b, d} 10 Select
a

b d 17 2 No

{a, d} 10 Reject — 17 2 No

{b, e} 11 Select
a

b

e

d 28 3 No

{a, e} 12 Reject — 28 3 No

{c, e} 12 select

a

b
c

e

d
40 4 Yes

�

Algorithm 9.5 gives Prim’s algorithm.

Algorithm Prim (G,T)
(* Using Prim’s algorithm, this algorithm constructs a minimal spanning

tree T for a connected weighted graph G = (V, E) with n vertices and
computes the minimum weight. Numedges denotes the number of
edges in T. *)
Begin (* algorithm *)

T ← Ø (* initialize tree *)
numedges ← 0 (* initialize numedges *)
weight ← 0 (* initialize weight of T *)
while (numedges < n − 1) and (E �= Ø) do
begin (* while *)

select an edge e that is incident with a vertex
in T that has the least weight.
E ← E − {e} (* delete edge e from E *)
if e does not form a cycle in T then

begin (* if *)
T ← T ∪ {e} (* adjoin e to T *)
weight ← weight + weight of edge e
numedges ← numedges + 1

endif
else
discard it

endwhile
end (* algorithm *)

Algorithm 9.5

The time complexity of this version of Prim’s algorithm is O(n3), with n
the number of vertices in G. However, it can be implemented in O(n2) time.

To prove Prim’s algorithm, induction is used twice as well as a loop
invariant (Section 4.5). Unfortunately, the proof, given next, is a bit long.

632 Chapter 9 Trees

THEOREM 9.4 Prim’s algorithm produces a minimal spanning tree for a connected
weighted graph.

PROOF:
Let G be a connected weighted graph with n vertices and Tk its subgraph
after k iterations of the while loop in Algorithm 9.5. The proof consists of
validating three statements: (1) Tk is a tree for every k ≥ 1; (2) Tn−1 is a
spanning tree; and (3) Tk is contained in a minimal spanning tree.

If the tree Tk is contained in a minimal spanning tree at the end of every
iteration, it must be true even when the loop is terminated. Consequently,
when we leave the loop, a minimal spanning tree must result.

So we begin with the proof of part 1.

• To prove that Tkis a tree for every k ≥ 1 (use induction):

Basis step When k = 1, T1 consists of a single vertex. So T1 is a
tree.

Induction step Assume Tk is a tree for any k ≥ 1. In the (k + 1)st iter-
ation, when a new edge is added to Tk the resulting subgraph Tk+1 is still
connected and acyclic, so Tk+1 is also a tree. Thus, by induction, Tk is a
tree for every k ≥ 1.

• To prove that Tn−1is a spanning tree:
The while loop is terminated when k = n − 1. The resulting subgraph
Tn−1, by part 1, is a tree with n − 1 edges; so it contains all the vertices
of G. Hence Tn−1 is a spanning tree.

• To prove that Tk is contained in a minimal spanning tree (use
induction):

Basis step Since T1 consists of a single vertex, T1 is contained in every
minimal spanning tree.

Induction step Assume Tk is contained in a minimal spanning tree T
after k iterations of the loop. We would like to show that Tk+1 is contained
in some minimal spanning tree of G.

Let V be the set of vertices in Tk. In the (k+1)st iteration, the algorithm
selects an edge e = {u, v} of least weight, where u ∈ V and v /∈ V , and adds
it to Tk. This yields the tree Tk+1: Tk+1 = Tk ∪ {e}.
Case 1 If e ∈ T, clearly Tk+1 is contained in T.

Case 2 If e /∈ T, T ∪ {e} contains a cycle C. Choose an edge e′ = {x, y} in
C such that x ∈ V , y /∈ V , and e �= e′. Then w(e) ≤ w(e′) by the choice of e,
where w(e) denotes the weight of edge e and w(e′) the weight of e′.

Let T′ = [T ∪ {e}] − {e′}. T′ is a tree with n − 1 edges; so it is a tree,
by Theorem 9.2, and hence a spanning one. Then w(T′) ≤ w(T), where

9.3 Minimal Spanning Trees 633

w(T′) denotes the weight of T′ and w(T) the weight of T; so T′ is also a
minimal spanning tree. Besides, it contains Tk+1.

Thus, in both cases, Tk+1 is contained in a minimal spanning tree; there-
fore, by induction, Tk is contained in a minimal spanning tree for every
k ≥ 1. �

Kruskal’s and Prim’s algorithms present fine paradigms of a greedy algo-
rithm. A greedy algorithm makes an optimal choice at every step. For
instance, each step in the two algorithms sought an edge with minimum
weight. Although greedy algorithms may not always yield optimal solutions,
they do in these two cases.

Exercises 9.3

Using Kruskal’s algorithm, construct a minimal spanning tree for each
connected weighted graph.

1.

a

b

d

c
3

5

3

2 4
8

5 2

3.

a e

c

f

b d
5

4
6

3 3 3 7

72

5.
b

a
d

e
g

h

i
fc

5 10

2
3

7 6 4

8

7 5

3

2.

a fb

c
3 2
2 821

1

5

11

3
d

e

4.

a

b 8
6 11

11
d

c

f g

e h8

7

5 73 6

6.

a j

b
d

e

h

f

g

ic

2

3

5

5
5

6

7 8

9
9

68
5

7–12. Using Prim’s algorithm, construct a minimal spanning tree for each
graph in Exercises 1–6. Compute the weight of each.

◦ Using Kruskal’s algorithm, create a minimal spanning tree for the con-
nected weighted graph with each adjacency list.

634 Chapter 9 Trees

13.
1 2 5 3 6

2 1 5 4 4

3 1 6 4 5

4 2 4 3 5

5

6

2 8

5 6

3 7

5 8

5 7

6 6

14.
1 2 8 3 3 4 6

2 1 8 3 8

3 1 3 2 8

4 1 6 2 7 3 9

5 1 5 3 4 4 5

4 7

4 9

5 5

5 5

5 4

15–16. Redo Exercises 13 and 14 using Prim’s algorithm.

Using Kruskal’s algorithm, construct a minimal spanning tree for
the connected, weighted graph with each modified adjacency matrix.
The symbol ∞ in row i and column j indicates the absence of edge
{i, j}; think of it as a number larger than any of the weights in the
graph.

17.
1 2 3 4

1
2
3
4

⎡
⎢⎢⎣
∞ 6 3 7
6 ∞ 5 7
3 5 ∞ 6
7 7 6 ∞

⎤
⎥⎥⎦

18. 1 2 3 4 5

1
2
3
4
5

⎡
⎢⎢⎢⎢⎣
∞ 8 9 7 7
8 ∞ 11 ∞ 3
9 11 ∞ 10 ∞
7 ∞ 10 ∞ 5
7 3 ∞ 5 ∞

⎤
⎥⎥⎥⎥⎦

19–20. Redo Exercises 17 and 18 using Prim’s algorithm.

9.4 Rooted Trees 635

9.4 Rooted Trees

Take a good look at the trees in Figures 9.6, 9.7, and 9.8. Each contains
a specially designated vertex called the root: Nicolaus, Chief Executive
Officer, and NHL, respectively. A tree with a root is a rooted tree.

Consider the simple algorithm for making an overseas telephone call:

• Dial the international access code (011).

• Dial the country code.

• Dial the city code.

• Dial the local number.

This algorithm can be used to construct a rooted tree, a portion of which
is shown in Figure 9.31. The root of the tree is the vertex 011.

Figure 9.31

A rooted tree.
011

France Japan

root

UK

London (1) 21 41 232 1 7 91 93 75 45 11 6 Tokyo (3)

44 33 81

Rooted trees are drawn with the root at the top, especially in computer
science; they grow downward. Every “unrooted” tree can be redrawn as
rooted and each choice of the root produces a differently shaped tree. For
example, the tree in Figure 9.2 when redrawn as a rooted tree appears in
Figure 9.32. The spanning tree in Figure 9.26 can be redrawn as differently
shaped trees (see Figure 9.33).

Figure 9.32 H

H

H H

H H

H H

C

C

C

Since a unique, simple path runs between any two vertices in a tree, such
a path exists from the root of a rooted tree to any other vertex.

The basic terminology of rooted trees resembles that of a family tree.

636 Chapter 9 Trees

Figure 9.33 a

Tree rooted at a Tree rooted at b

ab

b

d

d c

c

e

e

Parent, Child, Sibling, Ancestor, Descendant, and Subtree
Let T be a rooted tree with root v0. Let v0-v1- · · · -vn−1-vn be the path
from v0 to vn. Then:

• vn−1 is the parent of vn.

• vn is a child of vn−1.

• Vertices with the same parent are siblings.

• The vertices v0, v1, . . . , vn−1 are ancestors of vn.

• The descendants of a vertex v are those vertices for which v is an
ancestor.

• A vertex with no children is a leaf or a terminal vertex.

• A vertex that is not a leaf is an internal vertex.

• The subtree of T rooted at v consists of v, its descendants, and all edges
incident with them.

EXAMPLE 9.7 The tree T in Figure 9.34 is rooted at a. Vertex b is the parent of both e and
f; so e and f are the children of b.

Figure 9.34 a

b c d

ihgfe

k l

j

Since b, c, and d have the same parent, they are siblings. Vertices a, b,
and e are ancestors of l. Vertices e, f, k, and l are descendants of b. Vertex
f has no children, so it is a leaf. Vertices c and e have at least one child,
so both are internal vertices. Figure 9.35 displays the subtrees rooted at b
and d. �

Tree structures occur not only in genealogy and hierarchical studies,
but in the study of games such as chess, checkers, and tic-tac-toe. In such

9.4 Rooted Trees 637

Figure 9.35 b

Subtree rooted
at b

Subtree rooted
at d

d

ihfe

k l

j

a game, two players take turns for their moves. The root of a game tree
represents the initial board position and every other vertex represents a
subsequent board position.

Figure 9.36, for example, shows a portion of a game tree for tic-tac-toe.

Figure 9.36

O

O O O

X X

O

X

O O O

The unique, simple path from the root of a tree to any vertex can define
its level and hence its height.

Level and Height
The level of a vertex v in a rooted tree, denoted by level (v), is the length
of the path from the root to v. The height of a rooted tree is the maximum
level of any leaf in the tree.

EXAMPLE 9.8 For the rooted tree in Figure 9.34, level (a) = 0, level (b) = level (c) =
level (d) = 1, level (e) = level (f) = level (j) = 2, and level (k)= level (l) = 3.
Since the maximum level of any leaf is 3, the height of the tree is 3. �

The level of a vertex can also be defined recursively.

638 Chapter 9 Trees

A Recursive Definition of the Level of a Vertex v

level (v) =
{

0 if v is the root
1 + level (parent of v) otherwise

EXAMPLE 9.9 Using the recursive definition, compute the level of vertex k in Figure 9.34.

SOLUTION:
level (k) = 1 + level (e)

= 1 + [1 + level (b)] = 2 + level (b)

= 2 + [1 + level (a)] = 3 + level (a)

= 3 + 0 = 3 �

An important class of rooted trees is ordered rooted trees.

Ordered Rooted Tree
A rooted tree in which the vertices at each level are ordered as the first,
second, third, and so on is an ordered rooted tree.

EXAMPLE 9.10 As ordered trees, the rooted trees in Figure 9.37 are not the same (Why?).
As unordered trees, however, there is no difference between them.

Figure 9.37 a

b c �
When an ordered rooted tree is drawn, vertices at the same level are

placed along the same horizontal line. Children from oldest to youngest are
arranged from left to right. For example, in Figure 9.37, b ≺ c, whereas in
Figure 9.38, c ≺ b.

Figure 9.38 a

c b

Since only ordered rooted trees are discussed from here on, the term
rooted tree will imply ordered rooted tree.

Rooted trees need not have the same number of children at every internal
vertex. Depending on the maximum number of children of any vertex, these
trees have special names.

9.4 Rooted Trees 639

m-ary Tree
A rooted tree is an m-ary tree if every vertex has at most m children. If
m = 2, it is a binary tree; if m = 3, it is a ternary tree. An m-ary tree is
full if every internal vertex has exactly m children.

EXAMPLE 9.11 With the rooted trees in Figure 9.39, every internal vertex in T1 has at most
two children, so T1 is a binary tree. In fact, it is a full binary tree. Tree T2

Figure 9.39

T1
Full binary tree

T2
Binary tree

T3
Ternary tree

is binary, but not full (Why?). Every vertex in T3 has at most three children,
so T3 is ternary. It is not, however, a full ternary tree (Why?). �

m-ary trees help analyze the structures of computer programs.

EXAMPLE 9.12◦ (optional) A computer program P consists of two subprograms A1 and A2.
A1 has three modules B1, B2, and B3; A2 has two modules B4 and B5. In
addition, B1 contains a module C1, B2 contains two modules C2 and C3, B4
contains C4, and B5 contains C5, C6, and C7. The structure of the program
forms the ternary tree in Figure 9.40.

Figure 9.40 P

A1

B1 B2 B3 B4 B5

C7C6C5C4C3C2C1

A2

�

m-ary Tree and Partitions
Rooted trees can also find the partitions of a finite set, as the next example
illustrates.

EXAMPLE 9.13 Using an m-ary tree, find the partitions of the set S = {a, b, c}.
SOLUTION:
Build a tree with root {a}. Use the remaining elements in S to make sets of
subsets until each set becomes a partition of S, as Figure 9.41 shows. For

640 Chapter 9 Trees

Figure 9.41 {a}

{a, b}

{a, b, c} {a, b}, {c} {a, c}, {b} {a}, {b, c} {a}, {b}, {c}

{a}, {b}

form subsets
using b

form subsets
using c

instance, at level 1, element b can be added to the set {a} to form a new
subset or can form a subset by itself. The leaves of the tree manifest the
five partitions of the set. �

Next we present balanced trees.

Balanced Tree
An m-ary tree of height h is balanced if its leaves lie at level h − 1 or h,
that is, if its leaves lie on adjacent levels.

EXAMPLE 9.14 In Figure 9.39, T1 is balanced since all its leaves lie at level 2 or 3, and h = 3.
For T2, h = 3 and all its leaves lie at level 2 or 3, so T2 is also balanced.
Tree T3 is not balanced (Why?). �

Balanced trees prove extremely useful in sorting and searching, as Sec-
tion 9.6 demonstrates. Shortening a binary tree, that is, balancing it,
reduces the time needed for sorting and searching. In other words, making
the tree as bushy as possible maximizes the efficiency of the search process.

The next five theorems explore some aspects of m-ary trees.
If you know the number of internal vertices in a full m-ary tree, you can

use Theorem 9.5 to compute the total number of vertices.

THEOREM 9.5 A full m-ary tree with i internal vertices has n = mi + 1 vertices.

PROOF:
By Theorem 9.2, the tree has n − 1 edges. Since the tree is full m-ary, each
internal vertex has m children, each contributing m edges. So the tree has
mi edges. Thus mi = n − 1 and n = mi + 1. �

The next theorem presents additional relationships among the number
of vertices, leaves, and internal vertices in a full m-ary tree. The proof is
fairly straightforward, so we leave it as a routine exercise. (See Exercises
48–50.)

THEOREM 9.6 Let T be a full m-ary tree. Then:

• If T has n vertices, it has i = n − 1
m

internal vertices and l =
(m − 1)n + 1

m
leaves.

• If T has i internal vertices, it has l = (m − 1)i + 1 leaves.

9.4 Rooted Trees 641

• If T has l leaves, it has i = l − 1
m − 1

internal vertices and n = ml − 1
m − 1

vertices. �

THEOREM 9.7 An m-ary tree of height h has at most mh leaves.

PROOF (by induction on h):
Basis step When h = 0, the tree contains one vertex, namely, the root.
So the number of leaves in the tree is 1. Thus the theorem holds when
h = 0.

Induction step Assume every m-ary tree of height h has at most mh

leaves. Let T be an m-ary tree of height h + 1, and T1 the tree obtained by
deleting all leaves of T and the edges adjacent with them. T1 is an m-ary
tree of height h and contains at most mh leaves by the inductive hypothesis.
Since T is m-ary, each of these mh vertices has a maximum of m children,
so T has at most m · mh = mh+1 leaves.

Thus, by induction, the theorem holds for every h ≥ 0. �

Theorem 9.8 gives a lower bound for the height of an m-ary tree with l
leaves.

THEOREM 9.8 Let h be the height of an m-ary tree with l leaves. Then h ≥ �logm l�.

PROOF:
By Theorem 9.7, l ≤ mh, so h ≥ logm l. Since h is an integer, h ≥
�logm l�. �

In particular, for a binary tree with height h and l leaves, h ≥ �lg l�.
For example, if the truth table of a compound proposition contains 1024
rows, the proposition is composed of at least �lg 1024� = 10 simple
propositions.

The next theorem gives the exact height of a full, balanced m-ary tree
with l leaves.

THEOREM 9.9 If h is the height of a full, balanced m-ary tree T with l leaves, then h =
�logm l�.

PROOF:
By Theorem 9.7, l ≤ mh. Since the height of the tree is h, T must contain at
least one leaf at level h. Let T1 be the tree obtained by deleting the leaves
at level h and the edges incident with them. Since T is balanced, T1 has
all its leaves at level h − 1; so, by Theorem 9.7, T1 has exactly mh−1 leaves
(see Exercise 54). So mh−1 < l.

Thus

mh−1 < l ≤ mh

h − 1 < logm l ≤ h

642 Chapter 9 Trees

Thus

h = �logm l� �

The next two examples apply Theorems 9.6 and 9.9.

EXAMPLE 9.15 Compute the height of a full balanced binary tree with 4095 vertices.

SOLUTION:
By Theorem 9.6,

l = (m − 1)n + 1
m

= (2 − 1)4095 + 1
2

= 2048

By Theorem 9.9, h = �lg 2048� = 11. �

We close this section with the next example, which solves Problem 3
from the beginning of the chapter.

EXAMPLE 9.16 There are 64 entrants in a singles tennis tournament. The winner of each
round is advanced to the next round. Find the number of matches and the
number of rounds played to determine the champion.

SOLUTION:
The tennis tournament can be represented by the full balanced binary tree
in Figure 9.42 with its leaves as the initial players, and the root being
the champion of the tournament. The internal vertices represent the win-
ners of the various matches. So each level corresponds to a round of the
tournament.

Figure 9.42 First
Round

Second
Round

Final
Round

Champion

9.4 Rooted Trees 643

Number of matches played = Number of internal vertices

= l − 1
m − 1

, by Theorem 9.6

= 64 − 1
2 − 1

= 63

Number of rounds played = height of the tree

= �lg 64�, by Theorem 9.9

= 6 �

Exercises 9.4

Using recursion, compute the level of the given vertex in Figure 9.43.

Figure 9.43 a

b c d

e f g h i

ponmlkj

1. Vertex c 2. Vertex e 3. Vertex h 4. Vertex j

Find m for each m-ary tree.

5. 6. 7.

8–10. Is each of the m-ary trees in Exercises 5–7 full?

11–13. Is each of the m-ary trees in Exercises 5–7 balanced?

14. Let � = {0, 1}, where 0 ≺ 1. The language �n can be defined as
�n = {wx | w ∈ �n−1, x ∈ �}.

644 Chapter 9 Trees

Using this definition, display the elements of
3⋃

n=0
�n in a rooted tree, where

the vertices at level k represent the elements of �k.

15. Is the tree in Figure 9.43 binary? Full? Balanced?

16. Draw a full binary tree that is not balanced.

17. Draw a balanced tree that is not full.

18. Determine all simple paths in the maze in Figure 9.44 that a person at
gate A can take to exit through gate Z.
(Hint: Draw a tree rooted at A.)

Figure 9.44 A

B

E F G

H

Z

C D

Using a rooted tree, find all partitions of each set.

19. {a, b} 20. {a, b, c, d}

21. Find the number of vertices of a full ternary tree with four internal
vertices.

22. Find the number of leaves of a full 5-ary tree with 156 vertices.

23. How many internal vertices and leaves does a full ternary tree with
121 vertices have?

24. Compute the number of internal vertices and the height of a full and
balanced 4-ary tree with 1024 leaves.

25. A full ternary tree has 121 internal vertices. How many leaves does it
have?

26. Compute the maximum number of leaves in a full ternary tree of
height 5.

Compute the height of each tree.

27. A full balanced binary tree with 10 leaves.

28. A full balanced ternary tree with 10 leaves.

29. A full balanced binary tree with 511 vertices.

30. A full balanced ternary tree with 3280 vertices.

Thirty-two people enter a singles Ping-Pong tournament. Find each.

9.4 Rooted Trees 645

31. The number of matches played. 32. The number of rounds played.

An m-ary tree is complete if all leaves are at the same level. Are the
following trees complete?

33. 34. 35.

36. Is a complete m-ary tree full?

37. Is a complete m-ary tree balanced?

38. Draw a full binary tree that is not complete.

39. Draw a complete binary tree that is not full.

40. Draw a binary tree that is both full and complete.

For a full complete m-ary tree of height h, find each.

41. The number of leaves.

42. The number of internal vertices.

43. The number of vertices.

A full complete 6-ary tree has 1296 leaves. Compute each.

44. The number of its internal vertices.

45. Its height.

For a full complete ternary tree with 1093 vertices, find each:

46. Its height. 47. The number of its leaves.

Prove the following parts of Theorem 9.6.

48. Part 1 49. Part 2 50. Part 3

Two rooted trees T and T′ with vertex sets V and V ′, respectively, are
isomorphic if there is a bijection f : V → V ′ such that:

• If v0 is the root of T, then f (v0) is the root of T′; and

• If v1, v2, . . . , vn are the children of a vertex v ∈ V such that v1 ≺ v2 ≺
· · · ≺ vn, then f (v1), f (v2), . . . , f (vn) are the children of f (v), where
f (v1) ≺ f (v2) ≺ · · · ≺ f (vn).

Are the trees in Exercises 51 and 52 isomorphic?

51. 52.

646 Chapter 9 Trees

*53. Let T be a full complete m-ary tree with i internal vertices and l leaves,
where m ≥ 2. Prove that l > i.

*54. Prove that a full complete m-ary tree with height h has exactly mh

leaves.

9.5 Binary Trees

Binary trees are the most important class of m-ary trees and have a
wide range of applications. For instance, they can model tournaments,
as in Example 9.16. They also support very well the representation and
evaluation of algebraic expressions.

Since a binary tree is a 2-ary tree, every internal vertex has at most two
children — the elder is the left child; the other is the right child. They
stand to the left and right of their parent. The subtree at a left child v is
the left subtree rooted at v, and the subtree rooted at a right child w is
the right subtree rooted at w.

For example, the left child of b in Figure 9.45 is d; b’s right child is e.
Vertex d has a left child, but no right. Vertex c has no left child, but does
have a right child; its right subtree appears in Figure 9.46.

Figure 9.45 a

b

d e

c

f

ihg

Figure 9.46

Right subtree of c.

f

ih

Fibonacci Trees
We are now ready to explore the world of Fibonacci trees Tn, a special
class of binary trees, and their close relationship with Fibonacci numbers.
Fibonacci trees are defined recursively as follows:

• Both T1 and T2 are binary trees with exactly one vertex each; and

• Tn is a binary tree with left subtree Tn−1 and right subtree Tn−2, where
n ≥ 3.

Figure 9.47 shows the first six Fibonacci trees, T1 through T6.

9.5 Binary Trees 647

Figure 9.47

Fibonacci trees.

T1 T2 T3 T4 T5 T6

Out of curiosity, we now explore the number of leaves ln, the number
of internal vertices in, the number of vertices vn, and the number of edges
en of the nth Fibonacci tree Tn. To facilitate our investigation, study the
trees in Figure 9.47, collect the needed data, and then summarize them in
a table, as in Table 9.5.

Table 9.5 n 1 2 3 4 5 6 · · · n

Vn 1 1 3 5 9 15 · · · ?
ln 1 1 2 3 5 8 · · · ?
in 0 0 1 2 4 7 · · · ?
en 0 0 2 4 8 14 · · · ?

Using the table, we conjecture that ln = Fn, in = ln − 1 = Fn − 1,
vn = in + ln = 2Fn − 1, and en = 2in = 2Fn − 2. They are in fact true. We
can confirm them; see Exercises 74 –77.

Binary Tree Traversals
An important tree operation is tree traversal, visiting every vertex of a
tree in a systematic way. Three elegant methods for traversing a nonempty
binary tree exist: preorder, inorder, postorder traversals. Each of
them can be defined recursively:

Preorder traversal

• Visit the root.

• Traverse the left subtree in preorder.

• Traverse the right subtree in preorder.

Inorder traversal

• Traverse the left subtree in inorder.

648 Chapter 9 Trees

• Visit the root.

• Traverse the right subtree in inorder.

Postorder traversal

• Traverse the left subtree in postorder.

• Traverse the right subtree in postorder.

• Visit the root.

The binary tree in Figure 9.48 has T1 and T2 as left and right subtrees.
To traverse the tree in preorder, first visit the root v; traverse T1 in pre-
order and then traverse T2 in preorder. The other two traversals can be
interpreted similarly.

Figure 9.48 v

T1 T2

The next three examples illustrate these tree traversals step-by-step.

EXAMPLE 9.17 Give the output from traversing the binary tree in Figure 9.49 in
preorder.

Figure 9.49 a

b

d e

c

f

g

SOLUTION:
1. First visit the root a and output a.

2. Traverse the left subtree rooted at b in preorder (see Figure 9.50).
Output b. Now traverse the left subtree rooted at d in preorder
(see Figure 9.51). Output d. Traverse the left subtree of d; it is empty. So
traverse its right subtree; it is also empty. Therefore, back up to b and
traverse its right subtree (see Figure 9.52). Visit e. Output e. It has no
subtrees.

3. Backtrack to a. Traverse its right subtree in preorder (see Figure 9.53).
Output c. It has no left subtree, so traverse its right subtree (see
Figure 9.54). Output f.

9.5 Binary Trees 649

Figure 9.50 a

b

d e

c

f

g
traverse

Figure 9.51 a

b

d e

c

f

g
traverse

Figure 9.52 a

b

d e

c

f

g
traverse

Figure 9.53 a

b

d e

c

f

g
traverse

Figure 9.54

traverse

a

b

d e

c

f

g

Traverse its left subtree (see Figure 9.55). Output g. It has no subtrees; so
backtrack to f and traverse its right subtree in preorder, which is empty.

All vertices have been visited, so the traversal is done. The output is a,
b, d, e, c, f, g.

650 Chapter 9 Trees

Figure 9.55

traverse

a

b

d e

c

f

g

�

EXAMPLE 9.18 Give the output from traversing the binary tree in Figure 9.49 in inorder.

SOLUTION:
1. First traverse the left subtree in inorder (see Figure 9.56). Traverse its

left subtree in inorder (see Figure 9.57). Again traverse its left subtree
in inorder. It is empty, so visit the root d and output it. Now traverse its
right subtree. Since it is empty, back up to b and output it. Traverse its
right subtree (see Figure 9.58). Vertex e has no left subtrees, so output e.
It has no right subtrees.

Figure 9.56 a

b

d e

c

f

g
traverse

Figure 9.57 a

b

d e

c

f

g
traverse

Figure 9.58 a

b

d e

c

f

g
traverse

2. Backtrack to a and output a.

9.5 Binary Trees 651

3. Now traverse the right subtree in inorder (see Figure 9.59). Since
the left subtree of c is empty, output c. Traverse its right subtree
(see Figure 9.60). Move to the left and traverse its left subtree (see
Figure 9.61). Since g has no left subtree, output g. It also has no right
subtree, so back up to f and output it. Since f has no right subtree, the
traversal is over. The output is d, b, e, a, c, g, f .

Figure 9.59 a

b

d e

c

f

g
traverse

Figure 9.60

traverse

a

b

d e

c

f

g

Figure 9.61

traverse

a

b

d e

c

f

g

�

EXAMPLE 9.19 Find the output from traversing the binary tree in Figure 9.49 in postorder.

SOLUTION:
The various steps are summarized in Figures 9.62–9.67.

1. Traverse the left subtree in postorder (see Figures 9.62–9.64). The
output from this traversal is d, e, b.

2. Traverse the right subtree in postorder (see Figures 9.65–9.67). This
traversal yields the output g, f , c.

3. Backtrack to the root a. Output a.

The output from the postorder traversal is d, e, b, g, f , c, a.

652 Chapter 9 Trees

Figure 9.62

Traverse the left
subtree of a in
postorder.

a

b

d e

c

f

g
traverse

Figure 9.63

d has no subtrees;
output d.

a

b

d e

c

f

g
traverse

Figure 9.64

Back up to b and
traverse its right
subtree; e has no
subtree, so ouput e.
Backtrack to b;
output b.

a

b

d e

c

f

g
traverse

Figure 9.65

c has no left subtree;
traverse its right
subtree.

a

b

d e

c

f

g
traverse

Figure 9.66

Traverse f ’s left
subtree.

traverse

a

b

d e

c

f

g

9.5 Binary Trees 653

Figure 9.67

g has no subtrees;
ouput g. Backtrack to
f; it has no subtree.
Output f. Backtrack to
c; output it.

traverse

a

b

d e

c

f

g

�

Binary trees are fine tools for representing and evaluating algebraic
expressions involving binary operators.

Infix, Prefix, and Postfix Notations
Before discussing how an algebraic expression with only binary operators
can be represented by a binary tree, we should examine three standard
forms for such expressions. In the familiar form, the operator appears
between its two operands. This is the infix form. For instance, a + b is
an infix expression.

Two alternatives are the prefix and postfix forms. In the prefix nota-
tion, also called the Polish notation, the binary operator precedes its
two operands; in the postfix notation, also known as the Reversed Polish
Notation (RPN), the binary operator follows the two operands. These two
notations are attributed to the Polish logician Jan Lukasiewicz.

The three general forms are summarized in Table 9.6. The prefixes
pre, in, and post indicate the location of the operator with respect to the
operands.

Table 9.6 Notation General form Example

Infix <operand> <operator> <operand> a + b
Prefix <operator> <operand> <operand> +ab
Postfix <operand> <operand> <operator> ab+

Some calculators, such as Hewlett-Packard’s, use the postfix nota-
tion to evaluate numeric expressions. The main advantage of the two
Polish notations is that algebraic expressions can be rewritten without
parentheses. Invalid expressions can be detected easily, too.

Algebraic expressions involving the binary operators + (addition),
− (subtraction), ∗ (multiplication), / (division), and ↑ (exponentiation) have
the following order of precedence (from highest to lowest):

Exponentiation
Multiplication, division
Addition, subtraction

Certainly, parentheses can override this precedence to specify another
order in which to perform operations, so parenthesized subexpressions have
the highest priority. [Note that a ↑ b ↑ c = a ↑ (b ↑ c).]

654 Chapter 9 Trees

Jan Lukasiewicz (1878–1956), a Polish logician and philosopher, was
born in Lvov. His father was a captain in the Austrian army. After studying
mathematics and philosophy, Lukasiewicz earned his Ph.D. in philosophy
from the University of Lvov in 1902, where he taught for the next 5 years.
In 1915, he accepted an invitation to teach at the University of Warsaw.
In 1919, he served as the minister of education in independent Poland, and
the following year returned to the University where he was a professor from
1920 to 1939, serving twice as its rector.

In 1946, while exiled in Belgium, Lukasiewicz accepted a professorship
at the Royal Irish Academy, Dublin, where he remained until his death.

A “resourceful and imaginative scholar” and “a gifted and inspiring
teacher,” he was one of the founding fathers of the Warsaw School of
Logic, a member of several scientific societies, and the recipient of numerous
honors.

To convert an infix expression into prefix or postfix, look for the sub-
expression that must be evaluated first, and translate it into the desired
form. Now translate the next subexpression that must be evaluated.
Continue like this until the whole expression is converted into the desired
form. The next example illustrates this technique.

EXAMPLE 9.20 Rewrite the expression a ∗ (b + c)/d − e in prefix and postfix forms.

SOLUTION:
1. To convert the expression into prefix form:

• The subexpression b + c must be evaluated first, so translate it into
prefix: +bc.

• Scanning the expression from left to right indicates the next opera-
tion that must be performed is multiplication. The two operands of
∗ are a and +bc. So translate this subexpression into prefix: ∗a + bc.

• Now perform division. The two operands of / are ∗a + bc and d;
rewrite this subexpression in prefix: / ∗ a + bcd.

• Finally, perform subtraction. The operands of − are / ∗ a + bcd and
e; convert this subexpression into prefix: −/ ∗ a + bcde.

Since the expression is finished, we are done; so the desired prefix
expression is −/ ∗ a + bcde.

These steps are summarized in Figure 9.68.

2. To convert the expression into postfix form:
Use essentially the same steps as above, but convert subexpressions into
postfix form.

9.5 Binary Trees 655

Figure 9.68 a � (b � c) / d � e

�bc

�a�bc

/�a�bcd

�/�a�bcde

• Convert b + c into postfix: bc+
• Convert a ∗ (bc+) into postfix (parentheses are used for readability):

abc+∗
• Convert (abc+∗)/d into postfix: abc+∗ d/

• Convert (abc+∗ d/) − e into postfix: abc+∗ d/e−. This is the desired
postfix expression.

These steps are summarized in Figure 9.69.

Figure 9.69
a � (b � c) / d � e

bc�

abc��

abc��d/

abc��d/e� �

Since every binary operator has two operands, every algebraic expression
containing only binary operators can be represented by a binary expres-
sion tree. In such a tree the leaves contain operands and the internal
vertices contain operators. Since not all data stored in the vertices are of
the same kind, it is a heterogeneous tree.

To construct a binary expression tree, store the operator in the root of
the tree and represent the first operand by the left subtree and the second
operand by the right subtree. Example 9.21 employs this technique.

EXAMPLE 9.21 Represent the expression a ∗ (b + c)/d − e in a binary expression tree.

SOLUTION:
Build the tree from the bottom up, using the order in which the various
operations are performed. Construct a binary tree for each expression b+c,
a ∗ (b + c), a ∗ (b + c)/d, and a ∗ (b + c)/d − e successively, as in Figures
9.70–9.73.

Figure 9.70 �

b c

656 Chapter 9 Trees

Figure 9.71

�

b c

a

�

Figure 9.72

�a

b

d

c

�

�

Figure 9.73

Binary expression tree.

�

�

a

b c

e

d

�

�

�

For a computer to evaluate a legal infix expression, it translates it into a
Polish expression and then evaluates it. The following example illustrates
the second half of this process.

EXAMPLE 9.22 Evaluate the prefix expression − ↑ / ∗ 2 + 75429, where each operand is a
single-digit number.

SOLUTION:
In a prefix expression, the binary operator precedes its operands; so scan the
expression from left to right until you encounter two successive operands.
Then back up to the operand immediately preceding the operator and per-
form the operation. Repeat this procedure until the expression consists of a
single operand. Figure 9.74 summarizes the various steps involved; so the
value of the expression is 27.

Figure 9.74 �↑ / � 2 � 7 5 4 2 9

12

24

6

36

27 �

9.5 Binary Trees 657

The steps illustrated in Example 9.22 can easily be adapted to evaluate
postfix expressions.

Binary expression trees can evaluate numeric expressions recursively:
replace each operator vertex with the value of the expression tree rooted
at the vertex. The next example illustrates this method.

EXAMPLE 9.23 Evaluate the expression represented by the binary expression tree in
Figure 9.75.

Figure 9.75

�

� 3

8 4

7 4

�

↑

SOLUTION:
First evaluate the subtree rooted at /, giving 2; replace this subtree with 2
(see Figure 9.76). Now evaluate the subtree rooted at ↑, giving 8; replace
the subtree rooted at ↑ with 8 (see Figure 9.77). Continue like this until
the root of the tree contains an operand. The remaining steps transpire
Figures 9.78 and 9.79. The value of the expression is 24.

Figure 9.76

�

32 7 4

↑

�

Figure 9.77

�

7

8

4

�

Figure 9.78

8 3

�

Figure 9.79
24

�

658 Chapter 9 Trees

Suppose you traverse a binary expression tree in preorder. What can
you say about the output? In a preorder traversal, the root precedes the
subtrees. Since the root of a binary expression tree represents a binary
operator and the subtrees represent its operands, the preorder traversal
yields the prefix form of the expression. Similarly, the postorder traversal
produces the postfix expression.

For example, the binary tree in Figure 9.80 represents the infix expres-
sion [a + (b ↑ c)] ∗ [d/(e − f)]. You may verify that preorder traversal yields
the prefix expression ∗+a ↑ bc/d− ef and postorder traversal produces the
postfix expression abc ↑ + def − /∗.

Figure 9.80

�

�

�

b c e f

da

�

↑

Traversing this tree in inorder yields a + b ↑ c ∗ d/e − f , the same as the
infix expression except for parentheses. In general, the inorder traversal of
a binary expression tree yields the infix expression without parentheses.

Finally, binary expression trees can represent assignment statements
and boolean expressions; the assignment operator ← commands least
priority among the operators. For instance, the statement x ← w+y ↑ z
is represented by the tree in Figure 9.81. Such binary trees can find the
value of the variable on the LHS of the assignment operator ←. With
the tree in Figure 9.82, you may verify that the value assigned to x by
the statement x ← (5 + 6) ∗ (2 ↑ 3) is 88.

Figure 9.81

�

y z

x

w

→

↑

The trees in Figures 9.83 and 9.84 display the boolean expressions
(a < b) ∨ (c < d) and a ∗ (b + c) < d ↑ e − f , respectively. The relational
operators <, ≤, >, ≥, =, and �= have next-to-last precedence among all
operators.

9.5 Binary Trees 659

Figure 9.82

�

5 6 2 3

x

↑

→

�

Figure 9.83

a b c d

� �

�

Figure 9.84

a f

b c d e

�

�

�

�

↑

Next we show how parenthesized triangulations are closely related to
binary trees.

Binary Trees and Parenthesized Triangulations
Recall from Section 6.6 that the triangulation of a convex (n + 2)-gon cor-
responds to correctly parenthisizing a sequence of n + 1 symbols and vice
versa. Interestingly, each procedure can be represented in a binary tree. For
example, let us return to the parenthesized triangulation in Figure 6.28.
Figure 9.85 shows the order of operation employed there; this leads to the
binary tree in Figure 9.86 in an obvious way.

Figure 9.85

a

b d

e

c

Lukasiewicz discovered an intriguing way to extract the binary number
corresponding to a polygonal dissection from its binary tree representation.

660 Chapter 9 Trees

Figure 9.86
a b c

d

e

(((ab)c)(de))

111000100

First we label each leaf in Figure 9.86 with a 0 and each internal vertex
with a 1, as in Figure 9.87. Next, beginning at the root, we traverse the
entire tree. Reading each unvisited vertex, we get the same binary number
111000100 as before.

Figure 9.87

Traversing the binary
tree for its binary
number.

0 0
0

1
1

1

0

0
1

Finally, we observe a close relationship between binary trees and Catalan
numbers.

Binary Trees Meet Catalan Numbers
An interesting combinatorial problem is to find the number of nonisomor-
phic binary trees we can draw with n vertices. For example, there is exactly
one binary tree with n = 1; there are exactly two distinct binary trees
with n = 2, exactly five with n = 3 (see Figure 9.88), and so on. In gen-
eral, with n vertices we can draw exactly Cn nonisomorphic binary trees.
This should be obvious, because we found earlier that there is a bijection
between triangulated convex polygons and binary trees.

Figure 9.88

n�1 n�2 n�3

9.5 Binary Trees 661

Exercises 9.5

Give the output from traversing each binary tree in preorder.

1.

b c

d e

a

f

2. a

b c

gfed

h i
3. a

b c

d e f g

h i j

k

4–6. Give the output from traversing the binary trees in Exercises 1–3 in
inorder.

7–9. Give the output from postorder traversing the binary trees in Exer-
cises 1–3.

10–12. Redo Exercises 4–6 using the DFS method.

13–15. Redo Exercises 4–6 using the BFS method.

Rewrite each infix expression in prefix form.

16. a + b ∗ c/(d − e) ↑ f

18. (a + b ∗ c)/(d − e/f) ↑ g

17. a ↑ (b ↑ c) + d/e − f

19. a − (b ∗ c + d)/e ∗ f − g ↑ h

20–23. Translate the infix expressions in Exercises 16–19 into postfix
expressions.

24–27. Construct a binary expression tree for each infix expression in
Exercises 16–19.

Rewrite each prefix expression in infix form, supplying parentheses when
necessary.

28. +∗ ↑ abc ∗ de

30. − ↑ + a ∗ bcd ∗ ef

29. +a ↑ /b − cde

31. ∗ ∗ −a + bcd ↑ e − fg

Convert each postfix expression into infix form, supplying parentheses
when necessary.
32. ab − cd − /ef ↑ ∗
34. ab − cd − /e ↑

33. abc + d ∗ /e ∗ f −
35. ab/cd/efg − + ∗ +

662 Chapter 9 Trees

Evaluate each binary expression, where each operand is a single-digit
number.

36. − ↑ 2 ↑ 23 ∗ + 857

38. 63/921 + / + 73 − ∗
37. 37 ∗ 4 + 5/2 ↑
39. 86 + 34 + /5 ↑

Represent each binary expression in a binary expression tree.

40. a ∗ b + c ↑ d

42. (a + b ∗ c) ↑ (d/e)

41. a ∗ b + [c − (d − e)]
43. [(a + b) ∗ c] ∗ [d ↑ (e ↑ f)]

Evaluate each binary expression tree.

44. −

−

+ *

9 6

925 5

↑

45.

*

2 6

4 3 8 5

+ −

↑

46–47. Traverse the binary trees in Exercises 44 and 45 in preorder.

48–49. Traverse the binary trees in Exercises 44 and 45 in postorder.

50–51. Traverse the binary trees in Exercises 44 and 45 in inorder. (Supply
parentheses when needed.)

Represent each assignment statement and boolean expression in a binary
expression tree.

52. x ← (x + y ∗ z) ↑ a − b

54. x + y ↑ z < w + y

56. x/y + y ∗ z ≤ w ↑ x + z

53. x ← x ↑ (y ↑ z)/x + (y − z)

55. (a < b) ∨ [(b ≤ c) ∧ (d ≤ e)]
57. (x/y) ∗ z + w ≥ (w − y) ↑ z

58. How many leaves does a full binary tree with n vertices have?

59. Prove that the number of vertices in a full binary tree is odd.

60. How many leaves does a full binary tree with i internal vertices
have?

61. How many vertices does a full binary tree with l leaves have?

Two binary trees, T1 and T2, with vertex sets V1 and V2 and roots r1
and r2 are isomorphic if there exists a bijection f : V1 → V2 such
that:

• f (r1) = f (r2);

• Vertices v and w are adjacent in T1 if and only if f (v) and f (w) are
adjacent in T2; and

9.5 Binary Trees 663

• If w is a left (or right) child of a vertex v in T1, then f (w) is a left
(or right) child of f (v).

For example, the binary trees in Figure 9.89 are isomorphic; those in
Figure 9.90 are not (Why?).

Figure 9.89

Figure 9.90

62. Draw all nonisomorphic binary trees with three vertices. With four
vertices.

63. Generating functions and the binomial theorem can show∗ that the
number of nonisomorphic binary trees with n vertices is the Catalan
number Cn. With this fact, compute the number of binary trees with
four vertices. With five vertices.

In Exercises 64–77, Tn denotes the nth Fibonacci tree.

64. Draw the Fibonacci tree T7.

66. Is T6 a balanced binary tree?

65. Is Tn a full binary tree?

67. Is T5 a complete binary tree?

68. For what values of n is Tn a complete binary tree?

Using Tn, define each recursively.

69. The number of leaves ln.

71. The number of vertices vn.

73. The number of edges en.

70. The number of internal vertices in.

72. The height hn.

Prove each.

74. ln = Fn 75. in = Fn − 1 76. vn = 2Fn −1 77. en = 2Fn −2

Write an algorithm to traverse a binary tree in:

78. Preorder. 79. Inorder. 80. Postorder.

81. Write an algorithm to evaluate a binary expression tree.

∗See, S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley, MN, 1985,
pp. 427–431.

664 Chapter 9 Trees

9.6 Binary Search Trees

Binary trees that contain items of the same kind are extremely useful. Such
trees are homogeneous trees. For example, the binary tree in Figure 9.45
is homogeneous, but the one in Figure 9.73 is not.

Suppose a city needs a telephone directory. Since all items in the list are
of the same type, a binary tree provides the perfect data structure for such
a list. When a family moves into or out of the city, the list can easily be
updated with the tree. Such trees efficiently sort a list, search it for a key,
and eliminate duplicates from the list, as will be seen shortly; but first, we
make the following definition.

Binary Search Tree
A binary search tree is a homogeneous binary tree such that every item
on the left subtree of every vertex v is less than v and every item on its
right subtree is greater than v. (Here less than refers to any linear or total
order.)

EXAMPLE 9.24 In the binary tree in Figure 9.91, using the alphabetic order, every element
in the left subtree of each vertex v is less than v, and every element in
the right subtree of v is greater than v; so it is a binary search tree. You
may verify, however, that Figure 9.92 does not display a binary search
tree.

Figure 9.91

A binary search tree.
c f

gd

e

a

b

Figure 9.92

Not a binary search
tree.

f

d g

he

b

a c i

j

�

A recursive procedure for constructing a binary search tree appears in
Algorithm 9.6.

9.6 Binary Search Trees 665

Algorithm Binary Search Tree (root)
(* This algorithm constructs a binary search tree using a list of

distinct items.Info(v) denotes the item stored at vertex v. *)
Begin (* algorithm *)

store the first item as the root of the tree.
while there are more data do
begin (* while *)

read(item)
if item < info(root) then

search the left subtree for the insertion point
else

search the right subtree for the insertion point
insert (item)

endwhile
End (* algorithm *)

Algorithm 9.6

The next example uses this algorithm.

EXAMPLE 9.25 Construct a binary search tree with the three-letter words hit, hat, cat, rat,
sat, fat, mat, pat, kat.

SOLUTION:
First store the word hit in the root of the binary tree (see Figure 9.93). Since
hat < hit, store hat as the left child of hit (Figure 9.94). Now cat < hit; so
cat should go on the left subtree of hit. Since cat < hat, insert cat as the left
child of hat (Figure 9.95). Notice that rat > hit; so insert rat as the right
child of hit (Figure 9.96).

Figure 9.93

Insert hit. hit

Figure 9.94

Insert hat.

hat

hit

Figure 9.95

Insert cat.

cat

hat

hit

666 Chapter 9 Trees

Figure 9.96

Insert rat.

cat

hat rat

hit

The next word sat is greater than both hit and rat; store it as the right
child of rat (Figure 9.97). Now fat < hit and fat < hat, but greater than cat;
append it as the right child of cat (Figure 9.98). The remaining words sim-
ilarly fall in place, as in Figures 9.99–9.101. The completed binary search
tree stands in Figure 9.101.

Figure 9.97

Insert sat.

cat sat

hat rat

hit

Figure 9.98

Insert fat.

cat

fat

sat

hat rat

hit

Figure 9.99

Insert mat.

cat mat

fat

sat

hat rat

hit

9.6 Binary Search Trees 667

Figure 9.100

Insert pat.

cat
mat

fat pat

sat

hat rat

hit

Figure 9.101

Insert kat.

cat mat

fat kat pat

sat

hat
rat

hit

�
The order in which data are inserted in the tree determines its shape.

In other words, the same data entered differently will produce differently
shaped trees. For instance, the data kat, rat, hat, cat, hit, pat, fat, sat, mat
produces the tree in Figure 9.102.

Figure 9.102

cat
pat

fat mat

sat

hat
rat

kat

hit

An important observation: If the data in Example 9.25 are stored as an
unordered linear list, linear search takes a maximum of nine compar-
isons to find a given key. On the other hand, searching the binary tree
in Figure 9.101 (or 9.102) takes at most four comparisons (Why?), much
less than nine.

More generally, a maximum of n comparisons are needed to locate an
item in an unordered list of n items, but if they are stored in a binary
search tree of height h, the worst case takes only h + 1 comparisons. So
making the tree as bushy as possible minimizes the search time.

668 Chapter 9 Trees

Binary search trees can also be used to eliminate duplicates from a homo-
geneous list. To accomplish this, build a binary search tree consisting of
distinct elements, as the next example illustrates.

EXAMPLE 9.26 Using a binary search tree, eliminate all duplicates in the list 11, 15, 8, 11,
8, 12, 15, 10, 12, 17, 6.

SOLUTION:
With each item, search the tree to determine if it already exists in the tree;
if it does, then the item is a duplicate. If it is a new element, insert it in
the tree. This procedure finds four duplicates: 11, 15, 8, and 12. The final
binary search tree is displayed in Figure 9.103.

Figure 9.103 11

8 15

6 10 12 17 �

These two examples indicate how efficiently binary search trees can
handle homogeneous lists.

Exercises 9.6

Construct a binary search tree for each set.

1. i, a, u, o, e

4. i, a, e, o, u

2. a, e, i, o, u

5. 8, 5, 2, 3, 13, 21

3. u, o, i, e, a

6. 5, 2, 13, 17, 3, 11

7. do, re, me, fa, sol, la

8. inning, input, output, insect, inroad, inset, insole

9. order, ouch, outfit, outing, outcome, outlet, outcry

10. canna, coleus, balsam, celosia, dahlia, azalea, tulip

11–20. Find the maximum number of comparisons needed to locate an
item in the binary search trees of Exercises 1–10.

Construct a binary search tree using the words in each phrase or sentence.

21. Fourscore and seven years ago.

22. Ask not what your country can do for you.

23. All that glitters is not gold.

24. Necessity is the mother of invention.

9.6 Binary Search Trees 669

25. Write an algorithm to print the contents of a binary search tree in
lexicographic order.

26. Tournament sort is a sorting technique that reflects the structure
of a tournament. For a list of n items where n is a power of 2, a full,
complete binary tree springs from the leaves to the root. For example,
consider the list 13, 8, 5, 1, 21, 3, 34, 2. Store the numbers as leaves
in a binary tree (Figure 9.104). At each level move up the larger of
the siblings to its parent (Figure 9.105). Now the root contains the
largest element m. Output it and store 0 in the leaf that contained m.
Repeat this procedure until all elements are output. Give the final
output.

Figure 9.104

13 8 5 1 21 3 34 2

Figure 9.105

13

13 8 5

13 34

34

34

1 21 3 34 2

5 21

Heapsort is also a sorting method based on binary trees. A heap is a
balanced homogeneous binary tree such that: (1) all leaves in the lowest
level are as far left as possible; (2) info(root) is greater than both info(left
child) and info(right child) if they exist; and (3) every subtree is also a
heap. To sort a list by this version of heapsort, first store the items level
by level from left to right. Beginning with the leftmost internal vertex,
build a heap to move the largest element to the root. Output it. Store 0
in the root. Repeat the procedure until all vertices contain 0’s. [Heapsort
takes O(n log n) comparisons) in the worst case to sort a list of n elements.]
Use the list in Figure 9.106 for Exercises 27 and 28.

*27. Build the heap from the tree.

*28. Show how the tree looks after building the second heap.

670 Chapter 9 Trees

Figure 9.106

1

2

8 5

13

21
3 34

*9.7 Huffman Trees (optional)

One way binary trees are used in the field of communications is through
the Huffman coding scheme presented below. The “Huffman Code is one
of the fundamental ideas that people in computer science and data commu-
nications are using all the time,” according to Donald E. Knuth of Stanford
University. It is used in computer networks, high-definition televisions,
modems, and VCR Plus, a device that automatically programs a VCR.

Suppose we would like to transmit a message over a certain alphabet.
We would like to encode it in terms of bits, using an unambiguous coding
scheme. The ASCII scheme (Appendix A.1) could translate each letter into
a binary word. In ASCII every character is represented by a 7-bit word.
Such a system is a fixed-length code. Using ASCII the word GRAPH
is encoded as 10001111010010100000110100001001000 and the message
101010010010001000101100111110100101011001 is decoded as THEORY.
(You can verify both.)

A fixed-length code has the advantage of being relatively easy to encode
and decode, but characters are assigned the same length codes whether or
not they appear frequently, which usually wastes both storage space and
time.

To rectify this, codes of variable length can be assigned to the sym-
bols in the alphabet. This kind of technique is a variable-length code.
Characters that occur frequently receive shorter codes than those that
occur infrequently. One such system, the Huffman coding scheme
developed by D. A. Huffman, shortens the encoded messages considerably.

For instance, ASCII encodes the word TREE as 101010010100101000101
1000101, 28 bits long, while the Huffman codes in Table 9.7 renders the
same word as 111000, a saving of 22 bits.

Table 9.7 Symbol Code

E 0
R 10
T 11

9.7 Huffman Trees (optional) 671

David Albert Huffman (1925–1999) was born in Alliance, Ohio. After
graduating from Ohio State University in electrical engineering at the age of
18, he joined the Navy. He received his M.S. in electrical engineering from Ohio
State in 1949 and his D.Sc. from MIT 4 years later.

In 1951, while at MIT, in a course on information theory, he and his class-
mates were given a choice of taking a final examination or writing a term paper
on a coding problem. Huffman worked on it for months without much success,
but just as he decided to start preparing for the final, a solution came to his
mind; the result was the Huffman Code.

Huffman left MIT in 1967 to head the newly created computer science depart-
ment at the University of California, Santa Cruz.

Although best known for the Huffman Code, he made significant contribu-
tions to switching theory, information theory, and picture analysis.

To verify this, scan the encoded message from left to right, using
Table 9.7. If the bit you encounter is a 0, it represents the letter E. However,
if it is a 1, look at the next bit; if 0, the character is R; otherwise, it is T.
See Figure 9.107. Now try it yourself.

Figure 9.107 E

R

T

start
0

0
1

1

Huffman Algorithm
To illustrate the Huffman algorithm, consider the message TERNARY
TREE over the alphabet {�, A, E, N, R, T, Y}, where the character
� indicates a blank space.

Step 1 Construct a frequency table for the various symbols in the message
(Table 9.8).

Table 9.8 Chapter � A E N R T Y
Frequency 1 1 3 1 3 2 1

672 Chapter 9 Trees

Step 2 Find two characters that have the least frequencies, say, �, and
A. (Any two of the characters �, A, N, and Y will do.) Concatenate them
to form a new symbol �A. The frequency of a newly created symbol is
the sum of the frequencies of its components. So the frequency of �A
is 2 (Table 9.9). Figure 9.108 shows the resulting symbols and their fre-
quencies. (If the frequencies of the symbols differ, the symbol with the
smallest frequency is made the left child; otherwise, preserve the alphabetic
order.)

Figure 9.108 �A, 2

�, 1 A, 1

Table 9.9
Symbol �A E N R T Y
Frequency 2 3 1 3 2 1

Step 3 Again look for two symbols of lowest frequencies, namely, N and
Y. Concatenate them; the frequency of NY is 2. See Figure 9.109. Five
symbols remain in Table 9.10.

Figure 9.109 NY, 2

N, 1 Y, 1

Table 9.10
Symbol �A NY E R T
Frequency 2 2 3 3 2

Step 4 Continue like this until one symbol remains: TER�ANY.
Tables 9.11–9.14 summarize the steps.

9.7 Huffman Trees (optional) 673

Table 9.11
Symbol �ANY E R T
Frequency 4 3 3 2

Table 9.12
Symbol �ANY TE R
Frequency 4 5 3

Table 9.13
Symbol R�ANY TE
Frequency 7 5

Table 9.14
Symbol TER�ANY

Frequency 12

The steps of combining symbols to form new symbols can produce a
binary tree, as in Figure 9.110. When we drop all symbols and their
frequencies except the original characters, a Huffman tree remains
(Figure 9.111). In this full binary tree, the leaves represent the original
characters.

Figure 9.110
TER ANY, 12

TE, 5

ANY, 4

A, 2

, 1 A, 1 N, 1 Y, 1

NY, 2

E, 3 R, 3T, 2

R ANY, 7

674 Chapter 9 Trees

Figure 9.111

Huffman tree. 0 1

0

T E R

1 0

0

1

A N Y

0

1

1
0

1

Step 6 Assign a 0 to each edge that leads to a left child and a 1 to each
edge that leads to a right child. See Figure 9.111.

Step 7 To find the Huffman code for any character, traverse the path
from the root to the corresponding leaf. The sequence of bits along the
path is its Huffman code. The codes of the various characters are given in
Table 9.15.

Table 9.15
Character � A E N R T Y
Code 1100 1101 01 1110 10 00 1111

According to Table 9.15, the Huffman code of the message TERNARY
TREE is 00011011101101101111110000100101, only 32 bits long, with a
saving of 52 bits over ASCII. Interestingly enough, the code for any char-
acter does not appear as a prefix in the code for any other character. Such a
nonrepetitive code is a prefix code. This prefix property guarantees that
every message has a unique Huffman code and vice versa.

We close this section with the next example, which illustrates decoding
a message using a Huffman code.

EXAMPLE 9.27 Using Table 9.15, decode the message 110111101111110000100101.

SOLUTION:
Scan the given message from left to right. Since the first bit is 1, the first
character can be �, A, N, R, or Y. The second bit is also a 1, so the first

9.7 Huffman Trees (optional) 675

character must be �, A, N, or Y. With the third bit 0, the character must
be � or A. The next bit is 1, making the first character A.

Since the fifth bit is 1, the second character must be �, A, N, R, or Y. The
sixth bit is also 1: the character must be �, A, N, or Y. With the seventh bit
1 and eighth bit 0, the second character is N.

Continuing like this, you can verify that the original message was ANY
TREE. �

Huffman codes offer a unique and expeditious transmission service, as
the previous two examples suggest.

Exercises 9.7

With Table 9.15, encode each word.

1. EARN 2. EATEN 3. AERATE 4. TREATY

Using Table 9.15, decode each message.

5. 111101110110

7. 1101111011001101111000

6. 00110100000010

8. 110111001001001001110100

Figure 9.112
0 1

0

0

c

u

f e

o
1

1

0

0

d

1

1

Using the Huffman tree in Figure 9.112, find the Huffman code for the
characters in Exercises 9–12.

9. e 10. u 11. f 12. d

With the Huffman tree in Figure 9.112, encode each word.

13. cud 14. decode 15. educed 16. deduced

Using the Huffman tree in Figure 9.112, decode each message.

17. 11110110

19. 01010011011110110

18. 10111111

20. 011110110111

21. Using the following frequency table, construct a Huffman tree for each
character in the alphabet {a, b, c, d, e, f}.

676 Chapter 9 Trees

Character a b c d e f

Frequency 4 1 2 3 5 4

22. Using the following frequency table, construct a Huffman tree for the
alphabet {a, b, c, e, g, l, o, s, u}.

Character a b c e g l o s u

Frequency 4 3 2 3 1 2 4 1 5

23. Using Exercise 21, find the Huffman code for the characters a
through f.

Using Exercise 21, encode each word.

24. babe 25. bead 26. abba 27. ceded

Using Exercise 21, decode each message.

28. 1101010110

30. 010011010110

29. 00111010110

31. 10010100111110

With Exercise 22, find a Huffman code for each character.

32. a 33. c 34. o 35. s

Using Exercise 22, encode each word.

36. cabbage 37. babbage 38. calculus 39. caboose

Using Exercise 22, decode each message.

40. 001100110010101001100

42. 1010011011100010001

41. 1001100110111000001100

43. 001101000000001010000100

The weight w of a Huffman code, which measures its efficiency, is
defined as follows. Let c1, c2, . . . , cn denote the characters in an alphabet;
f1, f2, . . . , fn their frequencies; and l1, l2, . . . , ln the lengths of their codes.

Then w =
n∑

i=1
fili. Compute the weight of the Huffman code in:

44. Table 9.15. 45. Exercise 21. 46. Exercise 22.

*9.8 Decision Trees (optional)

The wide application of m-ary trees embraces the general decision-
making process. Consider this guessing game: Anna thinks of a number

9.8 Decision Trees (optional) 677

n ≤ 1000; each time Beena gives an incorrect response, Anna says whether
Beena’s guess is less than or more than n; by making at most 10 guesses,
Beena can find the number n.

Suppose Anna chooses n = 687. We shall employ the binary search algo-
rithm to find n. Beena’s first guess is �(1 + 1000)/2� = 500. Since 500 < n,
Anna says more. Since the number must lie between 500 and 1000, Beena
computes �(500 + 1000)/2� = 750 as her second guess. Anna’s response?
Less. So Beena guesses�(500+750)� = 625. Anna’s response? More. Beena’s
fourth guess is�(625 + 750)/2� = 687; she has made the correct guess.

Figure 9.113 500 ?

750 ?

625?

687?
yes

�

�

�

�

�

�
These steps form the binary tree in Figure 9.113, a decision tree.

At each internal vertex, we select one of two alternatives, thereby selecting
a subtree.

The next two examples provide additional decision trees.

EXAMPLE 9.28 Sort three distinct elements a, b, and c.

Case 1 Let a < b. Then compare a and c. If c < a, c < a < b. On the other
hand, if c > a, then compare b and c. If b < c, then a < b < c; otherwise,
a < c < b.

Case 2 The case a > b can be discussed similarly.

The complete analysis unfolds elegantly into the binary decision tree of
Figure 9.114. �

Notice that this decision tree has six leaves, each representing a possible
order. A maximum of three comparisons, which equals the height of the
tree, sorts the list.

More generally, for a list of n distinct items, there are n! permutations
of n elements, so its binary decision tree contains n! leaves. Therefore, by
Theorem 9.8, its height is ≥ �lg n!� and the list will take at least �lg n!�
comparisons to sort.

A more down-to-earth application follows.

678 Chapter 9 Trees

Figure 9.114 a ? b

�

�

�

�

�

�

c ? a

b ? cc � a � b c � b � a

a � b � c a � c � b b � c � a b � a � c

�

�

�

�

c ? b

c ? a

EXAMPLE 9.29 (The eight-coins puzzle) Eight coins in a collection plate look identi-
cal, but one is counterfeit and heavier. Using an equal-arm balance and a
minimum number of weighings, identify the counterfeit coin.

SOLUTION:
First label the coins a through h. Place four coins, say, a through d, on the
left side of the balance and the other four on the other side. There are two
possible outcomes: either the left side is heavier or the right side is heavier.
If the left is heavier, one of the coins a, b, c, or d must be false.

Figure 9.115 {a, b, c, d} ? {e, f, g, h}

{a, b} ? {c, d} {e, f} ? {g, h}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

{g} ? {h}{a} ? {b}

{a} {b} {c} {d} {e} {f} {g} {h}

{c} ? {d} {e} ? {f}

Put two coins, a and b, on the left side of the balance, and c and d on the
other side. If the left side is heavier, either a or b is counterfeit. Place a on
the left and b on the right. If the left side falls, the counterfeit coin is a;
otherwise, it is b.

The possibilities unfold clearly in a decision tree (Figure 9.115). The tree
shows that three weighings will identify the false coin.

Can we do better? Can we find the false coin in less than three weigh-
ings? Yes. Start with six coins, say, a through f. Place a, b, and c on the

9.8 Decision Trees (optional) 679

left side; d, e, and f on the right. Now there are three possibilities: the
left side is heavier, the two sides balance, or the right side is heavier. The
complete discussion is summarized in the decision tree in Figure 9.116. It
follows from the tree that only two weighings are required.

Figure 9.116 {a, b, c} ? {d, e, f}

{d} ? {e}{a} ? {b}

{a} {c} {b} {g} {f}{h} {d} {e}

{g} ? {h}

��

�

��

�

��

�

�

�

�

More generally, suppose one of n coins is counterfeit and heavier. Let h
denote the height of the corresponding ternary tree T. By Theorem 9.8, h ≥
�log3 n�; at least, �log3 n� weighings will find the false coin. For example,
8 coins take at least �log3 8� = 2 weighings, which agrees with our previous
discussion.

Decision trees, as this section has demonstrated, can clarify the reason-
ing process, producing solutions in a relatively short time.

Exercises 9.8

Find the maximum number of guesses needed to find the positive integer
n ≤ N for each value of N. (Use the binary search algorithm.)

1. 97 2. 243 3. 1976 4. 3076

Among the N coins in a collection plate, one is counterfeit and heav-
ier. Using an equal-arm balance, find the minimum number of weighings
needed to ascertain the counterfeit, for each value of N.

5. 12 6. 13 7. 28 8. 75

9. Four coins, a through d, in a plate look identical, but one is counterfeit
and heavier. Using an equal-arm balance and minimum weighings,
identify the counterfeit coin and determine if it is lighter or heavier.
Display your analysis in a decision tree.

10. Redo Exercise 9 using six coins, a through f.

11. Using Example 9.27, write an algorithm to arrange three distinct
elements in lexicographic order.

12. Let n be a positive integer and key an arbitrary positive integer ≤ n.
Using binary search, write an algorithm to find key and the number
of guesses made.

680 Chapter 9 Trees

13. Among seven identical coins lies a heavier counterfeit coin. Write an
algorithm to identify the false coin using an equal-arm balance and
minimum weighings.

Chapter Summary

This chapter briefly introduced trees, the most important family of graphs.
They model isomers of saturated hydrocarbons, hierarchical charts, geneal-
ogy, tournaments, and decision-making. They also serve well in evaluating
algebraic expressions, as well as in sorting and searching.

Tree
• A tree is a connected acyclic graph (page 611).

• A connected graph is a tree if and only if a unique, simple path runs
between any two vertices (page 612).

• A connected graph with n vertices is a tree if and only if it has exactly
n − 1 edges (page 613).

Spanning Tree
• A spanning tree of a connected graph contains every vertex of the

graph (page 615).

• Every connected graph has a spanning tree (page 616).

• Kruskal’s algorithm (page 616), the DFS method (page 618), and
the BFS method (page 621) can find spanning trees.

• A minimal spanning tree of a connected weighted graph weighs the
least (page 626).

• Kruskal’s algorithm (page 626) and Prim’s algorithm (page 629)
can find minimal spanning trees.

Rooted Tree
• A specially designated vertex in a tree is the root of the tree. A tree

with a root is a rooted tree (page 635).

• The subtree rooted at v consists of v, its descendants, and the edges
incident with them (page 636).

Level and Height
• The level of a vertex is the length of the path from the root to the vertex

(page 637).

• The height of a tree is the maximum level of any leaf in the tree
(page 637).

Chapter Summary 681

m-ary Tree
• In an ordered rooted tree the children of every vertex are ordered

(page 638).

• An m-ary tree is a rooted tree in which every vertex has at most m
children. It is binary if m = 2, and ternary if m = 3 (page 639).

• An m-ary tree is full if every internal vertex has m children(page 639).

• An m-ary tree is balanced if all leaves fall on the same level or two
adjacent levels (page 640).

• An m-ary tree is complete if all leaves lie at the same level (page 645).

• An m-ary tree of height h has at most mh leaves (page 641).

• For an m-ary tree of height h with l leaves, h ≥ �logm l� (page 641).

• If it is full and balanced, h = �logm l� (page 641).

Binary Tree
• Preorder, inorder, and postorder traversal are three ways to visit

every vertex of a binary tree (page 647).

• An algebraic expression with only binary operators can be written in
prefix, infix, or postfix form. In prefix form, each operator precedes
its operands. The other two forms behave similarly (page 653).

• An algebraic expression containing only binary operators can be
represented by a binary expression tree (page 655).

• A binary search tree is homogeneous with every element in the left
subtree of every vertex v less than v and every right subtree element is
greater than v (page 664).

• A Huffman code, a variable-length code, minimizes the length of
encoded messages (page 670).

• A decision tree is an m-ary tree in which a decision is made at each
internal vertex (page 677).

Review Exercises

Using Kruskal’s algorithm, construct a spanning tree, beginning at a, for
each graph.

1.

a

b

c

d
e

f

g

h

i

2.

a

c

d

e

b
f

g

682 Chapter 9 Trees

3.

a

c

d

f

e

b

g

4–6. Using the DFS method, construct a spanning tree for each graph in
Exercises 1–3.

7. Using the DFS method, draw a spanning tree for the graph with the
following adjacency list representation.

1

2

3

4

5

2

1

1

2

3

3

2

5

5

4 5

1 2 4

8–11. With the BFS method, construct a spanning tree for each graph in
Exercises 1–3 and 7.

12. Using backtracking, solve the six-queens puzzle, if a solution exists.

Using Kruskal’s algorithm, construct a minimal spanning tree for each
connected weighted graph.

13.

a

b

c

e

f

d

3

5
3

2

2

6

2
5

4

4

48 g

14. a c

b e

d f

5
3 6 8

6
7

9

Chapter Summary 683

15.
1

2

3

4

5

2

1

2

1

2

2

3

3

4 4

4

3

4

2

3

3

5

6 3 5

4 6

5 4

16. 1 2 3 4 5

1
2
3
4
5

⎡
⎢⎢⎢⎢⎣
∞ 2 3 1 ∞
2 ∞ 2 ∞ 6
3 2 ∞ 3 5
1 ∞ 3 ∞ 4
∞ 6 5 4 ∞

⎤
⎥⎥⎥⎥⎦

17–20. Using Prim’s algorithm, draw a minimal spanning tree for each
graph in Exercises 13–16.

A book contains four chapters. Chapters 1 and 4 contain two sections, and
Chapters 2 and 3 contain three sections. Section 1 in Chapter 2 contains
one subsection while Section 1 in Chapter 3 contains two subsections.

21. Display this information in a rooted tree.

22. Compute the level of Section 3 in Chapter 2.

23. Compute the level of Subsection 2 in Chapter 3.

24. How high is the tree?

25. Compute the maximum number of leaves in a ternary tree with
height 7.

26. Compute the minimum height of a ternary tree with 1000 leaves.

27. How many vertices does a full 4-ary tree with 15 internal vertices have?

28. How high is a full balanced ternary tree with 9844 vertices?

Seventy-six women enter a singles tennis tournament.

29. How many matches will be played?

30. How many rounds?

If n people enter a tennis tournament and rn rounds are played to determine
the championship, compute each.

31. r6 32. r7 33. r8 34. r9

684 Chapter 9 Trees

35. Define rn recursively.

36. Predict an explicit formula for rn.

37. Prove the formula in Exercise 36 inductively.

Give the output from traversing each binary tree in preorder, inorder, and
postorder.

38. a

b c

d e

g
f

39. a

e

h i
j

g

d f

b c

Rewrite each infix expression in prefix form.

40. a −
(

b
c + d

)e

∗ f 41. a + b
c

(
d + e
f − g

)
− hi

42–43. Translate the expressions in Exercises 40 and 41 into postfix form.

44–45. Represent the expressions in Exercises 40 and 41 in binary expres-
sion trees.

Represent each in a binary expression tree.

46. x ← x/(y + z), w 47. [x ≤ (y + z)] ∧ [y ≤ (w + z)]
Find the prefix expression represented by each binary expression tree.

48. �

�

�

�

a d e

b c

49.

�

�

�a d

b c e f

↑

↑

50-51. Find the postfix expressions represented in Exercises 48 and 49.

Evaluate each prefix expression, where each operand is a single-digit
number.

52. − ↑ − ∗ 35/932 ∗ 88 53. 34 ↑ 89 ∗ −3/3 ↑
Evaluate each binary expression tree.

Chapter Summary 685

54.

�

�

�

�

4 7

8 3

8 6

↑

55. �

�

��

8 4

6

4 3 5 2

↑ ↑

56. Find the number of nonisomorphic binary trees with six vertices.

Using the words in each sentence, construct a binary search tree.

57. Math is not a spectator sport. 58. Too many cooks spoil the broth.

◦ 59. Make a Huffman tree for the alphabet {a, c, d, e, l, n, t, (,), +} with the
following frequency table.

Character a c d e l n t () +

Frequency 6 4 1 5 1 3 2 1 1 2

◦ Using Exercise 59, encode each word.

60. candle

62. c + d

61. canteen

63. (d + e)

◦ With Exercise 59, decode each message.

64. 11010111001001001101 65. 1111010111100111111

◦ The n coins in a collection plate look identical, but one is counterfeit and
weighs more. Find the minimum number of weighings using an equal-arm
balance needed to identify it for each value of n.

66. 43 67. 100 68. 476 69. 2000

686 Chapter 9 Trees

Supplementary Exercises

1. Give a counterexample to show that a graph with n vertices and n−1
edges need not be a tree.

2. Draw a graceful tree with five vertices. With six vertices.

An edge e in a connected graph is a bridge if the graph becomes dis-
connected when e is deleted. The graph in Figure 9.117 has two bridges,
namely, {a, b} and {b, c}.

Figure 9.117

e1 e2

a

b

c

d

Edges e1 and e2 are not bridges (Why?).

3. How many bridges do the trees in Figures 9.2 and 9.3 have?

4. How many bridges does a tree with n vertices have?

5. How many edges does a forest F with n vertices and k trees have?

6. Prove that every tree is a planar graph.

7. Using Exercise 6, prove a tree with n vertices has n − 1 edges.

◦ 8. A certain hydrocarbon molecule contains n carbon atoms. Each car-
bon atom is bonded to four hydrogen atoms and each hydrogen atom
to one carbon atom. Prove that the molecule contains 2n+2 hydrogen
atoms.

9. Prove that any two spanning trees of a connected graph must have
the same number of edges.

*10. Let T = (V , E) be a tree with |V | ≥ 2. Prove that T has at least two
vertices with degree 1.

11. Are there trees having two vertices with degree 1? If so, draw such a
tree.

*12. Prove that a connected graph G is a tree if and only if every edge is a
bridge.

*13. Let T = (V , E) be a tree and e ∈ E. Prove that (V , E − {e}) is a forest
of two trees.

*14. Let T1 = (V1, E1) and T2 = (V2, E2) be two disconnected trees. Let e
be an edge connecting a vertex in V1 with a vertex in V2. Prove that
T = (V1 ∪ V2, E1 ∪ E2 ∪ {e}) is a tree.

Chapter Summary 687

15. There are two piles of coins and each contains a counterfeit coin.
A good coin weighs 2. Pile A contains three coins, one being under-
weight; pile B contains four coins, one overweight. Determine the
minimum number of weighings on an equal-arm balance required to
identify the counterfeits. (H. L. Nelson, 1982)

16. Redo Exercise 15 if pile A contains four coins and the combined weight
of the two counterfeits is not four. (H. L. Nelson, 1982)

Computer Exercises

Write a program to perform each task.

1. Read in the adjacency matrix A of a connected graph G with n vertices,
1 through n. Determine if G is a tree. If yes, construct a spanning
tree for G using Kruskal’s algorithm, the DFS method, and the BFS
method.

2. Redo program 1 with its adjacency list representation.

3. Read in the modified adjacency matrix of a connected weighted graph
G with n vertices, 1 through n, where1 ≤ n ≤ 20. Print the vertices
of a minimal spanning tree of G and its weight, using Kruskal’s and
Prim’s algorithms.

4. Redo Program 3, using its adjacency list representation.

5. Read in a positive integer n ≤ 20 and solve the n-queens problem, if
possible.

*6. Read in a legal numeric prefix expression and evaluate it. Assume
that each operand is a single-digit integer.

*7. Read in a legal numeric postfix expression and evaluate it. Assume
that each operand is a single-digit integer.

*8. Read in a numeric infix expression containing at most 50 single-digit
numbers. Convert it into a prefix expression and evaluate it, if legal.

*9. Read in a numeric infix expression containing at most 50 single-
digit numbers. Convert it into a postfix expression and evaluate it,
if legal.

*10. Read in a valid algebraic infix expression. Construct a binary expres-
sion tree and traverse it in both preorder and postfix.

*11. Read in all reserved identifiers in C++ or Java. Print them in
lexicographic order.

12. Read in a positive integer n ≤ 15 and print the number of nonisomor-
phic binary trees with n vertices.

688 Chapter 9 Trees

13. Read in a positive integer n ≤ 5000 and a key ≤ n. With the binary
search method, determine the key. Print the number of comparisons
needed to locate the key and the value of �lg n�.

14. Among seven coins lies a heavier counterfeit coin. Read in their
weights and identify the counterfeit coin with a minimum number
of weighings on an equal-arm balance.

15. Eight coins look identical, but one is a counterfeit of a different
weight. Read in their weights. With the least number of weighings
on an equal-arm balance, identify the false coin and determine if it is
lighter or heavier.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Explain how to represent the National Hockey League (NHL) and the
National Basketball Association (NBA) by trees.

2. Write an essay on the applications of trees to the various disciplines.

3. Describe how Kruskal developed his algorithm.

4. Explain how J. Sedlacek and B. R. Myers established that k(Wn) =
L2n − 2.

5. Explain how Prim developed his algorithm.

6. Explain how decision trees are used in computer science and manage-
ment science. Give examples.

7. Discuss the knapsack problem, which is related to scheduling.

8. Explain labeled trees.

9. Write an essay on game trees, trees used in the analysis of games such
as backgammon, chess, checkers, and tic-tac-toe.

10. Discuss the card game of solitaire and its relationship to trees.

11. Write an essay on Steiner trees.

Enrichment Readings

1. A. V. Aho, et al., Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983, pp. 75–196, 230–292.

2. T. H. Carmen et al., Introduction to Algorithms, McGraw-Hill,
New York, 1990.

3. D. I. A. Cohen, Basic Techniques of Combinatorial Theory, Wiley,
New York, 1978, pp. 228–282.

Chapter Summary 689

4. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An
Applied Introduction, 4th ed., Addison-Wesley, Reading, MA, 1999,
pp. 547–590.

5. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD, 1978, pp. 152–370.

6. R. L. Kruse, Data Structures & Program Design, 2nd ed., Prentice
Hall, Englewood Cliffs, NJ, 1987, pp. 318–498, 512–517.

7. J. A. McHugh, Algorithmic Graph Theory, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

8. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 391–448.

9. S. S. Skieno, Implementing Discrete Mathematics, Addison-Wesley,
Reading, MA, 1990.

10. A. Tucker, Applied Combinatorics, 2nd ed., Wiley, New York, NY,
1984, pp. 80–122.

11. R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach,
Wiley, New York, 1990, pp. 185–214.

This Page Intentionally Left Blank

Chapter 10

Digraphs

It is the man not the method that solves the problem.

— H. MASCHKE

D igraphs, a special class of graphs mentioned in Chapter 7, are geomet-
rical representations of finite relations. Besides the basic terminology

of digraphs, this chapter explores weighted digraphs and dags. Both finite
relations and digraphs can be implemented in a computer using adjacency
matrices and linked lists.

Digraphs have applications to computer science, linguistics, genetics, the
social sciences, sports, and management science.

Some of the interesting problems digraphs can handle are:

• How can the adjacency matrix of a digraph determine if there exists a
path from every vertex to every other vertex?

• How can the adjacency matrix of the digraph of a round-robin tourna-
ment identify the champion? The second-best player? The third-best
player, and so on?

• How can digraphs represent algebraic and boolean expressions, as well
as assignment statements?

• A computer company has a manufacturing plant at location a and a
warehouse at location z. The possible streets a truck driver can take
from a to z are given by the digraph in Figure 10.1. The arrows signify
one-way streets and the weights, distances in miles. Find the shortest
route he could take.

10.1 Digraphs

Vertices with indegrees and outdegrees and the reachability factor stand
out among the basic features of digraphs. Matrices also play a significant
role.

691

692 Chapter 10 Digraphs

Figure 10.1

a

d

5 6

4

2 21 2

1 3
7

c

zb e

As Section 7.2 showed, finite relations can be modeled by digraphs. For
instance, the relation R = {(x, y)| x is a factor of y and xy is an even integer}
on the set V = {1, 2, 3, 6, 8} appears as the digraph in Figure 10.2. It consists
of a set V of vertices and a set E of directed edges.

Figure 10.2

2

3

8

6

From such observations, a more general definition emerges.

Digraph
A digraph (or directed graph) D = (V , E) consists of a nonempty finite
set V of points (called vertices or nodes) and a set E of directed edges
joining them. A directed edge from vertex x to vertex y is denoted by the
ordered pair (x, y). The vertex x is the initial vertex and y the terminal
vertex of the edge (x, y). Vertex x is an immediate predecessor of vertex
y and y an immediate successor of x.

The definition indicates E ⊆ V × V . A digraph may have loops (see
Figure 10.2), but no parallel edges. At most one edge exists between any
two vertices.

Every edge in a digraph is unidirectional, like a one-way street.
Consequently, digraphs can represent street maps.

Fibonacci and Digraphs
We now present a fascinating application of Fibonacci numbers to digraphs.
Recall from Chapter 3 that a lattice point on the cartesian plane is a point
(x, y), where both x and y are integers.

The next example, proposed as a problem in 1970 by R. C. Drake of
North Carolina A & T University at Greensboro, deals with digraphs whose

10.1 Digraphs 693

vertices are lattice points. The solution, based on the one given in the same
year by L. Carlitz of Duke University, uses generating functions.

EXAMPLE 10.1◦ (optional) Let f (n) denote the number of paths from (0, 0) to (n, 0) on the
cartesian plane. Each path consists of directed edges of one or more of the
four types in Table 10.1. For example, the vertex on the path following
(k, 0) can be (k, 1) or (k + 1, 0), and that following (k, 1) can be (k + 1, 1) or
(k + 1, 0). Find a formula for f (n).

Table 10.1 Type 1 2 3 4

Initial point (k, 0) (k, 0) (k, 1) (k, 1)
End point (k, 1) (k + 1, 0) (k + 1, 1) (k + 1, 0)

SOLUTION:
Notice that there are f (1) = 2 = F3 paths from (0, 0) to (1, 0); f (2) =
5 = F5 paths from (0, 0) to (2, 0); and f (3) = 13 = F7 paths from (0, 0)
to (3, 0). They are displayed in Figure 10.3. (The arrows are omitted for
convenience.)

Figure 10.3

n�1 n�2

n�3

Let f2(n) denote the number of paths ending with a line segment of type 2
and f4(n) the number of paths ending with a line segment of type 4. Then

f2(n + 1) = f2(n) + f4(n) = f (n) and

f4(n + 1) = f (0) + f (1) + · · · + f (n) =
n∑

k=0

f (k)

694 Chapter 10 Digraphs

Therefore,

f (n + 1) = f2(n + 1) + f4(n + 1) = f (n) +
n∑

k=0

f (k)

Then f (1) = f (0) + f (0) = 2f (0). But f (1) = 2, so f (0) = 1.
Let F(x) denote the generating function of the numbers f (n). Then

F(x) =
∞∑

n=0

f (n)xn = f (0) +
∞∑

n=1

f (n)xn = 1 +
∞∑

n=0

f (n + 1)xn+1

= 1 +
∞∑

n=0

[
f (n) +

n∑
k=0

f (k)

]
xn+1

= 1 + xF(x) + x
1 − x

F(x)

So

F(x) = 1 − x
1 − 3x + x2

In 1971, V. E. Hoggatt, Jr., of then San Jose State College, showed that
F(x) is the generating function of the Fibonacci numbers F2n+1. That is,

1 − x
1 − 3x + x2 =

∞∑
n=0

F2n+1xn

Thus, as expected, f (n) = F2n+1, where n ≥ 0. �
The concept of the degree of a vertex for graphs extends to digraphs also.

Degree of a Vertex
Let v be a vertex of a digraph. The indegree of v, denoted by indeg(v), is the
number of directed edges terminating at v. The outdegree of v, denoted
by outdeg(v), is the number of directed edges leaving v. The degree of v, or
deg(v), is the sum of its indegree and outdegree. A vertex with indegree 0
is a source and with outdegree 0 a sink.

The next example clarifies these basic terms.

EXAMPLE 10.2 Find the indegree, outdegree, and degree of each vertex of the digraph in
Figure 10.2. Identify any source(s) and sink(s).

SOLUTION:
The indegrees, outdegrees, and degrees of the various vertices are given
in Table 10.2. Since indeg(1) = 0 = indeg(3), vertices 1 and 3 are sources.
Since the outdegree of no vertex is zero, the digraph contains no sinks.

10.1 Digraphs 695

Table 10.2 Vertex

1 2 3 6 8

Indegree 0 2 0 4 3
Outdegree 3 3 1 1 1
Degree 3 5 1 5 4 �

The next example applies the basic features of a digraph in computer
science.

EXAMPLE 10.3 The flowchart in Figure 10.4 used to find the minimum (min) of three inte-
gers x, y, and z is actually a digraph with 11 vertices. The vertices represent
operations; the edges, flows of execution.

Figure 10.4

yes

yes no

yes
min � z?

min � y?

min � z?

min y

no

print min

stop

no

input x, y, z

start

→

min z→ min z→

min x→

�

The adjacency matrix of a digraph D parallels that of an ordinary graph.
Suppose D contains n vertices v1, v2, . . . , vn. The adjacency matrix of D is
the matrix A = (aij)n×n, where aij equals 1 if a directed edge runs from vi to
vj and 0 otherwise. (Notice that A is a boolean matrix.) The next example
illustrates this.

696 Chapter 10 Digraphs

EXAMPLE 10.4 Find the adjacency matrix of the digraph in Figure 10.2.

SOLUTION:
The adjacency matrix of the digraph is

1 2 3 6 8 row sums

A =

1
2
3
6
8

⎡
⎢⎢⎢⎢⎣

0 1 0 1 1
0 1 0 1 1
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ←

3
3
1
1
1

↑
column sums 0 2 0 4 3 �

In this example, the row sums are the outdegrees and the column sums
are the indegrees of the vertices. This always happens.

Recall that the degrees of the vertices of a graph total twice the number
of edges. Digraphs manifest a similar characteristic.

THEOREM 10.1 Let D be a digraph with vertices v1, v2, . . . , vn and e edges. Then
n∑

i=1
indeg(vi) = e =

n∑
i=1

outdeg(vi).

PROOF:
Since indeg(vi) denotes the number of edges terminating at vi, each is

counted exactly once in
n∑

i=1
indeg(vi). Similarly,

n∑
i=1

outdeg(vi) = e. �

For example, the digraph in Figure 10.2 contains e = 9 edges. Using the
adjacency matrix in Example 10.3, the sum of the indegrees = the sum of the
row sums = 9 = the sum of the column sums = the sum of the outdegrees,
thus verifying Theorem 10.1.

In Example 10.5, a digraph depicts a more mundane aspect of the world,
meriting the designation tournament.

EXAMPLE 10.5 Every team in a round-robin tournament plays every other team and no
ties are allowed. The results of such a tournament by five teams, a through
e, are:

a beat b, c, e; b beat c; c beat d;

d beat a, b, e; e beat both b and c.

10.1 Digraphs 697

A digraph clearly arranges this information in Figure 10.5. A directed edge
from vertex x to vertex y indicates team x beat team y. (You may verify
Theorem 10.1 for this digraph also.)

Figure 10.5 c

b

a e

d

�

This digraph is loop-free and contains exactly one edge between any two
distinct vertices. It is a dominance digraph or a tournament.

Dominance Digraph
A loop-free digraph with exactly one directed edge between any two distinct
vertices is a dominance digraph or a tournament.

A dominance digraph can serve in less mundane areas, too, as we can
see by an example from the natural sciences.

EXAMPLE 10.6 Suppose a single inherited characteristic of individuals is determined by the
gene types A and a, where A denotes the dominant gene and a the recessive
gene. So an individual may be type AA, Aa, or aa. (Types Aa and aA are the
same.) Of these types, AA dominates both Aa and aa, and Aa dominates
aa. This information falls nicely into a dominance digraph, as Figure 10.6
shows.

Figure 10.6 Aa

AA aa �

The next example shows how we can interpret the outdegrees and
indegrees of vertices in a tournament.

EXAMPLE 10.7 The adjacency matrix of the dominance digraph in Figure 10.5 is

a b c d e row sums

a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦ ←

3
1
1
3
2

↑
column sums 1 3 3 1 2

698 Chapter 10 Digraphs

The outdegree of each vertex — each row sum — gives the number of
wins; its indegree — each column sum — gives the losses. For instance,
outdeg(d) = 3 and d has three wins; indeg(e) = 2 and e has two
losses. �

The other characteristics of graphs, paths, and cycles presented in
Chapter 8, apply to digraphs also.

Paths, Reachability, and Cycles
Let v0 and vn be two vertices in a digraph. A (directed) path of length
n from v0 to vn is a sequence of vertices vi in the form v0-v1-· · · -vn. (Since
a digraph contains no parallel edges, labels of edges need not be listed.)
The path is closed if v0 = vn and open otherwise. A path containing no
repeated vertices, except perhaps the endpoints, is a simple path. A simple,
closed path is a cycle. If a directed path runs from v0 to vn, vn is reachable
from v0.

For example, Figure 10.1 has a directed path of length 4 from a to z,
namely, a-c-b-d-z. The path b-d-e-c-b is a closed one, whereas a-b-d-e is an
open one. Vertex e is reachable from vertex a, but not from z. The path
c-b-d-e-c is a cycle.

Suppose there is a directed path v0-v1-· · · -vn from v0 to vn in a tourna-
ment. This implies that v0 beat v1, v1 beat v2, . . . , and vn−1 beat vn. Then v0
is said to have an n-stage win over vn. The following example elucidates
this.

EXAMPLE 10.8 The tournament in Figure 10.5 contains three simple directed paths from
a to e: a-e, a-b-c-d-e, and a-c-d-e. Vertex e is reachable from vertex a. The
length of the path a-c-d-e is three, so team a had a three-stage win over e,
a beat c, c beat d, and d beat e.

The concept of reachability bears significance in computer science. To
illustrate this in the flow chart in Figure 10.4, if a vertex is not reachable
from the start vertex, the corresponding instruction will not be executed
for any data. So either the program will not work or the instruction is
superfluous.

The same problem can arise in programs consisting of several modules.
If a certain module is not reachable, control will not pass to it and hence it
will never be invoked.

Is there some way to determine if a vertex vj in a digraph is reachable
from a vertex vi? A simple definition will help answer this.

Strongly Connected Graph
A digraph D is strongly connected if every vertex in D is reachable from
every other vertex.

10.1 Digraphs 699

Theorem 10.3 answers the question posed above, which is analogous to
Theorem 8.6.

THEOREM 10.3 Let A be the adjacency matrix of a digraph D with vertices v1, v2, . . . , vn.
Let R = A ∨ A[2] ∨ · · · ∨ A[n−1] = (rij)n×n. Then vertex vj is reachable from
vertex vi if and only if rij > 0 for every i �= j. (A[k] denotes the kth boolean
power of A, as defined in Section 7.1.) �

According to Theorem 10.3, the digraph D is strongly connected if and
only if rij > 0 for every i �= j. The matrix R is the reachability matrix of
the digraph.

The next example illustrates Theorem 10.3.

EXAMPLE 10.9 Is the digraph D in Figure 10.5 strongly connected?

SOLUTION:
By Example 10.7,

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1
0 1 1 0 0

⎤
⎥⎥⎥⎥⎦

You may verify that

A[2] =

⎡
⎢⎢⎢⎢⎣

0 0 1 1 0
0 0 0 1 0
1 1 0 0 1
0 1 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ , A[3] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 0 0 1
0 1 1 0 1
0 0 1 1 0
1 1 0 1 1

⎤
⎥⎥⎥⎥⎦

and

A[4] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 0 1
0 1 1 1 0
1 1 1 1 1
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦

Then

R = A ∨ A[2] ∨ A[3] ∨ A[4] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

700 Chapter 10 Digraphs

(You can verify this also.) Since every element off the main diagonal of R
is nonzero, the digraph is strongly connected, as can easily be seen. �

Digraphs exhibit fundamental features of any graph — vertices, paths,
adjacency matrices — and can solve a range of problems, as this section
demonstrates.

We close this section with a fascinating application of digraphs to ancient
Sanskrit poetry and the theory of communications.

The Teleprinter’s Problem∗

The ten syllabic Sanskrit word yamátárájabhánasalagám was used nearly
a thousand years ago as an aid for remembering certain rhythms. This
nonsensical magic word contains all possible arrays of short and long beats.
For example, the first three syllables, ya, má, and tá represent short, long,
and long beats; the second through fourth syllables, má, tá, and rá have
long, long, and long beats, and so on. Suppose we represent a short beat
by 0 and a long beat by 1 as done by Sherman K. Stein of the University of
California at Davis, in 1961. Then the magic word can be translated into
the 10-bit word 0111010001. This magic word contains another hidden
treasure, as we shall see shortly.

Interestingly, this binary word contains all eight possible binary triplets:
011, 111, 110, 101, 010, 100, 000, and 001. They manifest an obvious and
interesting pattern: Every two consecutive triplets overlap in bits of two
each, as Figure 10.7 shows. In fact, the two ends, 001 and 011, also overlap
in two bits:

0 0 1
0 1 1

Figure 10.7

0 1 1 1 0 1 0 0 0 1

0 0 1

0 0 0

1 0 0

0 1 0

1 0 1

1 1 0

1 1 1

0 0 1

∗Based on S. K. Stein, “The Mathematician as an Explorer,” Scientific American, Vol. 205
(May 1961), pp. 149–158.

10.1 Digraphs 701

Accordingly, using the technique of wrap around, we can recover all triplets
by storing the bold bits (in Figure 10.7) around a circle, as Figure 10.8
shows. The circular array is called a memory wheel. Starting at any bit
and counting three bits at a time in the counterclockwise direction, we can
recover the various triplets. (In fact, either direction will yield all triplets.)

Figure 10.8

A memory wheel.
0

0

01

1 0

01

Figure 10.9

A rotating drum.
0

0

01

1 0

01

Computers use memory wheels to search for storage locations in their
memory drums. The drum in Figure 10.9, for instance, is divided into eight
segments of two types, denoted by 0’s and 1’s. The position of the drum
is determined by three consecutive segments, that is, by a binary triplet.
Clearly, this is exactly the same as the memory wheel problem, so it is also
known as the rotating drum problem.

In 1882, a French telegraph engineer, Émile Baudot, used these wheels
to transmit information in terms of 5-bit words. In 1961, D. A. Kerr, also a
telegraph engineer, observed in Scientific American that a memory wheel
appears in a Western Electric tape teletypewriter used very early in this cen-
tury . . . , and it is known here as the combination-wheel and seeker mech-
anism. The combination wheel is, of course, a mechanically coded memory
wheel, and the seekers form a device for locating the desired quintuplet on
its periphery, thus indexing the desired character for printing.

702 Chapter 10 Digraphs

Using the memory wheel in Figure 10.8, we can compress the 10-bit
magic word into an 8-bit word: 01110100; we can also obtain it by linearly
arranging the bold bits in Figure 10.7 from left to right. We can recover
all eight binary triplets from this using wrap around. Such a binary word
(sequence) is called a de Bruijn sequence, after the Dutch mathemati-
cian Nicolaas G. de Bruijn (1918–). More generally, we make the following
definition.

de Bruijn Sequence
A 2n-bit word (sequence) w is a de Bruijn sequence if every n-bit word
can be obtained as a subword (subsequence) of w by cyclically moving one
bit at a time from left to right, beginning with the leftmost n-bit word.

Symbolically, let w = b0b1 . . . b2n−1. Then every n-bit word s can be
obtained as s = b0b1 . . . bi+n−1 for some integer i, where b2n+j = bj and
0 ≤ i, j < 2n.

For example, let w = b0b1 . . . b7 = 01110100 and s = 001. Then s =
b7b8b9 = b7b0b1 = 001; see Figure 10.8.

The fact that the last two bits in each word are the same as the first two
bits in another word enables us to draw the digraph in Figure 10.10, where
the vertices represent the triplets and there is a directed edge from x to y
if the last two bits in x are the same as the first two bits in y.

Figure 10.10

100

000

010

101

111

011

001

110

This digraph has the interesting property that indeg(x) = 2 = outdeg(x)
for each vertex x. So the underlying graph, obtained by dropping the

10.1 Digraphs 703

arrowheads, is Eulerian. In addition, the digraph is Hamiltonian. (We could
have guessed this because of the cyclic nature of the de Bruijn sequence.)
000 → 100 → 010 → 101 → 110 → 111 → 011 → 001 → 000 is a
Hamiltonian cycle.

Interestingly, in 1946, I. J. Good of Great Britain showed yet another
way of representing the de Bruijn sequence 01110100 in a digraph. To
see this, first observe that the eight binary triplets yield four overlapping
couplets: 11, 10, 01, and 00 (see Figure 10.7). Use them as vertices; there
is a directed edge from vertex x to vertex y if the second bit in x is the same
as the first bit in y. For example, there is a directed edge from 11 to 10; it
is labeled 110 to indicate that it runs from 11 to 10. The resulting digraph
in Figure 10.11 is called a de Bruijn graph. The edges yield the various
binary triplets. This digraph is also Hamiltonian.

Figure 10.11

de Bruijn graph.

10

100

010

101

001

110011

00

000

111

11

01

In his study of memory wheels, the Dutch engineer K. Posthumus found
that there is exactly one wheel for binary couplets, two for binary triplets,
16 for binary quadruplets (4 bits), and 2048 for binary quintuplets (5 bits).
He then conjectured that there are 22n−1−n different memory wheels for
binary n-tuples. In 1946, de Bruijn established his conjecture.

An Intriguing By-Product∗

The de Bruijn sequence has an intriguing by-product. To see this, consider
the de Bruijn Hotel with eight guest rooms. Each guest receives a three-
bit code to enter his room. Each door has a keypad with two pushbuttons,
one for 0 and the other for 1. When the correct sequence of the three bits
is entered, regardless of what bit was entered earlier, the door will open.
Suppose a burglar wishes to enter a room. Find the minimum number of
bits he needs to enter to be certain that the door will open.

∗Based on S. B. Maurer and A. Ralston, Discrete Algorithmic Mathematics, Addison-Wesley,
Reading, MA, 1991.

704 Chapter 10 Digraphs

The burglar is indeed lucky; he does not have to enter all eight three-bit
words, a total of 24 bits. The de Bruijn sequence 01110100 comes to his
rescue. Since he does not have the luxury of wrap around, the sequence
needs to be stretched linearly to 10 bits: 0111010001. (This is the binary
code for the Sanskrit word.) Thus, by entering 0’s and 1’s in that order, a
total of 10 bits, he is guaranteed that the door will open.

Before concluding this section, we should note that the de Bruijn
sequence and memory wheels can be extended to m-ary alphabets, where
m ≥ 2. Figure 10.12, for example, shows five such memory wheels; begin-
ning with the innermost, they represent binary couplets, binary triplets,
ternary couplets, binary quadruplets, and 4-ary couplets, respectively.

Figure 10.12

Five memory wheels.

2
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0 0

0

0
0

0
1

1
1

1
1

1

1

1
1

1

1

1
1

1

1

1

1

1
1

11

3

3

3

3

2

2

2

2

2
2

2

Exercises 10.1

Find the indegree, outdegree, and degree of every vertex in each graph.

1. b

ca

2.

a e

b

d

c

f

3–4. Identify any source(s) and sink(s) in Exercises 1 and 2.

5–6. Find the adjacency matrices of the graphs in Exercises 1 and 2.

7. Verify Theorem 10.1 using Exercise 1.

8. Verify Theorem 10.1 using Exercise 2.

9. How many edges does a dominance digraph with n vertices have?

10.1 Digraphs 705

The adjacency matrix of the digraph of a round-robin tournament played
by five teams, a through e, is

a b c d e

a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 0 1 0 1
1 0 0 1 1
0 1 0 0 0
1 0 1 0 0
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

Find each.

10. The number of wins by a.

12. The number of losses by c.

11. The number of wins by b.

13. The number of losses by e.

14. The champion of the tournament.

15. The second-best team of the tournament.
(Hint: Find the team with the maximum number of one- or two-stage
wins.)

Use the digraph in Exercise 2 to answer Exercises 16–18.

16. Is vertex a reachable from vertex e?

17. Is vertex f reachable from vertex e?

18. Is the digraph strongly connected?

Find the reachability matrix of the digraph with each adjacency matrix.

19.

a b c
a
b
c

⎡
⎣1 0 1

1 1 1
0 0 1

⎤
⎦ 20.

a b c d
a
b
c
d

⎡
⎢⎢⎣

1 1 0 0
1 0 1 0
1 1 1 0
1 0 1 0

⎤
⎥⎥⎦

21–22. Are the digraphs in Exercises 19 and 20 strongly connected?

23. A row of the adjacency matrix of a digraph is zero. Prove that the
digraph is not strongly connected.

24. A column of the adjacency matrix of a digraph is zero. Prove that the
digraph is not strongly connected.

25–26. The underlying graph G of a digraph D is obtained by deleting
all arrows from its edges. Find the underlying graph in Exercises 1
and 2.

27–30. A digraph is weakly connected if its underlying graph is
connected. Determine if the digraphs in Exercises 1, 2, 19, and 20
are weakly connected.

706 Chapter 10 Digraphs

31. Is a strongly connected digraph also weakly connected?

32. Draw a weakly connected graph that is not strongly connected.

Using the adjacency matrix of a weakly connected digraph with vertices 1
through n, what can you say about each vertex, where 1 ≤ i, j ≤ n?

33. Vertex i if row i is zero. 34. Vertex j if column j is zero.

35. Construct the de Bruijn sequence for binary couplets.

36. Construct the memory wheel for binary couplets.

One of the two distinct de Bruijn sequences for binary triplets is 01110100.

37. Find the other de Bruijn sequence.

38. List the binary triplets resulting from it.

39. Represent the de Bruijn sequence in Exercise 37 in a memory wheel.

40. Construct a de Bruijn sequence for binary quadruplets. (There are 16
different sequences.)

41. Represent the de Bruijn sequence in Exercise 40 in a memory wheel.

42. Represent the de Bruijn sequence in Exercise 41 in a de Bruijn digraph.

Suppose de Bruijn Hotel has 16 guest rooms. Each guest receives a three-
bit code to enter his room. Each door has a keypad with two pushbuttons,
one for 0 and the other for 1. When the correct sequence of the four bits
is entered, regardless of what bit was entered earlier, the door will open.
Suppose a burglar wishes to enter a room.

43. Find the minimum number of bits he needs to enter to be certain that
the door will open.

44. Find the corresponding binary word.

45. Count the number of 0’s and 1’s in the de Bruijn sequence for binary
couplets, triplets, and quadruplets.

46. Using Exercise 45, make a conjecture about the number of 0’s and 1’s
in a de Bruijn sequence for binary words.

In 1934, M. H. Martin developed an algorithm for constructing a de Bruijn
sequence for binary n-tuples. Begin with the n-bit word consisting of all
0’s. Successively append the larger of the bits 0 and 1 that does not lead to
a duplicate n-tuple. Using this method, construct a de Bruijn sequence for
each.

47. Binary couplets

48. Binary triplets

49. Binary quadruplets

10.2 Dags 707

10.2 Dags

A dag is another special digraph. It represents and evaluates assignment
statements and algebraic expressions containing repeating subexpres-
sions, as well as their prefix and postfix forms, with great efficiency.

Dag
A digraph that contains no cycles is a dag (directed acyclic graph).

The next example illuminates this definition.

EXAMPLE 10.10 Being acyclic, the digraphs D1 and D2 in Figure 10.13 are dags. Since D3
contains a cycle, a-b-c-d-a, it is not a dag.

You may verify that the digraphs in Figures 10.1, 10.2, and 10.4 are not
dags (Why?).

Figure 10.13 a

d

D1 D2 D3

fe

b c

a

b d
c

a

b d
c

�

Dags are used in both computer science and management science. For
instance, the Hasse diagram for various tasks t1–t13 in building a house,
given by Table 7.6, can translate into the dag in Figure 10.14. In fact, every

Figure 10.14 t11t9

t6

t8

t5

t7

t4

t2
t1

t3

t10
t13

t12

708 Chapter 10 Digraphs

Hasse diagram can be considered a dag, provided you put the arrows back
on the edges.

Dags also can represent assignment statements and algebraic expres-
sions with repeating subexpressions.

For instance, consider the assignment statement, x ← x + y − y ∗ x. It
contains repeating subexpressions: x three times and y twice. Store each
once (Figure 10.15). The arrows pointing to them indicate the operations
to be performed. The digraph with vertices +, x, and y represents the
subexpression x + y, while the digraph with vertices ∗, x, and y represents
x ∗ y.

Figure 10.15

� *

y

x �

→

In the dag in Figure 10.15, each interior vertex represents an operator,
the source the assignment operator, and each sink an operand. Unlike a
tree, a vertex for a repeating subexpression has more than one parent.
Vertex x, for instance, has three parents: ←, +, and ∗.

Compare the binary tree representation of the assignment statement in
Figure 10.16.

Figure 10.16

� *

x

x xy y

�

→

The next example illustrates this technique using a more complex
algebraic expression.

10.2 Dags 709

EXAMPLE 10.11 Represent the expression [(a − b ∗ c)/(d − b ∗ c)] + (d − b ∗ c) ↑ e in a dag.

SOLUTION:
The expression contains two common subexpressions: b ∗ c and d − b ∗ c.
Since the operator + has the least priority in the expression, the source of
the dag is +. Build the dag step-by-step like a binary expression tree, but
with one exception: do not duplicate subtrees. Since the second operand
for the minus sign in d − b ∗ c is b ∗ c, draw a directed edge from vertex —
to the root of the tree that represents b ∗ c, vertex ∗ (Figure 10.17). The
first operand for ↑, d − b ∗ c, has already appeared in Figure 10.17, so
draw an arrow from ↑ to the source of the dag that represents d − b ∗ c.
Figure 10.18 shows the completed dag. (Again, compare the corresponding
binary expression tree in Figure 10.19.) �

Figure 10.17 �

*a

c

d

b

� �

�

Figure 10.18 �

*

e

a

c

d

b

� �

� ↑

The technique for evaluating binary expression trees can be applied for
dags representing arithmetic expressions: replace each operator vertex
with the value of the subexpression it represents. Repeat this procedure
until the source contains an operand, as the next example demonstrates.

710 Chapter 10 Digraphs

Figure 10.19 �

� � �

* * *

bb c c b c

dda

e

� ↑

�

EXAMPLE 10.12 Evaluate the arithmetic expression represented by the dag in Figure 10.20.

Figure 10.20 �

6

5

*

3 3

�

�

↑

SOLUTION:
The procedure unfolds in Figures 10.21–10.25, reaching the value of the
expression: 36 (see Figure 10.25).

Figure 10.21

Evaluate 5 − 3.

�

6 2

*

3

�

↑

Figure 10.22

Evaluate 2 ↑ 3.

�

6 2 8

*�

10.2 Dags 711

Figure 10.23

Evaluate 6 − 2.

�

8

4 *

Figure 10.24

Evaluate 4 ∗ 8.

�

4 32

Figure 10.25

Evaluate 4 + 32.
36 �

Binary tree traversals can also work with dags representing binary
expressions. This makes sense because the outdegree of each operator
vertex is two.

Example 10.13, for instance, finds the postfix form of an algebraic
expression using a dag.

EXAMPLE 10.13 Find the postfix form of the expression represented by the dag in
Figure 10.18.

SOLUTION:
In a postfix expression each operator immediately follows its operands.
Again the steps unfold in Figures 10.26–10.31, ending with the postfix
expression abc∗ − dbc∗ − /dbc∗ − e↑+. The binary expression tree in
Figure 10.19 will verify the result.

Figure 10.26

Convert b ∗ c to postfix.

�

e

a dbc�

� �

� ↑

712 Chapter 10 Digraphs

Figure 10.27

Convert a − (bc∗) to
postfix.

�

e

d bc�

abc�� �

� ↑

Figure 10.28

Convert d − (bc∗) to
postfix.

�

eabc�� dbc� �

� ↑

Figure 10.29

Convert
(abc∗−)/(dbc∗−)
to postfix.

�

e

abc��dbc���

dbc��

↑

Figure 10.30

Convert (dbc∗−) ↑ e to
postfix.

�

abc��dbc��� dbc��e↑

Figure 10.31

Convert
(abc∗ − dbc∗ − /) +
(dbc∗ − e↑) to postfix.

abc��dbc���dbc��e↑�

�

Dags are used extensively in a variety of contexts from management
science to algebra.

10.2 Dags 713

Exercises 10.2

Determine if each digraph is a dag.

1.

b e

a

c

d

f

3. c

d

a b fe

2. b e

c f

a
d

4. d

f

b g

ia e

c h

5–8. Identify the source(s) and sink(s) in Exercises 1–4.

9–12. Find the source(s) and sink(s) of the digraphs in Exercises 1–4 using
their adjacency matrices.

Let A = (aij) be the adjacency matrix of a digraph with n vertices. Then
D is a dag if and only if the main diagonal of the boolean matrix R =
A ∨ A[2] ∨ · · · ∨ A[n] is zero. Using this fact, determine if the digraphs in
Exercises 13–17 are dags.

13.

1 4

2 3 14. 3

42

1 5

15.

41

5

3
2

16.

a b c d
a
b
c
d

⎡
⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦ 17.

a b c d e
a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
1 0 1 0 1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

18. Represent the subprojects A through F in Table 7.7 (Exercises 7.9) as
a dag.

19. Represent the tasks A through G in Table 7.8 (Exercises 7.9) as a dag.

714 Chapter 10 Digraphs

Draw a dag for each assignment statement and algebraic expression.

20. x ← x + y + 1

22. x ← (x + y) ∗ (x + y + z)

24. (a + b) ↑ c + [(a + b)/d]

21. x ← x + y + y ↑ z

23. x ← (x − y) ↑ (x − y + z) ∗ w

25. a + [(a + b) ∗ c] ↑ (c − b)

26. (a/b + b ∗ c) − (b ∗ c) ↑ (c ∗ d)

27. {a ↑ (b + c) − [a ↑ (b + c) + d]} ∗ [(d + b + c) + c]
Evaluate the arithmetic expression represented by each dag.

28. �

33 8

� �

30. �

� ��

� �

10 84 5

29. �

�↑ �

� �

3 42 5

31. �

↑ ↑�

�

� �

8

3

6 4

Find the postfix expression represented by each dag.

32.

�

�

�

a b

33. �

�

�

�

b

c

a

10.3 Weighted Digraphs 715

34. �

��

↑ �

a

c

b

35. �

�

�↑

� �

a

b c

36–39. Find the prefix expression represented by the dags in Exercises
32–35.

40–43. Find the infix expression represented by the dags in Exercises
32–35. Insert parentheses as needed.

Prove each.

*44. Every dag has a source. *45. Every dag has a sink.

*46. The vertices of a dag can be topologically sorted.
(Hint: Use induction.)

47–49. Using Exercise 46, topologically sort the vertices of the dags in
Figure 10.13 as well as in Exercises 18 and 19.

10.3 Weighted Digraphs

Just as there are weighted graphs, there are weighted digraphs. This section
presents them and an algorithm for finding a shortest path from a unique
source to any other vertex.

Weighted Digraph
A weighted digraph is a digraph with a weight assigned to each directed
edge. The weight of the edge (x, y) is denoted by w(x, y).

For example, consider the weighted digraph in Figure 10.32. The weight
of the edge (a, c) is 5; that is, w(a, c) = 5. Similarly, w(d, e) = 3.

The weight of a path in a weighted digraph is the sum of the weights of
the edges along the path. For instance, the weight of the path a-c-b-d-z in
Figure 10.32 is 5 + 1 + 1 + 7 = 14, and that of c-b-d-e-z is 7.

The weights in a weighted digraph may represent measurements such
as distances between cities, transportation costs, or completion times for
various jobs on a project.

716 Chapter 10 Digraphs

Figure 10.32 c

d

a zeb

1

15 6

74

2 2

3

2

Weighted Adjacency Matrix
The weighted adjacency matrix W of a digraph with n vertices vi is
defined as (wij)n×n where

wij =
{
∞ if there is no edge from vi to vj

w(i, j) otherwise

Here the infinity symbol ∞ denotes a number greater than the largest of
all weights in the digraph.

For instance, the weighted adjacency matrix of the digraph in
Figure 10.32 is

a b c d e z

W =

a
b
c
d
e
z

⎡
⎢⎢⎢⎢⎢⎢⎣

∞ 2 5 4 ∞ ∞
∞ ∞ ∞ 1 ∞ ∞
∞ 1 ∞ ∞ ∞ 6
∞ ∞ ∞ ∞ 3 7
∞ ∞ 2 ∞ ∞ 2
∞ ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎦

The next example finds the shortest route in the fourth problem posed
at the beginning of the chapter.

EXAMPLE 10.14 A computer company has a manufacturing plant at location a and a ware-
house at location z. The possible streets a truck driver can take from a to
z are given by the digraph in Figure 10.32. The arrows indicate one-way
streets and the weights, the distances in miles. Find the shortest route the
driver could take from a to z.

SOLUTION:
Vertex a is the source of the digraph. To find a shortest route, list all simple
paths from a to z, compute their weights, and select a path with the least
weight:

• a-c-z; weight = 11

• a-c-b-d-e-z; weight = 12

• a-c-b-d-e-c-z; weight = 18

• a-c-b-d-z; weight = 14

10.3 Weighted Digraphs 717

Edsger Wybe Dijkstra (1930–2002), a computer science educator and
mathematician, was born in Rotterdam, The Netherlands. After graduat-
ing from the University of Leyden in 1951, he received his doctorate from
Leyden in 1956, a Ph.D. from Amsterdam in 1959, and an honorary D.Sc.
from Queen’s University, Belfast, in 1976.

After 6 years at the Mathematics Center at Amsterdam, Dijkstra taught
mathematics at the Technical University, Nuenen, until 1973. For the next
11 years, he was a research fellow at Burroughs Corporation, Nuenen.
In 1984, he became the Schlumberger Centennial chair in computer sci-
ence at the University of Texas, Austin.

A distinguished fellow of the British Computer Society, Dijkstra was
honored with the prestigious Alan M. Turing award in 1972. He has
made outstanding contributions to operating systems and programming
languages.

• a-b-d-e-c-z; weight = 14

• a-b-d-z; weight = 10

• a-d-e-z; weight = 9

• a-b-d-e-z; weight = 8

• a-d-e-c-z; weight = 15

• a-d-z; weight = 11

Clearly, the path with the minimum weight is a-b-d-e-z and the minimum
distance to be traveled is 8 miles. �

This example leads us to the next definition.

Shortest Path
A path of least weight from vertex u to vertex v in a weighted digraph is a
shortest path from u to v.

The shortest path from a to z in Example 10.14 is a-b-d-e-z, but the tech-
nique used to identify it and to compute the minimum weight is certainly
not the best, especially with a digraph of many vertices and edges. An effi-
cient method was developed in 1959 by the Dutch mathematician Edsger
W. Dijkstra, a pioneer in the art of computer programming. Dijkstra’s
algorithm can find a shortest path from any vertex to any vertex in
the digraph, if it exists, as the next example demonstrates. Nonetheless,
assume a single source a.

EXAMPLE 10.15 Using Dijkstra’s algorithm, find a shortest path from source a to z in the
weighted digraph in Figure 10.32.

SOLUTION:

Step 0 Let V be the set of all vertices in the digraph except a. Let S be the
set of all vertices in the digraph whose shortest distances from a are already
known. Make S = {a}, since vertex a is the closest vertex to itself. Let D be

718 Chapter 10 Digraphs

a one-dimensional array such that Du denotes the length of a shortest path
from a to u passing through the vertices in S. Initially define D as follows:

Du =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if u = a

w(a, u) if edge (a, u) exists

∞ if edge (a, u) does not exist

Thus, initially, V = {b, c, d, e, z}, S = {a}, V − S = {b, c, d, e, z}, and

a b c d e z
D = [0 2 5 4 ∞ ∞]

Step 1 Select a vertex v in V − S with Dv at a minimum: v = b.

Step 2 Add v to S and update V − S: S = {a, b}, V − S = {c, d, e, z}.
Step 3 Update the array D of distances of vertices x in V − S, using v as
a vertex along the path from a to x. That is, check if a shorter path runs
from a to each vertex x in V − S passing through v; if so, update Dx:

Dx ← min{Dx, Dv + w(v, x)}†

See Figure 10.33. To update Dx, make the following definitions:

n + ∞ = ∞ = ∞ + n

min{n, ∞} = n and min{∞, ∞} = ∞

Figure 10.33 Dx

Dv w(v, x)

xa

v

Figure 10.34 Dx

w(b, x)

xa

b

2

†min{x, y} denotes the minimum of x and y.

10.3 Weighted Digraphs 719

Thus (see Figure 10.34):

Dc = min{Dc, Db + w(b, c)} = min{5, 2 + ∞} = 5

Dd = min{Dd, Db + w(b, d)} = min{4, 2 + 1} = 3

De = min{De, Db + w(b, e)} = min{∞, 2 + ∞} = ∞
Dz = min{Dz, Db + w(b, z)} = min{∞, 2 + ∞} = ∞

Consequently,
a b c d e z

D = [
0 2 5 3 ∞ ∞]

.

Repeat steps 1–3 until |V − S| = 1.

Step 4 Find a vertex v in V − S with minimum Dv. Choose v = d.

Step 5 Add d to S and update V − S: S = {a, b, d}, V = {c, e, z}.
Step 6 Update the array D of distances from a to each vertex x in V − S,
using v = d as a vertex along the path from a to x (see Figure 10.35): Dc =
min{5, 3 + ∞} = 5; De = min{∞, 3 + 3} = 6; and Dz = min{∞, 3 + 7} = 10.

Thus,

a b c d e z

D = [
0 2 5 3 6 10

]

Figure 10.35 Dx

w(d, x)

xa

d

3

Since |V − S| �= 1, continue with step 1.

Step 7 Find a vertex v in V − S with minimum Dv; choose v = c.

Step 8 Update S and V − S: S = {a, b, d, c}, V − S = {e, z}.
Step 9 Update D (Figure 10.36):

De = min{6, 5 + ∞} = 6 and Dz = min{10, 5 + 6} = 10

Figure 10.36 Dx

w(d, x)

xa

c

5

Dx

w(e, x)

xa

e

6

720 Chapter 10 Digraphs

Thus,

a b c d e z

D = [
0 2 5 3 6 10

]
Step 10 Again |V − S| �= 1, so continue with step 1. Find a vertex v in
V − S with minimum Dv; choose v = e.

Step 11 Update S and V − S: S = {a, b, d, c, e}, V − S = {z}.
Step 12 Update D (see Figure 10.36): Dz = min{10, 6 + 2} = 8.

Thus,

a b c d e z

D = [
0 2 5 3 6 8

]
Step 13 Since V − S = {z}, the process is over. The length of the shortest
path from a to any vertex v is Dv. For example, Dz = 8, which agrees with
the conclusion in Example 10.14. Since De = 6, the shortest path from a to
e is 6; the corresponding path, a-b-d-e.

Table 10.3 lists the above steps.

Table 10.3 Steps v S V − S |V − S| = 1? Db Dc Dd De Dz

0 — {a} {b, c, d, e, z} No 2 5 4 ∞ ∞
1–3 b {a, b} {c, d, e, z} No 2 5 3 ∞ ∞
4–6 d {a, b, d} {c, e, z} No 2 5 3 6 10
7–9 c {a, b, d, c} {e, z} No 2 5 3 6 10
10–12 e {a, b, d, c, e} {z} Yes 2 5 3 6 8

�

Although the method illustrated in this example provided the weights
of shortest paths from a to every other vertex in the digraph, it did not
find the shortest paths. To do this, we use a one-dimensional predecessor
array P of vertices, where Pv denotes the immediate predecessor of v in
the shortest path from a to v. Initially, make Pv = a for every vertex v �= a:

a b c d e z

P . a a a a a

Every time a shorter path to a vertex x passing through v appears, update
Px to v. In other words, when updating array D, update P, too:

If Dv + w(v,x) < Dx then
Px ← v.

Table 10.4 shows array P after steps 1–3, 4–6, 7–9, and 10–12. (Note: The
cell Pa could be omitted.)

10.3 Weighted Digraphs 721

A shortest path from a to any vertex v is obtained by finding the imme-
diate predecessors of v using the last row in Table 10.4. For instance, to
find a shortest path from a to z, notice that e is the immediate predecessor
of z, d immediately precedes e, b immediately precedes d, and a immedi-
ately precedes b. Thus a shortest path is a-b-d-e-z, which matches the path
obtained in Example 10.14.

Table 10.4 Step Pa Pb Pc Pd Pe Pz

0 — a a a a a
1–3 — a a b a a
4–6 — a a b d d
7–9 — a a b d d
10–12 — a a b d e

A pseudocode for Dijkstra’s algorithm unfolds in Algorithm 10.1.

Algorithm Dijkstra (W,D,P)
(* This algorithm computes the length of a shortest path from

a unique source 1 to every other vertex of a connected
weighted digraph with V = {1,2,...,n}. W = (wij) denotes
the weighted adjacency matrix of the digraph. S denotes the
set of vertices whose shortest distances from the source
are known. D and P are one-dimensional arrays containing
(n - 1) cells, labeled 2 through n; Di denotes the shortest
distance from the source to vertex i and Pi denotes the
immediate predecessor of vertex i along the shortest path. *)
Begin (* algorithm *)

(* Initialize S, V, D, and P. *)
S ← {1}
V ← {2,3,...,n}
for i = 2 to n do
begin (* for *)

Di ← w1i
Pi ← 1

endfor
for i = 1 to n - 1 do
begin (* for *)

find a vertex j in V such that Dj is a minimum.
S ← S ∪ {j} (* add vertex j to S *)
V ← V - {j} (* update the set of remaining vertices *)
for each vertex k in V do
begin (* for *)

if Dj + wjk < Dk then
(* A shorter path runs from the source to

vertex k through j *)
begin (* if *)

(* update the minimum distance Dk *)
Dk ← Dj + wjk

722 Chapter 10 Digraphs

(* update the immediate predecessor of vertex k *)
Pk ← j

endif
endfor

endfor
End (* algorithm *)

Algorithm 10.1

EXAMPLE 10.16 Apply Dijkstra’s algorithm to find a shortest path from vertex a to vertex e
in the weighted digraph of Figure 10.37 and its length.

Figure 10.37 b

d

a e

2 9

64

7 3

2
c

4

SOLUTION:
Table 10.5 summarizes the various steps of the algorithm. In line 1, ini-
tialize the sets S and V and the arrays D and P. In line 2, find a vertex
j in V such that Dj is a minimum, namely, j = b; update S, V, D, and
P. Is i = 4? No. So in line 3, again find a vertex j in V such that Dj is a
minimum, namely, j = d; update S, V , D, and P. Is i = 4? No. Therefore, in
line 4, look for a vertex j for which Dj is a minimum, namely, j = c; again,
update S, V, D, and P. By now, i = 4. Exit the for loop and the algorithm
terminates.

Table 10.5 D P

Steps i j S V Db Dc Dd De Pb Pc Pd Pe

1–7 1 — {a} {b, c, d, e} 2 7 4 ∞ a a a a
8 – 21 2 b {a, b} {c, d, e} 2 5 4 11 a b a b
8 – 21 3 d {a, b, d} {c, e} 2 5 4 10 a b a d
8 – 21 4 c {a, b, d, c} {e} 2 5 4 9 a b a c

According to the table, the shortest distance from the source to vertex e
is De = 9. The immediate predecessor of e along a shortest path is c; that
of c is b, and that of b is a. So a shortest path from vertex a to vertex e is
a-b-c-e. �

Next we establish the correctness of Dijkstra’s algorithm.

10.3 Weighted Digraphs 723

THEOREM 10.3 Dijkstra’s algorithm yields the weight of a shortest path from the source to
any vertex in a weighted digraph.

PROOF (by PMI):
Let D be a weighted digraph, as in Algorithm 10.1. Let Di(v) denote the
weight of a shortest path from the source to any vertex v after i iterations
of the for loop (lines 8–21).

Basis step When i = 0, the loop is not entered and no iterations take
place. S = {1}, and D0(v) = Dv if v is adjacent to the source and ∞ otherwise.
Thus the basis step works by default.

Induction step Assume Di(v) is the weight of a shortest path from the
source to any vertex v ∈ S after i iterations. In the (i + 1)st iteration,
let j be the vertex added to S (and hence deleted from V), where Dj is a
minimum. If v ∈ S, then Di(v) is the weight of a shortest path from the
source to v, by the inductive hypothesis. Therefore, Di+1(v) = Di(v). If
v /∈ S, then v ∈ V . In line 15, check for a shorter path to v through j. If
Dj+wjv < Dv, then Di+1(v) = Dj+wjv. If Dj+wjv ≥ Dv, then Di+1 = Di(v) =
Dv. In either case, Di+1(v) is the weight of a shorter path to v after i + 1
iterations.

Therefore, by induction, Di(v) is the weight of a shortest path to any
vertex v at the end of i iterations for every i ≥ 0.

Consequently, when the for loop ends, Dn−1(v) gives the weight of a
shortest path from the source to any vertex v in D. This establishes the
validity of the algorithm.

(A similar argument proves the algorithm also yields a shortest path to
any vertex v.) �

We close this section with an analysis of the algorithm.

An Analysis of Dijkstra’s Algorithm
The number of additions and comparisons measures the computational
complexity of Dijkstra’s algorithm. The for loop (lines 8–21) is executed
n − 1 = �(n) times. Each iteration takes at most n − 1 additions and
n − 1 comparisons: a total of 2(n − 1) = �(n) operations. Thus, by
Theorem 4.15, Dijkstra’s algorithm in the worst case takes �(n2) opera-
tions to find a shortest path from the source to any vertex in a weighted
digraph. (Dijkstra’s algorithm is also a greedy algorithm.)

Exercises 10.3

Using the weighted digraph in Figure 10.38, compute the length of each
path in Exercises 1–4.

1. a-c-b-e 2. a-b-e 3. e-c-b-e 4. a-c-b-e-g

724 Chapter 10 Digraphs

Figure 10.38 c

d

f

g

ea
b

2
5

1
3 6

3

4

2
4

2

Find the weighted adjacency matrix of each weighted digraph.

5.

a e

db

c

2

7
4

36

5 6

38

6. b d

c

3

1

5
1

2

ea

Use Figure 10.38 for Exercises 7–10.

7. List all possible paths from vertex a to vertex f and their lengths.

8. Find the shortest path from vertex a to vertex f and its length.

9. Redo Exercise 7 with vertices a and g.

10. Redo Exercise 8 with vertices a and g.

Using Figure 10.32, compute the length of a shortest path from vertex a to
each vertex.

11. Vertex b 12. Vertex c 13. Vertex d 14. Vertex e

15–18. Redo Exercises 11–14 with Table 10.3.

19–22. Using the predecessor array P in Table 10.4, redo Exercises 11–14.

With Table 10.5, find the shortest distance in the weighted digraph of
Figure 10.37 from the source to each vertex.

23. Vertex b 24. Vertex c 25. Vertex d

26–28. Use Table 10.5 to find the shortest path from the source to the
vertices in Exercises 23–25.

29–31. Using Figure 10.37, compute the length of the paths in Exercises
26–28.

Using Dijkstra’s algorithm, find a shortest path and its length from vertex a
to the other vertices in Exercises 32–35.

10.3 Weighted Digraphs 725

32.

d

c f

ga

b

1

8

1
3 13

21

34
144

89

5
2

55

e 33.

c f

h

i

a

b

d
2

6
4

1 5
2

3
5

7

3
2

5
8

4

7

3

e

g

34.

a b c d e f
a
b
c
d
e
f

⎡
⎢⎢⎢⎢⎢⎢⎣

∞ 3 5 ∞ ∞ ∞
∞ ∞ ∞ 2 ∞ ∞
∞ ∞ ∞ 3 ∞ ∞
4 ∞ ∞ ∞ 3 6
∞ 5 ∞ ∞ ∞ ∞
∞ ∞ 4 ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎦ 35.

a b c d e f g
a
b
c
d
e
f
g

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ 2 5 ∞ ∞ ∞
3 ∞ ∞ ∞ ∞ 5 ∞
∞ 4 ∞ ∞ 7 ∞ ∞
∞ 6 ∞ ∞ ∞ 8 8
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 6 ∞ ∞ ∞ ∞
∞ 6 ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Algorithm 10.2, developed by R. W. Floyd in 1962, can also find the weight
of a shortest path from the source to any vertex in a weighted digraph.

Algorithm Floyd (D,W)
(* D is a connected weighted graph with weighted adjacency matrix

W = (wij)n×n. The algorithm computes the weight of a shortest path
from the unique source 1 to any other vertex. *)

0. Begin (* Floyd *)
1. for i = 1 to n do
2. for j = 1 to n do
3. for k = 1 to n do
4. if wji + wik < wjk then (* a shorter path runs from

vertex j to vertex k passing through vertex i *)
5. wjk ← wji + wik
6. End (* Floyd *)

Algorithm 10.2

36–37. Using Floyd’s algorithm, find the weight of a shortest path from
the source a to the other vertices in Exercises 32 and 33.

38. Give a big-oh estimate of the number of operations (additions and
comparisons in line 4) required by Floyd’s algorithm in the worst
case.

39. Modify Floyd’s algorithm to determine a shortest path from the source
to the other vertices in the digraph D.

40–41. Use the algorithm in Exercise 39 to find a shortest path from the
source to the other vertices in Exercises 32 and 33.

*42. Prove Floyd’s algorithm.

726 Chapter 10 Digraphs

Robert W. Floyd (1936–), a computer scientist and an educator, was born in
New York City. He graduated from the University of Chicago at the age of 17 and
received a B.S. in physics 5 years later. After working at Westinghouse in Elmira,
New York, for a year, Armour Research Foundation in Chicago for 6 years, and
Computer Associates in Wakefield, Massachusetts, for three years, Floyd joined
the computer science faculty at Carnegie-Mellon University in 1965. Three years
later, he moved to Stanford, where he chaired the computer science department
during 1974–1977.

A fellow of the American Academy of Arts and Sciences, Floyd received the
Alan M. Turing award from the American Association of Computing Machinery
in 1978.

Chapter Summary

The edges in a digraph are never parallel, but always directed. It pictorially
represents a finite relation.

Digraph
• A digraph D = (V , E) consists of a finite set of vertices V joined by a set

of directed edges E. A directed edge from vertex x to vertex y is denoted
by (x, y) (page 692).

• The indegree of a vertex v, denoted by indeg(v), is the number of edges
terminating at v; its outdegree, denoted by outdeg(v), is the number
of edges leaving v. A vertex with indegree 0 is a source; a vertex with
outdegree 0 is a sink (page 694).

• The adjacency matrix of a digraph is A = (aij), where aij = number
of directed edges from vertex vi to vertex vj (page 695).

• Let D be a digraph with vertices v1, v2, . . . , vn and e edges. Then
n∑

i=1
indeg(vi) = e =

n∑
i=1

outdeg(vi) (page 696).

• A loop-free digraph with exactly one edge between any two distinct
vertices is a dominance digraph or a tournament (page 697).

Reachability
• A vertex vj is reachable from a vertex vi if there is a directed path from

vi to vj (page 698).

Chapter Summary 727

• If every vertex in a digraph is reachable from every other vertex, the
digraph is strongly connected (page 698).

• Let A = (aij) be the adjacency matrix of a digraph D with vertices
v1, v2, . . . , vn. Let R = A ∨ A[2] ∨ · · · ∨ A[n−1] = (rij). Then vertex vj is
reachable from vertex vi if and only if rij > 0, where i �= j. R is the
reachability matrix of the digraph (page 699).

de Bruijn Sequence
• A de Bruijn sequence for a binary alphabet is a 2n-bit sequence

that contains every n-bit word as a subsequence in a cyclic fashion
(page 702).

Dag
• A dag is a digraph with no directed cycles (page 707).

• Dags pictorially represent assignment statements and algebraic expres-
sions with repeating subexpressions; they help find the prefix and
postfix forms of such expressions (page 707).

Weighted Digraph
• A weighted digraph has a weight w for every edge (page 715).

• The weight of a directed path is the sum of the weights of the edges
along the path (page 715).

• The weighted adjacency matrix of a digraph (V , E) is W = (wij),
where

wij =
{
∞ if (vi, vj) /∈ E
weight of edge (i, j) otherwise

(page 716).

• A shortest path from u to v in a weighted digraph weighs the least
(page 717).

• Dijkstra’s algorithm finds a shortest path and its length from the source
to any vertex in a weighted digraph (page 717).

Review Exercises

Use the digraph in Figure 10.39 to answer Exercises 1–7.

1. Find the indegree and outdegree of each vertex.

2. Find the adjacency matrix.

728 Chapter 10 Digraphs

Figure 10.39

1

2

5
4

3

3. Is vertex 3 reachable from vertex 5?

4. Is the digraph strongly connected?

5. Find the reachability matrix R of the digraph.

6. Is every entry of R positive, except those on the main diagonal?

7. Is the digraph weakly connected?

In 1953, E. N. Gilbert of Bell Telephone Laboratories developed a method
for constructing a de Bruijn sequence for nonzero binary n-tuples: Start
with any nonzero n-bit word x. If the first two digits in x are the same, then
append a 0 to it; otherwise, append a 1. Drop the first digit in the new word
to produce the next n-bit word. Using this technique successively, produce
all nonzero n-bit words from each word.

8. 01 9. 010 10. 1011

Using Gilbert’s algorithm, check if all nonzero binary quintuples can be
generated beginning with the given word.

11. 01011 12. 11111

13. Using Exercises 11 and 12, determine if Gilbert’s algorithm works for
n = 5.

14. List all possible ternary couplets.

15. Construct a de Bruijn sequence for ternary couplets. (There are 24
such choices.)

16. List all possible 4-ary couplets.

17. Construct a de Bruijn sequence for 4-ary couplets. (There are 16 such
couplets.)

Figure 10.40 c d

fa

b e

Chapter Summary 729

The digraph in Figure 10.40 shows the results from a round-robin tourna-
ment of six players, a through f. Find each.

18. The number of wins by player e.

19. The number of losses by player f.

20. The champion of the tournament.

21. The second-best player.

22–23. Are the digraphs in Figures 10.39 and 10.40 dags?

24. Represent the courses given by Table 7.1 in a dag.

Represent each assignment statement and algebraic expression in a dag.

25. x ← (x + y) + (y + z)

27. [(a ∗ b) ↑ c] + [(b − a) + d]
26. x ← [x + (x + y)] ∗ z

28. {[(a ∗ b) + c] + d} ↑ [c/(b + a)]
Evaluate the arithmetic expression represented by each dag.

29. �

� ⁄

�

4
2

3

5

↑

30. �

� �

�

53 4

↑↑

31–34. Find the postfix expressions represented by the dags in Exercises
27–30.

35–38. Find the prefix expressions represented by the dags in Exercises
27–30.

39–40. Find the infix expressions represented by the dags in Exercises 29
and 30. Provide parentheses as needed.

Use the weighted digraph in Figure 10.41 to answer Exercises 41–46.
Compute the length of each path.

41. a-b-e-d 42. a-d-g-h 43. a-c-f-e 44. a-c-e-g-h

45. Find the shortest path from vertex a to vertex g.

46. Find the shortest path from vertex e to vertex h.

47–48. With Dijkstra’s algorithm, find a shortest path from vertex a
to vertex g and its length in the weighted digraphs in Figures
10.42–10.43.

730 Chapter 10 Digraphs

Figure 10.41
c

f

g

h

d

ea
b

1
2

1 3

8

5

4

5

4
73

6

1

2

Figure 10.42 c

e

a gfdb

3 10

9
4

5

2 3
3 3

3

5 2 4
4

Figure 10.43

5
4

3

7

4

9
3

2

2
6

3

b

c ga

d
e

h

f

Supplementary Exercises

1. Find the sum of the indegrees and outdegrees of a vertex in a
tournament with n vertices.

2. Find the maximum number of edges in a digraph with n vertices and
no parallel edges.

3. Find the maximum number of edges in a loop-free digraph with n
vertices and no parallel edges.

4. Identify the underlying graph of a tournament with n vertices.

5. How many edges are in a tournament?

6. How many different tournaments (simple digraphs) with n vertices are
there?

Chapter Summary 731

*7. Prove that every tournament has a Hamiltonian path, that is, a simple
path containing every vertex.

8. Let V be a set of n elements. Let R be an irreflexive binary relation
on V such that either aRb or bRa, but not both, for every a, b ∈ V .
Characterize the digraph of R.

9. A root in a dag D is a vertex v such that every vertex (�= v) is reachable
from v. Which dags in Figure 10.13 are rooted?

Give a Hamiltonian path in each digraph, if it exists.

10. Figure 10.4

12. Figure 10.6

11. Figure 10.5

13. D1 in Figure 10.13

A graph G is strongly orientable if a direction can be assigned to each
edge in such a way that the resulting digraph is strongly connected. Such
an assignment of directions is a strong orientation of G. The graphs in
Figure 10.44 show the two-way streets in three towns. Determine if each
is strongly orientable; when yes, give a strong orientation.

14. 15.

16.

*17. Using Exercises 14–16, predict a condition for a graph to be strongly
orientable.

Computer Exercises

Let n be a positive integer ≤ 20. Write a program to perform each task.

1. Read in the adjacency matrix for a round-robin tournament of n players,
1 through n. Determine the champion and the second-best team of the
tournament.

2. Read in the adjacency matrix of a digraph with n vertices, 1 through n.

• Is vertex j reachable from vertex i, where 1 ≤ i, j ≤ n, i �= j?

• Find the reachability matrix of the digraph.

• Is the digraph strongly connected?

3. Read in the weighted adjacency matrix of a weighted digraph with n
vertices, 1 through n. Use Dijkstra’s algorithm to compute the length of

732 Chapter 10 Digraphs

a shortest path from vertex 1 to vertex n and print the corresponding
path.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Investigate the various applications of digraphs to the various
disciplines.

2. Explain the Program Evaluation and Review Technique (PERT) for
scheduling the various tasks in a large project.

3. Examine the teleprinter’s problem.

Enrichment Readings

1. A. V. Aho et al., Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983, pp. 198–229.

2. R. K. Ahuja et al., Network Flows, Prentice-Hall, Englewood Cliffs, NJ,
1993.

3. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,
Elsevier, New York, 1976.

4. T. H. Cormen, Introduction to Algorithms, McGraw-Hill, New York,
1990.

5. L. Ford and D. Fulkerson, Flows and Networks, Princeton University
Press, Princeton, NJ, 1962.

6. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction, 4th ed., Addison-Wesley, Reading, MA, 1999, pp. 324–480.

7. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer
Science Press, Potomac, MD, 1976, pp. 301–334.

8. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley,
MN, 1985, pp. 379–397.

9. R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach,
Wiley, New York, 1990, pp. 80–111.

Chapter 11

Formal Languages
and Finite-State

Machines

Time as he grows old teaches many lessons.

— AESCHYLUS

T he study of finite-state machines began with the neural networks
investigations of Warren S. McCulloch and Walter Pitts in 1943.

Today paradigms of finite-state constructs can be seen everywhere:
turnstiles, traffic signal controllers, automated teller machines, auto-
mated telephone service, garage door openers, household appliances, and
coin-operated machines such as vending machines and slot machines.

Finite-state machines significantly assist the study of formal languages;
for example, a machine can be designed (or a program developed) that
determines if an input string over the alphabet {a,b} contains abba as a
substring. (The string babaabbaba does, while abaaba does not.) This type
of machine produces no output, but instead tells whether or not the input
string has a certain property. (Example 11.26 explores this.)

Some machines, however, produce output values. For instance, adding
two binary numbers requires the input of two numbers, and yields their
sum as the output (see Example 11.42). Such a machine, a finite-state
automaton, is described in Section 11.4.

Since all finite-state automata must recognize particular languages, for-
mal languages and types of grammars become important. This chapter
explores formal languages, and how automata and formal languages are
related, as well as other interesting questions such as:

• How do we determine if a string of characters contains a certain
substring?

• How do we simulate an automatic teller machine?

733

734 Chapter 11 Formal Languages and Finite-State Machines

• Can we develop a program that accepts two binary numbers, adds them
bit by bit, and outputs their sum?

• What sort of languages are accepted by finite-state automata?

11.1 Formal Languages

We now continue our study of formal languages, begun in Section 2.1.
The language of sets plays an important role in the study, as we saw in
Chapter 2.

You may recall that an alphabet � is a finite set of symbols; and a word
(or string) over � is a finite sequence of symbols from �.

How do we determine whether or not two words over � are equal? To
this end, we make the following definition.

Equality of Words
Two words x = x1x2 . . . xm and y = y1y2 . . . yn over � are equal, denoted by
x = y, if m = n and xi = yi for every i. Thus two words are equal if they
contain the same number of symbols and the corresponding symbols are
the same.

For example, if 01z = xy0, then x = 0, y = 1, and z = 0. Also, 011 �= 001.
The length of a word w is the number of symbols in it. A word of length

zero is the empty word, denoted by the lowercase Greek letter λ; it contains
no symbols.

Again recall that �∗ denotes the set of words over �. (�∗ can be defined
recursively. See Exercise 23.) A language over � is a subset of �∗; it may
be finite or infinite.

EXAMPLE 11.1 Let � = {x, y, z, +, −, ∗, /, ↑, (,)}, where ∗ denotes multiplication and
↑ denotes exponentiation. Define a language L over � recursively as
follows:

• x, y, z ∈ L.

• If u and v are in L, then so are (+u), (−u), (u + v), (u − v), (u ∗ v), (u/v),
and (u ↑ v).

Then L consists of all fully and legally parenthesized algebraic expressions
in x, y, and z. For instance, ((((x ∗ (y ↑ z)) − (y ∗ z)) + x) ↑ z) is a fully
parenthesized and well-formed algebraic expression. Note that�∗ contains
nonsensical expressions such as) + x (/ y∗ ↑ also. �

EXAMPLE 11.2 (optional) Let � = {_, $, a, . . . , z, 0, . . . , 9, }. Define the language L of legal
identifiers in Java recursively.

11.1 Formal Languages 735

SOLUTION:
An identifier in Java begins with a letter, underscore (_), or the dollar sign
($), followed by any number of alphanumeric characters (letters or digits).
(See the syntax diagram in Figure 11.1.) A letter, an underscore, or $ by
itself is a valid identifier. It can also be followed by a letter or a digit; that
is, if x ∈ L and y ∈ �, then xy ∈ L. Thus the language L can be defined
recursively as follows:

• _ (underscore), $, and every letter of the English alphabet are in L.

• If x ∈ L and y ∈ �, then xy ∈ L.

Figure 11.1 letter

letterunderscore

digit$ �

EXAMPLE 11.3◦ (optional) The alphabet � for Java on a computer system that uses the
ASCII character set consists of the blank character, the upper- and lower-
case letters, digits, arithmetic and relational operators, special characters,
and control characters. So Java is a subset of �∗, consisting of all words
over � that are recognizable by a Java compiler. �
Since both Ø and {λ} are subsets of �∗, both are languages by definition.
The language Ø is the empty language. The language {λ} is denoted by
the upper case Greek letter �. We emphasize that Ø �= �, since |Ø| = 0,
whereas |�| = 1. However, if � = Ø, �∗ = �. Why?

Suppose an alphabet � contains at least one element a. Then L =
{a, aa, aaa, . . .} is an infinite language over �. Since L ⊆ �∗, �∗ is also
infinite. Thus, if� �= Ø,�∗ contains infinitely many words, each of finite
length (see Exercise 29).

Let z be the concatenation of the words x and y; that is, z = xy. Then
x is a prefix of z and y a suffix of z. For instance, consider the word z =
readability over the English alphabet; x = read is a prefix of z and y = ability
is a suffix of z. Since x = λx = xλ, every word is a prefix and a suffix of itself;
further, λ is both a prefix and a suffix of every word.

The operations of union and intersection can be applied to languages
also; after all, languages are also sets. To this end, we extend the definition
of concatenation of strings to languages.

736 Chapter 11 Formal Languages and Finite-State Machines

Concatenation of Languages
Let A and B be any two languages over �. The concatenation of A and
B, denoted by AB, is the set of all words ab with a ∈ A and b ∈ B. That is,
AB = {ab | a ∈ A ∧ b ∈ B}.

The next two examples illustrate this definition.

EXAMPLE 11.4 Let � = {0, 1}, A = {0, 01}, and B = {λ, 1, 110}. Find the concatenations
AB and BA.

SOLUTION:

• AB consists of strings of the form ab with a ∈ A and b ∈ B. So

AB = {0λ, 01, 0110, 01λ, 011, 01110}
= {0, 01, 0110, 01, 011, 01110}
= {0, 01, 011, 0110, 01110}

• BA = {ba | b ∈ B ∧ a ∈ A}
= {λ0, λ01, 10, 101, 1100, 11001}
= {0, 01, 10, 101, 1100, 11001} �

Tree diagrams are useful in finding the various strings in the concatena-
tion of two finite languages. Figure 11.2, for example, shows the different
ways of obtaining the elements in AB for the languages in Example 11.4.

Figure 11.2 strings in A strings in B strings in AB

0

01

1

1

110

01

011

0110

01110110

λ

λ

0λ

01λ

Two interesting points arise from this example:

(1) AB �= BA.
(2) Further, |AB| = 5 ≤ 6 = 2 · 3 = |A| · |B|; whereas |BA| = 6 =

3 · 2 = |B| · |A|. This is so since the word 01 in AB can be obtained
in two ways. Therefore, all we can say in general is, if A and B are
finite languages, then |AB| ≤ |A| · |B|.

11.1 Formal Languages 737

EXAMPLE 11.5◦ (optional) In the programming language QUICKBASIC, a numeric
variable name must begin with a letter followed by either a period
or an alphanumeric character. (QUICKBASIC does not distinguish
between upper and lowercases in variable names.) Let A ={a, b, . . . , z} and
B ={a, . . . , z, 0, . . . , 9, . }. The concatenation AB gives all numeric variable
names containing exactly two characters, namely:

aa, ab, . . ., a0, . . . , a9, a.

ba, bb, . . . , b0, . . . , b9, b.

...

za, zb, . . . , z0, . . . , z9, z. �

EXAMPLE 11.6 Let A be a language over �. Identify the languages AØ and A�.

SOLUTION:
• AØ = {ab | a ∈ A ∧ b ∈ Ø}. Since Ø contains no elements, no
concatenations ab can be performed; therefore, AØ = Ø. (Similarly,
ØA = Ø.)

• A� = A{λ} = {aλ | a ∈ A} = {a | a ∈ A} = A. (Similarly, �A = A.) �

We are now ready to study some properties of the concatenation
operation on languages.

THEOREM 11.1 Let A, B, C, and D be any languages over an alphabet �. Then:

(1) AØ = Ø = ØA (2) A� = A = �A (3) A(BC) = (AB)C

(4) A(B ∪ C) = AB ∪ AC (5) (B ∪ C)A = BA ∪ CA

(6) A(B ∩ C) ⊆ AB ∩ AC (7) (B ∩ C)A ⊆ BA ∩ CA

(8) If A ⊆ B and C ⊆ D, then AC ⊆ BD.

PROOF:
We already proved parts 1 and 2 in Example 11.6. We now shall prove parts
4 and 6, and leave the other parts as exercises.

(4) To prove that A(B ∪ C) = AB ∪ AC:
We need to show that (a) A(B ∪ C) ⊆ AB ∪ AC and (b) AB ∪ AC ⊆ A(B ∪ C).

• To prove that A(B ∪ C) ⊆ AB ∪ AC:
Let x ∈ A(B ∪ C). Then x is of the form yz, where y ∈ A and z ∈ B ∪ C.
If z ∈ B, then yz ∈ AB and hence yz ∈ AB ∪ AC. If z ∈ C, then yz ∈ AC
and therefore yz ∈ AB ∪ AC. Thus, in both cases x = yz ∈ AB ∪ AC.
Consequently, A(B ∪ C) ⊆ AB ∪ AC.

738 Chapter 11 Formal Languages and Finite-State Machines

• To prove that AB ∪ AC ⊆ A(B ∪ C):
Let x ∈ AB∪AC. Suppose x ∈ AB. Then x = ab for some a ∈ A and b ∈ B.
Since b ∈ B, b also belongs to B ∪ C. So x = ab ∈ A(B ∪ C). Similarly,
if x ∈ AC, then also x ∈ A(B ∪ C). Thus in both cases x ∈ A(B ∪ C).
Consequently, AB ∪ AC ⊆ A(B ∪ C).

Therefore, by parts (a) and (b), A(B ∪ C) = AB ∪ AC.

(6) To prove that A(B ∩ C) ⊆ AB ∩ AC:
Let x ∈ A(B∩C). Then x = yz for some element y ∈ A and z ∈ B∩C. Since
z ∈ B ∩ C, z ∈ B and z ∈ C. So yz belongs to both AB and AC, and hence
yz ∈ AB ∩ AC; in other words, x ∈ AB ∩ AC. Thus A(B ∩ C) ⊆ AB ∩ AC.

�

The next example verifies parts (4) and (6) of this theorem.

EXAMPLE 11.7 Let � = {a, b, c}, A = {a, ab}, B = {b, ab}, and C = {λ, bc}. Verify that
(1) A(B ∪ C) = AB ∪ AC and (2) A(B ∩ C) ⊆ AB ∩ AC.

SOLUTION:
AB = {ab, aab, abb, abab}
AC = {aλ, abc, abλ, abbc} = {a, ab, abc, abbc}

AB ∪ AC = {a, ab, aab, abb, abc, abab, abbc}
AB ∩ AC = {ab, abb}

(1) B ∪ C = {λ, b, ab, bc}
Then A(B ∪ C) = {aλ, ab, aab, abc, abλ, abb, abab, abbc}

= {a, ab, aab, abb, abc, abab, abbc}
= AB ∪ AC

(2) Since B ∩ C = Ø, A(B ∩ C) = Ø and hence A(B ∩ C) ⊆ AB ∩ AC. �

If the languages A and B are the same, then AB is often denoted by A2.
Thus A2 consists of words obtained by concatenating each word in A with
every word in A: A2 = {xy | x, y ∈ A}. More generally, let n ∈ N. Then An

consists of all words obtained by n − 1 concatenations of words in A. In
particular, �n denotes the set of words obtained by n−1 concatenations of
symbols in �, that is, words of length n.

EXAMPLE 11.8 Let � = {a, b, c}, A = {a, ab, bc}, and B = {a, bc}. Find �2, A2, and B3.

SOLUTION:
• �2 = {xy | x, y ∈ �} = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
• A2 = {xy | x, y ∈ A} = {aa, aab, abc, aba, abab, abbc, bca, bcab, bcbc}
• B2 = {aa, abc, bca, bcbc}

So B3 = {aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc} �

11.1 Formal Languages 739

Stephen Cole Kleene (1909–1994) was born in Hartford, Connecticut. His
father was an economics professor and his mother, a poet. In 1930, he graduated
from Amherst College and 4 years later received his Ph.D. in mathematics from
Princeton.

After teaching for 6 years at the University of Wisconsin, Madison, he joined
the faculty at Amherst College for a year. For the next 4 years he served in
the U.S. Naval Reserve. In 1946, he returned to the Madison campus and in
1964 became the Cyrus C. MacDuffee Professor of Mathematics and Computer
Science. He served as Chairman of the Department of Mathematics, Acting
Director of the Mathematics Research Center, and Dean of the College of Letters
and Science.

Kleene was awarded an honorary Doctor of Science by Amherst College in
1970, the Steele Prize by the American Mathematical Society in 1983, and the

National Medal of Science in 1990.
Kleene contributed significantly to the theory of recursive functions and the theory of automata.

Note: It follows by part 8 of Theorem 11.1 that if A ⊆ B, then A2 ⊆ B2

(Why?). More generally, it can be shown by induction that if A ⊆ B, then
An ⊆ Bn for every n ∈ N.

Finally, from any language A over �, we can construct a new language
A∗ using the various powers of A. First we define A0 = �.

Kleene Closure

Let A be a language over an alphabet �. Then A∗ = ∞∪
n=0

An is the Kleene

closure of A, in honor of the American logician Stephen Kleene. A∗ consists
of strings obtained by an arbitrary number of concatenations of words from
A. * is the Kleene operator.

The following example illustrates this definition.

EXAMPLE 11.9 Let A ={0}, B ={11}, C ={000}, and � = {0, 1}. Find their Kleene closures.

SOLUTION:
• Since A = {0}, An = {0n}. So A∗ = ∞∪

n=0
An = {0n | n ≥ 0}. In other

words, A∗ consists of strings of zero or more 0’s.

• Since B = {11} = {12}, B2 = BB = {1111} = {14}. So B3 = BB2 =
{12}{14} = {16}. Thus, in general, Bn = {12n}. Thus B∗ = ∞∪

n=0
Bn =

{12n | n ≥ 0}. It consists of words of 1’s of even length.

• Since C = {03}, Cn = {03n}. So C∗ = {03n | n ≥ 0}, the set of strings of
0’s whose lengths are divisible by 3.

740 Chapter 11 Formal Languages and Finite-State Machines

• The Kleene closure is the set of all possible words over �, namely,
�∗. (This explains why we denoted it by �∗ from the beginning of the
section.) �

We now turn to a few properties satisfied by the Kleene operator. We
shall prove one of them and leave the others as exercises. Property 6 is a
bit hard to prove, so we omit it; properties 4 and 5 require induction.

THEOREM 11.2 Let A and B be any languages over an alphabet �. Then:

(1) � ⊆ A∗ (2) A ⊆ A∗

(3) A∗A∗ = A∗ (4) If A ⊆ B, then A∗ ⊆ B∗.

(5) (A∗)∗ = A∗ (6) (A ∪ B)∗ = (A∗ ∪ B∗)∗ = (A∗B∗)∗

PROOF:
(3) To prove that A∗A∗= A∗:

• To prove that A∗⊆ A∗A∗: Since � ⊆ A∗, A∗� ⊆ A∗A∗ by Theorem
11.1. But A∗� = A∗ by Theorem 11.1. So

A∗ ⊆ A∗A∗ (11.1)

• To prove that A∗A∗⊆ A∗: Let x ∈ A∗A∗. Then x = yz with y, z ∈ A∗.
Since y, z ∈ A∗, y ∈ Am and z ∈ An where m, n ∈ W . So yz ∈
AmAn = Am+n. But Am+n ⊆ A∗, so x = yz ∈ A∗. Thus

A∗A∗ ⊆ A∗ (11.2)

Thus, by set inclusions (11.1) and (11.2), A∗A∗ = A∗. �

An interesting observation: For any language A, A ⊆ A∗. That is, when
we apply the Kleene operator * on A, the resulting language A∗ contains A.
However, if we apply * to A∗, we find that (A∗)∗ = A∗; so we do not get a
new language. This explains why A∗ is called the Kleene closure of A.

We conclude this section with an example involving both concatenation
and the Kleene operators.

EXAMPLE 11.10 Identify each language over � = {a, b}.
(1) {a, b}∗{b} (2) {a}{a, b}∗ (3) {a}{a, b}∗{b} (4) {a, b}∗{b}∗

SOLUTION:
(1) {a, b}∗ consists of all possible words over � including λ, whereas {b}

contains just one word, namely, b. Therefore, the language {a,b}∗{b}
consists of words over � that have b as a suffix.

(2) Similarly, {a}{a, b}∗ consists of words that have a as a prefix.

11.1 Formal Languages 741

(3) {a}{a, b}∗{b} consists of words that begin with a and end in b.
(4) Every element in {b}∗ consists of a finite number of b’s. Therefore,

{a, b}∗{b}∗ consists of strings followed by a finite number of b’s.
Notice that this is different from {a, b}∗{b} (Why?). �

Exercises 11.1

In Exercises 1–4, a language L over � = {a, b} is given. Find five words in
each language.

1. L = {x ∈ �∗ | x begins with and ends in b.}

2. L = {x ∈ �∗ | x contains exactly one b.}

3. L is defined recursively as follows: (i) λ ∈ L (ii) x ∈ L → xbb ∈ L

4. L is defined recursively as follows: (i) λ ∈ L (ii) x ∈ L → axb ∈ L

Define each language L over the given alphabet recursively.

5. The language L of all palindromes over � = {a, b}. (A palindrome
over � is a word that reads the same both forwards and backwards.
For instance, abba is a palindrome.)

6. L = {anbn | n ∈ N}, � = {a, b}
7. L = {0, 00, 10, 100, 110, 0000, 1010, . . .}, � = {0, 1}
8. L = set of binary representations of positive integers, � = {0,1}

9. L = {1, 11, 111, 1111, 11111, . . .}, � = {0, 1}
10. L = {x ∈ �∗ | x = bnabn, n ≥ 0},� = {a, b}
11. L = set of words over � = {0, 1} with prefix 00

12. L = set of words over � = {0, 1} with suffix 11

Mark each as true or false.

13. Every language over an alphabet is infinite.

14. If � = Ø, then �∗ = Ø.

◦ 15. C++ is a finite language.

16. Every language is a set.

Using Example 11.1, determine if each is a well-formed and fully parenthe-
sized arithmetic expression.

17. (((x + y)/(((x − y) ∗ z) ↑ z)) 18. (x ↑ ((y − x) ↑ (−z)))

19. (y + (z ↑ (+x))/(−x)) 20. ((x − (y ↑ z)) ∗ (x + (y ↑ (+z))))

21. Define the set of words S over an alphabet � recursively.
(Hint: Use concatenation.)

742 Chapter 11 Formal Languages and Finite-State Machines

22. Define the language L of all binary representations of nonnegative
integers recursively.

23. Let � be an alphabet. Define �∗ recursively.
(Hint: Use concatenation.)

◦ 24. Define recursively the set S of integers acceptable in Java.

Arrange the binary words of each length in increasing order.

25. Length two. 26. Length three.

A ternary word is a word over the alphabet {0, 1, 2}. Arrange the ternary
words of each length in increasing order.

27. Length one 28. Length two

*29. Let � be a nonempty alphabet. Prove that �∗ is infinite.
(Hint: Assume �∗ is finite. Since � �= Ø, it contains an element a. Let
x ∈ �∗ with largest length. Now consider xa.)

Let A = {a, bc} and B = {λ, ab, bc}. Find each concatenation.

30. AB 31. BA 32. A2 33. A3

Let A = {a, ab}, B = {a, b, ab}, C = {c}, and D = {c, bc}. Verify each.

34. A� = A 35. �A = A 36. A(B ∪ C) = AB ∪ AC

37. (B ∪ C)A = BA ∪ CA 38. A(B ∩ C) = AB ∩ AC

39. (B ∩ C)A = BA ∩ CA

40. If A ⊆ B and C ⊆ D, then AC ⊆ BD.

Mark each as true or false, where A and B are arbitrary finite languages.

41. � = Ø 42. AØ = Ø 43. AØ = ØA 44. A� = �

45. A� = �A 46. | A×B |=| B×A | 47. |AB| =| BA |
Find three words belonging to each language over σ = {0, 1}.
48. {0}∗

52. {0}∗{1}∗
49. {0}{1}∗

53. {01}∗
50. {0}∗{1}

54. {0}{0, 1}∗{1}

51. {0}{11}∗{1}

55. {0}∗{1}∗{0}∗

Prove each, where A, B, and C are arbitrary languages over � and x ∈ �.

56. ‖xn‖ = n‖x‖ for every n ≥ 0.

57. If A ⊆ B, then An ⊆ Bn for every n ≥ 0.

58. If A ⊆ B, then A∗ ⊆ B∗. 59. (A∗)∗ = A∗

60. ØA = Ø 61. �A = A 62. � ⊆ A∗

11.2 Grammars 743

63. A ⊆ A∗ 64. A(B ∩ C) ⊆ AB ∩ AC

65. (B ∪ C)A = BA ∪ CA 66. (B ∩ C)A ⊆ BA ∩ CA

67. (A∗B∗)∗ = (B∗A∗)∗ 68. (A∗ ∪ B∗)∗ = (A ∪ B)∗

11.2 Grammars

Words in a natural language such as English or French can be combined
in several ways. Some combinations form valid sentences, while others do
not. The grammar of a language is a set of rules that determines whether
or not a sentence is considered valid. For instance, The milk drinks child
quickly, although meaningless, is a perfectly legal sentence.

The sentences in a language may be nonsensical, but must obey the
grammar. Our discussion deals with only the syntax of sentences (the way
words are combined), and not with the semantics of sentences (meaning).
Although listing the rules that govern a natural language such as English
is extremely complex, specifying the rules for subsets of English is certainly
possible.

The next example introduces such a language.

EXAMPLE 11.11 The sentence The child drinks milk quickly, has two parts: a subject, The
child, and a predicate drinks milk quickly. The subject consists of the def-
inite article The and the noun child. The predicate, on the other hand,
consists of the verb drinks and the object phrase milk quickly; the object
phrase in turn has the object milk and the adverb quickly. This structure
of the sentence can appear as a sequence of trees (Figures 11.3–11.7), with
the derivation tree of the sentence in Figure 11.7.

Figure 11.3 sentence

subject predicate

Figure 11.4 sentence

subject

article noun

predicate

The derivation tree exhibits certain characteristics:

• Each leaf represents a word, a terminal symbol. The set of terminal
symbols is T = {the, child, drinks, milk, quickly}.

744 Chapter 11 Formal Languages and Finite-State Machines

Figure 11.5 sentence

subject

article

The

noun

child

predicate

Figure 11.6 sentence

subject

article

The

noun verb object phrase

child drinks object adverb

predicate

noun quickly

Figure 11.7 sentence

subject

article

The

noun verb object phrase

child drinks object adverb

predicate

noun

milk

quickly

• Each internal vertex represents a grammatical class, a nonterminal.
The set of nonterminals is N = {sentence, subject, predicate, article,
noun, object phrase, object, verb, adverb}. A nonterminal symbol is
enclosed within angle brackets, 〈 and 〉. For instance, the nonterminal
“subject” is denoted by 〈subject〉.

• The root of the tree represents the nonterminal symbol 〈sentence〉
called the start symbol, denoted by σ .

Certain rules can generate the above sentence. Every rule, called a pro-
duction rule or a substitution rule, is of the form w → w′ where w ∈ N

11.2 Grammars 745

and w′ may be a terminal symbol, a nonterminal symbol, or a combination
of both.

The production rules of the above sentence are:

〈sentence〉 → 〈subject〉〈predicate〉
〈subject〉 → 〈article〉〈noun〉
〈article〉 → the

〈noun〉 → child

〈noun〉 → milk

〈predicate〉 → 〈verb〉〈object phrase〉
〈verb〉 → drinks

〈object phrase〉 → 〈object〉〈adverb〉
〈object〉 → 〈noun〉

〈adverb〉 → quickly �

The production rules specify the arrangement of words in a sentence:
the syntax of the language. They produce syntactically correct sentences
(which can be meaningless). For instance, the sentence, The milk drinks
child quickly makes no sense but is syntactically valid. Figure 11.8 shows
the derivation tree of this sentence.

Figure 11.8 �sentence�

�subject�

�article�

the milk drinks

�noun� �verb� �object phrase�

�object�

�noun�

child

quickly

�adverb�

�predicate�

Determining whether a program is syntactically correct is of the utmost
importance in computer science. Before executing a program, the compiler
checks the syntax of each sentence (or expression) by constructing deriva-
tion trees. (This process is parsing, and the corresponding derivation tree
is a parse tree.)

We now turn to present the definition of a phrase-structure grammar.

746 Chapter 11 Formal Languages and Finite-State Machines

Phrase-Structure Grammar
A phrase-structure grammar (or simply a grammar) G bears four
features:

• A finite set N of nonterminal symbols;

• A finite set T of terminal symbols, where N ∩ T = Ø;

• A finite subset P of [(N ∪ T)∗ − T∗] × (N ∪ T)∗; each element of P is
called a production;

• A start symbol σ belonging to N;

The grammar G is denoted by G = (N, T, P, σ).

These features meet certain requirements:

• The start symbol σ is nonterminal.

• No symbol can be both terminal and nonterminal.

• Every production has at least one nonterminal symbol on its LHS,
because P ⊆ [(N ∪ T)∗ − T∗] × (N ∪ T)∗. Also, P is a binary relation
from (N ∪ T)∗ − T∗ to (N ∪ T)∗.

• If (w, w′) ∈ P, we then write w → w′; since w ∈ (N ∪ T)∗ − T∗,
w contains at least one nonterminal symbol; but w′ ∈ (N ∪ T)∗;
so it may contain terminal symbols, nonterminals, or both.

Grammars not only produce natural languages, but also formal ones, as
the next two examples demonstrate.

EXAMPLE 11.12 Let N = {A, B, σ }, T = {a, b}, and P = {σ → aA, A → bA, A → a}.
Then G = (N, T, P, σ) is a grammar. Notice that the production A → bA is
recursive. �

EXAMPLE 11.13 Let N = {A, σ }, T = {a, b}, and P = {σ → aσ , σ → Aa, A → b}. Then
G = (N, T, P, σ) is a grammar. Again notice that the production σ → aσ is
recursive. �

Next we define the language generated by a grammar.

Derivation and Language
Let G = (N, T, P, σ) be a grammar. If w = xαy and w′ = xβy are any two
words in (N ∪ T)∗, and if there exists a production α → β, then the word
w′ is said to be directly derivable from w; we then write w =⇒ w′. If
there is a finite sequence of words w0, w1, . . . , wn in (N ∪ T)∗ such that

11.2 Grammars 747

w0 =⇒ w1, w1 =⇒ w2, . . . , wn−1 =⇒ wn, then wn is derivable from w0.
The finite sequence of steps, w0 =⇒ w1 =⇒ · · · =⇒ wn, is a derivation of
wn from w0.

The set of words in T∗ derivable from σ by G is the language generated
by G, denoted by L(G).

The next two examples illustrate these definitions.

EXAMPLE 11.14 Identify the language L(G) generated by the grammar in Example 11.12.

SOLUTION:
Since the grammar contains exactly one production involving σ , namely,
σ → aA, start with it to find every word in the language. Now select the
next production: A → bA or A → a. The production A → a produces
exactly one word, a. A → bA chosen n times, produces σ =⇒ aA =⇒
abA =⇒ ab2A =⇒ · · · =⇒ abnA. Now A → a yields the word abna and,
when n = 0, this yields aλa = aa. (Note: b0 = λ, the null word.) Every
word derivable from σ fits the form abna, where n ≥ 0. In other words,
L(G) = {abna | n ≥ 0}. �

Example 11.14 illustrates that a grammar G can determine if it generates
a string in the language L(G). With some difficulty, the language could be
described. Again with some difficulty, and a lot of patience and practice,
a grammar G that generates a given language can be found, as Example
11.15 demonstrates.

EXAMPLE 11.15 Define a grammar G = (N, T, P, σ) that generates the language L =
{anbn | n ≥ 1}.
SOLUTION:
Since every word in L must contain the same number of a’s and b’s, G must
contain a production of the form σ → aAb. Consequently, to produce a
new word from aAb containing the same number of a’s and b’s requires
another production A → aAb. From these two productions, we can derive
all strings of the form anAbn (Verify this.). All that remains to be done to
define the grammar is the production A → λ to terminate the recursive
procedure. Thus, N = {σ , A}, T = {a, b, λ}, and P = {σ → aAb, A → aAb,
A → λ}. �

The first two production rules in this example look quite similar, except
for the start symbol, and can be combined into a single production, σ →
aσb. The production rules σ → aAb and A → λ can yield the word ab,
so the third production is σ → ab. Thus P′ = {σ → aσb, σ → ab} is an
additional production set that yields the same language. In other words,
the grammars G = (N, T, P, σ) and G′ = {N ′, T′, P′, σ) generate the same
language L, where N′ = {σ} and T′ = {a, b}. Thus L(G) = L(G′), so the
grammars G and G′ are equivalent. Our conclusion: The grammar that
generates a language need not be unique.

748 Chapter 11 Formal Languages and Finite-State Machines

John W. Backus (1924–) was born in Philadelphia. He received his B.S.
and M.S. in mathematics from Columbia University. After joining IBM in
1950, he became instrumental in the development of FORTRAN and ALGOL
(ALGOrithmic Language). He received the W. W. McDowell Award from The
Institute of Electrical and Electronics Engineers (IEEE) in 1967, the National
Medal of Science in 1975, the A. M. Turing Award from the Association for
Computing Machinery in 1977, the Harold Pender Award from the University
of Pennsylvania in 1983, and an honorary doctorate from York University,
England, in 1985.

Peter Naur (1928–), a computer scientist and prolific writer, was born in
Frederiksberg, Denmark. After receiving his M.A. in astronomy from
Copenhagen University in 1949, he spent the next two years at Cambridge
University, England, where he used the EDSAC, one of the earliest computers,
to pursue astronomy. He received his Ph.D. in astronomy from Copenhagen in
1957.

From 1953 to 1959, he consulted for the design of the first Danish com-
puter, the DASK. Beginning around 1964, he became increasingly involved
in datalogy (a word he coined), the study of data and data processes. In
1963, Naur was given the Hagemanns Gold Medal and three years later the
Rosenhjaer Prize.

Backus-Normal Form
The most widely used notation for describing the syntax of program-
ming languages is the Backus-Normal Form (BNF), developed by John
Backus, who described ALGOL 60 with it. Peter Naur edited the ALGOL
60 report, which appeared in 1963, so the BNF notation is also called the
Backus–Naur Form.

In BNF, the production symbol → is denoted by ::=; thus the production
w → w′ is written as w ::= w′. Production rules with the same LHS are
combined by separating their RHS with vertical bars. For instance, the
productions w → w1, w → w2, . . . , w → wn become w ::= w1 | w2 | . . . | wn.
(You may read the vertical bar as or.) Nonterminal symbols have angle
brackets around them.

11.2 Grammars 749

EXAMPLE 11.16 Study the following production rules:

〈sentence〉 → 〈subject〉〈predicate〉
〈subject〉 → 〈article〉〈noun〉

〈predicate〉 → 〈verb〉〈object〉
〈object〉 → 〈article〉〈noun〉
〈article〉 → a

〈article〉 → the

〈noun〉 → hare

〈noun〉 → tortoise

〈noun〉 → race

〈verb〉 → beats

〈verb〉 → wins

BNF shortens these rules:

〈sentence〉 ::= 〈subject〉〈predicate〉
〈subject〉 ::= 〈article〉〈noun〉

〈predicate〉 ::= 〈verb〉〈object〉
〈object〉 ::= 〈article〉〈noun〉
〈article〉 ::= a | the

〈noun〉 ::= hare | tortoise | race

〈verb〉 ::= beats | wins �

EXAMPLE 11.17 The grammar for the language of correctly nested parentheses contains one
production:

〈nested parentheses〉 ::= λ | (〈nested parentheses〉)

where λ denotes the null string. [Using this definition, you may verify
that (()) and ((())) are valid nested parentheses, whereas (() and (())) are
not.] �

EXAMPLE 11.18 (optional) An integer is a string of digits preceded by an optional sign,
+ or −. Using BNF, it can be defined as follows:

〈integer〉 :: = 〈signed integer〉 | 〈unsigned integer〉
〈signed integer〉 :: = 〈sign〉 | 〈unsigned integer〉

〈sign〉 :: = + | −

750 Chapter 11 Formal Languages and Finite-State Machines

〈unsigned integer〉 :: = 〈digit〉 | 〈digit〉〈unsigned integer〉
〈digit〉 :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For instance, 234, +234, and −234 are valid integers. Figure 11.9 shows
the derivation tree for the integer +234.

Figure 11.9

Derivation tree for the
integer +234.

�integer�

�signed integer�

�sign� �unsigned integer�

+ �digit��unsigned integer�

2�unsigned integer�

2�digit��unsigned integer�

23�unsigned integer�

23�digit�

234 �

The grammar defined in this example is G = (N, T, P, σ), where:

• N = {〈integer〉, 〈signed integer〉, 〈unsigned integer〉, 〈sign〉, 〈digit〉},
• T = {+, −, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
• The production rules are:

〈integer〉 → 〈signed integer〉 | 〈unsigned integer〉
〈signed integer〉 → 〈sign〉 | 〈unsigned integer〉

〈sign〉 → + | −
〈unsigned integer〉 → 〈digit〉 | 〈digit〉〈unsigned integer〉

〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11.2 Grammars 751

• The start symbol σ is 〈integer〉.
Grammars are categorized by the productions that define them.

Context-Sensitive, Context-Free, and Regular Grammars
Let G = (N, T, P, σ) be a grammar. Let A, B ∈ N and α, α′, β ∈ (N ∪ T)∗.
Notice that α, α′, and β could be the null word.

• Any phrase-structure grammar is type 0.

• G is context-sensitive (or type 1) if every production is of the form
αAα′ → αβα′.

• G is context-free (or type 2) if every production is of the form A → α.

• G is regular (or type 3) if every production is of the form A → t or
A → tB, where t ∈ T.

In a context-sensitive grammar, β can replace A in the word αAα′ only
when A lies between α and α′. In a context-free grammar, the LHS of
every production is a single nonterminal symbol A, which α can replace.
In a regular grammar, the LHS of every production consists of a single
nonterminal symbol A and the RHS consists of a terminal symbol t or a
terminal symbol t followed by a nonterminal symbol B; t or tB can always
replace A. (In tB, the nonterminal must be on the RHS of the terminal
symbol t.)

A regular grammar is also context-free and a context-free grammar
is also context-sensitive. The Venn diagram in Figure 11.10 shows the
Chomsky hierarchy of the various grammars, named in honor of Noam
Chomsky, who developed the theory of formal languages.

Figure 11.10

Chomsky hierarchy of
grammars. type 3

type 2

type 1

type 0

Context-Sensitive, Context-Free, and Regular Languages
A language L(G) is context-sensitive, context-free, or regular if the
grammar G is context-sensitive, context-free, and regular, respectively.

The next five examples clarify these definitions.

752 Chapter 11 Formal Languages and Finite-State Machines

(Avram) Noam Chomsky (1928–), a linguist, writer, and political activist,
was born in Philadelphia, as the son of a Hebrew scholar. At 10 he proofread the
manuscript of his father’s edition of a 13th century Hebrew grammar. “This
backdoor introduction to ‘historical linguistics’ had considerable impact on
his future” (The New York Times Magazine). The young Chomsky, however,
was more passionate about politics than about grammar.

On graduating from Central High School in Philadelphia in 1945, Chom-
sky entered the University of Pennsylvania and received his B.A. in 1949 and
M.A. 2 years later.

Chomsky received his Ph.D. in linguistics from the University of
Pennsylvania in 1955 and joined the faculty at the Massachusetts Institute
of Technology.

His first book, Syntactic Structures (1957), developed from his notes for
an introductory course in linguistics, triggered the Chomskyan revolution in linguistics “by disputing
traditional ideas about language development.” Chomsky is considered the father of the theory of formal
languages.

In 1966, Chomsky became the Ferrari P. Ward Professor of Modern Languages and Linguistics. He
had been a visiting professor at Columbia, Princeton, and the University of California at Los Angeles and
at Berkeley.

A recipient of numerous awards and honorary degrees, including the Kyoto prize in Basic
Sciences in 1988, Chomsky was named one of the thousand “makers of the twentieth century” by the
London Times.

EXAMPLE 11.19 Every production of the grammar G in Example 11.12 is A → t or A → tB,
so G is a regular grammar. Consequently, L(G) = {abna| n ≥ 0} is a regular
language. (See also Example 11.14.) �

EXAMPLE 11.20 In Example 11.13, the RHS of the production σ → Aa contains the terminal
symbol a on the right of the nonterminal symbol A, so G is not regular.
However, since every production appears as w → α where w ∈ N and
α ∈ (N ∪ T)∗, G is context-free; thus L(G) is a context-free language. �

EXAMPLE 11.21 (optional) Not every production of the grammar G in Example 11.18
is of the form A → t or A → tB. For instance, the production
〈unsigned integer〉 ::= 〈digit〉〈unsigned integer〉 is not of either form.

The production rules, however, can be rewritten as follows:

〈integer〉 ::= +〈unsigned integer〉
〈integer〉 ::= −〈unsigned integer〉

〈unsigned integer〉 ::= 0〈unsigned integer〉| . . . | 9〈unsigned integer〉
〈unsigned integer〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

11.2 Grammars 753

Clearly, the form A → t or A → tB always results. So this grammar G for
the set L(G) of integers is regular. Thus the set of integers is a regular
language and hence context-free. �

EXAMPLE 11.22 Consider the grammar G = (N, T, P, σ), where N = {A, B, σ }, T = {a, b},
and P = {σ → aσb, σ → aAb, aAb → aBb, A → a, B → b, A → λ, B → λ}. In
the production aAb → aBb, A can be replaced with B only if A is surrounded
by a and b. Notice that L(G) = {ambm, ambm+1, am+1bm | m ≥ 1}. �

EXAMPLE 11.23 The grammar G = (N, T, P, σ) in Example 11.15 is context-free, so L(G) =
{anbn |n ≥ 1} is a context-free language. Example 11.53 will demonstrate
that G is not regular. �

A language L(G) may contain words derivable from σ in more than one
way. Accordingly, we make the following definition.

Ambiguous Grammar
A grammar G is ambiguous if a string in L(G) has more than one derivation
tree.

The next two examples present ambiguous grammars.

EXAMPLE 11.24 The following grammar G defines the syntax of simple algebraic expres-
sions:

〈expression〉 ::= 〈expression〉〈sign〉〈expression〉 | 〈letter〉
〈sign〉 ::= + | −

〈letter〉 ::= a | b | c | . . . | z

This grammar can produce the expression a − b + c two ways, as the
derivation trees in Figure 11.11 show. As a result, G is an ambiguous
grammar. �

EXAMPLE 11.25◦ (optional) The following are simplified production rules for an if–then
statement S:

S ::= if 〈expression〉 then 〈statement〉 |
if 〈expression〉 then 〈statement〉 else 〈statement〉

〈expression〉 ::= E1 | E2

〈statement〉 ::= S1 | S2 | if 〈expression〉 then 〈statement〉
To see that these rules produce an ambiguous grammar, notice that the

if–then statement

If E1 then if E2 then S1 else S2 (11.3)

754 Chapter 11 Formal Languages and Finite-State Machines

Figure 11.11 �expression�

�expression�

�expression� �expression�

�expression��expression�

�expression�

�expression� �expression��sign�

�letter�

�letter�

�letter��letter�

a b

c

a c

b

�letter�

�sign�

�sign�

�sign�

�expression�

−

−

+

+

can be interpreted in two ways:

(i) If E1 then (if E2 then S1 else S2), or
(ii) If E1 then (if E2 then S1) else S2.

Using indentation, these possibilities can be displayed as follows:

(i) if E1 then
if E2 then

S1
else

S2

(ii) if E1 then
if E2 then

S1
else

S2

Accordingly, statement (11.3) can be generated by two distinct derivation
trees (see Figure 11.12).

To avoid this confusion, each else is paired with the nearest if.
Consequently, statement (i) is the correct interpretation of statement
(11.3). If you would like statement (11.3) to mean statement (ii), you have

11.2 Grammars 755

Figure 11.12

�if–then statement�

�if–then statement�

�expression�

�expression�

�expression�

�expression�

�statement�

�statement� �statement�

�statement�

�statement�

�statement�

if

if

if

ifE1

E1

E2

E2

S2

S2

S1

S1

then

then

then

then else

else

two options:

if E1 then
if E2 then

S1
else

else
S2

if E1 then
begin

if E2 then
S1

end
else

S2 �

The way a grammar produces its language of terminal and nonterminal
symbols determines whether it is regular, context-free, or context-sensitive.
The BNF notation facilitates such a differentiation.

Exercises 11.2

In the grammar G = (N, T, P, σ), N = {〈sentence〉, 〈noun phrase〉, 〈verb〉,
〈object phrase〉, 〈article〉, 〈noun〉}, T = {a, the, cat, dog, chicken, milk, drinks,
eats}, σ = 〈sentence〉 and the production rules are:

〈sentence〉 → 〈noun phrase〉〈verb〉〈object phrase〉
〈noun phrase〉 → 〈article〉〈noun〉

〈article〉 → a | the

756 Chapter 11 Formal Languages and Finite-State Machines

〈noun〉 → cat | dog | chicken | milk

〈verb〉 → drinks | eats

〈object phrase〉 → 〈article〉〈noun〉

Determine if each is a valid sentence in L(G).

1. The cat drinks the milk.

3. The dog swallows the cat.

2. A chicken eats the dog.

4. The chicken drinks a rabbit.

Construct a derivation tree for each sentence in L(G).

5. The cat eats the chicken. 6. A dog drinks the milk.

With the grammar in Example 11.12, construct a derivation tree for each
word in L(G).

7. aa 8. aba 9. ab2a 10. ab3a

Determine if each word belongs to the language generated by the grammar
in Example 11.13.

11. aba 12. abba 13. a3ba 14. a2b3a4

Use the grammar G = (N, T, P, σ), where N = {A, σ }, T = {a, b}, and
P = {σ → aσ , σ → aA, A → b}, to answer Exercises 15–23.
Draw a derivation tree for each word in L(G).

15. ab 16. a2b 17. a3b 18. a4b

Do the following words belong to L(G)?

19. aba 20. abba 21. a3b 22. a5b

23. Identify the language L(G).

Consider the grammar G = (N, T, P, σ), where N = {σ }, T = {a, b}, and
P = {σ → aσb, σ → ab}. Determine if each word belongs to L(G).

24. abba 25. abab 26. a2b2 27. a3b3

28. Identify the language L(G).

Find the language generated by each grammar G = (N, T, P, σ) where:

29. N = {σ , A, B}, T = {a, b}, P = {σ → aA, A → Bb, A → a, B → b}

30. N = {σ , A, B}, T = {a, b}, P = {σ → aAa, A → bBb, σ → λ, A → a,
B → a, B → b}

Develop a grammar that generates each language over {0, 1}.

31. {1, 11, 1111, 11111111, . . .}

32. {0, 00, 10, 100, 110, 0000, 1010, . . .}

11.2 Grammars 757

33. The set of words with prefix 00.

34. The set of words with suffix 11.

35. The set of binary representations of positive integers.

Create a grammar to produce each language over {a,b}.

36. {bnabn | n ≥ 0} 37. {anb| n ≥ 1} 38. {anba| n ≥ 1}

39. {ambn | m, n ≥ 1} 40. The set of palindromes.

◦ Using Example 11.18, draw the derivation tree for each integer.

41. 234 42. −234

◦ 43. An identifier in Java is a letter, underscore, or $, followed by any
number of alphanumeric characters. With BNF, define the grammar
for a Java identifier.

Use the grammar in Exercise 43 to see if each string is a valid Java
identifier.

◦ 44. catch 22 45. 20/20 46. algorist 47. three roots

Construct a derivation tree for each identifier.
◦ 48. result2 49. value 50. R2D2 51. math

The production rules of a grammar for simple arithmetic expressions are:

〈expression〉 ::= 〈digit〉 | (〈expression〉) | + (〈expression〉) |
− (〈expression〉) | 〈expression〉〈operator〉〈expression〉

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈operator〉 ::= + | − | ∗ | / |↑

Use this grammar to answer Exercises 52–59.
Determine if each is a valid arithmetic expression.

52. 2 ∗ 3 + 4 53. −(3 ∗ 4 ↑ 5) 54. 3+ ↑ 7 55. 6 + 5/8∗
Construct a derivation tree for each expression.

56. 3 + 5 ∗ 6 57. 5 + (4 ↑ 3) 58. (5 + 3) − 7/4 59. −(3 ↑ (5 + 2))

A number in ALGOL (excluding the exponential form) is defined as
follows:

〈number〉 ::= 〈decimal number〉 | 〈sign〉〈decimal number〉
〈decimal number〉 ::= 〈unsigned integer〉 |. 〈unsigned integer〉 |

〈unsigned integer〉. 〈unsigned integer〉

758 Chapter 11 Formal Languages and Finite-State Machines

〈unsigned integer〉 ::= 〈digit〉 | 〈unsigned integer〉〈digit〉
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈sign〉 ::= + | −

Use this grammar to answer Exercises 60–67.
◦ Determine if each is a valid ALGOL number.

60. 234 61. 2.34 62. 234. 63. .234

Draw a derivation tree for each ALGOL number.
◦ 64. −3.76 65. +376 66. .376 67. 0.23

For Exercises 68–73, use the following definition of a simple algebraic
expression:

〈expression〉 ::= 〈term〉 | 〈sign〉〈term〉 |
〈expression〉〈adding operator〉〈term〉

〈sign〉 ::= + | −
〈adding operator〉 ::= + | −

〈term〉 ::= 〈factor〉 |
〈term〉〈multiplying operator〉〈factor〉

〈multiplying operator〉 ::= ∗ | /

〈factor〉 ::= 〈letter〉 | (〈expression〉)|〈expression〉
〈letter〉 ::= a | b | c | . . . | z

◦ Determine if each is a legal expression.

68. a + b ∗ (c/d) 69. a + b + c 70. −a ∗ b/c + d 71. ((a − b) + c)

◦ Construct a derivation tree for each expression.

72. (a ∗ b) + c/d 73. a ∗ (b + c/d)

74. Use BNF to define a grammar for the language of well-formed
parentheses (wfp).

Use the grammar in Exercise 74 to see if each is a valid sequence of
parentheses.

75. (()) 76. ()(()) 77. (()()) 78. ()()()

79. Figures 11.13 and 11.14 diagram the syntax for an unsigned integer
and an unsigned number, respectively. Define the grammar for an
unsigned number in BNF.

11.3 Finite-State Automata 759

Figure 11.13 unsigned integer: digit

Figure 11.14

unsigned number:

unsigned
integer

unsigned
integer

unsigned
integerE.

+

−

◦ Using the grammar in Exercise 79, check if each is a valid unsigned
number.

80. 177.76 81. .1776 82. 1776. 83. 17.76E-2

11.3 Finite-State Automata

This section presents an abstract model of a machine that accepts input
values, but produces no output values.

Often the question arises whether or not a word over an alphabet is
acceptable. For example, is 2R2D an acceptable identifier or is 17.06 a
valid real number in C++? Finite-state automata can model the steps in
determining if a given word exists in a language. Accordingly, finite-state
automata, also known as language recognizers, play a central role in the
development of compilers.

Before we study the definition, we present a simple example of a language
recognizer.

EXAMPLE 11.26 Determining if an input string over the alphabet {a, b} contains abba as a
substring involves the following five steps:

Step 0 If the first symbol in the string is a, move to step 1 and look for
the character b. Otherwise, no progress has been made.

Step 1 If the next character is b, the substring ab has occurred, so go to
step 2 and look for another b. Otherwise, the symbol b is still missing, so
stay in step 1.

Step 2 If the next symbol is b, the substring abb exists; go to step 3; if a,
return to step 1.

Step 3 If the next symbol is a, the given input string contains the
substring abba; otherwise, return to step 0 and start all over again.

760 Chapter 11 Formal Languages and Finite-State Machines

Step 4 Once the substring abba has occurred in the input string, any
sequence of a’s and b’s may follow.

These steps can be represented by a digraph (see Figure 11.15), each
vertex representing a step. Exactly two edges, labeled a or b, leave each
vertex.

Figure 11.15
b

ba

a

a
aa

b

b

b
s1 s2 s4s0 s3

To determine the action required from a given step, simply follow the
directed edges from the corresponding vertex. For example, at vertex s3
(step 3) if the next input symbol is a, move to vertex s4 (step 4); other-
wise, return to vertex s0 (step 0). The other (labeled) edges are interpreted
similarly.

The digraph indicates a string contains abba as a substring if and only
if the directed path the string determines terminates at vertex s4. The
string abab determines the path s0-s1-s2-s1-s2, which does not end at s4;
consequently, abab is not acceptable. On the other hand, the string ababbab
determines the path s0-s1-s2-s1-s2-s3-s4-s4, which terminates at s4; so the
string does have the desired property. �

The digraph in Figure 11.15 displays a finite-state automaton.
(Automaton is the singular form of automata.) Its five vertices, s0 through
s4, are the states of the automaton. Since the whole process begins at s0
(step 0), s0 is the initial state. A string is acceptable, that is, contains
abba as a substring, if and only if its path ends at s4; accordingly, s4 is an
accepting state.

The digraph shows the transition of the machine between states. For
example, if the automaton is at state s2 and the input symbol is a, the
automaton switches its state to s1. The digraph is the transition diagram
of the finite-state automaton.

The initial state is customarily identified by an arrow pointing to it and
an accepting state by two concentric circles, as Figure 11.16 shows. The
transition diagram appears in Figure 11.17.

Figure 11.16 s0

The initial state An accepting state

s4→

11.3 Finite-State Automata 761

Figure 11.17

→

b

b

s0 s1 s2 s3 s4

b b ba

a

a

a

a

Each state si and an input symbol determine a unique state sj. So we can
define a function f : S × I → S as follows, where S = {s0, s1, s2, s3, s4}, the
set of states, and I = {a, b}, the input alphabet:

f (s0, a) = s1 f (s0, b) = s0 f (s1, a) = s1 f (s1, b) = s2
f (s2, a) = s1 f (s2, b) = s3 f (s3, a) = s4 f (s3, b) = s0
f (s4, a) = s4 f (s4, b) = s4

The function f is the transition function of the finite-state automaton.
It can also be defined by the transition table in Table 11.1.

Table 11.1
State

Input symbol

a b

s0 s1 s0
s1 s1 s2
s2 s1 s3
s3 s4 s0
s4 s4 s4

We are now ready to define a finite-state automaton.

Finite-State Automaton
A finite-state automaton (FSA), M, manifests five characteristics:

• A finite set, S, of states of the automaton.

• A specially designated state, s0, called the initial state.

• A subset A of S, consisting of the accepting states (or final states)
of the automaton.

• A finite set, I, of input symbols.

• A function f : S × I → S, called the transition function or the next-
state function.

In symbols, M = (S, A, I, f , s0).

762 Chapter 11 Formal Languages and Finite-State Machines

For instance, for the FSA in Example 11.26, S = {s0, s1, s2, s3, s4}, A =
{s4}, I = {a, b}, and the transition function f is defined by Table 11.1.

New York City subway commuters use an FSA everyday, as the next
example shows.

EXAMPLE 11.27∗ A turnstile in the subway entrance contains four arms at waist level (Figure
11.18). Initially, it is locked so that the arms cannot be moved. Depositing
a token into the slot, however, unlocks it and allows the arms to rotate
through one quarter of a complete turn, so the commuter passes through
the turnstile.

Figure 11.18

The turnstile has two states: locked (l) and unlocked (u). Depositing a
token (t) shifts the turnstile from the locked state to the unlocked state and
no matter how many times the commuter inputs t, the turnstile remains
in the same state. Pushing (p), the arms, takes the turnstile back to the
locked state. Once it is in the locked state, it remains there regardless of
how many times the commuter pushes the arms; that is, regardless of the
number of times he inputs p into the device.

The turnstile exemplifies an FSA. Figure 11.19 shows its transition
diagram.

Figure 11.19 p
t

t

u
p

l
�

The next two examples draw transition diagrams of FSAs from their
algebraic definitions.

EXAMPLE 11.28 Draw the transition diagram of the FSA M = (S, A, I, f , s0), where S =
{s0, s1, s2}, A = {s2}, I = {a, b}, and the transition function f is defined by

f (s0, a) = s1, f (s0, b) = s0, f (s1, a) = s2,
f (s1, b) = s0, f (s2, a) = s2, f (s2, b) = s0.

∗Based on B. Hayes, “On the Finite-State Machine, A Minimal Model of Mousetraps,
Ribosomes, and the Human Soul,” Scientific American, Vol. 249 (Dec. 1983), pp. 20–28, 178.

11.3 Finite-State Automata 763

SOLUTION:
The FSA contains three states — s0, s1, and s2 — with s2 the only accept-
ing state. Since there are two input symbols, exactly two edges leave each
vertex. Draw a directed edge from state si to state sj if there is an input
symbol x such that f (si, x) = sj; then label the edge x. For example, since
f (s1, b) = s0, a directed edge runs from s1 to s0 labeled b. Figure 11.20 shows
the resulting transition diagram.

Figure 11.20 b

b

b

s0 s1 s2

a

a
a

→

�

EXAMPLE 11.29 Draw the transition diagram of the FSA M = (S, A, I, f , s0), where S =
{s0, s1, s2, s3, s4}, A = {s2}, I = {a, b, c}, and f is defined by Table 11.2.

Table 11.2
S� ��

I a b c

s0 s1 s2 s3
s1 s4 s2 s3
s2 s1 s4 s3
s3 s1 s2 s4
s4 s4 s4 s4

SOLUTION:
The automaton contains five states, with s2 the only accepting one. Since
there are three input symbols, three edges originate from every state. Draw
a directed edge from state si to state sj if there exists an input symbol x such
that f (si, x) = sj. For instance, f (s1, c) = s3, so a directed edge labeled c
runs from state s1 to state s3. Figure 11.21 displays the resulting transition
diagram, where, for convenience, the three loops at s4 appear as a single
loop with labels a, b, and c.

Figure 11.21

→

a, b, c

b

s0 s1

s2

s4

s3

b

b
b

a

a

a

c

c

c c a

�

764 Chapter 11 Formal Languages and Finite-State Machines

Suppose a string is input into an FSA. If the path it determines ends at an
accepting state, the string is accepted (or recognized) by the automaton;
otherwise, it is rejected by the automaton.

EXAMPLE 11.30 Determine if the strings a3b2ab and ab3a are accepted by the FSA in
Figure 11.17.

SOLUTION:
First, find the path determined by the string and check if it terminates at
s4, the accepting state. (Recall that a3b2ab = aaabbab.) Begin at the initial
state, s0. When a is input, move to state s1. Every time a is input, remain
there, so the path defined by aaa is s0-s1-s1-s1. When b is input, transfer to
state s2. The path obtained thus far is s0-s1-s1-s1-s2. Now b moves to s3 and
a to s4, yielding the path s0-s1-s1-s1-s2-s3-s4. Once in s4, remain there no
matter what the input is. Thus the path determined by the given string is
s0-s1-s1-s1-s2-s3-s4-s4. Since it terminates at s4, the FSA accepts the given
word.

Notice that the path determined by the string ab3a is s0-s1-s2-s3-s0-s1,
and it does not end at the accepting state s4; consequently, the automaton
rejects the string. �

Two different FSAs may accept the same language over an alphabet.
This occurrence requires that we make a new definition.

Equivalent Finite-State Automata
The set of words accepted by an FSA, M, is the language accepted (or
recognized) by M and is denoted by L(M). Two finite-state automata, M
and M′, are equivalent if they recognize the same language: L(M) = L(M′).

EXAMPLE 11.31 Identify the language L(M) accepted by the automaton M in Figure 11.20.

SOLUTION:
Look for paths beginning at s0 and terminating at s2. L(M) consists of all
words over {a, b} that end in aa. �

EXAMPLE 11.32 By Example 11.31, the automaton in Figure 11.20 accepts the language of
words over {a, b} ending in aa. You may verify that the FSA in Figure 11.22
accepts the same language. Consequently, the automata in Figures 11.20
and 11.22 are equivalent.

Figure 11.22

→ a

a

a

ab b

s0 s1 s3

s2

b

b

�

11.3 Finite-State Automata 765

The next four examples build FSAs with desired properties, as Example
11.26 did.

EXAMPLE 11.33 Design an FSA that accepts words over I = {a, b} containing an even
number of a’s.

SOLUTION:
Every word over I contains either an even number of a’s (E) or an odd
number of a’s (O), so the automaton has two states, E and O, E being the
accepting state. Initially, the number of a’s in the word is zero, an even
integer; E is the initial state of the automaton. If the automaton is at E and
an a is input, it moves to state O. If it is at O and an a is input, it moves to
state E. Figure 11.23 shows the transition diagram of the FSA.

Figure 11.23
a

a

b b

OE→

A word over I has even parity if it contains an even number of a’s
and odd parity if an odd number. Since the automaton in Example 11.33
determines whether a word has even or odd parity, it is called a parity-
check machine. �

EXAMPLE 11.34 Design an FSA accepting words over {a, b} that begin with aa and end in bb.

SOLUTION:
We build the automaton step by step:

Step 0 Initially, the automaton is at the initial state s0.

Step 1 If the first symbol is a, move to state s1 from s0 and wait for
the next symbol. But if the first symbol is b, the word is not acceptable
(state s2). See Figure 11.24.

Figure 11.24 a

b

s0 s1

s2

→

Step 2 If the input symbol at s1 is a, move to state s3 and determine
whether the string ends with bb. On the other hand, if the input symbol
at s1 is b, move to s2 to trap such unacceptable words. Once at s2, remain
there no matter what the input symbol is. See Figure 11.25.

766 Chapter 11 Formal Languages and Finite-State Machines

Figure 11.25
→

a a

b

s0 s1 s3

s2

b

a, b

Step 3 Every word that triggers a move from s0 to s3 begins with aa. Any
number of a’s can follow it (see the loop at s3 in Figure 11.26). However, if
b follows the word, move to a new state s4, as in Figure 11.26.

Figure 11.26

→
a a

a

b

b

s0 s1 s3 s4

s2

b

a, b

Step 4 If the input symbol at s4 is a, return to s3 and look for the pair bb.
But if it is b, move to a new state s5. See Figure 11.27.

Figure 11.27

→
a a

a

a
b b

b

s0 s1 s3 s4 s5

s2

b

a, b

Step 5 Once at s5, any number of b’s may occur. However, if the input
symbol at s5 is a, return to s3 to look for bb. Since words ending in bb
are acceptable, s5 is the accepting state. These six steps create the FSA
in Figure 11.28.

Figure 11.28

→ a a
a

a

a
b b

b

b

s0 s1 s3 s4 s5

s2

b

a, b
�

11.3 Finite-State Automata 767

EXAMPLE 11.35 (optional) An identifier in a programming language consists of a letter
followed by any number of alphanumeric characters (Section 11.1). Design
an FSA that recognizes such legal identifiers.

SOLUTION:
Let I denote the set of all characters in the alphabet recognizable by a com-
piler. Let l denote a letter, d a digit, and n any nonalphanumeric character.
The automaton will have three states: s0, s1, and s2. State s2 traps all
invalid strings. (Accordingly, it is called a trap state or a dump state.)
The resulting automaton appears in Figure 11.29.

Figure 11.29

→ s0

s1

s2

l

d, n

n

l, d

l, d, n �

The FSA in Figure 11.29 can be translated into an algorithm which deter-
mines if a sequence of characters is a legal identifier. See Algorithm 11.1.

Algorithm identifier
(* This algorithm determines whether a sequence of characters is a

valid identifier, using the FSA in Figure 11.29. All characters
are read from the same input line. Symbol denotes an arbitrary
character; state denotes an arbitrary state; state0, state1,
and state2 denote the various states of the FSA. state2 is a
dump state. *)

Begin (* algorithm *)
state ← state0 (* initialize state *)
read(symbol)
while not at the end of the current line
begin
case state of

state0: if symbol is a letter then
state ← state1

else (* invalid sequence; dump it. *)
state ← state2

state1: if symbol is a letter or a digit then
state ← state1

else
state ← state 2

state2: (* do nothing; stay there. *)
read(symbol)

endwhile

768 Chapter 11 Formal Languages and Finite-State Machines

if state = state1 then
the sequence is a valid identifier

else
the sequence is an invalid identifier

End (* algorithm *)

Algorithm 11.1

With a trap state, an FSA can simulate an automatic teller machine,
or ATM, which is widely used because it allows bank customers to
make transactions without human intervention, as the following example
demonstrates.

EXAMPLE 11.36 After a bank customer inserts his bank card into the ATM, it requests him
to input his secret identification number (ID). Suppose the ID is 234. Design
an FSA that models the ATM.

SOLUTION:
The input to the automaton contains three digits d. It has five states:
s0 (the initial state, waiting for the first digit in the ID), s1 (the first
digit is correct; now waiting for the second digit), s2 (the second digit is
correct; waiting for the third digit), s3 (the third digit is correct), and s4
(the trap state that captures all invalid ID’s). The ensuing FSA is shown in
Figure 11.30.

Figure 11.30
→ s0 s1 s2 s3

s4

d

d

2 3 4

d 2	 d 3	
d 4	

�

The salient characteristics of an FSA have emerged through its many
applications to ATMs, programming languages, parity checks, and subway
turnstiles. Every FSA manifests an input set, a transition function, and a
finite number of states.

Exercises 11.3

Using the FSA in Figure 11.17, identify the directed paths determined by
each input string.

1. a3b 2. abab 3. ab3 4. a2b3a

11.3 Finite-State Automata 769

With the FSA in Figure 11.21, identify the directed path determined by
each word:

5. abcab 6. caba2 7. a2bc3 8. ab2c3

Determine if each word is acceptable by the FSA in Figure 11.17.

9. ab3 10. a2b2a2 11. a3b2a3 12. ab4ab2ab

Determine if the FSA in Figure 11.21 recognizes each word.

13. abcabc 14. abacbc 15. ab4c3 16. ab5c6

Draw the transition diagram of the FSA, M = (S, A, I, f , s0), where I =
{a,b}, and:

17. S = {s0, s1, s2}, A = {s2}

f (s0, a) = s0 f (s0, b) = s1 f (s1, a) = s0 f (s1, b) = s2
f (s2, a) = s0 f (s2, b) = s2

18. S = {s0, s1, s2, s3}, A = {s3}

f (s0, a) = s1 f (s0, b) = s0 f (s1, a) = s1 f (s1, b) = s2
f (s2, a) = s1 f (s2, b) = s3 f (s3, a) = s1 f (s3, b) = s0

19. S = {s0, s1, s2, s3}, A = {s2} 20. S = {s0, s1, s2, s3, s4}, A = {s3}
f

S
�

��
I a b

s0 s0 s1
s1 s1 s2
s2 s2 s3
s3 s3 s3

f

S
�

��
I a b

s0 s1 s4
s1 s4 s2
s2 s3 s4
s3 s3 s3
s4 s4 s4

Construct a transition table for each FSA.

21.

→ s1

b a
a

a

b

b
s0 s2

22.

→ s0 s1 s3

b b b a, b

a a a
s2

770 Chapter 11 Formal Languages and Finite-State Machines

23.

a, b

→ s0 s1

s2

s3

a b

a

a

b

b

24.

→ s0 s1

s2

s3

a

a

a

b

b

s4

bb

a
a b

Characterize the language recognized by the FSAs in Exercises 25–35.

25.

→ s0 s1 s2

a b

a

a

b b

26.

→ s0 s1 s2

b bb
a a

a

27–34. The finite-state automata in Exercises 17–24.

*35.

a a a a

b

b

b

b

(0, 0) (0, 1)

(1, 0) (1, 1)

Let m denote the number of a’s in a string. Design an FSA that accepts
strings over {a, b} which:

36. Contain exactly one a.

38. Contain aba as a substring.

40. Begin with aa or bb.

37. Begin with aa.

39. Contain aaa as a substring.

41. Contain baab as a substring.

11.4 Finite-State Machines 771

42. Have m ≡ 0(mod 3). 43. Have m ≡ 2(mod 3).

44. Simulate an automatic teller machine by means of an FSA that accepts
1776 as a valid identification number.

45. Design an FSA to model an automatic teller machine that accepts 23
or 45 as a valid identification number.

◦ 46. An integer is a nonempty string of digits, preceded by an optional sign
(+ or −). See the syntax diagram in Figure 11.31. Design an FSA that
recognizes integers.

Figure 11.31

d

�

�

◦ 47. A real number, excluding the exponential form, consists of an optional
sign (+ or −) followed by one or more digits, a decimal point, and one
or more digits. (See the syntax diagram in Figure 11.32.) Design an
FSA that recognizes such real numbers.

Figure 11.32

d d

�

�

48. Write an algorithm to implement an automatic teller machine as an
FSA that accepts 234 as a valid identification number.

◦ 49. Write an algorithm to determine if a sequence of characters represents
a valid integer.

◦ 50. Write an algorithm to determine if a sequence of characters represents
a valid real number. Exclude the exponential form.

11.4 Finite-State Machines

As a generalization of FSAs, finite-state machines abstractly model com-
puting machines. In an FSA, movements from state si to state sj depend
on the input at si, and no output emerges. But as a finite-state machine
moves from state si to state sj, an output does emerge. Consequently, a
finite-state machine possesses two features not required of an FSA: a finite
set O of output symbols and an output function g : S × I → O, where I is

772 Chapter 11 Formal Languages and Finite-State Machines

the input alphabet. (An accepting state cannot exist here because a word is
not being checked for certain characteristics.) The output depends on two
things: the current state and the input symbol.

Finite-State Machine
A finite-state machine (FSM), M, bears six characteristics:

• A finite set, S, of states;

• A finite input alphabet, I;

• A finite set, O, of output symbols;

• A transition function, f : S × I → S;

• An output function, g : S × I → O;

• An initial state, s0.

In symbols, M = (S, I, O, f , g, s0).
In this definition, the output function g depends on both the state of the

machine and the current input. Such FSMs are called Mealy machines,
after George H. Mealy, who introduced them in 1955. (Another type of FSM
appears in the Supplementary Exercises.)

EXAMPLE 11.37 Let S = {s0, s1, s2}, I = {a, b}, and O = {0, 1}. Define functions f : S × I → S
and g : S × I → O by means of Table 11.3. For example, f (s0, b) = s1,
f (s2, b) = s1, g(s0, b) = 1, and g(s2, b) = 1.

Table 11.3 f g

S
�

��
I a b a b

s0 s0 s1 0 1
s1 s1 s2 1 0
s2 s2 s1 1 1

Then M = (S, I, O, f , g, s0) is an FSM with transition function f and output
function g. Table 11.3 is the transition table of the machine. �

Like an FSA, an FSM can be represented by a transition diagram,
with one main difference: every directed edge (sj, sk) has two labels. One
indicates the input symbol i; the other the output o from entering i into
state sj. For instance, if f (sj, i) = sk and g(sj, i) = 0, the directed edge (sj, sk)
is labeled i/0.

The next example illustrates how to draw transition diagrams of
FSMs.

11.4 Finite-State Machines 773

EXAMPLE 11.38 Draw the transition diagram for the FSM in Example 11.37.

SOLUTION:
The FSM has three states — s0, s1, and s2; and two input symbols — a and
b; two output symbols−0 and 1. Two input symbols produce exactly two
outgoing edges for each state. Each directed edge (sj, sk) in the diagram is
labeled i/o, where f (sj, i) = sk and g(sj, i) = o. For instance, since f (s0, a) =
s0 and g(s0, a) = 0, a loop exists at s0 labeled a/0. And because f (s0,b) =
s1 and g(s0,b) = 1, the edge (s0, s1) is labeled b/1. The other directed edges
carry similar labels. Figure 11.33 shows the transition diagram produced
by this process.

Figure 11.33

→ s0 s1 s2

a/0
b/0b/1

b/1

a/1 a/1

�

The transition diagram of an FSM can generate the transition table, as
the following example demonstrates.

EXAMPLE 11.39 Construct the transition table of the FSM in Figure 11.34.

Figure 11.34

→ s0 s1 s2
a/0a/0

b/1

b/1
a/1

b/0

SOLUTION:
From the transition diagram, f (s0, a) = s1, f (s0, b) = s2, f (s1, a) = s2,
f (s1, b) = s1, f (s2, a) = s2, and f (s2, b) = s2; also g(s0, a) = 0, g(s0, b) = 1,
g(s1, a) = 0, g(s1, b) = 1, g(s2, a) = 1, and g(s2, b) = 0. These values generate
the transition table in Table 11.4.

Table 11.4 f g

S
�

��
I a b a b

s0 s1 s2 0 1
s1 s2 s1 0 1
s2 s2 s2 1 0

�
Suppose we input the string x = x1x2 . . . xn into an FSM. Suppose further

that there exist states si−1 and si, and an output yi such that f (si−1, xi) = si
and g(si−1, xi) = yi for every i. Then y1y2 . . . yn is the output produced by
the machine for the input x.

774 Chapter 11 Formal Languages and Finite-State Machines

EXAMPLE 11.40 Find the output of the FSM in Figure 11.33 for the input string abbaba.

SOLUTION:
Start at state s0. When a is input, stay at s0 with output 0. When the next
symbol b is input, move to s1 and produce the output 1. When the third
symbol b is input at s1, move to s2 and output 0. Continuing like this yields
the output 010111. �

The next two examples present FSMs useful in electronics. These
machines have limited memory: at each state they must remember the
previous input.

EXAMPLE 11.41 Let I = O = {0, 1}. A unit delay machine, an FSM M = (S, I, O, f , g, s0),
delays an input string by unit time. When the string x1x2 . . . xn is input, it
produces 0x1x2 . . . xn as the output. Construct such a machine.

SOLUTION:
Since each state has two possible outputs, each has two outgoing edges.
The machine must certainly have an initial state s0. With the first output
always 0, both edges leaving s0 must yield 0. The machine must remember
whether the previous input was 0 or 1; this requires two additional states,
s1 and s2. If the previous input was 0, the machine moves to state s1 and
outputs 0; if it was 1, it moves to state s2 and outputs 1. Figure 11.35 shows
the transition diagram of this FSM.

Figure 11.35

→ s0

0/0

1/0

s1

s2

1/0 0/1

0/0

1/1

For instance, the input 101110 yields the output 010111 (Verify this.),
which has lost the trailing zero of the input. By appending a 0, however, to
the input, that is, by inputing 1011100, the desired output results: 0101110.
Deleting the leading 0 yields an exact copy of the input. �

EXAMPLE 11.42 Design an FSM that adds two binary integers, x and y.

SOLUTION:
Assume, for convenience, x and y contain the same number of bits, and
the leftmost bits are zeros. Thus, let x = (xnxn−1 . . . x1x0)two and y =
(ynyn−1 . . . y1y0)two, where xn = yn = 0. Add the corresponding bits xi and

11.4 Finite-State Machines 775

yi from right to left, as usual. Adding xi and yi yields a sum bit zi and a
carry bit ci:

zi = (xi + yi) mod 2 and ci = (xi + yi) div 2

For instance, adding the bits 1 and 1 gives the sum bit 0 and the carry
bit 1. Tables 11.5 and 11.6 display the sum and carry bits for paired values
of xi and yi.

Table 11.5

Sum bits.

yi

0 1

xi
0 0 1
1 1 0

Table 11.6

Carry bits.
yi

0 1

xi
0 0 0
1 0 1

Any two binary numbers can be added if the pairs 00, 01, 10, and 11
can be. When two bits xi and yi are added, the carry is 0 or 1. Consequently,
a machine can be manufactured with two states: c0 (carry is 0) and c1
(carry is 1). Since at first the carry is 0, c0 is the initial state of the machine
(Figure 11.36).

Figure 11.36
→ c0 c1

Since four bit-pairs exist, exactly four edges leave each state. Tables 11.5
and 11.6 can find the state following a given state and the output from a
given input. For instance, if at state c0 and input 11, output 0 and move
to state c1 (Figure 11.37). If at state c1 and input 10, output 0 and remain
at state c1 (Figure 11.38). Continuing like this produces the transition
diagram in Figure 11.39.

Figure 11.37
→ c0 c1

11/0

Figure 11.38

→ c0 c1
11/0

10/0

776 Chapter 11 Formal Languages and Finite-State Machines

Figure 11.39

→ c0 c1
11/0

11/110/1
00/1

10/001/001/100/0

�

Finally, every FSA is a special case of an FSM. To see this, label all
incoming edges to each accepting state with output 1 and all incoming
edges to each nonaccepting state with output 0. Consequently, an input
string is accepted by the FSM if and only if the last output of the machine
is 1, as the following example illustrates.

EXAMPLE 11.43 Example 11.26 showed that the FSA in Figure 11.40 accepts a string over
{a, b} if and only if the string contains abba as a substring. To convert the
automaton into an FSM, add an output to every edge. Each incoming edge
to the accepting state s4 is labeled with output 1, and every incoming edge
to other edges 0. The resulting FSM appears in Figure 11.41.

Figure 11.40

→ s2s1 s3 s4s0
a

a

a
a

b

b

b a
bb

Figure 11.41

→ s2s1 s3 s4s0

a/0

a/0

b/0

b/0

b/0
a/0 b/0 a/1

a/1

b/1

According to Example 11.30, the word a3b2ab is accepted by the automa-
ton in Figure 11.40. The machine in Figure 11.41 verifies this: the substring
a3 takes the machine from s0 to s1 and it outputs 0 three times, b2 takes it
to s3 and it outputs 0 twice, a takes it from s3 to s4 and it outputs 1; b takes
the machine from s4 to itself and it outputs 1. With the last output 1, the
string is accepted by the FSM, as expected. �

As this example indicates, FSMs like Mealy machines add output to the
FSA configuration. This means that we can use them in such fields as
electronics, in addition to using their transition tables and diagrams as
definitional models.

11.4 Finite-State Machines 777

Exercises 11.4

Using the FSM in Figure 11.33, evaluate each.

1. f (s1, a) 2. f (s2, b) 3. f (s0, b) 4. f (s2, a)

5. g(s1, b) 6. g(s2, b) 7. g(s0, b) 8. g(s2, a)

Draw the transition diagram of the FSM with each transition table.

9. f g

S
�

��
I a b a b

s0 s0 s1 1 0
s1 s1 s2 0 0
s2 s0 s1 1 1

10. f g

S
�

��
I a b a b

s0 s1 s1 0 1
s1 s1 s2 1 0
s2 s1 s2 0 1

11. f g

S
�

��
I a b a b

s0 s1 s1 0 0
s1 s1 s2 0 1
s2 s3 s2 0 1
s3 s3 s1 1 0

12. f g

S
�

��
I a b a b

s0 s1 s2 1 0
s1 s2 s2 0 1
s2 s2 s3 0 0
s3 s2 s3 1 1

Construct a transition table for each FSM.

13.

→ s2s1s0

a/1

b/0
a/1

a/0

b/0

b/1

14.

→ s2s1s0

a/0

b/1

a/1 a/1

b/0

b/0

15.

→ s2s1s0 s3

a /0
b/1

a/0 a/0
b/1

b/1

b/1

a /0

778 Chapter 11 Formal Languages and Finite-State Machines

16.

→ s2s1s0 s3

b/0

a/0
b/0 b/1

b/0
a/1

a/0

a/1

Using the FSM in Figure 11.33, find the output from each input string.

17. abba 18. baab 19. a2b3a 20. a3b2ab3

Using the unit delay machine in Figure 11.35, find the output of each input
string.

21. 1101 22. 1111 23. 0000 24. 101110

25. With a transition table, define the transition function f and the output
function g of the FSM for binary addition in Figure 11.39.

Using the FSM in Figure 11.39, compute the sum of each pair of binary
numbers.

26. 1001
0110

27. 00111
10010

28. 1011
0110

29. 11011
10101

30. Redraw Figure 11.20 as the transition diagram of an FSM.

31–34. Redraw the transition diagram of each automaton in Exercises
17–20 of Section 11.3 as that of an FSM.

Determine if the input string in Exercises 35–38 is accepted by the FSM in
Figure 11.42.

Figure 11.42

→ s2s1s0

a/0

b/0

a/1
a/1

b/0

b/0

35. abba 36. aabb 37. a3 38. b3a4

39. Identify the language accepted by the FSM in Figure 11.42.

Design an FSM accepting strings over {a, b} that:

40. Contain aa as a substring. 41. Contain exactly one a.

With x an input symbol and s an arbitrary state of an FSM M =
(S, I, O, f , g, s0), define g(s, x) in each case.

42. f (s, x) is an accepting state. 43. f (s, x) is a nonaccepting state.

11.5 Deterministic Finite-State Automata and Regular Languages 779

11.5 Deterministic Finite-State Automata and Regular Languages

Is the language accepted by an FSA context-sensitive? Or is it context-free,
regular, or something else? This section provides a definitive answer to
these questions.

In an FSA M = (S, A, I, f , s0), where | I | = m, exactly m outgoing edges
leave every state si, each labeled with a unique element of I. Besides, since
f : S × I → S, every state–input pair yields a unique state; in other words,
every state–input pair uniquely determines the next state.

For the automaton in Figure 11.15, the pair (s2, a) determines the
state s1, whereas the pair (s2, b) determines the state s3. Accordingly, the
automata in Section 11.3 are called deterministic finite-state automata
(DFSA).

This determinism suggests that the language accepted by a DFSA is
indeed regular, as the next example demonstrates.

EXAMPLE 11.44 By Example 11.31 the language L(M) accepted by the DFSA in Figure 11.43
consists of words over {a, b} ending in aa. Employing it, a regular grammar
G = (N, T, P, σ) can be constructed. Choose {a, b} as the set of terminal
symbols: T = {a, b}. Choose the states as the nonterminal symbols: N =
{s0, s1, s2}. Select the initial state s0 as the start symbol: σ = s0.

Figure 11.43

→ s2s1s0

a

b

b
a

b

a

Define the two productions rules:

• If there is an edge labeled x from state si to state sj, define the production
si → xsj. The various productions obtained this way are:

s0 → as1, s0 → bs0, s1 → as2,

s1 → bs0, s2 → as2, and s2 → bs0.

• If there is an edge labeled x from state si to an accepting state, induce
the production si → x. Two additional productions can be obtained by
this method:

s1 → a and s2 → a

The grammar G = (N, T, P, σ) where N, T, P, and σ are defined as above is
clearly regular, therefore L(G) is a regular language. You may verify that
L(G) consists of strings over T ending in aa. Thus L(M) = L(G). �

780 Chapter 11 Formal Languages and Finite-State Machines

This example leads us to a fundamental result whose proof resembles
that in Example 11.44.

THEOREM 11.3 The language accepted by a DFSA is regular.

PROOF:
Let M = (S, A, I, f , s0) be a DFSA and L(M) denote the language accepted by
the automaton. We shall construct a regular grammar G using the machine
M and show that L(G) = L(M).

To construct the grammar G = (N, T, P, σ), choose N = S as the set of
states, T = I as the input alphabet, and σ = s0 as the initial state. Define
the productions P this way:

Let si and sj be any two states, and x any input symbol. If f (si, x) = sj,
define the production si → xsj; if f (si, x) = sj, an accepting state, include
the production si → x. Clearly, G is a regular grammar.

To prove that L(M) ⊆ L(G):
Let x = x1x2 . . . xn be a string accepted by the automaton M; that is, let

x ∈ L(M). Then the transition diagram of the automaton contains a directed
path s0-s1-s2- · · · -sn, where sn is an accepting state. Correspondingly, these
production rules follow:

s0 → x1s1 (11.4)

s1 → x2s2

...

si−1 → xis0i

...

sn−1 → xn (Note: sn is an accepting state.)

and the derivation of the string x:

=⇒ x1s1 (11.5)

=⇒ x1x2s2

...

=⇒ x1x2 . . . xn−1sn−1

=⇒ x1x2 . . . xn−1xn

since sn−1 → xn. Thus x ∈ L(G), so L(M) ⊆ L(G).
Conversely, let x = x1x2 . . . xn ∈ L(G). Then it must have a derivation of

the form (11.4). Correspondingly, the transition diagram of the automaton
M must contain a directed path, s0-s1-s2- · · · -sn. The string determined
by this path is x = x1x2 . . . xn. Since the last production in the derivation

11.5 Deterministic Finite-State Automata and Regular Languages 781

(11.4) is sn−1 → xn, sn must be an accepting state, thus x ∈ L(M) and hence
L(G) ⊆ L(M).

Thus L(M) = L(G). In other words, the language accepted by the DFSA
is regular. �

This proof provides an elegant method for finding the regular language
accepted by a DFSA. We demonstrate it again in the next example.

EXAMPLE 11.45 Find the grammar of the regular language accepted by the parity check
machine in Example 11.33.

SOLUTION:
Using the transition diagram in Figure 11.23, N = {E, O}, T = {a, b}, S =
{E}, and the production rules are:

E → aO, E → bE, O → aE, O → bO, E → b, and O → a

The regular grammar defined by the parity check machine M is G =
(N, T, P, S). [So L(G) = L(M) = the set of strings over T containing an
even number of a’s.] �

Finally, is the converse of Theorem 11.3 true? With G a regular grammar,
does a DFSA exist such that L(M) = L(G)? The next two sections will give
us an answer.

Exercises 11.5

Determine if each is a DFSA.

1.

s3s2s1

a

a b

b

→ s0
a

2.

s1 s2

s3

s0

a

a

b

b

→

a

a, b

b

3.
s1 s2

s3

s0

a a

b

b b

→

782 Chapter 11 Formal Languages and Finite-State Machines

4.

s2

s4

s1

s0

s3

→

a, b

a b a, b

a

a

bb

Write the regular grammar defined by the DFSA in each figure.

5. Figure 11.17 6. Figure 11.28

7–14. Construct the regular grammar defined by each DFSA in Exercises
17–24 of Section 11.3.

By making a DFSA, define a regular grammar G = (N, T, P, σ) that
generates the language consisting of strings over {a, b} that:

15. Contain exactly one a. 16. Contain at least one a.

17. Begin with aa. 18. End with bb.

19. Contain aba as a substring. 20. Contain aaa as a substring.

21. Begin with aa or bb. 22. Contain baab as a substring.

11.6 Nondeterministic Finite-State Automata

We ended the preceding section with a question: For a regular grammar G,
is there a DFSA M such that L(G) = L(M)? The obvious temptation is to
simply reverse the steps in Example 11.44 (or Theorem 11.3) to look for it.
Let’s see what happens if we do so.

EXAMPLE 11.46 With the regular grammar G = (N, T, P, σ), where N = {A, σ }, T = {a, b},
and P = {σ → aσ , σ → aA, A → b}, let us see what happens if we reverse
the steps in Theorem 11.3 in order to construct a DFSA M = (S, A, I, f , s0).
Then I = T = {a, b} and s0 = σ . Corresponding to the productions σ → aσ
and σ → aA, there must be two states, namely, σ and A; besides, by virtue
of the production A → b, an accepting state F must exist. Thus S must be
{σ , A, F}.

Use the productions to draw the edges in the transition diagram of the
automaton: If si → xsj, draw an edge from state si to sj and label it x; if
si → x, draw an edge from si to the accepting state F and label it x. The
diagram in Figure 11.44 results.

Unfortunately, it is not a DFSA for two reasons: (1) A state, σ , has two
outgoing edges with the same label a; (2) not every state, namely A and F,
has two edges with different labels. Thus reversing the steps illustrated in
Example 11.44 does not yield a DFSA.

11.6 Nondeterministic Finite-State Automata 783

Figure 11.44

FA

a

→
a b

 �

But, fortunately, we have another option. The automaton in Figure
11.44 is a nondeterministic finite-state automaton. “Nondeterministic”
means that each state–input pair may determine more than one state.
For instance, the pair (σ , a) determines two states, σ and A. If a is input at
state σ , two choices exist for the next state: remain at σ or move to A.

We can now move to the following definition.

Nondeterministic Finite-State Automata
A nondeterministic finite-state automaton (NDFSA) M exhibits five
characteristics:

• A finite set S of states;

• A specially designated state σ , called the initial state;

• A subset A of S consisting of the accepting states (or final states) of
the automaton;

• A finite set I of input symbols;

• A function f : S × I → P(S), called the transition function (or the
next-state function). [Note: P(S) denotes the power set of S.]

In symbols, M = (S, A, I, f , σ).
In an NDFSA, each state–input pair is linked with a set of states, not

necessarily a unique state; it can be the null set. A NDFSA can be repre-
sented by a transition diagram and a transition table can define a transition
function, as the next two examples illustrate.

EXAMPLE 11.47 For the NDFSA in Figure 11.44, S = {σ , A, F} and A = {F}. The transition
table in Table 11.7 defines the transition function.

Table 11.7
S� ��

I a b

σ {σ , A} Ø
A Ø {F}
F Ø Ø

�

EXAMPLE 11.48 The NDFSA M = (S, A, I, f , σ), where S = {σ , A, B, C}, A = {F}, I =
{a, b}, and f is defined by Table 11.8. Its transition diagram is given in
Figure 11.45.

784 Chapter 11 Formal Languages and Finite-State Machines

Table 11.8
S� ��

I a b

σ {σ , A} Ø
A {A} {B, F}
B {F} {B}
F Ø Ø

Figure 11.45

FBA

a a b

a b

b

→
a

�

The definition of a string accepted by an FSA can be extended to NDFSA
as well.

Equivalent Nondeterministic Finite-State Automata
A string is accepted or recognized by a NDFSA M = (S, A, I, f , s0) if
a directed path runs from the initial vertex s0 to an accepting state that
generates the string. The language of all strings accepted by M is L(M).
Two NDFSAs are equivalent if they accept the same language.

The next two examples illustrate the definition of (L(M)).

EXAMPLE 11.49 The word a3b is accepted by the NDFSA in Figure 11.44 since the
corresponding path, σ -σ -σ -A-F, ends at an accepting state F. Notice that
L(M) = {anb | n ≥ 1}. �

EXAMPLE 11.50 The string a2b3a is accepted by the NDFSA in Figure 11.45. Two paths
generate it, σ -σ -A-B-B-B-F and σ -A-A-B-B-B-F. The automaton accepts
strings amb and ambna, where m, n ≥ 1. Thus L(M) = {amb, ambna | m,
n ≥ 1}. �

The question we posed at the beginning of this section can be partially
answered now.

THEOREM 11.4 Every regular language is accepted by an NDFSA.

PROOF:
Let G = (N, T, P, σ) be a regular grammar. Through essentially the same
steps as in Example 11.46, make a suitable NDFSA M = (S, A, I, f , s0) such
that L(G) = L(M). Select I = T, s0 = {σ}, and N as the set of nonaccepting
states of M. Since the grammar contains productions of the form si →
x, introduce an accepting state F; choose S = N ∪ {F} and A = {F}.
Finally, since every production of G is si → xsj or si → x, the transition
function f : S × I → P(S) follows: f (si, x) = {sj | si → xsj} ∪ {F | si → x}.

11.6 Nondeterministic Finite-State Automata 785

As in Theorem 11.3, it can be shown that L(G) = L(M). (Complete the
proof.) �

Although nondeterministic finite-state automata have been defined, an
explicit answer to the question posed earlier has yet to surface: Given a
regular grammar G, does there exist a DFSA such that L(G) = L(M)? We
will answer this in the next section.

Exercises 11.6

Draw the transition diagram of the NDFSA M = (S, A, I, f , s0), where:

1. S = {s0, s1, s2), A = {s2} 2. S = {s0, s1, s2}, A = {s1}

S� ��
I a b

s0 {s1} {s0}
s1 {s1} {s1, s2}
s2 Ø Ø

S� ��
I a b

s0 {s1} {s0}
s1 {s2} {s1, s2}
s2 Ø Ø

3. S = {s0, s1, s2, s3), A = {s2} 4. S = {s0, s1, s2, s3}, A = {s2}

S� ��
I a b

s0 {s0, s1} {s3}
s1 {s1, s2} {s1}
s2 {s2} {s3}
s3 {s3} {s3}

S� ��
I a b

s0 {s0, s1} {s3}
s1 {s1, s2} {s0}
s2 Ø Ø
s3 {s1} {s3}

5. S ={s0, s1, s2, s3, s4), A ={s2, s3} 6. S ={s0, s1, s2, s3, s4, s5), A ={s2, s5}

S� ��
I a b

s0 {s0, s1} {s4}
s1 {s1, s2} {s1, s3}
s2 Ø Ø
s3 Ø Ø
s4 {s4} {s4}

S� ��
I a b

s0 {s0, s1} {s4}
s1 {s1, s2} {s3}
s2 {s2} {s2}
s3 {s3} {s3}
s4 {s3} {s4, s5}
s5 {s5} {s5}

Construct a transition table for each NDFSA.

7. s2s0 s1→
a

a a

b

b

a, b

786 Chapter 11 Formal Languages and Finite-State Machines

8.

s0 s1 s2 s3

a, b

→
a

b b

a a

b

b

9.

s4s0 s1 s2 s3

a, b

a, b

→
a

a a a a
a

s5

b

b b

b

10.

s4s0 s1 s2 s3

a a a, b

a, b

b b

→
a a

s5

b

b
b a a

b

Does the NDFSA in Figure 11.45 accept each string? Identify a path defined
by any accepted string.

11. ab2a 12. abab

13. a3b 14. ab2ab

Is each string accepted by the NDFSA in Exercise 1? Give a path for accepted
strings.

15. a2b 16. ab2a

17. a3b3 18. (ab)3

Does the NDFSA in Exercise 10 accept each string? Show a path that defines
any accepted string.

19. abba 20. (ab)3

21. a2b2 22. a4b2ab3

Construct a NDFSA that accepts the language generated by the regular
grammar G = (N, T, P, σ), where:

23. N = {σ , A, B}, T = {a, b}, and P = {σ → aA, A → aA, A → bB, B →
bB, A → a}

24. N = {σ , A, B}, T = {a, b}, and P = {σ → aA, σ → bA, A → aB, σ →
b, B → b}

11.7 Automata and Regular Languages 787

25. N = {σ , A, B, C, D}, T = {a, b}, and P = {σ → bσ , σ → aA, A → aA,
A → bB, B → aA, B → bC, C → aD, C → bσ , D → aD, D → bD, C →
a}

26. N = {σ , A, B, C}, T = {a, b}, and P = {σ → bσ , σ → aA, A → aA,
A → bB, B → aA, B → bC, C → aA, C → bσ , B → b}

Create a NDFSA that accepts the regular language over {a, b} of strings
that:

27. Contain exactly one a. 28. Contain at least one a.

29. Begin with aa. 30. End with bb.

31. Contain aba as a substring. 32. Contain a3 as a substring.

33. Begin with aa or bb. 34. Contain ba2b as a substring.

*35. Begin with aa, but not end in bb.

*36. Begin with aa and end in bb.

11.7 Automata and Regular Languages

The preceding two sections demonstrated that the language accepted by a
DFSA is regular and that every regular language is accepted by an NDFSA.
This section shows that every NDFSA is equivalent to a DFSA, which
answers affirmatively our question about the existence of a possible DFSA
M such that L(G) = L(M). Every regular language is, in fact, accepted by a
suitable DFSA.

The next two examples illustrate step by step how to construct a DFSA
equivalent to a given NDFSA.

EXAMPLE 11.51 Consider the regular grammar G = (N, T, P, σ), where N = {A, σ }, T =
{a, b}, and P = {σ → aσ , σ → aA, A → b}. The NDFSA M = (S, A, I, f , s0)
that accepts L(G) is shown in Figure 11.46 (same as Figure 11.44). By
Example 11.49, L(M) = {anb | n ≥ 1}. Using M, we shall construct the
DFSA M′ = (S′, A′, I′, f ′, s′

0) which accepts L(G):

Figure 11.46

FA
→
a

a

b

Step 1 Choose I′ = I = {a, b}, s′
0 = {s0} = {σ}, and S′ = P(S). The

various states in M′ are subsets of S. If there are n states in M, there can
be 2n states in M′, so the states of M′ are:

Ø, {σ }, {A}, {F}, {σ , A}, {σ , F}, {A, F}, and {σ , A, F}

788 Chapter 11 Formal Languages and Finite-State Machines

Step 2 The accepting states of M′ are those states of M′ that contain an
accepting state of M. They are {F}, {σ , F}, {A, F}, and {σ , A, F}.
Step 3 Let X = {s1, s2, . . . , sm} be a state in M′. An input symbol x leads

from state X to state Y , where Y = m∪
i=1

f (si, x). In other words, an edge

labeled x runs from state X to state Y if Y = m∪
i=1

f (si, x).

Figure 11.46 produces all possible transitions:

f (Ø, a) = Ø f (Ø, b) = Ø f (σ , a) = {σ , A} f (σ , b) = Ø
f (A, a) = Ø f (A, b) = {F} f (F, a) = Ø f (F, b) = Ø

Since f (Ø, a) = Ø = f (Ø, b), edges run from Ø to itself labeled a and b. Since
f (σ , a) = {σ , A} and f (σ ,b) = Ø, an edge labeled a goes from {σ} to {σ , A}
and an edge b from {σ} to Ø. Similarly, there is an edge labeled a from {A}
to Ø, an edge b from {A} to {F}, and two edges a and b from {F} to Ø.

Since f (σ , a) ∪ f (A, a) = {σ , A} ∪ Ø = {σ , A}, an edge labeled a runs from
{σ , A} to {σ , A}. Also, f (σ , b) ∪ f(A, b) = Ø ∪ {F} = {F}, so an edge b
goes from {σ , A} to {F}. Similarly, there are edges labeled a and b from
{σ , F} to {σ , A} and Ø, respectively; edges a and b from {A, F} to Ø and
{F}, respectively; and edges a and b from {σ , A, F} to {σ , A} and {F},
respectively.

These results appear in the transition table in Table 11.9.

Table 11.9
S′� � ��

I′ a b

Ø Ø Ø
{σ} {σ , A} Ø
{A} Ø {F}
{F} Ø Ø

{σ , A} {σ , A} {F}
{σ , F} {σ , A} Ø
{A, F} Ø {F}

{σ , A, F} {σ , A} {F}

Figure 11.47 shows the resulting DFSA.
Since the states {A}, {σ , F}, {A, F}, and {σ , A, F} cannot be reached from

the initial state {σ}, they can be dropped out to yield the simplified DFSA
M′ in Figure 11.48.

From this transition diagram, L(M′) = {aanb | n ≥ 0} = {anb | n ≥ 1} =
L(G). Thus the automata M and M′ are equivalent, so the NDFSA is the
same as the DFSA. �

EXAMPLE 11.52 Construct a DFSA M′ = (S′, A′, I′, f ′, s′
0) equivalent to the NDFSA

M = (S, A, I, f , s0) in Example 11.50. Recall that L(M) = {amb, a mbna |
m, n ≥ 1}. The key steps lie below. (Fill in the details.)

11.7 Automata and Regular Languages 789

Figure 11.47

{F}

{
}

{A}

{
, E}
a,b

a, b

b b

b b

b

b

a

a

a

a

a

a

{A, E}

{
, A, F}

{
, A}

→

Figure 11.48

a

a, b

a, b

b

b

{
}

{
, A}

a

→ {F}

SOLUTION:
Step 1 Select I′ = I = {a,b}, s′

0 = {s0} = {σ}, and S′ = P(S). The states
of M′ are Ø, {σ}, {A}, {B}, {F}, {σ , A}, {σ , B}, {σ , F}, {A, B}, {A, F}, {B, F},
{σ , A, B}, {σ , A, F}, {σ , B, F}, {A, B, F}, and {σ , A, B, F}.

Step 2 The accepting states of M′ are {F}, {σ , F}, {A, F}, {B, F}, {σ , A, F},
{σ , B, F}, {A, B, F}, and {σ , A, B, F}.

790 Chapter 11 Formal Languages and Finite-State Machines

Step 3 The transition table of the DFSA is Table 11.10.

Table 11.10
S

� � � ��
I a b

Ø Ø Ø
{σ} {σ , A} Ø
{A} {A} {B, F}
{B} {F} {B}
{F} Ø Ø

{σ , A} {σ , A} {B, F}
{σ , B} {σ , A, F} {B}
{σ , F} {σ , A} Ø
{A, B} {A, F} {B, F}
{A, F} {A} {B, F}
{B, F} {F} {B}

{σ , A, B} {σ , A, F} {B, F}
{σ , A, F} {σ , A} {B, F}
{σ , B, F} {σ , A, F} {B}
{A, B, F} {A, F} {B, F}

{σ , A, B, F} {σ , A, F} {B, F}

Step 4 The table indicates the states {σ , B}, {σ , F}, {A, B}, {σ , A, B},
{σ , B, F}, {A, B, F}, and {σ , A, B, F} are not reachable from any state, so
they are not the initial state {σ}. Delete the corresponding rows from the
table. It is now obvious from the table that the states {A}, {A, F}, {σ , A, F}
also cannot be reached from {σ}; delete those rows also from the table.

The resulting transition diagram of the DFSA M′ appears in
Figure 11.49.

Figure 11.49

{F}

{σ} {B}{σ, A}

a, b
a, b

a b
a a

b
a b b

{B, F}

From the diagram, it follows that L(M′) = {amb, ambna | m, n ≥ 1} =
L(M). Thus M and M′ are equivalent automata. As in the previous example,
we have shown that the equivalency between an NDFSA and a DFSA. �

The techniques illustrated in the two previous examples can be general-
ized to arrive at the following result. (The proof is a bit complicated, so we
omit it.)

11.7 Automata and Regular Languages 791

THEOREM 11.5 Every NDFSA is equivalent to a DFSA. �

The next theorem follows from Theorems 11.3, 11.4, and 11.5.

THEOREM 11.6 A language is regular if and only if it is accepted by a DFSA. �

As Theorem 11.6 indicates, a DFSA can define a regular grammar and vice
versa. Each is a characterization of the other.

We now look for an example of a simple-looking language that is not
regular.

EXAMPLE 11.53 Show that the language L = {anbn | n ≥ 1} is not regular.

PROOF (by contradiction):
Suppose L is regular. Then, by Theorem 11.6, a DFSA M exists such that
L(M) = L. Suppose M has m states. Since the string x = am+1bm+1 ∈ L, x is
accepted by the DFSA. Let P be the path corresponding to x; it ends at an
accepting state F.

Figure 11.50

→ s0 s1

si�1

si�2

sj�1

sj�1
a a

a a

b

a a

Fsi�sj

	

	

The path corresponding to the substring am+1 contains m+1 states. But,
since only m states exist, by the pigeonhole principle at least two of the m+1
states, say, si and sj, where i < j, must be the same; consequently, there
must be a directed cycle at si, each edge labeled a (see Figure 11.50). Let
l be the length of the cycle. The path s0-s1- · · · -si-sj+1-sj+2- · · · -F generates
the string x′ = am+1−lbm+1. Since this path ends at F (an accepting state),
x′ is accepted by the automaton; so x′ ∈ L. This is a contradiction, since x′
does not contain the same number of a’s and b’s. Thus L is not a regular
language. �

It follows by this example that the set of well-formed nested parentheses
is also not a regular language. (Why?)

These discussions lead us to a powerful conclusion: Regular languages
are accepted by DFSAs.

792 Chapter 11 Formal Languages and Finite-State Machines

Exercises 11.7

1–6. Construct a DFSA equivalent to each NDFSA in Exercises 1–4, 7, 8
of Section 11.6. Eliminate all unreachable states.

7–8. Design DFSAs equivalent to the NDFSAs in Exercises 23 and 24 of
Section 11.6. Eliminate all unreachable states.

Let L be the language recognized by an FSA and LR = {xn . . . x1 | x1 . . . xn ∈
L}. Construct an NDFSA that accepts LR from each FSA in Exercises 9–16.
(Hint: Reverse the directions of the edges; switch the roles of the initial
state and the accepting states.)

9. Figure 11.20 10. Exercise 17 in Section 11.3

11. Exercise 18 in Section 11.3 12. Exercise 36 in Section 11.3

13. Exercise 37 in Section 11.3 14. Exercise 38 in Section 11.3

15. Exercise 40 in Section 11.3 16. Exercise 41 in Section 11.3

17–24. Identify the language L(M) accepted by the FSA in Exercises 9–16.

25–32. Construct a DFSA equivalent to the NDFSA in Exercises 9–16.

Chapter Summary

The abstract models of computing machines with limited capabilities are
DFSA, FSM, and NDFSA. An automaton checks if a given input string has
a desired property and produces no output values. An FSM, on the other
hand, yields an output value corresponding to each input.

Formal Language
• A formal language over an alphabet � is a subset of �∗, the set of all

possible words over � (page 734).

• The concatenation of two languages A and B over� consists of words
ab with a ∈ A and b ∈ B (page 736).

• An = {a1a2 . . . an | ai ∈ A}, where A0 = � (page 739).

• A∗ = ∞∪
n=0

An is the Kleene closure of a language A (page 739).

Grammar
• A grammar G = (N, T, P, σ) consists of a finite set N of nontermi-

nal symbols, a finite set T of terminal symbols, a finite set P of
production rules, and a start symbol σ (page 746).

Chapter Summary 793

• A word w′ = xβy is directly derivable from a word w = xαy if a
productionα → β exists; we then write w ⇒ w′. A word wn is derivable
from w1 if there exists a finite sequence of derivations, w1 ⇒ w2, w2 ⇒
w3, . . . , wn−1 ⇒ wn. The language derivable from σ is the language
generated by G, denoted by L(G) (page 746).

• In BNF, each production w → w′ is written as w ::= w′; each nontermi-
nal symbol w is enclosed by angle brackets, as in 〈w〉; and production
rules with the same left-hand sides are combined with vertical bars into
a single rule (page 748).

• A type 0 grammar has phrase-structure (page 751).

• In a context-sensitive (type 1) grammar, every production is of the
form αAα′ → αβα′. (page 751)

• In a context-free (type 2) grammar, every production is of the form
A → α. (page 751).

• In a regular (type 3) grammar, every production is of the form A→ t
or A → tB (page 751).

• A language L(G) is context-sensitive, context-free, or regular
according as whether G is context-sensitive, context-free, or regular

(page 751).

• An ambiguous language contains a word that has more than one
derivation tree (page 753).

• The language accepted by a DFSA is regular (page 780).

Finite-State Automaton (FSA)
• A FSA M = (S, A, I, f , s0) consists of a finite set S of states, a finite set

A of accepting states, a finite set I of input symbols, a transition
function f : S×I → S, and an initial state s0. Every state–input pair
yields a unique next-state of the automaton (page 761).

• A transition table defines the transition function. (page 761).

• A transition diagram can represent a DFSA. The initial state s0 is
identified by drawing an arrow toward it; an accepting state by two
concentric circles around it (page 762).

• An input string is accepted by an automaton M if and only
if the string traces a path that ends at an accepting state. The
language L(M) accepted by M consists of all words recognized by it

(page 764).

• Two automata M and M′ are equivalent if L(M) = L(M′) (page 764).

794 Chapter 11 Formal Languages and Finite-State Machines

Finite-State Machine (FSM)
• An FSM M = (S, I, O, f , g, s0) consists of a finite set S of states, a finite

set I of input symbols, a finite set O of output symbols, a transition
function f : S × I → S, an output function g : S × I → O, and an
initial state s0. Every state–input pair produces a next-state and an
output value (page 772).

• A transition table can define the transition and output functions of
an FSM (page 772).

• A transition diagram also can define an FSM (page 772).

Nondeterministic Finite-State Automaton (NDFSA)
• An NDFSA M = (S, A, I, f , σ) consists of a finite set S of states, a subset

A of S of accepting states, a finite set I of input symbols, a transition
function f : S×I → P(S), and an initial state σ . A state–input pair may
be paired with zero, one, or more states (page 783).

• Every regular language is accepted by a NDFSA (page 784).

• Every NDFSA is equivalent to a DFSA (page 787).

• Every regular language is accepted by a DFSA (page 787).

Review Exercises

Let A = {λ, a, bc} and B = {a, ab}. Find each.

1. AB 2. BA 3. A3 4. B3

Find three words belonging to each language over {a,b,c}.

5. {a,b}{c}∗ 6. {a}b∗{c}∗

7. {ab}{ab}∗ 8. {b}{a,b,c}∗{b}

A grammar G = (N, T, P, σ) has N = {〈noun phrase〉,〈verb〉,〈adjective〉,
〈noun〉, 〈article〉}, T = {a,the,chicken,wolf,cabbage,eats,walks,reliable,
discreet, gracious}, σ = 〈sentence〉, and the production rules are:

〈sentence〉 → 〈noun phrase〉〈verb〉〈noun phrase〉
〈noun phrase〉 → 〈article〉〈noun〉 | 〈article〉〈adjective〉〈noun〉

〈article〉 → the | a

〈noun〉 → chicken | wolf | cabbage

〈adjective〉 → reliable | discreet | gracious

〈verb〉 → eats | walks

Chapter Summary 795

Determine if each is a valid sentence in L(G).

9. The gracious chicken walks the wolf.

10. The reliable wolf eats a chicken.

Make a derivation tree for each sentence.

11. The discreet wolf eats the cabbage.

12. The reliable cabbage walks the gracious chicken.

Using the grammar G = (N, T, P, σ) where N = {σ , A, B}, T = {a,b}, and
P = {σ → bσ , σ → aA, A → aB, A → bσ , B → aB, B → bB, A → a, B → a,
B → b}, determine if each string belongs to L(G).

13. ab3a 14. (ab)3 15. aba2b 16. ab2a4

Construct a parse tree for each string.

17. ba2b 18. b2a3b 19. aba2 20. a2b2a2

Develop a grammar that generates each language over {a,b}.

21. {bn | n ≥ 1} 22. {anban | n ≥ 0} 23. {b2n+1 | n ≥ 0} 24. {abna | n ≥ 0}

With the grammar below, construct parse trees for the simple while
statements in Exercises 25 and 26.

〈while statement〉 ::= while 〈expression〉 do 〈statement〉
〈statement〉 ::= 〈assignment statement〉 | 〈while statement〉 | λ

〈assignment statement〉 ::= 〈variable〉 := 〈expression〉
〈variable〉 ::= a | b | c | . . . | z

〈expression〉 ::= 〈variable〉〈sign〉〈variable〉 |
〈variable〉〈operator〉〈variable〉

〈operator〉 ::= =|�=|<|≤|>|≥
〈sign〉 ::= + | −

◦ 25. While x ≥ y do x := y + z.

◦ 26. While x ≥ y do while y < z do a := b + c.

27. Draw the transition diagram of the DFSAM = (S,A, I, f , s0), where
S = {s0, s1, s2, s3, s4}, A = {s3}, I = {a,b}, and f is defined by Table
11.11.

28. Redo Exercise 27 with A = {s1, s3} and f defined by Table 11.12.

Construct the transition table for each DFSA.

796 Chapter 11 Formal Languages and Finite-State Machines

Table 11.11
S� ��

I a b

s0 s1 s4
s1 s4 s2
s2 s4 s3
s3 s3 s3
s4 s4 s4

Table 11.12
S� ��

I a b

s0 s1 s2
s1 s1 s1
s2 s4 s3
s3 s3 s3
s4 s4 s4

29. b
a

a

a,b

s2

b
s0 s1→

30.

baa

b b a

a,b

a,b

s3s2s1

s4

s0→

31–34. Identify the language L(M) accepted by the automata in Exercises
27–30.

Design a DFSA that accepts strings over {a, b} that:

35. Begin with aaa. 36. Contain abb as a substring.

37. f g

S
�

��
I a b a b

s0 s0 s1 1 0
s1 s2 s2 0 0
s2 s0 s3 1 0
s3 s3 s2 1 0

38. f g

S
�

��
I a b a b

s0 s0 s1 0 0
s1 s2 s3 0 1
s2 s3 s2 1 1
s3 s3 s2 1 0

Chapter Summary 797

Construct a transition table for each FSM.

39.
a/0 b/1

b/1 a/0 b/0
s0 s1

a/1

s2→

40.

→ s2s2

b/0

b/0

a/0 a/1

s0

a/0

b/1

Using the FSM in Figure 11.33 (Example 11.38), find the output from each
input string.

41. a2b2aba 42. aba2ba 43. ab3ab 44. a2b3a2

45–46. Redraw the DFSAs in Exercises 27 and 29 as FSMs.

Design an FSM to accept string over {a, b} that:

47. Contain ab2 as a substring. 48. Begin with a or b2.

49–50. Compose the regular grammar defined by the DFSA in Exercises
27–28.

Draw the transition diagram of the NDFSA M = (S, A, I, f , s0), where I =
{a,b} and:

51. S = {s0, s1, s2), A = {s1} 52. S = {s0, s1, s2}, A = {s1}

S� ��
I a b

s0 {s1} {s0}
s1 {s2} {s1, s2}
s2 {s2} {s2}

S� ��
I a b

s0 {s1} {s0}
s1 {s0, s2} {s1}
s2 {s1} {s0, s2}

Construct a transition table for each NDFSA.
Determine if the NDFSA in Exercise 52 accepts each input string.

53.

→ s0 s1 s2

s2

a,b

b

b
b

a
aa a,b

798 Chapter 11 Formal Languages and Finite-State Machines

54.

→ s2s1

s3

b

b

a, ba, b
a

a
b

b
a

a

s0

55. a3 56. ab2ab4 57. a2b3 58. a3b4

59–62. Determine if each input string in Exercises 55–58 is accepted by
the NDFSA in Exercise 54.

Create a NDFSA that accepts the language L(G) generated by the regular
grammar G = (N, T, P, σ), where:

63. N = {σ , A, B}, T = {A, B}, and P = {σ → bσ , σ → aA, A → aB, A →
bA, A → bB, B → aB, B → bB, σ → a, A → b}

64. N = {σ , A, B}, T = {a,b}, and P = {σ → aA, σ → bσ , A → aσ , A → aB,
A → bA, B → aB, B → bσ , B → bA, σ → a, A → b}

65–66. Construct a DFSA equivalent to each NDFSA in Exercises 51 and
52.

67–68. What languages do the DFSAs in Exercises 65 and 66 accept?

Let A and B be any languages over a finite alphabet �. Prove each.

*69. (A ∪ B∗)∗ = (A∗ ∪ B)∗ **70. (A∪B)∗ = (A∗∪B∗)∗ = (A∗B∗)∗

Supplementary Exercises

Let m denote the number of a’s and n the number of b’s in a string over
{a,b}. Design an FSA that accepts strings with the given properties.

1. m ≡ 1(mod 2) and n ≡ 1(mod 2).

2. m ≡ 0(mod 3) and n ≡ 1(mod 3).

3. m ≡ 0(mod 2) and n ≡ 1(mod 2), or m ≡ 1(mod 2) and n ≡ 0(mod 2).

4. Design an FSA that accepts positive integers n divisible by 3.

◦ *5. Using the syntax diagram in Figure 11.51 for a real number, design
an FSA to recognize valid real numbers.

*6. The Roman numerals M, D, C, L, X, V, and I have values 1000, 500,
100, 50, 10, 5, and 1, respectively. In the strict additive notation
no numeral with a smaller value precedes a numeral with a larger
value. For instance, 19 is written as XVIIII in lieu of the shorter

Chapter Summary 799

Figure 11.51

d d

E

.

d

�

�

�

�

representation XIX and MMLXXVI, unlike MCMXCVI, is a well-
formed sequence. Excepting M’s, C, X, or I should not appear more
than four times in the same sequence, and D, L, or V no more than
once. This makes sense since CCCCC = D, XXXXX = L, and so
on. Design an FSA to recognize the language of such well-formed
sequences of additive Roman numerals.

Develop a grammar that generates each language over {a,b}.

*7. The set of words that begin and end with a.

*8. The set of words that begin with aa and end with bb.

9. Using BNF, define a grammar for the language of well-formed nested
parentheses.

10. Use productions instead of BNF to define the grammar in Exercise 9.

A Moore machine M = (S, I, O, f , g, s0), named after Edward Moore who
introduced it in 1956, is an FSM consisting of a finite set S of states, a
finite set I of input symbols, a finite set O of output symbols, a transition
function f : S × I → S, an output function g : S → O, and an initial
state s0. Draw a transition diagram for the Moore machine defined by each
transition table.

11.

f g
input

s 0 1

s0 s0 s1 1
s1 s3 s2 0
s2 s2 s3 1
s3 s0 s1 1

12.

f g
input

s 0 1

s0 s1 s3 0
s1 s1 s2 1
s2 s3 s2 1
s3 s1 s2 0

Construct a transition table for each Moore machine.

13.

→ s2s1s0

1
0 0

0

1 1 11 0

800 Chapter 11 Formal Languages and Finite-State Machines

Edward Forrest Moore (1925–) was born in Baltimore, Maryland. He graduated from Virginia
Polytechnic Institute in 1947 and received his Ph.D. in mathematics from Brown 3 years later. After
teaching at the University of Illinois for a year, he joined the technical staff at Bell Telephone Labs. In
1966, he joined the faculty of the University of Wisconsin, Madison, and taught there until his retirement
in 1985.

Moore has made outstanding contributions to the logical design of switching circuits, automata theory,
graph theory, and database management.

14.

→ s2s1s0

0 1
0

1 0

1 1

1

0 1

s3

00

The output generated by the Moore machine M = (S, I, O, f , g, s0) for the
input string a1a2 . . . am is g(s0)g(s1) . . . g(sm), where si = f (si−1, ai) and 1
≤ i ≤ m. Find the output produced by the machine in Exercise 13 for each
input.

15. 011 16. 1010 17. 10001 18. 1101101

19. Let L be a regular language. Prove that LR = {xn . . . x1 | x1 . . . xn ∈ L}
is also regular.

**20. An FSM M = (S, I, O, f , g, s0) is simply minimal if no output rows
in its transition table are identical. If | S |= n, | I |= m, and | O |= p,
how many simply minimal FSMs are possible?

Computer Exercises

Write a program to do each task, where � = {a,b}.

1. Determine if a string over �:

• Begins with aa.

• Ends with bb.

• Contains exactly one a.

• Contains at least one a.

• Contains aba as a substring.

• Has its number of a’s congruent to 1 mod 3.

Chapter Summary 801

• Has an even number of a’s and b’s.

• Has both its number of a’s and b’s congruent to 1 mod 3.

2. Let m denote the number of a’s and n the number of b’s in a string over
�. Read in a word over � and see if it has:

• m ≡ 0(mod 5) • m ≡ 3(mod 5)

• m ≡ 0(mod 3) or m ≡ 1(mod 3) • m ≡ 0(mod 3) or m ≡ 2(mod 3)

• m ≡ 0(mod 3) and n ≡ 1(mod 3) • m ≡ 0(mod 3) and n ≡ 2(mod 3)

3. For a DFSA with n (≤10) states, labeled 1 through n, read in its number
of states n and transition table. Read in a sequence of input strings over
� and determine if each is accepted by the DFSA.

4. Implement the unit delay machine in Example 11.41.

5. Read in two binary numbers and use the FSM in Example 11.42 to
compute their sum.

◦ 6. By means of the syntax diagram in Figure 11.31, determine if a string
of characters represents a valid integer.

◦ 7. Ascertain with the syntax diagram in Figure 11.32 whether a string of
characters represents a valid real number. (Excluding the exponential
form.)

8. Read in the number of states n, the transition table, and a set of input
strings for an FSM with n (≤10) states, labeled 1 through n. Print the
output produced by each input string.

9. Using a DFSA with n (≤10) states, labeled 1 through n, read its number
of states n and transition table. Determine the corresponding regular
grammar.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Discuss how BNF rules are used to define programming languages such
as C++ and Java.

2. Discuss Turing machines and Church’s thesis.

3. Explain how vending machines, slot machines, and garage door openers
can be modeled by FSAs.

4. Write an essay on Kleene closure.

5. Write an essay on different types of FSMs and their applications.

802 Chapter 11 Formal Languages and Finite-State Machines

Enrichment Readings

1. W. J. Barnier, “Finite-State Machines as Recognizers,” The UMAP
Module 671 (1986), pp. 209–232.

2. B. Hayes, “On the Finite-State Machine, a Minimal Model of Mouse-
traps, Ribosomes, and the Human Soul,” Scientific American, Vol. 249
(Dec. 1983), pp. 19–28, 178.

3. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, MA, 1979.

4. Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., McGraw-
Hill, New York, 1978.

5. P. Linz, An Introduction to Formal Languages and Automata, D. C.
Heath, Lexington, MA 1990.

6. J. C. Martin, Introduction to Languages and the Theory of Computation,
2nd ed., McGraw-Hill, New York, 1997.

7. M. Sipser, Introduction to the Theory of Computation, PWS, Boston,
1997.

8. W. A. Wulf et al., Fundamental Structures of Computer Science, Addison-
Wesley, Reading, MA, 1981, pp. 1–64.

Chapter 12

Boolean Algebra and
Combinatorial Circuits

Mathematics is music for the mind; music is mathematics for the soul.
— ANONYMOUS

G eorge Boole’s classic An Investigation of the Laws of Thought, pub-
lished in 1854, led to the development of two closely related areas of

mathematics: symbolic logic and the mathematical system called boolean
algebra. Chapter 1 of Boole’s book demonstrated how valuable the symbols
and the laws of logic are in investigating how we reason in order to reach
conclusions. That material will help us in studying this chapter.

Until the late 1930s boolean algebra did not seem to have many use-
ful applications. In 1938, Claude E. Shannon, while working at the
Massachusetts Institute of Technology, used boolean algebra to analyze
electrical circuits, thus opening the door for a world of applications of
boolean algebra. Since then, boolean algebra has played a central role in the
design, analysis, and simplification of electronic devices, including digital
computers.

In this chapter we will address some of the interesting problems that
boolean algebra handles well:

• Three switches for a light fixture are in a hallway. If the light is on, it
can be turned off by flipping one of the switches off. On the other hand,
if it is off, flipping one of the tongues turns it on. What does the circuit
look like?

• Design a circuit to compute the sum of two 3-bit numbers.

• How can boolean algebra simplify a circuit while maintaining the
circuit’s capabilities?

• Electronic devices display digits by lighting up a maximum of seven line
segments in the adjacent configuration. What kind of circuit will accept
the binary-coded decimal expansion of a decimal digit and light up a
segment?

803

804 Chapter 12 Boolean Algebra and Combinatorial Circuits

Claude Elwood Shannon (1916–2001), a pioneer in artificial intelli-
gence and information theory, was born in Gaylord, Michigan. After grad-
uating from the University of Michigan in 1936, he earned his M.S. in
1937 and Ph.D. in applied mathematics in 1940 from MIT.

Shannon was a research mathematician at the Bell Telephone Labs
from 1941 to 1957 and became professor of electrical engineering at MIT
in 1958. In 1948, he coined the word bit for binary digit.

He received honorary doctorates from many universities: Michigan,
Pittsburgh, Princeton, Northwestern, Edinburgh, Oxford, Carnegie-
Mellon, Tufts, and Pennsylvania. He also received numerous honors and
awards, including the Nobel Peace Prize, Morris Liebmann Memorial
Award, Ballantine Medal, Medal of Honor from the Institute of Electrical
and Electronics Engineers (IEEE), and National Medal of Science.

Shannon made outstanding contributions to the theory of switching circuits, information theory,
cryptography, and artificial intelligence.

12.1 Boolean Algebra

A boolean algebra is a mathematical system; it consists of a nonempty
set S with one or more operations defined on S, and a set of axioms that
the elements of S satisfy.

A mathematical system can be thought of as a skeleton, like a human
skeleton. Whether people are black or white, Caucasian or Chinese, their
skeletons have common characteristics. Likewise, concrete examples of a
mathematical system share common properties. When we study mathemat-
ical systems, we need to study properties common to all examples of such
systems. Real numbers form an important number system.

Before formally defining a boolean algebra, we examine two concrete
examples. Look for the properties common to both because they will help
us define a boolean algebra.

EXAMPLE 12.1 Let U be an arbitrary set and P(U) its power set. Let A, B, and C be any three
elements of P(U). You may recall from Chapter 2 that the union, intersec-
tion, and complementation operations on P(U) satisfy the following:

Commutative properties

• A ∪ B = B ∪ A • A ∩ B = B ∩ A

Associative properties

• A ∪ (B ∪ C) = (A ∪ B) ∪ C • A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributive properties

• A∩ (B∪C) = (A∩B)∪ (A∩C) • A∪ (B∩C) = (A∪B)∩ (A∪C)

12.1 Boolean Algebra 805

Identity properties

• A ∪ Ø = A • A ∩ U = A

Complement properties

• A ∪ A′ = U • A ∩ A′ = Ø �

The next example is a bit sophisticated.

EXAMPLE 12.2 Let D30 be the set of positive factors of 30: D30 = {1, 2, 3, 5, 6, 10, 15, 30}.
Define three operations ⊕, �, and ′ on D30 as follows:

a ⊕ b = lcm {a, b}
a � b = gcd {a, b}†

a′ = 30
a

For instance,

2 ⊕ 3 = lcm {2, 3} = 6 = 3 ⊕ 2;

2 � 3 = gcd {2, 3} = 1 = 3 � 2;

6′ = 30
6

= 5;

6 ⊕ 6′ = 6 ⊕ 5 = lcm {6, 5} = 30;

6 ⊕ 10 = lcm {6, 10} = 30 = 10 ⊕ 6;

6 � 10 = gcd {6, 10} = 2 = 10 � 6;

5′ = 30
5

= 6;

5 � 5′ = 5 � 6 = gcd {5, 6} = 1.

These operations satisfy the following properties:

Commutative properties

• a ⊕ b = b ⊕ a • a � b = b � a

Associative properties

• a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c • a � (b � c) = (a � b) � c

Distributive properties

• a � (b ⊕ c) = (a � b) ⊕ (a � c) • a ⊕ (b � c) = (a ⊕ b) � (a ⊕ c)

Identity properties

• a ⊕ 1 = a • a � 30 = a

†Recall that lcm {a, b} denotes the least common multiple of a and b, and gcd {a, b} the greatest
common divisor of a and b.

806 Chapter 12 Boolean Algebra and Combinatorial Circuits

Complement properties

• a ⊕ a′ = 30 • a � a′ = 1 �

Take a close look at both examples. What do they have in common? In
each case, a nonempty set B contains two special elements — Ø and U
in Example 12.1; 1 and 30 in Example 12.2. Furthermore, both examples
contain two binary operators and a unary operator, satisfying the same 10
properties. These commonalities suggest a mathematical system called a
boolean algebra, defined below.

Boolean Algebra
A boolean algebra consists of a nonempty set B containing two distinct
elements 0 and 1, two binary operators + and ·, and a unary operator ′
satisfying the following conditions for all x, y, and z in B:

Commutative laws

• x + y = y + x • x · y = y · x

Associative laws

• x + (y + z) = (x + y) + z • x · (y · z) = (x · y) · z

Distributive laws

• x · (y + z) = (x · y) + (x · z) • x + (y · z) = (x + y) · (x + z)

Identity laws

• x + 0 = x • x · 1 = x

Complement laws

• x + x′ = 1 • x · x′ = 0

In symbols, the boolean algebra is denoted by 〈B, +, ·, ′, 0, 1〉 .

We clarify a few points before we go any further:

• The operations +, ·, and ′ are called sum, product, and complementa-
tion, respectively. (For instance, in Example 12.1, the binary operators
are ∩ and ∪; the unary operator is complementation.) These operators
are generic symbols: the operator + does not stand for addition nor the
operator · for multiplication.

• Since + and · are binary operators, both x+y and x ·y belong to B for all
x and y in B; since ′ is a unary operator, x′ belongs to B for every x ∈ B.

• The elements 0 and 1 are the zero element and the unit element,
respectively. Again, they are generic symbols for the zero element and
the unit element, respectively; they need not be the familiar numbers
zero and one. In Example 12.1, the zero element is Ø and the unit
element is U; in Example 12.2, they are 1 and 30, respectively.

12.1 Boolean Algebra 807

• When it is clear from the context, we designate the boolean algebra
〈B, +, ·, ′, 0, 1〉 as the boolean algebra B for convenience.

• The operator · in x · y is usually omitted for convenience; thus xy =
x · y. No parentheses appear when there is no danger of confusion. For
instance, (xy) + (xz) = xy + xz and x + y + z = x + (y + z) = (x + y) + z.

• Precedence rules govern evaluating expressions in boolean algebra:

First, parenthesized subexpressions are evaluated.
Complementation has the highest priority among the operators,
followed by · and then +.

For example, xy + zx′ = (xy) + [z(x′)].
• The 10 axioms are paired off in two columns. In each pair, an axiom

can be obtained from the other by swapping + with ·, and 0 with 1.
These are dual axioms. For instance, the dual of x + x′ = 1 (axiom 9)
is x · x′ = 0 (axiom 10). (In a boolean algebra, the dual of every true
statement is also true. This property is the principle of duality.)

According to the definition, a boolean algebra contains at least two ele-
ments, the zero and the unit. Consequently we can ask: Does any boolean
algebra contain exactly two elements? The next example shows that answer
is yes.

EXAMPLE 12.3 Let B = {0, 1}. Define the operations +, ·, and ′ on B as follows:

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1
0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = 1

0′ = 1 1′ = 0

[Think of the operators + and · as the or (∨) and the and (∧) opera-
tors, respectively.] By Theorem 7.1, the commutative, associative, and
distributive laws are satisfied.

Clearly, x + 0 = x and x · 1 = x, for every x ∈ B; therefore, 0 is the zero
element and 1 is the unit element. Besides,

0 + 0′ = 0 + 1 = 1 and 1 + 1′ = 1 + 0 = 1

0 · 0′ = 0 · 1 = 0 and 1 · 1′ = 1 · 0 = 0

Consequently, the complement laws are also satisfied. Thus 〈B, +, ·, ′, 0, 1〉
is a boolean algebra.

Some fundamental facts about boolean algebras come from the above
axioms. We will find them useful in later discussions.

THEOREM 12.1 (Unique Identities) The zero element and the unit element of a boolean
algebra B are unique.

808 Chapter 12 Boolean Algebra and Combinatorial Circuits

PROOF:
The zero element in B will be proved unique; the other half will be left as
a routine exercise.

Suppose there are two zero elements, 01 and 02, in B. Since 02 is a zero
element, 01 + 02 = 01. Likewise, since 01 is a zero element, 02 + 01 = 02.
But 02 + 01 = 01 + 02, by the commutative law. Therefore, 01 = 01 + 02 =
02 + 01 = 02, so the zero element is unique. �

THEOREM 12.2 (Unique Complement) The complement of every element in a boolean
algebra is unique.

PROOF:
Let x be an arbitrary element in a boolean algebra. Then by the complement
laws, x + x′ = 1 and xx′ = 0. If x has a second complement y, x + y = 1 and
xy = 0.

To show that y = x′ (the reason for each step is given on the RHS):

y = y1 identity law
= y(x + x′) complement law
= yx + yx′ distributive law
= xy + x′y commutative law
= 0 + x′y complement law
= xx′ + x′y complement law
= x′x + x′y commutative law
= x′(x + y) distributive law
= x′1 complement law
= x′ identity law

Thus the complement of every element in a boolean algebra is
unique. �

The next example uses Theorem 12.2.

EXAMPLE 12.4 With the boolean algebra D30 in Example 12.2, verify each.

(1) 6 ⊕ 6 = 6 (2) 5 ⊕ 30 = 30 (3) (5′)′ = 5
(4) 3 ⊕ (3 � 5) = 3 (5) (3 ⊕ 5)′ = 3′ � 5′ (6) (5 � 6)′ = 5′ ⊕ 6′

SOLUTION:

(1) 6 ⊕ 6 = lcm {6, 6} = 6 (2) 5 ⊕ 30 = lcm {5, 30} = 30

(3) 5′ = 30
5

= 6 (4) 3 � 5 = gcd {3, 5} = 1

So (5′)′ = 6′ = 30
6

= 5 So 3 ⊕ (3 � 5) = 3 ⊕ 1

= lcm {3, 1} = 1

12.1 Boolean Algebra 809

(5) 3 ⊕ 5 = lcm {3, 5} = 15 (6) 5 � 6 = gcd {5, 6} = 1

So (3 ⊕ 5)′ = 15′ = 30
15

So (5 � 6)′ = 1′ = 30
1

= 2 = 30

3′ � 5′ = 10 � 6 = 5 ⊕ 6

= gcd {10, 6} = 2 = lcm {5, 6}
= (3 ⊕ 5)′ = 5′ ⊕ 6′ �

We now establish a few more properties of boolean algebras.

THEOREM 12.3 Let x and y be arbitrary elements in a boolean algebra 〈B, +, ·, ′, 0, 1〉.
Then:

Idempotent laws

• x + x = x • xx = x

Boundedness laws

• x + 1 = 1 • x0 = 0

Involution laws

• (x′)′ = x • 0′ = 1

• 1′ = 0

Absorption laws

• x + xy = x • x(x + y) = x

De Morgan’s laws

• (x + y)′ = x′y′ • (xy)′ = x′ + y′

PROOF:

• To prove that x + x = x:

x + x = (x + x)1 identity law
= (x + x)(x + x′) complement law
= xx + xx′ + xx + xx′ distributive law
= x + xx′ idempotent law
= x + 0 identity law
= x identity law

• To prove that x + 1 = 1:

x + 1 = x + (x + x′) complement law

810 Chapter 12 Boolean Algebra and Combinatorial Circuits

= (x + x) + x′ associative law
= x + x′ idempotent law
= 1 complement law

• To prove that (x′)′ = x:

Since x′ is the complement of x, x + x′ = 1 and xx′ = 0. Using the
commutative laws, these equations can be rewritten as

x′ + x = 1 and x′x = 0 (12.1)

Since x′ is also an element of B, it has a complement (x′)′. Therefore,

x′ + (x′)′ = 1 and x′(x′)′ = 0 (12.2)

Equations (12.1) imply x is a complement of x′; by Equations (12.2), (x′)′
is also a complement of x′. But, by Theorem 12.2, the complement of x′ is
unique; therefore, (x′)′ = x.

• To prove that x + xy = x:

x + xy = x1 + xy identity law
= x(1 + y) distributive law
= x(y + 1) commutative law
= x1 boundedness law
= x

• To prove that (x + y)′ = x′y′:
By the complement laws, we must show that (x + y) + x′y′ = 1 and
(x + y)(x′y′) = 0.

(1) (x + y) + x′y′ = x + (y + x′y′) associative law
= x + (y1 + x′y′) identity law
= x + [y(x + x′) + x′y′] complement law
= x + [(yx + yx′) + x′y′] distributive law
= x + [xy + (x′y + x′y′)] commutative law
= (x + xy) + (x′y + x′y′) associative law
= x(1 + y) + x′(y + y′) distributive law
= x1 + x′(y + y′) boundedness law
= x1 + x′1 complement law
= x + x′ identity law
= 1 complement law

(2) (x + y)(x′y′) = (x′y′)(x + y) commutative law
= (x′y′)x + (x′y′)y distributive law
= x(x′y′) + (x′y′)y commutative law
= (xx′)y′ + x′(y′y) associative law

12.1 Boolean Algebra 811

= (xx′)y′ + x′(yy′) commutative law
= 0y′ + x′0 complement law
= y′0 + x′0 commutative law
= 0 + 0 boundedness law
= 0 identity law

Thus, by parts 1 and 2, x′y′ is the complement of x + y; that is, (x + y)′ =
x′y′. �

A close relationship exists between the boolean algebras D30 and P(U),
where U = {a, b, c}. They are displayed by the Hasse diagrams in
Figures 12.1 and 12.2, respectively, which have the same structure. This
is not surprising because the algebras are isomorphic. [Find an isomor-
phism f : D30 → P(U) that preserves the operations; that is, f (x ⊕ y) =
f (x) ∪ f (y), f (x � y) = f (x) ∩ f (y), and f (x′) = (f (x))′.]

Figure 12.1 30

6

2

1

5

10 15

3

Figure 12.2

{a,b} {b,c}

{a} {c}

U

Ø

{b}

{a,c}

Any boolean algebra, then, has at least two elements, as well as two
binary operators and a unary one that adhere to various laws.

812 Chapter 12 Boolean Algebra and Combinatorial Circuits

Exercises 12.1

Using Example 12.2, evaluate each.

1. 6 ⊕ 10

5. 3 � (5 � 6)

9. (5 � 10)′

2. 6 � 10

6. (3 � 5) � 6

10. 5′ ⊕ 10′

3. 2 ⊕ (3 ⊕ 5)

7. (3 ⊕ 6)′

11. 2 � 3 ⊕ 5

4. (2 ⊕ 3) ⊕ 5

8. 3′ � 6′

12. 2 ⊕ 3 � 5

The set D70 = {1, 2, 5, 7, 10, 14, 35, 70} of positive factors of 70 is a boolean
algebra under the operations ⊕, �, and ′ defined by x ⊕ y = lcm {x, y},
x � y = gcd {x, y}, and x′ = 70/x. Compute each.

13. 7 ⊕ 5

17. (7 � 2)′
14. 2 � 7

18. 7′ ⊕ 2′
15. (5 ⊕ 7)′

19. 10 ⊕ 10

16. 5′ � 7′

20. 7 � 7

Using the boolean algebra D70, verify each.

21. (5′)′ = 5

23. 5 � (5 ⊕ 7) = 5

22. 7 ⊕ (7 � 5) = 7

24. (5 ⊕ 7)′ = 5′ � 7′

25. With the boolean algebras in Examples 12.1, 12.2, and 12.3, and D70,
predict the number of elements in a finite boolean algebra.

26. Define the operations +, ·, and ′ on B = {0, 1} as follows: x + y =
max {x, y}, x · y = min {x, y}, 0′ = 1, and 1′ = 0. Is 〈B, +, ·, ′, 0, 1〉 a
boolean algebra?

Determine if 〈S, +, ·, ′, 0, 1〉 is a boolean algebra for each subset S of the
boolean algebra D30.

27. {1, 2, 15, 30} 28. {1, 6, 10, 30} 29. {1, 3, 5, 30} 30. {1, 5, 6, 30}
Is 〈S, ∪, ∩,′ , Ø, U〉 a boolean algebra for each subset S of P(U), where
U = {a, b, c}?
31. {Ø, {a}, {b, c}, U}
33. {Ø, {b}, {a, c}, U}

32. {Ø, {a}, {b}, {a, b}, U}
34. {Ø, {c}, {a, b}, U}

35. Define the operations +, ·, and ′ on B = {a, b, 0, 1} so that 〈B, +, ·, ′, 0, 1〉
would be a boolean algebra.

Find the dual of each boolean property.

36. 0′ = 1

38. (x + y)z = xz + yz

37. x(x + y) = x

39. (xy)′ = x′ + y′

Prove algebraically.

40. The unit element in a boolean algebra is unique.

12.2 Boolean functions 813

41. xx = x

44. 1′ = 0

47. x + y = (x′y′)′

42. x0 = 0

45. x(x + y) = x

48. xy = (x′ + y′)′

43. 0′ = 1

46. (xy)′ = x′ + y′

49. (x + y)z = xz + yz

50. xy′ + x′y = (x + y)(xy)′ 51. (xy) + z = (x + z)(y + z)

*52. Let U = {a, b, c}. Define a suitable function f : D30 → P(U) that
preserves the operations; that is, f (x ⊕ y) = f (x) ∪ f (y), f (x � y) =
f (x) ∩ f (y), and f (x′) = (f (x))′.

12.2 Boolean functions

This section introduces the concept of a boolean function and illustrates
the possible equality of boolean expressions. We also see that through the
laws of boolean algebra, boolean expressions can be rewritten in a standard
form. Since the design and analysis of electronic devices rely on the two-
element boolean algebra 〈B, +, ·, ′, 0, 1〉, discussed in Example 12.3, in the
rest of this chapter we will employ only this boolean algebra. The topics
in this section closely resemble the topics in Section 1.1, so you will find it
beneficial to review that section before we continue.

We begin with a couple of definitions.

Boolean Function
A boolean variable assumes the value 0 or 1. A boolean function is a
function f : Bn → B, where Bn = B × B × · · · × B, the cartesian product
of B with itself to n factors. Let (x1, x2, . . . , xn) ∈ Bn. Then the value of the
boolean function f at (x1, x2, . . . , xn) is denoted by f (x1, x2, . . . , xn), although
technically it should be f ((x1, x2, . . . , xn)). Since codom(f) = B, the value
of the boolean function for any input value (x1, x2, . . . , xn) is either 0 or 1.
[Recall that codom(f) denotes the codomain of the function.]

Boolean functions can be defined by logic tables. Tables 12.1 and 12.2
define two boolean functions from B2 to B. The value f (x, y) is given for
every combination of values of x and y. (Notice the similarity between
these tables and the truth tables for the disjunction and conjunction of two
propositions.)

Table 12.1 x y f (x, y)

0 0 0
0 1 1
1 0 1
1 1 1

814 Chapter 12 Boolean Algebra and Combinatorial Circuits

Table 12.2 x y f (x, y)

0 0 0
0 1 0
1 0 0
1 1 1

Boolean functions can also be defined by boolean expressions made up
of boolean variables and boolean operators. For instance, if x, y, and z are
boolean variables, then xy, (xy)′, x+yz, and x+(xy)′ are boolean expressions.

Next we define a boolean expression recursively.

A Recursive Definition of a Boolean Expression
Let x1, x2, . . . , xn be n boolean variables. Then:

• Basis clause 0, 1, x1, x2, . . . , xn are boolean expressions.

• Recursive clause If E1 and E2 are boolean expressions, then so are
(E1), E′

1, E1E2, and E1 + E2.

(The symbols 0 and 1 denote bits. Parentheses are dropped when no
confusion results.)

The next example demonstrates this definition.

EXAMPLE 12.5 Verify that x + (yz)′ is a boolean expression, where the variables x, y, and z
are boolean variables.

SOLUTION:
Since y and z are boolean variables, they are boolean expressions by
the basis clause. Consequently, yz and hence (yz)′ are boolean expres-
sions by the recursive clause. Since x is a boolean variable, x is also a
boolean expression; therefore, by the recursive clause, x+ (yz)′ is a boolean
expression. �

The following example shows how to evaluate boolean expressions for
given values of boolean variables.

EXAMPLE 12.6 Evaluate the boolean expression x+(yz)′ for the triplets (0, 1, 0) and (0, 1, 1).

SOLUTION:
When x = 0, y = 1, and z = 0:

x + (yz)′ = 0 + (1 · 0)′ = 0 + 0′ = 0 + 1 = 1

When x = 0, y = 1 = z:

x + (yz)′ = 0 + (1 · 1)′ = 0 + 1′ = 0 + 0 = 0 �

When are boolean expressions equal? The next definition gives us an
answer.

12.2 Boolean functions 815

Equality of Boolean Expressions
Two boolean expressions E1(x1, x2, . . . , xn) and E2(x1, x2, . . . , xn) are equal,
denoted by E1(x1, x2, . . . , xn) = E2(x1, x2, . . . , xn), if they yield the same
value for all (x1, x2, . . . , xn) in Bn.

When the boolean expressions E1 and E2 are fairly simple, logic tables
can determine if they are equal. This procedure is quite similar to verifying
the logical equivalence of two compound statements, as the next example
illustrates.

EXAMPLE 12.7 Using a logic table, verify that (x + y)′ = x′y′.

SOLUTION:
As in propositional logic, constructing Table 12.3 shows that the columns
headed by (x + y)′ and x′y′ are identical; therefore, (x + y)′ = x′y′.

Table 12.3 x y x + y (x + y)′ x′ y′ x′y′

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

↑ identical columns ↑ �

The boolean expression x+(yz)′ defines the boolean function f : B3 → B,
where f (x, y, z) = x + (yz)′. Then:

f (0, 0, 0) = 0 + (0 · 0)′ = 0 + 0′ = 0 + 1 = 1

and

f (1, 1, 1) = 1 + (1 · 1)′ = 1 + 1′ = 1 + 0 = 1

The output values of the function for various input values (x, y, z) are
shown in the logic table of Table 12.4.

Table 12.4 x y z yz (yz)′ f (x, y, z) = x + (yz)′

0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1

816 Chapter 12 Boolean Algebra and Combinatorial Circuits

EXAMPLE 12.8 Construct a logic table for the boolean function

f (x, y, z) = (x + y + z)(xyz)′

SOLUTION:
Just as we build up truth tables for complex propositions from simple ones,
we build up the boolean expression (x+y+z)(xyz)′ from boolean subexpres-
sions in steps: x, y, z, x+y, x+y+z, xy, xyz, (xyz)′, and finally (x+y+z)(xyz)′.
The table contains a column for each subexpression; fill in the various
columns using the definitions of sum, product, and complement. Table 12.5
is the resulting table.

Table 12.5 x y z x + y (x + y) + z xy xyz (xyz)′ f (x, y, z)
= (x + y + z) (xyz)′

0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 1 1
0 1 0 1 1 0 0 1 1
0 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 0 0 �

Every boolean expression in n boolean variables defines a boolean func-
tion from Bn to B. On the other hand, given a boolean function f : Bn → B,
can we find a boolean expression E(x1, x2, . . . , xn) such that f (x1, x2, . . . ,
xn) = E(x1, x2, . . . , xn)? Yes! Such a boolean expression E defines the
boolean function f.

A system for finding such an expression lies below.

EXAMPLE 12.9 Find a boolean expression that defines the boolean function f in Table 12.6.

Table 12.6 x y f (x, y)

0 0 0
0 1 1
1 0 1
1 1 0

SOLUTION:
To find a boolean expression E that yields the same values as the function f,
look at each row that corresponds to the functional value 1. From each such
row construct a boolean subexpression that has the value 1, and has the

12.2 Boolean functions 817

value 0 for any other combination of x and y. The desired boolean expression
is obtained by taking the sum of all such subexpressions.

• When x = 0 and y = 1, the value of the function is 1 (see row 2); so the
value of the expression must be 1 when x = 0 and y = 1, that is, when
x′ = 1 = y. One such expression is E1 = x′y. When x = 0 = y, or x = 1
and y = 0, or x = 1 = y, its value is 0.

• When x = 1 and y = 0, the value of the function is again 1 (see row 3).
Therefore, the value of the expression must be 1 when x = 1 and y = 0,
that is, when x = 1 = y′. Again, one such function is E2 = xy′. When
x = 0 = y, or x = 0 and y = 1, or x = 1 = y, its value is 0.

The desired boolean expression E is the sum of subexpressions E1 and
E2: E = E1 + E2 = x′y + xy′. Thus, f (x, y) = x′y + xy′.

Let us now verify this. The subexpression E1 = x′y has the value 1 when
x = 0 and y = 1; otherwise, it is 0. The subexpression E2 = xy′ has the
value 1 when x = 1 and y = 0; otherwise, it is 0. Therefore, the expression
E = E1 + E2 has the value 1 either when x = 0 and y = 1, or when x = 1
and y = 0. This is precisely when the function has the value 1. E = x′y+xy′
does indeed work.

Notice that the boolean expression x′y + xy′ is the sum of two boolean
subexpressions x′y and xy′, and each subexpression is of the form st′, with
s and t boolean variables. Such an expression is called a minterm in s and
t, defined next.

Minterm
A minterm in n variables x1, x2, . . . , xn is a boolean expression y1y2 . . . yn
where each yi is either xi or x′

i. A literal is a boolean variable or its com-
plement. Thus each yi is a literal, and a minterm is the product of n
literals.

A minterm contains a literal yi corresponding to each variable xi; yi is
either xi or x′

i. In two variables, four minterms are possible: xy, xy′, x′y, and
x′y′. The boolean expressions xyz, xyz′, and xy′z are a few minterms in three
variables.

In Example 12.9, the boolean expression E defining the function f is a sum
of minterms. In fact, the technique illustrated there always yields a sum
of minterms, called the disjunctive normal form (DNF) of the boolean
function. Consequently, the DNF of the boolean function in Example 12.9
is x′y + xy′. It is unique except for the order in which the minterms appear
in the sum and the order of literals in each minterm.

The next four examples find the DNFs of boolean functions.

EXAMPLE 12.10 Find the DNF of the boolean function defined by Table 12.7.

SOLUTION:
Step 1 Locate the rows in the table that yield the functional value 1. They
are rows 4, 6, 7, and 8.

818 Chapter 12 Boolean Algebra and Combinatorial Circuits

Table 12.7 x y z f (x, y, z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Step 2 Build a minterm y1 y2 y3 corresponding to each row, where

yi =
{

xi if xi = 1

xi
′ if xi = 0

and 1 ≤ i ≤ 3. The minterm corresponding to row 4 is x′yz. The minterms
for rows 6, 7, and 8 are xy′z, xyz′, and xyz, respectively.

Step 3 Add the minterms in step 2 to get the DNF of the given function.

f (x, y, z) = x′yz + xy′z + xyz′ + xyz

= xyz + x′yz + xy′z + xyz′ �

EXAMPLE 12.11 Construct the DNF of the boolean function f (x, y, z) = x(y + z).

SOLUTION:
First, set up the logic table for the boolean function f. (See Table 12.8.) As
before, find a minterm corresponding to each value 1 of the function and
add the minterms to produce the DNF:

f (x, y, z) = xyz + xy′z + xyz′

Table 12.8 x y z y + z f (x, y, z) = x(y + z)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1 �

From Examples 12.10 and 12.11 unfolds Algorithm 12.1 for constructing
the DNF of a boolean function.

12.2 Boolean functions 819

Algorithm DNF(f)
(* This algorithm finds the DNF of a boolean function. *)

Begin (* algorithm *)
if the function f is given by a boolean expression then

construct a logic table for the function f
DNF ← 0 (* initialize DNF *)
for each row in the table do

if the corresponding functional value is 1 then
begin (* if *)

construct a minterm
DNF ← DNF + minterm

endif
End (* algorithm *)

Although we will usually find it more difficult, we can use the laws of
boolean algebra to uncover the DNF of a boolean function elegantly, as the
next two examples illustrate.

EXAMPLE 12.12 Using the laws of boolean algebra, construct the DNF of the boolean
function f (x, y, z) = x(y + z).

SOLUTION:

x(y + z) = xy + xz distributive law
= xy · 1 + xz · 1 identity law
= xy(z + z′) + xz(y + y′) complement law
= xyz + xyz′ + xzy + xzy′ distributive law
= xyz + xyz′ + xyz + xy′z commutative and associative laws
= xyz + xyz′ + xy′z idempotent law

Thus
f (x, y, z) = xyz + xy′z + xyz′

This is the DNF obtained in Example 12.11. (A logic table can verify the
equality of the two boolean expressions. Verify this.) �

EXAMPLE 12.13 Find the DNF of the boolean function f (x, y, z) = x + yz using the laws of
boolean algebra.

SOLUTION:

f (x, y, z) = x + yz
= x · 1 + 1 · yz identity law
= x[yz + (yz)′] + (x + x′)yz complement law
= xyz + x(yz)′ + xyz + x′yz distributive law
= xyz + x(yz)′ + x′yz idempotent law

820 Chapter 12 Boolean Algebra and Combinatorial Circuits

= xyz + x(y′ + z′) + x′yz DeMorgan’s law
= xyz + xy′ + xz′ + x′yz distributive law
= xyz + xy′ · 1 + xz′ · 1 + x′yz identity law
= xyz + xy′(z + z′) + xz′(y + y′) + x′yz complement law
= xyz + xy′z + xy′z′ + xz′y + xz′y′ + x′yz distributive law
= xyz + xy′z + xy′z′ + xyz′ + xy′z′ + x′yz commutative and

associative laws
= xyz + xy′z + xy′z′ + xyz′ + x′yz idempotent law
= xyz + x′yz + xy′z + xyz′ + xy′z′ commutative and

associative laws

[Alternatively, you could use the fact that x + yz = x · 1 · 1 + 1 · yz =
x(y + y′)(z + z′) + (x + x′)yz.] �

Every boolean function can be defined by means of a boolean expression,
and every boolean expression by means of the boolean operators +, ·, and ′.
Consequently, every boolean function can be defined using these three
boolean operators. Such a set of binary and unary operators is said to be
functionally complete.

Functional Completeness
A set of boolean operators is functionally complete if every boolean
function can be defined using them.

The triad of boolean operators {+, ·, ′} forms a functionally complete
set, but can fewer operators do so? By De Morgan’s law, (x + y)′ = x′y′, so
x + y = [(x + y)′]′ = (x′y′)′. Consequently the boolean operator + can be
defined using the operators · and ′. Thus {·, ′} is a functionally complete
set of two boolean operators. In fact, such a set can have just one binary
operator. We define two such operators next.

NAND and NOR
The binary operators NAND (not and) and NOR (not or), represented by
↑ and ↓ respectively, are defined as follows:

x ↑ y =
{

0 if x = 1 = y
1 otherwise

x ↓ y =
{

1 if x = 0 = y
0 otherwise

(These definitions and the ones presented in Section 1.1 bear similarities.)

12.2 Boolean functions 821

EXAMPLE 12.14 Verify that {↑} is functionally complete.

SOLUTION:
Since {·, ′} is functionally complete, it suffices to show that both opera-
tors · and ′ can be expressed in terms of ↑. First, notice that

(xy)′ = x ↑ y (12.3)

So

(xx)′ = x ↑ x

But xx = x, by the idempotent law; so

x′ = x ↑ x (12.4)

By the involution law,

xy = [(xy)′]′
= (xy)′ ↑ (xy)′ by Equation (12.4)

= (x ↑ y) ↑ (x ↑ y) (12.5)

by Equation (12.3).
Equations (12.4) and (12.5) prove that {↑} is functionally complete. �
With functionally complete operators, boolean functions can arise

through recursively defined expressions, as well as through logic tables.
We can also use such tables to form the DNF of a boolean function.

Exercises 12.2

1. Evaluate the boolean expression x(yz′ + y′z) at the ordered triplets
(1, 0, 1) and (1, 1, 1).

2. Evaluate the boolean expression (x + y + z)(x + y′ + z) at the triplets in
Exercise 1.

3. How many constant boolean functions can be defined from Bn to B,
with B a two-element boolean algebra?

4. Find the number of boolean functions that can be defined from Bn to
B, where B is a two-element boolean algebra.

Determine if each is a boolean expression, where each variable is boolean.

5. ((xy′)′)′ 6. x′ + yz 7. (xy + y′z′)′ 8. x(yz′)′

Construct a logic table for each boolean function defined by each boolean
expression.

822 Chapter 12 Boolean Algebra and Combinatorial Circuits

9. (x + y′)(x′ + y)

11. xy + y′z + yz′

13. (x + y′ + z)(xy′z)

15. xyz + x(yz)′

10. x(y′z + yz′)

12. (x + y′ + z)(x′ + y + z′)

14. xyz + (xyz)′

16. x′yz′ + x′(yz)′

Using a logic table, verify each.

17. x + xy = x 18. x(x + y) = x 19. (x+y)′ = x′y′ 20. (xy)′ = x′+y′

21. (x + y)′ �= x′ + y′ 22. (xy)′ �= x′y′

23. Is the equality relation on the set of boolean expressions in n variables
an equivalence relation?

24. List all minterms in two boolean variables x and y.

25. Give all minterms three boolean variables x, y, and z can generate.

26. How many minterms can n boolean variables produce?

Find the DNFs of the boolean functions in Exercises 27–34.

27. x y f (x, y)

0 0 0
0 1 0
1 0 0
1 1 1

28. x y f (x, y)

0 0 0
0 1 1
1 0 1
1 1 1

29. x y f (x, y)

0 0 1
0 1 0
1 0 0
1 1 1

30. x y f (x, y)

0 0 1
0 1 1
1 0 1
1 1 0

31. x y z f (x, y, z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

32. x y z f (x, y, z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

12.2 Boolean functions 823

33. x y z f (x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

34. x y z f (x, y, z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Find the DNF of each boolean function.

35. f (x, y) = x + y

38. f (x, y, z) = x + yz′
36. f (x, y) = x + xy′

39. f (x, y, z) = y(x + z)

37. f (x, y) = (x + y)xy′

40. f (x, y, z)= (x+y)xyz

41–46. Using the laws of boolean algebra, find the DNF of each boolean
function in Exercises 35–40.

Evaluate each boolean expression.

47. 1 ↑ (0 ↑ 1)

50. 1 ↓ (0 ↑ 1)

48. 1 ↓ (1 ↓ 0)

51. (0 ↑ 1) ↓ (0 ↑ 1)

49. 0 ↑ (1 ↓ 1)

52. (1 ↓ 0) ↑ (1 ↓ 1)

Construct a logic table for each boolean expression.

53. (x ↑ y) ↑ (x ↑ y)

56. (x ↓ y) ↑ (x ↓ y)

54. (x ↓ y) ↓ (x ↓ y)

57. (x ↑ x) ↓ (y ↑ y)

55. (x ↑ y) ↓ (x ↑ y)

58. (x ↓ x) ↓ (y ↓ y)

Using the laws of boolean algebra, find the DNF of each boolean function.

59. f (x, y) = x ↑ y 60. f (x, y) = x ↓ y

Verify each.

61. x + y = (x ↑ x) ↑ (y ↑ y)

63. x + y = (x ↓ y) ↓ (x ↓ y)

62. xy = (x ↑ y) ↑ (x ↑ y)

64. xy = (x ↓ x) ↓ (y ↓ y)

Give a counterexample to disprove each statement.

65. x ↑ (y ↑ z) = (x ↑ y) ↑ z 66. x ↓ (y ↓ z) = (x ↓ y) ↓ z

Verify that each set of boolean operators is functionally complete.

67. {+, ′} 68. {↓} (Hint: See Example 12.14.)

Use the following definition of the binary operator XOR, denoted by ⊕, for
Exercises 69–81.

x ⊕ y =
{

1 if exactly one of the bits x and y is 1
0 otherwise

824 Chapter 12 Boolean Algebra and Combinatorial Circuits

Evaluate each.

69. 1 ⊕ (1 ⊕ 1)

71. (1 ⊕ 0) ⊕ 1

73. 1 ↓ (0 ⊕ 1)

70. 1 ⊕ (0 ⊕ 1)

72. 1 ↑ (0 ⊕ 1)

74. (1 ↑ 0) ⊕ (1 ↓ 1)

75. Is {⊕} functionally complete?

76. Find the DNF of the boolean function f (x, y) = x ⊕ y.

Prove each.

77. x ⊕ x = 0 78. x ⊕ x′ = 1 79. x ⊕ y = y ⊕ x

80. x ⊕ y = (x + y)(xy)′ 81. x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

The dual of a DNF is called the conjunctive normal form (CNF). It is
the product of maxterms; a maxterm in n variables x1, x2, . . . , xn is y1 +
y2 + · · · + yn, where each yi is a literal xi or x′

i.

82–87. With a procedure like the one in Examples 12.9 and 12.10, find the
CNF of each boolean function in Exercises 35–40.

88. Write an algorithm to find the CNF of a boolean function f.

12.3 Logic Gates

The laws of boolean algebra help us construct DNFs and also give us an
advantage in studying more practical electrical circuits, the mainstay of
every electronic device. Elemental components of a circuit perform the
fundamental boolean operations, and circuits can be designed to perform
specific tasks.

In electronic circuits, the bits 0 and 1 indicate a low and a high voltage,
respectively. Within the circuits, tiny, simple devices called gates accept
one or more input signals (that is, bits) and produce a unique output signal
(again, a bit). Each gate performs a unique logical operation on bits and
hence can be considered a function, as defined below.

Gate
A gate is a function from Bn to B, where B denotes the boolean algebra
{0, 1}.

The three fundamental gates — AND, OR, and NOT gates — carry out
the three basic operations of product, sum, and complement, respectively.

12.3 Logic Gates 825

AND Gate
An AND gate receives two arbitrary bits x and y as input signals and
produces a unique output xy, where

xy =
{

1 if x = 1 = y
0 otherwise

The output xy is also denoted by x ∧ y.
Logic gates are drawn with standard symbols developed by the Institute

of Electrical and Electronics Engineers. For instance, Figure 12.3 shows
an AND gate.

Figure 12.3

An AND gate.

x xy

y

The outputs of an AND gate corresponding to the possible combinations
of inputs appear in the logic table in Table 12.9, which approximates
the truth table for the conjunction of two propositions. It follows from
Table 12.9 that the output from an AND gate is 1 if and only if both inputs
are 1.

Table 12.9

Logic table for an
AND gate.

Inputs Output
x y xy

0 0 0
0 1 0
1 0 0
1 1 1

More generally, n inputs into an AND gate yield an output of 1 if and
only if every input is 1.

Many real-world situations fit AND gate models, as the next two
examples demonstrate.

EXAMPLE 12.15 A tractor-mower will mow the lawn only if the tractor engine is on and the
mower engaged. Figure 12.4 delineates these restrictions.

Figure 12.4
tractor on?

yes

yes

yes
mows the lawn

mower engaged?
�

826 Chapter 12 Boolean Algebra and Combinatorial Circuits

EXAMPLE 12.16 Another AND gate from everyday life appears in Figure 12.5. A laser printer
will print the output from a personal computer only if the ON LINE and
READY indicators are on.

Figure 12.5
ON LINE signal on?

yes

yes

yes
ready to print

READY signal on?
�

Next we define an OR gate.

OR Gate
An OR gate receives two bits x and y as input signals and produces a unique
output x + y, where

x + y =
{

1 if x = 1 or y = 1
0 otherwise

The output x + y is also denoted by x ∨ y.
Figure 12.6 shows an OR gate, and Table 12.10 gives its logic table.

According to the table, the output from an OR gate is 1 if at least one of
the input symbols is 1. (Again, similarities exist between this table and the
one for the disjunction of two propositions.)

Figure 12.6

An OR gate.
x�yx

y

Table 12.10

Logic table for an
OR gate.

Inputs Output
x y x + y

0 0 0
0 1 1
1 0 1
1 1 1

More generally, n inputs into an OR gate will output 1 if and only if at
least one input symbol is 1.

12.3 Logic Gates 827

NOT Gate
A NOT gate receives a bit x and produces an output x′:

x′ =
{

0 if x = 1

1 otherwise

A NOT gate, also known as an inverter, produces an output opposite
from the input, as Figure 12.7 and Table 12.11 indicate. (A NOT gate
resembles the logic operator NOT.)

Figure 12.7

A NOT gate.
x′x

Table 12.11

Logic table for a NOT
gate.

Input Output
x x′

0 1
1 0

The next example presents two NOT gates from everyday life.

EXAMPLE 12.17 One type of light bulb, often placed along walkways and driveways, con-
tains a sensor and lights up automatically when there is no sunlight. This
situation can be modeled by a NOT gate (see Figure 12.8).

Figure 12.8
light onsunlight?

no yes

Another NOT gate condition is shown in Figure 12.9. Power plants are
often equipped with two generators, one main and one backup. The backup
generator works only if the main generator fails.

Figure 12.9 backup generator
works

main generator
working?

no yes

�
Two additional gates, NAND and NOR, prove useful.

828 Chapter 12 Boolean Algebra and Combinatorial Circuits

NAND Gate
A NAND gate receives two bits x and y as input signals and produces a
unique output denoted by x ↑ y, where

x ↑ y =
{

0 if x = 1 = y
1 otherwise

Figure 12.10 displays a NAND gate.

Figure 12.10

A NAND gate.

x

y

x y↑

The next example provides an interesting instance of a NAND gate from
everyday life.

EXAMPLE 12.18 Modern cars are equipped with alarms to warn forgetful drivers. Assume
the car key is in the ignition. If the door on the driver’s side is not closed or if
her shoulder belt is not buckled up, a sound alarm will go off automatically.
(See Figure 12.11.)

Figure 12.11
door closed?

no

no

yes alarm
goes offshoulder belt

buckled up? �

NOR Gate
A NOR gate receives two input signals x and y and produces a unique
output denoted by x ↓ y, where

x ↓ y =
{

1 if x = 0 = y
0 otherwise

A NOR gate is pictured in Figure 12.12.

Figure 12.12

A NOR gate.

x

y

x y

↑

The next example presents a real-world application of a NOR gate.

12.3 Logic Gates 829

EXAMPLE 12.19 Modern bathroom circuits are required for safety reasons to have “ground
fault interrupt” circuit breakers to terminate the flow of electricity. These
circuit breakers turn power off automatically if they detect a short-circuit.
Circuit breakers carry test buttons, so the user can confirm that the breaker
is working. Power is on unless a short-circuit is detected or a test indi-
cates a dead breaker. This situation can be represented by a NOR gate, as
Figure 12.13 shows.

Figure 12.13 short-circuit
to ground?

yes

yes
no power to

circuit offtest shows
breaker failure?

�
The five logic gates introduced carry out basic operations of easy practi-

cal value, yielding predictable output from known input. AND gates yield
products, OR sums, and NOT complements. NAND and NOR gates produce
exactly the opposite outputs of AND and OR gates.

Exercises 12.3

Find the output, if the bits 1, 1, and 0 are input into each gate.

1. AND gate 2. OR gate

Compute the NAND gate output from inputing each pair of bits.

3. 0,0 4. 0,1 5. 1,0 6. 1,1

7–10. Redo Exercises 3–6 with a NOR gate.

Construct a logic table for each gate.

11. x ↑ y 12. x ↓ y

Find the DNF of each boolean function.

13. f (x, y) = x ↑ y

15. f (x, y, z) = x ↑ (y ↑ z)

14. f (x, y) = x ↓ y

16. f (x, y, z) = (x ↑ y) ↑ z

17. Suppose the bits x, y, and z are input into a NAND gate. List the
possible output in a logic table.

18. Redo Exercise 17 for a NOR gate.

Mark each statement as true or false.

19. x ↑ y = y ↑ x

21. x ↑ (y ↑ z) = (x ↑ y) ↑ z

20. x ↓ y = y ↓ x

22. x ↓ (y ↓ z) = (x ↓ y) ↓ z

830 Chapter 12 Boolean Algebra and Combinatorial Circuits

12.4 Combinatorial Circuits

Logic gates can be used to construct combinatorial circuits for a variety
of applications in electrical engineering and electronics. A combinatorial
circuit has no memory, but produces a unique output for every combina-
tion of input signals. The output does not depend on previous inputs or
the state of the system. (On the other hand, outputs from sequential
circuits depend on previous inputs and the state of the system. The tran-
sition diagrams of the FSMs discussed in Section 11.4 illustrate sequential
circuits.)

Figure 12.14 x

y

Figure 12.15

y

x

z

Figures 12.14 and 12.15 display combinatorial circuits. The one in
Figure 12.14 contains two gates (an AND gate and a NOT gate), whereas
Figure 12.15 contains three gates.

In Examples 12.20 and 12.21, we find, step by step, the output from a
combinatorial circuit.

EXAMPLE 12.20 Find the output of the combinatorial circuit in Figure 12.14.

SOLUTION:
The bits x and y are input to an AND gate, yielding the output xy
(see Figure 12.16). This output is sent to an inverter, yielding (xy)′ (see
Figure 12.17). The output of the circuit equals the boolean expression (xy)′.

Figure 12.16 x

y

xy

Figure 12.17 x

y

xy (xy)′

�

12.4 Combinatorial Circuits 831

EXAMPLE 12.21 What output does the combinatorial circuit in Figure 12.15 produce?

SOLUTION:
As in the preceding example, the circuit could be built in steps, computing
the output at each stage. But, for convenience, we can combine the various
steps into one as shown in Figure 12.18.

Figure 12.18 x

z

y yz (yz)′

x � (yz)′

The output from the AND gate is yz. It enters an inverter, which outputs
(yz)′. Then x and (yz)′ are input to an OR gate, for the final output of
x + (yz)′. �

A logic table helps to determine the output corresponding to every com-
bination of input signals to a combinatorial circuit, as the next example
shows.

EXAMPLE 12.22 Construct a logic table for the combinatorial circuit in Figure 12.15.

SOLUTION:
Since an input can be 0 or 1, eight combinations are possible, so the table
contains eight rows, as in Chapter 1. Columns headed by x, y, z, yz, (yz)′,

Table 12.12
Input Final output

x y z yz yz′ x + (yz)′

0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1

and x + (yz)′ coincide with Figure 12.18. Now, with the definitions of the
AND, NOT, and OR gates, fill in the columns. Table 12.12, the same as
Table 12.4, results. (Once again, the close relationship between building
truth tables and logic tables is striking.) �

In a combinatorial circuit, the same signal can be input for more than one
gate. In such a case, branching serves well. For instance, the combinatorial

832 Chapter 12 Boolean Algebra and Combinatorial Circuits

circuit in Figure 12.19 has y as an input to both the AND and the OR gates.
You can verify that the output of this circuit is xy + y.

Figure 12.19

y

x xy

xy � y

The output produced by a combinatorial circuit is a boolean expression.
On the other hand, with a boolean expression E, we can form a combina-
torial circuit that yields E as the output, as the next example illustrates.

EXAMPLE 12.23 Make a combinatorial circuit that yields the boolean expression (x+y)z+ z′
as its output.

SOLUTION:
To construct the circuit successively in steps, begin with the innermost
subexpression x + y. The corresponding combinatorial circuit is shown in
Figure 12.20. Its output x + y is ANDed with z to yield (x + y)z, as the
corresponding circuit in Figure 12.21 indicates. Now devise an inverter
for z (see Figure 12.22); it yields z′.

Figure 12.20

y

x x � y

Figure 12.21

y

z

x

(x � y) z

x � y

Figure 12.22

y

z
z′

x

(x � y) z

x � y

Figure 12.23

y

z
z′

x

(x � y) z

(x � y) z�z′

x � y

12.4 Combinatorial Circuits 833

Finally, the subexpressions (x+ y)z and z′ can combine to yield the given
boolean expression. Consequently, the required combinatorial circuit is
completed by ORing the outputs (x + y)z and z′, as in Figure 12.23. �

Since a combinatorial circuit comprises logic gates, we can build it up
using AND, OR, and NOT gates. In other words, {AND, OR, NOT} is a func-
tionally complete set of gates. So are {AND, NOT}, {OR, NOT}, {NAND},
and {NOR}, according to the previous section.

Example 12.24 devises a combinatorial circuit for a desired output.

EXAMPLE 12.24 Construct a combinatorial circuit that produces (x+y+z)(xyz)′ as its output.

SOLUTION:
The given boolean expression can evolve in gradual steps: x+y+z, xyz, (xyz)′,
and (x+y+z)(xyz)′. In similar succession, the corresponding combinatorial
circuits unfold in Figures 12.24–12.27. Figure 12.27 shows the required
circuit.

Figure 12.24

z
y
x x � y � z

Figure 12.25

z
y

xyz

x x � y � z

Figure 12.26

z
y

(xyz)′xyz

x x � y � z

Figure 12.27

z
y

(xyz)′xyz

x

(x � y� z) (xyz)′

x � y � z

�
In the next example we design a combinatorial circuit used in everyday

life.

834 Chapter 12 Boolean Algebra and Combinatorial Circuits

EXAMPLE 12.25 Light fixtures in hallways are usually controlled by two or more switches.
Suppose there are three such switches for a light fixture and the light is on.
When the toggle of one of the switches is flipped, the light is turned off. On
the other hand, if the light is off, then flipping one of the toggles turns the
light on. Design a combinatorial circuit for this.

SOLUTION:
Let x, y, and z denote the three switches and f (x, y, z) the output of the
required combinatorial circuit. Let f (x, y, z) = 1 denote the state that the
light is on. Arbitrarily assume the light is off when all switches are off, that
is, when x = y = z = 0; in other words, f (0, 0, 0) = 0.

If one switch is turned on, the light goes on: f (0, 0, 1) = f (0, 1, 0) =
f (1, 0, 0) = 1.

Now suppose one more switch is turned on. The light is turned off.
Consequently, f (0, 1, 1) = f (1, 0, 1) = f (1, 1, 0) = 0.

Finally, suppose the third switch is also turned on. Then the light comes
on again: f (1, 1, 1) = 1.

These functional values can be arranged in a logic table (see Table 12.13),
and the DNF of the function is f (x, y, z) = xyz + xy′z′ + x′yz′ + x′y′z. The
combinatorial circuit is shown in Figure 12.28.

Table 12.13 x y z f (x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

Figure 12.28

A combinatorial circuit
for a light fixture
controlled by three
switches.

z
y

x′y′z

x′yz′

xy′z′

xyz
x

xyz�xy′z′�x′yz′�x′y′z

�

12.4 Combinatorial Circuits 835

Some circuits can perform binary addition. We can find the sum of any
two binary numbers using Table 12.14, where s denotes the sum bit and c
the carry bit. To add 1011two and 1110two, use the familiar addition algo-
rithm. Add the corresponding bits from right to left, propagating each
carry to the left. (Initially, the carry bit is 0.) The final sum is 11001two,
as Figure 12.29 shows. (Base two is omitted for convenience.) Similarly,
111two + 1001two = 10000two (see Figure 12.30).

Table 12.14

Logic table for a
half-adder.

Input Output

x y s c

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 12.29

1 1 0 0 1

1 1 1 0
1 0 1 1

1 1 1 0 carry bits

Figure 12.30

1 0 0 0 0

1 0 0 1
1 1 1

1 1 1 1 carry bits

Half-Adder
Suppose you would like to design a circuit that will add any two bits x and
y. Notice from Table 12.14 that c = xy and s = xy′ + x′y (the DNF of s). But
xy′ + x′y = (x + y)(xy)′ by Exercise 50 in Section 12.1, so s = (x + y)(xy)′.
As a result, the circuit that yields the sum bit s and the carry bit c lies in
Figure 12.31. Being a half-adder, it adds only two bits without considering
the carry from a possible previous addition. It contains two AND gates, an
OR gate, and a NOT gate.

836 Chapter 12 Boolean Algebra and Combinatorial Circuits

Figure 12.31

A half-adder. y

(xy)′xy

x

(x � y) (xy)′ � s

xy � c

x � y

Full-Adder
Full-adders find the sum of any two binary numbers. A full-adder accepts
three bits: the two bits xi and yi in the addends and the carry bit ci, where
i ≥ 1. After accepting these three bits, the full-adder outputs the sum bit
si and the new carry bit ci+1. Table 12.15 lays out the values of si and ci+1
for various values of xi, yi, and ci. According to the table,

si = xiyici + xiy′
ic

′
i + x′

iyic′
i + x′

iy
′
ici

and

ci+1 = xiyici + xiyic′
i + xiy′

ici + x′
iyici

Consequently, a full-adder can be made with AND, OR, and NOT gates.

Table 12.15

Logic table for a
full-adder.

Input Output

xi yi ci si ci + 1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

But two half-adders will work well together as a full-adder. To find the
sum bit si and the carry bit ci+1, input xi and yi into a half-adder H1; it
produces a sum bit s and a carry bit c. The bits s and ci are then input to
another half-adder H2. Their sum is the desired sum bit si. The carry bits
from H1 and H2 are sent to an OR gate, which outputs the new carry bit
ci+1. This full-adder appears in Figure 12.32.

12.4 Combinatorial Circuits 837

Figure 12.32

A full-adder.

Half-
adder

H1

Half-
adder

H2

sum bit si

carry bit ci�1

carry�cis

ci

c�xy

x

y

sum bit s

We close this section by showing how we can use half- and full-adders to
compute the sum of two n-bit numbers.

EXAMPLE 12.26 Using a half-adder and full-adder, design a circuit that computes the sum
of two 3-bit numbers x = x2x1x0 and y = y2 y1 y0.

SOLUTION:
A half-adder accepts two bits outputing the sum and carry bits. On the
other hand, a full-adder accepts three bits to produce the sum and carry
bits. The circuit in Figure 12.33 produces the sum s = s3s2s1s0.

Figure 12.33
Half-
adder

Full-
adder

Full-
adder

s0x0
y0

x1
y1

x2
y2

s1

s2

s3

�
The range of possible combinatorial circuits expands as logic gates

from half- and full-adders describe many electrical systems through the
production of bit sums.

Exercises 12.4

When will the combinatorial circuit for each boolean expression produce 1
as the output?

1. x′ 2. x + y 3. xy

Find the output produced by the combinatorial circuits in Exercises 4–13.

4. x

y

838 Chapter 12 Boolean Algebra and Combinatorial Circuits

5. x

y

6. x

y

7. x

y

8. x

y

z

9. x

y

z

10. x
y
z

12.4 Combinatorial Circuits 839

11. x

y

z

12. x

y

z

13. x

y

z

14–17. Devise a logic table for each circuit in Exercises 6–9.

18–21. Construct a combinatorial circuit for each boolean expression in
Exercises 9, 10, 14, and 15 in Section 12.2.

Using only NAND gates, design a combinatorial circuit that receives x and
y as input signals and outputs:

22. x′ 23. x + y 24. xy

25–27. Redo Exercises 22–24, using only NOR gates.

840 Chapter 12 Boolean Algebra and Combinatorial Circuits

28. Make a combinatorial circuit for a hallway light fixture controlled by
two switches x and y. Assume the light is off when both switches are.

By means of the circuit in Figure 12.33, add each pair of binary numbers.

29. 101, 100 30. 110, 011 31. 110, 101 32. 101, 111

Using the full-adder in Figure 12.32, verify each algebraically.

33. si = xiyici + xiy′
ic

′
i + x′

iyic′
i + x′

iy
′
ici

34. ci+1 = xiyici + xiyic′
i + xiy′

ici + x′
iyici.

Design a half-adder with:

35. NAND gates. 36. NOR gates.

12.5 Minimization of Combinatorial Circuits

With the set of gates {AND, OR, NOT} functionally complete, every combi-
natorial circuit can be represented by a boolean expression. So simplifying
such expressions amounts to simplifying, or minimizing, circuits. Boolean
algebraic laws can reduce boolean expressions, as two examples with three
variables will demonstrate. However, Karnaugh maps give us an easier
method. The DNFs of expressions of up to four variables will shrink through
this graphic procedure.

Section 12.2 explored boolean expressions that yield the same value no
matter how we combine the values of variables. Consequently, the corre-
sponding combinatorial circuits yield the same output for the same set of
input values. Accordingly, we make the following definition.

Equivalent Combinatorial Circuits
Two combinatorial circuits are equivalent if the corresponding boolean
expressions are equal.

EXAMPLE 12.27 Are the combinatorial circuits C1 and C2 in Figure 12.34 equivalent?

Figure 12.34 x

y

x

y

Combinatorial circuit C1 Combinatorial circuit C2

SOLUTION:
First, find the boolean expressions representing the two circuits: E1 = x′y′
and E2 = (x + y)′, respectively. Since E1 = E2 by De Morgan’s law, the two
combinatorial circuits are equivalent. �

12.5 Minimization of Combinatorial Circuits 841

Circuit C1 contains three gates; C2, only two. Accordingly, C2 is simpler
than C1.

Through two methods, algebraic and graphical, we can find a circuit
C2 equivalent to but simpler than a given circuit C1. Since a gate in a
combinatorial circuit corresponds to a boolean operator, the key to both pro-
cedures lies in locating a boolean expression with fewer boolean operators
and literals.

We can simplify a boolean expression through the laws of boolean alge-
bra, as the next two examples demonstrate. However, we can use this
method successfully only if we know the laws of boolean algebra well, so
review them as often as needed.

EXAMPLE 12.28 Find a simpler combinatorial circuit equivalent to the one in Figure 12.35.

Figure 12.35 x
y
z

SOLUTION:
The boolean expression represented by the circuit is f (x, y, z) = xyz+ xyz′ +
xy′z + x′y′z. Simplify it as much as possible, justifying every step:

f (x, y, z) = xyz + xyz′ + xy′z + x′y′z
= xy(z + z′) + y′z(x + x′)
= xy1 + y′z1

= xy + y′z

Consequently, we can replace the given circuit by the much simpler version
in Figure 12.36.

Figure 12.36
xy

y

z

x

y′z
y′

xy � y′z

�

842 Chapter 12 Boolean Algebra and Combinatorial Circuits

EXAMPLE 12.29 Find a simpler combinatorial circuit equivalent to the one represented
by the boolean function f (x, y, z) = xyz + xyz′ + xy′z + x′yz + xy′z′ (see
Example 12.13 also).

SOLUTION:

f (x, y, z) = xyz + xyz′ + xy′z + x′yz + xy′z′

= xyz + xyz′ + xy′z + x′yz + (xy′z′ + xy′z′)
= xyz + (xy′z + xy′z′) + (xyz′ + xy′z′) + x′yz

= xyz + xy′(z + z′) + xz′(y + y′) + x′yz

= xyz + xy′1 + xz′1 + x′yz

= xyz + xy′ + xz′ + x′yz

= xyz + x(y′ + z′) + x′yz + xyz

= xyz + x(yz)′ + yz(x + x′)
= x[yz + (yz)′] + yz1

= x1 + yz

= x + yz

Therefore, the simpler two-gate circuit in Figure 12.37 can replace the
original nine-gate one, saving seven gates.

Figure 12.37 x

z

y yz

x
x � yz

�
Simplifying a boolean expression can be arduous and frustrating. To

a large extent, success depends on grouping the various terms properly
and then ingeniously applying the laws of boolean algebra. But there is
another way.

Maurice Karnaugh developed the graphical method of the Karnaugh
map at Bell Laboratories in 1953 to simplify the DNFs of boolean expres-
sions. The essence of the Karnaugh map lies in grouping minterms that
differ by exactly one literal.

For instance, the minterms xy′z and xy′z′ differ in exactly one literal
and their sum can shrink: xy′z + xy′z′ = xy′(z + z′) = xy′1 = xy′ (see also
Example 12.29).

The Karnaugh map has a rectangular grid of squares. Each square stands
for a possible minterm in the DNF of the boolean expression that represents

12.5 Minimization of Combinatorial Circuits 843

Maurice Karnaugh (1924–), a physicist, was born in New York City. After graduating from the City
College of New York in 1948, he received his Ph.D. in physics from Yale in 1952.

Karnaugh was a member of the research staff at Bell Telephone Labs from 1952 to 1966, and a
research and development manager at the Federal Systems Division of AT&T during the next 4 years.
In 1970, he joined the research staff at IBM. His research interests include knowledge-based computer
systems.

the circuit. Each contains a 1 if the corresponding minterm exists in the
expression.

A 2×2 Karnaugh map can help simplify the DNF of a boolean expression
in two variables x and y. Since four possible minterms are feasible — xy,
xy′, x′y′, and x′y — the map consists of four squares. Label the squares so
the minterms in any two adjacent squares in each row and column differ
by exactly one literal; two such squares are adjacent. For instance, the
squares xy and xy′ are adjacent, whereas the squares xy and x′y′ are not.
The resulting arrangement appears in Table 12.16.

Table 12.16 y y′

x xy xy′

x′ x′y x′y′

EXAMPLE 12.30 Find the Karnaugh map for each boolean expression.

(1) xy + x′y + x′y′ (2) xy′ + x′y

SOLUTION:
Place a 1 in the square corresponding to each minterm and leave the other
squares blank, as shown in Tables 12.17 and 12.18, respectively.

Table 12.17

Karnaugh map for
xy + x′y + x′y′.

y y′

x 1

x′ 1 1

844 Chapter 12 Boolean Algebra and Combinatorial Circuits

Table 12.18

Karnaugh map for
xy′ + x′y.

y y′

x 1

x′ 1 1 �

The sum of minterms in adjacent squares can be simplified. By drawing
a loop around such blocks containing 1’s, always beginning with the largest
block, we can always reduce the minterms corresponding to the blocks, as
Example 12.31 suggests.

EXAMPLE 12.31 Using a Karnaugh map, simplify the boolean expressions in Example 12.30,
if possible.

SOLUTION:

(1) First, loop off adjacent squares containing 1’s. There are two such
blocks in Table 12.19. Therefore,

xy + x′y + x′y′ = (xy + x′y) + (x′y + x′y′)
= (x + x′)y + x′(y + y′)
= 1y + x′1
= y + x′

= x′ + y

(With a little practice, we can read this answer directly from the map.)

Table 12.19 y y′

x
�

�

�

�

1

1x′ �
�

�
�1

(2) The squares corresponding to the minterms xy′ and x′y are not adja-
cent, so each forms a block by itself in Table 12.20. Consequently, the
expression xy′ + x′y cannot be simplified.

Table 12.20 y y′

x �
�

�
�1

x′ �
�

�
�1

�
A Karnaugh map for three variables x, y, and z expands to a 2 × 4 rect-

angular grid. Each of the eight squares in Table 12.21 corresponds to a
possible minterm in x, y, and z. Again, two squares are adjacent if the

12.5 Minimization of Combinatorial Circuits 845

corresponding minterms differ by exactly one literal. For instance, the
squares xy′z and xyz are adjacent. To see this geometrically, cut out the grid,
bend, and glue the two shorter edges to form the cylinder in Figure 12.38.
Two adjacent squares share a boundary.

Table 12.21 yz yz′ y′z′ y′z
x xyz xyz′ xy′z′ xy′z
x′ x′yz x′yz′ x′y′z′ x′y′z

Figure 12.38 xy′z

x′yz

x′y′z

xyz

xy′z′xyz′

x′yz′ x′y′z′

To simplify a sum of minterms in x, y, and z, identify blocks of minterms
that can be combined by drawing loops around them. Always begin with
the largest block and use the minimum number of blocks. This time a block
may be a 1 × 1, 1 × 2, 1 × 4, 2 × 2, or a 2 × 4 rectangle. An example of each
possibility appears in Figure 12.39.

Figure 12.39

A few possible blocks in
a 2 × 4 Karnaugh map.

x

yz yz′ y′z′ y′z

x′

(a)

x

yz yz′ y′z′ y′z

x′

(b)

x

yz yz′ y′z′ y′z

x′

(d)

x

yz yz′ y′z′ y′z

x′

(e)

x

yz yz′ y′z′ y′z

x′

(c)

846 Chapter 12 Boolean Algebra and Combinatorial Circuits

Notice that the sum of the minterms in the block in Figure 12.39d can
be simplified as follows:

xyz′ + xy′z′ + x′yz′ + x′y′z′ = yz′(x + x′) + y′z′(x + x′)
= yz′1 + y′z′1
= yz′ + y′z′

= (y + y′)z′

= 1z′

= z′

The next example provides two additional exercises in simplifying
boolean expressions.

EXAMPLE 12.32 Simplify each boolean expression with a Karnaugh map.

(1) E1 = xyz + xyz′ + xy′z + x′y′z
(2) E2 = xyz + xyz′ + xy′z + x′yz + xy′z′

SOLUTION:
Figures 12.40 and 12.41 show the Karnaugh maps for the two expressions.

Figure 12.40

x 1 1 1

1

yz yz′ y′z′ y′z

x′

Figure 12.41

x 1 1 1 1

1

yz yz′ y′z′ y′z

x′

(1) From Figure 12.40,

E1 = (xyz + xyz′) + (xy′z + x′y′z)

= xy(z + z′) + y′z(x + x′)
= xy1 + y′z1

= xy + y′z (also see Example 12.28)

12.5 Minimization of Combinatorial Circuits 847

(2) Since a 1 occurs in both loops, count the corresponding minterm xyz
twice using the idempotent law:

E2 = (xyz + xyz′ + xy′z′ + xy′z) + (xyz + x′yz)

= x[y(z + z′) + y′(z′ + z)] + (x + x′)yz

= x(y1 + y′1) + 1yz

= x(y + y′) + yz

= x + yz (also see Example 12.29)

Again, with a little experience and patience, we can read these expres-
sions directly from the maps. �

Finally, a Karnaugh map for four variables w, x, y, and z encompasses
the 4 × 4 grid of Table 12.22. Each of the 16 squares represents a possible
minterm in w, x, y, and z. Geometrically, the grid can be cut, bent, and
glued to form the doughnut-shaped surface called a torus. Two squares
are adjacent if they share a border on the torus. The cells wxy′z and wxyz
are adjacent; wxyz and wx′yz′ are not.

Table 12.22

Karnaugh map for
xy + x′y + x′y′.

yz yz′ y′z′ y′z

wx wxyz wxyz′ wxy′z′ wxy′z
wx′ wx′yz wx′yz′ wx′y′z′ wx′y′z
w′x′ w′x′yz w′x′yz′ w′x′y′z′ w′x′y′z
w′x w′xyz w′xyz′ w′xy′z′ w′xy′z

As was done with two- and three-variable expressions, place a 1 in the
square corresponding to each minterm in the boolean expression and loop
off the 1’s into blocks of minterms that can be combined, always looking
for the largest block first and using as few blocks as possible. The blocks
useful for minimization are 1 × 1, 1 × 2, 1× 4, 2 × 2, 2 × 4, and 4 × 4. Four
such blocks are highlighted in Figure 12.42.

For example, the sum of the minterms in Figure 12.42a can be simplified:

wxyz + wxy′z + w′xyz + w′xy′z = wxz(y + y′) + w′xz(y + y′)
= wxz + w′xz

= (w + w′)xz

= xz

We conclude this section with an example that illustrates how to simplify
four-variable boolean expressions using a Karnaugh map.

848 Chapter 12 Boolean Algebra and Combinatorial Circuits

Figure 12.42

wx

yz yz′ y′z′ y′z

wx′

w′x′

w′x

wx

wx′

w′x′

w′x

wx

wx′

w′x′

w′x

wx

wx′

w′x′

w′x

(a)

yz yz′ y′z′ y′z

(b)

yz yz′ y′z′ y′z

(c)

yz yz′ y′z′ y′z

(d)

EXAMPLE 12.33 Using a Karnaugh map, simplify each boolean expression.

(1) E1 = wxyz + wxyz′ + wxy′z′ + wxy′z + w′xyz + w′xy′z
(2) E2 = wxy′z′ + wx′y′z′ + wx′y′z + w′x′yz + w′x′yz′ + w′xyz + w′xyz′

SOLUTION:
(1) Place a 1 in the square for each minterm in the expression. Loop off

each block, beginning with the largest. The Karnaugh map is shown
in Figure 12.43. Accordingly, the expression E1 can be pruned:

Figure 12.43

wx 1

1

1 1 1

yz yz′ y′z′ y′z

wx′

wx′

w′x′ 1

E1 = (wxyz + wxyz′ + wxy′z′ + wxy′z) + (w′xyz + w′xy′z)

= wx[y(z + z′) + y′(z′ + z)] + w′xz(y + y′)
= wx(y + y′) + w′xz

= wx + w′xz

12.5 Minimization of Combinatorial Circuits 849

Figure 12.44

wx

1 1

1 1

1

1 1

yz yz′ y′z′ y′z

wx′

w′x′

w′x

(2) Using the Karnaugh map in Figure 12.44, we have:

E2 = (wxy′z′ + wx′y′z′) + (wx′y′z′ + wx′y′z)

+ (w′x′yz + w′x′yz′ + w′xyz + w′xyz′)
= wy′z′(x + x′) + wx′y′(z + z′) + [w′x′y(z + z′) + w′xy(z + z′)]
= wy′z′ + wx′y′ + (w′x′y + w′xy)

= wy′z′ + wx′y′ + w′y(x + x′)
= wy′z′ + wx′y′ + w′y �

These cases suggest that Karnaugh maps simplify boolean expressions
more easily than algebraic laws, especially when variables are few.

Exercises 12.5

Simplify each boolean expression using the laws of boolean algebra.

1. xy + xy′ 2. x(x+ y)+ xy′ 3. (x + y)xy′ 4. xy+xy′+x′y′

5. x′yz + x′y′z′ + x′yz′ + x′y′z

7. (x + y)(x + y + z)xy

9. (x + y)(y + z)(z + x)

11. (x + y)(x′ + y)(x + y′)

13. (x + y)(y + z)(z + x)xyz

15. wxyz + w′xy′z′ + wxyz′ + w′xy′z

6. xy′z′ + x′y′z′ + xy′z + x′y′z

8. (x + y + z)xyz

10. (xy + yz + zx)xyz

12. (x + y′ + z)(x + y + z′)xy′z′

14. (x + yz)(y + zx)(z + xy)

16. wx′yz + wx′yz′ + w′x′yz′ + w′xyz′

Find the boolean expression represented by each Karnaugh map.

17. y y′
x 1 1
x′

18. y y′
x 1
x′ 1

19. y y′
x 1
x′ 1

20. y y′
x 1
x′ 1

Display each sum of minterms in a Karnaugh map.

21. xy + x′y′ 22. x′y + xy′

850 Chapter 12 Boolean Algebra and Combinatorial Circuits

Using a Karnaugh map, simplify each sum of minterms.

23. xy + xy′ 24. xy+xy′+x′y′

Find the boolean expression represented by each Karnaugh map.

25. yz yz′ y′z′ y′z
x 1 1 1

x′ 1

27. yz yz′ y′z′ y′z
x 1 1

x′ 1 1

26. yz yz′ y′z′ y′z
x 1

x′ 1 1 1

28. yz yz′ y′z′ y′z
x 1

x′ 1 1

Using a Karnaugh map, simplify each boolean expression.

29. xy′z + xy′z′

31. xy′z′ + xy′z + x′y′z′ + x′y′z

30. xyz + xy′z + x′yz + x′y′z

32. xyz + xyz′ + x′y′z′ + x′y′z

33–36. Using a Karnaugh map, simplify the boolean expressions in
Exercises 25–28.

Find the boolean expression represented by each Karnaugh map.

37. yz yz′ y′z′ y′z
wx 1 1
wx′ 1 1
w′x′ 1 1
w′x 1 1

39. yz yz′ y′z′ y′z
wx 1
wx′ 1
w′x′ 1 1
w′x 1 1

38. yz yz′ y′z′ y′z
wx 1 1
wx′
w′x′
w′x 1 1

40. yz yz′ y′z′ y′z
wx 1 1 1
wx′ 1 1
w′x′
w′x 1

Represent each sum of minterms in a Karnaugh map.

41. wxy′z + w′xyz

43. wxy′z + wx′y′z + w′xy′z + w′x′y′z

42. wxyz + wxy′z + w′xyz + w′xy′z

44. wx′yz′+wx′y′z′+w′x′yz′+w′x′y′z′
45–48. Using a Karnaugh map, simplify the boolean expressions in

Exercises 37–40.

Using a Karnaugh map, simplify each boolean expression.

49. wxyz + wx′yz + w′x′yz + w′xyz

50. wx′yz′ + wx′y′z′ + w′x′yz′ + w′x′y′z′

51. wx′yz + wx′yz′ + wx′y′z′ + w′x′y′z′ + w′xy′z′ + w′xy′z
52. wxyz + wxyz′ + wxy′z′ + wxy′z + wx′y′z + w′x′y′z + w′xy′z

12.6 Don’t Care Conditions 851

12.6 Don’t Care Conditions

Occasionally, combinatorial circuits may occur that do not accept certain
combinations of input signals. In other words, a boolean function f can
be generated for which some value combinations never occur as input.
Consequently, we don’t care about corresponding output values of f in
such cases; they remain unspecified. Such functions are incompletely
specified, and such input values are don’t care conditions.

Consequently, to simplify the sum of minterms of such a combinatorial
circuit with a Karnaugh map, place a d in each cell corresponding to a
don’t care condition. This simply means that the corresponding value of
the function can be arbitrarily assigned: the minterm may or may not enter
the simplification process. Whenever the term can help minimization, its d
counts as a 1 in the otherwise standard procedure.

Three examples will illustrate this technique.

EXAMPLE 12.34 Simplify the boolean expression E represented by the Karnaugh map in
Figure 12.45.

Figure 12.45

wx d d

d d

d d

1

1 1

1

yz yz′ y′z′ y′z

wx′

w′x′

w′x

SOLUTION:
First, draw a loop around each block as usual. Since the top row contains
no 1’s, exclude it in the minimization process; think of its cells as blanks.
The resulting blocks are shown in Figure 12.46. You may verify that:

Figure 12.46

wx d d

d d

d d

1

1 1

1

yz yz′ y′z′ y′z

wx′

w′x′

w′x

E = (wx′yz + wx′yz′ + w′x′yz + w′x′yz′) + (w′xyz + w′xy′z)

= x′y + w′xz

Note: If the top row counts as a block, E = wx + x′y + w′xz. Thus, wx +
x′y+w′xz = x′y+w′xz for all combined values of the variables for which the

852 Chapter 12 Boolean Algebra and Combinatorial Circuits

expression E is specified. As a result, the solution depends on a judicious
choice of d’s. �

The next two examples provide interesting applications of don’t care
conditions.

EXAMPLE 12.35 A system to represent decimal numbers is to replace each decimal
digit with its binary version. Four bits are needed to encode the
10 digits, as Table 12.23 shows. With Table 12.23, 345 can be encoded
as 001101000101. This binary representation is the binary coded
decimal (BCD)expansion. Although there are 16 possible arrangements
of four bits, only 10 of them appear in the table. The others (see Table
12.24) are never used, meaning those BCD expansions manifest don’t care
conditions.

Table 12.23 Decimal digit Binary representation

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 12.24 Decimal number Binary representation

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

We would like to design a combinatorial circuit that will accept four
input signals w, x, y, and z, and output 1 if they represent the BCD
expansion of a decimal prime number < 10 (see Figure 12.47). That is,
we would like to develop a boolean function f such that f (w, x, y, z) equals
1 if (wxyz)two is the BCD expansion of a prime number and equals 0
otherwise.

Combining Tables 12.23 and 12.24, Table 12.25 reveals the logic table of
the function f. Since the numbers 10 through 15 do not apply, they generate

12.6 Don’t Care Conditions 853

Figure 12.47 w
x prime number

detectory
z

f(w, x, y, z)

Table 12.25 Decimal
value

BCD input Output

w x y z

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 d
11 1 0 1 1 d
12 1 1 0 0 d

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

don’t care conditions13 1 1 0 1 d
14 1 1 1 0 d
15 1 1 1 1 d

don’t care conditions, signaled by the d’s in the last column. (Recall that
d-cells crop up in the map only if helpful in minimization.) The blocks are
shown in Figure 12.48. It follows that:

f (w, x, y, z) = (wxyz + wxy′z) + (wx′yz + wx′yz′ + w′x′yz + w′x′yz′)
+ (w′xyz + w′xy′z)

= wxz(y + y′) + wx′y(z + z′) + w′x′y(z + z′) + w′xz(y + y′)
= wxz + wx′y + w′x′y + w′xz

Figure 12.48

wx d d

d d

d d

1

1 1

1

yz yz′ y′z′ y′z

wx′

w′x′

w′x

854 Chapter 12 Boolean Algebra and Combinatorial Circuits

= xz(w + w′) + x′y(w + w′)
= xz + x′y

Figure 12.49 gives the circuit.

Figure 12.49 x

y

z

f(w, x, y, z,)�x′y�xz

�
The next example presents a familiar application of don’t care conditions

to everyday life.

EXAMPLE 12.36 (Digital Displays) Electronic devices such as modern calculators,
microwave ovens, and video cassette recorders display digits by lighting
up a maximum of seven line segments, labeled a through g in Figure 12.50.
Figure 12.51 provides the display strategy: the digit 0 lights up the seg-
ments a, b, c, d, e, and f; 6 lights up the segments c, d, e, f, and g; and
so on.

Figure 12.50 a

d

gf b

e c

Figure 12.51

10

5 6 7 8 9

2 43

Design a combinatorial circuit to accept the BCD expansion (wxyz)two of
a decimal digit and light up a segment s. In other words, develop a boolean
expression to define the boolean function f (w, x, y, z) = s.

As in Example 12.35, 16 arrangements are available. However, since
there are only 10 digits, six arrangements are don’t care conditions; they
are listed in Table 12.26. (Verify them.)

For instance, suppose we wish to find a minimal boolean expression for
the boolean function f (w, x, y, z) = a. Table 12.26 gives the corresponding

12.6 Don’t Care Conditions 855

Table 12.26 BCD input Inputs

Decimal digit w x y z a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 0 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 0 0 1 1

DNF, a = w′x′y′z′ +w′x′yz′ +w′x′yz+w′xy′z+w′xyz+wx′y′z′ +wx′y′z, which
leads to the Karnaugh map in Figure 12.52. The cartographical conclusion,
a = w + x′y + x′y′z′ + w′xz, yields the desired circuit in Figure 12.53.

Figure 12.52

wx d

1

d d d

d d

1 1 1

1 1

yz yz′ y′z′ y′z

wx′

w′x′

w′x 1

Figure 12.53

z

y
f(w, x, y, z)�a

x
w

�
In accommodating through d-cells, the don’t care conditions of incom-

pletely specified functions in Karnaugh maps emerge as strong workhorses
in the search for combinatorial circuits that mimic boolean expressions.

856 Chapter 12 Boolean Algebra and Combinatorial Circuits

Exercises 12.6

Simplify the boolean expression represented by each Karnaugh map.

1. yz yz′ y′z′ y′z
x 1 d d d

x′ 1

3. yz yz′ y′z′ y′z
wx 1 1

wx′ d d

w′x′ d d d d

w′x 1 1 d d

5. yz yz′ y′z′ y′z
wx d 1 1 1

wx′

w′x′ d

w′x 1 1 d

2. yz yz′ y′z′ y′z
x d 1 d

x′ d 1 1

4. yz yz′ y′z′ y′z
wx 1 d

wx′ d 1

w′x′ d d

w′x 1 1

6. yz yz′ y′z′ y′z
wx d

wx′ 1 d d 1

w′x′ 1 d

w′x d 1 1 d

Simplify the boolean expression defined by each table.

7.
x y z f

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 d
1 0 1 d
1 1 0 1
1 1 1 1

8.
x y z f

0 0 0 1
0 0 1 d
0 1 0 0
0 1 1 0
1 0 0 d
1 0 1 1
1 1 0 1
1 1 1 1

Using the BCD expansions of the decimal numbers 0 through 9, develop
a boolean function f (w, x, y, z) such that the decimal value of (wxyz)two is
divisible by:

9. Two

11. Two and three

13. Seven or more

10. Three

12. Two or three

14. Not more than five, but not one
15–22. Find the DNFs of the boolean functions in Exercises 7–14.

23–28. Generate a minimal boolean expression for each function b through
g in Example 12.36.

Chapter Summary 857

Chapter Summary

Boolean operators and the laws of boolean algebra serve well in designing
and simplifying electronic circuits.

Boolean Algebra
• A boolean algebra 〈B, +, ·, ′, 0, 1〉 comprises a set B of at least two

distinct elements 0 and 1, two binary operators + and ·, and a unary
operator ′ that satisfies the commutative, associative, distributive,
identity, and complement laws (page 806).

• The zero element 0 and the unit element 1 of a boolean algebra are
unique (page 806).

• Every element x of a boolean algebra has a unique comple-
ment x′ (page 808).

• Two important laws of boolean algebra are (see Theorem 12.3):

Absorption laws: x + xy = x, x(x + y) = x

DeMorgan’s laws: (x + y)′ = x′y′, (xy)′ = x′ + y′ (page 809).

Boolean Function
• A boolean variable takes the value 0 or 1 (page 813).

• A boolean function f is a function f: Bn → B (page 813).

• Boolean functions can be defined by logic tables or boolean
expressions (page 813).

Boolean Expression
• A boolean expression over the boolean variables x1, x2, . . . , xn is

defined recursively:

0, 1, x1, x2, . . . , xn are boolean expressions.
If E1 and E2 are boolean expressions, so are (E1), E′

1, E1E2, and
E1 + E2.

Only expressions thus obtained are boolean. (page 814)

• Two boolean expressions are equal if they yield the same value for
every combination of values of the variables (page 815).

Disjunctive Normal Form (DNF)
• A literal is a boolean variable or its complement (page 817).

858 Chapter 12 Boolean Algebra and Combinatorial Circuits

• A minterm in n boolean variables x1, x2, . . . , xn is a boolean expression
y1y2 . . . yn, where yi = xi or x′

i, for every i (page 817).

• The DNF of a boolean function is a sum of minterms that do not
repeat (page 817).

• The DNF of a boolean function can be constructed using its logic table
and the laws of boolean algebra (page 819).

Functionally Complete Boolean Operators
• A set of boolean operators is functionally complete if every boolean

function can be defined in terms of them (page 820).

• The sets {+, ·, ′}, {+, ′}, {·, ′}, {↑} and {↓} are functionally complete
(page 821).

Logic Gates
• A gate is a boolean function from Bn to B (page 824).

• An AND gate accepts two or more boolean values and outputs their
boolean product (page 825).

• An OR gate accepts two or more boolean values and outputs their
boolean sum (page 826).

• A NOT gate (or an inverter) accepts a boolean value and outputs its
complement (page 827).

• A NAND gate accepts two boolean values x and y and outputs 0 if and
only if x = y = 1 (page 828).

• A NOR gate accepts two boolean values x and y and outputs 1 if and
only if x = y = 0 (page 828).

Combinatorial Circuit
• A combinatorial circuit produces a unique boolean value for every

combination of boolean input values. It has no memory; it can be built
using AND, OR, and NOT gates (page 830).

• The output of a combinatorial circuit can be described by a boolean
function (page 832).

Adders
• A half-adder circuit adds two bits, yielding their sum and carry

bits (page 835).

Chapter Summary 859

• A full-adder circuit accepts two bits and a carry bit from previous
addition, yielding their sum and carry bits. It consists of two half-adders
and an OR gate (page 836).

Minimization of a Combinatorial Circuit
• Two combinatorial circuits are equivalent if the corresponding

boolean expressions are equal (page 840).

• The laws of boolean algebra and Karnaugh maps can simplify combi-
natorial circuits (page 840).

Don’t Care Conditions
• A combination of boolean values that is not a valid input into a

combinatorial circuit is a don’t care condition (page 851).

• A don’t care condition triggers a d in the corresponding cell of
a Karnaugh map and counts as 1 if it helps simplify the boolean
expression (page 851).

Review Exercises

Let Dn denote the set of positive factors of a positive integer n. Define the
operations ⊕, �, and ′ on Dn as

x ⊕ y = lcm {x, y}, x � y = gcd {x, y}, and x′ = n/x

Determine if 〈Dn, ⊕, �,′ , 1, n〉 is a boolean algebra for each value of n.

1. 2 2. 6 3. 12 4. 42

*5. Using Exercises 1–4, predict when 〈Dn, ⊕, �, ′, 1, n〉 will be a boolean
algebra.

The set D210 of positive factors of 210 is a boolean algebra under the
operations ⊕, �, and ′ defined as follows:

x ⊕ y = lcm {x, y}, x � y = gcd {x, y}, and x′ = 210/x

Compute each.

6. 21′ � 35′ 7. 7′ � 15′ 8. 5� (10⊕30) 9. 6⊕ (10�15)

In the boolean algebra 〈B, +, ·, ′, 0, 1〉, find the dual of each statement.

10. (1 + x)(x + y) = x + y 11. xy + x′y = y

860 Chapter 12 Boolean Algebra and Combinatorial Circuits

Construct a logic table for each boolean function.

12. f (x, y, z) = x + y′z′

13. f (x, y, z) = (x + y + z)(x′y′z′)

Using a logic table, verify each statement.

14. (x + z)(y + z) = z + xy 15. x + x′yz = x + yz

Find the DNF of each boolean function f in Exercises 16–19.

16.
x y z f(x, y, z)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

18. f (x, y, z) = x + x′yz

17.
x y z f(x, y, z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 0 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

19. f (x, y, z) = xy + yz + xz

20–21. Using the laws of boolean algebra, find the DNF of each boolean
function in Exercises 18 and 19.

Evaluate each.

22. 1 ↑ (0 ↓ 1) 23. 0 ↓ (1 ↑ 0)

Set up a logic table for each boolean expression.

24. (x ↑ x) ↑ (y ↑ y) 25. (x ↓ x) ↓ (y ↓ y)

Find the DNF of each boolean function.

26. f (x, y) = (x ↑ x) ↑ y 27. f (x, y) = (x ↓ y) ↑ x

Find the output produced by each combinatorial circuit.

28.

y

z

x

Chapter Summary 861

29.

y

z

x

Construct a combinatorial circuit represented by each boolean expression.

30. xy′ + yz′ + zx′ 31. xyz + x′y′z′

Using the circuit in Figure 12.33, compute the sum of each pair of binary
numbers.

32. 110, 111 33. 111, 111

Represent each boolean expression in a Karnaugh map.

34. xyz + xyz′ + x′yx + x′y′z′

35. wxyz + wxy′z + w′xyz + wx′yz′ + w′xy′z + wx′y′z′ + w′x′yz′ + w′x′y′z′

Simplify each sum of minterms, if possible.

36. xyz + xyz′ + xy′z + x′yz + x′yz′ + x′y′z

37. xy′z + x′yz + xy′z′ + x′yz′ + x′y′z + x′y′z′

38. wxyz′ + wx′yz + wxy′z′ + wx′yz′ + wx′y′z + wx′y′z′

39. wxyz + wxyz′ + wx′yz + w′xy′z + wx′yz′ + w′xy′z′ + w′x′y′z + w′x′y′z′

Simplify the boolean expression represented by each Karnaugh map.

40. yz yz′ y′z′ y′z
x 1 1 d d

x′ d d

42. yz yz′ y′z′ y′z
wx 1 1 1 1

wx′ 1 d

w′x′ d d
w′x d 1

41. yz yz′ y′z′ y′z
x 1 1

x′ d d d d

43. yz yz′ y′z′ y′z
wx 1 d d d

wx′ 1 d d

w′x′ 1 d

w′x 1

Simplify each boolean expression defined by the tables in Exercises 44
and 45.

862 Chapter 12 Boolean Algebra and Combinatorial Circuits

44.
x y z f

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 d
1 1 1 1

45.
x y z f

0 0 0 1
0 0 1 d
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 d
1 1 0 1
1 1 1 0

Using the BCD expansions of decimal numbers 0 through 9, develop a
boolean function f (w, x, y, z) such that the decimal value of (wxyz)two is:

46. A composite number.

48. At least seven.

47. Divisible by five.

49. Divisible by three or four.

50–53. Find the DNF of each boolean function in Exercises 46–49.

Supplementary Exercises

1. Let p and q be distinct prime numbers, n = pq, and S = {1, p, q, n}.
Define the operations ⊕, �, and ′ on S as follows:

x ⊕ y = lcm {x, y}, x � y = gcd {x, y}, x′ = n/x

Is 〈S, ⊕, �, ′, 1, n〉 a boolean algebra?

2. Let 〈B, +, ·, ′, 0, 1〉 be a boolean algebra and A ⊆ B. Prove that
〈A, +, ·, ′, 0, 1〉 is a boolean algebra if and only if these two conditions
are satisfied:

• 1 ∈ A.

• If x, y ∈ A, then xy′ ∈ A.

3. Let x be any element of a boolean algebra B. Let x(n) denote the
expression (. . . (x′)′ . . .)′, where there are n (≥ 1) primes. Prove that

x(n) =
{

x if n is even

x′ if n is odd

Let x1, x2, . . . , xn be any elements of a boolean algebra B. By induction,
prove the following DeMorgan’s laws.

4. (x1 + x2 + · · · + xn)′ = x′
1x′

2 . . . x′
n

5. (x1x2 · · · xn)′ = x′
1 + x′

2 + · · · + x′
n

Chapter Summary 863

Find the dual of each boolean expression.

6. (x + y) + x′y′

8. [(x′ + y′) + (x′)′(y′)′]′
10. (x + y)(y′ + 0)(x1′)

7. (x + y)(xy)′(x + y′)

9. [(x′ + y′)(x′y′)′(x′ + (y′)′)]′
11. {(x′ + y′)[(y′)′ + 0′][x′(1′)′]}′

12. Using Exercises 6–11, predict the dual of the boolean expression
E(x1, . . . , xn).

A boolean expression E(x1, . . . , xn) is self-dual if E(x1, . . . , xn) =
[E(x′

1, . . . , x′
n)]′. Determine if each expression is self-dual.

13. x 14. x + yz 15. xyz 16. xy + yz′

Computer Exercises

Write a program to perform each task.

1. Let n be the product of k distinct prime numbers, where 1 ≤ k ≤ 5.
Then 〈Dn, ⊕, �, ′, 1, n〉 is a boolean algebra, where the operations ⊕, �
and ′ are defined below:

x ⊕ y = lcm {x, y}, x � y = gcd {x, y}, x′ = n/x

(a) Read in n and find the elements of Dn.

Read in three elements x, y, and z of Dn and compute each.

(b) x ⊕ y

(e) x ⊕ y ⊕ z

(c) x � y

(f) x � y � z

(d) x′

(g) x ⊕ (y � z)

2. Construct a logic table for the boolean expressions x + y, xy, x ↑ y, and
x ↓ y.

3. Set up a logic table for each boolean expression.

(a) (x + y + z)(xyz)′

(c) x ↑ (y ↑ z)

(b) (x + y + z)(xy′ + yz′ + zx′)

(d) x ↓ (y ↓ z)

4. Determine if the given boolean expressions are equal.

(a) x + xy, x

(c) (x + y)′, x′y′
(b) x ↑ (y ↑ z), (x ↑ y) ↑ z

(d) (x ↑ y) ↑ (x ↑ y), xy

5. Read in the logic table for a boolean function f (x, y, z). Find the DNF
of the function.

6. Read in each boolean function f (x, y, z). For each one, create the logic
table for f and the DNF of the function.

864 Chapter 12 Boolean Algebra and Combinatorial Circuits

(a) f (x, y, z) = x + y′ + z′

(c) f (x, y, z) = x(y + z)

(b) f (x, y, z) = x ↑ (y ↓ z)

(d) f (x, y) = (x ↑ y) ↓ (x ↑ z)

7. Read in two n-bit binary numbers. Compute their sum bit by bit.

8. Read in the logic table for a boolean expression E = E(x, y, z).

(a) Construct its DNF.

(b) Construct the corresponding Karnaugh map.

9. Redo program 8 if E = E(w, x, y, z).

10. Draw a table containing the binary representations of the integers 0
through 15.

11. Let n be a positive integer ≤ 10. Find a boolean function f of the vari-
ables w, x, y, and z such that f (w, x, y, z) = 1 if n is a prime number and
0 otherwise, where (wxyz)two denotes the BCD expansion of n.

(a) Print the logic table for f.

(b) Build the DNF of the function.

(c) Draw the Karnaugh map for the expression f (w, x, y, z).

12. Read in a decimal digit d. Use the configuration in Figure 12.50 to
print the line segments a through g that must light up to display the
digit d. Print the corresponding DNFs, too.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Develop number applications of the logic operations NOT, AND, OR,
NOR, and NAND to everyday life.

2. Describe C. Shannon’s contributions to the theory of switching circuits.

3. Describe the Quine–McCluskey method, originally developed by W. V.
Quine (1908–2000) and modified by E. J. McCluskey, Jr. (1929–), used
for the simplification of boolean functions.

Enrichment Readings

1. J. C. Abbot, Sets, Lattices, and Boolean Algebras, Allyn and Bacon,
Boston, 1969.

2. B. H. Arnold, Logic and Boolean Algebra, Prentice-Hall, Englewood
Cliffs, NJ, 1962.

Chapter Summary 865

3. H. G. Flegg, Boolean Algebra and Its Applications, Wiley, New York,
1964.

4. K. G. Gopolan, Introduction to Digital Microelectronic Circuits, Irwin,
Chicago, 1996.

5. F. E. Hohn, Applied Boolean Algebra, 2nd ed., Macmillan, New York,
1966.

6. J. E. Whitesitt, Boolean Algebra and Its Applications, Addison-Wesley,
Reading, MA, 1961.

7. J. F. Wakerly, Digital Design: Principles and Practices, 2nd ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

8. G. E. Williams, Boolean Algebra with Computer Applications, McGraw-
Hill, New York, 1970.

This Page Intentionally Left Blank

Appendix A

A.1 ASCII Character Set

Right ASCII

Left

� � � � � � �

Digit

Digit(s) 0 1 2 3 4 5 6 7 8 9

3 � ! ” # $ % & ’
4 () ∗ + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [1/8] ∧ — ´ a b c

10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ˜

Codes 00-31 and 127 are nonprintable control characters. The symbol � denotes the
blank character.

A.2 Determinants*

Determinants were invented by the Japanese mathematician Seki Kowa
(1642–1708). However, German mathematician Gottfried Wilhelm Leibniz
(1646–1716) is credited with their creation, although his contribution (in
1693) came 10 years later than Kowa’s. Leibniz developed determinants
while solving systems of linear equations.

∗Based on T. Koshy, College Algebra and Trigonometry with Applications, McGraw-Hill,
New York, 1986, pp. 423–432.

867

868 Appendix A

Determinant
A determinant is a function from the set of square matrices to R, the set
of real numbers. The determinant of a square matrix A is denoted by det A
or |A|. If A is an n × n matrix, det A is called a determinant of order n.
(Determinants of nonsquare matrices are not defined.)

For example, the determinant of the matrix A = (aij)2×2 is written as

det A =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣
using vertical bars and is defined by

det A = a11a22 − a21a12

For instance, ∣∣∣∣2 3
4 −5

∣∣∣∣ = 2 · (−5) − 4 · 3 = −22

If we know how to evaluate 2 × 2 determinants, we can then evaluate
higher-order determinants.

Minor and Cofactor
Let (aij) be a square matrix of order n. The determinant of the matrix
obtained by deleting row i and column j is the minor of the element aij,
denoted by Mij. The cofactor Aij of aij is defined by Aij = (−1)i+jMij.

Aij = +Mij if i + j is even, and −Mij if i + j is odd. The signs associated
with each cofactor Aij can be displayed in a checkerboard pattern like this
3 × 3 matrix: ⎡

⎢⎣
+ − +
− + −
+ − +

⎤
⎥⎦

The signs alternate for each row and column, beginning with + for the first
row and first column.

EXAMPLE A.1 For the matrix

A =
⎡
⎢⎣

1 −2 3

4 −5 6

−7 8 −9

⎤
⎥⎦

compute M13, A13, M32, and A32.

A.2 Determinants 869

SOLUTION:

M13 =
∣∣∣∣ 4 −5
−7 8

∣∣∣∣ = 4 · 8 − (−7) · (−5) = −3

A13 = (−1) 1+3M13 = −3

M32 =
∣∣∣∣1 3
4 6

∣∣∣∣ = 1 · 6 − 4 · 3 = −6

A32 = (−1) 3+2M32 = +6 �

Expansion of det A
Let Aij denote the cofactor of the element aij of the matrix A = (aij)n×n.
Then the determinant of A is defined by

det A = ai1Ai1 + ai2Ai2 + · · · + ainAin (expansion by row i)

= a1 jA1 j + a2 jA2 j + · · · + an jAn j (expansion by column j)

(det A can be expanded by any row or any column.)

EXAMPLE A.2 Evaluate det A for the matrix A in Example A.1.

SOLUTION:
Expanding det A by the first row,

det A = +1
∣∣∣∣−5 6

8 −9

∣∣∣∣− (−2)
∣∣∣∣ 4 6
−7 −9

∣∣∣∣+ 3
∣∣∣∣ 4 −5
−7 8

∣∣∣∣
= +1(45 − 48) + 2(−36 + 42) + 3(32 − 35)

= 0

We can expand det A by any other row or any column to verify this. �
Suppose that every element in a row or column of a square matrix A is

zero. Expanding det A by that row or column shows that det A = 0 (Verify
this.). Theorem A.1 confirms this.

THEOREM A.1 If every element in a row or column of a square matrix A is zero, then
det A = 0. �

Evaluating a determinant of a large order is not easy unless it contains
many zeros. However, the following theorems can make evaluation easier.

THEOREM A.2 Let B be the matrix obtained by interchanging any two rows or columns of
a square matrix A. Then det B = − det A.

870 Appendix A

PROOF:
To prove this theorem for the matrix A = (aij)2×2, interchange the
rows of A:

B =
[
a21 a22
a11 a12

]

and

det A = a21a12 − a11a22

= −(a11a22 − a21a12)

= − det A �

THEOREM A.3 If any two rows or columns of a square matrix A are identical, det A = 0.

PROOF:
Let B be the matrix obtained by interchanging two identical rows or
columns of A. By Theorem A.2, det B = − det A. But since A = B, det B =
det A. Therefore, det A = − det A and hence det A = 0. �

The following example illustrates this.

EXAMPLE A.3 Evaluate det A if

A =
⎡
⎢⎣

2 3 5

−8 4 7

2 3 5

⎤
⎥⎦

SOLUTION:
Since rows 1 and 3 are the same, det A = 0, by Theorem A.3. Expanding
det A by column 1 confirms this:

det A = 2
∣∣∣∣4 7
3 5

∣∣∣∣− (−8)
∣∣∣∣3 5
3 5

∣∣∣∣+ 2
∣∣∣∣3 5
4 7

∣∣∣∣
= 2(20 − 21) + 8(15 − 15) + 2(21 − 20)

= −2 + 0 + 2

= 0

as expected. �
The next theorem shows that we can factor out common factors from a

row or column.

A.2 Determinants 871

THEOREM A.4 Let B be the matrix produced by multiplying one row or column of a square
matrix A by a real number k. Then det B = k · det A.

PROOF:
Let A = (aij)n×n and B be the matrix derived from multiplying its ith row
by k. Expanding det B by row i,

det B = (kai1)Ai1 + (kai2)Ai2 + · · · + (kain)Ain

= k(ai1Ai1 + ai2Ai2 + · · · + ainAin)

= k · det A �

EXAMPLE A.4 Using Theorem A.4, evaluate det A, where

A =
⎡
⎢⎣

3 −6 9

4 −5 6

−7 8 −9

⎤
⎥⎦

SOLUTION:
Factor out 3 from row 1:

det A = 3

∣∣∣∣∣∣∣
1 −2 3

4 −5 6

−7 8 −9

∣∣∣∣∣∣∣
Now factor out 3 from column 3:

det A = 9

∣∣∣∣∣∣∣
1 −2 1

4 −5 2

−7 8 −3

∣∣∣∣∣∣∣
Expand by row 1:

det A = 9
[
1
∣∣∣∣−5 2

8 −3

∣∣∣∣+ 2
∣∣∣∣ 4 2
−7 −3

∣∣∣∣+ 1
∣∣∣∣ 4 −5
−7 8

∣∣∣∣
]

= 9[1(15 − 16) + 2(−12 + 14) + 1(32 − 35)]
= 0 �

THEOREM A.5 Let B be the matrix obtained by adding k times a row or column to another
row or column of a square matrix A. Then det B = det A.

PROOF:
We shall prove the theorem for an arbitrary matrix A = (aij)2×2. Let B be
the matrix obtained by adding k times row 2 to row 1:

B =
∣∣∣∣a11 + ka21 a12 + ka22

a21 a22

∣∣∣∣

872 Appendix A

det A = (a11 + ka21)a22 − a21(a12 + ka22)

= (a11a22 − a21a12) + k(a21a22 − a21a22)

= det A + k · 0

= det A

Similarly, if B is the matrix obtained by adding k times row 1 to row 2, then
det B = det A. �

EXAMPLE A.5 Evaluate det A with Theorem A.5, where

A =
⎡
⎢⎣

1 2 −3

4 −5 6

−7 8 −9

⎤
⎥⎦

SOLUTION:
Keep the 1 in column 1 to make the other two entries in column 1 (4 and
−7) 0’s. To this end, add −4 times row 1 to row 2 and 7 times row 1 to
row 3:

det A =

∣∣∣∣∣∣∣
1 2 −3

0 −13 18

0 22 −30

∣∣∣∣∣∣∣
Expanding det A by column 1, we see that

det A = 1[(−13) · (−30) − 22 · 18] = −6 �

The above properties used simultaneously can speed up evaluating
determinants, as the next example shows.

EXAMPLE A.6 Evaluate det A if

A =

⎡
⎢⎢⎢⎢⎣
−3 1 2 −1

3 0 −5 6

2 4 0 8

−1 2 0 3

⎤
⎥⎥⎥⎥⎦

SOLUTION:
Use Theorems A.4 and A.5 to evaluate det A. Factor out 2 from row 3:

det A = 2

∣∣∣∣∣∣∣∣∣∣

−3 1 2 −1

3 0 −5 6

1 2 0 4

−1 2 0 3

∣∣∣∣∣∣∣∣∣∣

A.2 Determinants 873

Now use the 1 in column 1 to make the remaining entries in the column
zeros. To this end, add 3 times row 3 to row 1 and −3 times row 3 to row 2;
add row 3 to row 4:

det A = 2

∣∣∣∣∣∣∣∣
0 7 2 −11
0 −6 −5 −6
1 2 0 4
0 4 0 7

∣∣∣∣∣∣∣∣
Expand this determinant by column 1:

det A = 2

∣∣∣∣∣∣∣∣
7 2 −11

−6 −5 −6

4 0 7

∣∣∣∣∣∣∣∣
Expand the new determinant by row 3:

det A = 2
[
4
∣∣∣∣ 2 −11
−5 −6

∣∣∣∣− 0 + 7
∣∣∣∣ 7 2
−6 −5

∣∣∣∣
]

= 2[4(−12 − 55) − 0 + 7(−35 + 12)]
= −858 �

Exercises A.2

Evaluate each determinant.

1.
∣∣∣∣2 0
0 3

∣∣∣∣
4.

∣∣∣∣∣∣
1 0 0
0 2 0
0 0 3

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
a b 1
b c 1
c a 1

∣∣∣∣∣∣
10.

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣

2.
∣∣∣∣−3 2

5 −7

∣∣∣∣
5.

∣∣∣∣∣∣
3 5 0
6 7 0
2 4 0

∣∣∣∣∣∣
8.

∣∣∣∣∣∣
1 + x 1 1

1 1 + y 1
1 1 1 + z

∣∣∣∣∣∣
11.

∣∣∣∣∣∣∣∣
a b 0 0
c d 0 0
0 0 e f
0 0 g h

∣∣∣∣∣∣∣∣

3.
∣∣∣∣a −b
b a

∣∣∣∣
6.

∣∣∣∣∣∣
2 3 5
1 4 7
6 9 15

∣∣∣∣∣∣
9.

∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣
−1 0 1 1

0 1 −1 −1
1 −2 3 −4

−2 4 −6 8

∣∣∣∣∣∣∣∣
Prove each.

13. Let A and B be two 2 × 2 matrices. Then |AB| = |A| · |B|.
14. Let A be any square matrix of order n. Then |kA| = kn|A|.

874 Appendix A

15. Let A be an n × n matrix such that AAT = In. Then |A| = ±1.

16. Let A = (aij)n×n where aij = 0 for j > i. (Such a matrix is called an
upper triangular matrix.) Then |A| = a11a22 . . . ann.

Solve each equation for f(x).

17.

∣∣∣∣∣∣
f (x) 1 x
f (a) 1 a
f (b) 1 b

∣∣∣∣∣∣ = 0
18.

∣∣∣∣∣∣∣∣
f (x) 1 x x2

f (a) 1 a a2

f (b) 1 b b2

f (c) 1 c c2

∣∣∣∣∣∣∣∣ = 0

A.3 Exponential and Logarithmic Functions*

Exponential functions and their closest relatives, the logarithmic functions,
form one of the most important classes of functions. They have a wide range
of fine applications to computer science, life sciences, management science,
physical sciences, and social sciences.

For example, an exponential function occurs in the natural sciences:
E. coli are microscopic unicellular bacteria that multiply by halving into two
bacteria about every 20 minutes under ideal conditions. Suppose initially
there is one bacterium and 20 minutes is unit time. Then there will be two
bacteria in one unit time, four in two units, eight in three units, and so
on. In general, there will be f(x) = 2x bacteria in x units of time, assuming
none dies during the period. This function belongs to the large class of
exponential functions, defined below.

Exponential Function
Let a be a positive real number different from 1 and x an arbitrary real
number. Then the function f(x) = ax is called an exponential function
with base a.

If a = 1 in this definition, the function becomes the constant function
f(x) = 1, which holds little practical interest. As a result, it is excluded from
the definition.

Figure A.1 shows the graphs of several exponential functions with differ-
ent bases a, where a > 1. They grow faster and more steeply as a increases.
We can use such exponential functions to describe growths of populations;
consequently, their graphs are called growth curves.

Figure A.2 shows some exponential graphs y = ax, where 0 < a < 1.
Each can be obtained by flipping the corresponding graph y = ax, where
a > 1, about the y-axis.

∗Based on T. Koshy, College Algebra and Trigonometry with Applications, McGraw-Hill,
New York, pp. 204–241.

A.3 Exponential and Logarithmic Functions 875

Figure A.1

Growth curves y = ax,
a > 1.

y = 10x

y = 7x

y = 3x

x

y

o

Figure A.2

Decay curves y = ax,
0 < a < 1.

y

x
o

y = 10−x

y = 7−x

y = 3−x

Here the y-values decrease as x increases. Such graphs are used to study
the decay of radioactive substances and are called decay curves.

The important properties of the exponential function f (x) = ax are listed
below:

• Dom(f) = (−∞, ∞); range(f) = (0, ∞).

• The y-intercept of the graph is 1.

• The exponential function is bijective.

• If a > 1, then f is an increasing function; that is, if x1 > x2 then
f (x1) > f (x2). If 0 < a < 1, then f is a decreasing function; that
is, if x1 > x2 then f (x1) < f (x2).

• The x-axis is a horizontal asymptote for the graph.

• The graphs y = ax and y = a−x are reflections of each other about
the y-axis.

The next two examples explore some applications of the exponential
function.

876 Appendix A

EXAMPLE A.7 Consider the world population (in billions) given by Table A.1. We can use
these to draw a smooth curve as in Figure A.3. The graph shows that the
world population is growing exponentially.

Table A.1 Year t 1 1000 1650 1750 1800 1850 1900 1950 1970 1990 2000

Population 0.25? 0.3 0.5 0.7 0.9 1.1 1.6 2.5 3.6 5.2 6.1
P(t)

Figure A.3

The exponential
growth of the world
population.

y

t

1

2

3

4

5

6

1650 1750 1850

Years

1950 2000

�

EXAMPLE A.8 ∗ Suppose a bowl of nutrient broth contains 1,000,000 viable bacteria per
millimeter. Table A.2 shows the number of viable bacteria per millimeter
in the broth after an agent has been added to kill them. The population at
time t is only one-tenth of that at time t − 10. Let N(t) denote the number of
viable bacteria at time t. Then N(t) = 106−0.1t. If t can take on all possible
values (at least theoretically), then the graph of N(t) looks like the decay
curve in Figure A.4.

Table A.2 Time t (in minutes) 0 10 20 30 40 50 60

Number of bacteria N(t) 106 105 104 103 102 10 1

�
An extremely useful exponential function is f (x) = ex, where e is the

irrational number 2.718281828. . . . (The letter e for the base was chosen in

∗Based on R. M. Thrall et al. (ed.), “Extermination of Bacteria,” Some Mathematical Models
in Biology, The University of Michigan Press, Ann Arbor, MI, 1967, pp. PE3.1–PE3.2.

A.3 Exponential and Logarithmic Functions 877

Figure A.4

o

106

N(t)

Time
t

honor of Euler.) It is established in calculus that

e = lim
n→∞

(
1 + 1

n

)n

The graphs of the functions f (x) = ex and g(x) = e−x appear in Figure A.5.

Figure A.5 y

xo

y = ex
y = e−x

Logarithms
Logarithms were invented by the Scottish mathematician John Napier
(1550–1617), to facilitate numeric computations. He published a summary
of his results in 1614.

Logarithmic Function
In the exponential function y = ax, where a > 0 and a �= 1, the expo-
nent x is the logarithm of y to the base a; it is denoted by log a (y) or

878 Appendix A

simply log a y. Thus,

loga y = x if and only if y = ax

The function g(x) = loga x is the logarithmic function with base a.
With the base a always positive, y = ax is positive for all values of x.

As a result, x = loga y is defined only if y is positive. In other words,
only logarithms of positive numbers are defined. Thus the domain of the
logarithmic function is (0,∞), and the range is (−∞, ∞).

Since the exponential function is bijective with domain (−∞, ∞) and
range (0, ∞), it has an inverse function. The next theorem shows the inverse
is indeed the logarithmic function.

THEOREM A.6 The logarithmic function g(x) = loga x is the inverse of the exponential
function f (x) = ax.

PROOF:
By definition alog a x = x for every x > 0, and that log a(ax) = x for every x.
Then

(f ◦ g)(x) = f (g(x)) = f (loga x) = aloga x = x

and

(g ◦ f)(x) = g(f (x)) = g(ax) = loga(ax) = x

So the logarithmic function g is the inverse of the exponential
function f. �

According to this theorem, we can obtain the graph of y = loga x by
reflecting that of y = ax about the line y = x, as shown in Figure A.6.

Figure A.6
y y

y = ax y = ax

y = x y = x

x x
1 1

1 1

o o

a > 1 0 < a < 1

y = logax

y = logax

A.3 Exponential and Logarithmic Functions 879

Below are listed the important properties of the logarithmic function
g(x) = loga x.

• Dom(g) = (0,∞); range(g) = (−∞, ∞).

• The x-intercept of the logarithmic graph is 1.

• The logarithmic function is bijective.

• If a > 1, g is an increasing function; if 0 < a < 1, g is a decreasing
function.

• The y-axis is a vertical asymptote.

• The functions f (x) = ax and g(x) = loga x are inverses of each other;
their graphs are mirror images of each other about the line y = x.

• The graphs of y = log a x and y = log1/a x are reflections of each other
about the x-axis.

Frequently Used Bases
Three bases of logarithms, 10, e, and 2, are frequently used. Logarithms to
the base 10 are called common logarithms or Briggsian logarithms,
after the English mathematician Henry Briggs (1561–1631). Their base is
usually omitted:

log x = log10 x

Logarithms to the base e are natural logarithms and abbreviated as ln:

ln x = loge x

Logarithms to the base 2, which we often use in computer science, appear
as lg:

lg x = log2 x

The fundamental properties of logarithms are given in the next theorem.
We can prove each using the definition of a logarithm.

THEOREM A.7 Let a, b, x, and y be any positive real numbers such that a �= 1, b �= 1, and
n any real number. Then:

(1) aloga x = x
(3) log a

x
y

= log a x − log a y

(5) log a 1 = 0
(7) log a (ax) = x

(9) log b x = loga x
loga b

(2) log a(xy) = log a x + log a y
(4) log a(xn) = n log a x
(6) log aa = 1
(8) log ax = log a y if and only if

x = y
�

880 Appendix A

The next three examples illustrate some useful exponential and logarith-
mic functions.

EXAMPLE A.9 The pH of a solution, which measures its acidity or alkalinity, is defined
as the negative logarithm of the hydrogen concentration x in moles per
liter of the solution; that is, pH = −log x. At 25◦C, the pH of pure water
is 7; if the pH of a solution falls below 7, the solution is acidic, and above
7 it is alkaline. Compute the pH of a solution where the concentration of
hydrogen ions is 6. 7 × 10−4.

SOLUTION:
pH of the solution = − log (6. 7 × 10−4)

= − log 6. 7 − log (10−4)

= − log 6. 7 + 4

≈ −0. 8261 + 4

= 3. 1739 �

EXAMPLE A.10 The world population (in billions) at any time t (in years) is given by p(t) =
6.1e0.0167t, where p(0) denotes the population in 2000. At the given rate,
when will the population double the 2000 level?

SOLUTION:
Population in 2000 = p(0) = 6.1 billion. We need the value of t when p(t) =
12.2 (Figure A.7). Then

6. 1e0.0167t = 12. 2

Divide by 6.1:

e0.0167t = 2

Then

ln e0.0167t = ln 2

0. 0167t = ln 2

t = ln 2
0. 0167

≈ 42 years �

Figure A.7
12.2

6.12000

t = ?

A.3 Exponential and Logarithmic Functions 881

EXAMPLE A.11 The half-life of a radioactive substance is the time required for one-half of
that substance to decay. The amount of 11C, an isotope of carbon, present
at a future time t (in months) is given by A(t) = 100e−0.0338t. Find the half-
life of the material.

SOLUTION:
Original amount = A(0) = 100 grams. The half-life is the value of t when
A(t) = 1

2A(0) = 50 (Figure A.8). Then

100e−0.0338t = 50

Divide by 100:

e−0.0338t = 1
2

Then

ln e−0.0338t = ln
1
2

−0. 0338t = − ln 2

t = ln 2
0. 0338

≈ 20. 5 months

Figure A.8

t = ?

100

50
�

Exercises A.3

Prove each, where f denotes the exponential function.

1. f (x + y) = f (x) · f (y)

3. f is injective.
2. f (x − y) = f (x)

f (y)

4. The logarithmic function g(x) = log a x is injective.

882 Appendix A

Prove, by contradiction, that each is an irrational number.

5. log 2 6. log 3

7. The concentration of hydrogen ions in a solution is 3.76 × 10−8.
Compute the pH of the solution.

8. The pH of a solution is 5.3575. Compute its hydrogen ion
concentration.

The intensity of sound the human ear can hear is measured in decibels,
named after Alexander Graham Bell (1847–1922), the American scientist
who invented the telephone. The number of decibels in a sound of intensity
I is given by

B = 10 log
I
I0

where I0 is the standard intensity of 10−12 watts per square meter (W/m2).
Find the number of decibels in:

9. Threshold of hearing (10−12 W/m2)

10. Normal conversation (10−6 W/m2)

11. Street traffic (10−5 W/m2)

12. Two sounds of intensity I1 and I2 have decibels B1 and B2, respectively.

Show that B1 − B2 = 10 log
I1

I2
.

13. The magnitude of a star is a measure of its brightness: the brighter
the star, the smaller the magnitude. If b1 and b2 denote the
magnitudes of two stars, B1 and B2 their respective brightnesses,

b1 − b2 = −2.512 log
B1

B2 . The brightest stars, Aldebaran and Sirius,

have magnitudes 1 and −1.6, respectively. How much brighter is Sirius
than Aldebaran?

The absolute magnitude M of a star, its apparent magnitude m, and the
stellar distance d (in parsecs) from the earth are related by the formula
m = M + 5 log 0.1d.

14. Compute the stellar distance of Aldebaran if its absolute magnitude is
−0.2 and its apparent magnitude 0.86.

15. The difference m − M is the distance modulus of the star. The
distance modulus of Sirius is −2.86. Find its stellar distance.

16. With Rubik’s Cube, a popular game, the goal is to turn its faces to one
particular configuration. The minimum number of turns required from

some position to the desired state is 1 + log15

(4. 3 × 1019

18

)
. Compute

it. (C. Kluepfel, 1982)

A.4 Generating Permutations and Combinations 883

A.4 Generating Permutations and Combinations

Sections 6.2 through 6.5 presented various types of permutations
and combinations, as well as formulas for computing the number of
r-permutations and r-combinations of a finite set S. In this section, we
will study algorithms which enumerate them.

Generating Permutations
For convenience, we choose S = {1, 2, . . . , n}. We shall present an algorithm
for generating the various permutations of elements of the set. The algo-
rithm is based on lexicographic ordering, the same type used to arrange
words in a dictionary.

Lexicographic Order
In lexicographic ordering, a permutation A = a1a2 . . . an is less than (or
precedes) a permutation B = b1b2 . . . bn if:

• a1 < b1 or

• ai = bi for 1 ≤ i ≤ k − 1, and ak < bk.

This is precisely the order we use to alphabetize words (of the same
length) in the dictionary. For instance, the word compute precedes the
word permute and the word estate precedes the word esteem.

EXAMPLE A.12 Consider the permutation a1a2a3a4 = 2134 and b1b2b3b4 = 2143 of the set
{1, 2, 3, 4}. They agree in the first two positions: a1 = b1 and a2 = b2. But
they differ in the third positions: a3 �= b3. Since a3 < b3, the permutation
2134 precedes the permutation 2143 in lexicographic ordering. �

Recall that there are 4! = 24 permutations of the set {1, 2, 3, 4}. They
are listed in Figure A.9 in lexicographic order columnwise, beginning with
1234. (Can you find a pattern for enumerating them?)

Figure A.9 1234 1423 2314 3124 3412 4213
1243 1432 2341 3142 3421 4231
1324 2134 2413 3214 4123 4312
1342 2143 2431 3241 4132 4321

Suppose we have an algorithm to generate the next larger permutation
b1b2 . . . bn from a given permutation a1a2 . . . an. Then, beginning with the
permutation 123 . . . n, we can invoke it to generate the remaining n − 1
permutations. The procedure to generate the next larger permutation from
a given permutation in lexicographic order is described below.

884 Appendix A

If an−1 < an, switch them to obtain the new permutation a1a2 . . . an−2
anan−1. Then the permutation a1a2 . . . an−2an−1an precedes the permuta-
tion a1a2 . . . an−2anan−1 in lexicographic ordering.

For example, consider the permutation 2143; it succeeds the permuta-
tion 2134 in the listing in Figure A.9.

On the other hand, suppose an−1 > an. (Then by switching them we
cannot obtain a larger permutation.) So we look at an−2. If an−2 < an−1,
find the smaller of the elements an−1 and an that is larger than an−2; place
it in position n − 2; and now arrange an−2 and the remaining elements in
increasing order.

For instance, consider the permutation a1a2a3a4 = 2341 in Figure A.9.
Here a3 > a4, but a2 < a3; the smaller of a3 and a4 that is larger than a2 = 3
is a3 = 4; so hold 4 in position 2 to get 24__; now arrange the remaining
elements a2 = 3 and a4 = 1 in ascending order to yield the next larger
permutation 2413 (see Figure A.9). If an−2 > an−1, we need to look at the
elements an−3 through an.

More generally, all we need to do is the following. From right to left,
find the first pair of elements ai, ai+1 such that ai < ai+1, where
ai+1 > ai+2 > . . . > an. Then find the smallest of the elements ai+1,
ai+2, . . . , an, say, aj, that is larger than ai. Place aj in position i. Now
arrange the elements ai, ai+1, . . . , aj−1, aj, aj+1, . . . , an in increasing
order in positions i + 1 through n.

The following example illustrates this procedure.

EXAMPLE A.13 Find the next permutation larger than a1a2a3a4 = 3421.

SOLUTION:
The first pair ai, ai+1 from right to left for which ai < ai+1 is the pair
a1, a2. So find the smallest of the elements a2 = 4, a3 = 2, and a4 = 1 that
is larger than a1 = 3. Clearly, it is a2 = 4. So we place 4 in position 1. Now
we arrange the elements 3, 2, and 1 in increasing order: 123. Consequently,
the next larger permutation is 4123. (See Figure A.9.) �

The above discussion can be translated into an algorithm for finding the
next larger permutation that follows a given permutation a1a2 . . . an. It is
presented in Algorithm A.1.

Algorithm next-permutation (a1a2...an)
(* This algorithm finds the permutation larger than the

given permutation a1a2...an. Assume it is not the
largest permutation n(n - 1)...321. *)

0. Begin (* algorithm *)
(* From right to left, find the first pair ai, ai + 1 for

which ai < ai + 1. *)
1. i ← n - 1

A.4 Generating Permutations and Combinations 885

2. While ai > ai + 1 do (* continue searching to the left *)
3. i ← i - 1

(* When we exit the loop, we will have found an i for
which ai < ai + 1. Find the smallest of the elements ai + 1
through an, say, ak, that is larger than ai. Since
ai + 1 > ai + 2 > ... > an, scan from right to left to find
the element ak that is larger than ai. *)

4. k ← n
5. While ak < ai do (* continue scanning to the left. *)
6. k ← k - 1

(* ak is the smallest of the elements ai + 1 through an
that is larger than ai. Swap ai and ak. *)

7. swap ai and ak
8. sort the elements in positions i + 1 through n into

ascending order.
9. End (* algorithm *)

Algorithm A.1

EXAMPLE A.14 Using Algorithm A.1, enumerate in lexicographic order all permutations of
elements of the set {1, 2, 3}.
SOLUTION:
We begin with the basic permutation a1a2a3 = 123. Since a2 < a3 and the
least of the elements(s) a3 that is greater than a2 is a3, switch 2 and 3 to
get the next larger permutation 132. Since 1 < 3 and the smaller of 3 and
2 that is larger than 1 is 2, swap 1 and 2, and sort the elements 3 and 1
to yield the permutation 213. Continuing like this, we get the remaining
permutations in lexicographic order: 123, 132, 213, 231, 312, 321. (Also see
the tree diagram in Figure A.10.)

Figure A.10

>

>

>

>

>

>

permutations

1

2

2 3 123

132

213

231

312

321

3

1

12

3 2

2

3

1

1
3

�

Generating Combinations
How can we generate the r-combinations of set {1, 2, . . . , n}, where 0 < r <
n? First we list the various combinations in increasing numerical order.

886 Appendix A

For instance, there are ten 3-combinations of the set S = {1, 2, 3, 4, 5}; in
lexicographic order, they are:

123, 124, 125, 134, 135, 145, 234, 235, 245, 345

How can we find the next larger 3-combination from a given
3-combination? For instance, consider the 3-combination 134 of the set S.
The last element (from right) is less than 5 (= n). So we increment it by 1
to get the next larger combination 135.

EXAMPLE A.15 Using the set S = {1, 2, 3, 4, 5}, find the combination following a1a2a3 =
135 in lexicographic order.

SOLUTION:
Notice that a3 = 5, the largest in S. So look at a2; a2 < 5; so increment a2 by
1 to get 4. Replace a3 by 1 more than the current a2: a3 ← a2+1 = 4+1 = 5.
Thus the next larger combination is 145. �

EXAMPLE A.16 Find the combination that follows in lexicographic order the 3-combination
145 of the set {1, 2, 3, 4, 5}.
SOLUTION:
Let a1a2a3 = 145. Clearly, a3 = 5 and a2 = 4. Since a2 < 5, if we increment
it by 1 to get 4 + 1 = 5, the new a3 should be 5 + 1; unfortunately, it does
not exist in the set. So go to a1 = 1, which is less than 5. (Notice that
a3 = 5 − 3 + 3; a2 = 4 = 5 − 3 + 2; but a1 = 1 �= 5 − 3 + 1. Therefore, a1
is the first element from the right such that ai �= n − r + i.) Increase a1 by
1 : a1 ← a1 +1; so a1 ← 2. Now assign a2 = a1 +1 = 3 and a3 = a1 +2 = 4.
The resulting combination is 234. �

Thus, to find the combination that follows the r-combination a1a2 . . . ar,
we proceed as follows. From right to left, we find the first element ai
such that ai �= n − r + i. Increment ai by 1 : ai ← ai + 1. (Using the new
ai) assign the values ai + 1, ai + 2, . . . to ai+1, ai+2, . . . , ar, respectively;
that is, aj ← ai + j − i, where i + 1 ≤ j ≤ r.

EXAMPLE A.17 Find the combination that follows in lexicographic ordering the 3-
combination 245 of the set {1, 2, 3, 4, 5}.
SOLUTION:
Here n = 5, r = 3, and n − r = 2. Let a1a2a3 = 245. From right to left,
find the first ai such that ai �= n − r + i = 2 + i. Clearly, a3 = 5 = 2 + 3,
a2 = 4 = 2+2; but a1 = 2 �= 2+1. Therefore, the first such ai is a1. Update
a1 as a1 + 1 : a1 ← 2 + 1 = 3. Now assign the value a1 + j − 1 to aj for the
remaining positions j, namely, 2 and 3:

When j = 2, a2 = a1 + 2 − 1 = 3 + 1 = 4

A.4 Generating Permutations and Combinations 887

When j = 3, a3 = a1 + 3 − 1 = 3 + 2 = 5

The resulting combination is 345. �
These discussions lead us to Algorithm A.2.

Algorithm next-combination (a1a2...ar)
(* This algorithm finds the combination that follows the

r-combination a1a2...ar of the set {1,2,...,n}. Assume
the given combination is not the largest combination
(n - r + 1)...(n - 1)n. *)

0. Begin (* next-combination *)
(* Find the first ai from right to left for which

ai �= n - r + i. *)
1. i ← r
2. while ai = n - r + i do (* continue scanning *)
3. i ← i - 1
4. ai ← ai + 1 (* update ai *)

(* update the values of ai + 1, ai+2,...,ar *)
5. for j = i + 1 to r do
6. aj ← ai + j - i
7. End (* next-combination *)

Algorithm A.2

EXAMPLE A.18 Using Algorithm A.2, find the combination that follows in lexicographic
order the 4-combination 1345 of the set {1, 2, 3, 4, 5}.
SOLUTION:
Here n = 5, r = 4, and n − r = 1. Let a1a2a3a4 = 1345. Beginning with a4,
compute ai and n − r + i until ai �= n − r + i:

a4 = 5 = 1 + 4 a3 = 4 = 1 + 3

a2 = 3 = 1 + 2 a1 = 1 �= 1 + 1

Therefore, i = 1. Consequently, increment the value of a1 by 1:

a1 ← a1 + 1 = 2.

Update the values of a2, a3, and a4: a2 ← a1 + 1 = 3, a3 ← a1 + 2 = 4,
a4 ← a1 + 3 = 5. Thus the resulting combination is 2345. �

Exercises A.4

Find the next permutation larger than each permutation in lexicographic
ordering, if it exists.

1. 1432

5. 21345

2. 2341

6. 21354

3. 4132

7. 21543

4. 4321

8. 35421

888 Appendix A

Find the next three permutations that follow each permutation in lexico-
graphic order.

9. 213

13. 3412

10. 1324

14. 13245

11. 2314

15. 23514

12. 2413

16. 45213

Using the next-permutation algorithm, enumerate all permutations of
elements of each set.

17. {1, 2} 18. {1, 2, 3}

Find the next r-combination larger than each combination of the corre-
sponding set, if possible.

19. 124, {1, 2, 3, 4}

21. 1245, {1, 2, 3, 4, 5}

23. 2456, {1, 2, 3, 4, 5, 6}

20. 134, {1, 2, 3, 4}

22. 234, {1, 2, 3, 4}

24. 3456, {1, 2, 3, 4, 5, 6}

Using the next-combination algorithm, generate all r-combinations of the
set {1, 2, 3, . . . , n} for each pair of values of r and n.

25. r = 2, n = 3 26. r = 1, n = 3 27. r = 2, n = 4 28. r = 3, n = 4

29. Recall that a byte is an 8-bit word. There are 256 bytes and they can be
arranged in lexicographic order: 00000000, 00000001, 00000010, . . . ,
11111110, 11111111. Write an algorithm to find the byte that follows
a given byte a1a2 . . . a8 in lexicographic order.

30. A ternary word is a word over the alphabet {0, 1, 2}. Write an algorithm
to find the ternary word that follows the ternary word a1a2a3a4 in
lexicographic order. For example, the ternary word that follows 0222
is 1000.

Using the next-combination algorithm, find all subsets of each set.

31. {1} 32. {1, 2} 33. {1, 2, 3} 34. {1, 2, 3, 4}

A.5 The Multinomial Theorem

The binomial theorem enables us to expand powers of the binomial x + y.
It can be restated in a seemingly different way as follows:

(x + y)n =
n∑

r=0

(
n
r

)
xn−ryr =

n∑
r=0

n!
r!(n − r)!x

n−ryr

=
∑
i,j≥0

i+j=n

n!
i!j!x

iyj

A.5 The Multinomial Theorem 889

The binomial coefficient
n!
i!j! can be interpreted as the number of ways of

dividing a set of size n into two disjoint subsets of sizes i and j. This section
generalizes this idea: We would like to find the expansion of (x1 + x2 +
· · · + xk)n.

Trinomial Theorem
To this end, let us consider the special case (x + y + z)n. Clearly,

(x + y + z)n = (x + y + z)(x + y + z) · · · (x + y + z) (A.1)

to n factors. Therefore, every term in the expansion of (x + y + z)n is of the
form Cxiyjzk, where i, j, and k are nonnegative integers, i + j + k = n, and
C is the coefficient to be determined. Thus, the various terms are obtained
by assigning values to i, j, and k, such that they are nonnegative integers
and their sum is n.

The coefficient C is the number of ways i x’s, j y’s, and k z’s can be
selected from the n factors on the RHS of Equation (A.1). The i x’s can be

selected in
(

n
i

)
ways. Now n − i factors are left. So the j y’s can be selected

in
(

n − i
j

)
ways. Now n−i−j factors are left. Therefore, the k z’s can be

selected in
(

n − i − j
k

)
ways. Thus, by the multiplication principle,

C =
(

n
i

)(
n − i

j

)(
n − i − j

k

)

= n!
i!(n − i)! · (n − i)!

j!(n − i − j)! · (n − i − j)!
k!(n − i − j − k)!

= n!
i!j!k!0! , since n = i + j + k.

= n!
i!j!k!

Thus we have the following theorem.

THEOREM A.8 (Trinomial Theorem) Let x, y, and z be any real numbers, and n any
whole number. Then

(x + y + z)n =
∑

i,j,k≥0
i+j+k=n

n!
i!j!k!x

iyjzk (A.2)

�

EXAMPLE A.19 Using the trinomial theorem, expand (x + y + z)2.

890 Appendix A

SOLUTION:
By the trinomial theorem,

(x + y + z)2 =
∑

i,j,k≥0
i+j+k=2

2!
i!j!k!x

iyjzk

To find the various terms in the expansion, let us list the possible combina-
tions of values of i, j, and k, and the corresponding coefficients and terms
in a table, as in Table A.3.

Table A.3
i j k

2!
i!j!k!

xiyjzk Term

2 0 0
2!

2!0!0! = 1 x2 x2

0 2 0
2!

0!2!0! = 1 y2 y2

0 0 2
2!

0!0!2! = 1 z2 z2

1 1 0
2!

1!1!0! = 2 xy 2xy

0 1 1
2!

0!1!1! = 2 yz 2yz

1 0 1
2!

1!0!1! = 2 zx 2zx

Adding up the terms in the last column,

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx �

EXAMPLE A.20 Find the coefficient of x2y3z4 in the expansion of (x + y + z)9.

SOLUTION:
Here i = 2, j = 3, k = 4, and n = 9. Therefore, the required coefficient is
given by

n!
i!j!k! = 9!

2!3!4! = 1260 �

The proof used to develop the trinomial theorem can be generalized to
k variables x1, x2, . . . , xk in an obvious way. The resulting theorem, called
the multinomial theorem, is given below.

THEOREM A.9 (The Multinomial Theorem) Let x1, x2, . . . , xk be any k real variables
and n any nonnegative integer. Then

(x1 + x2 + · · · + xk)n =
∑ n!

i1!i2! . . . ik!x
i1
1 xi2

2 . . . xik
k

where i1, i2, . . . , ik ≥ 0 and i1 + i2 + · · ·+ ik = n. �

A.5 The Multinomial Theorem 891

EXAMPLE A.21 Using the multinomial theorem, find the coefficient of x1x2
2x3

3x4
4x5

5 in
the expansion of (x1 + x2 + x3 + x4 + x5)15.

SOLUTION:

Required coefficient = 15!
1!2!3!4!5!

= 37,837,800 �

The coefficient
n!

i1!i2! . . . ik! in the multinomial theorem, called the

multinomial coefficient, is denoted by
(

n
i1, i2, . . . , ik

)
. For instance,

(
5

3, 0, 1, 1

)
= 5!

3!0!1!1! = 20

Just as the binomial coefficient
(

n
i, j

)
denotes the number of ways a set of

size n can be divided into two disjoint subsets of sizes i and j = n − i, the
multinomial coefficient can also be interpreted in a similar way, as stated
in the following theorem.

THEOREM A.10 The number of ways of dividing a set S of size n into k mutually disjoint
ordered subsets S1, S2, . . . , Sk of sizes i1, i2, . . . , ik, respectively, is given by
the multinomial coefficient (

n
i1, i2, . . . , ik

)

where i1, i2, . . . ik ≥ 0 and i1 + i2 + · · · + ik = n.

PROOF:

The i1 elements of the subset S1 can be selected in
(

n
i1

)
ways. This leaves

n − i1 elements in S − S1. Therefore, the i2 elements of S2 can be selected

in
(

n − i1
i2

)
ways. Similarly, the i3 elements of S3 can be selected in(n − i1 − i2

i3

)
ways, and so on. The ik elements of Sk can be chosen in(

n − i1 − i2 − . . . − ik−1
ik

)
ways. Consequently, by the multiplication prin-

ciple, the number of ways of choosing the mutually disjoint subsets S1,
S2, . . . , Sk is(

n
i1

)(
n − i1

i2

)(
n − i1 − i2

i3

)
· · ·

(
n − i1 − i2 − · · · − ik−1

ik

)

892 Appendix A

= n!
i1!(n − i1)! · (n − i1)!

i2!(n − i1 − i2)! · · · (n − i1 − · · · ik−1)
ik!(n − i1 − · · · − ik)!

= n!
i1!i2! . . . ik! (Note : n = i1 + i2 + · · · + ik)

=
(

n
i1, i2, . . . , ik

)

This concludes the proof. �

EXAMPLE A.22 Find the number of ways of dividing a set of size five into three mutually
disjoint ordered subsets of sizes 2, 1, and 2.

SOLUTION:
By Theorem A.10, the number of ways of dividing the set in the desired
way is given by the multinomial coefficient(

5
2, 1, 2

)
= 5!

2!1!2!
= 30 �

EXAMPLE A.23 Find the number of ways of dividing the set S = {a, b, c} into three mutually
disjoint ordered subsets S1, S2, and S3 of sizes 1, 1, and 1, respectively, and
list them.

SOLUTION:

Number of possibilities =
(

3
1, 1, 1

)
= 3!

1!1!1! = 6

They are listed in Table A.4.

Table A.4 S1 S2 S3

{a} {b} {c}
{a} {c} {b}
{b} {a} {c}
{b} {c} {a}
{c} {a} {b}
{c} {b} {a}

An important observation: The division {{a}, {b}, {c}} is different from
the division {{a}, {c}, {b}}. However, they form the same partition. �

Exercises A.5

Evaluate each multinomial coefficient.

1.
(

5
2, 2, 1

)
2.

(
6

1, 2, 3

)
3.

(
7

2, 3, 2

)
4.

(
8

0, 3, 5

)

A.5 The Multinomial Theorem 893

5.
(

8
2, 1, 3, 2

)
6.

(
10

1, 2, 3, 4

)
7.

(
10

3, 1, 4, 2

)
8.

(
10

1, 4, 4, 1

)
Find the coefficient of each.

9. x2yz2 in the expansion of (x + y + z)5

10. xy2z3 in the expansion of (x + y + z)6

11. yz in the expansion of (x + y − z)2

12. xy2 in the expansion of (x − y − z)3

13. xy2z5 in the expansion of (x + y + z)8

14. xy3z3 in the expansion of (x − y + 2z)8

Expand each.

15. (x + y − z)2

18. (x − y − z)3

16. (x − y − z)2

19. (x + 2y + z)3

17. (x − y + z)3

20. (x − 2y + 2z)3

Consider the various ways of dividing the set S = {a, b, c, d} into three
mutually disjoint ordered subsets S1, S2, and S3 with sizes 1, 1, and 2,
respectively.

21. Find the number of possibilities.

22. List the possibilities.

Find the number of ways of dividing a set of size n into k mutually disjoint
ordered subsets of sizes i1, i2, . . . , ik in each case.

23. n = 10, three subsets with sizes 2, 3, and 5.

24. n = 10, four subsets with sizes 2, 2, 3, and 3.

25. n = 12, six subsets with sizes 1, 1, 2, 2, 3, and 3.

26. n = 15, four subsets with sizes 1, 1, 5, and 8.

27. Find the sum of the multinomial coefficients
(

n
i1, i2, . . . , ik

)
.

It follows by Theorem A.10 that the number of permutations of n items
of which i1 are alike, i2 are alike, . . ., and ik are alike is given by the

multinomial coefficient
(

n
i1, i2, . . . , ik

)
. Using this fact, compute each.

28. The number of ways of scrambling the letters of the word ABRA-
CADABRA.

29. The number of ways of scrambling the letters of the word
TINTINNABULATION.

30. The number of binary words of length 10 and containing exactly three
1’s and seven 0’s.

894 Appendix A

31. The number of bytes containing exactly five 0’s.

32. The number of ternary words of length 12 and containing three 0’s,
four 1’s, and five 2’s.

Find the number of terms in the expansion of each.

33. (x + y + z)3

35. (w + x + y + z)12

34. (x + y + z)10

36. (2w − 3x + 4y − 4z)15

Find the coefficient of each.

37. x2y2z3 in the expansion of (x + y + z)7

38. xy3z in the expansion of (x + 2y − z)5

Using the multinomial theorem, expand each.

39. (x − 2y + z)3 40. (x + y − z)4

Find the number of terms in the expansion of each.

41. (x + y − z)6

43. (2x + 3y − 4z)9

42. (x − y − z)8

44. (w + x − y − z)10

Find the number of ways of dividing a set with size 15 into each.

45. Four mutually disjoint subsets with sizes 7, 2, 3, and 3.

46. Five mutually disjoint subsets with sizes 3, 6, 2, 1, and 3.

A.6 The Greek Alphabet

A α alpha N ν nu
B β beta � ξ xi
� γ gamma O o omicron
	 δ delta � π pi
E ε epsilon P ρ rho
Z ζ zeta

∑
σ sigma

H η eta T τ tau
� θ theta ϒ ν upsilon
I τ iota � φ phi
K κ kappa X χ chi
� λ lambda ψ psi
M μ mu � ω omega

A.7 Web Sites 895

A.7 Web Sites

The following Web sites provide valuable information for further explo-
ration and enrichment. The status of a Web site could change with time, so
it may not exist when you look for it; if it does not, use a search engine to
locate a similar Web site.

1. Wilhelm Ackermann
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/
Ackermann.html

2. John Backus
www.digitalcentury.com/encyclo/update/backus.html
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Backus.html
www.acm.org/awards/turing_citations/backus.html
www.cs.nyu.edu/cs/faculty/shashaoutofmind/backus.html

3. George Boole
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Boole.html
www.digitalcentury.com/encyclo/update/boole.html
homepages.enterprise.net/rogerp/george/boole.html

4. Georg Cantor
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Cantor.html
www.treasure-troves.com/bios/CantorGeorg.html
www.aug.edu/dvskel/JohnsonSU97.html

5. Arthur Cayley
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Cayley.html
scienceworld.wolfram.com/biography/Cayley.html
www.stetson.edu/∼efriedma/periodictable/html/C.html
www.optisyn.com/presentations/Cayley.html
www.math.ukans.edu/∼engheta/bio/cayley.html
www.geometry.net/Biographer/Cayley.html

6. Edsger Dijkstra
www.digidome.nl/edgser_wybe_dijkstra.html
www.acm.org/classics/oct95/
www.cs.utexas/users/EWD/obituary.html
news.com.com/2100-1001-949023.html

7. Leonhard Euler
www.maths.tcd.ie/pub/HistMath/People/Euler/RouseBall/
RB_Euler.html
www.shu.edu/html/teaching/math/reals/history/euler.html

8. Pierre de Fermat
www.maths.tcd.ie/pub/HistMath/People/Fermat/RouseBall/
RB_Fermat.html

9. Karl F. Gauss
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Gauss.html
www.english.upenn.edu/∼jlynch/FrankenDemo/People/gauss.html
scienceworld.wolfram.com/biography/Gauss.html
www.indiana.edu/∼intell/gauss.html
www.brown.edu/Students/OHJC/hm4/gauss.html

896 Appendix A

10. Christian Goldbach
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Goldbach.html
www.geocities.com/Heartland/Hills/7972/math-goldbach.html
www.wikipedia.org/wiki/Christian_Goldbach
plus.maths.org/issue11/news/Goldbach

11. Sir William R. Hamilton
www.chembio.uoguelph.ca/educmat/chm386/rudiment/tourclas/
hamilton.html
scienceworld.wolfram.com/biography/HamiltonWilliamRowan.html
www.iaste.com/hall_of_fame/hamilton.html

12. Maurice Karnaugh
www.informatik.uni-trier.de/∼ley/db/indices/a-tree/k/Karnaugh:
Maurice.html
www.maxmon.com/library.html
www-cse.stanford.edu/classes/cs103a/h9BooleanAlgebra.pdf

13. Alfred B. Kempe
www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Kempe.html
mappa.mundi.net/locus_014
www.uwinnipeg.ca/∼ooellerm/guthrie/FourColor.html
www.mathsyear2000.org/explorer/morphing/13usedownload.shtml

14. Stephen C. Kleene
www.library.wisc.edu/libraries/Math/kleen.html
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Kleene.html
www.dcs.ed.ac.uk/homes/als/lics/newsletters/19.html
www.student.math.uwaterloo.ca/∼cs462/Hall/kleene.html

15. Donald E. Knuth
sunburn.stanford.edu/∼knuth
www-cs-staff.stanford.edu/∼knuth/index.html
www.digitalcentury.com/encyclo/update/knuth.html
laurel.actlab.utexas.edu/∼cynbe/muq/muf3_20.html

16. Kazimierz Kuratowski
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Kuratowski.html
www.stetson.edu/∼efriedma/periodictable/html/Kr.html

17. Gabriel Lame
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Lame.html
www.bath.ac.uk/∼ma0dmp/Lamelife.html

18. Edmund Landau
www.ma.huji.ac.il/∼landau/landuniv.html
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Landau.html
www.ard.huji.ac.il/publications/25years/chap13.html

19. Pierre-Simon Laplace
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Laplace.html
www.maths.tcd.ie/pub/HistMath/People/Laplace/RouseBall/
RB_Laplace.html
www. stetson.edu/∼efriedma/periodictable/html/La.html

A.7 Web Sites 897

20. Gottfried W. Leibniz
www.maths.tcd.ie/pub/HistMath/People/Leibniz/RouseBall/
RB_Leibniz.html

21. Jan Lukasiewicz
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Lukawiewicz.html
www.hpmuseum.org/rpn.html
www.wikipedia.com/wiki/Jan_Lukawiewicz

22. George H. Mealy
www.informatik.uni-trier.de/∼ley/db/indices/a-tree/m/Mealy:
George_H=.html

23. Marin Mersenne
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Mersenne.html
www2.andrews.edu/∼calkins/math/biograph/biomerse.html

24. Blaise Pascal
members.aol.com/KatherenaE/private/Philo/Pascal/pascal.html
www.maths.tcd.ie/pub/HistMath/People/Pascal/RouseBall/
RB_Pascal.html
www.cs.washington.edu/homes/jbaer/classes/blaise/blaise.html
www.math.sfu.ca/histmath/Europe/17thCenturyAD/Balise.html
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Pascal.html

25. Bertrand Russell
www.mcmaster.ca/russdocs/russell.html
plato.stanford.edu/entries/russell
desktop12.cis.macmaster.cal/∼bertrand

26. Claude E. Shannon
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Shannon.html
www.bell-labs.com/news/2001/february/26/1.html
www.digitalcentury.com/encyclo/update/shannon.html

27. Alan M. Turing
www.turing.org.uk/turing
ei.cs.vt.edu/∼history/Turing.html
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Turing.html

28. Alexandre-Theophile Vandermonde
www-groups.dcs.st-and.ac.uk/∼history/Mathematiticains/
Vandermonde.html

29. John Venn
www-groups.dcs.st-and. ac.uk/∼history/Mathematicians/Venn.html
userwww.sfsu.edu/∼rsauzier/Venn.html

30. Boolean Algebra
educ.queensu.ca/∼compsci/units/BoolLogic/titlepage.html
www.bit.umkc.edu/vu/course/cs281/lectures/boolean-algebra/
boolean-algebra.html

898 Appendix A

ever.phys.ualberta.ca/∼gingrich/phys395/notes/node121.html
www.maxmon.com/1847ad.html
www.yale.edu/ynhti/curriculum/units/1989/7/89.07.07.x.html

32. Finite-State Machines
www.cs.brown.edu/people/jes/book/BOOK/node10.html
classwww.gsfc.nasa.gov/CAGESite/pages/cage_gpf_fsm.html
www.cs.arizona.edu/classes/cs352/summer02/fsa.html
www.c3.lanl.gov/mega-math/workbk/machine/mabkgd.html
www.beigarath.demon.co.uk/java/fsme.html
members.aol.com/asakharov/fsm.html

33. Fuzzy Sets
www.answermath.com/fuzzymath.html
sun16.cecs.missouri.edu/index.html
news:comp.ai.fuzzy

34. Generating Functions
www.cs.wpi.edu/∼cs504/s00m/notes/ln/1999/class06/class06.html
www.cs.wpi.edu/∼cs504/s00m/classes/class05/Class05.html
msl.cs.uiuc.edu/∼lavalle/cs576/projects/wmchan
www.eco.rug.nl/gauss/GAUSS00/mhonarc.db
www.maths.surrey.ac.uk/personal/st/d.fisher/MS103/MS105-5.mws

35. Graph Theory
www.utm.edu/departments/math/graph
www.c3.lanl.gov/mega-math/workbk/graph/graph.html
www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Erdos.html
www.nada.kth.se/∼viggo/problemlist/compendium.html
www.shodor.org/interactive/lessions/frac1.html
www.scism.sbu.ac.uk/law/Section3/chapter3/s3c3int.html
www.cs.cmu.edu/∼cburch/survey/recurse
www.nd.edu/∼cholak/computability/computability.html

36. Hilbert’s Paradoxes
www.wordsmith.demon.co.uk/paradoxes
eluzions.com/Puzzles/Logic/Paradoxes.shtml
www.c3.lanl.gov/mega-math/workbk/infinity/infinity.html
www.cs.tpu.ee/∼jaagup/uk/fmm/math/1.2.5.3.html

37. The Four-Color Problem
www.math.gatech.edu/∼thomas/FC/fourcolor.html
www.cs.uidaho.edu/∼casey931/mega-math/gloss/math/4ct.html
www-groups.dcs.st-and.ac.uk/∼history/HistTopics/The_four_colour
_theorem.html

References

1. A. V. Aho et al., Compilers: Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA 1986.

2. V. S. Alagar, Fundamentals of Computing: Theory and Practice, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

3. K. Appel and W. Haken, “Every Planar Graph is 4-colorable,” Bulletin of the
American Mathematical Society, Vol. 82 (Sept. 1976), pp. 711–712.

4. R. G. Archibald, An Introduction to the Theory of Numbers, 3rd edition, Wiley,
New York, 1972.

5. V. Bain, “An Algorithm for Drawing the n-cube,” The College Mathematics
Journal, Vol. 29 (Sept. 1998), pp. 320–322.

6. C. Baltus, “A Truth Table on the Island of Truthtellers and Liars,”
Mathematics Teacher, Vol. 94 (Dec. 2001), pp. 730–732.

7. W. J. Barneir, “Finite-State Machines as Recognizers,” The UMAP Journal,
7:3 (1986), pp. 209–232.

8. W. Barnier and J. B. Chan, Discrete Mathematics with Applications, West,
St. Paul, MN, 1989.

9. B. Barwell, Solution to Problem 702, J. Recreational Mathematics, Vol. 12:1
(1979–1980), p. 67–68.

10. B. Barwell, Solution to Problem 1046, J. Recreational Mathematics, Vol. 15:1
(1981–1982), pp. 70–72.

11. R. Bellman et al., Algorithms, Graphs, and Computers, Academic Press,
New York, 1970.

12. M. Bellmore and G. L. Nemhauser, “The Traveling Salesman Problem,”
Operations Research, Vol. 16 (1968), pp. 538–558.

13. S. J. Bezsuska, Solution to Problem 791, J. Recreational Mathematics, 12:4
(1979–1980), p. 311.

14. B. Bissinger, “Ask Marilyn,” Parade Magazine (April 25, 1993), p. 15.

15. M. L. Bittinger, Logic and Proof, Addison-Wesley, Reading, MA 1972.

16. W. G. Brown, “Historical Note on a Recurrent Combinatorial Problem,” The
American Mathematical Monthly, Vol. 72 (Nov. 1965), pp. 973–977.

899

900 References

17. A. V. Boyd and M. J. Glencorss, “Dissecting a Circle by Chords through n
Points,” Mathematics Teacher, Vol. 84 (April 1991), pp. 318–319.

18. J. Burling et al., “Using Graphs to Solve the Traffic Light Problem,” FAIM
Module, COMAP, Inc., Lexington, MA, 1989.

19. D. Burns, Problem 596, J. Recreational Mathematics, Vol. 10:1 (1977–1978),
p. 52.

20. W. H. Bussey, “Origin of Mathematical Induction,” The American Mathemat-
ical Monthly, Vol. 24 (May 1917), pp. 199–207.

21. Calendar Problems, Mathematics Teacher, Vol. 83 (Oct. 1990), p. 550.
22. Calendar Problems, Mathematics Teacher, Vol. 85 (Dec. 1992), p. 736.
23. Calendar Problems, Mathematics Teacher, Vol. 79 (April 1986), p. 274.
24. Calendar Problems, Mathematics Teacher, Vol. 79 (Nov. 1986), p. 627.
25. D. M. Campbell, “The Computation of Catalan Numbers,” Mathematics

Magazine, Vol. 57 (Sept. 1984), pp. 195–208.
26. L. Carlitz, Solution to Problem B-180, The Fibonacci Quarterly, Vol. 8:5 (Dec.

1970), pp. 547–548.
27. M. Caudill, “Using Neural Nets: Fuzzy Decisions,” AI Expert, Vol. 5 (April

1990), pp. 59–64.
28. M. Charosh, Problem 1160, J. Recreational Mathematics, Vol. 15:1 (1983–

1984), p. 58.
29. E. F. Codd, “A Relational Model of Data for Large Shared Databanks,”

Communications of the ACM, Vol. 13 (1970), pp. 377–387.
30. F. Cohen and J. L. Selfridge, “Not Every Integer Is the Sum or Difference of

Two Prime Powers,” Mathematics of Computation, Vol. 29 (1975), p. 79.
31. E. Comfort, Solution to Problem 596, J. Recreational Mathematics, Vol. 11:1

(1978–1979), p. 66.
32. J. W. Cortada, Historical Dictionary of Data Processing: Biographies,

Greenwood Press, New York, 1987.
33. M. Coughlin and C. Kerwin, “Mathematical Induction and Pascal’s Problem

of the Points,” Mathematics Teacher, Vol. 78 (May 1985), pp. 376–380.
34. T. Crilly, “A Victorian Mathematician,” The Mathematical Gazette, Vol. 79

(July 1995), pp. 259–262.
35. P. Cull and E. F. Ecklund, Jr., “Towers of Hanoi and Analysis of Algorithms,”

The American Mathematical Monthly, Vol. 92 (June–July 1985), pp. 407–420.
36. N. Deo, Graph Theory with Applications to Engineering and Computer Science,

Prentice Hall, Englewood Cliffs, NJ, 1974.
37. R. C. Drake, Problem B-180, The Fibonacci Quarterly, Vol. 8:1 (Feb. 1970),

p. 106.
38. L. R. Duffy, “The Duffinian Numbers,” J. Recreational Mathematics, Vol. 12:2

(1979–1980), pp. 112–115.
39. R. Euler, Problem 1551, J. Recreational Mathematics, Vol. 19:2, 1987, p. 151.
40. H. Eves, Problem E579, The American Mathematical Monthly, Vol. 50 (June–

July 1943), p. 386.
41. H. Eves, An Introduction to the History of Mathematics, 3rd edition, Holt,

Rinehart and Winston, New York, 1969.

References 901

42. A. Filz, Problem 1046, J. Recreational Mathematics, Vol. 14:1 (1981–1982),
p. 64.

43. T. Fletcher, Problem 602, J. Recreational Mathematics, Vol. 10:1 (1978–1979),
p. 52.

44. H. G. Forder, “Some Problems in Combinatorics,” The Mathematical Gazette,
Vol. 45 (1961), pp. 199–201.

45. A. J. Friedland, Puzzles in Math & Logic, Dover, New York, 1970.

46. J. A. Gallian and S. Winters, “Modular Arithmetic in the Market Place,” The
American Mathematical Monthly, Vol. 95 (June–July 1988), pp. 548–551.

47. M. Gardner, “Mathematical Games,” Scientific American, Vol. 219 (Sept.
1968), pp. 218–230.

48. M. Gardner, “Catalan Numbers: An Integer Sequence That Materializes in
Unexpected Places,” Scientific American, Vol. 234 (June 1976), pp. 120–125.

49. M. Gardner, Mathematical Circus, Knopf, New York, NY, 1979.

50. M. Gardner, Mathematical Puzzles and Diversions, The University of Chicago
Press, Chicago, IL, 1987.

51. M. Gardner, “Ask Marilyn,” Parade Magazine (April 18, 1993), p. 12.

52. S. W. Golomb, “Pairings and Groupings,” Johns Hopkins Magazine, Vol. 45:2
(April 1993), p. 7.

53. R. L. Graham et al., Concrete Mathematics, Addison-Wesley, Reading, MA,
1990.

54. J. J. Gray, “Arthur Cayley (1821–1895),” The Mathematical Intelligencer,
Vol. 17:4 (1995), pp. 62–63.

55. T. M. Green, “Pascal’s Pizza,” Mathematics Teacher, Vol. 81 (Sept. 1988),
p. 445, 454.

56. R. P. Grimaldi, Discrete and Computational Mathematics, 4th ed., Addison-
Wesley, Reading, MA, 1999.

57. A. Guckin et al., The Euler Circuit Project, COMAP, Inc., Lexington, MA,
1989.

58. S. Gudder, A Mathematical Journey, McGraw-Hill, New York, 1976.

59. B. Hamilton, Brainteasers and Mindbenders, Freeside, New York, 1992.

60. D. K. Hanson et al., “Matching, Derangements, and Rencontres,”
Mathematics Magazine, Vol. 56 (Sept. 1983), pp. 224–229.

61. F. Harray and J. S. Maybee (eds.), Graphs and Applications, Wiley, New York,
1985.

62. B. Hayes, “On the Finite-State Machine, A Minimal Model of Mousetraps,
Ribosomes, and the Human Soul,” Scientific American, Vol. 249 (Dec. 1983),
pp. 20–28, 178.

63. L. Henkin, “On Mathematical Induction,” The American Mathematical
Monthly, Vol. 67 (April 1960), pp. 323–338.

64. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, Boston,
1963.

65. V. E. Hoggatt, Jr., and S. L. Basin, “A Primer on the Fibonacci Sequence,
Part II,” The Fibonacci Quarterly, Vol. 1:2 (April 1963), pp. 61–68.

902 References

66. V. E. Hoggatt, Jr., “Some Special Fibonacci and Lucas Generating Functions,”
The Fibonacci Quarterly, Vol. 9:2 (April 1971), pp. 121–133.

67. T. C. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA, 1982.

68. K. K. Huang, Solution to Problem 1160, J. Recreational Mathematics, Vol. 16:1
(1983–1984), p. 69.

69. R. V. Jean, “The Fibonacci Sequence,” The UMAP Journal, Vol. 5:1 (1984),
pp. 23–47.

70. J. T. Johnson, “Fuzzy Logic,” Popular Science, Vol. 237 (July 1990), pp.
87–89.

71. R. Johnsonbaugh, Discrete Mathematics, 5th ed., Prentice-Hall, Upper Saddle
River, NJ, 2001.

72. E. Just, “A Note on the nth Term of the Fibonacci Sequence,” Mathematics
Magazine, Vol. 44 (Sept.–Oct. 1971), p. 199.

73. M. Karnaugh, “The Map Method for Synthesis of Combinational Logic
Circuits,” Transactions of the AIEE, Part I, Vol. 72:9 (Nov. 1953), pp.
593–599.

74. F. H. Kierstead, Jr., Problem 791, J. Recreational Mathematics, Vol. 11:4
(1978–1979), p. 302.

75. F. H. Kierstead, Jr., Problem 1014, J. Recreational Mathematics, Vol. 14:4
(1981–1982), p. 309.

76. M. Keith and T. Carver, “The Ultimate Perpetual Calendar,” J. Recreational
Mathematics, Vol. 22:4 (1990), pp. 280–282.

77. D. E. Knuth, “Algorithms,” Scientific American, Vol. 243 (April 1977), pp.
63–80.

78. D. E. Knuth, “Algorithmic Thinking and Mathematical Thinking,” The
American Mathematical Monthly, Vol. 92 (March 1985), pp. 170–181.

79. B. Kolman et al., Discrete Mathematical Structures, 4th ed., Prentice-Hall,
Upper Saddle River, NJ, 2000.

80. T. Koshy, Finite Mathematics and Calculus with Applications, Goodyear,
Pacific Palisades, CA, 1979.

81. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York,
2001.

82. T. Koshy, Elementary Number Theory with Applications, Harcourt/Academic
Press, Boston, 2002.

83. B. Kosko and S. Isaka, “Fuzzy Logic,” Scientific American, Vol. 269 (July
1993), pp. 76–81.

84. J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Trav-
eling Salesman Problem,” Proceedings of the American Mathematical Society,
Vol. 1 (1956), pp. 48–50.

85. E. A. Kuehls, “The Truth-Value of {∀, ∃, P(x, y)}: A Graphical Approach,”
Mathematics Teacher, Vol. 43 (Nov. 1970), pp. 260–261.

86. N. J. Kuenzi and B. Prielipp, Problem 4026, School and Science Mathematics,
Vol. 85 (Dec. 1985), pp. 714–716.

87. L. J. Lander et al., “A Survey of Equal Sums of Like Powers,” Mathematics of
Computation, Vol. 21 (1967), p. 446.

References 903

88. E. L. Lawler et al. (eds.), The Traveling Salesman Problem, Wiley, New York,
1986.

89. C. T. Long, “On Pigeons and Problems,” Mathematics Teacher, Vol. 81 (Jan.
1988), pp. 28–30, 64.

90. E. Maier, “Counting Pizza Pieces and Other Combinatorial Problems,”
Mathematics Teacher, Vol. 81 (Jan. 1988), pp. 22–26.

91. C. L. Mallows, “Conway’s Challenge Sequence,” The American Mathematical
Monthly, Vol. 98 (Jan. 1991), pp. 5–20.

92. L. E. Mauland, “An Exercise with Polygonal Numbers,” Mathematics Teacher,
Vol. 78 (May 1985), pp. 340–344.

93. S. B. Maurer and A. Ralston, Discrete Algorithmic Mathematics, Addison-
Wesley, Reading, MA, 1991.

94. M. Martelli, “The Farmer and the Goose — a Generalization,” Mathematics
Teacher, Vol. 86 (March 1993), pp. 202–203.

95. W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Imminent
in Nervous Activity,” Bulletin of Mathematical Biophysics, Vol. 5 (1943),
pp. 115–133.

96. W. A. Miller, “Polynomial Numbers and Recursion,” Mathematics Teacher,
Vol. 83 (Oct. 1990), pp. 555–558.

97. B. R. Myers, “Number of Spanning Trees in a Wheel,” IEEE Transactions on
Circuit Theory, CT-18 (March 1971), pp. 280–281.

98. H. L. Nelson, Problem 702, J. Recreational Mathematics, Vol. 11:1 (1978–
1979), p. 36.

99. H. L. Nelson, “Two Counterfeits,” J. Recreational Mathematics, Vol. 15:1
(1982–1983), p. 65.

100. J. C. Nichols, Solution to Problem 602, J. Recreational Mathematics, Vol. 11:1
(1978–1979), p. 75.

101. G. Polya, Mathematical Discovery, combined ed., Wiley, New York, 1981.

102. R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell
System Technical Journal, Vol. 36 (1957), pp. 1389–1401.

103. I. Vun and P. Belcher, “Catalan Numbers,” Mathematical Spectrum, Vol. 29:3
(1996–1997), pp. 3–5.

104. A. Wayne, Solution to Problem E579, The American Mathematical Monthly,
Vol. 51 (March 1944), p. 165.

105. A. Ralston, “De Bruijn Sequences — A Model Example of the Interaction of
Discrete Mathematics and Computer Science,” Mathematics Magazine, Vol. 55
(May 1982), pp. 131–143.

106. B. Recaman, “The Games of Ham,” J. Recreational Mathematics, Vol. 10
(1977–1978), pp. 251–253.

107. J. V. Roberti, “The Indirect Method,” Mathematics Teacher, Vol. 80 (Jan.
1987), pp. 41–43.

108. K. H. Rosen, Discrete Mathematics and Its Applications, 4th ed., McGraw-Hill,
New York, 1999.

109. K. A. Ross and C. R. B. Wright, Discrete Mathematics, 3rd ed., Prentice-Hall,
Englewood Cliffs, NJ, 1992.

904 References

110. G. L. Ritter et al., “An Aid to the Superstitious,” Mathematics Teacher, Vol. 70
(May 1977), pp. 456–457.

111. S. Sahni, Concepts in Discrete Mathematics, 2nd ed., Camelot, Fridley, MN,
1985.

112. B. J. Schwartz, Solution to Problem 1014, J. Recreational Mathematics,
Vol. 14:4 (1981–1982), p. 309.

113. J. Sedlacek, “On the Skeletons of a Graph or Digraph,” Proceedings of
the Calgary International Conference of Combinatorial Structures and their
Applications, Gordon & Breach, New York, pp. 387–391.

114. D. E. Shasha, Out of their Minds: The Lives and Discoveries of 15 Great
Computer Scientists, Copernicus, New York, 1995, pp. 89–101.

115. D. R. Sherbert, “Difference Equations with Applications,” UMAP Module 322,
Arlington, MA, 1980.

116. R. M. Smullyan, What is the name of this book?, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

117. R. M. Smullyan, Alice in Puzzle-Land: A Carrollian Tale for Children Under
Eighty, Penguin Books, New York, 1982.

118. R. M. Smullyan, “Leaps of Logic,” Discover (March 1993), p. 96.
119. S. K. Stein, “The Mathematician as an Explorer,”Scientific American, Vol. 204

(May 1961), pp. 149–158.
120. S. K. Stein, Mathematics: The Man-Made Universe, W. H. Freeman,

San Francisco, CA, 1969.
121. A. Sterrett, “Gambling Doesn’t Pay,” Mathematics Teacher, Vol. 60 (March

1967), pp. 210–214.
122. P. Stevens, Patterns in Nature, Little Brown, Boston, 1974.
123. D. R. Stone, “A Different Prime Proof,” Mathematics Teacher, Vol. 83 (Jan.

1990), p. 63.
124. A. S. Tanenbaum, Structured Computer Organization, Prentice-Hall,

Englewood Cliffs, NJ, 1976, pp. 420–423.
125. The Official LSAT PrepBook, Law Services, Newtown, PA, 1991.
126. R. M. Thrall, “Insulin Requirements as a Linear Process in Time,” Some

Mathematical Models in Biology (R. F. Baum, ed.), The University of Michigan
Press, Ann Arbor, MI, 1967, pp. 0L2.1–0L2.4.

127. P. M. Tuchinsky, “International Standard Book Numbers,” The UMAP
Journal, Vol. 6:1 (1985), pp. 41–53.

128. A. Tucker, Applied Combinatorics, Wiley, New York, NY, 1980.
129. T. Tymoczko, “Computers, Proofs, and Mathematics: A Philosophical Investi-

gation of the Four-Color Proof,” Mathematics Magazine, Vol. 53 (May 1980),
pp. 131–138.

130. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge
University Press, New York, 1992.

131. M. vos Savant, Ask Marilyn, St. Martin Press, New York, p. 228.
132. S. Warshall, “A Theorem on Boolean Matrices,” J. of the Association of

Computing Machinery, Vol. 9 (1962), pp. 11–12.
133. J. Williams, “Graph Coloring Used to Model Traffic Lights,” Mathematics

Teacher, Vol. 85 (March 1992), pp. 212–214.

References 905

134. R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach, Wiley,
New York, 1990.

135. D. Wood, “Towers of Brahma and Hanoi Revisited,” J. Recreational Mathe-
matics, Vol. 14:1 (1981–1982), pp. 17–24.

136. R. V. Young (ed.), Notable Mathematicians, Gale Research, Detroit, MI, 1997.

This Page Intentionally Left Blank

Solutions to Odd-Numbered
Exercises

Chapter 1 The Language of Logic

Exercises 1.1 (p. 17)

1. yes

9. 1 + 1 �= 0

17. F

3. no

11. ∼p ∨ q

19. T

5. F

13. ∼p ∧ (q ∨ r)

21. F

7. T

15. T

23.
p q ∼p ∼q ∼p ∨ ∼q

T T F F F
T F F T T
F T T F T
F F T T T

25.
p q p ∨ q ∼q (p ∨ q) ∨ ∼q

T T T F T
T F T T T
F T T F T
F F F T T

27. F 29. T 31.
p q p XOR q

T T F
T F T
F T T
F F F

33. If two lines are perpendicular to the same line, then they are parallel.

35. If x = 1, then x2 = 1.

907

908 Solutions to Odd-Numbered Exercises

37. converse: If Paris is in England, then London is in France.
inverse: If London is not in France, then Paris is not in England.
contrapositive: If Paris is not in England, then London is not in France.

39. ∼q ∨ p → r

45. yes

51. T

41. ∼p ∧ ∼q ↔ ∼r

47. T

53. T

43. no

49. F

55.
p q p ∧ q ∼ p p ∧ q → ∼ p

T T T F F
T F F F T
F T F T T
F F F T T

57.
p q p ∨ q p ∧ q p ∨ q ↔ p ∧ q

T T T T T
T F T F F
F T T F F
F F F F T

59. yes 61. yes 63. yes 65. no

67. (p ∧ q) → ((∼ p) ∨ (∼ q))

71. (A′ ∧ C) ∨ (B′ ∨ C′) ∨ (A ∧ B)

69. (p → q) ↔ ((∼ p) ∨ q)

73.

A

B

A

B′

75.

A′

A

B

B′ C

B

77. Ellen must use computer 1.

Exercises 1.2 (p. 29)

1. F 3. p ∼p ∼ (∼p)

T F T
F T F

↑__ identical __↑

5.
p p ∨ p

T T
F F

↑_______↑

Chapter 1 The Language of Logic 909

7.
p q p ∨ q q ∨ p

T T T T
T F T T
F T T T
F F F F

9.
p q p → q ∼ (p → q) ∼q p ∧ ∼q

T T T F F F
T F F T T T
F T T F F F
F F T F T F

↑____identical____↑

11.
p q r q ∧ r p ∧ (q ∧ r) p ∧ q (p ∧ q) ∧ r

T T T T T T T
T T F F F T F
T F T F F F F
T F F F F F F
F T T T F F F
F T F F F F F
F F T F F F F
F F F F F F F

↑_____identical______↑

13.
p q r p ∨ q (p ∨ q) → r p → r q → r (p → r) ∧ (q → r)

T T T T T T T T
T T F T F F F F
T F T T T T T T
T F F T F F T F
F T T T T T T T
F T F T F T F F
F F T F T T T T
F F F F T T T T

↑_________identical_____________↑

15. T 17. F 19. yes 21. no 23. yes 25. yes

910 Solutions to Odd-Numbered Exercises

27.
p q p NOR q

T T F
T F F
F T F
F F T

29. T

37. T

31. T

39. T

33. T

41. F

35. F

43. ∼ (∼p ∨ q) ≡ ∼ (∼ p) ∧ ∼q

≡ p ∧ ∼q

45. ∼ (p ∧ ∼q) ≡ ∼p ∨ ∼ (∼q)
≡ ∼p ∨ q

47. p → ∼q ≡ ∼ p ∨ ∼q
≡ ∼ (p ∧ q)

49. p ∧ q 51. p ∨ q 53. p∧ ∼ q

55. (A ∧ B′) ∨ [(A ∧ B) ∨ C] ≡ A ∨ C

A

C

57.
p ∼p p|p
T F F
F T T

↑______↑

59. p q p ∧ q p|q (p|q)|(p|q)

T T T F T
T F F T F
F T F T F
F F F T F

↑___identical___↑

61.
p q p → q p|p (p|p)|(p|p) q|q ((p|p)|(p|p))|(q|q)

T T T F T F T
T F F F T T F
F T T T F F T
F F T T F T T

↑________________identical________________↑

63. p XOR q ≡ (((p|p)|(q|q))|(((p|q)|(p|q))|((p|q)|(p|q))))|
(((p|p)|(q|q))|(((p|q)|(p|q))|((p|q)|(p|q))))

65. 1 67. 1 69. 0.3 71. 0.7 73. 0 75. 0.5

77.

{
1 − x if 0 ≤ x ≤ 1/2
x otherwise

Exercises 1.3 (p. 36)

1. F 3. T 5. T 7. F 9. F 11. T

Chapter 1 The Language of Logic 911

13. (∃ x)(P(x) ∧ Q(x)) 15. (∃ x)(P(x) ∨∼Q(x)) 17. (∃ x) (x2 ≤ 0)

19. Some super-computers are not manufactured in Japan.

21. (∀x)(∀y)(xy > 0)

25. F

23. (∀x)(∃y)(xy = x)

27. T

29. The square of every integer is nonnegative.

31. There are integers x and y such that x + y = 7.

33. There is an integer x such that y − x = y for every integer y.

35. T 37. T 39. T 41. T 43. F 45. T 47. T

49. T 51. T 53. T 55. F 57. F 59. T 61. T

63. T 65. F 67. T

Exercises 1.4 (p. 45)

1. p → q
∼ q

∴ ∼ p

11. valid

15. r is true.

3.
p q p ∨ q p → (p ∨ q)

T T T T
T F T T
F T T T
F F F T

5. invalid

7. valid

9. valid

13. q is false.

17. The program is running. 19. Carol is a baby.

21. Benjamin to Cindy and Aaron to
Daphne; they are 34, 27, 28, and
29 years old, respectively.

25. B

23. blue

27. A is a knight and B a knave.

31. knight

29. yes

33. “I am red.”

35. Kitty is guilty. 37. At least one cowgirl will escape
injury.

Exercises 1.5 (p. 54)

1. yes 3. yes

912 Solutions to Odd-Numbered Exercises

5. Let x and y be any two even inte-
gers. Then x = 2m and y =
2n for some integers m and n.
Then x + y = 2m + 2n

= 2(m + n)
which is also an even integer.

11. Let x be any even integer and
y any odd integer. Then x =
2m and y = 2n + 1 for some
integers m and n. Then xy =
(2m)(2n + 1) = 2(2mn + m), an
even integer.

15. Let x be any integer. Assume it
is not even; it is odd and is of
the form 2m + 1. Then
x2 = (2m + 1)2 = 4m2 + 4m + 1

= 2(2m2 + 2m) + 1
which is an odd integer. So the
given hypothesis is false and
the result follows.

19. Suppose
√

2 is not an irrational
number; that is,

√
2 is a rational

number. Let
√

2 = a/b, where a
and b have no positive common
factors except 1. Then (a/b)2 =
2 or a2 = 2b2. ∴ 2 is a fac-
tor of a2 and hence of a. Then
a = 2m for some integer m.
∴ (2m)2 = 2b2 or b2 = 2m2.
∴ 2 is a factor of b2 and hence of
b. Consequently, 2 is a factor of
both a and b, which contradicts
the assumption.

25. proof: Every integer n is of the
form 3k, 3k + 1, or 3k + 2.
case 1 Let n = 3k. Then
n3 − n = (3k)3 − (3k)

= 27k3 −3k = 3(9k3 −k)
case 2 Let n = 3k + 1. Then
n3 − n = (3k + 1)3 − (3k + 1)

= (27k3 +27k2 +9k+1)
−(3k + 1)

= 27k3 + 27k2 + 6k
= 3(9k3 + 9k2 + 2k)

7. Let x = 2m be any even integer.
Then x2 = (2m)2 = 2(2m2) is
also an even integer.

9. Let x be any odd integer. Then
x = 2m + 1 for some integer m.
∴ x2 = (2m + 1)2

= 2(2m2 + 2m) + 1
which is an odd integer.

13. Let x = 4k + 1. Then
x2 = (4k + 1)2 = 16k2 + 8k + 1

= 4(4k2 + 2k) + 1 = 4m + 1,
where m = 4k2 + 2k is an even
integer.
∴ x2 is also an integer of the
same form.

17. Let x and y be any two integers.
Assume that the given conclu-
sion is false; that is, assume
that both x and y are odd inte-
gers. Then x = 2m + 1 and
y = 2n + 1 for some integers m
and n. ∴ xy = (2m + 1)(2n + 1)

= 2(2mn+m+n)+1, an odd
integer. This negates the given
hypothesis and so the result
follows.

21. Assume
√

p is a rational num-
ber a/b, where a and b have no
positive common factors except
1. Then

√
p = a/b, (a/b)2 = p or

a2 = pb2. Consequently, p is a
factor of a2 and hence of a. So
let a = mp. Then (mp)2 = pb2

or b2 = pm2. As before, this
shows p is a factor of b. Thus
p is a common factor of a and b,
a contradiction.

23. proof:
case 1 n is an even integer, say,
2m. Then n2+n = (2m)2+2m =
2(2m2 + m), an even integer.
case 2 n is an odd integer, say,
2m + 1.

Chapter 1 The Language of Logic 913

case 3 Let n = 3k + 2. Then
n3 − n = (3k + 2)3 − (3k + 2)

= (27k3+54k2+36k+8)
−(3k + 2)

= 27k3 + 54k2 + 33k + 6
= 3(9k3+18k2+11k+2)

Thus, in every case, n3 − n is
divisible by 3.

29. proof: Choose x = 1. Clearly,
x2 = x.

31. proof: Let a be any nonzero
integer.
Then 1729a3 = a3 + (12a)3

= (9a)3 + (10a)3

Since a is arbitrary, 1729a3 has
infinitely many choices.

33. 0 35. 2

37. x = 2, P(x): x2 = 4.

39. Canceling a − b is invalid since
a = b.

43. proof: Let a · b = 0 and a �= 0.
Since a · 0 = 0, a · b = a · 0.
Canceling a from both sides, we
get b = 0.

Then
n2 + n = (2m + 1)2 + (2m + 1)

= (4m2 +4m+1)+ (2m+1)
= 2(2m2 + 3m + 1),

again, an even integer.

27. proof:
case 1 Let x, y ≥ 0. Then
|x · y| = xy = |x| · |y|
case 2 Let x < 0, y < 0. Then
|x| = −x and |y| = −y.
|x ·y| = xy = (−x) · (−y) = |x| · |y|
case 3 Let x ≥ 0, y < 0. Then
|x ·y| = −(xy) = x · (−y) = |x| · |y|
case 4 Let x < 0, y ≥ 0.
This case is similar to case 3.

41. proof: Since a < b, there is a
positive real number x such
that a + x = b.
∴ (a + x) + c = b + c
That is, (a + c) + x = b + c
∴ a + c < b + c

45. 11, since 2047 = 23 · 89.

Review Exercises (p. 58)

1.
p q p ∨ q ∼q (p ∨ q) ∧ (∼q)

T T T F F
T F T T T
F T T F F
F F F T F

3.
p q r q → r p → (q → r)

T T T T T

T T F F F

T F T T T

5. T 7. F

9. (w < x) ∧ (y < z) →
(w + y < x + z)

914 Solutions to Odd-Numbered Exercises

p q r q → r p → (q → r)

T F F T T

F T T T T

F T F F T

F F T T T

F F F T T

11. yes 13. no

15. [A ∧ (A′ ∨ B)] ∨ (A ∧ B′)

17. T

23. F

27. F

19. T

25. T

29. F

21. T

31. converse : If x + z < y + z, then x < y.
inverse : If x ≥ y, then x + z ≥ y + z.
contrapositive: If x + z ≥ y + z, then x ≥ y.

33. If x ≤ 3 and x ≥ −3, then |x| ≤ 3.
35. yes 37. no 39. yes 41. yes 43. T 45. T 47. F

49. (A′ ∧ B) ∨ (A′ ∧ B′) ∨ (A ∧ B′) ≡ A′ ∨ B′

A'

B'

51. invalid 53. F 55. T 57. F 59. F 61. F

63. proof: Let x and x + 1 be
two consecutive integers.
case 1 Let x be even. Then
x = 2m for some integer m.
Then x(x + 1) = 2m(2m + 1)

= 2[m(m + 1)],
an even integer.
case 2 Let x be odd. Then
x = 2m + 1 for some integer m.
∴ x(x + 1) = (2m + 1)(2m + 2)

= 2[(m + 1)(2m + 1)],
again an even integer.

65. proof: n4−n2 = [(n−1)n(n+1)]n
contains a product of three
consecutive integers. Therefore,
by cases, it is divisible by 3.

67. indirect proof: Assume that the
given conclusion is false, that is,
a ≤ 6 and b ≤ 6. Then a + b ≤
6 + 6, that is, a + b ≤ 12, which
contradicts the hypothesis.

69. proof: Assume that a2 = b2 and
a �= b. Since a2 − b2 = (a − b)
(a+b) = 0 and a−b �= 0, a+b = 0.
∴ a = −b.

71. 0.5 73. 0.5 75. 0 77. 0.3

79. Since t(p) = x, t(p′) = 1 − x. Then t(p ∨ p′) = max{x, 1 − x}.
Suppose t(p ∨ p′) = 1. Then max{x, 1 − x} = 1. Suppose 0 ≤ x ≤ 1/2.

Then max{x, 1 − x} = 1 − x = 1, so x = 0; that is, t(p) = 0. On the
other hand, let 1/2 < x ≤ 1. Then max{x, 1 − x} = x = 1; so t(p) = 1.
In either case, t(p) = 0 or 1.

Conversely, let t(p) = 0 or 1. Then t(p ∨ p′) = max{t(p), t(p′)} =
max{t(p), 1 − t(p)}. If t(p) = 0, then t(p ∨ p′) = max{0, 1} = 1; on the
other hand, if t(p) = 1, then also t(p ∨ p′) =max{1, 0} = 1. In both
cases, t(p ∨ p′) = 1.

Thus t(p ∨ p′) = 1 if and only if t(p) = 0 or t(p) = 1.

Chapter 1 The Language of Logic 915

81. proof: t((p ∨ q)′) = 1 − t(p ∨ q)
= 1 − max{t(p), t(q)}
= 1 − max{x, y}
= 1 −

{
y if x ≤ y
x otherwise

=
{

1 − y if x ≤ y
1 − x otherwise

t(p′ ∧ q′) = min{t(p), t(q′)}
= min{1 − x, 1 − y}
=
{

1 − y if x ≤ y
1 − x otherwise

Thus t((p ∨ q)′) = t(p′) ∧ t(q′).

Supplementary Exercises (p. 62)

1. converse : If −a < x < a, then |x| < a.
inverse : If |x| ≥ a, then x ≥ a or x ≤ −a.
contrapositive: If (x ≤ −a) or (x ≥ a), then |x| ≥ a.

3. ∼q 5. ∼ p∨ ∼ q 7. yes

9. ∼ [(∀x)(∀y)(xy = yx) ≡ (∃x)(∃y)(xy �= yx)

11. ∼ [(∀x)(∃y)(∃z)(x + y = z) ≡ (∃x)(∀y)(∀z)(x + y �= z)

13. proof: Let K = (n2 + n)(n2 + n + 1)(n2 + n + 2)
and L = (n2 − n)(n2 − n + 1)(n2 − n + 2).
2n(3n4 + 7n2 + 2) = 6n5 + 14n3 + 4n

= (4n3 + 6n)n2 + (2n4 + 8n2 + 4)n
= (n2 + n)(n4 + 2n3 + 4n2 + 3n + 2)

− (n2 − n)(n4 − 2n3 + 4n2 − 3n + 2)
= K − L

Since K is the product of three consecutive integers, it is divisible by 3.
But n2 + n = n(n + 1) is divisible by 2. So n2 + n + 2 is divisible
by 4. Thus K is divisible by 24. Likewise, L is also divisible by 24.
Therefore, K − L is divisible by 24. Thus n(3n4 + 7n2 + 2) is divisible
by 12.

15. 40

17. t(p ∨ p′) = max{t(p), t(p′)}
= max{t(p), 1 − t(p)} = 1

only if t(p) = 0 or t(p) = 1.

19. Not a three-valued tautology.

21. Is a three-valued tautology.

916 Solutions to Odd-Numbered Exercises

23.
p q p ∨ q (p ∨ q)′ p′ q′ p′ ∧ q′

0 0 0 1 1 1 1
0 u u u 1 u u
0 1 1 0 1 0 0
u 0 u u u 1 u
u u u u u u u
u 1 1 0 u 0 0
1 0 1 0 0 1 0
1 u 1 0 0 u 0
1 1 1 0 0 0 0

↑_____identical_____↑

Chapter 2 The Language of Sets

Exercises 2.1 (p. 76)

1. {April, August} 3. {Jan, March, May, July, Aug, Oct, Dec}

5. {x ∈ Z|0 < x < 5} 7. {x|x is a member of the United Nations}

9. yes 11. yes 13. F

15. T 17. F 19. F 21. T 23. T 25. T 27. T

29. F 31. {Ø, A} 33. 2n

35. {3, 6, 9} 37. {2, 3, 4, 6, 8, 9}

39. {Ø,{1},{2},{3},{1,3}}

45. 3 47. 5

41. b, b2, bab, b3, ba2b

49. 00, 01, 10, 11

43. λ, b, a2, a2b, aba

51. 0, 1, 2

53. Consider the implication
x ∈ Ø → x ∈ A. Since the
hypothesis is false, this is a true
implication. ∴ Ø ⊆ A.

55. Let x be an arbitrary element in
A. Since A ⊆ B, x ∈ B. Since B ⊆
C, x ∈ C. Thus, every element
in A is also in C. ∴ A ⊆ C.

Exercises 2.2 (p. 93)

1. {a, b, c, g, j, k}
7. {a, c, d, e, f , h, i, j, k}

13. {w, y, z}

3. {d, h}

9. {a}

15. {a, b}

5. {a, b, c, f , g, i, j, k}
11. {a, b, g}
17. {x, y}

Chapter 2 The Language of Sets 917

19. {(b, x), (c, x)} 21. Ø 23. {(b, x), (b, z), (c, x), (c, z)}
25. {(b, x, x), (b, x, z), (c, x, x), (c, x, z)}
33. T

27. T

35. F

29. F

37. F

31. F

39. A = {a}, B = Ø, C = {a} 41. A = {a}, B = {b}, C = {a, b}
43. no 45. no

47. Let x ∈ (A′)′. Then x �∈ A′,
so x ∈ A. Thus (A′)′ ⊆ A.
Conversely, let x ∈ A.
Then x �∈ A′, so x ∈ (A′)′.
∴ A ⊆ (A′)′. Thus (A′)′ = A.

49. A ∩ (A ∪ B) = (A ∩ A) ∪ (A ∩ B)
= A ∪ (A ∩ B)
= A, since A∩B ⊆ A.

51. A ⊕ A = (A − A) ∪ (A − A)
= Ø ∪ Ø = Ø

53. A ⊕ B = (A − B) ∪ (B − A)
= (B − A) ∪ (A − B)
= B ⊕ A

55. (A ∪ B ∪ C)′ = [(A ∪ B) ∪ C]′
= (A ∪ B)′ ∩ C′
= (A′ ∩ B′) ∩ C′
= A′ ∩ B′ ∩ C′

57. A ∩ (A − B) = A − B

59. (A − B′) − (B − A′) = Ø 61. A ∪ B − (A ∩ B)′ = A ∩ B

63. (A ∩ B)′ ∪ (A ∪ B′) = U 65. (A′ ∪ B′)′ ∪ (A′ ∩ B) = B

67. A ∪ (
⋂
i∈I

Bi) = ⋂
i∈I

(A ∪ Bi)

A ∩ (
⋃
i∈I

Bi) = ⋃
i∈I

(A ∩ Bi)

69. Ø 71. {Angelo 0.4, Bart 0.7, Cathy 0.6,
Dan 0.7, Elsie 0.2, Frank 0.6}

73. Ø 75. {Angelo 0.4, Bart 0.7,
Cathy 0.6}

77. {(Angelo, Dan) 0.3, (Angelo, Elsie) 0.4, (Angelo, Frank) 0.4, (Bart,
Dan) 0.3, (Bart, Elsie) 0.7, (Bart, Frank) 0.4, (Cathy, Dan) 0.3, (Cathy,
Elsie) 0.6, (Cathy, Frank) 0.4}

79. {(Angelo, Angelo) 0.4, (Angelo, Bart) 0.4, (Angelo, Cathy) 0.4,
(Bart, Angelo) 0.4, (Bart, Bart) 0.7, (Bart, Cathy) 0.6, (Cathy, Angelo)
0.4, (Cathy, Bart) 0.6, (Cathy, Cathy) 0.6}

81. proof: By De Morgan’s law in ordinary sets, it suffices to show that
d(A ∩ B)′(x) = dA′ ∪ B′(x) for every element x.

918 Solutions to Odd-Numbered Exercises

Let x ∈ (A ∩ B)′. Then
d(A ∩ B)′(x) = 1 − d(A ∩ B)(x)

= 1 − min {dA(x), dB(x)}
=
{

1 − dA(x) if dA(x) ≤ dB(x)
1 − dB(x) otherwise

On the other hand, let x ∈ A′ ∪ B′. Then
dA′ ∪ B′(x) = max{dA′(x), dB′(x)}

=
{

1 − dA(x) if dA(x) ≤ dB(x)
1 − dB(x) otherwise

Thus d(A ∩ B)′(x) = dA′ ∪ B′(x) for every element x, so (A∩B)′ = A′∪B′
for fuzzy sets.

Exercises 2.3 (p. 98)

1. 01010101 3. 11110001 5. {s0, s3} 7. {s0, s2, s3}
9. {Ø,{s0},{s1},{s0,s1} 11. 10010010 13. 01001001

15. 01001000

21. 00000000

17. 11011010

23. 00000001

19. 10010011

25. 01001001

Exercises 2.4 (p. 102)

1. 26 3. 7 5. 3a 7. a+2b 9. a+2b 11. a − b

13. 0 15. b 17. a 19. b 21. b − a 23. 50

25. 366 27. 134 29. 1007 31. 1244 33. 55 35. 10

37. 13 39. 230 41. 60

43. {Ø, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}

45. 4b 47. b2 49. |U| − |A ∪ B ∪ C|

51. |A1 ∪ A2 ∪ A3 ∪ A4| = |A1 ∪ (A2 ∪ A3 ∪ A3)|
= |A1| + |A2 ∪ A3 ∪ A4| − |A1 ∩ (A2 ∪ A3 ∪ A3)|
= |A1| + [|A2| + |A3| + |A4| − |A2 ∩ A3|

−|A2 ∩ A4| − |A3 ∩ A4| − |A2 ∩ A3 ∩ A4|]
−|A1 ∩ (A2 ∪A3 ∪A3)| (1)

|A1 ∩ (A2 ∪ A3 ∪ A3)| = |(A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A1 ∩ A4)|
= |A1 ∩ A2| + |A1 ∩ A3| + |A1 ∩ A4|

−|(A1 ∩ A2) ∩ (A1 ∩ A3)|
−|(A1 ∩A2)∩ (A1 ∩A4)|− |(A1 ∩A3)∪ (A1 ∩A4)|
+|(A1 ∩ A2) ∩ (A1 ∩ A3) ∩ (A1 ∩ A4)|

Chapter 2 The Language of Sets 919

= |A1 ∩ A2| + |A1 ∩ A3| + |A1 ∩ A4| − |A1 ∩ A2 ∩ A3|
−|A1 ∩ A2 ∩ A4| − |A1 ∩ A3 ∩ A4|
+|A1 ∩ A2 ∩ A3 ∩ A4| (2)

Substituting (2) in (1), we get the desired result:

|
4⋃

i=1
Ai| =

4∑
i=1

|Ai| −
∑

1≤i<j≤4
|Ai ∩ Aj| +

4∑
1≤i<j<k≤4

|Ai ∩ Aj ∩ Ak| − |
4⋂

i=1
Ai|

Exercises 2.5 (p. 107)

1. 1, 2, 4, 8 3. e, ee, eee
, eeee

5. λ, b2, b4, b6 7. Z+

9. set of even integers 11. 1) 0 ∈ L
2) x ∈ L → 1x, xx ∈ L

13. 1) a ∈ L
2) x ∈ L → bxb ∈ L

15. 1) b ∈ L
2) x ∈ L → bx ∈ L

17. 1) a ∈ L
2) x ∈ L → axa ∈ L

19. yes

21. no 23. 5 25. 42

27. ()()(),(()()),(())(),()(()),((()))

29. yes 31. no

33. no, since (())(()) cannot be generated.

35. 1) λ ∈ �∗
2) x ∈ �∗, y ∈ � → xy, yx ∈ �∗

Review Exercises (p. 111)

1. {b, y, z} 3. {b, f , x, y} 5. {b, c, y} 7. {b, f , x, y}
9. {a, c, d, f }, {b, d, e, f , g} 11. {b, e, k}

13. {Ø,{Ø},{{Ø}},{Ø,{Ø}}}

15. no 17. 01000100 19. 01100110 21. 54%

23. 21 25. 7 27. 2871

29. 3, lg 3, lg lg 3, lg lg lg 3

31. 1,
√

3,
√

1 + 2
√

3,
√

1 + 2
√

1 + 2
√

3

920 Solutions to Odd-Numbered Exercises

33. 1) 1 ∈ S
2) x ∈ S → 1 + 2x ∈ S

35. 1) λ ∈ S
2) x ∈ S → bxa ∈ S

37. a, ab, ba, abb, bab 39. 1) a, b ∈ L
2) x ∈ L → ax, bx ∈ L

41. 1) 1 ∈ L
2) x ∈ L → 0x0 ∈ L

43. yes

45. Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. ∴ x ∈ A or (x ∈ B and
x ∈ C). ∴ x ∈ A ∪ B and x ∈ A ∪ C. Thus, x ∈ (A ∪ B) ∩ (A ∪ C). So
A∪ (B∩C) ⊆ (A∪B)∩ (A∪C). Similarly, (A∪B)∩ (A∪C) ⊆ A∪ (B∩C)
Hence the result.

47. A∩(B−C) = A∩(B∩C′) = (A∩B)∩C′ = (A∩B)−C = (A∩B)−(A∩C)

49. Ø 51. Ø

53. {(Mike, Jean) 0.6, (Mike, June) 0.5, (Andy, Jean) 0.3, (Andy, June) 0.3,
(Jeff, Jean) 0.7, (Jeff, June) 0.5}

55. As ordinary sets, (A − B)′ = (A ∩ B′)′ = A′ ∪ B. So is remains to show
that d(A−B)′(x) = dA′ ∪ B(x) for every element x.

d(A−B)′(x) = 1 − dA−B(x)
= 1 − dA ∩ B′(x)
= 1 − min{dA(x), dB′(x)}
= 1 − min{dA(x), 1 − dB(x)}

=
{

1 − dA(x) if dA(x) ≤ 1 − dB(x)
dB(x) otherwise

Similarly,

dA′ ∪ B(x) =
{

1 − dA(x) if dA(x) ≤ 1 − dB(x)
dB(x) otherwise

Thus d(A−B)′(x) = dA′ ∪ B(x) for every element x; so (A − B)′ = A′ ∪ B as
fuzzy sets.

Supplementary Exercises (p. 113)

1. (A − B) ∩ (A − C)
= (A ∩ B′) ∩ (A ∩ C′)
= A ∩ B′ ∩ C′
= A ∩ (B′ ∩ C′)
= A ∩ (B ∪ C)′
= A − (B ∪ C)

Chapter 3 Functions and Matrices 921

3. (A ∩ B) ⊕ (A ∩ C)
= [(A ∩ B) − (A ∩ C)] ∪ [(A ∩ C) − (A ∩ B)]
= [(A ∩ B) ∩ (A ∩ C)′] ∪ [(A ∩ C) ∩ (A ∩ B)′]
= [(A ∩ B) ∩ (A′ ∪ C)′] ∪ [(A ∩ C) ∩ (A′ ∪ B′)]
= [(A ∩ B ∩ A′) ∪ (A ∩ B ∩ C′)] ∪ [(A ∩ C ∩ A′) ∪ (A ∩ C ∩ B′)]
= Ø ∪ (A ∩ B ∩ C′) ∪ Ø ∪ (A ∩ C ∩ B′)
= (A ∩ B ∩ C′) ∪ (A ∩ C ∩ B′)
= A ∩ [(B ∩ C′) ∪ (C ∩ B′)]
= A ∩ [(B − C) ∪ (C − B)]
= A ∩ (B ⊕ C)

5. A ∩ B ∩ C 7. A′ ∩ B′ 9. 266

11. 1) λ ∈ L
2) If x ∈ L, then

0x1 ∈ L.

13. Let x = x1 . . . xn and y = y1 . . . yn.
xy = x1 . . . xny1 . . . yn

(xy)R = yn . . . y1xn . . . x1
= yRxR

15. By Exercise 14, it suffices to show that
(xxR)R = xxR.
(xxR)R = (xR)RxR, by Exercise 13

= xxR, since (xR)R = x.

Chapter 3 Functions and Matrices

Exercises 3.1 (p. 123)

1. −40◦F

9. $84.60

17. &

25. −23

33. 5

41. 5

3. 9.8

11. 6

19. Z

27. 41

35. undefined

43. x2 + 2x + 2

5. 5

13. 7

21. 43

29. azalea

37. 6

7. $75

15. combinatorics

23. 122

31. aroma

39. 1 + p + q

45. proof: Let y ∈ f (A ∪ B). Then there is an element x ∈ A ∪ B such that
y = f (x). If x ∈ A, then y = f (x) ∈ f (A); if x ∈ B, then y = f (x) ∈ f (B).
In either case, y ∈ f (A) ∪ f (B). ∴ f (A ∪ B) ⊆ f (A) ∪ f (B).

Conversely, let y ∈ f (A) ∪ f (B). Then either y ∈ f (A) or y ∈ f (B).
If y ∈ f (A), then there is an element a ∈ A such that y = f (a). Since
a ∈ A ∪ B, y = f (a) ∈ f (A ∪ B). If y ∈ f (B), then similarly, y ∈ f (A ∪ B).
Thus, in both cases, y ∈ f (A ∪ B). ∴ f (A) ∪ f (B) ⊆ f (A ∪ B).

922 Solutions to Odd-Numbered Exercises

47. proof: Let y ∈ f (A) − f (B). Then y ∈ f (A) and y �∈ f (B). Then there is
an element a ∈ A such that y = f (A); since y �= f (B), a �∈ B. ∴ a ∈ A−B.
Consequently, y = f (a) ∈ f (A − B). ∴ f (A) − f (B) ⊆ f (A − B).

Exercises 3.2 (p. 134)

1. n

11. 7

3. n + 1

13. {−1, 0}

5. 6

15. 1538

7. 9

17. 1435

9. −4

19. 97

21. 358 23. h(a) = h(c) = h(d) = 1, h(b) = h(e) = 0

25. h(b) = h(c) = h(g) = 1, h(a) = h(d) = h(e) = h(f) = 0

27. {c,e,g,h}

35. T

29. {b,d,f,h}

37. T

31. Thursday

39. Wednesday

33. Monday

41. Saturday

43. Wednesday 45. 1 47. 2 49. April 7 51. April 26

53. Let n = 2k + 1. Then
�n/2� = �k + 1/2� = k

55. Let n = 2k + 1. Then
�n2/4� = �k2 + k + 1/4� = k2 + k

= (4k2 + 4k)/4 = (n2 − 1)/4

57. case 1 Let n = 2k + 1.
Then �n/2� = k and
�n/2� = k + 1.
∴ �n/2� + �n/2� = k + (k + 1)

= 2k + 1 = n

case 2 Let n = 2k. Then
�n/2� = k = �n/2�. So
�n/2�+�n/2� = k+k = 2k = n.

59. case 1 Let x ∈ Z. Then
�x� = x = −(−x) = −�−x�.

case 2 Let x �∈ Z. Then
x = k + x′, where
k ∈ Z and 0 < x′ < 1.
−�−x� = −(−k − 1) = k + 1 = �x�

61. case 1 Let x ∈ A ∩ B. Then
x ∈ A, x ∈ B, and x ∈ A ∪ B.
So, fA ∩ B(x) = fA(x) = fB(x)

= fA∪B(x) = 1
∴ RHS = 1+1−1 = 1 = LHS.

case 2 Let x �∈ A∩B. Then x �∈
A or x �∈ B. If x �∈ A and x ∈ B,
then RHS = 0 + 1 − 0 = 1 = 1
= LHS. If x �∈ A and x �∈ B,
then RHS = 0 + 0 − 0 = 0 =
LHS. If x ∈ A and x �∈ B, then
RHS = 1 + 0 − 0 = 1 = LHS.

63. case 1 Let x ∈ A ∩ B. Then
x ∈ A, x ∈ B, and x �∈ A ⊕ B.
∴ RHS = 1 + 1 − 2 = 0 = LHS.

case 2 Let x �∈ A∩B. Then x �∈ A
or x �∈ B. If x �∈ A and x ∈ B,
then RHS = 0 + 1 − 0 = 1 =
LHS. If x �∈ A and x �∈ B, then
RHS = 0 + 0 − 0 = 0 = LHS. If
x ∈ A and x �∈ B, then RHS =
1 + 0 − 0 = 1 = LHS.

Chapter 3 Functions and Matrices 923

65. case 1 Let x ≥ y. Then max{x, y} = x and min{x, y} = y.
max{x, y} − min{x, y} = x − y = |x − y|
case 2 Let x < y. Then max{x, y} = y and min{x, y} = x.
max{x, y} − min{x, y} = y − x = |y − x| = |x − y|

Exercises 3.3 (p. 141)

1. yes

11. no

3. no

13. yes

5. yes

15. no

7. no

17. no

9. no

19. no

21. no

29. 153

23. no, not injective.

31. 190

25. no, not surjective.

33. 12

27. yes

35.
A B C D E F G H I J K L M

AL AZ CA FL MA

N O P Q R S T U V W X Y Z

NY OH MI

37. proof: Let f : A → A such
that f (a) = a ∀a ∈ A. Since f
is the identity function on A,
it is bijective. ∴ A ∼ A.

41. proof: Let f : [a, b] → [c, d]
defined by

f (x) = c + d − c
b − a

(x − a).

Notice that f (a) = c and
f (b) = d.
To prove that f is injective:
Let α,β ∈ [a, b] such that
f (α) = f (β). Then

c + d − c
b − a

(α − a)

= c + d − c
b − a

(β − a)

This yields α = β; so f is
injective.
To prove that f is surjective:
Let β ∈ [c, d]. Choose

α = a + b − a
d − c

(β − c). You

may verify that a ≤ α ≤ b and
f (α) = β. ∴ f is surjective.
Thus f is bijective and hence
[a, b] ∼ [c, d].

39. proof: Since A ∼ B, there is a
bijection f : A → B. Let
g : A × {1} → B × {2} defined by
g(a, 1) = (f (a), 2). Clearly, g is
well-defined.
To show that g is injective: Let a′
and a′′ be any two elements in A
such that g(a′, 1) = g(a′′, 1). Then
(f (a′), 2) = (f (a′′), 2). ∴ a′ = a′′,
since f is injective. So,
(a′, 1) = (a′′, 1) and hence g is
injective.
To show that g is surjective:
Let (b, 2) be any element in
B × {2}. Since f is surjective, there
is an element a ∈ A such that
f (a) = b. Then x = (a, 1) ∈ A × {2}
and
g(x) = g(a, 1) = (f (a), 2) = (b, 2).
∴ g is surjective.
Thus g is a bijection and hence the
result.

924 Solutions to Odd-Numbered Exercises

43. proof: Let f : Z → N defined
by

f (n) =
{

2n + 1 if n ≥ 0
−2n if n < 0

You may verify that f is
injective.
To prove that f is surjective:
Let m ∈ N.
case 1 Let m be even. Then
choose x = −m/2. Clearly,
x ∈ Z and f (x) = −2(−m/2)
= m.
case 2 Let m be odd. Then
choose x = m − 1

2
. Again,

x ∈ Z. Also f (x) = 2
(

m − 1
2

)
+1 = m. ∴ f is surjective.
Thus f is bijective and hence
Z ∼ N.

49. proof: Let A1, A2, . . . be a
countable number of
countable sets.
To show that A = ∪Ai is
countable: Since each Ai is
countable, its elements can
be listed as ai1, ai2, Now
list all elements aij in A with
i + j = 2, then list all
elements aij with i + j = 4,
and so on. This procedure
establishes a systematic
procedure for listing all
elements in A.
∴ A is countable.

45. proof: Let A = {a1, a2, . . . , an, . . .}
be an infinite set. Then
B = {a1, a2, a4, . . .} is a proper
subset of A. The function
f : A → B defined by f (ai) = a2i is
a bijection (verify). ∴ A ∼ B.
Conversely, assume that A is finite,
B ⊂ A, and A ∼ B. Since A is finite
and B ⊂ A, |B| < |A|. But since
A ∼ B, |A| = |B|. This is a
contradiction. ∴ A is infinite.

47. proof: Let f : Q+ → N × N
defined by f (m/n) = (m, n), where
m and n are relatively prime.
Clearly, f is bijective.
∴ Q+ ∼ N × N and hence Q+ is
countable.

51. proof: Let |�| = n. Let �i denote
the set of all words containing i
symbols over �. Clearly, �i is
countable (in fact finite) and
|�i| = ni. Since �∗ = ∪

i∈W
�i is a

countable union of countable sets,
�∗ is countable.

Exercises 3.4 (p. 149)

1. No. of digits in the integer m = 11
No. of distinct digits available n = 10
∴ Result follows by the pigeonhole principle.

3. Apply the pigeonhole principle with m = 6 and n = 5.

5. Choose m = 8 and n = 7. 7. Choose m = 7 and n = 6.

Chapter 3 Functions and Matrices 925

9. Apply the generalized pigeonhole principle with m = 12,305 and n = 13.

11. Let x = 0 · a1a2 · · · aib1b2 · · · bj.
∴ 10ix = a1a2 · · · ai · b1b2 · · · bj

10i+jx = a1a2 · · · aib1b2 · · · bj. b1b2 · · · bj

∴ 10i+jx − 10ix = a1a2 · · · aib1b2 · · · bj − a1a2 · · · ai

∴ x = a1a2 · · · aib1b2 · · · bj − a1a2 · · · ai

10i+j − 10i

which is a rational number.

13. Join the midpoints of the sides
to form four small congruent

squares, each of side 1/2.
By the PHP, at least two of the
five points must lie inside a
small square. Since its diagonal
is

√
2/2 units long, the distance

between the points must be√
2/2.

17. Let |X | = m, |Y | = n, and
Sy = {f −1(y)|y ∈ Y }. Then {Sy}
partitions X into b blocks,
where b ≤ n. Suppose
|Sy| < m/b ∀y. Since X is a
disjoint union of the blocks Sy,

m = |x| =
b∑

i=1
|Sy| < b

(m
b

)
= m,

a contradiction. Therefore, one
of the blocks Sy has at least
m/b elements. In other words,
there is an element t ∈ Y such
that f −1(t) has at least m/b
elements.

Since b ≤ n and m > kn,
m
b

>
kn
n

= k. So |f −1(t)| > k.

Hence the result. (Note that
k = 1 yields the PHP.)

15. Divide the triangle into nine
small congruent triangles:

By the PHP, at least two of the
ten points must lie inside the
same small triangle. Since each
side is 1/3 units long, the result
follows.

19. Let S be a finite set. Assume
|S| is not unique, say, |S| = m
and |S| = n.
To show that m = n: Suppose
m > n. Then, by the PHP, no
injective function exists on S.
This is a contradiction, since
the identity function 1S is
injective. ∴ m ≤ n. Similarly,
n ≤ m. Thus m = n.

Exercises 3.5 (p. 155)

1. 10 3. 4x2 − 4x + 2 5. −3 7. −5

926 Solutions to Odd-Numbered Exercises

9. 0 11. 0 13. yes 15. x 1 2 3 4
g(x) b d c a

17. yes 19. not injective;
not invertible

21. yes 23. not injective;
not invertible

25. T

33. T

27. F

35. 4

29. T

37. 16

31. T

39. (1Y ◦ f)(x) = 1Y (f (x)) = f (x)
∴ 1Y ◦ f = f

43. 1) To show that 1X is injective:
Let 1X (x) = 1X (x′). Then

x = x′
∴ 1X is injective.

2) To show that 1X is surjective:
Let x be any element in X . Since
1X (x) = x, 1X is clearly
surjective.
Thus, 1X is bijective.

45. proof: Let z ∈ Z. Since g ◦ f is
surjective, there is an element
x ∈ X such that (g ◦ f)(x) = z,
that is, g(f (x)) = z. Let y = f (x).
Then y ∈ Y and g(y) = z. Thus,
given any element z ∈ Z, there
is an element y ∈ Y such that
g(y) = z. ∴ g is surjective.

41. Let z be any element in Z. Since
g is surjective, there exists an
element y in Y such that
g(y) = z. Since f is surjective,
there exists an element x in X
such that f (x) = y. Then
g(f (x)) = g(y) = z. That is,
(g ◦ f)(x) = z
∴ g ◦ f is surjective.

47. Let x be any element in X and
let f (x) = y. Then
(f −1 ◦ f)(x) = f −1(f (x)) = f −1(y)

= x
∴ f −1 ◦ f = 1X

49. proof: To prove that f−1 is injective:
Let f −1(y1) = f −1(y2). Then f (f −1(y1)) = f (f −1(y2)). That is,
(f ◦ f −1)(y1) = (f ◦ f −1)(y2)

1Y (y1) = 1Y (y2)
y1 = y2

∴ f −1 is injective.
To show that f −1 is surjective:

Let x ∈ X . Then f (x) ∈ Y . Let y = f (x).
f −1(y) = f −1(f (x)) = (f −1 ◦ f)(x) = 1X (x) = x. ∴ f −1 is surjective.
Thus f −1 is bijective.

51. proof:
(g ◦ f) ◦ (f −1 ◦ g−1) = g ◦ (f ◦ (f −1 ◦ g−1))

= g ◦ (f ◦ f −1) ◦ g−1

= g ◦ (1Y ◦ g−1)
= g ◦ g−1

= 1Z

Chapter 3 Functions and Matrices 927

Similarly, (f −1 ◦ g−1) ◦ (g ◦ f) = 1X .
∴ (g ◦ f)−1 = f −1 ◦ g−1

53. (h ◦ (g ◦ f))(x) = h((g ◦ f)(x))
= h(g(f (x)))
= (h ◦ g)(f (x))
= ((h ◦ g) ◦ f)(x)

∴ h ◦ (g ◦ f) = (h ◦ g) ◦ f

55. Let A ∼ B. Then there exists a
bijection f : A → B. Since f is a
bijection, f −1 : B → A exists and
is also a bijection. ∴ B ∼ A.

57. proof:
To show that f −1(S ∪ T) ⊆ f −1(S) ∪ f −1(T):
Let x ∈ f −1(S ∪ T). Then f (x) ∈ S ∪ T.
∴ f (x) ∈ S or f (x) ∈ T. In other words, x ∈ f −1(S) or x ∈ f −1(T).
∴ x ∈ f −1(S) ∪ f −1(T). Thus f −1(S ∪ T) ⊆ f −1(S) ∪ f −1(T).
By retracing the steps, it can be shown that
f −1(S) ∪ f −1(T) ⊆ f −1(S ∪ T).
Hence the result.

Exercises 3.6 (p. 162)

1. 21 3. 5 5. 20 7. 21 9. 135 11. 19

13.
12∑

i=1
(2k − 1) 15.

11∑
k=1

k(k + 1)
17. T

19. S = (am+1 − am) + (am+2 − am+1) + · · · + (an − an−1) = an − am

21. n∑
i=1

(i + 1)2 −
n∑

i=1

i2 = 2
n∑

i=1

i +
n∑

i=1

1

(n + 1)2 − 1 +
(n∑

i=2

i2 −
n∑

i=2

i2
)

= 2
n∑

i=1

i + n

n2 + n = 2
n∑

i=1

i

∴
n∑

i=1

i = n(n + 1)
2

23. 28

31. 24

39. 28

25. 350

33. 1

41. 6

27. 255

35. 10

43. 480, 480

29. 15

37. 210

45. 613

47. a1j + a2j + a3j

51. 2a1 + 2a2 + 2a3

49. a11 + a12 + a21 + a22 + a31 + a32

53. |A1 ∩ A2| + |A1 ∩ A3| + |A2 ∩ A3|

928 Solutions to Odd-Numbered Exercises

Exercises 3.7 (p. 172)

1. x = −1, y = −4, z = −4 3.
[−2 3

0 −4

]
5.

⎡
⎣ 0 3 2
−1 2 −4
−2 5 −6

⎤
⎦

7.
[−3 −2 5

0 1 3

]

11.
[
2 −6 13
0 4 9

]
9.

[
0 4 −10
0 0 −2

]

13.
[
3 4 −13
0 6 7

]

15. p = r, q = s

21. n = p, q = r

17. m = n

23. 1470, 875, 1890

19. n = p = r, q = s

25. 2025, 1250, 2710

27. proof: A + B = (aij) + (bij)
= (aij + bij)
= (bij + aij)
= (bij) + (aij)
= B + A

31. proof: c(A + B) = c(aij + bij)
= (caij + cbij)
= c(aij)+ c(bij)
= cA + cB

29. proof: A + O = (aij) + (0)
= (aij + 0)
= (aij)
= A

Similarly, O + A = A.

33. Let A = (aij), B = (bij), and C = (cij).

BC =
[∑

b1kck1
∑

b1kck2∑
b2kck1

∑
b2kck2

]

A(BC) =
[∑

a1t(�b1kck1)
∑

a1t(�b1kck2)∑
a2t(

∑
b2kck1)

∑
a2t(

∑
b2kck2)

]

=
[∑

(
∑

a1tbt1)ck1
∑

(
∑

a1tbtt1)ck2∑
(
∑

a2tbt2)ck1
∑

(
∑

a2tbt2)ck2

]

= (AB)C

35. proof: (A + B)C

=
[

(a11 + b11)c11 + (a12 + b12)c21 (a11 + b11)c12 + (a12 + b12)c22

(a21 + b21)c11 + (a22 + b22)c21 (a21 + b21)c12 + (a22 + b22)c22

]

Chapter 3 Functions and Matrices 929

=
[
a11c11+a12c21 a11c12+a12c22

a21c11+a22c21 a21c12+a22c22

]
+
[
b11c11+b12c21 b11c12+b12c22

b21c12+b22c12 b21c12+b22c22

]

= AB + AC

37.
⎡
⎣a d f

b e g
c f h

⎤
⎦ 39. Let A = (aij).

AT = (aji)
∴ (AT)T = (aij)

= A

41. Let A = (aij) and B = (bij).

AB =
[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]

(AB)T =
[
a11b11 + a12b21 a21b11 + a22b21

a11b12 + a12b22 a21b12 + a22b22

]

BTAT =
[
b11 b21

b12 b22

] [
a11 a21

a12 a22

]

=
[
b11a11 + b21a12 b11a21 + b21a22

b12a11 + b22a12 b12a21 + b22a22

]
= (AB)T

43. (ABC)T = [A(BC)]T
= (BC)TAT, by Exercise 41
= (CTBT)AT, by Exercise 41
= CTBTAT

45. AB = 1
17

⎡
⎣1 −2 0

3 1 −1
1 2 −3

⎤
⎦
⎡
⎣ 1 6 −2
−8 3 −1
−5 4 −7

⎤
⎦

= 1
17

⎡
⎢⎣17 0 0

0 17 0
0 0 17

⎤
⎥⎦ = I3

47.
[
x
y

]

49.
[
2 3
4 5

] [
x
y

]
=
[
4
6

]

53. f (2) =
[
2 1
1 1

]

55. f (4) =
[
5 3
3 2

]

51.
[
x
y

]
=
[
2 3
4 5

]−1 [4
6

]

= 1
2

[
5 −3

−4 2

] [
4
6

]

= 1
2

[
2

−4

]
=
[−1

2

]
so x = −1, y = 2.

930 Solutions to Odd-Numbered Exercises

57. proof: Since B is an inverse of A, AB = I = BA. Likewise, AC = I =
CA. Then B = BI = B(AC) = (BA)C = IC = C

59. proof: (AB)(B−1A−1) = A[B(B−1A−1)]
= A[(BB−1)A−1]
= A(IA−1)
= AA−1 = I
Similarly, (B−1A−1)(AB) = I.
∴ (AB)−1 = B−1A−1

Review Exercises (p. 177)

1. 558

9. Wednesday

17. no

25. 0

3. 761

11. Monday

19. yes

27. 0

5. Tuesday

13. April 1

21. no

29. 5540

7. July

15. March 28

23. 8

31. 5

33.
A B C D E . . . K L

CBS1AA CBA3BA AQX5CD . . . NBC4GK VPS3SL

M N O P . . . X Y Z

NCR4SK CNN1TK ABC5ZZ

35.
0 1 2 3 4 5

AQZ5CD CBS1AA CNN1TK VPS3SL NBC4GK CBA3BA

6 7 8 9

NCR4SK ABC5ZZ

37. Use m = 19, n = 6. 39. −27

41. −39

47. F

53. 3.4, 4.5

59. 1, 1, 2, 3

43. 1

49. F

55. 2, 3.5

61. 25

45. 36

51. 3.4, 4.6

57. 1, 1, 2, 3

63. 72

65. proof: Let b1, b2 ∈ B such that g(b1) = g(b2). Then f (g(b1)) = f (g(b2));
that is, (f ◦ g)(b1) = (f ◦ g)(b2). Thus 1B(b1) = 1B(b2); that is, b1 = b2.
∴ g is injective.

Chapter 4 Induction and Algorithms 931

Supplementary Exercises (p. 179)

1. (A + B)T = (aij + bij)T 3. (AAT)T = (AT)TAT

= (aji + bji)
= (aji) +(bji)
= AT + BT

5. proof (by contradiction):
Suppose each of the numbers
is less than their average A.
Then
n∑

i=1
ai < nA

= n

(
1
n

n∑
i=1

ai

)
=

n∑
i=1

ai,

a contradiction.

15. Let Sn = a + ar + · · · + arn−1

rSn = ar + ar2 + · · · +
arn−1 + arn

∴ rSn − Sn = arn − a

Sn = a(rn − 1)
r − 1

(r �= 1)

= AAT, since (AT)T = A.
So AAT is symmetric.

7. 63.

9. 134,217,728

11. 65,536

13. proof: ak = a + (k − 1)d,
k ≥ 1

Sn =
n∑

k=1
ak

=
n∑

k=1
[a + (k − 1)d

=
n∑

k=1
a + d

n∑
k=1

(k − 1)

= na + d · (n − 1)n
2

= n
2
[2a + (n − 1)d]

17. Let X = {a, b, c, d, e, g}, A = {a, b, c}, B = {b, c, d, e}, and Y = {0, 3, 5}.
Let f : X → Y defined by f (a) = 0, f (b) = f (c) = 3, f (d) = f (e) =
f (g) = 5. Then A ∩ B = {b, c}, f (A) = {0, 3}, f (B) = {3, 5}, f (A ∩ B) =
{3} = f (A) ∩ f (B). Nonetheless, f is not injective.

19. proof: Let a1 = · · · = an.

Then
n∑

i=1
ai − n + 1 = 2n − n + 1

= n + 1
So, by Exercise 18, if n+1 pigeons
occupy n pigeonholes, one pigeon-
hole must contain at least two
pigeonholes.

21. an =
∞∑

i=n+1
ai

= an+1 +
∞∑

i=n+2
ai

= an+1 + an+1
= 2an+1

∴ an+1 = 1
2

an

Chapter 4 Induction and Algorithms

Exercises 4.1 (p. 188)

1. yes 3. 12; 5 5. −3; 5

932 Solutions to Odd-Numbered Exercises

7. {0, 1} 9. {0, 1, 2, 3, 4, 5, 6}
11. proof (by contradiction):

Assume there is an integer n
such that 0 < n < 1. Let S =
{a|0 < a < 1}. Since n ∈ S,
S �= Ø. Therefore, by the WOP,
S has a least element �, where
0 < � < 1. ∴ 0 < �2 < � and
hence 0 < �2 < 1. So �2 ∈ S,
where �2 < �, a contradiction.

13. proof (by contradiction):
Assume there is an integer
n′ ∈ S such that
n′ < n0 + �∗ − 1. Then
n0 + �∗ − 1 < �∗. Since
n′ − n0 + 1 ∈ S∗ and
n′ − n0 + 1 < �∗, � is not the
least element of S∗, a
contradiction.

15. proof (by contradiction): Let D = S − T. Then D ∩ T = Ø and
D ∪ T = S. To prove that S = T, suffices to show that D = Ø. Assume
D �= Ø. Since S is well-ordered, so is D. So D contains a least element
d. Then d �= a, since d ∈ D, a ∈ T, and D ∩ T = Ø. Since d �= a and
S = {a, a + 1, . . .}, d − 1 must lie in S. Clearly, d − 1 �∈ D. So d − 1 ∈ T.
∴ (d − 1) + 1 = d ∈ T, a contradiction. Thus D = Ø and hence S = T.

Exercises 4.2 (p. 195)

1. yes

5. no, 3 is a counterexample.

9. 4

13. 1 = (−8) · 28 + 15 · 15

17. 39/18

21. April 23

25. 4

3. no

7. 4

11. 2 = 2 · 28 + (−3) · 18

15. 12

19. choose a = 3, b = 5, c = 7.

23. April 13

27. 16

29. 5; 6; 10; 12

33. proof: By the division
algorithm, there exists a
quotient q such that a = bq + r.
Since d′ = gcd{b, r}, d′|b and
d′|r. ∴ d′|a. Thus d′|a and d′|b.
∴ d′| gcd{a, b}; that is, d′|d.

37. Assume p|ab and p � | a. Since
p � | a, gcd{p, a} = 1. Then there
are integers s and t such that
1 = sp + ta. ∴ b = spb + tab.
Since p|spb and p|tab, p|b.

31. proof: Since a|b and a|c, there
are positive integers d and d′
such that b = da and c = d′a.
Then b − c = da − d′a =
(d − d′)a ∴ a|(b − c).

35. proof: Let d = gcd{a, b} and
d′ = gcd{b, a + b}. Then d|a and
d|b. ∴ d|(a + b) and hence d|d′.
Since d′ = gcd{b, a + b}, d′|b
and d′|(a + b). ∴ d′|[(a + b) − b],
that is, d′|a. Thus d′|a and d′|b,
and hence d′|d. ∴ d = d′.

Chapter 4 Induction and Algorithms 933

39. Since gcd{a, b} = d, by
Theorem 4.6, there are integers
s and t such that d = sa + tb.
∴ 1 = s(a/d) + t(b/d). Thus,
gcd{a/d, b/d} = 1, and hence
a/d and b/d are relatively
prime.

43. Let n and n + 1 be any two
consecutive integers. Clearly,
one of them must be even.
Suppose it is n. Then 2|n. But n
is a prime, so n = 2 and hence
n + 1 = 3. The case n + 1 is
even yields n = 1, which is a
contradiction.

47. We have p = q + 3. Suppose q is
even. Then q = 2 and p = 5. On
the other hand, let q be odd.
Then q + 3 is an even prime
> 6, which is impossible.

41. Let d = gcd{gcd{a, b},c} and
d′ = gcd{a,gcd{b, c}}. Then d|
gcd{a, b} and d|c. ∴ d|a, d|b,
and d|c. So d|a, and (d|b and
d|c). ∴ d|a and d|gcd{b, c}.

45. Because p2 + 8 is prime, p must
be odd. By the division
algorithm, p is of the form
3n, 3n − 1, or 3n + 1. If
p = 3n ± 1, then
p2 + 8 = 9n2 ± 6n + 9 is
divisible by 3. So p = 3 and
hence n = 1 and hence p = 3.
Then p3 + 4 = 31 is a prime.

49. False. Choose a = 3, b = 4,
c = 9.

51. E7 = 510511 = 19 · 26869 is
composite.

Exercises 4.3 (p. 205)

1. 13

7. 3360eight

13. 1Dsixteen

19. 1000110111two

3. 1022

9. 15eight

15. 75sixteen

21. 11010two

5. 10000110100two

11. 72eight

17. 110110two

23. 87ECsixteen

25. 10100two

29. 110, 1011, 10110, 11011,
101010

27. 3071730two

31. 0, 1

33. 2

37. 1) 0 ∈ S.
2) If x ∈ S, then 0x, 1x ∈ S.

35. 5

39. 1) 1 ∈ S.
2) If x ∈ S, then x0, 1x, x1 ∈ S.

41. 165 43. 101 45. 10EFsixteen

Exercises 4.4 (p. 221)

1. 666 3.
12∑

i=1
i = 12 · 13

2
= 78

(Note: In Exercises 5-13, P(n) denotes the given statement.)

934 Solutions to Odd-Numbered Exercises

5. Basis step: When n = 1, LHS = 1 = 12 = RHS. ∴ P(1) is true.

Induction step: Assume P(k) is true:
k∑

i=1
(2i − 1) = k2

Then
k∑

i=1
(2i − 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2

∴ P(k + 1) is true. Thus, the given result follows by PMI.

7. Basis step: When n = 1, LHS = 13 = 1 = RHS. ∴ P(1) is true.

Induction step: Assume P(k) is true:
k∑

i=1
i3 =

[
k(k + 1)

2

]2

Then k∑
i=1

i3 + (k + 1)3 =
[

k(k + 1)
2

]3

+ (k + 1)2

= (k + 1)2

[
k2 + 4k + 4

4

]

= (k + 1)2(k + 2)2

4

=
[

(k + 1)(k + 2)
2

]2

∴ P(k + 1) is true. Thus the result is true by induction.

9. Basis step: When n = 1, n2 + n = 1 + 1 = 2 is divisible by 2. ∴ P(1) is
true.
Induction step: Assume P(k) is true: k2 + k is divisible by 2. Let
k2 + k = 2m for some positive integer m. Then

(k + 1)2 + (k + 1) = k2 + 3k + 2 = (k2 + k) + 2(k + 1)

= 2m + 2(k + 1)

which is divisible by 2. ∴ P(k + 1) is true. Thus the result follows by
PMI.

11. Basis step: When n = 2, P(2) = 1 = 2(2−1)
2 . ∴ P(2) is true.

Induction step: Assume P(k) is true. Consider a new point Q. By
joining Q to each of the original k points, we get k new lines.

∴ Total no. of points with k + 1 points = k(k − 1)
2

+ k = k2 + k
2

= (k + 1)[(k + 1) − 1]
2

∴ P(k + 1) is true. Thus the result follows by PMI.

13. Basis step: Clearly, P(1) is true.
Induction step: Assume P(k) is true: If p|ak, then p|a. Suppose
p|ak+1. Since ak+1 = ak · a, p|(ak · a). Then p|ak or p|a, by Exercise 33

Chapter 4 Induction and Algorithms 935

in Section 4.2. Since p|ak by the IH, P(k + 1) is true. Thus the result
follows by induction.

15. 28,335 17.
{

n2/4 if n is even
(n2 − 1)/4 otherwise

19. x =
n∑

i=1
(2i − 1) = n2 21. n(n + 1)/2

23. n(n + 1)(n + 2)/6

27. (n!)2

31. sum =
i∑

s=0
ps = pi+1 − 1

p − 1

25. n(n + 1)(2n + 1)/6

29. 2n2(n+1)

33. sum =

(
i∑

s=0
ps

)(
j∑

s=0
qs

)(
k∑

s=0
rs

)

= pi+1 − 1
p − 1

· qj+1 − 1
q − 1

· rk+1 − 1
r − 1

35.
n∑

i=1
i = n(n + 1)

2 37.
n∑

i=1

i∑
j=1

j = n(n + 1) (n + 2)
6

39. Recall that the k-th term of the
geometric sequence
a, ar, ar2, . . . is ak = ark−1.
∴ no. of grains on the last
square = n2-th term in the
sequence 1, 2, 22, 23, Here
a = 1, r = 2, and k = n2.
∴ no. of grains on the last
square = 1·(2n2−1) = 2n2−1 .
(We could prove this PMI also.)

43. 93

45. 249

47. 8tn + 1 = 8n(n + 1)/2 + 1
= 4n(n + 1) + 1
= (2n + 1)2

41. case 1 Let n be even. Then
an = 0 + 1 + 1 + · · ·

+ (n/2 − 1) + (n/2 − 1) + n/2
= 2[1 + 2 + · · · + (n/2 − 1)] + n/2

= 2(n/2 − 1)(n/2 + 1)
2

+ n
2

= n2

4
case 2 Let n be odd. Then
an = 0 + 1 + 1 + · · · + (n − 1)/2

+(n − 1)/2
= 2[1 + 2 + · · · + (n − 1)/2]
= 2[(n − 1)/2][(n + 1)/2]

2

= n2 − 1
4

49. LHS
= [(n − 1)n/2]2 + [n(n + 1)/2]2
= n2[(n − 1)2 + (n + 1)2]/4
= n2(n2 + 1)/2 = t

n2 = RHS

51. basis step: When n = 0, LHS = A ∪ B1 = RHS. So P(1) is true.

induction step: Assume P(k) is true: A ∪ (
k∩

i=1
Bi) = k∩

i=1
(A ∪ Bi). Then

A ∪
(

k+1∩
i=1

Bi

)
= A ∪

(
k∩

i=1
Bi ∩ Bk+1

)
= [A ∪

(
k∩

i=1
Bi

)
] ∩ (A ∪ Bk+1)

936 Solutions to Odd-Numbered Exercises

= k∩
i=1

(A ∪ Bi) ∩ (A ∪ Bk+1) = k+1∩
i=1

(A ∪ Bi)

∴ P(k) → P(k + 1), so the result follows by PMI.

53. basis step: When n = 1, LHS = p1 = RHS. ∴ P(1) is true.
induction step: Assume P(k) is true. Then

∼ (p∧···∧pk∧pk+1)≡∼[(p1∧···∧pk)∧pk+1

≡∼ (p1∧···∧pk)∨∼pk+1

≡ (∼p1∨···∼pk)∨∼pk+1

∴ P(k+1) is true. Thus the result follows by PMI.

55. basis step: Clearly, P(2) is true.
induction step: Assume P(k) is true. By the division algorithm,
k=3q+r, where 0≤r<3. Then k+1=3q+r+1.
case 1 If r=0, then k+1=3q+1=3(q−1)+4. Therefore, a change of
3q+1 cents can be paid with q−1 3-cent coins and two 2-cent coins.
case 2 If r=1, then k+1=3q+2. Clearly, a change of 3q+2 coins can
be paid with q 3-cent coins and one 2-cent coin.
case 3 If r=2, then k+1=3(q+1). Such a change can be paid with
(q+1)-cent coins. Thus P(k+1) is true.
Hence result follows by PMI.

57. proof: Suppose q(n) satisfies the conditions of the second principle.
Let p(n)=q(n0)∧q(n0+1)∧···∧q(n), where n≥n0. Since q(n0) is true,
p(n0) is true.

Assume p(k) is true, where k≥n0. By condition (2), q(k+1) is
true. Therefore, p(k+1)=q(n0)∧···∧q(k)∧q(k+1) is true. So p(k)→
p(k+1). So by the first principle, p(n) is true ∀n≥n0. Thus q(n) is true
∀n≥n0.

59. n(3n4+7n2+2)/12

Exercises 4.5 (p. 234)

1. When n = 0, a0 = 1 = x0. ∴ P(0) is true. Assume P(k) is true: ak = xk.
Then

ak+1 = ak ∗ x, by step 4

= xk · x, by the inductive hypothesis

= xk+1

∴ P(k + 1) is true. Thus P(n) is a loop invariant by PMI.

Chapter 4 Induction and Algorithms 937

3. Let gcd{a, b} = d. When n = 0, gcd{xn,yn} = gcd{x0,y0} = gcd{x, y}.
∴ P(0) is true. Assume P(k) is true: gcd{xk,yk} = gcd{x, y} = d. Then
xk = yk−1, yk = rk−1, rk = xk mod yk, and xk = qkyk + rk. (1)
Since d|xk and d|yk, d|rk.
To show that P(k + 1) is true: gcd{xk+1, yk+1} = d.
Let gcd{xk+1, yk+1} = d′. (2)
xk+1 = yk , yk+1 = rk. ∴ d|xk+1 and d|yk+1. So d|d′. (3)
From (1), d′|xk+1 and d′|yk+1. ∴ d′|yk and d′|rk. ∴ d′|xk by (1). Thus
d′|xk and d′|yk. ∴ d′|d. (4)
Thus by (3) and (4), d = d′. Thus P(n) is a loop invariant.

5. When n = 0, s0 = x = x + 0. ∴ P(0) is true. Assume P(k) is true:
sk = x + k. Then sk+1 = sk + 1 = (x + k) + 1 = x + (k + 1). ∴ P(k + 1) is
true. Thus P(n) is a loop invariant.

7. 3

11. 7, 18, 19, 23, 53

9. 4

13. 7, 18, 19, 23, 53

15. Algorithm factorial(n)
Begin (* algorithm *)

fact ← 1
i ← 1
while i ≤ n do

fact ← fact * i
End (* algorithm *)

17. Algorithm product(A,B,C)
Begin (* algorithm *)

for i = 1 to n do
for j = 1 to n do

cij =
n∑

t=1
aitbtj

End (* algorithm *)

19. Algorithm sum(X)
Begin (* algorithm *)

sum ← 0
for i = 1 to n do

sum ← sum + xi
End (* algorithm *)

21. Algorithm max(X)
Begin (* algorithm *)

max ← x1
for i = 2 to n do
if xi > max then

max ← xi
End (* algorithm *)

23. Algorithm print(X)
Begin (* algorithm *)

i ← 1
flag ← true
while (i ≤ n) and (flag) do
if si = sn+1−i then

i ← i + 1
else

flag ← false
End (* algorithm *)

25. Algorithm palindrome (S)
Begin (* algorithm *)

for i = 1 to n do
write (xi)

End (* algorithm *)

(In Exercises 26–36, P(n) denotes the statement that the algorithm works
correctly.)

27. Initially, flag = true, and i = j = 1.
basis step: When n = 1, if a11 = b11, flag is still true, so A = B;
otherwise, flag = false (line 10), so A �= B. In both cases, P(1) is true.

938 Solutions to Odd-Numbered Exercises

induction step: Assume P(k) is true. To show that P(k + 1) is true,
it suffices to show that the algorithm works correctly for the (k + 1)st
rows and columns of A and B.
When j = k + 1, then inner loop (lines 6–10) checks whether or
not ai(k+1) = bi(k+1). So as i varies from 1 to k + 1, the outer loop
(lines 4–12) checks if the (k+1)st columns of A and B are equal. When
i = k + 1, the inner loop checks if the (k + 1)st rows of A and B are
equal. Thus, P(k) → P(k + 1). So, by induction, the algorithm works
correctly ∀n ≥ 1.

29. Initially, flag = true, and i = j = 1.
basis step: When n = 1, if a11 ≤ b11, flag is still true, so A = B;
otherwise, flag = false (line 10), so A ≤ B. In both cases, P(1) is true.
induction step: Assume P(k) is true. To show that P(k + 1) is true,
it suffices to show that the algorithm works correctly for the (k + 1)st
rows and columns of A and B.
When j = k + 1, then inner loop (lines 6–10) checks whether or not
ai(k+1) ≤ bi(k+1). So as i varies from 1 to k + 1, the outer loop (lines
4–12) checks if the (k+1)st column of A is ≤ that of B. When i = k+1,
the inner loop checks if the (k + 1)st row of A is ≤ that of B.
Therefore, P(k) → P(k + 1). So, by induction, the algorithm works
correctly ∀n ≥ 1.

31. basis step: When n = 1, A = [a11] and B = [b11]. So c11 = a11b11 by
line 3. ∴ P(1) is true.
induction step: Assume P(k) is true, that is, the algorithm works
correctly for any two k × k matrices. In other words, line 3 gives the
correct value of cij for 1 ≤ i, j ≤ k. Now suppose n = k + 1. By line 4,
k+1∑
t=1

aitbtj =
k+1∑
t=1

aitbtj +ai(k+1)b(k+1)j gives the correct value of cij, by the

inductive hypothesis. Therefore, the nested for loops give the correct
value of cij ∀i, j. ∴ P(k) → P(k + 1). So, by induction, the algorithm
works correctly ∀n ≥ 1.

33. basis step: When n = 1, lines 2–4, are skipped. So the algorithm
returns the correct value of min form line 1. ∴ P(1) is true.
induction step: Assume P(k) is true. Suppose the algorithm is
invoked with n = k + 1 elements. As i varies from 2 through k, the
for loop finds the minimum of the first k numbers. When n = k + 1,
this value is compared to xk+1 and the minimum of x1 through xk+1 is
returned in line 4.
∴ P(k) → P(k + 1). So, by induction, the algorithm works correctly
∀n ≥ 1.

35. basis step: When n = 1, xn−i+1 = x1−1+1 = x1 is printed. ∴ P(1) is
true.
induction step: Assume P(k) is true. Suppose the algorithm is
invoked with n = k + 1 elements. When i = 1, xk+1 is printed. Then as

Chapter 4 Induction and Algorithms 939

i varies from 2 through k, xk, xk−1, . . . , x1 are printed, by the inductive
hypothesis. ∴ P(k) → P(k + 1). So, by induction, the algorithm works
correctly ∀n ≥ 1.

37. 2, 3, 5, 6, 8, 13

39. basis step: When n = 1, the for loop is skipped. So P(1) is true by
default.
induction step: Assume P(k) is true. Suppose the algorithm is
invoked with n = k + 1 elements. When i = 2, the algorithm places
the largest of the k + 1 elements in the correct position. This leaves
a sublist with k elements. By the inductive hypothesis, the algorithm
correctly sorts it. ∴ P(k) → P(k + 1). So, by induction, the algorithm
works correctly ∀n ≥ 1.

Exercises 4.6 (p. 246)

1. O(n) 3. O(n3) 5. O(lg n)

7. O(n lg n) 9. O(n3) 11. O(n2)

13. 2n = 2 · 2 · · · · · 2 (n times)
≤ 2 · 3 · · · · · n
= O(n!)

15.
n∑

i=1
ik ≤ nk + · · · + nk

= n(nk) = O(nk+1)

17.
n∑

i=1
i(i + 1) =

n∑
i=1

i2 +
n∑

i=1
i

= n(n + 1)(2n + 1)
6

+ n(n + 1)
2

= O(n3)

19. O(n2)

23. �(n)

27. �(lg n)

31. �(n2)

21. O(n3)

25. �(n3)

29. �(n3)

33. (3n)! = 3 · 6 · 9 · · · (3n)
= 3nn!
≥ 3n2n, where n ≥ 4
= �(6n)

35. sum = n2 = �(n2)

37. 2n + 3 ≥ 2n = �(n)

39. 2n3 − 3n2 + 4n ≥ 2n3,
where n ≥ 2 = �(n3)

41. 3lg n + 2 ≥ 3lg n = �(lg n) 43. True, since sum = n2/4 if n is
even and (n2 − 1)/4.

45. Since f1(n) = O(n(g(n)),
|f1(n)| ≤ A|g(n)| for some
constant A > 0. f2(n) = kf1(n).
∴ |f2(n)| = k|f1(n)|

≤ kA|g(n)|
= C|g(n)|, where C = kA.
= O(g(n))

47. Since f (n) = O(h(n)), |f (n)| ≤
A|h(n)| for some constant A.
Similarly, |g(n)| ≤ B|h(n)| for
some constant B. Then
|(f + g)(n)| = |f (n) + g(n)|

≤ |f (n)| + |g(n)|
≤ A|h(n)| + B|h(n)|

940 Solutions to Odd-Numbered Exercises

49. |f (n)| ≤ A|g(n)| for some con-
stant A > 0. |g(n)| ≤ B|h(n)|
for some constant B > 0.
∴ |f (n)| ≤ AB|h(n)|

= C|h(n)|, where C = AB.
= O(h(n))

≤ C|h(n)|+C|h(n)|
≤ 2C|h(n)|
= O(h(n))

where C = max{A, B}

51. Suppose f (n) = �(g(n)). Then f (n) = O(g(n)), f (n) = �(g(n)). So
|f (n)| ≤ B|g(n)| and |f (n)| ≥ A|g(n)| for some constants A and B. Thus
A|g(n)| ≤ |f (n)| ≤ B|g(n)|.
Conversely, let A|g(n)| ≤ |f (n)| ≤ B|g(n)|. Since A|g(n)| ≤ |f (n)|, f (n) =
�(g(n)). Likewise f (n) = O(g(n)). So f (n) = �(g(n)).

Exercises 4.7 (p. 251)

1. No. of entries in each matrix = n2

∴ no. of additions required = n2

= O(n2)

9. cn = n − 1 = O(n)

3. sn = n(n − 1)

5. No. of additions = n = O(n)

7. an = n = O(n)

11. 37, 2 13. O(n)

Review Exercises (p. 254)

1. 2

9. 11110101two

17. 265eight

3. 3

11. 2305two

19. 463eight

5. 1024

13. 100001two

21. B5sixteen

7. 2989

15. D033sixteen

23. 133sixteen

25. n2

27. an =
{

n(n + 2)/4 if n is even
(n + 1)2/4 otherwise

29. proof: Let d = gcd{a − b, a + b}. Then d|(a − b) and d|(a + b); so
d|[(a − b) + (a + b)]. That is, d|2a. Similarly, d|2b. But a and b are
relatively prime. So d|2. ∴ d = 1 or d = 2.

31. Clearly, P(1) is true. Assume P(k) is true; that is, 3|(k3 − k).
(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1)
Since 3|(k3 −k), the RHS is divisible by 3. ∴ P(k+1) is true. Thus P(n)
is true ∀n ≥ 1.

33. When n = 1, LHS = 1
(2−1)(2+1) = 1

3 = RHS. ∴ P(1) is true.

Chapter 4 Induction and Algorithms 941

Assume P(k) is true:
k∑

i=1

1
(2i − 1)(2i + 1)

+ k
2k + 1

. Then

k+1∑
i=1

1
(2i − 1)(2i + 1)

=
k∑

i=1

1
(2i − 1)(2i + 1)

+ 1
(2k + 1)(2k + 3)

= k
2k + 1

+ 1
(2k + 1)(2k + 3)

= k(2k + 3) + 1
(2k + 1)(2k + 3)

= (k + 1)(2k + 1)
(2k + 1)(2k + 3)

= k + 1
(k + 1) + 1

∴ P(k) → P(k + 1). So the result holds by induction.

35. Let P(n): We must select at least 2n + 1 socks to ensure n matching
pairs. By the PHP, P(1) is true. Assume P(k) is true, that is, we must
select at least 2k+1 socks to ensure k matching pairs. Add one matching
pair. This ensures k + 1 matching pairs by selecting (2k + 1) + 2 =
2(k + 1) + 1 socks. ∴ P(k) → P(k + 1). Thus P(n) is true ∀n ≥ 1.

37.
5(n + 1)n2

2
39. 2n+2 − n − 4 41. 3n(n+1)(n+2)/6 43. (n + 1)! − 1

45.
m∑

i=1
�5i/n�, where m is the largest integer such that 5m ≤ n.

47. t19 + t20 + t21 + t22 + t23 + t24 = t25 + t26 + t27 + t28
t29 + t30 + t31 + t32 + t33 + t34 + t35 = t36 + t37 + t38 + t39 + t40

49. tn + tn−1tn+1 = n(n + 1)/2 + (n − 1)n/2 · (n + 1)(n + 2)/2
= [n(n + 1)/2][1 + (n2 + n − 2)/2]
= [n(n + 1)/2][n(n + 1)/2]
= t2

n

Supplementary Exercises (p. 256)

1. (m2 − n2)2 + (2mn)2 = (m4 − 2m2n2 + n4) + 4m2n2

= m4 + 2m2n2 + n4 = (m2 + n2)2

3. tk = k(k + 1)/2. Let n = m(m + 1)/2. Then

(2k + 1)2n + tk = (2k + 1)2 · m(m + 1)
2

+ k(k + 1)
2

= [(2k + 1)2(m2 + m) + k(k + 1)]
2

= [(2k + 1)2m2 + (2k + 1)2m) + k(k + 1)]
2

= [(2k + 1)m + k][(2k + 1)m + (k + 1)]
2

= N(N + 1)
2

942 Solutions to Odd-Numbered Exercises

where N = (2k + 1)m + k ∴ (2k + 1)2n + tk is a triangular
number.

5. proof: Suppose 111 is a perfect square a2 in some base b, so a2 =
b2 + b + 1 < (b + 1)2. Then (b + 1/2)2 = b2 + b + 1/4 < b2 + b + 1. That
is, (b + 1/2)2 < a2 < (b + 1)2. This yields b + 1/2 < a < b + 1; that is,
a lies between b + 1/2 and b + 1, which is impossible. Thus 111 cannot
be a square in any base.

7. 25 and 36 are Duffinian, but 18 and 43 are not.

9. σ (n) = ∑
d|n
d �=n

d + n = s + n. ∴ None of the n’s factors, except 1, divides s

if and only if none divides σ (n). Thus n is Duffinian if and only if none
of n’s factors, except 1, divides σ (n).

11. In Exercise 59 in Section 4.4, we established that Sn −Sn−1 = n(3n4 +
7n2+2)/12. Since both Sn and Sn−1 are positive integers, it follows that
n(3n4+7n2+2)/12 is also an integer. Consequently, 12|n(3n4+7n2+2).

13. n3 15. Georgia

Chapter 5 Recursion

Exercises 5.1 (p. 273)

1. 1, 4, 7, 10

7. 1, 3, 4, 7, 11, 18

3. 1, 2, 3, 4

9. 3

5. 1, 1, 2, 4

11. A(0) = 1000
A(n) = 1. 015A(n−1), n ≥ 1

13. $1024 15. a1 = 1
an = an−1+3, n ≥ 2

17. a0 = 0

an = 2an−1 + 3, n ≥ 1

19. 00000, 00001, 00010,00011,00100,00101,00110,01000,01001,01010,

01011,01100,01101

21. S1 = A1
Sn = Sn−1 ∪ An, n ≥ 2

23. S0 = 1
Sn = 2Sn−1, n ≥ 1

25. a1 = a
an = ran−1, n ≥ 2

Chapter 5 Recursion 943

27. 91 29. 91 31. f (99) = f (f (110)) = f (100)
= f (f (111)) = f (101)
= 91

33. Let k be the smallest integer such
90 ≤ x + 11k ≤ 100. Then
f (x) = f (f (x + 11))

= f (f (f (x + 11 · 2)))
...
= f k+1(x + 11k)

Since 90 ≤ x + 11k ≤ 100 and k ≥ 1,
f (x + 11k) = 91, by Exercise 43.
∴ f k+1(x + 11k) = f k(91)
Since f (91) = 91 by Exercise 32,
f k(91) = 91. ∴ f (x) = 91 for
0 ≤ x < 90.

35. 429

37. 1, 2, 1.66666667, 1.5,
1.66666667, 1.6, 1.625,
1. 61538462, 1.61904762,
1.61764706, 1.61818182,
1.61797753

39. 2Fn−2 + Fn−3
= Fn−2 + (Fn−2 + Fn−3)
= Fn−2 + Fn−1
= Fn

41. proof (by PMI): When n = 1, F5n = F5 = 5 is divisible by 5. So P(1) is
true. Assume P(k) is divisible by 5: F5k is divisible by 5.

F5(k+1) = F5k+5 = F5k+4 + F5k+1

= F5k+2 + 2F5k+3

= F5k+2 + 2(F5k+1 + F5k+2)

= 3F5k+2 + 2F5k+1

= 3(F5k+1 + F5k) + 2F5k+1

= 3F5k + 5F5k+1

which is clearly divisible by 5. ∴ P(k+1) is true. Thus the result follows
by induction.

43. proof (by PMI): When n = 1, F1 = F2 = 1 ≤ 2. ∴ P(1) is true. Assume
P(i) is true for every i ≤ k. Then

Fk+1 = Fk + Fk−1

≤ 2k + 2k−1

≤ 2k + 2k

= 2k+1

∴ P(k + 1) is true. Thus the result follows by induction.

45. |A| = −1. |An| = Fn+1Fn−1 − F2
n. But |An| = |A|n = (−1)n

944 Solutions to Odd-Numbered Exercises

47. proof (by PMI): Let P(n) denote the given statement. When n = 1,

RHS = 3 +
0∑

k=1
Lk = 3 + 0 = 3 = L2 = LHS. So P(2) is true. Assume

P(i) is true: L2i = 3 +
2i−1∑
k=1

Lk. To show that P(i + 1) is true:

L2i+2 = L2i + L2i+1, by definition.

=
(
3 +

2i−2∑
k=1

Lk

)
+ L2i+1

=
(
3 +

2i−2∑
k=1

Lk

)
+ (L2i−1 + L2i)

=
(
3 +

2i∑
k=1

Lk

)
∴ P(i + 1) is true. Thus P(n) is true ∀n ∈ N.

49. Since α and β are solutions of the equation x2 = x + 1, α + β = 1.

b2 = α2 − β2

α − β = α + β = 1

51. u1 = α + β = 1, by Exercise 49.

53. Since α and β are solutions of the equation x2 = x + 1,α2 = α + 1 and
β2 = β+ 1.

un−1 + un−2 = (αn−1 + βn−1) + (αn−2 + βn−2)

= αn−2(α + 1) + βn−2(β + 1)

= αn−2 · α2 + βn−2 · β2

= αn + βn = un

55. 2 57. a1 = 1
an = an−1 + n, n ≥ 2

59. a1 = 1, a2 = 3
an = an−1 +an−2, n ≥ 3

61. a1 = 2, a2 = 3
an = an−1 + an−2, n ≥ 3
Let bn = an−2. Then b3 = a1 =
2 and b4 = a2 = 3. Also, bn−1 +
bn−2 = bn. ∴ bn = Fn, n ≥ 3.
Thus, an = Fn+2, n ≥ 1

63. 15

65. 3

67. 7

69. proof (by PMI): When n = 0,

LHS = A(2, 0) = A(1, 1)
= A(0, A(1, 0)) = 1 + A(1, 0)
= 1 + A(0, 1)
= 1 + 2 = 3 = RHS

Chapter 5 Recursion 945

∴ P(0) is true. Assume P(k): A(2, k) = 3 + 2k. Then

A(2, k + 1) = A(1, A(2, k))
= A(1, 3 + 2k)
= A(0, A(1, 2 + 2k))
= 1 + A(1, 2 + 2k)
= 1 + A(0, A(1, 1 + 2k))
= 2 + A(1, 1 + 2k)
= 2 + A(0, A(1, 2k))
= 3 + A(1, 2k)
= 3 + (2k + 2)
= 3 + 2(k + 1)

∴ P(k + 1) is true. Thus the result follows by PMI.

71. proof (by PMI): When n = 0,

LHS = A(3, 0) = A(2, 1)
= A(1, A(2, 0)) = A(1, 3)
= 2 + 3 = 23 − 3 = RHS

∴ P(0) is true. Assume P(k):

A(3, k) = 2k+3 − 3
A(3, k + 1) = A(2, A(3, k))

= A(2, 2k+3 − 3)
= 3 + 2(2k+3 − 3)
= 2k+4 − 3

∴ P(k + 1) is true. Thus the result follows by PMI.

Exercises 5.2 (p. 282)

1. sn = 2n, n ≥ 1

3. an = n(n + 1)/2 + 1, n ≥ 1

5. an = 2n(n + 1), n ≥ 0

7. sn = n(n + 1)(2n + 1)/6, n ≥ 1

9. When n = 0, s0 = 20 = 1. ∴ P(0) is true. Assume P(k) is true: sk = 2k.
Then sk+1 = 2sk = 2(2k) = 2k+1. ∴ P(k + 1) is true. Consequently the
result follows by PMI.

11. When n = 0, a0 = 0 · 1/2 + 1 = 1. ∴ P(0) is true. Assume P(k) is true:
ak = k(k+1)/2+1. Then ak+1 = ak+(k+1) = [k(k+1)/2+1]+ (k + 1) =
(k + 1)(k + 2)/2 + 1. ∴ P(k + 1) is true. Thus the result follows
by PMI.

946 Solutions to Odd-Numbered Exercises

13. When n = 0, a0 = 2(0)(0 + 1) = 0. ∴ P(0) is true. Assume P(k) is true:
ak = 2k(k + 1). Then ak+1 = ak + 4(k + 1) = 2k(k + 1) + 4(k + 1) =
2(k + 1)(k + 2) ∴ P(k + 1) is true. Thus the result is true by PMI.

15. When n = 1, s1 = 1 · 2 · 3/6 = 1. ∴ P(1) is true. Assume P(k) is true:
sk = k(k+1)(2k+1)/6. Then sk+1 = sk + (k+1)2 = k(k+1)(2k+1)/6+
(k + 1)2 = (k + 1)(k + 2)(2k + 3)/6. ∴ P(k + 1) is true. Thus the result
follows by PMI.

17. When n = 0, A(0) = 1000(1.08)0 = 1000. So P(0) is true. Now
assume P(k) is true: A(k) = 1000(1.08)k. Then A(k+1) = (1.08)A(k) =
1000(1.08)k+1.
∴ P(k + 1) is true. Thus the given result follows by PMI.

19. When n = 1, f (1) = 1 · 2/2 + 1 = 2. So, P(1) is true. Now assume
P(k) is true: f (k) = k(k + 1)/2 + 1. Then f (k + 1) = f (k) + (k + 1) =
k(k + 1)/2 + 1 + (k + 1) = (k + 1)(k + 2)/2 + 1. ∴ P(k + 1) is true. Thus
the given result follows by PMI.

21. proof (by PMI): Let P(n) denote the statement that an is a solution of
the recurrence relation. Clearly, P(1) is true. Assume P(k) is true for

an arbitrary k ≥ 1: ak = a0 +
k∑

i=1
f (i). Then

ak+1 = ak + f (k + 1) = [a0 +
k∑

i=1
f (i)] + f (k + 1) = a0 +

k+1∑
i=1

f (i)

23. proof (by PMI): Let P(n) denote the statement that an is a solution of
the recurrence relation. Clearly, P(1) is true. Assume P(k) is true:

ak = cka0 +
k∑

i=1
ck−if (i). Then

ak+1 = cak + f (k + 1) = c[cka0 +
k∑

i=1
ck−if (i)] + f (k + 1)

= ck+1a0 +
k+1∑
i=1

ck+1−if (i)

∴ P(k + 1) is true. Thus the result follows by PMI.

25. case 1 Let n = 1. Then the statement x ← x + 1 is executed zero
times. So a1 = 0.
case 2 Let n > 1 and even. When n is even, �n/2� = n/2.
∴ an = an−1 + n/2
case 3 Let n > 1 and odd. When n is even, �n/2� = (n − 1)/2.
∴ an = an−1 + (n − 1)/2

27. a1 = 1
an = an−1 + �n/2�, n ≥ 2

31. an = n(n + 1)/2, n ≥ 1

35. an = n(n + 1)(n + 2)/6, n ≥ 1

39. tn = n(n + 1)/2

29.
an =

{
n(n + 2) if n is even
(n + 1)2/4 otherwise

33. an = n(n + 1)(2n + 1)/6, n ≥ 1

37. an = [n(n + 1)/2]2, n ≥ 1

Chapter 5 Recursion 947

41. 43. pn = n(3n − 1)/2

45. hn =
{

1 if n = 1
hn−1 + 4(n − 1) + 1 if n ≥ 2

47. pn + tn − n = n(3n − 1)/2 + n(n + 1)/2 − n
= 2n2 − n = (2n − 1)n = hn

49. T1 = 1
Tn = Tn−1 + n(n + 1)/2, n ≥ 2

51. We shall prove by PMI that Tn = n(n+1)(n+2)/6 ∀n ≥ 1. When n = 1,
T1 = 1 · 2 · 3/6 = 1, which is true. So the formula works when n = 1.

Assume it works for an arbitrary positive integer k. Using the recur-
rence relation,

Tk+1 = Tk + (k + 1)(k + 2)/2 = k(k + 1)(k + 2)/6 + (k + 1)(k + 2)/2
= (k + 1)(k + 2)(k + 3)/6

Thus, by PMI, the formula holds for every n ≥ 1.

53. Sn = Sn−1 + n2

= Sn−2 + (n − 1)2 + n2

= Sn−2 + (n − 2)2 + (n − 1)2 + n2

...
= S1 + 22 + 32 + · · · + n2

= 12 + 22 + 32 + · · · + n2

= n(n + 1)(2n + 1)/6

So we conjecture that Sn = n(n + 1)(2n + 1)/6, where n ≥ 1.

55. 1

59. a0 = 1, a1 = 2
an = an−1 + an−2, n ≥ 2

57. 2

61. an =
{

1 if n = 0
(1 + an−1)/k if n ≥ 1

63. proof (by PMI): Let P(n) denote the given statement. Clearly P(0) is
true. So assume P(m) is true for any m ≥ 0. Then

am+1 = (1 + am)/k

= 1 + km + k − 2
km(k − 1)k

= km+1 + k − 2
km+1(k − 1)

Thus P(k) implies P(k + 1), so the result follows by PMI.

Exercises 5.3 (p. 296)

1. yes 3. yes 5. no

948 Solutions to Odd-Numbered Exercises

7. yes

11. an = 3(−2)n + 2 · 3n, n ≥ 0

15. Ln = αn + βn

9. an = 2(−1)n + 2n, n ≥ 0

13. an = Fn+2, n ≥ 0

17. an = 2 · 3n − n · 3n, n ≥ 0

19. an = 2n − 3n + n · 3n, n ≥ 0

21. an = 2n + (−2)n+1 + 2 · 3n − (−4)n, n ≥ 0

23. an = 3 · 2n − n2n + n22n + 2 · 3n, n ≥ 0

25. a(p)
n = an + b 27. a(p)

n = an2 + bn + c

29. a(p)
n = (an + b)2n if 2 is a characteristic root; otherwise, a(p)

n =
nm(an + b)2n.

31. a(p)
n = an22n

35. an = 2n − 1, n ≥ 0

33. a(p)
n = n2(an2 + bn + c)2n

37. an = 11 · 4n − 11 · 3n − n · 3n+1, n ≥ 0

39. an = 1 + n(n + 1)/2, n ≥ 0

41. Since rn and sn are solutions of equation (9), rn = arn−1 + brn−2 and
sn = asn−1 + bsn−2. ∴ rn + sn = a(rn−1 + sn−1) + b(rn−2 + sn−2). Thus
an is a solution of (9).

43. Since α is a root of x3 − ax2 − bx − c = 0 with multiplicity 3,

x3 − ax2− bx − c = (x − α)3 = x3 − 3αx2 + 3α2x − α3

∴ 3α = a, 3α2 = −b, and α3 = c (1)

Also, α 3 = aα2 + bα + c (2)

a) Multiply equation (2) by αn−3: αn = aαn−1 + bαn−2 + cαn−3 (3)
∴ αn is a solution.

b) When an = nαn,

aan−1 + ban−2 + can−3

= a(n − 1)αn−1 + b(n − 2)αn−1 + c(n − 3)αn−3

= n(aαn−1 + bαn−2 + cαn−3) − (aαn−1 + 2bαn−2 + 3cαn−3)

= nαn − (3αn − 6αn + 3αn), by equations (1)

= an = nαn

∴ nαn is a solution.

c) When an = n2αn,

aan−1 + ban−2 + can−3

= a(n − 1)2αn−1 + b(n − 2)2αn−1 + c(n − 3)2αn−3

Chapter 5 Recursion 949

= n2(aαn−1 + bαn−2 + cαn−3) − 2n(aαn−1 + 2bαn−2 + 3cαn−3)

+ (aαn−1 + 4bαn−2 + 9cαn−3)

= n2αn − 2n(3αn − 6αn + 3αn) + (3αn − 12αn + 9αn), by (1)

= an = n2αn

∴ n2αn is a solution.

Exercises 5.4 (p. 306)

1.
2

x − 1
− 1

x + 3

7.
1 − x
x2 + 2

+ 2x
x2 + 3

3.
2

1 + 2x
+ 3

1 − 3x

9.
x − 1
x2 + 1

+ 2x + 1
x2 − x + 1

5. − 8
13(2+3x)

+ 7x+4
13(x2+1)

11. an = 2n, n ≥ 0

13. an = 2n − 1, n ≥ 1

17. an = 5 · 2n − 3n, n ≥ 0

15. an = 3(−2)n − 2n, n ≥ 0

19. an = Fn+3, n ≥ 0

21. an = (2n + 3)2n, n ≥ 0

25. an = 2n + 3n · 2n − 3n, n ≥ 0

23. an = 3(−2)n + 2n − 3n, n ≥ 0

27. an = n · 2n+1 − n22n, n ≥ 0

29. an = (3n2 − n + 2)(−1)n − 2n+1, n ≥ 0

Exercises 5.5 (p. 314)

1. 2

7. 7

3. 13

9. an = Fn − 1

5. 2

11. Algorithm Fibonacci(n)

Begin (* algorithm *)
if (n = 1) or (n = 2) then

answer ← 1
else

begin
previous ← 1
current ← 1
for i = 3 to n do
begin

answer ← previous +
current

previous ← current
current ← answer

endfor
endelse

End (* algorithm *)

13. yes

15. 2, 3, 5, 7, 9, 11,17, 19

17. Algorithm Lucas (n)

(* This algorithm computes
the nth Lucas number using
recursion *)
Begin (* Lucas *)

if n = 1 then
Lucas ← 1

else if n = 2 then
Lucas ← 3

else
Lucas ← Lucas(n - 1) +

Lucas (n - 2)
End (* Lucas *)

950 Solutions to Odd-Numbered Exercises

19. Algorithm sum (X,i,n)

(* This algorithm computes the
sum of the numbers xi through
xn in a list X from left to
right. *)
Begin (* sum *)

if i = n then
sum ← xi

else
sum ← xi + sum (X,i+1,n)

End (* sum *)

23. Algorithm maximum
(X,i,n,max)

(* This algorithm determines
the maximum of the elements
xi through xn of a list X. It
is returned in the variable
max. *)
Begin (* maximum *)

if i ≤ n then
begin (* if *)

if i = 1 then
max ← x1

else if xi > max then
max ← xi

maximum (X,i+1,n,max)
endif

End (* maximum *)

29. Algorithm palindrome
(w,i,j,flag)

(* This algorithm, using
recursion, determines if a
word w of length j - i + 1 is a
palindrome or not. *)
Begin (* palindrome *)

if i = j then
flag ← true

else if wi = wj then
begin

flag ← true
palindrome (w,i+1,

j-1, flag)
endif

else
flag ← false

End (* palindrome *)

21. Algorithm product (X,i,n)

(* This algorithm computes
the product of the numbers xi
through xn in a list X from
left to right *)
Begin (* product *)

if i = n then
product ← xi

else
product ← xi * product

(X,i+1,n)
End (* product *)

25. Algorithm print in order
(X,i,n)

(* This algorithm prints the
elements xi through xn of a
list X using recursion *)
Begin (* print in order *)

if i = n then
write(xn)

else
begin

write(xi)
print in order(X,i+1,n)

endelse
End (* print in order *)

27. See Algorithm 9 in Section 6.

31. Algorithm bubble sort (X,n)

(* This algorithm sorts a list
X of n elements. Sorted is
a boolean variable. Swap is
an algorithm which swaps two
elements. *)
Begin (* bubble sort *)

sorted ← false
for j = 1 to n do

if xj > xj+1 then
begin

swap(xj,xj+1)
sorted ← false

endif
if not sorted then

bubble sort (X,n-1)
End (* bubble sort *)

33. 4, 5, 6, 7, 8, 11, 13

Chapter 5 Recursion 951

Exercises 5.6 (p. 318)

In Exercises 1–29, P(n) denotes the following statement: The algorithm
works correctly.

1. proof: When n = 0, the algorithm returns the value 1 from line 2. So
it works correctly when n = 0.

Assume P(k) is true, that is, assume that the algorithm returns
the value k! for an arbitrary integer k ≥ 0. Suppose we invoke the
algorithm with n = k + 1. Then factorial = (k + 1) * factorial =
(k + 1) ∗ k! = (k + 1)!.
∴ P(k + 1) is true. Thus, by induction, the algorithm works correctly
∀n ≥ 0.

3. proof: Let bn denote the number of moves needed. When n = 1, disk
1 is moved from X to Z and b1 = 1 (line 4). So P(1) is true.

Assume P(k) is true. Suppose the algorithm is invoked with n = k+1.
By line 8, it correctly transfers the top n − 1 = k disks from X to Y;
count = bk. Disk k + 1 is moved from X to Z (line 9); count = bk + 1.
By the IH, the algorithm moves the k disks at Y to Z using bk moves
(line 11). Now count = (bk + 1) + bk = 2bk + 1. Thus P(k) → P(k + 1).
Thus the result follows by PMI.

5. proof (by strong induction): Initially, low = 1 and high = n. When
n = 1, mid = 1 (line 4). If key = x1, then the list contains key. If key �=
x1, the algorithm is invoked in line 9 or 11. In either case, the condition
in line 1 is not satisfied; so the algorithm returns the value false for
found.

Assume P(i) is true ∀i ≤ k, k ≥ 1. Suppose the algorithm is invoked
with n = k + 1; then low = 1, high = k + 1, and mid = �(k + 2)/2�. If
key = Xmid, P(k + 1) is true. Otherwise, line 9 or line 11 is executed.
In either case, the algorithm is invoked for a sublist containing < k
elements. By the IH, the algorithm works correctly in each case. So
P(k) → P(k + 1). Thus the result follows by PMI.

7. proof: When n = 1, sum = x1 by line 2. So P(1) is true. Assume P(k)
is true for some k ≥ 1. Suppose the algorithm is invoked for a list with
k + 1 elements. If i < k + 1, then the algorithm computes the correct
sum of the first k items by the hypothesis. When i = k + 1, line 2
is excuted. Then sum = xk+1 is added to the previous sum in line 4.
∴ P(k + 1) is true. Thus, by PMI, the result holds ∀n ≥ 1.

9. proof: When n = 1, product = x1 by line 2. So P(1) is true. Assume P(k)
is true for an arbitrary k ≥ 1. Suppose the algorithm is invoked for a list
with k+1 elements. If i < k+1, then the algorithm correctly computes
the product of the first k elements by the inductive hypothesis. When
i = k + 1, line 2 is executed. Then product = xk+1 * previous product
in line 4. ∴ P(k + 1) is true. Thus the result follows by PMI.

952 Solutions to Odd-Numbered Exercises

11. proof: When n = 1, the list contains one element. So P(1) is true. Now
assume P(k) is true. Consider a list X with k+1 elements. When i = 1,
max = x1 from line 3. In line 7, the algorithm is invoked for a list with
k elements. By the inductive hypothesis, the correct maximum value
of max and the k elements is returned in line 7. So P(k + 1) is true.
Thus the result follows by PMI.

13. proof: When n = 1, x1 is printed by line 2. So P(1) is true. Assume
P(k) is true. Consider a list with k + 1 elements. Then lines 4 and 5
are executed. In line 5, x1 is printed. The remaining k elements are
printed in order by line 6, by the inductive hypothesis. ∴ P(k + 1) is
true. Thus, by PMI, P(n) is true ∀n ≥ 1. Hence the result.

15. Same as Example 4.36.

17. proof (by strong induction): When n = 1, i = 1 = j; flag = true from
line 2. ∴ P(1) is true. Assume P(i) is true ∀i ≤ k. Consider a word with
k + 1 elements.
case 1 If w1 = wk+1, then flag = true by line 5. Further, the algorithm
is invoked with i = 2 and j = k for a word with k − 1 elements. By the
inductive hypothesis, the algorithm works correctly for such a word.
case 2 If w1 �= wk+1, then flag = false by line 9. Then also the algorithm
works correctly.
Thus in both cases, P(k+1) is true. ∴ By PMI, the result holds ∀n ≥ 1.

19. 0 21. 3 23. lg n

25. Clearly, the algorithm works when n = 1 or n = 2. So P(1) and P(2)
are true. Assume P(k) is true for any k ≥ 2. Suppose the algorithm is
invoked with n = k+1 (≥ 3). In line 9, the previous number (Fk−1) and
the current number (Fk) are added to yield Fk+1. So P(k) → P(k + 1).
Thus the result follows by PMI.

Exercises 5.7 (p. 329)

1. O(n2) 3. O(n2) 5. O(n2) 7. O(n2n)

9. 3 11. 3 13. 5 15. 5

17. bn = n, n ≥ 0 19. O(n2) 21. O(n3)

23. O(n2)

27. bn =

{
0 if n = 1
bn−1 + (n − 1) if n ≥ 2

31. cn = nb + 1, n ≥ 0

35. f (n) = (n − 1)2 + 1, n ≥ 1

25. O(n4)

29. O(n2)

33. cn = [n(n + 1)/2 − 1]b, n ≥ 1

37. f (n) = �lg n� + 1

Chapter 5 Recursion 953

39. f (n) = (no. of bits in the binary representation of n)
+ (no. of multiplications)

≤ (no. of bits) + (no. of bits in n − 1)

= (�lg n� + 1) + �lg n�
= 2�lg n� + 1

= O(lg n)

41. O(n3) 43. cn = (a + 1)n − 1 = O(n)

45. f (n) = af (n/b) + g(n)

= a2f (n/b2) + ag(n/b) + g(n)

= a3f (n/b3) + a2g(n/b2) + ag(n/b) + g(n)

...

= akf (n/bk) +
k−1∑
i=0

aig(n/bi)

= akf (1) +
k−1∑
i=0

aig(n/bi)

47. Let n = 2k. By Exercise 45,

an = 2 · 0 +
k−1∑

0
2i(n/2i)

= 0 + nk = nlg n

= O(nlg n)

49. By Exercise 48,

f (n) = dak + cn
[k−1∑

0
(a/b)i

]
= 0 + cn

(k−1∑
0

1
)

= ckn

= O(nlg n)

51. cn = 2n − 2 53. 5a + 12b, 7a + 19b

55. Since n is a power of 2,

t(n) =
{

a if n = 1
2t(n/2) + bn otherwise

∴ By Exercise 45,

t(n) = 2kt(1) +
k−1∑
i=0

2i bn
2i

= a2k + kbn

= an + kbn

= Cn + Ckn, where C = max{a, b}
≤ Ckn

= O(nlg n), since k = lg n

954 Solutions to Odd-Numbered Exercises

57. By Exercise 56,

f (n) = 2cn2 + (d − 2c)n

≤ Cn2 + Cn

≤ 2Cn2

= O(n2)

where C = max{2c, d − 2c}.

59. hn =

{
1 if n = 1
hn−1 + 1/n if n ≥ 2

61. proof (by induction): Let P(m) be the given statement. Since h20 =
h1 = 1 ≥ 1 + 0/2, P(0) is true.

Assume P(k) is true: h2k ≥ 1 + k/2. Then

h2k + 1 =
2k+1∑
i=1

1
i

=
2k∑

i=1

1
i

+ 1
2k + 1

+ · · · + 1
2k+1

≥
(

1 + k
2

)
+ 1

2k + 1
+ · · · + 1

2k+1

≥
(

1 + k
2

)
+ 2k · 1

2k+1

=
(

1 + 1
k

)
+ 1

2
= 1 + k + 1

2

∴ P(k) → P(k + 1). So the result follows by PMI.

63. hn =
n∑

i=1

1
i

≤
n∫
1

dx
x

= ln x
n|
1

= ln n − ln 1 = ln n − 0
= ln n = (ln 2)lg n
= O(lg n)

65. proof:
case 1 Let n be a power of b, say, n = bk. Then

f (n) = af (n/b) + c

= a2f (n/b2) + ac + c

= a3f (n/b3) + a2c + ac + c
...

= akf (n/bk) + ak−1c + · · · + a2c + ac + c

= akd + c
k−1∑
i=0

ai, (1) since f (n/bk) = f (1) = d.

Chapter 5 Recursion 955

Since a = 1, f (n) = d + ck = d + c logb n

= O(lg n) (Note: logb n = log2 n · logb 2)

case 2 Let n not be a power of b.
Suppose that bk < n < bk+1 for some positive integer k. Since f is
nondecreasing, this implies that f (n) ≤ f (bk+1).

If a = 1, then by subcase (1) above,

f (bk+1) = d + c(k + 1) = (c + d) + ck

≤ (c + d) + c logb n, since k < logb n.

∴ f (n) ≤ (c + d) + c logb n

= O(lg n)

67. Using Exercise 45 with g(n) = cn2 and n = bk,

f (n) = akf (1) +
k−1∑
i=0

ai(cn2/b2i)

= akd + cn2
k−1∑
i=0

(a/b2)i

= akd + cn2
k−1∑
i=0

1, if a = b2

= n2d + cn2k, since ak = b2k = n2

= n2d + cn2 logb n

69. If a = b2, by Exercise 67,

f (n) = n2d + cn2(log2 n)(logb 2) = n2d + Cn2lg n, where C = c logb 2.

= O(n2lg n)

If a �= b2, then by Exercise 68, f (n) = An2 + Bak. If a < b2, ak < b2k;
that is, ak < n2.

∴ f (n) ≤ An2 + Bn2

= (A + B)n2 = O(n2)

If a > b2, then ak > b2k; that is, ak > n2.

∴ f (n) ≤ Aak + Bak

= (A + B)ak = (A + B)alogb n

= (A + B)nlogb a = O(nlogb a)

956 Solutions to Odd-Numbered Exercises

Review exercises (p. 334)

1. 7

5. h(n) = 2n(n + 1), n ≥ 1

9. an = 2n − 1, n ≥ 1

3. a1 = 0 = a2
an = an−1 + an−2 + 1, n ≥ 3

7. an = n(n + 1)(n + 2)/3, n ≥ 1

11. Let P(n): an = n(n + 1)(n + 2)/3. When n = 1, a1 = 1 · 2 · 3/3 = 2. So
P(1) is true. Assume P(k) is true. Then ak+1 = ak + (k + 1)(k + 2) =
k(k + 1)(k + 2)/3 + (k + 1)(k + 2) = (k + 1)(k + 2)[k/3 + 1] = (k + 1)
(k + 2)(k + 3)/3. Thus P(k) → P(k + 1). So the result follows
by PMI.

13. Let P(n): an = 2n − 1. Since a1 = 21 − 1 = 1, P(1) is true. Assume P(k)
is true: ak = 2k − 1. Then ak+1 = ak + 2k = (2k − 1) + 2k = 2k+1 − 1.
So P(k) → P(k + 1). Thus the result follows by PMI.

15. an = Fn+2 17. an = 6
5

(−1)n + 14
5

2n − 28
25

(−2)n + 28
25

3n, n ≥ 0

19. an = −333
144

· 3n + 173
144

· 7n + 5
12

n + 10
9

, n ≥ 0

21. an = �(n + 1)/2�
≤ (n + 1)/2
= O(n)

25. 8

23. cn = (n − 1)n/2

27. c1 = 0
cn = cn−1 + 3n, n ≥ 2

29. cn = 3n(n + 1)/2
= O(n2)

31. 9 33. bn = 2n

35. a1 = 2, a2 = 4, a3 = 7
an = an−1 + an−2 + an−3, n ≥ 4

37. an = Fn

39. Algorithm sum (n)

Begin (* sum *)
if n = 1 then

sum ← 1
else

sum = sum(n-1) + (2n-1)
End (* sum *)

43. c1 = 0
cn = cn−1 + 2, n ≥ 2

45. cn = O(n)

41. Let P(n): The algorithm works
correctly ∀ n ≥ 1. When n = 1,
sum = 1, by line 2. So P(1) is
true.

Assume P(k) is true. Suppose
n = k + 1. Then, by line 4,
sum = sum (k)+ (2k+1), which
is the sum of the first k odd
positive integers, by the IH.
∴ P(k) → P(k + 1). Thus the
result follows by PMI.

Chapter 5 Recursion 957

47. proof (by PMI): When n = 1,
LHS = 1 = RHS; so the result is
true when n = 1. Now assume it
is true for an for an arbitrary
positive integer k. Then

k+1∑
i=1

F2i−1 =
k∑

i=1
F2i−1 + F2k+1

= F2k+F2k+1 = F2(k+1)

So, by PMI, the result is true
∀n ≥ 1.

49. proof (by PMI): When n = 1,
LHS = L1 = 1 = L3; so the
result is true when n = 1.
Now assume it is true for an
arbitrary positive integer k.
Then
k+1∑
i=1

Li =
k∑

i=1
Li + Lk+1

= (Lk+2 − 3) + Lk+1

= Lk+3 − 3

Thus, the result is true
∀n ≥ 1.

51. proof (by PMI): When n = 1, LHS = 3 = RHS; so the result is true
when n = 1. Now assume it is true for an arbitrary positive integer k.
Then
k+1∑
i=1

L2i =
k+1∑
i=1

L2i + L2k+2 = (L2k+1 − 1) + L2k+2

= L2k+3 − 1

Thus, by PMI, the result is true ∀n ≥ 1.

53. F2
n+1 − F2

n−1 = (Fn+1 + Fn−1)(Fn+1 − Fn−1)
= LnFn = F2n

55. Let P(n) be the given statement. When n = 2, RHS = F2x + F1 = x + 1
= x2 = LHS. ∴ P(2) is true.
Assume P(k) is true:

xk = xFk + Fk−1. Then
xk+1 = x2Fk + xFk−1

= (x + 1)Fk + xFk−1

= x(Fk + Fk−1) + Fk

= xFk+1 + Fk

Thus P(k) → P(k + 1). So the result follows by PMI.

59. A(n) = (n + 1) + 2
n

n−1∑
i=2

A(i)

nA(n) = n(n + 1) + 2
n−1∑
i=2

A(i)

∴ (n − 1)A(n − 1) = (n − 1)n + 2
n−2∑
i=2

A(i)

nA(n) − (n − 1)A(n − 1) = 2n + 2 A(n − 1)
nA(n) = 2n + (n + 1)A(n − 1)

958 Solutions to Odd-Numbered Exercises

A(n)
n + 1

= A(n − 1)
n

+ 2
n + 1

= A(n − 2)
n − 1

+ 2
n

+ 2
n + 1

...

= A(1)
2

+ 2
3

+ 2
4

+ · · · + 2
n + 1

= 0
2

+ 2
3

+ · · · + 2
n + 1

= 2
n+1∑
i=3

1
i

Supplementary Exercises (p. 338)

1. t1 = 1
tn = tn−1 + n(n + 1)/2, n ≥ 2

3. f 2
n − 2fn + 2 = (22n + 1)2 − 2(22n + 1) + 2

= 22n+1 + 22+1n + 1 − 22+1n − 2 + 2
= 22n+1 + 1 = fn+1

5. (solution by V. G. Feser)
a) Consider the sequence {an}, where an+2 = an+1 + an. Then an+3 =
an+2 + an+1 = an+2 + (an+2 − an). Thus an + an+3 = 2an+2 (1)
∴ The sequence satisfies the given recurrence relation.
b) Using the given conditions, a4 = 2a3 − a1 = 2a3 − 1

a5 = 5
a6 = 2a5 − a3 = 10 − a3

...
a12 = 290 − 70a3 = 144

∴ a3 = 2 and a4 = 3. Since a5 = 2a4−a2 = 5, a2 = 1. Thus the sequence
{an} satisfies the given conditions and the recurrence relation, so it
must be the Fibonacci sequence; that is, an = Fn.

7. Sn = (3n2 + 5)n3/8 9. an = an+5, n ∈ Z 11. 8, 8

13. f (n) = φ(n) + · · · + φ(2) + φ(1). Since φ(n) is even for n > 2 and
φ(2) + φ(1) = 1 + 1 = 2 is even, f (n) is even.

15. f1 = 2, f2 = 3
fn = fn−1 + fn−2, n ≥ 3

17. f (n, 1) = 1

f (n, n) =
{

1 if n = 0 or 1
0 otherwise

f (n, k) = f (n − 2, k − 1) + f (n − 1, k)

Chapter 6 Combinatorics 959

Chapter 6 Combinatorics

Exercises 6.1 (p. 349)

1. 1,317

9. 200

17. 0

25. 1,757,600

33. 36,504

41. 16

3. 1,449

11. 36�n/2�

19. 260

27. 0

35. 32

43. 24

5. 312

13. 3n

21. 100,000

29. 1,572,120,576

37. 128

45. 2n2

7. 18

15. 1000

23. 0

31. 186,624

39. 192

47. 364

49. 9

55.
mn+1 − 1

m − 1

51. 1,053

57. m!
53. 1 + m + m2

59.
n!

(n − m)!
61. Let m = pa1

1 . . . pam
m and n = qb1

1 . . . qbm
m . Since gcd {m, n} = 1, mn =

pa1
1 . . . pam

m qb1
1 . . . qbm

m is the prime factorization of mn. ∴ τ (mn) =
(a1 + 1) . . . (am + 1)(b1 + 1) . . . (bm + 1) = τ (m)τ (n)

Exercises 6.2 (p. 358)

1. 5 3. 60 5. F

7. T 9. F 11. F

13. F 15. F 17. 20

19. 362,880 21. 40,320 23. 358,800

25. 1 27. 562,432 29. 208,827,062,548

31. 103,680 33. 1,693,440 35. 60,480

37. 120 39. 6 41. 6 43. 7

45. P(n − 1, r) + rP(n − 1, r − 1) = (n − 1)!
(n − r − 1)! + r(n − 1)!

(n − r)!
= (n − 1)!(n − r + r)

(n − r)!
= n!

(n − r)! = P(n, r)

960 Solutions to Odd-Numbered Exercises

47. (n + 1)! − n! = (n + 1)n! − n!
= (n + 1 − 1)n! = n(n!)

49. Algorithm permutations (n,r,answer)
(* This algorithm computes P(n,r) where 0 ≤ r ≤ n and the result
is returned in the variable answer. The recursive factorial
subalgorithm is invoked by the algorithm.*)
Begin (* permutations *)
answer ← factorial(n)/factorial (n - r)
End (* permutations *)

51. n! = n(n − 1) . . . 2. 1
= 2n[(n − 1) . . . 3]
> 2n if n ≥ 4

∴ (n!)! > (2n)!, if n ≥ 4

Exercises 6.3 (p. 364)

1. 44 3. 1, 854 5. 1 7. 265 9. dn = = (−1)n

11. proof: Dn = (n−1)(Dn−1 +Dn−2) Suppose n is odd. Then n−1 is even.
∴ (n − 1)(Dn−1 + Dn−2) = Dn is even.

13. 2

17. b0 = 0 = b1
bn = bn−1 + bn−2 + 2, n ≥ 2

21. 66

25. 8

29. 10

33. cn = 2n = O(n)

37. 0.368879

39. 0.367879

15. 8

19. 14

23. 4

27. c0 = 0
cn = cn−1 + 2, n ≥ 1

31. 16

35. an = (n − 3)(n − 2)
= O(n2)

41. pn − pn−1 = Dn

n! − Dn−1

(n − 1)!
= Dn − nDn−1

n!
= (−1)n

n! , by equation (4)

43. Dn = (n − 1)(Dn−1 + Dn−2)
Dn

n! = (n − 1)
n! (Dn−1 + Dn−2)

pn = n − 1
n

pn−1 + 1
n

pn−2

Chapter 6 Combinatorics 961

45. Notice that p0 = 1 and p1 = 0. Let gn = pn − pn−1. Then g1 = −1. By
Exercise 43,

gn =
(
−1

n

)
gn−1 =

(
−1

n

)(
− 1

n − 1

)
gn−2

...

=
(
−1

n

)(
− 1

n − 1

)
. . .

(
−1

2

)
g1

= (−1)n

n!
47. Algorithm derangements (n)

(* This algorithm computes the number of derangements of n items using
the alternate recursive definition. *)
Begin (* derangements *)

if n = 0 then
derangements ← 1

else if n is odd then
derangements ← n * derangements(n-1) - 1

else
derangements ← n * derangements(n-1) + 1

End (* derangements *)

Exercises 6.4 (p. 372)

1. 36 3. 84 5. 16,170 7. 45

9. fn = fn−1 + n
= fn−2 + (n − 1) + n
...
= f0 + (1 + 2 + . . . + n)
= 1 + n(n + 1)/2, n ≥ 0

17. any nonnegative integer.

11. yes

13. 78

15. No. of gifts sent on the nth day =
n∑

i=1
i = n(n + 1)/2 = C(n + 1, 2)

19. 8 21. C(n, r) 23. 243 25. 260 27. 957

29. 42 31. 40 33. 105 35. 5

37. RHS = n
r
· (n − 1)!
(r − 1)!(n − r)!

= n(n − 1)!
[r(r − 1)!](n − r)!

= n!
r!(n − r)! = LHS

39. RHS = C(n − 1, r) + C(n − 1, r − 1)

= (n − 1)!
r!(n − r − 1)! + (n − 1)!

(r − 1)!(n − r)!
= (n − 1)!(n − r + r)

r!(n − r)!
= n!

r!(n − r)! = LHS

962 Solutions to Odd-Numbered Exercises

41. Let P(n) : gn = C(n, 0) + C(n, 2)+ 43. 2
C(n, 4). Then C(0, 0) + C(0, 2) + C(0, 4)
= 1 + 0 + 0 = 1 = g0.
∴ P(0) is true.

Assume P(k) is true:
gk = C(k, 0) + C(k, 2) + C(k, 4)
gk+1 = gk + C(k, 1) + C(k, 3)

= C(k, 0) + C(k, 2) + C(k, 4) + C(k, 1) + C(k, 3)
= C(k, 0) + [C(k, 1) + C(k, 2)] + [C(k, 3) + C(k, 4)]
= C(k + 1, 0) + C(k + 1, 2) + C(k + 1, 4)

∴ P(k) → P(k + 1). Thus the result follows by PMI.

45. A(n, r) =

⎧⎪⎨
⎪⎩

0 if r = 0
0 if r = n
A(n − 1, r) + A(n − 1, r − 1) + 1 if 0 < r < n

47. RHS = C(2n, n) − C(2n, n − 1)

= (2n)!
n!n! − (2n)!

(n − 1)!(n + 1)!
= (2n)!(n + 1 − n)

n!(n + 1)!
= (2n)!

n!(n + 1)! = Cn = LHS

51. RHS = 4Cn−1 − 6
n + 1

Cn−1

= 2(2n − 1)
n + 1

Cn−1

= Cn, by Exercise 49
= LHS

49. Cn−1 = (2n − 2)!
(n − 1)!n! , by definition

RHS = 2(2n − 1)
(n + 1)

Cn−1

= 2(2n − 1)
(n + 1)

· (2n − 2)!
(n − 1)!n!

= (2n)(2n − 1)(2n − 2)!
n!(n + 1)!

= (2n)!
n!(n + 1)! = C = LHS

53. 42

55. Algorithm combinations (n,r, answer)

(* This algorithm computes C(n,r) using recursion *)
Begin (* combinations *)

if r = 0 then
combinations ← 1

else if r = n then
combinations ← 1

else
combinations ← combinations(n-1,r) + combinations (n-1,r-1)

End (* combinations *)

57. 3 59. 6 61. 2n − 2

Chapter 6 Combinatorics 963

Exercises 6.5 (p. 384)

1. 5040

11. 60

3. 28

13. 10

5. 93

15. 84

7. 1

17.

9. 8

{a, a, a, a} 19. 495

21. 8008 23. 120 25. 1365 27. 495 29. 3

31. 4 33. (3,1,6), (3,2,5), (4,1,5) 35. 18

Exercises 6.6 (p. 396)

1. 56 3. 112

5. x4 + 4x3y + 6x2y2 + 4xy3 + y4

7. 32x5 − 80x4 + 80x3 − 40x2 + 10x − 1

9. 6 11. 17,920 13. 10 15. 35

17.
(

n
�n/2�

)
19. Fn 21. 1 23. 8

25. 5 27. 52

29. 42n + 10n − 1 = (5 − 1)2n + 10n − 1

=
2n∑

r=0

(
2n
r

)
52n−r(−1)r + 10n − 1

=
2n−2∑
r=0

(
2n
r

)
52n−r(−1)r − 10n + 1 + 10n − 1

=
2n−2∑
r=0

(
2n
r

)
52n−r(−1)r

= 52n −
(

2n
1

)
52n−1 + · · · +

(
2n

2n − 2

)
52

which is clearly divisible by 25.

31. proof: (1 + x)n =
n∑

r=0

(
n
r

)
xr

Let x = 2. Then

3n =
n∑

r=0
2r

(
n
r

)
33. proof: (1 + x)2n = (x + 1)(1 + x)n

The coefficient of xn+1 on the

LHS is
(

2n
n + 1

)
and that on the

RHS is
n∑

r=1
2r

(
n

i − 1

)(
n
i

)
. Hence

the result.

35. Let S =
n∑

k=0
(a + kd)

(
n
k

)
(1)

964 Solutions to Odd-Numbered Exercises

Reverse the sum on the RHS:

S =
n∑

k=0
[a + (n − k)d]

(
n

n − k

)
=

n∑
k=0

[a + (n − k)d]
(

n
k

)
(2)

Adding equations (1) and (2),

2S =
n∑

k=0
(2a + nd)

(
n
k

)
= (2a + nd)

n∑
k=0

(
n
k

)
= (2a + nd) · 2n

∴ S = (2a + nd)2n−1

37. proof: By Exercise 36,(
n
0

)
<

(
n
1

)
< · · · <

(
n

r − 1

)
<

(
n
r

)
, where r <

n + 1
2

. ∴
(

n
r

)
is

maximum when r is the largest integer < (n + 1)/2.
case 1 Let n be odd, say, n = 2k + 1. Then (n + 1)/2 = k + 1. So r must
be k = (n − 1)/2 = �n/2�.
case 2 Let n be even, say, n = 2k. Then (n+1)/2 = (2k+1)/2 = k+1/2.
So r must be k = n/2 = �n/2�.

Thus, by cases (1) and (2),
(

n
r

)
is maximum when r = �n/2�.

39. proof (by PMI): Let P(n) denote the given statement. When n = 1,
LHS = n = RHS. ∴ P(1) is true. Assume P(k) is true, where

k ≥ 1:
k∑

i=1
i
(

k
i

)
= k·2k−1

k+1∑
i=1

i
(

k
i

)
=

k+1∑
i=1

i
[(

k
i

)
+
(

k
i − 1

)]

=
k+1∑
r=1

i
(

k
i

)
+

k+1∑
r=1

i
(

k
i − 1

)

=
k∑

i=1
i
(

k
i

)
+ (k+1)

(
k

k + 1

)
+

k+1∑
i=1

(i−1)
(

k
i − 1

)
+

k+1∑
i=1

(
k

i − 1

)

=
k∑

i=1
i
(

k
i

)
+

k∑
i=1

i
(

k
i

)
+

k∑
i=0

(
k
i

)
= k · 2k−1 + k · 2k−1 + 2k

= (k + 1)2k.

∴ P(k + 1) is true. Thus, by induction, P(n) is true ∀n ≥ 1.

41. proof: n(1 + x)n−1 =
n∑

r=1

(
n
r

)
rxr−1. Let x = 1. Then n · 2n−1 =

n∑
r=1

r
(

n
r

)
.

Chapter 6 Combinatorics 965

43. proof (by induction): Let P(n): (x+ y)n =
n∑

r=0

(
n
r

)
xn−ryr. When n = 0,

LHS = 1 = RHS. So P(0) is true. Assume P(k) is true for some k ≥ 0:

(x + y)k =
k∑

r=0

(
k
r

)
xk−ryr (1)

Then (x + y)k+1 = (x + y)k(x + y)

=
[

k∑
r=0

(
k
r

)
xk−ryr

]
(x + y)

=
k∑

r=0

(
k
r

)
xk+1−ryr +

k∑
r=0

(
k
r

)
xk−ryr+1

=
[(

k
0

)
xk+1 +

k∑
r=1

(
k
r

)
xk+1−r

]
+
[

k−1∑
r=0

(
k
r

)
xk−ryr+1

+
(

k
k

)
yk+1

]

=
(

k + 1
0

)
xk+1+

k∑
r=1

(
k
r

)
xk+1−ryr+

k∑
r=1

(
k

r − 1

)
xk+1−ryr

+
(

k + 1
k + 1

)
yk+1

=
(

k + 1
0

)
xk+1 +

k∑
1

[(
k
r

)
+
(

k
r − 1

)]
xk+1−ryr

+
(

k + 1
k + 1

)
yk+1

=
(

k + 1
0

)
xk+1 +

k∑
r=1

(
k + 1

r

)
xk+1−ryr +

(
k + 1
k + 1

)
yk+1

=
k∑

r=0

(
k + 1

r

)
xk+1−ryr

∴ P(k + 1) is true. Thus, by PMI, P(n) is true ∀n ≥ 0.

45. proof: RHS =
(

n
r

)(
n − r
m − r

)
= n!

r!(n − r)! · (n − r)!
(m − r)!(n − m)!

= n!
m!(n − m)! ·

m!
r!(m − r)! =

(
n
m

)(
m
r

)
= LHS

47. proof: (1 + x)m+n = (1 + x)m(x + 1)n =
[m∑

r=0

(
m
r

)
xr
] [n∑

r=0

(
n
r

)
xn−r

]
Coefficient of xr on the LHS =

(
m + n

r

)
Coefficient of xr on the RHS =

r∑
i=0

(
m
i

)(
n

r − i

)
Hence the result.

966 Solutions to Odd-Numbered Exercises

49. proof: Let P(n) denote the given statement, where n ≥ 2. When n = 2,

LHS =
(

2
2

)
= 1 =

(
3
3

)
= RHS. ∴ P(2) is true. Assume P(k) :

k∑
i=2

(
i
2

)
=(

k + 1
3

)
, where k ≥ 2.

Then
k+1∑
i=2

(
i
2

)
=

k∑
i=2

(
i
2

)
+
(

k + 1
2

)
=
(

k + 1
3

)
+
(

k + 1
2

)

=
(

k + 2
3

)
∴ P(k + 1) is true. Thus, by PMI, the result holds ∀n ≥ 2.

51. proof: Let P(n) denote the given statement, where n ≥ 3. When n = 3,

LHS =
(

3
3

)
= 1 =

(
4
4

)
= RHS. ∴ P(3) is true. Assume P(k) :

k∑
i=3

(
i
3

)
=
(

k + 1
4

)
, where k ≥ 3.

Then
k+1∑
i=3

(
i
3

)
=

k∑
i=3

(
i
3

)
+
(

k + 1
3

)

=
(

k + 2
4

)
∴ P(k + 1) is true. Thus, by PMI, the formula holds ∀n ≥ 3.

Exercises 6.7 (p. 408)

1. 74 3. 533 5. 266 7. 21 9. 30

11. Let S be the set of solutions with x ≤ 3, y ≤ 4, and z ≤ 4. Then
| S |= C(3 + 11 − 1, 11) = 78. Let p1 : x > 3, p2 : y > 4, and p3 : z > 5.
Then:

N(p1) = no. of solutions with x ≥ 4 = C(3 + 7 − 1, 7) = 36
N(p2) = no. of solutions with y ≥ 5 = C(3 + 6 − 1, 6) = 28
N(p3) = no. of solutions with z ≥ 6 = C(3 + 5 − 1, 5) = 21
N(p1p2) = no. of solutions with x ≥ 4 and y ≥ 5 = C(3 + 2 − 1, 2) = 6
N(p1p3) = no. of solutions with x ≥ 4 and z ≥ 6 = C(3 + 1 − 1, 1) = 3
N(p2p3) = no. of solutions with y ≥ 5 and z ≥ 6 = C(3 + 0 − 1, 0) = 1
N(p1p2p3) = no. of solutions with x ≥ 4, y ≥ 5, and z ≥ 6

= C(3 − 4 − 1, −4) = 0

∴ answer = N(p′
1p′

2p′
3) = 78 − (36 + 28 + 21) + (6 + 1 + 3) − 0 = 3

13. When n = 5, LHS = 600 = 5(5!) = RHS; when n = 6, LHS = 3600 =
5(6!) = RHS.

Chapter 6 Combinatorics 967

Exercises 6.8 (p. 416)

1.
1

13

11.
1890

1000000

21. 0

3.
2

13

13.
98901

1000000

23.
2
5

5.
1
36

15.
1
17

25. 0

7.
1

12

17.
13
102

27.
39
95

9.
9

1000000

19.
2

429

29.
9
19

Exercises 6.9 (p. 425)

1.
2
11

3.
5

13
5.

1
4

7.
1
4

9. 0 11.
7
15

13.
1
2

15.
1
2

17.
1

16
19. 0 21.

1
17

23. 0 25.
15
91

27.
20
273

29. −$1.75 31. −92.11¢ 33.
125
324

35.
5

324
37.

425
432

39.
256
625

41.
624
625

43. E =
n∑

k=0
kC(n, k)pkqn−k =

n∑
k=1

kC(n, k)pkqn−k

By the binomial theorem, n(1 + x)n−1 =
n∑

k=1
kC(n, k)xk−1. Let x = p/q.

Then

n(p + q)n−1

qn−1 =
n∑

k=1
kC(n, k)

pk−1

qk−1
=

n∑
k=1

kC(n, k)
pk−1

qk−1

Since p + q = 1 in a Bernoulli trial, this yields

np =
n∑

k=1
kC(n, k)pkqn−k = E

Review Exercises (p. 429)

1. 1,038 3. 1,454 5. 1,572,120,576 7. 436,700,160

9. 1,542,636,576 11. 0 13. 80 15. 1,296

17. 2,401 19. 103,680 21. 39,916,800 23. 59,049

25. 176 27. 2,598,960 29. 3,744 31. 34,650

33. 20

968 Solutions to Odd-Numbered Exercises

35. h(n) = h(n − 1)+ number of handshakes made by the nth couple
= h(n − 1) + 4n, where h(0) = 0.

37. 84 39. 26 41. 165 43. −330

45. x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

47. 243x5 − 405x4y + 270x3y2 − 90x2y3 + 15xy4 − y5

49. proof (by strong induction): Let P(n) denote the given statement.
When n = 0, r = 0. Then C(n, r) = C(0, 0) = 1 is an integer. So
P(0) is true.
Assume P(i) is true ∀i ≤ k, where k ≥ 0. By Theorem 6.12, C(k+1, r) =
C(k, r − 1) + C(k, r). Both numbers on the RHS are integers, by the
inductive hypothesis. So their sum is also an integer. ∴ P(k + 1) is
true. Thus, by PMI, the result holds ∀n ≥ 0.

51. No. of gifts sent on the nth day =
n∑

i=1
i = n(n + 1)/2 = C(n + 1, 2)

53. proof: Consider a permutation of a set of n elements. Suppose exactly
k of them occupy their natural positions. None of the remaining n − k
elements occupy their natural positions; the number of such arrange-
ments is Dn−k. But the original k elements can be chosen in C(n, k)
different ways. Therefore, the number of permutations with exactly
k elements in their natural positions is C(n, k)Dn−k.

55. 2n 57. A(n, 1) = n − 1

59. proof (by PMI): Let A(n, r) = C(n, r)−1. When n = 1, RHS = C(n, 1)−
1 = n − 1 = A(n, 1) = LHS. So P(1) is true. Assume P(k) is true:
A(k, r) = C(k, r) − 1. Then

A(k+1, r) = A(k, r−1)+A(k, r)+1 = [C(k, r−1)−1]+[C(k, r)−1]+1
= [C(k, r − 1) + C(k, r)] − 1 = C(k + 1, r) − 1 = A(k + 1, r)

∴ P(k) → P(k + 1). Thus the result follows by PMI.

61. $375,000 63. 0.40951

Supplementary Exercises (p. 432)

1. Let k be the least of the r consecutive positive integers. Their product

is k(k + 1) . . . (k + r − 1). Since
k(k + 1) . . . (k + r − 1)

r! = C(k + r − 1, r)

is an integer, k(k + 1) . . . (k + r − 1) is divisible by r!.
3. Cn = C(2n, n)/(n + 1) is an integer; so n + 1 | C(2n, n).

5. RHS = C(2n + 1, n)
2n + 1

= (2n + 1)!
n!(n + 1)!(2n + 1)

= (2n)!
n!(n + 1)! = Cn = LHS

Chapter 6 Combinatorics 969

7. 13; 80

9. We shall use the following identities:

1. n
(

n − 1
k − 1

)
= k

(
n
k

)
2.

n∑
k=0

(
n
k

)
= 2n 3.

n∑
k=1

k
(

n
k

)
= n2n−1

n∑
k=0

(
n
k

)
k2 =

n∑
k=0

(
n
k

)
k·k =

n∑
k=0

n
(

n − 1
k − 1

)
k = n

n∑
k=0

(
n − 1
k − 1

)
(k − 1 + 1)

= n
n∑

k=0

(
n − 1
k − 1

)
(k − 1) + n

n∑
k=0

(
n − 1
k − 1

)

= n
n∑

k=0
(n − 1)

(
n − 2
k − 2

)
+

n−1∑
k=1

(
n − 1
k − 1

)

= n(n − 1)
n−2∑
k=2

(
n − 2
k − 2

)
+ n

n−1∑
k=1

(
n − 1
k − 1

)

= n(n − 1)
n−2∑
k=0

(
n − 2

k

)
+ n

n−1∑
k=0

(
n − 1

k

)
= n(n − 1) · 2n−2 + n · 2n−1 = n(n + 1)2n−2

11.
n−1∑
d=1

d∑
j=0

n−d−1∑
k=0

(
j + k

j

)
=

n−1∑
d=1

d∑
j=0

(
j + n − d

j + 1

)

=
n−1∑
d=1

[(
n + 1
d + 1

)
− 1

]

=
n−1∑
r=0

(
n + 1

r

)
−
(

n + 1
0

)
−
(

n + 1
1

)

−
(

n + 1
n + 1

)
− (n − 1)

= 2n+1 − 1 − (n + 1) − 1 − (n − 1)

= 2n+1 − 2n − 2

13. no, no

15. f (n, k) =

⎧⎪⎨
⎪⎩

n if k = 1
0 if k = n
f (n − 2, k − 1) + f (n − 1, k) if 1 < k < n

17. By Exercise 16, f (n, k) = C(n − k + 1, k).
∴ Total no. of subsets that do not contain consecutive integers is
given by

n∑
k=0

f (n, k) =
n∑

k=0
C(n − k + 1, k) =

n∑
k=0

C((n + 2) − k − 1, k) = Fn+2

19. Fn+2

970 Solutions to Odd-Numbered Exercises

Chapter 7 Relations

Exercises 7.1 (p. 441)

1.
[
1 1
0 0

]
7.

[
1 0
0 0

]

13.
⎡
⎣1 0 1

0 0 1
1 1 0

⎤
⎦

19. n2

25.
[
0 0
1 1

]
31.

[
1 1
0 0

]

3.
[
1 1
0 0

]
9.

⎡
⎣0 0 1

0 0 0
1 1 0

⎤
⎦

15.
⎡
⎣0 1 0

0 0 0
0 1 1

⎤
⎦

21. (2n − 1)n2

27.
[
0 0
0 1

]
33. A

5.
[
1 1
1 0

]
11.

⎡
⎣0 0 1

0 0 0
1 1 0

⎤
⎦

17.
⎡
⎣1 1 1

0 0 0
1 1 1

⎤
⎦

23. (2p − 1)mn

29.
[
1 0
1 1

]
35. O

Note: In Exercises 37–48, let A = (aij), B = (bij), and C = (cij).

37. A ∧ A = (aij) ∧ (aij)
= (aij ∧ aij)
= (aij) = A

39. A ∧ B = (aij) ∧ (bij)
= (aij ∧ bij)
= (bij ∧ aij)
= (bij) ∧ (aij) = B ∧ A

41. LHS = (aij) ∧ [(bij) ∧ (cij)]
= (aij) ∧ (bij ∧ cij)
= (aij ∧ (bij ∧ cij))
= ((aij ∧ bij) ∧ cij)
= [(aij) ∧ (bij)] ∧ (cij)
= RHS

43. LHS = (aij) ∧ [(bij) ∨ (cij)]
= (aij) ∧ (bij ∨ cij)
= (aij ∧ (bij ∨ cij))
= ((aij ∧ bij) ∨ (aij ∧ cij))
= ((aij) ∧ (bij)) ∨ (aij ∧ cij)
= RHS

45. Algorithm meet (A,B,C)
(* Let A = (aij)n×n and

B = (aij)n×n. C is the meet of A and B.)
Begin (* meet *)

for i = 1 to n do
for j = 1 to n do

cij ← aij ∧ bij
End (* meet *)

Chapter 7 Relations 971

47. Algorithm boolean product (A,B,C)
(* C is the boolean product of A = (aij)m×p and B = (bij)p×n *)

Begin (* boolean product *)
for i = 1 to m do

for j = 1 to p do
cij ← (ai1 ∧ bij) ∨ (ai2 ∧ b2j) · · · ∨ (aip ∧ bpj)

End (* boolean product *)

Exercises 7.2 (p. 448)

1. {(1,2),(1,4),(1,8),(3,4),(3,8),(5,8)} 3. {(1,4),(3,2)}

5. {(1,2)}

13.
⎡
⎣1 1 1

0 1 1
0 0 1

⎤
⎦

7. A; B

15.
⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦

9. {1,3}; {2,4}

17.
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦

11. {1}; {2}

19. 2 3

5

21. 2 3

58

23. yes 25. no

27. yes 29. yes

31. yes 33. yes

35. {(a, b), (b, c), (c, b)}

39. 0000, 0001, 0011, 0010, 0110, 0111,
0101, 0100, 1100, 1101, 1111, 1110,
1010, 1011, 1001, 1000

37. a b c
a
b
c

⎡
⎣0 1 0

0 0 1
0 1 0

⎤
⎦

41. b-b-b, b-c-a, b-c-d 43. 12 45. no 49. no 51. 2m2

53. Algorithm print relation (R,A)
Begin (* print *)

for i = 1 to n do
for j = 1 to n do

if aij = 1 then
write ((i,j))

End (* print *)

Exercises 7.3 (p. 453)

1.

1
2

start 3�

4
5
6

Tail head next

2 1 5
3 1 1
1 3 0
1 2 6
3 2 3
2 3 2

3.
1 2

2 1

3 1

3

3

2

972 Solutions to Odd-Numbered Exercises

5. 1 2 3
1
2
3

⎡
⎣0 1 0

0 1 0
1 1 1

⎤
⎦

7. 1 2

3

9.
1 2

2 1

3 2

3

3

11. Algorithm adjacency list (R,list)
(* List is the array of pointers pointing to each linked list

in the adjacency list representation. *)
Begin (* algorithm *)

initialize list
while there are more elements in R do
begin (* while *)

read a pair (i,j)
create a node
info(node) ← j
link(node) ← nil
insert the node

endwhile
End (* algorithm *)

13. Algorithm adjacency matrix (A,list)
(* List is the array of pointers. *)
Begin (* algorithm *)

(* initialize A with zeros *)
for i = 1 to n do

for j = 1 to n do
aij ← 0

(* traverse the adjacency list *)
for i = 1 to n do
begin (* for *)

(* traverse each linked list *)
k ← link(i)
while k �= nil do
begin (* while *)

j ← info(node(k))
aij ← 1
k ← link(node(j))

endwhile
endfor

End (* algorithm *)

Exercises 7.4 (p. 459)

1. symmetric, antisymmetric, transitive

3. symmetric, antisymmetric, transitive

Chapter 7 Relations 973

5. yes

11. no

7. no

13. no

9. yes

15. no

17. reflexive, symmetric, antisymmetric, transitive

19. reflexive, antisymmetric

21. R is not symmetric if there is an a ∈ A such that aRb, but b�Ra.

23. {(a, a), (b, b), (c, c)}
27. {(a, a), (a, b), (b, b), (b, c), (c, c)}
31. {(a, b), (b, a)}
35.

⎡
⎣1 1 0

0 1 1
1 0 1

⎤
⎦

25. {(a, a), (a, b), (b, b), (c, c)}
29. {(a, b)}
33. {(a, a)}
37.

⎡
⎣0 0 1

1 1 0
0 1 0

⎤
⎦

39. If R contains only elements of the form (a, a).

41. no

49. yes

57. 4

43. no

51. yes

59. 2

45. yes

53. no

61. 4

47. mii = 0 ∀i.

55. mij = 1 → mji = 0 ∀i, j.

63. Let MR = (xij) and M[2]
R = (yij). Suppose R is not transitive. Then

there must be elements ai, aj, ak ∈ A such that aiRaj and ajRak, but
ai�Rak; that is, xij = 1 = xjk, but xik = 0. Since xij = 1 = xjk and
yik = (xi1 ∧ x1k) ∨ . . . ∨ (xij ∧ xjk) ∨ . . . ∨ (xin ∧ xnk), yik = 1. So yik > xik,
which contradicts the assumption that M[2]

R ≤ MR. ∴ R is transitive.

Exercises 7.5 (p. 469)

1. {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a)}; {(a, b), (b, b)}
3. ≤; Ø

5. {(a, a), (a, b), (b, b), (b, c), (b, d), (c, a), (d, a)}; {(a, b), (b, c)}
7. {(a, a), (a, b), (b, c), (c, a), (c, b)}
9. {(a, a), (a, b), (a, c), (b, c), (c, c)}

11. Ø

13.
⎡
⎣1 1 1

0 0 0
1 0 1

⎤
⎦ 15.

⎡
⎣1 1 1

0 1 0
0 1 1

⎤
⎦

974 Solutions to Odd-Numbered Exercises

17. R2 = communicate through an
intermediary; Rn =
communicate through n − 1
intermediaries.

23.
⎡
⎣1 0 0

1 0 0
0 1 1

⎤
⎦

27. {(1, a), (2, b), (3, b)}
31. {(a, 1), (a, 2), (a, 3), (b, 1), (b, 3)}
35. {(1, a), (1, b), (2, a), (2, b), (3, b)}
39. Let MR′ = (aij)n×n and

(MR)′ = (bij)n×n. Then aij = 1
iff (i, j) ∈ R′; that is, iff bij = 1.
So aij = 1 iff bij = 1. Thus
MR′ = (MR)′.

43. Suppose R ⊆ S. Let
(x, y) ∈ R−1. Then (y, x) ∈ R.
∴ (y, x) ∈ S and hence
(x, y) ∈ S−1. Thus R−1 ⊆ S−1.

47. Let (x, y) ∈ (R ∩ S)−1. Then
(y, x) ∈ R ∩ S. So (y, x) ∈ R and
(y, x) ∈ S, and hence
(x, y) ∈ R−1 and (x, y) ∈ S−1.
Thus (x, y) ∈ (R−1 ∩ S−1).
∴ (R ∩ S)−1 ⊆ (R−1 ∩ S−1).
Similarly,
(R−1 ∩ S−1) ⊆ (R ∩ S)−1.
Hence the result.

51. Let R be symmetric and
(x, y) ∈ R−1. Then (y, x) ∈ R.
Since R is symmetric,
(x, y) ∈ R. ∴ R−1 ⊆ R. So, by
Exercise 43, (R−1)−1 ⊆ R−1;
that is, R ⊆ R−1. ∴ R−1 = R.
Conversely, let R−1 = R and
(x, y) ∈ R. Then (x, y) ∈ R−1.
∴ (y, x) ∈ R−1. Thus R is
symmetric.

19. {(a, a), (b, a), (c, b), (c, c)}
21.

⎡
⎣0 0 1

1 1 0
1 1 0

⎤
⎦

25.
⎡
⎣1 0 1

0 1 0
0 1 0

⎤
⎦

29. R

33. {(a, 3)}
37. {(2, b)}
41. Let (x, y) ∈ (R−1)−1. Then

(y, x) ∈ R−1 and hence (x, y) ∈ R.
∴ (R−1)−1 ⊆ R.
Conversely, let (x, y) ∈ R. Then
(y, x) ∈ R−1 and hence
(x, y) ∈ (R−1)−1. ∴ R ⊆ (R−1)−1.
Thus (R−1)−1 = R.

45. Let (x, y) ∈ (R ∩ S)′. Then
(x, y) �∈ (R ∩ S). So (x, y) �∈ R or
(x, y) �∈ S, that is, (x, y) ∈ R′ or
(x, y) �∈ S′. Thus (x, y) ∈ (R′ ∪ S′)
and hence (R ∩ S)′ ⊆ (R′ ∪ S′).
Similarly, (R′ ∪ S′) ⊆ (R ∩ S)′.
Hence the result.

49. Assume R is symmetric. Let
(x, y) ∈ R′. Then (x, y) �∈ R, so
(y, x) �∈ R since R is symmetric.
∴ (y, x) ∈ R′. Thus R′ is
symmetric.
Conversely, Let R′ be symmetric.
Then (R′)′ is symmetric. But
(R′)′ = R. ∴ R is symmetric.

53. Let R and S be symmetric. Let
(x, y) ∈ R ∩ S. Then (x, y) ∈ R
and (x, y) ∈ S. ∴ (y, x) ∈ R and
(y, x) ∈ S. Thus (y, x) ∈ R ∩ S
and hence R ∩ S is symmetric.

55. The relations R = {(a, b)} and S = {(b, c)} on {a, b, c} are transitive, but
R ∪ S = {(a, b), (b, c)} is not.

Chapter 7 Relations 975

57. Algorithm union (MR∪S, MR,MS)
(* Let MR = (aij)m×n, MS = (bij)m×n, and MR∪S = (cij)m×n. *)
Begin (* algorithm *)

for i = 1 to m do
for j = 1 to n do

cij ← aij ∨ bij
End (* algorithm *)

59. Algorithm inverse (MR,MR−1)
(* Let MR = (aij)m×n and MR−1 = (cij)m×n.*)
Begin (* algorithm *)

for i = 1 to m do
for j = 1 to n do

if aij=1 then
cij ← 0

else
cij ← 1

End (* algorithm *)

61. Algorithm composition (X,Y,Z)
(* X = MR, Y = MS, and Z = MR�S *)
Begin (* algorithm *)

for i = 1 to m do
for j = 1 to p do

zij ← (xij ∧ yij) ∨ · · · ∨ (xin ∧ ynj)
End (* algorithm *)

Exercises 7.6 (p. 475)

1. {(a, a)}
7. {(a, a), (b, b), (c, c)}

3. {(a, a), (b, b), (c, c)}
9. A × A

5. Ø

11. {(a, b), (a, c), (a, d), (b, c), (d, b), (d, c)}

Exercises 7.7 (p. 481)

1. {(a, a), (a, b), (b, a), (b, b)}
5. {(a, a), (a, b)}
9. A × A

3. {(b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}
7. {(a, b), (a, c), (b, c)}

11. {(a, a), (a, b), (a, c), (b, b), (c, b), (c, c)}

13.
⎡
⎣0 1 1

0 0 1
0 0 0

⎤
⎦ 15.

⎡
⎣0 1 0

0 1 1
1 1 0

⎤
⎦ 17.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 1 0 1
0 1 0 1

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 1
0 1 0 1
0 1 0 1

⎤
⎥⎥⎦

19. {(a, b), (a, c), (b, c)}

976 Solutions to Odd-Numbered Exercises

21. {(a, b), (a, c), (b, a), (b, b), (b, c), (c, b), (c, c)}
23. {(a, a), (b, b), (b, d), (c, b), (c, d), (d, b), (d, d)}
25. {(a, a), (b, a), (b, b), (c, c)}
29. {(a, a), (a, b), (b, b), (c, c)}

27. {(a, a), (b, a), (b, b), (b, c), (c, b), (c, c)}
31. {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}

33. {(a, a), (a, b), (b, b), (b, c), (c, a), (c, c)}
37. {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}
39. {(a, a), (a, c), (b, b), (c, a), (c, b)}

35. ≥

41. {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}
43. {(a, a), (a, c), (b, b), (b, c), (c, b), (c, c)}
45. Assume R is reflexive. Let (a, a) ∈ 	. Since R is reflexive, (a, a) ∈ R.

∴ 	 ⊆ R. Conversely, let 	 ⊆ R. Let a ∈ A. Since (a, a) ∈ 	, (a, a) ∈ R.
Thus R is reflexive.

47. R ∪	 is reflexive, by Exercise 46. Let S be a reflexive relation such
that R ⊆ S ⊆ R ∪	. Since R ⊆ S, R ∪	 ⊆ S ∪	. Since S is reflexive,
	 ⊆ S; so S ∪	 ⊆ S. But S ⊆ R ∪	. ∴ S = R ∪	.

49. R ∪ R−1 is symmetric, by Exercise 48. Let S be a symmetric relation
such that R ⊆ S ⊆ R ∪ R−1. Since R ⊆ S, R−1 ⊆ S−1 by Exercise 61
in Section 7.5. Further, since S is symmetric, S−1 = S. ∴ R−1 ⊆ S.
Thus R ⊆ S and R−1 ⊆ S. ∴ R ∪ S−1 ⊆ S ∪ S; that is, R ∪ R−1 ⊆ S.
∴ S = R ∪ R−1.

Exercises 7.8 (p. 490)

1. no

7. yes

13. {d}

3. yes

9. no

15. {A, B, C, F, H}

5. no

11. {a, b}
17. {J}

19. {a, b}
23. {a, b, c}
27. {{a}, {b}, {c}}

21. {aaa, aab, aba, abb, baa, bab, bba, bbb}
25. {aa, ab, ac, ba, bb, bc, ca, cb, cc}
29. {{A, B, C, F, H}, {D, E}, {G}, {I}, {J}}

31. {(a, a), (b, b), (b, c), (c, b), (c, c), (d, d)}
33. 2

37. 2

35. 15

39. 15

Chapter 7 Relations 977

41. R = {(a, a), (a, b), (b, a), (b, b), (c, c)} and S = {(a, a), (a, c), (b, b), (c, a),
(c, c)} are equivalence relations on {a, b, c}, but R ∪ S = {(a, a),
(a, b), (a, c), (b, a), (b, b), (c, a), (c, c)} is not.

43. Monday 45. Tuesday

47. Let a ≡ b (mod m) and c ≡ d (mod m). Then a − b = lm and c − d =
km for some l, k ∈ Z. Then (a − b) + (c − d) = lm + km, that is,
(a + c) − (b + d) = (l + k)m. ∴ a + c ≡ (b + d) (mod m).

49. By the division algorithm, a = bm+ r for some b ∈ Z. ∴ a ≡ r (mod m).

51. By the division algorithm, a = d1m + r1 and b = d2m + r2, where
0 ≤ r1, r2 < m. Then a − b = (d1 − d2)m + (r1 − r2). ∴ a ≡ b (mod m)
if and only if r1 ≡ r2 (mod m).

53. Let N =
n∑

i=0
ai10n−i be the decimal expansion of N. Since

10 ≡ 1 (mod 9), 10k ≡ 1 (mod 9) by Exercise 48. Thus ai10n−i ≡ ai∀i
by Exercise 48.

∴ N ≡
n∑

i=0
ai (mod 9). Consequently, N is divisible by 9 if and only if

n∑
i=0

ai is divisible by 9.

55. 0 57. 8 59. 4 61. 15, 621

Exercises 7.9 (p. 503)

1. no

9. no

3. yes

11. no

5. yes

13. yes

7. yes

15. yes

17. yes 19. (2, 6) � (3, 5) 21. (2, 3, 2), (2, 3, 3), (2, 2, 4)

23. luxury, maximum, moment, neglect, neighbor, neophyte

25. discount, discourse, discreet, discrete, discretion, diskette

27. 18

6

2

1

3

9

29. c

b

a

978 Solutions to Odd-Numbered Exercises

31. aaa aab

aa

a

λ

b

aba abb

ab

baa bab

ba

bba bbb

bb

33. c, d; a

41. 18, 1

49. (Z, ≤)

35. none; none

43. F

51. (Z, ≤)

37. 18; 1

45. F

53. a, b, c, d, e

39. none; none

47. F

55. a, c, b, d, e, f

57. 1, 2, 3, 6, 9, 18

61. 26; C, G, B, E, A, F, D

59. t1, t2, t3, t4, t5, t6, t7, t9, t8, t10, t11, t12, t13

63. Suppose there are two greatest elements, a and a′ in the poset.
Since a is a greatest element, a′ � a. Likewise, a � a′. Since � is
antisymmetric, a = a′.

65. Let a1 be any element in A. If a1 is not maximal, there must be an
element a2 such that a1 ≺ a2. If a2 is maximal, then we are done. If
it is not, there must be an element a3 in A such that a2 ≺ a3. If a3 is
not maximal, continue this procedure. Since A is finite, this procedure
must terminate with some element an. Thus a1 ≺ a2 ≺ . . . ≺ an. So an
is a maximal element. Hence the result.

Review Exercises (p. 508)

1. symmetric 3. {(1, 3), (2, 1), (3, 1), (3, 3)}
5. {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 3)}
7. {(1, 1), (2, 1), (2, 2), (2, 3), (3, 2)} 9. {(1, 1), (2, 2), (2, 3)}

11. {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}
13. {(1, 1), (1, 2), (2, 2), (3, 2)}
15.

⎡
⎣0 0 1

1 0 1
1 0 1

⎤
⎦ 17.

⎡
⎣1 1 1

0 1 1
0 1 1

⎤
⎦

19. {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}
21.

⎡
⎣1 1 0

0 1 0
0 1 0

⎤
⎦ 23. A × A

27. no

25. 2

29. {a, c}

Chapter 7 Relations 979

31. {a, c} 33. {{a, c}, {b, d}}
35. {(2, 2), (2, 4), (3, 3), (4, 2), (4, 4), (7, 7)}
37. 877 39. T 41. T 43. T 45. T 47. T

49. λ, 0, 00, 01, 1, 10, 11, 000, 001,
010, 011, 100, 101, 110, 111

53. none; a

57. Suppose R is antisymmetric. Let
(a, b) ∈ R ∩ R−1. Then aRb and
aR−1b. Since aR−1b, bRa. Thus
aRb and bRa. So a = b. Thus
(a, a) ∈ R ∩ R−1 ⊆ 	.
Conversely, let R ∩ R−1 ⊆ 	.
Suppose aRb and bRa. Since
bRa, aR−1b. Thus aRb and
aR−1b.
∴ a(R ∩ R−1)b. Since
R ∩ R−1 ⊆ 	, (a, b) ∈ 	. So
a = b and R is antisymmetric.

51. CS 100, CS 150, CS 200, CS 250,
CS 300, CS 350, CS 400, CS 450

55. Let (a, b) ∈ (R ∩ S)2. Then there
exists an element c in A such
that (a, c) ∈ R ∩ S and
(c, b) ∈ R ∩ S. ∴ (a, c) ∈ R and
(c, b) ∈ R, so (a, b) ∈ R2.
Similarly, (a, b) ∈ S2. Thus
(a, b) ∈ R2 ∩ S2. So
(R ∩ S)2 ⊆ R2 ∩ S2.

Supplementary Exercises (p. 511)

1. Sunday

3. Recall that
(

p
k

)
= p!

k!(p − k)! is an integer. When 0 < k < p, 0 < p−k <

p. Since p is a prime, none of the factors of k! or (p − k)! can divide p.

So p
∣∣∣(p

k

)
.

5. By the binomial theorem, (a + b) p =
p∑

r=0

(
p
r

)
ap−rbr = ap +

p−1∑
r=1

(
p
r

)
ap−rbr + bp ≡ ap + 0 + bp ≡ ap + bp (mod p)

7. 2

9. Let a be any integer. Then, by the division algorithm, a ≡ 0, 1, or 2
modulo 3. If a ≡ 0 (mod 3), then a(a + 1)(a + 2) ≡ 0 (mod 3). Likewise,
a(a + 1)(a + 2) ≡ 0 (mod 3) when a ≡ 1 or 2 modulo 3. Thus, in every
case, the product is congruent to 0 modulo 3.

11. 5, 13

13. By Euler’s theorem, aφ(b) ≡ 1 (mod b). Since b | φ(a), bφ(a) ≡ 1 (mod b).
Therefore, aφ(b) +bφ(a) ≡ 1 (mod b). Likewise, aφ(b) +bφ(a) ≡ 1 (mod a).

980 Solutions to Odd-Numbered Exercises

Since a and b are relatively prime, it follows that aφ(b) + bφ(a) ≡ 1
(mod ab).

15. The set has 2n2
relations (pigeons) on it. Using adjacency matrices,

2(n−1)n/2+n = 2n(n+1)/2 of them are symmetric relations (pigeonholes).
Suppose each relation is assigned to its symmetric closure. Then, by the
GPHP, at least one of the holes must contain �(2n2 −1)/2n(n+1)/2�+1 =
�2n(n−1)/2 − 1/2n(n+1)/2�+ 1 = 2n(n−1)/2 − 1 + 1 = 2n(n−1)/2 pigeons; that
is, at least 2n(n−1)/2 relations must have the same symmetric closure.

Chapter 8 Graphs

Exercises 8.1 (p. 533)

1. no 3. no 5. 3; 4 7. 4; 4; 4

9. a b c
a
b
c

⎡
⎣0 2 1

2 0 1
1 1 0

⎤
⎦

11. a

c

b

d

13. The graph is made up of two disjoint components.

15. Sum of the degrees = 6 + 4 + 4 = 14 = 2 · 7 = 2 (no. of edges)

17. 4 19. yes 21. 13 23. 12 25. 15 27. 45

29. (aij)n×n where aij =
{

1 if i �= j
0 otherwise

31. yes; V1 = {a, c}, V2 = {b, d, e} 33. mn

35. By Theorem 8.1,
n∑

i=1
vi = 2e

nm ≤
n∑

i=1
vi ≤ nM

That is, nm ≤ 2e ≤ nM

m ≤ 2e
n

≤ M

45. By Exercise 44, e = nr
2

.

∴ nr is even.

37.

41.

47. no

39.

43. yes, n − 1

49. •b
a• •c

51. Let A be the adjacency matrix
of G. Then A′ is the adjacency
matrix of G′.

53. K ′
m,n consists of a loop at each

vertex and a path connecting
the vertices in each vertex set.

Chapter 8 Graphs 981

55.

ea b

c

d

57. K5

59. K6

61. Kn

63.
team

round a b c d e x

1 b a d c x e
2 c e a x b d
3 d x e a c b
4 e d x b a c
5 x c b e d a

65. Let P(e) denote the given proposition. When e = 1, a graph consisting
of a loop at a vertex satisfies the condition. ∴ P(1) is true.

Assume P(k) is true:
n∑

i=1
deg (vi) = 2k. Add an edge between vertices

vs and vt, where 1 ≤ s < t ≤ n. Then both deg (vs) and deg (vt) are
increased by 1.

∴
n∑

i=1
deg (vi) = 2k + 2 = 2(k + 1). So P(k + 1) is true. Thus the result

follows by PMI.

Exercises 8.2 (p. 539)

1.
1 1 2

2 1

3 2

3

5.
1 1

2 1

3 2

2

2

2

3

3

3

3.
1 2

2

2 3

3 2

3

7.
1 2

2 1

3 1

3

3

2

982 Solutions to Odd-Numbered Exercises

9.
1

2

3

15. 1 2 3
1
2
3

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

11. 1 2 3
1
2
3

⎡
⎣1 1 0

1 0 1
0 1 0

⎤
⎦

17. 1 2

3

13. 1 2 3
1
2
3

⎡
⎣0 1 0

1 0 2
0 2 0

⎤
⎦

19.
1 2

2 1

3 1

3

3

2

13

8

8

5

5

13

21.
1 3

2 3

3

4

5

1

4

4

2

1

5

3

1

3

1

5

5

2

8

1 2 51

1 2 82

Exercises 8.3 (p. 544)

1. no 3. yes; f (a) = b, f (b) = f , f (c) = e, f (d) = g

5. yes; f (a) = f , f (b) = e, f (c) = g, f (d) = h

11. yes; f (a) = i, f (b) = h, f (c) = g,
f (d) = f , f (e) = j

7. no

13. no

9. no

15. 1) Every graph is isomorphic to itself. ∴ The relation is reflexive.

2) Let f : G1 → G2 be an isomorphism. Then f −1 : G2 → G1 is also
an isomorphism.

3) Let f : G1 → G2 and g : G2 → G3 be isomorphisms. Then g ◦ f :
G1 → G3 is also an isomorphism. ∴ The relation is transitive. Thus
the relation is an equivalence relation.

Exercises 8.4 (p. 554)

1. 2 3. 4 5. 7 7. 1

Chapter 8 Graphs 983

9. b-a-d-b, b-a-c-b, b-d-c-b 11. no 13. no 15. yes

17. 5

25. 10

33. 0

19. 10

27. 0

21. 45

29. 10

23. 0

31. 2

35. start — ab — a — aA — A — AB — aA — AC — A — aA — C — cC

C — cC — A — aA

37. Initially, the farmer takes a2, a4, . . . , a2n across the river and then
returns. She takes a3, a5, . . . , a2n−1 across and brings a2, a4, . . . , a2n
back to the original side. She takes a1 and a2n+1 to the other side, and
then returns. Finally, she takes a2, a4, . . . , a2n to the other side.

39. Algorithm graph (G,A,connected)

(* This algorithm determines if the graph G with n vertices is
connected using Theorems 8.4 and 8.5, and its adjacency matrix A. The
boolean variable connected denotes whether or not G is connected. *)
Begin (* algorithm *)

(* find S = � Ai *)
B ← A (* initialize *)
S ← A (* initialize *)
for i = 2 to n - 1 do
begin (* for *)

B ← AB
S ← S + B

endfor
(* check if any entry of S is nonzero. *)
i ← 1
j ← 1
done ← false
connected ← true
while (not done) and (i ≤ n) and (j ≤ n) do

if sij = 0 then
begin (* graph is not connected *)

connected ← false
done ← true

endif
else

begin (* else *)
i ← i + 1
j ← j + 1

endelse
End (* algorithm *)

Exercises 8.5 (p. 573)

1. no 3. no 5. yes

984 Solutions to Odd-Numbered Exercises

7. a-e1-b-e2-c-e3-a-e4-c-e5-a

9. a-e1-b-e2-a-e5-c-e6-a-e7-c-e3-b-e4-c-e9-d-e8-a

11. a-e1-b-e4-d-e7-e-e3-b-e5-c-e6-d-e2-a

13. no

17. contains an Eulerian circuit.

21. none

25. n = 2

29. contains a Hamiltonian cycle.

33. not a connected graph.

37. contains a Hamiltonian cycle.

41. no Hamiltonian cycle; contains

15. contains an Eulerian circuit.

19. no

23. n odd

27. r even

31. contains a Hamiltonian cycle.

35. contains a Hamiltonian cycle.

39. contains neither

a Hamiltonian path, a-b-c-e-d.

43. n ≥ 3

47. neither

51. Tn is Eulerian ∀n ≥ 1.

45. contains a Hamiltonian path.

49. m = n

53. Sn is not Eulerian if n ≥ 2.

55.

59. a-c-b-d-e-a, 53

57.

61. none 63. none

65. 1-15-12-4-5-11-16-9-7-2-14-13-3-6-10-17-8

67. Algorithm Eulerian path (G,A)

(* G is a connected graph with n vertices and with adjacency matrix
A = (aij)n×n. Using Theorem 8.8, this algorithm determines if G
contains an Eulerian path. Odd is a counter that keeps track of the
number of odd vertices in G. *)
Begin (* algorithm *)

odd ← 0 (* initialize the counter *)
flag ← false (* boolean flag to exist when odd > 2 *)
i ← 1 (* initialize row index *)
while (i ≤ n) and (not flag) do (* compute each row sum *)
begin (* while *)

sum ← 0
for j = 1 to n do

sum ← sum + aij
if sum is odd then (* update the counter *)

odd ← odd + 1
if odd > 2 then (* exit the loop *)

flag ← true
endwhile

Chapter 8 Graphs 985

if odd = 2 then
graph has an Eulerian path

else
graph does not have an Eulerian path

End (* algorithm *)

Exercises 8.6 (p. 584)

1.
a

c d e

b
3.

a

e

b c
d f

5. 011 111

001 101

010 110

000 100

9.

a d

b c

e

7.

a c

b

de

11. e = 25, v = 15, r = 12
r = e − v + 2

13. e = 25, v = 15, 3v − 6 = 39 ≥ e

15. 13 17. 6, 9 19. 5; 2; 7

21. a c d

w x z

23. m, n ≤ 2

25. 3

27. d

b

a

f

g

c
h

j

e

i

Exercises 8.7 (p. 595)

1. 4 3. 2 5. 4 7. 2 9. 2 11. 5 13. 3 15. 2

17. min{m, n} ≤ max{m, n}
21. 1, 3; 2; 4, 7; 5; 6

25. A, D; B, C

19. 1, 6; 2, 3; 4; 5

23. 1, 2, 4; 3, 5; 6; 7, 8, 9

27. A, B, F; C, D; E

986 Solutions to Odd-Numbered Exercises

Review Exercises (p. 601)

1.

a b c
a
b
c

⎡
⎣1 0 1

0 1 1
1 1 1

⎤
⎦

3.

a b c d e
a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 1 1 1 0
1 0 0 1 1
1 0 0 1 0
1 1 1 1 0
0 1 0 1 0

⎤
⎥⎥⎥⎥⎦

5. no 7. no 9. 17 11. Kn 13. m = n

15.
a a

b b

c a

c

c

b c

17.
a b

b a

c

d

e

a

a

b

c

d

d

b

d

d

e

c e

19. yes; f (a) = i, f (b) = j, f (c) = k, f (d) = l, f (e) = m, f (f) = n, f (g) = o,
f (n) = p

21. yes 23. no 25. no 27. no 29. yes 31. no

33. c

f

d

a

be

35. no

37. e = 11, v = 7, r = 6; r = e−v+2

39. 13

41. yes

43. Assume K3,3 is planar. For K3,3, v = 6 and e = 9. Then 2v − 4 =
12 − 4 = 8 < e, is a contradiction. ∴ K3,3 is nonplanar.

45. Assume K3,5 is planar. Then 2v − 4 = 16 − 4 = 12 < e, which is a
which contradiction. ∴ K3,5 is nonplanar.

Chapter 9 Trees 987

Supplementary Exercises (p. 604)

1. n, n + 1, 2n 3. n ≥ 3 5. yes 7. yes

9. Label the vertex of degree
n with 1 and the others
2, 3, . . . , (n + 1):

2 3

1

n n � 1

15. C5

17. Suppose the graph contains e
edges. Then e = C(n, 2)/2 =
n(n − 1)/4. ∴ 4|n or 4|(n − 1),
that is, n ≡ 0 (mod 4) or
n ≡ 1 (mod 4).

19. (n − 1)!/2
21. (n!)2/2

23. f e d

a b c

Delete a-d. The ensuing sub-
graph is planar:

f e d

a b c

11.
∑
i�=j

vi,
∑

vivj

13. Let G = (V1, E1) and H = (V2, E2)
be two simple graphs. Assume f :
G → H is an isomorphism. Let
G′ = (V1, E′

1) and H′ = (V2, E′
2)

be their complements. Let g: G′ →
H′ defined by g(u) = f (u). Since
|E1| = |E2|, |E′

1| = |E′
2|. To show

that g preserves the adjacency rela-
tionship, assume {u, v} ∈ E′

1. Then
{u, v} ∈ E1. So {f (u), f (v)} �∈ E2;
that is, {g(u), g(v)} ∈ E′

2. Thus if
{u, v} ∈ E′

1, then {g(u), g(v)} ∈ E′
2.

∴ g is an isomorphism.
Conversely, let G′ and H′ be

isomorphic. Then (G′)′ = G and
(H′)′ = H are isomorphic, by the
first part.

Chapter 9 Trees

Exercises 9.1 (p. 613)

1. yes 3. no 5. no 7. no; contains cycles.

9. n = 8, e = 7 = n − 1 11. n = 12, e = 11 = n − 1

988 Solutions to Odd-Numbered Exercises

13. By Theorem 8.1,
n∑

i=1
deg (vi) = 2(no. of edges). But, by Theorem 9.2,

number of edges = n − 1. ∴
n∑

i=1
deg (vi) = 2(n − 1) = 2n − 2.

15. yes

21.

17. no

23.

19. m = 1 or n = 1

25. 4, 6, 3, 5, 4, 4, 4, 5, 5, 5, 6

27. Algorithm tree (A,n)

(* Using Theorem 9.2, this algorithm determines if a graph
with adjacency matrix A = (aij)n×n is a tree. Flag is a boolean
variable and stores the value true if the graph is a tree and false
otherwise. *)
0. Begin (* tree *)
1. flag ← false (* initially assume that the graph is not a tree *)

(* compute the sum of the degrees of the vertices *)
2. sum ← 0
3. For i = 1 to n do
4. For j = 1 to n do
5. sum ← sum + aij
6. If sum = 2n - 2 then
7. flag ← true
8. End (* tree *)

Exercises 9.2 (p. 624)

1. n − 1 3. 4 5. a b 7. b
c

da

9. a

e f d

hg

i

cb

11. a

e

f

d c
h

g

b 13.

a

e i

j

f

d

c
h

k

g

b

15.

a c

b 17. a

c

e

b

d

f

19. b

a

d

e

hfc

g

Chapter 9 Trees 989

21.

b

a

d

e

h

i

f

c
g

23. a b 25. b
c

da

27. a

e f d

hg

i

cb

29. a

e

f

d c
h

g
b 31.

a

e i

j

f

d

c
h

k

g

b

33.

1

2

3

4 5

35.

1

2

4

5

3 37. no solution

39.
Q

Q

Q

Q

Q

Q

41. 43.

45. 1 47. 16 49. 51.

53. 1 55. 9 57. 12 59. 125

Exercises 9.3 (p. 633)

1. b c

a d

e

3

2 42

3.

b

c

a
f2 7

d

e
3

5

3

990 Solutions to Odd-Numbered Exercises

5.

3

c
d

f

a

2
6

8

4

3

5

7

b

e

g

h

i

9.

b

c

a
f2 7

d

e
3

5

3

13.

1 3

5 75

2 4 5 664

17. 2

5

3 3

1 4

6

7. b c

a d

e

3

2 42

11.

3

c
d f

a

2
6

8

4

3

5

7

b

e

g

h

i

15.

1 3

5 75

2 4 5 664

19. 2

5

3 3

1 4

6

Exercises 9.4 (p. 643)

1. 1 3. 2 5. m = 2 7. m = 4

9. no 11. yes 13. no 15. no, no, yes

17. 19.

{a, b}

{a}

{a}, {b}

21. 13

23. 40, 81 25. 243 27. 4 29. 8

31. 31 33. yes 35. yes 37. yes

39. 41. mh

45. 4
43.

mh+1 − 1
m − 1

47. 729

Chapter 9 Trees 991

49. l = n − i = (mi + 1) − i = (m − 1)i + 1 51. yes

53. Since m ≥ 2, m · mh ≥ 2 · mh. That is, mh+1 ≥ 2mh, so mh(m − 1) >
mh − 1.
∴ mh > (mh − 1)/(m − 1). That is, l > i, by Exercise 41.

Exercises 9.5 (p. 661)

1. a, b, d, c, e, f

7. d, b, e, f , c, a

3. a, b, d, h, i, e, c, f , g, j, k

9. h, i, d, e, b, f , k, j, g, c, a

5. d, h, b, e, a, f , c, i, g

11. a, b, d, h, e, c, f , g, i

13. a, b, c, d, e, f

17. −+ ↑ a ↑ bc/def

21. abc ↑↑ de/ + f −

15. a, b, c, d, e, f , g, h, i, j, k

19. − − a + ∗bcd ∗ ef ↑ gh

23. abc ∗ d + e/f ∗ gh ↑ −−

25. –

+

a

b c

d e

f

/

27. –

–

a *

+

*

b c

d

e

hg

f/

29. a + [b/(c − d)] ↑ e

31. [a − (b + c)] ∗ d ∗ e ↑ (f − g)

35.
a
b

+
(c

d

)
∗ [e + (f − g)]

33. a/[(b + c) ∗ d ∗ e − f

37. 22

39. 32

41.

a c –

–*

+

b

d e

45. 196

47. ↑ ∗ + 432/6 − 85

49. 43 + 2 ∗ 685 − / ↑
51. [(4 + 3) ∗ 2] ↑ [6/(8 − 5)]

43.

a

c

*

*

+

b

d

e f

53.

x

y z

y zx

x

/ –

+

992 Solutions to Odd-Numbered Exercises

55.

a b

b c d e

� �

�

�

�

57.

+

w

z

yx

yw

z–*

/

59. Let l denote the number of leaves and n the number of vertices in a
full binary tree. Then, by Exercise 58, l = n + 1

2
. Since l is an integer,

n must be odd.

61. n = 2l − 1 63. 14; 42 65. yes if n ≥ 3 67. no

69. l1 = 1 = l2
ln = ln−1 + ln−2, n ≥ 3

71. vn =
{

1 if n = 1 or 2
vn−1 + vn−2 + 1 if n ≥ 3

73. e1 = 0 = e2
en = en−1 + en−2 + 2, n ≥ 3

75. Let an = in + 1. Then, by Exercise 70, a1 = 1 = a2 and an = an−1 +
an−2, n ≥ 3. So in = an − 1 = Fn − 1.

77. Let an = en + 1. Then, by Exercise 73, a1 = 1 = a2 and an = an−1 +
an−2 + 1, where n ≥ 3. By Exercise 76, en = an − 1 = (2Fn − 1) − 1 =
2Fn − 2.

79. Algorithm inorder (vertex)

(* Prints a binary tree using
recursion *)
Begin (*inorder*)

if tree �= Ø then
begin (* if *)

inorder (left subtree)
print (vertex)
inorder (right subtree)

endif
End (* inorder *)

81. Algorithm eval (vertex)

(* This algorithm evaluates a
binary expression tree using
recursion. *)
Begin (* eval *)

if tree �= Ø then
begin (* if *)

eval(left subtree)
eval(right subtree)
perform the operation at
the vertex

endif
End (* eval *)

Chapter 9 Trees 993

Exercises 9.6 (p. 668)

1. i

a u

e o

7. do

re

same

fa la

3. u

o

i

e

a

5. 8

5 13

2132

9. order

ouch

outcome

outcry outlet

outing

outfit

11. 3 13. 5 15. 3 17. 4 19. 5

21.

and

ago years

seven

fourscore 23. all

that

glitters

is

gold not

25. Algorithm traverse (vertex)

(* This algorithm prints the
contents of a binary search tree
rooted at vertex in lexicographic
order using preorder traversal. *)

Begin (* traverse *)
If tree �= Ø then
begin (* if *)

traverse (left subtree)
print (vertex)
traverse (right subtree)

endif
End (* traverse *)

27. 34

13 21

2

1

58 3

994 Solutions to Odd-Numbered Exercises

Exercises 9.7 (p. 675)

1. 011101101110 3. 1101011011010001 5. YEAR

7. AN ANT 9. 110 11. 011

13. 01000111 15. 11011100010110111

17. doe 19. coffee

21. 0

0

a f e

d

b c

0

0

01

1

1

1

1

33. 1100

37. 0011010010011010000100

41. eclogue

23. 00, 1110, 1111, 110, 10, 01

25. 111000111010

27. 11111011010110

29. abed

31. efface

35. 0001

39. 11001010011111110001100

43. baggage 45. 47

Exercises 9.8 (p. 679)

1. 7

3. 11

5. 3

7. 4

9. a?c

a?b

a-L c-H b-L c-L a-Hd-H

b?d a?b
<

<

<

<

<<

=

==

11. Algorithm sort (a,b,c)

(* This algorithm sorts the
elements a, b, and c in
lexico-graphic order. *)
Begin (* sort *)

if a < b then
if c < a then

print (c,a,b)
else if b < c then

print(a,b,c)
else

print(a,c,b)

13. Algorithm counterfeit
coin(a,b,c,d,e,f,g)

(* There are seven coins
a through g; one of them
is heavier. This algorithm
identifies the false coin using
an equal arm balance and a
minimum number of weighings. *)
Begin (* counterfeit coin *)

if a + b + c < d + e + f then
if d < e then

e is heavier

Chapter 9 Trees 995

else if c < b then
print(c,b,a)

else if c < a then
print(b,c,a)

else
print(b,a,c)

End (* sort *)

else if d = e then
f is heavier

else
d is heavier

else if a + b + c = d + e + f then
g is heavier

else if a < b then
b is heavier

else if a = b then
c is heavier

else
a is heavier

End (* counterfeit coin *)

Review Exercises (p. 681)

1.

b

a

c

d

f
i

h

e

g 3.

gf
a

e

d

c

b

5. f

g

a

e
d

c

b 7.

1 3 4
5

2 9. f

g

a

e
d

c

b

11. 2

3
1 5

4

13. b

a
2

2 2

3
c

d

f

4
g

e2 15. 1 3 5

2 4

42
3

3

17. b

a
3

2 2

3
c

d

f

4
g

e2 19.

4

1 3 5

2 4

2
3

3

996 Solutions to Odd-Numbered Exercises

21. book

CH1

S1 S2 S1 S2 S3 S1

SUB1 SUB1 SUB2

S2 S3 S1 S2

CH2 CH3 CH4

23. 3 25. 2187 27. 61 29. 75 31. 3 33. 3

35. rn =

{
0 if n = 1
r�n/2� + 1 if n ≥ 2

37. proof (by PMI): Let P(n) : rn = � lg n�. When n = 1, r1 = 0 = �lg 1�.
∴ P(1) is true. Assume P(k) is true; that is, assume that rk = �lg k�.
Then rk+1 = r�(k+1)/2� +1 = �lg [(k+1)/2]�+1 = �lg (k+1)�. ∴ P(k+1)
is true. Thus the result follows by induction.

39. abdgehcfij, dgbehacijf , gdhebjifca

41. − + a ∗ /bc/ + de − fg ↑ hi

45.

*a

b

d e f g

c

h

/ /

i

�

�

�

�

↑

43. abc/de + fg − / ∗ +hi ↑ −
47.

x

x z

y

w z

� �

�

≤ ≤

49. + + a − bc ↑ d ↑ ef

53. 27

51. abc − +def ↑↑ +
55. 78

57. math

is not

spectator

sport

a

61. 1010110011010000100

63. 111101100011100011111

59. 0 1

0 1

e a 0 1 0 1

n c 0

0

d l ()

1 t � 0 1

1 0 1

0 1

65. (c + a) 67. 5 69. 7

Chapter 10 Digraphs 997

Supplementary Exercises (p. 686)

1. 3. 10, 6

5. Let e be the number of edges in F. Let Ti = (Vi, Ei) be a tree in F,
1 ≤ i ≤ k. Let |Vi| = vi and |Ei| = ei. Then

∑
vi = n and ei = vi − 1.

∴ e = ∑
ei = ∑

(vi − 1) =
∑

vi − k = n − k.

7. Since a tree is planar, the number r of regions formed is 1. By Euler’s
formula, the is number of edges e of the tree is given by e = r + v−2 =
1 + n − 2 = n − 1.

9. Let T and T′ be two spanning trees of a connected graph G with n
vertices. Assume T and T′ contain e and e′ edges respectively. Then,
by Theorem 9.2, e = n − 1 = e′.

11. •————•

13. Since e is a bridge, (V , E-{e}) is disconnected with two subgraphs, each
being a tree. So it is a forest of two trees.

15. 3 weighings

Chapter 10 Digraphs

Exercises 10.1 (p. 704)

1. 2, 1, 3; 2, 3,1; 4, 4, 4 3. no sources or sinks.

5.

a b c
a
b
c

⎡
⎣1 0 1

1 1 1
0 0 1

⎤
⎦ 7.

∑
indeg (vi) = 2 + 1 + 3

= 6 = e =
∑

outdeg (vi)

9. C(n, 2) 11. 3 13. 2 15. b 17. yes

19.

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ 21. yes

23. Let A = (aij)n×n be the adjacency matrix of a digraph. Suppose row k
is zero; that is, akj = 0 ∀k. Then row k of every power of A[m] is zero,
so row k of the reachability matrix is zero. ∴ By Theorem 10.3, the
digraph is not strongly connected.

998 Solutions to Odd-Numbered Exercises

25. b

a c

27. yes

31. yes

35. 0011

29. yes

33. sink

37. 00101110

39. 00

0

0

1

1 1

0

43. 16

47. 0011

49. 0000111101100101

41.
1

0

1

1

1

0

1

1

0

0

1

0

0
1

0 0

Exercises 10.2 (p. 713)

1. no

7. a; no sinks.

13. no

3. yes

9. no sources; a, c, d, f

15. yes

5. no sources; a, c, d, f

11. a and e; f

17. yes

19.

A

FE

G

C

B D

25.

�

�

�

↓

*

b

a

c

21.

�

�

↓

↓

x

y z

27.

�

�

�
�

�

�

↓

d

b

a

c

*

23.

��

*

↓

↓

x

y z

w

29. 10

33. ab + ab + bc + −∗
37. ∗ + ab − +ab + bc

31. 306

35. abc− ↑ bc − +bc − abc− ↑ bc − ∗/−
39. −+ ↑ a − bc − bc/ − bc ∗ ↑ a − bc − bc

Chapter 10 Digraphs 999

41. (a + b) ∗ ((a + b) − (b + c))

43. ((a ↑ (b − c)) + (b − c)) − (b − c)/((a ↑ (b − c) ∗ (b − c))

45. Suppose dag D contains n vertices and no sinks. Then outdeg (v) ≥
1 ∀v. Since outdeg (v) ≥ 1, v has an immediate successor v1. Since
outdeg (v1) ≥ 1, v1 has an immediate successor v2. Continuing like this,
a directed path results: v-v1-v2- · · · -vi. If two vertices along this path
are the same, then D would be cyclic, a contradiction. If no two vertices
are identical, the procedure can be continued until we get a path con-
tinuing all vertices in D : v-v1-v2- · · · -vi- · · · -vj. Since outdeg (vj) ≥ 1,
vj has an immediate successor and it must be one of the vertices in
the path. So the path and hence D contains cycle, a contradiction. ∴ D
contains a source.

47. t1, t2, t3, t4, t5, t6, t7, t9, t8, t10, t11, t12, t13 49. E, G, B, F, C, A, D

Exercises 10.3 (p. 723)

1. 9

3. 12
5.

a b c d e
a
b
c
d
e

⎡
⎢⎢⎢⎢⎣

0 8 5 0 2
0 0 6 6 0
0 0 0 0 0
3 0 3 0 0
3 0 7 4 0

⎤
⎥⎥⎥⎥⎦

7. a-c-b-e-f , 13; a-b-e-f , 11;
a-b-e-d-b-e-f , 21; a-d-b-e-f , 15

9. a-c-e-g, 11; a-c-b-e-g, 11;
a-b-e-g, 9; a-d-b-e-g, 13

11. 2

23. 2

13. 3

25. 4

15. 2

27. a-b-c

17. 3

29. 2

19. 2

31. 4

21. 3

33. a-b, 2; a-d-c, 4; a-d, 1; a-d-e, 6;
a-d-c-f , 11; a-b-g, 8; a-d-h, 4;
a-d-c-i, 12

35. a-c-b, 6; a-c, 2; a-d, 5;
a-c-e, 9; a-d-f , 13; a-d-g, 13

37. a-b, 2; a-c, 4; a-d, 1; a-d-e, 6; a-d-c-f , 11; a-b-g, 8; a-d-h, 4; a-d-c-i, 12

39. Algorithm Floyd (D,W,P)

(* P is a one-dimensional array such that Pi is the immediate
predecessor of vertex i along a shortest path from source 1. *)
Begin (* Floyd *)

(* initialize P. *)
for i = 1 to n do

Pi ← 1
for i = 1 to n do

for j = 1 to n do
for k = 1 to n do

if wji + wik < wjk then

1000 Solutions to Odd-Numbered Exercises

begin (* if *)
wjk ← wji + wik
Pk ← i

endif
End (* Floyd *)

41. a-b, a-c, a-d, a-d-e, a-d-c-f , a-b-g, a-d-h, a-d-c-i

Review Exercises (p. 727)

1. 1, 3, 1, 0, 1; 1, 2, 0, 2, 1 3. yes

5.

⎡
⎢⎢⎢⎢⎣

0 1 1 0 1
0 1 1 0 1
0 0 0 0 0
1 1 1 0 1
0 1 1 0 1

⎤
⎥⎥⎥⎥⎦

7. yes

11. no

15. 221201100

9. 010, 101, 011, 111, 110, 100, 001

13. no

17. 33, 32, 22, 21, 12, 20, 02, 23, 31, 11, 13, 11, 13, 30, 01, 10, 00, 03

19. 3 21. d 23. no

25. →
�

�

�

x

zy

27. �

�

�

a b

dc*

↓
29. 31

31. ab ∗ c ↑ ba − d + + 33. 325 ↑ + 25 ↑ 24 ∗ /−
35. + ↑ ∗ abc + −bad 37. − + 3 ↑ 25/ ↑ 25 ∗ 24

39. (3 + 2 ↑ 5) − 2 ↑ 5/(2 ∗ 5) 41. 7

43. 15 45. a-b-e-g 47. a-c-f -g; 11

Supplementary Exercises (p. 730)

1. n − 1 3. n2 − 2n 5. C(n, 2)

7. proof (by PMI): Suppose the tournament has n vertices. When n = 2,
the tournament has a single edge and the edge is a Hamiltonian path.

Now assume that every tournament with n vertices has a
Hamiltonian path. Let T be a tournament with n + 1 vertices,
v1, v2, . . . , vn+1. Delete vn+1 from T. This yields a tournament with
n vertices; by the IH, it has a Hamiltonian path, say, v1-v2- · · · -vn.

Chapter 11 Formal Languages and Finite-State Machines 1001

Returning to the tournament T, if vn-vn+1 is an edge in T, then
v1-v2- · · · -vn-vn+1 is a Hamiltonian path in T; on the other hand, if
vn+1-v1 is an edge in T, then vn+1-v1-v2- · · · -vn is a Hamiltonian path in
T. Otherwise, there must be a positive integer i such that both vi-vn+1
and vn+1-vi+1 are edges in T. Then v1-v2- · · · vi-vn+1-vi+1- · · · -vn is a
Hamiltonian path in T.

Thus, by PMI, the result is true ∀n ≥ 2; that is, every tournament
with n ≥ 2 vertices has Hamiltonian path.

9. In both D1 and D2, a is a root. In D3, every vertex is a root.

11. a-e-c-d-b 13. a-b-d-c 15. no

17. A graph is strongly orientable iff it is connected and has no bridges.

Chapter 11 Formal Languages and Finite-State Machines

Exercises 11.1 (p. 741)

1. b, bb, bab, bbabb, bbabb

5. λ, a, b ∈ L;
x ∈ L ⇒ axa, bxb ∈ L.

9. 1 ∈ L; x ∈ L ⇒ xx ∈ L.

3. λ, b2, b4, b6, b6

7. 0 ∈ L; x ∈ L ⇒ 1x, xx ∈ L.

11. 00 ∈ L; x ∈ L ⇒ x0, x1 ∈ L.

13. F

17. no

21. λ ∈ S; x ∈ S, y ∈ S ⇒ xy ∈ S.

25. 00, 01, 10, 11

15. F

19. invalid

23. λ ∈ �∗; x ∈ �∗,
y ∈ � ⇒ xy ∈ �∗.

27. 0, 1, 2

29. proof (by contradiction): Assume�∗ is finite. Since� �= Ø, it contains
an element a. Let x be a word of largest length in�∗. Then l(xa) = l(x)+
l(a) > l(x). ∴ xa ∈ �∗ and is longer than x, which is a contradiction.

31. {a, bc, aba, abbc, bca, bcbc}
33. {a3, a2bc, abca, a(bc)2, bca2, bcabc, bcbca, (bc)3}

35. �A = {λ}{a, bc} = {a, bc} = A

37. (B ∪ C)A = {aa, aab, ba, bab, ca, cab, aba, abab}
= BA ∪ CA

39. (B ∩ C)A = Ø = BA ∩ CA

1002 Solutions to Odd-Numbered Exercises

41. F

49. 0, 01, 011

43. T

51. 01, 013, 015

45. T

53. λ, 01, 0101

47. T

55. λ, 0, 1, 01

57. proof (by PMI): Since�⊆�, the result is true when n = 0. Assume it
is true for an arbitrary integer k ≥ 0. Then Ak+1 ⊆ ABk+1 ⊆ BBk+1 =
Bk+1. Thus the result follows by PMI.

59. Since A ⊆ A∗, A∗ ⊆ (A∗)∗. Conversely, let x ∈ (A∗)∗. Then x ∈ (A∗)m

for some integer m ≥ 0. So x = ym, where y ∈ A∗. Since y ∈ A∗,
x = y y ∈ A∗. So (A∗)∗ ⊆ A∗. Thus (A∗)∗ = A∗.

61. �A = {λ}A = {λa|a ∈ A} = {a|a ∈ A} = A

63. Since A1 = A, the result follows.

65. Let x ∈ (B ∪ C)A. Then x = ya, where y ∈ B ∪ C and a ∈ A. If y ∈ B,
then ya ∈ BA, so x ∈ BC ∪ CA. If y ∈ C, then ya ∈ CA, so x ∈ BC ∪ CA.
Thus, in both cases, (B ∪ C)A ⊆ BC ∪ CA.

Conversely, let x ∈ BA ∪ CA. If x ∈ BA, then x = ba, where b ∈ B
and a ∈ A. Since b ∈ B ∪ C, x ∈ (B ∪ C)A. Similarly, if x ∈ CA, then
also x ∈ (B ∪ C)A. Again in both cases, BC ∪ CA ⊆ (B ∪ C)A. Thus
(B ∪ C)A = BC ∪ CA.

67. (A∗B∗)∗ = (A ∪ B)∗ = (B ∪ A)∗ = (B∗A∗)∗

Exercises 11.2 (p. 755)

1. yes 3. no 5. �sentence�

�np�

�art� �art��noun�

the cat

�noun�eats

�verb� �op�

the chicken

7.

a A

a

σ 9.

b A

a

b A

a A

σ 11. yes 13. yes

15.

a A

b

σ

Chapter 11 Formal Languages and Finite-State Machines 1003

17.

a A

b

a σ

a σ

σ 19. no

23. {anb | n ≥ 1}
27. yes

21. yes

25. no

29. {aa, abb}
31. σ → σσ , σ → 1

33. σ → σ0, σ → σ1, σ → 00

35. σ → σ0, σ → 1σ , σ → 1

37. σ → aσ , σ → aA, A → b

39. σ → aAB, A → Aa, B → Bb, A → a, B → b

41. �integer�

�ui�

�digit� �ui�

�ui��digit�

4

3

2

�digit�

45. no 47. no

49. �id�

�alfa�

�let� �alfa�

�alfa��let�

�alfa��let�

�alfa��let�

e

a

l

v

�let�u

53. yes 55. no

43. 〈id〉 ::= 〈letter〉 | 〈alfa〉
〈alfa〉 ::= 〈letter〉|〈letter〉〈alfa〉|

〈ui〉|〈ui〉〈alfa〉
〈ui〉 ::= 〈digit〉|〈digit〉〈ui〉

〈letter〉 ::= a|b|c| . . . |z
〈digit〉 ::= 0|1|2| . . . |9

51. �id�

�alfa�

�let� �alfa�

�alfa��let�

�alfa��let�

h

a

t �let�

m

1004 Solutions to Odd-Numbered Exercises

57. �expr�

�expr� �optr� �expr�

�expr�

�expr� �optr� �expr�

�digit�

4

↑ �digit�

3

� ��digit�

5

�

59. �expr�

� �expr�

�expr� �optr� �expr�

�digit�

5

� �digit�

2

� �

�digit�

�expr� �optr� �expr�

3

↑ �expr�� �

61. yes 63. yes

65. �number�

�sign� �dn�

�digit��ui�

�digit��ui�

�digit� 7

6

3

�

67. �number�

�dn�

�ui� • �ui�

�digit��digit� �ui�

�digit�

2

30

69. yes 71. yes

Chapter 11 Formal Languages and Finite-State Machines 1005

73. �expr�

�term�

�term� �mo� �factor�

�expr�

�expr� �ao� �term�

�term�

�factor� 	

�

�let�

�mo� �factor�

 �

�let� d

c

�term�

�factor�

�let�

b

�factor�

�let�

a

*

75. yes 77. yes

79. 〈un〉 ::= 〈ui〉 · 〈ui〉E〈ui〉|〈ui〉 · 〈ui〉E〈sign〉〈ui〉
〈ui〉 ::= 〈digit〉|〈digit〉〈ui〉

〈sign〉 ::= +|−
81. no 83. yes

Exercises 11.3 (p. 768)

1. s0-s1-s1-s1-s2

5. s0-s1-s2-s3-s1-s2

9. no

13. no

3. s0-s1-s2-s3-s0

7. s0-s1-s4-s4-s4-s4-s4

11. yes

15. no

17.

s0 s1
s2

a
a

a b
bb

→

19.

s0 s1
s2

a

b b b

a a a,b

s3→

1006 Solutions to Odd-Numbered Exercises

21.
f

S� ��
I a b

s0 s1 s0
s1 s1 s2
s2 s1 s0

23.
f

S� ��
I a b

s0 s1 s2
s1 s1 s3
s2 s2 s2
s3 s1 s3

25. Words ending in bb.

29. Words containing exactly two b’s.

27. Words ending in bb.

31. Words ending in ab.

33. Words beginning with a and ending in b.

35. Words containing an odd number of a’s and an odd number of b’s.

37.

s0 s2

s1

s3

a,b

a,b

aa

bb

→

39.

s0 s1 s2
b

b

b
a a

a,b
a

s3→

41.

b

a
s0 s1 s2

a

a bb
s3

a,b

s4

ba

→

43.

a a

(0,0)

(1,0)

a a

a

b

b

b

b

b

b

b

b

b

→

a

a

(2,0)

(0,2)

(1,2)

(2,2)

a

a

(0,1)

(1,1)

(2,1)

Chapter 11 Formal Languages and Finite-State Machines 1007

45.

→

s2s12

4

3

5

d

d
d ≠ 4

d ≠ 2,4

d ≠ 3

s4s3

s5s0

47.

s0 s1 s2

s4

• d

d

d s3→

c ≠ d, • c ≠
 d

c ≠ dc ≠�,�,d

d�,�

Exercises 11.4 (p. 777)

1. s1

5. 0

3. s1

7. 1

9.

s0 s1 s2
b/0 b/0

b/1

a/1

a/0a/1

→

11.

s0 s1 s2
a/0b/1 s3→

a/0 b/1 a/1

a/0

b/0

b/0

13.
f g

S� ��
I a b a b

s0 s0 s1 1 0
s1 s2 s2 1 0
s2 s2 s0 0 1

1008 Solutions to Odd-Numbered Exercises

15.
f g

S� ��
I a b a b

s0 s0 s1 0 1
s1 s1 s2 0 1
s2 s2 s3 0 1
s3 s3 s1 0 1

17. 0101 19. 001011 21. 0110 23. 0000

25.
f g

S� ��
I 00 01 10 11 00 01 10 11

C0 C0 C0 C0 C1 0 1 1 0
C1 C0 C1 C1 C1 1 0 0 1

27. 11001 29. 110000

31.

a/0

a/0

a/0

b/0
b/1

s0
b/1s1 s2→

33.

b/0 b/0

a/1

b/0s0
b/1s1 s3s2

a/0 a/0 a/0

→

35. no 37. yes

39. Words ending in aa.

43. g(s, x) = 0

41.

a/1 b/0s0
a/0s1 s2

b/0 b/1 a/0

→

Exercises 11.5 (p. 781)

1. no 3. no

5. s0 → as1, s0 → bs0, s1 → as1, s1 → bs2, s2 → as1, s2 → bs3, s3 → as4,
s3 → bs0, s3 → a, s4 → a, s4 → b

Chapter 11 Formal Languages and Finite-State Machines 1009

7. s0 → as0, s0 → bs1, s1 → as0, s1 → bs2, s2 → as0, s2 → bs2, s1 → b,
s2 → b

9. s0 → as0, s0 → bs1, s1 → as1, s1 → bs2, s2 → as2, s2 → bs3, s3 → as3,
s3 → bs3, s2 → b, s3 → a, s3 → b

11. s0 → as1, s0 → bs0, s1 → as1, s1 → bs2, s2 → as1, s2 → bs0, s1 → b

13. s0 → as1, s0 → bs2, s1 → as1, s1 → bs3, s2 → as2, s2 → bs2, s3 → as1,
s3 → bs3, s1 → b, s3 → b

15. s0 → as1, s0 → bs0, s1 → as2, s1 → bs1, s2 → as2, s2 → bs2, s1 → a,
s2 → b

17. s0 → as2, s0 → bs1, s1 → as1, s1 → bs1, s2 → as3, s2 → bs1, s3 → as3,
s3 → bs3, s2 → a, s3 → a, s3 → b

19. s0 → as1, s0 → bs0, s1 → as1, s1 → bs2, s2 → as3, s2 → bs0, s3 → as3,
s3 → bs3, s2 → a, s3 → a, s3 → b

21. s0 → as1, s0 → bs2, s1 → as4, s1 → bs3, s2 → as3, s2 → bs4, s3 → as3,
s3 → bs3, s4 → as4, s4 → bs4, s4 → a, s4 → b

Exercises 11.6 (p. 785)

1.

b

a
a

s0
bs1 s2→

3.

b b
a,b

a

a a

s0
as1

s3

s2

a,b

→

5. a,b

a,b

a

s0

s4

aa

bb

s1 s2

s3

→

7.
S
�

��
I a b

s0 {s0, s1} {s2}
s1 {s1} {s2}
s2 {s2} {s2}

1010 Solutions to Odd-Numbered Exercises

9.
S
�

��
I a b

s0 {s0, s1} {s5}
s1 {s1, s2} {s5}
s2 {s2} {s3}
s3 {s3} {s4}
s4 {s4} {s4}
s5 {s5} {s5}

11. yes; σ -A-B-B-F

13. yes; σ -A-A-A-F

15. yes; s0-s1-s1-s2

17. no

19. no

21. yes; s0-s1-s2-s3-s4

23.

F

b

a

a b

A Ba→ σ

25.

a

b

b b

F

ab

a a

a

A

a,b

→ B C Dσ

27.

b

a
b a,bb

a→ s0 s1 s2

29.

a

a,b

a,b

a

a bb

→ s0 s2

s1

s3

31.

a b

b

→ s0 s1 s3s2
a

a,baa,b

33.

b b

b

a

a,b a,b

→ s0

s2

s1

s4

a

s3

Chapter 11 Formal Languages and Finite-State Machines 1011

35.

a b

a

a,b
a,b

bb

a→ s0 s1

s5

s2

a

s3

Exercises 11.7 (p. 792)

1.

a

a

b

ab

→ { }s1{ }s0

{s0, s2}

3.
a

ab

b

b

b

a

a,b

→ { }s0

{ }s3

{s1, s3}{s0, s1} {s1, s2, s3}

{s0, s1, s2}

a b
a

5.

{s0, s1}

a,b

→

aa

b

b

{ }s0

{ }s2

7.

{A,F}

a,b

a,b

a

→

a b

ba
{ }σ {A} {B}

b

φ

1012 Solutions to Odd-Numbered Exercises

9.

b
b

a a →s1s0

b

s2

11.

a
ab

b b

b

a →s1 s2s0

a

s3

13.

a →s1s0

b a,b 15.

b

ab

b

a →s1 s2s0

a a,b

s3

17. Words beginning with aa.

21. Words with at least one a.

19. Words beginning with bba.

23. Words containing aba as a substring.

25.

{s0, s2}

a,b

a

a

b

b

a
{s1}{s2} {s0}

b
b

a

φ

→

27.

a,b

a,b

{s0, s1, s2, s3}b ab {s2}{s3} {s1}

a
a

b

φ

→

Chapter 11 Formal Languages and Finite-State Machines 1013

29.

a
b

→

a,b

{s1} {s1, s2}

31.

a,b

{s0, s1, s2, s3}a

b

b
b

{s3}

{s0, s3}

{s2, s3}

a

a

→

Review Exercises (p. 794)

1. {a, aa, ab, aab, bca, bcab}

3. {λ, a, aa, bc, abc, bca, bcbc}, {λ, a, aa, bc, abc, bca, bcbc, a3,abca, bca2,
bcbca, a2bc, abcbc, bcabc, bcbcbc}

5. a, b, ac 7. ab, abab, ababab 9. yes

11. �sentence�

�np�

�art� �adj� �noun� �art� �noun��eats�

the discrete wolf

�verb� �np�

the cabbage

13. no 15. yes

17.

b

A

B

b

a

a

σ

σ

19.

a A

A
a

a

b

σ

σ

21. σ → bσ , σ → b 23. σ → bσb, σ → b

1014 Solutions to Odd-Numbered Exercises

25. �while stmt�

�expr� �stmt�do

�vble� �optr� �vble�

�vble�

x

�expr�
�

while

�vble� �vble��sign�

�assmt stmt�

y � z

x � y

27. a,b

a,b

b ba

b a a

→ s0 s3s1

s4

s2

29.
S
�

��
I a b

s0 s1 s0
s1 s2 s0
s2 s2 s2

31. Words beginning with abb. 33. Words containing aa.

35. a,b

a,b

a aa

b b b

→ s0 s3s1

s4

s2

37.

s0 s2

a/1

b/0 a/0

b/0

a/1

b/0
a/1

b/0
→ s3s1

Chapter 11 Formal Languages and Finite-State Machines 1015

39.
f g

S� ��
I a b a b

s0 s0 s1 0 1
s1 s2 s1 0 1
s2 s2 s2 1 0

41. 0010111 43. 010110

45.

a/0

b/0 a/0 a/0

b/0 a/0

b/0 b/1

a/1

b/1→ s0 s3s1

s4

s2

47.

s0 s2

b/0
a/0 b/1b/0

a/0

a/1

b/1

→ s3s1

49. σ → aA, σ → bC, A → bB, A → aC,
B → aC, C → aC, C → bC, B → bD,
D → aD, D → bD, D → a, D → b

51.

s0 s2→

b b a,b
a

b
s1

53.
S� ��

I a b

s0 {s1} {s2}
s1 {s0, s1} {s1}
s2 {s1} {s3}
s3 {s3} {s2, s2}

55. yes

59. yes

57. no

61. yes

1016 Solutions to Odd-Numbered Exercises

63.

σ→

b b a,b
aa

a b
b

A B

F

65. a,b
a

b a

a
b

{s0} {s2}{s1}

{s1, s2}

b

→

67. Words containing exactly one a.

69. By Exercise 68 in Section 11.1, (A ∪ B∗)∗ = (A ∪ B)∗ = (A∗ ∪ B)∗.

Supplementary Exercises (p. 798)

1.
(0, 1)

(1, 1)

(0, 0)

(1, 0)

a a a a

b

b

b

b

→
3.

(0, 1)

(1, 1)

(0, 0)

(1, 0)

a a a a

b

b

b

b

→

5.

s1
d

c ≠ �,�,d
c ≠ �,�,dc ≠ d, c ≠ d,E

c ≠ d
c ≠ d

c

d E d
d d d

s2

s2

s4s3 s5s0

�,� �,�

→

7. σ → aA, σ → bC, A → aA, A → bB, B → aA, B → bB, C → aC,
C → bC, B → b

9. 〈wfnp〉 ::= λ|〈wfnp〉

Chapter 12 Boolean Algebra and Combinatorial Circuits 1017

11.

s0
11

1 1

1

1

0

0 1

0 0

s1

s3

s2→

15. 1101

13.
f g

input

s 0 1

s0 s0 s1 1
s1 s2 s0 0
s2 s2 s1 1

17. 101110

19. Suppose x = x1x2 . . . xn ∈ L. Then there is a DFSA A that excepts x,
so there is a path that begins at s0 and ends at an accepting state sn.
Reversing the path yields the string xnxn−1 . . . x1. So making sn the
initial state and s0 the accepting state yields a NDFSA A′ that accepts
LR. (If A′ contains more than one accepting state, introduce a new state
s; then corresponding to every incoming edge to an accepting state,
add an edge terminating at s.) Now the result follows by Theorems
11.3 and 11.4.

Chapter 12 Boolean Algebra and Combinatorial Circuits

Exercises 12.1 (p. 812)

1. 30

11. 5

3. 30

13. 35

5. 1

15. 2

7. 5

17. 70

9. 6

19. 10

21. 5′ = 70/5 = 14
∴ (5′)′ = 14′ = 70/14 = 5

23. 5 � (5 ⊕ 7) = 5 � 35 = 5

25. 2n 27. yes 29. no 31. yes 33. yes

35. + 0 1 a b

0 0 1 a b
1 1 1 1 1
a a 1 a 1
b b 1 1 b

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a a 0
b 0 b 0 b

0′ = 1, 1′ = 0, a′ = b, b′ = a.

37. x + xy = x 39. (x + y)′ = x′y′

1018 Solutions to Odd-Numbered Exercises

41. xx = xx + 0 = xx + xx′
= x(x + x′) = x1 = x

45. x(x+y) = xx+xy = x+xy = x
49. (x + y)z = z(x + y)

= zx + zy = xz + yz

43. By complement law, 0 + 0′ = 1.
But by identity law, 0 + 0′ = 0′.
∴ 0′ = 1.

47. (x+y)′ = x′y′. ∴ [(x+y)′]′ = (x′y′)′
i.e. x + y = (x′y′)′

51. (x+ z)(y+ z) = x(y+ z)+ z(y+ z)
= xy + xz + zy + zz
= xy + xz + zy + z
= xy + (z + zx) + zy
= xy + (z + zy)
= xy + z

Exercises 12.2 (p. 821)

1. 1, 0 3. 2 5. yes 7. yes

9.
x y x′ y′ x + y′ x′ + y (x + y′)(x′ + y)

0 0 1 1 1 1 1
0 1 1 0 0 1 0
1 0 0 1 1 0 0
1 1 0 0 1 1 1

11.
x y z xy y′ y′z z′ yz′ xy + y′z + yz′

0 0 0 0 1 0 1 0 0
0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0
1 0 1 0 1 1 0 0 1
1 1 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1

13.
x y z y′ x + y′ + z xy′z (x + y′ + z) (xy′z)

0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 0 1 1 1 1 1
1 1 0 0 1 0 0
1 1 1 0 1 0 0

Chapter 12 Boolean Algebra and Combinatorial Circuits 1019

15.
x y z yz xyz (yz)′ x(yz)′ xyz + x(yz)′

0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1
1 0 1 0 0 1 1 1
1 1 0 0 0 1 1 1
1 1 1 1 1 0 0 1

17.
x y xy x + xy

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

↑ identical ↑

19.
x y x + y (x + y)′ x′ y′ x′y′

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

↑ identical ↑

21.
x y x + y (x + y)′ x′ y′ x′ + y′

0 0 0 1 1 1 1
0 1 1 0 1 0 1
1 0 1 0 0 1 1
1 1 1 0 0 0 0

↑ not identical ↑

23. yes

27. xy

31. xyz + xy′z′

35. xy + x′y + xy′

25. xyz, xyz′, xy′z, xy′z′, x′yz, x′yz′, x′y′z, x′y′z′

29. xy + x′y′

33. xy′z′ + x′yz′ + x′y′z

37. xy′

1020 Solutions to Odd-Numbered Exercises

39. xyz + xyz′ + x′yz

43. (x + y)xy′ = xxy′ + yxy′
= xy′ + x(yy′)
= xy′ + x0
= xy′

47. 0

49. 1

51. 0

41. x+y = x1+1y = x(y+y′)+ (x+x′)y
= xy + xy′ + xy + x′y
= (xy + xy) + xy′ + x′y
= xy + xy′ + x′y

45. y(x + z) = yx + yz = xy + yz
= xy(z + z′) + (x + x′)yz
= xyz + xyz′ + xyz + x′yz
= xyz + xyz′ + x′yz

53.
x y x↑y (x↑y)↑(x↑y)

0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

55.
x y x↑y (x↑y)↓(x↑y)

0 0 1 0
1 0 1 0
1 0 1 0
1 1 0 1

57.
x y x ↑ x y ↑ y (x ↑ x) ↓ (y ↑ y)

0 0 1 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1

59. xy′ + x′y + x′y′

61.
x y x + y x ↑ x y ↑ y (x ↑ x) ↑ (y ↑ y)

0 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 1 0 0 1

↑ identical ↑

63.
x y x + y x ↓ y (x ↓ y) ↓ (x ↓ y)

0 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 0 1

↑ identical ↑

65. (0,1,1)

Chapter 12 Boolean Algebra and Combinatorial Circuits 1021

67. Since {↑} is functionally complete, x′ = x ↑ x and x + y =
(x ↑ x) ↑ (y ↑ y), {+, ′} is also functionally complete.

69. 1

73. 0

77.
x x ⊕ x

0 0
1 0

71. 0

75. no

79.
x y x ⊕ y y ⊕ x

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

↑ ↑

81.
x y z y ⊕ z x ⊕ (y ⊕ z) x ⊕ y (x ⊕ y) ⊕ z

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 1 1 1 1
0 1 1 0 0 1 0
1 0 0 0 1 1 1
1 0 1 1 0 1 0
1 1 0 1 0 0 0
1 1 1 0 1 0 1

↑ identical ↑
83. (x + y)(x + y′)

85. (x + y + z)(x + y + z′)(x + y′ + z′)

87. (x+y+z)(x+y+z′)(x+y′ +z)(x+y′ +z′)(x′ +y+z)(x′ +y+z′)(x′ +y′ +z)

Exercises 12.3 (p. 829)

1. 0 3. 1 5. 1 7. 1 9. 0

11.
x y x ↑ y

0 0 1
0 1 1
1 0 1
1 1 0

13. xy′ + x′y + x′y′

15. xyz + x′yz + x′y′z + x′yz′ + x′y′z′

1022 Solutions to Odd-Numbered Exercises

17.
x y z NAND

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

19. true

21. false

Exercises 12.4 (p. 837)

1. x = 0

9. x + (yz)′
3. x = y = 1

11. (x+y)z′ +x′z

5. x′y′

13. (xy + yz+
7. (x + y)′y

zx)xy′z

15.
x y x + y (x + y)′ (x + y)′y

0 0 0 1 0
0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

17.
x y z yz (yz)′ x + (yz)′

0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1

19.

z

y

x

x(y′z�yz′)

Chapter 12 Boolean Algebra and Combinatorial Circuits 1023

21.

z

y

x

23.

y

x�y
x

27.

y

xy
x

25.
x x′

29. 1001 31. 1011

33. s = (x + y)(xy)′ = xy′ + x′y
∴ si = sci + s′ci = (xy′ + x′y)c′

i + (xy′ + x′y)′ci
= xy′c′

i + x′yc′
i + (x′ + y)(x + y′)ci

= xy′c′
i + x′yc′

i + (xx′ + x′y′ + xy + yy′)ci
= xy′c′

i + x′yc′
i + (0 + x′y′ + xy + 0)ci

= xyci + xy′c′
i + x′yc′

i + x′y′ci

35.

y s�(x�y) (xy)′

c�xy

x

Exercises 12.5 (p. 849)

1. x

7. xy

13. xyz

3. xy′

9. xy + yz + zx + xyz

15. x(wy + w′y′)

5. x′

11. xy

17. x

1024 Solutions to Odd-Numbered Exercises

19. xy′ + x′y

23. x

25. xyz + xyz′ + xy′z′ + x′y′z′
21.

y y′

x 1

x′ 1

27. xyz′ + xy′z′ + x′yz′ + x′y′z′

33. xy + y′z′
29. xy′ 31. y′

35. z′

37. wxyz′ + wxy′z′ + wx′yz′ + wx′y′z′ + w′x′yz′ + w′x′y′z′ + w′xyz′ + w′xy′z′

39. wxyz + wx′yz + w′x′y′z′ + w′x′y′z + w′xy′z′ + w′xy′z

41.

yz yz′ y′z′ y′z
wx 1

wx′

w′x′

w′x 1

43.

yz yz′ y′z′ y′z
wx 1

wx′ 1

w′x′ 1

w′x 1

45. z′

49. yz

47. wyz + w′y′

51. wx + y′z

Exercises 12.6 (p. 856)

1. x + y′z′

7. x + y′

13. wx′ + xyz

3. y′ + w′y

9. z′

15. x′y′z′+x′y′z+xyz′+

5. wx + xyz + w′xy′

11. xyz′ + w′x′y′z′

xyz

17. w′x′y′z′ + w′x′yz′ + w′xy′z′ + w′xyz′ + wx′y′z′ + wx′yz′

19. w′x′y′z′ + w′xyz′

21. w′xyz + wx′y′z′ + wx′y′z + wx′yz′

23. yz + y′z′ + wx′ + w′x′

25. yz′ + w′x′y + x′y′z′ + w′xy′z
27. xy′z + xyz′ + w′x + y′z′

Review Exercises (p. 859)

1. yes

7. 2

3. no

9. 30

5. When n is a product of distinct primes.

11. (x + y)(x′ + y) = y

Chapter 12 Boolean Algebra and Combinatorial Circuits 1025

13.
x y z x + y x + y + z x′ y′ x′y′ z′ x′y′z′ f

0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 1 1 1 1 0 0 0
0 1 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 0 0 0
1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 0

15.
x y z yz x′ x′y′z x + x′yz x + yz

0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
0 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1
1 1 0 0 0 0 1 1
1 1 1 1 0 0 1 1

↑_ identical _↑
17. x′yz′ + xy′z + xyz′

21. xyz + xyz′ + xy′z + x′yz

19. xyz + xyz′ + xy′z + x′yz

23. 0

25.
x y x ↓ x y↓ y (x↓ x)↑ (y↓ y)

0 0 1 1 0
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

27. xy + xy′ + x′y + x′y′ 29. xy′z′ + x′yz′ + x′y′z

31.

z xyz�x′y′z′

y

x 33. 1110

1026 Solutions to Odd-Numbered Exercises

35.

yz yz′ y′z′ y′z
wx 1 1

wx′ 1 1

w′x′ 1 1

w′x 1 1

37. x′ + y′ 39. wy + w′y′ 41. y′

43. wx + wyz′ + x′y′z′ + y′z

45. x′ + z′ 47. wy + xy′z + w′x′y′z′

49. wy′ + yz + xyz′ + x′y′z′

51. w′x′y′z′ + w′xy′z + wx′yz′

53. wx′y′z′ + w′xyz + w′x′y′z + w′x′y′z′ + w′xyz′ + w′x′yz

Supplementary Exercises (p. 862)

1. yes

3. proof (by PMI): Clearly, x(1) = x′. So assume x(k) equals x if k is even
and x′ if k is odd, where k ≥ 1. Then:

x(k+1) = (
x(k))′ =

{
x′ if k is even
(x′)′ otherwise

=
{

x′ if k is even
x otherwise

Thus the result follows by induction.

5. proof (by strong induction): The result is clearly true when n = 1.
So assume it is true for any boolean expression with 2, 3, 4, . . . , or k
variables. Then (x1x2 . . . xkxk+1)′ = [(x1x2 . . . xk)xk+1]′ = [(x1x2 . . . xk)′+
xk+1] = (x′

1 + x′
2 + · · · + x′

k) + x′
k+1 = x′

1 + x′
2 + · · · + x′

k + x′
k+1. Thus the

result follows by PMI.

7. xy + (x + y)′ + xy′ 9. [x′y′ + (x′ + y′)′ + x′(y′) ′] ′

11. {x′y′ + [(y′)′1′] + [x′ + (0′) ′]} 13. yes 15. no

Appendix A

Exercises A.2 (p. 873)

1. 6 3. a2 + b2 5. 0

Appendix A 1027

7. ab+bc+ca−a2−b2−c2

11. (ad − bc)(eh − fg)

9. (a + b + c)(ab + bc + ca − a2 − b2 − c2)

13. |AB| = (ad − bc)(eh − fg) = |A| · |B|
15. |A| · |A| = |A| · |AT| = |A · AT| = |In| = 1, so |A| = ±1.

17. f (x) = x − b
a − b

f (a) + x − a
b − a

f (b)

Exercises A.3 (p. 881)

1. f (x + y) = ax + y = ax · ay = f (x) · f (y)

3. Let f (x) = f (y). Then ax = ay, so x = y. Thus f (x) = f (y) implies x = y;
so f is injective.

5. Suppose log 2 = a/b, where a and b are relatively prime integers and
a < b. Then 2 = 10a/b; that is, 2b = 10a. So 5a = 2b−a. This implies
2|5, which is a contradiction. Thus log 2 is an irrational number.

7. pH = − log(3. 76 × 10−8) ≈ 7. 4248

9. 0 decibals

13. 10.84006

11. 70 decibals

15. 2.67917 parsecs

Exercises A.4 (p. 887)

1. 2134 3. 4213 5. 21354 7. 23145

9. 231, 312, 321

13. 3421, 4123, 4132

11. 2341, 2413, 2431

15. 23541, 24135, 24153

17. 12, 21 19. 134 21. 1345 23. 3456

25. 12, 13, 23 27. 12, 13, 14, 23, 24, 34

29. Algorithm next byte (a1a2 · · · a8)

(* This algorithm finds byte that follows byte a1a2 . . . a8 in
lexicographic order. *)
Begin (* algorithm *)

i ← 8
while bi = 1 do (* continue until bi = 0 *)
begin (* while *)

bi ← 0
i ← i - 1

endwhile
bi ← 0 (* update bi *)

End (* algorithm *)

31. Ø, {1} 33. Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

1028 Solutions to Odd-Numbered Exercises

Exercises A.5 (p. 892)

1. 30 3. 210 5. 1680 7. 12,600

9. 30 11. − 2 13. 168

15. x2 + y2 + z2 + 2xy − 2yz − 2zx

17. x3 − y3 + z3 − 3x2y + 3x2z + 3xy2 + 3y2z + 3xz2 − 3yz2 − 3xyz

19. x3 + 8y3 + z3 + 6x2y + 3x2z + 12xy2 + 12y2z + 3xz2 + 6yz2 + 6xyz

21. 12 23. 2520 25. 3,326,400 27. kn

29. 12,080,096,000 31. 56 33. 10

35. 455 37. 210

39. x3 + 8y3 + z3 − 6x2y + 3x2z + 12xy2 − 12y2z + 3xz2 − 6yz2 − 6xyz

41. 10 43. 165 45. 1,801,800

Credits

Cover image (sunflower head) courtesy of Runk, Schoenberger/Grant
Heilman Photography, Inc.

Text from The Divine Proportion by H. E. Huntley (Mineola, New York:
Dover Publications, 1970) reprinted courtesy of the publisher.

Coffee pot illustration (Figure 1.7) by Michael Crawford, New York.

All biographical portrait illustrations by Nancy Crumpton.

1029

This Page Intentionally Left Blank

Index

A
ABRACADABRA, 378–379,

387–388
Absolute value, 33, 126
Absorption laws, 83
Accepted string, 764
Accepting state, automaton, 760,

761, 783
Ackermann, Wilhelm, 278

function, 278
Acyclic graphs, 610–611

See also Dags
Adder

full, 836–837
half, 835–836

Addition
in base b, 199–201
of functions, 123
of generating functions,

300–301
of matrices, 166
rule (principle), 43, 99, 344–345,

415
Adjacency

edges and, 520
graphs and, 520
list representation, 452–453,

538
matrix, 444–445, 520–522, 528,

716
Adjacent squares, in Karnaugh

maps, 843
Algebra

See also Boolean algebra
origin of word, 96

ALGOL (ALGOrithmic
Language), 748

Algorithms
addition, 199–200
binary multiplication, 203
binary search, 228–230,

250–251, 311–312, 327–328
binary search tree, 665

breath-first search (BFS),
621–622

bubble sort, 230–233, 248–249,
317–318

complexities of, 247–252,
319–333, 420–422

connectivity, 471–475, 481
correctness of, 224–237
correctness of recursive,

316–319
defined, 96
depth-first search (DFS),

618–621
Dijkstra, 717–723
disjunctive normal form (DNF),

819
divide and conquer, 228,

327–329
division, 185–191
equivalence relation, 490
Euclidean, 191–197, 322–323
Eulerian circuit, 561
Eulerian graph, 559–560
exponentiation, 318–319
factorial, 226
Fibonacci, 310
findmax, 251
Floyd, 725
Gilbert’s, 728
greatest common divisor (gcd),

311
greedy, 633
handshake, 308–309
Horner’s, 336
Huffman, 671–675
identifier, 767–768
insertion sort, 236–237
Kruskal’s, 616–617, 626–628
legally paired sequence,

106–107
linear search, 227–228,

249–250, 316–317, 319–320,
421–422

merge, 312–313

merge sort, 313–314,
328–329

minmax, 252
multiplication, 225
next-combination, 887
next-permutation, 884–885
next-subset, 96–97
nondecimal bases (base-b

expansion), 197–207
origin of word, 96
Prim’s, 628–633
product, 171
recursive, 307–333
selection sort, 233–234
space complexity, 247
spanning tree, 616–617
subsets, 102
time complexity, 247–248
topological sort, 501
tower, 309
Warshall’s, 477–481

Alphabet, 75
Greek, 894
input, 772

Alphanumeric character, 348
Ambiguous grammar, 753–755
Ancestors, 636
And

Boolean, 438
conjunctions and use of, 5

AND gate, 825–826
Angle brackets, 744
Antisymmetric relations, 456–458
Appel, Kenneth, 589
Arguments, 38

valid and invalid, 39–49
Aristotle, 1, 2
Arithmetic, fundamental theorem

of, 218–221
Arithmetic mean, 54
Arithmetic sequence, 180
Around the World puzzle,

564–565
Array, predecessor, 720

1031

1032 Index

ASCII, 670
character set, 867

Assignment operator, 7
Assignment statement, 7
Associated linear homogeneous

recurrence relations with
constant coefficients
(ALHRRWCCs), 287,
293–296

Associative law
Boolean algebra, 806
of logic, 22
of sets, 83

Associative properties, 470, 804,
805

Automata. See Finite-state
automata (FSA)

Average-case time complexity,
248, 420–422

Axioms
defined, 185
dual, 807

B
Bachmann, Paul Gustav

Heinrich, 237, 238
Backtracking, 618
Backus, John W., 748
Backus-Naur Form, 748
Backus-Normal Form (BNF),

748–751
Balanced trees, 640–643
Barber paradox, 42–43
Base-b expansion, 197–207
Basis clause, 105, 262, 814
Basis step, 209
Begin, 18
Bell, Eric T., 397
Bell numbers, 397, 492
Bernoulli, Jacob I., 212, 422

inequality, 212
trials, 422–425

Best-case time complexity, 247
Biconditional statements, 14–15
Big-oh estimate, 618
Big-oh notation, 237–239
Big-omega notation, 243–245
Big-theta notation, 245
Bijection function, 137–138
Binary alphabet, 75
Binary coded decimal (BCD)

expansion, 852–854
Binary digits, 95
Binary expression trees, 655
Binary multiplication, 201–203

Binary numbers, 394–395
Binary operators, 12, 31, 806
Binary predicate, 33–34
Binary relation, 443–444
Binary search algorithm,

228–230, 250–251, 311–312,
327–328

Binary search tree algorithm, 665
Binary search trees, 664–668
Binary subtraction, 203–205
Binary trees, 639, 646–663

Catalan numbers and, 660
parenthesized triangulations

and, 659–660
Binet, Jacques Phillipe Marie, 277
Binet form of Fibonacci number,

276–277, 290, 304–305
Binomial coefficient, 366, 386, 889
Binomial expansion, 388
Binomial probability, 423
Binomial theorem, 386–399,

888–889
Bipartite graphs, 526
Birthday paradox, 182, 412
Bits

operations, 438
string, 95

Boole, George, 1, 4, 803
Boolean algebra

applications, 803
complement, 442, 806
defined, 806–811
examples, 804–806
expressions, 7, 814–817
expression, self-dual, 863
matrices, 438–443
operators, 12, 806
power, 441
precedence rules, 807
product, 439–440, 806
sum, 806
unit element, 806
variables, 2, 813
zero element, 806

Boolean functions, 134
conjunctive normal form (CNF),

824
defined, 813–814
disjunctive normal form (DNF),

817–820
equality, 815–817
functional completeness, 820
minterm, 817–820
NAND and NOR, 820–821
recursive definition, 814

Bound variables, 33
Breath-first search (BFS)

algorithm, 621–622
Bridge, 686
Briggs, Henry, 879
Briggsian logarithms, 879
Bubble sort algorithm, 230–233,

248–249, 317–318
Bus topology, 529
Bytes, 348–349

C
Cabbage-goat-wolf puzzle,

552–554
Cantor, Georg, 67, 68

diagonalization process, 141
Card dealing, 132–133
Cardinality of sets, 98–102, 140
Carroll, Lewis, 44, 45
Carry, 199
Cartesian plane, 88
Cartesian products, 87–89
Catalan, Eugene Charles, 108

numbers, 108, 388–390, 393,
395–396, 660

parenthesization problem, 394
Cayley, Arthur, 164, 519, 609

formula, 626
Ceiling function, 126–130
Center, tree, 614
Characteristic equation, 287–288
Characteristic function, 131–132
Characteristic roots, 288
Chessboard puzzle

eight queen puzzle, 620
four queen puzzle, 619–620
knight’s tour problem, 558–560,

567–571
two queen puzzle, 133–134

Child, 636
left and right, 646

Chomsky, (Avram) Noam, 751,
752

hierarchy of grammar, 751
Chromatic number, 588
Chuck-a-luck game, 423–424
Circle problem, 370–372
Circuit, combinatorial, 830–840

minimization of, 840–850
Circuits, graph, 548

Eulerian, 556
Circuits, sequential, 830
Class, equivalence, 486–490
Closed interval, 73
Closed-open interval, 73

Index 1033

Closed path, 548
Closure

Kleene, 739–741
reflexive, 482
symmetric, 482
transitive, 475–482

Coconuts and monkey problem,
437, 493

Code-a-bar system, 493
Codes, gray, 446–447
Coding scheme, Huffman, 670
Codomain of functions, 118
Coefficients

binomial, 366, 386, 889
multinomial, 891

Cofactor, 868
Collision, 138–139
Coloring, graph, 586–598
Column vector, matrix, 165
Combinations, 365–375

generating, 383–384, 885–887
with repetitions, 379–381

Combinatorial circuits, 830–840
minimization of, 840–850

Combinatorics
binomial theorem, 386–399
combinations, 365–375
defined, 343
derangements, 360–365
fundamental counting

principles, 344–351
generalized inclusion/exclusion

principle, 399–409
permutations, 351–360
repetitions, 375–386

Common difference, 180
Common factor, 191
Common ratio, 180
Communication link, 2-stage, 550
Commutative law

Boolean algebra, 806
of logic, 22
of sets, 83

Commutative properties, 804, 805
Comparable elements, 495
Complements

Boolean, 442, 806
of graphs, 536
properties, 805, 806
relation, 469
of sets, 81

Complete bipartite graphs, 527
Complete graphs, 524–526
Completeness,

functional, 820

Complete n-partite graph, 605
Complexities of algorithms,

247–252
Complexities of graphs, 622–623
Complexities of recursive

algorithms, 319–333
Components, 5
Composite numbers, 189–190
Composition

function, 150–153
of relations, 463–464

Compound propositions, 5
Computer operations, with sets,

94–98
Computer representations

of graphs, 538–539
of relations, 449–454

Concatenation, 76
of languages, 736–739

Conclusion, 9
Concurrent lines, 266
Conditional probability, 417–419
Conditional statements,

defined, 9
Congruence

to b modulo m, 484
relation, 484–486

Conjunction rule, 43
Conjunctions, 5–7

symbol for, 5
Conjunctive normal form (CNF),

824
Connected digraphs

strongly, 698–700
weakly, 705

Connected graphs, 549–554
Connectives, 5
Connectivity relation, 471–475,

481
Constructive existence proof,

52–53
Context-free grammar, 751
Context-free language, 751–753
Context-sensitive grammar, 751
Context-sensitive language,

751–753
Contingencies, 16
Contradictions, 16

proof by, 51
Contrapositive, 11–12

proof of, 51
Contrapositive law, 22, 43
Converse, 11–12
Correctness of algorithms,

224–237

Correctness of recursive
algorithms, 316–319

Correct program, 224–225
Correspondence, one-to-one,

137–138
Countable sets, 140–141
Counterexample, 53
Counting principles, 344–351
Cycle

digraphs, 698
graphs, 526
Hamiltonian, 565–566
of a path, 446, 548

Cyclic permutations, 355–356

D
Dags (directed acyclic graphs),

707–715
Databases, 464–466
Data field, 451

de Bruijn, Nicolaas G., 702
graph, 703
sequence, 702–704

Decay curves, 875
Decimal expansion, 197
Decision trees, 676–680
Degree of a region, 581–582
Degree of vertex, 520, 694–698
De Moivre, Abraham, 298, 299
De Morgan, Augustus, 23, 207
De Morgan’s law of logic

description of, 22–24
for negating quantifiers, 35–36

De Morgan’s law
of sets, 83

Dependent events, 419–420
Depth-first search (DFS)

algorithm, 618–621
Derangements, 360–365

counting, 404–408
Derivation, language and,

746–747
Derivation trees, 743–744
Descartes, René, 87
Detachment, law of, 43
Determinants, 867–874
Deterministic finite-state

automata (DFSA),
779–782

Diagonal, matrix, 166
Diagrams

Hasse, 496–499
transition, 760, 772
tree, 6
Venn, 72–73

1034 Index

Difference
between sets, 80
symmetric, 82

Differential and Integral
Calculus, The (De Morgan),
23

Digraphs (directed graphs)
closed, 698
dags, 707–715
de Bruijn sequence, 702–704
degree of vertex, 694–698
features of, 691–692
open, 698
relations and, 443–447
Fibonacci numbers and,

692–694
n-stage win, 698
paths, reachability, and cycles,

698
strongly connected, 698–700
teleprinter’s problem, 700–702
weakly connected, 705
weighted, 715–725

Dijkstra, Edsger Wybe, 717
algorithm, 717–723

Dirac, Gabriel Andrew, 571
theorem, 570

Directed acyclic graphs. See Dags
Directed edges, 692
Directed graphs. See Digraphs
Directly derivable, 746
Direct proofs, 50
Dirichlet, Peter Gustav Lejeune,

144, 145
Dirichlet box principle. See

Pigeonhole principle
Disconnected graphs, 549
Discrete probability, 409–427
Disjoint sets, 71
Disjunctions

defined, 7–8
exclusive, 8, 18
inclusive, 8
symbol for, 7

Disjunctive normal form (DNF),
817–820

Distributive law
Boolean algebra, 806
of logic, 22
of sets, 83

Distributive properties, 804, 805
Div function, 132–134
Divide and conquer algorithm,

228, 327–329
Dividend, 186

Divisibility properties, 189–197
Division algorithm, 185–191
Divisor, 186

greatest common divisor (gcd),
191

Doctrine of Chances, The
(De Moivre), 299

Domain
of functions, 118
of relations, 443

Domination law
of logic, 21
of sets, 83

Don’t care conditions, 851–856
Dot product, 493
Double complementation law, 83
Double negation law, 22
Dual axioms, 807
Duality, principle of, 807
Dudeney, Henry Ernest, 40–41
Duffinian, 257
Dump state, 767

E
Easter Sunday, 135, 195
Eccentricity, tree, 614
Edges, graph, 445, 517

adjacent, 520
directed, 692
parallel, 518

Eight coins puzzle, 678
Eight Queens puzzle, 620
Elementary operations, graph,

583
Elements

comparable, 495
greatest and least, 500
matrix, 165
maximal, 499
minimal, 499
noncomparable, 495
of sets, 68

Elements (Euclid), 192
Ellipsis, 73
Empty language, 735
Empty relation, 455
Empty sets, 70
Empty word, 75
Endpoints, path, 546
Endwhile, 18
Equality

of Boolean expressions,
815–817

of functions, 123

of generating functions,
299–300

of matrices, 166
of relations, 455
of sets, 70
of words, 734–735

Equivalence class, 486–490
Equivalence relations, 482–484
Equivalence statement, 483
Equivalent combinatorial circuits,

840–850
Equivalent finite-state automata,

764–768
Equivalent nondeterministic

finite-state automata,
784–785

Equivalent switching networks
25–26

Erdös, Paul, 147
theorem, 146–147

Euclid, 191
Euclidean algorithm, 191–195,

322–323
Euler, Leonhard, 53, 72, 393,

516–517
circuit, 556
formula, 578–581
graphs, 556–564
path, 556
phi-function, 196
theorem, 512

Even parity, 765
Event(s)

defined, 410
dependent and independent,

419–420
mutually exclusive, 414–415
probability of, 410–414

Eves, Howard, 67, 391
Excluded middle, law of, 28
Exclusive disjunction, 8, 18
Existence proof, 52–53
Existential quantifiers, 32
Expansion

base-b, 197–207
binary coded decimal (BCD),

852–854
binomial, 388
decimal, 197

Expected value, 419–420
Experiment, 409
Exponential function, 125,

874–877
Expressions,

Boolean, 7, 814–817, 863

Index 1035

F
Factorial, 108, 226, 308
Fallacy, 39
Family tree, 611
Fermat, Pierre-Simon de, 4, 5

Last Theorem, 4, 145, 511
number, 338
primes, 53

Fibonacci, Leonardo, 268, 269
Fibonacci numbers, 269–271

algorithm, 310
Binet form of, 276–277, 290,

305–305
complexity of iterative version,

320–321
digraphs and, 692–694
paraffins and, 523–524
permutations and, 356–358
recursive, 310

Fibonacci trees, 646–647
Final state, automaton, 761, 783
Finite sequences, 158
Finite sets, 73–74

number of partitions of, 490
Finite-state automata (FSA)

applications, 759–761
defined, 761–764
deterministic, 779–782
equivalent, 764–768, 784–785
languages accepted, 787–792
nondeterministic, 782–787

Finite-state machines (FSMs),
771

applications, 733
characteristics, 772–778
Mealy, 772
Moore, 799–800
simply minimal, 800
unit delay, 774

Fixed-length code, 670
Floor function, 126–130
Floyd, Robert W., 725, 726

algorithm, 725
Football pools, 426–427
Forest, 611
For loop, 233, 381–382
Formal languages. See Languages
Formal power series, 299
Formulas

Cayley’s, 626
Euler’s, 578–581
midpoint, 145
molecular, 519
recursion, 262
structural, 519–520

well-formed, 107
Zeller’s, 492

FORTRAN, 748
Four-color problem, 589–595
Four Queens puzzle, 619–620
Free variables, 33
Friday-the-13th, 485–486
Friedberg, S. H., 325
Full-adder, 836–837
Full tree, 639
Functional completeness, 820
Functions

absolute value, 126
Ackermann, 278
applications, 117–118
bijection, 137–138
Boolean, 134, 813–824
cardinality, 140
ceiling, 126–130
characteristic, 131–132
codomain of, 118
composition, 150–153
defined, 118–120, 448
div, 132–134
domain of, 118
equality of, 123
Euler’s phi, 196
exponential, 125, 874–877
floor, 126–130
generating, 298–307, 383–384
graphing, 122–123
greatest integer, 127
growth of, 237–247
hashing, 138–139
identity, 136
injection, 136–137
inverse, 153–155
least integer, 127
linear, 125
logarithmic, 125–126,

877–879
McCarthy’s 91, 275
mod, 132–134
next-state, 761, 783
one-to-one, 136–137
one-to-one correspondence,

137–138
onto, 137
order, most common, 239–241
output, 772
piecewise definition, 121–123
pigeonhole principle and,

144–150
polynomial, 125
product of, 123

properties of, 136–143
quadratic, 125
range of, 120–121
recursive definition of, 262–278
sum of, 123
surjection, 137
transition, 761, 772, 783

Fundamental theorem of
arithmetic, 218–221

Fuzzy decisions, 28–29
Fuzzy logic, 26–28
Fuzzy sets, 91–92
Fuzzy subsets, 91–92

G
Game tree, 637
Gates

AND, 825–826
defined, 824
logic, 824–829
NAND, 828
NOR, 828–829
NOT, 827
OR, 826
XOR, 18

Gauss, Karl Friedrich, 145, 222,
484

Generalized inclusion/exclusion
principle (GIEP), 399–409

Generalized pigeonhole principle,
147–149

Generating combinations,
383–384, 885–887

Generating functions, 298–307,
383–384

Generating permutations,
352–358, 883

Geometric mean, 54
Geometric sequence, 180
Gilbert, E. N., 728

algorithm, 728
Goldbach, Christian, 4, 5

conjecture, 4
Golden ratio, 179, 276
Graceful graph, 604
Graceful tree, 686
Grammars, 743–759

ambiguous, 753–755
Chomsky hierarchy, 751
context-sensitive, context-free,

and regular, 751
Type 0, 751
Type 1, 751
Type 2, 751
Type 3, 751

1036 Index

Graphing functions, 122–123
Graphs

See also Digraphs (directed
graphs)

acyclic, 610–611
adjacency and incidence,

520
bipartite, 526
coloring, 586–598
complement of, 536
complete, 524–526
complete bipartite, 527
complete n-partite, 605
complexity, 622–623
computer representations of,

538–539
connected, 549–554
cycle, 526
de Bruijn, 703
degree of vertex, 520
disconnected, 549
edges, 445, 517
Eulerian, 556–564
graceful, 604
Hamiltonian, 565–567
homeomorphic, 583
isomorphic, 541–544
nodes, 445, 517
nonplanar, 582
paths, 446–447, 546–547
Petersen, 530–531
planar, 576–586
planar representation,

576
regular, 536
self-complementary, 605
simple, 518–520
square, 575
sub, 522–523
underlying, 702, 705
undirected, 517
union of, 532–533
vertex, 445, 517
weighted, 527–528
wheel, 526, 623

Gray, Frank, 447
Gray codes, 446–447, 566
Greatest common divisor (gcd),

191
recursive, 311

Greatest element, 500
Greatest integer function, 127
Greedy algorithm, 633
Growth curves, 874
Guthrie, Francis, 589

H
Haken, Wolfang, 589
Half-adder, 835–836
Half-life, 881
HAM (Hampton Court) game,

572–573
Hamilton, William Rowan, 564,

565
Around the World puzzle,

564–565
graph, 565–567

Hamming, Richard W., 180
distance, 179, 446

Handshake problem, 264–265,
280, 308–309, 431, 524–526,
533

Harmonic mean, 351
Harmonic number, 332
Hash function, 138–139
Hasse, Helmut, 496, 497

diagrams, 496–499
Heap, 669
Heapsort, 669
Heawood, Percy John, 589
Height, tree, 637
Heterogeneous trees, 655
Hexagonal number, 284
Hilbert, David, 74

hotel paradoxes, 74–75
Hoare, C. Anthony R., 316
Homeomorphic graphs, 583
Homogeneous trees, 664
Horner, William G., 207

algorithm, 336
method, 207

Huffman, David Albert, 671
algorithm, 671–675
coding scheme, 670
trees, 670–675

Huygens, Christian, 419
Hypothesis, 9

inductive, 209

I
Ibn Ezra, Rabbi, 366
Icosian calculus, 565
Idempotent law

of logic, 21
of sets, 83

Identity function, 136
Identity law

Boolean algebra, 806
of logic, 21
of sets, 83

Identity matrices, 166

Identity properties, 805
If-and-only-if statement, 14–15
If statements, Boolean

expressions in, 7
If-then-else statements

composition, 152
piecewise definition, 122

If-then statements, 753–754
Image, function, 119
Immediate predecessor, 692
Immediate successor, 692
Implication conversion law, 22
Implications, 9–11

converse, inverse, and
contrapositive of, 11–12

Incidence, graph, 520
Inclusion/exclusion principle,

99–101, 345, 414–415
generalized, 399–409

Inclusive disjunction, 8
Indegree, vertex, 694
Independent events, 419–420
Index, summation, 158, 160–161
Indexed sets, 86
Indirect proofs, 51
Induction. See Mathematical

induction
Induction step, 209
Inductive definitions, 263
Inductive hypothesis, 209
Inequality,

mathematical induction and,
212

Inference rules, 43
Inferential form, 38
Infinite sequences, 158
Infinite sets, 73–74
Infinity symbol, 74
Infix notation, 653
Initial state

finite-state automaton, 760,
761, 783

finite-state machine, 772
Initial vertex, 692
Injection function, 136–137
Inorder traversal, tree, 647–648
Input alphabet, 772
Input symbols, 761, 783
Insertion sort algorithm,

236–237
Interior points, 477
Internal vertex, 636
International Standard Book

Number (ISBN), 509

Index 1037

Intersections
relations, 462–463
of sets, 78–80

Intervals, 73
Invalid arguments, 39–49
Invariant(s)

isomorphism, 542–544
loops, 225–227

Inverse/invertible, 11–12
functions, 153–155
of a matrix, 174
relation, 469

Inverse law
of logic, 21
of sets, 83

Invertible, 153
Investigation of the Laws of

Thought, An (Boole), 1, 4,
803

Irreflexive relation, 461
Isaka, Satoru, 26, 27
Island of Knights and Knaves

example, 12–14, 39–40
Isolated vertex, 520
Isomorphic graphs, 541–544
Isomorphic trees, 645
Isomorphism

defined, 541
invariants, 542–544

Iteration method, 226, 279–282,
320–321

Iverson, Kenneth E., 127

J
Java, 735
Join, Boolean, 439

K
Kaplansky, Irving, 285, 290
Karnaguth, Maurice, 842, 843

maps, 842–850
Keno, 420
al-Khowarizmi, Abu-Abdullah

Muhammed ibn-Musa, 96
Kirchoff, Gustav Robert, 609, 610
Kleene, Stephen Cole, 739

closure, 739–741
operator, 739

Knight’s tour problem, 558–560,
567–570

Knuth, Donald Ervin, 244
Königsberg bridge puzzle,

516–517
Kosko, Bart, 26, 27
Kowa, Seki, 867

Kronecker, Leopold, 68, 162
Kronecker’s delta, 162
Kruskal, Joseph Bernard, 616

algorithm for minimal spanning
tree, 626–628

algorithm for spanning tree,
616–617

Kuratowski, Kazimierz, 584
theorem, 583

L
Lagrange, Joseph Louis, 159
Lambda, use of, 75
Lamé, Gabriel, 325

theorem, 323–324
Landau, Edmund, 237, 238

symbol, 237
Language recognizers. See

Finite-state automata
Languages

accepted-recognized, 764,
787–792

Backus-Normal Form (BNF),
748–751

concatenation of, 736–739
context-sensitive, context-free,

and regular, 751–753
derivation and, 746–746
empty, 735
equality of words, 734–735
grammars, 743–759
grammars, ambiguous, 753–755
Kleene closure, 739–741
recognized by deterministic

finite-state automata,
779–782

of sets, 75
Laplace, Pierre-Simon, 410
Lattice-walking, 377–378
Laws, of logic

associative, 22
commutative, 22
contrapositive, 22, 43
De Morgan’s, 22–24, 35–36
detachment, 43
distributive, 22
domination, 21
double negation, 22
examples using, 24–25
excluded middle, 28
idempotent, 21
identity, 21
implication conversion, 22
inverse, 21
reductio ad absurdum, 22

Laws, of sets
absorption, 83
associative, 83
commutative, 83
De Morgan’s, 83
distributive, 83
domination, 83
double complementation, 83
idempotent, 83
identity, 83
inverse, 83

Leaf, 636
Leap year, 130
Least element, 500
Least integer function, 127
Left child, 646
Left subtree, 646
Leibniz, Gottfried Wilhelm, 1, 3,

72, 867
Length

of a path, 446, 546
of a word, 75

Level, tree, 637, 638
Lexicographic order, 495–496,

883–885
Linear combination, 194
Linear function, 125
Linear homogeneous recurrence

relations with constant
coefficients (LHRRWCCs),
287–293

Linearly ordered sets, 495
Linear nonhomogeneous

recurrence relations with
constant coefficients
(LNHRRWCCs), 293–298

Linear probing, 139
Linear search algorithm, 227–228,

249–250, 316–317, 319–320,
421

Linked field, 451
Linked lists, 449–450
Listing method, 68–69
Literal, 817
Local area networks (LANs), 529
Logarithmic function, 125–126,

877–879
Logarithms

Briggsian, 879
common, 879
natural, 879

Logic
See also Laws, of logic
arguments, 38–49

1038 Index

Logic (continued)
compared with set operations,

82–86
defined, 1
gates, 824–829
predicate, 36
proof methods, 49–56
propositional, 36
propositions, 2–20
quantifiers, 32–38
tables, 813–814, 825–827
variables, 2

Logical equivalence, 20–32
defined, 20
equivalent switching networks,

25–26
fuzzy decisions, 28–29
fuzzy logic, 26–28

Logic of Chance, The (Venn), 72
Loops

digraphs/graphs, 446
invariant, 225–227

Lower limit, summation, 158
Lucas, François-Edouard-Anatole,

273, 274
number, 273, 524, 623
theorem, 512

Lukasiewicz, Jan, 62, 653, 654,
659

M
Machines. See Finite-state

machines
Magic constant, 222
Magic square, 222
Maps, Karnaguth, 842–850
Master Mind game, 430
Mathematical Analysis of Logic

(Boole), 4
Mathematical induction

defined, 207
description of, 207–224
strong version of, 218
weak version of, 208–209

Mathematical system, 804
Matrix (matrices)

addition, 166
adjacency, 444–445, 520–522
Boolean, 438–443
defined, 165
discovery of, 164
equality of, 166
identity, 166
inverse, 174
invertible, 174

multiplication, 167–172
negative, 167
reachability, 699
submatrices of, 391–393
subtraction, 167
sum, 166
symmetric, 174
telecommunications/networks

and, 528–532
transpose, 175
upper triangular, 874
weighted adjacency, 528, 716
zero, 166

Maurocylus, Francesco, 207
Maximal element, 499
Maxterm, 824
McCarthy, John, 275

91 function, 275
McCulloch, Warren S., 733
Mealy, George H., 772

machines, 772
Mean

arithmetic, 54
geometric, 54
harmonic, 351

Meet, Boolean, 439
Members of sets, 68
Memory wheels, 701–702
Merge algorithm, 312–313
Merge sort algorithm, 313–314,

328–329
Mersenne, Marin, 56

primes, 56
Midpoint formula, 145
Minimal element, 499
Minimal spanning tree, 626–634
Minor, 868
Minterm, 817–820
m-nary tree, 639–640

complete, 645
Mod function, 132–134
Mod operator, 485
Modulus, 484
Molecular formula, 519
Moore, Edward Forrest,

799, 800
machine, 799–800

Multinomial coefficient, 891
Multinomial theorem, 890–892
Multiplication

in base b, 201
of generating functions,

300–301
of matrices, 167–172
nested, 207

principle, 345–347, 418–419
scalar, 167–170
shifting and binary, 201–203

Mutually exclusive
events, 414–415
tasks, 344

N
NAND (not and), 30, 820–821
NAND gate, 828
Napier, John, 877
n-ary predicate, 33
Naur, Peter, 748
n-cube, 566
Negation, 8–9
Negative of matrices, 167
Nested multiplication, 207
Networks, 528–530
Newton’s identity, 398
Next-state function, 761, 783
Next-subset algorithm, 96–97
Nil pointer, 451
Nodes, 445, 450–451, 517, 692
Noncomparable elements, 495
Nonconstructive existence proof,

52, 53
Nondecimal bases, 197–207

Pascal’s triangle and, 390–391
Nondeterministic finite-state

automata (NDFSA),
782–787

Nonterminal symbol, 744, 746
NOR (not or), 30, 820–821
NOR gate, 828–829
Notations

big-oh, 237–239
big-omega, 243–245
big-theta, 245
infix, 653
Polish, 653
postfix, 653
prefix, 653
reversed Polish, 653
set-builder, 69
summation, 158–161

NOT gate, 827
n-stage win, 698
n-tuple, 86
Null sets, 70
Null word, 75
Numbers

Bell, 397, 492
binary, 394–395
Catalan, 108, 388–390, 393,

395–396, 660

Index 1039

chromatic, 588
composite, 189–190
Fermat, 338
Fibonacci, 269–271, 276–277,

290, 304–305, 310, 356–358,
523–524, 692–694

game, 420
harmonic, 332
hexagonal, 284
Lucas, 273, 524, 623
perfect, 124
pentagonal, 284
polygonal, 216–218
prime, 189–190
square pyramidal, 285
Stirling, 278, 375, 490
tetrahedral, 285, 382
triangular, 216, 285, 382

O
Odd parity, 765
One’s complement, 203
One-to-one correspondence

function, 137–138
One-to-one function, 136–137
Onto function, 137
Open-closed interval, 73
Open interval, 73
Open path, 548
Operators

Boolean, 12, 806
Kleene, 739
relational, 658–659

Or
Boolean, 438
exclusive, 8
inclusive, 8
symbol for, 7

ORD, 136
Ordered pair, 86
Ordered rooted trees, 638
Ordered sets, 86

linearly, 495
partial and total, 493–506

Order functions, most common,
239–241

Orderings
lexicographic, 495–496, 883–885
linear, 495
partial and total, 493–506

Order of precedence, 15
Ordinal number, 121
Ore, Oystein, 571, 589

theorem, 570
OR gate, 826

Outcome, 409, 410
Outdegree, vertex, 694
Output function, 772
Output symbols, 772

P
Palindrome, 108, 741
Paradox, 4

birthday, 182, 412
Russell’s, 42–43, 69

Parallel edges, 518
Parent, 636
Parentheses, legally paired,

106–107
Parenthesization problem,

Catalan’s, 394
Parenthesized triangulations,

659–660
Parity, 433

-check machine, 765
even, 765
odd, 765

Parse trees, 745
Parsing, 745
Partial fraction decomposition

rule, 301–306
Partially ordered sets (poset),

494–503
Partial orderings, 493–506
Partitions of finite sets, 490
Partitions of sets, 89–91
Pascal, Blaise, 370, 371

identity, 370
triangle, 386–391

Pascal (computer language), 71
Paths

closed, 548
in digraphs, 698
in digraphs and relations,

446–447
endpoints, 546
Eulerian, 556
Hamiltonian, 565–566
interior points, 477
length, 446, 546
open, 548
shortest, 717–723
simple, 546, 548

Pentagonal number, 284
Pentagrams, 519
Perfect number, 124
Permutations, 351–360

cyclic, 355–356
generating, 883
with repetitions, 376–379

Petersen, Julius, 530, 532
graphs, 530–531

Phrase-structure grammar, 746
Piecewise definition, 121–123
Pigeonhole principle

description of, 144–150
generalized, 147–149

Pitts, Walter, 733
Pizza problem, 368
Planar graphs, 576–586
Planar representation, 576
Pointer field, 451
Polish notation, 653

reversed, 653
Polya, G., 378
Polygonal number, 216–218
Polygons, triangulation of convex,

275
Polynomial function, 125
Poset. See Partially ordered sets
Postfix notation, 653
Postorder traversal, tree, 648
Power

Boolean, 441
chain of order, 569
cycle of order, 576
sets, 72–73

Precedence relation, 459
Precedence rules, 807
Predecessor array, 720
Predecessor function (PRED), 142
Predicate logic, 36
Predicates, 33–34
Prefix, 735
Prefix code, 674
Prefix notation, 653
Premise, 9
Preorder traversal, tree, 647
Prim, Robert Clay, 628, 629

algorithm, 628–633
Prime circle of order, 551–552
Prime numbers

divisibility and, 189–190
Fermat, 53
Mersenne, 56
twin, 195
Wilson, 512

Principia Mathematica (Russell
and Whitehead), 42

Principle of duality, 807
Principle of inclusion/exclusion,

99–101, 345
Principle of mathematical

induction (PMI). See
Mathematical induction

1040 Index

Principles of counting, 344–351
Principles of Empirical Logic,

The (Venn), 72
Product

Boolean, 439–440, 806
Cartesian, 87–89
dot, 493
of functions, 123
of matrices, 170
symbol, 163
of two functions, 242–243

Production rule, 744–745, 746
Program, correct, 224–225
Proof by cases, 52
Proofs

by cases, 52
by contradiction, 51
by contrapositive, 51
counterexample, 53
direct, 50
existence, 52–53
indirect, 51
trivial, 50
vacuous, 49–50

Proper factor, 124, 189
Proper subset, 70
Propositional logic, 36
Propositions, 2–32

compound, 5
simple, 5

Propositional forms.
See Statement forms

Q
Quadratic function, 125
Quantifiers

defined, 32
existential, 32
how to symbolically right, 32–33
negation of, 35–36
truth values of, 33–35
universal, 32

Quarternions, system of, 565
Queen chessboard puzzle

eight, 620
four, 619–620
two, 133–134

Queue, 621
QUICKBASIC, 737
Quicksort, 316
Quotient, 186

R
Rabbits, calculating reproductive

rates of, 268–269, 286

Range
of functions, 120–121
of relation, 443

r-combination, 366–367
Reachability, 698

matrix, 699
Recognized string, 764
Recurrence relation, 262

solving, 278–298
Recursion (recursive)

algorithms, 307–333
clause, 105, 262, 814
defined, 261
definition of Boolean

expressions, 814
definition of functions, 262–278
definition of sets, 104–109
derangements, 362–365
formula, 262
generating functions, 298–307
linear homogeneous recurrence

relations with constant
coefficients, 287–293

linear nonhomogeneous
recurrence relations with
constant coefficients,
293–298

relations, 466–468
solving by iteration, 278–286

Reductio ad absurdum law, 22
Reflexive closure, 482
Reflexive property, 143
Reflexive relation, 455–456
Region, degree of a, 581–582
Regular

grammar, 751
graph, 536
language, 751–753

Rejected string, 764
Relational operators, 658–659
Relations

antisymmetric, 456–458
applications, 437
binary, 443–444
Boolean matrices, 438–443
closure, 475–482
complement, 469
composition, 463–464
computer representations of,

449–454
connectivity, 471–475
congruence, 484–486
digraphs and, 443–449
empty, 455
equality, 455

equivalence, 482–493
intersection, 462–463
inverse, 469
irreflexive, 461
operations on, 461–471
partial and total orderings,

493–506
paths, 446–447
precedence, 459
properties of, 454–461
recursive, 466–468
reflexive, 455–456
symmetric, 456–459
transitive, 459
transitive closure, 475–482
union, 462–463

Relative complement of sets, 80
Relatively prime, 194–195
Remainder, 186
Reversed Polish Notation (RPN),

653
Right child, 646
Right subtree, 646
Ring topology, 529
Root, dag, 731
Rooted trees, 635–646

ordered, 638
Rotating drum problem, 701
Round-robin tournaments, 526
Row vector, matrix, 165
r-permutation, 352
Rubik’s cube, 882
Russell, Bertrand, 42, 68

paradox, 42–43, 69

S
Sample space, 409, 410
Scalar multiplication, 167–170
Search algorithms, 227–230
Selections, 379
Selection sort, 233–234
Self-complementary graph, 605
Self-dual Boolean expressions, 863
Semantics, 743
Sequences

defined, 157
finite and infinite, 158
summation notation and,

158–161
terms of, 157

Sequential circuits, 830
Set-builder notation, 69
Sets

See also Laws, of sets; Subsets
cardinality, 98–104, 140

Index 1041

Cartesian products, 87–89
compared with logic operations,

82–86
concepts, 67–78
countable, 140–141
countably infinite, 140–141
defined, 68–69
disjoint, 71
empty, 70
equal, 70
finite and infinite, 73–74
fuzzy, 91–92
indexed, 86
linearly ordered, 495
null, 70
operations, 78–94
operations (computer), 94–98
ordered, 86
partially ordered, 494
partitions, 89–91
power, 72–73
recursively defined, 104–109
uncountable, 141
universal, 70–71

Set theory, 67, 68
Shannon, Claude Elwood, 803, 804
Sheffer, Henry M., 31
Sheffer stroke, 31–32
Shifting and binary

multiplication, 201–203
Shortest path, 717–723
Siblings, 636
SIM, 531–532
Simmons, Gustavus J., 531
Simple graphs, 518–520

union of, 532–533
Simple path, 546, 548
Simple propositions, 5
Simplification rule, 43
Simply minimal, 800
Sink, 694
Smullyan, Raymond, 39–40
Sorting

algorithms, 230–234
heap, 669
topological, 500–503
tournament, 669

Source, 694
Space complexity, 247
Spanning trees, 614–634
Square graph, 575
Square pyramidal number, 285
Star of David, 549
Star-ring topology, 529–530
Star topology, 528

Start symbol, 744, 746
Statements,

defined, 2–3
States

automaton, 760, 761, 767, 783
for finite-state machine, 772

Stein, Sherma K., 700
Stemple, J., 589
Stifel, Michel, 366
Stirling, James, 278

numbers of the second kind,
278, 375, 490

Strings
accepted/recognized, 764
rejected, 764

Strongly connected digraphs,
698–700

Strongly orientable, 731
Strong orientation, 731
Structural formula, 519–520
Subgraphs, 522–523
Submatrices of amatrix, 391–393
Subsets

defined, 69
fuzzy, 91–92
proper, 70

Substitution rule, 744–745
Subtraction

binary, 203–205
of matrices, 167

Subtrees, 636
left and right, 646

Successive squaring, 331
Successor function (SUCC), 142
Suffix, 735
Sum, 806

of functions, 123
of matrices, 166
of two functions, 241–242

Summation notation, 158–161
Surjection function, 137
Surjections, counting, 402–404
Switching networks, 16–17

equivalent, 25–26
Sylvester, James Joseph, 164
Symbolic Logic (Carroll), 44–45
Symbolic Logic (Venn), 72
Symmetric closure, 482
Symmetric difference, 82
Symmetric of a matrix, 174
Symmetric relations, 456–459
Syntactic Structures (Chomsky),

752
Syntax, 743, 745

T
Tables

See also Truth tables
logic, 813–814, 825–827
transition, 761, 772

Tau function, 350
Tautology, 16
Teleprinter problem, 700–702
Term, sequence, 157
Terminal clause, 105, 262
Terminal symbol, 743, 746
Terminal vertex, 636, 692
Ternary tree, 639
Ternary word, 78, 349
Tetrahedral numbers, 285, 382
Theorem, 49

See also under name of
Théorie Analytique des

Probabilités (Laplace), 410
Three Houses-Utilities puzzle,

577–578
Three-valued logic, 62
Time complexity, 247–248
Topological index, 523
Topological sorting, 500–503
Topology

bus, 529
ring, 529
star, 528
star-ring, 529–530

Torus, 847
Total orderings, 493–506
Tournament sort, 669
Tournaments, round-robin, 526
Tower of Brahma, 265, 281–282,

309–310, 321
Tower of Hanoi, 265
Trails, 422
Traité de Méchanique Céleste

(Laplace), 410
Transition diagram, 760, 772
Transition function, 761, 772, 783
Transition table, 761, 772
Transitive closure relation,

475–482
Transitive property, 55, 78
Transitive relation, 459
Transpose of a matrix, 174
Trap state, 767
Traveling salesperson problem,

571–573
Traversals, tree, 647–653

inorder, 647–648
postorder, 648
preorder, 647

1042 Index

Treatise on Differential Equations
(Boole), 4

Treatise on the Calculus of Finite
Differences (Boole), 4

Trees
acyclic graphs, 610–611
ancestors, 636
applications, 609
balanced, 640–643
binary, 639, 646–663, 659–661
binary expression, 655
binary search, 664–668
center, 614
child, 636, 646
decision, 676–680
derivation, 743–744
descendants, 636
diagram, 6
eccentricity, 614
edge requirements, 612–613
family, 611
Fibonacci, 646–647
full, 639
game, 637
graceful, 686
height and level, 637–638
heterogeneous, 655
homogeneous, 664
Huffman, 670–675
internal vertex, 636
isomorphic, 645
leaf, 636
minimal spanning, 626–634
m-nary, 639–640
m-nary, complete, 645
ordered rooted, 638
parent, 636
parse, 745
path requirements, 611–612
rooted, 635–646
siblings, 636
spanning, 614–634
sub, 636, 646
terminal vertex, 636
ternary, 639
traversals, 647–653

Triangular numbers, 216, 285,
382

Triangulation of convex polygons,
275

Trinomial theorem, 889–890
Trivial proofs, 50
Truth tables

for biconditional statements,
14–15

for conjunctions, 6–7
for disjunctions (inclusive), 8
for implications, 10–11
for Island of Knights and

Knaves example, 12–14
for negation, 9

Truth values, 3–5
Twelve Days of Christmas, 221,

373, 431
Twin primes, 195
Two Queens puzzle, 133–134
Two’s complement, 203
Type 0 grammar, 751
Type 1 grammar, 751
Type 2 grammar, 751
Type 3 grammar, 751

U
Unary operator, 12
Unary predicate, 33
Uncountable set, 141
Underlying graph, 702, 705
Undirected graph, 517
Union

of graphs, 532–533
relations, 462–463
of sets, 78

Unit delay machines, 774
Unit element, 806
Universal quantifiers, 32
Universal sets, 70–71
Universe of discourse (UD), 33
Upper limit, summation, 158
Upper triangular matrix, 874

V
Vacuously true, 11
Vacuous proofs, 49–50
Valid arguments, 39–49
Value

absolute, 33, 126
expected, 419–420
truth, 3–5

Vandermonde, Alexandre-
Théophile, 568, 569

identity, 398–399
Variables

Boolean, 2, 813
logic, 2

Venn, John, 72
diagrams, 72–73

Vertex (vertices)
degree of, 520, 694–698
digraph, 445, 692
graph, 445, 517
initial, 692

interior, 478
internal, 636
isolated, 520
terminal, 636, 692

Von Ettinghausen, Andreas, 366
Von Segner, Johann Andreas, 393

W
Warshall, Stephen, 477

algorithm, 477–481
Weakly connected digraphs, 705
Web sites, 895–898
Weierstrass, Karl, 68
Weight, of spanning trees, 626
Weighted adjacency matrix, 528,

716
Weighted digraphs, 715–725
Weighted graphs, 527–527
Well-formed formula, 107
Well-ordering principle, 186
Wheel graphs, 526, 623
While loops, 618, 622

boolean expressions in, 7
correctness, 225

While statements, 795
Whitehead, Alfred North, 42
Wiles, Andrew J., 4
Williams, Ben Ames, 493
Wilson, John, 512

prime, 512
theorem, 512

Word(s)
empty, 75
equality of, 734–735
length, 75
null, 75
ternary, 78, 349

Worst-case time complexity, 248

X
XOR, 18
xy-plane, 88

Y
Yager, Ronald R., 28

method, 28–29
Yashima, 530–531

Z
Zadeh, Lotfi A., 91, 92
Zeller, Christian Julius Johannes,

492
formula, 492

Zero element, 806
Zero matrices, 166

List of Biographical
Sketches

Name and dates Page

1. Aristotle (384–322 b.c.) (2)
2. Leibniz, Baron Gottfried Wilhelm (1646–1716) (3)
3. Boole, George (1815–1864) (4)
4. Fermat, Pierre-Simon de (1601–1665) (5)
5. Goldbach, Christian (1690–1764) (5)
6. De Morgan, Augustus (1806–1871) (23)
7. Kosko, Bart (27)
8. Isaka, Satoru (27)
9. Dudeney, Henry Ernest (1857–1930) (40)

10. Russell, Bertrand Arthur William (1872–1970) (42)
11. Carroll, Lewis (1832–1898) (45)
12. Cantor, Georg (1845–1918) (68)
13. Venn, John (1834–1923) (72)
14. Hilbert, David (1862–1943) (74)
15. Descartes, René (1596–1650) (87)
16. Zadeh, Lotfi, A. (1921–) (92)
17. Iverson, Kenneth E. (1920–) (127)
18. Dirichlet, Gustav Peter Lejeune (1805–1859) (145)
19. Erdös, Paul (1913–1996) (147)
20. Lagrange, Joseph Louis (1736–1813) (159)
21. Cayley, Arthur (1821–1895) (164)
22. Sylvester, James Joseph (1814–1897) (164)
23. Hamming, Richard Wesley (1915–1998) (180)
24. Euclid (192)
25. Bernoulli, Jacob I. (1654–1705) (212)
26. Bachmann, Paul Gustav Heinrich (1837–1920) (238)
27. Landau, Edmund (1877–1938) (238)
28. Knuth, Donald Ervin (1938–) (244)
29. Fibonacci, Leonardo (1170?-1250?) (269)
30. Lucas, François-Edouard-Anatole (1842–1891) (274)

Name and dates Page

31. McCarthy, John (1927–) (275)
32. Binet, Jacques Phillippe Marie (1786–1865) (277)
33. De Moivre, Abraham (1667–1754) (299)
34. Lamé, Gabriel (1795–1870) (325)
35. Pascal, Blaise (1623–1662) (371)
36. Laplace, Pierre-Simon (1749–1827) (411)
37. Gauss, Karl Friedrich (1777–1855) (484)
38. Hasse, Helmut (1898–1979) (497)
39. Euler, Leonhard (1707–1783) (516)
40. Petersen, Julius (1839–1910) (532)
41. Hamilton, William Rowan (1805–1865) (565)
42. Vandermonde, Alexandre-Théophile (1735–1796) (569)
43. Dirac, Gabriel Andrew (1925–1984) (571)
44. Ore, Oystein (1899–1968) (571)
45. Kuratowski, Kazimierz (1896–1980) (584)
46. Guthrie, Francis (1831–1899) (589)
47. Kirchoff, Gustav Robert (1824–1887) (610)
48. Kruskal, Joseph Bernard (1928–) (616)
49. Prim, Robert Clay (1921–) (629)
50. Lukasiewicz, Jan (1878–1956) (654)
51. Huffman, David Albert (1925–1999) (671)
52. Dijkstra, Edsger Wybe (1930–2002) (717)
53. Floyd, Robert W. (1936–) (726)
54. Kleene, Stephen Cole (1909–1994) (739)
55. Backus, John W. (1924–) (748)
56. Naur, Peter (1928–) (748)
57. Chomsky, (Avram) Noam (1928–) (752)
58. Moore, Edward Forrest (1925–) (800)
59. Shannon, Claude Elwood (1916–2001) (804)
60. Karnaugh, Maurice (1924–) (843)

Applications Index

Item Page Item Page

Automatic teller machine 768 Lattice walking 377
Automobile license plate numbers 347 Legally paired parentheses 106
Bank check ID number 493 Light fixtures in hallways 834
A binary puzzle 198 Local area networks 529
The birthday paradox 182, 412 Logic puzzles 39–42
The cabbage-goat-wolf puzzle 552 Lucas numbers 273
Card dealing 132 Lucas numbers and the wheel graph 623
Casino games 132 Magic squares 222
Coconuts and monkey 493 Mass. state lottery 411
Code-a-bar system 493 National Football League 91
The circle problem 370 National Hockey League 164, 612
Circuit breakers 829 n-cube 566
Conflict-free scheduling 591 A nondecimal puzzle 205
Counting derangements 404 Number of leap years 130
Counting surjections 402 Number of partitions 490, 492
Cycloparaffins 524 Paraffins 523
Databases 464 Parity-check machine 765
Day of the week 135, 492 The pizza problem 368
De Bruijn sequences 702 Post-office function 128
Derangements 360 Roman numerals 798
Digital displays 854 Round-robin tournament 526
Easter Sunday 135, 195 SIM 531
The eight-coins puzzle 678 Sunflower seeds 271
EQUIVALENCE in FORTRAN 483 Survey analysis 100
Fibonacci numbers 269 Switching circuits 16
Fibonacci trees 646 Symbolic logic in decision-making 39
Friday-the-thirteenth 485 Tasks in building a house 494
The four-queens puzzle 619 Telecommunications 528
Fuzzy logic in decision-making 28 The teleprinter’s problem 700
The game of Yashima 530 The three houses-utilities puzzle 577
Gene types 697 Tic-tac-toe 637
The golden ratio 276 Tractor-mower 825
Gray codes 446 Traffic light patterns 592
The handshake problem 264, 533 Tower of Brahma 265
Hashing 138 Triangulations of a an n-gon 275, 393
Huffman code 674 Turnstiles 762
Hydrocarbon molecules 519 Twelve days of Christmas 221, 373
Insulin requirements 173 Two-queens puzzle 133
International Standard Book No. 509 Unit-delay machine 774
Knights on a 3 H 3 chessboard 558 United Parcel Service 492
Knight’s tour 567 Water bill 121
Lattice points 145 Well-formed formulas 107

1043

This Page Intentionally Left Blank

Algorithms Index

Algorithm Page Algorithm Page

Next-subset algorithm 96 Polynomial evaluation 336
Subsets of a set 102 Connectivity relation 474
Legally paired sequence 106 Warshall’s algorithm 481
Matrix product 171 Equivalence relation 490
Prime number algorithm 190 Topological sort 501
Euclid’s algorithm 193 Horner’s algorithm 336
Base-b representation 198 Eulerian graph 559
Addition in base b 199 Eulerain circuit 561
Binary multiplication 203 Minimal spanning tree 616
Integer multiplication 225 Depth-first search 618
Factorial algorithm 226 Breadth-first search 621
Linear search 227, 316 Kruskal’s algorithm 628
Binary search 229, 301 Prim’s algorithm 631
Bubble sort 232, 317 Inorder traversal 647
Selcetion sort 233, 321 Preorder traversal 647
Insertion sort 236 Postorder traversal 648
Maximum value in a list 251 Binary search tree 665
Minimum and maximum in a list 252 Huffman algorithm 671
Handshakes 308 Dijkstra’s algorithm 721
Tower of Brahma 309 Valid identifier 767
Fibonacci 310, 320 Disjunctive normal form 819
Merge sort 314 Next-permutation 884
Exponentiation 318 Next-combination 887

1044

List of Symbols

Topic Symbol Meaning Page

LOGIC ∼ p negation of p 8
p ∨ q disjunction of p and q 7
p ∧ q conjunction of p and q 5
p XOR q exclusive or of p and q 18
p → q p implies q 9
p � q p if and only if q 14
p ≡ q p is logically equivalent to q 20
F contradiction 21
T tautology 21
p NAND q not p and q 30
p NOR q not p or q 30
p | q Sheffer stroke 31
P(x1, x2, . . . , xn) propositional function 33
(∃x)P(x) Existential quantification P(x) 32
(∀x)P(x) Universal quantification P(x) 32
∴ therefore 38

SETS {x1, x2, . . . , xn} set with elements x1, x2, . . . , and xn 68
{x | P(x)} set-builder notation 69
Ø empty set 70
U universal set 70
Z set of integers 73
N, Z+ set of positive integers 73
R set of real numbers 73
[a, b] closed interval 73
[a, b) closed-open interval 73
(a, b] open-closed interval 73
(a, b) open inteval 73
A = B equality of sets A and B 70
x ∈ A x is an element of A 68
x /∈ A x is not an element of A 68
A ⊆ B A is a subset of B 69
P(A) power set of A 72
|A| cardinality of A 98
(a, b) ordered pair 86
(a1, a2, . . . , an) ordered set 86
A ∪ B union of A and B 78
A ∩ B intersection of A and B 78
A − B difference of A and B 80
A′ complement of A 81
A ⊕ B symmetric difference of A and B 82
n∪

i=1
Ai union of sets Ai, i = 1, 2, . . . , n 86

n∩
i=1

Ai intersection of sets Ai, i = 1, 2, . . . , n 86

FUNCTIONS f (x) value of function f at x 119
f : A → B function f from A to B 118
f + g sum of functions f and g 123
fg product of functions f and g 123

Topic Symbol Meaning Page

iA identity function on A 136
f −1 inverse of f 153
f ◦ g composition of g and f 151
a mod b remainder when a is divided by b 132
a div b quotient when a is divided by b 132
�x� floor of x 126
�x� ceiling of x 127
sn nth term the sequence {sn} 157

n∑
i=m

ai am + am+1 + · · · + an 158

∑
i ∈ S

ai sum the terms ai, where i ∈ S 160

n∏
i=m

ai amam+1 · · · an 163

n! n factorial 241
f (x) = O(g(x)) f(x) is big-oh of g(x) 237
f (x) = �(g(x)) f(x) is big-omega of g(x) 243
f (x) = �(g(x)) f(x) is big-theta of g(x) 245
min {x, y} minimum of x and y 252
max {x, y} maximum of x and y 251

MATRICES (aij)m×n m × n matrix with entries aij 165
A + B sum of A and B 166
A − B difference of A and B 167
kA scalar multiplication of A by k 167
AB product of A and B 170
In identity matrix of order n 166
AT transpose of A 174

INTEGERS a | b a divides b 189
a � b a is not a factor of b 189
gcd {a, b} greatest common divisor a and b 191
lcm {a, b} least common divisor of a and b
(a1a2 · · · an)b base-b representation 197

COMBINATORICS P(n, r) number of r-permutations of a set with n elements 352
Dn number of derangements of n elements 361
C(n, r) number of r-combinations of a set with n elements 366(

n
r

)
binomial coefficient: coefficient of xn in expansion of (1 + x)n 366

N(Pi1 Pi2 . . . Pin) number of elements having each of the properties Pij , j = 1, 2, . . . , n 400

N(P′
i1

P′
i2

· · · P′
in

) number of elements not having any of the properties Pij , j = 1, 2, . . . , n 400

PROBABILITY P(E) probability of event E 410
P(E|F) conditional probability of E given F 417

BOOLEAN A ∨ B join of A and B 439
MATRICES A ∧ B meet of A and B 439

A � B boolean product of A and B 439
A[n] nth boolean power of A 441

continued

Topic Symbol Meaning Page

RELATIONS S ◦ R composite of relations S and R 463
Rn nth power of relation R 466
R−1 inverse relation 469
a ≡ b(mod m) a is congruent to b modulo m 484
a �≡ b(mod m) a is not congruent to b modulo m 484
[a]R equivalence class of a with respect to R 486
a ≺ b a is less than b 495
a � b a is less than or equal to b 495
a � b a is greater than b
a � b a is greater than or equal to b

GRAPHS {u, v} or {u − v} undirected edge 517
G = (V , E) graph with vertex set V and edge set E 517
deg(v) degree of vertex v 520
Kn complete graph with n vertices 524
Cn cycle with n vertices 526
Wn wheel with n + 1 vertices 526
Km,n complete bipartite graph 527
Qn n-cube 566
a-v1- · · · - vn−1-b path from a to b 546
G1 ∪ G2 union of G1 and G2 532
deg(R) degree of region R 581

BOOLEAN B {0, 1} 807
ALGEBRA x, y boolean variables 813

x′ complement of x
x + y boolean sum of x and y 814
x · y (or xy) boolean product of x and y 814
x ↑ y x NAND y 820
x ↓ y x NOR y 820

x

y

x

x x

x+y

xy

y

inverter 827

OR gate 826

AND gate 825

LANGUAGES xy concatenation of words x and y 76
λ empty string 75
||x|| length of the string x 75
wR reversal of w 113
AB concatenation of languages A and B 736
A∗ Kleene closure 739
� alphabet 75

FINITE-STATE σ start symbol 744
MACHINES w → w′ production 744

w ⇒ w′ w′ is directly derivable from w 746
〈A〉 nonterminal symbol 748
〈A〉 ::= 〈B〉| x Backus–Naur form 748
(S, I, O, f , g, s0) finite-state machine with output 772
s0 start state 760
(S, I, f , s0, F) finite-state machine with no output 761

	Front Cover
	Discrete Mathematicswith Applications
	Copyright Page
	Table of Contents
	Preface
	A Word to the Student
	Chapter 1. The Language of Logic
	1.1 Propositions
	1.2 Logical Equivalences
	1.3 Quantifiers
	1
.4 Arguments (optional)
	1.5 Proof Methods
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 2. The Language of Sets
	2.1 The Concept of a Set
	2.2 Operations with Sets
	2.3 Computer Operations with
 Sets (optional)
	2.4 The Cardinality of a Set
	2.5 Recursively Defined Sets
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter
3. Functions and Matrices
	3.1 The Concept of a Function
	3.2 Special Functions
	3.3 Properties of Functions
	3.4 The Pigeonhole Principle
	3.5 Composition of Functions
	3.6 Sequences and the Summation Notation
	3.7 Matrices
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 4. Induction and Algorithms
	4.1 The Division Algorithm
	4.2 Divisibility Properties

	4.3 Nondecimal Bases

	4.4 Mathematical Induction

	4.5 Algorithm Correctness

	4.6 The Growth of Functions

	4
.7 Complexities of Algorithms (optional)
	Chapter Summary

	Review Exercises

	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter
 5. Recursion
	5.1 Recursively Defined Functions
	5.2 Solving Recurrence Relations
	5.3 Solving Recurrence Relations Revisited
	5.4 Generating Functions
	5.5 Recursive Algorithms
	5.6 Correctness of Recursive Algorithms
	5.7 Complexities of Recursive Algorithms
(optional)
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 6.
 Combinatorics and Discrete Probability
	6.1 The Fundamental Counting Principles
	6.2 Permutations
	6.3 Derangements
	6.4 Combinations
	6.5 Permutations and Combinations with Repetitions
	6.6 The Binomial Theorem
	6.7 The Generalized Inclusion–Exclusion Principle (GIEP) (optional)

	6.8 Discrete Probability (optional)
	6.9 Additional Topics in Probability (optional)
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter
 7. Relations
	7.1 Boolean Matrices
	7.2 Relations and Digraphs
	7.3 Computer Representations of Relations (optional)
	7.4 Properties of Relations
	7.5 Operations on Relations
	7.6 The Connectivity Relation (optional)
	7.7 Transitive Closure (optional)
	7.8 Equivalence
Relations
	7.9 Partial and Total Orderings
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 8. Graphs

	8.1 Graphs
	8.2 Computer Representations of Graphs (optional)
	8.3 Isomorphic Graphs
	8.4 Paths, Cycles, and Circuits
	8.5 Eulerian and Hamiltonian Graphs
	8.6 Planar Graphs
	8.7 Graph Coloring
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 9. Trees
	9.1 Trees
	9.2 Spanning trees
	9.3 Minimal Spanning Trees
	9.4 Rooted Trees
	9.5 Binary Trees
	9.6 Binary Search Trees
	9.7 Huffman Trees (optional)
	9.8 Decision Trees (optional)
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 10.
Digraphs
	10.1 Digraphs

	10.2 Dags
	10.3 Weighted Digraphs
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 11. Formal Languages and Finite-State Machines

	11.1 Formal Languages
	11.2 Grammars
	11.3 Finite-State Automata
	11.4 Finite-State Machines
	11.5 Deterministic Finite-State Automata and Regular Languages
	11.6 Nondeterministic Finite-State Automata
	11.7 Automata and Regular Languages
	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Chapter 12. Boolean Algebra and Combinatorial Circuits
	12.1 Boolean Algebra
	12.2 Boolean functions
	12.3 Logic Gates
	12.4 Combinatorial Circuits
	12.5 Minimization of Combinatorial Circuits
	12.6 Don’t Care Conditions

	Chapter Summary
	Review Exercises
	Supplementary Exercises
	Computer Exercises
	Exploratory Writing Projects
	Enrichment Readings

	Appendix A
	A.1 ASCII Character Set
	A.2 Determinants
	A.3 Exponential and Logarithmic Functions
	A.4 Generating Permutations and Combinations
	A.5 The Multinomial Theorem
	A.6 The Greek Alphabet
	A.7 Web Sites

	References
	Solutions to Odd-Numbered Exercises
	Credits
	Index
	List of Biographical Sketches
	Application Index
	Alogrithms Index
	List of Symbols

