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Preface

A journey of a thousand miles
begins with a single step.

— A Chinese proverb

P eople often ask: What is discrete mathematics? It’s the mathematics
of discrete (distinct and disconnected) objects. In other words, it is the
study of discrete objects and relationships that bind them. The geometric
representations of discrete objects have gaps in them. For example, integers
are discrete objects, therefore (elementary) number theory, for instance, is
part of discrete mathematics; so are linear algebra and abstract algebra.

On the other hand, calculus deals with sets of connected (without any
gaps) objects. The set of real numbers and the set of points on a plane are
two such sets; they have continuous pictorial representations. Therefore,
calculus does not belong to discrete mathematics, but to continuous mathe-
matics. However, calculus is relevant in the study of discrete mathematics.
The sets in discrete mathematics are often finite or countable, whereas
those in continuous mathematics are often uncountable.

Interestingly, an analogous situation exists in the field of computers.
Just as mathematics can be divided into discrete and continuous mathe-
matics, computers can be divided into digital and analog. Digital computers
process the discrete objects 0 and 1, whereas analog computers process con-
tinuous data—that is, data obtained through measurement. Thus the terms
discrete and continuous are analogous to the terms digital and analog,
respectively.

The advent of modern digital computers has increased the need for
understanding discrete mathematics. The tools and techniques of discrete
mathematics enable us to appreciate the power and beauty of mathematics
in designing problem-solving strategies in everyday life, especially in com-
puter science, and to communicate with ease in the language of discrete
mathematics.

The Realization of a Dream

This book is the fruit of many years of many dreams; it is the end-product
of my fascination for the myriad applications of discrete mathematics to
a variety of courses, such as Data Structures, Analysis of Algorithms,
Programming Languages, Theory of Compilers, and Databases. Data struc-
tures and Discrete Mathematics compliment each other. The information
in this book is applicable to quite a few areas in mathematics; discrete

xiii
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mathematics is also an excellent preparation for number theory and abstract
algebra.

A logically conceived, self-contained, well-organized, and a user-friendly
book, it is suitable for students and amateurs as well; so the language
employed is, hopefully, fairly simple and accessible. Although the book
features a well-balanced mix of conversational and formal writing style,
mathematical rigor has not been sacrificed. Also great care has been taken
to be attentive to even minute details.

The book has been designed for students in computer science, electrical
engineering, and mathematics as a one- or two-semester course in discrete
mathematics at the sophomore/junior level. Several earlier versions of the
text were class-tested at two different institutions, with positive responses
from students.

No formal prerequisites are needed to enjoy the material or to employ its
power, except a very strong background in college algebra. A good back-
ground in pre-calculus mathematics is desirable, but not essential. Perhaps
the most important requirement is a bit of sophisticated mathematical
maturity: a combination of patience, logical and analytical thinking, moti-
vation, systematism, decision-making, and the willingness to persevere
through failure until success is achieved.

Although no programming background is required to enjoy the discrete
mathematics, knowledge of a structured programming language, such as
Java or C+ +, can make the study of discrete mathematics more rewarding.

The text contains in-depth coverage of all major topics proposed by pro-
fessional associations for a discrete mathematics course. It emphasizes
problem-solving techniques, pattern recognition, conjecturing, induction,
applications of varying nature, proof techniques, algorithm development,
algorithm correctness, and numeric computations.

Recursion, a powerful problem-solving strategy, is used heavily in both
mathematics and computer science. Initially, for some students, it can
be a bitter-sweet and demanding experience, so the strategy is presented
with great care to help amateurs feel at home with this fascinating and
frequently used technique for program development.

This book also includes discussions on Fibonacci and Lucas numbers,
Fermat numbers, and figurate numbers and their geometric representa-
tions, all excellent tools for exploring and understanding recursion.
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A sufficient amount of theory is included for those who enjoy the beauty
in the development of the subject, and a wealth of applications as well for
those who enjoy the power of problem-solving techniques. Hopefully, the
student will benefit from the nice balance between theory and applications.

Optional sections in the book are identified with an asterisk (%) in the
left margin. Most of these sections deal with interesting applications or
discussions. They can be omitted without negatively affecting the logical
development of the topic. However, students are strongly encouraged to
pursue the optional sections to maximize their learning.

Historical Anecdotes and Biographies

Biographical sketches of about 60 mathematicians and computer scien-
tists who have played a significant role in the development of the field
are threaded into the text. Hopefully, they provide a human dimension and
attach a human face to major discoveries. A biographical index, keyed to
page, appears on the inside of the back cover for easy access.

Examples and Exercises

Foundation

Each section in the book contains a generous selection of carefully tailored
examples to clarify and illuminate various concepts and facts. The backbone
of the book is the 560 examples worked out in detail for easy understanding.

Every section ends with a large collection of carefully prepared and well-
graded exercises (more than 3700 in total), including thought-provoking
true-false questions. Some exercises enhance routine computational skills;
some reinforce facts, formulas, and techniques; and some require mastery
of various proof techniques coupled with algebraic manipulation. Often
exercises of the latter category require a mathematically sophisticated mind
and hence are meant to challenge the mathematically curious.

Most of the exercise sets contain optional exercises, identified by the
letter o in the left margin. These are intended for more mathematically
sophisticated students.

Exercises marked with one asterisk (x) are slightly more advanced
than the ones that precede them. Double-starred (xx) exercises are more
challenging than the single-starred; they require a higher level of mathe-
matical maturity.

Exercises identified with the letter ¢ in the left margin require a calculus
background; they can be omitted by those with no or minimal calculus.

Answers or partial solutions to all odd-numbered exercises are given at
the end of the book.

Theorems are the backbones of mathematics. Consequently, this book
contains the various proof techniques, explained and illustrated in detail.
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They provide a strong foundation in problem-solving techniques, algorith-
mic approach, verification and analysis of algorithms, as well as in every
discrete mathematics topic needed to pursue computer science courses
such as Data Structures, Analysis of Algorithms, Programming Languages,
Theory of Compilers, Databases, and Theory of Computation.

Most of the concepts, definitions, and theorems in the book are illustrated
with appropriate examples. Proofs shed additional light on the topic and
enable students to sharpen their problem-solving skills. The various proof
techniques appear throughout the text.

Numerous current and relevant applications are woven into the text, taken
from computer science, chemistry, genetics, sports, coding theory, banking,
casino games, electronics, decision-making, and gambling. They enhance
understanding and show the relevance of discrete mathematics to everyday
life. A detailed index of applications, keyed to pages, is given at the end of
the book.

Clearly written algorithms are presented throughout the text as problem-
solving tools. Some standard algorithms used in computer science are
developed in a straightforward fashion; they are analyzed and proved to
enhance problem-solving techniques. The computational complexities of a
number of standard algorithms are investigated for comparison.
Algorithms are written in a simple-to-understand pseudocode that can
easily be translated into any programming language. In this pseudocode:

* Explanatory comments are enclosed within the delimeters (* and *).

* The body of the algorithm begins with a Begin and ends in an End,;
they serve as the outermost parentheses.

* Every compound statement begins with a begin and ends in an end;
again, they serve as parentheses. In particular, for easy readabil-
ity, a while (for) loop with a compound statement ends in endwhile
(endfor).

Chapter Summaries

Each chapter ends with a summary of important vocabulary, formulas,
and properties developed in the chapter. All the terms are keyed to the text
pages for easy reference and a quick review.
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Review and Supplementary Exercises

Each chapter summary is followed by an extensive set of well-constructed
review exercises. Used along with the summary, these provide a com-
prehensive review of the chapter. Chapter-end supplementary exercises
provide additional challenging opportunities for the mathematically sophis-
ticated and curious-minded for further experimentation and exploration.
The book contains about 950 review and supplementary exercises.

Computer Assignments

Over 150 relevant computer assignments are given at the end of chapters.
They provide hands-on experience with concepts and an opportunity to
enhance programming skills. A computer algebra system, such as Maple,
Derive, or Mathematica, or a programming language of choice can be
used.

Exploratory Writing Projects

Each chapter contains a set of well-conceived writing projects, for a total
of about 600. These expository projects allow students to explore areas
not pursued in the book, as well as to enhance research techniques and
to practice writing skills. They can lead to original research, and can be
assigned as group projects in a real world environment.

For convenience, a comprehensive list of references for the writing
projects, compiled from various sources, is provided in the Student’s
Solutions Manual.

Enrichment Readings

Each chapter ends with a list of selected references for further exploration
and enrichment. Most expand the themes studied in this book.

Numbering System

A concise numbering system is used to label each item, where an item can
be an algorithm, figure, example, exercises, section, table, or theorem. Item
m.n refers to item n in Chapter “m”. For example, Section 3.4 is Section 4
in Chapter 3.

Special Symbols

Colored boxes are used to highlight items that may need special attention.
The letter o in the left margin of an exercise indicates that it is optional,
whereas a ¢ indicates that it requires the knowledge of calculus. Besides,
every theorem is easily identifiable, and the end of every proof and example
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is marked with a solid square (M). An asterisk (x) next to an exercise indi-
cates that it is challenging, whereas a double-star (x*) indicates that it is
even more challenging. While “=" stands for equality, the closely related
symbol “~” means is approximately equal to:

o  optional exercises

¢ requires a knowledge of calculus
B end of a proof or a solution

%  achallenging exercise

xx a more challenging exercise

is equal to

is approximately equal to

&

For the sake of brevity, four useful abbreviations are used throughout the
text: LHS, RHS, PMI, and IH:

LHS Left-Hand Side

RHS Right-Hand Side

PMI Principle of Mathematical Induction
IH Inductive Hypothesis

An index of symbols used in the text and the page numbers where they
occur can be found inside the front and back covers.

The World Wide Web can be a useful resource for collecting information
about the various topics and algorithms. Web links also provide biographies
and discuss the discoveries of major mathematical contributors. Some Web
sites for specific topics are listed in the Appendix.

Student’s Solutions Manual

The Student’s Solutions Manual contains detailed solutions of all odd-
numbered exercises. It also includes suggestions for studying mathematics,
and for preparing to take an math exam. The Manual also contains
a comprehensive list of references for the various writing projects and
assignments.
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Instructor’s Manual

The Instructor’s Manual contains detailed solutions to all even-numbered
exercises, two sample tests and their keys for each chapter, and two sample
final examinations and their keys.
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A Word to the Student

Tell me and I will forget.
Show me and I will remember.
Involve me and I will understand.

— Confucius

The SALT of Life

Mathematics is a science; it is an art; it is a precise and concise language;
and it is a great problem-solving tool. Thus mathematics is the SALT of
life.

To learn a language, such as Greek or Russian, first you have to learn
its alphabet, grammar, and syntax; you also have to build up a decent
vocabulary to speak, read, or write. Each takes a lot of time and practice.

The Language of Mathematics

Because mathematics is a concise language with its own symbolism, vocab-
ulary, and properties (or rules), to be successful in mathematics, you must
know them well and be able to apply them.

For example, it is important to know that there is a difference between
perimeter and area, area and volume, factor and multiple, divisor and divi-
dend, hypothesis and hypotenuse, algorithm and logarithm, reminder and
remainder, computing and solving, disjunction and destruction, conjunc-
tion and construction, and negation and negative. So you must be fluent in
the language of mathematics, just like you need to be fluent in any foreign
language. So keep speaking the language of mathematics.

Although mathematics is itself an unambiguous language, algebra is the
language of mathematics. Studying algebra develops confidence, improves
logical and critical thinking, and enhances what is called mathematical
maturity, all needed for developing and establishing mathematical facts,
and for solving problems.

This book is written in a clear and concise language that is easy to under-
stand and easy to build on. It presents the essential (discrete) mathematical
tools needed to succeed in all undergraduate computer science courses.

Theory and Applications

This book features a perfect blend of both theory and applications.
Mathematics does not exist without its logically developed theory; in fact,
theorems are like the steel beams of mathematics. So study the various
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proof techniques, follow the various proofs presented, and try to reproduce
them in your own words. Whenever possible, create your own proofs. Try
to feel at home with the various methods and proofs. Besides developing a
working vocabulary, pay close attention to facts, properties, and formulas,
and enjoy the beautiful development of each topic.

This book also draws on a vast array of interesting and practical
applications to several disciplines, especially to computer science. These
applications are spread throughout the book. Enjoy them, and appreciate
the power of mathematics that can be applied to a variety of situations,
many of which are found in business, industry, and scientific discovery in
today’s workplace.

Problem-Solving Strategies

To master mathematics, you must practice it; that is, you must apply and
do mathematics. You must be able to apply previously developed facts to
solve problems. For this reason, this book emphasizes problem-solving tech-
niques. You will encounter two types of exercises in the exercise sets: The
first type is computational, and the second type is algebraic and theoreti-
cal. Being able to do computational exercises does not automatically imply
that you are able to do algebraic and theoretical exercises. So do not get
discouraged, but keep trying until you succeed.

Of course, before you attempt the exercises in any section, you will need
to first master the section; know the definitions, symbols, and facts, and
redo the examples using your own steps.

Since the exercises are graded in ascending order of difficulty, always
do them in order; save the solutions and refine them as you become
mathematically more sophisticated.

The chapter-end review exercises give you a chance to re-visit the
chapter. They can be used as a quick review of important concepts.

Recursion
Recursion is an extremely powerful problem-solving strategy, used often
in mathematics and computer science. Although some students may need
a lot of practice to get used to it, once you know how to approach problems
recursively, you will certainly appreciate its great power.

Stay Actively Involved

Professional basketball players Magic Johnson, Larry Bird, and Michael
Jordan didn’t become superstars overnight by reading about basketball or
by watching others play on television. Besides knowing the rules and the
skills needed to play, they underwent countless hours of practice, hard
work, a lot of patience and perseverance, willingness to meet failures, and
determination to achieve their goal.
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Likewise, you cannot master mathematics by reading about it or by sim-
ply watching your professor do it in class; you have to get involved and stay
involved by doing it every day, just as skill is acquired in a sport. You can
learn mathematics only in small, progressive steps, building on skills you
have already mastered. Remember the saying: Rome wasn’t built in a day.

Keep using the vocabulary and facts you have already studied. They must
be fresh in your mind; review them every week.

A Few Suggestions for Learning Mathematics

* Read a few sections before each class. You might not fully understand
the material, but you’ll follow it far better when your professor dis-
cusses it in class. In addition, you will be able to ask more questions in
class and answer more questions.

* Whenever you study the book, make sure you have a pencil and enough
paper to write down definitions, theorems, and proofs, and to do the
exercises.

* Return toreview the material taught in class later in the same day. Read
actively; do not just read as if it was a novel or a newspaper. Write down
the definitions, theorems, and properties in your own words, without
looking in your notes or the book. Good note-taking and writing aid
retention. Re-write the examples, proofs, and exercises done in class,
all in your own words. If you find them too challenging, study them
again and try again; continue until you succeed.

* Always study the relevant section in the text and do the examples there;
then do the exercises at the end of the section. Since the exercises are
graded in order of difficulty, do them in order. Don’t skip steps or write
over previous steps; this way you’ll progress logically, and you can locate
and correct your errors. If you can’t solve a problem because it involves a
new term, formula, or some property, then re-study the relevant portion
of the section and try again. Don’t assume that you’ll be able to do every
problem the first time you try it. Remember, practice is the only way to
success.

Solutions Manual

A Final Word

The Student’s Solutions Manual contains additional helpful tips for study-
ing mathematics, and preparing for and taking an examination in math-
ematics. It also gives detailed solutions to all odd-numbered exercises
and a comprehensive list of references for the various exploratory writing
projects.

Mathematics is no more difficult than any other subject. If you have the
motivation, and patience to learn and do the work, then you will enjoy
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the beauty and power of discrete mathematics; you will see that discrete
mathematics is really fun.

Keep in mind that learning mathematics is a step-by-step process.
Practice regularly and systematically; review earlier chapters every week,
since things must be fresh in your mind to apply and build on them. In this
way, you will enjoy the subject, feel confident, and to explore more. The
name of the game is practice, so practice, practice, practice.

Ilook forward to hearing from you with your comments and suggestions.
In the meantime, enjoy the beauty and power of mathematics.

Thomas Koshy



The Language of Logic

Symbolic logic has been disowned by many logicians on the plea that its
interest is mathematical and by many mathematicians on the plea that its
interest is logical.

—A. N. WHITEHEAD

L ogic is the study of the principles and techniques of reasoning. It orig-
inated with the ancient Greeks, led by the philosopher Aristotle, who
is often called the father of logic. However, it was not until the 17th century
that symbols were used in the development of logic. German philoso-
pher and mathematician Gottfried Leibniz introduced symbolism into logic.
Nevertheless, no significant contributions in symbolic logic were made until
those of George Boole, an English mathematician. At the age of 39, Boole
published his outstanding work in symbolic logic, An Investigation of the
Laws of Thought.

Logic plays a central role in the development of every area of learning,
especially in mathematics and computer science. Computer scientists, for
example, employ logic to develop programming languages and to establish
the correctness of programs. Electronics engineers apply logic in the design
of computer chips.

This chapter presents the fundamentals of logic, its symbols, and rules to
help you to think systematically, to express yourself in precise and concise
terms, and to make valid arguments.

Here are a few interesting problems we shall pursue in this chapter:

* Consider the following two sentences, both true:
There are more residents in New York City than there are hairs on the
head of any resident. No resident is totally bald. What is your conclu-
sion: Is it true that at least two residents have the same number of
hairs? (R. M. Smullyan, 1978)

* There are two kinds of inhabitants, “knights” and “knaves,” on an
island. Knights always tell the truth, whereas knaves always lie. Every
inhabitantis either a knight or a knave. Tom and Dick are two residents.
Tom says, “At least one of us is a knave.” What are Tom and Dick?

1
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Aristotle (384-322 B.C.), one of the greatest philosophers in Western culture,
was born in Stagira, a small town in northern Greece. His father was the
personal physician of the king of Macedonia. Orphaned young, Aristotle was
raised by a guardian.

At the age of 18, Aristotle entered Plato’s Academy in Athens. He was
the “brightest and most learned student” at the Academy which he left when
Plato died in 347 B.C.

About 342 B.c, the king of Macedonia invited him to supervise the edu-
cation of his young son, Alexander, who later became Alexander the Great.
Aristotle taught him until 336 B.Cc., when the youth became ruler following
the assassination of his father.

Around 334 B.c., Aristotle returned to Athens and founded a school called
the Lyceum. His philosophy and followers were called peripatetic, a Greek
word meaning “walking around,” since Aristotle taught his students while walking with them.

The Athenians, perhaps resenting his relationship with Alexander the Great, who had conquered them,
accused him of impiety soon after the Emperor’s death in 323 B.C. Aristotle, knowing the fate of Socrates,
who had been condemned to death on a similar charge, fled to Chalcis, so the Athenians would not “sin
twice against philosophy.” He died there the following year.

What are they if Tom says, “Either I'm a knave or Dick is a knight”?
(R. M. Smullyan, 1978)

* Are there positive integers that can be expressed as the sum of two
different cubes in two different ways?

* Does the formula E(n) = n?2 — n + 41 yield a prime number for every
positive integer n?

1.1 Propositions

A declarative sentence that is either true or false, but not both, is a propo-
sition (or a statement), which we will denote by the lowercase letter
p,q,r,s, or t. The variables p,q,r,s, or ¢ are boolean variables (or logic
variables).

M The following sentences are propositions:

(1) Socrates was a Greek philosopher.

(2) 3+4=5.

(3) 14+ 1 =0 and the moon is made of green cheese.
(4) If 1 = 2, then roses are red.

The following sentences are not propositions:
* Let me go! (exclamation)

e x+3=5 (x is an unknown.)
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Baron Gottfried Wilhelm Leibniz (1646-1716), an outstanding German
mathematician, philosopher, physicist, diplomat, and linguist, was born into
a Lutheran family. The son of a professor of philosophy, he “grew up to be a
genius with encylopedic knowledge.”

He had taught himself Latin, Greek, and philosophy before entering the
University of Leipzig at age 15 as a law student. There he read the works of
great scientists and philosophers such as Galileo, Francis Bacon, and René
Descartes. Because of his youth, Leipzig refused to award him the degree of the
doctor of laws, so he left his native city forever.

During 1663-1666, he attended the universities of Jena and Altdorf, and
receiving his doctorate from the latter in 1666, he began legal services for the
Elector of Mainz.

After the Elector’s death, Leibniz pursued scientific studies. In 1672, he
built a calculating machine that could multiply and divide and presented it to the Royal Society in London
the following year.

In late 1675, Leibniz laid the foundations of calculus, an honor he shares with Sir Isaac Newton. He
discovered the fundamental theorem of calculus, and invented the popular notations —d/dx for differ-
entiation and [ for integration. He also introduced such modern notations as dot for multiplication, the
decimal point, the equal sign, and the colon for ratio.

From 1676, until his death, Leibniz worked for the Duke of Brunswick at Hanover and his estate after
the duke’s death in 1680. He played a key role in the founding of the Berlin Academy of Sciences in 1700.

Twelve years later, Leibniz was appointed councilor of the Russian Empire and was given the title of
baron by Peter the Great.

Suffering greatly from gout, Leibniz died in Hanover. He was never married.

His works influenced such diverse disciplines as theology, philosophy, mathematics, the natural
sciences, history, and technology.

¢ Close the door! (command)

* Kennedy was a great president of (opinion)
the United States.

* What is my line? (interrogation) [ |

Truth Value

The truthfulness or falsity of a proposition is called its truth value,
denoted by T(true) and F(false), respectively. (These values are often
denoted by 1 and 0 by computer scientists.) For example, the truth value
of statement (1) in Example 1.1 is T and that of statement (2) is F.

Consider the sentence, This sentence is false. It is certainly a valid declar-
ative sentence, but is it a proposition? To answer this, assume the sentence
is true. But the sentence says it is false. This contradicts our assumption.
On the other hand, suppose the sentence is false. This implies the sentence
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In 1844, he was awarded a Royal Medal by the Society for his contributions to analysis; he was elected a
fellow of the Society in 1857.

logic, The Mathematical Analysis of Logic, in 1847. His publications played a key role in his appointment
as professor of mathematics at Queen’s College, Cork, Ireland, in 1849, although he lacked a university
education.

presented the algebra of logic now known as boolean algebra (see Chapter 12). The next year he married
Mary Everest, the niece of Sir George Everest, for whom the mountain is named.

Equations (1859) and Treatise on the Calculus of Finite Differences; both were used as texts in the United
Kingdom for many years.

George Boole (1815-1864), the son of a cobbler whose main interests were
mathematics and the making of optical instruments, was born in Lincoln,
England. Beyond attending a local elementary school and briefly a commercial
school, Boole was self-taught in mathematics and the classics. When his
father’s business failed, he started working to support the family. At 16, he
began his teaching career, opening a school of his own four years later in
Lincoln.

In his leisure time, Boole read mathematical journals at the Mechan-
ics Institute. There he grappled with the works of English physicist and
mathematician Sir Isaac Newton and French mathematicians Pierre-Simon
Laplace and Joseph-Louis Lagrange.

In 1839, Boole began contributing original papers on differential equations
to The Cambridge Mathematics Journal and on analysis to the Royal Society.

Developing novel ideas in logic and symbolic reasoning, he published his first contribution to symbolic

In 1854, he published his most important work, An Investigation to the Laws of Thought, in which he

In addition to writing about 50 papers, Boole published two textbooks, Treatise on Differential

A conscientious and devoted teacher, Boole died of pneumonia in Cork.

is true, which again contradicts our assumption. Thus, if we assume that
the sentence is true, it is false; and if we assume that it is false, it is true. It
is a meaningless and self-contradictory sentence, so it is not a proposition,
but a paradox.

The truth value of a proposition may not be known for some reason, but
that does not prevent it from being a proposition. For example, around
1637, the French mathematical genius Pierre-Simon de Fermat conjec-
tured that the equation x® + y" = 2" has no positive integer solutions,
where n > 3. His conjecture, known as Fermat’s Last “Theorem,” was
one of the celebrated unsolved problems in number theory, until it was
proved in 1993 by the English mathematician Andrew J. Wiles (1953-) of
Princeton University. Although the truth value of the conjecture eluded
mathematicians for over three centuries, it was still a proposition!

Here is another example of such a proposition. In 1742 the Prussian
mathematician Christian Goldbach conjectured that every even integer
greater than 2 is the sum of two primes, not necessarily distinct. For exam-
ple,4=2+2,6 =3+ 3, and 18 = 7+ 11. It has been shown true for every
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Fermat (1601-1665) was born near Toulouse as the son of a leather
merchant. A lawyer by profession, he devoted his leisure time to mathemat-
ics. Although he published almost none of his discoveries, he did correspond
with contemporary mathematicians.

Fermat contributed to several branches of mathematics, but he is best
known for his work in number theory. Many of his results appear in margins
of his copy of the works of the Greek mathematician Diophantus (250 A.D.?).
He wrote the following about his famous conjecture: “I have discovered a
truly wonderful proof, but the margin is too small to contain it.”

Christian Goldbach (1690-1764) was born in Konigsberg, Prussia. He studied medicine and mathe-
matics at the University of Konigsberg and became professor of mathematics at the Imperial Academy of
Sciences in St. Petersburg in 1725. In 1728, he moved to Moscow to tutor Tsarevich Peter II and his cousin
Anna of Courland. From 1729 to 1763, he corresponded with Euler on number theory. He returned to the
Imperial Academy in 1732, when Peter’s successor Anna moved the imperial court to St. Petersburg.

In 1742, Goldbach joined the Russian Ministry of Foreign Affairs, and later became privy councilor
and established guidelines for the education of royal children.

Noted for his conjectures in number theory and work in analysis, Goldbach died in Moscow.

Conjunction

even integer less than 4 x 1014, but no one has been able to prove or disprove
his conjecture. Nonetheless, the Goldbach conjecture is a proposition.

Propositions (1) and (2) in Example 1.1 are simple propositions. A
compound proposition is formed by combining two or more simple
propositions called components. For instance, propositions (3) and (4)
in Example 1.1 are compound. The components of proposition (4) are I =2
and Roses are red. The truth value of a compound proposition depends on
the truth values of its components.

Compound propositions can be formed in several ways, and they are
presented in the rest of this section.

The conjunction of two arbitrary propositions p and g, denoted by p A g,
is the proposition p and q. It is formed by combining the propositions using
the word and, called a connective.
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Im Consider the statements

p: Socrates was a Greek philosopher
and q: Euclid was a Chinese musician.

Their conjunction is given by

p A q: Socrates was a Greek philosopher and Euclid was a
Chinese musician. [ |

To define the truth value of p A g, where p and ¢ are arbitrary
propositions, we need to consider four possible cases:

* pistrue, q is true.
* pistrue, q is false.
* pis false, q is true.
* pis false, g is false.

(See the tree diagram in Figure 1.1 and Table 1.1.) If both p and g are
true, then p A q is true; if p is true and q is false, then p A g is false; if p is
false and ¢ is true, then p A g is false; and if both p and ¢ are false, then
P A qis also false.

Figure 1.1 Truth value Truth value
of p ofq
T
T<
F
T

Table 1.1 PAG

Heag |
HEEs R

This information can be summarized in a table. In the third column of
Table 1.1, enter the truth value of p A ¢ corresponding to each pair of truth
values of p and ¢g. The resulting table, Table 1.2, is the truth table for
P AgQ.
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Truth table for p A ¢

Disjunetion

LEXAMPLE 1.4 |

1.1 Propositions 7

HmAag |
e R
R >

Expressions that yield the value true or false are boolean expres-
sions, and they often occur in both mathematics and computer science. For
instance, 3 < 5and 5 < 5 are boolean expressions. If-statements and while-
loops in computer programs often use such expressions, and their values
determine whether or not if-statements and while-loops will be executed,
as the next example illustrates.

Determine whether the assignment statement, sum <« sum + i +j,* will
be executed in the following sequence of statements:
i« 3
Jj <5
sum <« 0
if (i < 4) and (j < 5) then
sum < sum + i + J

SOLUTION:

The assignment statement will be executed if the truth value of the boolean
expression (i < 4) and (j < 5) is T. So, let us evaluate it. Sincei < 3,7 < 4
is true; sincej < 5, < 5 is also true. Therefore, (i < 4) and (j < 5) is true
(see row 1 of Table 1.2). Consequently, the given assignment statement will
be executed. [ |

A second way of combining two propositions p and q is by using the con-
nective or. The resulting proposition p or q is the disjunction of p and q
and is denoted by p Vv q.

Consider the statements

p: Harry likes pepperoni pizza for lunch
and

q: Harry likes mushroom pizza for lunch.

*The statement x < y means the value of the expression y is assigned to x, where <« is
the assignment operator. The general form of an assignment statement is variable <
expression.
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Their disjunction is given by

p Vv q: Harry likes pepperoni pizza for lunch or Harry likes mushroom
pizza for lunch.

This sentence, however, is often written as

p Vv q: Harry likes pepperoni or mushroom pizza for lunch. |

An interesting observation: In this example, Harry could like pepperoni
pizza or mushroom pizza, or both, for lunch. In other words, the connec-
tive or is used in the inclusive sense and/or to mean at least one, maybe
both. Such a disjunction is an inclusive disjunction.

Table 1.3 gives the truth table for an inclusive disjunction.

Table 1.3 P q pPVq

Truth table for p v ¢ T T T
T F T
F T T
F F F

The disjunction of two propositions is true if at least one component is
true; it is false only if both components are false.

Im Consider the statements

r: Bernie will play basketball at 3 P.M. today

and

s: Bernie will go to a matinee at 3 P.M. today.

Then r v s: Bernie will play basketball or go to a matinee at 3 P.M. today. W

In this example, Bernie cannot play basketball and go to a matinee at the
same time, so the word or is used in the exclusive sense to mean at least
one, but not both. Such a disjunction is an exclusive disjunction.
(See Exercise 31.) Throughout our discussion, we will be concerned

with only inclusive disjunction, so the word “disjunction” will mean
“inclusive disjunction.”

Negation

The negation of a proposition p is It is not the case that p, denoted by ~p.
You may read ~p as the negation of p or simply not p.
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Truth table for ~p

LEXAMPLE 1.7

Implieation

IEXAMPLE 1.8
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Let p: Paris is the capital of France

and q: Apollo is a Hindu god.
The negation of p is

~p: It is not the case that Paris is the capital of France.
This sentence, however, is often written as
~p: Paris is not the capital of France.
Likewise, the negation of q is
~q: Apollo is not a Hindu god. |

If a proposition p is true, then ~p is false; if p is false, then ~p is true.
This definition is summarized in Table 1.4.

p ~p
T F
F T

Evaluate each boolean expression, where ¢ = 3,6 = 5, and ¢ = 6.
(1) [~@>b]lAbd<c) (2) ~[(@<b)Vv (®d>c)

SOLUTION:
(1) Since a > b is false, ~(a > b) is true. Also, b < c is true. Therefore,
[~ (@ >b)] A <c)istrue. (See row 1 of Table 1.2.)
(2) a <bistrue;butb > cisfalse. So (a < b) v (b > ¢) is true. (See row 2
of Table 1.3.) Therefore, ~[(a < b) v (b > ¢)] is false. [ |

Next we present another way of constructing new propositions.

Two propositions p and g can be combined to form statements of the form:
If p, then q. Such a statement is an implication, denoted by p — ¢. Since
it involves a condition, it is also called a conditional statement. The
component p is the hypothesis (or premise) of the implication and g the
conclusion.

Let p: AABC is equilateral

and
q: AABC is isosceles.

Then
p — q: If AABC is equilateral, then it is isosceles.
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Likewise,
q — p: If AABC is isosceles, then it is equilateral.

(Note: In the implication ¢ — p, g is the hypothesis and p is the
conclusion.) |

Implications occur in a variety of ways. The following are some
commonly known occurrences:

e Ifp, then q. e Ifp,q. e p implies q.
e ponlyifgq. * qifp. * p is sufficient for q.
* g is necessary for p.

Accordingly, the implication p — ¢ can be read in one of these ways.
For instance, consider the proposition

p — q: If AABC is equilateral, then it is isosceles.

It means exactly the same as any of the following propositions:
e If AABC is equilateral, it is isosceles.
* AABC is equilateral implies it is isosceles.
* AABC is equilateral only if it is isosceles.
* AABC is isosceles if it is equilateral.

* That AABC is equilateral, is a sufficient condition for it to be
isosceles.

e That AABC is isosceles, is a necessary condition for it to be
equilateral.

Warning: The statement p only if q is often misunderstood as having
the same meaning as the statement p if q. Remember, p if ¢ means If q,
then p. So be careful. Think of only if as one phrase; do not split it.

To construct the truth table for an implication If p, then q, we shall
think of it as a conditional promise. If you do p, then I promise to do gq. If
the promise is kept, we consider the implication true; if the promise is not
kept, we consider it false. We can use this analogy to construct the truth
table, as shown below.

Consider the following implication:

p — q: If you wax my car, then I will pay you $25.
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Truth table for p — q
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If you wax my car (p true) and if I pay you $25 (¢ true), then the implication
is true. If you wax my car (p true) and if I do not pay you $25 (¢ false), then
the promise is violated; hence the implication is false. What if you do not
wax my car (p false)? Then I may give you $25 (being generous!) or not. (So
q may be true or false). In either case, my promise has not been tested and
hence has not been violated. Consequently, the implication has not been
proved false. If it is not false, it must be true. In other words, if p is false,
the implication p — q is true by default. (If p is false, the implication is
said to be vacuously true.)
This discussion is summarized in Table 1.5.

P g9 p—4q
T T T
T F F
F T T
F F T

In the ordinary use of implications in the English language, there is
a relationship between hypothesis and conclusion, as in the car waxing
example. This relation, however, does not necessarily hold for formal impli-
cations. For instance, in the implication, If the power is on, then 3 + 5 = 8,
the conclusion 3 + 5 = 8 is not even related to the hypothesis; however, from
a mathematical point of view, the implication is true. This is so because the
conclusion is true regardless of whether or not the power is on.

From an implication we can form three new implications —its converse,
inverse, and contrapositive — as defined below.

Converse, Inverse, and Contrapositive

The converse of the implication p — q is ¢ — p (switch the premise and
the conclusion in p — q). The inverse of p — q is ~p — ~q (negate the
premise and the conclusion). The contrapositive of p — q is ~q¢q — ~p
(negate the premise and the conclusion, and then switch them).

Im Let p — q: If AABC is equilateral, then it is isosceles.

Its converse, inverse, and contrapositive are given by:

Converse q — p: If AABC is isosceles, then it is equilateral.
Inverse ~p — ~q: If AABC is not equilateral, then it is not
isosceles.

Contrapositive ~q — ~p: If AABC is not isosceles, then it is not
equilateral. n

A word of caution: Many people mistakenly think that an implication

and its converse mean the same thing; they usually say one to mean
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the other. In fact, they need not have the same truth value. You will,
however, learn in Example 1.18 that an implication and its contra-
positive have the same truth value, and so do the converse and the
inverse.

Thus far, we have presented four boolean operators: A, v, —, and ~.
The first three enable us to combine two propositions; accordingly, they are
binary operators. On the other hand, we need only one proposition to per-
form negation, so ~ is aunary operator. These operators can be employed
to construct more complex statements, as the next example demonstrates.

Construct a truth table for (p — ¢) A (¢ — p).

SOLUTION:

We construct the proposition (p — q) A (g — p) step-by-step. From the
propositions p and q, we can form p — g and ¢ — p; then take their con-
junction to yield the given statement. Thus, the truth table for (p — q) A
(@ — p) requires five columns: p,¢,p — q,q — p,and (p — q) A (@ — p)in
that order (see Table 1.6). As before, first enter the possible pairs of truth
values for p and g in columns 1 and 2. Then use the truth tables for impli-
cation (Table 1.5) and conjunction (Table 1.2) to complete the remaining
columns. The resulting table is displayed in Table 1.6. It follows from the
table that (p — g) A (g — p) is true if both p and ¢ have the same truth
values. [ |

P—~>q q-p @P->q9 Alqg—>p)

CECEE R
SRR S
G
!
LR

The Island of Knights and Knaves

LEXAMPLE 1.1 |

The next two examples* illustrate the power of truth tables in decision-
making and in arriving at logical conclusions in the midst of seemingly
confusing and contradictory statements.

Faced with engine problems, Ellen Wright made an emergency landing on
the beach of the Island of Knights and Knaves. The island is inhabited by
two distinct groups of people, knights and knaves. Knights always tell the
truth and knaves always lie. Ellen decided that her best move was to reach
the capital and call for service.

*Based on C. Baltus, “A Truth Table on the Island of Truthtellers and Liars,” Mathematics
Teacher, Vol. 94 (Dec. 2001), pp. 730-732.
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Walking from the beach, she came to an intersection, where she saw two
men, A and B, working nearby. After hearing her story, A told Ellen, “The
capital is in the mountains, or the road on the right goes to the capital.”
B then said, “The capital is in the mountains, and the road on the right goes
to the capital.” Then A looked up and said, “That man is a liar.” Shrugging
his shoulders, B then said, “If the capital is in the mountains, then the road
to the right goes to the capital.” Ellen then made a table on the back of her
guidebook, thanked the two men, and walked down the road on the left.
Did Ellen make the correct decision?

SOLUTION:
Let c¢: The capital is in the mountains

and
r: The road on the right goes to the capital.

Now we build a truth table, as Table 1.7 shows. Since B could not give both
false and true statements (see rows 3 and 4 in columns 4 and 5), the last
two rows of the table do not fit the given scenario; so they can be ignored.

¢c r Aicvr B:cAar Bic—or
T T T T T
T F T F F
F T T F T
F F F F T

It now follows from the rest of column 3 that A is a knight. So his state-
ment that “B is a liar” is true; thus B is a knave. Consequently, we can
ignore row 1 also. This leaves us with row 2. Therefore, the statement r is
false; that is, the road on the left goes to the capital. Thus Ellen made the
correct decision. |

The following example is a continuation of Ellen’s saga.

Walking up the road to the left, Ellen encountered a group of people gath-
ered at what she thought to be a bus stop. She approached three women, C,
D, and E, and asked them whether the road went to the capital and whether
the location was indeed a bus stop. She received three different responses:

C: “The road goes to the capital, and the bus stop is not here.”
D: “The road does not go to the capital, and the bus stop is here.”
E: “The road does not go to the capital, and the bus stop is not here.”

Confused and somewhat perplexed, Ellen asked them whether they are
knights or knaves. To this they all answered, “Two of us are knights, and
one is a liar.” How many of the three women are knights? Does the road go
to the capital? Is the location where Ellen met them a bus stop?
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SOLUTION:
Once again, we build a truth table. To this end, we let

g: The road goes to the capital
and
b: The bus stop is here.

Table 1.8 shows the resulting table, where only some columns are shown
for convenience.

g b Cigan~b D:~gAbE:~g A~b
T T F F F
T F T F F
F T F T F
F F F F T

Since all three women made the same statement, “Two of us are knights,
and one is a liar,” they must all be knaves. Consequently, we can discard
rows 2—4 in Table 1.8. (It now follows from row 1 that the three women are
all knaves.) So the road does indeed go to the capital and the location is a
bus stop. |

Ellen’s story is continued further in the exercises. See Exercises 76-78.
Next we present yet another method of combining propositions.

Biconditional Statement

UEXAMPLE .13 |

Two propositions p and g can be combined using the connective if and
only if. The resulting proposition, p if and only if g, is the conjunction of
two implications: (1) p only if ¢, and (2) p if q, that is, p — ¢ and ¢ — p.
Accordingly, it is called a biconditional statement, symbolized by p < q.
Let p: AABC is equilateral

and q: AABC is equiangular.

Then the biconditional statement is given by
p < q: AABC is equilateral if and only if it is equiangular. u

Since the biconditional p <> ¢ means exactly the same as the statement
(p — q) A (g — p), they have the same truth value in every case. We can
use this fact, and columns 1, 2, and 5 of Table 1.6 to construct the truth
table for p <> q, as in Table 1.9.

Notice that the statement p <> q is true if both p and g have the same
truth value; conversely, if p < q is true, then p and q have the same
truth value.
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p 9 PpP<eogq
T T T
T F F
F T F
F F T

Here is a simple application of this fact with which you are already
familiar (see Section 7.8).

Let S denote the sum of the digits in 2034. If 3 is a factor of S, then 3 is
a factor of 2034 also. Conversely, if 3 is a factor of 2034, then 3 is a factor
of S also. Thus the biconditional, 2034 is divisible by 3 if and only if S is
divisible by 3, is a true proposition. Consequently, if one component —say,
S is divisible by 3 —is true, then the other component is also true. |

Order of Precedence

Table 1.10

To evaluate complex logical expressions, you must know the order of
precedence of the logical operators. The order of precedence from the
highest to the lowest is: (1) ~ (2) A (3) v (4) — (5) <. Note that paren-
thesized subexpressions are always evaluated first; if two operators have
equal precedence, the corresponding expression is evaluated from left
to right. For example, the expression (p — q) A ~q — ~p is evaluated
as[(p — q@) A (~q@)] - (~p), and p — g < ~q — ~p is evaluated as
(p = @ < [(~q) — (~p)].

The next example involves constructing a truth table for a conditional
statement and we shall use it shortly to make a few definitions.

Construct a truth table for (p — q) < (~p v @).

SOLUTION:

We need columns for p, ¢, p — q, ~p, ~p VvV q, and (p — q) < (~p VvV q).
First, fill in the first two columns with the four pairs of truth values for
p and q. Then use the truth tables for implication, negation, disjunction,
and biconditional to complete the remaining columns. Table 1.10 shows the
resulting table.

P q p—>q ~p ~pvq {@P->q < (~vpvy)
T T T F T T
T F F F F T
F T T T T T
F F T T T T

1 always true!
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Tautology, Contradiction, and Contingency

An interesting observation: It is clear from Table 1.10 that the compound
statement (p — q) <> (~p Vv q) is always true, regardless of the truth values
of its components. Such a compound proposition is a tautology; it is an
eternal truth. For example, p v ~p is a tautology. (Verify this.)

On the other hand, a compound statement that is always false is a
contradiction. For instance, p A ~p is a contradiction (Verify this).
A compound proposition that is neither a tautology nor a contradiction
is a contingency. For example, p Vv q is a contingency.

Next we show that there is a close relationship between symbolic logic
and switching networks.

Switching Network (optional)

Figure 1.2

Switches connected in
series, A A B.

Figure 1.3

Switches connected in
parallel, A v B.

A switching network is an arrangement of wires and switches connecting
two terminals. A switch that permits the flow of current is said to be closed,;
otherwise, it is open. Likewise, a switching network is closed if current
can flow from one end of the network to the other; otherwise, it is open.
Two switches A and B can be connected either in series (see Figure 1.2)
or in parallel (see Figure 1.3). The switching network in Figure 1.2 is
closed if and only if both A and B are closed; accordingly, it is symbolically
denoted by A A B. The network in Figure 1.3 is closed if and only if at least
one of the two switches is closed; consequently, it is denoted by A v B.

R (B
&—8)
R
_®_
®

An electrical network may contain two switches A and A’ (A prime) such
that if one is closed, then the other is open, and vice versa. (The operator ’
corresponds to the logical operator ~.)

A switching network, in general, consists of series and parallel connec-
tions and hence can be described symbolically using the operators A, v,
and’, as the following example illustrates.

Find a symbolic representation of the switching network in Figure 1.4.

SOLUTION:

Switches A and B’ are connected in series; the corresponding portion of the
circuit is symbolized by A A B’. Switch B is in parallel with A A B’; so we
have (A A B') v B. Since A’ and C are connected in series, the correspond-
ing portion of the network is described by A’ A C. The circuits (A A B) v B
and (A’ A C) are connected in parallel. Therefore, the given network is
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symbolized by [(A A B’) v B] v (A’ A C). Since the operation V is associa-
tive (see Table 1.13), this expression can be rewritten as (A A B') v B v
(A’ A C). [ |

Exercises 1.1

Which of the following are propositions?
1. The earth is flat. 2. Toronto is the capital of Canada.
3. What a beautiful day! 4, Come in.

Find the truth value of each compound statement.
5. (5<8and(2+3=4) 6. Parisisin Franceor 2 4+ 3 = 4.
7. If 1 = 2,then 3 = 3.
8. AABC is equilateral if and only if it is equiangular.

Negate each proposition.

9. 1+1=0. 10. The chalkboard is black.

Let x, y, and z be any real numbers. Represent each sentence symbolically,
wherep:x <y,q:y <z,andr:x < z.

11. x>y)or(y <2) 12. (y>2z)or (x > 2)

13. x>y)and[(y <z)or(z>x)] 14. (x <y)or[(y >z)and (z > x)]
Evaluate each boolean expression, wherea = 2,6 = 3,¢c =5,and d = 7.
15. [~(a > bd)] Vv [~(c < d)] 16. [~(b <)l A [~ <d)]

17. ~[(@>b) Vv (b <d)] 18. ~{(a <b) A [~ >}

Let ¢ be a tautology and p an arbitrary proposition. Give the truth value of
each proposition.

19. ~p Vvt 20. ~pA~t
21. ~tAp 22, ~(~pA~1t)
Construct a truth table for each proposition.

23. ~pv~gq 24. ~(~pvyq)
25. (pvq) Vv I(~q) 26. pA(@AT)
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Give the truth value of each proposition, using the given information.
27. p A q, where q is not true. 28. p A q, where ~ q is not false.

29. p v q, where ~ p is false. 30. p Vv q, where ~ p is not true.

31. The exclusive disjunction of two propositions p and g is denoted by
p XOR gq. Construct a truth table for p XOR gq.

Write each sentence in if~then form.

32. An equiangular triangle is isosceles.

33. Lines perpendicular to the same line are parallel.

34. x? = 16 is necessary for x = 4.

35. x = 1is sufficient for x? = 1.

Write the converse, inverse, and contrapositive of each implication.
36. If the calculator is working, then the battery is good.

37. If London is in France, then Paris is in England.

Let x,y, and z be any real numbers. Represent each sentence symbolically,
wherep:x <y,q:y <z,andr:x < z.

38. Ifx > y and x < z, then 39. Ifz > yand x <y, then
y <z z>x.

40. x < zifand only ifx <y 41. x >y and y > z if and only
andy < z. ifx > 2.

Determine whether or not the assignment statement x < x + 1 will be
executed in each sequence of statements, wherei < 2,j < 3,k < 6, and
x <« 0.

42, If ( < 3) A (j < 4) then 43. If G <j) v (k > 4) then
x<—x+1 x<x—1
else else
y<y+1 x<—x+1
44. While ~( <j) do 45. While ~(@ +j > %) do
begin x<x+1
x<x+1
1<—1+1
endwhile

Let ¢ be a tautology and p an arbitrary proposition. Find the truth value of
each.

46. (~) >p 4T p—ot 48. (pvi) >t 49. (pVH)—(~0)
50. (pAt)—>p Bl p—>(pat) B2. t<(pvt) 583. p<(pAat)
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Construct a truth table for each proposition.

54. p—> (pVvq 55. (pAq) >~p

56. (pAg —> (pVvy 57. (pvqg) < (pArq)
Determine whether or not each is a tautology.

58. pVv (~p) 59. [pA(p—>@l—q
60. [(p > A (~q@]—>~p 61l. [(pvA(~@l—p
Determine whether or not each is a contradiction.

62. p A (~p) 63. p < ~p

64. ~(p Vv ~p) 65. ~p < (p Vv ~p)

Indicate the order in which each logical expression is evaluated by properly
grouping the operands using parentheses.

66. pvgAr 67. pAq— ~pV~q
68. pvg < ~pA~q 69. p >qg< ~pVvg

Represent each switching network symbolically.

70. ®) ©) 71. @ @

e -
© @O—®
Draw a switching network with each representation.
72. (AVvB)A(AVO) 73. (AvB)v (AvB)
74. (AAB) Vv (A’ AB) 75. AAB)VA AB) VB AC)

76. (Examples 1.11 and 1.12 continued) At the bus stop, Ellen noticed signs
for three buses, B1, Bg, and Bs, and approached another trio of women,
F, G, and H. A conversation ensued:

Ellen: Where do the buses go?
F: At least one of B; and By goes to the capital.
G: B goes to the capital.
H: By and B3 go to the capital.
F: B3 goes to the beach.
G: By and Bjg go to the beach.
H: B; goes to the beach.
Which bus did Ellen take?



20

Chapter 1 The Language of Logie

77. After reachingthe bus terminal at the capital, Ellen saw three personal
computers. She asked a young woman, I, whether the computers had
Internet connections. She replied, “Computer 1 is not connected to
the Internet. Ask that man, J; he is a knight.” When Ellen approached
the man, he told her, “Computer 2 has an Internet connection, but
computer 3 does not.” A second man, K, who overheard the conver-
sation, then said, “If computer 2 has an Internet connection, then so
does computer 1. Computer 3 is not connected to the Internet.” Which
computer had an Internet connection?

78. At the bus terminal, Ellen overheard the following conversation
between two baseball fans, L and M:

L: I like the Yankees.
M: You do not like the Yankees. You like the Dodgers.
L: We both like the Dodgers.

Does fan L like the Yankees? Who likes the Dodgers?

1.2 Logical Equivalences

Table 1.11

Two compound propositions p and g, although they may look different, can
have identical truth values for all possible pairs of truth values of their
components. Such statements are logically equivalent, symbolized by
p = q; otherwise, we write p # q. If p = g, the columns headed by them in
a truth table are identical.

The next two examples illustrate this definition.

Verify thatp — g = ~p v q.

SOLUTION:

Construct a truth table containing columns headed by p — ¢ and ~p v q,
asin Table 1.11. Use the truth tables for implication, negation, and disjunc-
tion to fill in the last three columns. Since the columns headed by p — ¢
and ~p V ¢ are identical, the two propositions have identical truth values.
In other words,p — g =~p v q.

p q pb—4q ~p ~pPvq
T T T F T
T F F F F
F T T T T
F F T T T

L identical columns —
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(Note: This example shows that an implication can be expressed in terms
of negation and disjunction.)

iXAMPLE 1.18 Show that p — q¢ = ~q — ~p; that is, an implication is logically equivalent

Table 1.12

Table 1.13

to its contrapositive.

SOLUTION:

Once again, construct a truth table, with columns headed by p,q,p — g,
~q,~p, and ~q — ~p. Use the truth tables for implication and negation to
complete the last four columns. The resulting table (see Table 1.12) shows
that the columns headed by p — ¢ and ~q — ~p are identical; therefore,

pP—q=~q— ~p.

P q P—4q ~q ~pP ~q—>~p
T T T F F T
T F F T F F
F T T F T T
F F T T T T
L identical columns - |

This is an extremely useful, powerful result that plays an important role
in proving theorems, as we will see in Section 1.5.

It follows by this example that ¢ — p = ~p — ~q (Why?); that is, the
converse of an implication and its inverse have identical truth values.

Using truth tables, the laws of logic in Table 1.13 can be proved. We shall
prove one of the De Morgan laws and leave the others as routine exercises.

Laws of Logic

Let p,q, and r be any three propositions. Let ¢ denote a tautology and f a
contradiction. Then:
Idempotent laws

1. pAap=p 2. pvp=p
Identity laws
3. pAt=p 4. pvf=p
Inverse laws
5. pa(~p)=f 6. pVv(~p) =t
Domination laws
7. pVvi=t 8. paf=f

Continued
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Commutative laws
9. pAg=qAp 10. pvg=qvVp
Double negation
11. ~(~p)=p
Associative laws
12. pr@Aar)=(pAg AT 18. pvi@vrn=(@pvqevVvr
Distributive laws
4. prl@gvr)=(pAg Vv pAar) 15. pv@ar)=(pvg A(pVvr)
De Morgan’s laws
16. ~(pArg)=~pV~q 17. ~(pvg@ =~pAr~q
Implication conversion law
18. p >g=~pVvyq
Contrapositive law
19. p—>q=~q— ~p
Reductio ad absurdum law

20. p—>qg=(pAr~q) —>f

We can make a few observations about some of the laws. The com-
mutative laws imply that the order in which we take the conjunction (or
disjunction) of two propositions does not affect their truth values. The asso-
ciative laws say that the way we group the components in a conjunction (or
disjunction) of three or more propositions does not alter the truth value of
the resulting proposition; accordingly, parentheses are not needed to indi-
cate the grouping. In other words, the expressionsp AgArandpvgvr
are no longer ambiguous, but do make sense.

Nonetheless, parentheses are essential to indicate the groupings in the
distributive laws. For instance, if we delete the parentheses in law 14,
then its left-hand side (LHS) becomes p Aq Vv r = (p Aq) Vr, since A
has higher priority than v. But (p Aq) Vr # p A (q v r). (You may verify
this.)

We now verify De Morgan’s law 16 in the following example.

(IEETEFRTI Verify that ~(p Aq) = ~p v ~q.

SOLUTION:

Construct a truth table with columns headed by p,q,p Aq, ~(p AqQ), ~p, ~q,
and ~p V ~q. Since columns 4 and 7 in Table 1.14 are identical, it follows
that ~(p Aq) = ~p VvV ~q. [ |
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Augustus De Morgan (1806-1871) was born in Madurai, Tamil Nadu, India,
where his father was a colonel in the Indian army. When the young De Morgan
was 7 months old, the family moved to England. He attended private schools,
where he mastered Latin, Greek, and Hebrew and developed a strong interest
in mathematics. After graduating in 1827 from Trinity College, Cambridge,
he pondered a career either in medicine or law, but pursued mathematics. His
professional career began in 1828 at University College, London. Three years
later, however, when the college dismissed a colleague in anatomy without
explanation, De Morgan resigned on principle. He returned to Trinity in 1836
when his successor died and remained there until a second resignation in 1866.

A fellow of the Astronomical Society and a founder of the London Mathe-
matical Society, De Morgan greatly influenced the development of mathematics
in the 19th century. He exuded his passion for the subject in his teaching,

stressing principles over techniques.

An incredibly prolific writer, De Morgan authored more than 1000 articles in more than 15 journals,
as well as a number of textbooks, all characterized by clarity, logical presentation, and meticulous detail.

De Morgan’s original contributions to mathematics were mainly in analysis and logic. In 1838, he
coined the term mathematical induction and gave a clear justification to this proof method, although it
had been in use. His The Differential and Integral Calculus (1842) gives the first precise definition of a
limit and some tests for convergence of infinite series.

De Morgan was also interested in the history of mathematics. He wrote biographies of Sir Isaac Newton
and Edmund Halley. His wife wrote De Morgan’s biography in 1882.

His researches into all branches of knowledge and his prolific writing left him little time for social or
family life, but he was well-known for his sense of humor.

Table 1.14

P q pAq ~pAq) ~p ~q ~pVvVr~q
T T T F F F T
T F F T F T F
F T F T T F T
F F F T T T T

T identical columns -

De Morgan’s laws, although important, can be confusing, so be care-
ful when you negate a conjunction or a disjunction. The negation of
a conjunction (or disjunction) of two statements is the disjunction (or
conjunction) of their negations.

The next two examples illustrate De Morgan’s laws.

IM Let p: Peter likes plain yogurt

and

q: Peter likes flavored yogurt.
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Then
p A q: Peter likes plain yogurt and flavored yogurt.

p V q: Peter likes plain yogurt or flavored yogurt.
By De Morgan’s laws,

~(p Aq) = ~p V ~q: Peter does not like plain yogurt or does not like
flavored yogurt

and

~(pVvq) = ~p A~q: Peter likes neither plain yogurt nor

flavored yogurt. |

De Morgan’s laws can be used in reverse order also; that is, ~p v ~q =

~(p Aq) and ~p A ~q = ~(p Vv q). For instance, the sentence, Claire does

not like a sandwich or does not like pizza for lunch can be rewritten as

It is false that Claire likes a sandwich and pizza for lunch. Likewise, the

sentence, The earth is not flat and not round can be restated as It is false
that the earth is flat or round.

Determine whether or not the statement x <— x + 1 will be executed in the
following sequence of statements:

a <« 7;b <« 4
if ~[(a < b) v (b > 5)] then
X < x +1

SOLUTION:
The statement x <« x + 1 will be executed if the value of the boolean
expression ~[(a < b) Vv (b > 5)] is true. By De Morgan’s law,
~[a<b)vb=>5]=~@<b)A~bB=>5)
=@=b)Anb<bH)
Sincea = 7and b = 4, botha > b and b < 5 are true; so, (a > b) A (b < 5)
is true. Therefore, the assignment statement will be executed. |

One of the elegant applications of the laws of logic is employing them to
simplify complex boolean expressions, as the next example illustrates.

Using the laws of logic simplify the boolean expression (p A ~q) V q Vv

(~p A Q).

SOLUTION:

[The justification for every step is given on its right-hand-side (RHS).]
pA~@)vgVv(~pr@=[(pAr~q) VvqlVv (~pAq) assoc.law

=[qgVv(pA~qQ]V(~pAq) comm.law
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=[@gvp)Al@Vv~qlVv(~pAqg) dist. law

=[(qVvp) AtlV(~pAQq) qv~q=t
=@Vvp Vv(i~pAgq) rat=r
=(pnrqVvpVvy comm. law

=[~pVv@VvIrlgVv(pve] dist. law
=[(~pVvp)VqlAlgVv(pVvg)] assoc. law

=(tvnrlgvipvel ~pVp=t
=tnlgVv(pVvl tvg=t
=qVvpVvyg tAr=r
=qvigVvp) comm. law
=@VvqVp assoc. law
=qvVvp idem. law
=pvVgq comm. law W

For any propositions p, g, and r, it can be shown that p — (g vr) =
(pA~q) — r (see Exercise 12). We shall employ this result in Section 1.5.

Here are two elementary but elegant applications of this equivalence.

Suppose a and b are any two real numbers, and we would like to prove
the following theorem: If a - b = 0, then either a = 0 or b = 0. By virtue of
the above logical equivalence, we need only prove the following proposition:
Ifa-b=0and a # 0, then b = 0 (see Exercise 43 in Section 1.5).

Second, suppose a and b are two arbitrary positive integers, and p a
prime number. Suppose we would like to prove the following fact: If p|ab,*
then either pla or p|b. Using the above equivalence, it suffices to prove the
following equivalent statement: If plab and p fa, then p|b (see Exercise 37
in Section 4.2).

We shall now show how useful symbolic logic is in the design of switching
networks.

Equivalent Switching Networks (optional)

Two switching networks A and B are equivalent if they have the same
electrical behavior, either both open or both closed, symbolically described
by A = B. One of the important applications of symbolic logic is to replace
an electrical network, whenever possible, by an equivalent simpler net-
work to minimize cost, as illustrated in the following example. To this end,

*x|y means “x is a factor of y.”
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Figure 1.5

Figure 1.6
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let A be any circuit, T a closed circuit, and F an open circuit. Then AA T =
A AANA=F AvT=T,and A v A’ =T (see laws 3 through 8). Likewise,
laws 1 through 11 can also be extended to circuits in an obvious way.
Replace the switching network in Figure 1.5 by an equivalent simpler
network.

(DB
&—8

®

®
©

SOLUTION:

The given network is represented by (A A B') v [(A A B) v C]. Let us simplify
this expression using the laws of logic. (The reason for each step is given
on its RHS.)

AAB)VIAAB VClI=[AAB)VAAB)]VvC assoc. law
=[AAB vB)]vC dist. law
=AAT)VC BvB=T
=AvC AANT=A

Consequently, the given circuit can be replaced by the simpler circuit in
Figure 1.6.

®

©

We close this section with a brief introduction to fuzzy logic.

Fuzzy Logic (optional)

“The binary logic of modern computers,” wrote Bart Kosko and Satoru
Isaka, two pioneers in the development of fuzzy logic systems, “often falls
short when describing the vagueness of the real world. Fuzzy logic offers
more graceful alternatives.” Fuzzy logic, a branch of artificial intelligence,
incorporates the vagueness or value judgements that exist in everyday life,
such as “young,” “smart,” “hot,” and “cold.”

The first company to use a fuzzy system was F. L. Smidth and Co., a con-
tracting company in Copenhagen, Denmark, which in 1980 used it to run a
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Bart Kosko holds degrees in philosophy and economics from the Universityof Southern California, an
M.S. in applied mathematics, and a Ph.D. in electrical engineering from the University of California,
Irvine. Currently, he is on the faculty in electrical engineering at the University of Southern California.

Satoru Isaka received his M.S. and Ph.D. in systems science from the University of California, San Diego.
He specializes in fuzzy information processing at Omron Advanced Systems at Santa Clara, and in
the application of machine learning and adaptive control systems to biomedical systems and factory
automation.

cement kiln. Eight years later, Hitachi used a fuzzy system to run the sub-
way system in Sendai, Japan. Since then Japanese and American companies
have employed fuzzy logic to control hundreds of household appliances,
such as microwave ovens and washing machines, and electronic devices,
such as cameras and camcorders. (See Figure 1.7.) It is generally believed
that fuzzy, common-sense models are far more useful and accurate than
standard mathematical ones.

Figure 1.7 \

/

JUST THE WY
GINA LIKES IT

JUST THE WAY
B TED LIKES IT

JUST THE WAY |
W THE FEDEX
W Guy Likes IT

In fuzzy logic, the truth value #(p) of a proposition p varies from 0 to
1, depending on the degree of its truth; so 0 < #(p) < 1. For example, the
statement “The room is cool” may be assigned a truth value of 0.4; and the
statement “Sarah is smart” may be assigned a truth value of 0.7.
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Fuzzy Decisions

Table 1.15
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Let 0 < x,y < 1. Then the operations A, Vv, and ' are defined as follows:

x Ay = min{x, y}
x vy = max(x,y)

xX=1-x

where min{x,y} denotes the minimum of x and y, and max{x, y} denotes the
maximum of x and y.

Not all properties in propositional logic are valid in fuzzy logic. For
instance, the law of excluded middle, p v ~p is true, does not hold in
fuzzy logic. To see this, let p be a simple proposition with #(p) = 0. 3. Then
t(p') =1-0.3=0.7;s0t(pvp’) =t(p)vi(p’) = 0.3v0.7 = max{0.3,0.7} =
0.7 # 1. Thus p vp' is not a tautology in fuzzy logic. [In propositional logic,
t(p vp') = 1; so p vp'is a tautology. Think of 1 representing a T and 0
representing an F.]

Likewise, t(p Ap") =t(p) At(p’) = 0.3 A 0.7 =min{0.3,0.7} = 0.3 £ 0;
so p A p’ is not a contradiction, unlike in propositional logic.

Next we present briefly an interesting application* of fuzzy logic to deci-
sion making. It is based on the Yager method, developed in 1981 by Ronald
R. Yager of Iona College, and employs fuzzy intersection and implication
—, defined by p - qg=~p Vvq.

Suppose that from among five U.S. cities— Boston, Cleveland, Miami,
New York, and San Diego—we would like to select the best city to live
in. We will use seven categories C1 through C7 to make the decision; they
are climate, cost of housing, cost of living, outdoor activities, employment,
crime, and culture, respectively, and are judged on a scale 0-6: 0 = ferri-
ble, 1 = bad, 2 = poor, 3 = average, 4 = fairly good, 5 = very good, and
6 = excellent. Table 1.15 shows the relative importance of each criterion on
a scale 0-6 and the rating for each city in each category.

Category Impor- Boston Cleveland Miami New York San Diego
tance
C1 6 3 2 5 1 6
C2 3 1 5 4 0 1
C3 2 3 4 3 1 5
C4 4 5 3 6 2 6
C5 4 4 3 3 4 3
Cé 5 2 4 0 1 3
C7 4 6 3 3 6 5

*Based on M. Caudill, “Using Neural Nets: Fuzzy Decisions,” AI Expert, Vol. 5 (April 1990),
pp. 59-64.
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The ideal city to live in will score high in the categories considered most
important. In order to choose the finest city, we need to evaluate each
city by each criterion, weighing the relative importance of each category.
Thus, given a particular category’s importance, we must check the city’s
score in that category; in other words, we must compute the truth value
of i > s = ~i v s for each city, where i denotes the importance ranking
for a particular category and s the city’s score for that category. Table 1.16
shows the resulting data.

Now we take the conjunction of all scores for each city, using the min
function (see Table 1.16). The lowest combined score determines the city’s
overall ranking. It follows from the table that San Diego is clearly the
winner.

Category ~i Boston Cleveland Miami New York San Diego

s ~ivs s ~IVsS § ~iVs § ~IVS § ~IVs
C1 0 3 3 2 2 5 5 1 1 6 6
(0] 3 1 3 5 5 4 4 0 3 1 3
C3 4 3 4 4 4 3 4 1 4 5 5
C4 2 5 5 3 3 6 6 2 2 6 6
C5 2 4 4 3 3 3 3 4 4 3 3
C6 1 2 2 4 4 0 1 1 1 3 3
C7 2 6 6 3 3 3 3 6 6 5 5
Intersection 2 2 1 1 3
_— 1

next best choices winner

Finally, suppose we add a sixth city, say, Atlanta, for consideration. Then
the Yager method ensures that the revised choice will be the existing choice
(San Diego) or Atlanta; it can’t be any of the others. Thus the procedure
allows incremental decision making, so manageable subdecisions can be
combined into an overall final choice.

Exercises 1.2

Give the truth value of p in each case.

1. p =q, and q is not true. 2. p=q,q =r,andr is true.
Verify each, where f denotes a contradiction. (See Table 1.14.)

3. ~(~p)=p 4. pAp=p 5. pvp=p

6. pAg=qAp 7. pVqg=qVp 8. ~(pvg) =~pAr~q

9. ~(p—>q)=pA~q
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10. p—>qg=pPAr~q@ —f 11. pA@Ar)=(pPAQ AT
12. p—>@Qvr=(pEA~q) —>r 18. (pvg) >r=(p—->rIAlg—r)

Use De Morgan’s laws to evaluate each boolean expression, where x = 2,
y=>5,and z = 3.

14. ~[x <2) A (y < 2)] 15. ~[(y <x) A (z < x)]
16. ~[(x=y) Vv (y <2)] 17. ~[(x <2)V(z <y)]

Determine whether the assignment statement ¢ < ¢ + 1 will be executed
by the if-statement or while-loop, where x <— 5,y < 3,and z < 7.

18. If ~[(x < y) Ay < 2)] then 19. If ~[(x = 2) A (x < y)] then

c<c+1 c<«c+1

20. If ~[(x > y) vx < 2z)] then 21. If ~[(x < 2) vV (y = 2)] then
c<«c+1 c<c+1l

22, While ~[(x < 2) vV (x < 3)] do 23. While ~[(x > 6) A (y = 4)] do
c<c+1 c<«c+1

24, While ~[(x = y) vV (y = 2)] do 25. While ~[(x = 6) v (y = 2)] do
c<c+1 c<c+1

The logical operators NAND (not and) and NOR (not or) are defined as
follows:
pNANDg=~(pArq)
pNORg=~(pvyg)

Construct a truth table for each proposition.
26. p NAND q 27. p NOR ¢q

Mark each sentence as true or false, where p,q, and r are arbitrary
statements, ¢ a tautology, and f a contradiction.

28. prq=qAp 29. pvg=qVvp 30. part=p 3l. pvf=p
32. pv~p=t 33 pAr~p=f 84. ~(pAqQ)=~pA~q

35. ~(pvg)=~pVv~q 36. p>qgq=q—p

37. p=p 38. If p =q, then q =p.

39. Ifp=qgandg=r,thenp=r. 40. Ifprq=pAr,theng=r.
41. Ifpvg=pvr,theng=r.

Use De Morgan’s laws to verify each. (Hint:p — g = ~p v q).

42, ~(~pA~q) =pVvq 43. ~(~pvqg) =pAr~q 44. ~(~pV~q) =pArq
45. ~(pA~q) =~pvq 46. ~(p - q) =pAr~q 47. p — ~q=~(pAq)



1.2 Logical Equivalences 31

48. Show that the connectives A, —, and <> can be expressed in terms of
v and ~. (Hint: Use Exercise 44, law 18, and Tables 1.6 and 1.7.)

Simplify each boolean expression.

49. pA(pAQ) 50. pv(pvyq)
51. pv(~pAq) 52, (pA~q)Vv(pArqg)Vr
*538. pA(pV~q)A(~pV ~q) *54, (pA~qQ)V (~pAg)V (~pA~q)

Construct an equivalent, simpler network for each switching network.

5. ’
s O—®

56. (R ®)

—®— - -

@) @)
&) B)

The Sheffer stroke | is a binary operator** defined by the following truth
table.

p q plq
T T F
T F T
F T T
F F T

(Note: On page 25 we used the vertical bar | to mean is a factor of. The
actual meaning should be clear from the context. So be careful.) Verify
each. (Note: Exercise 58 shows that the logical operators | and NAND are
the same.)

57. ~p =plp 58. plg=~(prg)

59. pAq = (plo)l(plg) 60. pvq = (pp)lqlg)

61. p — g = ((p)I(plP)Iqle) 62. ~(pVvq) = ((pP)IqIY)I((plp)l(qlg)

*63. Express p XOR q in terms of the Sheffer stroke.
Hint: p XORq=[(pvg) A~(pA@].)

**The Sheffer stroke, named after the American logician Henry M. Sheffer (1883-1964), was
devised by the American logician Charles S. Peirce (1839-1914).



32

Chapter 1 The Language of Logie

*64. Express p < ¢ in terms of the Sheffer stroke. (Hint: p < q =
(p = q@) A (@ — p).) [Note: Exercises 57-64 indicate that all boolean
operators can be expressed in terms of the Sheffer stroke!]

Exercises 65-78 deal with propositions in fuzzy logic.

Let p,q, and r be simple propositions with #(p) = 1,#(q) = 0.3, and ¢(r) =
0.5. Compute the truth value of each, where s’ denotes the negation of the
statement s.

65. (p') 66. p Aq 67. pvr 68. gvq
69. gng 70. p' vgq 71. (pAq) 72. p'vq
73. (pvyq) 74. p A ¢ 75. qvr’ 76. (pvg)A(p'Vvq)

Let p be a simple proposition with #(p) = x and p’ its negation. Find each.
77. t(pvp) 78. t(p AD)

1.3 Quantifiers

LEXAMPLE .24

We now investigate a class of propositions different from those presented
in the preceding sections.
Take a good look at the following propositions:

* All people are mortal.

* Every computer is a 16-bit machine.
* No birds are black.

* Some people have blue eyes.

* There exists an even prime number.

Each contains a word indicating quantity such as all, every, none, some,
and one. Such words, called quantifiers, give us an idea about how many
objects have a certain property.

There are two different quantifiers. The first is all/, the universal quan-
tifier, denoted by Vv, an inverted A. You may read V as for all, for each, or for
every. The second quantifier is some, the existential quantifier, denoted
by 3, a backward E. You may read 3 for some, there exists a, or for at least
one. Note that the word some means at least one.

The next two examples demonstrate how to write quantified propositions
symbolically.

Let x be any apple. Then the sentence All apples are green can be written as
For every x, x is green. Using the universal quantifier V, this sentence can
be represented symbolically as (Vx)(x is green) or (Vx)P(x) where P(x) : x is
green. (Note: x is just a dummy variable.) [ |
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Here P(x), called a predicate, states the property the object x has. Since
P(x) involves just one variable, it is a unary predicate. The set of all values
x can have is called the universe of discourse (UD). In the above example,
the UD is the set of all apples.

Note that P(x) is not a proposition, but just an expression. However, it
can be transformed into a proposition by assigning values to x. The truth
value of P(x) is predicated on the values assigned to x from the UD.

The variable x in the predicate P(x) is a free variable. As x varies over
the UD, the truth value of P(x) can vary. On the other hand, the variable x
in (Vx)P(x) is a bound variable, bound by the quantifier V. The proposition
(Vx)P(x) has a fixed truth value.

Rewrite the sentence Some chalkboards are black, symbolically.

SOLUTION:
Choose the set of all chalkboards as the UD. Let x be an arbitrary
chalkboard. Then the given sentence can be written as:

There exists an x such that x is black.

Using the existential quantifier, this can be symbolized as (3x)b(x), where
b(x): x is black. [ ]

The next example illustrates how to find the truth values of quantified
propositions.

The absolute value of a real number x, denoted by |x|, is defined by

x ifx>0
lx| =
—x ifx<O

Determine the truth value of each proposition, where the UD = set of all
real numbers:
(1) (Vx) 2 > 0) (2) (vx) (Jx| > 0)

SOLUTION:

(1) Since the square of every real number is nonnegative, the truth value
of (Vx) (x? > 0)is T.

(2) Itisnot true that the absolute value of every number is positive, since
|0] = 0, not greater than zero. So the truth value of (Vx) (x| > 0)
isF. |

A predicate may contain two or more variables. A predicate that con-
tains two variables is a binary predicate. For instance, P(x,y) is a binary
predicate. If a predicate contains n variables, it is an n-ary predicate.

The next two examples involve binary predicates.
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Rewrite each proposition symbolically, where UD = set of real numbers.

(1) For each integer x, there exists an integer y such that x +y = 0.
(2) There exists an integer x such that x +y = y for every integer y.
(3) For all integersx andy,x -y =y -x.

(4) There are integers x and y such that x +y = 5.

SOLUTION:
(1) (vx)((3y)(x +y = 0)), which is usually written as (Vx)(Jy)(x +y = 0).
(2) AoV +y=y)
3) (V)W) y=y-x)
(4) @x)(Fy)x+y=>5) |

The order of the variables x and y in (Vx)(Vy) and (3x)(Jy) can be changed
without affecting the truth values of the propositions. For instance,
Vo)(Vy)xy = yx) = (Vy)(Vx)(xy = yx). Nonetheless, the order is impor-
tant in (Vx)(3y) and (Fy)(Vx). For example, let P(x,y): x < y where x
and y are integers. Then (Vx)(3y)P(x,y) means For every integer x, there
is a suitable integer y such that x < y; y = x + 1 is such an integer.
Therefore, (Vx)(Jy)P(x,y) is true. But (3y)(Vx)P(x,y) means There exists an
integer y, say, b, such that (Vx)P(x,b); that is, every integer x is less than b.
Clearly, it is false. Moral? The proposition (Q1x)(Qgy)P(x,y) is evaluated as
(Q1x)[(Qoy)P(x,y)], where Q1 and Qg are quantifiers.

A graphical approach can be helpful in finding the truth values of propo-
sitions in the form (Q1x)(Qgy)P(x,y), where x and y are real numbers, as
the next example illustrates.

(optional*) Determine the truth value of each proposition, where P(x,y):
y < x2, and x and y are real numbers.

(1) (V) (vy)P(x,y) (2) Fx)Ey)Px,y) (3) (vx)Ey)P(x,y)
(4) (Vy)(3x)P(x,y) (6) 3Fx)(vy)Px,y) (6) Fy)(Vx)P(x,y)
SOLUTION:

The graph of the equation y = x2 is a parabola, as shown in Figure 1.8.
The parabola is shown as a broken graph since no points on it satisfy
the inequality y < x2. The shaded region represents the solutions of the
inequality.

(1) Isy < x? for all x and y? In other words, is the entire plane shaded?
Since this is not the case, proposition (1) is false.

(2) 3x)(3y)P(x,y) is true if y < x2 for some real numbers x and y; that is,
if and only if some portion of the cartesian plane is shaded. Since this
is true, proposition (2) is true.

*Based on E. A. Kuehls, “The Truth-Value of {V,3, P(x,y)}: A Graphical Approach,”
Mathematics Magazine, Vol. 43 (Nov. 1970), pp. 260-261.
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(Vx)(3y)P(x,y) is true if there is a point (x,y) in the shaded area corre-
sponding to every x; that is, it is true if every vertical line intersects
the shaded area. Since this is the case, the proposition is true.
(Vy)(3x)P(x,y) is true since every horizontal line intersects the shaded
area.

(3x)(Vy)P(x,y) means there is an x such thaty < x2 for all y. Therefore,
the proposition is trueif there is a vertical line which lies wholly within
the shaded region. Since no such line exists, the proposition is false.
(Jy)(Vx)P(x,y) is true if there is a horizontal line which lies wholly
within the shaded area. Since there are such lines, the proposition is
true.

Note: This graphical approach elucidates the difference between (Vx)(3Jy)
and (3x)(Vy), and also between (Vy)(3x) and (Fx)(Vy). (3x)(Vy) demands
a fixed x, whereas (Vx)(3y) does not demand such a fixed x.

Next we discuss how to negate quantified propositions.

Recall from Example 1.24 that the proposition All apples are green can
be symbolized as (Vx)P(x), where P(x): x is green. Its negation is: It is
false that all apples are green. That is, there exists an apple that is not
green. In symbols, this can be written as (3x)(~P(x)). Thus, ~[(Vx)P(x)] =
(3x)[~P)]. Similarly, ~[(3x)P(x)] = (Vx)[~P(x)]. These two properties are
De Morgan’s laws for negating quantifiers.

De Morgan’s laws
* ~(Vx)P()] = Fx)[~P)]
s ~[(Vx)P(x)] = (Va)[~P(x)]
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By virtue of these laws, be careful when negating quantified
propositions. When you negate the universal quantifier V, it becomes
the existential quantifier 3; when you negate the existential quantifier,
it becomes the universal quantifier. In Section 1.5, we discuss a nice
application of the first law to disproving propositions.

IM Negate each proposition, where the UD = set of integers.

(D (vx) &% =) (2) 3®) (x| =x)

SOLUTION:
o ~M(V0)? =x)] = Fx)[~(? =x)]
= (Ax)(x2 #x).

s ~@EX)(x] =x)] = (Vo) [~ (x| = x)]
= (Vx)(|x| # x).

Negate each quantified proposition.

(1) Every computer is a 16-bit machine.
(2) Some girls are blondes.

(3) All chalkboards are black.

(4) No person has green eyes.

SOLUTION:
Their negations are:

(1) Some computers are not 16-bit machines.

(2) No girls are blondes.

(3) Some chalkboards are not black.

(4) Some people have green eyes. |

In closing, we should point out that what we discussed in Sections 1.1
and 1.2 is propositional logic; it deals with unquantified propositions.
However, as we saw throughout this section, not all propositions
can be symbolized in propositional logic, so quantifiers are needed.
The area of logic that deals with quantified propositions is predicate
logic.

Exercises 1.3

Determine the truth value of each proposition, where the UD consists of
the numbers +1, +2, and 0.

1. (Vx)x2 =4) 2. @)@ +22=x+2) 3. (Vx)(x® + 4x = 5x3)
4. V@*+32=2) 5. ~(Vx)x® =x) 6. (Vx)[~(x® = 4x)]
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Let P(x): 2 > x, Q(x): x? = x, and the UD = set of integers. Determine the
truth value of each proposition.

7. (Vx)[~Px)] 8. Ax)[~Px)] 9. @x)[Px) A Q)]
10. (Vx)[Px) A Qx)] 11. Ax)[Pkx) v Q)] 12. (Vx)[Px) v Qx)]

Rewrite each sentence symbolically, where P(x): x is a 16-bit machine,
Qx): x uses the ASCIT** character set, and the UD = set of all computers.

13. There is a computer that is a 16-bit machine and uses the ASCII
character set as well.

14. We can find a 16-bit computer that does not use the ASCII character
set.

15. We can find a computer that is either a 16-bit machine or does not use
the ASCII character set.

16. There exists a computer that is neither a 16-bit machine nor uses the
ASCII character set.

Negate each proposition, where x is an arbitrary integer.
17. (Vx)@? > 0)

18. (Ax)(x2 # 5x — 6)

19. Every supercomputer is manufactured in Japan.
20. There are no white elephants.

Rewrite each sentence symbolically, where the UD consists of real
numbers.

21. The product of any two real numbers x and y is positive.

22. There are real numbers x and y such that x = 2y.

23. For each real number x, there is some real number y such that x-y = x.
24, There is a real number x such that x + y = y for every real number y.
25-28. Find the truth value of each proposition in Exercises 21-24.
Rewrite each in words, where UD = set of integers.

29. (Vx)&? > 0) 30. ~Ax)x*=2) 3l. Q)@ +y="T7
32. (Vx)@y =3) 33. Qo)W —x=y) 34 VoOMWY)x+y=y+x)
35-40. Find the truth value of each proposition in Exercises 29-34.

Let UD = set of integers, P(x,y): x is a multiple of y, and Q(x,y) : x > y.
Determine the truth value of each proposition.

** ASCII is the acronym for American Standard Code for Information Interchange.
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41. Jx)P(15,x) 42. (Vx)P(x,2) 43. ~3x)P(x,5)
44. 3x)[P(x, 3) A Q(x, 3)] 45. (Ax)[P(x,2) v Qlx, 6)]

46. (Vx)(3y)P(x,y) 47. (Vx)(3y)Q(x,y)

48. (Vx)[P(x,3) — Q(x, 3)] 49. JAx)[Q(x,3) — P(x, 3)]

Let UD = set of real numbers and P(x,y): ¥2 < x. Determine the truth value
of each proposition.

50. (Vx)(vy)P(x,y) 51. (3x)(Fy)P(x,y) 52. (Vx)3y)P(x,y)
53. (Vy)3x)P(x,y) 54. (3x)(Vy)P(x,y) 55. (Iy)(Vx)P(x,y)

A third useful quantifier is the uniqueness quantifier 3!. The proposition
(3%)P(x) means There exists a unique (meaning exactly one) x such that
P(x). Determine the truth value of each proposition, where UD = set of
integers.

56. Ax)(x+3=3) 57. A)x2=1) 58. (A)AlY)xy =1)
59. @x)(Vy)x+y=y) 60. Ax)@Y)(2x =3y) 61. (Vx)Ay)x+y=4)

Determine the truth value of each, where P(s) denotes an arbitrary

predicate.

62. (3x)Px) — Ax)(P(x) 63. (3x)Px) — (3x)P(x)
64. (Vx)P(x) - (3x)P(x) 65. (Jx)Px) — (Vx)P(x)
66. (Vx)P(x) > (3x)P(x) 67. A)Pkx) - @y)Py)

*68. Define the quantifier 3! in terms of the quantifiers 3 and V.

*1.4 Arguments (optional)

Suppose we are given a finite set of propositions (called hypotheses) H1,
Ho,..., H,, all assumed true. Also assume that from these premises, we
can arrive at a conclusion C through reasoning (or argument). Such a dis-
cussion can be written in inferential form as follows, where the symbol
.. means therefore:

H;

Hy
hypotheses

H,

-.C < conclusion
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What does it mean to say that our reasoning in such a discussion is logical —
that is, that the argument is valid?

Valid and Invalid Arguments

An argument is valid if the conjunction of the hypotheses Hy, Ho,..., H,
logically implies the conclusion C: that is, the implication H; A Hg A -+ - A
H,, — Cis a tautology. Otherwise, the argument is invalid, a fallacy.

Thus, an argument is valid if and only if the conclusion is a logical con-
sequence of the hypotheses. In other words, if the hypotheses are assumed
true, then the conclusion must follow logically from them. True hypotheses
always lead to a true conclusion by a valid argument.

We begin checking the validity of arguments by using a well-known logic
puzzle, due to R. M. Smullyan.

@ﬂm Test the validity of the following argument.

H; : There are more residents in New York City than there are hairs
in the head of any resident.
Hy : No resident is totally bald.

.. At least two residents must have the same number of hairs on their
heads.

SOLUTION:

(The argument contains two hypotheses. We always assume they are true
and need to check whether the given conclusion follows logically from
them.)

Suppose there are n residents in New York City. By H;, the number of
hairs on the head of every resident is less n; by Ho every resident has at least
one hair on his head. If each person has a different number of hairs, there
must be n positive integers less than n, which is impossible. Therefore, at
least two residents must have the same number of hairs on their heads.

Since the logical conclusion agrees with the given conclusion, the argu-
ment is valid. (This example is an application of the pigeonhole principle
presented in Section 3.4.) |

The next example presents another well-known logic puzzle, again due
to Smullyan.

IM There are two kinds of inhabitants, knights and knaves, on an island.
Knights always tell the truth, whereas knaves always lie. Every inhabitant
is either a knight or a knave.

One day three inhabitants — A, B, and C— were standing together in a
garden. A nomad came by and asked A, “Are you a knight or a knave?”
Since A answered rather indistinctly, the stranger could make nothing out
of his reply. So he asked B, “What did A say?” B replied, “A said, he is
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Henry Ernest Dudeney (1857-1930), England’s greatest puzzlist and perhaps
the greatest puzzlist who ever lived, was born in Mayfield, Sussex, Eng-
land. Dudeney and Sam Loyd, the American puzzle genius, used to exchange
puzzles and collaborate on puzzle articles in magazines and newspapers. Dudeney
authored six books on puzzles, beginning with The Canterbury Puzzles (1907).
Three of his collections were published posthumously.

a knave.” At this point C jumped into the conversation and said, “Don’t
believe B; he is lying.” What are B and C?

SOLUTION:
A knight would never say, “I’m a knave,” since he never lies. A knave would
not say that either since he never tells the truth. Therefore, A did not say
he was a knave. So B lied to the nomad and hence is a knave. Consequently,
C was telling the truth, so C is a knight.

Thus B is a knave and C is a knight. (This example is pursued further in
the exercises.) |

The next puzzle* is a variation of a brainteaser developed by the English
puzzlist, Henry Dudeney. Its solution does not employ any logic variables,
but illustrates a clever problem-solving technique.

Smith, Jones, and Robinson are the brakeman, engineer, and fireman on a
train, not necessarily in that order. Riding on the train are three passengers
with the same last names who are identified by a “Mr.” before their names.
Assuming the following premises are true, determine who the engineer is.

H; : No two passengers live in the same city.

Hy : Mr. Robinson lives in New York.

Hs: The brakeman lives in Dallas.

Hy4: Mr. Jones has forgotten all the algebra he learned in high school.

H; : The passenger whose last name is the same as the brakeman’s
lives in Los Angeles.

Hg : The brakeman and one of the passengers, a mathematical genius,
attend the same local church.

H7: Smith beats the fireman in golf.

*Based on M. Gardner, Mathematical Puzzles and Diversions, The University of Chicago
Press, Chicago, 1987.
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SOLUTION:
We begin with two three-by-three arrays of empty cells with labels as in
Figure 1.9. Use the premises to fill in the cells with 0’s and 1’s; enter a 1 in
a cell with headings x and y if x has property y and enter a 0 otherwise.
Premise H; implies Smith is not a fireman, so enter a 0 in the upper
right cell in Figure 1.9b. Since Mr. Robinson lives in New York (Hy), place
a 1 in the lower left cell in Figure 1.9a and 0’s in the remaining cells of the
same row and column (why?).
It now follows that either Mr. Smith or Mr. Jones lives in Dallas. Does
Mr. Jones live there?

G‘)
¥ o P
S S
AN > > <9
SRR F <Y

Mr. Smith Smith
Mr. Jones Jones
Mr. Robinson Robinson

(a) (b)

Since Mr. Jones cannot be a mathematical genius by Hy, the passenger
genius must be Mr. Smith. By Hg, Mr. Smith and the brakeman live in the
same city. Since it must be Dallas by Hg, enter a 1 in the upper middle cell
in Figure 1.9a and 0’s in the remaining cells of the same row and column.

It now follows that Mr. Jones lives in Los Angeles, so place a 1 in the
middle cell of the third column in Figure 1.9a and 0’s everywhere else.
Figure 1.10a displays the resulting array.

By premise H5, the brakeman and the passenger who lives in Los Angeles
have the same last name, so the brakeman must be Jones; therefore, put a
1 in the first cell of the middle row in Figure 1.9b and 0’s in the remaining
cells of the same row and column.

By now, the top row in Figure 1.9b contains two 0’s, so the middle cell
must occupy a 1 (why?); so the middle cell in the bottom row a 0; hence the
lower right cell must occupy a 1. Figure 1.10b shows the resulting array.

Mr. Smith o1 1(0 Smith 0110
Mr. Jones 0 0 1 Jones 1 0 0
Mr. Robinson | 1 010 Robinson | 0 | O 1

(a) (b)

It follows from Figure 1.10b that Smith is the engineer. [ |
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Bertrand Arthur William Russell (1872-1970), a British philosopher
and mathematician, was born into a prominent, aristocratic, and
progressive-minded family near Trelleck, Wales. His mother died in
1874 and his father two years later; so the young Russell was brought up
by his father’s parents.

Russell was home-educated by tutors. In 1890 he entered Trinity College,
Cambridge, where he excelled in both mathematics and the moral sciences.
In 1895, he was awarded a fellowship for his original dissertation on the
foundations of geometry, published in 1897. After graduation, he worked
briefly in the British embassy in Paris and then he went to Germany, where
he wrote his first book, German Social Democracy (1896). In 1910, Trinity
appointed him a lecturer in logic and the philosophy of mathematics.

Russell’s outspokenness and liberal views often landed him in controversies. Around 1907, Russell
fought hard for women’s suffrage in the United Kingdom. During World War I, he was dismissed by
Trinity for his protests and pacifist views. In 1918, he was imprisoned for 6 months for an article that
was branded seditious. While in prison, he wrote Introduction to Mathematical Philosophy. When he was
about 90 years old, he was imprisoned again for campaigning for nuclear disarmament.

In 1925, Trinity, realizing that the 1916 dismissal was excessively harsh, invited Russell back. He
served there as a fellow from 1944 until his death.

Russell wrote more than 40 books on diverse subjects, including philosophy and physics; his greatest
work is the three-volume Principia Mathematica (1910-1913), which he coauthored with the Cambridge
philosopher Alfred North Whitehead (1861-1947). It describes the logical construction of the foundations
of mathematics from a set of primitive axioms.

Russell won the 1950 Nobel prize for literature “as a defender of humanity and freedom of thought.”

The following example is yet another well-known puzzle, the barber
paradox, presented by the British mathematician and philosopher
Bertrand Russell in 1918.

@M There is a male barber in a certain town. He shaves all those men and only

those men who do not shave themselves. Does the barber shave himself?

SOLUTION:

Suppose the barber shaves himself. Then he belongs to the class of men
who shave themselves. But no one in this class is shaved by the barber, so
the barber does not shave himself, which is a contradiction.

On the other hand, suppose the barber does not shave himself. Since
the barber shaves all those men who do not shave themselves, he shaves
himself, again a contradiction.

Thus either case leads to a paradox: If the barber shaves himself, he
does not shave himself; and conversely if he does not shave himself, then
he shaves himself. So, logically, no such barber exists. [ |

The symbols and the laws of logic can often be applied to check the
validity of an argument, as the next two examples illustrate. To this end,
follow the steps below:

* Rewrite the hypotheses symbolically.
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Assume the hypotheses are true.

If the inference rules in Table 1.17 and/or the laws of logic can be
used to reach the given conclusion, then the given argument is valid,;
otherwise, it is invalid; that is, the argument contains a flaw.

Inference Rules
L. pArg—(pAQ conjunction
2. pAq—Dp simplification
3. p—>pVg addition
4. pA(p—>@l—q law of detachment
5 [(p—=> @ A(~q@]— ~p law of the contrapositive
6. (pva A(~pl—gq disjunctive syllogism
7 [(p>@Arl@g—>r]—(p—r1) hypothetical syllogism

A few words of explanation about each rule: The conjunction rule says
that if both p and q are true, then p A q is true—a fact you already knew.
According to the simplification rule, if p A g is true, then p is true. The
addition rule says that if p is true, then p v q is true regardless of the truth
value of q. By the law of detachment, if an implication p — ¢ is true and
the premise p is true, then you can always conclude that q is also true; in
other words, a true premise leads to a true conclusion logically. The law
of the contrapositive says that if an implication p — q is true, but the
conclusion q is false, then the premise p must be false. The two syllogisms
can be interpreted similarly.

It is obvious that the inference rules play a central role in determining
the validity of an argument. These rules, which are tautologies, can be
established using truth tables. Try a few.

Each of the inference rules can be written in inferential form. For
instance, the law of detachment can be rewritten as follows:

p
b—q

M Check the validity of the following argument.

If the computer was down Saturday afternoon, then Mary went to a
matinee.

Either Mary went to a matinee or took a nap Saturday afternoon.

Mary did not take a nap that afternoon.

.". The computer was down Saturday afternoon.
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SOLUTION:
To avoid our emotions’ playing any role in the way we reason, first translate
the discussion into symbols. Let

p: The computer was down Saturday afternoon.
q: Mary went to a matinee Saturday afternoon.
r: Mary took a nap Saturday afternoon.

Then the given argument can be symbolized as follows:

Hi:p—q
Ho:qvVvr hypotheses
Hs: ~r

oD <« conclusion

Every step in our logical reasoning and the corresponding justification are
given below:

1. ~ristrue. hypothesis Hg

2. q Vv ristrue. hypothesis Hg

3. qistrue. step 1, step 2, and disjunctive syllogism

4. p — q is true. hypothesis Hy

5. Then p may be true or false. step 4, step 5, and definition of
implication.

Since our logical conclusion does not agree with the given conclusion,
the given argument is invalid. (Using a truth table you may verify that
[(p = @) Al(gVvr)A(~r)] — pisnot a tautology. This provides an alternate
demonstration that this argument is invalid.)

Note: Trivial steps may be omitted from such a reasoning without
jeopardizing the logical progression. |

We conclude this section with an example from Lewis Carroll’s famous
book Symbolic Logic. Two additional examples appear in the exercises.

Check the validity of the following argument.
Babies are illogical.

Nobody is despised who can manage a crocodile.
Illogical persons are despised.

.. Babies cannot manage crocodiles.

SOLUTION:
First translate the sentences into if-then form using symbols, so we let

p: Harry is a baby.

q: Harry is illogical.

r: Harry can manage a crocodile.
s: Harry is despised.
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Lewis Carroll (1832-1898) (a pseudonym of Charles Lutwidge Dodgson) was
the son of a clergyman and was born in Daresbury, England. He graduated from
Christ Church College, Oxford University, in 1854 and began teaching mathe-
matics at his alma mater in 1855, where he spent most of his life. He became a
deacon in the Church of England in 1861.

Carroll’s famous Alice in Wonderland and its sequel, Through the Looking-
Glass and What Alice Found There, have provided a lot of pleasure to both
children and adults all over the world. Alice in Wonderland is available in
more than 30 languages, including Arabic and Chinese, and also in braille. The
character is named for Alice Liddell, a daughter of the dean of Christ Church
College.

Then the argument can be written as:

Hi:p—q
Ho:r — ~s
Hs:q — s

Sop—>r

Every step of our logical reasoning is given below:

1. (p = q@) A (g — s) is true. conjunction rule

2. p — sistrue. hypothetical syllogism
3. s —»> ~ristrue. law of the contrapositive
4. (p — s) A (s > ~r) is true. conjunction rule

5. p — ~ristrue. hypothetical syllogism

Since the given conclusion agrees with the logical conclusion, the argument
is valid. u

Exercises 1.4

Rewrite each implication in inferential form.

L [(p—>@A(~@]—~p 2. [(p—>g@Ar@—>n]—>(pP—>r)
Verify that each inference rule is a tautology.
3. p—>(pVvyq 4. (p=>gpnr@g—>r]—(p—>r
Test the validity of each argument.
5. pvgq 6. p g
qVvr ~pvr
~r ~r

D Lo~
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7.

8.

10.

If Bill likes cats, he dislikes dogs.
Bill likes dogs.

.. Bill dislikes cats.

If Pat passes this course, she will graduate this year.
Pat does not pass this course.

.. Pat will not graduate this year.

Frank bought a personal computer or a video cassette recorder (VCR).
If he bought a VCR, then he likes to watch movies at home.
He does not like to watch movies at home.

.. Frank bought a personal computer.

If Peter is married, he is happy.
If he is happy, then he does not read the computer magazine.
He does read the computer magazine.

.". Peter is unmarried.

(Exercises 11 and 12 come from Lewis Carroll’s Symbolic Logic.)

*11.

*12,

All philosophers are logical.
An illogical person is always obstinate.

.". Some obstinate persons are not philosophers.

No ducks waltz.
No officers ever decline to waltz.
All my poultry are ducks.

.. My poultry are not officers.

Give the simplest possible conclusion in each argument. Assume each
premise is true.

13. p<q 14. p —>¢q 15. p —> ~q 16. p —> ¢
~pVvr pv-~r ~r —q ~r — ~q
~r r p ~r

17. The program is running if and only if the computer is working.

18.

The computer is working or the power is off.
The power is on.

Linda has a video cassette recorder (VCR).
If she has a personal computer, then she does not have a VCR.
If she does not have a personal computer, then she has a calculator.
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19.

20.

21.

22.

23.
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Carol is a baby if and only if she is illogical.
Either she is illogical or unhappy.
But she is happy.

Three persons took a room for $30 at a hotel. Soon after they checked
out, the room clerk realized she had overcharged them since the room
rents for $25. She sent a bellhop to them with a $5 reimbursement, but
he returned to them only $3, keeping $2 for himself. Thus the room
cost $30 — $3 = $27 and $27 + $2 = $29, so what happened to the
extra dollar?

Aaron, Benjamin, Cindy, and Daphne are all friends. They are 34, 29,
28, and 27 years old, not necessarily in that order. Cindy is married
to the oldest person. Aaron is older than Cindy, but younger than
Daphne. Who is married to whom and how old are they? (Mathematics
Teacher, 1990)

A family party consisted of one grandfather, one grandmother, two
fathers, two mothers, four children, three grandchildren, one brother,
two sisters, two sons, two daughters, one father-in-law, one mother-in-
law, and one daughter-in-law. A total of 23 people, apparently. But no;
there were only seven people at the party. How could this be possible?
(B. Hamilton, 1992)

Three gentlemen — Mr. Blue, Mr. Gray, and Mr. White —have shirts
and ties that are blue, gray, and white, but not necessarily in that order.
No person’s clothing has the same color as his last name. Mr. Blue’s
tie has the same color as Mr. Gray’s shirt. What color is Mr. White’s
shirt? (Mathematics Teacher, 1986)

Three men and their wives were given $5400. The wives together
received $2400. Sue had $200 more than Jan, and Lynn had $200
more than Sue. Lou got half as much as his wife, Bob the same as his
wife, and Matt twice as much as his wife. Who is married to whom?
(Mathematics Teacher, 1986)

There are seven lots, 1 through 7, to be developed in a certain city. A builder
would like to build one bank, two hotels, and two restaurants on these lots,
subject to the following restrictions by the city planning board (The Official
LSAT PrepBook, 1991):

If lot 2 is used, lot 4 cannot be used. If lot 5 is used, lot 6 cannot be used.
The bank can be built only on lot 5, 6, or 7. A hotel cannot be built on
lot 5. A restaurant can be built only on lot 1, 2, 3, or 5.

25.

Which of the following is a possible list of locations for building them?

A. The bank on lot 7, hotels on lots 1 and 4, and restaurants on lots 2
and 5.
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B. The bank on lot 7, hotels on lots 3 and 4, and restaurants on lots 1
and 5.

C. The bank on lot 7, hotels on lots 4 and 5, and restaurants on lots 1
and 3.

26. If a restaurant is built on lot 5, which of the following is not a possible
list of locations?

A. A hotel on lot 2 and lot 4 is left undeveloped.
B. A restaurant on lot 2 and lot 4 is left undeveloped.
C. Ahotel on lot 2 and lot 3 is left undeveloped.

Exercises 27-31 refer to Example 1.32 and are based on Smullyan’s
What is the name of this book?

A and B are inhabitants of the island. What are they if A says each of the
following?

27. “Atleast one of us is a knave.”
28. “Either I'm a knave or B is a knight.”

29. A, B, and C are inhabitants of the island. Two residents are of the same
type if they are both knights or both knaves. A says, “B and C are of
the same type.” Someone then asks C, “Are A and B of the same type?”
What does C answer?

30. A says, “All of us are knaves,” and B says, “Exactly one of us is a
knight.” What are A, B, and C?

31. A says, “All of us are knaves,” and B says, “Exactly one of us is a
knave.” What is C?

Every inhabitant on a mysterious planet is either red or green. In addition,
each inhabitant is either male or female. Every red man always tells the
truth, whereas every green man always lies. The women, on the other hand,
are opposite: every green woman tells the truth and every red woman lies.
Since the natives always disguise their voices, and wear masks and gloves,
it is impossible to identify their sex or color. But a clever anthropologist
from Mathland met a native who made a statement from which he was
able to deduce that the native was a green woman. (R. Smullyan, Discover,
1993)

32. What could the native have said? Justify your answer.

33. The second native the anthropologist interviewed also made a state-
ment from which he was able to conclude that the native was a man
(but not his color). Give a statement that would work. Again, justify
your answer.
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Four women, one of whom was known to have committed a serious crime,
made the following statements when questioned by the police: (B. Bissinger,
Parade Magazine, 1993)

Fawn: “Kitty did it.”
Kitty: “Robin did it.”
Bunny: “Ididn’t doit.”

Robin: “Kitty lied.”

34. If exactly one of these statements is true, identify the guilty woman.
35. If exactly one of these statements is false, identify the guilty woman.

*36. “How is it, Professor Whipple,” asked a curious student, “that some-
one as notoriously absentminded as you are manages to remember
his telephone number?” “Quite simple, young man” replied the
professor. “I simply keep in mind that it is the only seven-digit num-
ber such that the number obtained by reversing its digits is a factor
of the number.” What is Professor Whipple’s telephone number?
(A. J. Friedland, 1970)

*37. Five angry cowgirls, standing in a field, accuse each other of rustling.
No two distances between every two women are the same. Each has
one bullet in her gun. At the count of ten, each shoots the nearest
person in the toe. Will any cowgirl be shot or will at least one escape
injury? (M. Gardner, Parade Magazine, 1993)

| 1.5 Proof Methods

Vacuous Proof

Proofs, no matter how simple or complicated they are, are the heart and soul
of mathematics. They play a central role in the development of mathematics
and guarantee the correctness of mathematical results and algorithms (see
Chapters 4 and 5). No mathematical results or computer algorithms are
accepted as correct unless they are proved using logical reasoning.

A theorem in mathematics is a true proposition. Many theorems are
implications Hy A Hg A--- A H, — C. Proving such a theorem means ver-
ifying that the proposition H;y A Hy A---A H, — C is a tautology. This
section presents six standard methods for proving theorems: vacuous
proof, trivial proof, direct proof, indirect proof, proof by cases,
and existence proof. Vacuous and trivial proofs are, in general, parts of
larger and complicated proofs, as will be seen in Chapters 4 and 5.

Suppose the hypothesis H of the implication H — C is false. Then the
implication is true regardless of whether C is true or false. Thus if the
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hypothesis H can be shown to be false, the theorem H — C is true by
default; such a proof is a vacuous proof. Vacuous proofs, although rare,
are necessary to handle special cases, as will be seen in Chapter 5.

Since the hypothesis of the statement If 1 = 2, then 3 = 4 is false, the
proposition is vacuously true. |

Suppose the conclusion ¢ of the implication H — C is true. Again, the
implication is true irrespective of the truth value of H. Consequently, if C
can be shown to be true, such a proof is a trivial proof.

Let P(n): If x is a positive real number and n any nonnegative integer, then
(1 +x)" > 1+ nx. Since (1 +x)° > 1+ 0 - x always, the proposition P(0) is
true. Thus the theorem is trivially true when n = 0. In this trivial proof we
did not use the premise that x > 0. |

Next we pursue another proof method.

In the direct proof of the theorem H; A Hg A---A H,, — C, assume
the given hypotheses H; are true. Using the laws of logic or previously
known facts, establish the desired conclusion C as the final step of a chain
of implications: H — Cy, C; — Cg,...,C;, — C. Then, by the repeated
application of the hypothetical syllogism, it follows that H — C. The next
example illustrates this method.

Often, theorems are stated in terms of sentences, so we need to first
rewrite them symbolically and then work with the symbols, as the next
example demonstrates.

Prove directly that the product of any two odd integers is an odd integer.
PROOF:

Let x and y be any two odd integers. Then there exist integers m and n such
that x = 2m + 1 and y = 2n + 1. Thus,
x-y=02m+1)-2n+1)
=4dmn+2m+2n+1
=22mn+m+n)+1
=2k+1
where £ = 2mn + m + n is an integer. Therefore, xy is an odd integer.

This concludes the proof. (Can you rewrite this proof as a chain of
implications?) |
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There are two kinds of indirect proofs for the theorem H; A Ho A--- A
H,, — C: proof of the contrapositive and proof by contradiction. The
first method is based on the law of the contrapositive, H{ AHy A--- A H;, —
C=~C— ~(H; AHg A--- AHy). [You may recall, by De Morgan’s law, that
~(H; AHy A---AH,) =~H; v~HyV-.-Vv ~H,.] In this method, assume
the desired conclusion C is false; then using the laws of logic, establish that
some hypothesis H; is also false. Once you have done this, the theorem is
proved. The next example enlightens this method.

Prove indirectly: If the square of an integer is odd, then the integer is odd.

PROOF OF THE CONTRAPOSITIVE

Let x be any integer such that x2 is odd. We would like to prove that x
must be an odd integer. In the indirect method, we assume the conclusion
is false; that is, x is not odd; in other words, assume x is an even integer.
Let x = 2k for some integer k. Then x2 = (2k)? = 4k2 = 2(2k2), which is
an even integer. This makes our hypothesis that x? is an odd integer false.
Therefore, by the law of the contrapositive, our assumption must be wrong;
in other words, x must be an odd integer. Thus, if x2 is an odd integer, then
x is also an odd integer. |

Proof by contradiction, the other variation of indirect proof, is based
on the law of reductio ad absurdum: Hy AHo A---A H,, — C=[H; A Ho
AN Hp A (~C)] — F. In this method, assume the given hypotheses H;
are true, but the conclusion C is false. Then argue logically and reach a
contradiction F. The next example illustrates this method, where a prime
number p is a positive integer with exactly two positive factors, 1 and p.

Prove by contradiction: There is no largest prime number; that is, there
are infinitely many prime numbers.

PROOF BY CONTRADICTION

(Notice that the theorem has no explicit hypothesis.) Suppose the given
conclusion is false; that is, there is a largest prime number p. So the
prime numbers we have are 2, 3,5,...,p; assume there are k£ such primes,
p1,pP2,-..,and pp.

Let x denote the product of all of these prime numbers plus one:
x=(2-3-5...p)+ 1. Clearly, x > p. When x is divided by each of the
primes 2, 3,5,...,p, we get 1 as the remainder. So x is not divisible by any
of the primes. Hence either x must be a prime, or if x is composite then x is
divisible by a prime q # p;. In either case, there are more than £ primes.

But this contradicts the assumption that there are k& primes, so
our assumption is false. In other words, there is no largest prime
number. [ |

Now we turn to yet another proof technique.
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Suppose we would like to prove a theorem of the form H; v Hg v-..Vv
H, - C.Since Hi vVHy v---VH, = C=H; - C AHy - C) A---A
(H, — C), the statement H; v Hy v --- v H,, — C is true if and only if each
implication H; — C is true. Consequently, we need only prove that each
implication is true. Such a proof is a proof by cases, as illustrated in the
following example, due to R. M. Smullyan.

Let A, B, and C be three inhabitants of the island described in
Example 1.32. Two inhabitants are of the same type if they are both knights
or both knaves. Suppose A says, “B is a knave,” and B says, “A and C are
of the same type.” Prove that C is a knave.

PROOF BY CASES

Although this theorem is not explicitly of the form H; v Hy v..-v
H,, — C, we artificially create two cases, namely, A is a knight and A is
a knave.

Case 1 Suppose A is a knight. Since knights always tell the truth, his
statement that B is a knave is true. So B is a knave and hence B’s statement
is false. Therefore, A and C are of different types; thus C is a knave.

Case 2 Suppose A is a knave. Then his statement is false, so B is a knight.
Since knights always tell the truth, B’s statement is true. So A and C are
of the same type; thus C is a knave.

Thus in both cases, C is a knave. [ |

Finally, theorems of the form (3x)P(x) also occur in mathematics. To prove
such a theorem, we must establish the existence of an object a for which
P(a) is true. Accordingly, such a proof is an existence proof.

There are two kinds of existence proofs: the constructive existence
proof and the nonconstructive existence proof. If we are able to find
a mathematical object b such that P(d) is true, such an existence proof is a
constructive proof. The following example elucidates this method.

Prove that there is a positive integer that can be expressed in two different
ways as the sum of two cubes.
CONSTRUCTIVE PROOF
By the discussion above, all we need is to produce a positive integer b that

has the required properties. Choose b = 1729. Since 1729 = 13 + 123 =
93 + 103, 1729 is such an integer.* [ |

*A fascinating anecdote is told about the number 1729. In 1919, when the Indian mathematical
genius Srinivasa Ramanujan (1887-1920) was sick in a nursing home in England, the eminent
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A nonconstructive existence proof of the theorem (3x)P(x) does not
provide us with an element a for which P(a) is true, but rather establishes
its existence by an indirect method, usually contradiction, as illustrated by
the next example.

Prove that there is a prime number > 3.

NONCONSTRUCTIVE PROOF

Suppose there are no primes > 3. Then 2 and 3 are the only primes. Since
every integer > 2 can be expressed as a product of powers of primes, 25
must be expressible as a product of powers of 2 and 3, that is, 25 = 2!3J
for some integers i and j. But neither 2 nor 3 is a factor of 25, so 25 cannot
be written in the form 2'3/, a contradiction. Consequently, there must be
a prime >3. |

We invite you to give a constructive proof of the statement in the
example. We conclude this section with a brief discussion of counter-
examples.

Is the statement Every girl is a brunette true or false? Since we can find at
least one girl who is not a brunette, it is false!

More generally, suppose you would like to show that the statement
(Vx)P(x) is false. Since ~[(Vx)P(x)] = (3x)[~P(x)] by De Morgan’s law, the
statement (Vx)P(x) is false if there exists an item x in the UD for which the
predicate P(x) is false. Such an object x is a counterexample. Thus, to dis-
prove the proposition (Vx)P(x), all we need is to produce a counterexample
¢ for which P(c) is false, as the next two examples demonstrate.

Number theorists dream of finding formulas that generate prime numbers.
One such formula was found by the Swiss mathematician Leonhard Euler
(see Chapter 8), namely, E(n) = n?2 — n + 41. It yields a prime for n =

1,2, ..., 40. Suppose we claim that the formula generates a prime for every
positive integer n. Since E(41) = 412 — 41 + 41 = 412 is not a prime, 41 is
a counterexample, thus disproving the claim. [ |

Around 1640, Fermat conjectured that numbers of the form f(n) = 22" + 1
are prime numbers for all nonnegative integers n. For instance, f(0) = 3,
f() =5,f(2) =17, f(3) = 257, and f(4) = 65,537 are all primes. In 1732,
however, Euler established the falsity of Fermat’s conjecture by produc-
ing a counterexample. He showed that f(5) = 22° 1 1 = 641 x 6700417, a
composite number. (Prime numbers of the form 22" + 1 are called Fermat
primes.) |

English mathematician Godfrey Harold Hardy (1877-1947) visited him. He told Ramanujan
that the number of the cab he came in, 1729, was “a rather dull number” and hoped that it
wasn’t a bad omen. “No, Hardy,” Ramanujan responded, “It is a very interesting number. It
is the smallest number expressible as the sum of two cubes in two different ways.”
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Exercises 1.5

Determine if each implication is vacuously true for the indicated value of n.
1. Ifn>1,then2" >n;n =0
2. Ifn > 4,then 2" > n%n =0,1,2,3
Determine if each implication is trivially true.
3. If n is a prime number, then n? + n is an even integer.
4. If n > 41, then n® — n is divisible by 3.
Prove each directly.
5. The sum of any two even integers is even.
The sum of any two odd integers is even.
The square of an even integer is even.

The product of any two even integers is even.

© ® 2>

The square of an odd integer is odd.
10. The product of any two odd integers is odd.
11. The product of any even integer and any odd integer is even.

12. The square of every integer of the form 3% + 1 is also of the same form,
where % is an arbitrary integer.

13. The square of every integer of the form 4% + 1 is also of the same form,
where £ is an arbitrary integer.

14. The arithmetic mean % of any two nonnegative real numbers a

and b is greater than or equal to their geometric mean vab.
[Hint: consider (\/a — vb)2 > 0.]

Prove each using the law of the contrapositive.
15. If the square of an integer is even, then the integer is even.
16. If the square of an integer is odd, then the integer is odd.

17. If the product of two integers is even, then at least one of them must
be an even integer.

18. If the product of two integers is odd, then both must be odd integers.
Prove by contradiction, where p is a prime number.

19. /2 is an irrational number. 20. /5 is an irrational number.
21. ./p is an irrational number. *22. logip2 is an irrational number.

Prove by cases, where n is an arbitrary integer and |x| denotes the absolute
value of x.
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23. n? 4 n is an even integer. 24. 2n3 4 3n? 4+ nisaneveninteger.

25. n® —n is divisible by 3. (Hint: Assume that every integer is of the form
3k, 3k +1,0r 3k + 2.)

26. | —x| = |x| 27. |x -yl = x| -1yl 28. [x+y| < |x| + |yl
Prove by the existence method.

29. There are integers x such that x2 = x.

30. There are integers x such that |x| = x.

31. There are infinitely many integers that can be expressed as the sum of
two cubes in two different ways.

32. The equation x2 + y2 = 22 has infinitely many integer solutions.

Give a counterexample to disprove each statement, where P(x) denotes an
arbitrary predicate.

33. The absolute value of every real number is positive.
34. The square of every real number is positive.
35. Every prime number is odd.
36. Every month has exactly 30 days.
37. Ax)Px) - Ax)Px)
38. (3x)P(x) — (Vx)P(x)
39. Find the flaw in the following “proof™:
Let a and b be real numbers such that @ = 5. Then ab = b.

Therefore, a2 — ab = a2 — b2
Factoring, ala — b) = (@ + b)(a — b)

Cancel a — b from both sides:
a=a+b
Since a = b, this yields a = 2a.

Cancel a from both sides.

Then we get 1 = 2.

Let a,b, and ¢ be any real numbers. Then ¢ < b if and only if there
is a positive real number x such that a + x = b. Use this fact to prove
each.

40. Ifa <band b < ¢, then a < c. (transitive property)

41. Ifa < b,thena+c < b +ec.
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42

. Ifa+c<b+c,thena <b.

43. Let a and b be any two real numbers such that a - 5 = 0. Then either

a=00rb=0.[Hint:p— (qvr)=(pA~q) —r.]

*44. The formula f(n) = n? — 79n + 1601 yields a prime for 0 < n < 10.

*45.

Give a counterexample to disprove the claim that the formula yields
a prime for every nonnegative integer n.

Prime numbers of the form f(n) = 2" — 1, where n is a positive inte-
ger, are called Mersenne primes, after the Franciscan monk Marin
Mersenne (1588-1648). For example, f(2) = 3,f(3) = 7,and f(5) = 31
are Mersenne primes. Give a counterexample to disprove the claim
that if n is a prime, then 2" — 1 is a prime.

Chapter Summary

Proposition

Table 1.18

Thi

s chapter presented the fundamentals of symbolic logic and the standard

techniques of proving theorems.

A proposition is a declarative sentence that is either true or false, but
not both (page 2).

A compound proposition can be formed by combining two or
more simple propositions, using logical operators: A, v, ~, —, and
< (page 5).

The conjunction of two propositions is true if and only if both compo-
nents are true; their disjunction is true if at least one component is
true. An implication is false only if the premise is true and the con-
clusion is false. A biconditional is true if and only if both components
have the same truth value (pages 5-14).

The truth tables for the various logical operations can be combined into
a single table, as in Table 1.18.

P q pArq PV ~p p—-q pogq
T T T T F T T
T F F T F F F
F T F T T T F
F F F F T T T

Three new implications can be constructed from a given implication:
converse, inverse, and contrapositive (page 11).
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* Various types of sentences and propositions can be summarized in a

tree diagram, as in Figure 1.11.

sentence
interrogative
declarative imperative
/\ exclamatory
proposition non-proposition
sinmound

biconditional

conjunction negation

disjunction conditional

/\%\

inclusive exclusive implication converse inverse contrapositive

* A tautology is a compound statement that is always true. A contra-

diction is a compound statement that is always false. A contingency
is a proposition that is neither a tautology nor a contradiction (page 16).

* Two compound propositions, p and ¢, are logically equivalent if they

have identical truth values, symbolized by p = ¢ (page 20).

* The important laws of logic are listed in Table 1.13 on page 21.

* An argument H; A Hg A--- A H,, — C is valid if the implication is a

tautology; otherwise, it is invalid (page 39).

* The important inference rules are listed in Table 1.15 on page 43.

* There are two quantifiers: universal quantifier (V) and existential

quantifier (3) (page 32).

* Apredicate P(x) is a sentence about the properties of the object x. The

set of all values of x is the universe of discourse (UD) (page 33).

* De Morgan’s laws: ~[(Vx)P(x)] = Ex)[~P(x)] (page 35)

~[Fx)Px)] = (Vx)[~P(x)]
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* There are six commonly used proof techniques: vacuous proof, trivial

proof, direct method, indirect method, proof by cases, and
existence proof (pages 49-53).

proof
vacuous trivial direct indirect by cases existence
contrapositive  contradiction constructive nonconstructive

In a direct proof, assume the given hypotheses are true. Then try to
reach the given conclusion logically (page 50).

For indirect proof by contrapositive, assume the given conclusion is
false. Then establish directly that the given hypothesis is also false
(page 51).

For indirect proof by contradiction, assume the given hypothesisis true,
but the given conclusion is false. Then try to reach a contradiction
(page 51).

For a constructive existence proof of a theorem (3x)P(x), produce an
element b such that P(b) is true (page 52). In a nonconstructive exis-
tence proof, establish the existence of such an element b by an indirect
method (page 53).

To disprove the proposition (Vx)P(x), it suffices to produce an object ¢
for which P(c) is false (page 53).

Review Exercises

Construct a truth table for each proposition.
1. (pvon(i~q) 2. (p—>q@—>r 3B.p—>@—>r) 4 (pegvVr
Evaluate each boolean expression, wherea = 3,6 = 7,¢c = 2, and d = 11.
5. @<d)Alla>c)Vvb>d)] 6. [[a>b)Ab<=<c]lVvic<d
7. c>d)Vv[b<c)Aa(d<bd)] 8. b<ev~lla<e)nlec<d)]

Represent each sentence symbolically, where w,x,y, and z are real
numbers.

9. fw<xandy <z, thenw+y <x+z.
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10. fw=xandy =z,thenw -y =x-2.

Determine if the assignment statement x < y + z will be executed in each
sequence of statements, wherei < 5, j < 3,and &k < 7.

11. If G <j) v (j < k) then 12. If G > j) A (j > k) then
X <y+z XxX<y+z
13. If ~[G > j) v (j < k)] then 14. Odd <~ 0
X<y—z while (odd < 2) A (i < 4) do
else X<y+z
X<y+z

Represent each network symbolically.

15. ®
= (®)

®
®

16.

© G

Let ¢ be a true statement and p an arbitrary statement. Find the truth value
of each.

17. pv~t—>p 18. pVi < ~t 19. tA(p Vi) 20. pAt —>pViE

Use the given information to determine the truth value of each statement.

21. p — q,if p v q is false. 22, p — q,if ~p Vv q is false.
23. p — ~q, if ¢ — ~p is false. 24. p Aq,ifp — qis false.
25. pvgq,ifp — q is false. 26. p <> q,if p A q is true.
29. p < q,if p A ~q is true. 28. p Vv ~q, if g A ~p is true.

29. p A(g A1), if r = s and s is not true.

Give the converse, inverse, and contrapositive of each implication.
30. If Pat is a girl, then she has green eyes.
31. Ifx <y,thenx+z<y+z.
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Write the contrapositive of each implication.
32. If |x| < 3,thenx < 3and x > —3.
33. If |x| > 3, then either x > 3 orx < —3.

Determine if each is a logical equivalence.

34. prg=~(p—> ~q) 35. ~(pA~q)=~pVg.

36. pA(pva@)=pV(pAQ) 37. p—>@—>nrN=p—>q9—>r
Determine if each is a tautology.

38. pviprg <p 39. pA(pvg) <p

40. (pAq) < ~(p < ~q) 41. (p — ~q) < (@ - ~p)

Mark true or false, where p, g, r, and s are arbitrary statements.

42, Ifg=r,thenprq=pAr. 43. Ifg=r,thenpvg=pvr.
44, Ifp=gq,thenp > r=q — r. 45. Ifg=r,thenp > g=p —>r.
46. If p < q is a tautology, then 47, Ifp > g=p — r,theng=r.

p=q.
Construct an equivalent simpler switching network for each circuit.
(A)) (B)
48. (A (B) 49. A B
®—® O—®
] — (A (B
(A) B A B
&—® O~
(A) B
&—8B)
Test the validity of each argument.
50. pvg 51. p —> ~q
q—>r (gAr)— ~s
~r rNsS
P S.~p

52. Either Jane is not John’s sister or Mary is not Harry’s wife.
Mary is Harry’s wife or Jane is not married.
John goes to school if and only if Jane is not married.
John does not go to school.

.. Jane is not John’s sister.

Determine the truth value of each, where the UD consists of the integers 0
and 1.

53. Fx)(x3 # x) 54. (Vo)[(x +1)2 =x2 +1]
55. (I)[(y — 12 £y2 —1] 56. (VX)(Vy)[(x +3)% = x2 + y?]
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Let UD = set of integers, P(x): x < 3, and Q(x): x > 3. Determine the truth
value of each.

57. (V)[Px) AQx)]  58. (Vx)[Px) vQw)]  59. GIPy) A Q)]
60. (32)[P(2) v Q(2)] 61. (Vx)[~P)] 62. (32)[~Q(2)]

Prove each, where a,b,c,d, and n are any integers.

63. The product of two consecutive integers is even.

64. n3 + n is divisible by 2.

65. n* — n? is divisible by 3.

66. Ifa <bandc <d,thena+c <b-+d.

67. If a +b > 12, then eithera > 6 or b > 6.

68. Ifab = ac, theneithera = 0orb = c. [Hint:p — (qVvr) = (pAr~q) — r.]

69. If a? = b2, then either a = b or a = —b.
[Hint:p — (gvr)=(pA~q) —r.]

70. Give a counterexample to disprove the following statement: If n is a
positive integer, then n? + n + 41 is a prime number.
[Note: In 1798 the eminent French mathematician Adrien-Marie
Legendre (1752-1833) discovered that the formula L(n) = n% + n + 41
yields distinct primes for 40 consecutive values of n. Notice that
L(n) = E(—n); see Example 1.45.]

The propositions in Exercises 71-81 are fuzzy logic.

Let p,q, and r be simple propositions with #(p) = 1, t(q) = 0.3, and
t(r)=0.5.

Compute the truth value of each, where s’ denotes the negation of the
statement s.

71. pA(@Vr) 72. pv(QAT)

73. (pAg@)V (pATr) 74. (pvgA(pVvr)
75. p' Aq 76. (pvq)Vvipnrqg)
7. (pvq) vq 78. (pA@) A(pVQ)

79. Let p be a simple proposition with #(p) = x and p’ its negation. Show
that ¢(p v p’) = 1if and only if £(p) = 0 or 1.

Let p and g be simple propositions with #(p) = x and ¢t(q) = y, where
0 <x,y < 1. Verify each.

80. (p Aq) =p’ Vv q [Hint: Show that t((p A q)) =t(p") viQ').]
81. (pVvq) =p' Aq [Hint: Show that t((p v q)') = t(p’) At(q').]
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Supplementary Exereises

Write the converse, inverse, and contrapositive of each implication.
1. If |x| < a, then —a < x < a. 2. If x| > a,thenx < —a or x > a.
Simplify each boolean expression.
3. pv~g)A~(pArQq) *q4, [pvgV (~p A~V (pA~q)
*B., (pA~@Q)V(~pAr@)V(~pAr~q) *6. (pVvYA~(PpA@QA(~pVQ)
7. Letp =q and r = s. Determine ifp — (p A7) =q — (@ A S).

Negate each proposition, where UD = set of real numbers.

8. (Vx)(Fy)xy = 1) 9. (Vx)(Vy)(xy = yx)
10. (Vo)(Vy)(3F2)(x +y = 2) 11. (Vvo)@Fy)(F)x+y =2)
Prove each.

12. The equation x® + y3 = 23 has infinitely many integer solutions.
*13. Let n be a positive integer. Then n(3n* 4+ 7n? + 2) is divisible by 12.
*14. Let n be a positive integer. Then n(3n* + 13n2 + 8) is divisible by 24.

#15. In 1981 O. Higgins discovered that the formula h(x) = 9x2 —
471x + 6203 generates a prime for 40 consecutive values of x. Give a
counterexample to show that not every value of h(x) is a prime.

#16. The formulag(x) = x% —2999x + 2248541 yields a prime for 80 consec-
utive values of x. Give a counterexample to disprove that every value
of g(x) is a prime.

In a three-valued logic, developed by the Polish logician Jan Lukasiewicz
(1878-1956), the possible truth values of a proposition are 0, u, and 1,
where 0 represents F, u represents undecided, and 1 represents T. The
logical connectives A, V,’, —, and <> are defined as follows:

A0 u 1 V] 0 u 1 |/
0|0 0 O 0|0 u 1 0|1
ul|0 u u ulu u 1 ulu
110 w 1 111 1 1 1|0

- |0 u 1 <0 u 1

0|1 1 1 0|1 u O

u |lu 1 1 ulu 1 u

1|10 w 1 10 uw 1

Let p and q be arbitrary propositions in a three-valued logic, where r’

denotes the negation of statement r and #(r) denotes the truth value of r.
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17. Ift(p vp’) = 1, show that #(p) = 0 or 1.

18. Show that p A ¢ — p Vv q is a three-valued tautology.

19. Show that (p — q) <> (p’ Vv @) is not a three-valued tautology.
20. Show that (p — q) <+ (~q — ~p) is a three-valued tautology.
21. Determine if [p A (p — q)] — q is a three-valued tautology.
Verify each.

22. (pAq) =p'vq [Hint: Show that t((p A q)) =t(p’) viq').]
23. (pvq) =p' Aq [Hint: Show that t((p v q)') = t(p') At(Q).]

Computer Exercises

Write a program to perform each task.
Construct a truth table for each proposition.

1. (pVvag A~q 2. p NAND q 3. p NOR q
4, (p > q@) < (~pVvqg) b. (p—>q) —>r 6. (p > q) < (~q—> ~p)

Determine if each proposition is a tautology, by constructing a truth table.

7. pA(p > q) = q 8. (pvg)An(~q) —p
9. pA(pvqg) <p 10. (p > @) A(~q) = ~p
11. pAg—>pVg 12. p>nr@—>r)—>p—>r)

Determine if the given propositions are logically equivalent, by constructing
truth tables.

13. ~(pArq), ~p A~q 14. p > q, ~q > ~p
15. pA(@Ar), (pAg) AT 16. pAr(@vVvr), (pAqg Vv(pATr)
17. (p > q) >r, p—>(@q—r) 18. p—>(@qvVvr), pr(~q) —>r

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1. Write an essay on the contributions of G. Boole and W. Leibniz to
mathematical logic.

2. Explain how (symbolic) logic helps you in everyday life. Give concrete
examples.

3. Explain why proofs are important in mathematics and computer
science. Do they help you in everyday life? In problem-solving? In a
work environment? Give examples of proofs in computer science.
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Give a detailed history of Fermat’s last theorem. Include biographies
of mathematicians who have worked on the problem.

Collect a number of well-known conjectures from number theory and
explain recent advances toward establishing them or disproving them.

Study a number of puzzles from R. M. Smullyan’s Alice in Puzzle-land,
What is the name of this book?, and The Lady or the Tiger.

6. Write each as an argument and test the validity of it.

11.

12.

13.

14.

15.

Write each as a theorem and establish it.

List a number of applications of fuzzy logic to everyday life. How do
they enrich our lives?

. Write a biography of H. M. Sheffer, C. S. Peirce, and A. M. Legendre.
10.

Collect several examples on arguments from Lewis Carroll’s Symbolic
Logic and test the validity of each. Explain with examples the use of
Euler diagrams in the analysis of arguments.

Collect several logic puzzles from recent issues of Discover magazine
and Parade magazine. Solve each.

Study logic problems in the recent edition of The official LSAT
PrepBook and solve them.

List several attempts to develop formulas for generating prime
numbers.

Write an account of Fermat primes, Mersenne primes, the infinitude
of each family, and their applications.

Investigate the pentomino puzzle, developed in 1954 by S. W. Golomb
of the University of Southern California.

Enrichment Readings

L. Carroll, Symbolic Logic and the Game of Logic, Dover, New York,
1958.

L. Carroll, Alice’s Adventures in Wonderland and Through the
Looking-Glass and What Alice Found There, Oxford, New York, 1982.

3. N. Falletta, The Paradoxicon, Wiley, New York, 1990.

4. M. Gardner, Mathematical Puzzles and Diversions, The University of

Chicago Press, Chicago, 1987.

. J. T. Johnson, “Fuzzy Logic,” Popular Science, Vol. 237 (July 1990),

pp. 87-89.

. B. Kosko and S. Isaka, “Fuzzy Logic,” Scientific American, Vol. 269

(July 1993), pp. 76-81.
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7. H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, 2nd
ed., Chapman and Hall/CRC, Boca Raton, FL, 2000.

8. R. M. Smullyan, Alice in Puzzle-land, Penguin, New York, 1984.

9. R. M. Smullyan, What is the name of this book?, Prentice Hall,
Englewood Cliffs, NdJ, 1978.

10. R. M. Smullyan, The Lady or the Tiger?, Random House, New York,
1992.

11. D. Solow, How to Read and Do Proofs, Wiley, New York, 1982.
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'Chapter 2

The Language of Sets

The essence of mathematics lies in its freedom.
—GEORG CANTOR

T he concept of a set is so fundamental that it unifies mathematics and
its cognates. It has revolutionized mathematical thinking, enabling
us to express ourselves in clear and concise terms.

The foundation of set theory was laid by the eminent German mathe-
matician Georg Cantor during the latter part of the 19th century. “Today,
Cantor’s set theory has penetrated into almost every branch of mathemat-
ics,” as the mathematical historian Howard Eves writes in An Introduction
to the History of Mathematics.

In this chapter we present the language of sets. We introduce the concept
of a set, the various ways of describing a set and of constructing new sets
from known sets, a variety of applications, and a brief introduction to fuzzy
sets.

The following are some of the problems we shall pursue in this chapter:

* Find the number of positive integers < N and divisible by a, b, or c.
* How many subsets does a finite set with n elements have?
* How would you define the set of legally paired parentheses?

* How many sequences of legally paired parentheses can be formed using
n pairs of left and right parentheses?

2.1 The Coneept of a Set

This section introduces the concept of a set, various methods of defining
sets, and relationships between sets.

67
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Georg Cantor (1845-1918) was born in St. Petersburg, Russia, where
his father was a successful merchant and broker. Cantor showed great interest
in mathematics from early childhood. In 1856, the family moved to Ger-
many. Six years later, he entered the University of Zurich, but in the following
year he moved to the University of Halle to study mathematics, physics, and
philosophy. There he was greatly influenced by the eminent mathematician
Karl Weierstrass (1815-1897). Although his father wanted him to become an
engineer, Cantor relentlessly pursued his interest in mathematics and received
his doctorate of philosophy at 22 from the University of Berlin for his work in
number theory.

In 1869, Cantor began his professional career as an unsalaried lecturer at
the University of Halle. Five years later, he published his revolutionary work
on set theory. Cantor developed an arithmetic of transfinite numbers analo-
gous to that of finite numbers, thus creating another area of mathematical study. He proved that the set of
real numbers is uncountable and he also established the existence of infinitely many different transfinite
cardinal numbers by ingenious methods. He also made significant contributions to indeterminate equa-
tions and trigonometric series. Deeply religious, Cantor was also interested in art, music, and philosophy.

Being unhappy with his low salary at the University, Cantor tried to secure a better-paid position at the
University of Berlin, but was sabotaged by Leopold Kronecker (1823-1891), an eminent mathematician at
the University, who severely criticized Cantor’s views on sets.

Relentless attacks by contemporary mathematicians intensified the manic depression he suffered from.
Cantor died in a mental hospital in Halle in 1918.

Cantor was “one of the greatest intellects of the nineteenth century,” according to Bertrand Russell.
He “was an imaginative genius whose work has inspired [every aspect of] mathematical thought,” Hazel
Perfect of the University of Sheffield wrote in 1994.

Set

A set is a collection of well-defined objects,* called elements (or members)

of the set.

There should be no ambiguity in determining whether or not a given
object belongs to the set. For example, the vowels of the English alphabet
form a (well-defined) set, whereas beautiful cities in the United States do

not form a set since its membership would be debatable.

Sets are denoted by capital letters and their elements by lowercase
letters. If an object x is an element of a set A, we write x € A; other-
wise x ¢ A. For example, let A be the set of New England states. Then

Connecticut € A, whereas Michigan ¢ A.
There are two methods of defining sets.

Listing Method

A set can sometimes be described by listing its members within braces.
For instance, the set B of New England states can be described as

B = {ME, VT,NH, MA, CT, RI}.

*To be precise, this is a circular definition; set is an undefined term, like point and line in

geometry.
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The order in which the elements are enumerated is immaterial. Thus B
can also be written as {VT, RI, MA, CT, NH, ME}. If an element is repea-
ted, it is not counted more than once. For example, {x,x,y,x,y,2} =
{x,,2}.

A set with a large number of elements that follow a definite pattern is
often described using ellipses (. . .) by listing a few elements at the beginning.
For example, the set of letters of the alphabet can be written as {a, b, c,. .., z}
and the set of odd positive integers as {1, 3, 5,...}.

Set-Builder Notation

Another way of describing a set is by using the set-builder notation. Its
general form is {x|P(x)}, where P(x) is a predicate indicating the property
(or properties) the object x has. You may read {x |P(x)} as the set consisting
of all objects x such that x has the property P(x). Here the vertical bar “|”
means such that. (Again, the meaning of the vertical bar should be clear
from the context.)

Let B be the set of all months of the year with exactly 30 days. Then

B = {x|x is a month of the year with exactly 30 days }
= {September, April, June, November} n

Next we present another of Russell’s paradoxes introduced in 1901,
which is quite similar to the barber paradox.

Russell’s Paradox

Subset

LEXAMPLE 2.2 |

Let S = {X|X ¢ X}; that is, S consists of all sets that do not belong to
themselves as elements. Does S € S? If S € S, then, by definition, S ¢ S; on
the other hand, if S ¢ S, then, again by definition, S € S. Thus, in either
case, we have a contradiction. This paradox shows, not every predicate
defines a set; that is, there is no set of all sets.

Next we present several relationships between sets.

If every element of A is also an element of B, A is a subset of B, denoted
by A € B. In symbols, (A € B) < (Vx)(x € A — x € B). If A C B, we also
say that B contains A and write B 2 A. If A is not a subset of B, we write
A Z B;thus (A € B) < (Ax)(x e AAx ¢ B).

Let A = set of states in the United States, B = set of New England states,
and C = set of Canadian provinces. ThenB C A,butBZ CandA¢Z C. N

To show that a set X is a subset of Y, select an arbitrary element x in X;
then using the laws of logic and known facts, show that x is in Y also.
We shall apply this technique in later sections. To show that X ¢ Y, all
you need is to find an element x € X which does not belong to Y.
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Equal Sets

LEXAMPLE 2.3

Empty Set

LEXAMPLE 24—

Universal Set

LEXAMPLE 2.5
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Two sets A and B are equal, denoted by A = B, if they contain the same
elements. In other words, A = Bif (A € B) A (B € A). (We shall use this
property to prove the equality of sets.) If A C Band A # B, then Ais a
proper subset of B, denoted by A C B.

Consider the sets A = {x|x is a vowel of the alphabet}, B = {a,e,1i,0,u},
C =1{2,3,4}, and D = {x|x is a digit in the numeral 23432.} Then A = B,
and C = D. [ |

Does a set have to contain any element? Can there be a set with no
elements? Suppose Fred went hunting in a nearby jungle and returned
home with great tales, but no animals. The set of animals he caught is null.
This leads us to the following definition.

The set containing no elements is the empty (or null) set; it is denoted by

@ or {}.

The set of pink elephants is empty. So are the set of mountains on the
earth that are 50,000 feet tall and the set of prime numbers between 23
and 28. [ |

Many people mistakenly believe that {@} = @; this is not true, since
{@} contains an element @, whereas @ = {} contains no elements. Thus

{0} # 0.

Logically, it can be proved that @ is a subset of every set; that is, @ C A
for every set A. Besides, although many people think that there are many
empty sets, it can be proved that it is unique, meaning there is exactly
one empty set. (See Exercises 53 and 54.)

It is always possible to choose a special set U (# @) such that every set under
discussion is a subset of U. Such a set is called a universal set, denoted
by U. Thus A C U for every set A.

Suppose we wish to discuss something about the sets {a}, {b,c,d}, and
{b,d,e,f}. Then U = {a, b, c, d, e,f} may be chosen as a valid universal set.
(There are other valid choices also.) [ |
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(optional) Programming languages such as Pascal support the data type
SET, although the implementations have a limit on the number of elements
on the base-type of the set, that is, on the size of the universal set. For
example, consider the Pascal declarations:

TYPE
MONTHS = (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC) ;
SETOFMONTHS = SET OF MONTHS;

VAR
SPRING, SUMMER, FALL,WINTER: SETOFMONTHS;

Here the universal set is
SETOFMONTHS = {JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,0CT,NOV,DEC}.

The above variable declarations define four set variables, namely,
SPRING, SUMMER, FALL, and WINTER. The set values assigned to them
must be subsets of SETOFMONTHS. For instance,

SPRING := [JAN,FEB,MAR];

is a legal Pascal assignment, although it is preposterous.

The set membership operator in Pascal is IN and can be used to deter-
mine if an element belongs to a set. For example, FEB IN SPRING is a legal
boolean expression. Likewise, the set inclusion and containment operators
are <= and >=, respectively. [ |

Sets need not have common elements. Two such sets are disjoint sets.
For example, the sets {Ada, BASIC, FORTRAN} and {C++,Java} are
disjoint; so are the sets {+, —, *,/} and {A, Vv, —, < }.

Relationships between sets can be displayed using Venn diagrams, named
after the English logician John Venn. In a Venn diagram, the universal
set U is represented by the points inside a rectangle and sets by the points
enclosed by simple closed curves inside the rectangle, as in Figure 2.1.
Figure 2.2 shows A C B, whereas Figure 2.3 shows they are not disjoint.
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Figure 2.2 U
ACB.

@
Figure 2.3 U

A and B may have
common elements.

John Venn (1834-1923) was born into a philanthropic family in Hull, England.
After attending the high schools at Highgate and Islington, in 1853 he entered
Gonuville and Caius College, Cambridge, and graduated in mathematics three
years later. He was elected a fellow of the College, a position he held until his
death.

In 1859 Venn was ordained in the Church of England, but after a brief
period of church work, he returned to Cambridge as a lecturer on moral
sciences. In 1883 he gave up his priesthood. The same year, he received a D.Sc.
from Cambridge and was elected a fellow of the Royal Society of London.

Venn was greatly influenced by Boole’s work in symbolic logic. Venn’s mas-
terpiece, Symbolic Logic (1881), clarifies the inconsistencies and ambiguities
in Boole’s ideas and notations. He employed geometric diagrams to represent
logical arguments, a technique originated by Leibniz and developed further by
Euler. Venn added a rectangle to represent the universe of discourse.

Venn published two additional books, The Logic of Chance (1866) and The Principles of Empirical
Logic (1889).

Can the elements of a set be sets? Certainly. {{a}, {b,c}}, and {@, {@},
{a,b}} are two such sets. In fact, the subsets of a set can be used to build a
new set.

Power Set

The family of subsets of a set A is the power set of A, denoted by P(A).

Im Find the power set P(A) of the set A = {a, b}.
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SOLUTION:

Since @ is a subset of every set, @ € P(A). Also, {a} and {b} are subsets
of A. Further, every set is a subset of itself, so A € P(A). Thus, the various
elements of P(A) are @, {a}, {b}, and A; that is, P(A) = (@, {a}, (b}, A}. N

Sets can be classified as finite and infinite sets, as defined below.

Finite and Infinite Sets

EXAMPLE 2.8

A set with a definite number of elements is a finite set. A set that is not
finite is infinite.

The sets {a,b,c} and the set of computers in the world are finite, but the
set of integers and the set of points on a line are infinite. |

It may sometimes be difficult to know the exact number of elements in
a finite set. But that does not affect its finiteness. For example, the set
of residents in California at a given time is finite, although it is difficult
to determine the actual count.

It is impossible to list all the elements of an infinite set. Consequently,
the enumeration method with ellipsis or the set-builder notation is used to
define infinite sets. In the former case, the ellipsis would come at the end
of the list, for example, N = {1,2,3,...}.

The following are some special infinite sets we will be using frequently:

Z = set of integers = {...,-2,-1,0,1,2,...}

N = Z* = set of positive integers = {1,2,3,...}

Z~ = set of negative integers = {..., -3, -2, —1}

W = set of whole numbers = {0,1,2,3,...}

Q = set of rational numbers = {p/q|p,q € Z A q # 0}
R = set of real numbers

R = set of positive real numbers = {x € R|x > 0}
R~ = set of negative real numbers = {x € R|x < 0}

A few additional subsets of R, called intervals, will prove useful in our
discussions. They are given below, where a < b:

closed interval [a,b] = {x € Rla <x < b}
closed-open interval [a,b) = {x € Rla <x < b}
open-closed interval (@,b]={x e Rla <x < b}

open interval (a,b) ={x e Rla <x < b}
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David Hilbert (1862-1943) was born and educated in Konigsberg,
Germany (now in Russia). He made significant contributions to algebra,
analysis, geometry, and mathematical physics. He described the importance
of set theory in the development of mathematics: “No one shall expel us from
the paradise which Cantor has created for us.”

A bracket at an endpoint indicates it is included in the set, whereas a
parenthesis indicates it is not included.

The set {x € R|x > a} is denoted by [a, c0) using the infinity symbol co.
Likewise, the set {x € R|x < a} is denoted by (—o0, a].

Next we present two interesting paradoxes related to infinite sets and
proposed in the 1920s by the German mathematician David Hilbert.

The Hilbert Hotel Paradoxes

Imagine a grand hotel in a major city with an infinite number of rooms, all
occupied. One morning a visitor arrives at the registration desk looking for
aroom. “I’'m sorry, we are full,” replies the manager, “but we can certainly
accommodate you.” How is this possible? Is she contradicting herself?

To give a room to the new guest, Hilbert suggested moving the guest
in Room 1 to Room 2, the guest in Room 2 to Room 3, the one in Room 3
to Room 4, and so on; Room 1 is now vacant and can be given to the new
guest. The clerk is happy that she can accommodate him by moving each
guest one room down the hall.

The second paradox involves an infinite number of conventioneers arriv-
ing at the hotel, each looking for a room. The clerk realizes that the hotel
can make a fortune if she can somehow accommodate them. She knows she
can give each a room one at a time as above, but that will involve moving
each guest constantly from one room to the next, resulting in total chaos
and frustration.

So Hilbert proposed the following solution: move the guest in Room 1 to
Room 2, the guest in Room 2 to Room 4, the one in Room 3 to Room 6, and
so on. This puts the old guests in even-numbered rooms, so the new guests
can be checked into the odd-numbered rooms.

Notice that in both cases the hotel could accommodate the guests only
because it has infinitely many rooms.



Alphabet

Length of a Word

Language

2.1 The Coneept of a Set 5

A third paradox: Infinitely many hotels with infinitely many rooms are
leveled by an earthquake. All guests survive and come to Hilbert Hotel.
How can they be accommodated? See Example 3.23 for a solution.

We close this section by introducing a special set used in the study of
formal languages.

Every word in the English language is an arrangement of the letters of
the alphabet {A,B,...,Z,a,b,...,z}. The alphabet is finite and not every
arrangement of the letters need make any sense. These ideas can be
generalized as follows.

A finite set ¥ of symbols is an alphabet. (T is the uppercase Greek letter
sigma.) A word (or string) over X is a finite arrangement of symbols
from X.

For instance, the only alphabet understood by a computer is the binary
alphabet {0,1}; every word is a finite and unique arrangement of 0’s and
1’s. Every zip code is a word over the alphabet {0,...,9}.

Sets such as {a, b, ¢, ab, bc} are not considered alphabets since the string
ab, for instance, can be obtained by juxtaposing, that is, placing next to
each other, the symbols a and b.

The length of a word w, denoted by ||w|, is the number of symbols in it.
A word of length zero is the empty word (or the null word), denoted by
the lowercase Greek letter A (lambda); It contains no symbols.

For example, |lab| = 2, |laabbal| = 5, and ||A|| = 0.

The set of words over an alphabet ¥ is denoted by £*. The empty word A
belongs to X* for every alphabet X. In particular, if ¥ denotes the English
alphabet, then X* consists of all words, both meaningful and meaningless.
Consequently, the English language is a subset of X*. More generally, we
make the following definition.

A language over an alphabet X is a subset of ©*.
The following two examples illustrate this definition.

The set of zip codes is a finite language over the alphabet © = {0,...,9}.
[ |

Let X = {a,b}. Then £* = {A, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa,.. .},
an infinite set. Notice that {aa,ab,ba,bb} is a finite language over X,
whereas {a, aa, aba, bab, aaaa, abba, ...} is an infinite language. [ |

Words can be combined to create new words, as defined below.



76

Concatenation

Chapter 2 The Language of Sets

The concatenation of two words x and y over an alphabet, denoted by xy,
is obtained by appending the word y at the end of x. Thus if x = x1...xp,
andy =y1...Y0, Xy =X1...XmY1---Yn.

For example, let  be the English alphabet, x = CAN, and y = ADA; then
xy = CANADA. Notice that concatenation is not a commutative operation;
that is, xy # yx. It is, however, associative; that is, x(yz) = (xy)z = xyz.

Two interesting properties are satisfied by the concatenation operation:

* The concatenation of any word x with A is itself; that is, Ax = x = xA
for every x € ¥*.

* Letx,y € *. Then |xy| = |x|| + ||¥|l. (See Section 5.1 for a proof.)

For example, let ¥ = {a,b}, x = aba, and y = bbaab. Then xy = ababbaab
and [xy|| =8 =3+5 = |lx| + [yl

A useful notation: As in algebra, the exponential notation can be
employed to eliminate the repeating of symbols in a word. Let x be a symbol
and n an integer > 2; then x™ denotes the concatenation xx...x ton — 1
times. Using this compact notation, the words aaabb and ababab can be
abbreviated as a®b? and (ab)3, respectively. Notice, however, that (ab)? =
ababab # a3b® = aaabbb.

Exercises 2.1

Rewrite each set using the listing method.

1. The set of months that begin with the letter A.

2. The set of letters of the word GOOGOL.

3. The set of months with exactly 31 days.

4. The set of solutions of the equation x2 — 5x + 6 = 0.
Rewrite each set using the set-builder notation.

5. The set of integers between 0 and 5.

6. The set of January, February, May, and July.

7. The set of all members of the United Nations.

8. {Asia, Australia, Antarctica}

Determine if the given sets are equal.

9. {x,5,2},{x,2,y} 10. {x[x% = 1}, {x[]x® = x}
11 {xlx* =}, {0, 1} 12, {x, (v}, {{x}, 5}
Mark each as true or false.

13. a e {alfa} 14. b C {a,b,c} 15. {x} C {x,y,z}
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16. {0} =0 17. 00 18. (B} =0

19. (B} =0 20. 0O 21. O € {09}

22, {xlx #x}=0 23. {x,y} = {y,x} 24. {x} € {{x},y}

25. @ is a subset of every set. 26. Every set is a subset of itself.

27. Every nonempty set has at least two subsets.
28. The set of people in the world is infinite.

29. The set of words in a dictionary is infinite.

Find the power set of each set.
30. @ 31. {a} 32. {a,b,c}

33. Using Exercises 30-32, predict the number of subsets of a set with n
elements.

In Exercises 34-37, n denotes a positive integer less than 10. Rewrite each
set using the listing method.

34. {n|n is divisible by 2} 35. {n|n is divisible by 3}
36. {n|n is divisible by 2 and 3} 37. {n|n is divisible by 2 or 3}

Find the family of subsets of each set that do not contain consecutive
integers.

38. (1,2} 39. (1,2,3)

40. Let a, denote the number of subsets of the set S = {1,2,...,n} that do
not contain consecutive integers, where n > 1. Find a3 and a4.

In Exercises 41-46, a language L over X = {a, b} is given. Find five words
in each language.

41. L = {x € *|x begins with and ends in 5.}
42, L = {x € X*|x contains exactly one b. }
43. L = {x € T*|x contains an even number of a’s. }

44, L = {x € X*|x contains an even number of a’s followed by an odd
number of b’s.}

Compute the length of each word over {a,b}.
45. aab 46. aabbb
47. ab* 48. a3b?

Arrange the binary words of the given length in increasing order of
magnitude.

49. Length two. 50. Length three.
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A ternary word is a word over the alphabet {0, 1, 2}. Arrange the ternary
words of the given length in increasing order of magnitude.

51. Length one. 52. Length two.
Prove each.

*53. The empty set is a subset of every set.
(Hint: Consider the implicationx € @ — x € A.)

*54. The empty set is unique.
(Hint: Assume there are two empty sets, @; and @3. Then use
Exercise 53.)

*55. Let A, B, and C be arbitrary sets such that A € B and B € C. Then
AcCC.
(transitive property)

*56. If T is a nonempty alphabet, then ¥* is infinite.
(Hint: Assume T* is finite. Since ¥ # @, it contains an element a.
Let x € ¥* with largest length. Now consider xa.)

2.2 Operations with Sets

Union

LEXAMPLE 2.1 |

Intersection

Just as propositions can be combined in several ways to construct new
propositions, sets can be combined in different ways to build new sets. You
will find a close relationship between logic operations and set operations.

The union of two sets A and B, denoted by A U B, is obtained by merging
them; that is, AUB = {x|(x € A) vV (x € B)}.

Notice the similarity between union and disjunction.

Let A ={a,b,c}, B={b,c,d,e},and C = {x,y}. Then AUB = {a,b,c,d, e} =
BUAand BUC = {b,c,d,e,x,y} = CUB. |

The shaded areas in Figure 2.4 represent the set A U B in three different
cases.

The intersection of two sets A and B, denoted by A N B, is the set of
elements common to both A and B; that is, ANB = {x|(x € A) v (x € B)}.
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Figure 2.4 U U U

-

AUB AUB, where A and AUB=B
B are disjoint

Notice the relationship between intersection and conjunction.

m Let A = {Nov, Dec,Jan, Feb}, B = {Feb, Mar, Apr, May}, and C = {Sept,
Oct, Nov, Dec}. Then ANB = {Feb} =BNAand BNC = @ = CNB. (Notice
that B and C are disjoint sets. More generally, two sets are disjoint if and

only if their intersection is null.) |
Figure 2.5 I
o
n
[=]
ks
=
? Berkeley Street
intersection N
Figure 2.5 shows the intersection of two lines and that of two streets,
and Figure 2.6 displays the set A N B in three different cases.
Figure 2.6 U

(Dol @)

ANB ANB=Y ANB=A

gmmm LetA={a,b,c,d,g},B={b,c,d, e f},and C = {b,c,e, g, h}. Find AUBNC)
and AUB)NAUCQC).
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Figure 2.7

Difference

LEXAMPLE 2.4 |

Figure 2.8
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SOLUTION:
(1) BﬂC:{b,C,e}

AU(BQC) = {a,b,c7d7e7g}

(2) AUB ={a,b,c,d,e,f, g}
AuUuC={a,b,c,d e g h}
(AUB)N(AUC) ={a,b,c,d,e, g}
=AUBNC)

See the Venn diagram in Figure 2.7.

U

N

A third way of combining two sets is by finding their difference, as
defined below.

The difference of two sets A and B (or the relative complement of B
in A), denoted by A — B (notice the order), is the set of elements in A that
are not in B. Thus A — B = {x € Alx ¢ B}.

LetA =1{a,...,z,0,...,9},and B={0,...,9}. Then A — B = {a,...,z} and
B-A=0.

The shaded areas in Figure 2.8 represent the set A — B in three different
cases.

A-B A-B=A A-B

For any set A # U, although A — U = @, the difference U — A # @. This
shows yet another way of obtaining a new set.
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Complement
The difference U — A is the (absolute) complement of A, denoted by A’
(A prime). Thus A’ =U -A={x e Ulx ¢ A}
Figure 2.9 represents the complement of a set A. (Complementation
corresponds to negation.)
Figure 2.9 U

Im Let U = {a,...,z}. Find the complements of the sets A = {a, e,i,0,u} and

B = {a,c,d,e,...,w}. Then A’ = U — A = set of all consonants in the
alphabet, and B’ = U — B = {b,x,y, z}. [ ]

m Let A = {a,b,X,y,Z}, B = {c’d7e7X9y;Z}’ and U = {a9bycad’e7W>X7y9Z}'

Find AUB) and A’ N B’.

SOLUTION:
(1) AUB ={a,b,c,d,e,x,y,z}
(AUB) = {w}
(2) A = {cy d; e, W}
B' ={a,b,w)}

A'NB ={w}=(AUB)

See Figure 2.10.

Figure 2.10

Since as a rule, A — B # B — A, by taking their union we can form a
new set.
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Symmetric Difference

The symmetric difference of A and B, denoted by A & B, is defined by
APB=A-B)UB-A).

@m Let A = {a,...,2,0,...,9} and B = {0,...,9,+,—,%,/}. Then A — B
{a,...,z} and B—A = {+,—,%,/}. SOA®B = A-B)uU@B - A)
{a)""Z7+’_’*7/}'

The symmetric difference of A and B is pictorially displayed in
Figure 2.11 in three different cases.

Figure 2.11 U U U

A

A®B=AUB-ANB A®B=AUB A®B=A-B

Set and Logie Operations

Set operations and logic operations are closely related, as Table 2.1

shows.
Table 2.1 Set operation  Logic operation
AUB pVvaq
ANB pVvgq
A’ ~p
Ao B p XOR ¢q

The important properties satisfied by the set operations are listed in
Table 2.2. (Notice the similarity between these properties and the laws of
logic in Section 1.2.) We shall prove one of them. Use its proof as a model
to prove the others as routine exercises.

We shall prove law 16. It uses De Morgan’s law in symbolic logic, and
the fact that X = Yifand onlyif XC Yand Y C X.

PROOF:
In order to prove that (AUB)' = A’NB’, we must prove two parts: (AUB)" C
A'NB' andA’'NB C (AUB).
* To prove that AUB) € (A’ NB'):
Let x be an arbitrary element of (A U B)'. Then x ¢ (A U B). Therefore,
by De Morgan’s law, x ¢ A and x ¢ B; that is, x € A’ and x € B". So

x € A'NB’. Thus every element of (AU B)’ is also an element of A’ N B’;
thatis, AUB) CA'NB.
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Table 2.2 Laws of Sets

Let A, B, and C be any three sets and U the universal set. Then:

Idempotent laws

1. AUA=A 2. ANA=A
Identity laws
3. AUP=A 4. AnNU=A
Inverse laws
5. AUA'=U 6. ANA' =0
Domination laws
7. AuU=U 8. AnNG=0
Commutative laws
9. AUB=BUA 10. AnB=BnNnA

Double complementation law
11. A =A
Associative laws
12. AUBUC)=(AUB)UC 13. AnBNC)=ANBNC
Distributive laws
14. AUBNC)=AUB)INAUC) 15 ANBUC)=ANBUANOC)

De Morgan’s laws

16. (AUB)Y =A'NnB’ 17. ANnB)Y =A'UB’
Absorption laws
18. AUANB)=A 19. AN(AUuB)=A
(Note: The following laws have no names.)
20. IfAC B,thenANB=A. 21. IfAC B,thenAUB =B.
22. IfA C B,then B’ C A'. 23. A-B=AnNnPB

24. A B=AUB-ANB

¢ To prove that A’ NB’' € (AUB)":

Let x be any element of A’ N B’. Then x € A’ and x € B’. Therefore,
x ¢ A and x ¢ B. So, by De Morgan’s law, x ¢ (A U B). Consequently,
x € (AU B)'. Thus, since x is arbitrary, A N B’ € (AU B)'.

Thus, (AU B) = A’ N B’. See the Venn diagrams in Figure 2.12 also.

Note: Law 23 is a very useful result and will be used in the next
section.

A few words of explanation: The commutative laws imply that the order
in which the union (or intersection) of two sets is taken is irrelevant. The
associative laws imply that when the union (or intersection) of three or more
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Figure 2.12

iXAMPLE 2.18
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A B SN RAX ===
(AUB)"=shaded area A’N B’ =cross-shaded area [

sets is taken, the way the sets are grouped is immaterial; in other words,
such expressions without parentheses are perfectly legal. For instance,
AUBUC = AU(BUC) = (AUB)UC is certainly valid. The two De Morgan’s
laws in propositional logic play a central role in deriving the corresponding
laws in sets.

Again, as in propositional logic, parentheses are essential to indicate
the groupings in the distributive laws. For example, if you do not paren-
thesize the expression A N (B U C) in law 15, then the LHS becomes
ANBUC=ANB)UC=AUC)NBUC)#AANBUANCQC).

Notice the similarity between the set laws and the laws of logic. For
example, properties 1 through 19 and 22 have their counterparts in
logic. Every corresponding law of logic can be obtained by replacing sets
A, B, and C with propositions p, q, and r, respectively, the set operators
N, U, and " with the logic operators A, Vv, and ~ respectively, and equality
(=) with logical equivalence (=).

Using this procedure, the absorption law A U (A N B) = A, for instance,
can be translated as p v (p A q) = p, which is the corresponding absorption
law in logic.

Just as truth tables were used in Chapter 1 to establish the logical equiv-
alence of compound statements, they can be applied to verify set laws as
well. The next example illustrates this method.

Using a truth table, prove that (A UB) = A’'NB'.

SOLUTION:

Let x be an arbitrary element. Then x may or may not be in A. Likewise, x
may or may not belong to B. Enter this information, as in logic, in the first
two columns of the table, which are headed by x € A and x € B.

The table needs five more columns, headed by x € (A U B), x € (A U B)',
xe€A',xeB,and x € (A’ N B') (see Table 2.3). Again, as in logic, use the
entries in the first two columns to fill in the remaining columns, as in the
table.
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Table 2.3 vxecA xeB xc(AUB) xc(AUB) xcA xeB xec@NB)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Note: The shaded columns are identical

Since the columns headed by x € (A U B) and x € (A’ N B’) are identical,
it follows that (A UB) = A’ N B'. [ |

Using truth tables to prove set laws is purely mechanical and ele-
mentary. It does not provide any insight into the development of a
mathematical proof. Such a proof does not build on previously known
set laws, so we shall not resort to such proofs in subsequent discussions.

Just as the laws of logic can be used to simplify logic expressions and
derive new laws, set laws can be applied to simplify set expressions and
derive new laws. In order to be successful in this art, you must know
the laws well and be able to apply them as needed. So, practice, practice,
practice.

Im Using set laws, verify that X —Y)—-Z =X — (Y UZ).

PROOF:
X-YV-Z=X-Y)nZ A-B=ANnPF
=XnY)nZ A-B=AnB
=XnX'nZ) associative law 13
=XNnYuzy De Morgan’s law 16
=X-YUuZz A—-B=ANnPB [ ]
IM Simplify the set expression (ANB)U A NB)U A NB).
SOLUTION:

(You may supply the justification for each step.)

ANBYUA' NB)UA NB)=ANB)U[A' NB)U(A'NB)]
=(ANB)U[A'Nn(BUB]
=ANBYUA' ND)
=(ANB)UA
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=A'"UANB)
=A'"UANMAUB)
=UN@A UB)
=A'UB [ |
Often subscripts are used to name sets, so we now turn our attention to
such sets.

Indexed Sets

Let I, called the index set, be the set of subscripts i used to name the sets A;.
Then the union of the sets A; asi varies over I is denoted by U A;. Similarly,

ﬂI A; denotes the intersection of the sets A; as i runs over I In particular,
letI ={1,2,...,n}. Then _UIAi = A{UAyU- - -UA,, which is often written as
e

3

CJ A; or simplylr.LJAi. Likewise, ﬂ A; = ﬂ Ai = rnWAi =A1NAyN---NA,.

IfI =N, the expressmn U A; is written as UlA = U A;, using the infinity
i€

symbol oo; similarly, N A; = ﬂ A; = ﬂ A;.
ieN i=1 1

o0
Before we proceed to define a new binary operation on sets N, we define
an ordered set. i=1

Ordered Set

Recall that the set {a1,a9,...,a,} is an unordered collection of elements.
Suppose we assign a position to each element. The resulting set is an
ordered set with n elements or an n-tuple, denoted by (a1,a9,...,a;,).
(Notice the use of parentheses versus braces.) The set (a1, a2) is an ordered
pair.

Two n-tuples are equal if and only if their corresponding elements are
equal. That is, (a1,ag,...,a,) = (b1,be,...,b,) if and only if a; = b; for
every i.

Im Every numeral and word can be considered an n-tuple. For instance,
345=(3, 4, 5)

T 1 ones
tens

hundreds

computer = (c,0,m,p,u,t,e,r)
1001011 =(1,0,0,1,0,1,1) < ASCII* code for letter K
11010010=(1,1,0,1,0,0,1,0) < EBCDIC** code for letter K MW

*American Standard Code for Information Interchange.
**Extended Binary Coded Decimal Interchange Code.
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René Descartes (1596-1650) was born near Tours, France. At eight, he
entered the Jesuit school at La Fleche, where because of poor health he
developed the habit of lying in bed thinking until late in the morning;
he considered those times the most productive. He left the school in 1612
and moved to Paris, where he studied mathematics for a brief period.

After a short military career and travel through Europe for about 5 years,
he returned to Paris and studied mathematics and philosophy. He then
moved to Holland, where he lived for 20 years writing several books. In 1637
he wrote Discours, which contains his contributions to analytic geometry.

In 1649 Descartes moved to Sweden at the invitation of Queen Christina.
There he contracted pneumonia and died.

We are now ready to define the next and final operation on sets.

Cartesian Product

Figure 2.13

The cartesian product of two sets A and B, denoted by A x B, is the
set of all ordered pairs (a,b) with a € A and b € B. Thus A x B = {(a,d)|
a € AADb e B). A x A is denoted by A2.

It is named after the French philosopher and mathematician René
Descartes.

Let A ={a,b} and B = {x,y,z}. Then

A x B ={(a,x),(a,y), (a,z), (b,x), (b,y), (b, z)}
B x A ={(x,a), (x,b), (y,a), (y,b), (z,a), (z,b)}
A% =A x A ={(a,a),(a,b),(b,a), (b,b)}

(Notice that A x B #B x A.) |

The various elements of A x B in Example 2.22 can be displayed in a
rectangular fashion, as in Figure 2.13, and pictorially, using dots as in
Figure 2.14. The circled dot in row a and column y, for instance, represents
the element (a,y). The pictorial representation in Figure 2.14 is the graph
of A x B.

Elements (@, x) (a,y) (a, z)

ofA b (b, %) (b, y) (b, z)

| X y z
Elements of B
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Figure 2.14

Pictorial
representation
of A x B.

Figure 2.15

Figure 2.16

The cartesian plane
R
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Figure 2.15 shows the graph of the infinite set N> = N x N. The circled
dot in column 4 and row 3, for instance, represents the element (4,3). The
horizontal and vertical dots indicate that the pattern is to be continued
indefinitely in both directions.

1 ° ° ° °

1 2 3 4

More generally, R2 = R x R consists of all possible ordered pairs (x,y) of
real numbers. It is represented by the familiar xy-plane or the cartesian
plane used for graphing (see Figure 2.16).

Y
J(o 3)
v

The following example presents an application of cartesian product.

A

0 (5, O)

Linda would like to make a trip from Boston to New York and then to
London. She can travel by car, plane, or ship from Boston to New York,
and by plane or ship from New York to London. Find the set of various
modes of transportation for the entire trip.

SOLUTION:

Let A be the set of means of transportation from Boston to New York and
B the set from New York to London. Clearly A = {car, plane, ship} and
B = {plane, ship}. So the set of possible modes of transportation is given by



Figure 2.17

Figure 2.18

Partition
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London

Boston

A x B = {(car, plane), (car, ship), (plane, plane), (plane, ship), (ship, plane),
(ship, ship)}. See Figure 2.17. |

The definition of the product of two sets can be extended to n sets. The
cartesian product of n sets A, As,. .., A, consists of all possible n -tuples
(a1,ag,...,a,), where a; € A; for every i; it is denoted by A; x Ag x - -- x A,.
If all A;’s are equal to A, the product set is denoted by A™.

Let A= {x},B=1{y,z},and C = {1,2,3}. Then
AxBxC={a,b,c)lacAbecB, andc € C}
= {(X7 y’ 1)7 (X7 y, 2)7 (X7 y’ 3), (X7 Z’ 1)’ (X5 Z, 2)7 (x7 Z’ 3)}

Finally, take a look at the map of the continental United States in
Figure 2.18. It provides a geographical illustration of partitioning, a concept
that can be extended to sets in an obvious way.

Consider the set S = {a, b, c,d, e, f, g, h,i} and the subsets S; = {a,b}, Sy =
{c}, S3 ={d,e, f}, Sy = {g,h}, and S5 = {i}. Notice that these subsets have
three interesting properties: (1) They are nonempty; (2) they are pairwise
disjoint; that is, no two subsets have any common elements; (3) their union
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is S. (See Figure 2.19.) The set P = {S1, S92, S3,S4, S5} is called a partition

of S.

Figure 2.19

More generally, let I be an index set and P a family of subsets S; of a
nonempty set S, where i € I. Then P is a partition of S if:

* Each set S; is nonempty.

* The subsets are pairwise disjoint; that is, S; N'S; = @ if i # .
* The union of the subsets S; is S; that is, .UI S; =8S.
lLe

(Each subset S; is a block of the partition.) Thus a partition of S is a
collection of nonempty, pairwise disjoint subsets of S whose union is S.

rm Let Z, denote the set of integers which, when divided by 5, leave r as the
remainder. Then 0 < r < 5 (see Section 4.1):

Zy = {
Z ={
Zy = {
Z3 = {
Zy = {

P=1{Zy,721,Zy,7Z3,74) is a partition of the set of integers. See Figure 2.20.
(This example is discussed in more detail in Section 7.4.)

Figure 2.20
Set of integers Z. 0

...,—5,0,5,...
...,—4,1,6,...
e —3,2,7,..
. —2,3,8,...
...,—1,4,9,...

}
}
9|
}
}
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The sports pages of newspapers provide fine examples of partitions, as
the next example illustrates.

In 2003, the set of teams S in the National Football League was divided into
two conferences, American and National, and each conference into four
divisions — East, South, North, and West. Let E1, S1, N1, and W7 denote
the set of teams in East, South, North, and West Divisions in the American
Conference, respectively, and Eg, So, N9, and Ws the corresponding sets in
the National Conference. Then:

E.{ = {Buffalo, Miami, New England, NY Jets}

S1 = {Indianapolis, Tennessee, Houston, Jacksonville}
N7 = {Baltimore, Cincinnati, Cleveland, Pittsburgh}
W1 = {Denver, Kansas City, Oakland, San Diego}

Ey = {Washington, Philadelphia, Dallas, NY Giants}
S9 = {Atlanta, Tampa Bay, Carolina, New Orleans}

Ny = {Chicago, Detroit, Minnesota, Green Bay}

Wy = {Arizona, Seattle, St. Louis, San Francisco}

Clearly, P = {E1,S1,N1, W1,E9,S9, No, Wy} is a partition of S.

We close this section with a brief introduction to fuzzy sets.

Fuzzy Sets (optional)

Fuzzy Subset

Fuzzy sets, a generalization of ordinary sets, were introduced in 1965
by Lotfi A. Zadeh of the University of California at Berkeley. They have
applications to human cognition, communications, decision analysis, psy-
chology, medicine, law, information retrieval, and, of course, artificial intel-
ligence. Like fuzzy logic, they model the fuzziness in the natural language —
for example, in terms like young, healthy, wealthy, and beautiful.

In fuzzy set theory, every element x in the universal set U has a certain
degree of membership dy(x), where 0 < dy(x) < 1;dy(x) indicates the
degree of fuzziness. Accordingly, a fuzzy set S is denoted by listing its
elements along with their degrees of membership; an element with zero
degree of membership is not listed.

For example, let U be the fuzzy set of wealthy people and S = {Tom 0.4,
Dick 0.7, Harry 0.6}. Then Harry belongs to S with degree of membership
0.6; dg(Harry) = 0.6 measures Harry’s degree of wealthiness.

The concept of an ordinary subset can be extended to fuzzy sets also.

Let A and B be fuzzy sets. Then A is a fuzzy subset of B if A € B and
da(x) < dp(x) for every element x in A.
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Lotfi A. Zadeh (1921-) was born in Baku, Azerbaijan. An alumnus of the
University of Tehran (1942) and the Massachusetts Institute of Technology
(1946), he received his Ph.D. from Columbia University in 1949 for his disserta-
tion on frequency analysis of time-varying networks. He began his professional
career in the Department of Electrical Engineering at Columbia. In 1959, he
Jjoined the Department of Electrical Engineering and Computer Science at the
University of California, Berkeley, serving as its chair during the years 1963-
1968. Currently, he is a professor at Berkeley and Director of Berkeley Initiative
in Soft Computing.

Zadeh’s earlier “work was centered on systems analysis, decision analysis,
and information systems. Since then his current research has shifted to the the-
ory of fuzzy sets and its applications to artificial intelligence (Al). His research
interest now is focused on fuzzy logic, soft computing, computing with words,
and the newly developed computational theory of perceptions and precisiated natural language,” according
to the University of California Web site.

A truly gifted mind and an expert on Al, Zadeh has authored about 200 journal articles on a wide variety
of subjects relating to the conception, design, and analysis of information/intelligent systems. He serves
on the editorial boards of more than 50 journals and on the advisory boards of a number of institutions
related to AL

Zadeh is a recipient of numerous awards and medals, including the IEEE Education Medal, IEEE
Richard W. Hamming Medal, IEEE Medal of Honor, the ASME Rufus Oldenburger Medal, B. Bolzano
Medal of the Czech Academy of Sciences, Kampe de Feriet Medal, AACC Richard E. Bellman Central
Heritage Award, the Grigore Moisil Prize, Honda Prize, Okawa Prize, AIM Information Science Award,
IEEE-SMC dJ. P. Wohl Career Achievement Award, SOFT Scientific Contribution Memorial Award of the
Japan Society for Fuzzy Theory, IEEE Millennium Medal, and the ACM 2000 Allen Newell Award. He
has received honorary doctorates from many universities from around the world.

For example, let S = {Betsey 0.6, Mat 0.5} and T'= {Betsey 0.8, Jonathan
0.3, Mary 0.5, Mat 0.7} by fuzzy sets of smart people. Then S is a fuzzy

subset of T..
Operations on ordinary sets can be extended to fuzzy sets as well.

Operations on Fuzzy Sets

Let A and B be any fuzzy set. The union of A and B is AUB,
where dag(x) = max{da(x),dg(x)}; their intersection is A N B, where
danp(®) = min{ds(x),dp(x)}; and the complement of A is A’, where

da(x) =1—dax); in A’ only the degrees of membership change.
Using the sets S and T" above,
S UT = {Betsey 0.8, Jonathan 0.3, Mary 0.5, Mat 0.7}
SNT = {Betsey 0.6, Mat 0.5}
S’ = {Betsey 0.4, Mat 0.5}

Additional opportunities to practice the various operations are given in

the exercises.
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Exercises 2.2

Figure 2.21

LetA={a,e,f,g,i}, B={b,d,e,g,h},C={d,e,f,h,i},and U= {a,b,...,k}.
Find each set.

1. ¢ 2. BnC 3. CnA 4. (AuBY

5. BnCY 6. AuCy 7. BnCY 8. AeB

9. A-B)-C 10. A-B-0C) 11. AuB)—-C 12. AnB)-C
Using the Venn diagram in Figure 2.21 find each set.

13. AuB)NC 14. ANBUC) 15. A-B-0)

16. AeB)UC 17. AnNBa0) 18. A-Ba0O)

@

Let A = {b,c}, B = {x}, and C = {x,z}. Find each set.
19. AxB 20. Bx A 21. Ax0Q 22. AxBx@®
23. Ax(BUC) 24. AxBnNnC) 25. AxBxC 26. AxCxB

Mark each as true or false, where A, B, and C are arbitrary sets and U the
universal set.

27. A-0=A 28. 0 -A=-A 29. -0=0
30. A—A=0 31. A-B=B-A 32. A-A'=0
33. A)Y=A 34. AnBY =A'NnB" 35. AUB) =A"UPB
36. ACAUB 37. ACANB 38. BN(A-B) =0

Give a counterexample to disprove each proposition.

39. A-B)-C=A-B-0) 40. AUB-C)=AUB) —(AUO)
41. AUB®C)=AUB)®AUC) 42. A BNC)=AeBNAs0C)
Determine if each is a partition of the set {a,...,z,0,...,9}.

43. {{a,...,z}{0,...,9},0}

44. ({a,... i) ,...,t}, [u,...,2),10,...,91)
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45. {{a,...,1},(n,...,t},{u,...,2},{0,...,9}}
46. {{a,...,u},{v,...,2},{0,3},{1,2,4,...,9)

Prove each, where A, B, and C are any sets.

47. A=A 48. AUANB)=A

49. AN(AuB)=A 50. ANnB)Y =A'UB

51. ApA=0 52. ApU=A’

53. AB=B@gA 54. A-B=ANPB

55. AUBUC)Y =A'nB'NnC’ 56. ANBNCY =A'UB UC’

Simplify each set expression.

57. AnN(A-B) 58. A—-A)UB-A) 59. A-B)-B-A4A)
60. AUB)UANDB) 6l1. AuB)—(ANB) 62. (AUB)N(ANB)
63. ANBYUAUB') 64. (AUB)YNA'NB) 65. (AAUB)YU(A' NB)

*66. State De Morgan’s laws for sets A;, i € I. (I is an index set.)

*67. State the distributive laws using the sets A and B;, i € I.

o The sum of two fuzzy sets A and B is the fuzzy set A @ B, where ds ¢ p(x) =
1A[da(x)+dp(x)]; their difference is the fuzzy set A— B, where d4_g(x) =
0V [da(x) — dp(x)]; and their cartesian product is the fuzzy set A x B,
where da » g(x,y) = da(x) Adp(x). Use the fuzzy sets A = {Angelo 0.4, Bart
0.7, Cathy 0.6} and B = {Dan 0.3, Elsie 0.8, Frank 0.4} to find each fuzzy

set.

68. AUB 69. ANnB 70. A’ 71. AUB’
72. AnB 73. ANA 74. A9 B 75. A—B
76. B—A 77. AxB 78. BxA 79. AxA

° Let A and B be any fuzzy sets. Prove each.
*80. (AUB)Y =A'NB *81. ANB)Y =A'"UB

*2.3 Computer Operations with Sets (optional)

Sets and the various set operations can be implemented in a computer in
an elegant manner.

Computer Representation

Although the elements of a set have no inherent order, when the set
is represented in a computer, an order is imposed upon them to permit
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implementation. The universal set U with n elements is represented as an
array with n cells, each containing a 1:

n—1 210

Ull|1 11111

The elements are represented by the binary digits (or bits) 0 and 1 in the
right-to-left fashion.

Subsets of U are represented by assigning appropriate bits to the various
cells. A bit 1 in a cell indicates the corresponding element belongs to the
set, whereas a 0 would indicate the element does not belong to the set.
Using U = {a,b,...,h}, represent the sets A = {a,b, g} and B = {c, e, h} as
8-bit strings.

SOLUTION:
Remember, the elements are represented in the right-to-left order. Thus:

h g f e doc b a

vjlt|j1j1|1f1|1)1|1

Next we discuss how the various subsets of a finite set can be found
methodically.

Subset Bit String
(0] 000
{x} 001
{y} 010
{x,y} 011
{z} 100
{x,z} 101
{y,z} 110
{x,y,z} 111

Interestingly enough, there is a close relationship between sets and bit
strings. Table 2.4, for instance, lists the various subsets of the set {x,y, z}.
Notice that the table contains all possible three-bit strings and their decimal
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values increase from 0 to 7. (See Section 4.3 for a discussion of nondecimal
bases.)

Next we present a systematic procedure to find the bit string of the
subset that “follows” a given subset with bit string b9b1b¢. Such a recipe
for solving a problem in a finite number of steps is called an algorithm.*

Next-Subset Algorithm

Take a good look at each string in Table 2.4. Can you find a rule to obtain
each, except 000, from the preceding string? It is fairly simple: From right
to left, locate the first 0. Change it to 1 and the 1’s to its right to 0’s.

For example, suppose you would like to find the subset following {x, y}
with bit string beb1bg = 011. From right to left, the first 0 is b. Change it
to 1, and b1 and b to 0’s. The resulting string is 100 and the corresponding
subset is {z}.

This rule can be generalized and translated into an algorithm. See
Algorithm 2.1. Use it to find the subsets following {z} and {y, z}.

Algorithm next-subset (bp_iby_2 ...bg)
(* This algorithm finds the bit string of the subset that
follows a given subset of an n-element set S. *)
Begin (* next-subset *)
find the first 0 from the right
change it to 1
replace the bits to its right with 0's
End (* next-subset *)

Algorithm 2.1

The next-subset algorithm can be employed to find all subsets of a finite
set S. Algorithm 2.2 shows the steps involved. Use it to find the subsets of
x,y,2}.

Algorithm subsets (S)
(* Using the next-subset algorithm, this algorithm finds the bit

representations of all subsets of an n-element set S. *)
Begin (* subsets *)

bp_1bp_2...bg < 00...0 (* initialize string *)

done <« false (* boolean flag *)

while not done do

begin (* while *)

find the subset following by_1bn_2 ... bgp.

*The word algorithm is derived from the last name of the ninth-century Arabian astronomer
and mathematician Abu-Abdullah Muhammed ibn-Musa al-Khowarizmi (Muhammed, the
father of Abdullah and the son of Moses of Khwarizm). He was a teacher in the mathemat-
ical school in Baghdad, Iraq. His last name indicates he or his family originally came from
Khwarizm (now called Khiva) in Uzbekistan.

His books on algebra and Indian numerals had a significant influence in Europe in the 12th
century through their Latin translations. The term algebra is derived from the title of his
algebra book Kitab al-jabr w’al-mugabalah.
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if every bit b; = 1 then (* terminate the Toop *)
done <« true
endwhile
End (* subsets *)

Algorithm 2.2

Next we show how the set operations can be implemented in a computer.

Computer Operations

The representation of sets as n-bit strings allows us to use logic opera-
tions to perform set operations. They are implemented through the bit
operations — AND, OR, XOR, COMP — defined by Table 2.5, where COMP
indicates one’s complement: comp(1) = 0 and comp(0) = 1.

Table 2.5 bit AND OR XOR COMP | .~ logic operators
y X o 1 0 1 0 1
0 o 0 0 1 0 1 1
1 0O 1 1 1 1 O 0

The various set operations are accomplished by performing the corre-
sponding logic operations, as shown in Table 2.6. Notice that the logic
operation corresponding to A — B makes sense since A— B = ANB/, by law
23 in Table 2.2.

Table 2.6

Set operations Logic operations
ANB A ANDB
AUB AORB

A’ COMP(A)
A®B AXORB
A-B A AND (COMP(B))

|£XAMPLE 2.28 Let U = {a,b,...,h}, A = {a,b,c,e,g}, and B = {b,e, g, h}. Using bit
representations, find the sets ANB, AUB, A®B, B, and A— B as 8-bit words.

SOLUTION:

A=01010111
B=11010010
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Using Tables 2.5 and 2.6, we have
(1) AnB=01010010 2) AuB=11010111
3) AB=10000101 (4) B=00101101
(5) A=01010111

B=00101101
So A —-B=AAND (COMP(B))

Using the bit representations, you may verify that A N B = {b,e, g},
AUB = {a,b,c,e,g,h}, A® B = {a,c,h}, B = {a,c,d,f}, and A — B =

{a, c}. |
Exercises 2.3
Using the universal set U = {a,..., h}, represent each set as an 8-bit word.
1. {a,c,e,g} 2. {b,d,f} 3. {a,e,f, g, h} 4. 0

Use Algorithm 2.1 to find the subset of the set {sg, s1, s2, s3} that follows the
given subset.

5. {s3} 6. {s0,ss} 7. {s2,s3} 8. {s0,s2,s3}
Using Algorithm 2.2, find the subsets of each set.
9. {s0,s1} 10. {so,s1,52,s3}

Using the sets A = {a,b,e,h}, B = {b,c,e,f,h}, C = {c,d,f,g}, and
U = {a,...,h}, find the binary representation of each set.

11. AnB 12. AUB 13. B 14. A—-B
15. C-B 16. AeB 17. BaC 18. CopA
19. AnC 20. AuB 21. AnBNC) 22. AuBNO)

23. A-Beo(C) 24. AdB) -C 25. Ao BaoC) 26. AedB)aC

| 2.4 The Cardinality of a Set

Cardinality

This section presents four formulas involving finite sets, which we shall
use frequently. Recall that every finite set has a fixed number of elements,
so we make the following definition.

The cardinality of A, denoted by |A|, is the number of elements in it.*

*It should be clear from the context whether the symbol “| |” refers to absolute value or
cardinality.
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For example, 0| = 0, |{3}| = 1, and |{a, b, c}| = 3.
Let A and B be any two finite sets. How is |A U B| related to |A| and |B|?
First, let’s study an example.

Let A ={a,b,c} and B = {b,c,d, e, f}. Clearly, |A| = 3, |B| =5, |]AUB| = 6,
and JANB| =2, s0 |AUB| = |A| + |B| — |ANB. (]
More generally, we have the following result:

(Inclusion-Exclusion Principle) Let A and B be two finite sets. Then
IAUB| = |A| + |B| — JANB.

PROOF:

Suppose [ANB| = k. Since ANB € Aand AN B C B, we can assume
that |A| = £ + m and |B| = k + n for some nonnegative integers m and n
(see Figure 2.22). Then:

JAUB|=m+k+n
=m+k)+n+k)—Fk
=|A|+|B| - |ANB|

This completes the proof. |

In addition, if A and B are disjoint sets, then |JA N B| = || = 0, so
|A U B| = |A| + |B|. Thus we have the following result.

COROLLARY 2.1
(Addition Principle) Let A and B be finite disjoint sets. Then |AUB| =
|A| + |B.

The next example demonstrates the inclusion—exclusion principle.

Find the number of positive integers < 300 and divisible by 2 or 3.

SOLUTION:

Let A = {x € Njx < 300 and is divisible by 2} and B = {x € Njx < 300
and is divisible by 3}. Then A N B consists of positive integers < 300 that
are divisible by 2 and 3, that is, divisible by 6. Thus A = {2,4,...,300},
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B ={3,6,...,300},and ANB = {6,12,...,300}. Clearly, |A| = 150, |B| =
100, and |A N B| = 50, so by Theorem 2.1,

JAUB| = |A| + |B| — |AN B
— 150 + 100 — 50 = 200

Thus there are 200 positive integers <300 and divisible by 2 or 3.
(See Examples 3.11, and 3.12 in Section 3.2.)

Theorem 2.1 can be extended to any finite number of finite sets. For
instance, the next example derives the formula for three finite sets.

Let A, B, and C be three finite sets. Prove that
JAUBUC|=|A|+|B|+|C|—JANB|—|BNC|—|CNA|+|AnBNC|.

PROOF:

JAUBUC|=|AUBUCQO)|
=]A|+|BUC|—-|ANBUCQC) by Theorem 2.1
=|A|+|BUC|—|ANB)UANCQC) by the distributive law
=1Al+ (Bl +|C| = IBNC) —[IANB|+]ANC]

—|ANB)NANOC)

=|A|+|B|+|C|—|ANB|—|BNC|—|CNA|+]|ANnBNC]|,

sinceANC=CnNAand ANB)NANC)=ANnBNC. [ |

The next example shows how useful sets are in data analysis.

A survey among 100 students shows that of the three ice cream flavors
vanilla, chocolate, and strawberry, 50 students like vanilla, 43 like choco-
late, 28 like strawberry, 13 like vanilla and chocolate, 11 like chocolate and
strawberry, 12 like strawberry and vanilla, and 5 like all of them. Find the
number of students surveyed who like each of the following flavors.

(1) Chocolate but not strawberry.
(2) Chocolate and strawberry, but not vanilla.
(3) Vanilla or chocolate, but not strawberry.

SOLUTION:

Let V, C, and S symbolize the set of students who like vanilla, chocolate,
and strawberry flavors, respectively. Draw three intersecting circles to
represent them in the most general case, as in Figure 2.23.

Our first goal is to distribute the 100 students surveyed into the various
regions. Since five students like all flavors, |[VNCNS| = 5. Twelve students
like both strawberry and vanilla, so |S N V| = 12. But five of them like
chocolate also. Therefore, [(SNV) — C| = 7. Similarly, (VNC) -S| =8
and ((CNS)—-V|=6.
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Figure 2.23 T

/N
&

Of the 28 students who like strawberry, we have already accounted for
7+ 5+ 6 = 18. So the remaining 10 students belong to the set S — (VU C).
Similarly, [V — (CUS)|=30and |C — (SUV)| = 24.

Thus far, we have accounted for 90 of the 100 students. The remaining
10 students lie outside the region VUSUC, as in Figure 2.23. The required
answers can now be directly read from this Venn diagram:

1) IC -S| = 24+ 8 = 32. So 32 students like chocolate but not
strawberry.

(2) (CNS)—V| = 6. Therefore, 6 students like both chocolate and
strawberry, but not vanilla.

(38) 30 + 8 + 24 = 62 students like vanilla or chocolate, but not
strawberry. They are represented by the region (V UC) — S. [ |

Finally, suppose a set contains n elements. How many subsets does it
have? Before we answer this partially, let us study the next example, which
uses the addition principle.

M Let s3 denote the number of subsets of the set S = {a, b, c}. Let S* = S —{b}.
We shall use the subsets of S* in a clever way to find s3 and all subsets of S.
Let A denote the subsets of S*. Then A = {@, {a}, {c}, {a, c}}. Clearly every
element of A is also a subset of S.
Now add b to every element in A. Let B denote the resulting set:
B = {{b}, {b,a}, {b,c}, {b, a, c}}. Every subset of S either contains b or does
not contain b; so, by the addition principle, s3 = |A|+ |B|=4+4=8. A

More generally, we have the following result.
Im Let s, denote the number of subsets of a set S with n elements. Then

Sp = 28,1, where n > 1.

PROOF:

Letx € S. Let S* =S — {x}. Then S* contains n — 1 elements and hence has
sn—1 subsets by definition. Each of them is also a subset of S. Now insert x
in each of them. The resulting s,,_1 sets are also subsets of S. Since every
subset of S either contains x or does not contain x, the addition principle
indicates a total of s,_1 + s,—1 = 2s,_1 subsets of S. (Notice that s = 1.
Why?) [ |
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Consequently, if you know the number of subsets of a set with n — 1
elements, this theorem can be employed to compute the number of subsets
of a set with n elements. For instance, by Example 2.33, a set with three
elements has eight subsets; therefore, a set with four elements has 2.8 = 16
subsets.

The technique used in the proof of Theorem 2.2 can be applied to write
an algorithm for finding the power set of a set S. See Algorithm 2.3. It uses
the fact that if A is a subset of S and s € S, then A U {s} is also a subset
of S.

Algorithm subsets(S)

(* This algorithm finds the power set of a set S with n elements
S1> S25 ...55n. Sj denotes the jth element in the power set. *)
Begin (* subsets *)

power set <« {Q} (* initialize power set *)
numsubsets < 1 (* initialize the number of subsets *)
for i =1 to n do (* s; denotes the ith element in S *)
begin (* for *)
j<«1 (* j-th element in P(S) *)
temp < numsubsets (* temp is a temporary variable*)
while j < temp do (* construct a new subset *)
begin (* while *)
add S; U {sj} to the power set
J < i+l
numsubsets <« numsubsets + 1
endwhile
endfor
End (* subsets *)

Algorithm 2.3 n

Although Theorem 2.2 does not give us an explicit formula for the
number of subsets, it can be used to find the formula. The next theo-
rem gives us the explicit formula, which we shall prove in Section 4.4
(see Example 4.18).

Im A set with n elements has 2" subsets, where n > 0. [ |

For example, a set with four elements has 2* = 16 subsets!

Exercises 2.4

Find the cardinality of each set.
1. The set of letters of the English alphabet.
2. The set of letters of the word TWEEDLEDEE.
3. The set of months of the year with 31 days.
4. The set of identifiers in Java that begin with 3.
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Let A and B be two sets such that |A| = 2a — b,|B| = 2a, |ANB| =a — b,
and |U| = 3a + 2b. Find the cardinality of each set.

5. AUB 6. A—-B 7. B 8. A-A
9. Find |A|if |A| = |B|, |]AUB| =2a + 3b, and |JANB| = b.

10. Find |ANB|if|A| =a+b = |B|and |AUB| = 2a + 2b.

11. Find |ANB|if |A| = 2a, |B| = a, and |A U B| = 2a + b.

Let A and B be finite sets such that A C B, |A| = b, |B| = a + b. Find the
cardinality of each set.

12. AUB 13. A—-B 14. B—A 15. AnB

Let A and B be finite disjoint sets, where |A| = a, and |B| = b. Find the
cardinality of each set.

16. AUB 17. A—-B 18. B—-A

19-21. Find the cardinality of each set in Exercises 16-18, where A C B,
B is finite, |A| = a, and |B| = b.

22. A survey conducted recently among 300 adults in Omega City shows
160 like to have their houses painted green, and 140 like them blue.
Seventy-five adults like both colors. How many do not like either
color?

23. A survey was taken to determine the preference between two laundry
detergents, Lex and Rex. It was found that 15 people liked Lex only, 10
liked both, 20 liked Rex only, and 5 liked neither of them. How many
people were surveyed?

Find the number of positive integers < 500 and divisible by:

24, Two or three. 25. Two, three, or five.

26. Two or three, but not six. 27. Neither two, three, nor five.

Find the number of positive integers < 1776 and divisible by:

28. Two, three, or five. 29. Two, three, or five, but not six.

30. Two, three, or five, but not 15. 31. Two, three, or five, but not 30.

According to a survey among 160 college students, 95 students take a course
in English, 72 take a course in French, 67 take a course in German, 35 take a
course in English and in French, 37 take a course in French and in German,
40 take a course in German and in English, and 25 take a course in all
three languages. Find the number of students in the survey who take a
course in:

32. English, but not German. 33. English, French, or German.
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34. English or French, but not 35. English and French, but not
German. German.

36. English, but neither French nor German.
37. Neither English, French, nor German.

A recent survey by the MAD corporation indicates that of the 700 families
interviewed, 220 own a television set but no stereo, 200 own a stereo but
no camera, 170 own a camera but no television set, 80 own a television set
and a stereo but no camera, 80 own a stereo and a camera but no television
set, 70 own a camera and a television set but no stereo, and 50 do not have
any of these. Find the number of families with:

38. Exactly one of the items. 39. Exactly two of the items.

40. At least one of the items. 41. All of the items.

Using Algorithm 2.3, find the power set of each set. List the elements in
the order obtained.

42, {a,b} 43. {a,b,c}

A finite set with a elements has b subsets. Find the number of subsets of a
finite set with the given cardinality.

44. a +1 45. a + 2 46. a +5 47. 2a

Let A, B, and C be subsets of a finite set U. Derive a formula for each.
48. |A'NB'| 49. |A'NnB'NnC'|

*50. State the inclusion—exclusion principle for four finite sets A;, 1<
i < 4. (The formula contains 15 terms.)

*51. Prove the formula in Exercise 50.

**52. State the inclusion—-exclusion principle for n finite sets A;, 1 <i < n.

2.5 Recursively Defined Sets

A new way of defining sets is using recursion. (It is a powerful problem-
solving technique discussed in detail in Chapter 5.)

2
Notice that the set of numbers S = {2,22,222,222 ,...} has three
interesting characteristics:

1) 2€8S.
(2) Ifx € S, then 2* € S.

(3) Every element of S is obtained by a finite number of applications of
properties 1 and 2 only.
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Property 1 identifies explicitly the primitive element in S and hence
ensures that it is nonempty. Property 2 establishes a systematic procedure
to construct new elements from known elements. How do we know, for
instance, that 22°¢ §? By property 1,2 € S; then, by property (2), 22 € S;
now choose x = 22 and apply property 2 again; so 22°¢ 8. Property 3 guar-
antees that in no other way can the elements of S be constructed. Thus the
various elements of S can be obtained systematically by applying the above
properties.

These three characteristics can be generalized and may be employed to
define a set S implicitly. Such a definition is a recursive definition.

Reecursively Defined Set

A recursive definition of a set S consists of three clauses:

* The basis clause explicitly lists at least one primitive element in S,
ensuring that S is nonempty.

* The recursive clause establishes a systematic recipe to generate new
elements from known elements.

* The terminal clause guarantees that the first two clauses are the only
ways the elements of S can be obtained.

The terminal clause is generally omitted for convenience.
M Let S be the set defined recursively as follows.
(1) 2¢€8S. (2) Ifx € S, thena? € S.
Describe the set by the listing method.
SOLUTION:

* 2 € S, by the basis clause.

* Choose x = 2. Then by the recursive clause, 4 € S.

* Now choose x = 4 and apply the recursive clause again, so 16 € S.
Continuing like this, we get S = {2, 4, 16, 256, 65536, .. .}. [ |

The next three examples further elucidate the recursive definition.

IM Notice that the language L = {a, aa,ba, aaa,aba,baa,bba,...} consists of
words over the alphabet © = {a, b} that end in the letter a. It can be defined
recursively as follows.

e aclL.
e Ifx € L, then ax, bx € L.
For instance, the word aba can be constructed as follows:

* ae L. Choosingx = a, bx =ba € L.
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¢ Now choose x = ba. Then ax = aba € L.

The tree diagram in Figure 2.24 illustrates systematically how to derive the
words in L.

Figure 2.24 a

aaa baa aba bba
[ |

M (Legally Paired Parentheses) An important problem in computer
science is to determine whether or not a given expression is legally paren-
thesized. For example, (()), () (), and (() ()) are validly paired sequences of
parentheses, but ) (), () (, and ) () (are not. The set S of sequences of legally
paired parentheses can be defined recursively as follows:

* O)esS.
e Ifx,y € S, then xy and (x) belong to S.

The tree diagram in Figure 2.25 shows the various ways of constructing
the elements in S.

Figure 2.25 0

00 (0)

000 000 0O0) (0)0O 0OCO) (CO))

0000 (0)CO) m

A simplified recipe to determine if a sequence of parentheses is legally
paired is given in Algorithm 2.4.

Algorithm Legally Paired Sequence
(* This algorithm determines if a nonempty sequence of parentheses is
legally paired. Count keeps track of the number of parentheses. It is
incremented by 1 if the current parenthesis is a left parenthesis.
and decremented by 1 if it is a right parenthesis. *)
Begin (* algorithm *)
count < 0 (* initialize *)
read a symbol
if symbol = left paren then
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while not the end of the sequence do
begin (* while *)
if symbol = left paren then
count <« count + 1
else (* symbol = right parenthesis *)
count <« count -1
read the next symbol
endwhile
if count = 0 then
legal sequence
else
invalid sequence
else
invalid sequence (* begins with a right paren *)
End (* algorithm *)

Algorithm 2.4
This example is studied further in Chapters 6 and 9. |
Im A legal expression in propositional logic is called a well-formed formula
(wff). For convenience, we restrict our discussion to the logical variables

P, q, and r, and the operators A, Vv, and ~. Then the set of well-formed
formulas can be defined recursively:

* The logic variables are wffs.
* If x and y are wffs, then so are (x), ~(x), (x A y), and (x Vv y).

For instance, the expression ((p) A ((~(q)) v (r))) is a wff, but (g A (~r)) is
not (why?). (Parentheses are often omitted when ambiguity is impossible.)
|

Exercises 2.5

In Exercises 1-6, a set S is defined recursively. Find four elements in each

case.
1. )1eS 2. )leS
HxeS—-2xeS HxeS—2*eS
3. )eeS 4. 1)3€S
ixeS—>e'eS i)xeS—>lgxest
5. )relL 6. )relL
ii)x e L - xbbeL i)xeL —»axbelL

lg x means logg x.



108

Chapter 2 The Language of Sets

In Exercises 7-10, identify the set S that is defined recursively.

7. )1eS 8. )l1eS
ix,yeS—>x+yeS iix,yeS—>x+tyeS

9. )28 10. VP eS
ihx,yeS—>x+yeS hxeX,AeS—>{x}UAeS

Define each language L over the given alphabet recursively.
11. {0,00,10,100,110,0000,1010,...}, = = {0, 1}.
12. L =1{1,11,111,1111,11111,...}, £ = {0, 1}.
18. L ={x € T*|x = b"ab",n > 0}, = = {a, b}.

14. The language L of all palindromes over ¥ = {a,b}. (A palindrome
is a word that reads the same both forwards and backwards. For
instance, abba is a palindrome.)

*15. {b,bb, bbb, bbbb,...}, T = {a,b}.
*16. {b,aba, aabaa, aaabaaa,...}, £ = {a,b}.
*17. {a,aaa,aaaaa,aaaaaaa,...}, ¥ = {a,b}.
*18. {1,10,11,100,101,...}, = = {0, 1}.
Determine if each sequence of parentheses is legal.
19. (O0) 20. (O)X( 21. (OO 22. (OO

The nth Catalan number C,, named after the Belgian mathematician,
Eugene Charles Catalan (1814-1894), is defined by

2n)!

o 0
n!(n + 1) =

n

where n! (n factorial) is defined by n! =n(n —1)...3-2.1and 0! = 1.
Catalan numbers have many interesting applications in computer science.
For example, the number of well-formed sequences of n pairs of left and
right parentheses is given by the nth Catalan number. Compute the number
of legally paired sequences with the given pairs of left and right parentheses.

23. Three 24. Four 25. Five 26. Six

27. List the well-formed sequences of parentheses with three pairs of left
and right parentheses.

28. Redo Exercise 27 with four pairs of left and right parentheses.
Using Example 2.37, determine if each is a wff in propositional logic.

29. (p A ((~(@) v ) 30. ((~(p)) v (@) A (~1))
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31.

(((~p) v @) A (~q) V (~p))) 32. (pv @) AU~@)V (~1))

33. Determine if the following recursive definition yields the set S of

legally paired parentheses. If not, find a validly paired sequence that
cannot be generated by this definition.

) 0eS. ii) Ifx € S, then ()x, (x), x() € S.

34. Define the set of words S over an alphabet T recursively. Assume

A ES.
(Hint: use concatenation.)

35. Let X be an alphabet. Define =* recursively.

(Hint: use concatenation.)

*36. Define the language L of all binary representations of nonnegative

integers recursively.

Chapter Summary

Set

Thi
set,

s chapter presented the concept of a set, different ways of describing a
relations between sets, operations with sets and their properties, and

formal languages. How sets and set operations work in a typical computer
were also discussed.

A set is a well-defined collection of objects (page 68).
A set can be described using words, listing the elements, or by the
set-builder notation (page 69).
A C B if and only if every element of A is also an element
of B (page 69).
A=B)< (ACB)ABCA) (page 70).
The null set @ contains no elements (page 70).
The wuniversal set U contains all elements under discussion

(page 70).
A and B are disjoint sets if ANB =@ (page 71).
The power set P(A) of a set A is the family of all subsets of A

(page 72).

A set with a definite number of elements is finite; if a set is not finite,
it is infinite (page 73).
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Formal Language
* An alphabet ¥ is a finite set of symbols; {0,1} is the binary alphabet

(page 75).

* A word over ¥ is a finite arrangement of symbols from . A word of
length zero is the empty word A (page 75).

* ¥* consists of all possible words over X (page 75).
* A formal language over X is a subset of ©* (page 75).

* The concatenation of two words x and y is the word xy.  (page 76).

Set Operations

* Union AUB=x|xeA) Vv (xeB) (page 78).
¢ Intersection ANB=A{x|x e A) A (x € B)} (page 78).
¢ Difference A—-B={xcAlx ¢ B} (page 80).
* Complement A=U-A={xcUllx¢A} (page 81).
* Symmetric difference A® B=(A-B)U(B —A) (page 82).

* Cartesian product A x B={(a,b)|(a cA) A (beB)} (page8T7).

* The fundamental properties of set operations are listed in Table 2.2
(page 83).

Partition

* A partition of a set S is a finite collection of nonempty, pairwise
disjoint subsets of S whose union is S (page 90).

Computer Implementation

* Set operations are implemented in a computer using the bit operations

in Table 2.5 and the logic operations in Table 2.6. (page 97).
Cardinality
* Inclusion-exclusion principle [A U B| = |A| + |[B] — |A N B|
(page 99).
* Addition principle |A U B| = |A| + |B|, where ANB =@ (page 99).
* A set with n elements has 2" subsets (page 102).
Recursion

¢ The recursive definition of a set consists of a basis clause, recursive
clause, and a terminal clause (page 105).
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Review Exercises

Using the Venn diagram in Figure 2.26, find each.

1. A—-BNO 2. AUB)-C 3. A-B-0
4. A-B) -C 5. A®B 6. A-B)x(B-0)
7. A—-BaC) 8. AUBag ()

Figure 2.26 U

/N
9
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9. Find the sets A and Bif AN B = {a,c}, BNA' ={b,e,g}, ANB =
{d,f},and A’ N B’ = {i}.

Let A, B, and C be sets such that A — (BUC) = {b,e}, B— (CUA) = {k},
C-AUB)={h},AnB={f,g},BNC={j},CnA={i},andANnBNC
= (. Find each set.

10. A-BNO) 11. AeB) -C 12. Ao B O)

Find the power set of each set.
13. {0,{0}} *14. {2,{3},12,3}}

15. Let A = {n € Njn < 20 and n is divisible by 2}, B = {n € Njn < 20
and n is divisible by 3}, and C = {n € Njn < 20 and n is divisible by
5}. Determine if they form a partition of the set {n € Njn < 20}.

o Let U =1{1,...,8}, A ={1,3,5,7,8}, and B = {2, 3,6, 7}. Find the binary
representation of each set.

16. A—-(AnB) 17. A-PB 18. A—-(AeB) 19. Ao(A®B)

A survey found that 45% of women like plain yogurt, 55% like flavored
yogurt, and 23% like both. Compute the percentage of women who like
each.

20. Plain yogurt, but not flavored.
21. Plain or flavored yogurt, but not both.

A survey was taken among the students on campus to find out whether they
prefer vanilla or strawberry ice cream and whether they prefer chocolate or
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Pudding
Chocolate | Tapioca | Neither | Total
Vanilla 68 53 12 133
Ice Strawberry 59 48 9 116
Cream  Neither 23 21 7 51
Total 150 122 28 300

tapioca pudding. The results are summarized in Table 2.7. Find the number
of students who:

22. Like strawberry ice cream and tapioca pudding.

23. Do not like pudding.

24. Like at least one of the ice cream flavors.

25. Like neither ice cream nor pudding.

Find the number of positive integers < 4567 and divisible by:

26. Two, three, or five. 27. Two, five, or seven, but not 35.

Find four elements in each set S defined recursively.

28. )leS 29. )3eS
ixeS—>1+x€S iixeS—lgxeS

30. )v2¢€S 31. )1leS
idxreS—+vV2+xeS i)xeS—+V1+2xeS

Define each set S recursively.

32. {2,4,16,256,...} 33. {1,3,7,15,31,...}

34. {b,ba2,ba%,bab,.. .} 85. {},ba,b%a?,b3%a3,.. )

Find five words in each language L over the alphabet ~ = {a, b}.
36. {x € X*|x contains exactly one a}

37. {x € *|x contains an odd number of a’s}

Define each language L over the given alphabet recursively.

38. {x € X*|x contains exactly one a}, ¥ = {a, b}.

39. {x € X*|x ends in ab}, ¥ = {a, b}.

40. {2,3,4,5,6,...}, X = {2,3}.

41. {1,010,00100,0001000,000010000,...}, = = {0, 1}.
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Determine if each is a well-formed formula.
42. (p A ((~(@) Vv (1)) 43. ((p) A (@) Vv (~(@) A (1))
Let A, B, and C be any sets. Prove each.
*44. ANBUCO)=ANBUMANC
*45. AUBNC)=AUB)NAUC)
*46. AUB—-C)=(AUB) - (C-A)
*47. ANB-0)=ANB)-(ANC)
Simplify each set expression.
48. (A UB)Y U(A'NnB) *49, [A- BUOCOIN[BNC) —A]

o Consider the fuzzy sets, where A = {Mike 0.6, Andy 0.3, Jeff 0.7} and
B = {Jean 0.8, June 0.5}. Find each fuzzy set.

50. AUB 51. AnB 52. Ao B 53. AxB

° Let A and B be any fuzzy sets. Prove each.
*54. AUB)Y =A"—-B *55. A—-—B)=A'"UB

Supplementary Exercises

Prove each, where A, B, and C are arbitrary sets.
1LA-BUCO)=A-B)NnA-0)
2. [ANA-B)JUWUB)Y=A-B

*3. ANBoC)=ANB)dANC)

4. Ao BoC)=AeB)aC
Simplify each set expression.

5. AnB) N BNC)N(CNA) *6. ([AUB)NCIUIANBUO)I
*7. AUB)NA UB)N(A'UB) *8. [[AUBYUMAUBI NA NB)
Find the number of positive integers < 1000 and not divisible by:

9. 2,3, or5. *10. 2,3,5,or 7.
11. Define recursively the language {0"1"|n > 0} over X = {0, 1}.
12. Define recursively a word w over a finite alphabet X.

Let x = x1x2...x, € >.". Then the string x, ...x9x; is called the reverse
of x, denoted by x®. For example, the reverse of the binary word 01101 is
10110. Let x, y € Y_". Prove each.

13. (xy)B = yByR



114

Chapter 2 The Language of Sets

14. The string x is palindromic if and only if x® = x.

15. The word xx® is palindromic.

Computer Exercises

Write a program to do each task, where n denotes a positive integer < 20.

1.

Read in % subsets of the set S = {1, 2,...,n} and determine if the subsets
form a partition of S.

Read in two sets A and B, where U ={1,2,3,...,n}. Print the bit-
representations of A and B. Use them to find the elements in A U B,
ANB,A',A—-B,A® B, and A x B, and their cardinalities.

3. Find all subsets of the set {1,2,...,n}.

4. Read in sequences of left and right parentheses, each containing at

most 25 symbols. Determine if each word consists of legally paired
parentheses.

Print the Catalan numbers Cy through C,,.

Exploratory Writing Projects

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1.
2.

Write an essay on the life and contributions of G. Cantor.

Explain the various occurrences of the ordered pair notation in
everyday life.

Explain how the addition principle is used to define the addition of
positive integers. Give concrete examples.

Explain how the concept of partitioning is used in everyday life. In
sports. In computer science. Give concrete examples.

Study a number of mathematical paradoxes and explain them.

6. Discuss the various string operations and list the programming lan-

10.

guages that support them.

Describe fuzzy sets and their applications, and L. A. Zadeh’s contribu-
tions to them.

. Write a biography of Abu-Abdullah Muhammed ibn-Musa al-

Khowarizmi and the origin of the word algorithm.

Extend the concept of the cardinality of a finite set to infinite sets.
Describe the arithmetic of transfinite cardinal numbers.

Discuss the halting problem.
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'Chapter 3

Functions and Matrices

To know him [Sylvester] was to know one of the historic figures of all time,
one of the immortals; and when he was really moved to speak, his
eloquence equaled his genius.

—G. B. HALSTED

T his chapter presents two mathematical entities in some detail: func-
tions and matrices. The concept of a function is central to every branch
of mathematics and to many other areas of learning as well. We will look
at the notion of a function and study a few exotic functions. In addition,
we will discuss a few important properties of special functions and a few
techniques for constructing new functions from known ones.

Matrices find their applications in diverse fields such as computer
science, engineering, the natural sciences, and the social sciences.

A few of the interesting problems we shall study in this chapter are:

* Find the number of leap years beyond 1600 and not exceeding a given
year N.

* Find the first day and the number of Friday-the-thirteenths in a given
year, and the date for Easter Sunday of the year.

* If we select 367 students from a campus, will at least two of them have
the same birthday?

* Suppose every pair of nonadjacent vertices of a hexagon is joined by a
line segment, and each line segment is colored red or blue. Will the line
segments form at least one monochromatic triangle?

3.1 The Concept of a Function

The concept of a function is so fundamental that it plays the role of a
unifying thread that intertwines every branch of mathematics.

It is used in your everyday life as well. For example, when you compute
your electric or water bill, you are using the concept of a function, perhaps
unknowingly.

117
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Here is an example of a function from the academic world. Consider
five mathematics majors — Benson, Goldberg, Hall, Rawlings, and Wilcox.
Their quality-point averages (QPA) on a 04 scale are 3.56, 3.80, 2.65,
3.56, and 2.23, respectively. Each element in the set A = {Benson,
Goldberg, Hall, Rawlings, Wilcox} is assigned a unique element from the
set B = {2.23,2.65, 3.56, 3.80}, as shown in Figure 3.1.

Figure 3.1
Benson
Goldberg
Hall
Rawlings
Wilcox
A B
This assignment has two interesting properties:
* Every major is assigned a QPA.
* Every major has a unique (meaning exactly one) QPA. Such an
assignment is a function.
More generally, we make the following definition.
Funetion

Let X and Y be any two nonempty sets. A function from X to Y is a rule
that assigns to each element x € X a unique element y € Y. Functions are
usually denoted by the letters f, g, h, i, etc. If fis a function from X to Y,
we write f : X — Y. The set X is the domain of the function f and Y the
codomain of f, denoted by dom(f) and codom(f), respectively. If X =Y,
then fis said to be a function on X.
The next example elucidates these definitions.
Im Determine whether or not the assignments in Figures 3.2-3.4 are functions.

Figure 3.2

=
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Figure 3.3

AJ

Figure 3.4

\
A

A

X Y

SOLUTION:

* The assignment in Figure 3.2 describes a function f from X to Y, since
every element in X is assigned to exactly one element in Y. Dom(f) = X
and codom(f) = Y. (Notice that the definition does not prohibit two or
more distinct elements in X being paired with the same element in Y.
Also, it does not require that every element of Y be used.)

* On the other hand, the assignment in Figure 3.3 is not a function since
not every element in X is assigned an element in Y.

* The “pairing” in Figure 3.4 is also not a function since b € X is not
assigned a unique element in Y. [ |

Letf : X — Y, so every element x € X is paired with a unique element
y €Y, as in Figure 3.5. Then y is the value (or image) of the function f at
x, denoted by f(x), and x is a pre-image of y under f (see Figure 3.5); y is
also known as the output corresponding to the input (or argument) x.
Thus y = f(x).* Read f(x) as f of x.

Figure 3.5 f

input (or argument)

output
X Y

*This functional notation is due to Euler. See Chapter 8 for a biography of Euler.
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Warning: (1) f(x) does not mean f times x. It simply denotes the item y
€ Y that x € X is paired with. (2) Let f : X — Y and x any element in
X. Then, for convenience, we may call f(x) the function, although it is
incorrect. Remember, fis the function and f(x) is just a value!

There is an alternate way of defining a function f : X — Y. Since every
x € X determines a unique elementy = f(x) in Y, we can form the ordered
pair (x,y) which belongs to X x Y. The set of all such pairs (x,y) can be
used to define f.

Next we define a useful subset of the codomain of a function.

Range of a Funetion

LEXAMPLE 3.2 |

Letf : X — Y and A € X. Then f(A) denotes the set {f(a)|a € A}. In parti-
cular, f(X) is the range of f, denoted by range(f). Thus range(f) = fIX) =
{fx)|x € X}. Notice that range(f) C Y.

Consider the function f in Figure 3.2. Then f(a) = f(c) = fid) = 2 and
f(b) = 3. Let A = {b, ¢}. Then flA) = {f(b), f(c)} = {3, 2}. Also, range(f) =
{2, 3} # codom(f). [ |

Programming languages provide built-in functions. For example,
ROUND and TRUNC are two such functions. Both are functions from
R to Z; ROUND rounds off a real number to the nearest integer, whereas
TRUNC chops off the fractional part. The FORTRAN, C+ +, and Java func-
tions MAX and MIN select the largest and the smallest of n integers (or
real numbers); they are functions from Z™ to Z (or R” to R).

Functions are often defined using formulas; that is, by stating their
general behavior. Many of the formulas you are familiar with are, in fact,
examples of functions. For instance, the formula C(r) = 27 r (circumference
of a circle of radius r) defines a function.

We now present a few examples of abstract functions defined by
formulas.

Let = = {a,b,c}. Let f : X* — W, defined by fx) = |is]. Then /(i) = 0,
flabe) = 3, and fla’b/c?) =i +j + k. n

Let S be the set of binary words defined recursively as follows:

i) 1e8S. ii) Ifx € Sthen x0,x1 € S.

S consists of binary representations of positive integers with no leading
zeros. (See Section 4.3 for a discussion of binary numbers.) Let g: S — N
defined by g(x) = decimal value of x. Then g(100) = 4, g(110) = 6, and
£(101001) = 41. [ |
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Im The character sets ASCII, multinational 1, box drawing, typographical sym-
bols, math/scientific symbols, and Greek symbols, used by WordPerfect* are

denoted by the character set numbers 0, 1, 2, 3,4, 6, and 8, respectively (see
Appendix A.1). Let A = {0,1,2, 3,4, 6, 8}. Each character in a character set
is associated with a unique decimal number, called its ordinal number
(or its relative position). For example, the ordinal number of the character
‘&’ in ASCII is 38.** Let B = {32, 33, 34, ..., 60}, the set of ordinal numbers.
Then we can define a function f : A x B — C defined by f(i,j) = ¢, where ¢
is the character with ordinal number; in the character set i. For example,
£(0,36) = ‘$> and f(8,38) = ‘X". [ ]

Piecewise Definition

The above definitions of functions consist of just one formula. In fact, the
definitions of many of the real-world functions consist of more than one
formula. Such a definition is a piecewise definition.

Im A town in Massachusetts charges each household a minimum of $75 for
up to 4000 cubic feet (ft3) of water every 6 months. In addition, each house-
hold has to pay 60¢ for every 100 ft3 of water in excess of 4000 ft3. Express
the water bill f(x) as a function of the number of cubic feet of water x used
for 6 months.

SOLUTION:
The minimum charge is $75 for up to 4000 ft? of water, so fix) = 75 if
0 <x < 4000.

Suppose you used more than 4000 ft3 of water. Then

4
Cost for the excess — xT(())OO(O.GO) — 0.006(x — 4000)

Then
Total cost = minimum charge + cost for the excess = 75 + 0.006(x — 4000)

Thus, the water bill f(x) in dollars can be computed using the piecewise
definition:

if 0 < x < 4000
flo) = .
75+ 0.006(x — 4000) if x > 4000 u

*WordPerfect is a wordprocessing program marketed by Corel Corporation.
**A character within single quotes indicates a literal character.
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Let A ={0,1,...,127}, the set of ordinal numbers in ASCII. Let f : A —
ASCII be defined by

nonprintable control character if0 <n <31 orn =127

fn) = uppercase letter if 65 <n <90
" ]| lowercase letter if 97 <n <122
other printable character otherwise
Clearly, fis defined piecewise. [ |

Functions defined piecewise are written as if-then-else statements in
most programming languages. For example, the function in Example 3.6
can be written as follows:

if (x > 0) and (x < 4000) then
f(x) < 50

else
f(x) < 50 + 0.006(x — 4000)

The geometrical representation of a function, called a graph, is often
used to study functions. Remember, a picture is worth a thousand words.
Since every function f : X — Y is a set of ordered pairs (x,y), the graph of
f consists of points corresponding to the ordered pairs in f, as the next
example illustrates.

Graph each function.

(1) Letf :Z — Z defined by flx) = x2.
(2) Let g : R — R defined by

x2 ifx>0
glx)=1-1 if-2<x<0
3x +4 otherwise

SOLUTION:
The graphs of the functions are displayed in Figures 3.6 and 3.7, respec-
tively. Notice that the graph of f is a discrete collection of points.

3
T

A
Y
K
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Next we define and illustrate two ways to construct new functions from
known ones.

Sum and Product

Letf : X - Rand g : Y — R. They can be combined to construct new
functions. The sum and product of f and g, denoted by f + g and (g,
respectively, are defined as follows:

(f+8)x) =fx) +gkx)
(fg)x) =fx) - gl

The functions f + g and fg are defined wherever both f and g are defined.
Thus dom(f + g) = dom(fg) = dom(f) N dom(g).

Let fx) = x% and g(x) = v/x — 1, where dom(f) = (—00,00) and dom(g) =
[1,00). Then

f+8)x) =fx) +gx) =22 +Vx—1
and (fo)@) = fx) - glx) = x*vx — 1
Since dom(f) N dom(g) = [1,00), both f(x) and g(x) are defined only when
x> 1, so dom(f + g) = dom(fg) = [1,00). [ |

Finally, two functions f : A —- Band g : C — D are equal if A = C,
B = D, and f(x) = g(x) for every x € A. We shall use this definition in the
next section.

Exercises 3.1

The Celsius and Fahrenheit scales are related by the formula F = %C + 32.
1. Express —40°C on the Fahrenheit scale.
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2. Express 131°F on the Celsius scale.

2lx|+3 ifx <0

Letglx) =15 if 0 <x < 3. Compute each.
—x2 otherwise
3. g(—-3.4) 4. g(0) 5. g(0.27) 6. g(4.5)

Using Example 3.6 compute the water bill for each amount of water.

7. 1000 ft3 8. 4000 ft3 9. 5600 ft3 10. 7280 ft?
Let ¥ ={0,1}. Letf : ¥* — W defined by f(x) = ||x||. Evaluate f(x) for each
value of x.

11. 000101 12. 1010100 13. 0001000 14. 00110011

Let X denote the English alphabet. Letf : ¥*x £* — ¥* defined by f(x,y) =
xy, the concatenation of x and y. Find f(x,y) for each pair of words x and y.

15. combi, natorics 16. net, work

LetA={32,33,...,126}. Letf : A — ASCII defined by f(n) = character with
ordinal number n. Find f(n) for each value of n.

17. 38 18. 64 19. 90 20. 123

Let g: ASCII — A defined by g(c) = n, where A = {32,33,...,126} and n
denotes the ordinal number of the character c. Find g(c) for each characterc.

21. ‘4’ 22, ‘<’ 23. ‘2’ 24,
Letf : Z x Z — Z defined by f(x,y) = 2x + 3y — 6xy. Compute the following.
25. f(2,3) 26. f(-3,0) 27. f(—2,3) 28. f(—3,-5)

Let X denote the English alphabet. Let g: £* — X* defined by flw) = awa.
The function prefixes and suffixes each word with a. Find flw) for each
word w.

29. zale 30. mbrosi 31. rom 32. nesthesi

Using the function in Example 3.4 evaluate each, if defined.
33. f(101) 34. f(1010) 35. f(001) 36. f(11011)

Let n € N. A positive integer d is a proper factor of n if d is a factor of
n and d < n. For example, the proper factors of 12 are 1, 2, 3, 4, and 6.
Let o: N — N defined by o(n) = sum of the proper factors of n. (¢ is the
lowercase Greek letter, sigma.) Compute o (n) for each value of n, where
p and q are distinct primes. [A positive integer n such that c(n) =n is a
perfect number.]

37. 6 38. 12 39. pg 40. p?
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Using the functions f(x) = 2x + 3 and g(x) = 22 — 1, find the following.

41. (f+2)(=3) 42. (f9)(2) 43. (f+2)x) 44. (fo)x)
Letf:X —YandA,BC XT. Prove each.
*45. flA U B) = flA) UF(B) *46. (AN B) C flA) N f(B)

47, If B C A C X, then flA) — f(B) C fIA — B).

3.2 Special Functions

Here we turn our attention to some important functions used in discrete
mathematics.

Polynomial Function

A function f : R — R defined by f(x) = ap " + ap_12" 1 +---+ a1 + ao,
whereag,a1,...,a, € R,n € W,and a, # 0, is a polynomial function. The
expression a,x" + a,_12" 1 +---+ a1x + ag is a polynomial of degree
n in x. When n = 1, fis a linear function; when n = 2, fis a quadratic
function.

Exponential and Logarithmic Functions

Figure 3.8

Leta € R™, a # 1, and x any real number. The function f: R — R defined
by flx) = @* is an exponential function with base a. The most frequently
used base in computer science is two. Figure 3.8 shows the graph of the
exponential function f(x) = 2*.

Y
A

y=2¢

]

Oy

Let a € R*, @ # 1, and x and y any real numbers such that y = a*.
Then x is called the logarithm of y to the base a, denoted by log,y.
Thus (log,y = x) < (y = a*). Accordingly, the function f: R™ — R defined

TS,TngeansSgXandTgX.



126 Chapter 3 Funetions and Matrices

by flx) = logx is the logarithmic function with base a. (See Appendix
A.3 for a brief discussion of exponential and logarithmic functions.)

Remember that the most commonly used base in computer science is
two. The corresponding logarithm is denoted by lg. Thus lg x = logs x, and
Figure 3.9 shows the graph of the logarithmic function f(x) = 1g x.

Figure 3.9 y
A

y=lgx

0 / > X
\

Absolute Value Function

A

The absolute value function is a function f: R — R defined by f(x) = |x|.
Its graph is displayed in Figure 3.10. (Languages such as FORTRAN and
Java provide a built-in function, ABS, for finding absolute values.)

Figure 3.10 y

y=lxl

Floor and Ceiling Functions

The floor and ceiling functions are often used in the study of algorithms, as
will be seen in the next two chapters. The floor of a real number x, denoted
by |x], is the greatest integer < x. The ceiling of x, denoted by [x], is the
least integer > x. The floor of x rounds down x while the ceiling of x rounds
up. Accordingly, if x ¢ Z, the floor of x is the nearest integer to the left
of x on the number line and the ceiling of x is the nearest integer to the
right of x, as shown in Figure 3.11. The floor function f(x) = |x| and the

Figure 3.11 Lx] lxl+1

<
«<

\/

fx1—1 x [x]
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Kenneth E. Iverson (1920-) was born at Camrose, Alberta, Canada.
After graduating from Queen’s University, Kingston, Ontario, in 1950, he
received his M.A. from Harvard University in the following year. Three
years later, he received his Ph.D. in applied mathematics from Harvard,
where he taught until 1960.

The programming language APL (A Programming Language) was his
brainchild. He conceived the idea while a student at Harvard. After joining
IBM in 1960, Iverson and Adin D. Falkoff developed APL into a full-fledged
programming language.

Iverson’s many honors include the Harry Goode Award from American
Federation of Information Processing Society (1975), the Turing Award
from the Association of Computing Machinery (1979), and an honorary
degree from York University, Toronto (1997).

Figure 3.12

Graph of the floor
function.

ceiling function g(x) = [x] are also known as the greatest integer
function and the least integer function, respectively.

For example, 7| =3, |lg3] =1, |-3.5] = -4, |-2.7] = -3, [#] =4,
Mg 31=2,7-3.51=-3,[-2.71 = —2,and [3] =3 =[3].

These two notations and the names floor and ceiling were introduced by
Kenneth E. Iverson in the early 1960s. Both notations are variations of the
notation [x], which was used in number theory.

Figures 3.12 and 3.13 show the graphs of the floor and ceiling functions.

The programming languages PL/1, C, and Java provide the floor and
ceiling functions as built-in functions, namely, FLOOR and CEIL. BASIC
supports an intrinsic function called INT, which is in fact the floor function.

The floor function comes in handy when real numbers are to be truncated
or rounded off to a desired number of decimal places. For example, the real
number 7 = 3.1415926535. .. truncated to three decimal places is given by
10007 |/1000 = 3141/1000 = 3.141; on the other hand, = rounded to three
decimal places is [ 10007 + 0.5]/1000 = 3.142.

3
>

A
Y
®
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Figure 3.13

Graph of the ceiling
function.
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The next example presents an application of the ceiling function to
everyday life.

(The post-office function) In 2003, the postage rate for a first-class let-
ter of weight x not more than 1 ounce was 37¢; the rate for each additional
ounce or a fraction thereof up to 11 ounces was an additional 23¢. Thus,
the postage p(x) for a first-class letter is given by p(x) = 0.37 + 0.23[x — 117,
where 0 < x < 11.

For instance, the postage for a letter weighing 7.8 ounces is p(7.8) =
0.37 + 0.23[7.8 — 1] = $1.98. [ |

Some properties of the floor and ceiling functions are listed below. We
shall prove part 3, leaving the other parts as routine exercises.

Let x be any real number and n any integer. Then:

1) |nl=n=|n| 2) x1=lx] +1x¢Z)

3 x+n]=|x]+n 4) [x+n]l=[x]+n

) {gJ _ n;1 if n is odd ®6) [gw = ”;rl if n is odd
PROOF:

3) Every real number x can be written asx =k + x’ where 2 = |x| and 0 <
x' < 1. Then

x+n=k+n+x'=m+k) +a
So lx+n|=n+k, since0<x’' <1
=|x]+n
as desired. [ |

The floor function can be used to determine the number of positive inte-
gers less than or equal to a positive integer a and divisible by a positive
integer b, as the next theorem shows.
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Let a and b be any positive integers. Then the number of positive integers
< a and divisible by b is |a/b].

PROOF:

Suppose there are k positive integers < a and divisible by 6. We need to
show that £ = |a/b]. The positive multiples of b less than or equal to a are
b,2b,...,kb. Clearly, kb < a or k < a/b. Further, (k + 1)b > a.Sok + 1 >
alboralb —1<k.So

a a
Z_1 z
p1<k=3
Thus k is the largest integer contained in a/b, so k = |a/b]. [ |

For example, the number of positive integers < 1776 and divisible by 13
is |1776/13] = |136.615...] = 136.

The next two examples employ Theorem 3.2 and the inclusion-exclusion
principle.

Find the number of positive integers < 3000 and not divisible by 7 or 8.

SOLUTION:
Let A = {x € N|x < 3000 and divisible by 7} and B = {x € N|x < 3000 and
divisible by 8}. We need to find |A’ N B’|:
|A’NB'| = |(AUB)|
=|U| - 1AUB]
=|Ul - |Al - IB|+ |ANB]
= 3000 — [3000/7] — [ 3000/8] + [3000/56
= 3000 — 428 — 375 + 53 = 2250 |

Find the number of positive integers < 2076 and divisible by 3, 5, or 7.

SOLUTION:
Let A, B, and C denote the sets of positive integers < 2076 and divisible by
3, 5, and 7, respectively. By the inclusion—exclusion principle,

JAUBUC| = |A|+ |B|+|C|—|ANB|—|BNC|—|CNA|+|ANnBNC|
_ | 2076 n 2076 n 2076 | | 2076 | | 2076
L3 5 7 15 35
| 2076 N 2076
21 105

=692+ 415+ 296 — 138 — 59 — 98 + 19 = 1127 |
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In October 1582, Fr. Christopher Clavius and Aloysius Giglio introduced
the Gregorian calendar at the request of Pope Gregory XIII to rectify the
errors of the Julian calendar. In the Gregorian calendar, which is univer-
sally accepted, a nonleap year contains 365 days and a leap year contains
366 days. (A year is a leap year if it is a century divisible by 400, or if it
is a noncentury and divisible by 4. For example, 1600 and 1976 were leap
years, whereas 1778 and 1900 were not.)

The next example shows how to derive a formula to compute the number
of leap years beyond 1600 and not exceeding a given year y.

Prove that the number of leap years ¢ after 1600 and not exceeding a given
year y is given by

SHEEINEAE

PROOF:
Let n be a year such that 1600 < n < y. To derive the formula for ¢ we
proceed step-by-step:

* To find the number of years n in the range divisible by 4:
Let 4n; be such a year. Then 1600 < 4n; <y; that is,400 < n; < .
Therefore, there are n; = L%J — 400 such years.

* To find the number of centuries in the range 1600 < n <y:
Let 100n2 be a century such that 1600 < 100ng < y.

Yy
Then 1 -,
en 16 < ng < 100

Therefore, there are ng = L — 16 centuries beyond 1600 and < y.

100

* To find the number of centuries in the range divisible by 400:
Since they are of the form 400n3, we have 1600 < 400n3 < y. Then

4<ng=< Songz\\

o _J _
400’ 400
* Therefore,

{=n1—ng+ng

SREUREREIEAE

- 3]l L) -0

The technique employed for computer representation of sets (Section 2.3)
is a consequence of the next function.
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Characteristic Function

Let U be a universal set and S an arbitrary subset of U. Then we can define
a function f5 : U — {0, 1} as follows:

1 ifxeS

() =

fs {0 otherwise

The function fg is called the characteristic function of S.
The following example illustrates this definition.

@m Let U = {a,b,c,d, e, f},A={a,c,d, e}, and B = {a,b,d}. Then

1 whenx=a,c,d,e

falx) = {

0 otherwise

In other words, fa(a) = fa(c) = fa(d) = fae) = 1 and fa(b) = fa(f) = 0
(see Figure 3.14). Similarly, fg(a) = fg(b) = fg(d) = 1 and fg(c) = fg(e) =
s () =0. [ |

Figure 3.14

A B

The characteristic function fg assigns the value 1 or 0 to each element
of the universe. So f5 and hence the set S can be uniquely identified by an
n-bit word and vice versa, where |U| = n. This fact enabled us to represent
sets as n-bit words in Section 2.3.

For example, the characteristic function f4 and hence the set A in the
above example uniquely determine the 6-bit word 011101, where we have
listed the bits from right to left for consistency. Similarly, /g determines
the word 001011.

The characteristic function satisfies the following properties.

m Let A and B be any two sets, and U the universe. Let fg denote the char-
acteristic function of a subset S of U and x an arbitrary element in U.

Then:

(1) fan@) = fa) - fe(x)

(2) faup@®) = fa@) + f(x) — fang ()
B fax)=1—falx)

(4) fag(®) = falx) + fB(x) — 2fanp(x)
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PROOF:
We shall prove part 1 and leave the other parts as exercises.

Casel LetxeANB.

Then fang(x) = 1, by the definition of the characteristic function. Since
x € AN B,x € A and x € B. Therefore, fa(x) = 1 = fg(x); so, falx) -fBx)
=1-1. Thus fang) =1 =7ax) - fgx).

Case2 Letx¢ANB.
Then fanpx) = 0. Since x ¢ ANB,x ¢ A or x ¢ B. Therefore, either
falx) = 0 or fg(x) = 0. So, in any case, f4(x) - fg(x) = 0. Thus fangx) =0 =
fax) - fpx).

Thus fanp®) = falx) - fp(x) for every x € U. [ ]

Mod and Div Funetions

The mod function f(x,y) =x mod y denotes the remainder when an integer
x is divided by a positive integer y. The div function g(x,y) = x divy denotes
the quotient when x is divided by y. Programming languages often provide
two such built-in operators, mod and div; in C++, the mod operator is
denoted by the percent symbol %, and the div operator by the forward
slash /.

For example, 23 mod 5 = 3, 18 mod 6 = 0, 23 div 5 = 4, and 5 div 6 = 0.

A scientific calculator, such as the TI-86, can be used to compute x mod y
using the keys [MATH), [Num|, [MORE|, and [F4|. Consult the manual for
your calculator to check if it supports the operator.

The mod function can determine the day of the week in n days from a
given day. In 7 days, 14 days, and so on from a given day, it will again be the
same day. Consequently, all we need do is remove the maximum number
of 7’s from n. Let r be the remainder when r is divided by 7. Then the rth
day from the given day is the day we are looking for, as the next example
demonstrates.

Today is Thursday. What day of the week will it be in 100 days from today?

SOLUTION:
100 mod 7 = 2. Two days from Thursday is Saturday, so it will be Saturday
in 100 days from Thursday. [ |

The following example is a simple application of both div and mod
operators.

Card Dealing

Consider a standard deck of 52 playing cards. They are originally assigned
the numbers 0 through 51 in order. Use the suit labels 0 = clubs, 1 =
diamonds, 2 = hearts, and 3 = spades to identify each suit, and the card
labels 0 = ace, 1 = deuce, 2 = three, ..., and 12 = king to identify the cards
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in each suit. Suppose card x is drawn at random from a well-shuffled deck,
where 0 < x < 51. How do we identify the card?

First, we need to determine the suit to which the card belongs. It is
given by x div 13. Next, we need to determine the card within the suit; this
is given by x mod 13. Thus card x is card (x mod 13) in suit (x div 13).

For example, let x = 50. Since 50 div 13 = 3, the card is a spade. Now 50
mod 13 = 11, so it is a queen. Thus card 50 is the queen of spades. [ |

Next we pursue an intriguing application of the floor function and the
mod operator to the game of chess.

The Two Queens Puzzle

There are two queens on an 8 x 8 chessboard. One can capture the other
if they are on the same row, column, or diagonal. The 64 squares on the
board are numbered 0 through 63. Suppose one queen is in square x and
the other in square y, where 0 < x, y < 63. Can one queen capture the other?
Since the squares are labeled 0 through 63, we can label each row with the
numbers 0 through 7, and each column with the same numbers 0 through 7.
In fact, each row label = |r/8| and each column label = ¢ mod 8, where 0
<r,c < 63. See Figure 3.15. Thus, the queen in square x lies in row [x/8|
and column x mod 8, and that in square y lies in row | /8] and column y
mod 8. Consequently, the two queens will be in the same row if and only if
|x/8] = | ¥/8] and in the same column if and only if x mod 8 = y mod 8. For
example, if x = 41 and y = 47, the two queens lie on the same row.

1 2 3 4 5 6 7 | «<— column label

16 | 17 |18 |19 |20 | 21 (22 | 23
24 (25 |26 |27 |28 |29 |30 |31
32 |33 |34 |35 |36 |37 |38 |39
40 | 41 | 42 | 43 | 44 | 45 |46 | 47
48 [ 49 | 50 |51 |52 | 53 |54 | 55
56 | 57 | 58 | 59 | 60 | 61 |62 | 63

N[Ok |[WwW N RO

T

row label

How do we determine if they lie on the same diagonal? There are 15
northeast diagonals and 15 southeast diagonals. With a bit of patience, we
can show that the queens lie on the same diagonal if and only if the absolute
value of the difference of their row labels equals that of the difference of
their column labels; that is, if and only if ||x/8] — | y/8]| = |x mod 8 —
y mod 8.
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For example, let x = 51 and y = 23; see Figure 3.15. Then ||51/8] —
123/8]| = |6—2| =4 = |3—7| = |51 mod 8 —23 mod 8|, so one queen captures
the other. On the other hand, if x =49 and y = 13, then |[49/8] — |13/8]| #
|49 mod 8 — 13 mod 8|; so one queen cannot capture the other. |

Exercises 3.2

Evaluate each, where n is an integer.

1. |[n+1/2] 2. |n/2] 3. [n+1/2] 4. [n/2]
Let x = 3.456 and y = 2.789. Compute each.

5. [x+y] 6. x| + [y 7. |xy] 8. [x]ly]

9. |—x] 10. —|x] 11. [x+y] 12, [x] + [y]
Find the range of each function on R.
13. flx) = |x] + |—x] 14. flx) = [x] + [—x]
Find the number of positive integers < 3076 and divisible by:
15. 3or4 16. 3,5,0r 7 17. 3,5,0r6 18. Neither 3 nor 5
Compute the number of leap years after 1600 and not beyond each year.
19. 2000 20. 2020 21. 3076 22, 4050

Let U = {a,...,g}. Define the characteristic function 4 of each set.
23. {a,c,d,f} 24, {a,e, g} 25. {b,c,g} 26. {a,c,d,f,g}

Let U = {a,...,h}. In Exercises 27-30, a characteristic function fs is given
as an 8-bit word. Find the corresponding set S.

27. 11010100 28. 00101101 29. 10101010 30. 01010101

Find the day of the week in each case.
31. 234 days from Monday 32. 365 days from Friday
33. 1776 days from Wednesday 34. 2076 days from Saturday

Let S = {true, false}. Define a boolean function f : N — S by f(n) = true
if year n is a leap year and false otherwise. Find f(n) for each year n.

35. 1996 36. 2020 37. 2076 38. 3000

39. January 1, 2000, falls on a Saturday. What day of the week will
January 1, 2020, be?
(Hint: Look for leap years.)

40. January 1, 1990, was a Monday. What day of the week was January 1,
19767
(Hint: Again, look for leap years.)
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Each day of the week, beginning with Sunday, can be identified by a code
x, where 0 < x < 6. January 1 of any year y can be determined using the
following formula**.

_ y= bl _fy=1] |¥=1
xz(er{ - J {100J+{4OOJ) mod 7 (3.1)

Using this formula determine the first day in each year.

41. 2000 42. 2020 43. 2076 44. 3000

The number of Friday-the-thirteenths in a given year y can be computed
using formula (1) above and Table 3.1. For example, suppose that January 1
of a year y falls on a Sunday(0). If it is not a leap year, there will be two
Friday-the-thirteenths: January 13 and October 13; if it is a leap year, there
will be three: January 13, April 13, and July 13. Compute the number of
Friday-the-thirteenths in each year.

45. 2000 46. 2020 47. 2076 48. 3076
Code dJanuary 1 Nonleap year Leap year
x Yy Yy
0 Sunday January, October January, April, July
1 Monday April, July September, December
2 Tuesday September, December June
3 Wednesday June March, November
4 Thursday February, March, November February, August
5 Friday August May
6 Saturday May October

(Easter Sunday) The date for Easter Sunday in any year y can be com-
puted as follows. Leta =y mod 19,6 =ymod 4,¢c =y mod 7, d = (19a + 24)
mod 30,e = (2b +4c +6d + 5)mod 7,and r = (22 +d +e). If r < 31, then
Easter Sunday is March r; otherwise, it is April [r (mod 31)]. Compute the
date for Easter Sunday in each year.

49. 1996 50. 2000 51. 2076 52. 3000
Prove each, wherex e Rand n € Z.

n n—1.. . n n+1.. .
53. LEJ =3 if n is odd. 54. {E—‘ == if n is odd.

**Based on G. L. Ritter et al., “An Aid to the Superstitious,” Mathematics Teacher, Vol. 70,
May 1977, pp. 456-457.
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n? n2-1.. . n? n2+3 .. .
55. {ZJ =~ if n is odd. 56. ’VZ—‘ =3 if n is odd.
n n_ 58. x1=Ix]+1 x¢Z)
57. L2J+ (ﬂ =n

59. [x] = —|—«] 60. [x+n]=[x]+n

Let A and B be any two sets, and U the universe. Let fs denote the charac-
teristic function of a subset S of U and x an arbitrary element in U. Prove
each.

*61. faup) =falx) + ) — fan®)
*62. falx) =1—falx)
*63. faep(®) =fal) +B&) — 2fanB)

Let x, y € R. Let max{x,y} denote the maximum of x and y, and min{x,y}
denote the minimum of x and y. Prove each.

*64. max{x,y} + min{x,y} =x +y *65. max{x,y} — min{x,y} = |[x —y]|

3.3 Properties of Functions

Functions satisfy a number of properties and we begin with the identity
function.

Identity Funetion

L EXAMPLE 3.16

Injection

A function fon X is the identity function if f(x) = x for every x in X. It is
denoted by 1, and leaves every input unchanged. The graph of the identity
function on R is the 45°-line y = x.

Let S be an ordered set. ORD(x) denotes the ordinal number of each ele-
ment x in S, the first ordinal number being 0. For example, using ASCII,
ORD(‘<”’)" = 60 and ORD(‘$’) = 36. (Pascal, for instance, provides such a
built-in function.) If the argument x, however, is an integer n, ORD(n) = n.
Thus ORD is the identity function on W. [ |

A function f : X — Y is an injection (or one-to-one function) if differ-
ent input values yield different output values. Thus f is injective, if x1 #
x9 implies flx1) # flxg); equivalently, f is injective if flx1) = flxg) implies
x1 = xg (why?).

The next two examples illustrate this definition.

Tx within single quotes indicates the character x.
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EXAMPLE 3.18

Figure 3.16

Surjection

Bijection
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LetA={0,1,2,...,127}. Let CHR: A — ASCII defined by CHR() = ASCII

character with ordinal number . For example, CHR(59) = ‘;” and CHR(43)
= ‘4. Since distinct ordinal numbers correspond to different characters,
CHR is injective. (C, C++, and Java, for instance, provide such a built-in
function.) |

Let f : ©* — W defined by f(x) = ||x||, where ¥ = {a,b,c}. The words aaa
and bab are distinct words with the same length, so fis not injective. =N

How do you characterize the graph of an injective function f : R — R?
The function is not injective if there are two distinct input elementsa,b € R
such that fla) = f(b), that is, if a horizontal line intersects its graph in
two distinct points (a,f(a)) and (b,f(b)). Thus f is injective if and only if no
horizontal line intersects the graph in more than one point. For example,
the function fix) = x? is not injective (see Figure 3.16).

y

A y=x2

(b, f(b)) (a, fla))

A
Y
&

A function f : X — Y is a surjection (or an onto function) if for every y in

Y there exists an x in X such that f(x) =y, that is, if every element in Y has

at least one pre-image in X. In other words, fis surjective if range(f) = Y.
The following two examples clarify this definition.

Let © be a nonempty alphabet. Let f: * — W defined by f{x) = |lx||. Let

n € W. Then x” € ¥* and ||x"|| = n. Thus, given any n € W, there exists an
element u = x" € ¥* such that f(u) = n. Consequently, fis surjective. N

Determine if the function f(x) = x2 on R is surjective.

SOLUTION:

For every y in R, does there exist a real number x such that x> = y? No,
for instance, there is no real number x such that x2 = —1, so f is not
surjective. |

A function f: X — Y is a bijection (or one-to-one correspondence) if
it is both injective and surjective.



138

Hashing

LEXAMPLE 3.22

Figure 3.17
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Let A be the set of printable ASCII characters and B = {32,33,...,126}.
Let f : A — B defined by f(c) = ordinal number of character c. Since f is
both injective and surjective, f is bijective. (Notice the deliberate choice of
B to make the function surjective.) |

Notice that 23 mod 5 = 3 = 48 mod 5, but 23 # 48; therefore, the mod
function is not injective. However, when an integer a is divided by m, there
are m possible remainders, namely, 0, 1, 2, ..., m — 1 (see Section 4.1); so,
given any nonnegative integer r less than m, we can always find an integer
a such that » = @ mod m; thus the mod function is surjective.

We are now ready to examine an interesting application of the mod function
in everyday life.

Banks use nine-digit account numbers to create and maintain customer
accounts. Customer records are stored in an array in a computer and can
be accessed fairly easily and quickly using their unique keys, which in
this case are the account numbers. Access is often accomplished using the
hashing function A(x) = x mod m, where x denotes the key (account
number) and m the number of cells in the array; k(x) denotes the hash
address of the customer record with key x. See Figure 3.17.

;— customer record with key x
v

0 1 2 T m—1 <«—hash address
x mod m

In particular, let m = 1009 and x = 207630764. The corresponding
record is stored in location

h(207630764) = 207630764 mod 1009
= 762
Likewise,
h(307620765) = 307620765 mod 1009
=881

Since the hashing function is not injective (why?), theoretically different
customer records can be assigned to the same location. For example,

h(207630764) = 762 = h(208801204)

This results in a collision.



3.3 Properties of Functions 139

One simple way to resolve a collision is to do a sequential search for
the next available cell, beginning with the cell where the collision has
occurred. Then we store the item in the available cell. If we come to the
end of the array without any success, then we would continue the search
back at the beginning of the array, as if the array were circular. This way
of resolving a collision is called linear probing. So we would store the
data with the account number 208801204 in location 763 (assuming that is
available). |

Obviously, the technique illustrated in this example can be adapted to
a variety of situations. For example, the various identifiers in a computer
program can be stored in a symbol table using their first letters as keys;
student records can be stored in a hash table using their social security
numbers; and patients’ medical records can be maintained in a table using
their social security numbers as keys.

Next we present a few simple and useful properties of functions associ-
ated with finite sets.

Let X and Y be any two finite sets with | X| = |Y| =n. Afunctionf : X - Y
is injective if and only if f is surjective.

PROOF:
Let X = {x1,x9,...,x,}and Y = {y1,¥9,...,yn}. Suppose fis injective. Then
fx1),...,f(x,) are n distinct elements. So they must be the same elements
¥Y1,...,Yn in some order. Therefore, fis surjective.

Conversely, suppose fis surjective. Then f(x1),...,f(x,) =Y. Since | Y| =
n, the elements f(x1),...,f(x,) must be different, so f must be injective. W

Let A and B be two finite sets with the same cardinality. Suppose we
would like to show that a function f : A — B is bijective. Then, by
Theorem 3.4, it suffices to show that fis either injective or surjective.

Two finite sets have the same cardinality if and only if there exists a
bijection between them.

PROOF:
Let X and Y be two finite sets with |X| = m and |Y| = n. Let X =
{x1,...,xm}. Let f : X — Y be bijective. Since [ is injective, f(x1),...,[ (xn)
are m distinct elements in Y. Consequently, m < n. Since f is surjective,
every element y in Y has at least one input in X, son < m. Thus |X| = |Y].
Conversely, suppose m = n and Y = {y1,...,¥m}. Define a function f :
X — Y by flx;) = y; for every i. We will now show that f is injective. Let
x; and x;, be two elements in X such that f(x;) = f(x;). Then, by definition,
Yj = Yk; 80, j = k and hence x; = x;,. Therefore, f is injective and hence, by
Theorem 3.4, fis bijective. |

Letf : X — Y, where X and Y are finite sets and |X| > |Y|. Then what
can we say about the function f? (Obviously, f can’t be bijective.) This is
answered in the next section.
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Cardinality of an Infinite Set (optional)

Before closing this section, we extend the concept of cardinality of finite sets
to infinite sets, a topic of great importance to theoretical computer science
and certainly to mathematics. Recall that two finite sets have the same
cardinality if there is a bijection between them. This leads to the following
definition.

Two sets X and Y have the same cardinality if there exists a bijection
from X to Y, denoted by | X| = |Y].

This definition can be used to partition the family of infinite sets into
two disjoint classes. To this end, we make the following definition.

Countable and Uncountable Sets

Figure 3.18

LEXAMPLE 3.23 |

Figure 3.19

A set S is countably infinite if there exists a bijection between S and
N. A set that is finite or countably infinite is countable. A set that is not
countable is uncountable.

The cardinality of N is denoted by 8¢ (read “aleph-naught,” “aleph”
being the first letter of the Hebrew alphabet. This symbol was introduced
by Cantor). Thus a set S is countably infinite if |S| = 8¢ = |N]|.

If A and B are finite sets such that A C B, then |A| < | B|. This, however,
need not be true in the case of infinite sets. For example, E C N, where E
denotes the set of even positive integers; nonetheless, |E| = |N| = Ry, as
shown by the pairings in Figure 3.18.

!

2n

DO €«>
N €< o
o> w
0 €>
S>>

Show that N x N is countably infinite.

PROOF:

Although we shall not give a formal proof, the arrows in Figure 3.19 show
how the various elements of N x N can be listed as the first, second, third,
and so on in a systematic way, showing that N x N is countably infinite.

2 2

1,1 (1,2) (1,3 (1,4) .
(2, 1)/ (2, 2)/ (2, 3)/ (2, 4)/-
(3, 1)/Y (3, 2)/ (3, 3)/ (3,4)

(4, 1)/ 4, 2) - (4, 3) (4, 4)

5, 1)
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It follows by Example 3.22 that the set of positive rational numbers
is countable. Consequently, the set of negative rational numbers is also
countable. Since the union of two countable sets is countable (see Exercise
49), it follows that Q is countable.

It may seem improbable that there exist infinite sets that are uncount-
able. For instance, the open interval (0,1) is such a set, as the next example
shows.

Show that the open interval (0,1) is uncountable.

PROOF (by contradiction): Assume that the interval (0,1) is countable.
Then every real number between 0 and 1 can be listed as a1, a9, ag,... Each
a; has a unique decimal expansion (for numbers with two different decimal
expansions, choose the expansion with trailing 9’s. For example, although
0.5 =0.5000... = 0.4999.. ., select 0.4999... for our discussion.):

a] = 0. a11ai12a1s3@i4 . . .
as = 0.ag1a99a93094 . . .
ag = 0. a31a32a33034 . ..

a4 = 0.a41040043044 . . .

where each a;; is a digit.
Now construct a real number b = 0.b1b9b3by . .. as follows:

5 1 ifa; #1
o 2 ifaii=1

Clearly, 0 < b < 1; therefore b must be one of the numbers in the above list
ai, ag, as, a4,. ... However, since b; # a;; for every i, b cannot be in the list.
This leads to a contradiction. Therefore, the real numbers between 0 and 1
cannot be listed and hence the interval (0,1) is uncountable. (The technique
employed is called Cantor’s diagonalization procedure.) |

Since the interval (0,1) is uncountable, it follows that R is also uncount-
able. So, although both N and R are infinite, |R| > .

Exercises 3.3

Determine if each function is the identity function.

x|abcd x|abcd x|abcd

1 2 3

.f(x)‘abcd .f(x)‘bcda .f(x)‘abcc
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Determine if each function is injective, where trunc(x) denotes the integral
part of the real number of x.

4. flx) = |x|,xeR 5. glo)=2%xeR
6. h(ix) =1lgx,x e RT 7. fx) = |x],xeR
8. gx)=[x],xeR 9. h(x) =trunclx),x € R

10. f: S — W defined by flA) = |A|, where S is the family of all finite sets.
Determine if each function from R to Z is surjective.

11. flix) = |x| 12, glx) = |x]

13. h(x) = [x] 14. h(x) =lg |x]|,x #0

15. ORD: ASCII — W defined by ORD(¢c) = ordinal number of the
character c.

16. Letf : R — R defined by f(x) = ax + b, where a,b € R and a # 0. Show
that fis surjective; that is, find a real number x such that fix) = c.

Determine if each function f : A — B is bijective.

17. flx) =22, A=B =R 18. fx) = V/x,A=R",B=R
19. flx) = |x|,A=B=R 20. fx) = |x],A=B=R
21. fix) =[x],A=B=R 22. fx) =2 A=B=R

Determine if the functions in Exercises 23-30 are bijective. If they are not
bijective, explain why.
23. f: ¥* — W defined by f(x) = decimal value of x, where £={0,1}.

24, f:¥* x &* — T* defined by flx,y) = xy, where ¥ denotes the English
alphabet.

25. g: X* — ¥* defined by g(w) = awa, where X~ = {a,b,c}.
26. f: R x R — R x R defined by f(x,y) = (x,—y).
27. The ORD function on ASCII.

28. The predecessor function (PRED) and successor function
(SUCC) are two important functions used in computer science. They
are defined on ordered sets. If ¢ is a printable ASCII character, PRED(c)
denotes the predecessor of ¢ and SUCC(c) denotes the successor of c;
for example, PRED(‘?’) = ‘@’ and SUCC(‘:’) = ‘;’. Determine if PRED
and SUCC are bijective.

Using the hash function in Example 3.2, compute the location correspond-
ing to the given key.

29. 012398745 30. 430358856

Student records are maintained in a table using the hashing function
h(x) = x mod 9767, where x denotes the student’s social security number.
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Compute the location in the table corresponding to the given key, where
the record is stored.

31. 012-34-5678 32. 876-54-3210
33-34. Redo Exercises 31 and 32 if h(x) = first part in x mod 13.

35. Store the following two-letter abbreviations of states in the United
States in a hash table with 26 cells, using the hashing function
h(x) = first letter in x:

NY,OH, FL, AL, MA, CA, MI, AZ

36. Redo Exercise 35 with the following state abbreviations: MD, CT, ID,
MA, NB, NJ, MI, WI, CA, TA, WA, MN, NH, IN, NC, WY, NM, MS,
MO, CO, NY, IL, NV, WV, ND, MT

Two sets A and B are equivalent, denoted by A ~ B, if there exists a
bijection between them. Prove each.

37. A ~ A (reflexive property)

38. A~A x {1}

39. If A~ B,then A x {1} ~ B x {2}

40. Z ~ O, the set of odd integers
Prove each.

41. A bijection exists between any two closed intervals [a,b] and [c,d],
wherea < bandc < d.
(Hint: Find a suitable function that works.)

42, The set of odd positive integers is countably infinite.
43. The set of integers is countably infinite.
44. Any subset of a countable set is countable.

45. A set A is infinite if and only if there exists a bijection between A and
a proper subset of itself.

46. The open interval (a,b) is uncountable.
[Hint: Find a suitable bijection from (0,1) to (a,b).]

47. The set Q™ of positive rational numbers is countable.

48. The set of irrational numbers is uncountable.
(Hint: Prove by contradiction.)

*49. A countable union of countable sets is countable.
*50. The cartesian product of two countable sets is countable.

*51. If X is a finite alphabet, then X* is countable.
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3.4 The Pigeonhole Principle

Figure 3.20

Figure 3.21

LTHEOREM 3.6 |

Suppose m pigeons fly into n pigeonholes to roost, where m > n. Then obvi-
ously at least two pigeons must roost in the same pigeonhole (see Figures
3.20 and 3.21). This property, called the pigeonhole principle, can be stated
in terms of functions, as the next theorem shows.

FNENEd#| &

F i | &\ &

(The Pigeonhole Principle)Let f : X — Y, where X and Y are finite sets,
|X| =m, |Y| =n,andm > n. Then there exist at least two distinct elements
x1 and x9 in X such that f(x1) = flxg).

PROOF:

Let X = {x1,...,x,}. Suppose f is injective. Then f(x1),...,f (xy) are dis-
tinct elements in Y. So m < n. But this contradicts the assumption that
m > n. Therefore, f is not injective and there must be at least two distinct
elements x1 and x9 such that f{x1) = f(x2). Hence the theorem. [ |

The pigeonhole principle is a simple but important counting principle
that we shall use in Chapters 4, 7, and 8.

The pigeonhole principle, which can be applied in a variety of situations,
can be restated as follows: If m objects are placed into n boxes, then at
least one box must contain two or more objects, where m > n. Accordingly,
the pigeonhole principle is also called the Dirichlet Box Principle after
the German mathematician Peter Gustav Lejeune Dirichlet, who used it
extensively in his work on number theory.

Although the principle looks simple and straightforward, to apply it
successfully you must choose the pigeons and pigeonholes appropriately,
as the next few examples illustrate.

Suppose we select 367 students from campus. Show that at least two of
them must have the same birthday.

SOLUTION:

The maximum number of days in a year is 366, and this occurs in a leap
year. Think of students as pigeons and days of the year as pigeonholes. Let
A Dbe the set of students and B the set of days, where |A| = m = 367 and
|B] =n = 366. Let f : A — B defined by fla) = birthday of student a.
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Gustav Peter Lejeune Dirichlet (1805-1859) was born in Duren,
Germany. The son of a postmaster, he first attended a public school and
then a private school that emphasized Latin. After attending the Gymna-
sium in Bonn for 2 years, Dirichlet entered a Jesuit college in Cologne
where he received a strong background in theoretical physics under the
physicist Georg Simon Ohm. In May 1822, he moved to the University of
Paris.

In 1826, Dirichlet returned to Germany and taught at the University
of Breslau. Three years later, he moved to the University of Berlin where
he spent the next 27 years.

Dirichlet’s primary interest in mathematics was number theory,
inspired by Gauss’ masterpiece, Disquisitiones Arithmeticae (1801). He
established Fermat’s Last Theorem for n = 14. Among the many results
he discovered include the proof of a theorem presented to the Paris Academy of Sciences on algebraic
number theory in 1837: The sequence {an + b} contains infinitely many primes, where a and b are
relatively prime.

In 1855, when Gauss died, Dirichlet moved to the University of Gottingen. Three years later, he went
to Montreaux, Switzerland, to deliver a speech in honor of Gauss. While there, he suffered a heart attack
and was barely able to return home. During his illness his wife succumbed to a stroke, and Dirichlet died.

Since m > n, by the pigeonhole principle, there should be at least two
students a1 and ag such that fla;) = flag); that is, at least two students
have the same birthday. [ |

The next example* is geometric, demonstrating that the pigeonhole
principle can pop up in seemingly unusual situations.

IM Suppose five lattice points, that is, points with integer coordinates, are
selected on the cartesian plane and each pair of points is joined by a line
segment. Show that at least one of the line segments must contain a lattice
point between its endpoints.

SOLUTION:
The set of lattice points can be partitioned into four nonempty disjoint
classes according to the parity (evenness or oddness) of their coordinates:
(odd,odd), (odd,even), (even,odd), and (even,even). Since there are five
points (pigeons) and four classes (pigeonholes), by the pigeonhole prin-
ciple, at least two of them —say, A(a,b) and B(c,d)—must belong to the
same class.

By the midpoint formula in analytic geometry, the midpoint M of the

line segment AB is <“T+c, %) . Since the sum of any two odd or even integers

is an even integer, it follows that M is also a lattice point. Thus AB contains
a lattice point M different from its endpoints. |

*Based on C. T. Long, “On Pigeons and Problems,” Mathematics Teacher, Vol. 81 (January
1988), pp. 28-30, 64.
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It is well known that the decimal expansions of rational numbers are
periodic. Using the pigeonhole principle, we shall establish this, but first a
few words of explanation may be helpful.

Using the familiar long division method, you may verify that

4111

33300 — 0.12345345345345. ..

Although the decimal expansion is nonterminating, it is periodic; that
is, a certain block of digits, namely, 345, gets repeated. Accordingly, the
expansion is usually written as 0.12345, using a bar over the first repeating
block. The number of digits in the smallest repeating block is the period of
the expansion; here it is 3. We are now ready to prove the above proposition.

Prove that the decimal expansion of a rational number is periodic.

PROOF:

. . . . a
Consider, for convenience, a positive rational number 5 where 0 < a < b.

Let % = 0.d1dads. .. where, by the division algorithm (see Section 4.1), we
have:

10a = bdy +1r1
10ry = bdg +r9

10rg = bdg +r3 3.2)

10r; = bdj 1 +1jq1

and 0 < r; < b for every i. (Note: The digits dq,do,... in the decimal
expansion are the quotients when 10a, 10rq,... are divided by b. Since
a remainder has only b choices, by the pigeonhole principle, two of the
remainders r1,7g,...,r,+1 must be equal; that is, rj = r;, for some j and
k, where 1 <j < k < b + 1. Consequently, dr,1 = dj;1, dpt2 = dji2,...,
dop—j = dp,dor—_j+1 = djy1, and so on. Thus dj ... d; is the smallest block
getting repeated and the period of the decimal expansion is & —J. [ |

The next example, a rather sophisticated application of the pigeonhole
principle, is due to the Hungarian mathematician Paul Erdos.

(Erdos Theorem) Ifrn + 1integers are selected from the set {1,2,...,2n},
one of them divides another integer that has been selected.

PROOF:

Let a1, ag,...,a,.1 denote the integers selected. Write each of them as a
product of a power of 2 and an odd integer; that is, a; = 2%b;, where 1 <i <
n+1lande; > 0. The integers by, bo,...,b, .1 are odd positive integers < 2n.
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him as “the prince of problem-solvers and the absolute monarch of problem-posers.” As “the Euler of our
time,” he contributed extensively to number theory, combinatorics, function theory, complex analysis, set
theory, group theory, and probability, the first two areas being closest to his heart.

“Always searching for mathematical truths,” he deemed worldly possessions a nuisance, so he never
had a home, a car, checks, or even an address. Always traveling from meeting to meeting, carrying a
half-empty suitcase, he would stay with mathematicians wherever he went and donate the honoraria he
earned as prizes to students.

A recipient of many honors, Erdos died of a heart attack while attending a mathematics meeting in

Warsaw.

Paul Erdos (1913-1996) was born in Budapest, Hungary. Except for
about three years in schools, Erdés (pronounced air-dosh) was taught at
home, mostly by his father, who had returned from a Siberian prison after
6 years.

A child prodigy, Erdés, at age 3, discovered negative numbers for
himself. In 1930 Erdds entered the Peter Pazmany University in Budapest.
Three years later, he discovered a beautiful proof of the celebrated
Chebyshev theorem that there is a prime between any positive integer n
and 2n. In 1934 he received his Ph.D. from the university.

An author of about 1500 articles and coauthor of about 500, Erdios was
one of the most prolific writers in mathematics. A tribute in 1983 described

Since there are exactly n odd positive integers < 2n, by the pigeonhole

principle, two of the elements b1, bg,...,b,,1 must be equal, say, b; = b;.
That is, a; = 2%b; = 2%b;. Thus, if e; < e; then g;|a;, and if ¢; < e; then
aj|ai.* |

The pigeonhole principle tells us that if m pigeons are distributed into
n pigeonholes, where m > n, at least two pigeons must share the same
pigeonhole. In fact, if more than 2m pigeons are assigned to m pigeon-
holes, then at least three pigeons must share the same pigeonhole. Thus
the pigeonhole principle can be generalized as follows.

(The Generalized Pigeonhole Principle) If m pigeons are assigned to
n pigeonholes, there must be a pigeonhole containing at least |[(m —1)/n]+1
pigeons.

PROOF (by contradiction):
Suppose no pigeonhole contains more than |(m — 1)/n| pigeons. Then:
maximum number of pigeons =n - [(m — 1)/n]

m—1
=n-

n
=m-—1

*a/b means a is a factor of b. See Section 4.2.
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This contradicts our assumption that there are m pigeons. Thus, one
pigeonhole must contain at least |(m — 1)/n| + 1 pigeons. [ |

This generalized version of the pigeonhole principle is illustrated in the
following examples.

If we select any group of 1000 students on campus, show that at least three
of them must have the same birthday.

SOLUTION:

The maximum number of days in a year is 366. Think of students as pigeons
and days of the year as pigeonholes. Then, by the generalized pigeonhole
principle, the minimum number of students having the same birthday is
[(1000 — 1)/366] +1=2+1=3. [ |

The next example provides an interesting application of the generalized
version to geometry. We shall revisit it in Chapter 8.

Suppose every pair of vertices of a hexagon is joined by a line segment,
which is colored red or blue. Prove that the line segments form at least
one monochromatic triangle, that is, a triangle with all its sides having the
same color.

PROOF:

Let the letters A through F denote the vertices of a hexagon. Five line
segments (pigeons) emanate from each vertex (see Figure 3.22). Without
loss of generality, consider the line segments at A. Since there are exactly
two colors (pigeonholes), by the generalized pigeonhole principle, at least
three of the line segments at A must be monochromatic, say, red. Suppose
they are AB, AD, and AF, indicated by the solid line segments in Figure 3.23.

E D

Case 1 Suppose DF is colored red. Then AADF is monochromatic.
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Case 2 Suppose DF is not red. Then it is blue, indicated by the broken
line segment in Figure 3.23. If BD is red, the AABD is monochromatic. If
BD is not red, consider BF. If BF is red, the AABF is a red triangle. If BF
is blue, then ABDF is a blue triangle.

Thus the line segments form at least one monochromatic triangle. W

Additional examples of the pigeonhole principle are presented in
Section 3.7, as well as Chapters 4, 6, 7, and 8. Look for them.

Exercises 3.4

1. Show that in any 11-digit integer, at least two digits are the same.

2. Show that in any 27-letter word, at least two letters are the same.

3. Six positive integers are selected. Show that at least two of them will

10.

11.

12.

13.

14.

have the same remainder when divided by five.

. A C++ identifier contains 37 alphanumeric characters. Show that

at least two characters are the same.

Show that in any group of eight people, at least two must have been
born on the same day of the week.

Show that in any group of 13 people, at least two must have been born
in the same month.

There are six matching pairs of gloves. Show that any set of seven
gloves will contain a matching pair.

. The sum of nine integers in the range 1-25 is 83. Show that one of

them must be at least 10.

The total cost of 13 refrigerators at a department store is $12,305.
Show that one refrigerator must cost at least $947.

Mrs. Zee has 19 skirts and would like to arrange them in a chest that
has four drawers. Show that one drawer must contain at least five
skirts.

Show that the repeating decimal 0.ajas...a;b1b2...b; is a rational
number.

Let n € N. Suppose n elements are selected from the set {1,2,...,2n}.
Find a pair of integers in which one is not a factor of another integer.

Use the pigeonhole principle to prove the following.

If five points are chosen inside a unit square, then the distance
between at least two of them is no more than +/2/2.

Five points are chosen inside an equilateral triangle of unit side. The
distance between at least two of them is no more than 1/2.
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15.

16.

*17.

18.

*19.

If 10 points are selected inside an equilateral triangle of unit side,
then at least two of them are no more than 1/3 of a unit apart.

Letf: X — Y andy € Y. Define f1(y) = {x € X|f(x) = y}. In other
words, f~1(y) consists of all pre-images of y. Use Example 3.1 to find
f~L(y) for everyy € Y.

Prove the following alternate version of the generalized pigeonhole
principle: Let f : X — Y, where X and Y are finite sets, |X| > & - Y],
and & € N. Then there is an element ¢ € Y such that f~1(¢) contains
more than % elements.

Prove that any set S of three integers contains at least two integers
whose sum is even.
(Hint: Define a suitable function f : S — {0, 1} and use Exercise 17.)

Using the pigeonhole principle, prove that the cardinality of a finite
set is unique.

3.5 Composition of Functions

Besides adding and multiplying functions, there is a very fundamental way
of constructing new functions.

Consider the functionsf, g : R — Rdefined by f(x) = 2x+3and g(x) = x2.
Letx be aninput intof. Then f(x) = 2x+3 is areal number and hence can be
considered an input into g. The resulting output is g(f(x)) (see Figure 3.24).
Thus the functions f and g can be employed to define a new function, called
the composite of f and g, as shown in Figure 3.25.

Figure 3.24

', fw

Figure 3.25

8

g(f(x))

R

This leads us to the following definition.
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Letf:X — Yandg:Y — Z. The composition of f and g, denoted by gof
(notice the order of the functions), is a function from X to Z, defined by
(gof)x) = g(fx)). Read g o f as g circle f or the composition of f and g.
[In general, dom(g) need not be the same as codom(f); all that is needed is
that range (f) € dom(g).]

Letf,g : R — R' defined by f(x) = 2x + 3 and g(x) = x2. Find (g of)(x) and
(f og)(x).

SOLUTION:
° fx) =2x+3
Then (gof)x) =g(f(x))
=g(2x +3) = (2¢ + 3)?
. glx) = x?
So (fog)x) =f(g))
=f(?) =2a% +3
=22+3 n

It follows from Example 3.31 that, in general, f og # gof; in
other words, composition is not a commutative operation. For instance,
putting clothes in a washing machine and then in a dryer does not
yield the same result as putting them in a dryer and then in a washing
machine!

(optional) Composition is easily accomplished in computer science. To
illustrate this, study the following algorithm fragment, where x € R:

1. if x < 4 then
2. X<« x+2
3. else

4, X < x -3
5. if x < 5 then
6. x <« x°

7. else

8. x <« 2x -1

Find the value of x resulting from the execution of this fragment with the
initial values of x = 2 and x = 5.

Tf,g: X — Y is an abbreviation forf : X - Y andg : X — Y.
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SOLUTION:
* Suppose x = 2. Since 2 < 4, line 2 is executed and hence x < 4. Then
the condition in line 5 is tested. Since 4 < 5, line 6 is executed. So x gets
the value 16 from line 6.

* Suppose x = 5 initially; then line 2 is skipped. So x < 2 by line 4. Since
2 < 5, line 6 is executed. Therefore, x < 4. [ ]

To see that this example employs composition, let f(x) and g(x) denote
the functions defined by the if-then-else statements in the above algorithm
fragment. Then:

x+2 ifx<4 x2 ifx<5
flx) = ) and gx) = )
x—3 ifx>4 2x—1 ifx>5

The output resulting from the fragment is given by the composition of f
and g. You may verify that (gof) (2) =16 and (gof)(5) =4;infact gof
is defined by

x+2)? ifx<3
(gof)() 2c+3 if3<x<4
gof)x) =

x—-8)?2 if4<x<8

2x — 7  otherwise

(See Exercise 54.)

A few simple properties satisfied by the composition operation follow.
Their proofs are fairly straightforward; we shall prove part 3 and leave the
others as exercises.

Letf:X —Yandg:Y — Z. Then:
D) folx=f 2) lyof=f
(3) Iff and g are injective, then g o f is injective.

(4) Iff and g are surjective, then g o f is surjective.
(5) Iff and g are bijective, then g o f is bijective.

PROOF:

(3) Let x1, x9 € X such that (g o f)(x1) = (g of)(x2). Then
g(f(x1)) = g(f(x2)), by definition.

Then f(x1) = f(x2), since g is injective.

Consequently, x1 = x9, since [ is injective.

Thus, if (g o f)(x1) = (g o f)(x2), then x; = x2, so g o f is injective.
(Exercises 44-46 provide partial converses to the results 3 through 5.) W
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Before we define the inverse of a function and discuss its properties, let
us study the next example.

M Let f(x) = ax + b and gx) = x%b on R, where @ # 0. Find (g o f)(x) and

(f 0 8)().
SOLUTION:
Let x € R. Then:
(1) (gofHx) =g(f(x)) (2) (fog)w) =f(gkx))
=glax +b) =f(x_b>
a
_(x+b)-b :a(x‘b) +b
a a
=X =X

In this example, (gof)(x) =x = (f og)(x) for all x. Thatis,gof =fog =
1gr, the identity function. In other words, one function undoes what the
other has done. This leads to the following definition. [ |

Inverse Funetion

Letf:X — Y. Suppose there is a functiong:Y — X such that (gof)(x) =x
for every x € X and (f o g)(y) = y for every y € Y; it is called the inverse
of f, denoted by f~1; that is, g = f~1. [Note: dom(f) = codom(f~1) and
codom(f) = dom(f~1); also f~1(x) # 1/f(x).] It can be shown that the
inverse of f is unique (see Exercise 52). The function f~! does just the
opposite of what f has done, as illustrated in Figure 3.26. A function that
has an inverse is said to be invertible.

Figure 3.26

The next two examples illustrate this definition.

M With the functions f and g in Figure 3.27, notice that: (gof)(a) = g(f(a)) =
gB)=a,(gof)b) =g(fb) =g2)=0b,(gof)c) =g(f(c)) =g(1) =c¢, and
(gof)d) =g(f(d)) = g(0) =d. Thus, (g of)(x) = x for every x in X and,
similarly, (f o g)(y) =y foreveryyinY.Sog =f 1. |

IM Consider the functions ORD : ASCII — {0,1,...,127} and CHR: {0, 1,...,
127} — ASCII. ORD(c) gives the ordinal number of the character ¢ in ASCII,
whereas CHR(n) returns the character with ordinal number 7.



154

Figure 3.27

Chapter 3 Funetions and Matrices

Nz

7 N

Let CH denote a character variable and n a valid ordinal number. Then

CHR(ORD(CH)) = CH and ORD(CHR(n)) = n. Thus CHR and ORD are
inverse functions. [ |

Unfortunately, not every function is invertible. The next theorem gives

a necessary and sufficient condition for invertibility.

m A function f : X — Y is invertible if and only if it is bijective.

PROOF:
Suppose [ is invertible. We would like to show f is bijective.

* To prove that f'is injective:

Let x1 and x2 be any two elements in X such that f(x;) = f(x2). Since f
is invertible, f~1 exists. Then

FHF@)) =1 (fxg))
(Flof)x) = (FLof)lxg)

X1 =X2

Therefore, f is injective.

To prove that f is surjective:

Let ¥ be any element in Y. We have to produce a suitable element x

in X such that f(x) = y. Choose x = f~1(y) (see Figure 3.26). Then

f@) =FFry) = of Hy =y.

Thus f'is both injective and surjective; therefore, it is bijective.
Conversely, supposef is bijective. Then every element x in X is paired

with aunique elementyin Y and vice versa. Definea functiong : ¥ — X

as follows: g(y) = the unique element x in X such that f(x) = y. Then

(g o0& = g(f@) = g(y) = x and (f 0 9)(y) = Fgy) = f@) = y.

Therefore, g = f~! and hence f is invertible. [ |

The next two examples use Theorem 3.9 to determine the invertibility

of a function.
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The exponential function f : R — R* defined by f(x) = 2* is bijective, so it
is invertible. Its inverse is the logarithmic function g : R™ — R defined by

gx) =1gx. [ |
Letf : ¥* — W defined by f(x) = ||x||, where ¥ denotes the English alphabet.
Since [ is not bijective (why?), f is not invertible. |

We close this section with a list of additional properties satisfied by the
inverse of a function and leave their proofs as exercises for you to pursue.

Letf:X — Y and g : Y — Z be invertible functions. Then:
e flof=1x e fofl=1y  f~lis bijective.
s (fHt=f *(gof)yt=fTlog™ ]

Exercises 3.5

Letf,g : R — R be defined by f(x) = 2x — 1 and g(x) = x? + 1. Find:

1. (g0/)2) 2. (fog)(—1) 3. (gof)) 4. (fog)x)
Let f(x) = |x] and g(x) = [x], where x € R. Compute each.

5. (gof)(—2.3) 6. (fog)(—2.3) 7. (gof)(—4.1) 8. (fog)(—3.9)

Let f,g : W — W defined by f(x) = x mod 5 and g(x) = x div 7. Evaluate
each.

9. (gof)A7) 10. (f 02)(23) 11. (gofH9D) 12. (f 0 g)(78)
Determine if the function g is the inverse of the corresponding function f.
13. fx) =x%,x>0;gx) = V/x, x>0
14. f(x) =x%,x<0;8x) = —/x, x>0
Define the inverse g of each function f.

x|abcd x|abcd

15 16

.f(x)‘4132 .f(x)‘bcda

Determine if the given function is invertible. If it is not invertible, explain
why.

17. ORD on Z.

18. f:ASCII — W defined by f(c) = ordinal number of the character c.
19. /:W — W defined by f(n) = n (mod 5).

20. f:X* - X* defined by f(w) = awa, where ¥ = {a, b, c}.

21. f:S — N defined by f(x) = decimal value of x, where S is the set of
binary representations of positive integers with no leading zeros.
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22, f: ¥* — W defined by f(x) = decimal value of x, where ¥ = {0,1}.
n
23. Let f : £ — W defined by f(x) = }_ x;, where X" denotes the set

=1
of words of length n over ¥ = {0,1,2} and x = x1x2 - - - x,. [f(x) is the
weight of x; for example, £(10211) = 5.]

Mark each sentence as true or false. Assume the composites and inverses
are defined:

24, The composition of two injections is injective.
25. The composition of two surjections is surjective.
26. The composition of two bijections is a bijection.
27. Every function is invertible.

28. Every injective function is invertible.

29. Every invertible function is injective.

30. Every invertible function is surjective.

31. Every invertible function is bijective.

32. Every bijection is invertible.

33. The composition of two invertible functions is invertible.

Using the algorithm fragment in Example 3.32, compute the output
resulting from each initial value of x.

34. -5 35. 0 36. 3 37. 7
Letf:X - Yandg:Y — Z. Prove each.
38. folx=f 39. lyof=f

40. Iff and g are injective, then g o f is injective.

41. Iff and g are surjective, then g o f is surjective.

42, If f and g are bijective, then g o f is bijective.

43. The identity function 1y is bijective.

44, If g of is injective, then [ is injective.

45. If g of is surjective, then g is surjective.

46. If g of is bijective, then f is injective and g is surjective.
Letf : X — Y and g : Y — Z be invertible functions. Prove each.
47. flof =1y 48. fofl=1y

49. f~1is bijective. 50. (f Hl=f

51. (gof) 1=f1logl *52. The inverse of f is unique.



3.6 Sequences and the Summation Notation 157

53. Letf:A—>B,g:B— C,andh : C — D. Provethat ho(gof) =

(hog) of (associative property).
[Hint: Verify that (h o (g of))(x) = ((hog) of)(x) for every x in A.]

*54. Let f and g denote the functions defined by the if-then-else state-
ments in Example 3.31. Show that g o f is defined as given in the
example.
(Hint: Consider the cases x < 4 and x > 4, and then two subcases in
each case.)

Prove each, where X ~ Y implies set X is equivalent to set Y.

*55. If A ~ B, then B ~ A (symmetric property).

*56. If A ~ Band B ~ C, then A ~ C (transitive property).

Let f : X — Y be bijective. Let S and T be subsets of Y. Prove each.

*7. [FHSUT) =S uf T *88. fFHSNT) =S nfHT)

3.6 Sequences and the Summation Notation

IEXAMPLE 3.38

Sequences and the summation notation play a key role in the next three
chapters, so we present them here.

Let a be a whole number and X = {a,a + 1,a + 2,...}. A function s
with domain X or a subset of X is called a sequence. Let n € X. Then
s(n) is called a term of the sequence, denoted by s,. The various terms
of the sequence can be listed as sq, Sg+1, Sq¢+2,-.. in increasing order of
subscripts.

In particular, let X = N. Then the terms of the sequence are:

$1,82,83,..-,Sn,...

T

general term

The nth term s, is the general term of the sequence; the sequence is
often denoted by {s,}7° or simply {s,}. (It should be clear from the context
whether the braces indicate a set or a sequence.) The general term is often
used to define a sequence.

Consider the sequence {s,}, where s, = 2n — 1. The various terms of the
sequence are 1,3,5,7,.... Formally, the sequence is the functions : N — N
defined by s(n) = 2n — 1. [ |

Let a,, be the binary representation of the positive integer n with no leading
zeros. The various terms of the sequence {a,} are 1, 10, 11, 100, 101, 110,
111,.... u

Sequences can be classified as finite or infinite, as the next definition
shows.
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Finite and Infinite Sequences

A sequence is finite if its domain is finite; otherwise, it is infinite.

Thus, a finite sequence is made up of a finite number of terms, and an
infinite sequence contains infinitely many terms. Both types are useful in
mathematics and computer science as well.

Every word over an alphabet can be considered a finite sequence. For
instance, the binary word 010110111 is a finite sequence containing nine
terms. The elements of a finite language form a finite sequence; for example,
the words of length < 2 over the alphabet {a, b, c} form a finite sequence,
namely, A, a, b, ¢, aa, ab, ac, ba, bb, bc, ca, cb, cc; on the other hand, 4, a,
a2, a®, ... is an infinite sequence.

We now turn to the summation notation you will find very useful
throughout the remainder of the book.

The Summation Notation

Often we need to work with sums of terms of number sequences {a, }. Sums
such as ap + a1 + -+ - + am can be written in a compact form using the
summation symbol >, which denotes the word sum. The summation
notation was introduced in 1772 by the brilliant French mathematician
Joseph Louis Lagrange. (Recall that ¥ denoted an alphabet in Chapter 2;
its actual meaning should be clear from the context.)

A typical term in the above sum can be denoted by «¢;, so it is the sum of

=m
the terms q; as ¢ runs from k& to m. It is denoted by > a;. Thus
=k

i=m
Zai =apt+apy1+---t+am
i=k

The variable i is the summation index. The values & and m are the
lower and upper limits of the index i. The “i =” above the ) is usually
omitted; in fact, the indices above and below the )" are also omitted when
there is no confusion. Thus

i=m m m
Y=Y w=3a
=k =k k

For example,

Zi=1+2+3+4+5+6=21
=1



3.6 Sequences and the Summation Notation

159

Joseph Louis Lagrange (1736-1813) ranks with Leonhard Euler (see
Chapter 8) as one of the greatest mathematicians of the 18th century. The
eldest of 11 children in a wealthy family in Turin, Italy, Lagrange was forced
to pursue a profession after his father, an influential cabinet official, lost all
his wealth by engaging in unsuccessful financial speculations.

While studying the classics at the College of Turin, the 17-year-old Lagrange
found his interest in mathematics kindled by an essay by the astronomer
Edmund Halley on the superiority of the analytical methods of calculus over
geometry in the solution of optical problems. In 1754, he began correspond-
ing with several outstanding mathematicians in Europe. The following year,
he was appointed professor of mathematics at the Royal Artillery School in
Turin. Three years later, he helped to found a society that later became the
Turin Academy of Sciences. While at Turin, Lagrange developed revolution-

ary results in the calculus of variations, mechanics, sound, and probability, winning the prestigious Grand
Prix of the Paris Academy of Sciences in 1764 and 1766.

In 1766, when Euler left the Berlin Academy of Sciences, Frederick the Great wrote to Lagrange that
“the greatest king in Europe” would like to have “the greatest mathematician of Europe” at his court.
Accepting the invitation, Lagrange moved to Berlin to head the Academy and remained there for 20 years.
When Frederick died in 1786, Lagrange moved to Paris at the invitation of Louis XVI. He was appointed
professor at the Ecole Normale and then at the Ecole Polytechnique, where he taught until 1799. He died

in Paris.

Lagrange made significant contributions to analysis, analytic mechanics, calculus, probability, and
number theory, as well as helping to establish the French metric system.

IEXAMPLE 3.40

2
D iE-D=(DE1-D+00-D+11-D+22-1) =4
1=—1

without affecting the value of the sum, so

m m m
PRy
= Jj=t k=t

The index i is a dummy variable; you can use any variable as the index

3
Evaluate ) i%.
i=—2

SOLUTION:

3
Y =27+ (1?40 +17 427+ 32 =19
i=-2

The following results are extremely useful in evaluating finite sums.

They can be proved using mathematical induction (Section 4.4).
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Let n € N and ¢ € R. Let ay,a9,..., and bq,be,..., be any two number
sequences. Then:

. Zc =nec (3.3)
° Z(cai) =c (Z ai) (3.4)
i=1 i=1
. > (@i +by) = (Z ai> + (Z bi) (3.5)
i=1 i=1 i=1

(These results can be extended for any lower limit & € Z.) |

The next example illustrates this theorem.

2
Im Evaluate )" [(5)% — 2j].
j=1

SOLUTION:
2 2 2
> 1) -2 = (Z B> -2y j)
j=-1 =—1 ==

=125[(-1)3 + 03 + 12 + 231 —2(-1+0+1+2)
= 996 [ |

Indexed Summation

The summation notation can be extended to sequences with index sets I
as their domains. For instance, > a; denotes the sum of the values a; as
el
runs over the various values in I.
As an example, let I = {0, 1, 3,5}. Then }_ (2 + 1) represents the sum of
el
the values of 2i + 1, so

Y Ri+D=@2-0+D+@2-1+D+2-3+1D)+2-5+1) =22

el
Often we need to evaluate sums of the form } _ a;;, where the subscripts i

P
and j satisfy certain properties P. (Such summations are used in Chapters 4
and 6.)
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For example, let I = {1,2,3,4}. Then )  (2i+ 3j) denotes the sum
1<i<j<4
of the values of 2i + 3j, where 1 < i < j < 4. This can be abbreviated as
> (2i + 3j) provided the index set is obvious from the context. To find this
i<j
sum, we must consider every possible pair (i,j), where i,j € I and i < j.
Thus:

D 2i+3)=2-1+3-2)+(2-1+3-3)+(2-1+3-4)

' +(2:-243-3)+(2-2+3-49+(2-3+3-4)
=80
Evaluate ) d, where d|6 indicates that d is a factor of 6.
d>1
d|6
SOLUTION:
Z d = sum of positive integers d, where d is a factor of 6.
d>1
d|6

= sum of positive factors of 6
=14+2+3+6=12 [ |

Multiple summations arise often in mathematics. They are evaluated
in the right-to-left fashion. For example, the double summation ) )" a;;
iJ
is evaluated as ) () a;) and the triple summation ) Y > a;j. as
. j T j k

SIE(Sa))

13
We close this section with an example of a double summation.

1 2
Evaluate Y > (2i 4 3)).

i=—1;=0
SOLUTION:
1 2 1 2
Y oY @i+3)=>" {Z@i + 3j)}
i=—1j=0 i=—1 | j=0

1
=) [2i+3-0)+@2i+3-1)+(2+3-2)]

i=—1
1
= (6i+9)
i=-1

=[6-(-1)+9]1+6-0+9+6-1+9)
=27 ]
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Exercises 3.6

Evaluate each sum.

6 4 4
1. Y 2. Y 3+4k) 3. > U-1
i=1 k=0 Jj=0
4 4 2
4. > 3 5 > Bn-2) 6. > jG—-2)
1=—1 n=0 j=—2
4 3 9 3
7. Z 3k 8. Z S(k ) 9. Z (3k)2
k=—2 k=— k=—1
5 4 ) 5
10. > (3 —2k)k 1. > (-2 12. Y (0.1)i(0.9)%~
k=1 j=-1 i=0
Rewrite each sum using the summation notation.
13. 1+3+5+---+23 14. 31 +324 ... 4310
15, 1-2+4+2-3+---4+11-12 16. 1(1+2)+224+2)+---+5(5+2)

Determine if each is true or false.
n n n n
17. Y i=) (n+m—1) 18. ) & =) xvtmt
=m =m =m =m

n
19. Sums of the form S = Z (a; — a;_1) are telescoping sums. Show

that S = a, — apn. i=m+1
20. Using E ise 19 and the identit L ! ! derive a
. in rei n = S — , v
sing Exercise a yi(i+1) : 1
n
f la f .
ormula Or;i(i—i— D

21. Using Exercise 19 and the identity (i + 1)2 —i2 = 2i + 1, find a formula
n
for Z L.
i=1
Evaluate each sum, where §;; is defined as follows.

1 ifi=j

8 =
v 0 otherwise

[8; is called Kronecker’s delta, after the German mathematician Leopold
Kronecker (1823-1891).]
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5 6
22. > > (2i+3))
i=1j=1

6 5
24. Y > (204 3))
Jj=1i=1

5
26. > > @2—j+1

i=1j=

o

[
—

28.

Mo

,.
Il
—

<
Il
—

8;j

30.

1o
M=

. 1(i2 — 3i+ &)
J

1

23. i S (+3)

i=1j=1
6 5
25. 3 3 (G2 —9)
i=1j=1
217. @Z-j+1)
j=li=1
3 5
29. > > (2+38;)
i=1j=1
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Just as ) is used to denote sums, the product ayaz1...an is denoted by

m
[Ta;- The product symbol IT is the Greek capital letter pi. For example,

=k

n
n! = [] i. Evaluate each product.

1=1

3
31. [[G+1) 32
=1

3
35. 3 k!
k=0

38. [IGBi—1)
el

41. Y 1
d>1
d|18

44. ] i/
i,jel
i<y

Expand each.
3

47. Y a;

=1
3 2
49. Z Zaij
1=1j=1

51. Y

1<i<j<3

(a; +aj)

36.

39.

42.

45.

5
[TG2+D
j=3
Evaluate each sum and product, where p is a prime and I = {1, 2, 3, 5}.

P 37. [l p
p=<10 p<10
12
Y d 0. ¥ (%)
d>1 d>1
d|12 d|12
43. ]
1 i,jel
p=25 i<j
> 28 +3) 4
i,jel
ilj J=1
2
48. Z aij
j=1
2 3
50. Z Z a;j
j=li=1
52. > (ai+a))

50
33. J] 1
j=—5

46. Y (37 —3/71)

1<i<j<3

50
34. [] (-DF
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Arthur Cayley (1821-1895) was born in Richmond, England. At 14 he
entered King’s College, London. His teachers, recognizing his superb math-
ematical talents, encouraged him to be a mathematician.

At 17, Cayley entered Trinity College, Cambridge, where he was rated to
be in a class by himself, “above the first.” By age 25, he had published 25
papers, the first one at age 20.

In 1846, he left his position at Cambridge to study law and became a suc-
cessful lawyer. Feeling unfulfilled, he left the law after 14 years, although
during this period he had published more than 200 papers.

In 1863 Cayley rejoined the faculty at Cambridge University. He pursued
his mathematical interests, until his death.

James Joseph Sylvester (1814-1897) attended Cambridge University,
which for several years denied him the degrees he earned, because he was
Jewish.

At 24, he became professor of natural philosophy at the University of
London. Three years later, he taught at the University of Virginia for a year
and then returned to England to become an actuary while continuing his
mathematical investigations.

Sylvester was professor of mathematics at Johns Hopkins Univer-
sity from 1876 to 1883. In 1878 he founded The American Journal of
Mathematics.

53. > AN Aj| 54. > |A; N Aj NAg|

1<i<j<3 1<i<j<k=<3

Matrices were discovered jointly by two English mathematicians, Arthur
Cayley and James Joseph Sylvester. Matrix notation allows data to be
summarized in a very compact form and manipulated in a convenient way.

The sports pages of every newspaper provide fine examples of matrices.
For example, during the National Hockey League 2001-2002 regular sea-
son, the Boston Bruins won 43 games, lost 24 games, tied 6 games, and
had 9 overtime losses; the New York Rangers won 36 games, lost 38 games,
tied 4 games, and had 4 overtime losses; the Detroit Red Wings won 51
games, lost 17 games, tied 10 games, and had 4 overtime losses; and the
Los Angeles Kings won 40 games, lost 27 games, tied 11 games, and had 4
overtime losses. These data can be arranged in a compact form:

won lost tied overtime loss

Boston 43 24 6 9
New York 36 38 4 4
Detroit 51 17 10 4
Los Angeles 40 27 11 4
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Suppose you know that the first row refers to Boston, the second row to
New York, and so on, and the first column refers to the number of wins, the
second column to the number of ties, and so on. Then the row and column
headings can be deleted. Call the resulting arrangement A:

43 24 6 9
A 37 11 36 4
1 39 10 35 4
51 7 26 4

Such a rectangular arrangement of numbers is called a matrix. More
generally, we have the following definition.

A matrix is a rectangular arrangement of numbers enclosed by brackets.
A matrix with m rows and n columns is an m x n (read m by n) matrix, its
size being m x n. If m = 1, it is a row vector; and if n = 1, it is a column
vector. If m = n, it is a square matrix of order n. Each number in
the arrangement is an element of the matrix. Matrices are denoted by
uppercase letters.

For example, let

1 0 -3
3 -5 6

A= and B=| -6 4 -2
1 0 4

2 7 -1

Aisa2 x 3 matrix, whereas B is a square matrix of order 3. The elements
of the row vector [0 3 —7] are 0, 3, and —7.

The double subscript notation is extremely useful in naming the ele-
ments of an m x n matrix A. Let a;; denote the element in row i and column
j of A. Then the matrix has the form

aiil a2 ... alj ... Q1pn
a1 Q@2 ... Qg ... Q2p
A= ) .
a;1 Qg ... Qi ... Qjp <— Trowl
aml1 Am2 ... amj oo Amn
T columnj

For convenience, it is abbreviated as A = (a;/)mxn, or simply (a;;) if the
size is clear from the context.

How do we determine if two matrices are equal? This is answered by the
next definition.
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Equality of Matrices

Two matrices A = (a;;) and B = (b;;) are equal if they have the same size
and a;; = b;; for every i and j. For example, if

1 x -3 1 0 -3
2 0 y| |z 0 -1
thenx =0,y =1,and z = 2.
The following definition presents two special matrices.

Zero and Identity Matrices

If every element of a matrix is zero, then it is a zero matrix, denoted by O.
Let A = (@;j)nxn. Then the elements ai1,ase,...,a,, form the main
diagonal of the matrix A. Suppose

1 ifi=y
a; = .
0 otherwise

Then A is the identity matrix of order n; it is denoted by I,, or I when
there is no ambiguity.

For example, [0 0 0] and |:8 g] are zero matrices.
A = (ajj)nxn is theidentity matrix I, if every element on its main diagonal
is 1, and every element above and below it is 0. For example, |:(1) (1)] is the

identity matrix of order 2, namely, Is.

Just as propositions and sets can be combined to construct new proposi-
tions and new sets, matrices also can be combined to produce new matrices.
The various matrix operations are presented and illustrated below.

Matrix Addition

The sum of the matrices A = (a;))mxn and B = (b;j)mxn is defined by A+B =
(a;j + bij)mxn- (We can add only matrices of the same size.)

EXAMPLE 3.44 Let

Then

|:2+(—1) (=3)+5 7+0 :| |:1 2 7i|
|

0+2 1+0 1+4+(-D 210
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Negative of a Matrix

The negative or (additive inverse) of a matrix A = (a;;), denoted by —A,
is defined by —A = (—a;;).
For instance, the negative of

2 3 —4 -2 -3 4
A= is —A=
0 -5 6 0 5 -6
You may verify that A + (—A) = O.

Matrix Subtraction

The difference A — B of the matrices A = (a;/)mxn and B = (b;j)mxn is
defined by A — B = (a;; — bjj)mxn. (We can subtract only matrices of the
same size.)

For example, using the matrices A and B in Example 3.44,

2—-(-1) (-3)-5 7-0 3 -8 7

A — B = =
0-2 1-0 1-(-1) -2 1 2
The next example introduces us to the fourth matrix operation.

M Suppose you bought 12 coconut donuts, 15 butternut donuts, and 6 cinna-
mon donuts from shop I, and you bought 9 coconut donuts, 12 butternut
donuts, and 16 cinnamon donuts from shop II. Then the number of donuts
of each kind you bought from each shop is given by the matrix
coconut butternut cinnamon
A= shopl 12 15 6
shop 11 9 12 16
Suppose each donut costs 75¢. Then the cost of each type of donut at each
shop is obtained by multiplying each entry of A by 75. The resulting matrix
is denoted by 75A. Thus
754 75-12 75-15 75.6 900 1125 450
| 75-9 75.12 75.16 | | 675 900 1200 [

This example leads to the next definition.

Scalar Multiplication

Let A = (a;;) be any matrix and % any real number (called a scalar). Then
kA = (kajj).
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The fundamental properties of the various matrix operations are stated
in the following theorem. We shall prove two of them, and leave the others
as routine exercises.

m Let A, B, and C be any m x n matrices, O the m x n zero matrix, and ¢ and
d any real numbers. Then:

* A+B=B+A A+B+C0)=A+B+C
cA+O0O=A=0+A A+(-A)=0=(-A)+A
e (-DA=-A * c(A+B)=cA+cB

* (c+dA=cA+dA (cd)A = c(dA)

PROOF:
Let A = (@;j)mxn-

e To prove that A + (=A) = O = (-A) + A:

A+ (=A) = @mxn + (—@;j))mxn negative of A
= (a;j + (=aijj))mxn matrix addition
= 0mxn ajj + (—a;) =0
=0 zero matrix

Similarly, (-A) + A = O. Thus A + (-A) = 0 = (-A) + A.
e To prove that (¢ + d)A = cA + dA:

(c+d)A = (c+ d)@;j)mxn definition of A
= ((c + d)ajj)mxn scalar multiplication
= (ca;; + da;)mxn dist. prop. of numbers
= (cajj)mxn + ([da;j)mxn matrix addition
= c(@jj)mxn +d(@;j)mxn scalar multiplication
=cA+dA definition of A
This concludes the proofs. |

Before we define matrix multiplication, let us study the next example.

iXAMPLE 3.46 Discount Gas sells regular, unleaded, and premium gasoline at two gasoline
stations X and Y. Matrix A shows the price (in dollars) of a gallon of each
kind of gasoline; matrix B, the average number of gallons sold at each
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location:
regular unleaded premium
A= [2.50 2.75 3.00]
X Y
regular 3000 3500
B = unleaded | 4000 3750
premium 1500 2000
SOLUTION:
Notice that:

Revenue from location X = 2.50(3000) + 2.75(4000) + 3.00(1500)
= $23,000.00

Revenue from location Y = 2.50(3500) + 2.75(3750) + 3.00(2000)
= $25,062.50

These two values can be used to form the matrix

X Y
[23,000.00 25,062.50]

Each of its elements can be obtained by multiplying each element of A by
the corresponding element in each column of B and adding them up, as
shown below:

3000 3500
[2.60 2.75 3.00] | 4000 3750
1500 2000
= 2.50(3000) + 2. 75(4000) + 3.00(1500)
= 23,000.00
3000 3500
[2.50 2.75 3.00] | 4000 3750
1500 2000

= 2.50(3500) + 2.75(3750) + 3.00(2000)
= 25,062.50
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The matrix [23,000.00 25,062.50] is the product of the matrices A and B,
denoted by AB. Thus

3000 3500
AB = [2.50 2.75 3.00] {74000 3750 | = [23,000.000 25,062.50]
1500 2000
More generally, we define the product of two matrices as follows. |

Matrix Multiplication

The product AB of the matrices A = (a;;)mxn and B = (b;j)n xp is the matrix
C = (cij)mxp, where c;; is the sum of the products of the corresponding
elements in row i of A and column j of B, as shown below:

aip; a2 ... Qip b1 big . blj . blp . _
agyr a2 ... Q2 bo1  bog . sz . bzp
= Cij
a1 @iz ... Gip biv biz . by - bip
LAml1 Om2 ... QOmn_| L bnl bn2 . bnj . bnp _ - -

n
where Cij = ailblj + aizsz + -+ ainbnj= Z aikbkj-
k=1

The product C = AB is defined only if the number of columns in A equals
the number of rows in B. The size of the product is m x p.

The next example illustrates this definition.

PSRN Lot

3 -2
A:[(l) _Z _i] and B = 0 1
-1 0

Find AB and BA, if defined.
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SOLUTION:

Since the number of columns of A equals the number of rows of B, the
product AB is defined. Furthermore, the size of AB is 2 x 2:

- 3 -2
N A R

L -1 0
C[1-84(-2)-0+3:(-1) 1-(-2)+(-2)-1+3-0
“10-3+4.0+(-D-(-1) 0-(-2)+4-1+(-1)-0

_[o —4
1 4

The product BA is also defined (why?) and its size is 3x3:

3 -2
BA=| 0 1 [(1) _i _ﬂ
-1 0
3-1+(-2)-0 3-(-2)+(-2)-4 3-3+(=2)-(-1)
= 0-1+1-0 0-(=2)+1-4 0-3+1-(-1)
| -D-1+0-0 (-1D-(-2)+0-4 (=D-3+0-(=D
3 —-14 11
=] 0 4 -1
-1 2 -3
You may notice that AB # BA. |

We can use the definition of matrix multiplication to develop an
algorithm to find the product of two matrices in an obvious way, as
Algorithm 3.1 shows.

Algorithm product (A,B,C)

(* Let A = (ajj)mxn and B = (bij)nxp. This algorithm shows
how to find their product C = (cij)mxp. *)
Begin (* product *)

for i =1 tomdo
for j =1 topdo
begin (* for j *)
cij < 0 (* initialize *)
for k = 1 ton do
Cij < Cij + ajkbyxj (* update cjj *)
endfor
End (* product *)

Algorithm 3.1
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The fundamental properties of matrix multiplication are stated in the
next theorem. They can be proved without much difficulty using the
summation notation.

Let A, B, and C be three matrices. Then:

(1) ABC) =(AB)C 2) AI=A=1IA
(8) AB+C)=AB+AC (4) (A+B)C =AC + BC
provided the indicated sums and products are defined. |

We close this section with an example to illustrate part 3 of
Theorem 3.13.

Let
2 -3 1 0 -1 0 -2 1
A=[5 0]’ Bz[z -3 5]’ and C=[—3 0 4]
Show that A(B + C) = AB + AC.

SOLUTION:

First notice that both B and C are the same size, so B + C is defined and is
of size 2 x 3. Furthermore, since Ais2 x2and B+ Cis2 x 3,A(B+C(C) is
defined. Similarly, AB + AC is also defined.

0 -1 0 -2 17 [1 -2 0
3 5|7T|=3 0 4|/T|-1 -3 9
[ 1 -2 0] [5 5 —27

of][-1 =3 9|7 |5 10 0

B+C:;
2
5
2 -3][1 o0 -1]_[-4 9 -17
AB=_5 0]|2 -3 5]=[5 0 —5}
2
5

AB+0C) =

ac_|2 -8][ 0 -2 1}_[9 —4 —10]

0 -10 5

0j][-3 0 4

[—4 9 -17][9 -4 -10] [5 5 —27
AB+AC=1 5 —5“0 ~10 5}2[5 ~10 o}

=AB+0) [ ]

Exereises 3.7

Solve the following equations.

x—1 2 0 2 2 0
1. 0 y+3 4 |=| 0 -1 4
3 1 z+2 -3 1 -2
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x—y -1 0 3 -1 0
2. -3 y-—z 2 =| -3 -4 2
4 -5 z—x 4 -5 1

Find the additive inverse of each matrix.

2 -3 1 -2 3 0 -3 -2
3. [o 4} 4. [3 3 —1} 11 2 4
2 -5 6
1 0 -1 0 -2 5 -3 0 0 .
Let A = [0 9 3], B= |:0 0 1:|, and C = |: 0 1 2]. Find each.
6. A—B 7. B+C 8. A+2C 9. —2B
10. 2B-C 11. 2A + 3B 12. 3B -2C 13. 3A+(-2)B

Let A be an m x n matrix, B a p x ¢ matrix, and C an r x s matrix. Under
what conditions is each defined? Find the size of each when defined. (Note:
A? means AA.)

14. A+B 15. B—C 16. BC 17. A2
18. AB+0C) 19. AB—AC 20. AB+C 21. A(BC)

22, A team in the NHL earns 2 points, 1 point, or 0 points for a win, tie or
overtime loss, or a loss, respectively. Using matrices, find the number
of points earned by each team listed at the beginning of this section.

A summer vacation lodge in sunny California expects four guests: A, B, C,
and D. They plan to stay at the lodge for 7, 14, 21, and 28 days, respectively.
Each of them has diabetes. Since the nearest drugstore is several miles
away, the manager of the lodge decides to store three different types of
insulin — semi-lente, lente, and ultra— needed by these guests. Their daily
insulin requirements are summarized in Table 3.2.

Guests
Insulin A B C D
Semi-lente 25 40 35 0
Lente 20 0 15 15
Ultra 20 0 30 40

Each gram of insulin of the three types costs 10, 11, and 12 cents,
respectively'. Using matrices, compute each:

TBased on R. F. Baum, “Insulin Requirements as a Linear Process in Time,” in Some
Mathematical Models in Biology, R. M. Thrall, ed., The University of Michigan Press, Ann
Arbor, MI, 1967, pp. 0L2.1-0L2.4.
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23. The number of grams of each type of insulin needed.
24. The total cost of the insulin.

25. The insulin requirements if the guests decide to stay an additional 3,
5, 8, and 13 days, respectively.

26. The insulin requirements if the guests decide to stay three times their
original time.

Let A, B, and C be any m x n matrices, O the m x n zero matrix, and ¢ and
d any real numbers. Prove each (see Theorem 3.12).

27. A+ B=B+A 28. A+ B+C)=A+B)+C
29. A+t0O=A=0+A 30. (—DA=-A
31. cA+B)=cA+cB 32. (cd)A = c¢(dA)

Let A, B, and C be any square matrices of order 2. Prove each.
33. ABC) =AB)C

34. AB+C)=AB+AC

35. A+B)C=AC+BC

The transpose of a matrix A = (a;j)mxn, denoted by AT, is defined as
AT = (@ji)nxm- Find the transpose of each.

1 2 3 a b ¢
36. 2 0 -1 37. |d e f
-2 1 0 f g h

38. A square matrix A is symmetric if AT = A. What can you say about
the elements of a symmetric matrix A?

39. Let A be a square matrix. Prove that (AT)T = A.

Let A, B, and C be square matrices of order 2. Prove each.
40. A+B)T =AT + BT 41. (AB)T = BTAT

42. (AAT)T = AAT 43. (ABC)T = CTBTAT

A square matrix A of order n is invertible if there is a matrix B such that
AB = I, = BA. Then B is the inverse of A, denoted by A~1. In Exercises
44 and 45, verify that B = A~1. Assume that 2 = ad — bc # 0.

a b 1 d -b
44°A=|:c di|’B=l;[—c ai|
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1 -2 0 [ 16 -2
45.A=|3 1 -1 [B=—| -8 3 -1
1 2 -3 Tl 25 4 —7

Find each product.
1 1 1]«
48. 1 -2 3ly
2 -3 4 z

B HEEA

Rewrite each linear system as a matrix equation AX = B.

49. 2x+ 3y =4 50. x—2y=4
4x +5y =6 Ix+y—2z=-5
x+2y—32=6

51-52. Using Exercises 44 and 45, solve the linear systems in Exercises 49
and 50, respectively.

Let M denote the set of 2 x 2 matrices over W. Let f : N — M defined by

n
f(n) = B éj| . Compute f(n) for each value of n.

53. 2 54. 3 55. 4 56. 5

Prove each.

*5%. The inverse of a square matrix A is unique.
(Hint: Assume A has two inverses B and C. Show that B = C.)

*58. If A is an invertible matrix, then (A=1)~1 = A.

*59. If A and B are two invertible matrices of order n, then (AB)~! =
B 1AL

60. Write an algorithm to compute the sum of the matrices A = (a;j)mxn
and B = (b;j)mxn-

Chapter Summary

Function

This chapter presented the concept of a function, the summation nota-
tion, and matrices. Functions can be defined by the ordered pair notation,
tables, or graphs. Several properties of functions and some exotic func-
tions were examined, including how to construct new functions from known
ones.

* A function f:X — Y is a pairing of every element x in X with a
unique element y in Y. Dom(f) = X, codom(f) = Y, and range(f) =
{flx) e Yix € X} (page 118).
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Special Functions

* Polynomial function f(x) = i aixt  (a, #0) (page 125).
* Exponential function f(x) =ZZ(’)‘ (@>0,a#1) (page 125).
* Logarithmic function f(x) =log,x (@ > 0,a # 1) (page 126).
* Absolute value function f(x) = |x]| (page 126).
* Floor function f(x) = |x] (page 126).
* Ceiling function f(x) = [x] (page 126).
* Characteristic function f4 (x) = (1) iifl;‘iise (page 131).
* Mod function f(x,y) = x mod y (page 132).
* Div function g(x,y) = xdivy (page 132).

Properties of Funetions
* A function f : X — X is the identity function on X if f(x) = x for

everyx € X (page 136).
* f:X — Yisinjective, if x1 # x9 — f(x1) # f(x2) (page 136).
* f:X — Y is surjective, if range(f) = Y (page 137).

* f:X — Y is bijective, if it is both injective and surjective (page 137).

* If X and Y are finite sets with |X| = |Y|,f : X — Y is injective if and
only if it is surjective (page 139).

* Two sets have the same cardinality if and only if a bijection exists
between them (page 140).

The Pigeonhole Prineiple

* Simple version If m pigeons fly into n pigeonholes to roost, where
m > n, then at least two pigeons must roost in the same pigeonhole
(page 147).

* Generalized version If m pigeons fly into n pigeonholes to roost,
where m > n, one pigeonhole must contain at least |[(m — 1)/n] + 1
pigeons (page 147).

Composition

* The composition of the functionsf : X — Yandg: Y — Z is given
by (g o f)(x) = g(f(x)) for every x in X (page 151).
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* The composition of two bijections is bijective (page 152).
* The function g : Y — X is the inverse of the function f : X — Y if

gof=1lxandfog=1y (page 153).
* A function is invertible if and only if it is bijective (page 154).

Sequences and the Summation Notation

* A sequence {s,} is a function with domain X = {a,a + 1,a + 2,...}

or a finite subset of X, wherea ¢ W (page 157).

* Using the summation symbol >, the sumap+ap,1+ - - - +a;, is written
i=m

as Y a; (page 158).
i=k

Matrix

* An m x n matrix (a;j))mxn is a rectangular arrangement of elements,
where a;; denotes the element in row i and column ;j (page 165).

Review Exercises

Find the number of positive integers < 1776 and divisible by each:

1. 50r7 2. 5but not 7
3. 5,6,or7 4, 3 or 5, but not 7
Find the day of the week in each case.
5. 1024 days from Sunday 6. 1948 days from Thursday
Find the month of the year in each case.
7. 256 months from March 8. 1976 months from August
Using formula (3.1) in Exercises 3.2, determine the first day in each year.
9. 2048 10. 4076 11. 7776 12. 7997
Using the formula in Exercises 3.2, compute the date for Easter Sunday in
each year.
13. 2550 14. 3443 15. 4076 16. 6666

Determine if each function is injective.
17. fx) = — |x],x eR 18. gx) = /x,x € RT

Determine if each function f : A — B is surjective.

19. fx) = —Jx, A=R*, B=R~  20. f(x) = 2*, A=R, B =R~
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Determine if each function f : A — B is bijective.

21. fx) =2, A=B=R 22, f=ORD,A=B=7Z

Let A and B be finite sets with |A| = 3 and |B| = 2. Find the number of:
23. Functions that can be defined from A to B.

24. Constant functions that can be defined from A to B.

25. Injections that can be defined from A to B.

26. Surjections that can be defined from A to B.

27. Bijections that can be defined from A to B.

Student records are maintained in a table using the hashing function A (x) =
xmod 9767, where x denotes the student’s social security number. Compute
the location in the table corresponding to the given key, where the record
is stored.

28. 011-53-1212 29. 212-44-7557

30-31. Redo Exercises 28 and 29 if h(x) = first part in x mod 23.

32. The confirmation number for flight reservations made with an
airline over the Internet consists of three letters followed by a
digit and then two letters. Store the following confirmation numbers
in a hash table of 26 cells using the hashing function A (x) = first letter
in x:

VPS3SL, NBC4GK, CBS1AA, AQX5CD, CBA3BA, NCR4SK,
CNN1TK, ABC5ZZ

33. Redo Exercise 32 if h(x) = last letter in x.
34. Redo Exercise 32 using a hash table of 10 cells and 4(x) = digit in x.

35. Redo Exercise 32 using a hash table of 10 cells and A(x) = digit in
xmod 5.

36. Show that in any group of seven positive integers, at least two of them
leave the same remainder when divided by six.

37. The total cost of mailing six letters is $19. Show that the mailing charge
for at least one letter is $3 or more.

Letf, g : R — R defined by f(x) = 2[x]+ 1 and g(x) = 3|x] — 2. Compute
each.

38. (g0f)(2.56) 39. (f o g)(~3.45)
40. (gof)(—4.67) 41. (f 0g)(=5.73)
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Let f, g : W — W defined by f(x) = x mod 6 and g(x) = x div 6. Evaluate

each.

42. (g0/)(31) 43. (f of)(49)

44. (f 0 g)(176) 45. (g0 g)(1331)

Mark each sentence as true or false, where x and y are arbitrary real
numbers.

46. |x+y] = [x]+ ly] 47. [x+yl =[x+ [y

48. |xy] = |x]|y] 49. [xyl = [x][y]

Give a counterexample to disprove each proposition, where x, y € R and
neZ.

50. [x+yl=Ix]+Ly] B5L [x+yl=[x1+[yl 52. |xy]=|x]ly]

53. [xy] = [x1[y] 54. |nx| =n|x] 55. [nx] =nlx]

Find the first four terms of the sequence with the given general term, where
a = (1++/5)/2and g = (1 — v/5)/2. (The number « is the golden ratio.)

56. an = | +4|n=1 57 b= % —}|nz1
58. Lp=ao"+p",n>1 59. fn=%g(a”—ﬂ”)

60. Arrange the terms of the sequence of ternary words of length < 2 over
the alphabet {0,1,2} in increasing order of their numeric values.

Evaluate each.

o pli) e i e gls] e 5]

=1 =1
65. Letf : A — Band g : B — A such that f o g = 1g. Prove that g is
injective.

66. Letf : A - Bandg : B — A such that g o f = 14. Prove that g is
surjective.

Supplementary Exercises

Let A = (ajj)nxn and B = (b;j)nxn. Prove each.
1. A+B)T =AT+BT 2, (AB)T = BTAT 3. AAT is symmetric.
4. Let G = {0,1} and d: G" x G" — W defined by d(x,y) = number

of components in which the words x and y differ. d(x,y) is called the
Hamming distance between the n-bit words x and y. Is d bijective?
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Richard Wesley Hamming (1915-1998) was born in Chicago, graduated
from the University of Chicago in 1937, and received an M.S. from the Uni-
versity of Nebraska 2 years later. After receiving his Ph.D. in mathematics in
1942 from the University of Illinois, he began his teaching career at the univer-
sity and moved to the university of Louisville until 1945. After a year working
on the Manhattan project at Los Alamos Science Laboratory, he joined the tech-
nical staff at Bell Telephone Labs in 1946; he headed the numerical methods
research department from 1964 to 1967, and then the computer science research
department until 1977. He left Bell in 1977 and became an adjunct professor in
computer science at the Naval Postgraduate School, Monterey, California.
Recipient of numerous awards, Hamming made significant contributions to
algebraic coding theory, numerical methods, statistics, and digital filters.

5. Letay, as,...,a, € RT. Prove that at least one of them is greater than

n
or equal to their average ,—1L(Z a;).
1

Evaluate each sum and product.

2 3 1 1 1 2
6. > > Y G+j+hk 7.3 Y Y @+2/+3k)
1=0 j=1 k=0 1=0 j=—1 k=0
4 5 3 2
8. ) 3 oitik 9. 1 [I2%
i=1 j=2 k=1 i=1 j=0
2 3 ) ) 5 3
10. [T [1G-) 11. ] []2
i=0 j=1 i=2 j=0

An arithmetic sequence is a number sequence in which every term except
the first is obtained by adding a fixed number, called the common differ-
ence, to the preceding term. For example, 1, 3, 5, 7, ... is an arithmetic
sequence with common difference 2. Let a, denote the nth term of the
arithmetic sequence with first term ¢ and common difference d.

12. Find a formula for a,.

13. Let S, denote the sum of the first n terms of the sequence. Prove that
Sy = 5[2a + (n — 1)d].

A geometric sequence is a number sequence in which every term except
the first is obtained by multiplying the previous term by a constant, called
the common ratio. For example, 2, 6, 18, 54, ... is a geometric sequence
with common ratio 3. Let a, denote the nth term of the geometric sequence
with first term o and common ratio r.
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14.
15.

*16.

*117.

*18.

Find a formula for a;,.

Let S, d,?note the sum of the first n terms of the sequence. Prove that
S, =22 £ 1),

Let f: X — Y be injective and A € B C X. Prove that f(ANB) =
fA)NfDB).

Letf: X - Y and A € B C X such that f(ANB) = f(A) Nf(B). Give
a counterexample to show that f need not be injective.

Suppose a1 + a2 + -+ + @, — n + 1 pigeons occupy n pigeonholes
H;,1 < i < n. Prove that either H; contains > a; pigeons, or Hy
contains > ag pigeons, ..., or H, contains > a, pigeons.

Use Exercise 18, prove each.

19.
20.

21.

The pigeonhole principle.
The generalized pigeonhole principle.
o
The sequence {a,}{° satisfies the property thata, = )  a; for every
i=n+1

n > 1. Show that a, 1 = %an,n > 1. (T. Fletcher, 1978).

Computer Exercises

Write a program to perform each task.

1.

Read in the amount of water used by a household for 6 months and
compute the water bill, using the rate in Example 3.6.

Read in a positive integer n < 1000 and print all perfect numbers < n.
(There are three perfect numbers < 1000. See Exercises 3.1.)

Read in a year y > 1600 and determine each:

* Whether or not it is a leap year.

* The number of leap years > 1600 and < y.
Read in a year y and find the following (see Exercises 3.2):

* The day of January 1 in year y and year y + 1.
* The number of Friday-the-thirteenths in year y.

. January 1, 2000, fell on a Saturday. Determine the day of the week of

January 1, 1776, and January 1, 3000. Print the calendar for January
in each year.

Read in a series of years greater than 2000 and determine the Easter
date in each year. (See Exercises 3.2.)
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7.

10.

11.

12.

13.

14.

15.

The discrete probability p(r) that two people in a group of r people
selected at random have the same birthday is given by

365.364 ... (365 —r+1)
365"

pr)=1-

assuming 365 days in a year. Compute the probability for each value
of r: 10, 20, 30, ..., 100, including 23. (You will see that if 23 people are
selected at random, there is a better than 50% chance that two have
the same birthday. This is known as the birthday paradox.)

. Assign the numbers 0-51 in order to the 52 playing cards in a stan-

dard deck. Read in a number x, where 0 < x < 51. Identify the card
numbered x. Use the suit labels 0 = clubs, 1 = diamonds, 2 = hearts,
and 3 = spades, and the card labels 0 = ace, 1 = deuce, 2 = three,...,
in each suit.

. Assign the numbers 0-63, row by row, to the various squares on an

8 x 8 chessboard. Read in two numbers x and y, where 0 < x,y < 63.
Determine if the queen at square x can capture the queen at square y.

Read in n customers’ nine-digit account numbers at a bank, where n is
a positive integer < 100. Store them in a hash table using the hashing
function A(x) = x mod 113, where x denotes an account number. Print
the hash table.

Read in n students’ social security numbers and store them in a hash
table using the hashing function ~(x) = x mod 109, where x denotes
a social security number and »n is a positive integer < 100. Print the
hash table.

Read in the two-letter abbreviations of all states in the United States.
Store them in a hash table of 26 cells, using the hash function A(x) =
first letter in x.

Read in a positive integer n < 15 and a square matrix A of order n.
Determine if it is symmetric.

Read in an m x n matrix A and a p x ¢ matrix B. Find A + B, A — B,
and AB if they are defined.

n

The trace of a matrix (a;/)nxn is )_ a;;. Read in a positive integer
i=1

n < 20 and an n x n matrix, and print the trace of the matrix.

Exploratory Writing Projeets

Using library and Internet resources, write a team report on each of the
following in your own words. Provide a well-documented bibliography.

1.

Discuss the development of the concept of a function.
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10.

11.
12,

Collect the various rates for water and electricity consumption from
neighboring towns and cities. Write each as a word problem and then
define each as a function.

Describe the history of perfect numbers and their relationship to
Mersenne primes. Comment on the existence of odd perfect numbers.

Give a number of applications of the floor and ceiling functions to
everyday life.

Investigate the two-queens puzzle on an n x n chessboard, where
2 <n <10.

Examine the various classes of infinite sets, their properties, and their
cardinalities.

Describe the origin of the pigeonhole principle and give several
applications to everyday life. Comment on the power of the principle.

List the various built-in functions in your favorite programming
language. Determine whether each is injective, surjective, or bijective.

Investigate the origin of the summation notation.

Describe the various mathematical structures and operations hidden
on the sports pages of a national newspaper.

Give a brief introduction to coding theory.

Discuss the Leontief input-output model, developed by Wassily
Leontief, who won the Nobel Prize in Economic Science in 1973.

Enrichment Readings

. W. T. Bailey, “Friday-the-Thirteenth,” Mathematics Teacher, Vol. 62
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. D. R. Camp, “Secret Codes with Matrices,” Mathematics Teacher,

Vol. 78 (Dec. 1985), pp. 676-680.

D. I. A. Cohen, Basic Techniques of Combinatorial Theory, Wiley,
New York, 1978, pp. 144-178.

R. L. Graham et al., Concrete Mathematics, Addison-Wesley, Reading,
MA, 1989, pp. 397-424.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD, 1978.

F. S. Koltz, “When Is a Program Like a Function?” Mathematics
Teacher, Vol. 79 (Nov. 1986), pp. 648-651.

Z. Usiskin, “The Greatest Integer Symbol,” Mathematics Teacher,
Vol. 70 (Dec. 1977), pp. 739-743.
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'Chapter 4

Induction and Algorithms

God created the natural numbers; all else is the work of man.

—L. KRONECKER

T his chapter presents the well-ordering principle, the division algo-
rithm with which you are already familiar, and some fundamental
divisibility properties. In addition, through the well-ordering principle we
will establish an additional proof technique, the principle of mathemat-
ical induction. Interesting applications of this principle, as well as the
pigeonhole principle from Chapter 3, will be investigated.

Some of the intriguing problems pursued in this chapter lie below:

* Are there integers between 0 and 1?

* Ifnisapositive integer > 2and aj,as9,...,a, € Z, are there consecutive
elements a3 1,ar419,...,a; such that ap 1 +apio + - - - + a, is divisible
by n, where & < £?

* Ifay,as,...,a, are the first n positive integers in some order, arranged
around a circle, is it true that there must be a set of 2 consecu-
tive elements in the cyclic arrangement whose sum is greater than
L[kn(n + 1) — 21/2n)?

* Can any postage of n > 2 cents be paid using two- and three-cent stamps?

4.1 The Division Algorithm

The division algorithm, with which you are already familiar, is often
employed to verify the correctness of a division problem. Its proof is based
on the following cardinal fact, which is accepted as an axiom. (An axiom is
a proposition that is accepted as true. It is usually a self-evident proposition
and is consistent with known facts.)

185
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The Well-Ordering Principle
Every nonempty set of positive integers has a least element. |

For example, the set {13,5,8,23} has a least element, 5. The well-
ordering principle applies to any nonempty subset Sof T' = {n € Z | n > ng},
where ng is any integer. To see this, let S* = {n —ng + 1|n € S} and
T*={n —ng+1|n € T}. Since S* C T* and T* C N, by the well-ordering
principle, S* contains a least element ¢*. Then ng + ¢* — 1 is a least element
of S (why?).

For example, let S = {-3, —1,0, 1, 3, 5}and T = {n € Z |n > —5}. Then
S*={3,5,6,7,9,11} has aleast element {* = 3,song+£*—1=-5+3-1=
—3 is the least element of S.

Next we present the division algorithm. Its proof is a bit complicated,
so we omit it here; but a proof, using the well-ordering principle, can be
established (see, for instance, the author’s number theory book).

The Division Algorithm

LTHEOREM 4.1 |

When an integer a is divided by a positive integer b, we get a unique (integer)
quotient ¢ and a unique (integer) remainder r, where 0 < r < b. The
integer a is the dividend and b the divisor. This is formally stated as
follows.

(The Division Algorithm) Let a be any integer and b any positive
integer. Then there exist unique integers q and r such that

a =b-q +r
Dividend —T I T— Remainder
Divisor Quotient
where 0 <r < b. [ |

Although this theorem does not present an algorithm for finding q and r,
it has been traditionally called the division algorithm. The values of g and
r can be found using the familiar long division method.

Notice that the equation a = bg + r can be written as

a_ +7"
b 917y

sog=adivb = |a/b] andr = a — bg = a mod b.
The next example shows that we should be careful in finding the quotient
and the remainder when the dividend is negative.
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Find the quotient ¢ and the remainder r when —23 is divided by 5.

SOLUTION:
Since —23 = 5 - (—4) + (—3), you might be tempted to say that ¢ = —4 and
r = —3. Recall that the remainder can never be negative, so we rewrite

—23 as —23 = 5 - (=5) + 2, where 0 < r(= 2) < 5 (see the number line
in Figure 4.1). Thus ¢ = —5 and r = 2; in other words, —23 div 5 = -5
and —23 mod 5 = 2.

Y Y Y Y

~—>
—25T —25 -15 -10 5 0
-23

We close this section with two applications of the division algorithm and
the pigeonhole principle. [ |

Let b be an integer > 2. If b + 1 distinct integers are randomly selected,
prove that the difference of some two of them must be divisible by b.

PROOF
Let g be the quotient and r the remainder when an integer a is divisible
by b. Then, by the division algorithm, @ = bq + r where 0 < r < b. The
b+ 1 distinct integers yield  + 1 remainders (pigeons); but there are only b
possible remainders (pigeonholes). Therefore, by the pigeonhole principle,
two of the remainders must be equal.

Let x and y be the corresponding integers. Then x = bg; + r and
y = bqg + r for some quotients q; and go. Then

x—y=(0bq1+r)—(bgy+1)
= b(g1 —q2)
Thus, x — y is divisible by b. |

Let n be an integer > 2 and let a1,aq9,...,a, € Z. Prove that there exist
integers k and ¢ such that a;1 + ap2 + --- + a¢ is divisible by n, where
1 <k < € < n; that is, there exist consecutive elements a1 1,a319,...,a¢
whose sum is divisible by 7.

PROOF (by cases):
Consider the n sums S; =a; +ag +--- +a;, where 1 <i <n.

Case 1 Ifany of the sums S; is divisible by n, then the statement is true.



188

Chapter 4 Induction and Algorithms

Case 2 Suppose none of the sums S; is divisible by n. When S;
is divided by n, the remainder must be nonzero. So, by the division
algorithm, the possible remainders are 1,2,...,(n — 1). Since there are
n sums and n — 1 possible remainders, by the pigeonhole principle, two
of the sums S;, and S; must yield the same remainder r when divided by n,
where & < ¢£.

Therefore, there must exist integers ¢ and g9 such that a; +ag + - +
ap =nqgi1+randay +ag +---+ay = nge +r, where £ < £. Subtracting,
we get api1 +apio+ - +ag =n(@1 —¢qo). Thusapiy +apig+ -+ +agis
divisible by 7. u

To cite a specific example, consider the seven integers 2, 3, 8, 15, 23, 29,
and 57. ThenS1 =a1 =2=0-7+2and S5 = a1 +ag +ag +a4 +as =
24+3+8+15+23=51=7-7+2.Then S5 —S1 =ag+ag+aq4+as=
3+8+15+23 = 49 is divisible by 7. Here £ = 1 and ¢ = 5. (You may notice
that Sy = a1 +ag + a3+ a4 =2+ 3+ 8+ 15 is also divisible by 7.)

Exercises 4.1

1. Is the set of positive odd integers well-ordered?
2. Is the set of positive even integers well-ordered?

In Exercises 3-6, find the quotient and the remainder when the first integer
is divided by the second.

3. 137,11 4. 15, 23 5. —43, 16 6. —37,73

Find the set of possible remainders when an integer is divided by the given
integer.

7. Two 8. Five 9. Seven 10. Twelve

11. Prove that there exists no integer between 0 and 1.
12. Let a € Z. Prove that no integer exists between ¢ and a + 1.

13. Let ng € Z, S be a nonempty subset of the set T' = {n € Z|n > ng},
and £* be a least element of the set T* = {n —ng + 1|n € T}. Prove
that ng + ¢* — 1 is a least element of S.

14. Using the well-ordering principle, prove that 1 is the smallest positive
integer.
(Hint: Prove by contradiction.)

*15. Leta € Z,S = {a,a+1,...},T € S,and a € T. Let k& be any element
of S such that wheneverk € T,k +1 € T. Provethat S =T.

*16. Leta € Zand S = {a,a + 1,...}. Let P(n) be a predicate on S such
that the following conditions are satisfied: (1) P(a) is true; (2) If P(a),
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P(a + 1),...,P(k) are true for any £ > a, then P(k + 1) is also true.
Prove that P(n) is true for every n > a.

4.2 Divisibility Properties

The celebrated euclidean algorithm can be used to find the greatest common
divisor of two positive integers, but first a very few properties of prime and
composite numbers, and some divisibility properties.

Let a and b (# 0) be any two integers. If there is an integer g such that
a = bg, we say b divides a, b is a factor of a, a is divisible by b, or a is a
multiple of 5. We then write b | a; otherwise, b fa. (Again, the meaning of
the vertical bar should be clear from the context.) For instance, 3|6, 8 |24,
but 6)14.

A positive factor b of a positive integer a is a proper factor of a if b +# a.
For example, the proper factors of 6 are 1, 2, and 3.

There are positive integers with exactly two positive factors. Accordingly,
we make the following definition.

Prime Numbers and Composite Numbers

A positive integer > 1 is a prime number (or simply a prime) if its only
positive factors are 1 and itself. A positive integer > 1 is a composite
number if it is not a prime.

For example, 2 and 19 are primes, whereas 6 and 21 are composite
numbers (why?).

Thereis a systematic procedure for determining whether or not a positive
integer n > 2 is a prime. It is based on the next theorem.

m Any composite number n has a prime factor < |/n].

PROOF (by contradiction):
Since n is composite, there are positive integers a and b such that n = ab
where 1 < a <nand1 < b < n. Suppose ¢ > /n and b > /n. Then
n =ab > \/n-./n = n, which is impossible. Therefore, either a < /n or
b < /n. Since both a and b are integers, it follows that either a < |/n] or
b < Jnl.

By the fundamental theorem of arithmetic (see Theorem 4.13), every
positive integer has a prime factor. Any such factor of a or b is also a factor
of a - b = n, so n must have a prime factor |/7]. |

It follows from Theorem 4.2 that if n has no prime factors < | /n],
then n is a prime; otherwise, it is a composite number.

This fact can be used to determine whether or not an integer n > 2 is a
prime, as the next example illustrates.



190

liXAMPLE 4.4

llHEOREM 4.4

Chapter 4 Induction and Algorithms

Determine if 1601 is a prime number.

SOLUTION:
First list all primes < |+/1601]. They are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, and 37. None of them is a factor of 1601 (verify); so 1601 is a prime. H

An algorithm for determining the primality of a positive integer n > 2 is
given in Algorithm 4.1.

Algorithm prime number(n)
(* This algorithm determines if a positive integer n>2 is
prime or not using Theorem 4.2. *)
Begin (* algorithm *)
1ist all primes < [/n]
if any of them is a factor of n then
n is not a prime
else
n is a prime
End (* algorithm *)

Algorithm 4.1

In the remainder of this section we discuss some useful divisibility
properties. We begin with a simple and straightforward property.

If @ and b are positive integers such that a |6 and b | a, then a = b. [ |

Notice that this theorem does not hold if a and b are any integers. For
example, 3| (—3) and (—3) | 3, but 3 £ —3.

Let a, b, and ¢ be any integers. Then:

(1) Ifa|bandb|c, then a |c (transitive property).
(2) Ifa|bandalc, thena|(® +c).

3) Ifa|banda|c, thena| (b —c).

4) Ifa|b, thena|bc.

PROOF:
We shall prove properties 1 and 2, and leave the others as exercises.

(1) Since a|b, there exists an integer q; such that & = agq. Similarly,
there exists an integer g9 such that ¢ = bgge. Then ¢ = bge = (aq1)ge =
a(q@1q2). Thus, there exists an integer ¢ = g1q2 such that ¢ = aq.
Therefore, a | c.

(2) As above, we have b = aq; and ¢ = aqs. Then b + ¢ = aq; + aqs =
a(qq + q3). Since q1 + g3 is an integer, it follows that a | (b + ¢). |
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The Greatest Common Divisor

A positive integer can be a factor of two positive integers a and b. Such
a positive integer is a common factor of a and b. The largest such com-
mon factor is the greatest common divisor (gcd) of ¢ and b, denoted by
ged{a, b}.

For instance, ged{6, 9} = 3, ged{12,24} = 12, and ged{6, 35} = 1.

This definition of gcd, although simple and clear, is not practical, so we
give an alternate, equivalent definition below.

An Alternate Definition of GCD
A positive integer d is the ged of two positive integers a and b if:
* d|aandd|b; and
e ifd' |aand d’ | b, then d’ |d, where d’ is a positive integer.

Thus, d is ged{a,b} if (1) d is a common divisor of both @ and b; and
(2) any common divisor of a and b is also a divisor of d.

The next theorem, an extremely useful and powerful result, can be
applied to develop an algorithm to compute ged{a, b}.

Im Let a and b be any positive integers, and r the remainder when a is divided
by b. Then ged{a, b} = ged{b, r}.

PROOF

Let ged{a, b} = d and ged{b,r} = d’. To prove that d = d’, it suffices to show
that d |d’ and d’ | d. By the division algorithm, a unique quotient ¢ exists
such that

a=bq+r (4.1)

To show that d |d’:
Since d = ged{a,b},d |a and d | b. Therefore, d | bq, by Theorem 4.4. Then
d | (a — bq), again by Theorem 4.4. In other words, d |, by Equation (4.1).
Thus, d |b and d | r. Therefore, d | ged{b, r}; that is, d | d’.

Similarly, it can be shown that d’'|d. (See Exercise 33.) Thus, by

Theorem 4.3, d = d’; that is, ged{a, b} = ged{b, r}. [ |
Im INlustrate Theorem 4.5, using @ = 108 and b = 20.
SOLUTION:
gcd{108,20} = 4 (verify). When 108 is divided by 20, the remainder is 8.
ged{20, 8} = 4 (verify). Thus, ged{108, 20} = ged{20, 8}. [ |
Euclidean Algorithm

Among several procedures for finding the ged of two positive integers,
one efficient algorithm is the euclidean algorithm, named after the
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Little is known about Euclid’s life. He taught at the University of Alexandria
and founded the Alexandrian School of Mathematics. When the Egyptian ruler
King Ptolemy I asked Euclid if there were an easier way to learn geometry than
by studying The Elements, he replied, “There is no royal road to geometry.”
Euclid is called the father of geometry.

No work, except for the Bible, has been more widely read, studied, or edited,”
according to J. E. Lightner of Western Maryland College, Westminister,
Maryland. “More than 2000 editions of the work have appeared since the
first printed one in 1482; however, no extant copy of The Elements dates from
Euclid’s own time.”

Greek mathematician Euclid (3307-275 B.c.), who included it in his extra-
ordinary work The Elements. The algorithm repeatedly applies the division
algorithm and Theorem 4.5. Before formally discussing the algorithm, we
illustrate it in the next example.

EXAMPLE 4.6 Find ged{1976,1776}.

SOLUTION:
Apply the division algorithm with 1976 (the larger of the two numbers) as
the dividend and 1776 as the divisor:

1976 =1-1776 + 200

Apply the division algorithm again with 1776 and 200, using 1776 as the
dividend and 200 as the divisor:

1776 = 8-200 + 176
Continue this procedure until a zero remainder is obtained:

1976 =1-1776 + 200
1776 = 8- 200 + 176
200=1.- 176 +24
176 =7- 24+ 8 <— last nonzero remainder
24 =3 8+0

The last nonzero remainder in this procedure is the ged. Thus
gcd{1976,1776} = 8. [ |

Will this method work for any two positive integers a and 6? If a =¥,
then ged{a,b} =a. So assume, for convenience, a > b. (If this is not true,
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simply switch them.) Let rg = b. Then by successive application of the
division algorithm, we get a sequence of equations:

a =qoro+r: 0<ri<nrg
ro=qiri+re O0<ro<n
ry=qore +rs 0<rz3<re

Continuing like this, we get the following sequence of remainders:
b=rog>ri>rg>rg>--->0

Since the remainders are nonnegative and getting smaller and smaller, this
sequence must eventually terminate with remainder r, = 0. Thus, the last
two equations in the above procedure are:

Tn—2 =Qn-1Tpn-1+T"n O0<rp<rp1

and
'n—1=4nln

It then follows that ged{a, b} = ged{a, ro} = ged{rg,r1} =ged{ri,rot = --- =
ged{r,_1,rn} =r,, the last nonzero remainder. (This can be established by
using mathematical induction; see Exercise 56 in Section 4.4.)

m Apply the euclidean algorithm to find ged{2076,1024}.

SOLUTION:
By the successive application of the division algorithm, we get:

2076 =2 -1024 + 28

1024 =36- 28 + 16
28=1- 16+ 12
16=1- 12+ 4 <— last nonzero remainder
12=3. 4+0

Since the last nonzero remainder is 4, gcd{2076, 1024} =4. [ |
The euclidean algorithm is formally presented in Algorithm 4.2.

Algorithm Euclid(x,y,divisor)

(* This algorithm returns gcd{x,y} in divisor, where
x>y > 0. %

0. Begin (* algorithm *)

1. dividend « x

2. divisor <y
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3. remainder <« dividend mod divisor
while remainder > 0 do (* update dividend,
divisor, and remainder *)

begin (* while *)

dividend <« divisor

divisor < remainder

remainder <« dividend mod divisor
endwhile
. End (* algorithm *)

O O 00Ny O

Algorithm 4.2

The euclidean algorithm provides a procedure for expressing the
ged of two positive integers in terms of themselves, as the next example
shows.

EXAMPLE 4.8 Example 4.7 showed that gcd{2076, 1024} = 4. Express the ged in terms of
2076 and 1024.

SOLUTION:
We use the equations in Example 4.7 in the reverse order:

4=16—-1-12 =16-1-(28-1-16)
=2-16—-1-28 =(1024 — 36 -28) — 1-28
=2-1024 -72-28 —1-28 =2-1024 — 73 - 28

=2-1024 — 73(2076 — 2-1024) = 2-1024 — 73 - 2076 + 146 - 1024
=(-=73)-2076 + 148 - 1024
(You may verify this by direct computation.) [ |

Example 4.8 can be generalized as in the following theorem. We omit its
proof.

THEOREM 4.6 Let a and b be any positive integers, and d = ged{a,b}. Then there exist
integers s and ¢ such that d = sa + tb. [ ]

Note: (1) The expression sa + b is called a linear combination of a and
b. (2) The integers s and ¢ are not unique. For example, ged{28, 12} =4
and4 =1-28+(—2)-12 = (—2)-28 +5-12. (3) The integers s and ¢ can
be found by using the various equations in the euclidean algorithm, or
by trial and error especially when a and b are fairly small.

Theorem 4.6 can be used to derive other divisibility properties. To this
end, we define two positive integers to be relatively prime if their ged is
1. For example, 6 and 35 are relatively prime, whereas 12 and 18 are not
relatively prime.
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Let a and b be relatively prime numbers. If a | bc, then a | c.

PROOF:

Since a and b are relatively prime, Theorem 4.6 indicates integers s and ¢
exist such that sa + tb = 1. Then sac + tbc = ¢. By Theorem 4.4, a | (sac)
and a | (¢bc). Therefore, by Theorem 4.4, a | (sac + tbc); that is, a | c. [ |

The following exercises offer additional divisibility properties to verify;
again, consult a number theory book.

Exercises 4.2

Determine if each positive integer is a prime.

1. 727 2. 1001 3. 1681 4. 1723

5. Prove or disprove: Every prime is a perfect number.
Using the euclidean algorithm, find the gcd of the given integers.
6. 2024,1024 7. 2076,1076 8. 2076,1776 9. 3076, 1976

In Exercises 10-13, express the gcd of the given integers as a linear
combination of them.

10. 12,9 11. 18, 28 12, 12,29 13. 28,15

14. Two prime numbers that differ by 2 are called twin primes. For
example, 5 and 7 are twin primes. Prove that one more than the prod-
uct of two twin primes is a perfect square. (Twin primes played a key
role in 1994 in establishing a flaw in the Pentium chip, manufactured
by Intel Corporation.)

Evaluate each sum, where d is a positive integer.

15. Y d 16. ¥ 1 17. > (1) 18 % (%)

d|6 d|12 d|18 d|18
Disprove each statement, where a, b, and c are arbitrary integers.
19. Ifa|(b+c¢),thena|banda|c. 20. Ifa|bc,thena|bandalc.

(Easter Sunday) Here is a second method* for determining Easter Sunday
in a given year N. Let a = N mod 19, b = N div 100, ¢ = N mod 100,
d=bdivd,e=b mod 4,f = (b+8)div25,g=b-f+1)div3,h = (19a+
b—d—g+15) mod 30,i =cdiv4,j=c mod 4,k =(32+2e+2i —h—))
mod 7, £ = (a + 11h + 22k) div451, m = (h + k — 7¢ + 114) div 31, and
n=((h+k—"T7¢+114) mod 31. Then Easter Sunday falls on the (n + 1)st

*Based on “To Find Easter,” Nature (April 20, 1876). For bringing this method to his attention,
the author would like to thank Thomas Moore of Bridgewater State College.
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day of the mth month of the year. Compute the date for Easter Sunday in
each year.

21. 2000 22. 2076 23. 3000 24. 3663

Euler’s phi-function ¢ is another important number-theoretic function
on N, defined by ¢(n) = number of positive integers < n and relatively prime
to n. For example, ¢(1) = 1 = ¢(2), 9(3) = 2 = ¢(4), and ¢(5) = 4. Evaluate
@(n) for each value of n.

25. 10 26. 15 27. 17 28. 24

29. Compute ) ¢(d) for n=5, 6, 10, and 12.
din

30. Using Exercise 29, predict a formula for ) ¢(d).
d|n

Let a, b, ¢, and n be any positive integers and p be any prime. Prove each.
31. Ifa|banda|c, thena| (b —c¢).
32. Ifa|b, then a|bc.

33. Let r be the remainder when a is divided by 6. Let d = ged{a, b} and
d =ged{b,r}. Thend’ |d.

34. Leta > b. Then ged{a,b} =gcd{a,a — b}.
35. Leta > b. Then ged{a,b} =gecd{b,a +b}.

36. The ged of a and b is unique.
(Hint: Assume two ged’s d and d'; show that d = d'.)

37. If p|ab, thenp|aorp|b.
[Hint: Assume p | ab and p)a. Since pYa, ged{p,a} =1.]

38. Any two consecutive integers are relatively prime.

39. Let d =gcd{a,b}. Then a/d and b/d are relatively prime.
40. gcd{na,nb}=n-gecd{a,b} 41. ged{gcd{a,b},c} =ged{a, ged{b,c}}

42, Let a|c and b | ¢, where a and b are relatively prime numbers. Then
ab|c.

43. 2 and 3 are the only two consecutive integers that are primes.
44, 3,5, and 7 are the only three consecutive odd integers that are primes.

45. Ifp and p? + 8 are primes, then p> + 4 is also a prime. (D. L. Silverman,
1968)

46. Ifp and p + 2 are twin primes, then p must be odd.
47. Suppose p and q are primes such that p — ¢ =3. Then p =5.
48. Every odd prime is of the form 4n + 1 or 4n + 3.
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Disprove each statement.

49. If ged{a,b} =1 and ged{b,c} =1, then ged{a,c} =1, where a, b, and ¢
are positive integers.

50. n!+1is a prime for every n > 0.

51. E, = pip2---pn + 1 is a prime, where p; denotes the ith prime and
i>1.

52. Let n be a positive integer. Prove that (n + 1)! + 2, (n + D!+ 3, ...,
(n 4+ 1)! + (n + 1) are n consecutive composite numbers.

4.3 Nondecimal Bases

ﬂ'IEOREM 4.8

In everyday life we use the decimal notation, base ten, to represent any
real number. For example, 234 =2(102) +3 (10') +4(10°), which is the
decimal expansion of 234. Likewise, 23-45 = 2(101) +3(10%) +4(10~1) +
5(102). Computers use base two (binary), and very long binary numbers
are often handled by humans (as opposed to computers) using bases eight
(octal) and sixteen (hexadecimal).

Actually, any positive integer b > 2 is a valid choice for a base. This is
a consequence of the following fundamental result.

Let b be a positive integer >2. Then every positive integer a can be
expressed uniquely in the form a =ab*+ aj,_; 8% 1 + - - + a1b +ag, where
ag, a1, ..., are nonnegative integers less than b,a;, #0,and2>0. W

This leads us to the following definition.

Base-b Representation

iXAMPLE 4.9

The expression a;b* + ap_16*1 + - -+ + a1b + ag is the base-b expansion
of the integer a. Accordingly, we write a = (azap_1 - - - @1a9)p in base b. The
base is omitted when it is 10.

For example, 234 = 234, and 22 = 10110y, (see Example 4.9).

When the base is greater than 10, to avoid confusion we use the letters
A, B, C, ... to represent the digits 10, 11, 12, ... , respectively. It is easy to
find the decimal value of an integer from its base-b representation, as the
next example illustrates.

Express 101104y, in base 10.

SOLUTION:
10110¢wo = 1(2%) +0(2%) + 1(22) + 121 + 0(2°)  «— binary expansion
=164+0+4+2+0

=22 |
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Conversely, suppose we are given a decimal integer. How do we express
it in another base b? By Theorem 4.8, all we have to do is express it as a
sum of powers of b, then simply collect the coefficients in the right order.
Always remember to account for missing coefficients.

Take a look at the tablets A, B, C, D, and E in Figure 4.2. Assuming
you are under 32 years old, identify the tablets on which your age appears;
we can then easily tell your age. For example, if your age appears on
tablets A, B, C, and E, then you must be 23. Can you explain how this
puzzle works?

A B C D E
1 17 2 18 4 20 8 24 16 24
3 19 3 19 5 21 9 25 17 25
5 21 6 22 6 22 10 26 18 26
7 23 7 23 7 23 11 27 19 27
9 25 10 26 12 28 12 28 20 28
11 27 11 27 13 29 13 29 21 29
13 29 14 30 14 30 14 30 22 30
15 31 15 31 15 31 15 31 23 31

Returning to nondecimal representations, a simple algorithm expresses
an integer @ in any nondecimal base b: divide @, and its successive quo-
tients by & until a zero quotient is reached, then pick the remainders
in the reverse order. These steps can be translated into the elegant
algorithm given in Algorithm 4.3.

Algorithm nondecimal base(n,b)
(* This algorithm finds the base-b representation (amap—1i-...a130)p
of a positive integer n. The variables q and r denote the quotient
of the remainder of the division algorithm, and i is a subscript. *)
Begin (* algorithm *)
(* initialize the variables q, r, and i *)
qg<«<n;i<«<0
while g > 0 do
begin (* while *)
r < qmod b
aj < r
q <« qdivb
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i« i+41
endwhile
End (* algorithm *)

Algorithm 4.3

The next example illustrates this algorithm.
|£XAMPLE 4.10 Represent 15,036 in the hexadecimal system, that is, in base 16.

SOLUTION:
Applying Algorithm 4.3 we have:

15036 =939 - 16 + 12
939 = 5816 + 11 0
58 = 3-16+ 10 read up
3= 0-16+ 3

Thus 15,036 = 3ABCgixteen- |

Addition in Base b

Before we discuss how to add nondecimal numbers, let us examine the
familiar addition algorithm in base 10.

To find the sum of any two decimal digits a and b, we find the remainder
r=(a+b) mod 10 and the quotient g = (a +b) div 10. Then a + b = (gr)ten;
q is the carry resulting from the addition of @ and b. Using this idea we
can add any two decimal integers.

Fortunately, the addition algorithm can be extended to any nondecimal
base b in an obvious way. For example, let x = (x;, ... x0)p and y = (y5 . . . ¥0)p
where m > n. If m >n, we could assume that y,,; = -+ = y,, = O.
We add the corresponding digits in x and y in a right-to-left fashion. Let
s;j = (x; +y; +¢;) mod b andc;,1 = (x; +y; +¢;) div b, where ¢y = 0. Then
x+y=(Sm+1Sm - - - S0)p Where s, 1 may be 0 or 1. (Leading zeros are deleted
from the answer.)

These steps translate into a straightforward algorithm, as in
Algorithm 4.4,

Algorithm addition (x,y,s,b)
(* This algorithm computes the sum s=(spy1Sm...S0) of two
integers x=xp...xg and y=yn...yp in base b, where m > n. *)
Begin (* algorithm *)
carry < 0 (* initialize carry *)
for i=0 to n do
begin (* for *)
s; < (xj+yj-+carry) mod b
carry < (xj+yij-+carry) div b
endfor
for i=n+1 to m do
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begin (* for *)
s; < (xj+carry) mod b
carry < (xj+carry) div b
endfor
if carry >0 then
Sme1 < carry
End (* algorithm *)

Algorithm 4.4
This algorithm is illustrated in the next two examples.

Im Add the binary integers 101104y and 1011¢ye.

SOLUTION:

First write the integers one below the other in such a way that the corre-
sponding bits are vertically aligned. See Figure 4.3. (For convenience, the
base two is not shown.)

Figure 4.3 1

- o
O =
—
o

Figure 4.4 ©)
1
1

Figure 4.5 D ©
11

01

0

Figure 4.6 IOIOINIO)
1011

1 01

0 00

Add the corresponding bits from right to left, beginning with the one’s
column: 0+ 1=1. Since 1 mod 2=1, enter 1 as the one’s bit in the sum.
Since 1 div 2=0, the resulting carry is 0, shown circled in Figure 4.4.
(In practice when the carry is 0, it is simply ignored.) Now add the bits
0, 1, and 1 in the twos column: 0+ 1+ 1=2. Since 2 mod 2=0 and 2 div
2=1, enter 0 in the twos column and the new carry is 1 (see Figure 4.5).
Continuing like this, we get the sum 100001y,. See Figure 4.6. |
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The addition of binary numbers can be made easy by observing that
0+0=0,0+1=1=1+0,and 1+ 1=10, all in base two.

Next we illustrate the multiplication algorithm in base b.

Multiplication in Base b

The traditional algorithm for multiplying two integers x and y works for
any base in an obvious way: multiply every digit in x by every digit in y as
in base b and add up the partial products, as in Example 4.12.

@M Multiply 1011¢wo and 101¢ye.

SOLUTION:
The various steps unfold in Figures 4.7-4.9. The product is 11011 1¢wo.

Figure 4.7 1 011
X 1 0 1
1 011 < multiply 1011 by 1
Figure 4.8 1 011
X 1 01
1 011
0 0 0 O < multiply 1011 by 0
1 011 < multiply 1011 by 1
Figure 4.9 1011
X 1 01
1 01 .
000 0 add the partial products
1 0 11
1 1 01 11 |

Shifting and Binary Multiplication

If you found these two examples confusing, don’t be discouraged. Fortu-
nately, most computers do binary multiplications using a technique called
shifting, as discussed below.
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Figure 4.11
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m .
Consider the binary number x = (XpmX;,;—1- .- X1%0)two = »_ %;2'. What is
i=0
the effect of multiplying x by 2/? Since

m
x% = Zxﬂ”ﬂ =Xm...21%000. .. Otwo,
1=0 J zeros

every bit in x is shifted to the left by j columns.
More generally, let a be any bit. Then

x@?) = Z(axi)Z”j = (axXm) ... (@x0)00. .. Otwo

=0 J zeros

The bit ax; equals x; if a=1 and equals 0 if ¢ =0. Thus, the effect of
multiplying the number x = (x;, ... X0)two by the bit y; in the multiplicand
¥y=Wn-...Yj...Y0)two is the same as multiplying each bit x; by y; and shifting
the result to the left by j columns. Then add the partial products to get the
desired product, as illustrated below.

Evaluate 1011ty X 101two.

SOLUTION:
The various steps are displayed in Figures 4.10-4.13. It follows from
Figure 4.13 that the resulting product is 110111 y,.

1 0 1 1 <« multiply1011 by 1; no shifting.

1 011
X 1 01
1011
0 0 0 O < multiply 1011 by 0; shift by one column.
1011
X 1 01
1011
0 00O
1 0 11 < multiply 1011 by 1; shift by 2 columns.
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Figure 4.13 1 011
X 1 01
1 01 .
000 0 add the partial products.
1 0 11
1 0111 m

The shifting method of multiplication leads to Algorithm 4.5 for multi-
plying two binary numbers.

Algorithm binary multiplication (x, y, p)

(* This algorithm computes the product p= (PmtnPpin—1---P0)two
of the binary numbers x= (XpXp_1---X1X0)two and
Y= (¥n¥n—1---¥1¥0)two, using shifting. *)

Begin (* algorithm *)
for j=0 to n do
begin (* for *)
multiply each bit xj by yj
shift the resulting binary word to the Teft
by j columns
wj < resulting binary word
endfor
add the partial products wj
p < resulting sum
End (* algorithm *)

Algorithm 4.5

Binary Subtraction

We can subtract binary numbers without the bother of “borrows,” using
one’s complement and addition. The one’s complement x’' of a binary
number x is obtained by replacing each 0 in x with a 1 and vice versa. For
example, the one’s complement of 10114y, is 0100ty and that of 10014y,
is 0110¢wo. The two’s complement of x is x’ + 1. For instance, the two’s
complement of 1011tye is 0100¢wo + 1 =0101¢yo.

The next example illustrates this new technique step-by-step before it is
justified in a formal discussion.

iXAMPLE 4.14 Subtract 10114y, from 100001 ye.

SOLUTION:
For convenience, we shall drop the base two.

Step 1 Find the one’s complement of the subtrahend 1011. Since the
minuend 100001 contains six bits, keep the same number of bits in the sub-
trahend by padding it with two 0’s at the beginning. The one’s complement
of 1011 =001011 is 110100.
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Step 2 Find the two’s complement by adding 1 to the one’s complement:
110100+1=110101.

Step 3 Add the two’s complement in step 2 to the minuend 100001:

1 00 001
+ 1 1 0101

@o0o10110
delete —2

Step 4 Delete the leading carry 1. The resulting number 010110 =10110
is the desired answer.

Thus 1000014wo — 1011two = 10110¢wo. (To check this, you may verify
that 1011ywo+10110¢wo =1000014wo.) [ |

How can this technique work? To justify the algorithm illustrated, first
notice that x —y = x 4+ (—y); that is, subtracting y from x is equivalent to
adding the additive inverse —y of y to x. This is the basic idea behind the
binary subtraction algorithm.

Now how to find —y? First, assume that |x|| = |ly|| = n. If ||y < |x]|,
pad y with enough 0’s at the beginning so the length of the resulting word
is n.) Let ¥’ denote the one’s complement of y. Then y + 3’ is an n-bit word
w containing all 1’s:

For example, let y = 10110. Then y’ = 01001, soy +3y' = 11111.

The value of the n-bit word w is 2" — 1 (see Section 4.4). Thusy +y' =
w=2"—-1,s0—-y=y +1-2" =y” — 2" wherey” =y + 1 denotes the
two’s complement of y. Therefore, x + (—y) = x +y’ — 2" = (x +y") — 2™.
Thus, to subtract y from x, it suffices to add y” to x and drop the leading
carry 1. This explains why the above subtraction algorithm works.

The algorithm for the case |x|| <|y| is complicated, so we omit its
discussion here.*

We close this section with an intriguing numeric puzzle that will test
your mastery of both nondecimal addition and subtraction.

*For a discussion of negative binary numbers, see A. S. Tanerbaum, Structured Computer
Organization, Prentice Hall, Englewood, NdJ, 1976, pp. 420-423.
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A Nondecimal Puzzle

Write down a three-digit number in base eight. Reverse its digits. Subtract
the smaller number from the other (in base eight); save all leading zeros.
Reverse its digits. Add the last two numbers. Is your answer 1067ght? Now
redo the puzzle in base 12; your answer should be 10ABiyelve-

Exercises 4.3

Express each number in base 10.

1. 11014y 2. 11011¢wo 3. 1776¢ight 4. 19764ixtcen
Express each decimal number as required.

5. 1076 = ( )two 6. 676 = ( )eight

7. 1776 = ( )eight 8. 2076 = ( )gixteen

The binary representation of an integer can conveniently be used to find its
octal representation. Group the bits in threes from right to left and replace
each group with the corresponding octal digit. For example,

243 = 11110011y = 011 110 0114yo = 363cight

Using this short cut, rewrite each binary number as an octal integer.
9. 11014wo 10. 1101140 11. 111010¢wo  12. 101101014y

The binary representation of an integer can also be used to find its hexa-
decimal representation. Group the bits in fours from right to left and then
replace each group with the equivalent hexadecimal digit. For instance,

243 = 11110011wo = 1111 00114y = F3gixteen

Using this method express each binary number in base 16.
13. 11101two 14. 1101114wo  15. 11101014we 16. 101101014wo

The techniques explained in Exercises 9-12 are reversible; that is, the octal
and hexadecimal representations of integers can be used to find their binary
representations. For example,

345¢ight = 011 100 10140 = 11100101y

Using this technique, rewrite each number in base two.

17. 365ixteen 18. 237eight 19. 2‘?”YSixteen 20. 3ADsixteen

In Exercises 21-28, perform the indicated operations.
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Figure 4.14

The sum in
“Venusian” notation.
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21.

25.

29.

30.

31.

32.

36.

1111two 22, 1076gight 23.  3076gixteen 24. 1011014y,
+ 1011¢wo + 2076¢ight + 5776gixteen — 100114y,
11000two 26. 10111two  27. 1024ignt  28.  3ABCgixteen
—  100¢wo x 11014wo X 2776egight x 4CBAgixteen
Arrange the binary numbers 1011, 110, 11011, 10110, and 101010 in

order of increasing magnitude.

Arrange the hexadecimal numbers 1076, 3056, 3CAB, 5ABC, and
CACB in order of increasing magnitude.

What can you say about the ones bit in the binary representation of an
even integer? An odd integer?

Find the value of the base b in each case.

54, = 64 33. 1001, =9  34. 1001, = 126 35. 144, =49

Suppose a space investigative team to Venus sends back the picture
of an addition problem scratched on a wall, as shown in Figure 4.14.
The Venusian numeration system is a place value system, just like
ours. The base of the system is the same as the number of fingers
on a Venusian hand. Determine the base of the Venusian numeration
system. (This puzzle is due to H. L. Nelson.**)

Define recursively each set S of binary words.

37. Set of binary words that represent even positive integers.

38. Set of binary words that represent odd positive integers.

**M. Gardner, “Mathematical Games,” Scientific American, Vol. 219, Sept. 1968, pp. 218-230.
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39. Set of binary words that represent positive integers with no leading
Zeros.

40. Set of palindromic binary words.

Polynomials can be evaluated efficiently using the technique of nested
multiplication, called Horner’s method. [This method is named after
the English schoolmaster, William G. Horner (1786-1837), who published
it in 1819.] For instance, the polynomial f(x) = 4x3 + 5x2 + 6x + 7 can be
evaluated as f(x) = ((4x + 5)x + 6)x + 7. Using this method, express each
integer as a decimal integer.

41. 2454g;  42. 1011014y, 48. 11001014, 44. 43BCgirteen

*45. Let x be a three-digit hexadecimal number with distinct digits.
Reverse the digits. Subtract the smaller number from the other num-
ber (save all the digits in your answer). Reverse the digits in the
difference. Add this number to x. Find the sum.

4.4 Mathematical Induetion

The principle of mathematical induction” (PMI) is a frequently used proof
technique in both mathematics and computer science, as will be seen
shortly.

Many interesting results in mathematics hold true for all positive inte-
gers. For example, the following statements are true for every positive
integer n, where x, y, and x; are any positive real numbers:

n
. (xy)nzxnyn . log(x]_...Xn): ZIngl
=1

L n—-1 | n
. ;l:% . Zrlzr__ll(r;ﬁl)
= i=0

r
14

How do we prove that these results hold for every positive integer n?
Obviously, it is impossible to substitute each positive integer for n and
verify that the formula holds. The principle of induction can establish the
validity of such formulas.

To begin with, suppose the orange cans in a collection can be arranged
asin Figure 4.15. Row 1 contains one can, row 2 contains two cans, ..., row
n contains n cans. Can you predict a formula for the total number of cans
in the collection? See Example 4.15 for a formula.

TAlthough the Venetian scientist Francesco Maurocylus (1491-1575) applied it in proofs in
a book he wrote in 1575, the term mathematical induction was coined by De Morgan.
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The next result is the cornerstone of the principle of induction. Its proof,
as we shall see shortly, follows by the well-ordering principle in Section 4.1.
Let S be a subset of N satisfying the following properties:

1) 1€S.
(2) Ifk is an arbitrary positive integer in S, then £ + 1€ S. Then S = N.

PROOF (by contradiction):

Suppose S # N. Let " =n € N|n ¢ S. Since S’ # ¢, by the well-ordering
principle, S’ contains a least element ¢'. Then ¢’ > 1 by condition 1. Since £’
istheleast elementinS’, ¢'—1 ¢ S’; so ¢'—1 € S. Consequently, by condition
2,0’ —1)+1=1¢ € 8S. This contradiction establishes the theorem. [ |

This theorem can be generalized as in Theorem 4.10. We leave its proof
as an exercise.

Let ng be a fixed integer. Let S be a subset of Z satisfying the following
conditions:

®* ng e S.
e Ifk is an arbitrary integer > ng such that 2 € S, thenk+1 € S.
Then S2{n € Z|n > ng}. |

Weak Version of Induction

Before we formalize the principle of induction, let’s look at a trivial example.
Consider an infinite number of dominoes arranged in a row (see Figure
4.16a). Suppose we knock down the first domino.

What happens to the rest of the dominoes? Do they all fall? Not
necessarily; see Figures 4.16b and c.

So let’s further assume the following: If the £th domino is knocked down,
then the (% + 1)st domino also falls down. If we topple the first domino, what
would happen to the rest? They all would fall; see Figure 4.16d.

This illustration can be expressed in symbols. Let P(n) denote the pred-
icate that the nth domino falls. (Note: UD = N.) Assume the following
propositions are true:

* P(D).
* P(k) — P(k +1) for every positive integer k.
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Figure 4.16 @@J

g
T@“ @a
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Then P(n) is true for every positive integer n; that is, every domino would
fall. This leads us to the weak version of the principle.

Iﬂmm (The Principle of Mathematical Induction) Let P(n) be a predicate
satisfying the following conditions, where n is an integer:

(1) P(ng) is true for some integer ng.
(2) If P(®) is true for an arbitrary integer £ > ng, then P(2 + 1) is also
true.

Then P(n) is true for every integer n > ny.

PROOF:

Let S denote the set of integers > ng for which P(n) is true. Since P(ng)
is true, ny € S. By condition 2, whenever k& € S, 2+ 1 € S. Therefore, by
Theorem 4.10, S consists of all integers > ng. Consequently, P(n) is true for
every integer n > ng. This establishes the validity of the principle. [ |

Condition 1 assumes the proposition P(n) is true when n =ng. Look at
condition 2: If P(n) is true for an arbitrary integer & > n, it is also true for
n==Fk + 1. Then, by the repeated applications of condition 2 and the law of
detachment, it follows that P(ng + 1), P(ng +2), ... all hold true. In other
words, P(n) holds for every n > ny.

Proving a result by PMI involves two key steps:

1. Basis step Verify that P(ng) is true.

2. Induction step Assume P(k) is true for an arbitrary integer
k >ng (inductive hypothesis).
Then verify that P(k + 1) is also true.
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A word of caution: A question frequently asked is, “Isn’t this cyclic
reasoning? Are you not assuming what you are asked to prove?” The
confusion stems from misinterpreting step 2 for the conclusion. The
induction step involves showing that the implication P(2) — P(k + 1) is
a tautology; that is, if P(k) is true, then so is P(% + 1). The conclusion is
“P(n) is true for every n > ng.” So be careful.

A variety of interesting examples will show how useful this important
proof technique is.

The next example gives a nice formula for computing the total number
of cans in the collection in Figure 4.15.

Using PMI, prove that, for every positive integer n,

1
1+2+3+---+n=$

PROOF (by induction):
Let P(n): 3" i = @
i=1

Basis step To verify that P(1) is true (Note: Here ng = 1):

1
When n = 1, RHS = 250 — 1 = 3~ = LHS; so P(1) is true.
=1

Induction step Let % be an arbitrary positive integer. We would like to
show that P(k) — P(k +1): Assume P(%) is true; that is,

f}—k%+n

4 - 2
=1

To establish that P(k) — P(k+ 1) is true, that is,

Z._(k+1)(k+2)
l—T

we start with the LHS of this equation:

k+1 k k+1 k
LHS:Zi:Zi—i—(k—i—l) Note:in:in—i—ka
i=1 i=1 i=1 i=1

_k(k+1D

<— inductive hypothesis

+(k+ 1), by the inductive hypothesis

R+ DE+2)
N 2
= RHS
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Thus, if P(%) is true, then P(k + 1) is also true.
Therefore, by PMI, P(n) is true for every n > 1; that is, the formula holds
for every positive integer n. |

Figure 4.17 provides a geometric proof of this formula without words.

Figure 4.17 ] |
+ =
S + S = n(n+1)
. n(n+1)
.S B

The next example, again an application of induction, employs a divisi-
bility property, so we follow it in some detail.

|£XAMPLE 4.16 Prove that 2n3 + 3n? + n is divisible by 6 for every integer n > 1.

PROOF (by PMI):
Let P(n): 2n3 + 3n? +n is divisible by 6.

Basis step When n=1, 2n3+3n2+n=2(1)+3(1)+1=6 is clearly
divisible by 6. Therefore, P(1) is true.

Induction step Assume P(k) is true, that is, 2k3+3k2+k is divis-
ible by 6 for any k>1. Then 2k3+3k%+k=6m for some integer m
(inductive hypothesis). We must show that P(k+1) is true; that is,
2(k +1)3 4 3(k + 1)? 4 (k + 1) is divisible by 6. Notice that
2k + 12 +3k+ 12+ (R +1)

=2(% + 8k +3k+ 1)+ 3Gk + 2k + 1) + (R +1)

= (2k% + 8k% + k) + 6(k? + 2k + 1)

=6m+6(k%2+2k +1) by the inductive hypothesis

=6(m+k2+2k+1),

which is clearly divisible by 6. Thus P(k + 1) is true.
Thus, by induction, the given statement is true for every n > 1. |

Notice that in the above examples, ng =1, but it need not always be 1,
as the next example shows.
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today. Bernoulli’s most famous work, Ars Conjectandi, was published posthumously in 1713. It contains
significant contributions to probability theory, the theory of series, and gravitational theory.

Jacob I. Bernoulli (1654-1705), a member of the most distinguished
family of mathematicans (see the family tree in Section 9.1), was born in
Basel, Switzerland. His grandfather, a pharmacist in Amsterdam, had
become a Swiss through marriage, and his father was a town councilor
and a magistrate.

Bernoulli received his M.A. in philosophy in 1671 and a theological
degree 5 years later. During this time, he studied mathematics and astron-
omy against his father’s will. He spent the next 2 years tutoring in Geneva.
In 1687 he became professor of mathematics at the University of Basel,
remaining there until his death. His brother Johann succeeded him at
Basel.

In May 1690 he used the term integral in the calculus sense known

Im (Bernoulli’s Inequality) Let x be any real number greater than —1.
Prove that (1 4+x)" > 1+ nx for every n > 0.

PROOF (by PMD):

Let x be any real number > —1. Let P(n): (1+x)" > 1+nx. (Note:
The induction is on the discrete variable n and not on the “continuous”
variable x.)

Basis step To verify that P(0) is true: Notice that
(1+x°=1
>1+0x

So P(0) is true. (Note: Here ng = 0.)

Induction step Assume P(k) is true; that is, (1+x)* > 1+kx for an
arbitrary integer k£ >0. We need to show that P(k+ 1) is true; that is,
(1421 > 14 (k+ D

By the inductive hypothesis, we have (1 +x)* > 1+ kx. Then

1+ = 1 +2)1 + 20,
> (14 x)(1 + kx), by IH and since 1 +x > 0
=1+ (k + Dx + kx®
> 1+ (B + Dk, since kx? > 0

Therefore, P(k + 1) is also true.
Thus, by PMI, (1 +x)"* > 1+ nx for every n > 0. [ |

The next example inductively establishes Theorem 2.3 from Chapter 2.
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A finite set A with n elements has exactly 2" subsets.
PROOF (by PMID):

Basis step When n=0, A = ¢, so A has exactly 1=2° subset. Thus the
result is true when n =0.

Induction step Assume any finite set with % elements has 2* subsets,
where £ > 0. Let A be a set with £+ 1 elements. We would like to show that
A has 2%*1 subsets.

To this end, let x € A. Let B = A — {x}. Since |B| =k, B has 2* subsets
by the inductive hypothesis. Each of the subsets of B is a subset of A. Now
add x to each of them. The resulting 2* sets are also subsets of A. Since
every subset of A either contains x or does not contain x, by the addition
principle, A has 2% + 2* = 2k+1 subsets.

Thus, by the principle of induction, the result holds for every finite set.

|

Both the basis and the induction steps are essential in the principle of
induction, as the next two examples illustrate.

Let g(n) denote the maximum number of nonoverlapping regions formed
inside a circle by joining n distinct points on it. Figures 4.18-4.22 show the
casesn =1, 2, 3, 4, and 5, where the various regions are numbered 1, 2, 3,
etc. The results are summarized in Table 4.1.
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Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Chapter 4 Induction and Algorithms

DG

&

@

It appears from the table that g(n) =2"~1. Then g(1) =2° = 1, which is
true (basis step). Nonetheless, this does not guarantee that g(n) =2""1 for
every n > 1. If the formula were true, there would be g(6) = 2% = 32 nonover-
lapping regions with six points. Unfortunately, there are only 31 such
regions (see Figure 4.23) We shall derive the correct formula in Chapter 6.
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Table 4.1 Number of points n 1 2 3 4 5 6
Maximum number 1 2 4 8 16 ?
of nonoverlapping
regions g(n)

We can conclude that the truthfulness of the basis step and an apparent
pattern do not ensure that P(n) is true for every n. [ |

The following example shows that the validity of the induction step is
necessary, but not sufficient, to guarantee that P(n) is true for all integers
in the UD.

EXAMPLE 4.20 Consider the “formula” P(n): 14+ 3 +5+ --- + (2n — 1) = n? 4 1. Suppose

k
P(k) is true: Y (2i — 1) = k2 + 1. Then:

i=1
k+1 k
Y @i-1D=) @-1D+@2k+1)
i=1 i=1

=&+ 1)+©2k+1)
=k+1D2+1

So if P(%) is true, P(k + 1) is true. Nevertheless, the formula does not hold
for any positive integer n. Try P(1) (see Exercise 5). [ |

Using induction, the next example “proves” that every person is of the
same sex.

Im “Prove” that every person in a set of n people is of the same sex.

“PROOF”:
Let P(n): Everyone in a set of n people is of the same sex. Clearly, P(1)
is true. Let k£ be a positive integer such that P(k) is true; that is, every-
one in a set of & people is of the same sex. To show that P(k + 1) is true,
consider a set A={aj,aq,...,ar+1} of k+1 people. Partition A into two
overlapping sets, B={aj,as,...,a;} and C={ag,...,ar+1}, as in Figure
4.24. Since | B| = k = | C|, by the inductive hypothesis, everyone in B is of
the same sex and everyone in C is of the same sex. Since B and C overlap,
everyone in B U C must be of the same sex; that is, everyone in A is of the
same sex.
Thus, by PMI, P(n) is true for every n > 1. This concludes the “proof.”
[ |

Note: The assertion that everyone is of the same sex is clearly false.
Can you find the flaw in the “proof”? See Exercise 46.
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Figure 4.24

Before discussing the second version of the principle of induction,
we will look at a few applications of the formula in Example 4.15. First
a definition.

Polygonal Number

A polygonal number is a positive integer n that can be represented by n
dots in a polygonal array in a systematic fashion. For example, the integers
1, 3, 6, 10, ... are triangular numbers since they can be represented by
triangular arrays, as shown in Figure 4.25; the number of pins in a bowling
alley and that of balls in the game of pool are triangular numbers. Let £,
denote the nth triangular number. Then

_n+1)

th=14+24+34---+n 5

Figure 4.25 °

t1=1 t2=3 t3=6 t4=10

Triangular numbers manifest delightful properties. For example,
tn + ty_1 = n?; Figures 4.26 and 4.27 provide a nonverbal, geometric proof
of this result. See Exercises 47-50.

Figure 4.26
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Figure 4.27

The next example is another application of the formula in Example 4.15
and the generalized pigeonhole principle.

M Let a1,as,...,a, be the first n positive integers in some order. Suppose
they are arranged around a circle (see Figure 4.28). Let & be any positive
integer < n. Prove that there exists a set of 2 consecutive elements in the
arrangement with a sum |[kn(n + 1) — 2]/2n ], where |x| denotes the floor

of x.
Figure 4.28
as
ag
An—1 aq
an
PROOF:

Consider the following sums:

Si=a1+ag+ - +az
Se=ag2+az+ - +apn1

Sp=an+ar+ - +ap_1

Each of the first n positive integers appears k£ times in this set of sums.
Then

;Si =k (;ai) =k (Z i) = w, by Example 4.15

=1
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Consider kn(n +1)/2 pigeons. We would like to distribute them
among n pigeonholes, called Si,S9,...,S,. By the generalized pigeon-
hole principle, at least one of the pigeonholes S; must contain more
than |kn(n +1)/2n — 1/n| = [[kn(n + 1 — 2)]/2n| pigeons. In other words,
s;i > lkn(n + 1) — 2/2n], as desired. [ |

In particular, if numbers 1 through 10 are randomly placed around a
circle, at least three consecutive integers in the arrangement must have a
sum exceeding |[3-10-11 —2]/(2-10)] = 16.

We now discuss the strong version of the principle of induction.

Strong Version of Induction

Sometimes the truth of P(k) might not be enough to establish that of
P(k +1). In other words, the truthfulness of P(k + 1) may require more
than that of P(k). In such cases, we have to assume a stronger inductive
hypothesis that P(ng), P(ng + 1), ... , P(k) are all true; then verify that
P(k + 1) is also true. This strong version, which can be proved using the
weak version (see Exercise 57), is stated as follows.

(The Second Principle of Mathematical Induction) Let P(n) be a
predicate satisfying the following conditions, where n is any integer:

* P(ng) is true for some integer ny.

» If% is an arbitrary integer > ng such that P(ng) AP(ng + 1) A--- AP(k)
is true, then P(% + 1) is also true. Then P(n) is true for every n > ny.

The next theorem illustrates this proof technique. [ |

(The Fundamental Theorem of Arithmetic) Every positive integer
n > 2 either is a prime or can be written as a product of primes.

PROOF (by strong induction):
Let P(n) denote the given predicate.

Basis step Choose ng=2. Since 2 is itself a prime, P(2) is true.

Inductive step Let & be a positive integer > 2 such that P(2), P(3), ...,
P(k) are true; that is, assume that integers 2 through % are primes or can
be written as products of primes. We would like to show that P(k + 1) is
also true; that is, integer k£ + 1 is a prime or can be expressed as a product
of primes.

If £ 4+ 1 is itself a prime, then we are done. If £ + 1 is not a prime, it must
be the product of two positive integers x and y, where 1 < x,y < k+ 1. By
the inductive hypothesis, both x and y are primes or products of primes.
Therefore, £+ 1=xXy is also a product of two or more prime numbers.
In other words, P(k + 1) also holds:

Thus, by the strong version of induction, P(n) is true for everyn >2. W
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We now present an interesting application of the fundamental theorem
of arithmetic, which is the cornerstone of number theory, and the floor
function.

Find the number of trailing zeros in 123!

SOLUTION:

By the fundamental theorem of arithmetic, 123! can be factored as 2¢5°c¢,
where ¢ denotes the product of primes other than 2 and 5. Clearly a > b.
Each trailing zero in 123! corresponds to a factor of 10 and vice versa.

. Number of trailing zeros — Number of products of the form
‘ g ~ \2-5in the prime factorization

= minimum of a and b

=b, sincea > b
We proceed to find b:
Number of positive integers < 123 and divisible by 5 = |123/5] = 24
Each of them contributes a 5 to the prime factorization of 123!
Number of positive integers < 123 and divisible by 25 = [123/25] =4

(See Figure 4.29.) Each of them contributes an additional 5 to the prime
factorization. Since no higher power of 5 contributes a 5 in the prime fac-
torization of 123!, the total number of 5’s in the prime factorization equals
24 4+ 4 = 28. Thus the total number of trailing zeros in 123! is 28.

each contributes a 5

123! =123...120... 115...100...95...75...50...25...10...5...1

~

each contributes an additional 5
|

The next example is another interesting application of the floor function.
It employs the following facts from number theory:

* Every positive integer that is not a square has an even number of positive
factors. For example, 18 has six positive factors: 1,2, 3,6,9, 18; 21 has
four: 1,3,7,21; 19 has two: 1, 19.

* Every perfect square has an odd number of positive factors. For exam-
ple, 25 has three positive factors, namely, 1,5, and 25; 64 has seven:
1,2,4,8,16,32, and 64.
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» There are | /n| perfect squares < n.

* For example, there are |+v27]=5 perfect squares not exceeding
27:1,4,9,16,25; there are |+/68]| =8 perfect squares <68 : 1,4,9, 16,
25, 36,49, 64.

There are 1000 rooms in a hotel and every room is occupied by a guest. The
first guest opens the door to every room. The nth guest closes every nth
door if it is open and opens it otherwise, where 2 < n < 1000. How many
doors will be open at the end?*

SOLUTION:

Before applying these results to solve the puzzle, let us study a mini-version
with 10 tenants and 10 apartments. The first tenant opens all 10 doors; the
second tenant closes the 2nd, 4th, 6th, 8th, and 10th doors; the third closes
the 3rd door, opens the 6th door, and closes the 9th door; the fourth tenant
opens the 4th and 8th doors. Continuing like this, the 10th tenant closes
the 10th door. These data are summarized in Table 4.2, where O indicates
the door is open and C indicates the door is closed.

Door

Tenant 1 2 3 4 5 6 7 8 9 10
1 O O O O o o o o o (0]
2 C . C C C . C
3 C . (0] . C
4 (0] (0] .
5 C (0]
6 C .
7 C .
8 C .
9 (0] .

10 C

It follows from the table that doors 1, 4, and 9 remain open at the end,
so the number of such doors is three. (Notice that 3 = |+/10]; so can you
predict the answer to the given problem? Construct tables like Table 4.2
for 13 tenants and 13 apartments, 18 tenants and 18 apartments, and 25
tenants and 25 apartments, and look for a pattern.)

Let us now return to the original problem. The first tenant opens all
doors. Consider the kth tenant, where 2 < 2 < 1000.

Case 1 Let n be a perfect square, where n2 < 1000. Since n has an odd
number of positive factors, the last person to touch the door will open it.
Thus every nth door will remain open if n is a perfect square. The number

*Based on M. vos Savant, Ask Marilyn, St. Martin Press, New York, 1992, p. 228.
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of such doors equals the number of perfect squares < 1000, namely,

[v1000] = 31.

Case 2 Suppose n is not a perfect square, where n2 < 1000. Since n has an
even number of positive factors, the last person to touch the door will close
it. In other words, every nth door will remain closed if n is not a perfect
square.

Thus, by the addition principle, 31 + 0 = 31 doors will remain open. They
are doors numbered 1,4, 9, 16,25, ...,900, and 961. |

More generally, suppose there are m tenants and m apartments, and the
first tenant opens all doors. The jth tenant closes every jth door if it is open,
and opens it otherwise, where 2 < j < m. How many doors will remain open
at the end?

Exercises 4.4

1. Compute the 36th triangular number. (It is the so-called beastly
number.)

2. Prove that the sum of two consecutive triangular numbers is a perfect
square.

(Twelve Days of Christmas) Suppose you sent your love 1 gift on the
first day of Christmas, 1 + 2 gifts on the second day, 1 + 2 + 3 gifts on the
third day and so on.

3. How many gifts did you send on the 12th day of Christmas?

4. How many gifts did your love receive in the 12 days of Christmas?
Using PMI, prove each for every integer n > 1.

2 n
8. 2 @i-D=n’ 6. 3z ntDEntD
i=1 i=1 6
n o [nm+1)7? noo o ah—1)
. 3 — - 8. Z ar 2 (r # 1)
! lgll [ 2 } i=1 r—1
9. n2 + n is divisible by 2. 10. n* + 2n3 + n2 is divisible by 4.

11. The number of lines formed by joining n (> 2) distinct points in a plane,
no three of which being collinear, is n(n — 1)/2.

12. The number of diagonals of a convex n-gon* is n(n — 1)/2 > 3.

13. Let a be a positive integer and p a prime number such that p | a™. Then
pla, wheren > 1.
(Hint: Use Exercise 37 in Section 4.2.)

*An n-gon is a polygon with n sides. An n-gon such that the line segment joining any two
points inside it lies within it is a convex polygon.
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14. Provethat 14+ 2+ ... +n = n(n + 1)/2 by considering the sum in the
reverse order.* (Do not use induction.)

Evaluate each sum.

30 50 no no
15. Y (8k2—-1) 16. Y (k3 +2) 17 Zle/ZJ 18. erz/ZW
k=1 k=1 1= 1=

Find the value of x resulting from executing each algorithm fragment.

19. X < 0 20. X < 0

for i=1 to n do for i=1 to n do

X < x + (2i — 1) X < X + i(i +1)
21. x < 0

for i=1 to n do
for j=1 to i do
X < X + 1

Evaluate each sum and product.

n 15 n 15 n 15 n 15

22. Y Y 23. Y Y 24. Y Y52 25. > > (2j-1
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

26. []2% 27. ]2 28. [] [1:é/ 29. [] [] 2
i=1 i=1 i=1 j=1 i=1 j=1

30. A magic square of order n is a square arrangement of the positive
integers 1 through n? such that the sum of the integers along each
row, column, and diagonal is a constant %, called the magic constant.
Figure 4.30 shows two magic squares, one of order 3 and the other of
order 4. Prove that the magic constant of a magic square of order n is
n(n2+ 1)/2.

8|1]6 1]14|15/4
3|57 12(7(6]9
4(9]2 8 [11]10| 5
k=15 13|12 |3 [16
k=34

*An interesting anecdote is told about Karl Frederich Gauss (1777-1855), one of the great
mathematicians. When he was a child, his teacher asked his pupils to compute the sum of the
first 100 positive integers. According to the story, the teacher did so to get some time to grade
his papers. To the teacher’s dismay, Gauss found the answer in a few moments by pairing the
numbers from both ends:

1+424+3+---+50+4+51+---4+98+99+ 100
| — |

The sum of each pair is 101 and there are 50 pairs. So the total sum is 50 - 101 = 5050.




44 Mathematical Induction 223

Let p, q, and r be prime numbers, and i, j, and £ whole numbers. Find the
sum of the positive divisors of each.

31. pi 32. pi¢/ 33. pig/r*

34. Let p be a prime and n € N. Prove that p” is not a perfect number.
(Hint: Prove by contradiction.)

Find the number of times the statement x < x + 1 is executed by each
loop.

35. for i=1 to n do 36. for i =1 ton do
for j=1 to i do for j =1 to i do
X < x +1 for k =1 to i do
X < x +1
37. fori=1 ton do 38. fori=1 to n do
for j =1 to i do for j =1 to i do
for k =1 to j do for k =1 to i do
X < x + 1 for 1 =1 to i do
X < x +1

According to legend, King Shirham of India was so pleased with the inven-
tion of chess that he offered to reward its inventor Sissa Ben Dahir with
anything he wished. His request was a seemingly modest one: one grain
of wheat on the first square of a chessboard, two on the second, four on
the third, and so on. The king was delighted with this simple request,
but soon realized he could not fulfill it. The last square alone would take
263 = 9,223,372,036,854,775,808 grains of wheat. Find each for an n x n
chessboard.

39. The number of grains on the last square.
40. The total number of grains on the chessboard.

41. Let a, denote the number of times the statement x <— x + 1 is executed
in the following loop:

for i =1 to n do
for j =1 to |i/2] do
X < x +1

Show that
n? .
o 1 if n is even
N =
21
n if n is odd

Find the number of trailing zeros in the decimal value of each.

42. 100! 43. 378! 44. 500! 45. 1000!
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46. Find the flaw in the “proof” in Example 4.21.

Prove each, where ¢, denotes the nth triangular number and n > 2.

47. 8¢, + 1= (2n + 1)2 48. 8t,_1 +4n = (2n)?
49. 2 | +12=t, 50. 34 = nn+1)(n+2)
. =
~ 6
=1

Let A’ Ala A27' L] An7 Bl’ B27' ] Bﬂ be any Sets’ andpla p27' b pn, q) Qb

q2,...

*51.

*53.
*54.
*55.

*56.

*57.

*58.

*%59.

*%60.

, ¢n be any propositions. Using induction prove each.
n n
AU(ﬁBi)Zﬁ(AUBi) *52. A (UB)) = UANB))
i=1 i=1 =1 =1
~@P1Ap2 A App) =(~p1) V(~p2) V- V(~pp)
~@P1Vp2V - Vpp)=(~p1) Al~p2) Ao A(~pp)

Prove that any postage of n (> 2) cents can be made using two- and
three-cent stamps. (Hint: Use the division algorithm and induction.)

Let ¢ and & be any two positive integers with a>b. Using
the sequence of equations in the euclidean algorithm prove that
ged{a, b} = ged{r,_1,rn},n > 1.

Prove the strong version of mathematical induction, using the weak
version.

Prove the weak version of induction, using the well-ordering
principle.

Let S;, denote the sum of the elements in the nth set of the sequence
of sets of squares {1}, {4, 9}, {16, 25,36}, ... . Find a formula for S,,.
(J. M. Howell, 1989)

Redo Exercise 59 using the sequence of triangular numbers {1},
{8,6}, {10,15,21},.... (J. M. Howell, 1988)

4.5 Algorithm Correctness

Suppose we wrote an algorithm to solve a problem and translated the algo-
rithm into a computer program. Since it is impossible to test the program
for all sets of input values, we rely on a mathematical proof to ensure that
the program will always yield the correct output. The principle of induction
can certify the correctness of algorithms.

Correct Program

A correct program yields the correct result for all legal input values,
assuming the program contains no compilation and execution errors.
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Proving the correctness of a program, especially a complex one, is not at all
an easy task. It consists of two steps:

(1) Proving that the program will always terminate; and
(2) proving that it will always produce the correct result. The second step
constitutes the partial correctness of the program.

Loop Invariant

First, we will establish the partial correctness of simple while loops. Let
n denote the number of iterations of a while loop. Assume a predicate
P(n). A relationship among the variables holds true before the loop is exe-
cuted and after each iteration of the loop, no matter how large n is. As
the algorithm execution progresses, the values of the variables in the loop
may vary, but the relationship remains unaffected. Such a predicate is a
loop invariant.

To prove that P(n) is a loop invariant, we apply PMI, as the next two
examples demonstrate.

IM Algorithm 4.6 computes the product of two positive integers x and y. Notice
that the values of the variables x and y are not affected by the loop in lines
3-7. But the values of i and answer do get changed during each iteration of
the loop.

Algorithm multiplication(x,y)

(* This algorithm computes the product of the positive integers x and y,
and prints the answer. *)

0. Begin (* algorithm *)

1 answer < 0 (* initialize answer *)

2 i <0 (* counter *)

3. while i < x do

4. begin (* while *)

5 answer < answer + y

6 i~ i+

7 endwhile

8. End (* algorithm *)

Algorithm 4.6

Let a, and i,, denote the values of answer and i at the end of n itera-
tions. Let P(n): a, =i,- y. We shall prove that the predicate P(n) is a loop
invariant.

PROOF (by PMI):
Let P(n): ap, =i, -y,n > 0.

Basis step The value n =0 means zero iterations; it corresponds to the
situation before the loop is entered. When n = 0,a9p = 0 and ig = O.
Therefore, ag = ig - y; so, P(0) is true.



226

iXAMPLE 4.26

Chapter 4 Induction and Algorithms

Induction step Assume P(%) is true; that is, a =i, -y after k iterations.
Then ap,1=ap +yand i1 =i + 1, by lines 5 and 6. Thus:

ap+1 =1 -y +, by the inductive hypothesis
=@ + Ly
=lp41-Y

So P(k + 1) is true.
Thus, by PMI, P(n) is true for every n > 0; that is, P(n) is aloop invariant.
|

How is the property that P(n) is a loop invariant useful? Since a, =i, -y
after n iterations, it must be true even when we exit the loop. The loop is
terminated when i, = x. Then answer =a, = x -y, as expected. Since P(n)
is a loop invariant, the algorithm does indeed work correctly.

What exactly is the iteration method? Suppose we would like to com-
pute the value f(n) of a function f at an integer n > ny. In the iteration
method, we use f(ng) to compute f(ng + 1), then use the successive val-
ues flng + 2), flng + 3),... to evaluate f(n). For instance, to evaluate
n! by iteration, we successively evaluate 0!, 1!, 2!,..., (n — 1)! and then
evaluate n!.

Algorithm 4.7 is an iterative algorithm for computing n!, where n > 0. Let
fact(n) be the value of factorial at the end of n iterations of the loop. Prove
that P(n): fact(n)=n!is a loop invariant.

Algorithm factorial (n)

(* This algorithm computes and prints the value of
n! for every n > 0. *)

0 Begin (* algorithm *)

1 factorial « 1 (* initialize *)

2 i<« 1 (* counter *)

3. while i < n do

4, begin (* while *)

5 i« i+l

6 factorial <« factorial * i

7 endwhile

9 End (* algorithm *)

Algorithm 4.7

PROOF (by PMI):
Let P(n): fact(n) =n!,n > 0.

Basis step When n =0, fact(0) =1 =1! by line 1; so P(0) is true.
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Induction step Assume P(k) is true: fact(k) =k!. Then:

fact(k + 1) = fact(k) - (¢ + 1), by line 6
=k!- (k + 1), by the inductive hypothesis
=(k+ 1!

Therefore, P(k + 1) is true.

Thus, by induction, P(n) holds true for every n > 0; that is, P(n) is a loop
invariant and hence the algorithm correctly computes the value of n!, for
every n > 0. [ |

Searching and Sorting Algorithms

The remainder of this section establishes the partial correctness of a few
standard searching and sorting algorithms. We begin with two searching
algorithms, linear and binary.

Linear Search Algorithm

Let X =[x1,x9,...,x,] be anunordered list (also known as a one-dimensional
array or simply an array) of n distinct items. We would like to search the
list for a specific item, called key. If key exists in the list, the algorithm
should return the location of key.

We search the list from right to left for convenience. Compare x, and
key. If x, = key, key occurs and location =n. Otherwise, compare x, 1 and
key. If they are equal, we are done. Otherwise, continue the search until
it is successful or the list is empty. This algorithm is the linear search
algorithm.

For example, let X =[Dallas, Boston, Nashville, Albany, Portland] and
key = Albany. Then key occurs in the list at location 4.

In general, we cannot assume key occurs in the list. To make the search
process always successful, we store key in location 0: x¢y < key. So if the
search routine returns the value zero for location, it implies key does not
occur in the list.

An iterative version of the linear search algorithm is given in
Algorithm 4.8.

Algorithm linear search (X,n,key,location)

(* This algorithm searches a list by the Tinear search method for
a key and returns its Tocation in the list. To make the search
always successful, we store key in xg. If the algorithm returns
the value 0 for Tocation, key does not occur in the Tist. *)

0. Begin (* algorithm *)

1 Xp < key

2. i<« n

3 while x5 # key do

4 i« i-1
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5. location <« i
6. End (* algorithm *)

Algorithm 4.8

Prove that the linear search algorithm in Algorithm 4.8 works correctly for
every n > 0.

PROOF (by PMD):
Let P(n): The algorithm returns the correct location for every list of size
n>0.

Basis step Whenn = 0, the while loop is skipped. The algorithm returns
the value 0 in location by line 5, which is correct. So P(0) is true.

Induction step Assume P(k) is true for an arbitrary integer £ > 0; that
is, the algorithm works when the list contains % items.
To show that P(k + 1) is true, consider a list X with £ + 1 elements.

Case 1 Ifxp,q = keyinline 3, the while loop will not be entered and the
algorithm returns the correct value 2 + 1 for location in line 5.

Case 2 Ifuxp.1 # key, i =k at the end of the first iteration. This restricts
us to a sublist with £ elements. By the inductive hypothesis, the algorithm

works correctly for such a list.
In both cases, P(k + 1) holds. Thus, by induction, P(n) is true for n > 0.

In other words, the algorithm returns the correct location for every list
with n > 0 elements.

Binary Search Algorithm

The binary search algorithm searches for a given key if the list X is
ordered. The technique employed is divide and conquer. First compute
the middle (mid) of the list, where mid = | (1 + n)/2|. The middle item is

Xmid-
Now partition the list into three disjoint sublists: [x1, ..., Xmid—1],
[xmial, and [xmig+1, ---, Xnl. If xmig =key, the search is successful and

location = mid. If they are not equal, we search only the lower half or the
upper half of the list. If key < xpiq, search the sublist [x1, ..., Xmig_1];
otherwise, search the sublist [xyig+1, ..., 2n]. Continue like this until the
search is successful or the sublist is empty.

Use the binary search algorithm to search the list
X =13,5,8,13,21, 34,55, 89] for key =5.

SOLUTION:
Let x; denote the ith element of the list X, where 1 <i <n and n =8.
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Step 1 Compute mid for the list X:
mid = [(1+n)/2] = [(1+8)/2] = 4.
Therefore, the middle term is x,;q = 13.

Step 2 Compare xpiq and key:

Since x4 # 5, key, if it occurs, must exist in the lower sublist
[x1,x2,x3] =[3,5, 8] or in the upper sublist [x5,x¢,x7,x8] =[21, 34, 55, 89].
Since key < x4, search the first sublist and continue steps 1 and 2 until
either key is located or the sublist becomes empty.

Step 3 Compute mid for the list [x1,x9,x3]:
mid = (14 3)/2] =2
S0 Xmig =x9 =5.

Step 4 Compare x,iq and key:

Since xniq = key, the search is successful. Key occurs at location 2 and
we are done. (As an exercise, use the algorithm to search the list X with
key =23.) [ |

The steps in this example can be translated into an algorithm. See
Algorithm 4.9.

Algorithm binary search(X,1,n,key,mid)

(* This algorithm searches an ordered list X of n elements for a special
item (key). It returns the Tocation of key if the search is
successful and zero otherwise. The variable mid returns such a value.
The variables low and high denote the lower and upper indices of the
list being searched. *)

0. Begin (* algorithm *)

1. Tow <« 1

2. high < n

3. while Tow < high do (* Tist is nonempty *)

4. begin (* while *)

5. mid < [(low + high)/2]

6. if key=xXpiq then (* key exists in the Tist*)
7. exit the Toop

8. else if key < Xpiq then (* search Tower half*)
9. high < mid - 1

10. else (* search the upper half *)

11. Tow < mid + 1

12. endwhile

13. if low > high then (* search is unsuccessful *)
14. mid < 0

15. End (* algorithm *)
Algorithm 4.9
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The next example establishes the partial correctness of this algorithm
using strong induction.

Prove that the binary search algorithm (Algorithm 4.9) works correctly for
every ordered list of size n > 0.

PROOF (by strong induction):
Let P(n): The algorithm works for every ordered list of size n.

Basis step Whenn =0, low =1 and high =0. Since low < high is false in
line 3, the while loop is not executed. So the algorithm returns the correct
value 0 from line 14, as expected, and P(0) is true.

Induction step Assume P(i) holds for every i <k, where & > 0; that is,
the algorithm returns the correct value for any list of size i < k.

To show that P(2 + 1) is true, consider an ordered list X of size £ + 1.
Since high=Fk + 1 > 1=Iow, the loop is entered and the middle index is
computed in line 5.

Case 1 If key =xniq, we exit the loop (line 7) and the value of mid is
returned, so the algorithm works.

Case 2 Ifkey < xmiq, search the sublist x1, ..., xmig_1; otherwise, search
the sublist x1pig+1, ..., %,. In both cases, the sublists contain fewer than
k + 1 elements, so the algorithm works in either case by the inductive
hypothesis.

Thus P(k + 1) is true. So, by PMI, P(n) is true for n > 0; that is, the
algorithm works correctly for every ordered list of zero or more items. H

Next we present two standard sorting algorithms and prove their
correctness.

Sorting Algorithms

Suppose we are given a list of n items and would like to sort them in “ascend-
ing order.” Several methods are available. Two algorithms that can do the
job are bubble sort and selection sort.

Bubble Sort

Bubble sort is a simple, elegant algorithm for sorting a list of n items. It
“bubbles up” smaller items to the top and pushes larger items to the bottom:
Compare consecutive elements, beginning with the first pair. Swap them if
they are out of order. Compare the next pair and swap them if necessary.
Continue like this to the end of the list. This ends the first pass. Now place
the largest element at the end of the list. Repeat these steps with all but
the largest element until the resulting sublist consists of one element. The
list is now ordered.
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The following example demonstrates this method.
Using bubble sort, sort the list X = [34, 13, 21, 3, 89].

SOLUTION:
Let x; denote the ith element in the list, where 1 < < 5. The given list is

1 2 3 4 5
X [34]13(21|3|89

Step 1 Compare x1 and x9. Since x1 > x9, swap them. This yields the list

1 2 3 4 5
X |13(34|21|3]|89

Now compare x2 and x3. Since xg > x3, interchange xg and x3. This produces
the list

1 2 3 4 5
X |13(21|34|3]|89

Since x3 > x4, switch them, yielding the list

1 2 3 4 5
X |13]21(3|34|89

Compare x4 and x5. Since x4 < x5, they are in the correct order
and no interchanging is needed. This completes the first pass. At the
end of the first pass, the largest element in the list is placed in proper
position:

1 2 3 4 5

X [13|121|3|34189
1_ in correct position

[ S —
to be sorted

Step 2 In the second pass, compare the elements x; through x4 and swap
them if necessary. This results in the two largest elements being placed
correctly:

1 2 3 4 5
X |13]3]|21|34|89

N — N——
to be sorted correctly sorted
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Step 3 The third pass involves the elements x1 through x3. At the end of
this pass, the three largest elements are correctly placed:

1 2 3 4 5

X |3]13|21|34|89

——— ———
to be sorted in correct order

Step 4 At the end of the fourth pass the list is completely sorted:

1 2 3 4 5
X |3(13|21 (34|89

all in correct order

Two important observations:

¢ Atthe end of the ith pass, the i largest elements are correctly placed
at the end of the list, where 1 < i < n. So the (i + 1)st pass involves
the elements x1 through x,,_;.

* Bubble sort takes n — 1 passes to sort a list of n items, even if the
list becomes ordered at the end of the ith pass, where: < n — 1.
Once the list is sorted, it makes no sense to go through the remain-
ing passes, so the additional passes can be avoided with a boolean
variable.

The various steps in Example 4.30 can be developed into an algorithm
for bubble sort, as presented in Algorithm 4.10.

Algorithm bubble sort(X,n)

(* This algorithm sorts a 1ist X of n elements
using the bubble algorithm. *)

0. Begin (* algorithm *)

1 for i=1ton —1do

2 for j=1 ton — i do

3. if xj > Xj41 then

4 swap xj and Xji1

5. End (* algorithm *)

Algorithm 4.10
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Establish the correctness of the bubble sort algorithm.

PROOF (by PMI):
Let P(n): The algorithm sorts every list of size n > 1.

Basis step When n =1, the list contains just one element and hence is
clearly sorted, so P(1) is true.

Induction step Assume P(%)istrue; thatis, the algorithm sorts correctly
every list of £ (> 1) items.

To show that P(k2 + 1) is true, consider a list X = [x1,x9, ..., Xz+1].
Since k£ + 1 > 2, the for loop in line 1 is entered. When i =1, j runs from 1
through n — 1. Lines 3 and 4 are executed: the consecutive elements x; and
xj+1 are compared and swapped if out of order. The inner for loop places
the largest of the elements x1, x9,..., x341 in position £ + 1. This leaves
a sublist of £ elements, [x1, x9, ..., xz]. By the inductive hypothesis, the
algorithm correctly sorts it. It follows that the algorithm correctly sorts
the entire list X; that is, P(2 + 1) is true.

Thus, by the principle of induction, P(n) is true for n > 1; that is, the
bubble sort algorithm always works. |

Selection Sort

Unlike bubble sort, selection sort finds the largest element and swaps it
with x, if x, is not the largest element. Find the largest of the remaining
elements x1, x9,..., x,_1, and switch it with x,_1 if it isn’t x,,_1. Continue
like this until the list is completely sorted.

In each pass, unlike in bubble sort, if two elements are out of order, we
do not swap them right away but wait to find the largest element of the
sublist. At the end of the ith pass, the largest of the elements x1, xg, ...,
Xp—i+1 is swapped with x,,_;.1, where 1 <i < n.

This outline of the selection sort algorithm can be a bit refined. In the
ith pass, initially assume x,,_;; is the largest element. Find the largest of
the elements x1, x9,..., x,—;. Swap it with x,,_; 1 if necessary. Algorithm
4.11 results.

Algorithm selection sort(X,n)

(* This algorithm sorts a Tist X of n items using the iterative version
of selection sort. Maxindex denotes the index of the largest element
in a given pass. *)

0. Begin (* algorithm *)

1. if n > 1 then(* Tist contains at least two elements *)

2. for i=1ton —1do
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3. begin (* for *)

4. maxindex <~ n — i + 1 (* assume xp_jy1 is the
largest element; save its index. *)

5. for j=1ton — i do

6. if Xj > Xmaxindex» then (* update maxindex *)

7. maxindex < j

8. if maxindex # n — i + 1, then (* found a larger
element; swap the corresponding elements *)

9. SWap Xmaxindex and Xp—it1

10. endfor

11. End (* algorithm *)
Algorithm 4.11

IM Establish the correctness of Algorithm 4.11.

PROOF (by PMID):
Let P(n): The algorithm works correctly for every list of size n > 1.

Basisstep Whenn =1, thelist contains one element and is clearly sorted,
so P(1) is true.

Induction step Assume P(%)istrue; thatis, the algorithm sorts correctly
every list of size £ > 1.

To show that P(k + 1) is true, consider a list X=[x1, x9, ..., x+1] with
k + 1 elements, where £ + 1 > 2. Since £ + 1 > 2, the condition in line 1 is
satisfied, and we enter the loop in line 2. When i = 1, maxindex = (k + 1) —
1+ 1=F% + 1. The for loop in lines 5-7 compares each of the elements x1,
x9,...,% With Xnaxindex and updates it as needed. Line 8 updates maxindex
if we have found an element larger than x;, ;. If maxindex # k£ + 1, then
the elements x;,+1 and Xpaxindex are swapped. This stores the largest of the
k + 1 elements in position £ + 1, leaving a sublist of £ elements, namely,
X1, X2,..., X, to be sorted.

Therefore, by the inductive hypothesis, the algorithm sorts correctly the
list X containing 2 + 1 elements.

Thus, by induction, P(n) is true for every n > 1; that is, the algorithm
correctly sorts every list of size n. |

These searching and sorting algorithms are pursued again in Section 4.7.
Additional sorting algorithms appear in the exercises.

Exercises 4.5

Prove that the given predicate P(n) in each algorithm is a loop invariant.

1. Algorithm exponential(x,n) 2. Algorithm division(x,y)
(* This algorithm computes (* This algorithm computes
x", where xeRTt and the quotient and the

new *) remainder when a positive
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0. Begin (* algorithm *)
1 answer <« 1

2. whilen > 0 do

3. begin (* while *)

4 answer <— answer - X
5 n<n-1

6. endwhile

7. End (* algorithm *)
P(n): a, = x", where ap
denotes the value of answer
after n iterations of the
while Toop.

Algorithm Euclid(x,y,divisor)
(* See Algorithm 4.2 *)

P(n): gcd{xn,yn} =gcd{x,y}
where xp and yp denote

the values of x=dividend
and y=divisor after n
iterations.

Algorithm gcd(x,y) 5.
(* This algorithm computes

the gcd of two positive

integers x and y. *)

0. Begin (* algorithm *)

1. while x # y do

2 if x > y then

3. X < X — Yy

4, else

5 y <y —X

6 gcd <« x

7. End (* algorithm *)

P(n): gcd{xn,yn} =gcd{x, y},
where x; and y, denote the
values of x and y at the end
of n iterations of the loop.
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integer x is
divided by a positive
integer y using addition and
subtraction. *)
0. Begin (* algorithm *)
dividend « x
divisor <y
quotient <« 0
remainder <« dividend
while dividend >

divisor do
begin (* while *)
7. dividend <~ dividend

— divisor

8. quotient «<—quotient+1
9. remainder «<—dividend
10. endwhile
11. End (* algorithm *)

OB W N =

[=)]

Algorithm sum (x,y) (* This
algorithm prints the sum of
two nonnegative integers x
and y. *)

0. Begin (* algorithm *)

1 sum <« X

2. count < 0 (* counter *)
3. while count < y do

4. begin (* while *)

5 sum <« sum + 1

6 count <« count + 1

7. endwhile

8. End (* algorithm *)

P(n): x=quny + ry, where qp
and r, denote the quotient
and the remainder after n
iterations.

Algorithm square (x) (* This algorithm prints the square of xeW. *)

0 Begin (* algorithm *)
1 answer < 0

2 i < 0 (* counter *)
3. While i < x do

4.  begin (* while *)
5

6

7

answer < answer + (2i + 1):

i<~ i+1
endwhile
8. End (* algorithm *)

P(n): an = nz, where ap denotes the value of answer at the end of n

iterations.
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Using the algorithm in Exercise 4, compute the gecd of each pair of
integers.

7. 18,3 8. 28,12 9. 28,48 10. 24,112
Sort the following lists using the bubble sort algorithm.
11. 23,7,18, 19, 53 12. 19,17,13,8,5

13-14. Sort each list in Exercises 11 and 12 using the selection sort
algorithm.

Write an iterative algorithm to do the tasks in Exercises 15-17.
15. Compute n!,n > 0.
16. Determine if two n x n matrices A and B are equal.
17. Compute the product of two n x n matrices A and B.

18. Let A=(a;)nxn and B=(b;j)nxn. A is less than or equal to B,
denoted by A < B, if a;; < b;; for every i and j. Write an algorithm
to determine if A < B.

Consider a list X of n numbers x1,x9,...,x,. Write iterative algorithms to
do the tasks in Exercises 19-25.

19. Find the sum of the numbers.

20. Find the product of the numbers.

21. Find the maximum of the numbers.

22. Find the minimum of the numbers.

23. Print the numbers in the given order x1, x2,..., X,.
24. Print the numbers in the reverse order x1, x2,..., xn.

25. Write an algorithm to determine if a string S of n characters is a
palindrome.

26-36. Establish the correctness of each algorithm in Exercises 15-25.

Use the insertion sort algorithm in Algorithm 4.12 to answer Exercises
37-39.

Algorithm insertion sort(X,n)

(* This algorithm sorts a Tist X of n elements into
ascending order by inserting a new element in the
proper place at the end of each pass. *)

0. Begin (* algorithm *)

1 for i=2 to n do

2. begin (* for *)

3. temp < xj (* temp is a temporary variable *)

4 j<«~—i-1

5 while j > 1 do
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6. begin (* while *)
7. if x; > temp then
8. Xj41 < Xj

9. j<«<3j-1

10. endwhile

11, xj41 <« temp

12. endfor

13. End (* algorithm *)

Algorithm 4.12

Sort each list.
37. 3,13,8,6,5,2 38. 11,7,4,15,6,2,9

39. Establish the correctness of the algorithm.

4.6 The Growth of Functions

The growth of functions can be investigated using three important nota-
tions: the big-oh (O), the big-omega (2), and the big-theta (®) notations.*
We will employ it in Sections 4.7 and 5.7 to analyze some standard
algorithms.

Suppose we have developed two algorithms to solve a problem. To deter-
mine if one is better than the other, we need some type of yardstick to
measure their efficiency. Since the complexity of an algorithm is a function
of the input size n, we measure efficiency in terms of n. To this end, we begin
with the big-oh notation, introduced in 1892 by the German mathematician
Paul Gustav Heinrich Bachmann. The big-oh symbol is also known as the
Landau symbol after the German mathematician Edmund Landau who
popularized it.

The Big-Oh Notation

Let f, g: N — R. Then f(n) is of order at most g(n), if a positive constant
C and a positive integer n exist such that | f(n)| < C|g(n)| for every n > ny.
In symbols, we write f(n) = O(g(n)). (Read this as f(n) is big-oh of g(n).)

In this definition, if we can find one value for C, any value greater than
that also will work, so the value of C is not unique.

When we say the time needed to execute an algorithm is O(g(n)), it
simply means the time needed is not more than some constant times |g(n)|
when n is sufficiently large. For instance, let ¢, denote the maximum
number of element comparisons required in line 3 of the linear search
algorithm (Algorithm 4.8), where n denotes the input size. Using ¢, as an

*Q and © are the uppercase Greek letters omega and theta, respectively.
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Paul Gustav Heinrich Bachmann (1837-1920), the son of a
Lutheran minister, was born in Berlin. He inherited a pious attitude and
a great love for music. During his early years, he had difficulties in math-
ematical studies, but his talent was discovered by one of his teachers.

After recovering from tuberculosis in Switzerland, Bachmann studied
mathematics, first at the University of Berlin and then at the University of
Géttingen, where he attended Dirichlet’s lectures. In 1862 he received his
doctorate from Berlin under the guidance of the famous German math-
ematician Ernst Kummer, for a thesis on group theory. He became a
professor at Breslau and later at Munster.

Around 1890, he resigned his position and moved to Weimar, Germany,
where he continued his mathematical writing, composed music, played
the piano, and wrote music criticism for newspapers. His writings include
several volumes on number theory and a book on Fermait’s Last Theorem.
Bachmann died in Weimar.

Edmund Landau (1877-1938), the son of a gynecologist, was born in
Berlin. After attending high school, he studied mathematics at the University
of Berlin, receiving his doctorate under the German mathematician Georg
Frobenius in 1899. He taught at Berlin until 1909 and then moved to the
University of Gottingen, where both David Hilbert and Felix Klien were col-
leagues. After the Nazis forced him to quit teaching, he never gave another
lecture in Germany.

Landau’s principal contributions were to analytic number theory, espe-
cially to the distribution of primes. He wrote several books and more than 250
papers, and exercised tremendous influence on the development of number
theory. Landau died suddenly in Berlin.

estimate of the execution of the algorithm, it can be shown that ¢, =O0(n)
(see Example 4.44). This means ¢, grows no faster than n, when n is

sufficiently large.

Before we analyze the execution times of algorithms, we will study a few

simple examples to show how to use the big-oh notation.
Let f(n) =50n3 — 6n + 23. Show that f(n) = 0(n?).

SOLUTION:
f(n) =50n3 — 6n + 23
Therefore,

| f(n) | =| 50n® — 6n 4 23 |
<|50n3 |+ | —6n|+23], by the triangle inequality
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= 50n + 6n + 23

< 5013 + 6n% + 230, whenn >1 (Note:ng=1)
= 7913
Thus, by taking C =79, it follows that f(n) = O(n?). |

More generally, we have the following result.

m )
Let f(n) = Y a;n* be a polynomial in n of degree m. Then f(rn) = O(®n™).
i=0

PROOF:
fn) = amn™ + apm_1n™ 1 + .-+ + ain + ag. By the triangle inequality,
we have:

f()] < lamIn™ + lam—11n™ "1 + -+ la1in + |ao

< lamIn™ + lam-11n™ + -+ |a1|n™ +lagln™, n =1

m m
= (Z |ai|> n™ = Cn™™, where C = Z la;]
=1

i=1
=0@®")

Thus, when n is sufficiently large, the leading term dominates the
value of the polynomial. |

In Example 4.33, although f(n) = O(#3), it is also true that f(n) < 79n°
and f(n) < 79n5. So we could say correctly, but meaninglessly, that
f(n)=0(n®) and also f(n)=0(n®). To make comparisons meaningful,
however, we shall always choose the smallest possible order of magnitude.

Commonly Used Order Funetions

The most common order functions and their names are listed below,
arranged in increasing order of magnitude:

¢ Constant O(1)
¢ Logarithmic Odgn)
e Linear o)

* (no name exists) O(n lgn)
* Quadratic 0n?)

* Cubic 0(n?)

* Polynomial Oo(n™)
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* Exponential o@2m)
* Factorial o)

When we say that the order of magnitude of an algorithm is a constant,
we mean that the execution time is bounded by a constant; that is, it is
independent of the input size n. If the order is linear, the execution time
grows linearly; it is directly proportional to the input size.

Approximate values of some of the order functions are given in Table 4.3
for comparison; the graphs of a few of them are given in Figure 4.31.

Table 4.3 lgn n nlgn n2
3 10 30 100
6 100 600 10,000
9 1,000 9,000 100,000
13 10,000 130,000 100,000,000
16 100,000 1,600,000 10,000,000,000
19 1,000,000 19,000,000 one trillion
Figure 4.31 y
A
y=n!
4 -~
128 4 y=n?
64 +
32—+ y=nlgn
16 +
y=n
8 =+
4+ y=nlgn
2 =+
Az !
< f f f f f f f f f —>n
A/ 1 2 3 4 5 6 7 8 9 10

The order functions satisfy the following relationships among the fre-
quently used execution times, when rn is sufficiently large: O(1) < O(lg n)
< 0(n) < 0 lgn) < 0®2) < 0m3) < 02" < O®!). They give us an
idea of how long algorithms of varying orders will take to execute jobs.
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For instance, if two algorithms solve a problem, one with O(n) and the
other with O(lg n), then (other things being equal) the second algorithm
will work faster.

The next two examples also illustrate how to estimate the growth of
functions.

iXAMPLE 4.34 Show that n! =0(n") and Ig n! =0 1g n).

SOLUTION:

. n!l=nn-1)---3-2-1
<n-n---n-n-n, wheren>1
= nn
= 0(n") (Note: Use C=1.)

e Since n! <n” from above,

Ign!<nlgn (Note: If 0 < x <y, thenlgx <lgy.)

=0O(nlgn)

The following example shows how to estimate in a nested for loop the
growth of the number of times an assignment statement is executed.

IM Estimate f(n), the number of times the statement x < x + 1, is executed in

the following for loop.
for i=1 to n do
for j=1 to i do
X < x +1
SOLUTION:
Since the statement x < x + 1 is executed i times for each value of i, where
l<i<n,
" nn+1)
A P — O(n2
f(n)_ZL_ - 0(n?)
i=1
As n increases, f(n) grows as n2. |

The Growth of a Sum of Two Functions

Imagine an algorithm consisting of two subalgorithms. Suppose the orders
of execution times of the subalgorithms are given by f1(n) = O(g1(n)) and
fa(n) = O(ga(n)). The next theorem shows how to compute the order of the
algorithm.

(LEITAEEE Let fi) = O@ () and fon) = O@e(). Then (fi + f)n) =
O(max{lg1(n)], lg2(n)1}).
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PROOF

By definition, there exist positive constants Cy, C2, n1, and ng such that
[filn)] < Cy |g1(n)| for n > nq1, and |fo(n)| < Cslga(n)| for n > no. Let
C =max{Cq,Cy}, no =max{ni,ng}, and g(n) = max{|gi1(n)|, |g2(n)|}. Then:

|f1(n) +fa(n)| < C1lg1(n)| + Czlg2(n)]
< Clgn)| + C|g(n)|, where n > ng
= 2C|g(n)|

Thus f1(n) +f2(n) = O(g(n)); that is, (f1 +/f2)(n) = O(max{|g1(n)], |g2()[}).
|

It follows by this theorem that if f; (n) = O(g(n)) and fa(n) = O(g(n)), then
(f1 + f2)(n) =0(g(n)). Why?

The Growth of a Product of Two Functions

IE-IEOREM 4.16

ILXAMPLE 4.36

The next theorem helps us to estimate the growth of (f7 -f2)(n), the product
of the functions f1 and f5.

Letf1(n) = O(g1(n)) and fa(n) = O(gz(n)). Then (f1-f2)(n) = O(g1(n)-g2(n)).

PROOF
Again, by definition, there are constants Ci, Cy, n1, and ng such that
[f1(n)] < C1lg1(n)] for n > nq, and |fa(n)| < Cqlge2(n)| for n > ng. Let
C = C1Cqy and ng = max{ni, ns}. Then:
I(f1-f2)()] = |f1(n) - fo(n)]

= fA()] - [fa(n)]

< C1lg1(n)| - Celga(n)|

= C|g1(n)ga(n)|, where n > ng

Thus (f1 - f2)(n) = O(g1(n)g2(n)). n
The next two examples employ this handy theorem along with the earlier
theorems.
Let f(n) = 6n2 + 5n + 7 lg n!. Estimate the growth of f(n).
SOLUTION:
Since 6n2 = O(n?) and 5n = O(n),6n2 + 5n = O(n?) by Theorem 4.15.
Furthermore, 7=0(1), and Ig n! = O(n Ig n) by Example 4.34. So
7lgn!=0(1) Olgn)
= 0(1-nlgn), by Theorem 4. 16
=0(nlgn)
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Sincelgn < n, nlgn < n? for n > 1 (see Figure 4.31), it follows by

Theorem 4.15 that f(n) = 0(n2) + O(n Ig n) = 0(n2). [
@Iﬁm Let f(n) = (3n2 + 4n — 5) Ig n. Estimate the growth of f(n).
SOLUTION:
3n2 + 4n — 5=0(n2), by Theorem 4.14
Clearly,
lgn =0(gn)
So

f(n)=@Bn?+4n—-5)1gn
=012 0dgn)
= 0(n? 1g n), by Theorem 4. 16 u

We now turn to the big-omega and the big-theta notations for investi-
gating the growth of functions.

The Big-Omega and Big-Theta Notations

The big-oh notation has been widely used in the study of the growth of func-
tions; however, it does not give us an exact order of growth. For instance,
f(n)=0(g(n)) just implies that the function f does not grow any faster
than g. In other words, it simply provides an upper bound for the size of
f(n) for large values of n, but no lower bound.

When we need the lower bound, we employ the big-omega notation.
When we need both bounds to estimate the growth of f, we use the big-
theta notation. Both notations were introduced in the 1970s by Donald
Knuth of Stanford University.

We now pursue the big-omega notation. As you could imagine by now, its
definition closely resembles that of the big-oh notation; it can be obtained
by simply changing < to >.

The Big-Omega Notation

Let f,g: N — R. Suppose there is a positive constant C and a positive

integer ng such that |[f(n)| > C|g(n)| for every n > ng. Then f(n) is Q(g(n));

that is, f(n) = Q(g(n)). [As above, read this as f(n) is big-omega of g(n).]
The following example illustrates this definition.

LEXAMPLE 4.38 V) =50n3 — 6n + 23. When n > 0, 50n3 — 6n + 23 > 50n3. So, with

C=50 and g(n) = n3, it follows that f(n) > C-g(n) for every n > 0. Thus
f(n) = Qn3). (Notice that here ng = 0.) |
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Donald Ervin Knuth (1938-), a pioneer in the development of the theory of
compilers, programming languages, and the analysis of algorithms, is also
a prolific writer in computer science. He was born in Milwaukee, Wisconsin,
where his father, the first college graduate in the Knuth family, taught
bookkeeping at a Lutheran high school; his talent for mathematics and music
played a significant role in the intellectual development and pursuit of the
young Knuth.

As a youngster, Knuth had a marvelous gift for solving complex problems.
As an eighth grader, he entered the Ziegler’s Candies Contest to find the
number of words that can be formed from the letters in Ziegler’s Giant Bar.
Knuth listed 4500 such words, 2000 more than in Ziegler’s master list. This
won a television set for the school and enough Ziegler candy for the entire
student body.

In high school, Knuth entered the prestigious Westinghouse Science Talent Search (now Intel Science
Talent Search) with his project, The Prtrzebie System of Weights and Measures, that would replace the
cumbersome British system. His project won an honorable mention, and $25 from MAD Magazine for
publishing it. When he graduated from high school, he was already an accomplished mathematician,
musician, and writer.

He majored in physics at the Case Institute of Technology (now Case Western Reserve University) and
was introduced to an IBM 650 computer, one of the earliest mainframes. After studying the manual from
cover to cover, he decided that he could do better and wrote assembler and compiler code for the school’s
IBM 650.

In 1958, Knuth developed a system for analyzing the value of a basketball player, which the coach then
used to help the team win a league championship. Newsweek wrote an article about Knuth’s system and
Walter Cronkite carried it on the CBS Evening News.

In his sophomore year, Knuth switched his major to mathematics. His work at Case was so distin-
guished that when he was awarded his B.S. in 1960, the faculty made an unprecedented decision to grant
him an M.S. concurrently.

Knuth then entered the California Institute of Technology for graduate work and received his
Ph.D. in mathematics 3 years later. He joined the faculty there, also consulting for the Burroughs
Corporation writing compilers for various programming languages, including ALGOL 58 and
FORTRAN 11.

From 1968-1969, he worked at the Institute for Defense Analyses, Princeton, New Jersey. In 1969,
Knuth joined the faculty at Stanford University.

Knuth’s landmark project, The Art of Computer Programming, was initiated by Addison-Wesley
Publishing Co. in early 1962, while he was still in graduate school. Dedicated to the study of algorithms,
it would be a seven-volume series when completed. A revered work, it was the pioneer textbook in the
1970s and continues to be an invaluable resource. Knuth developed two computer languages to deal with
mathematics typography, TEX, a typesetting program, and Metafont, a program to develop the shapes of
letters.

He has received numerous honorary degrees from universities around the world: the Grace Murray
Hopper Award (1971), the Alan M. Turing Award (1974), the Lester R. Ford Award (1975), the National
Medal of Science (1979), the McDowell Award (1980), the Computer Pioneer Award (1982), and the Steele
Prize (1987).

An accomplished church organist and composer of music for the organ, Knuth retired from Stanford
in 1992.
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We now make an interesting observation. To thisend, letf(n) = Q(g(n));
so [f(n)| = C|g(n)| for n > ng. Then |g(n)| < C’|f(n)| for some positive
constant C' = 1/C; so g(n) = O(f(n)). Conversely, let g(n) = O(f(n)).
By retracing these steps, it follows that f(n) = Q(g(n)). Thus f(n) =
Q(g(n)) if and only if g(n) = O(f(n)).

We now define the big-theta notation, using the big-oh and big-omega
notations.

The Big-Theta Notation

Let f,g : N — R such that f{n) =0(g(n)) and f(n) =Q(g(n)). Then f(n) is
said to be of order g(n). We then write f(n) = ®(g(n)); read this as f(n) is
big-theta of g(n).
The next two examples illustrate this definition.
LEXAMPLE 4.39  VEFIRS (3n2 + 4n — 5) 1g n. By Example 4.37, f(n) = O(n? Ig n). When
n > 1, we also have:

Bn2+4n—5)lgn>3n%lgn

That is,
f(n) = 3(n® g n)
So
fn) = Qnr?lgn)
Thus f(n) =0(n? 1gn) =Qn?1gn), so f(n) =0n? lgn). [ |

Let f(n) show the number of times the assignment statement x < x + 1
is executed by the nested for loops in Example 4.35. Recall that f(n) =
n(n +1)/2 = O(n?).
Since n + 1 > n for every n > 1, it follows that n(n + 1)/2 > n?/2;
so f(n) = Q(n?). Thus f(n) = O(n?). |

We now make two interesting observations from Examples 4.39 and
4.40:

e Iff(n) is a polynomial in n of degree m, then f(n) =6(n™).

* fln)=0(g[m)) if and only if Alg(n)| <|f(n)|<B | g(n) | for some
constants A and B.

See Exercises 50 and 51.
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Before closing this section, we add that the definitions of the big-oh, big-
omega, and big-theta notations remain valid even if the domain of f consists
of real numbers.

Exercises 4.6

Using the big-oh notation, estimate the growth of each function.

1. f(n)=2n+3 2. f(n)=4n%2+2n-3 3. f(n) =2n3—3n2+4n
4. f(n) =3+ 1gn 5. fn)=31gn+2 6. f(n) = (3n)!

7. fn)=1g (Bn)! 8. f(n)=23 9. f(n) = i k2
k=1
10. f = 2B 1L fo) =312l 12 f) = 3 10/2)
= i=1 =1
Verify each.
n—-1 . n
13. 2" =0 14. > 20 =0(2") 15. Y i* = O(m*+1)
i=0 i=0
16. > =0 17, Xn: iG+1)=0x3 18. i(Zi - 12 =03

1

1 =1 i=1

19-22. Let a, denote the number of times the statement x < x + 1 is
executed by each loop in Exercises 35-38 in Section 4.4. Using the
big-oh notation, estimate the growth of @, in each case.

23-32. Usingthe big-omega notation, estimate the growth of each function
in Exercises 1-5 and 8-12.

Verify each.
33. (3n)! = Q(Gn) 34. i i(i + 1) — Q(n3)
=1
n n
35. > (2i — 1) = Qn?) 36. > (2i — 1)2 =Qn?)
=1 =1
37. 2n+3 =Q(n) 38. 4n? +2n — 3 = Q(n?)
39. 2n3 — 3n2 + 4n = Q(n3) 40. 3+ lgn=Q(gn)
41. 3lgn+2=Q(gn) 42, 23 = Q(1)

43. fu’/z ] =Qn? 44, fri/zw = Q(n?)
=1 =1
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45. Let fi(n) = O(g(n)) and fo(n) = kf{(n), where & is a positive constant.
Show that fo(n) = O(g(n)).

46. Consider the constant function f(n) = k. Show that f(n) = O(1).
Let f(n) = O(h(n)) and g(n) = O(h(n)). Verify each.
47. (f +g)(n) = O(h(n)) 48. (f - g)(n) = O((h(n))?)

49. Let f, g, and h be three functions such that f(n) = O(g(n)) and g(n) =
O(h(n)). Show that f(n) = O(h(n)).

m )
50. Let f(n) = >_ a;n', where each q; is a real number and a,, # 0. Prove
i=0
that f(n) = ©(»n™).

51. Let f,g: N — R. Prove that f(n) = ®(g(n)) if and only if A |g(n) | <
|f(n)| <B|g(n)| for some constants A and B.

4.7 Complexities of Algorithms (optional)

The time complexities of standard algorithms can be used to estimate theo-
retically using the big-oh and big-theta notations. Before beginning to code
an algorithm we should make sure it will do its job. Why is analyzing the
algorithm important? Several routines can perform the same task, but not
necessarily with the same efficiency, so we should employ the one that is
most efficient.

Two norms are used to measure the efficiency of an algorithm: space
complexity and time complexity.

Space Complexity

Space complexity refers to how much storage space the algorithm needs.
Since this depends on factors such as the computer used and methods of
data storage, we restrict our discussion to time complexity.

Time Complexity

The time complexity of an algorithm refers to the time it takes to run the
algorithm. It is often measured by the number of fundamental operations
performed by the algorithm. In the case of a sorting or searching algorithm,
we shall use element-comparison as the basic operation. Since the time
required by an algorithm depends on the input size n, we measure time
complexity in terms of n.

Often we are interested in three cases:

¢ The best-case time is the minimum time needed to execute an
algorithm for an input of size n.
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¢ The worst-case-time is the maximum time needed to execute the
algorithm for an input of size n.

* The average-case-time is the average time needed to execute the
algorithm for an input of size n. Estimating the average time is often a
difficult task, involving probability.

We begin our analysis with the algorithm for matrix multiplication.

|£XAMPLE 4.41 Estimate the number a, of operations (additions and multiplications)
needed to compute the product C of two matrices A and B of order n.

SOLUTION: .

Let A = (a;j)nxn, B=(0;j)nxn, and C = (c;j)nxn. Sincec;; = ) a;1by), it takes
k=1

n multiplications and n — 1 additions to compute each c;;. There are n

elements in C and each takes a total of n + (n — 1) = 2n — 1 operations.

Therefore, a, = n2(2n — 1) = O(3) = O(n?). Thus the product takes

0(n®) = ©(n?3) operations. [ |

2

Next we estimate the number of operations required to compute the
product of two binary integers.

|£XAMPLE 4.42 Use Algorithm 4.5 to estimate the maximum number a, of operations
(shifting and additions) required to compute the product of two binary
integers x = (x5 ... X0)two and y = (yn, . . . ¥0)two-

SOLUTION:
The worst case occurs when y; = 1 for every j. Each y; contributes a shift ofj

n
places to the left. Therefore, the total number of shifts= )" j = nn + 1)/2,
Jj=0
by Example 4.15.
There are n + 1 partial products. Adding them involves an (n + 1)-bit
integer, an (n + 2)-bit integer, ..., a (2n + 1)-bit integer. Therefore, the
total number of bit additions required is 2n + 1. Thus:

a, = (maximum no. of shifts) + (maximum no. of additions)

= —n(n2+ 1) +2n+1
= 0(’) = 6(n®) "

Next, we estimate the number of comparisons required by the bubble
sort algorithm, so review it before proceeding any further.

|£XAMPLE 4.43 Let ¢, denote the number of comparisons required in line 3 of the bubble
sort algorithm (see Algorithm 4.10). Estimate the order of magnitude of cj,.

SOLUTION:
In line 3 of the algorithm, the consecutive elements x; and x;; are
compared for every value of j. Since j varies from 1 to n — i, the
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number of comparisons is n — i, by virtue of the inner loop, where 1 <
i<n-—1.S0

n—1 n—1 n—1
Cn =Z(n—i)=2n—2i
=1 i=1 i=1

=nn-1)— @, by Example 4.15

_n(n—l)
==

=002 =0mn?

Thus the bubble sort algorithm takes O(n?) = ®(n?) comparisons. [ |

We turn our analysis to the search algorithms presented in Section 5.
Review them before proceeding any further.

|£XAMPLE 4.44 Use the linear search algorithm (Algorithm 4.8) to estimate the best time,
the worst time, and the average time required to search for a key in a list
X of n elements.

SOLUTION:
Let a,, b,, and ¢, denote the number of element comparisons needed in
line 3 in the average case, the best case, and the worst case, respectively.

* Thebest caseisrealized ifx, = key. Since this takes only one comparison
for all inputs of size n, b, =1. So b,, = 0O(1) and the execution time is a
constant.

* To compute c,, notice that the worst case occurs when key does not
exist in the list, in which case the while loop is executed n + 1 times.
Therefore,

ch=n+1
<n+n, whenn >1

=2n =0(n)

Thus, in the worst case, the linear search algorithm takes O(n)
comparisons. The run time varies linearly with input size.

* To compute the average time a,, we need to consider two cases: key
occurs or does not occur in the list. If key occurs in position i, n—i+1
element comparisons will be required, where 1 < i < n. If key does not
occur in the list, n + 1 comparisons will be needed. So the average time
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taken is given by

_A+2+--4+n)+nm+1)
N n+1
(n+1Dn+2)
2n+1)

='2i+1=0(n>

an

Again, it takes O(n) element comparisons. Thus, the average case, from the
complexity point, is no better than the worst case in linear search. |

Note: In the average case analysis, we assumed key could occur in any of
the n positions with an equal chance. We also assumed that it had the same
chance of not occurring in the list. If that were not the case, we would need
to apply the concept of expected value in probability theory to compute a,,.

Next we examine the complexity of the binary search algorithm.

iXAMPLE 4.45 Let ¢, denote the maximum number of comparisons in lines 6 through 8 of
the binary search algorithm (Algorithm 4.9). Show that ¢, = O(lg n).

SOLUTION:

Casel Letnbeapowerof2, say, n =2 wherek > 0. Initially, mid = | (low
+ high)/2] = |(1 + 2%)/2] =2k~ so the lower sublist contains 281 — 1 ele-
ments and the upper sublist 2*~! elements. By now two comparisons have
taken place, one in line 6 and the other in line 8. Since the upper sublist
contains more elements, partition it into three sublists. This time the max-
imum number of elements in a sublist is 2*~2 and two more comparisons
are needed. At the next stage, two more comparisons are needed. Continue
like this until the list contains one element, when 2 =0. Again, two more
comparisons ensue.

Thus, in the worst case, two comparisons are needed for each power i
of 2, where 0 < i < k. Therefore,

ch=2k+1)=2k+2
=2lgn+2, sincen =2~
=0dgn)

Case 2 Suppose n is not a power of 2. Let n be an integer such that
2/ < n < 2/t Thenj < Ign. Let N=2/*1, Clearly, ¢, < cy. By the above
analysis, cy = 2(j + 2). Thus:

cp <CN
=2(j+2)
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<2(gn+2)
<2(gn+1gn), whenn >4
=4lgn

=0(gn)

Thus, whether or not n is a power of 2, ¢, =0(lg n), so the algorithm
takes O(lg n) comparisons in the worst case. [ |

Additional examples of analyzing the complexi