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Driving 5G Mobile Communications with Artificial Intelligence towards 6G pres-
ents current work and directions of continuous innovation and development in mul-
timedia communications with a focus on services and users. The fifth generation of 
mobile wireless networks achieved the first deployment by 2020, completed the first 
phase of evolution in 2022, and started transition phase of 5G-Advanced toward the 
sixth generation. Perhaps one of the most important innovations brought by 5G is the 
platform approach to connectivity, i.e., a single standard that can adapt to the hetero-
geneous connectivity requirements of vastly different use cases. 5G networks contain 
a list of different requirements, standardized technical specifications, and a range of 
implementation options with spectral efficiency, latency, and reliability as primary 
performance metrics. Toward 6G, machine learning (ML) and artificial intelligence 
(AI) methods have recently proposed new approaches to modeling, designing, opti-
mizing, and implementing systems. They are now mature technologies that improve 
many research fields significantly.

The area of wireless multimedia communications has developed immensely, gen-
erating a large number of concepts, ideas, technical specifications, mobile standards, 
patents, and articles. Identifying the basic ideas and their complex interconnections 
becomes increasingly important.

The book is divided into three major parts, with each part containing four to five chapters:

• Advanced 5G communication
• Machine learning-based communication and network automation
• Artificial intelligence towards 6G

The first part discusses three main scenarios and standard specification of 5G use 
cases (eMBB, URLLC, mMTC), vehicular systems beyond 5G, and efficient edge 
architecture on NFV infrastructure. In the second part, different AI/ML-based meth-
odologies and open research challenges are presented in introducing 5G-AIoT artifi-
cial intelligence of things, scheduling in 5G/6G communication systems, application 



of DL techniques to modulation, detection, and channel coding as well as 5G open 
source tools for experimentation and testing. The third part paves the way to deploy 
scenarios for different innovative services including technologies and applica-
tions of 5G/6G intelligent connectivity, AI-assisted eXtended Reality, integrated 
5G-IoT architecture in next-generation Smart Grid, privacy requirements in a hyper- 
connected world, and evaluation of representative 6G use cases and technology trends.

The book is written by field experts from Europe and Mauritius who introduce a 
blend of scientific and engineering concepts covering this emerging wireless com-
munication area. It is a very good reference book for telecom professionals, engi-
neers, and practitioners in various 5G vertical domains and, finally, a basis for student 
courses in 5G/6G wireless systems.
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Foreword
No previous generation of mobile communication has raised so many hopes and 
fears as the 5G (fifth generation) wireless systems, conceptualized and standardized 
within the last decade. Fortunately, the fears were largely unfounded, while the hopes 
are yet to be materialized. As the rollout of 5G is in full swing around the world, we 
are anticipating a large-scale demonstration of the transformative power that 5G can 
have on various industries and the society.

Perhaps one of the most important innovations brought by 5G is the platform 
approach to connectivity, that is, a single standard that can adapt to heterogeneous 
connectivity requirements by vastly different use cases. This platform has been 
developed along three dimensions: faster and better mobile Internet access, provi-
sion of low latency with high reliability, and support of connectivity for a massive 
number of IoT devices. While 5G is being rolled out, there is a significant research 
momentum in the academia and industry toward the next generation, 6G wireless 
systems. While the detailed concepts are yet to be developed, some contours of the 
6G systems start to appear and they reveal that machine learning (ML) and artificial 
intelligence (AI) methods will play significant roles in the protocols and the network 
architecture of 6G.

This book is a timely and well-structured effort toward elaborating upon the key 
ideas and concepts that constitute 5G, the complex interaction among those concepts, 
the use of ML/AI toward addressing those interactions, and, finally, how they pave 
the way toward 6G. Several of the chapters provide deep technical insights into the 
relevant standards and the use cases. This book can be seen as a reference for telecom 
professionals, engineers, and practitioners in various vertical domains where 5G is 
poised to have an impact and, finally, a basis for student courses in 5G/6G wireless 
systems.

Petar Popovski
Professor in Wireless Communications

Aalborg-Ohrid, July 2022
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Preface
Generations of mobile communication systems have evolved from the communica-
tion infrastructure to the smart infrastructure of a sustainable society. The fifth gen-
eration (5G) enables faster and better Internet access, faster network response, and 
significantly greater connectivity of a large number of devices. The mobile network 
includes a list of different requirements, standardized specifications, and a number 
of implementation options. The main purpose of the book is to describe in a well-
structured way how AI/ML/DL are applied on different layers of the 5G network 
and how the paths to 6G are opened. Our goal is to clearly identify and classify the 
application of artificial intelligence on each layer of 5G communication systems and 
provide insight into emerging 6G applications. Now, research interest in wireless 
communication is transitioning to the next evolution of mobile technology, with a 
paradigmatic shift.

The book brings together a collection of chapters dealing with technical require-
ments, opportunities, challenges, and recent results in the development of intelligent 
mobile networks. In addition to presenting the basic concepts in 5G communications, 
the book describes different levels from physical layer signal processing to applica-
tions, where AI can be applied to 5G. This book is divided into three major parts 
and each part contains four to five chapters. Part 1, Advanced 5G Communication, 
discusses the development of 5G mobile broadband, broadcast, and ultralow latency 
communication, vehicular systems channel modeling, and performance evalua-
tion, as well as an efficient NFV infrastructure. In Part 2, Machine Learning-Based 
Communication, exclusive chapters have been dedicated on opportunities and chal-
lenges of integration of artificial intelligence in 5G-IoT, scheduling in 5G/6G sys-
tems, modulation and detection, and channel coding. Part 3, Artificial Intelligence 
toward 6G, opens up the major deployment scenarios for 5G/6G-powered intelligent 
connectivity, AI-assisted eXtended reality, integrated 5G-IoT architecture in next-
generation smart grid, privacy requirements in hyper-connected world, as well as 
evaluation of representative 6G use cases.

The book is written by experts in the field from Europe and Mauritius, who bring 
out the intrinsic challenges of 5G multimedia communication. The authors have 
introduced blends of scientific and engineering concepts, covering this emerging 
wireless communication area. The book can be read cover to cover or selectively in 
the areas of the interest for readers. It is a very good reference book for undergradu-
ate students, young researchers, and practitioners in the field of wireless multimedia 
communications.

Dragorad A. Milovanovic, Zoran S. Bojkovic, Tulsi Pawan Fowdur
Belgrade-Mauritius, July 2022
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1 5G-Advanced Mobile 
Communication
New Concepts and 
Research Challenges
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4 Driving 5G Mobile Communications with AI towards 6G

1.1 INTRODUCTION

Mobile communications are continuously innovating and developing. Mobile net-
works cover different requirements, standardized technical specifications, and 
various implementation options with a focus on services and users. The new fifth 
generation (5G) supports faster and better mobile Internet access, low-latency net-
work response, and significantly higher connectivity for huge number of Internet 
of things (IoT) devices. The overall performance and capacity of the network have 
been significantly expanded compared to previous generations. The primary perfor-
mance metrics are latency, spectral efficiency, and reliability. 5G system provides 
operators with optimal resources and capacity as well as quality for different use 
cases [1–11].

The first phase of the 5G standard is currently being commercially deployed 
around the world, and the technology continues to evolve toward the second transfor-
mational phase of fully backward-compatible 5G-Advanced. Preparation was carried 
out during 2021, work on the specification started in 2022, and is anticipated to result 
in completion in late 2023 and early 2024 for various items. The first 5G-Advanced 
networks are due to be utilized in a commercial setting in 2025 [12–22].

The key 5G use cases are separated into two groups: mobile Internet services 
enable streaming, broadcasting, conversation, interaction, transmission, and exchange 
of messages, while IoT services support the industrial application of acquisition and 
control.

• Mobile broadband focuses on user’s needs and gives more attention to the 
quality of experience. Continuous improvement of multimedia interaction 
capabilities on mobile devices enables commercial applications of UHD 
video, 3D video, and immersive reality AR/VR. Users expect immersive 
audiovideo and personalized experiences, which requires the performance 
of 5G wireless networks comparable to fiber-optic access networks. At the 
same time, users also expect a real-time online experience and an imper-
ceptible network delay.

• The Internet of connected objects (IoT) facilitates new demands and differ-
entiated experience in service delivery. Rapid development requires that 5G 
network connect applications, services, and devices, such as people, objects, 
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processes, content, knowledge, information, products, and the like. With the 
coming large number of industrial applications, variety of IoT deployment 
require 5G network to support a vast array of services with radically dis-
tinct performance requirements of various industries. The rapid expansion 
of connected devices is being driven by the establishment of multiple con-
nections, as well as, the development of a wide range of industrial applica-
tions, so it is necessary that the 5G network provides ultra-large capacity 
and massive number of connections.

The use cases were adopted as guidelines in development of a new 5G system con-
cept based on software virtualization and separation of network functions from 
underlying hardware, network slicing, and multiplexing independent logical subnets 
on common physical infrastructure, open source that supports the development of 
new ecosystems involving all stakeholders as well as moving data centers to edges of 
the network as close to users as possible.

A flexible system 5GS integrates new radio access (5G NR) network, core net-
work (5G CN), transport network (TN), and application layer. The new reference 
architecture based on separation of 5G base transceiver station NodeB (gNB) into 
two physical entities, CU (centralized unit) and DU (distributed unit), enables flex-
ible stack protocol in the radio-access network as well as centralized control and 
cooperation of radio resources. A flexible NR frame structure in the time domain 
is also supported to reduce radio-interface delays and improve the user experience. 
Simultaneously, subcarrier bandwidth increases and minimum scheduling resource 
time decreases. In addition, the capacity of the 5G network is improved by the use 
of new antenna beam control, new reference signal, new coding, advanced antenna 
systems, and larger bandwidth [23–27].

5G TN transport network introduces software-defined networking (SDN) to 
achieve global programmable planning and maintenance. The new approach is real-
ized through concept of softwarization. The core network CN has been transformed 
and differs significantly from previous reference models. The system design concept 
is based on the application of Internet technology, simplicity, and service. A service-
based architecture (SBA) separates complex single network element into modular 
service. Each individual network function (NF) consists of several services that 
enable the form network architecture on demand. The SBA interface between NFs 
includes multiple layers of protocol selection in transmission and application, pro-
gram interface design method (API), serialization method, and interface description 
language (IDL). Network function virtualization (NFV) technology enables decou-
pling of software and hardware in 5G network using general-purpose computer serv-
ers and software virtualization technique.

The first implementation of 5G network intelligence AI/ML was opened by the 
introduction of network data analysis functions (NWDAF) in the CN. Next, net-
work slicing (NS) provides end-to-end (E2E) independent subnetworks on unified 
infrastructure with logical isolation of resources, customization of functions, and 
ensures quality. 5G is first communications network, which inherently integrate the 
network virtualization along with cloud computing and control technologies, provid-
ing reconfigurable and smart wireless system [28].
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The suggested 5G system concept generalizes fundamental features of the use 
case, harmonizes requirements, and combines technological components into three 
generic communication services:

• eMBB enhanced mobile broadband enables extremely high data rates and 
low-latency communication, as well as extreme coverage in the service 
area. It includes mobile broadband access and mobile video streaming, with 
bandwidth and availability as the main requirements.

• mMTC massive machine-type communication gives wireless connectivity 
to millions of devices on the network, scalable connectivity for a growing 
number of devices, efficient small data-packet transmission, wide area cov-
erage, and deep penetration take priority over data rates. The requirements 
are concurrently and mostly based on bandwidth, latency, and reliability.

• uMTC ultra-reliable machine-type communication provides ultra-reliable 
low-latency communication connections (URLLC) for network services 
with stringent prerequisites in terms of availability, latency, and reliability. 
Typical applications are vehicle-to-everything (V2X) communications and 
industrial IoT (IIoT) applications. Reliability and low latency are a priority 
over data transfer speeds. The requirements are targeted at providing band-
width for a large number of devices and reliability.

Individual 5G use cases can be observed as linear combination of the basic functions. 
Each generic service (eMBB, mMTC, uRLLC) emphasizes different subset of given 
requirements, but all are relevant to some degree. The generic communications ser-
vices contain service-specific functions, and the main drivers include functions that 
are common to more than one generic service [29–35].

1.1.1 IMT-2020 SubMISSIon and EvaluaTIon ProcESS

5G NR wireless access technology is being developed based on the requirements of 
selected usage scenarios and it is necessary in order to attain the standards set by the 
International Telecommunication Union (ITU) for wireless networks. The IMT-2020 
tried-and-tested process consists of four basic phases: ITU-R vision and definition; 
minimal prerequisites and evaluation criteria; call pertaining to proposal, appraisal, 
and consensus building; technical specification, approval, and implementation. The 
ITU-R set out the goals that need to be achieved at the beginning of each IMT pro-
cess. After that, the candidates who support the goals develop functional technology 
that fulfills the specifications. When standardization organizations have submitted 
IMT candidate technologies, an evaluation process is initiated through the coopera-
tion of ITU member states, equipment manufacturers, network operators, standards 
development organizations (SDOs), and academia [36–39].

The 5G network standardization process is launched after the ITU-T Focus group 
for IMT-2020 completed its preparatory standardization activities in December 2016 
and about at the same period, ITU-R published its recommendation for IMT vision 
beyond 2020 [10–12].
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The report ITU-R M.2410 specifies the minimal technical performance standards 
of the IMT-2020 candidate technology for new radio-interface (NR). Report ITU-R 
M.2411 describes in detail the service requirements, spectrum, and technical per-
formance of radio-interface technologies, as well as evaluation criteria and submis-
sion forms for the development of IMT-2020 recommendations and reports. Report 
ITU-R M.2412 elaborates the procedure, methodology, and criteria for evaluating 
candidate technologies. Report ITU-R WP 5D IMT Systems M.2410 also contains 
the necessary background information on individual requirements and clarification 
for the selected items and values chosen. Providing such basic information is neces-
sary to fully understand the requirements. The report was based on external research 
and technology organizations’ research and development efforts [13].

ITU-R has now released recommendation M.2150 detailing the radio inter-
face parameters for IMT-2020. Late last year, a variety of IMT-2020 radio tech-
nology choices were evaluated, and this suggestion provides a set of terrestrial 
radio-interface specifications consolidated in a single document. The specification 
contains three radio interface technologies 3GPP 5G-SRIT, 3GPP 5G-RIT, and 
Telecommunications Standards Development Society of India 5Gi, which provide 
the foundation for the worldwide deployment of 5G networks. Following a seven to 
eight years interval of dedicated development, the examination of IMT-2020 tech-
nologies has concluded in 193 ITU member states’ acceptance. Radio interface tech-
nology (RIT), or a set of radio interface technologies (SRIT), is becoming part of 
the IMT-2020 radio-interface for which frequency bands are recognized under ITU 
radio regulations.

Given the global success of 5G networks, ITU has started work on report about 
the forthcoming technological developments of terrestrial IMT systems through 
2030 and beyond (June 2022). The study offers a list of IMT design motivating ele-
ments for new technologies and a listing of potential technologies for improving the 
efficiency of the radio-interface and radio-network. The report is an input to the ITU 
recommendation on vision of IMT beyond 2030 and very general guidelines for the 
development of new 6G generation of networks.

1.1.2 3GPP STandardIzaTIon acTIvITIES

The 3GPP (Third Generation Partnership Project) consortium of seven national or 
regional standards organizations has been developing technical specifications and 
proposed a 5G standard. Following initial studies, in March 2017, the 3GPP approved 
a work item for the NR standard as part of R15. At the same working meeting, the 
proposal to accelerate the 5G work plan and complete non-stand-alone (NSA) stan-
dard by December 2017, while stand-alone SA-NR system architecture option by 
June 2018. NSA development is based on LTE technical specifications for initial 
access and handling of mobility, while the SA version can be applied independently 
of LTE. The last step of the Phase 1 was completed in March 2019 by including a 
number of design alternatives, for example, the ability to connect 5G NodeB (gNB) 
with evolved packet core (EPC) and operating NR and LTE multiconnectivity mode 
where NR is the main node and the LTE secondary [40–46].
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3GPP technical specifications are organized into Releases. A release includes a 
collection of features that are internally consistent. Timeframe of each release defines 
freezing date after which additions and alterations to functions are prohibited. The 
3GPP approach of parallel releases offers 5G developers a solid framework for the 
deployment of features at a particular time and then permits the inclusion of addi-
tional capabilities in future releases. The 3GPP standardization efforts are divided 
into the following technical specifications groups (TSG) [7,12,32,36,37]:

• TSG-SA 1, 2, 3, 4, 5, 6 group for service and system aspects have the 
responsibility for defining, developing, and maintaining the overall system 
architecture and service capabilities. They additionally support the coordi-
nation of groups.

• TSG RAN 1, 2, 3, 4, 5, 6 group is responsible for radio access networks and 
defines the functions, requirements, and interface of the access network in 
the physical layer, Layers 2 and 3 of the protocol stack. In addition to this, 
it is accountable for the conformity testing of UEs and base stations that 
implement the solutions that have been established.

• TSG CT 1, 3, 4, 6 group for core network and terminals is responsible for 
the specification of terminals, interfaces and capabilities, core network 
development, and interconnection with external networks in end-to-end 
networking.

5G NR has been in focus of RAN standardization for efficient and effective wireless 
network access of user equipment (UE) to different types of services/verticals. The 
38.xxx document series is relevant to NR radio technology. The work results of TSG 
technical groups are documented as reports and specifications:

• Technical report (1,110 TRs in version R15, R16, R17, R18) is the result of 
an initial study (SI) in the initial phase of the topic being considered for 
the specification procedure. Reports intended to be issued by the organi-
zational partners as their own publications have specification numbers of 
the form XX.9XX. Reports that are not intended for publication but are 
just 3GPP internal working documents have specification numbers of the 
form XX.8XX (feasibility study reports) or 30.xxx of 50.xxx (planning and 
scheduling).

• An SI becomes a working item (WI) after the preliminary research and 
consensus. Then, the finally compliant WIs are covered by the technical 
specification (3,754 TSs in R15, R16, R17, R18, and R19 version). The speci-
fications are published up to four times a year after the quarterly TSG ple-
nary meetings.

In release R15, the specification of the eMBB and uRLLC service scenarios, which 
support commercial needs in the initial phase of 5G implementation, has been 
largely completed. The R15 wireless base station focuses on the technical directions 
of architecture, frequency range, antenna system, new design, and construction of 5G 
intelligent networks. The new architecture is capable of supporting both distributed 
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and centralized access network design; the new frequency range includes mid- and 
high frequencies, spectra above 6 GHz, and new antennas with improved system 
efficiency. By beamforming, antenna system generates concentrated energy beams, 
larger 3D coverage zones, and more precise targeting. The cellular base station will 
determine the path that will transmit data to a specific user in the most effective 
manner while simultaneously reducing the amount of interference experienced by 
other users in the process. 5G provides multiple structure options for system-frame in 
radio-interface design, to meet the different needs of vertical industries and diverse 
and complex application scenarios. The structure of the radio-frame is flexibly con-
figured in accordance with the different requirements of 5G main communication 
services, mobile Internet, and IoT connections.

5G CN in release R15 has undergone the most significant transformation. A soft-
ware-based CN enables configuration and planning based on a unified IT infrastruc-
ture. The SBA of the 5GS system allows for dynamic customization as contrast to the 
fixed rigid networks of the previous generation. The global HTTP2.0 Internet proto-
col has been adopted for the protocol system between network elements. Improved 
performances are supported by the introduction of a minimum forwarding data plane 
(DP), and a centralized yet adaptable control plane (CP) improves efficiency. Flexible 
use of technologies such as NS and mobile edge computing (MEC) support different 
network requirements and scenarios through a service-oriented architecture.

3GPP has initiated almost 70 standardization research projects in R16 Phase 2, 
focusing on uRLLC and mMTC scenarios as well as expand vertical industrial appli-
cations. In addition, improvements of 5G standard in areas such as intelligent net-
works, extreme performance, expanded spectrum, and applications were completed 
in December 2019 (Figure 1.1) [16–19].

FIGURE 1.1 5G standardization process and timeline of 3GPP R15 Phase 1 and R16 
Phase 2.
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3GPP R15 was delivered in 2018 and was the first official specification that 
described a full 5G network. To accelerate the adoption of 5G globally and taking 
into consideration that many mobile operators aimed to launch 5G in 2018, 3GPP 
decided to split R15 in two drops. An early drop included NSA, allowing 5G radio 
networks to be connected to 4G core networks, thus allowing the faster deploy-
ment of the new generation. A late drop included stand-alone (SA), which also fully 
specified the 5G CN as well. R16 was frozen in June 2020 and includes various 
improvements on top of R15. Over a period of three years, starting from mid-2018 to 
mid-2021, 3GPP has also launched the next phase of 5G-Advanced evolution. While 
R17 edition was completed and finalized at the end of 2021, work on the R18 edition 
will be launched in the second quarter of 2022.

The evolution of 5G NR has progressed rapidly since 3GPP standardized the first 
version of R15. The next step in evolution, R16 contains several significant expansions 
and improvements. The R17 version work items approved in December 2019 lead to 
the introduction of new functionalities for the three key use cases of eMBB, uRLLC, 
and mMTC. 3GPP has published the R17 edition at the end of the first quarter of 
2022. The 5G-Advanced roadmap was launched with the R17 edition. Discussion on 
the scope of the R18 was launched in June 2021 with the aim of approving detailed 
scope by December 2021. Initial 5G-Advanced planning indicates significant devel-
opment of 5G systems in AI/ML and augmented XR reality. The final version of 
the R18 standard is expected by the end of 2023, so the first networks appear after 
2025. R19 and subsequent iterations will specify forward-looking concepts and tech-
nologies that will support for much higher frequencies (up to THz), more advanced 
radio interfaces (including full duplex), joint sensing and communication, energy 
harvesting and passive IoT, and cognitive access across many wireless technologies. 
Furthermore, future 6G mobile communications networks are predicted to provide 
peak data rates in excess of 1 Tbps. There will be no discernible end-to-end delays 
below 0.1 ms. Access to very advanced AI will be made possible via 6G networks at 
the edge of the network having processing delays of less than 10 ns. It is anticipated 
that network availability and dependability would reach 99.99999%. Extremely high 
connection densities of over 107 devices/km2 for IoE will be supported. Spectrum 
efficiency increases 5× over 5G, while support for severe mobility up to 1,000 km/
hour can be anticipated. Many new research works and projects are being launched 
in the direction of technology development, use cases, applications, and standards 
[38–46].

Based on the planning transformational technical development of 5G-Advanced, 
the collaborative efforts of industry and academia focus on evolution in the first five 
years, while setting 6G specifications. The first test platforms can be expected post-
2025. Everyone agrees that the new architecture will be fully software and flexible. 
6G communications networks will be the first generation of networks with native 
artificial intelligence (AI), AI will not only be an application tool, but an integral 
component of infrastructure, network management, and operations.

AI technology makes a significant contribution to the solutions for issues posed 
by a high level of complexity in network operation and maintenance, a high level of 
need for flexibility, and a varied range of network conditions. Increasing the per-
formance and flexibility of mobile applications contributes to a significant growth 
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in complexity of network operation, which causes new challenges in operation and 
maintenance. Due to its advantages in solving high complexity problems, frequency 
of changes, and significant uncertainty, the application of AI can improve network 
efficiency, reduce operating costs, and achieve better user experience closer to the 
requirements. The network is becoming smarter, more efficient, more convenient, 
and more secure. Realization of deep integration of AI and 5G sets new require-
ments of network structure and unified planning on several levels, such as terminal, 
network element, network management, AI mechanism, and capabilities [28].

Machine learning (ML) allows system to build models based on large amounts of 
data. In particular, deep learning (DL), reinforcement learning (RL), and federated 
learning (FL) are key functions. DL has made considerable strides in the last decade, 
and it is now being used in contexts where large quantities of easily accessible data 
are readily available for training. FL is a learning approach in which multiple clients 
with local models collaborate with a data center that integrates and develops a global 
model and then sends it out to all of the user devices as a broadcast. RL is structured 
as a recursive learning of an agent who interacts with the environment and thus 
learns how to take action. In general, ML becomes appropriate in situations where 
an accurate mathematical model of the system is not available, but a sufficiently 
large amount of training data is available, the system changes slowly over time, and 
numerical analysis is acceptable.

The specification of 5G evolution toward 6G and associated technological needs 
are currently in the early stages of investigation, so different institutions are form-
ing their visions and views without a single definition being adopted. Future vertical 
sectors are predicted to benefit from 5G evolution’s new architecture and post-AI 
age capabilities by becoming more integrated, generating new apps, and spawning 
a new 6G ecosystem. The existing centrally controlled and layered cellular mobile 
network is unlikely to be able to meet the requirements of future omni-directional 
communication. Flexible network can be optimized, perceived autonomously, man-
aged automatically, and made completely intelligent and secure [47–60].

1.2 5G-ADVANCED TRANSFORMATIONAL PHASE

The fifth generation of mobile communication technology offers significantly 
increased data transfer rates with almost no lag time, compared to previous genera-
tions. Furthermore, 5G can accommodate multiple devices that communicate simul-
taneously. The standard is in line with the strict requirements of ITU-R IMT-2020. 
The capabilities of 5G evolution have been significantly improved, supporting mul-
tidimensional requirements that far exceed key performance indicators (KPIs) and 
on-demand network services [61–63].

The community of standardization organizations SDO has anticipated trends and 
defined a new generation of specifications. As a result, in early 2019, 3GPP pub-
lished a set of Phase 1 of 5G technical specifications based on completely updated 
system architecture (Table 1.1). R15 edition specifies an initial, simpler version of the 
system. Phase 2, as defined in R16 specification, adds remaining functionality and 
increases performance. Full 5G delivers innovative solutions including virtualized 
network services and compatibility for a vast array of IoT devices that communicate 
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simultaneously, ultra-reliable low-latency communications, NS, edge computing, and 
an optimized SBA model. R16 edition is finally in line with the requirements of IMT-
2020 for global interoperable and uniform 5G mobile communication systems. 3GPP 
has also launched the next phase of evolution toward 5G-Advanced. The R17 edition 
was finalized at the beginning of 2022, and work on the R18 edition will be launched 
in the second quarter of 2022 [64–67].

1.2.1 5G SySTEM archITEcTurE oPTIonS and STandardIzaTIon ProcESS

5G system (5GS) is continuously developing and improving intelligent connections. 
The first version of the 5GS includes network core and new radio according to UE 
customer equipment, and is commercially implemented worldwide in the frequency 
ranges FR1 below 6 GHz and FR2 mmWaves 24–40 GHz. Based on various require-
ments and potentials of new technologies, 3GPP has launched the technical speci-
fication of the new 5G NR (new radio) as well as the new 5G CN (core network). 
Improvements have been made to the radio access network (RAN) and network 

TABLE 1.1
3GPP 5G NR Workplan [64–67]

3GPP Standards Capacity and Operational Efficiency Vertical Expansion

Phase 1
Release 15

NSA (non-stand-alone) and SA 
(stand-alone)

Carrier aggregation operation
Intel-RAT between NR and LTE
FR1: 450 MHz–7.125 GHz

eMBB (enhanced mobile 
broadband)

URLLC (ultra-reliable low latency)

Phase 2
Release 16

MIMO enhancements
MR-DC (multi-RAT dual connectivity)
IAB (integrated access and backhaul)
Mobility enhancements
CLI/RIM (cross link interface/remote 
interference management)

UE power saving
FR: 24.25–52.6 GHz mmWave

IIoT (industrial IoT)
URLLC (ultra-reliable low latency)
2-step RACH (random access 
channel)

UE positioning
US (unlicensed spectrum)
V2X (vehicle-to-everything)

Release 17 MIMO enhancements
Sidelink enhancements
DSS enhancements
IIoT/URLLC enhancements
Coverage enhancements
IAB enhancements

NR up to 71 GHz
NR up to NTN
RedCap (NR-light)
MBMS (multicast and broadcast 
services)

5G-Advanced
Release 18

eMBB use cases: UL enhancement, FR2 mobility enhancement, DL MIMO 
enhancement, smart repeaters

Non-eMBB use cases: XR enhancements, sidelink enhancements, positioning 
enhancements

Cross-functionality use cases: Evolution of duplex operation, network energy 
savings, AI/ML RAN enhancements
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core architecture, including the separation of functions between the two networks 
(Figure 1.2).

3GPP defines the initial architecture of the 5G system and functionality in the R15 
version. Some of the most important technical specifications and procedures describe 
the interconnection of data and services (TS 23.501) as well as the set of interactions 
of NFs (TS 23.502). Details on the eMBB data service, subscriber authentication and 
authorization, application support, edge computing (EC), and interoperability with 
4G and other conceivable access systems are provided [68,69].

5G RAN is in charge of all radio-related network tasks, including scheduling, 
radio resource management, retransmission protocols, coding, and various multian-
tenna systems. RAN represents a set of 5G gNB nodes connected to 5GC via the NG 
interface. The gNB nodes are interconnected point-to-point with an Xn interface, 
which supports node functionality and mobility, dual connectivity (DC). The NG 
and Xn interfaces consist of separate management and user-level components. The 
5G node gNB provides the completion of the NR, user plane (UP), and CP protocol 
according to the UE, connected via the NG interface to the 5GC. Base stations are 
composed of gNB elements and house radio equipment such as transmitters, receiv-
ers, batteries, and power supplies that let mobile devices to communicate wirelessly 
with the network. The housing may take the form of a SA structure, a chamber within 
an already established structure, or a straightforward box that is installed on a wall 
or tower. Since the 3GPP specifications allow for the split of gNB functions, it is not 
required to have all of them in the same physical place. Instead, part of the functions 
can be relocated, for example to a cloud that is physically located in the data center 
(Figure 1.3) [70].

Transport network (TN) is a set of optical fibers, other cables, and radio connec-
tions between NR and the core network. In tandem with rising quality standards, the 
transportation network is becoming increasingly intelligent based on services and 
levels of geo-redundancy. A modern TN based on function virtualization enables 
optimization of transport management.

The 5G core network, also known as the 5G CN, is in charge of performing tasks 
that are not directly related to radio access but are nonetheless essential to support 
the complete network. For example, authentication, functionality charging for autho-
rized network features, and end-to-end connection setup. Separate management of 
these functions, instead of being integrated into the RAN, is useful and allows more 

FIGURE 1.2 Overall 5GS system architecture: Radio access network (NR) and core net-
work (CN).
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than one radio network to be served by a single core network. 5G CN has all the 
essential capabilities for establishing, sustaining, and executing data and voice calls, 
as well as establishing any other communication connections, such as messaging 
between users and network signaling. 5G standards ensure that these characteristics 
are applicable in both domestic and foreign situations, therefore interoperability is 
essential. Compared to prior reference models, the new network core is drastically 
different. NF is processed by dedicated elements owned by the operator, as separate 
elements, each of which possesses their own software and hardware. 5G is predi-
cated on NF virtualization. Therefore, each function is comprised of a collection 
of software instances that are executed on general-purpose hardware that has been 
virtualized. The 5G core network can now function in operator or third-party cloud 
on resources provided by data centers. Virtualized networks significantly improve 
5G performance compared to previous generations [71–73].

Instead of storing computer resources in a central location, as is done in tradi-
tional cloud computing, EC moves those resources to the periphery of a network, also 
known as the edge cloud (instead in the cloud core). The operator is enabled to real-
locate the desired content or part of the computer processing closer to the user within 
core network. It is becoming increasingly significant for real-time latency-sensitive 
applications because it achieves low latency for demanding applications, speeds up 
operational data transfer, and saves transportation costs.

1.2.1.1 5G System Reference Architecture
The 5G network’s design is built on NFV and SDN, which allow for seamless data 
communication and the rollout of new services. The specification addresses roam-
ing and non-roaming scenarios in their entirety, covering topics such as mobility 
within the 5G system, quality of service, policy management and invoicing, as well 
as general system operations (SMS, location services, emergency services). The use 
of service-based interactions between the CP functions of a network is made pos-
sible by architectural concepts. The basic principles are the separate functions of 
UP from the functions of CP, so that independent scalability, evolution, and flexible 

FIGURE 1.3 3GPP RAN Xn interface between two gNB–gNB nodes and NG interface 
gNB–5GC.
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application are enabled. The properties of the modular design enable NS that is both 
flexible and efficient. In order to make reuse possible, NFs are typically specified as 
services. Procedures are a set of interactions between these services. There is a sig-
nificant reduction in the amount of dependence on the RAN access network and the 
CN. A single authentication framework is supported. Computer resource and storage 
resources (stateless NFs operate by storing the current state of the end-user device 
UE in a remote database) are separated. Capability exposure is supported as well as 
simultaneous access to local and centralized services [74–80].

5G reference architecture is service-based SBA and the interaction between NFs 
is presented in two ways:

• Representation based on services, wherein network components (such as 
AMF) at the CP control level grant access to their services to other network 
components that have been granted permission to do so. Reference points 
from point-to-point where necessary are included.

• When there is an interaction between NF services in network functions 
indicated by a point-to-point reference point (e.g., N11) between any two 
network functions, reference point representation indicates that there is an 
interaction between the NF services (e.g., AMF and SMF).

1.2.1.2 5G NR Architecture
5G NR radio access technology (RAT) includes a variety of usage scenarios, from 
eMBB to URLLC and mMTC. Ultralow power transmission, low latency sup-
port, cutting-edge antenna technology, and spectrum adaptability (including high-
frequency band operation and low-frequency band interoperability) are all vital 
technologies.

3GPP explores RAN virtualization and different functional divisions between CU 
and DU, in a way that CU is centralized and potentially virtualized. Depending on 
the functional split choice, some gNB functions may be completely allocated to the 
DU, while others, such as user data transfer, mobility control, RAN sharing, posi-
tioning, session management, and the like, may be included in the central unit as a 
logical node. The central unit controls the operation of the DU via the front-hall (Fs) 
interface. The central unit is also marked as BBU/REC/RCC/C-RAN/V-RAN. The 
logical node of DU includes subset of gNB functions, depending on the functional 
separation option. The DU is also referred as RRH/RRU/RE/RU [81–88].

In parallel, 3GPP also considered the possibility of a horizontal division between 
the UP and the CP (TR 38.801). The resulting overall architecture has one gNB-CU-
CP per gNB node that allows a wide range of applications in the virtualization of all 
or individual CU components. Scalability, low-cost hardware implementations, coor-
dination of performance characteristics, load control, real-time performance optimi-
zation, and the ability to use NFV/SDN in a wide range of use cases are all benefits 
of this design. The split of CU-DU into higher layers is suitable for application in 
wide area with significant processing at the base location. The split of CU-DU into 
lower layers further reduces such processing near transmission points, with increas-
ing backhaul requirements (less delay and much higher bandwidth). The choice 
of the way in which the NR functions will be split depends on the scenario of the 
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implementation of the radio-network, the limitations and the envisaged supported 
services, i.e., support for specific QoS or specific user density and load demand in 
a given geographical area, availability of transport networks with different levels of 
performance, and real-time applications (Figure 1.4).

Media access control and radio resource management are two examples of the 
higher-level layers that make up the 5G NR radio interface. Specifications for the 
higher layers are defined in the 3GPP TS 38.300 series, whereas the physical layer is 
covered in the 3GPP TS 38.200 series. TS 38.201 specification presents the architec-
ture of the NR radio interface protocol on the physical layer (Layer 1). Media access 
control (MAC) in Layer 2 and radio resource control (RRC) in Layer 3 are linked 
by the physical layer (PHY). Service access points (SAPs) are highlighted between 
different layers/sublayers. The physical layer allows the transport channel to MAC 
sublayer. The transport channel characterizes the way information is transmitted on 
radio interface. MAC provides different logical links of radio link control (RLC) 
sublayer of Layer 2. The format of the information that is sent defines the kind of 
logical channel that exists (Figure 1.5) [81–88].

1.2.1.3 5G Core Network
Control of UE user devices is handled centrally by the 5G CN. In terms of function-
ality, it sits atop the RAN and oversees tasks such as authentication and the setup, 

FIGURE 1.4 5G NR functional split options between centralized and distributed units. 
Option 2 is selected for standardization with RRC-PDCP protocols in CU, and RLC-MAC-
PHY-RF functions in DU.
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maintenance, and teardown of communication links that are essential to the net-
work’s operation but have nothing to do with radio access. 3GPP enabled gradual 
transition to completely autonomous 5G network, specifying two primary architec-
tures NSA, whereby there are a great deal of variants depending on the data routing, 
and SA. Figure 1.6 shows the standardized SA Solution 2 and NSA Solution 3. The 
NSA architecture uses the EPC LTE core and the eNodeB LTE base station. CP data 
is connected to eNB, and DP to/from UE is connected to eNodeB or NR gNB base 
stations or used by two base stations at the same time. In the second case, double 
connection (DC) is established, which increases the speed of user data and reliabil-
ity. NSA architecture only supports eMBB service. However, dual connection is also 
possible within 5G network so that the UE user device communicates with two gNB 
nodes simultaneously [73].

FIGURE 1.5 RAN architecture around the physical layer PHY.

FIGURE 1.6 Stand-alone (SA) Solution 2 and non-stand-alone (NSA) Solution 3.
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5G CN connects to RAN access network. One of the main goals is the separa-
tion of different functionalities and possibility to separate the network logic with 
more granularity and enable modular implementation. All NFs in the core network 
that offer a set of service-based interfaces are denoted by N and the name of the 
corresponding NF (Namf for AMF). Using the interface, any other NF can com-
municate and retrieve data with the NF. Access and mobility function (AMF) is a 
5GC entry function that connects to 5G access network for 3GPP access or N3IVF 
for non-3GPP. AMF interrupts the UEs NAS session, performs access authentication 
and mobility management. It is also responsible for route session management mes-
sages to the correct session management function (SMF). Function UPF (user-level 
function) implements packet forwarding and routing for UP data as an anchor point 
for intra/inter-RAT mobility (when applicable), assigning UE IP address/prefix (if 
supported) in response to an SMF request also as external PDU point of the intercon-
nection session to the data network. Protocol data unit (PDU) session forms virtual 
pipe between the UE and the data network identified by DNN (data network name). 
Policy control function (PCF) supports the unified policy framework for managing 
network behavior, provides policy rules for the CP function(s) to implement them, 
and accesses subscription information relevant to unified repository (UDR) policy 
decisions. Network exposure function (NEF) supports APIs for exposure capabili-
ties, events, and analytics.

The list of functions is extensive, total of more than 20 functions: NEF network 
exposure function, NRF network repository function, AUSF authentication server 
function, AMF access and mobility management function, DN data network opera-
tor services, Internet access or third-party services, UDSF unstructured data storage 
function, NSSF network slice selection function, PCF policy control function, SMF 
session management function, UDM unified data management, UDR unified data 
repository, UPF user plane function, AF application function, UE user equipment, 
RAN radio access network, 5G-IER 5G-equipment identity register, NWDAF net-
work data analytics function, CHF charging function (Figure 1.7) [75–77].

FIGURE 1.7 5G CN service-based architecture (SBA) of network functions that can oper-
ate independently from one another and are free from hardware dependencies.
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Virtualized network functions (VNFs) are the actual implementation of NFs as 
software processes. In the 5G SBA, two VNFs can communicate with one another 
using SBI, which is an API for doing so. A given VNF can utilize an API call over 
the SBI in order to invoke particular service or service operation.

Additionally, the 5G system includes the following network entities: the service 
communication proxy (SCP), the security edge protection proxy (SEPP), the non-
3GPP interworking function (N3IWF), the trusted non-3GPP gateway function 
(TNGF), and the wireline access gateway function (W-AGF).

1.2.1.4 Separation of Control Plane and User Plane
In a conventional mobile network, the active network element possesses both user-
level and management-level functionalities at the same time. With the development 
of software-defined network SDN technologies, the design of architectural func-
tions has been re-examined thanks to the 5G architecture. The functional separation 
of the control plane (CP) from the user plane (UP) is the fundamental idea behind 
software-defined networking SDN that allows the 5G network to centralize applica-
tion and management control plane, and optimize re-organization. The UP simplifies 
functions, deploys flexibly, and forwards efficiently. By separating the functions of 
the CP and UP, optimization and re-organization have been achieved, which further 
enables flattening of the network architecture. A nonhierarchical architecture brings 
for shorter paths, lower delays, and higher network efficiency (Figure 1.8) [77–79].

FIGURE 1.8 Separation of control plane (CP) and user plane (UP) functions.
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1.2.1.5 RAN Protocol Architecture
A 3GPP base station is the physical representation of a virtual node in a radio access 
network (RAN). The network node B (NB) and its evolved counterpart, the eNB 
(evolved node B), are used in both 3G UMTS and 4G LTE. 3GPP marked the gNB 
node of the next-generation 5G NR. To be clear, gNB is not a real base station but 
rather a conceptual entity that acts as one. On the basis of the standard protocol, the 
base station can be implemented in several ways.

One can separate the CP from the UP in the NR radio protocol architecture. 
While the CP is primarily in charge of connection, mobility, and security, the UP is 
in charge of delivering data to end users. RAN protocol stack is divided into layers. 
The first layer, or PHY, is the physical layer. The radio link control (RLC), packet 
data convergence protocol (PDCP), service data adaptation protocol (SDAP), and 
media access control (MAC) all fall under Layer 2. Layer 3 includes RRC control 
of radio resources. It is pointed out that the user and control planes share a lot of 
protocols in common. Layer-to-layer and sublayer-to-sublayer linkages are labeled 
in Figure 1.9. The MAC layer supplies the RLC layer with logic channels, which 
are distinguished by the nature of the data they convey. Transport channels, which 
physical layer offers to MAC sublayer, are characterized by how and with what char-
acteristic information they are transmitted via RAN. Transport blocks (TB) are used 
to organize the data that travels via the transport channel. The physical channel is 

FIGURE 1.9 5G NR user plane (UP) and control plane (CP) protocol stacks.
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responsible for transporting data between the gNB node and the user equipment UE. 
This data comes from higher levels [83–87].

The main functionalities of the layers are briefly described as follows:

• SDAP layer manages service quality QoS flow and radio carrier mapping. 
Radio carriers are assigned IP packets based on the QoS needs of those 
packets.

• PDCP layer’s primary function is to compress and decompress IP headers, 
as well as to reorganize and identify duplicates, encrypt and decrypt, and 
guard against integrity breaches. Sending fewer bytes over RAN is made 
possible thanks to a header compression method. Encryption provides pro-
tection against interception of communications and protection of confiden-
tial information. Data units may be sent sequentially, and duplicates can be 
eliminated, thanks to reordering and duplication detection algorithms.

• RLC layer is responsible for delivering data units to higher levels, segment-
ing and re-segmenting (compressed IP packet header), and error correction 
through the automatic repeat request (ARQ) mechanism.

• Scheduling uplink UL and downlink DL, as well as error correction through 
the hybrid ARQ (HARQ) mechanism are primarily the purview of the MAC 
layer. Transmission time and frequency resources at the UL and DL levels 
are divided up by the scheduler. When using carrier aggregation, the MAC 
layer additionally multiplexes data over the various component carriers.

• PHY layer is responsible for transforming signals into the physical time-
frequency resources of the network, including encoding, decoding, modula-
tion, multiantenna processing, and signal mapping.

Scheduling is key function of the NR multi-user mobile system and significantly 
determines the overall behavior of the system. At the start of each transmission time 
interval (TTI), the scheduler decides which users will share the available time-fre-
quency resource and at what data rate they will transmit. There are two types of 
schedulers in a gNB, one for downlink transmission and one for uplink transmission. 
Allocation of transmission resources, such as resource blocks (RB) in the frequency 
domain and OFDM (orthogonal frequency-division multiplexing) symbols in the 
time domain, are managed by the scheduler, which is part of the MAC layer. NR 
introduces the concept of slot-based scheduling (Type A) and mini-slot scheduling 
(Type B). Therefore, TTI concept for the data channel in NR becomes much more 
flexible.

A key NR feature is the ability to configure for low latency, mainly important 
in the low-latency URLLC service. The user plane UL/DL delay is the amount of 
time it takes for an IP packet to go from the RAN to the user device. The desired 
UL/DL latency for eMBB is 4 ms. The minimum acceptable latency for URLLC is 
0.5 ms in both UL and DL. With 4G LTE, the lowest equivalent latency is around 
5 ms. Therefore, the goal of NR is to reduce latency by a factor of 10 or more. For 
low delay requests, the NR mostly uses the 0.125 ms transmission time period TTI 
as the minimum standard slot length to be allowed. Further, by using mini-slots, the 
interval can be further reduced. For 4G LTE, the transmission time interval is 1 ms. 
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Reduced minimum term TTI in NR implies packets may be sent and received more 
quickly, cutting down on processing and transmission buffering times. Utilizing pre-
loaded reference signals and control signaling that conveys scheduling information at 
the beginning of the slot enables the receiving device to immediately begin process-
ing incoming data without the need for buffering. The detailed structure of the UP 
and the CP Layer 2 protocols (MAC: media access control; RLC: radio link control; 
PDCP: packet data convergence protocol; SDAP: service data adaption protocol sub-
layers) is shown in Figure 1.10 [83–88].

The control plane CP is primarily accountable for the control signaling that gov-
erns the establishment of connections, as well as mobility and security. The gNB base 
node’s radio resource control (RRC) layer or the core network provides the control 
signals. Broadcasting system information, paging messages, security management 
including key management, handovers, cell selection/re-selection, QoS management, 
and radio fault detection and recovery are all primary services provided by the RRC 
layer. The RRC layer utilizes the user plane’s PDCP, RLC, MAC, and PHY layers to 
send and receive messages. For this reason, there is no essential technical distinction 
from a physical layer point of view in service delivery to the upper layers in control 
layer and user layer protocol stacks [81–88].

1.2.1.6 IAB Protocol and Physical Layer
Wireless backhaul may now be supported by the 5G NR thanks to the integrated 
access backhaul (IAB). It offers functionality that enables the use of NR radio access 
technology (RAT) for wireless feedback in addition to the connection between base 
stations and devices, also known as the access connection. IAB enables self-back-
hauling to eliminate wired backhaul dependence. It is based on Layer 2 architecture 
with PDPC end-to-end layer (from donor IAB node to UE for CP and UP). For the 
NR, the IAB study was approved in March 2017 and conducted during the R15 and 
R16 editions [89–92].

The basic structure of the network using the IAB is illustrated in Figure 1.11. A 
donor node, which is simply a standard base station that employs traditional non-IAB 
backhaul, provides the connection between the IAB node and the network. Every 
IAB node may generate its own cells and appear to connected devices as a stan-
dard base station. Since IAB is a network-only function, it has no direct effect on 
the device. The fact that R15 devices may now connect to the Internet using IAB 
nodes is a major development. Multiple-hop wireless backhauling is made possible 
by the IAB node’s ability to produce cells that may be used to link other nodes to 
the network.

IAB’s general design is based on gNB’s CU/DU separation into two functionally 
distinct parts with standardized interface between. The IAB lists two types of net-
work nodes:

• A fiber-based backhaul, for example, links an IAB donor node, which com-
prises of CU and DU capabilities, to the remainder of the network. Although 
the DU donor node typically provides service to UE user devices such as 
traditional gNB, it will also provide service to IAB nodes that are wirelessly 
linked to it.
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FIGURE 1.10 5G NR Layer 2 structure of user/control plane protocols.
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• A node that is considered to be an IAB node is one that is dependent on the 
IAB for its backhaul. In the case of multi-hop IAB, this comprises the DU 
functionality supporting the UE and, perhaps, additional IAB nodes. There 
is a UE function (IAB-MT) at the opposite end of the IAB node that com-
municates with the DU of the parent node.

The whole spectrum of NR is supported by the IAB. However, mmWave spectrum 
is most relevant for the IAB. One of the characteristics that greatly influences design 
of physical layer is half-duplex constraint of the IAB node. In general, simultane-
ous operation of the remote control (communication with children of the nodes in 
downstream connection) and mobile terminal (MT; communication with the parent 
node in the upstream connection) is not possible due to self-interference. As a result, 
IAB node operation is defined with TDM operation between DU and MT. The par-
ent DU controls subordinate MT resources through planning. The basic issue is the 
coordination of resources for DU in time domain. A large number of physical layer 
extensions have been identified to support IAB modes.

1.2.1.7 Physical Layer (PHY)
5G NR relies heavily on the physical layer, as do all wireless technologies. Numerous 
frequencies between 1 and 100 GHz are supported by the physical layer, as well as 
several applications (pico cells, micro cells, and macro cells). To successfully meet 
the challenges, 3GPP has developed a flexible physical layer. Radio wave propaga-
tion mechanisms and hardware flaws in networks and devices have been explored to 

FIGURE 1.11 Integrated access and multi-hop (2 hops) wireless backhauling.
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improve the performance of adaptable parts. By June of 2018, the first R15 edition 
had been finalized and all future versions of NR are compatible with the first edition 
[82].

The frequency range in which 5G NR is expected to function spans around 
400 MHz to roughly 90 GHz and includes both licensed and unlicensed spectrum 
as well as shared spectrum. A shared band is one in which 5G shares the spectrum 
with a service that isn’t a mobile operator. Frequency division duplex (FDD) and 
time division duplex (TDD) modes are supported by NR. For NR, the 3GPP specifies 
two frequency bands, FR1 and FR2, with respective ranges of 410–7,125 MHz and 
24.25–52.6 GHz (mmWave). In terms of radio spectrum, the FR2 band is a new fea-
ture of 5G over 4G. It offers large capacity and data speeds by transmitting in bands 
with substantially more spectrum than is accessible in FR1. TDD operation is used 
in the C-band/3.5 GHz band (FR1), which spans 3.3–4.2 GHz and has a maximum 
spectrum allocation of roughly 100 MHz per operator. Since the quantity of spectrum 
in the C-band is relatively substantial and the loss in propagation is only around 5 dB 
larger than the 2 GHz band, it plays a pivotal role in 5G networks. High-gain beam-
forming antennas can compensate for this extra path loss and provide coverage in the 
2 GHz bands that is on par with the 1 GHz bands. 5G NR is characterized primarily 
by its extremely high data rates [85–88].

Support for spectrum above 52.6 GHz opens the V to W band (60–114.25 GHz) for 
NR will be specified in R17 and R18. The expansion is notable because it not only 
provides ultra-wide spectrum up to 15 GHz, but also new features for back/fronthaul, 
relay, industrial IoT, private network, advanced V2Xs communications, tightly con-
nected use of licensed/unlicensed spectrum, and minimizing form factors for future 
wireless devices. However, there are challenges that need to be overcome and achieve 
mobile communication in the V–W range: high attenuation due to atmospheric gases, 
inefficient RF devices such as power amplifier, switcher, and mixer due to interfer-
ence and attenuation inside the device, and strong shading by reflection and diffrac-
tion due to short-wave length. The solutions require improving the radio interface 
from a completely new perspective (Table 1.2).

Modulation systems, waveforms, channel codes, multiantenna methods, frame 
structure, duplexing schemes, control and reference signals, and so on are all compo-
nents of the NR physical layer (Table 1.3).

TABLE 1.2
Maximum 5G NR Data Rates per Layer per Component Carrier [85–88]

Frequency  
Range

Subcarrier  
Spacing (kHz)

Bandwidth  
(MHz)

Downlink  
Rate (Mb/s)

Uplink Rate  
(Mb/s)

FR1 15  20  113  121

FR1 15  50  290  309

FR1 30 100  584  625

FR1 60 100  578  618

FR2 60 200 1,080 1,180

FR2 120 400 2,150 2,370
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Uplink and downlink transmissions in NR are compatible with QPSK and 
16/64/256 types of quadrature amplitude modulation (QAM). In addition, mMTC 
services benefit greatly from the uplink’s support of π/2 BPSK since it allows for 
a lower peak-to-average power ratio and higher power amplifier efficiency at lower 
data rates.

The UL and DL links in NR operate at frequencies of at least 52.6 GHz using 
the cyclic prefix CP-OFDM. LTE uses CP-OFDM for DL transmission, and DFTS-
OFDM is used for UL transmission. The overall 5G architecture is simplified by the 
use of a waveform that is same in both directions, especially in terms of wireless 
transport and communication between devices (D2D). DFTS-OFDM in UL, which 
uses a single stream transmission method (no spatial multiplexing), is another solu-
tion for situations with constrained coverage. In practice, it is possible for the gNB 
to select the UL link waveform CP/DFTS-OFDM and the UE is able to support both 
OFDMs. The NR waveform may have any receiver-independent function, such as 
windowing or filtering, added on top of it to better limit or constrain the operating 
frequency range. NR mandates a flexible OFDM numerology that makes it possible 
to provide several services across many frequency bands and use cases. One subcar-
rier spacing correlates to numerology in the frequency domain. Various numerolo-
gies may be established by scaling the reference subcarrier spacing by an integer N.

Multiantenna techniques are already important in wireless communication, and 
they play a more integral part in the overall system design in NR. The expansion of 
the spectrum for mobile communication toward mmWave influenced beam-oriented 
NR design to support the formation of an analog beamforming for achieving ade-
quate coverage. Moreover, multiantenna techniques are key for the 5G performance 
requirements in traditional cellular frequency bands [91–95].

TABLE 1.3
5G NR Physical Layer [85–88]

Concept 5G NR

Frame structure (FS) Single and highly configurable frame structure for all use cases.
Notion of DL, UL, and flexible resources.

Scheduling flexibility Slot bases (A type scheduling); mini-slot based (B type scheduling)

Waveform DL: OFDM (orthogonal frequency-division multiplexing)
UL: SC-OFDM (for single-layer transmission); OFDM FR1:15, 30, 60 
(data) 15, 30 kHz SSB (synchronization signal block)

FR2: 60, 120 kHz (data) 120, 240 kHz SSB (synchronization signal block)

Forward compatibility Reserved resources

Always ON signal No CRS (cell reference signal)

Transmission modes Single-transmission mode for data channels transparent TxDiv scheme

Multibeam operation FR1: up to 8 SSB beams; FR2: up to 64 SSB beams

Channel coding Data: LDPC codes; Control: Polar codes

Bandwidths and 
bandwidth part 
concept

BWs FR1: 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 90, 100 MHz; FR2: 50, 100, 
200, 400 MHz BWP (contiguous resource blocks configured inside a 
channel) Up to four configured BWPs. Single active BWP.

Additional BWs could be added in future releases of NR
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5G NR uses advanced error-correction techniques for channel coding, low-den-
sity parity check (LDPC) codes to transmit eMBB mobile broadband access data, 
and Polar linear block code for control signaling. At data speeds of many gigabits per 
second in rate-compatible structure, LDPC codes are appealing from an implemen-
tation standpoint. This permits HARQ operation with incremental redundancy and 
transmission at multiple code rates.

Radio transmissions are divided into radio-frames, sub-frames, slots, and mini-
slots, all of which exist in the time domain. Each radio-frame, seen in Figure 1.12, 
lasts for 10 ms and is divided into 10 sub-frames, each of which lasts for 1 ms. One 
or more adjacent slots, each of which contains 14 OFDM symbols, together make up 
a subframe. Greater flexibility in terms of delays is achieved by using less than 14 
transmission symbols, and the resulting smaller effective slots are called mini-slots. 
Mini-slot structures may have 2, 4, or 7 symbols allocated to them, and they can have 
a variable beginning position. This enables the transfer to begin as soon as feasible, 
rather than having to wait for the slot boundary to begin. Since the duration of an 
OFDM signal is inversely proportional to its subcarrier spacing, the slot and mini-
slot durations are scaled with the specified numerology (subcarrier spacing). One 
subcarrier in the frequency domain and one OFDM symbol in the time domain make 
up a resource element (RE) in 3GPP nomenclature. RB is defined only for frequency 
domain. Bandwidth part (BWP) is a set of attached common resource blocks (RBs). 
The term “physical channel” refers to a collection of resource elements REs that 
transport information that is generated at a higher layer, whereas “physical signals” 
refers to a collection of resource elements that are utilized by the physical layer but 
do not contain information generated at a higher layer.

FIGURE 1.12 Frame structure configuration for the physical layer of NR.



28 Driving 5G Mobile Communications with AI towards 6G

Basic principle of flexible frame structure in 5G NR is shown in Figure 1.13. It is 
possible to set each of the many components of the frame differently depending on 
the application. This allows for the efficiency to be improved in a variety of ways, 
including the achievement of QoS QPI, the use of resources, and the consumption of 
device power. All BWP-capable devices need to do is decode a few lines of common 
control information and the BWP-specific control information [91–95].

In the temporal and frequency domains, the NR radio resources are divided as 
shown in the transmission structure (Figure 1.14). Resource grid consists of number 
of subcarriers in frequency axis and number of OFDM symbols in time axis. The 
term “resource element” refers to any one of the squares in the grid used to set up 
things such as antenna ports and subcarrier distances. Frequency-domain resource 
blocks RBs have a total of 12 consecutive subcarriers. Bandwidth portion, abbrevi-
ated as BWP, is a collection of shared RBs that are linked to one another.

Both time division duplex (TDD) and frequency division duplex (FDD) are sup-
ported by NR. The duplex scheme usually depends on the allocation of the spectrum. 
The majority of lower-frequency spectrum is allocated in pairs, suggesting FDD 
operation. It is common for higher-frequency spectrum allocations to be unpaired, 
indicating the need for TDD. NR also enables dynamic TDD, in which UL and 
DL allocations alter dynamically over time. As a major upgrade over LTE, this is 
especially helpful in situations where traffic patterns are subject to sudden shifts. 
The gNB planner makes the decisions about the transmission schedule, and the UE 
conforms to those schedules. The network is able to coordinate scheduling choices 
across nearby network sites in the event that this becomes essential in order to pre-
vent interference. There is also the possibility of semi-statically configuring TDD by 
alternating between UL and DL at certain intervals.

In order to promote backward compatibility and simplify interactions between 
various features, the NR frame structure is built on three core design concepts. The 
fundamental premise is that there is no dependence between transmissions. The data 
in a bundle may be decoded separately since each slot contains all of the reference 

FIGURE 1.13 Flexible frame structure in 5G NR.
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signals needed for demodulation. The second point is that transmissions are time and 
frequency constrained, so that introduction of new types of transmissions is simpli-
fied. To prevent static and/or rigid timing correlations between slots and multiple 
transmission routes is the third principle [81–88].

NR frame structure supports varied length transmissions. For instance, the 
URLLC has a short duration, but the eMBB has a lengthy duration. With respect to 
TDD operation, Figure 1.15 gives examples of the structure of the NR framework for 
different scenarios. In TDD mode, a slot can be scheduled for all DL transmissions, 
all UL transmissions, or a mixture of both DL and UL, where guard periods for UL/
DL switching are inserted [81–88].

The smallest specified physical NR resource element RE consists of one subcar-
rier during one OFDM symbol. Resource block RB is a collection of 12 subcarriers 
with the same spacing in the frequency domain, with the block’s width proportional 
to its numerology. Allocations are made on a per-physical-RB basis, with one RB 
corresponding to a block of 12 consecutive subcarriers with the same spacing in the 
frequency domain, and one OFDM symbol corresponding to a block of time. On 
the same carriers, many numerologies are supported, and the precise positions of 
RBs are defined such that their borders are in perfect alignment. Figure 1.16 depicts 
a physical resource grid (RG) with the resource elements RE (dark shade) and the 
resource block RB (bright shading). As a function of numerology, NR outlines the 
minimum and maximum values of RB for each carrier, which are also the same for 
DL and UL. A resource network is specified for each numerology and carrier, cover-
ing the complete carrier bandwidth in the frequency domain and one subframe in 

FIGURE 1.14 5G NR transmission structure and basic terminologies: Resource grid (RG), 
resource element (RE), resource block (RB), bandwidth part (BWP).
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FIGURE 1.16 Resource grid in frequency domain structure: Resource element (RE) and 
resource block (RB).

FIGURE 1.15 Examples of NR physical layer frame structure in different scenarios with 
respect to TDD operation.
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the time domain. There is just one set of RGs for each transmission direction, and 
the grids for all subcarrier spacings overlap. For a particular subcarrier distance, the 
resource grid specifies the signal space as viewed by the UE.

The 3GPP New Radio (NR) standards specify many physical layer processes, 
including those for cell search, power control, UL synchronization and timing con-
trol, random access and beam management, and operations relating to channel status 
information. Measurements for the physical layer, including those for timing and 
radio resource management, as well as intra- and interfrequency and inter-RAT 
handovers, are all included in the NR standard.

Six papers make up the 3GPP physical layer definition in addition to the overarch-
ing TS 38.201 (TS 38.202 and 38.211 through 38.215). Figure 1.17 depicts the con-
nection between the technical standards in the context of the upper layers [81–88].

1.2.1.8 Network Slicing (NS)
Network slicing NS enables segmentation of network control plane CP and user plane 
UP functions, RAN, and CN into several logical planes that potentially share the 
same physical infrastructure, but have autonomous operation and control. The net-
work operator is now in a position to dedicate part of network to third-party verticals. 
The control, generation of statistics, and management of these parts of the network 
are separated from each other, so it is easier to separately negotiate the level of ser-
vice (SLA) between MNO and vertical. 3GPP defines only signaling framework and 
allows the UE and several NFs to assign specific policies to a particular NS. The 
network operator specifies the actual policies and how the NS is used [93–98].

NS is a key 5GS technology that enables implementation of on-demand networks. 
This system creates numerous virtual E2E networks atop a single physical network 

FIGURE 1.17 Relation between 3GPP physical layer specifications.
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to meet the needs of various services. From the 3GPP edition of the R13 DECOR 
dedicated core network, methods are specified that allow different types of devices to 
serve different instances of packet core subnetworks. DECOR has been improved by 
the standards in the R14 edition and fully realized by working on the slicing within 
the R15 system architecture. The NS has also been significantly updated in the R16 
edition.

A network slice in NS is a logical network that makes use of existing nodes in 
RATs, core networks, clouds, and even at the very periphery of the network, known 
as the EC nodes, for edge computing [99]. Cross-slice isolation can be performed 
depending on the layer by physical isolation, virtual machine-based insulation, and 
language-based isolation. The Network Service architecture is composed of three 
layers: the network infrastructure layer (which provides physical-based virtual 
machine and language-based isolation), the network slice instance layer (which pro-
vides virtual machine-based isolation), and the service instance layer (IDL-based 
isolation). Flexibly design is necessary to support QoS users and optimization of 
overall network expenditure. In addition, elasticity is required for adaptive avail-
ability of slice resources, so it is avoided under-utilization and overutilization due to 
variations in user demands (Figure 1.18) [93–102].

Service Instance Layer

Instance 1 Instance 2 Instance N

Instance 1 

    Network Slice Instance Layer

Instance 2 Instance N

  Resource Layer

Sub-network 
Instance 2

Sub-network 
Instance 1

Sub-network 
Instance N

Resources / Network Infrastructure / Network Functions

FIGURE 1.18 Network slicing components: Resource layer, NS instance layer, service 
instance layer.
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The physical network is able to be partitioned into a number of separate virtual 
networks, also known as logical segments, thanks to NS. These virtual networks are 
able to serve a wide variety of services and may be tailored to a particular RAN or 
user group. More efficient use of infrastructure significantly reduces the expenses 
associated with constructing separate networks. When it comes to generating NSs, 
different combinations of NFs are required for various use cases. The development 
of network software has greatly contributed to the adaptability of end-to-end 5G net-
works. In CN, NFV and SDN are technological enablers for NS because they allow 
network parts and functions to be virtualized and controlled, making it easy to tailor 
and reuse in each slice to match the needs of individual services. Slicing in the RAN 
is based on radio resources that are either physically present or logically represented 
in some way. As a result, there will have to be a wide variety of network slice con-
figurations. Agility and adaptability on a very high level are therefore required.

1.2.1.9 Quality of Service (QoS)
5G service quality model uses Quality-of-Service (QoS) flows as its foundation as 
the lowest granularity of quality of service distinction within a session data protocol 
(PDU), an abstraction for user-level services that provides connectivity between UE 
applications and DN such as Internet or private corporate networks. The user plane 
function of UPF in DL and UE in UL map service data streams SDF to QoS streams. 
Mapping is based on packet filters provided by policy control function PCF for ses-
sion management function SMF and signal either when establishing a PDU session 
or dynamically after application interactions (Figure 1.19) [100–106].

Each QoS stream is identified using QFI. It also has a rule that contains the QoS 
profiles as a set of parameters and flow template as a set of UL/DL packet filters 
that represent the flow of service data mapped to the given flow. All PDU session 
UP communication with the same QFI is sent in the exact same way (scheduling 
and admission threshold). The SMF is responsible for managing the 5GS system’s 

FIGURE 1.19 5G QoS flow model.
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QoS stream, which may be set up in advance or created through a PDU session setup 
operation or a PDU session modification procedure.

3GPP defines the following QoS parameters: QoS identifier (5GQI), allocation 
and retention priority (ARP), reflective QoS attribute (RQA), notification control, 
bit rate, aggregate baud rate, default values, and maximum packet loss rate. The 5G 
quality of experience index (5GQI) is a scalar that may be used to refer to QoS fea-
tures, access node-specific metrics that regulate flow forwarding treatment (schedul-
ing weights, receive thresholds, queue management thresholds, link layer protocol 
configuration). Values on the standard 5GQI are converted directly into a set of QoS 
metrics that have also been standardized. A 5GQI result indicates standard or pre-
configured features, but does not signal them on any interface until certain configu-
ration changes are made. Streams that use a 5GQI that is dynamically allocated will 
have their QoS features notified as part of the profile.

QoS parameters signaled are 5QI, priority allocation and retention ARP, for every 
QoS flow and guaranteed flow bitrate GFBR, and maximum flow bitrate (MFBR) 
for GBR and delay-critical GBR QoS flows. From these parameters, the 5QI of 5G 
system points to combination of QoS parameters: packet delay budget, packet error 
rate, averaging window, and priority for all types of 5QIs. For delay-critical GBR 5QI 
is in addition the maximum data burst volume is also defines.

Both QoS flows that need guaranteed flow bit rate GBR and those that do not 
require guaranteed flow bit rate non-GBR are supported by the model. The first one 
is the average bit rate over the averaging time frame that the network commits to 
provide the flow. The highest possible flow bitrate MFBR restricts the data transfer 
rate to the maximum bit rate that can be supported by the flow while at the same time 
discarding any surplus traffic via the use of a rate-shaping or rate-policing function 
at the UE, RAN, or UPF. It is possible to grant relative priority for bit rates that are 
higher than the GFBR value and up to the MFBR value. The QoS parameters GFBR 
and MFBR are sent to the RAN in the profile, and they are communicated to the UE 
as the flow level parameter for each unique QoS flow [100–106].

1.2.1.10 5G Security
The 5G mobile architecture is the first of its kind to be built to concurrently serve use 
cases with specified needs. The 3GPP SA3 working group develops the protocols for 
5G’s privacy, security, and network architecture. All aspects of NR and CN network 
security, including architecture, features, methods, and procedures, are detailed in 
the specifications. System requirements for secure end-to-end core network connec-
tions are follows:

• mechanisms for adding, removing, and modifying message components by 
intermediary nodes, which exist at the application layer

• integrity and privacy of transmitted data from one network to another, from 
the point of origin to the point of reception, for predetermined message 
components

• reduced impact with very minimum changes to already established 3GPP 
network components

• standard security protocols
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• considerations on performance and overhead
• account for operational aspects of key management.

Mutual authentication between UE and network, security context creation and dis-
semination, UP data confidentiality and integrity protection, CP signaling confiden-
tiality and integrity protection, and user identity secrecy are only some of the 5G 
system’s security characteristics [103–106].

There are several network architectural components and ideas included into the 
3GPP 5G security framework:

• Protecting against attacks on the (radio) interface is an important aspect 
of network access security, which is a feature set that enables the UE to 
authenticate and securely access services across a network. Access security 
is also provided by the secondary node (SN) delivering security context to 
the access node (AN).

• The term “network domain security” refers to a group of attributes that 
enable network nodes to safely communicate signal and user-level data.

• Access to mobile devices is ensured by the user domain security measures.
• Applications in both the user domain and the provider domain may safely 

communicate with one another thanks to application domain security.
• SBA domain security is a set of features that support SBA architecture NFs 

to securely communicate within network service domains. Included are 
safeguards for service-based interfaces and the registration, discovery, and 
authorization processes that occur inside a network.

• The capability to monitor the status of security measures and alert the user 
when they are disabled or disabled is part of the visibility and security con-
figurability feature set.

The normative development on standards for 3GPP’s System architecture group 
SA2 and Security group SA3 is now underway. Figure 1.20 [103–106] shows 5G 
architecture with security associations: security anchor function (SEAF) for pri-
mary authentication, AUSF authentication server function interrupts SEAF requests 
and continues to interact with authentication credential repository and processing 
function ARPF, authentication credential repository and ARPF processing func-
tion, security context management function (SCMF) takes over SEAF policy key, 
and security control function (S)PCF provides security policy to network entities 
(SMF, AMF) and/or UE. The security of VNFs of 3GPP network is based on network 
domain security NDS.

3GPP’s standardization work involves addressing the following security concerns 
raised by 5G’s technological and architectural evolution:

• UP endpoint security
• authentication and authorization (including identity management)
• RAN security
• security within the UE/secure storage and processing, eSIM
• NS security.
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1.2.2  5G nEw radIo and corE nETwork 
EnhancEMEnT and vErTIcal ExPanSIon

The latest revision of the 3GPP standard, version R16, enhances the 5G network’s 
infrastructure and adds support for several fresh service possibilities [107]:

• 5G core architecture has been improved to achieve greater operational effi-
ciency and enable further application optimization.

• 3GPP develops various tools to support the use of 5G systems for industrial 
use and new verticals (factory of the future, building automation, eHealth, 
smart city, intelligent transportation system, electric power distribution, 
smart agriculture, critical applications).

1.2.2.1 Support for Industrial IoT Applications
Industrial Internet of things (IIoT) is a primary area of concentration for improv-
ing the 5G architecture. Availability of connectivity, security, accuracy, automation, 
and interoperability are all highly prioritized in the IIoT. The 3GPP R15 version 
provides very low radio-interface latency and high reliability, and further delays and 
reliability improvements have been introduced in the R16 edition. These enhance-
ments allow for more applications in the IIoT and are a response to the growing need 
for these types of systems in fields including manufacturing, electricity distribution, 
and transportation [108].

Improvements are two major benefits to operators. It allows complete radio tech-
nology to be provided under a single network core. Then, it provides features that 
are inherently available in the 5G core. The following main new features have been 
added to 5GC: support for optimizing energy savings, definition of data delivery 

FIGURE 1.20 5G system architecture with security associations.
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procedures without IP and reliable data service (RDS), definition of various exposure 
services, support for congestion control, and overload in the core network and RAN.

The general structure and service capacities of 5G-IoT systems are currently being 
developed by the 3GPP TSG-SA technical standard group. Both enhanced machine-
type communication (eMTC) and narrowband internet of things (NB-IoT) have been 
around since Release 13 (R13), with following releases improving upon these two 
separate standards. The 5G NR and 5G CN URLLC specifications debuted in R15 
and continue to mature in subsequent versions (R16 and R17) (Table 1.4).

1.2.2.2 Ultra-Reliable Low-Latency Communication
Ultra-reliable low-latency communications (URLLC) include IoT communications 
for industrial IoT and critical applications. Reliability is defined in this context as the 
rate of successful and timely data transfer. URLLC provides data exchange even in 
conditions of heavy network load. 3GPP has solved the requirements for ultra-reliable 
and low latency by updating the architecture of 5G system and specifying end-to-
end solutions. The 3GPP creates solutions based on the concept of redundancy from 
beginning to end, including parts of the user plane UP and the transport network 
TN. For URLLC communication between UE user equipment and UPF user plane 
function or inside network entities such as 5G-NR and UPF, 3GPP is also working on 
a system to monitor packet delay using the 5QI QoS identifier linked with URLLC 
service. QoS may be implemented if the operator, network, and endpoint all support 
it. It is possible for operators or real URLLC services (AF) to make adjustments and 
further decrease packet latency [109–111].

1.2.2.3 Support for V2X Connections
3GPP connectivity supports use cases for vehicular communications (V2X) device-
to-device as well as communication via the infrastructure. Intelligent transportation 
services (ITS) offers intelligent messaging and other services to 5G system users. 

TABLE 1.4
3GPP Progress Toward 5G mMTC Requirements [108]

Release 14
↓ Non-anchor carrier
↓ Release assistance indicator
↓ Re-connection with RLF
↓ Maximum TX power 14 dBm

Release 15
↓ New PRACH format
↓ Small cell support
↓ TDD support

Release 16
↓ Improve multicarrier 

operation
↓ Inter-RAT cell selection

NB-IoT eNB-IoT FeNB-IoT NB-IoTenh3

> Enhance TBS/HARQ
> Positioning
> Single cell multicast

> Enhance cell acquisition
> Wake-up signal
> Early data transmission

> Coexistence with 5G
> Group wake-up signal
> Early DL/UL transmission

LTE-M FeMTC eFEMTC eMTC5

↑ VoLTE improvement
↑ 5 MHz bandwidth

↑ 64 QAM for spectral 
efficiency

↑ CE mode for velocity

↑ CE for non-BL UEs
↑ Improve measurement for 

mobility
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In order to let devices, cars, and units positioned along roadways gather and share 
contextual data, the system facilitates communication between them and with an 
underlying application server. Further intelligent improvements and security of ser-
vice are being developed. Basic applications of road safety and traffic efficiency for 
the implementation of ITS were considered at the beginning [112–114].

V2Xs concept includes vehicle communication with the network (V2N), between 
vehicles (V2V), vehicle to pedestrian (V2P), vehicle to infrastructure (V2I) repre-
sented by stationary roadside unit RSU that supports V2Xs applications with other 
vehicles or UE user devices. Communication vehicles–vehicles and pedestrians 
directly (not through the network but with or without support of gNB) requires the 
development of PC5 interface and use of communication LTE side link SL and 5G 
NR. To determine if a vehicle or UE is in or out of the monitoring and control of 
RAN nodes gNB, the coverage/out-of-coverage concept is used.

Device setup, direct communication support, and PC5 compatibility are the three 
pillars of V2X communication. MBMS support has not yet been implemented for 
5GS.

The following is a brief overview of the 3GPP versions of the standards that 
encompass the V2X service (Figure 1.21):

• The first V2Xs communication was researched and standardized in the R14 
and R15 editions. Four ways of allocating resources for D2D communica-
tion in LTE were considered, where Modes 3 and 4 were reserved for use 
with V2X applications. All coverage situations (in-coverage, out-of-cover-
age, and partial-coverage) were supported in LTE-V2Xs, however only the 
broadcast communication was possible. LTE-V2X was designed primarily 
to meet the stringent latency and reliability needs of applications related to 
road safety.

• When it comes to enhancing the dependability, latency, capacity, and adapt-
ability of various forms of communication, NR-V2X R16 is the first NR 
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FIGURE 1.21 NR-V2X evolution in 3GPP releases [112].
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SL standard to place a priority on V2X. Advanced use cases, such as pla-
tooning, extended sensors, advanced driving, and remote driving, have 
been targeted as well, expanding beyond their original focus on road safety. 
For V2X communication, in addition to broadcast, different types of casts 
are also specified, such as single and multiple (group cast). Moreover, the 
NR-V2Xs in the R16 edition support hybrid automatic HARQ reception 
request that improves the reliability of SL communication.

3GPP R16 edition for the first time specified SL communication based on NR with 
focus on the V2X application. In addition, public safety service is possible if it meet 
the requirements of these services. The need for further improvements has been 
identified to support operational scenarios for V2X, business applications, including 
public security, and the like. In order to enhance coverage, reliability, latency, and 
energy efficiency for UE user devices with rechargeable batteries, the attendees at the 
3GPP RAN 86 plenary conference for R17 edition in December 2019 unanimously 
approved a list of research and working items in future development.

In R16, the NR SL definition was introduced, and in R17, it has been enhanced. 
Nonetheless, a number of novel use cases are anticipated, many of which involve 
machine-to-machine and robot-to-robot communication in the industry. The high-
level SL research in R17 marks the beginning. For instance, many businesses con-
sider relative positioning with SL, which provides the distance between cars, to be a 
fundamentally important feature. Therefore, SL positioning is expected to be one of 
the main operating items in the new edition of R18 [112–114].

1.2.2.4 Non-Public Networks
Support for NPN using 5G system architecture is a main evolutionary step of mobile 
ecosystems based on 3GPP standards. The NPN feature set allows nontraditional 
mobile network operators to deploy private networks for different purposes and uses. 
NPN networks are effectively based on 5G system that does not necessarily support 
traditional MNO services for general subscribers. Private networks can operate in 
any spectrum, licensed or unlicensed, owned by any entity that has access to the 
spectrum. NPN networks are divided into two basic categories. The SA NPN does 
not require additional interaction with the PLMN public terrestrial mobile network. 
NPNs integrated with PLMN are logically a part of the public terrestrial mobile 
network (Figure 1.22) [114].

5G NPN private networks use dedicated resources that can be managed indepen-
dently. The concept’s advantages lie in its low latency for local end users and the fact 
that communication occurs securely and privately on-site. NPNs may be placed in 
a variety of settings, including commercial and industrial buildings, for a variety of 
purposes [113,114].

NPN offers secluded businesses with access to 5G networks. Benefits of the appli-
cation include personalized QoS, potentially improved network performance based 
on simpler load prediction, dedicated security and protection from other users, and 
protection of the infrastructure through physical isolation. NPN can also simplify 
maintenance and operation.
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Within a particular location, a private 5G network is a dedicated network that 
provides enhanced communication capabilities, a unified connection, enhanced ser-
vices, and individualized security measures. Industry, commerce, utilities, and even 
the public sector have all found uses for private 5G networks, which take into con-
sideration the benefits that are offered by both public and non-public 5G networks. 
In the course of developing Industry 4.0, the idea of a private 5G network has lately 
gained substantial research interest from both industry and academia [115–117].

1.2.3 advancEd SErvIcE rEquIrEMEnTS and PErforMancE IndIcaTorS

Design goals in work on technical specification 5G are based on requirements of 
service performance for existing and new use cases [118–122]:

• By maximizing network capacity and allowing for an enhanced user expe-
rience over more of the network, the requirements for mobile broadband 
are primarily established to meet the demands of efficiently processing 
extremely large and rising volumes of data in the network.

• High energy efficiency, for instance, is needed to maximize the battery life 
of devices, and high connection density is needed to service a large num-
ber of devices in a small space, both of which are requirements for IoT 
applications.

• For industrial IoT applications, the most important requirements are very 
low latency and very high reliability.

Requirements for 5G services have been formulated by several industries and regula-
tors worldwide since 2015. The requirements are summarized in the ITU-R report 
M.2410-0/2017 as requirements for IMT-2020 networks and have served as input 
for relevant technical studies. 3GPP has formulated requirements in the report of 
TR 38.913 for next-generation access technologies. Some of the most fundamental 
prerequisites, briefly described for 5G services is shown in Table 1.5.

FIGURE 1.22 Examples of NPN deployment options: (a) public network integrated NPN, 
(b) integrated NPN with provider infrastructure deployed locally, and (c) stand-alone local 
NPN with dedicated spectrum.
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Use cases and methods for meeting the ITU’s vision requirements have been 
the primary focus of 3GPP’s efforts. The technical specifications of version R15 
define Phase 1 and R16 Phase 2. Version R16 provides sufficient performance that 
is fully compliant with IMT-2020 requirements, and future releases further improve 
both performance and feature set. Continuation of the second phase of R17 is fin-
ished in 2022. The complete version of 5G provides sophisticated technologies such 
as network slicing NS, virtualized network functions VNFs, support for multiple 
IoT devices that connect simultaneously, ultra-reliable low-latency communication 
URLLCs, edge computing EC, and an improved service-based architectural model. 

TABLE 1.5
ITU-R IMT-2020 Minimum Performance Targets [119–122]

System 
performance 
targets

Connection 
density

• Indoor (75 per 1,000 m2 office)
• Dense area (2,500/km2)
• Crowd (30,000 per stadium)
• Everywhere (400 km2 suburban and 100/km2 rural)
• Ultralow-cost broadband (16/km2)
• Airplane (80/plane)

Traffic density • Indoor (15 Gbps DL and 2 Gbps UL in 1,000 m2 office)
• Dense area (750 Gbps DL and 125 Gbps UL in km2)
• Crowd (0.75 Gbps DL and 1.5 Gbps UL stadium)
• Everywhere (20 Gbps DL and 10 Gbps UL km2)
• Ultralow-cost broadband (16 Mbps/km2)
• Airplane (1.2 Gbps DL and 0.6 Gbps UL per plane)

End-user 
performance 
targets

User data rate • Indoor (1 Gbps DL and 0.5 Gbps UL)
• Dense area (300 Mbps DL and 150 Mbps UL)
• Crowd (25 Mbps DL and 50 Mbps UL)
• Everywhere (50 Mbps DL and 25 Mbps UL)
• Ultralow-cost broadband (10 Mbps DL and 10 Mbps UL)
• Airplane (15 Mbps DL and 7.5 Mbps UL)

End-to-end 
latency

• Low latency case (1 ms)
• Low most cases (10 ms)
• Ultralow-cost (50 ms)

Mobile speed • Airplane (1,000 km/h)
• Mobile and ultra-reliable cases (500 km/h)
• Typical cases (up to 120 km/h)
• Indoor and crowd (3 km/h)

Other targets Device power 
efficiency

• Smartphone battery lifetime (3 days)
• Low-cost IoT battery lifetime (15 years)

Network energy 
efficiency

• 1,000× more traffic than today with 50% lower energy 
usage

Resilience and 
reliability

• Network availability 99.999%

Ultra low-cost 
networks

• Low-cost solution for low average revenue per user IoT 
services
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Version R17 takes movement toward industrial verticals to whole new level. The R18 
edition, which is the starting point of the new 5G-Advanced standard, deals with 
new concepts such as AI&ML, full-duplex operation, energy-savings online. Work 
on this edition will start in the third quarter of 2022 [119–122].

1.2.3.1 Phase 1 and Phase 2
The evolution of 5G focuses on three main areas: improvements to the features pre-
sented in R15 and R16, features needed for operational improvements, and new fea-
tures to further expand applicability of 5G systems to new markets and use cases. 
The R15 version is primarily focused on enhanced mobile broadband eMBB, offering 
ultra-gigabit speeds, and more importantly, extreme capacity. Version R16 focuses on 
two other aspects, massive IoT machine-type mMTC communications and critical 
ultra reliable low-latency communication URLLC service. Devices that support R16 
release are expected to be available in early 2022 (Table 1.6) [123–124].

3GPP R15 version is a major step in 5G definition. Although it included elements 
of all three services MBB, massive IoT, and critical services, the main motivation 
was improved eMBB. A new NR radio interface was introduced and made func-
tional. The primary focus is the work of the new system for mobile broadband access 
and smartphones.

With the introduction of R16, the emphasis has switched to IoT and industrial 
sectors, such as time-sensitive communication (TSC), enhanced location services, 
and support for non-public networks NPNs. Additionally, the R16 version introduces 
many major new features, including NR in unlicensed bands (NR-U), integrated 
access and backhaul IAB, and NR V2X. The version also includes improvements 
to massive MIMO antenna systems, technologies such as service-based architecture 
SBA, network slicing NS, and wireless/wired convergence. Last but not least, the 
number of use cases, connection kinds, users, and apps using 5G networks is likely 
to rise, necessitating the installation of new security measures to deal with the cor-
responding rise in potential dangers.

TABLE 1.6
NR Specification Timeline in 3GPP RAN Phase 1 (R15) and Phase 2 (R16) 
[123,124]

2016 2017 2018 2019 2020 2021 2022

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

R15 R17

R16

- NSA and SA
- eMBB
- URLLC
- Carrier aggregation operation
- Inter-RAT between NR and 

LTE

- IAB
- UE power savings
- IIoT
- UE positioning
- Unlicensed spectrum
- V2X

- NR up to 71 GHz
- NTN
- NR light (RedCap)
- Enhancements
- …
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The R16 version supports a number of enhancements, many of which are exclu-
sively conceived in cellular technology. Many aspects of R16 version are specifically 
designed for IIoT. One such feature is time-sensitive networking. Precise indoor posi-
tioning is another basic feature usable for IIoT. The R16 version also supports mas-
sive IoT by using and enhancing LTE-IoT (eMTC) and narrowband NB-IoT. Thanks 
to the scalable and flexible 5G framework, R16 edition introduces in-band, native 
support for both of these technologies within the same 5G operator, so that they work 
seamlessly even when the infrastructure is upgraded and the spectrum allocated 
for 5G systems. In this way, the investments of the entire ecosystem are protected, 
including operators, original equipment manufacturers (OEMs), and users.

In addition, the R16 version supports many more configurations for 5G SA deploy-
ment mode with direct connectivity to 5GCN and provides even greater efficiency 
through features such as group wake-up signal, pre-configured UL, multi-block 
scheduling, early data transmission, and multiplexing between services with differ-
ent QoS requirements (eMBB, URLLC).

Although the extension of 5G to industrial verticals is the focus of the R16 version, 
it brings equally significant improvements for eMBB: MIMO improvements, device 
power savings, mobility enhancements, bandwidth extensions, interference mitiga-
tion, single/dual-link switching, and efficient signaling.

Initial 5G implementations have gained considerable attention; the success of 5G 
ultimately depends on the rapid increase in coverage and expansion of 5G services. 
Release R16 introduces many advanced features to simplify 5G deployment: inte-
grated access IAB and unlicensed spectrum NR-U. Since R16 version has a hetero-
geneous combination of features, its commercialization is diverse and achievable in 
stages. Operators typically implement groups of relevant functions together, based on 
specific applications and services being introduced or improved. With the comple-
tion of initial 5G deployments and operators seeking to expand their networks, the 
focus is shifting to optimization and network performance improvement [123–125].

1.2.3.2 Foundation for the Next Phase
R17 version lays foundation for the next phase of 5G, starting with R18, launched 
by 3GPP as 5G-Advanced. The final set of functions for the R17 was selected in 
December 2019, Stage 3 was released in September 2021, the ASN.1 specification in 
December 2021, and the specification phase is finalized in the first quarter of 2022. 

TABLE 1.7
3GPP General Timeline for R17 and R18 (5G Evolution Roadmap to 
5G-Advanced) [126–128]

12020 2021 2022 2023

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

R17 completion

Email discussions, 
workshops, 
consolidation

R18
Package
approval

R18 Work
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The R18 sets the direction for the development of the 6G system, which will begin to 
materialize later by the end of the decade (Table 1.7).

The R17 edition has approximately 40 specific features, divided into three main 
groups: new concepts, improvements to the features presented in R16 edition, fine-
tuning R15 edition features [126–128].

• new device category called reduced capability (RedCap), support for 
extended reality (XR), satellite-based non-terrestrial networks (NTN), 
extending mmWave support beyond 52.6 GHz, introduction of multicast/
broadcast (5GMBS)

• enhancements to integrated access backhaul IAB, precise positioning, side-
link SL, small data transmission, URLLC in all spectrum types

• performance improvements to MIMO, multi-radio dual connectivity, 
dynamic shared spectrum (DSS), coverage extension, multi-SIM, RAN 
slicing, self-organizing networks (SON), and many others.

From 5G architecture perspective, R17 includes but not limited to enhanced IIoT and 
NPN support, enhanced support for wireless and wireline convergence, multicast 
and broadcast architecture, proximity services, better multi-access EC support, and 
improved network automation support. 3GPP SA WG2 working group has approved 
a set of system projects related to verticals and technology enablers:

• NTN architecture (mobility management with large/moving coverage areas, 
delay/QoS in satellite access, RAN mobility with satellite access, regula-
tory services with super-national satellite ground station)

• enhancements to non-public networks
• enhanced support of IIoT
• unmanned aerial vehicle (drone) identification and control
• proximity services in 5G System
• further enhancements in architecture from advanced V2X services
• enhancement of NS
• technology enablers (architectural enhancements for 5G multicast-broad-

cast services, location services enhancements, enhancements for support for 
EC in 5GC, enablers for network automation for 5G Phase 2).

The primary RAN issues of interest for discussion in R17 were determined by the 
3GPP community in June 2019. NR-Light (RedCap) enables easy communication for 
sensors used in industry and applications of a similar nature. IIoT, MIMO, SLs for 
V2Xs and public safety are being improved. Support for satellite NTNs and methods 
for better coverage are introduced, as well as the start of work on a 5G NR extension 
to operate at frequencies above 52 GHz, culminate in the specifications in R18.

1.2.3.3 5G-Advanced
The content of R18 edition was mainly decided at the TSG working meeting #94 
in December 2021. The arrival of revolutionary ideas such as AI and ML were 
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declared. It is necessary to decide on a few additional details, but it is now known 
what 5G-Advanced will look like when it is commercially implemented starting 
in 2025. Standardization organizations are preparing a detailed plan to work on 
specifications that will be included in the final edition of R18 standard in 2024 
[129].

R18 was officially introduced under the name 5G-Advanced in May 2021 by the 
project coordination group (PCG). The standardization process was launched at the 
3GPP online workshop held in June 2021 with more than 500 proposals from 80 
companies, and 1,200 participants. The proposals were originally divided almost 
equally into three groups: eMBB, non-eMBB evolution, and cross-functionalities. 
After 1-week discussion, the plenary session identified 17 topics of interest, includ-
ing 13 general topics and three sets of RAN-specific topics WG 1–3, and one set of 
RAN WG4. Most of the topics are significant feature enhancements introduced in 
the R16 and R17 releases, such as MIMO, uplink, mobility, precision positioning. 
Also included is the evolution of network topology, augmented reality XR, satel-
lite networks, broadcast/multicast services, SL, RedCap, and other topics. The most 
interesting and exciting topics were AI&ML, full-duplex operation, and lower elec-
tric power consumption (Table 1.8).

Many of the proposed research and work topics include system improvements that 
allow network operators to maximize the efficiency of spectral and radio resources in 
addition to enhancing the overall quality of the experience for an increasingly diverse 
combination of connected devices. DL/UL links for MIMO radio systems are being 
improved, IAB nodes are becoming mobile, smart repeaters are becoming aware of 
the situation, mobility has improved, we are approaching full-duplex transmission, 
UE power consumption and basic bandwidth processing are being optimized, as well 
as network design guided by AI&ML techniques (Table 1.9).

3GPP RAN working group discussed the content of the R18 edition in June 2021 
with the aim of approving a detailed plan by December 2021. Nominal work was 
launched in the second quarter of 2022. The approved packages contain wide range 
of projects:

• continuing to evolve 5G MIMO performance and efficiency
• driving higher 5G uplink performance and efficiency
• further optimization of 5G device mobility management (cost-effective 

expansion of 5G coverage and capacity using new network topologies, 
full-duplex wireless system development, R18 lays foundation for future 
full-duplex)

• 3GPP R18 scope for wireless ML projects (R18 targets to expand ML to 
E2E system across RAN, device, and air interface)

• driving toward greener 5G networks
• extend 5G to almost all devices and use cases (expanding 5G SL capabilities 

in R18 for V2Xs, public safety, commercial use cases)
• 5G NR unified, scalable air interface enabling coexistence of a wide range 

of 5G device classes, continued scaling of 5G NR-Light for reduced-capa-
bility devices (RedCap) further enhancing the 5G NR system (other RAN 
projects).
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TABLE 1.8
3GPP Release 18 Priorities in TSG-SA Service and System Aspects 
[129,130,133,134]

SA2 system architecture and services • XR (extended reality) & media services
• Edge computing Phase 2
• System support for AI/ML-based services
• Enablers for network automation for 5G Phase 3
• Enh. support of non-public networks Phase 2
• Network slicing Phase 3
• 5GC location services Phase 3
• 5G multicast-broadcast services Phase 2
• Satellite access Phase 2
• 5G System with satellite backhaul
• 5G timing resiliency and TSC&URLLC enhancement
• Evolution of IMS multimedia telephony service
• Personal IoT networks
• Vehicle mounted relays
• Access traffic steering, switching, and splitting
• Support in the 5G system architecture Phase 3
• Proximity-based services in 5GS Phase 2
• UPF enh. for exposure & SBA
• Ranging-based services & sidelink positioning
• Generic group management, exposure, & 

communication enhancement
• 5G UE policy Phase 2
• UAS, UAV, & UAM Phase 2
• 5G AM policy Phase 2
• RedCap Phase 2
• Support for 5WWC Phase 2
• System enabler for service function chaining
• Extensions to TSC framework to support DetNet
• Seamless UE context recovery
• MPS when access to EPC/5GC is WLAN

RAN1 radio Layer 1 (physical layer) • NR-MIMO evolution
• AI/ML–air interface
• Evolution of duplex operation
• NR sidelink evolution
• Positioning evolution
• RedCap evolution
• Network energy savings
• Further UL coverage enhancement
• Smart repeater
• DSS
• Low power WUS
• CA enhancements

RAN4 radio performance and protocol 
aspects

• RAN4-led spectrum items
• <5 MHz in dedicated spectrum
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TABLE 1.9
List of Topics Considered for R18 Edition [129,130,133,134]

Evolution for downlink 
MIMO

• Further enhancements for CSI (e.g., mobility, overhead, etc.)
• Evolved handling of multi-TRP (transmission reception points) and 

multibeam
• CPE (customer premises equipment)-specific considerations

Uplink enhancements • >4 Tx operation
• Enhanced multi-panel/multi-TRP uplink operation
• Frequency-selective precoding
• Further coverage enhancements

Mobility enhancements • Layers 1/2-based inter-cell mobility
• DAPS (dual active protocol stack)/CHO (conditional handover) 

improvements
• FR2 (frequency range 2)-specific enhancements

Additional topological 
improvements (IAB and 
smart repeaters)

• Mobile IAB (integrated access backhaul)/vehicle mounted relay (VMR)
• Smart repeater with side control information

Enhancements for XR 
(eXtended reality)

• KPIs/QoS, application awareness operation, and aspects related to 
power consumption, coverage, capacity, and mobility (note: only power 
consumption/coverage/mobility aspects specific to XR)

Sidelink enhancements 
(excluding positioning)

• SL enhancements (unlicensed, power saving, efficiency enhancements)
• SL relay enhancements
• Coexistence of LTE V2X & NR V2X

RedCap evolution 
(excluding positioning)

• New use cases and new UE bandwidths (5 MHz?)
• Power saving enhancements

NTN (non-terrestrial 
networks) evolution

• Including both NR & IoT (internet of things) aspects

Evolution for broadcast and 
multicast services

• Including both LTE-based 5G broadcast and NR MBS (multicast-
broadcast services)

Expanded and improved 
Positioning

• Sidelink positioning/ranging
• Improved accuracy, integrity, and power efficiency
• RedCap positioning

Evolution of duplex 
operation

• Deployment scenarios, including duplex mode (TDD only?)
• Interference management

Network energy savings • KPIs and evaluation methodology, focus areas and potential solutions

Additional RAN1/2/3 
candidate topics, Set 1

• UE power savings
• Enhancing and extending the support beyond 52.6 GHz
• CA (carrier aggregation)/DC (dual-connectivity) enhancements
• Flexible spectrum integration
• RIS (reconfigurable intelligent surfaces)
• Others (RAN1-led)

Additional RAN1/2/3 
candidate topics, Set 2

• UAV (unmanned aerial vehicle)
• IIoT/URLLC
• <5 MHz in dedicated spectrum
• Other IoT enhancements/types
• HAPS (high-altitude platform system)
• Network coding

(Continued)
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Key enhancements for eMBB use cases. Beamforming/MIMO, enhanced mobil-
ity, and reduced energy consumption are among R18 edition’s most prominent new 
features. In order to increase the spectral efficiency of wireless networks, advanced 
antenna systems (AAS) have been and will continue to be a primary enabler of 1/2 
layer mobility, additional enhancements to MIMO uplink, and advancements related 
to fixed wireless access (FWA) applications. Dynamic spectrum sharing DSS is 
extremely useful in the transition to 5G. Release R18 also includes research in reduc-
ing electricity consumption in network. Proposals have been made to investigate the 
viability of full duplex, in which gNBs broadcast and receive concurrently on the 
TDD frequency bands, notwithstanding the difficulties in practice and the ambigu-
ity of the performance potential. The research looks at the relationship between the 
improvements that can be achieved and the amount of interference that can be elimi-
nated by eliminating cross-links and self-interference.

Key enhancements for non-eMBB use cases. RedCap, XR, and NSPS (national 
security and public safety) are three of the most important developments for future 
or current vertical applications. Many potential use cases will benefit greatly from 
the inclusion of RedCap UE. Based on R17, the new edition of RedCap solution 
further reduces device costs and power consumption. Solutions that enable energy 
collection, such as energy-efficient activation of radio devices, will also be explored. 
In R17, 3GPP RAN working group investigates variations of AR and XR services 
and estimate their performance in 5G systems. The primary difficulty is providing 
a very high data rate and low/limited latency at the same time. In R18, RAN group 
will also work on traffic management for resource-efficient allocation of low-latency 
radio resources, support for mobility with constant data transfer rates, energy-effi-
cient UE compatible with XR traffic, and latency requirements. National and pub-
lic safety (NSPS) is the most notable of the new verticals making use of the 5GS. 
Improvements in RAN for remote control of drones and detection of fake drones 
in better perception of the situation are considered. The use of UE-to-UE relays 
and other out-of-coverage methods are two of the ways in which R18 improves 5G’s 
already impressive capabilities [130–132].

Cross-domain functionalities for both MBB and non-MBB use cases. The two 
cross-domain functionalities are AI/ML for physical layer enhancements (PHY) and 
RAN. AI and ML are widely believed to greatly boost PHY performance. For this 

TABLE 1.9 (Continued)
List of Topics Considered for R18 Edition [129,130,133,134]
Additional RAN1/2/3 
candidate topics, Set 3

• Inter-gNB coordination network slicing enhancements
• MUSIM (multiple universal subscriber identity modules)
• UE aggregation
• Security enhancements
• SON (self-organizing networks)/MDT (minimization of drive test)
• Others (RAN2/3-led)

AI (artificial intelligence), 
ML (machine learning)

• Air interface (use cases to focus, KPIs and evaluation methodology, 
network and UE involvement, etc.)

• NG-RAN



495G-Advanced Mobile Communication

reason, RAN standardization will investigate the potential by establishing a generic 
framework for AI and ML related PHY enhancements. This framework will include 
suitable modeling, assessment techniques, and performance criteria and testing. The 
first area for AI/ML improvement may be beam management or channel estimation/
prediction. Part of the research for R17 edition involves identifying applicable use 
cases and acceptable AI/ML-based solutions for RAN. The selective usage enhance-
ments made in R17 will be made normative in R18, allowing for better traffic man-
agement and load balancing. The present architecture’s interfaces will be the primary 
target for enhancement. In order to intensify competitiveness of suppliers, one of the 
goals is to ensure that models of AI remain specific for implementation [129–134].

1.2.4 novEl SySTEM aI&Ml ParadIGM

The relatively new concept of AI and ML has the potential to become a platform for 
completely new possibilities of evolution, and even for future 6G systems. Wireless 
networks are extremely complex, very dynamic, and very heterogeneous. There is no 
better approach than using AI/ML to solve difficult wireless challenges (Table 1.10) 
[132,135–140].

5G systems are increasingly complex in a variety of scenarios and applications. 
The evolution of performance improvements and solving new use cases makes 5G 
more sophisticated. In addition, 5G systems generate huge amounts of data. Applying 
rapidly advanced AI techniques, such as ML and data analytics, is key to managing 
complexity, identifying patterns in data, optimizing network design, improving sys-
tem performance, and reducing operating costs.

5G RAN radio-interface is complex due to network topology, multiple numer-
ology, network coordination schemes, and different nature of use cases. The main 
motives for designing mobile networks based on AI are lack of models and deficit of 
algorithms [141,142].

TABLE 1.10
Industry Initiatives on AI/ML for 5G [132,135–140]

ITU • Runs multiple programs on AI
• ITU-T focus group on machine learning for future networks
• AI/ML in 5G challenge is focused on university advanced R&D projects
• Developing frameworks for ML data collection, modeling, and evaluation

3GPP • Evolution of analytics architectures (NWDAF, SON, MDT)
• Studies on AI/ML for RAN in R17; for example:

• Study on AI/ML functional frameworks and use cases
• Study on AI/ML model transfer performance requirements over 5G
• Study on enhancement for data collection for NR and EN-DC dual connectivity

• Potential inclusion of AI/ML adaptations to air interface in R18 as part of 5G-advanced

O-RAN • O-RAN architecture for radio intelligent controller RIC and interfaces
• Technical report on AI/ML workflow description and requirement
• O-RAN software community to develop ML-based xApps and rApps network 

automation tools
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• Achieving any performance optimum in such complex application scenarios 
is probably computationally impossible. However, application of AI enables 
pragmatic and competitive performance.

• Modern mobile systems are designed under the assumption that the overall 
system behavior is modeled by means of simple modeling techniques that 
are amenable to rigorous mathematical investigation. In contrast, new solu-
tions based on AI overcome unknown complex analytical model.

• In mobile networks, there are a number of situations where optimum algo-
rithms have been identified but are too complicated to be used in reality, 
forcing system designers to depend on heuristics based on basic decision-
making principles. AI provides an attractive trade-off between performance 
and complexity in such scenarios.

The development of ML technology for system-level optimization and network intel-
ligence becoming one of the leading trends in academic, research, and industrial 
communities. It is possible to classify recently developed applications as:

• ML-based network intelligence and system-level adaptive optimization
• ML-based transmission intelligence
• spectrum intelligence and adaptive radio-resource management
• adaptive baseband signal processing.

Physical (PHY) and media access control (MAC) layers are the basic layers of mobile 
networks in which many technical innovations have been applied. The application of 
AI potentially enables improved performance within these layers for channel quality 
assessment and prediction, reception processing, channel decoding, random access, 
and dynamic spectrum access [141–145].

Application of AI in 5G network layer reduces additional resources for planning, 
operations, and troubleshooting. It is possible to implement AI fault detection and 
self-healing system within self-organized network SON, so that MNO mobile net-
work operators reduce their OPEX operating costs, speed up recovery, and enhance 
the quality of services provided to its end users.

Although application of AI indicates significant improvements, there are still 
many obstacles to be overcome:

• ML training issues
• lack of bonding performance
• lack of explainability
• uncertainty in generalization
• lack of interoperability.

Reducing training costs is critical issue for sustainability of AI models based on PHY 
and MAC layers. Furthermore, it is challenging to get labeled ML training data due 
to the separation of information in network protocol layers.

Unlike some other areas, it is crucial to anticipate user actions in mobile net-
works, in the worst case. Traditional model-based approaches provide generally good 
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understanding of system output distribution, in response to particular input distribu-
tion. To ensure at least some level of QoS or performance, the designer of the system 
accounts for the worst-case scenario. In contrast, because to the nonlinear nature of 
the AI methodology, it is complicated or even impossible, no matter how well they 
work in real networks – to provide any guarantee of performance in the worst case. 
For the smooth integration of AI into mobile networks, it is essential to provide bear-
able and progressive deterioration in the worst case.

There is a tendency to see AI technologies as black boxes because it is difficult to 
formulate an analytical model to test the correctness or simply explain their behavior. 
In situations when AI is used for decision-making in real time, the lack of explain-
ability might be a problem. An example of such a real-time system is communica-
tion between vehicles. Chronologically, mobile networks and wireless standards are 
designed based on theoretical analysis, measurement of channel characteristics, and 
human intuition and understanding. When creating AI models for use in mobile net-
works, it is preferable for them to have a high degree of explainability.

It is not always obvious whether the data set used to train an AI model to execute 
a communication job is comprehensive enough to account for the input distribution 
actually encountered by the model. It is necessary for the learning mechanism to 
generalize cases that did not appear in the training data set.

Today’s mobile networks are becoming more complicated, thus interoperability is 
more important than ever. Any incompatibility between AI modules made by vari-
ous manufacturers has the potential to reduce the network’s efficiency as a whole. 
Finally, mobile network based on artificial intelligence contains complex dependen-
cies; it is not easy to determine which vendor equipment/AI module is responsible in 
case of any degradation of performance indicators KPI.

From network design perspective, maximizing complexity of AI model applica-
tion requires clear definition of interface, both within and between protocol stack 
layers. Given initial nature of AI application in wireless systems and high levels of 
service guarantees required by MNOs, AI is being implemented in phases. System 
designers initially implement AI and then refine their testing tools and methodol-
ogy. It is desirable that AI models operate in longer timescales (order of minutes or 
hours), so that experts can change model recommendations if necessary. Additional 
robustness can be added by adjusting the performance of AI model based on expert 
feedback.

1.2.4.1 AI-Enabled RAN Architecture
3GPP explored RAN networks supported by AI in R17 release, including principles, 
functional framework, use cases, and solutions. 3GPP adopts set of key principles to 
focus on AI applications with the potential impact of RAN. One basic principle is that 
detailed AI model is not standardized. Instead, research focuses on identifying the 
basic information needed or produced by the AI model for each use case. The use of 
traffic management has been investigated both from the perspective of UE and from 
the perspective of RAN. From the UE perspective, goal is to find the best radio cell(s) 
for UE, which is often called mobility optimization. From the RAN perspective, the 
goal is to balance load between the network nodes. The use of energy efficiency of 
RAT is closely related to traffic management since it also refers to distribution of UE 
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between network nodes. The goal is to reduce electricity consumption while main-
taining satisfactory QoS (Figure 1.23) [146–149].

There are several challenges facing the process of standardizing radio-interface 
with AI in 3GPP. Existing technical specifications are formed on the principle of 
specifying a set of minimum performance requirements. Typically, requirements are 
defined in limited set of conditions and it is assumed that algorithms generalize well 
in real-world applications. The approach is challenged by algorithms based on AI 
that can be trained and adapted to a set of requirements and specifications, and there-
fore not generalized.

Telecommunications industry has shown great interest in the above issues and 
has conducted initial research within Open-RAN Alliance. O-RAN Alliance was 
created in 2018 by 3GPP and five mobile network operators with a goal for an open, 
efficient radio access network RAN with AI applications to automate various net-
work functions NFs and reduce operating costs. O-RAN Alliance consists of over 
160 member businesses, publishes standards, and distributes open source software 
under the aegis of the Linux Foundation. O-RAN reference architecture is the basis 
for building virtualized RAN on open hardware and cloud computing, with built-
in radio control supported by AI. The alliance’s standards provide the basis of the 
architecture, and they are entirely compatible with and supportive of the standards 
advocated by 3GPP and other organizations in the field. O-RAN reference archi-
tecture uses clear, well-established interfaces that enable an open and interoperable 
ecosystem. It contains the following functional blocks:

• orchestration/network management system layer with non-RT RAN intel-
ligent controller

• RAN intelligent controller near-RT function layer
• multi-RAT control unit CU protocol stack function
• DU and remote radio unit RRU function.

FIGURE 1.23 Functional framework for AI-enabled RAN (* further study in 3GPP).
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O-RAN reference architecture shown in Figure 1.24 includes RAN radio intel-
ligent controller (RIC) with non-real-time (non-RT) and near-real-time (near-RT) 
AI, multi-radio access protocol technology. Non-RT control functions (>1 seconds) 
and near-RT control functions (<1 seconds) are separated in RAN RIC. Non-RT 
responsibilities consist of policy and service management, optimization of higher-
level procedures, and model training. ML-generated messages and trained real-time 
models are distributed to near-RT RIC, which accepts and executes the AI model and 
changes functional behavior of network. The near-RT version of RIC is backward-
compatible with existing methods of radio resource management, and it improves 
upon difficult operational elements such as handover control, QoS management, 
and AI-powered connection. O-RAN Alliance has established two working groups 

FIGURE 1.24 O-RAN reference architecture.
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that standardize A1 interface (between non-RT and near-RT RIC) and E2 interface 
(between near-RT RIC and DU). ETSI (EU Telecommunications Standards Institute) 
has also launched ENI (Experienced Networked Intelligence) industry specification 
group to define cognitive network management architecture that uses AI and context-
aware policies to improve operator experience [146–149].

1.2.4.2 Network Automation and Data Analytics Function
Standards organizations have taken the first steps toward providing framework for 
integrating AI models into planning, operations, and healing of mobile networks. 
3GPP has defined a function of network data analytics (NWDAF) for data collec-
tion and analytics (including AI) in automated mobile networks. The standard speci-
fies only interfaces for NWDAF block. By leaving development of the AI model to 
implementation, 3GPP allows adequate flexibility for network providers to imple-
ment use cases with AI-enabled. Operational, administrative, maintenance, network 
function (NF), application function (AF), and data repository inputs are all taken in 
through the inbound interfaces. The outbound interfaces forward analytics feedback 
to NF and AF blocks, respectively [150–153].

3GPP promotes network intelligence starting with R16 and continues to advance in 
standardization of both the Network Infrastructure (SA2) and Network Management 
(SA5) from a technical standpoint. NWDAF is a standard network element that 
specified SA2 as AI + BigData engine with standardized capabilities, network data 
aggregation, improved real-time performance, and closed-loop controllability sup-
port. The 3GPP specifies the deployment options for the NWDAF, where it should 
be located in the network, how it should interact and coordinate with other network 
services. NWDAF is implemented in certain network functional units through the 
incorporation of functions and can also be coordinated across functional network 
units, in order to complete the work in the closed loop of network intelligence. 
Management data analysis system (MDAS) is described by 3GPP SA5, which, when 
combined with AI and ML, provides automation and cognition in the management 
and orchestration of networks and services. The MDAS processes and analyzes net-
work management data, creates reports with findings and recommendations for net-
work administration, and formulates procedures in intelligent automated closed-loop 
management and orchestration (Figure 1.25) [150–153].

3GPP investigates and specifies collection of data and transmission of ana-
lytics feedback to NFs. All possible solutions share the following architectural 
presumptions:

• Data collection and data analytics are performed in centralized method.
• Instance specific to analytic could be collocated with 5G system NF.
• NF and OAM operating, administering, managing, and maintaining pro-

cesses determine how to optimize your network with the help of NWDAF’s 
data analytics.

• To interact with the other NFs and OAM procedures in the 5G core network, 
NWDAF makes use of the already established service-based interfaces.

• Data analytics performed by 5G core network operations may be made 
available to any user NF that makes use of the SBI service-based interface.
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• The public land mobile network benefits from NWDAF and NFs working 
together effectively since it leads to standardized policies, analytics output 
findings, and, ultimately, decisions.

1.2.4.3 5G Advanced Architecture and Technical Trends
5G advanced networks continue to develop at architectural and technical level based 
on various requirements to improve network capabilities. At the architectural level, 
the cloud-native concept, edge network, network-as-a-service, and the continuous 
enhancement of network capabilities all need to be taken into careful consideration 
(Figure 1.26) [151–154].

New capabilities and technologies in 5G, including NS and EC, as well as the vir-
tualization of network resources, have introduced new challenges to 5G operations 
and commercial purposes. Telecommunications networks benefit from the deploy-
ment and integration of intelligent technology since it increases network efficiency 
while decreasing O&M expenses. Intelligent development of a 5G advanced network 
requires that AI monitoring technologies be used as a point of reference.

Intelligent RAN can be achieved by applying AI/ML in terms of placing on top 
of existing RAN applications or embedding. The first model allows ML use without 
major changes in the existing RAN. New algorithms are created by offline learning 
that can be applied to existing architecture. Other models are created based on data 
collected, analyzed, and implemented within RAT. The approach requires changes in 
functional nodes and interfaces and represents a much deeper integration with RAN, 
which requires more time to implement (Table 1.11) [151–154].

AI/ML contributions continuously improve 5G RAN depending on 3GPP versions 
of technical specifications. The R16 expands the existing NWDAF framework, mini-
mizes the drive test MDT that provides the operator with tools to optimize network 
performance in cost-effective way, and enables SON to use these new techniques. 
R17 edition contains technical studies on how to access AI/ML in the long-term 

FIGURE 1.25 General framework for 5G network automation of OAM (operations, admin-
istration, and maintenance).



56 Driving 5G Mobile Communications with AI towards 6G

FIGURE 1.26 5G advanced network architecture.

TABLE 1.11
Appling ML to RAN

RAN ML Type Implementation Example Benefits

Real-time air 
interface 
transmission

L1–L3 radio parameters in the 
centralized unit (CU), distributed 
unit (DU), and radio unit (RU) – e.g., 
to apply new RAN algorithms in 
seconds/ms time cycles

Better resource utilization and 
congestion control, power management, 
handover optimization, etc.

RAN 
management & 
optimization

Ongoing changes to cell or cell cluster 
configurations – e.g., in response to 
changes in demand on weekly/daily/
hourly time cycles

Enhanced network assurance and 
performance; better security via 
anomaly detection

RAN planning 
& deployment

Network design – e.g., to determine 
placement and configuration of gNBs

Better coverage, greater system capacity, 
optimized capex, faster deployment
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evolution of R18. AI/ML is probably the primary focus and is expected to cover areas 
of radio interface improvement and complete system framework.

AI/ML is evolving rapidly. It is necessary for mobile industry to use the technol-
ogy and apply it to the mobile network architecture from 5G CN to 5G NR and end-
user device UE itself. The first application of AI/ML is centralized, offline learning 
for planning and network operations. There are examples of the positive impact of 
technology, so ML is on the roadmap to further improve 5G network architecture 
and enable advanced services. In the time frame of the next 6G generation, possibili-
ties for AI are bright. For example, AI-native radio interface opens up the possibility 
of designing a radically simpler RAN with potentially large gains in efficiency and 
performance [155–161].

1.3 6G CONCEPT, RESEARCH, AND TRANSITION TECHNOLOGIES

Upcoming 6G communication systems are anticipated to support the greatest number 
of applications. to date. Extreme system performance and novel use case combina-
tions are the primary drivers. Apart from the establishment of brand-new perfor-
mance indicators and benchmarks, it is necessary to redefine the types of services in 
6G by improving and possibly integrating traditional URLLC, eMBB, and mMTC 
in new services [162–169]:

• Mobile broadband reliable communication with low-latency (MBRLLC) 
allows the 6G system to achieve the desired performance goal in large 
dimensions of speed–reliability–latency. The new service may be seen as an 
extension of existing ones, such as URLLC and eMBB. In addition, energy 
efficiency is becoming a major challenge because of not only its impact 
on reliability and speed of data transfer, but also continuous reduction in 
the size of 6G devices and increased functionality, which requires highly 
energy-efficient design.

• Massive URLLC combines URLLC with conventional mMTC service. 
A compromise in reliability–delay–scalability is necessary, and therefore 
requires a departure from system design based on average data rate or 
latency. A principled and scalable framework, on the other hand, takes into 
consideration factors such as latency, dependability, packet size, network 
architecture, topology (across edge, access, and core), and decision-making 
in the face of uncertainty. In addition to this, mURLLC contends with chal-
lenging networking conditions.

• Human-centered services (HCS) are a new class services that impose physi-
cal experience performance quality (QoPE) objectives closely integrated 
with users and their body/physiology, rather than technical metrics of 
speed–reliability–latency. An excellent example is wireless brain–computer 
interactions (BCI) in which the performance of a service is dependent on 
the user’s thoughts, actions, and even physiological state. It is necessary to 
define a set of QoPE performance indicators and quantify as a function of 
traditional (technical) perceived quality of user experience (QoE) and QoS 
performance metrics.
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• MPS multipurpose control, localization, and sensing and energy services 
(3CLS) are central to connecting robotics and autonomous systems. There 
is need for common UL–DL design and fulfillment of desirable perfor-
mance control objectives in terms of stability (computer latency, amount of 
transmission power), localization accuracy, as well as mapping and sensing 
accuracy. The MPS service is also suitable for cyber–physical operations on 
wireless infrastructure.

New types of 6G services require more stringent KPIs and their simultaneous fulfill-
ment in an end-to-end perspective. Indicators include data rate experienced by the 
user, end-to-end delay, mobility, connection density, traffic density, spectrum effi-
ciency, coverage, resources, and signaling efficiency. Then, the concept of KPIs is 
considered incomplete and it is necessary to compare them with key value indicators 
(KVI). Indicators are grouped into three basic categories: growth, sustainability, and 
efficiency. The first category is primarily connected to economic expansion and the 
formation of new values, ecosystems, and models. The second and third are mainly 
related to digital inclusion of individuals and groups, zero-energy devices, resource 
efficiency, and user privacy. Additionally, different definitions of term quality have 
been presented. The idea of a high-quality physical experience (QoPE) is an effort 
to complete and solidify the assessment offered independently by QoS and QoE by 
including additional physical attributes of users like cognition, bodily traits, and ges-
tures (Table 1.12) [162–169].

Here are some primary findings:

• As a first, intermediate step toward 6G systems, enabling mobile broadband 
services in mmWave bands is essential for maintaining high-speed commu-
nication at high frequencies.

• The next step toward 6G is understanding basics of URLLC, with focus 
on notion of reliability. It is necessary to explore new statistical tools for 
a distribution-based, rather than average-based, measurement of wireless 
system performance.

• In contrast to the standard, short-packet, and slow-speed URLLC services, 
the requirements of future wireless services include high dependability, low 
latency, and high data rates. A fresh perspective on the fundamentals of the 
trade-offs are required to regulate space–speed–reliability–latency.

• Analyzing and optimizing the performance of 6G demands working in 
three-dimensional space and researching a complicated system that incor-
porates drones, satellites, and conventional wireless infrastructure.

• AI plays a crucial function in 6G systems, ranging from enabling a self-
sustaining network to embedding collective network intelligence. The new 
paradigm of combined learning–communication co-design is particularly 
important for wide application of new AI algorithms.

The coming decade offers a plethora of prospects for wireless research that spans 
several disciplines. Driving 5G mobile communications with AI toward 6G will 
be an exciting era of convergence of wireless technologies ranging from artificial 
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intelligence to computer, control, and cyber–physical systems within the new system 
(Table 1.13) [170,171].

In AI for wireless communication, there is a need for deploying self-sustainable 
NFs: optimization, administration, and decentralized control of networks using arti-
ficial intelligence. In wireless communication for AI, algorithm performance at the 
edge may be affected by a number of different wireless characteristics, such as fad-
ing, mobility, and interference, which can be better understood when learning algo-
rithms are designed in tandem with wireless protocols [172–186].

1.3.1 ExTrEME SySTEM PErforMancE and nETwork EvoluTIon

Technological advances have reached significant critical mass in the evolution of 
mobile networks:

• continued architectural enhancements and cloudification
• 6G system is based on a data-driven architecture that will use huge amount 

of data to support AI in the cloud, core, RAN, and devices
• hardware acceleration and possibly different types of meta-materials
• higher reliance on open source
• Internet and IP network development and the confluence of the Internet, 

telecommunications, and media.

TABLE 1.12
6G Service Classes, Their Performance Indicators, and Example Applications

MBRLLC • Stringent requirements in rate-reliability-
latency space

• Energy efficiency
• Rate-reliability-latency for mobile 

scenarios
• Handover failures

• XR/AR/VR
• Autonomous vehicular systems
• Autonomous drones
• Legacy eMBB and URLLC

mURLLC • Ultra-high reliability
• Massive connectivity
• Massive reliability
• Scalable URLLC

• Conventional IoT
• Device tracking
• Distributed blockchain and DLT
• Massive sensing
• Autonomous robotics

HCS • QoPE (quality-of-physical-experience) 
capturing raw wireless metrics as well as 
human and physical factors

• BCI (brain–computer interactions)
• Haptics
• Empathic communication
• Affective communication

MPS • Control system stability
• Computing delay
• Localization precision and accuracy
• Accuracy of sensing and mapping functions
• Delay and reliability for communications
• Energy

• CRAS (connected robotics and 
autonomous systems)

• Telemedicine
• Environmental mapping and 

imaging
• Some special cases of XR services
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TABLE 1.13
Key 6G Research Areas

Research Area Challenges Open Problems

3D rate-reliability-
latency fundamentals

• Fundamental communication 
limits

• 3D nature of 6G systems

• 3D performance analysis of rate-
reliability-latency region

• Analysis of achievable rate-reliability-
latency performance targets

• SEE analysis in 3D space
• Quantification of spectrum and energy 

needs

Leveraging integrated, 
heterogeneous 
high-frequency bands

• Challenges of operation in 
highly mobile systems

• Susceptibility to molecular 
absorption and blockages

• Short range
• Lack of propagation models
• Need for high-fidelity 

hardware
• Presence of frequency bands 

with different characteristics

• Mobility and handover management for 
high-frequency THz and mmWave 
systems

• Cross-band physical, link, and network 
layer optimization

• Coverage and range improvement
• Design of mmWave and THz tiny cells
• Design of new high-fidelity hardware 

for THz
• Propagation characterization for 

mmWave and THz bands

3D networking • Presence of users and base 
stations in 3D

• High mobility

• 3D propagation modeling
• 3D performance metrics
• 3D mobility management and network 

optimization

Communication with 
RISs

• Complexity of metasurfaces 
and RIS

• Absence of precise models of 
performance

• Absence of precise models of 
performance

• Heterogeneity of 6G devices 
and services

• RIS capability to offer various 
functions (reflectors, BSs, 
etc.)

• Optimal deployment and location of 
RIS surfaces

• RIS reflectors vs. RIS transceiver BSs
• Energy transfer using RISs or other 

means
• AI-enabled RIS
• RIS across 6G services
• Fundamental analysis of the 

performance of RIS transmitters and 
reflectors across frequency bands

New QoPE metrics • Incorporate raw metrics with 
human perceptions

• Accurate modeling of human 
perceptions and physiology

• Theoretical development of QoPE 
metrics

• Empirical QoPE designs
• Practical psychophysics experiments
• Need for precise and realistic QoPE 

performance targets and measures

(Continued)
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TABLE 1.13 (Continued)
Key 6G Research Areas

Research Area Challenges Open Problems

Joint communication 
and control

• Integration of communication 
and control performance 
indicators

• Handling dynamics and 
multiple time scales

• Co-design of communication and 
control systems

• Control-aware wireless communication 
metrics

• Wireless-enabled control metrics
• Joint system optimization for CRAS

3CLS • Integration of multiple 
functions (communications, 
computing, control, 
localization, sensing)

• Lack of prior models

• Design of 3CLS metrics
• Joint 3CLS optimization
• AI-enabled 3CLS
• Energy-efficient 3CLS

Design of 6G protocols • 3D network-enabled 6G 
protocols that can also handle 
diverse propagation 
environments

• Need to serve different 
devices with heterogeneous 
capabilities and mobility 
patterns

• Need for adaptive and 
self-learning protocols across 
the network stack

• Design of signaling, scheduling, and 
network coordination protocols that do 
not rely on pre-fixed and rigid frame 
structures

• Development of adaptive multiple 
access protocols

• Design of adaptive and proactive 
handover schemes that can handle 3D 
mobility

• Novel identification and authentication 
techniques suitable for new 6G devices

• Development of AI-inspired edge 
protocols for multiple 6G functions

RF and non-RF link 
integration

• Different physical nature of 
RF/non-RF interfaces

• Hardware for joint RF/non-RF systems
• System-level analysis for systems with 

joint RF and non-RF capabilities
• Use of RF/non-RF systems for various 

6G services

Holographic radio • Lack of existing models
• Hardware and physical layer 

challenges

• Design of holographic MIMO using 
RISs

• Performance analysis of holographic 
RF

• 3CLS over holographic radio
• Network optimization with holographic 

radio

AI for wireless • Design of low-complexity, 
edge AI solutions

• Small but massively 
distributed data

• SON using reinforcement learning 
techniques

• Data analytics for both big and small 
data

• AI-guided network management
• Edge AI operating on wireless networks
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There are obvious synergies between technology groups in enabling various use 
cases. One example is the introduction of ML in all network components based on 
open source development environments and cloudification trends.

From the standpoint of mobile network operators, who offer not only connec-
tion but also services, performance insight, and interfaces with third-party network 
computing capabilities, the objective of technical advancement is to accomplish the 
following characteristics:

• Unparalleled efficiency for all uses, both traditional and otherwise.
• Smarter, more cognitive networks may provide the necessary capacity with-

out considerably increasing the associated costs or levels of complexity.
• As networks evolve, they become more flexible, able to deploy quickly, and 

open to adding new services in a timely manner.
• 6G for sustainability is enabled by the wireless system, and sustainable 6G 

within the wireless system.

Prediction alone is not enough, and in order to achieve the goal of implementing 6G 
by 2030, it is necessary that the research of 6G system follows the roadmap shown in 
Figure 1.27. Joint efforts focus on 5G assessment and evolution over the first 5 years, 
with the definition of 6G specifications. The first combination of hardware and soft-
ware environment for 6G testbeds will appear after 2025 [187–193].

1.3.1.1 IMT Vision for 2030 and Beyond
ITU-T SG 13 study group for standardization established in July 2018 the focus group 
FG NET-2030 networks. The working group identified 6G mobile system specifica-
tion guidelines, network architecture, requirements, use cases, and network capabili-
ties. The FG NET-2030 concluded its activity on July 2020 [194–199].

ITU-R SG5 WP5D study group is in charge of everything concerning the IMT-
2030 infrastructure. At the start of each IMT procedure, a vision of what needs 
to be achieved is established. After that, the candidates who support the require-
ments start development of necessary functional technology. When standardization 

FIGURE 1.27 Roadmap enabling 6G deployment by 2030.
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organizations submit candidate technologies, an evaluation process is initiated 
through the cooperation of ITU member states, equipment manufacturers, network 
operators, and academia. The single global framework serves as a venue for debate 
and consensus about the potential of new radio technologies. Approval and imple-
mentation bring the process to a close after the radio interface has been finished and 
an agreement has been obtained.

In line with described IMT process, ITU-R is launching 6G vision study as first 
step and then publishing the minimum technical requirements and evaluation crite-
ria for IMT-2030. At a working meeting in February 2020, WP5D working group 
decides to launch a study on future technological trends and present study at working 
meeting in June 2022.

The World Radiocommunication Conference (WRC) is also organized by 
ITU-R, which regulates allocation of frequencies, and is held every 3–4 years. 
Spectrum allocation for the 5G technology was decided during the 2019 World 
Radiocommunication Conference. WRC-23 is expected to be scheduled for 2023 
and discuss spectrum issues for 6G, so allocating spectrum for 6G communications 
could be officially decided in 2027 (WRC-27). At the same time, 3GPP is expected 
to launch 6G research around 2025, followed by a specification phase, to ensure the 
first commercial 6G implementation by 2030.

1.3.2 TEchnoloGy EnablErS and rESEarch ProGraMS

6G wireless communications networks are anticipated to offer worldwide coverage, 
improved spectral/energy/cost efficiencies, higher levels of intelligence and security. 
To accommodate these needs, 6G networks depend on new technologies that enable 
radio interface and transmission technologies and a new network architecture.

The design of physical layer (PHY) communication systems conventionally relies 
on wireless channel models and extensive mathematical analysis. The approach has 
led to well-defined methods for modulation, channel estimation, equalization, code 
design, and so forth. However, models usually fail to describe all the complexity 
of the actual communication medium. Moreover, approximations are made in the 
design of communication algorithms for tractability, which causes suboptimal per-
formance. Over the last decade, ML has made breakthroughs in communications 
and significant gains in bandwidth and reliability. The goal is to apply DL to develop 
improved physical layer (PHY) transceiver algorithms for new modulations and 
waveforms, as well as for channel estimation and detection.

In higher-layer applications, through the big data learning functions generated by 
the wireless network infrastructure and sensor devices, it is possible to optimize net-
work configurations and achieve better network performance. Predicting and man-
aging network traffic and network performance has been researched using AI. ML 
techniques enable optimization and management of mobile networks and reduction 
of operating costs.

1.3.2.1 Review of Global Activities and Research Programs
The most important participants in mobile communications market have already 
officially started their national 6G research or have announced their ambitions and 
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plans. EU programs are the most transparent and open with valuable information 
available to the public. Europe has made progress with 6G initiatives involving gov-
ernments and academia at regional and national levels. Under framework program for 
research and technological development FP8 Horizon 2020, EC has launched further 
5G research through ICT-20-2019 5G long-term evolution. A total of 66 high-quality 
ideas were submitted by consortia of suppliers, mobile carriers, academics, research 
organizations, small firms, and verticals, and eight of these pioneering initiatives will 
begin in early 2020. A second round of 6G research projects, funded by the ICT-52-
2020 Smart Connectivity program, got underway in early 2021. HorizonEurope’s 
next PPP Smart Network & Services public-private partnership, which is part of the 
FP9 framework program, will carry on the continent’s 6G R&D efforts after the 
success of the Horizon 2020 5G-PPP initiative. In early 2018, Academy of Finland 
selected the University of Oulu to lead the national research 6Genesis Enabled 
wireless Smart Society and ecosystem, a 6GFP leading flagship program. After the 
inaugural 6G Wireless Summit in September of 2019, a series of white papers were 
released addressing 12 different topics, including ML, edge intelligence, localiza-
tion, sensing, and security. The 6GFP explores in detail four interrelated key research 
areas (Table 1.14) [200–208].

The first generation of communication networks that include AI from the ground 
up will be 6G networks. AI is not just an application; it is an inherent part of infra-
structure, network management and operations (Table 1.15).

The study is undertaken along the lines of information and communication the-
ory, implementation and verification of the idea of 6G technologies, and test net-
works, among others: the following is a summary of these research lines’ specifics 
[209–213]:

TABLE 1.14
Core Research Areas of 6GFP Program

Wireless Connectivity Solutions 
and RAN Technologies

Distributed 
Intelligent 
Wireless 

Computing

Devices and 
Circuit 

Technologies and 
Implementation

Vertical 
Applications 
and Services

Optimization of wireless networks
Network capacity
Physical layer (PHY) technologies
Network densification and use of 
dynamic infrastructure

Ultra-reliable low-latency 
communications (URLLC)

Communications concept with 
embedded positioning

Software-defined networking
Wireless networks security

Mobile edge, 
cloud, and fog 
computing

Augmented reality 
(AR)/virtual 
reality (VR) over 
wireless

Intelligent 
distributed 
computing and 
data analytics

RF transceiver 
implementations 
and integrated 
circuit

IC design
Materials and 
components

Embedded 
systems and 
software

Ubiquitous 
sensing

Vertical 
applications

An experimental 
wireless 
network

Techno-
economic and 
business 
considerations
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TABLE 1.15
Taxonomy of ML Applications across Different Layers of Future 
Communication Network

Network Layer Supervised
Unsupervised and 

Partially Supervised Reinforcement

Physical layer Channel 
equalization, 
decoding, and 
prediction, path loss 
and shadowing, 
prediction, 
localization, sparse 
coding, filtering, 
adaptive signal 
processing, 
beamforming

Modulation, 
interference 
cancellation, 
mobility prediction, 
spectrum sensing, 
radio resources 
optimization, 
localization, 
security, 
transmission 
optimization, nodes 
clustering, 
duplexing 
configuration, 
multiple access, 
beam switching

Link preservation, 
channel tracking, 
on-demand 
beamforming, secure 
transmission, energy 
harvesting, transmit 
power selection, nodes 
selection, channel access 
management, 
modulation mode 
selection, coverage 
optimization, anti-
jamming radio 
identification

Network and other 
layers

Caching, traffic 
classification, 
network anomalies 
identification, 
throughput 
optimization and 
adaptation, latency 
minimization, 
optimization of 
other KPIs

Multi-objective 
routing, traffic 
control, network 
state prediction, 
source encoding 
and decoding, 
network parameters 
prediction, intrusion 
detection, fault 
detection, anomaly 
detection, etc.

Multi-objective routing, 
packet scheduling, 
access control, adaptive 
rate control, network 
security, capacity and 
latency demand 
prediction, traffic 
prediction and 
classification, network 
slicing

Application layer Smart health care, 
smart home, smart 
city, smart grid, 
query, processing, 
data mining, crime 
detection, etc.

Data processing, data 
ranking, data 
analysis (spatial, 
temporal, etc.), data 
flow prediction, 
dimension 
reduction, malware 
detection and 
classification, 
network anomaly 
prediction, 
demographics 
features, extraction 
and prediction, 
fraud detection

Proactive caching, data 
offloading, error 
prediction, traffic rate 
determination and 
allocation, data rate 
selection for segments
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• Information & communications theory & optimization for mmWave 
and (sub-)THz bands. Physically inspired models of materials, circuits, 
and wave propagation are used to provide fundamental information and 
communication theory that may be used in the development of fundamental 
design tools and recommendations for the optimization of RAN architec-
tures. It will be realized as a system optimization framework that enables 
different design goals.

• Superfast wireless broadband connectivity. System optimization frame-
work is used for high data rate and capacity technology solutions in the 
Tbps range, with a focus on solutions that save energy. The research also 
considers RF&BB requirements of transceivers and their architecture based 
on C-RAN and basic technological options, as well as RAN methods and 
algorithms.

• Ultralow latency communications. A framework for optimizing low 
latency highly reliable connections at the expense of spectral efficiency is 
being developed, in order to define RAN protocols and transceivers. The 
architecture of the system and the limitations of C-RAN and other imple-
mentations will be explored in order to specify cost and energy-efficient 
implementations.

• Security for 6G. For the next generation of RAN technology, from the 
physical layer on up, a comprehensive security analysis and solution archi-
tecture is now in development. The RAN and SDN frameworks will include 
software security concerns at the network level.

• THz technology enablers toward 6G. Expertise in mmWave device 
design is combined with sub-THz imaging circuits and the relevant chan-
nel and propagation models, systems theory, and communications to build 
sub-THz wireless transceivers. In order to provide sufficient system perfor-
mance, researchers are developing new low-loss materials and packaging 
techniques.

• High-risk technology enablers toward 6G. Active research on promising 
and relevant developments for the period 2030 is being conducted in order 
to innovate and take risks for research. For example, revolutionary develop-
ments in quantum theory and quantum communication are monitored, and 
feasibility studies are initiated when there is justification (Table 1.16).

6G communications technologies are still at a very early stage of development 
[245–256]. Solutions for the full exploitation of communication capacities, which 
are theoretically predicted at frequencies up to 100 GHz and higher, also require the 
realization of evidence of proof of concept (PoC) before trials of 6G network are jus-
tified. With the advent of very fast radio links and enhanced sensing possibilities on 
THz frequencies, the groundwork has been laid for the creation of critical new capa-
bilities on the path to 6G, and a new idea has emerged in which physical restrictions 
are considered with more attention than ever before. Radically new developments 
necessary for system-level demonstration include feasibility studies of very large and 
efficient antenna arrays (with low-losses), as well as processing large amounts of 
available bandwidth in the sub-THz and THz regions.
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1.4 OPEN ISSUES AND CONCLUDING REMARKS

The introduction of 5G technology into the telecoms market is a very exciting devel-
opment. The International Telecommunication Union defines 5G as having greater 
speeds, reduced latency, and huge connectivity. There are more possibilities for how 
applications may be used, such as improved mobile broadband, high dependability 
with low latency, and low power with high connectivity. With minimum technical 
criteria and assessment process provided by ITU-R, 3GPP began collaborative pro-
cess in 2015 and completed its first release of technical specifications on 5G system 
in June 2018, the second in June 2020, and the third in March 2022 and lastly, tran-
sitional 5G-Advanced started in the second quarter of 2022.

Although efforts to develop a worldwide standard for 5G are still in their infancy, 
the focus of wireless communication researchers is rapidly turning to the next-gen-
eration mobile technology. It is a radical departure from previous mobile technology 
paradigms. 6G is the convergence of physical space, cyberspace, and intelligent con-
nection. In addition, interaction is fundamental to providing consumers with a fully 
immersive experience. Here are some key observations: first short-term step is to 

TABLE 1.16
Summary of Key Open Challenges and Potential Solutions 
[145,158,170,214–244]

Challenges Potential 6G Solution Open Research Question

Stable service quality in 
coverage area

User-centric cell-free 
massive MIMO

Scalable synchronization, control, and 
resource allocation

Coverage improvements Integration of space-borne 
layer, ultra-massive MIMO 
from tall towers, IRS

Joint control of space and ground-
based APs, real-time control IRS

Extremely wide 
bandwidths

Sub-THz, VLC Hardware development and mitigation 
of impairments

Reduced latency Faster FEC, wider 
bandwidths

Efficient encoding and decoding 
algorithms

Efficient spectrum 
utilization

Ultra-massive MIMO, 
waveform adaptation, 
interference cancellation

Holographic radio, use case-based 
waveforms, full duplex, rate-splitting

Efficient backhaul 
infrastructure

Integrated access and 
backhauling

Dynamic resource allocation 
framework using space and 
frequency domains

Smart radio environment Intelligent reflectance 
surfaces IRS

Channel estimation, hardware 
development, remote control

Energy efficiency Cell-free massive MIMO, 
suitable modulation 
techniques

Novel modulation methods with 
limited hardware complexity

Modeling or algorithmic 
deficiencies in complex 
and dynamic scenarios

ML/AI-based model-free, 
data-driven learning and 
optimization techniques

End-to-end learning/joint 
optimization, unsupervised learning 
for radio resource management
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make possible broadband wireless services in the mmWave bands required to maintain 
high-speed communication at high frequencies. The next stage is to prioritize space–
speed–dependability–latency design space trade-offs that emphasize high reliability, 
low latency, and high data rates. In order to analyze and optimize performance, one 
must work in three-dimensional space and investigate intricate systems. AI is crucial 
to 6G systems, ranging from enabling a self-sustaining network to embedding collec-
tive network intelligence in joint learning–communication co-design.

The sixth generation of mobile communications is anticipated to offer worldwide 
coverage, improved spectral/energy/cost efficiencies, higher levels of intelligence 
and security. 6G offers considerably faster data speeds, reduced latency, and much 
enhanced terminal device densities, while natively harnessing artificial intelligence 
AI inspired by vast quantities of unexplored data and intrinsic complexity of innova-
tive use cases. Numerous scholars have predicted that the technological environment 
would undergo significant changes by 2030. The world is now undergoing a tran-
sition toward a more data-driven, highly digitalized, and intelligent environment. 
Challenges and opportunities in technology will arise with the next revolution.

Technologies for 6G communications are just in their infancy. The open issues 
in achieving an ideal mobile network infrastructure are interference, user localiza-
tion, traffic management, network control, channel optimization, power consump-
tion, and security. As for multimedia communications, issues that need more study 
are multimedia operating over mobile environment, network slicing optimization, 
mobile edge computing, mobile cloud computing, as well as immersive media deliv-
ery, mobile video multicast/broadcast, QoE/QoS management.

The dominant tendencies in the academic, scientific, and business communities are 
development of ML technology for system-level optimization and network intelligence. 
New applications include ML-based network intelligence and adaptive optimization 
at the system level, ML-based transmission intelligence, spectrum intelligence, and 
adaptive radio-resource management, adaptive baseband signal processing. However, 
significant challenges remain to be overcome: training challenges, lack of scalability, 
lack of explainability, ambiguity in generalization, and interoperability concerns.

The moment has come for researchers in both academia and business to investi-
gate the potential of next-generation mobile communication systems. In the coming 
decade, there will be a plethora of possibilities for wireless research that spans sev-
eral fields. The chapter elaborates system concept based on network virtualization, 
architecture options, technology enhancements, advanced service requirements, and 
new paradigms. The main aim is to provide well-structured description on how AI 
is being applied at the different layers of the 5G system and how it can pave the way 
for 6G networks. Driving 5G mobile communications with AI toward 6G will be an 
exciting era of technology convergence.
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2.1 INTRODUCTION

The development of 5G network technology enables ultrahigh speeds and low-
latency communication such as no previous generation of mobile networks. On 
the other hand, the delivery of new media formats to various devices including 
smartphones, tablets, smart TVs, or connected cars is increasingly important. 
Digital media is expected to represent 70%–80% of mobile data traffic by 2025. 
The ever-growing amount of video content available and the demand for higher 
resolutions pushing the limits of current networks. Immersive video communica-
tion also places unprecedented demands on network bandwidth. 3D volumetric 
formats Multiview/360-video/Point clouds and XR (extended reality) require much 
higher throughput than standard video streams as well as low latency and extreme 
interactive communication. 5G wireless technology solutions support new vertical 
industry services as well as business opportunities in the global media ecosys-
tem along the entire value chain, from media production, distribution, and media 
consumption. 5G enables the delivery of media with enhanced broadband mobile 
access (eMBB), 5G media streaming, 5G broadcast, and 5G MBS multicast/broad-
cast services.

The basic requirements of 5G mobile networks are to support massive capacity 
and connectivity, diverse set of services, applications, and users with extremely dif-
ferent requirements, as well as flexible and efficient use of the available spectrum 
supporting very different network deployment scenarios. 5G presents an opportunity 
to achieve improved throughput and reduced latency through the use of newly speci-
fied radio and core technologies, improved flexibility and mobility, and increased 
reliability thanks to security and integrity features.

3GPP is the global organization for standardization of mobile technologies, devel-
oping new media distribution solutions based on the high potential of improved 
mobile broadband (eMBB) connectivity, increased data speed and reduced latency, 
as well as new service-based network architecture. The goals are to support the latest 
media formats that enable improved quality of service (QoS) for traditional services, 
as well as new immersive formats for augmented reality XR. There are three ways to 
deliver multimedia content.

• Unicast transports media from the content server to the end user’s device 
on a dedicated network connection. There are as many two-way connec-
tions as there are end-user devices. Unicast effectively covers all services 
that require a two-way connection. Unicast is also effective in serving users 
spread across multiple radio cells, consuming different content at different 
times, such as streaming video on demand.

• Broadcasting transports media from content server to an end-user device 
via single unidirectional link shared by several users in single radio cell. 
Broadcasting more efficiently covers all services for which multiple users 
located in one area consume the same content at the same time. Broadcasting 
is efficient for quickly forwarding the same content to multiple devices at 
the same time without user interaction.
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• Multicast further enables activation of areas where certain number of end-
user devices have previously joined the service or charging users based on 
actually received services.

3GPP standardizes the specifications of various technical solutions for media dis-
tribution. The most significant are terrestrial 5G Broadcast, multicast, and broad-
cast 5G MBS services as tool for network optimization, and 5G MS architecture 
for streaming media that enables different cooperation scenarios between different 
stakeholders. 5G technologies support the distribution of media services as a com-
bination of linear (public broadcasting services) and nonlinear (on demand, podcast) 
components with a high degree of control and guaranteed end-to-end QoS.

• 5G media streaming (5G MS) architecture is a state-of-the-art solution that 
enables cooperation of different CDN providers, broadcasters, and mobile 
network operators (MNOs). The 5G MS exposes network and device func-
tions to third-party providers, enabling the best use of 5G capabilities to 
provide increased QoS levels for connected users. 3GPP is developing new 
architecture from 5G standard R16. It introduces the concept of reliable 
media functions, which are implemented on both the network and the user 
device, and also defines an API interface with external media servers and 
functions. Functions that are normally implemented outside the network 
domain can be integrated into the 5G MS. It is now possible to allocate ABR 
encoders, streaming manifest generators, segment packagers, CDN servers 
and caches, DRM servers, and content servers for advertisement replace-
ment, manifest modification servers, or even metrics servers within a 5G 
network to improve service delivery.

• 5G broadcast (LTE-based 5G terrestrial broadcast) technical specifications 
meet the requirements for DTV and digital radio broadcasting. The system 
gives service providers control over linear content delivery, allows radio 
carriers to be configured with nearly 100% capacity for broadcast services, 
and supports large-area SFN networks with topologies outside of cellular 
networks. To receive broadcast content, UL link and online registration are 
not required, which eliminates the need for SIM card and effectively enables 
free-to-air reception. 5G broadcast can be fully integrated into any 3GPP 
devices, with the same chipset architecture, and even be complemented by 
mobile broadband data.

• 5G multicast and broadcast services (MBS) support the on-demand distri-
bution mechanism of multimedia content, thus ensuring sustainable quality 
of experience for large audience. 3GPP introduced multiple capabilities for 
5G system architecture in R17, initially targeting architectures that meet 
requirements related to IoT, public safety, V2X, or IPTV, among others.

3GPP initiated the transition of media verticals to common distribution platform. The 
mobile industry, with its rapid cycles of innovation and replacement, opens up new 
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opportunities for new services. The fundamentals of 5G media are outlined in R16, 
June 2020. A fundamental improvement has been developed in the 5GMS architec-
ture, protocols, and codecs for streaming media. There are several improvements 
under consideration for R17, the release scope was approved in December 2019, and 
the system design was completed by March 2022. Development plans for the next 
3GPP standard specifications R18 and R19 have been agreed and include innova-
tions in XR and media services, computer vision, ML/AI-based media, and network 
automation. The specification and standardization of new technologies enable global 
application in order to achieve economies of scale and offer the technologies to mar-
kets at competitive prices. In this context, 3GPP and MPEG standards are relevant to 
enable interoperable multivendor XR services, allowing different market participants 
to develop applications and services. The standardization of the next generation (6G) 
is not limited to the communication part, but also to the deep integration of commu-
nications, intelligence, and computing. 3GPP may start general study on 6G systems 
in late 2025 (release 20), while research on technical specifications will begin in late 
2027.

The main sections of this chapter are an introduction to 5G media platform and 
immersive media over 5G. In the first part, key characteristics of eMBB, media 
streaming 5G MS and multimedia broadcast/multicast services (5G MBS), as well 
as multimedia production and distribution ecosystem are presented. In the second 
part, immersive media over 5G, extremely interactive and low-latency 6G services 
as well as AI video are outlined. We conclude with remarks on common 5G media 
platform.

2.2  EXTENSIONS OF 5G ARCHITECTURE FOR 
COMMON MEDIA DELIVERY PLATFORM

Mobile communication and networks have advanced rapidly over the past four 
decades, adopted innovative technologies, and developed efficient system architec-
tures in terms of system capacity. However, it is not an optimal solution in terms 
of other system parameters (latency, energy efficiency, connection density). 5G sys-
tem supports enhanced mobile broadband communication (eMBB), ultrareliable 
low-latency communication (URLLC), and mass machine-type communication 
(mMTC), whose main performance indicators are system capacity, delay, reliabil-
ity, and connection density. The 5GS system also introduces the concept of network 
slicing (NS), enabling the creation of dedicated and isolated network infrastructures 
that are adapted to the needs of services. A NS is a logical network infrastructure 
identified by network selection assistance information (S-NSSAI), consisting of a 
slice/service type (SST) and slice differentiator (SD). The 5G system defines a set of 
standardized SSTs, one for each service vertical. Media distribution and streaming 
services can use the slice eMBB.

eMBB services, such as the radio access network (RAN), core network (CN), and 
user equipment (UE), have been the focus of 3GPP R15 5GS technical specification. 
The categorization of RAN operating bands allows separate set of requirements for 
each frequency band: FR1 from 450 MHz to 6 GHz, and FR2 from 24.25 to 52.60 GHz 
(Figure 2.1). The base station gNB channel bandwidth supports a single RF-carrier at 
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the base station. The channel raster defines the spacing between the allowed center 
frequencies of a channel. Transmissions sharing the same antenna port experience 
the same propagation channel. The waveform OFDM is the baseband signal, which is 
mixed with RF before being radiated across the air interface. Beamforming requires 
an antenna array with multiple antenna elements, which improves the uplink (UL) 
and downlink (DL) budgets by increasing the antenna gain. 5G radio-frame has a 
fixed duration of 10 ms. The 5G subframe has a fixed duration of 1 ms, so there are 
always 10 subframes within each radio-frame.

The 5G architecture is based on modular design and separation of control plane 
(CP) and user plane (UP) to enable scalability and flexible implementation, which 
is accelerated by the application of virtualization of network functions (VNFs) and 
software-defined networking (SDN). In addition, the interaction of network func-
tions in the 5G architecture is based on the SBA service model, and the interaction of 
5G NF network functions and external third parties is enabled through the concept 
of capability exposure. The 5G system architecture is guided by the following design 
principles:

• separation of user plane (responsible for transferring application data 
between the end user and the application server) from control plane (respon-
sible for transferring signaling messages) functionality;

• service-based architecture (SBA), where network functions (NFs; UPF, 
AMF, SMF, …) offer services to other network functions and consumers;

• support for stateless network functions, optimized for speed and large load;
• scalability through virtualization and distribution, allowing for multiple 

instances of each network function to be created.

FIGURE 2.1 5G spectrum (FR1, FR2) and 5GS system architecture (SBA).
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The data plane UP includes the user equipment UE, the radio access network RAN, 
the functions of the user plane UPF; essentially a network switch or router) and the 
data network (DN; Internet). The control plane CP consists of several network func-
tions necessary to support the UE mobile connection. The most relevant are the 
access and mobility management function (AMF; allows the UE to set up and termi-
nate the mobile connection), session management function (SMF; configures traffic 
routing for a specific UE session and chooses the UPF that the session will use), the 
network exposure function (NEF; exposes some network capabilities to external par-
ties), and the application function (AF; affects traffic routing and policy management 
for specific application). The session data protocol unit (PDU) supports the end-to-
end user plane connection between the UE and a specific DN via the UPF. A PDU 
session supports one or more QoS streams.

The 5GC core network applies quality of service rules to QoS flows. As part of 
a PDU session, the stream is identified by a unique QFI in the 5G system. All user 
plane traffic within a PDU session with the same QFI receives the same treatment, 
i.e., traffic forwarding, scheduling, and admission control. All flows are controlled 
by the session management function (SMF). The QoS flow can be preconfigured, 
established during the PDU session establishment procedure or by the PDU session 
modification procedure. A flow is assigned a QoS profile with a 5QI flow identifier 
that specifies a set of static characteristics, including GBR or non-GBR label, prior-
ity level, delay budget, packet error rate and averaging window, and maximum data 
burst size.

Significant progress has been made in both standardization and commercial appli-
cation since 2016 with the start of 3GPP work on the new 5G NR radio. The first 
version of the 5G standard in R15 2018 built the foundation for NR by considering 
different service requirements, a wide range of spectrum (from hundreds of MHz to 
tens of GHz) and different application scenarios (indoor/outdoor, macro/small cells). 
5G NR is standardized to extend service in the vertical domain in R16 2020 and R17 
2022, adopting or enhancing new use cases. The evolution of 5G NR is now entering 
its second phase with 5G-Advanced 2024. There is tremendous interest in continuing 
to improve the 5G NR platform in R18 and beyond based on the increasing need for 
eMBB evolution and vertical domain expansion.

2.2.1 EnhancEd MobIlE broadband eMbb and MEdIa STrEaMInG 5G MS

The eMBB use case is aimed at the user accessing multimedia content, services, 
and data. The usage scenario is expanding into new application areas in addition to 
existing ones for improved performance and an increasingly seamless user experi-
ence. Use cases can be classified as broadband access in dense areas (urban centers, 
stadiums, and malls), uninterrupted access in suburban and rural areas, and high-
speed mobility (high-speed trains and airplanes). Each use case imposes different 
requirements. For example, broadband access in dense areas requires higher con-
nection density and traffic density. The basic requirement is high throughput. Design 
approaches of eMBB are:
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• The bandwidth represents the capacity of a medium for data delivery. 
However, it is a theoretical rate for data transmission over a medium. The 
throughput is of more practical rate because it considers noise, error, inter-
ference, and so on.

• The network throughput (or area throughput) can be expressed as a network 
throughput (bit/s/km2), cell density (cell/km2), and spectral efficiency (bit/s/
Hz/cell).

• A high network throughput can be obtained by allocating more available 
bandwidth, increasing cell density, or improving spectral efficiency.

• 5G techniques for improving throughput are summarized as small cell, het-
erogeneous networks, mmWave, MIMO, flexible TDD, full duplex, multi-
carrier techniques, LDPC error correcting channel code, D2D link, carrier 
aggregation, and so on.

eMBB support has been continuously improved since R15. Major parts of the eMBB 
functions introduced in R15, R16, and R17 are for operation in the download (DL) 
direction. On the contrary, improvements in the upload (UL) direction are now 
emphasized in R18. Of course, DL operations will also be improved to meet the 
demand for the evolution of NR applications.

MIMO evolution. Enhancements for R18 UL MIMO have been identified and 
specified especially for non-smartphone devices such as vehicles, and industrial 
devices. The use of 8 antennas is supported for transmission and support of 4 or 
more streams per UE and simultaneous transmission from multiple panels (relevant 
for FR2 band).

UL coverage enhancements. UL direction coverage is recognized as one of the 
essential elements for the advancement of 5G NR, since UL performance can be a 
bottleneck in real applications. In addition, demand for UL intensive applications 
(video uploading, cloud storage) is constantly increasing. While R17 introduced cov-
erage improvements for UL data and control channels, R18 further improves the 
coverage of the physical random access channel (PRACH), especially in the FR2 
band, including the use of the same beam for the 4-step RACH procedure. Finally, 
the use of available UL transmission power can be improved, e.g., by increasing the 
UE transmission power limit for carrier aggregation and dual connectivity as long as 
it complies with the relevant regulations.

Dynamic spectrum sharing enhancements. Dynamic spectrum sharing (DSS) 
between LTE and NR in the same frequency range plays a significant role in acceler-
ating the application of NR in existing LTE networks. R18 introduces the use of rate 
matching pattern to avoid interference caused by the transmission of a common refer-
ence signal (CRS) of neighboring LTE cells. In addition, the support of physical DL 
control channel (PDCCH) in symbols with LTE CRS can be introduced to increase 
the capacity of NR PDCCH.

Carrier aggregation enhancements. Working with multiple mobile operators 
through aggregation (operator aggregation) takes significant place in increasing data 
transfer speed and improving overall system performance. Different frequency bands 
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are expected to become available for the application of 5G-Advanced systems by 
re-farming spectrum from previous generation systems. It is necessary to further 
improve carrier aggregation for efficient use of available spectrum blocks. In R18, 
the reduction of control signaling costs is achieved by a single control grant that 
schedules multiple data transmissions on different carriers. Moreover, for UEs with 
dual-antenna simultaneous transmission capability, support for dynamically select-
ing two transmission bands among 3 or 4 configured bands is introduced to improve 
UL capacity and spectrum utilization via faster adaptation by considering, e.g., data 
traffic, bandwidths, and channel conditions of each band.

Mobility enhancements. R18 seeks to reduce latency, signaling overhead, and 
downtime due to higher layer procedures in the current mobility mechanism. For 
a serving cell change, L1 and L2 protocol-based intercell mobility is specified, 
which includes configuration and maintenance for multiple candidate cells, dynamic 
switching between serving candidate cells based on L1/L2 signaling, and L1-based 
BM intercell beam management. To change the secondary cell group in NR dual 
connectivity, selective activation of cell groups is introduced to avoid unnecessary 
reconfiguration of the higher layer.

Topology enhancements. Integrated access and backhaul IAB and radio-fre-
quency (RF) repeaters are introduced in the R16 and R17, respectively, to extend cov-
erage in a cost-effective manner. As an improvement over conventional RF repeaters, 
work will be done on network-controlled repeaters with the ability to receive and 
process lateral control information from the network. With lateral control informa-
tion, the network-controlled repeater performs an amplify-and-forward operation 
with better spatial directivity through beamforming, thereby reducing unnecessary 
noise amplification. Examples of possible side control information include beam-
forming information, UL-DL time division duplex (TDD) configuration, and on–off 
control information.

The 5G NR system framework facilitates its evolution including R16 and R17 
where additional services and use cases are introduced or improved. R16 extended 
the 5G standard to new verticals such as 5G broadcast (as an evolution of enhanced 
DTV based on LTE EnTV), NR sidelink (focusing vehicles on all V2X commu-
nication and public safety), non-public networks (NPN), and industrial Internet of 
things (IIoT) applications. Further evolution in R17 includes multicast and broad-
cast services (MBS), support for satellite communications (non-terrestrial networks 
NTN) for smartphones and IoT devices, introduction of UE with reduced capabili-
ties (RedCap) for new types of devices (wearables, surveillance cameras, indus-
trial sensors), and extension FR2-2 frequency range. R18 study provides further 
vertical domain improvements in NTN, IoT, and RedCap evolution, as well as XR 
communication.

2.2.1.1 Downlink Data Transfer and Control Operation
In the case of application data for DL connection, the shared channel DL-SCH is 
selected as the transport channel. The protocol data unit of the MAC layer PDU then 
becomes a transport block that will be processed by the physical layer before trans-
mission over-the-air interface. DL-SCH channel also carries other pieces of informa-
tion, such as the different types of system information blocks (SIB) downlink shared 
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channel chain, which includes LDPC coding, the physical downlink shared channel 
chain, layer mapping, how resource elements are allocated for physical DL shared 
channel (PDSCH) transmission, and the different types of PDSCH mapping to physi-
cal resources. A special PDSCH mapping type is used for mini-slots or partially 
allocated slots, a feature that allows for reduced latency in 5G NR transmission.

The 5G NR physical-layer model captures those characteristics of the 5G-NR 
physical layer that are relevant from the point of view of higher layers. The physical-
layer model for DL shared channel SCH transmission is described based on the cor-
responding PDSCH physical-layer-processing (Figure 2.2). Processing steps that are 
relevant for the physical-layer model, e.g., in the sense that they are configurable by 
higher layers, are highlighted: higher layer data passed to/from the physical layer; 
CRC and transport-block-error indication; FEC and rate matching; data modulation; 
mapping to physical resource; multi-antenna processing; support of L1 control, and 
HARQ-related signaling.

Downlink control information (DCI) contains the scheduling information for the 
UL or DL data channels and other control information for one UE or a group of UEs. 
DCI is carried by PDCCH. Control information is based on different types of mes-
sages, including downlink assignment and uplink grant, and how they are encoded 
and modulated and then mapped to the 5G NR slot via the PDCCH. In the process, 
the concepts of resource element groups and control channel elements, the basic units 
to map control to the OFDM grid, are important. The procedure for generating a 
PDCCH is illustrated in Figure 2.3.

User equipment needs to decode DCI before it can decode or transmit data. DCI 
are carried in PDCCH and used to schedule user data (PDSCH or PUSCH) indicat-
ing modulation and coding scheme, HARQ-related aspects, antenna ports and num-
ber of layers, and channel state information (Figure 2.4).

FIGURE 2.2 Downlink DL data transmission in 5G NR: Physical-layer model for DL 
shared channel (SCH) transmission based on the corresponding PDSCH physical-layer-pro-
cessing chain.
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The physical-layer model for broadcast channel (BCH) transmission is character-
ized by a fixed predefined transport format. The BCH is used in the downlink only 
for transmitting the broadcast control channel (BCCH) system information and spe-
cifically the master information block (MIB). In order that the data can be utilized, it 
has a specific format. There is one transport block for the BCH every 80 ms.

2.2.1.2 Uplink Data Transfer and Control Operation
NR data channel coding is common between uplink and downlink. Similar to DL 
control design, efficient UL control design is critical for wireless multimedia com-
munication as well. Generally, UL control is motivated by either DL transmission, 
or UL transmission, or a combination of both. Uplink control should provide suf-
ficient information for DL and UL resource management. At the same time, the per-
formances of UL control, including both link-level performance and system-level 
performance, should be satisfactorily enhanced by mobile broadband. The physical-
layer model for uplink shared channel transmission is described based on the cor-
responding physical-layer-processing chain PUSCH (Figure 2.5).

FIGURE 2.3 Procedure for generating physical downlink channel (PDCCH) from control 
information DCI.

FIGURE 2.4 Downlink control information (DCI): (a) PDSCH channel scheduling and (b) 
PUSCH channel scheduling.
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5G NR uplink control information (UCI) is based on different types of messages, 
including hybrid automatic repeat request (HARQ), channel quality information 
(CQI), and scheduling request (SR) (Figure 2.6). 

2.2.1.3 Media Streaming Principles and Architecture
3GPP defines streaming in its specifications as the delivery of time-continuous 
media as the dominant media. Streaming refers to the fact that media is mostly sent 
in one direction only and consumed immediately after reception. Media content can 
be streamed as it is produced, which is called live streaming. The 3GPP architecture 
specification refers to two main scenarios: DL streaming (the network is the media 
source and the UE acts as a consumption device) and UL streaming (the UE is the 
media source and the network acts as the consumption entity).

5G MS media streaming supported services include mobile network operator 
MNO and third-party downlink media streaming services, and MNO and third-party 
uplink media streaming services. The 5G MS architecture is functionally divided 

FIGURE 2.5 Uplink (UL) data transmission in 5G NR: Physical-layer model for UL shared 
channel (SCH) transmission based on the corresponding PUSCH physical-layer-processing 
chain.

FIGURE 2.6 Uplink UL control information (UCI): (a) UE request for UL data trans-
mission, (b) channel quality measurements request, and (c) data transmission ACK/NACK 
acknowledgment.
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into independent components enabling different deployment and collaboration sce-
narios with various degrees of integration between 5G MNOs and content providers.

5G MS architecture has replaced packet switched streaming (PSS) architecture, 
specified in TS 26.233 and TS 26.234 for 3G/4G and was tailored for MNO-managed 
streaming services. 5G MS offers simpler and more modular design enabling ser-
vices with different degrees of cooperation between third-party content and service 
providers, broadcasters, and MNOs. The focus of 5G MS is leveraging the concept 
of network exposure via APIs, in order to provide external service providers an easy 
way to interact with the 5G network and device functionalities and use the capa-
bilities offered by 5G to deliver superior media services. The initial version of new 
architecture supports unicast downlink media distribution and uplink streaming, 
broadcast and multicast are currently being integrated.

The approach taken for 5G MS is specified in general description and architecture 
document TS 26.501 where framework is aligned with modern over-the-top media 
distribution practices (Figure 2.7). The application provider uses 5G MS for stream-
ing services. It provides a 5G MS-aware application on the UE to make use of client 
and network functions using interfaces and APIs. The main 5G MS functions speci-
fied within the 5GS are application function (AF), application server (AS) dedicated 
to media streaming, and UE internal function client dedicated to media streaming.

The reference architecture for 5G media streaming defines the following func-
tions to support the abovementioned features:

• 5G MS AF deployed in the 5G core or in an external DN that manages a 5G 
MS system. This logical function embodies the CP aspects of the system, 
such as provisioning, configuration and reporting.

FIGURE 2.7 5G MS overall high-level architecture within the 5GS system.
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• 5G MS AS deployed in the 5G core or in an external DN that provides 
media streaming services to clients. This logical function embodies the data 
plane aspects of the system that deal with media content.

• 5G MS client deployed in the UE that consumes media streaming services. 
The 3GPP specifications are silent on whether this logical function is real-
ized as shared UE middleware components or provided piecemeal by indi-
vidual applications.

The 5G media streaming services offered by the 5G MS system are provided by the 
application provider for use by the application running on the user equipment UE. 
The reference architecture and basic functional procedures are defined in 3GPP TS 
26.501, and detailed protocols are specified in 3GPP TS 26.512. The basic video 
codecs and packaging standards that compliant UEs must support as a minimum are 
specified in 3GPP TS 26.511.

3GPP document TS26.512 specifies requirements related to UE, media applica-
tion servers, application AF functions, and content provider capabilities related to 
protocols such as content input and distribution interface, uplink streaming, use of 
NS slicing, QoS setup, network media processing, quality metrics collection and 
reporting, network support, consumption reporting, and so forth.

3GPP document TS 26.511 specifies requirements related to UE, AS(s), and con-
tent provider capabilities related to encoding, encapsulation, and packetization of 
media content. The codec and format recommendations defined for each profile 
apply to the 5G MS client components in the UE as well as the media AS. Profiles 
are defined to address specific service scenarios. 5G protocols and media streaming 
formats are based on the common media application format (CMAF) standard media 
application format.

ISO/IEC 23000-19 packing standard specifies the use of segment formats that 
are based on the CMAF. By using this format, 5G media streaming is compatible 
with a broad set of segment-based streaming protocols including dynamic streaming 
over HTTP DASH and HTTP live streaming (HLS). For example, ISO/IEC 23009-1 
defines a detailed DASH profile for delivering CMAF content within a DASH media 
presentation using a converged format for segmented media content.

5GMS profiles are associated with a set of codec capability requirements in 
specific service scenarios. Service operation points identify long-lived profiles that 
will be used by streaming sessions. A default profile is defined for minimum media 
requirements to be supported in case no other profile is claimed to be supported. The 
television TV Profile in TS 26.116 covers live and on-demand streaming of audiovi-
sual TV services. The virtual reality (VR) Profile in TS 26.118 covers the live and 
on-demand streaming of omnidirectional media including spherical video and 3D 
audio. The codec and format recommendations defined for each profile apply to the 
client components in the UE as well as the media AS are specified in TS 26.511. 
Document TR 26.955 presents relevant interoperability requirements, performance 
characteristics, and implementation constraints of video codecs in 5G services, and 
to characterize existing 3GPP video codecs, in particular H.264/AVC, H.265/HEVC, 
and H.266/VVC in order to have a benchmark for the addition of potential future 
video codecs.
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3GPP has identified a set of core research topics for potential 5G MS extensions, 
building on existing architecture and design principles. The goal is to simplify and 
optimize the deployment of media streaming services and applications by offering 
providers access to 5G system functions. Potential extensions can be classified into 
the following categories:

• extensions that leverage existing and new 5G system features, e.g., edge 
computing, for media streaming,

• extensions to 5G media streaming protocols and procedures,
• extensions to improve accuracy and for analytics,
• extensions to integrate LTE-based 5G broadcast to 5G MS.

3GPP R16 specification range is limited to single-sided streaming media only. A con-
tent hosting capability similar to CDNs for content delivery is defined. The following 
high-level features are listed for streaming media in R16. Each feature is optional and 
only available for the 5G MS application if explicitly provisioned by the application 
provider:

• Content hosting. This may be deployed inside the 5G CN in the form of 
an operator CDN. Alternatively, an external third-party CDN may be inte-
grated into the 5G media streaming system.

• Media consumption reporting. A random subset of clients can be configured 
to periodically report media session usage information to the system.

• Quality of experience (QoE) metrics reporting. A random subset of clients 
can be configured to periodically report QoE metrics to the system. These 
may be relayed to the application provider.

• Dynamic network QoS policies. Specific network QoS policies are provi-
sioned in advance, expressed as policy templates. During streaming ses-
sions, these templates can then be instantiated on demand by individual 
clients. The AF negotiates with the policy and charging function (PCF) in 
the 5G core to apply the requested QoS policy to the relevant packet flow. 
Policy templates represent long-term agreements made between the applica-
tion provider and the MNO.

• Network assistance. Two forms of assistance are currently defined. Neither 
requires any special configuration at the provisioning stage.

3GPP R17 Technical Report TR 26.804 contains the following potential improve-
ments and extensions: 5G multicast and broadcast support, cloud and edge media 
processing, content preparation, traffic identification, additional/new transport proto-
cols, uplink media streaming, background traffic, content-aware streaming, network 
event usage, per-application-authorization, support for encrypted and high-value 
content, and scalable distribution of unicast live services.
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2.2.2  EvoluTIon of MulTIMEdIa MulTIcaST and broadcaST SErvIcES

The 5G system is designed to support unicast communication in which the network 
sends/receives data to/from individual UEs. However, there are cases where identi-
cal content is delivered to multiple devices, and in those cases, improving system 
efficiency is necessary. Broadcast and multicast communications enable resource-
efficient transmission to multiple end users requesting to receive the same content. 
Multimedia service is a set of audiovisual media assets offered to the consumer by 
the service provider and delivered to the consumer by a delivery chain comprising 
one (or more) network operators.

• Broadcast communication service. A communication service in which the 
same service and the same specific content data are provided simultane-
ously to all UEs in a geographical area (all UEs in the broadcast coverage 
area are authorized to receive the data).

• Multicast communication service. A communication service in which the 
same service and the same specific content data are provided simultane-
ously to a dedicated set of UEs (not all UEs in the multicast coverage are 
authorized to receive the data).

3GPP specified an initial set of standardized functions to support multiple eMBMS 
transmissions in R9–R12 LTE versions. Enhanced multimedia broadcast and multi-
cast services are based on SFN network, and it utilizes synchronized multicell trans-
missions from many eNBs together providing for over-the-air combining of multicast 
broadcast SFN (MBSFN) signals, enhancing the reliability and coverage areas for 
services. MBSFN transmissions are time-interleaved with unicast transmission with 
pre-assigned and dedicated subframes over the radio frame and utilize full system 
bandwidth.

To overcome eMBMS limitations, R13 single-cell point-to-multipoint SC-PTM is 
specified. A more flexible approach of dynamic use of time and frequency resources 
(and within subframes) is adopted for broadcasting services in a small dense geo-
graphic region (hotspot) within the coverage of a single cell. Dynamic resource utili-
zation effectively supports the integration of broadcast service delivery with unicast 
physical channels.

3GPP Release R14 and R15 specify broadcast services with a dedicated carrier 
for MBMS transmission that supports up to 100% resource utilization and longer 
duration OFDM symbol that supports wider coverage in order of tens of kilome-
ters. R14–R16 specifies further enhanced multicast FeMBMS multimedia service 
as a new broadcast/multicast enhancement for dedicated and mixed modes. R16-
introduced 5G terrestrial broadcast for enhanced television (enTV) services in large 
and static transmission areas with dedicated broadcast infrastructure (high-power 
HPHT deployments from high towers).

5G terrestrial broadcast supports two distinct modes:
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• 5G stand-alone broadcast. A dedicated broadcast-only network (independent 
of mobile networks) that can respond to the emerging needs of broadcasters 
and content providers, giving them access to broader audience through the 
efficient delivery of content to both fixed and mobile devices. R16 enTV 
meets all the basic requirements of 5G broadcasting defined in the study 
on scenarios and requirements for next-generation access technologies TR 
38.913. It can be deployed in existing UHF spectrum (470–698 MHz) that 
broadcasters already own or have access to, and the enTV design allows the 
reuse of existing cellular modem building components.

• 5G mixed mode multicast. A new 5G capability in R17 mobile operator net-
works that can support dynamic switching between unicast and broadcast 
modes, which can improve system capacity and efficiency in local deploy-
ment (Figure 2.8 and Table 2.1).

There has been significant debate on the broadcast evolution path for 5G NR. It has 
been decided that a two-track approach will be taken. Dedicated broadcast enhanced 
enTV evolution of LTE specified in R16 has already been designed to meet the 5G 
broadcast requirements. Therefore, it was seen that there is no urgent need to add 
NR-based version of dedicated broadcast. NR-terrestrial broadcast will not happen 
before R18. Consequently, based on the study on architectural enhancements for 
5G MBS TR 23.757 R17, 3GPP started to build functional support of multicast and 
broadcast services MBS over an existing 5G standards framework. The standardiza-
tion has been conducted for overall 5G system architecture from both NG-RAN and 
5G CN perspectives. It was seen that there is an urgent need to add mixed mode 
unicast/multicast operation support in R17. The mixed mode will be tightly inte-
grated with the NR eMBB system and there will be maximum commonality between 
the two. The mixed mode unicast/multicast operation can address use cases such as 
C2VX, public safety, IIoT, and IP multicast uses. The mixed mode unicast/multicast 
system will not support SFN transmission, other than the SFN implemented in trans-
parent manner.

FIGURE 2.8 Two-track evolution approach in R16 and R17 for 5G broadcast and 5G MBS 
services.
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2.2.2.1 5G Broadcast Over Dedicated Terrestrial Network
With the completion of the 3GPP R16 specifications and the ETSI TS 103720 LTE-
based 5G broadcast specification, digital TV delivery with 5G terrestrial broadcast 
is ready for deployment. The 3GPP specification for 5G broadcasting meets all the 
basic requirements for DTV delivery. The spectrum is available in the UHF band 
(470–698 MHz) and can be used for digital TV broadcasting in the EU and other 
regions. The system is designed for low deployment cost, high efficiency, quick time 
to market, reuse of broadcast infrastructure (high-power high-tower), and existing 
3GPP receiver functions. 5G broadcasting is designed for broadcasters and supports 
free-to-air services, receive-only mode reception, downlink-only distribution, and 
delivery in a dedicated broadcast spectrum in order to replicate functionality of 

TABLE 2.1
Evolution of 5G Terrestrial Broadcast and Multicast Services

Enhanced MBMS Release 8–12 Focus on mobile network operators: EMBMS 
basic framework, multiple frequency operation, 
system enablers for group communications.

SC-PTM single cell point-to-multipoint  
Release 13

Dynamic time/frequency allocation, group 
scheduling through unicast channels.

Enhanced TV Release 14 Expansion to terrestrial broadcast by meeting 
7/10 requirements: receive-only mode, shared 
broadcast, use of a larger cyclic prefix for 
longer intersite distances, improved spectral 
efficiency for rooftop/car-mounted antennas.

Further enhanced MBMS Release 15 Dedicated carrier for MBMS, large OFDM 
symbol.

5G terrestrial Broadcast Release 16 enTV enables terrestrial broadcast by meeting 
all requirements: dedicated broadcast 
infrastructure (HPHT), static transmission area.

5G MBS multicast and broadcast services  
Release 17

Requirements: new service scenario and 
requirements, unique 5G NR/5GC 
characteristics, wider service area (including 
legacy network).

Network architecture: new and enhanced 
network functions, shared delivery and 
individual delivery, MBS over nonsupporting 
node.

RAN protocol: multicast mode vs. broadcast 
mode, MRB types including split bearer, ARQ, 
PTM/PTP RLC.

Physical layer: MBS CFR for BWP operation, 
HARQ feedback and retransmissions, group 
common SPS.

Service continuity: packet-level PDCP SN 
synchronization, lossless handover, MBS 
interest indication.
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existing digital TV services. The IP-based service layer enables the deployment of 
applications and service layers such as DVB-I, DASH/HLS, and CMAF, on top of 
5G broadcast and seamlessly integrates with unicast. And finally, 5G broadcast tech-
nology promises continued development in future releases, bringing new services 
and functionalities, better performance and efficiency, as well as rapid replacement 
cycles. 5G broadcast is ready for prime-time TV to mobile and stationary rooftop 
receivers.

LTE-Advanced supports multimedia broadcast and multicast services eMBMS 
(LTE Broadcast), which enables MNOs to respond to the increasing demand for 
mobile video data using point-to-multipoint (P2MP) transmission. A broadcast solu-
tion supported over the same frequency carrier as unicast services, eMBMS deploy-
ment costs are significantly lower than other broadcast alternatives. However, it also 
requires the use of dense networks compared to terrestrial broadcast networks and 
reduces system capacity for unicast services, making business model difficult. The 
main eMBMS advantages are the end-to-end IP architecture that enables the coexis-
tence of unicast and broadcast services with high capacity, high bandwidth, and high 
scalability. Furthermore, deployment cost is significantly lower than other broadcast 
alternatives due to its easy integration with LTE infrastructure and mobile chipsets.

5G Broadcast system has evolved from enTV Release 14 (2017) to Release 16 
(2020). 3GPP extends eMBMS to address all broadcast requirements in TS 36.976 
description of LTE-based 5G broadcast (April 2020). This provided the foundation 
for system specification published as ETSI JTC Broadcast TS 103720 that profiles 
and restricts existing 3GPP 5G specifications in order to enable the deployment of 
linear TV and radio services (December 2020). Several 3GPP specifications have 
been extended or newly developed over several releases to address the use cases and 
requirements for 5G dedicated broadcast networks. ETSI TS 103720 summarizes 
the basic features of a 5G broadcast system for the carriage of linear television and 
radio services, and documents these as an implementation profile of a subset of 3GPP 
specifications. Several functions and reference points are defined. Receiver catego-
ries are defined that address implementation profiles to deploy linear television and 
radio services.

Based on requirements, 3GPP specifications have gradually evolved to meet the 
use cases and requirements in order to support broadcasting of linear television and 
radio services. With the completion of the R16, a comprehensive set of 3GPP speci-
fications is available that fulfills the use cases and requirements for a 5G broadcast 
system:

• support of free-to-air (FTA) service.
• broadcast-only service for UEs without an MNO broadcast subscription.
• decoupling of content, user service, and transport functions.
• exposure of broadcast service and transport capabilities to third parties.
• support for client APIs for simplified access to broadcast services.
• support for mobility scenarios including speeds of up to 250 km/h to sup-

port receivers in moving vehicles, with external omnidirectional antennas.
• support for receive-only mode (ROM) services and devices.
• support for user service announcement through broadcast.
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• support for common streaming distribution formats such as dynamic adap-
tive streaming over HTTP (DASH), HLS, and CMAF.

• support for IP-based services such as IPTV or ABR multicast.
• support for different file delivery services such as scheduled delivery or file 

carousels.

The general architecture for a 5G broadcast system is provided in Figure 2.9. The 
principal actors in the system are as follows:

• 5G broadcast DTV content service provider runs a head-end providing lin-
ear television and radio services.

• 5G broadcast DTV service application runs on devices that include a 5G 
broadcast receiver.

• Operator runs a 5G broadcast system with transmitters for use by devices 
including receivers.

• 5G broadcast DTV content service provider makes services available using 
the 5G broadcast system.

• 5G broadcast DTV service application is able to consume the service by 
communicating with the receiver through a dedicated set of 5G broadcast 
client APIs.

The 5G broadcast service consists of a bearer service and a user service. The latter 
provides the announcement of broadcast user services and also provides information 
about how to discover and access them. The former provides the distribution means 
for broadcast user services, including a radio bearer.

FIGURE 2.9 Reference architecture for 5G broadcast system (transmitter–receiver) for lin-
ear DTV services.
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The currently implemented broadcast designs are DL only. This is because in 
normal use cases, different user devices do not have the same content to send to the 
network. The currently specified broadcast/multicast systems do not use any feed-
back. As a consequence, there is no opportunity for retransmission and, therefore, the 
packet losses due to temporal face become a significant performance-limiting factor. 
While the specification focuses on broadcast-only distribution, a richer application 
service may be provided to a UE that also supports unicast.

2.2.2.2 5G MBS Multicast and Broadcast Services
3GPP Release 17 (March 2022) has some extensive efforts to add multicast and 
broadcast capabilities to the 5GS, NR, and 5G MS under the umbrella of multicast 
broadcast services 5G MBS. Among others, the following aspects are addressed:

• support of multicast services with autonomous RAN-based switching 
between point-to-point and point-to-multipoint transmission modes

• reuse of PHY channels and signals, without new numerologies
• support broadcast services, always using point-to-multipoint transmission
• only single-carrier point-to-multipoint (SC-PTM) supported in NR RAN, 

i.e., no support from single frequency networks (SFN)
• delivery and service layer aspects
• APIs on the network and client sides.

The standardization has been conducted for overall 5G system architecture from NR 
and CN perspectives. Adoption and evolution of multicast and broadcast services 
in standards posed new requirements and challenges for MBS. New emerging ser-
vices such as mission-critical delay-sensitive signaling and high-resolution IPTV are 
required to achieve the same levels of high reliability and low latency as available 
with unicast services. Therefore, demand exists for an involved protocol stack design 
with layers and functionalities reinforcing the reliability and latency aspects in RAN 
protocol, physical layer, and service continuity. In this regard, key features of the 
standardized 5G MBS are as follows:

• group scheduling mechanism to allow UEs to receive MBS service includ-
ing simultaneous operation with unicast reception.

• multicast delivery in 5GC, i.e., shared delivery.
• reliability enhancements by dynamic change of multicast/broadcast service 

delivery between point-to-multipoint and point-to-point, automatic repeat 
request (ARQ), hybrid automatic repeat request (HARQ), and so forth.

• supporting mobility and lossless handover.
• reception of broadcast data irrespective of UE’s radio resource control 

(RRC) states.
• MBS over legacy network node, for example, Release 15/16 network.

The network architecture of the 5G system has been improved to support MBS, in 
a way that reuses the existing system as much as possible. Multicast is defined as a 
service and specific content data provided simultaneously to a dedicated set of UEs 
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authorized in a service area. Broadcasting is defined as a service and data about 
specific content that is simultaneously provided to all UEs in the service area. Which 
cast type is actually used depends on actual service type. To support MBS in 5G 
system, some network functions are newly introduced as depicted in Figure 2.10.

• Multicast broadcast user plane function MB-UPF is an ingress point to 5GS 
and works as a session anchor to 5GS.

• Multicast broadcast session management function (MBSMF) manages 
MBS session and configures a user plane function MB-UPF based on the 
policy rules for multicast and broadcast services.

• Multicast broadcast service function (MBSF) has service-level function-
ality to interact with application function/application server (AF/AS) and 
MB-SMF for MBS session operations. Further, it determines transport 
parameters and session transport, and control MBSTF if used, which can 
be implemented in the NEF.

FIGURE 2.10 5G MBS system architecture and user plane (UP) data transmission.
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• Multicast broadcast service transport function (MBSTF) has generic packet 
transport functionalities available to any IP multicast-enabled application 
such as framing, multiple flows, packet FEC encoding, and therefore, works 
as a media anchor for MBS data traffic.

NR MBS supports two delivery modes, namely, multicast mode (delivery mode 1) 
and broadcast mode (delivery mode 2). Each mode has its own characteristics and 
target services.

• Target services of multicast mode have particular QoS requirements, which 
the network should guarantee as in case of unicast. Therefore, UEs receiving 
multicast data are required to stay in CONNECTED state and a dedicated 
RRC signaling provides the radio resource configuration including MRB 
configuration, physical-layer configurations, and so on, which can be opti-
mally configured based on the interaction between UE and gNB. Moreover, 
in case that reliable transmission is required for cell edge user with bad 
channel quality, the transmission can be switched to PTP leg, i.e., PTP RLC 
and ARQ can enhance the performance as in unicast transmission. When 
no multicast data arrival is expected, the multicast session can be deacti-
vated and UEs belonging to the multicast group can transit to INACTIVE 
or IDLE state. These UEs have to re-enter CONNECTED state when the 
multicast session is about to be reactivated. In this case, group paging with 
the corresponding MBS Session ID is used to wake-up these UEs.

• On the contrary, broadcast mode can be provided to all UEs within a cover-
age regardless of RRC states. The broadcast mode is a similar mechanism to 
SC-PTM in LTE. In order for UEs out of CONNECTED state to receive the 
broadcast data, radio resource configuration for broadcast mode is periodi-
cally transmitted via MBS control channel (MCCH) from which UEs apply 
the received configuration for MBS traffic channel (MTCH).

The broadcast mode does not require any interaction between UE and gNB. The 
network does not have any feedback from UE side on transmission status (ACK/
NACK) but it transmits the data only in the best-effort manner. Hence, QoS cannot 
be guaranteed and only low-QoS services are feasible. Also, the broadcast mode 
does not mandate RRC state transition.

NR MBS radio protocol architecture is presented in Figure 2.11. It is designed to 
reuse existing functionalities of unicast, including 4 sublayers, namely, service data 
adaptation protocol (SDAP), packet data convergence protocol (PDCP), radio link 
control (RLC), and medium access control (MAC).

• SDAP has a one-to-one mapping with MBS session serving multiple QoS 
flows (QFs) received from 5GC. SDAP allocates MBS radio bearer (MRB) 
transmitted for QFs based on required QoS and the network’s policy. Since 
MBS is only for downlink transmission, uplink-related SDAP functions, 
e.g., reflective QoS and network-initiated QF remapping, are not supported.
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• PDCP is used to support reordering function under an assumption that a UE 
may receive packets out of order due to ARQ or HARQ retransmissions of 
the lower layers. A PDCP entity can be linked to multiple RLC entities for 
point-to-multipoint/point-to-point (PTM/PTP) switching where gNB may 
send packets via either PTP RLC, PTM RLC, or both. If the gNB sends the 
same sequenced PDCP packet via both RLCs, duplicate detection function 
in PDCP discards the later arrived one.

• RLC is responsible for segmentation and ARQ. gNB’s segmentation func-
tion fragments a large-sized packet into several small-sized subpackets by 
considering available resource size. UE’s RLC entity reassembles the origi-
nal packet and delivers to upper layer (PDCP). There are two types of RLC 
entities, namely, PTM RLC and PTP RLC.

5G MBS architecture not only includes new functions on radio and CN layers, but 
also on user service layer. Similar to the design goals for 5G MS and the lower lay-
ers of 5G MBS, the user service definition follows similar principles according to 
the findings in a feasibility study documented in 3GPP TR 26.802 and the resulting 
work item on the 5MBS user service architecture as documented in 3GPP TS 26.502 
(Figure 2.12).

An MBS application provider may communicate with the service function MBSF 
to establish user service. The function deals with all internal logic and communicates 
with the 5GS system to establish QoS and multicast/broadcast delivery. The user 
service is announced to the UE and the MBSF client discovers the announced user 
services and sets up the relevant delivery functions in order to receive the data.

It is expected that R17 version of MBS may not be able to address many aspects 
due to lack of time. Further, MBS feature will continue evolving in future releases 
of 5G and there are certain important areas and aspects that would be potential 
candidates:

• multicast service reception and continuity across IDLE/INACTIVE state to 
cater large user base and critical services

• MBS for localized services and its integration to private networks
• energy efficiency for MBS transmission

FIGURE 2.11 5G NR MBS protocol stack.
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• extended service coverage for MBS services
• new service types, including support for enTV and receive-only-mode ROM 

services that are excluded from R17.

Service requirements for different use cases of MBS diverge in their requirements 
for reliability, latency, QoS handling, service area coverage, service continuity, and 
security aspects. Therefore, it becomes imperative to build a comprehensive mecha-
nism for MBS to address these diverse needs’ reliability and latency, QoS handling, 
service area coverage, service continuity, and security.

2.2.3 MulTIMEdIa ProducTIon and dISTrIbuTIon EcoSySTEM

5G technology supports the building of mass market ecosystem, which requires col-
laboration of standards organizations and industry consortia with their own expertise 
and requirements to develop a healthy ecosystem of unified standards (Table 2.2). 
3GPP as the core standard development organization for 5G communication tech-
nology is at the center of industry efforts and has evolved to become more open and 
flexible.

Mobile 5G broadband is becoming an important platform for multimedia dis-
tribution. It is important to study technical, operational, and regulatory issues, as 
well as conduct research into what types of use cases and usage patterns are fea-
sible and beneficial, taking into account current and future requirements and con-
straints. It starts with a 5G vision and foresight to identify compelling challenges 
and issues. The implementation of the vision is based on research and innovation 
activities. Technological innovations are transforming the network into a secure, 
reliable, and flexible orchestration platform using multiple technologies. The peak 
of proof-of-concepts (PoCs) and trials targeting verticals occurs with multimedia 
communication.

FIGURE 2.12 5G MBS architecture.
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5G-MAG multimedia action group is a cross-industry organization promoting the 
commercial adoption of 5G broadcast. The group evaluates the benefits, impacts, 
and challenges of adopting 5G technologies across the media distribution value 
chain and positions the media industry as a key vertical for the future development 
of 3GPP technologies and the 5G ecosystem. The work of the action group is orga-
nized around topics proposed by content and service providers, network operators, 
technology solution providers, equipment manufacturers, R&D organizations, regu-
lators, and policy makers. MAG becomes a 3GPP market partner in 2021. As a mar-
ket representation partner in 3GPP, the group supports the transition from industry 
requirements to technical specifications, as well as the transition of standardized 
technologies for use in new media services.

Digital video broadcasting (DVB) project maintains a set of international open 
DTV standards published by ETSI, CENELEC, and EBU. The document 5G DVB-I 
(BlueBook C100, 2021) presents the key elements of 5G networks and systems related 
to media distribution, including 5G broadcasting, 5G streaming media, and other 
ongoing activities in 3GPP. A key focus is on creating interfaces and APIs for the dis-
tribution of DVB-Internet services over 5G, allowing broadcasters to continue to sup-
port the existing service and application layer. DVB-I is service layer that enables the 
distribution of DTV services over the Internet regardless of access. Broadcasters are 
now able to expand their traditional broadcast offering with additional event-based 
services delivered only over the Internet, presenting an integrated DTV offering in a 
coherent and organized list of services.

EBU 5GCP content production group is a project group of the European 
Broadcasting Union strategic program distribution. The group studies the technical 
development within the organizations for the development of 5G standards regarding 

TABLE 2.2
A System Approach in Making 5G Technology Ecosystems

Vision Identify a problem or need, and establish system 
requirements. It is envisioned in a more efficient 
way to deliver mass media over cellular 
networks.

Innovation Invent new technologies and end-to-end system 
architecture.

Proof-of-concept Deliver end-to-end prototypes and impactful 
demonstrations.

Standardization Drive ecosystem toward new projects and through 
standards process.

System trials Collaborate on field trials that track standards 
development, preparing for commercialization. It 
is worked with mobile operators, device 
manufacturer, and content provider on trials.

Commercialization Engage with global ecosystems to deploy new 
products and services.
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the production of digital audiovisual content. 5GCP formulates and submits member 
requirements, monitors and coordinates appropriate support to ensure that these are 
met. Standardized 5G solutions are expected to reduce costs and increase production 
flexibility. To this end, solutions of the challenges of standardization, technology 
availability, regulations, and business models are necessary. The EBU, in cooperation 
with 3GPP, produced the feasibility study TR 22.827 and the technical specification 
TS 22.263, which contain the key requirements for professional media production.

2.3 IMMERSIVE COMMUNICATION

The increased bandwidth capacity and reduced latency of 5G communication enable 
access to complex media experiences over mobile networks. Immersive media and 
5G are a combination that supports new services and capabilities within the mobile 
ecosystem for new verticals such as industrial services, public safety, and automo-
tive. Significant performance such as higher data rates in both directions, ultralow 
latency and reliability, and greater density of connections.

Immersion is the specific feeling of being surrounded in a virtual space, as well 
as the feeling of physically located presence. The mechanism of immersion is cogni-
tive or perceptive. 3D interactive media opens up the possibility for users to expe-
rience a sense of presence and immersion in an authored environment. While in 
traditional media, significant steps toward passive consumption of more immersive 
media include video technology of ultrahigh definition (UHD) and high dynamic 
range (HDR) for a more realistic presentation of content in terms of contrast and 
color, full immersion is supported by three key elements:

• visual quality including high fidelity, spherical coordinates and stereoscopic 
rendering and depth information

• sound quality including high-resolution and 3D audio, positioned such that 
the directivity of the sound sources can be rendered

• intuitive interactions with the content using natural user interfaces, precise 
tracking of the motion, and imperceptible latency to avoid lag and motion 
sickness.

Extended reality (XR) includes all real-and-virtual combined environments and 
human–machine interactions generated by computer technology and wearable 
devices. The umbrella term covers different types of reality such as augmented real-
ity (AR), mixed reality (MR), and virtual reality (VR), and the areas within the con-
tinuum among them. Levels of virtuality range from partially sensory inputs to full 
immersion. A key aspect of XR is the extension of human experiences, particularly 
in relation to feelings of presence (VR) and acquisition of cognition (AR) when a 
user is provided with additional information or artificially generated items or content 
overlaid upon their real environment. MR is an advanced form of AR where certain 
virtual elements are composed into a physical scene creating the illusion that these 
elements are part of the real scene.

Augmented reality (AR) imposes significant minimum performance requirements 
on technologies such as tracking, latency, persistence, resolution, and optics. XR 
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covers a wide range of technologies and end devices. The main features are higher 
data transfer speeds in both directions, ultralow latency and reliability, higher con-
nection density, as well as huge computing resources near the user. Media content 
resources come in a wide variety of formats and types: 2D/3D, natural or synthetic, 
compressed or uncompressed, provided by a content provider or recorded locally.

Immersive content is displayed based on spatial tracking and the estimated posi-
tion/orientation of a XR viewer. Actions and interactions include movements, ges-
tures, and body reactions. In that way, the degrees of freedom (DoF) describes the 
number of independent parameters used to define the movement of a viewport in the 
3D space. The following different types of DoF are described in order of increasing 
complexity and QoE:

• 3DoF is three rotational and un-limited movements around the 3D (x, y, z) 
axes (respectively pitch, yaw, and roll). The XR reference space is limited 
to a single position.

• 3DoF+ is with additional limited translational movements (typically, head 
movements) along 3D (x, y, z) axes.

• 6DoF is 3DoF with full translational movements along 3D (x, y, z) axes. 
Beyond the 3DoF experience, (i) it adds moving up and down (elevating/
heaving), (ii) moving left and right (strafing/swaying), and (iii) moving for-
ward and backward (walking/surging).

• Constrained 6DoF has constrained translational movements along 3D (x, y, 
z) axes (typically, a couple of steps walking distance). A typical use case is 
a user freely walking through VR content displayed on an HMD but within 
a constrained walking area.

To structure the work on XR and 5G, 3GPP has launched feasibility studies TR 
26.918 and TR 26.928 to identify use cases, technologies, and possible gaps that need 
specifications for interoperable services. Key issues for interoperability expected to 
be solved include:

• Definition of the spatial environment, the space in which the presentation 
is valid and can be consumed. Typically, for example what is referred to as 
windowed 6DoF is the limited amount of possible movements within the 
3D space.

• Presentation timeline management. The different resources may have an 
internal timeline for their presentation.

• Positioning and rendering of the media sources in the 6DoF scene 
appropriately.

• Interacting with the scene based on sensor and/or user input. The rendered 
viewport can be dependent on simple aspects such as viewing position or 
may include complex sensor input or captured.

New media formats are continuously developed, taking into account improvements 
in capturing and display systems. The evolution of compression technologies in 
line with high-quality requirements and protocol improvements affects the traffic 
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characteristics of media services on networks. 3GPP report TR 26.925 R17 presents 
typical requirements for different media services, as well as an overview of their 
impact on typical network traffic characteristics.

Technical report TR 26.949 collects video distribution formats for 3GPP services. 
Until R12, 3GPP specifications missing detailed definitions of distribution formats (spa-
tial/temporal resolution, aspect ratios, random access points) for which operators and 
service providers provide guarantees the QoE. The services’ specification only defines 
video codec profiles and levels. Technical report TR 26.955 R17 analyzes currently spec-
ified video compression technologies and their suitability for existing and new services 
in the context of 5G, and identifies gaps and optimization potentials of new video com-
pression technologies. The relevant interoperability requirements, performance charac-
teristics and limitations of video codec implementation in 5G services are presented:

• collects a summary of the video coding capabilities in 3GPP services;
• collects a subset of relevant scenarios for video codecs in 5G-based ser-

vices and applications, including video formats (resolution, frame rates, 
color space, etc.), encoding and decoding requirements, adaptive streaming 
requirements;

• collects relevant and exemplary test conditions and material for such sce-
narios, including test sequences;

• defines performance metrics for such scenarios with focus on objective per-
formance metrics;

• collects relevant interoperability functionalities and enabling elements for 
video codecs in different 5G services supporting the identified scenarios;

• collects relevant criteria and key performance indicators for the integration 
of video codecs in 5G processing platforms, taking into account factors such 
as encoding and decoding complexity in the context of the defined scenarios.

Due to the increasing consumption of high-resolution video content, the need for more 
efficient video compression techniques is also increasing. High compression ratio and 
reduced complexity are still the basic characteristics of efficient video encoders. The 
most commonly used encoders are HEVC (High Efficiency Video Coding) and AVC 
(Advanced Video Coding). The operational parameters of the codec are defined in the 
TV video profile TS 26.116 and represent the basis of the VR video profile TS 26.118. 
MPEG/ITU is continuously working on video compression enhancement technolo-
gies, creating JVET joint team in October 2015. The development of the new VVC 
(Versatile Video Coding) codec standard was completed in June 2020. Verification 
test results show that VVC achieves 40% bitrate reduction versus HEVC for 4K/UHD 
test sequences using objective metrics for target compression rates (Table 2.3).

Application areas specifically targeted for VVC implementation include 4K/8K 
ultrahigh-definition video (UHD), high dynamic range (HDR), and wide color gamut 
(WCG) video, 360° omnidirectional video, as well as conventional standard SD and 
high definition HD formats. In addition to improving coding efficiency, VVC also 
provides a highly flexible syntax that supports layered scalable coding.
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2.3.1 IMMErSIvE MEdIa ovEr 5G

Immersive media will play a major role in the next period. Each generation of mobile 
networks is primarily designed for a specific set of target services. 5G and 6G are 
driving immersive services, supported by advances in sensor technologies. However, 
networks are required to support the extreme latency sensitivity, and compute and 
bandwidth intensity of immersive services, while still enabling special offers to other 
industry verticals (V2Xs). The 5G system is expected to offer solutions to the chal-
lenges of immersive services, namely lower latency, higher bandwidth, and ubiqui-
tous connectivity.

Immersive media make intensive use of various technological components on 
a highly integrated mobile computing platform. The components work together to 
meet massive computational and real-time demands, both individually and through 
network interfaces. Media decoding, graphics rendering as well as real-time sensor 
input processing are covered. Aspects related to communication include:

• high throughput in both directions (uplink and downlink), and equivalently 
optimized compression technologies

• low latency in the media communication to address the service requirements
• consistency and universally high throughput.

3GPP has been standardizing immersive media since the launch of 5G technical 
specification activities in 2015. The support of 5G immersive media was investigated 
in the R14 time frame, with the completion of two studies by working group SA1 on 
requirements and working group SA4 on codecs and media.

• SA1 R14 feasibility study of new services and enabling market technologies 
describes a set of diverse use cases of identified market segments and ver-
ticals of the 3GPP ecosystem. Immersive media use cases as documented 
in TR 22.891 media distribution report are also covered. The findings of 

TABLE 2.3
Video Coding Standards Performance and Bitrate Target

Codec
Objective Coding 

Performance Targeted Bitrate

HEVC −40% vs. AVC 4K UHD StatMux: 10–13 Mbps
      CBR: 18–25 Mbps
8K UHD CBR: 40–56 Mbps
      High quality: 80–90 Mbps

VVC −30% vs. HEVC
CfP best: −42% vs. HEVC
Target: −50% vs. HEVC

Expected:
4K UHD CBR: 10–15 Mbps
8K UHD CBR: 25–35 Mbps
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the study later headed to the development of 5G Stage 1 requirements dur-
ing the R15 technical specification service requirements for 5G system TS 
22.261.

• 3GPP SA4 study TR 26.918 covers VR services. The technical report docu-
mented wide range of streaming, broadcast and conversation cases, relevant 
audio/video technologies and various subjective quality assessments, which 
formed the basis of the R15 normative work items.

For the purpose of classifying use cases, the following categories are defined:

• Download. An XR experience is downloaded and consumed offline with-
out requiring a connection. All media and experience-related traffic is 
downlink.

• Passive streaming. The experience is consumed in real-time from a network 
server. The user does not interact with the XR experience, or the interaction 
is not triggering any uplink traffic. All media-related traffic is downlink.

• Interactive streaming. The experience is consumed in real-time from a net-
work server. The user (or the device automatically) interacts with the XR 
experience and the interaction changes the delivered content. The traffic 
is predominantly downlink, but certain traffic is uplink (XR viewer pose 
information). Different interactions exist, for example, viewport adaptation, 
gaming events, etc. Interaction delay requirements are different, ranging 
from immersive latency requirements to more static selection interactions.

• Conversational. The experience is generated, shared, and consumed 
in real-time from two or more participants with conversational latency 
requirements.

• Split compute/rendering. Network functions run an XR engine to sup-
port processing and pre-rendering of immersive scenes and the delivery is 
split into more than one connection (split rendering, edge computing). The 
latency and interaction requirements again depend on the use case and the 
architecture implementation.

The representative use cases considered by 3GPP for XR over 5G are:

• Streaming. The typical media streaming experience is enhanced with the 
capability of 6DoF within a scene. Motion and interaction are allowed in 
two possible ways: by changing the viewer’s angle within the scene, and by 
head movements with an HMD. Additionally, the viewer’s emotional reac-
tions (facial expressions, eye movements, heartbeats, and biometric data) 
could be collected by means of body sensors during a watching session and 
a personalized storyline could be created based on the type of emotions. 
The stream display may occur over AR glasses on a chosen augmented wall, 
after the spatial configuration has been analyzed. Synchronized playback 
and interaction with multiple co-located viewers are possible. This use case 
relies on volumetric video and 6DoF capture systems. New standardized 
methods for scene composition and description, social interaction, as well 
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as new formats for storage and cloud access, content delivery and optimized 
streaming protocols and formats for biometric, emotion, and spatial meta-
data would need to be defined.

• Real-time 3D communication. Video chats are captured using 3D models 
of people’s heads, which can be rotated by the receiving party. Multi-party 
VR conferences support the blended representation of the participants into 
a single 360-video with a pre-recorded office background. Some of the con-
ference participants may also be overlaid on an AR display. Shared presence 
using depth cameras is one of the features of this use case. In an instance, 
virtual meeting space could be created, and the participants’ avatars could 
move and interact with other avatars using 6DoF. Remote participants use 
an HMD and audio is binaural or spatially rendered.

• Industrial services. One of the use cases covers an AR-guided assistant 
at a remote location for augmented instructions/collaboration. A remote 
assistant is guiding a local person to perform maintenance on an industrial 
machine. The remote assistant can see in real-time the local environment 
and the machine to be repaired. Part of the repairing instructions is sent as 
overlays to the AR glasses.

• Other use cases. The list of XR use cases that could benefit from 5G also 
includes others in the areas of training (possibly the largest market), auto-
motive (engineering, design, marketing/sales), location-based entertain-
ment, digital models, 3D holographic shows, passenger entertainment in 
self-driving cars, health care, data.

3GPP SA4 technical report TR 26.928 has been investigating the relevance of AR/
XR in the context of immersive services addressing aspects such as relevant tech-
nologies, media formats, metadata, interfaces and delivery procedures, client and 
network architectures and APIs, and QoS service parameters and other CN and radio 
functionalities. The primary scope of the report are following aspects:

• Introducing XR by providing definitions, core technology enablers, a sum-
mary of devices and form factors, as well as ongoing related work in 3GPP 
and elsewhere.

• Collecting and documenting core use cases in the context of XR.
• Identifying relevant client and network architectures, APIs and media pro-

cessing functions that support XR use cases.
• Analyzing and identifying the media formats (including audio and video), 

metadata, accessibility features, interfaces and delivery procedures between 
client and network required to offer such an experience.

• Collecting key performance indicators and QoE metrics for relevant XR 
services and the applied technology components.

2.3.1.1 Architectural Enhancements for Immersive Media Support
The integration of XR applications in the 5G system is approached according to 
the 5G MS media streaming model as defined in the 3GPP specification TS 26.501. 
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Media-centric architecture and simplified rendering focus on the processes in which 
the following main tasks are performed: rendering, tracking and generating poses, 
rendering viewports, capturing real-world content, media encoding/decoding, media 
content delivery, 5G system communication, media formats, metadata, and other 
data.

5G supports a wider range of QoS requirements, including the high bandwidth 
and low latency needs of interactive XR applications over the NR air interface, as 
well as flexible QoS on the 5G CN architecture and NS. Furthermore, the ability of 
the 5G system to utilize network edge computing EC is essential to meet the perfor-
mance requirements of immersive media to shift some of the complex XR processing 
to the edge such as decoding, rendering, graphics, stitching, encoding, transcoding, 
etc., for reasons of reducing the computing load of client devices.

Based on the conclusions of R15 study, 3GPP SA4 initiated normative work item 
R16 for the 5G MS streaming media architecture in specification TS 26.501, with 
the aim of developing MNOs architectures with relevant functions and interfaces 
to support various collaboration scenarios, including immersive media distribution. 
Various aspects such as session management, QoS framework, network assistance, 
QoE reporting, accessibility, content replacement, notifications, content rights man-
agement are considered. The relevant UE functions and APIs as well as the use of 
specific 5G features such as NS and EC are within the scope of the intended work on 
normative specification. One work item R16 defines 3GPP media codec profiles and 
network-based media processing functions (video stitching, media transcoding and 
content reformatting) and also recommends new QoS classes that account for trade-
off of video quality and delivery delay of immersive media. 3GPP technical report 
TR 26.929 investigates QoE parameters and user experience evaluation metrics in 
XR services (Figure 2.13).

3GPP R17 work is ongoing to identify integration of 5G systems with network 
edge processing. Technical report TR 23.748 defines modifications to the 5GS system 
architecture to improve EC. In addition, the TR 23.758 report identified new set of 
application layer interfaces for EC integration. The candidate items for R18 include 
immersive media and XR media support in working group SA4 multimedia codecs, 
systems, and services and SA2 architecture (Figure 2.14).

FIGURE 2.13 Generalized immersive XR communication in 5G reference architecture.
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Performance of XR services is evaluated in R17, including VR, AR, and cloud 
gaming CG in terms of capacity and power requirements (Table 2.4). XR capacity is 
defined as the number of VR/AR users, 90% of which show satisfactory performance 
when packet error rate <1%, and delay < packet delay bound (PDB) in dense urban 
scenario. Potential improvements have been identified, including XR identification 
in RAN, reduction of UE power consumption, and capacity improvements to better 
address the nature of traffic specific to XR, such as periodic arrivals, bounded delay/
reliability requirements, multiple streams, jitter, and varying sizes package. For these 
potential improvements, R18 explores areas such as XR traffic characteristics, QoS 
metrics, application layer attributes, connected mode DRX discontinuous reception, 
control channel monitoring reduction, and enhancements in semi-persistent, config-
ured, and dynamic scheduling mechanisms.

2.3.1.2 Levels of Immersion and Technological Complexity
Considering the support of latest defined immersive formats in MPEG, it is nec-
essary for 3GPP to develop standardized interfaces that ensure device-complexity 
dynamic adaptation in the 5G network with mass-scale interoperability. The 3GPP 
study R17 and normative work until March 2022 are focused on the following areas:

FIGURE 2.14 5G MS immersive XR communication interfaces and architecture.

TABLE 2.4
XR Capacity Evaluation

XR Application Bit Rate (Mbps)
Packet Delay 
Bound (ms) Frame Rate (fps)

XR Capacity 
(mean/range)

AR/VR DL 30 10 60 7.3

CG DL 30 15 60 9.9

VR/CG UL (Pose) 0.2 10 250 20–225

AR UL 
(Pose + scene)

10 10 60 4.4
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• XR services. Collection of various XR use cases have been performed and 
identification of XR-based services typical traffic characteristics is ongoing; 
glass-based AR is studied, and immersive teleconferencing and telepres-
ence for remote terminals is being specified.

• Video coding. Currently specified video codecs H.264/AVC and H.265/
HEVC are being characterized over 5G scenarios as a preparation for H.266 
VVC coding. 3GPP also plan the addition of 8K VR 360-video profiles.

• Speech and audio coding. New codec selection work is planned for an EVS-
enhanced voice services extension for immersive voice and audio services 
IVAS. Related specification work for terminal audio quality performance 
and test methods for immersive audio services will follow in a next step.

MPEG experts group organized under ISO/IEC started initiative MPEG-VR to 
develop a roadmap and coordinate the various activities related to immersive media 
in June 2016. Currently, MPEG-I project explores standards to digitally represent 
immersive media and cooperation also with other consortia working on innovative 
products and services. The first Phase 1A targets the specification of 360-video pro-
jection formats OMAF (omnidirectional media application format). The next Phase 
1B (Doc. N17069 Requirements on Phase 1B, July 2017) will the extend specification 
toward 3DoF+ applications. Phase 2 (Doc. N17073 Requirements on 6DoF v1, July 
2017) is intended to start from about 2019, aims at addressing 6DoF applications like 
free viewpoint video. Different levels of experience can be achieved by the user who 
may freely move his head around three rotational axes 3DoF (yaw, pitch, roll), and 
along three translational directions 6DoF (left/right, forward/backward, up/down) 
(Doc. W17285 Visual activities on 6DoF and Light Fields, October 2017).

MPEG initiated a new MPEG-I project on coded representation of immersive 
media in October 2016. The project was motivated by the lack of common standards 
that do not enable interoperable services and devices providing immersive, navigable 
experiences. The MPEG-I project is expected to enable the evolution of interoper-
able immersive media services. Enabled by the parts of this standard, end users are 
expected to be able to access interoperable content and services and acquire devices 
that allow them to consume these. Core technologies as well as additional enablers 
are implemented in parts of the MPEG-I standard (ISO/IEC 23090-X with X for the 
part). The MPEG-I project is expected to enable existing services in an interoper-
able manner and to support the evolution of interoperable immersive media services. 
After the launch of the project, several phases, activities, and projects have been 
launched that enable services considered in MPEG-I. The project is divided in tracks 
that enable different core experiences. Each of the phases is supported by key activi-
ties in MPEG, namely in systems, video, audio, and 3D graphics-related technolo-
gies. Core technologies as well as additional enablers are implemented in parts of 
the MPEG-I standard. Currently the following 14(26) parts are under development:

• Part 1 Immersive media architectures. This overview summarizes use cases 
and architectures that motivate the development of specific components that 
contribute and support the distribution of immersive media services. Also, 
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the development of architectures and requirements for the integration of 
networked and compressed media into 6DoF scenes is underway.

• Part 2 Omnidirectional media format. OMAF addresses a first set of 
enablers for 3DoF experience based on existing MPEG technologies. It 
is the first published standard in MPEG (2019) that specifically addresses 
immersive media by combining and reusing existing MPEG compression 
(HEVC, MPEG-H) as well as storage and file formats. Currently, the devel-
opment of the second edition is underway addressing extensions including 
limited 6DoF with multiple viewpoints, overlays, and improvements to the 
efficiency of viewport-adaptive streaming.

• Part 3 Versatile video coding. VVC predominantly addresses improved 
compression efficiency for high-resolution video but is also expected to pro-
vide better support for the integration of immersive media signals into the 
decoding.

• Part 4 Immersive audio coding support rich, immersive and highly inter-
active audio, MPEG addresses immersive audio in a new part in order to 
enable fully integrated audiovisual experiences. This specific project is 
expected to use the existing MPEG-H as a compression engine and will 
define a rich audio rendering engine with supporting metadata for 6DoF 
and AR experiences. Integration of low-latency speech codecs is expected 
to be supported and enables the combination of 3GPP speech codecs (EVS, 
IVAS), for example to support social VR use cases.

• Part 5/9 Point cloud compression PCC. Point cloud are becoming popular to 
present immersive volumetric video due to the relative ease of capture and 
render when compared to other volumetric video representation. Several 
applications include 6DoF immersive video, VR/AR, immersive real-time 
communication, autonomous driving, cultural heritage, and a mix of indi-
vidual point cloud objects with background 2D/360-video. MPEG addresses 
two ways to compress point clouds, Part 5 video-based V-PCC, and Part 9 
geometry-based G-PCC.

• Part 8 Network-based media processing (NBMP). NBMP defines frame-
work that allows content and service providers to describe, deploy, and con-
trol media processing for their content in the network/cloud. The NBMP 
framework provides an abstraction layer on top of existing cloud platforms 
and is designed to integrate with 5G Core and edge computing EC. A par-
ticular aspect on NBMP is the integration of immersive media.

• Part 14 Scene description for MPEG media. The virtual scene composition 
specifies extensions to existing scene description formats in order to sup-
port MPEG immersive media. Extensions include scene description format 
syntax and semantics and the processing model when using these extensions 
in combination with a presentation engine.

3GPP adopted the omnidirectional media format MPEG-I Part 2 OMAF archi-
tecture and addresses detailed specification for VR360 streaming in TS 26.118 
(Figure 2.15). 
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2.3.2  ExTrEMEly InTEracTIvE coMMunIcaTIon and low laTEncy

Unlike the basic 5G enhanced mobile broadband eMBB service, most new applica-
tions are time-critical in nature with demanding reliable low latency. The main causes 
of delays and interruptions are dynamic radio environment, mobility, protocols, net-
work congestion. Critical use cases are real-time digital media and immersive XR 
communication. Immersive applications are expected to dominate next-generation 
mesh networks in terms of their popularity and the volume of traffic they generate. 
XR features in 5G NR have been focused on ways to manage scheduling within the 
existing framework of the RAN. To unlock the potential of next-generation applica-
tions, the challenges posed by the end-to-end (E2E) system need to be addressed.

The key difference for XR applications is that it involves interactive experiences 
where the entire perspective of the user may be communicated via the network 
(Figure 2.16). If multiple users are involved, the E2E experience (i.e., user-to-user 
latency) is the most relevant key performance indicator (KPI) to consider. Several 
domain experts have identified that the necessary user-to-user latency for a seamless 
user experience is <50 ms as shown in Figure 2.17.

User-to-user latency includes the access link, gateway, backhauls, Internet service 
provider (ISP) links, and finally downlink to the other users. Variations in one or 
more dimensions can be used to maintain a consistent end-user experience. It is time 
to think of cross-technology optimizations across multiple nodes in the network. It is 
expected that XR applications will be compute-intensive.

2.3.2.1 Immersive XR Communication
The major components in XR processing include simultaneous localization, map-
ping, and map optimization (SLAM) with immersive media formats, hand gesture 
and pose estimation, object detection and tracking, and multimedia processing and 
transport. Examples of multimedia processing and transport are rendering, asynchro-
nous time warp and video, audio and sensor encoding. 5G XR architecture options in 
splitting the processing between XR device and network are showed in Figure 2.18:

FIGURE 2.15 OMAF (omnidirectional media format architecture).
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FIGURE 2.16 Illustration of the concepts: (a) in-time vs. on-time services and (b) commu-
nication reliability vs. service availability.

FIGURE 2.17 General timing model from 3GPP and end-to-end user latency for immersive 
XR communication.
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• In low-offload architecture, almost all processing is done on the device. 
Immersive media format, spatial map generation and localization are pro-
cessed on the device as well as object detection and tracking. Rendering is 
done locally on the device or at the edge of the network.

• In mid-offload case, the device performs localization and object tracking 
functions. Spatial map and immersive format are generated in the network, 
merged with global data at the edge of the network. The overlay rendering 
occurs at the network edge.

• In high-offload case, only the sensor data is sent over UL connection. 
Sensor data contains camera data. Many AR/VR devices are equipped with 
multiple cameras, including IR infrared and RGB cameras. Sensor data also 
includes LiDAR (light detection and ranging) scanner and IMU (inertial 
measurement unit) sensor. Image data is encoded using video compression 
such as the MPEG VVC codec.

5G XR traffic characteristics and connectivity requirements are characterized by a 
mix of poses and video from/to the same XR device, variable video frame size over 
time, and quasi-periodic packet reception with application jitter after IP segmenta-
tion. The traffic arrival time in the RAN is periodic with non-negligible jitter due to 
uncertainty of application processing time. Video frame sizes are an order of magni-
tude larger and, at the same time, not fixed over time compared to packets in indus-
trial control communications. The segmentation of each frame is expected, which 
implies that packets arrive in bursts that must be handled together to meet stringent 
bounded latency requirements.

The requirements for XR connectivity depend on the level of shared architecture 
(Figure 2.18) and the target QoE, resulting in a wide range of transmission rates and 
bounded latency requirements. The requirements of AR and VR 5G connections 
based on the development of the 3GPP ecosystem are shown in Table 2.5. A local 
processing technique is assumed in the split architecture to alleviate the low-latency 

FIGURE 2.18 5G XR architecture options.
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requirements. Latency and reliability requirements are on a video frame (or file) level 
excluding application error and delay.

If the XR application is hosted in a central national data center (DC), transport 
network round-trip is the order of 10–40 ms, depending on the distance to the DC 
and how well the transport network is built out. Transport latency can be reduced to 
5–20 ms by relocate applications in regional DC or reduced to 1–5 ms for edge sites. 
For a local network deployment with network functions and locally hosted applica-
tions, the transport delay becomes negligible.

2.3.2.2 Holographic Communication
Holographic communication refers to real-time capturing, encoding, transporting, 
and rendering of 3D representations, anchored in space, of remote persons shown 
as 3D video in XR headsets that deliver a visual effect similar to a hologram. The 
research area divided into professional-quality or consumer-friendly digital repre-
sentations of users. Professional-quality digital representations are created through 
the use of multiple cameras and real-time studio recordings. Consumer-friendly digi-
tal representations are generated with the help of an AI-enabled, 3D-capturing setup 
on consumer-grade phones or tablets.

Holographic communications require the processing and transmission of various 
formats of immersive visual media. The formats present more realistic and interac-
tive visual representations of people and/or environments than the current 2D video 
formats used in traditional video conferencing. A point cloud (PC) is a set of points 
that represent the enclosed volume. Each 3D point contains location information, 
color voxel, and intensity values in a particular frame. A mesh unites those points 
with triangles, disregarding redundant points and filling any holes. Meshes can be 
cleaned and reduced further by decreasing the number of vertices. Depending on 
their resolution, they can be significantly smaller than point clouds, increasing the 
speed of storage, transmission and rendering of meshes in comparison with point 
clouds.

The application of new immersive media formats in XR communication scenarios 
greatly improves the attractiveness, usefulness, and efficiency of information trans-
mitted between parties in communication. 3GPP working on challenging task of 
improving the 5G system in R18 research to offer more efficient XR service support 
with the aim of reusing as much of the previous technical specifications as possible. 
Standards development organizations have additionally research on the interoper-
ability challenges of respective component technologies:

TABLE 2.5
XR Use Case Requirements for 5G Networks

Use Cases
DL Bitrates 

(Mbps)
UL Bitrates 

(Mbps)
One-Way 

Latency (ms)
Frame 

Reliability (%)

AR 2–60 2–20 5–50 >99

VR 30–100 <2 5–20 >99
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• ITU-T ILE international standards on immersive live experience have 
been adopted in November 2019. ILE captures an event and transports it to 
remote viewing sites in real time and reproduces it with high realism. ILE 
captures an event and transports it to remote viewing sites in real time and 
reproduces it with high realism. It is expected that the series of standards 
on ILE will facilitate the creation of a world where people can enjoy highly 
realistic reproduction of events in real time wherever they are.

• IEEE Digital reality working on global standards related to digital reality, 
AR, VR, human augmentation, and related areas. Under P2048 standard, 
VR/AR working group is developing 12 standards for virtual reality and 
augmented reality with participants from device manufacturers, content 
providers, service providers, technology developers, government agencies, 
and other relevant parties, constituting an excellent mixture for the stan-
dards to be widely adopted.

• ETSI ISG ARF has defined the augmented reality framework for the 
interoperability of AR components, systems and services that specifies rel-
evant components and interfaces required for an AR solution. Transparent 
and reliable interworking between different AR components is key to the 
successful roll-out and wide adoption of AR applications and services.

• DVB started commercial module CM study mission group with to deliver 
commercial requirements for relevant technical module TM groups that 
will work on technical specifications to deliver VR contents over DVB net-
works. DVB will consider work done within other organizations such as 
MPEG, VRIF, and 3GPP.

• ISO/IEC MPEG experts group is developing metadata for immersive video 
together with media formats and video/audio codecs for XR. MPEG-I proj-
ect develops standards for volumetric video. For point cloud compression 
PCC, MPEG defines two representations. V-PCC decomposes point clouds 
into two separate video sequences, which capture the texture information 
and geometry. Traditional 2D codec VVC is then applied. However, G-PCC 
decomposes the 3D space into a hierarchical structure of cubes; each point is 
encoded as an index of the cube it belongs to. MPEG Immersive video (MIV) 
standard reached draft international standard DIS status in the January 2021. 
In 2020, the MIV standard has been aligned with the V-PCC standard. As a 
result, the MIV standard references the common part of ISO/IEC 23090-5 
2nd edition visual volumetric video-based coding V3C – also with DIS sta-
tus – with V-PCC an Annex H of that document. V3C provides extension 
mechanisms for V-PCC and MIV. Finally, SC29/WG03 MPEG Systems has 
also developed a systems standard based on ISOBMFF for the carriage of 
V3C data ISO/IEC 23090-10 which reached the FDIS stage in January 2021.

• JPEG Pleno is an upcoming standard from the ISO/IEC JTC1/SC29/WG1 
committee. It aims to provide a standard framework for coding new imaging 
modalities derived from representations inspired by the plenoptic function. 



1235G Advanced Mobile Broadband

The image modalities addressed by the current standardization activities 
are light field, holography, and point clouds, where these image modalities 
describe different sampled representations of the plenoptic function.

2.3.3 aI-baSEd MulTIMEdIa ToolS

Multimedia tools based on artificial intelligence have been successfully applied in 
computer vision tasks, and are now arriving immersive media. The main strategy of 
using AI is to increase efficiency and reduce costs. Learning-based video compres-
sion has received much attention in recent years due to its adaptability to content 
and parallel computation. Machine learning (ML) techniques are used during video 
encoding to reduce file sizes and bit rates while maintaining perceptual quality. 
The technique allows encoders to optimize video encode parameters on a scene-by-
scene basis while feeding the results back into the system to enhance future encod-
ing sessions. Learning-based video compression has been widely researched and got 
remarkable milestones.

The advantages of learning-based video compression are as follows:

• The model is based on learning and adapted to the content of a huge amount 
of training data, so it is more efficient than modules designed for specific 
tasks.

• The difference from the conventional codec, the learning-based models usu-
ally explore the large receptive field in both spatial and temporal domains, 
therefore provides a more accurate prediction or latent distribution. This 
manner also helps the codec to avoid the blocking artifact and become flex-
ible in temporal exploration.

• The direct linkable ability allows the learning-based modules to perform 
the global optimization that is the potential factor for further improvement 
on the R–D trade-off and specific human vision task.

• The flexibility of the learning-based method allows them to quickly 
inherit the newest technology, extend the design and transfer knowledge 
easily.

There are many ways to apply the learning-based method to video compression.

• Learning-based method can be an integrated or replacement module of the 
conventional codec, then they further are an outside cooperated or guidance 
module.

• In learning-based end-to-end (E2E) compression methods all components 
are learnable and linked to solving a global objective function. In com-
pression, the objective function is usually to represent the rate R (number 
of bits) and distortion D (quality) relation. Different from the conventional 
codec based on local optimum, the global objective function allows the 
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learning-based E2E codec find the global optimized R–D operational point, 
which reveals a huge potential for further performance improvement and 
on-demand compression ability.

Conventional cooperative approach involves joint processing of standard hybrid 
video compression and learning-based methods, where the core component is con-
ventional codec. Learning-based methods can use a conventional codec as an internal 
module (intra-prediction, inter-prediction, in-loop filter), an external enhancement 
module (intra-prediction, inter-prediction, in-loop filter), or guidance (super-resolu-
tion-based, layered-based). The improvement in compression performance is asso-
ciated with huge trade-off in complexity and increased storage memory. Also, the 
local optimization problem is inherited from the conventional module. Thanks to the 
development of differentiable quantization function, recently, learning-based E2E 
video coding has been intensively researched.

E2E approach contains only trainable components with a global objective func-
tion. However, framework is very flexible and can be further separated into pre-
dictive video coding and generative video coding. The predictive video coding is 
usually designed to reflect conventional compression design based on the prediction 
and residual calculation. Whereas the generative video coding can be seen as an 
extension of variable autoencoder (VAE) technique.

Predictive video coding approach completely replaces conventionally designed 
modules with learning-based models, but mainly processes a complete video frame 
instead of divided into blocks of pixels. Similar to the conventional codec, the key 
idea is to compress the residual errors between the predicted frame and the current 
frame. In specific, the motion estimation of interframe prediction is replaced with the 
learning-based flow estimation, the motion compensation become warping function, 
and the learning-based frame synthesis model will do the reconstruction task. The 
estimated flow and the residual error then are compressed and sent to the decoder. 
Especially, with the join of the differentiable quantization methods, all modules are 
linked together to perform a global optimization training process for the rate-distor-
tion loss (Figure 2.19).

FIGURE 2.19 DVC E2E predictive coding framework (m motion flow, r estimated residual).
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Generative video coding framework is as an extension of the variable autoencoder 
(VAE), which learn the parameter of probability distribution for the latent represen-
tation. Figure 2.20 shows the pure version of the video coding with only temporal 
autoregressive transform. Many recent works are studying to improve this module by 
more complex design, context-adaptive design or including temporal information via 
sequences-learning technique.

While the conventional-learning-based framework is usually strong on the mean 
square error (MSE) or peak signal over noise rate (PSNR) because of its conventional 
baseline, the learning-based E2E framework is surpassed on the structure similarity 
by avoiding the block artifacts since they process with fully spatial information of the 
frame. So far, the E2E learning-based video compression methods have surpassed 
traditional codecs on MS-SSIM structural metric, perceptual quality, or even PSNR 
on low bitrate. However, E2E compression requires powerful hardware (GPU) to pro-
cess the compression on both the encoder and decoder sides. The problem becomes 
more serious since more prior is being leveraged recently required a much more 
complex network design.

In the trade-off or the compression ratio performance, current learning-based 
video compression methods are facing many challenges that are required to be fur-
ther research:

• Complexity and memory requirement. One of the major limitations of the 
learning-based approach compared to the conventional one is the enormous 
load of computation and memory requirements.

FIGURE 2.20 Basic generative video coding framework.
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• Rate-dependent model design. The most common framework design of 
current learning-based works intuitionally assumes that distortion of the 
predicted frame and rate are in a linear correlation. Hence, the network is 
designed to produce a better-quality predicted frame that hopefully reduces 
the compression rate of the residual.

• The generative design for the learning-based model. So far, the generative 
approach has demonstrated its performance in computer vision tasks. Its 
advantage becomes clearer in compression where learned distribution can 
save a lot of sending information.

2.3.3.1 DNNVC Video Codec
With the finalization of VVC video codec standardization, discussion was initi-
ated in MPEG about new codec based on deep neural network (DNN) technology. 
JVET AdHoc Group 11 started in April 2020 standardization process to create a 
new AI-based DNNVC codec before the end of the decade, as well as also explores 
related techniques that can improve existing practices. In the short term, AI pres-
ents an opportunity to extend existing conventional coding modules with new tools. 
Presently primary areas of focus are dynamic frame rate encoding, dynamic resolu-
tion encoding, and layering. MPEG created ad hoc group with the following terms 
of reference:

• evaluate and quantify performance improvement potential of DNN-based 
video coding technologies (including hybrid video coding system with 
DNN modules and end-to-end DNN coding systems) compared to existing 
MPEG VVC standards considering various quality metrics

• study quality metrics for DNN-based video coding
• analyze the encoding and decoding complexity of NN-based video cod-

ing technologies by considering software and hardware implementations, 
including impact on power consumption

• investigate technical aspects specific to NN-based video coding, such as 
design network representation, operation, tensor, on-the-fly network adap-
tion (updating during encoding).

• building NN environments (small ad hoc deep learning library JVET Doc. 
W0181).

• From the point of view of codec architecture, two different approaches have 
been explored in DNNVC:

• Hybrid block-based coding where DNNs replace existing encoding tools or 
are used as optimization methods, thereby preserving the architecture of a 
conventional hybrid block-based video codec.

• End-to-end learning-based coding where DNNs play major roles in com-
pression, thus the architectures are highly dependent on the DNN architec-
ture and its usage.

Conventional video codecs are based on hybrid block-based coding. Main encod-
ing tools for hybrid block-based coding include: partitioning frames into blocks, 
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inter/intra prediction of the blocks to remove spatial/temporal redundancies, lossy 
compression with transform/quantization based on the human visual system, and 
entropy coding to remove statistical redundancy. In addition, in-loop filtering such 
as deblocking and sample adaptive offset filters are used to reduce compression arti-
facts. In hybrid coding approaches, DNNs are used for estimations such as: intra/
inter-prediction and compression artifact removal. In entropy coding, DNN is used to 
predict probability (or possibility) of contexts for context-adaptive binary arithmetic 
coding CABAC. DNN-based in-loop filtering showed the highest coding enhance-
ments and the deeper network showed a higher enhancement.

One of the hybrid coding approaches DLVC deep learning-based video coding 
was proposed in 2018. DLVC added two deep convolutional neural network (CNN)-
based coding tools on top of HEVC: a CNN-based loop filter, and a CNN-based 
block adaptive resolution coding.

Compared with the hybrid coding approaches, there is no concrete consensus 
about a common end-to-end learning-based coding approach until now. But most 
E2E learning-based coding approaches also try to remove spatial/temporal redun-
dancy and utilize lossy compression with quantization and entropy coding such as 
the hybrid coding approaches. An E2E neural video coding (NVC) was proposed 
in 2020. NVC comprises intra, motion, and residual coding networks. In addition, 
quantization and arithmetic coding is adopted with a context prediction network 
(named hyper coder).

The first solid performance study on DL-based video codecs JVET NN CTC 
common test conditions vs. DVC (2019), HLVC (2020), and RLVC (2020) codecs 
was conducted in 2022.

• DVC (Deep Video Compression) is classical, hybrid video coding architec-
ture, where each module is replaced by a DL-based tool, thus originating 
one-to-one correspondence between the classical coding modules and the 
DL-based models. In DVC, motion estimation is performed using a CNN 
to extract the optical flow, from the previously decoded frame. The result-
ing residual information is coded using a CNN-based encoder–decoder net-
work and the motion-associated latents are quantized to reduce rate while 
still preserving a good enough motion representation. The decoded optical 
flow is used to warp the previous decoded frame to estimate the motion-
compensated prediction for the current frame. However, since the motion-
compensated frame has artifacts, it is processed by a CNN, together with 
the previous decoded frame and the decoded optical flow, to obtain a refined 
prediction frame. Lastly, the prediction residual is compressed into a latent 
representation using a nonlinear NN, which is quantized to obtain several 
R–D operational points. The whole DVC architecture is trained with rate-
distortion R–D loss function, using as end-to-end distortion MSE metric 
between the original and decoded frames, while the bitrate is estimated 
using a rate estimation module.

• HLVC hierarchical learned DL-based video compression solution adopts 
hierarchical coding architecture inside group of pictures (GOP). At the 
decoder, the frames are decoded and enhanced using a recurrent network to 
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increase the decoded frames’ quality. The first HLVC layer includes the first 
and last frames of the GOP, which are coded with a state-of-the-art image 
coding solution, at the highest quality. The second HLVC layer codes the 
middle frame of the GOP with medium quality, using a NN for bidirectional 
prediction, and the frames at the edge of the GOP as anchors. The third and 
last HLVC layer codes the remaining frames of the GOP with lower quality, 
using the closest already decoded frame as anchor (from the first or second 
layers); only unidirectional prediction and a single motion map are used to 
code two adjacent frames. On the decoder side, after each frame is decoded 
by the corresponding layer, all frames are processed by an enhancement 
recurrent NN, which leverages on the frames with better quality to improve 
the quality of the remaining frames.

• Recurrent learned DL-based video compression (RLVC) solution includes 
a recurrent autoencoder (RAE) and a recurrent probability model (RPM). 
Due to its recurrent nature, the RAE allows using temporal information 
from several frames at a time. In this context, previous inputs are given 
as hidden states to help generating the latent representation for the cur-
rent frame, instead of choosing only specific frames as anchors like most 
DL-based video codecs. The RPM network models the probability mass 
function of the obtained latent representations, based on previous iterations. 
In the RLVC codec, the first frame of each GOP is coded with a state-
of-the-art image coding solution, either DL-based or conventional. For the 
remaining frames, motion estimation is performed using a pyramid optical 
flow network. The RAE codes the estimated motion, considering the hidden 
states passed on, which express inputs from previous frames; the decoded 
motion estimation is applied to create a motion-compensated prediction. 
Next, the residual between the original and motion-compensated frames is 
obtained and coded using another RAE. The RPM is used to recurrently 
predict the temporally conditional probability mass function, to reduce the 
rate when entropy coding the latent representations.

AI-based codecs can be several orders of magnitude more complex than traditional 
codecs. Neural networks are being used within conventional codecs to replace exist-
ing modules, especially where performance is likely to be improved, however the 
complexity is often exceptionally high. There are other challenges in AI-based 
video development. Learned models contain millions of parameters, which makes 
real-time inference on common devices a challenge. Also, it is difficult to interpret 
learned models or to provide performance bounds on results. Existing video stan-
dards offer reference software, common test conditions, and frame sequences, which 
allow direct comparison of various executions in hardware or software. The video 
standard is fully described, in detail and verified against agreed metrics. The indus-
try needs common ground to compare AI-based methods. MPEG now have a com-
mon data set for AI inferencing which all vendors must use, however the training 
cannot be cross-checked for validation.

Another active discussion topic was about visual quality metrics. The PSNR and 
multiscale structural similarity (MS-SSIM) are widely used objective visual quality 
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metrics. But they show inconsistencies with human perceived visual quality, and it 
is difficult to compare coding performance. In addition, a precise perceptual visual 
quality metric could help enhancing coding efficiency. Learning-based visual quality 
metrics such as LPIPS learned perceptual image patch similarity metric is a good 
candidate.

MPEG VCM video coding for machine is new project with emphasis on exploring 
video compression solutions for both human perception and machine intelligence. 
Traditional coding methods aim for the best video under certain bitrate constraints 
for human consumption. However, with the rise of ML applications, along with the 
richness of sensors, many intelligent platforms have been implemented with massive 
data requirements, including scenarios such as connected vehicles, video surveil-
lance, and smart city. The MPEG activity on VCM aims to standardize a bitstream 
format generated by compressing a previously extracted feature stream and an 
optional video stream. Deep learning-based coding solutions allow extending the 
utility of the compressed representations by offering key advantages: reduction of the 
complexity resources associated to computer vision tasks as already starting from 
compressed domain features, thus at least partly skipping feature extraction; bet-
ter analysis accuracy by allowing the computer vision tasks to use the compressed 
domain features extracted from the original video data instead of extracting them 
from the lossy decoded video as for conventional coding solutions where feature 
extraction happens after full decoding.

2.4 CONCLUDING REMARKS

The scope of this chapter is transition of 5G architecture to common media delivery 
platform based on enhanced broadband mobile access eMBB, 5G Media stream-
ing, 5G Broadcast, and 5G MBS multicast-broadcast services. We point out how is 
important to study technical issues taking into account current and future require-
ments and constraints. It starts with a 5G vision and foresight to identify compelling 
challenges and issues. We address 5G immersive communication aspects such as 
use cases, relevant technologies, media formats, and delivery procedures, network 
architectures, and QoS service parameters. Also, initial interest in applying AI to the 
challenges of video encoding is outlined.

We evaluate the benefits, impacts, and challenges of adopting 5G networks across 
the media distribution value chain and positions the media industry as a key vertical 
for the future development of 3GPP technologies. 5G ecosystem promises contin-
ued development in future releases, bringing new services and functionalities, better 
performance and efficiency, as well as rapid replacement cycles. However, there are 
many compelling future research challenges that still remain to be addressed. 
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3.1  INTRODUCTION

5G wireless networks fundamentally evolve from connectivity-based networks to 
an intelligent platform for delivering new applications to vertical industries. The 5G 
advanced network is becoming increasingly capable of supporting many services 
beyond enhanced mobile broadband (eMBB). Vertical applications impose several 
stringent performance requirements in terms of high data rates, reliability, latency, 
coverage, and security. They represent the basic driving force for 5G deployment on 
network infrastructure adapted to network slicing (NS), private networks (NPN), 
supported by artificial intelligence (AI), and economical scaling through software 
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in an open ecosystem. It is expected that the revenue of mobile network operators 
(MNO) from competitive vertical markets will exceed the revenue from basic mobile 
broadband communication services by 2025.

The wireless industry and industry verticals have invested significant effort in 
identifying use cases and requirements for the new 5G platform. Ultrareliable and 
low-latency communication (uRLLC) has been one area that has attracted a lot of 
interest. 3GPP initiated R15 research by identifying use cases and specifying corre-
sponding requirements, taking into account input from various industry groups and 
verticals. In continuation of work on the standardization of technical specifications, 
the use cases and requirements of industrial Internet of things (IIoT) and vehicle 
(V2X) communications are documented. Continued strong development is necessary 
to optimize new services based on the criteria of reduced complexity, energy savings, 
coverage, and cost.

There is significant interest in continuing to improve the 3GPP 5G new radio 
(NR) platform based on vertical domain extension requirements. Work on version 
R16 initiates the expansion of 5G systems to vertical domains from Q3 2018 to Q1 
2020 with topics such as uRLLC, IIoT, V2X, non-public/private networks, and unli-
censed/shared spectrum. It was further accelerated in R17 from Q2 2020 to Q1 2022 
with additional improvements in V2X/uRLLC/IIoT, and NTN satellite networks. 
The R18 RAN research in the Q2 2022 initiates the development of the transition 
5G-Advanced with the goal of being functionally complete by the end of the Q4 2023 
in evolution driven by eMBB services and vertical domains. Studies of new areas are 
not only useful for 5G NR development, they also represent the basis for the next 6G 
generation. It is expected that the 6G standardization is not only limited to the com-
munication system, it will also represent deep integration of communication, intel-
ligence, and computing. 3GPP is scheduled to launch a comprehensive study of the 
6G system at the end of 2025 in version R20, and research on technical specifications 
will start at the end of 2027.

The major sections of the chapter are an introduction of uRLLC, motivation for 
5G vertical domain expansion, and 5G AI IoT (AIoT). In the first part, key character-
istics of uRLLC and mMTC services, as well as private networks, energy efficiency, 
and AI/ML support for verticals are presented. In the second part, performance 
trade-offs for uRLLC in IT, V2X communication as well as AI-enabled massive IoT 
toward 6G are outlined. We conclude with remarks on 5G capabilities for industrial 
IoT and automotive vertical industries.

3.2  5G VERTICAL DOMAIN EXPANSION

5G vertical industries are based on guaranteed high-quality performance, such as 
throughput, low latency, and reliability provided by new mobile networks. The list 
of significant vertical industries includes telecommunications, manufacturing, auto-
motive, transportation, energy and utilities, public sector, financial sector, retail, 
healthcare, critical infrastructure, media, and entertainment. Virtualized end-to-end 
network functionalities enable network operators and the industry to define distinct 
and isolated logical networks of individual use cases in real-time, built on a shared 
physical widely deployed commercial infrastructure.
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Vertical industries are based on the efficient execution of their core business oper-
ations. Therefore, 5G capabilities of key interest to verticals include:

• Differentiated communication services and support services that are aligned 
with specific use needs (bandwidth, quality of service, availability, cost), 
enabling the delivery of specific cases and services to industry.

• A service guarantee provides specific guarantees in contrast to the current 
best-effort approach. Although quality guarantees may not be necessary for 
all services, supporting this functionality enables new applications.

• Seamless connectivity supports reliable end-to-end (E2E) communication, 
as well as ubiquitous presence ensures coverage through innovative means 
and integration with various localized communication systems.

It is useful to view individual vertical use cases as a linear combination of three 
basic service categories. The 5G concept generalizes the basic characteristics of the 
use case, harmonizes the requirements, and combines the technology components. 
Each generic service individually emphasizes a different subset of requirements, but 
all are relevant to some degree. Generic communication services contain service-
specific functions and main drivers contain functions that are common to more than 
one generic service. Three generic services were implemented:

• uRLLC ultra-reliable and low-latency communication enables connecting 
network services with extreme demands in terms of availability, latency, 
and reliability. Typical applications are autonomous vehicle communica-
tions (V2X) and industrial IoT (IIoT) applications. Reliability and low 
latency are prioritized over data transfer speed.

• mMTC machine-type mass communication provides wireless connectivity 
for a huge number of devices on the network, scalable connectivity for an 
increasing number of devices, efficient transmission of small data packets, 
wide coverage, and deep penetration. Requirements are simultaneously and 
mainly focused on bandwidth, latency, and reliability.

• eMBB enhanced mobile broadband supports extremely high data rates and 
low-latency communication, as well as extreme coverage in the service 
area. It includes mobile broadband with bandwidth and availability as basic 
requirements.

5G services are complex constructions, requiring sophisticated configuration deep in 
the network, driven by a large number of parameters, in a specific network context, 
and under limited resource availability. Previous cellular systems have developed 
extremely efficient architectures in terms of system capacity. However, 5G systems 
achieve not only high system capacity but also low latency, high connection density 
and energy efficiency. The key metrics of eMBB, uRLLC, and mMTC core services 
are system capacity, latency, and connection density. eMBB requires high connection 
throughput and high network capacity, while uRLLC requires low latency and high 
reliability for both low and high mobile devices. The relative importance of these 
requirements is shown in Table 3.1.
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Competing different requirements impose a new approach to 5G system design:

• Virtualization of network functions (NFV) and software-defined net-
work (SDN) techniques enable the scalability of 5G networks and faster 
adaptability to new services. NFV supports the optimization of network 
resources and network slicing NS, allowing virtual networks to operate on 
a shared physical infrastructure. SDN enables programmable network man-
agement and configuration, abstracts physical network resources (routing, 
switching), separates network control functions from network forwarding 
functions, and improves network performance.

• Network slicing (NS) supports the design of virtual E2E networks tailored to 
different applications. NS enables multiple virtual or logical networks with 
different E2E performance characteristics on a common physical infrastruc-
ture. The performance attributes that can be configured in NS are latency, 
throughput, reliability, capacity, mobility, security, analytics, and cost profile.

• Distributed network architecture. Distributed computing components are 
implemented in different locations, networked, and communicate with each 
other. Distributed systems are more efficient in 5G networks due to their 
scalability, resilience, fault tolerance, and less network congestion. The 
distributed architecture of multiaccess edge computing (MEC) integrates 
network virtualization, cloud computing (CC), software-defined network 
(SDN), and network slicing (NS). The benefits are reduced network latency 
and congestion, as well as improved reliability and scalability. The basic idea 
is that computing is performed at locations near the edges of the network 
and that more content is cached. Thus, it offloads the core network (CN) 
traffic, efficiently and dynamically manages traffic flows, adapts network 
resources for each application, and reduces E2E latency. The distributed 
architecture supports a new class of cloud-based networks in use cases such 
as automated vehicles that require ultralow latency and high throughput.

• Latency is the time interval in which a sender receives a response in one-way 
E2E communication. Two types of delays are considered. The user plane 
(UP) delay is related to the contribution factor of the radio access network 
in the period of sending a packet from the source to reception at the destina-
tion. It is defined as the one-way time of successful packet delivery (at the 
application layer) from the ingress point to the egress point of Layers 2 and 
3 of the SDU radio protocol. An unloaded network condition is assumed for 
UL/DL services, the user equipment (UE) is in the active state. UP latency 
is called transport delay in ms units of measure. The latency of the control 
plane (CP) is defined as the time difference of the transition of the UE from 
the inactive state (Idle state) to the state of initiation and continuous data 
transmission (Active state). The minimum delay requirement is 20 ms, but 
less than 10 ms is preferable. Low latency is a fundamental feature of the 
uRLLC system. Depending on the use cases, the delay requirement can be 
even more stringent, which is the most difficult 5G system design goal. E2E 
delay analysis from the access network, aggregation, and CN is the basis for 
planning the placement of nodes in the network (Figure 3.1).
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• New air interfaces. 5G NR technology is based on scalable OFDM 
(orthogonal frequency-division multiplexing) radio interface technology. It 
is designed to be configurable for frequency ranges from sub-GHz to mil-
limeter spectrum up to 100 GHz. The frame structure and radio procedures 
can be configured to achieve very low latency. 5G NR air interfaces sup-
port numerous services, enable the implementation of different network 
types, and improve system performance. The key components of 5G NR 
are OFDM-based waveform with cyclic prefix, and windowing, pre-coding, 
and filtering can be added. The flexible frame structure includes different 
numerologies and a wide carrier bandwidth as well as high-order modu-
lation. A new channel coding schemes include low-density parity check 
(LDPC) codes for the UP and polar codes for the CP, massive MIMO, and 
beamforming. In the downlink (DL), the NR supports a physical control 
channel (PDCCH) and a physical shared channel (PDSCH). In uplink (UL), 
uplink control channel (PUCCH) and uplink shared channel (PUSCH) are 
specified (Figure 3.2).

• The NR radio protocol stack is split into control and user planes. Figure 3.3 
shows the radio protocol stack and interfaces for the 5G CN (mobility man-
agement function (AMF), user plane function (UPF) from the perspective 
of UE in case the connections to the base station gNB via NR radio access.

• Reliability is the ability of a network to successfully transmit data over a 
period of time. It defines as the ability to transmit given amount of traf-
fic in predetermined time with a high probability of successfully transmit-
ting Layers 2/3 packet within the required maximum time. The minimal 

FIGURE 3.2 Frame structure of 5G new radio (NR) with varying length of slots per sub-
frame to enable different applications.

FIGURE 3.1 High-level architecture and latency considerations.
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requirement defined in report ITU-R M.2410 is 10−5 probability of success-
ful transmission of Layer 2 PDU (protocol data unit) of 32 bytes within time 
limit of 1 ms in urban conditions of uRLLC test environment. Node reliabil-
ity is defined as the probability of communication between nodes. The prob-
ability is calculated by packet error probability, packet drop  probability, and 
queuing delay violation probability. CP reliability represents the probability 
of successful metadata decoding. Availability is defined as the probability 
of service available to a user in given coverage area and time, related to 
channel interference and network implementation.

5G system implementation is based on the 3GPP phased research of multiple archi-
tectures specified in the standard. Each phase (Release) usually lasts 1–2 years, and 
they are sequentially indexed. A release typically develops from study phase (Study 
Items) to specification phase (Work Items). After each release is completed, the 
resulting specifications undergo a series of corrections and fixes, often lasting sev-
eral months or longer. The Working Group (WG) usually has 15–18 months to work 
on a release and ensure that all agreed relevant topics fit within a strict time frame 
and are implemented in products on the market within 1 or 2 years after the release 
is completed (frozen). The biggest advantage of short release phases is the guarantee 
that only the most relevant topics make onto the release list.

3GPP has successfully completed the first implemented specifications of 5G-NR 
in releases R15 and R16, which enabled full-scale deployment of 5G-NR. 3GPP con-
tinues to advance E2E network functionalities in the network core (5GC), which are 
crucial for mobile operators to explore advanced opportunities for different verti-
cal market segments. 5GC supports network slicing (NS) and differentiated quality 
of service (QoS) end-to-end from radio, transport to core, and application server. 
Vertical markets rely on 5G-NR and 5GC new functionalities for more efficient and 
reliable services.

FIGURE 3.3 NR control and user plane protocols and interfaces as seen from the device UE.
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The first release of 5G R15 was developed in a short time interval from Q1 2016 to 
Q1 2017, followed by 9 months of research for the first release focusing on non-stand-
alone (NSA) deployment on LTE EPC core network. This was followed by another 
6 months of development for stand-alone deployment (SA) on the new 5GC network 
core, and another 6 months for the late release specification of additional use cases 
and architecture options. 5G R15 Phase 1 is focused on eMBB services of enhanced 
broadband access.

5G R16 Phase 2 supports stand-alone (SA) deployment on the 5GC core network. 
5G devices use both UP and CP planes. In addition, the 3GPP standard defines the ser-
vice requirements and technical goals of the 5G system. R16 extended the 5G standard 
to new verticals such as NR sidelink (SL) for vehicle V2X communication and public 
safety, 5G broadcast as an evolution of LTE-based enhanced EnTV, private NPN net-
works, IIoTs, and shared/unlicensed spectrum (5 GHz and lower 6 GHz bands).

The continued evolution in R17 includes support of satellite communications 
NTN (non-terrestrial networks) for smartphones and IoT devices, the specification 
of new user devices UE with reduced capabilities (RedCap) for surveillance cameras 
and industrial sensors, multicast and broadcast services (MBS), and expansion into 
FR2 frequency mmWave band. At the same time that 3GPP is technically working on 
R18 5G-Advanced, new topics for R19 are emerging in parallel (Figure 3.4).

3GPP has supported vertical industries since the first edition of the 5G specifica-
tions: uRLLC and mMTC communications. The following work items represent the 
vertical domain enhancements in R18 5G-Advanced.

Positioning evolution. NR positioning continues its improvements in R18 cov-
ering various aspects. Support for sidelink-based positioning and ranging is being 
explored for V2X, public safety, and commercial and industrial IoT use cases. 
Integrity improvements for RAT-dependent positioning and precision improvement 
solutions based on bandwidth aggregation and carrier phase measurements are also 
explored. In addition, the requirements for low-power, high-precision positioning 
will be evaluated against current techniques to identify any potential challenges. 
Finally, the positioning for RedCap devices will be explored with the added chal-
lenge of operating in a narrower bandwidth.

FIGURE 3.4 3GPP R18 5G-Advanced timeline.
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5G NR-RedCap (NR-light/lite) evolution. One requirement is emerging for sup-
porting all three primary use cases with a single type of RedCap device in order 
to reduce market fragmentation and maximize the benefits of economies of scale. 
Effective support of use cases that are between eMBB, uRLLC, and mMTC impose 
3GPP to investigate NR-RedCap devices. UEs with reduced complexity are criti-
cal solutions to certain important use cases where requirements are relaxed. The 
following complexity/cost reduction features are standardized as part of the work 
item within R17: maximum device bandwidth, minimum UE antenna configuration, 
minimum number of MIMO layers supported in the DL direction, maximum DL 
modulation order, and support for half-duplex operation in frequency division duplex 
(FDD) bands. In addition to the reduced capabilities that mainly involve the physical 
layer of the radio protocol stack, the following reduced capabilities for multiple lay-
ers have been introduced for RedCap devices: maximum number of data radio bear-
ers (DRBs) that the device must mandatorily support from 16 to 8, sequence number 
(SN) length associated with the packet data unit for packet data convergence proto-
col, and radio-link control layers in acknowledged mode from 18 to 12 bits, support 
for automatic neighbor relation (ANR) functionality is not mandatory (Table 3.2).

DECT-2020 (NR+) is the world’s first non-cellular 5G IoT technology standard 
submitted by ETSI DECT Forum and recognized by WP5D ITU-R as an IMT-2020 
technology. In the standardization process, each new technology is required to sub-
mit a self-evaluation report to ITU-R. Independent evaluation groups (IEGs) evalu-
ate the self-report and proposed radio interface technologies (RITs) and the set of 
RITs (SRITs) following the guidelines specified by the ITU-R in report M.2412. 
The results of the evaluation are then submitted to ITU-R and discussed at the 5D 
working group (WP) meetings. After several such meetings, RIT and SRIT technolo-
gies are accepted as IMT-2020 5G standard. The DECT-2020 component technol-
ogy meets the minimum performance requirements for uRLLC and mMTC usage 
scenarios. ETSI TS 103.636 specifies MESH topology and relies on multi-hop com-
munication to bring a device onto the network. DECT-2020 is the first 5G technology 
that supports spectrum sharing and multiple local networks in a mobile system in the 
1.9 GHz frequency range. Advantages in IoT application areas are infrastructure-less 
architecture, autonomous, decentralized, no single point of failure, low cost, and 
simple to deploy.

NTN IoT evolution. Improvements of mobility, and application of R17 NR 
NTN mobility enhancements are discussed. The need to support network-verified 
UE  location is also considered in the context of satisfying regulatory requirements 

TABLE 3.2
5G-IoT Trade-off Capability vs. Complexity with NR-RedCap

Use Cases Latency Throughput Density Complexity Battery Life

Massive IoT ++++++ ++ ++++++ ++ ++++++
RedCap NR ++++ ++++ ++++ ++++ ++++
Mission-critical IoT ++ ++++++ ++ ++++++ ++
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(accuracy, privacy, reliability, latency) for potential use cases and services such as 
emergency calls, lawful interception, and public warning. The aim is to enable the 
network to verify and confirm the location of the UE derived from its various mea-
surement reports.

Sidelink evolution. R18 extends sidelink operation in multiple directions. Sidelink 
operation in unlicensed spectrum is focused on FR1 unlicensed band (5 and 6 GHz). 
Multi-beam operation for sidelink on licensed FR2 bands and definition of carrier 
aggregation are also explored. R17 defines UE-to-network relays (U2N) for Layers 
2 and 3 architectures. In R18, the sidelink relay capability is extended to UE-to-UE 
relay (L2/L3) assuming one hop and only unidirectional traffic. Improvements to the 
continuity of service and DRX power down sidelink for the L2 U2N relay are also 
listed in R18 as a continuation of the work from R17. Finally, multipath operation 
with direct and indirect paths will be investigated, where either a path is selected or 
both are simultaneously used. The indirect path is via L2 U2N relay or another UE 
with ideal inter-UE connection.

Smaller than 5 MHz bandwidth on dedicated spectrum. 5G NR requires 
minimum system bandwidth of 5 MHz transmitting the signal and channel in initial 
access. R18 introduces the possibility of deploying NR in a dedicated spectrum with 
a bandwidth of less than 5 MHz on request of SmartGrid and railways operators. It is 
intended to support spectrum allocation of 3–5 MHz bandwidth with minimal speci-
fication changes, using only 15 kHz subcarrier spacing and normal cyclic prefix. For 
example, the current synchronization signals will be reused.

3GPP R18 research contains features that explore new areas as well. It includes 
AI/ML applied to the RAN air interface and to the network-evolved duplex beyond 
traditional frequency division duplex (FDD), and time-division duplex (TDD) identi-
fies ways to improve network energy efficiency and dramatically reduces UE power 
consumption.

AI/ML for NR air interface. 3GPP AI/ML research was limited to data col-
lection for various network functions to enable network automation. A new study is 
launched in R17 to identify use cases that enable AI/ML deployment on the network, 
leading to R18 standardization work focusing on improvements to data collection and 
signaling to support AI/ML-based network energy savings, load balancing, and opti-
mization mobility. Research is limited to the definition of data collection metrics and 
their reporting, allowing the network to run its own AI/ML algorithms. After that, 
an additional study identifying other new use cases is expected. 3GPP R18 explores 
how AI/ML techniques solve NR problems with a focus on four areas. The first area 
concerns the selection of use cases to be studied. An initial set of representative use 
cases have been identified that include improvements to the channel state informa-
tion (CSI) reference signals, beam management (BM), and positioning to serve as a 
pilot for future use cases. AI/ML-based techniques are being explored to improve the 
performance of selected use cases. The next area studies AI/ML models and their 
life cycle in relation to different levels of cooperation between network and termi-
nal. A description of model training, inference, testing, and verification is included. 
The third area evaluates performance and comparison with non-AI/ML-based 
solutions. Different key performance indicators (KPIs) are being identified for dif-
ferent use cases. AI/ML-based techniques are identified in terms of performance 
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and corresponding complexity. Complexity directly or indirectly relates to signifi-
cant aspects such as power consumption and memory usage. Finally, the R18 study 
focuses on the impact of specifications on the implementation and interoperability 
of AI/ML-based techniques, as well as their appropriate configuration, maintenance, 
testing, and verification.

Evolution of duplex operation. Wireless networks are deployed in the FDD or 
TDD spectrum usage techniques. In FDD, the amount of spectrum allocated for DL/
UL operations is identical within a carrier. In TDD, the partitioning of resources 
into DL and UL can be adjusted based on different traffic needs. However, in high-
power, macro-cell TDD deployments, special attention has to be paid to avoid severe 
crosslink interference from not having the same partitioning in the entire network 
or possibly across operators deployed on adjacent carriers. R16 introduces sup-
port for crosslink interference handling for dynamic TDD applications. Notably, 
converting DL slots to UL is less problematic than converting UL slots to DL for 
dynamic or flexible TDD operations. Converting UL–DL slots interferes with the 
reception of neighboring UEs, leading to UE-to-UE interference problems. On the 
other hand, converting UL–DL slots additionally generates inter-gNB interference, 
which is typically more significant. Coexistence with legacy operation and inter-
operator interference are also challenges to be addressed. Enhanced duplexing in 
R18 explores subband non-overlapping full duplex (for the gNB) and other potential 
improvements to dynamic/flexible TDD. Full duplex operation can cause two prob-
lems. First, dynamic TDD scenario is created. In addition, full duplex generates self-
interference, which stems from the own transmission interfering the own reception at 
a given time. The assumption that the frequencies do not overlap increases the isola-
tion between transmission and reception because they will not take place on the same 
frequency resources, creating first level of isolation. Additional levels of isolation are 
achieved by spatial means, effectively creating different beams for transmission and 
reception. Finally, the third level of isolation is achieved by nonlinear cancellation 
techniques on a node that has full duplex capabilities. The goal is to minimize the 
need for this third level of isolation.

Green networks. Electricity represents 20%–40% of the OPEX costs of mobile 
network operators, with base stations consuming over 50% of energy in a mobile 
network. 5G NR is designed with lean underlying structure with very little reliance 
on always-on signals, so no further standard enhancements are specified. In particu-
lar, 5G NR inherently relies on a large number of antenna elements and broadband 
transmissions. Together with the lower efficiency of the power amplifier as the car-
rier frequencies increase, it affects the increased power consumption compared to 
previous generations. Techniques with and without UE support that enable reducing 
network energy consumption will be explored and specified. Network energy-saving 
techniques are expected to adjust transmissions in the time, frequency, space, and 
energy domains to optimize network energy consumption while maintaining ade-
quate QoS for users.

Low-power wake-up signal (LP-WUS). Minimal always-on signals in R15 5G 
NR are a challenge for UE energy saving, especially due to mobility management, 
so improvements of UE energy saving in R16, R17, and R18 have been initiated. The 
common denominator of all previous techniques is the reliance on existing signals 
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and channels, for example, the wake-up signal (WUS) introduced in R16 in the form 
of DL control channel. In contrast, LP-WUS in R18 is not limited to using exist-
ing signals. Instead, wake-up receiver architectures and signal designs for small IoT 
devices and wearables are being explored, with the goal of achieving significant 
gains compared to the existing energy-saving mechanisms.

3.2.1  urllc SErvIcES

A main feature of uRLLC is the ability to transmit data with high reliability within 
a guaranteed delay limit. However, high reliability at low latency imposes high 
demands on the 5G system. A very robust connection adaptation is necessary to 
ensure high reliability. Moreover, it is important to use the diversity as much as pos-
sible in the spatial domain, using multiple antennas, or in the frequency domain. To 
achieve low latency, it is necessary to use appropriate data frame structures. The 
OFDM system with scalable numerology allows configuring larger spacing between 
carriers, so that symbol duration and slot duration are reduced. Moreover, the frame 
structure with early reference symbols and control information is useful. With such 
configuration, the receiver starts decoding the received packets very early after the 
initial channel evaluation. For increased robustness during mobility, dual connection 
is used when data is transmitted over multiple frequency layers.

uRLLC is optimized for ultralow-latency and/or ultrahigh-reliability communica-
tion, which is the traffic characteristic of many applications. At the same time, not all 
applications have large range of required performance. ITU-R specifies user plane 
delay of 1 ms, control plane delay of 20 ms, reliability of 99.999% with a packet error 
rate of less than 10−5 to 10−9, and near-zero interruption time. Depending on the target 
applications, latency requirements vary from 10 ms (process automation) to less than 
1 ms (factory automation, safety-related V2C communications).

The stringent requirements of uRLLC services impose extreme challenges for 
wireless networks, the need to optimize for both link-level and system-level effi-
ciency, and it is necessary to coexist with other types of mMTC and eMBB services. 
Unfortunately, improvements in latency and reliability of wireless communication 
systems cause certain performance metrics to be sacrificed. System design is com-
plex process. Many design parameters and metrics are in trade-offs relationship 
because high reliability requires high-latency. In addition, reliability and data trans-
fer speed require trade-off. In coding theory, higher coding rate gives us higher data 
transfer rate. However, the probability of error is higher and the reliability is lower. 
Energy efficiency and latency are also in trade-off relationship. Therefore, designers 
of wireless communication systems strive to find good trade-off points or optimize 
systems under reasonable design requirements.

3GPP NR did not just support uRLLC as an add-on feature of the existing sys-
tem design. Since the first version R15, it has been an integral part of the basic NR 
design. Clearer system design could be done from the scratch up because there was 
no old system to keep and adapt. Aimed to accommodate a wide range of applica-
tions including uRLLC with varying performance requirements, R15 supports high 
flexibility and configurability at the service provider’s choice based on targeted usage 
requirements.
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Support of low latency. Some uRLLC use cases limit E2E latency very strictly, 
on the order of few milliseconds or even less than 1 ms in extreme cases. Taking 
into account the delay caused by other network components, the delay limit for air 
interface transmission can be very constrained. Achieving the goal of low latency 
in NR, it is necessary to optimize every component of the delay in the data delivery 
procedure. Key features of the NR R15’s low-latency design are as follows:

• scalable numerology, with shorter symbol duration for higher subcarrier 
spacing

• short transmission duration for DL and UL control channels, as short as one 
symbol

• short transmission duration for DL and UL data channels, as short as one 
or two symbols

• multiple DL control monitoring occasions within a slot, which reduces the 
waiting time to schedule a DL or UL data transmission

• grant-free UL data transmissions, which allow the UE to transmit data in 
configured resources without the need to send scheduling request and wait 
for UL grant

• flexible TDD frame structure, which allows the gNB to flexibly change the 
DL and UL direction to accommodate the traffic need

• optimized and significantly reduced UE processing time for both DL and 
UL.

Support of high reliability. Hybrid automatic repeat request (HARQ) is a very effi-
cient way in wireless systems in order to achieve low block error rate (BLER), or high 
reliability, after multiple HARQ transmissions. For uRLLC applications, when both 
high reliability and low latency are required, HARQ may not always be as useful 
for high reliability because there may be very limited retransmission options within 
the delay budget. In extreme cases where no retransmission is allowed, the packet 
is delivered in a single transmission with very high-reliability requirement (10−5). 
Therefore, it is necessary to design each channel in the system so that it can achieve 
high-reliability goal in these use cases. There are some basic features in NR that are 
useful for achieving high reliability, such as:

• Channel coding design. In the process of the channel coding design, effi-
cient HARQ support has been one consideration, which is mainly to improve 
the efficiency. At the same time, low error floor was another consideration 
factor, which allows very low BLER to be achievable.

• Time diversity. This can be achieved by HARQ retransmissions if the 
latency budget allows, but for uRLLC, the time diversity gain is typically 
very limited because the HARQ transmissions cannot span over a long 
duration.

• Frequency diversity. This can be achieved by distributed frequency 
resource allocation (for data and control channel in case of CP-OFDM) or 
frequency hopping in case of contiguous frequency resource allocation, e.g., 
for PUSCH and physical uplink control channel (PUCCH).
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• Spatial diversity. This can be achieved by spatial diversity transmission 
schemes (e.g., precoder cycling) in R15.

• High aggregation level for PDCCH. For PDCCH, the maximum aggrega-
tion level of 16 is supported, compared to the maximum aggregation level 
of 8 in LTE. Higher aggregation level reduces the effective code rate, which 
allows higher reliability.

• Slot-based repetitions. Repetition is a common approach to improve 
coverage and reliability. Slot-based repetition (transmission in several 
consecutive slots) is supported for PDSCH, PUSCH, and PUCCH. From 
reliability perspective, slot-based repetition for data channels is especially 
useful when the latency budget does not allow the transmitter to wait for 
the feedback to initiate HARQ retransmission. This is sometimes called 
blind repetition.

In addition, specific enhancements have been introduced to support uRLLC high-
reliability requirements.

• CSI reporting enhancements. Traditionally for non-uRLLC traffic, the 
BLER target for CSI reporting is 10%. For uRLLC, the initial BLER target 
is likely to be significantly lower than 10%. If the UE only reports CSI with 
10% BLER target, it is quite difficult for the gNB to accurately determine 
the corresponding MCS for a lower BLER target. Therefore, a new BLER 
target of 10−5 for CSI reporting has been introduced and can be config-
ured for a CSI report. Given that lower BLER target naturally means lower 
spectral efficiency, a new channel quality indicator (CQI) table with lower 
spectral efficiency entries has been defined accordingly.

• MCS table enhancements. Tied together with the CSI reporting enhance-
ments to support lower BLER, a new MCS table with lower spectral effi-
ciency entries was introduced. The lowest spectral efficiency supported 
becomes 0.0586 bps/Hz instead of 0.2344 bps/Hz in regular MCS tables.

• PDCP packet duplication. Reliability can be additionally improved by 
enabling higher layer packet duplication. In NR, this is done by packet data 
convergence protocol (PDCP) packet duplication, which enables a packet to 
get transmitted with two independent radio paths (e.g., in two different car-
riers) over the air interface.

Basic support for uRLLC was specified in NR R15, while further performance 
improvements were explored in R16 in two study items followed by two work items. 
The improvements were targeted for the use cases of the first R15 version and effec-
tively support new use cases such as factory automation, transportation industry, and 
power distribution.

Design goals in R15 are 1 ms latency and 10−5 reliability, and R16 research goals 
are tightened to 0.5 ms latency and 10−6 reliability. At the same time, improvements 
cover both UE performance and handshake between UEs to improve system perfor-
mance. All channels carrying control information and user data, including PDCCH, 
PUCCH, PDSCH, and PUSCH, are enhanced in certain ways to improve latency 
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and/or system reliability or efficiency. Although many new uRLLC features are 
introduced in R16, there is still space for further improvements in many aspects. 
A dedicated uRLLC improvement study was conducted in R16. One of the goals 
of the study is to establish the baseline performance that can be achieved with NR 
R15, which includes considerations specific to uRLLC and design considerations 
applicable to both eMBB and uRLLC. Based on the baseline performance, additional 
improvements to uRLLC were explored and introduced in R16.

A new work item WID R17 on improving support for IIoT and uRLLC contains 
the following enhancements for physical layer: improvements for intra-UE multiplex-
ing and prioritization, HARQ-ACK improvements, and CSI feedback improvements. 
The NR specifications already contain large set of tools to meet the requirements of 
various uRLLC applications. At the same time, it is clear that standards are evolving 
and supporting new types of applications.

uRLLC applications place strict requirements on E2E performance, so special 
care is required in every aspect of network design, from system architecture to physi-
cal layer design. These include, but are not limited to QoS differentiation in the CN 
that is transferred to the radio access network (RAN), mobile edge computing that 
reduces network latency, an always-on session protocol data unit (PDU), a new idle 
state in the radio control protocol resource allocation (RRC), packet duplication to 
improve reliability, and various techniques to improve latency and reliability at the 
physical layer.

3.2.2  kEy characTErISTIcS of MMTc

mMTC connectivity supports numerous devices connected to the Internet or com-
municating with each other in the so-called massive machine-to-machine (M2M) 
communication. The connectivity is designed for IoT services. The basic characteris-
tics of systems include interconnectivity, heterogeneity, dynamic changes, and enor-
mous scale. The key challenges are the development of massive communication links 
for devices that are distributed over wide area and consume ultralow power. The 
basic requirements can be summarized as massive connectivity, low-cost devices, 
ubiquitous coverage, low data transfer rates, and ultralow power consumption.

IoT technology is significantly influencing the development of numerous verti-
cal sectors, including factory automation, automotive, healthcare, smart cities, and 
homes. Depending on targeted applications, the key design considerations of IoT sys-
tems are different: connectivity solutions, device requirements (battery life, process-
ing power, memory, bandwidth, throughput, sensing, actuation), network topology, 
security mechanisms, power management mechanisms, data processing mecha-
nisms, and management via IoT device or servers.

Traditional cellular systems are designed for the transport of large-sized packets, 
high data rates, and communication links dominated by the DL direction of data 
transmission. However, mMTC systems require fundamentally changed approach 
based on small package sizes, low data rates, and communication links dominated by 
the UL data direction. In addition, the requirement that mMTC systems contain huge 
number of devices is assumed. The key research challenges and design approaches 
can be summarized as follows: signaling of unpredictable and sporadic activities of 
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mMTC devices, resource management for massive number of connections, power 
control and management mechanism, and massive access schemes.

3GPP started MTC research in version R12 with various use cases. The basic 
characteristics of MTC services are summarized in the following three distinct 
design goals: low cost/complexity, low power consumption, and extreme coverage. 
The main drivers for cost savings are reduction of maximum bandwidth, reduction 
of peak speed, reduction of transmission power, half-duplex (HD) operation, and 
reduction of supported DL transmission modes. However, the above techniques are 
in trade-off relations with coverage and power consumption.

MTC research has intensified since R13. The standardization resulted in two 
branches of support: enhanced MTC (eMTC) and narrowband Internet of things 
(NB-IoT). The research provided solid foundation for the continuous evolution of 
MTC in 3GPP, including the R14, R15, R16, and R17 releases. Evolution focuses 
on further expansion of different MTC types, new services, improved efficiency/
latency/power consumption, and applicability. The turning point is the integration of 
NB-IoT and eMTC into the 5G NR system as de facto mMTC solution, both from the 
perspective of the radio and from the perspective of the CN. Not only is the duplica-
tion of standardization work in 3GPP avoided, but also the potential fragmentation 
of commercial applications is avoided, thanks to the single continuous direction of 
MTC standardization shared by 4G LTE. The basic features are summarized as fol-
lows: data rate 250 kbps, bandwidth 180 kHz, 50,000 connections per cell, battery 
life up to 10 years, module price under $5, transmit power 20 dBm, and UL delay less 
than 10 seconds. NB-IoT includes many advantages such as long battery life, wide 
coverage, better scalability, QoS and security compared to unlicensed technologies, 
and coexistence with previous generation cellular systems. However, the disadvan-
tages of NB-IoT are the lack of support for roaming and voice transmission, as well 
as the relatively low data transfer rate.

NB-IoT overview. To operate in licensed spectrum, narrowband IoT was devel-
oped by 3GPP as R13 in June 2016. NB-IoT is subset of the LTE standard, uses 
limited bandwidth, and relaxes the high-bandwidth configuration. In R14, key 
improvements have been introduced including a new UE category with higher capa-
bilities, multicast DL transmission based on the agile SC-PTM broadcast/multicast 
mechanism, and support for multilateral OTDOA positioning. Further improvements 
were introduced in R15, including reduced system acquisition time by improving cell 
search and system information collection performance, delay, and power consump-
tion reduction techniques (wake-up signal or channel, relaxed cell reselection track-
ing, data transfer during random access procedure). In R16 eMTC and NB-IoT are 
enhanced with group WUS, UL link transfer without authorization, scheduling of 
multiple transport blocks single grant and coexistence with NR.

eMTC overview. 3GPP initiated research on improved eMTC in R13. In order 
to reduce device costs, a new UE category (Cat-M1 UE) was introduced, which has 
an RF bandwidth of 1.4 MHz (compared to 20 MHz for LTE), one receiving antenna 
chain (compared to two for LTE), the maximum size of the transport block of only 
1,000 bits, and usually operates in HD mode. Despite being bandwidth-limited, the 
Cat-M1 UE can operate within any bandwidth of the LTE system, which is achieved 
by defining special procedures and channels in cells for bandwidth-limited operation. 
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In R14, key enhancements were introduced including a new category of higher capa-
bility UE (Cat-M2) supporting 5 MHz bandwidth, higher peak data rates for Cat-
M1 and Cat-M2, single-cell point-to-point multicast DL transmission multipoint 
(SC-PTM), and support for multilateral OTDOA positioning. Further improvements 
were introduced in R15, including reduced system acquisition time by improving cell 
search and system information collection performance, delay and power consump-
tion reduction techniques, and techniques to improve spectral efficiency (SE) such 
as 64-QAM support, sub-PRB resource allocation. R16 introduces further enhance-
ments to eMTC, including group wake-up signal, handover of UL link without grant, 
scheduling of multiple transport blocks using single grant, and coexistence with NR. 
R17 introduced 5G NR support for satellite communications and is starting project 
focusing on adapting eMTC/NB-IoT operation to satellite communications.

There are numerous types of MTC devices. Obviously, different use cases may 
translate into different sets of requirements in terms of cost, complexity, power 
consumption, and coverage. It is crucial for 3GPP to respond to the needs of MTC 
communications in an integrated manner with existing and future evolved networks, 
within the existing standardization framework. Even today, the evolution of stan-
dardization continues in a nonstop manner.

3.2.3  5G PrIvaTE nETworkS, EnErGy EffIcIEncy, and aI/Ml SuPPorT

A private network is a dedicated 5G network with enhanced communication features, 
unified connectivity, optimized services, and customized security within specific 
area. Private 5G networks are good solutions for various vertical industries to build 
dedicated and secure wireless networks in industrial environments. They enable the 
implementation of services with improved flexibility and device connectivity that 
encourages Industry 4.0 and the digitalization of the energy and transport sectors.

A private 5G network, non-public network (NPN) in 3GPP terminology, enables 
the use of technologies to create a dedicated network with unified connections, opti-
mized services, and secure means of communication within a specific area. A private 
network can be operated by either the company itself or a third party, based on the 
same or different spectrum owned by the MNO. Unlike public land mobile networks 
(PLMNs) that offer mobile network services to public subscribers, NPN networks 
are intended exclusively for use by enterprise customer, such as an industry vertical 
or a government company. There are two basic deployment options: SNPN that does 
not rely on PLMN network functions, and PNI-NPN whose deployment is supported 
by PLMN. Private networks such as SNPN allow the enterprise user to maintain full 
control over the network. On the other side, the introduction of the PNI-NPN network 
reduces initial capital CAPEX and operational OPEX costs.

Stand-alone NPN (SNPN) is a private network that operates independently of the 
public PLMN network, not depending on PLMN network functions. It requires a 5G 
system separate from the PLMN, and NPN devices must have SNPN subscription to 
access it. The SNPN is uniquely identified by the combination of the identifier PLMN 
ID and Network ID (NID). Therefore, the UE is configured with {PLMN ID, NID} 
to access the private network. The PLMN ID identifier can be the private network 
ID (based on the MCC 999 mobile country code assigned by the ITU for 3GPP) or 



154 Driving 5G-Mobile Communications with AI towards 6G

the PLMN ID identifier used by the SNPN private network. A NID can be assigned 
independently (selected by SNPN at implementation time) or coordinately assigned 
(universally managed NID).

Public network integrated NPN (PNI-NPN) is a private network implemented 
with the support of the public PLMN. It is necessary that NPN network devices 
must be subscribed to PLMN in order to access the private network. A publicly 
integrated private network is supported by the PLMN using dedicated data network 
name (DNN) or by deploying NS allocated for the private NPN network. 3GPP has 
defined the basic means for implementing private PNI-NPN networks; however, the 
implementation of E2E solutions in real 5G systems is still a huge challenge.

Based on these criteria, two scenarios were selected and shown in Figure 3.5 with 
a private NPN network formed by local data network providing MEC environment 
for vertical service applications. Edge computing (EC) is an efficient technology that 
supports private 5G networks. Compared to traditional CC, EC is a decentralized 

FIGURE 3.5 NPN deployment scenarios: (a) SNPN without RAN sharing and (b) PNI-NPN 
with full sharing.



1555G Ultrareliable and Low-Latency Communication

computing paradigm, in which computing-intensive tasks and data storage are 
 performed at the edges of network. Due to the close proximity of UE and edge serv-
ers, EC enhances local context, improves privacy security, supports cloud storage, 
reduces energy consumption, and shortens response time. It is necessary to note that 
EC and CC can cooperate with each other. Specifically, based on high computing 
and storage capabilities, CC processes non-real-time big data, while EC performs 
real-time tasks and makes real-time decisions. In general, the reference architecture 
of EC can be divided into device layer, edge layer, and cloud application layer. Private 
network computing further enhances EC benefits by adding secure and private ser-
vices for local requirements and network settings.

The key requirements of private 5G NPN networks from the viewpoint of industry 
verticals are:

• Guaranteed QoS parameters for NPN networks include throughput, delay, 
jitter, and availability. The performance requirements in certain use cases 
of NPN networks are stringent than those imposed by public services in 
PLMN networks.

• Customization refers to the need for flexibility to include (and configure) 
additional features for the 5G system to meet user needs in terms of func-
tionality and performance. Unlike PLMN networks, where 5G system is 
built with components and configuration settings that allow for traffic adap-
tation/subscriber growth from user-centric services, in NPN networks, 5G 
systems are designed to handle the specific use cases.

• Network control represents the intention of individual customers of the 
enterprise to maintain control over their networks, e.g., managing the con-
figuration of certain network functions and deciding on traffic flow policies. 
PLMN networks are categorized as critical infrastructure, and therefore it 
is not acceptable for the network operator to allow third parties to freely 
access the operational and service subsystem (OSS) and network assets.

• Data protection represents the need for customers to ensure that unauthor-
ized entities do not have access to sensitive data, including operational 
data (configuration information, logs, tracking data), subscriber data, and 
business-related data (billing information). Proper data security involves 
implementing appropriate security mechanisms (encryption, secondary 
authentication), implementing some network functions on-site (unified data 
management (UDM), user plane function (UPF) and ensuring certain level 
of redundancy.

• A targeted coverage zone in specific geographic area guarantees that radio 
signals are locally limited to avoid interference with public subscribers and 
ensure private communications. It is important to note that QoS is only 
guaranteed in areas where the enterprise requires coverage. Furthermore, 
coverage of NPN networks outside the target area is undesirable for the 
reasons previously stated.

• Backward compatibility in many private use cases requires integration of 
5G NPN networks with existing legacy technologies (Wi-Fi, Industrial 
Ethernet). In this way, the entry barrier is reduced because enterprises 
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gradually apply the NPN network, while at the same time keeping certain 
parts of the existing private network unchanged.

• Key solutions enabling 5G NPN networks include spectrum access options, 
deterministic transport networks, NS, integration with existing private net-
works, positioning, Open RAN, local edge computing EC, and security 
and privacy features. These solutions play a significant role in fulfilling the 
above requirements and complement the capabilities defined in 3GPP stan-
dards to support 5G NPN networks.

Basic challenges and future directions of research arising from the realization of 5G 
NPN networks are NS network intersection, ZTM network management practices, 
enabling and validating 5G NPNS networks with E2E deterministic QoS support, as 
well as the availability of PNI-NPN capabilities. NS is a key technology enabling the 
deployment of PNI-NPN public integrated private 5G networks. NS divides physical 
network into multiple logical, or network slices, each of which is specialized to pro-
vide specific network capabilities and features for specific use case. NFV and SDN 
are the two core enabling technologies for NS. Network slice architectures consist 
of an infrastructure layer, an NS instance layer, and a service instance layer. The 
life cycle of a NS includes four phases: preparation, commissioning, operation, and 
decommissioning.

3.2.3.1  Energy Efficiency
3GPP Technical Specification Group SA5 researched the energy efficiency (EE) and 
energy saving (ES) of mobile networks, so in R17 it expanded the scope from the 
RAN access network to the entire 5G system. EE key performance indicators (KPIs) 
are defined for the core 5GC network and network components. RAN energy effi-
cienc is defined by the ratio of performance to electrical energy consumption (EC), 
where the specification of performance depends on the type of network entity to 
which it refers. Based on this, SA5 defines the best metrics for each of them and 
their measurement method. The performance of network slices is defined based on 
the type of NS, i.e., for eMBB, uRLLC, mMTC, and assumption that the volume of 
traffic at the user level defines the performance of the core of the 5G CN.

A bottom-up approach is adopted for measure energy consumption, starting 
from the electrical consumption estimation of network functions up to 5GC and 
NS. Measurement EC of physical network functions PNF is defined by ETSI EE. 
3GPP SA5 has defined a method for estimating based on the estimated energy 
consumption of the underlying instance of virtual computing resource VM (virtual 
machine). In R17, only the use of virtual CPUs in the VM, obtained by the OSS 
operator support system ETSI NFV MANO, was taken into account to estimate the 
electrical consumption. 3GPP SA5 defined mechanisms for collecting, through the 
operations, administration, and maintenance of OAM standardized API program-
ming interfaces, measurements from 5G network functions, regardless of the type 
of measurement, including measurements related to performance and energy con-
sumption, over a common OAM channel.

3GPP SA5 working group has also adopted in its network resource model attri-
butes that allow users of the NS network interface to express their requirements 



1575G Ultrareliable and Low-Latency Communication

regarding the EE of the network slice. The order is based on the GSMA NG.116 
generic network interface template, and be periodically informed about the actual EE 
of the network interface efficiency of the network slice they obtained.

During the work on R18, the SA5 group focused its efforts in various directions, 
including:

• Work with ETSI NFV to obtain more accurate virtual CPU usage measure-
ments from ETSI NFV MANO, as currently defined measurements lack 
accuracy.

• Introduce additional metrics when estimating the energy consumption of 
virtual machines, e.g., their virtual disk or link usage.

• Extend our existing solution to container-based network functions (CNF), in 
addition to VM-based virtualized network functions.

• Investigate new use cases for energy saving, applied to NGRAN, 5GC, and 
NS. AI/ML-assisted energy-saving scenarios will be studied, including 
those based on analytics provided by the management data analytics func-
tion (MDAF) or NWDAF.

• Considering that the amount of energy consumed by network functions has 
dependency on data, signaling, and OA&M traffic volumes to be processed/
transported/stored by network functions, we’ll introduce such consider-
ations when designing future OA&M solutions.

3.2.3.2  AI&ML Support
3GGP technical specification group RAN plenary approved in September 2020 
a new study to explore AI/ML support in 5G RAN architectures. It covered the 
functional framework for RAN intelligence and identified use cases, based on the 
current 5G RAN architecture, where the application of AI/ML techniques brings 
significant benefits. The RAN3 working group study, concluded in March 2022, was 
motivated by strong 3GPP interest in taking RAN automation in new directions. In 
order to focus efforts on real solutions and ensure convergence with well-defined 
guidelines for normative work, RAN3 has identified three core use cases for which 
AI/ML-based solutions are being explored:

• Network ES where the energy consumption improvements for the whole 
RAN may be achieved by actions such as traffic offloading, coverage modi-
fication, and cell deactivation.

• Load balancing where the objective is to distribute load effectively among 
cells or areas of cells in a multifrequency/multi-RAT deployment to improve 
network performance based on load predictions.

• Mobility optimization where satisfactory network performance during 
mobility events is preserved while optimal mobility targets are selected 
based on predictions of how UEs may be served.

One of the first steps taken by the RAN3 working group is to identify the basic prin-
ciples for developing technical solutions for each use case. Introducing AI and ML 
while maintaining the current 5G architecture is of particular challenge. The RAN3 
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group has defined a functional framework for the interworking of the various AI/ML 
functions, as shown in Figure 3.6.

For every use case, RAN3 working group identified the most relevant sets of 
inputs, outputs, and feedbacks for implementing and evaluating AI/ML-based pro-
cesses. Different inputs are described that can be generated by different entities such 
as UEs, neighboring RAN nodes, and RAN nodes hosting the AI/ML inference pro-
cess. Examples of input information are UE location, RAN energy efficiency metrics, 
and RAN resource status measurements. Identified AI/ML outputs consist of various 
intended metrics and actions. Examples are estimated levels, RAN resource status 
metrics, and mobility decisions to improve energy efficiency or optimize load bal-
ancing. For each use case, a set of feedback is identified that indicates how the system 
performance is affected by AI/ML-based operations. It can be used, for example, to 
trigger model retraining. Feedback is case-based and measured after AI/ML-based 
decisions are made. They include indications of QoS and UE performance, measure-
ments, and RAN resource status metrics. The identified use cases are the focus of the 
research, and the solutions developed during the study are taken as baseline.

3.3  5G CRITICAL AND MMTC CONNECTIONS

The basic feature of 5G-IoT connection is the separation of connection support from 
the actual realization of the IoT service. A significant advantage is a reliable long-
term solution. 5G-IoT is based on global standards with very strong industry support 
from a large number of vendors, networks, and service providers. 5G-IoT solutions 
are embedded in the basic infrastructure of the cellular communication network. 
Deployment plans are made over decades and systems are built to be highly reliable 
to high availability standards. 5G-IoT systems are designed for the global market and 
enable roaming over the networks of multiple operators. IoT services are expected to 
have a long lifetime, for example, a decade.

One extremely significant benefit of 5G-IoT connectivity is supporting reliable 
and predictable service performance for future planned operations as well. 5G-IoT 

FIGURE 3.6 Functional framework for RAN intelligence (TR 37.817).
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uses dedicated spectrum. Radio resources are managed, interference is coordinated, 
and full QoS is supported. 5G-IoT also follows the continuous evolution of mobile 
network technologies, where new capabilities and features are continuously added to 
networks. This evolution is designed to work backward compatible, so that devices 
that cannot be upgraded to new functionality can continue to work long-term accord-
ing to the initial capabilities, while new services and devices can simultaneously 
benefit from newer features.

The 3GPP R16 and R17 standardization supports the necessary capabilities for 
mission-critical services, uRLLC, mMTC, and eMBB services. Core services can 
be used for various and heterogeneous industrial IoT use cases and in automotive 
industry with a unique 5G connectivity solution.

Critical IoT encompasses time-critical industrial use cases with a demanding set 
of latency and reliability requirements. ITU has set a minimum latency target of 1 ms 
with packet error rate of 10−3. Covered use are collaboration and control of machines, 
robots and processes, real-time human–machine interaction (HMI), automated 
guided vehicles, autonomous cars, and AR/VR applications in the vertical domains 
of manufacturing, automotive sector. 5G NR introduces several features that enable 
uRLLC to support critical data streams, grouped into low-latency and ultrareliable 
communications. The most important options of low-latency communication (LLC) 
are scalable transmission interval transmission time interval (TTI) corresponding to 
slots of duration 62.5 µs to 1 ms, fast processing with priority (preemption). A select 
list of features that improve 5G reliability is ultra-robust modulations and coding, 
various diversity schemes, and media access/scheduling. The IIoT-oriented 5G CN 
features are packet duplication, NS, and MEC.

Massive IoT (mIoT) targets huge number of connected low- and mid-range 
industrial devices (meters, sensors, trackers), mostly battery-powered and sending/
receiving a small amount of sensory information (temperature, humidity, location). 
Although the latency and reliability requirements of mIoT devices are not critical, it 
is necessary to support extreme device densities (up to 106/km2) in various industries 
(manufacturing and automotive).

Broadband-IoT extends eMBB high-data-rate services to data-intensive IIoT 
use cases. Compared to traditional service, data-intensive use cases pose different 
requirements and traffic patterns. This is why broadband-IoT supports additional fea-
tures such as low latency and improved battery savings, coverage, and data rates. 5G 
NR enables data rates in the tens of gigabits per second (Gbps) through higher-order 
modulations, multi-antenna transmission, carrier aggregation, UL dynamic TDD, 
and the deployment of 5G NR in new and existing spectrum bands.

3GPP R16 and R17 research targets new verticals with more stringent require-
ments improving the capacity and operation of existing functions. R16 expanded 
uRLLC to new verticals such as factory automation and transportation industry. 
The stringent uRLLC requirements have focus on reliability improvements in the 
transmission of control messages and latency. The potential benefits of DL device 
prioritization and multiplexing are explored, including DL priority and improved 
power control. It also supported multiple active configurations for configured-grant 
enhancements adaptation to different service traffic and quicker synchronization for 
uRLLC UL transmissions. R17 brings more new use cases for 5G system evolution 
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from 2020 onward. uRLLC studies in R17 mainly focus on new emerging verticals 
and E2E performance of various applications as enhancements to R16 features.

Research has focused on the physical and link layers, but it is becoming increas-
ingly clear that broader redesign at the network level is also essential to meet the 
specified requirements. NS, SDN, NFV, orchestration, and self-organizing networks 
(SONs) are covered. 3GPP private NPN networks support deterministic services for 
industrial use cases, while leaving full control over every aspect (privacy, security 
adaptation, management, control) of the network.

The digital enterprise of Industry 4.0 is rebuilding business models in different 
verticals through connectivity. Industries have different requirements and use cases, 
as it is necessary to transform connectivity from a one-size-fits-all network to a net-
work that supports specialized and stringent requirements. The drivers for 5G NR in 
industrial networks are increased productivity, digital transformation through wire-
less technology, and the use of private networks. Digital transformation in industrial 
enterprises uses the latest 5G technologies including wireless communication, IoT 
devices, cloud computing, and analytics and automation tools. A private network is 
considered ideal for maintaining network control (network resources and operational 
view/tools) and security (traffic within enterprise systems). Dedicated 5G delivers the 
bandwidth, latency, reliability, wide coverage, and mobility requirements of critical 
business operations while supporting high security as the convergence of informa-
tion and operational technologies brings greater vulnerability to cyber attacks. A pri-
vate 5G network enables customization of the service to fit the needs of the industry 
and isolates threats typical of public networks.

3.3.1  PErforMancE TradE-offS for urllc In InduSTrIal IoT

5G supports efficient services for industrial IoT applications and their respective use 
cases for different QoS requirements. However, uRLLC use cases suffers eMBB ser-
vice degradations. On the contrary, if eMBB is achieved uRLLC would be degraded. 
Therefore, the trade-off between two services is of particular importance, to simulta-
neously achieving uRLLC and eMBB with one method of efficient use of resources 
in order to meet the QoS requirement defined by the ITU. In this way, the coexistence 
of URLLC and eMBB services initiates new technologies and research directions. 
The basic trade-offs identified by the researchers are finite versus large block length, 
SE spectral efficiency versus latency, EE energy efficiency versus latency, reliabil-
ity versus latency versus data rate. Many existing technologies support trade-offs 
between uRLLC and eMBB services. However, it is an open research question to 
obtain the optimal compromise point: 5G NR scalable TTI corresponding to the 
duration of slots in the frame structure, multiplexed eMBB and uRLLC, NS, edge 
caching, and grant-free access.

uRLLC and mMTC are two basic types of services in 5G communication sys-
tems. Most mMTC use cases are characterized by scenario in which a large num-
ber of devices distributed over wide area communicate sporadically without 
specific latency requirements, ignoring reliability guarantees. Scalable uRLLC sup-
ports increased connections of MTC devices with different uRLLC requirements. 
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This  type of traffic cannot be separated and therefore cannot be supported using 
RAN NS methods or prioritizing used for mixed uRLLC–mMTC services.

uRLLC–mMTC mixture is use cases where uRLLC and mMTC services are sup-
ported by separate physical resources within the same network. This heterogeneous 
system is supported by redesign of cellular resource configuration (numerology), 
and mini-slot resources are optimized using the NS RAN method in orthogonal or 
non-orthogonal resource allocation. A simple mixture of conventional mMTC and 
uRLLC (NS RAN) cannot simultaneously guarantee reliability, latency, and scal-
ability over wireless links at the same level as supposed from wired factory environ-
ment (<4 ms latency, 106 devices/km2). These two extreme services are predicted to 
shortly agglomerate into critical mMTCs with new use cases (factory automation, 
wide area disaster monitoring), creating new challenges for designing wireless sys-
tems beyond 5G.

Critical mMTC supports enhanced uRLLC requirements for a fraction of mas-
sively connected devices. It is possible to apply some of the techniques developed 
for the uRLLC–mMTC mixture to the critical mMTC. However, when the device is 
sometimes uRLLC or non-uRLLC device, the cost of resource configuration over-
head can be enormous. Nevertheless, it cannot be the same, especially for the large 
number of mission-critical MTC devices applied to the scalable uRLLC. Generic 
solutions for scalable uRLLC (ML-assisted uRLLC for autonomous vehicles) are not 
optimized for critical mMTCs. Devices generally lack powerful computing capabili-
ties and sufficient energy, so ML-based solutions for scalable uRLLC are not suitable 
unless simple and energy-efficient ML architectures and algorithms are deployed. 
In summary, critical mMTC is still a unique type of service that has not been fully 
explored.

The main design objectives for critical IIoT applications are energy, latency, 
throughput, scalability, topology, security as well as reliability, cost-effectiveness, 
standardization, device maintenance, network monitoring, system configuration and 
management, scalability and integration, heterogeneity, and interoperability. The 
architecture of 5G-IIoT is primarily divided into five layers: application layer, archi-
tecture layer, communication layer, network layer, and sensor layer.

The Industrial IoT network is scalable in connectivity and number of devices as 
well as designed to support optimal performance for all industrial applications. In the 
manufacturing industry, productivity is improved while increasing safety. Processes 
are automated, available production time is maximized to minimize business inter-
ruptions and achieve greater efficiency, competitiveness, and investment value. The 
technological drivers for the industrial IoT revolution are:

• 5G wireless converged automation protocols will eliminate wires and sup-
port time synchronous operations

• private edge cloud will be scalable and provides secure local computing
• slicing for IIoT networks can support multiple stakeholders on one common 

infrastructure
• machine learning-enabled automated operations will support expertless 

monitoring, prediction, and optimization.
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In summary, IIoT connects industrial assets, such as machines and control systems, 
with IT and business processes. Integration results in massive data generation and 
collection. The data can be used to develop analytical solutions to improve industrial 
operations. Smart manufacturing, on the other hand, primarily concentrates on the 
production phase of a smart product’s life cycle, with the aim of responding quickly 
and dynamically to changes in demand. As a result, IIoT significantly impacts the 
industrial value chain and meets the standards for smart manufacturing.

The 5G standard supports use cases that make industrial systems more flexible, 
useful, and autonomous, while simultaneously meeting the QoS requirements of both 
5G and IIoT. Industry stakeholders have identified a variety of potential use cases for 
the IIoT. The following are general IIoT requirements and goals:

• QoS requirement with low latency, and ultrahigh reliability is vital
• low-cost scalable network with esteemed security and privacy is desired
• the emerging standards should be smoothly implemented and integrated on 

the IIoT devices in a flexible way
• inter- and intraconnection of networks and IoT devices should be possible 

frequently.

IIoT is a significant vertical focus of 3GPP NR R16. It includes latency and reli-
ability improvements on the already existing R15 research high reliability and low 
latency air interface. The version is intended for industrial automation use cases. The 
5G-uRLLC foundation has been improved in R16 to ensure more reliable commu-
nication up to 99.99%. Along with previously established use cases and deployment 
options, R17 includes intelligent networking technologies and supports a number of 
new use cases. One of the more important components of 5G is the application 
of  AI based on machine learning techniques to solve multidimensional problems 
of online/offline network optimization, enabling the introduction of intelligent net-
work management.

5G offered solutions for multiple vertical markets using uRLLC. R15 established 
a strong foundation, and R16 added improvements to the 3GPP system architecture 
and RAN groups to improve support for vertical industries such as factory automa-
tion, transportation, and power distribution. Several redundancy schemes have been 
added to the UP as part of these enhancements, as well as improvements in reliabil-
ity, latency reduction, and support for time-sensitive communications (TSC). The 
improvements in R17 aim to increase SE and system capacity, while also supporting 
uRLLC in unlicensed spectrum environments and strengthening the framework to 
support TSC communication. Additionally, enhancements to the hybrid automatic 
HARQ repeat request, CSI channel status, intra-UE multiplexing, and service sur-
vival times are included in the assistance information provided by the TSC. R17 
introduces mechanisms to detect edge application servers, for example, the applica-
tion server edge detection feature (EASDF) was defined with the primary purpose of 
simplifying the session breakout connectivity model.

Industrialists are currently unable to manage the huge amounts of data generated 
in the 5G-IIoT ecosystem as a whole due to a lack of reliable tools for productive 
use of big data. AI is capable of autonomously managing itself and will be able 
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to overcome limitations, allowing for optimal utilization and optimization. A con-
nected IIoT ecosystem of devices with AI-based analytical models improves not only 
manufacturing operations but also the entire industrial process. The combination of 
AI and IIoT contains many advantages to be overlooked in terms of dependability 
and reliability.

In summary, the following 3GPP features will be required for IIoT:

• enhancements for latency and reliability in radio and E2E (uRLLC)
• support for wireless industrial ethernet and deterministic communications 

(uRLLC)
• 5G private networks in licensed ad unlicensed spectrum (uRLLC and 

eMBB)
• positioning for 5G and IIoT (eMBB, uRLLC, mMTC)
• cellular IoT evolution, e.g., connecting eMTC/NB-IoT to 5G Core (mMTC).

Some scenarios that require very low latency and very high availability of communi-
cation services are described below:

• Process automation is characterized by high requirements of the com-
munication system regarding the availability of communication services. 
Systems that support process automation are implemented in geographi-
cally restricted areas, and access is usually limited to authorized users in 
private networks.

• Discrete automation is characterized by high requirements for the commu-
nication system in terms of reliability and availability. Systems that sup-
port discrete automation are typically deployed in geographically restricted 
areas, access is restricted to authorized users, and may be isolated from 
networks or network resources used by other mobile users.

• Motion control is characterized by high demands on the communication 
system in terms of delay, reliability, and availability. Systems that support 
motion control are deployed in geographically limited areas, but may also 
be deployed in wider areas (networks across city or country), access is lim-
ited to authorized users, and may be isolated from networks or network 
resources used by other mobile users.

The performance requirements in terms of latency and reliability for individual IIoT 
use cases are shown in Table 3.3. The availability of communication services refers 
to the availability of a communication service. Reliability is a 3GPP term and refers 
to the availability of a communication network.

Factory automation encompasses all types of production that result in individual 
products. Automation of flow control is called process automation. Discrete automa-
tion requires open-loop communication of supervisory and control applications, as 
well as process monitoring and monitoring of operations within an industrial plant. 
In these applications, a large number of sensors, which are distributed throughout 
the plant, transmit measurement data to the process controller periodically or when 
an event occurs. Traditionally, wire-bus technologies have been used to interconnect 
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sensors and control equipment. Due to the significant expansion of the plant (up to 
10 km2), a large number of sensors, and the high complexity of the wired infrastruc-
ture, wireless solutions have entered the automation of industrial processes. Related 
use cases require the support of large number of sensor devices per plant, as well 
as high availability of communication services (99.99%). Furthermore, power con-
sumption is relevant, some sensor devices are powered by batteries with targeted 
 battery life of several years (while providing measurement updates every few sec-
onds). Range also becomes a critical factor due to the low transmission power level of 
the sensor, the large size of the plant, and the high-reliability requirements in trans-
port. E2E latency requirements range between 10 ms and 1 s. Data transfer speeds 
to users can be quite slow as each transaction typically contains less than 256 bytes. 
However, there has been a shift from field buses featuring somewhat modest data 
rates (~2 Mbps) to higher data rates (~10 Mbps) due to the increasing number of dis-
tributed and data-driven applications. An example is the visual control of production 
processes. For this application, the data rate to the user is usually around 10 Mbps, 
and the transmitted packets are much larger than what was previously stated.

Process automation shares a lot in common with factory automation. Instead of 
discrete products (cars), process automation produces bulk products such as gaso-
line and reactive gases. Unlike factory automation, motion control is of limited or 
no importance. Typical E2E latency is 50 ms. Data transfer speeds to users, avail-
ability of communication services, and connection density vary noticeably between 
applications.

Factory automation–motion control requires communications for closed-loop 
control applications. Examples for such applications are motion control of robots, 
machine tools, as well as packaging and printing machines. In motion control appli-
cations, a controller interacts with a large number of sensors and actuators (up to 100) 
that are integrated in a manufacturing unit. The resulting sensor/actuator density is 
often very high (up to 1 m−3). Many such manufacturing units may have to be sup-
ported within close proximity within a factory (up to 100 in automobile assembly 
line production).

3.3.2  v2x hIGh-bandwIdTh, low-laTEncy, and 
hIGhly rElIablE coMMunIcaTIon

The automotive vertical market is undergoing key technological transformations, with 
a focus on autonomous vehicles that connect and collaborate with each other, with 
roadside infrastructure elements, with pedestrians and other vulnerable road users 
(VRUs), and with cloud V2X connections. The collective perception of the vehicle’s 
environment enables decision-making based on shared information, local views, and 
planned maneuvers of nearby vehicles, instead of relying on the local awareness 
based only on the vehicle’s sensors (radar, LIDAR, cameras). However, the complex-
ity of this environment poses unprecedented challenges. V2X applications such as 
cooperative sensing and maneuvering pose high computational and communication 
requirements. Most V2X security applications require communication with ultralow 
latency (below 10 ms), ultrahigh reliability (close to 100%), and high data rate (on 
the order of Gbps). In addition, the inherent dynamics in automotive environments 
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associated with rapidly changing network topology, fast-varying wireless channel, 
and possible sporadic connectivity further increase the complexity of system design 
and overall require a comprehensive end-to-end approach.

The great interest of the relevant industrial sectors, governments, and organiza-
tions in enabling traffic communications is noticeable. The work in the field includes 
research and industrial work, as well as regulations and standards. Some organiza-
tions and governmental bodies are engaged in publishing standards and regulations 
for communication in vehicles (ASTM, IEEE, ETSI, SAE, 3GPP, ARIB, TTC, TTA, 
CCSA, ITU, 5GAA, 5G PPP, ITS America, ERTICO, ITS Asia-Pacific). 3GPP is 
working on standards and technical specifications for cell-based V2X communica-
tions, while IEEE is working through the NGV study group to publish the 802.11bd 
standard for dedicated short-range communications (DSRCs). On the other hand, 
certain governmental agencies, in cooperation with manufacturer of automobiles, 
suppliers, consultants, and academic institutions, support research projects.

V2X applications cover wide range of use cases, which can be classified based on 
their purpose and requirements. 5GAA grouped V2X use cases into four categories: 
safety aimed at reducing the frequency and severity of vehicle collisions, conve-
nience vehicle status management offering services such as diagnostics and software 
updates, vulnerable traffic users VRU aimed at safe interactions between vehicles 
and non-vehicle road users, as well as advanced driving assistance (ADAS).

The use cases of V2X communications can be mainly divided into security, non-
security, and infotainment services. Safety services minimize accidents and risks for 
passengers and road users. Intelligent transportation systems (ITSs) use non-safety 
services to improve traffic management in order to maximize the efficiency of the 
existing road network and minimize the negative impacts of traffic such as conges-
tion and its subsequent impacts on economic productivity and environmental quality. 
Infotainment services provide a range of services to vehicle users, including Internet 
access, comfort services, video streaming, and content sharing.

3GPP NR-V2X is based on technology designed for high-speed mobile applica-
tions and developed specifically for delay-sensitive V2X use cases. Vehicular net-
works are also part of the IoT scenario. Vehicles themselves can be nodes of a vehicle 
sensor network. C-V2Xs enable vehicles to support a significant set of functions, 
such as collaboration, coordination, and sharing of information collected by sen-
sors (comparable to a wireless sensor network for IoT) in advanced driver assistance 
systems, as well as connected autonomous driving. 5G eMBB, uRLLC, and mMTC 
services support faster connections, lower latency, higher reliability, higher capacity, 
and wider coverage for V2X use cases (Figure 3.7).

Despite the diversity, the use cases eventually converge in terms of requirements 
and lead to the identification of vehicle communication needs, but from different 
perspectives. In its latest technical report R16 TS 22.186, 3GPP identifies 25 use 
cases, categorized into four basic groups in addition to a general use case groups and 
vehicle QoS (Table 3.4). 3GPP defines six levels of automation (LoA SAE J3016) 
for each use case: no automation LoA = 0, driver assistance LoA = 1, partial driving 
automation LoA = 2, conditional automation LoA = 3, high automation LoA = 4, and 
full automation LoA = 5.



1675G Ultrareliable and Low-Latency Communication

Vehicle platooning supports the formation of a group of vehicles that are inter-
connected in a virtual chain. Vehicles share information, resulting in shorter dis-
tances between vehicles, fuel savings, and reducing the number of drivers. A group 
of use cases enable the dynamic formation of a vehicle unit to travel together.

Advanced driving allows vehicles to share local sensor data and driving plans 
with nearby vehicles, thus coordinating trajectories and maneuvers. It enables high 
LoA-level automation assuming longer distance between vehicles. Each vehicle and/
or roadside unit RSU shares data obtained from its local sensors with nearby vehicles, 
thus allowing the vehicles to coordinate their trajectories or maneuvers. In addition, 
each vehicle shares its driving intention with nearby vehicles. The benefits of this 
use case groups are safer travel, collision avoidance, and improved traffic efficiency. 
The group contains seven use cases: collaborative collision avoidance, information 
sharing for limited automated driving, information sharing for fully automated driv-
ing, path alignment to correct relative positions for emergency, intersection safety 
information for city driving, shared automated vehicle lane change, and 3D video 
composition for V2X scenario.

Extended sensor group of use cases enables the exchange of raw or processed 
data acquired from local sensors, video cameras, RSUs, pedestrian devices, and V2X 
application servers. The group includes three use cases: sensor and state map shar-
ing, collective perception of the environment, and video data sharing for VaD auto-
mated driving. Vehicles can increase their awareness of their surroundings beyond 
what their sensors can detect.

Remote driving use case group aims to control vehicle driving remotely, either 
by the driver or by cloud/edge computing (CC/EC) applications. Remote driving is 
necessary in case the vehicle is unable to drive autonomously due to unexpected road 
situations in dangerous or uncomfortable environments.

3GPP cellular technologies were extended to the automotive vertical in R14 
November 2014. The first V2X radio study was approved at the 3GPP RAN ple-
nary meeting in June 2015. Since then, 3GPP has continuously explored V2X and 
through multiple releases. Many use cases for the automotive vertical (fleet man-
agement, infotainment, remote diagnostics) are supported in R15. However, NR 

FIGURE 3.7 5G URLLC, eMBB, and mMTC services: (a) requirements and (b) mapping 
V2X use cases.
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currently does not support direct communication over the SL between a vehicle 
and nearby vehicles, infrastructure nodes, or pedestrians. Direct communication 
is useful for  transmitting information such as position, speed, and direction with-
out having to transport it through network. R16 research topics were approved in 
June 2018. Use  cases impose different requirements, with some relying on direct 
vehicle-to-vehicle (V2V) communication, while others take advantage of vehicle-to- 
infrastructure (V2I) communication.

• Sidelink design including signals, channels, bandwidth part, and resource 
pools. A sidelink is a direct link between NR devices without having to go 
through the base station.

• Resource allocation for sidelink. In Mode 1 the base station schedules the 
resource for sidelink transmission and Mode 2 is where the device autono-
mously selects the resource for sidelink transmission from a set of resources 
configured by the network.

• Sidelink synchronization mechanism including synchronization procedure 
when the devices are out of coverage of the base station.

• Sidelink physical layer procedures including HARQ, channel state acquisi-
tion and reporting, and power control.

• Sidelink L2/L3 protocols, signaling, and congestion control.

3GPP is currently working on 5G-based V2X communication specification to meet 
advanced requirements. For example, the technical specification TS 22.186 defines 
the performance requirements for remote driving as a maximum E2E delay of 5 ms 
with a reliability of 99.999% and at speeds up to 250 km/h, for the exchange of 
information between the UE supporting the V2X application and the V2X applica-
tion server.

In all V2X use cases, the importance of the scenario with and without mobile 
network coverage is emphasized. Two scenarios are considered, one where given fre-
quency carriers for V2X communications are dedicated to cell-based V2X services 
(subject to regional regulation and operator policy), and another scenario where com-
munications are in licensed spectrum used for regular mobile operations. There is 
extensive documentation in 3GPP with the results of all 5G-V2X studies conducted.

3.3.3  aI-EnablEd MaSSIvE IoT Toward 6G

Previous generations of wireless networks mainly supported voice, text, video, and 
Internet capabilities, with increased data rates, while 5G and 6G are becoming 
increasingly capable of supporting many other services. 6G is expected to expand 
capabilities to higher levels where millions of connected devices and applications 
would work seamlessly with confidence, low latency, and high bandwidth. Industries 
and academia have allocated huge funds and other resources to 6G research and 
development.

6G is significant enabler of future IoT networks and applications, providing a 
full dimension of wireless coverage and integrating all functionalities, including 
 sensing, transmission, computation, cognition, and fully automated management. 
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In  fact,  compared to 5G systems, next-generation 6G networks are expected to 
achieve massive coverage and improved adaptability to support IoT connectivity and 
service delivery. The main focus is expected on the implementation of the massive 
IoTs (mIoT), interoperability issues, system architecture, energy-efficient technolo-
gies, and the application of AI and other novel techniques to improve network per-
formance, security, and privacy.

The evolution of mobile networks is based on inheriting the advantages of previ-
ous network architectures and adding conveniences that effectively meet the require-
ments of the latest era. Similarly, the 6G network adopts the advantages of the 5G 
architecture and at the same time novel technologies to support the requirements 
beyond 5G one of the significant components of self-sufficient 6G networks is intel-
ligence, which is a relatively new technology that is being integrated into networks 
using AI. Obviously, AI could not be applied to previous versions including 4G, 
since in 5G networks it is applied partially or to a limited extent. It is notable that for 
6G real-time communications, the advancement of ML/AI procedures leads to the 
development of highly intelligent networks. AI techniques possess numerous advan-
tages such as increasing efficiency, reducing delays within communication steps, and 
effectively solving complex problems. However, examples such as meta-materials, 
intelligent structures, intelligent networks, intelligent devices, intelligent cognitive 
radio, self-sustaining wireless networks, and ML provide support for communication 
systems based on AI. Therefore, the application of AI-based technologies supports 
the fulfillment of the objectives of numerous 6G services.

AI and ML are used in a range of application domains across all industry sectors. 
In mobile communication systems, mobile devices (smartphones, cars, robots) are 
increasingly replacing conventional algorithms (speech recognition, image recogni-
tion, video processing) with AI/ML models. The 5G system supports at least three 
types of AI/ML operations:

• AI/ML operation splitting between AI/ML endpoints. The operation/
model is divided into multiple parts based on the current task and environ-
ment. The intention is to offload the computationally and energy-intensive 
parts to the network endpoints, while keeping the privacy-sensitive and 
latency-sensitive parts at the end device. The device executes the operation/
model to a specific part/layer and then sends the intermediate data to the 
network endpoint. The network endpoint executes the remaining parts/lay-
ers and sends the inference results back to the device.

• AI/ML model/data distribution and sharing over 5G system. 
Multifunctional mobile terminals might need to switch the AI/ML model 
in response to task and environment variations. The condition of adaptive 
model selection is that the models to be selected are available for the mobile 
device. However, due to the fact that AI/ML models are becoming more and 
more diverse, and with limited storage resources in the UE, not all AI/ML 
model candidates are pre-loaded on-board. Online model distribution (new 
model download) is required, in which an AI/ML model can be distributed 
from a network endpoint to the devices when they need it to adapt to the 
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changed AI/ML tasks and environments. It is necessary to continuously 
monitor the performance of the UE model.

• Distributed/federated learning over 5G system. The cloud server trains 
a global model by aggregating local models partially trained by each end 
device. Within each training iteration, the UE performs training based on 
the model downloaded from the AI cloud server using the local training 
data. Then the UE reports the interim training results to the cloud server via 
the 5G UL channel. The server aggregates the interim training results from 
the UE and updates the global model. The updated global model is then dis-
tributed back to the UE where training is performed for the next iteration.

6G-IoT impose more stringent requirements for the full realization of massively 
connected devices and coverage, data-driven services, and autonomous systems by 
2030. System development requires stringent standard specifications that call for the 
cooperation of network operators, service providers, and users. Furthermore, the 
introduction of vertical 6G-IoT use cases in future intelligent networks imposes sig-
nificant architectural changes on current mobile networks to simultaneously support 
a number of different stringent requirements.

3.4  CONCLUDING REMARKS

The development of 5G mobile networks is driven by constant research and innova-
tion. 5G networks are evolving from connectivity-based networks to an intelligent 
service delivery platform. The applications and services that the 5G system supports 
are referred to as vertical industries or verticals. There is constant demand for flex-
ible bandwidth, latency, and better coverage from the industry. To accelerate their 
implementation, verticals classify use cases as a combination of three basic service 
categories (eMBB, mMTC, URLLC). Although mMTC is specifically categorized 
and designed to meet IoT requirements, uRLLC contains key features for efficient 
IoT operations. It is quite challenging to manage mission-critical IoT devices in real-
time over wireless. Extremely reliable LLC uRLLC supports delay-sensitive services 
with a high level of key performance indicators: latency, reliability, and availability. 
However, many design parameters and metrics are in trade-offs relations, such as 
reliability vs. latency, reliability vs. data rate, EE vs. latency. Improving one perfor-
mance indicator affects other metrics. The 3GPP solution is a new service-oriented 
5G architecture design. The challenges of uRLLC implementation are QoS, coexis-
tence with eMBB service, packet design, instant and reservation-based scheduling, 
error handling, and energy efficiency.

This chapter presents an up-to-date overview of vertical requirements as well as 
technical and architectural concepts critical to the delivery of URLLC services in 
key 5G verticals (industrial IoT, V2X low latency, and highly reliable communica-
tion). The process of standardization of private 5G networks, EE, and AI/ML support 
for vertical services were analyzed.

The development of new communication networks depends on the emergence 
of globally accepted standards that support interoperability, economy of scale with 
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affordable cost for system implementation, and end users. From a 3GPP perspective, 
the research is initiated by identifying use cases and specifying the corresponding 
requirements from different industry groups and verticals. Later on, use cases and 
requirements of industrial IoT and vehicle applications on V2X connections were 
developed and documented. Therefore, there is a strong motivation to further develop 
standardization to optimize for these new services, especially in terms of cost, com-
plexity, energy savings, and coverage. Furthermore, the intelligent integration of 
uRLLC and mMTC has the potential to drive massive IoT and industrial automation 
based on 6G AI.
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4.1 INTRODUCTION

Vehicular communication (V-Comm) systems are intended to be an essential part 
of beyond 5G and 6G wireless networks (WNs) (Adhikari et al., 2021; He et al., 
2020). The V-Comm systems are usually enabled through direct node-to-node com-
munications without necessity to communicate with the base stations (BSs). Many 
different types of V-Comm systems can be distinguished, usually termed as vehicle-
to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I), vehi-
cle-to-everything (V2X), unmanned aerial vehicle (UAV)-assisted communications 
and others (Fotouhi et al., 2019; MacHardy et al., 2018). Moreover, the V-Comm 
wireless systems are often under the influence of dynamic channel conditions mainly 
due to the increased mobility of vehicles and increased traffic density in urban areas 
or highways. Propagation channels for those types of communications that are in 
accordance with analytical or empirical results can be modelled as the product of 
two or more random variables (rvs) (Ai et al., 2018; Bithas et al., 2019, 2020; Dixit 
et al., 2021; Jaiswal and Purohit, 2019, 2021; Nguyen and Hoang, 2019), which can 
cause the performance analysis challenging and demanding, especially when higher 
order statistical (HOS) evaluation is performed (Bithas et al., 2018a; Hajri et al., 
2020; Stefanovic et al., 2018a, 2019, 2021a, 2021b). In particular, HOS measures 
(e.g., average level crossing rate (LCR) and average fade duration (AFD)) can provide 
valuable data related to time-variant fading channels that can provide better under-
standing of dynamic propagation conditions involved in V2X communications. The 
5G and beyond 5G systems are requiring ultra-reliable low-latency communications 
(URLLC) for V-Comm systems which can be efficiently addressed through HOS 
measures. Moreover, LCR and AFD are dependent on maximum Doppler frequency 
(DF) which is in turn proportional to vehicle’s speed and carrier frequency that are 
other crucial parameters for V2X channel characterization.

In Bithas et al. (2018a), the authors provided performance analysis of double-
scattered (DSc) multipath fading channels for V-Comm systems modelled as the 
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product of two α–µ random variables (rvs), known as double α–µ (d–α–µ). In Bithas 
et al. (2018a), the LCR expression of the d–α–µ distribution for V-Comm sys-
tems is calculated as one-folded integral expression. The closed form approximate 
LCR mathematical formula of d–α–µ distribution has been efficiently derived by 
Stefanovic et al. (2020). In particular, the general d–α-µ distribution can be reduced 
to double-Rayleigh (d-Ray), double Nakagami-m (d-Nak-m) and double Weibull 
(d-Weib) distributions for different values of shaping parameters. The α–µ, d–α–µ 
and multiple α–µ (m-α-µ) distributions have already been used to address fading 
in direct V-Comm systems, relay-assisted (R-A) V-Comm systems, reconfigurable 
intelligent surface (RIS)-assisted V2V communications as well as in UAV commu-
nications (Bithas et al., 2018a; Chapala et al., 2022; Dautov et al., 2018; Stefanovic 
et al., 2018a, 2019). The paper by Badarneh (2016) considers d–α–µ random process 
as the composite fading model while statistical analysis of the m-α-µ is provided by 
Leonardo and Yacoub (2015) and Badarneh and Almehmadi (2016). Moreover, the 
statistical analysis of the ratio of the m-α-µ rvs are given in Leonardo et al. (2016). 
Moreover, Stefanovic et al. (2020) provided a framework for channel modelling and 
performance evaluation based on d–α–µ, d–α–µ/gamma and the ratio of two d–α–µ/
gamma rvs in order to address multipath in DSc, composite fading in DSc-single 
shadowed (SS) as well as interference-limited environment in DSc-SS fading con-
ditions, that can appear in 5G propagation scenarios. Indeed, the products and the 
ratios of rvs are of great importance in channel modelling and performance analysis 
of WNs (Du et al., 2019; Matovic et al., 2013; Stamenkovic et al., 2014; Stefanovic 
et al., 2022; Zlatanov et al., 2008).

The R-A communications are often proposed as a useful technique for the sys-
tem performance improvement and coverage extension in WNs (Di Renzo et al., 
2009a, 2009b, 2010). Moreover, R-A communications can be efficiently applied in 
mobile-to-mobile (M2M) and V-Comm systems (Hajri et al., 2020; Milosevic et al., 
2018a, 2018b; Stefanovic et al., 2019; Talha and Pätzold, 2011). The main advantage 
of cooperative R-A communications is its ability to apply spatial diversity while rely-
ing on the existing network nodes. The R-A communications in V-Comm systems 
can not only be used to extend V2V coverage but also in scenarios without direct 
V2V line-of-sight (LOS) communications (e.g., cooperative V2V communications at 
intersections in urban areas) (Belmekki et al., 2019). A cooperative V2X and UAV 
V-Comm systems with simultaneous wireless information power transport (SWIPT) 
are studied in Milovanovic and Stefanovic (2021), and Panic et al. (2019). The com-
bining schemes with selection are studied by Al-Hmood and Al-Raweshidy (2017, 
2020) and Milic et al. (2016) and due to its relatively lower implementation complex-
ity the selection scheme or switching scheme are of great interest in relay-assisted 
or distributed antenna systems (DAS) for V-Comm scenarios (Bithas et al., 2018a, 
2018b; Stefanovic et al., 2018a, 2018b; Triwinarko et al., 2020; Yoo et al., 2021). 
Furthermore, optimal relay selection strategy in cooperative V-Comm systems under 
security constraints is addressed in Poursajadi and Madani (2021).

The main issue in V-Comm networking is whether the direct-short-range commu-
nication (DSRC) and cellular (C)-V2X available standards, which usually operate at 
5.9 GHz, can provide large enough capacity to support V2X URLLC under all propa-
gation conditions. The performance improvement analysis for C-V2X cooperative 
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R-A communication under different combining schemes, including selection com-
bining is considered (Pan and Wu, 2021). Ghafoor et al. (2019) considered the 
co-existence of DSRC and C-V2X standards for efficient V-Comm networking. 
According to the 5G new-radio (NR) standard, the latest V2X 5G NR releases are 
considering the application of stochastic models for channel characterization as well 
as application of frequencies above 52.6 GHz (e.g., V2X 5G NR takes into consider-
ation application of different technologies such as Millimetre-wave, terahertz, and 
visible light communications-VLC) (Garcia et al., 2021). The Millimetre-wave R-A 
V2X communications are investigated by Li et al. (2020), Lv et al. (2021), and Tunc 
and Panwar (2021) while cooperative VLC for V-Comm networking is addressed in 
Yin et al. (2020). Moreover, mixed radio-frequency (RF)-free-space-optical (FSO) 
R-A communication systems can be used as redundant links that can improve the 
capacity of wireless V-Comm systems. Additionally, the FSO links can be distin-
guished as cost-effective wireless systems. The main disadvantage in FSO-based 
communications is turbulence fading (TF). The papers by Amer and Al-Dharrab 
(2019), Balti and Guizani (2018), and Stefanovic et al. (2022) address mixed RF-FSO 
relay as well as cooperative mixed RF-FSO relay systems. Moreover, FSO dual-hop 
and multi-hop relaying systems are considered in Stefanović et al. (2021b, 2021e) 
and Zedini et al. (2016), while RIS-assisted FSO communications are addressed in 
Boulogeorgos et al. (2022) and Stefanovic et al. (2021a). Park et al. (2013), in their 
paper, addressed UAVs in RF-FSO relay scenarios while in the work of Dautov et al. 
(2018) V2V FSO multi-hop UAVs relay-assisted communications is considered. The 
RF-FSO V2I communication link with UAV as a relay is investigated in Xu and Song 
(2021) while RF-FSO-RF V2V system is addressed in Stefanovic et al. (2019).

In this chapter, we consider HOS performance measures of V2V communications 
over d–α–µ fading channels enabled through direct RF links, relay-assisted RF links, 
cooperative relay-assisted RF links as well as through redundant RF-FSO links. In 
particular, we derive mathematical expressions for the probability density function 
(PDF) and the cumulative distribution function (CDF) that are further used for the 
derivation of outage probability (OP) and HOS measures (e.g., LCR and AFD) for the 
considered V2V scenarios over d–α–µ fading channels.

The chapter is organized as follows. An introduction is provided in Section 4.1. 
In Section 4.2, a double-scattered (DSc) fading channel for V2X V-Comm systems 
modelled as the product of two α–µ rvs is introduced and applied for different types 
of V2X scenarios, namely (i) direct V2V in Section 4.2, (ii) V2V R-A communica-
tions in Section 4.3, (iii) cooperative R-A dual-hop V2V communications in Section 
4.4, (iv) direct V2V link assisted by parallel dual-hop V2V link in Section 4.5, (v) 
direct mixed RF-FSO-RF V2V communications in Section 4.6, and (vi) direct V2V 
communications assisted by a redundant parallel RF-FSO-RF link in Section 4.7. 
This chapter ends with conclusions in Section 4.8.

4.2 DIRECT V2V COMMUNICATIONS

Vehicle-to-vehicle (V2V) communications due to latency requirements are estab-
lished through direct V2V communication links between two communicating 
vehicles.
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4.2.1  dIrEcT v2v coMMunIcaTIonS ovEr doublE-
ScaTTErEd fadInG channElS

The output signal α  – –zd µ for a direct V2V link between source vehicle (s-v) and des-
tination vehicle (d-v), shown in Figure 4.1, can be modelled with double α–µ (d–α–µ) 
distribution (Bithas et al., 2018a) that can appear due to double-scattered (DSc) fad-
ing phenomena in vehicular communications as observed in Bithas et al. (2018a, 
2019, 2020), Dixit et al. (2021), and Jaiswal and Purohit (2019, 2021).

The α– –zd µ can be expressed as the product of two α – µ rvs (Yacoub, 2007):

 = =α α α

−
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z x y x xd µ µ µ N N
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where a is a parameter of non-homogeneity, xN and yN  are independent but not identi-
cally distributed (i.n.i.d.), and Nak-m rvs is given by Stüber (1996):
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whose shaping parameters are denoted as µi and ϑi, = 1,2i , respectively. The PDF of 
α− −Zd µ by using Stüber (1996) and Gradshteyn and Ryzhik (2000) can be written as:

   

∫

α
ϑ ϑ

ϑ
ϑ

ϑ ϑ

( ) ( )

( ) ( )

=














=
Γ Γ

























α α
α

α

α α

α

∞

−

−

−

 

2

2

– – – –

0

,1

– –

– –
2

,2
,2 ,2

1 2

1

1

2

2
– –

1 1 2

2 1
– –

2

1 2

1 2
– –

,1 ,2

1 2

1

2 1

2 1

p z
dx

dz
p

z

x
p x dx

µ µ

µ µ
z

µ

µ
z

K
µ µ

z

d µ d µ
N

d µ
X

d µ

a

N
X N N

µ µ

d µ
aµ

d µ
a

µ µ

µ µ d µ
a

N N

 (4.3)

where ( )·K p  is a modified Bessel function of the pth order and second kind (Gradshteyn 
and Ryzhik, 2000). The CDF of α− –µZd  can be obtained from ( )α α– – – –p zd µ d µ  accord-
ing to a well-known mathematical formula (Stüber, 1996):

FIGURE 4.1 V2V direct communications.
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The closed form ( )α α– – – –F zd µ d µ  is derived by applying (Gradshteyn and Ryzhik, 
2000) and for the case where 1µ  is a positive integer given by:
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4.2.2 PErforMancE MEaSurES of dIrEcT v2v coMMunIcaTIonS

The performance measures for direct V-Comm systems such as OP, LCR, and AFD 
for a given threshold thz  are addressed in this section. The OP for a direct V2V com-
munication link can be efficiently obtained from equation (4.5) by using Panic et al. 
(2013) and Stüber (1996):

 ( )( ) ( )= ≤ =α α α α  – –µ th – –µ – –µ th – –µ thP z P z z F zd d d d  (4.6)

The LCR for a predetermined threshold thz  can be obtained through the integral for-
mula of the joint distribution of α– –zd µ and its first derivative α� – –zd µ, given by Stüber 
(1996):
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The LCR of α– –zd µ provided in equation (4.7) can be evaluated through the math-
ematical transformations whose detailed derivation is already provided in Stefanovic 
(2018a) and can be expressed as
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where �σ ϑ( )= f µX mN
π /2 2

, 1 
2

1 1, 1
 and �σ ϑ( )= f µX mN

π /2
, 2 

2
2 2,  2

 are the variances of 
�

, 1XN  and �
, 2XN , respectively. The maximum Doppler frequencies (DFs) are assumed 
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2 2  where −, fm s v  and 

−, fm d v  are maximum DFs for direct RF V2V communications of the s-v and d-v, 
respectively (Hadzi-Velkov et al., 2009). The expression 1E  is solved by applying 
the Laplace-based approximation method (LBAM) for one-folded integral (Zlatanov 
et al., 2008) whose detailed application is also presented in Stefanovic et al. (2020). 
Here we only re-write previously derived closed form LCR approximation of the 

α− − µd  distribution (Stefanovic et al., 2020):
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It is important to mention that the approximation of ( )α– – thN zd µ  provides shorter 
computing time than its integral form with similar accuracy.

The AFD, αAFD – –d µ is obtained as Stüber (1996):

 ( ) ( )
( )=α

α

α
AFD – –µ th

– –µ th

– –µ th

z
F z

N z
d

d

d

 (4.10)

4.2.3 nuMErIcal rESulTS of dIrEcT v2v coMMunIcaTIonS

Numerical results for ( )α– – thN zd µ  and ( )αAFD – – thzd µ  are already provided in 
Stefanovic et al. (2020). However, the presented analytical results will be directly 
used in the extended cooperative V-Comm scenario when a direct V2V link is sup-
ported by relay-assisted (R-A) communications provided in the following sections of 
this chapter.

4.3 RELAY-ASSISTED DUAL-HOP V2V COMMUNICATIONS

Relay-assisted (R-A) V-Comm systems as well as cooperative V-Comm systems can 
be used for coverage extension and system performance improvement in V2V com-
munication links.
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4.3.1 rElay-aSSISTEd v2v coMMunIcaTIonS ovEr dSc fadInG channElS

The system model for V2V dual-hop amplify-and-forward (A–F) R-A V-Comm sys-
tems over α− −d µ fading channels is shown in Figure 4.2. Although V-Comm sys-
tems of R-A as well as cooperative R-A V2V communications over α− −d µ fading 
channels are briefly addressed in Stefanovic et al. (2018), in this section as well as in 
the next section of the chapter we present a comprehensive mathematical framework 
for their performance evaluation.

We model the signal envelope at the output of a V2V dual-hop A–F relay as a 
product of two i.n.i.d. α− −  d µ rvs =( )sd sr rdz z z . The signal envelope from source 
vehicle (s-v) to vehicle relay (v-r) is denoted with srz  and modelled with α− −d µ 
distribution that can be expressed as the product of two α − µ rvs = α α− −( )sr , 1 , 2z x xµ µ . 
The signal envelope from v-r to destination vehicle (d-v) is denoted with rdz  and also 
modelled with α− −d µ distribution that can be further expressed as the product of 
two other α − µ rvs = α α− − − −( )rd , 1 , 2z y yd µ d µ . Furthermore, α− −d µ rvs are expressed 
through Nakagami-m (Nak-m) rvs, , 1xN , , 2xN , , 1yN , and , 2yN  and non-homogeneity 
parameter α (Yacoub, 2007):

 ( )= = =α α α α− − − − − − − −sd sr rd , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2

2

z z z x x y y x x y yd µ d µ d µ d µ N N N N a (4.11)

The Nak-m is given by the following distributions, respectively (Stüber, 1996):
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where 1µx  and 2µx  are s-r DSc severity parameters while 1µY  and 2µY  are r-d DSc 
severity parameters. Moreover, s-r as well as r-d scaling parameters of , xN i and , yN i 
are denoted as ϑxi and ϑ yi, respectively. Γ(·) presents the gamma function (Gradshteyn 
and Ryzhik, 2000).

FIGURE 4.2 V2V A–F dual-hop vehicle relay communication.



191Vehicular Systems for 5G and Beyond 5G

The PDF at the output of the considered V2V system over α− −d µ fading chan-
nels system can be written as Stüber (1996):
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The CDF of sdz  can be obtained from Stüber (1996) and Gradshteyn and Ryzhik 
(2000), respectively:
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where γ ( ), b z  is incomplete gamma function (Gradshteyn and Ryzhik, 2000).
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4.3.2 PErforMancE MEaSurES of rElay-aSSISTEd v2v coMMunIcaTIonS

Performance evaluation is addressed in terms of OP, LCR, and AFD of a V2V A–F 
dual-hop R-A communication system in DSc fading environment. The OP (denoted 
as ( )sd thP z ) of a dual-hop A–F relay-assisted V2V link can be written as:

 ( ) ( ) ( )= ≤ =sd th sd sd th sd thP z P z z F z  (4.16)

The average LCR at the output of the considered V-Comm system can be calculated 
using the formula (Stüber, 1996):
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sd sd sd sdsd sd sdN z p z z dzz z z  (4.17)

where ( )�� sd sdsd sdp z zz z  is the joint distribution of sdz  and its first derivative �sdz . The first 
derivative of sdz  can be expressed as:

 

α

( )

=

+ + +

α
−

�

� � � �

1

2

sd

sd
2

1

, 2 , 1 , 2 , 1 , 1 , 1 , 2 , 2 , 1 , 2 , 2 , 1 , 1 , 2 , 1 , 2

z

z

x y y x x y y x x x y y x x y yN N N N N N N N N N N N N N N N

  
 
 
 (4.18)

The � , 1xN , � , 2xN , � , 1yN , and � , 2yN  are zero-mean Gaussian (ZM-G) rvs. Because a linear 
transformation of a ZM-G rvs is a ZM-G rv, thus, �sdz  is also ZM-G rv whose variance 
can be expressed as,
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where Yang et al. (2005), σ ϑ σ ϑ= =� �π , π ,2 2
,  1

2 1

1

2 2
,  2

2 2

2
, 1 ,  2f

µ
f

µ
x m x

x

x
x m x

x

x
N N

 

σ
ϑ

σ
ϑ

= =� �π , and π2 2
,  1

2 1

1

2 2
,  2

2 2

2
, 1 ,  2f

µ
f

µ
y m y

y

y
x m y

y

y
N N

Similarly, the maximal DFs are assumed to be the same 
= = = =( ),  1 ,  2 ,  1 ,  2f f f f fm m x m x m y m y . Accordingly, σ �

2
sdz is:

 

σ
α

ϑ
ϑ

ϑ

ϑ
ϑ

ϑ
ϑ

( )= +



+ +



α

α

α α

−�
4π

12
2 2

2 
sd

2
1

1
, 2 , 1 , 2

2 1

1

2

2

sd

,2
4

,1
2

,2
2

1

1

1

1

sd

,2
2

,1
4

,2
2

1

1

2

2

sd

,2
2

,1
2

,2
4

sd

f

z µ
x y y

µ

µ

z

x y y

µ

µ

z

x y y

µ

µ

z

x y y

z
m x

x
N N N

x

x

x

x N N N

x

x

y

y N N N

x

x

y

y N N N

 (4.20)



193Vehicular Systems for 5G and Beyond 5G

The joint probability density function (JPDF) of �, sd sdz z , , 2xN , , 1yN  and , 2yN  is,
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where
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The ( ), 2,  2p xx NN  is given by equation (4.12), while ( ), 1, 1p yy NN  and ( ), 2,  2p yy NN  are 
given by equation (4.13). The conditional PDF of sdz  can be expressed as,
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where , 1pxN  is given by equation (4.12), and
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Since Yacoub et al. (1999),
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and by adequate substitutions, the LCR given by equation (4.17) can be expressed as:
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The analytical closed form approximation for the ( )sd thN z  at the output of a V2V 
dual-hop A–F relay system can be obtained by LBAM for three-folded integrals 
(Hadzi-Velkov et al., 2009):
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where

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

, , , , , ,

, , , , , ,

, , , , , ,

2
,20 ,10 ,20

,20
2

2
,20 ,10 ,20

,20 ,10

2
,20 ,10 ,20

,20 ,20

2
,20 ,10 ,20

,10 ,20

2
,20 ,10 ,20

,10
2

2
,20 ,10 ,20

,10 ,20

2
,20 ,10 ,20

,20 ,20

2
,20 ,10 ,20

,20 ,10

2
,20 ,10 ,20

,20
2

A

f x y y

x

f x y y

x y

f x y y

x y

f x y y

y x

f x y y

y

f x y y

y y

f x y y

y x

f x y y

y y

f x y y

y

N N N

N

N N N

N N

N N N

N N

N N N

N N

N N N

N

N N N

N N

N N N

N N

N N N

N N

N N N

N

 
 
 
 
 
 (4.28)

while , 20xN , , 10yN , and , 20yN  are efficiently obtained from the following differential 
equations:
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The functions ( ),   ,  , 2 , 1 , 2g x y yN N N  and ( ),   ,  , 2 , 1 , 2f x y yN N N  in equation (4.27) for the 
considered case are, respectively,
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and
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The AFD sdz  is evaluated as Stüber (1996):
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4.3.3 nuMErIcal rESulTS for rElay-aSSISTEd v2v coMMunIcaTIonS

Numerical results for LCR and AFD are presented in the subsequent section as a part 
of a cooperative relay-assisted (R-F) V2V communication system scenario where 
approximate and integral-form expressions for sdNz  are presented and compared. One 
can notice that HOS expressions for R-A V2V systems increase in complexity if 
compared to direct V2V communications. Stochastic modelling and performance 
evaluation of the realistic V-Comm networks over fading channels for different V2V 
communication scenarios can become very complex. This can be a motivation for 
using advanced channel modelling-related approaches for V2X (e.g., machine learn-
ing techniques) (Huang et al., 2019, 2020; Tang et al., 2021).

4.4 V2V COOPERATIVE DUAL-HOP COMMUNICATIONS

We extend the proposed model to a cooperative dual-hop amplify-and-forward (A–F) 
relay network, consisting of N parallel vehicle relays with selection combining-based 
antenna system (SC-AS) at the destination vehicle (d-v), as shown in Figure 4.3.

4.4.1  v2v cooPEraTIvE dual-hoP coMMunIcaTIonS 
ovEr doublE-ScaTTErEd fadInG channElS

The cooperative V2V communications established through N parallel dual-hop v-r 
with SC-AS at reception over DSc fading channels are considered in order to extend 
the coverage and to improve the system performance. The PDF and CDF at the out-
put of SC-AS at the destination over α− −d µ fading channels are, respectively:

 ( )( ) ( ) ( )= −
i i, sd sd sd sd sd sd

1
p z N p z F zN

N
 (4.33)

 ( )( ) ( )=, sd sd sd sdF z F zN
N
 (4.34)

where ( )sd sdP z  and ( ) sd sdF z are the PDF and CDF at the output of the single dual-hop 
A–F relay V2V system, already obtained in equations (4.14) and (4.15), respectively.



196 Driving 5G Mobile Communications with AI towards 6G

4.4.2  PerFormance measures oF V2V cooPeratiVe 
Dual-hoP communications

The performance evaluation of considered cooperative R-A V2V system is addressed 
in terms of OP, LCR, and AFD. The OP for the predetermined value of the threshold 
at the output of the proposed model is:

 ( ) ( ) ( )= ≤ =, sd th , sd sd th , sd thP z P z z F zN N N  (4.35)

where ( ), sd sdF zN  is calculated in equation (4.34). The LCR for the thz  value at the 
output of the cooperative R-A V2V system is:

 ( )( ) ( ) ( )= −
i i, sd th sd th , sd th

1
N z N N z F zN N

N
 (4.36)

where ( )sd thN z  is the LCR at the output of a single V2V dual-hop A–F link obtained 
in equation (4.27). AFD (denoted as ( )AFD , sd thzN ) at the output of the V2V A–F 
dual-hop cooperative R-A system is evaluated by Stüber (1996):
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FIGURE 4.3 V2V cooperative A–F dual-hop vehicle relay communication.
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4.4.3  nuMErIcal rESulTS for v2v cooPEraTIvE 
dual-hoP coMMunIcaTIonS

This section presents the numerically evaluated performance measures for a V2V 
cooperative dual-hop A–F V2V system in DSc fading environment with SC-AS at 
reception. Due to the motion of s-v, d-v, and v-r, the maximal DF of the single ith path 
can be expressed as Hadzi-Velkov et al. (2009),

 = = + + =2 ,   1,  ms
2

mr
2

md
2f f f f f i Nm mi i i i  (4.38)

where msf i , mrf i , and mdf i  are the ith path maximal DFs of s-v, r-v, and d-v, respectively.
The considered dual-hop R-A V2V system with r-v for the case when 
= 0mrf i  can be applied for a dual-hop R-A V2V system with road-side-unit 

(RSU) as static relay. Further, we assume that =f fm mi. Normalized LCR 
( ( )N z fN m/, sd th ) and AFD ( ( ) ⋅AFD , sd thz fN m) exact analytical expressions as well 
as approximations derived through LBAM for the various values of fading severity 
parameters ( ,  ,  and )1 2 1 2µ µ µ µx x y y , shaping parameters ( )Ω = Ω = Ω = Ω =x x y y    11 2 1 2 , 
the parameter of non-homogeneity (α), and different number of vehicle relays (N) are 
graphically shown in Figures 4.4 and 4.5, respectively.

FIGURE 4.4 Normalized LCR of V2V cooperative dual-hop A–F relaying for various sys-
tem model parameters.
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Figure 4.4 shows that by increasing the parameter of non-homogeneity and the 
number of vehicle relays, ( ) /, sd thN z fN m decreases, evidencing a system performance 
improvement.

It can be observed that N and α have stronger impact on ( )N z fN m/, sd th  for 
lower thz  values than for the higher values of .thz  The system performance 
improvement (e.g., when normalized ( )AFD , sd thzN  decreases) can be efficiently 
achieved by increasing the number of parallel relays, what can be observed in 
Figure 4.5. Moreover, by changing fading severity conditions (e.g., by shifting from 

µ µ= = = = = = = =      1 to       31 2 1 2 1 2 1 2µ µ µ µ µ µx x y y x x y y ) and nonlinearity param-
eter values (e.g., by shifting from α = 2 to α = 3), ( ) ⋅AFD , sd thz fN m decreases in 
lower dB output regime, providing the system performance improvement for lower 

thz  values.

4.5  V2V COOPERATIVE COMMUNICATIONS 
WITH DIRECT V2V LINK

We examine the V2V communications for a scenario where the direct V2V link is 
assisted by dual-hop RSU relaying, as shown in Figure 4.6.

FIGURE 4.5 Normalized AFD of V2V cooperative dual-hop A–F relaying for various sys-
tem model parameters.
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4.5.1  cooPEraTIvE coMMunIcaTIonS wITh dIrEcT 
v2v lInk ovEr dSc fadInG channElS

The PDF and CDF for such a model are, respectively:

 ( ) ( ) ( ) ( ) ( )= +α α2,sd sd sd sd – –µ sd – –µ sd sd sdp z p z F z p z F zd d  (4.39)

 ( ) ( ) ( )= α  2,sd sd – –µ sd sd sdF z F z F zd  (4.40)

where ( )α– – sdp zd µ  and ( )α– – sdF zd µ  are PDF and CDF of direct V2V communications 
over α– –d µ fading channels obtained in equations (4.3) and (4.5), respectively, 
while ( ) sd sdp z and ( )sd sdF z  are PDF and CDF at the output of V2V dual-hop A–F 
relay obtained in equations (4.14) and (4.15), respectively.

4.5.2  PErforMancE MEaSurES of cooPEraTIvE 
coMMunIcaTIonS wITh dIrEcT v2v lInk

The performance evaluation of cooperative dual-hop communications with a direct 
V2V link is considered in terms of OP and HOS measures. The OP is calculated as:

 ( ) ( ) ( )= ≤ =2,sd th 2,sd sd th 2,sd thP z P z z F z  (4.41)

where ( )2,sd sdF z  is given by equation (4.40). The LCR at the output of the proposed 
model is:

 ( ) ( ) ( ) ( ) ( )= +α α2,sd th sd th – – th – – th sd thN z N z F z N z F zd µ d µ  (4.42)

where ( )α  – – thN zd µ and ( )sd thN z  are the LCR expressions at the output of the direct 
V2V link and R-A dual-hop A–F communication link obtained in equations (4.8) 
and (4.26), respectively. AFD (denoted as ( )AFD2,sd thz ) at the output of the V2V 

FIGURE 4.6 V2V direct communication assisted by dual-hop A–F relaying link.
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cooperative communications with direct V2V link over DSc fading channels system 
is evaluated by Stüber (1996):

 ( ) ( )
( )=AFD   .2,sd th

2,sd th

2,sd th

z
P z

N z
 (4.43)

4.5.3  nuMErIcal rESulTS for cooPEraTIvE 
coMMunIcaTIonS wITh dIrEcT v2v lInk

This section presents numerical results for a direct V2V link assisted by dual-hop 
A–F RSU R-A link (Figure 4.6). Due to the motion of only s-v and d-v, the maximal 
DF can be expressed as Hadzi-Velkov et al. (2009):

 = = + =,   1, 2m ms
2

md
2f f f f imi i i  (4.44)

where msf i  and mdf i  are the ith (i = 1, 2) path maximal DFs of s-v and d-v, respectively. 
Figures 4.7 and 4.8 show ( )N z fm/2,sd th  and ( ) ⋅AFD2,sd thz fm, exact and approximated 
numerical results for various values of V2V dual-hop RSU R-A system model param-
eters (µ µ µ µ,  ,  ,   1 2 1 2x x y y and a) and constant values (ϑ ϑ ϑ ϑ= = = =    11 2 1 2x x y y ) as 

FIGURE 4.7 Normalized LCR of V2V direct communication assisted by an A–F relaying 
link for various system model parameters.
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well as for various values of V2V direct link system model parameters µ µ( ,  and )1 2 a , 
and constant values (ϑ ϑ= = 11 2 ), respectively. Similarly, by increasing the set of 
system model parameters (µ µ µ µ,  ,  ,  , 1 2 1 2 ax x x x ) and (µ µ,  , 1 2 a), the normalized 

( )2,sd thN z  decreases in the whole observed dB output regime while ( )AFD2,sd thz  
decreases for lower thz  dB values, what can be well observed in Figures 4.7 and 4.8.

4.6 V2V MIXED RF-FSO COMMUNICATIONS

The multi-hop mixed RF-FSO-RF vehicle-to-vehicle (V2V) link consisting of 
source vehicle (s-v), two A–F RSU-relays, and destination vehicle (d-v) is shown in 
Figure 4.9.

4.6.1  mixeD V2V rF-Fso communications oVer 
Double-scattereD anD tF channels

We model the output mixed RF-FSO-RF fading signal envelope mixz  as the product 
of the i.n.i.d. random processes:

 ( ) ( ) ( )=
� �� �� � �� �� � �� ��mix , 1 , 2

2

RF1

, 3 , 4
2

FSO

, 5 , 6

2

RF2

z z z z z z zN N a N N N N a  (4.45)

FIGURE 4.8 Normalized AFD of V2V direct communication assisted by an A–F relaying 
link for various system model parameters.
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• =,  1,6, z iN i  are i.n.i.d. Nak-m rvs, whose fading severity parameters and 
shaping parameters are denoted as µmi and ϑmi  respectively;

 
µ ϑ

µ
( ) ( )

( )=
Γ

µ
µ µ ϑ− −p z z eZ N i

mi mi

mi
N i

z
N i

mi

mi mi N i mi
2 /

,  , 
2 1   /

, 
, 

2

 (4.46)

• ( ), 

2

zN i
a are α–µ rvs expressed through Nak-m rvs, , zN i, and non-homogene-

ity parameter α representing RF fading signals.

• ( ), 
2

zN i  are gamma (squared Nak-m) rvs, whose product ( ) , 3 , 4
2

z zN N  rep-
resents the FSO fading signal. Moreover, the gamma–gamma process for 
FSO transmission exposed from strong to moderate TF conditions can be 
modelled assuming ϑ ϑ= = 13 4m m  and

 µ α δ
δ( )

= =
+ +
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−

exp
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= =
+
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− −

exp
0.51 1 0.69

1 0.9 0.62
14

II
2 12/5 5/6

2 2 12/5 5/6

1

d d
m  (4.48)

where δ = 0.52 2 7/6 11/6C p Sl  is the Rytov variance and =d pD S/42  is the optical 
wave number. Further, the gamma–gamma FSO transmission parameters are sum-
marized in Table 4.1.

The PDF of mixz  in the case of i.n.i.d. rvs can be transformed through joint and 
conditional probabilities as:

FIGURE 4.9 V2V mixed RF-FSO-RF triple-hop A–F relay link.
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The CDF of mixz  is derived using Stüber (1996) and Gradshteyn and Ryzhik (2000),
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TABLE 4.1
FSO System Model Parameters

Parameters Description

α II Small-scale cells

β II Large-scale cells
2Cl Refractive index (range: − − − −10 m to 10 m17 2/3 13 2/3)

λ=p 2π/ Wave number

D Receiver aperture diameter

S Propagation distance
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where
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for the case where α II is a positive integer. The closed form ( )mix mixF z  expression can 
be obtained by evaluating 2E  given in equation (4.51) by applying LBAM for three-
folded integrals (Stefanovic et al., 2021c; Stefanovic et al., 2021d):
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where the arguments in equation (4.52) are, respectively, γ = 1, 
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Furthermore, ,   ,   ,   and , 10 , 20 , 40 , 50 , 60z z z z zN N N N N  in equation (4.52) can be calculated 
when all first-order partial derivatives of ( ),   ,   ,  ,    , 10 , 20 , 40 , 50 , 60f z z z z zN N N N N are 0. 
The B in equation (4.52) is:
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Approximate and exact analytical expressions for ( )mix mixF z  are used for derivation 
of AFD of the considered mixed V2V R-A RF-FSO-RF system.

4.6.2 PErforMancE MEaSurES of MIxEd v2v rf-fSo coMMunIcaTIonS

The performance analysis of a mixed V2V RF-FSO-RF system in terms of OP is:

 ( ) ( ) ( )= ≤ =  mix th mix mix th mix thP z P z z F z  (4.55)

The LCR (denoted as ( )mix thN z ) at the output of the considered V2V R-A RF-FSO-RF 
system model can be evaluated by Stüber (1996):
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N z z p z zZ Z  (4.56)

The joint PDF of i.n.i.d. rvs �,  ,  ,  ,  , andmix mix , 1 , 2 , 4 , 6Z Z Z Z Z ZN N N N  can be expressed 
as:
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where after the simple transformation of the conditional probability function 
 |      mix , 1 ,  2 ,  4 , 5 , 6pz Z Z Z Z ZN N N N N  is:
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Based on the facts that the variance of the first derivative of ZM-G rv is ZM-G rv as 
well as that the linear transformation of the ZM-G rvs is also ZM-G rv, the variance 
of �

outZ  is ZM-G rv. After simple manipulations, the variance of �
outZ  can be expressed 

through the variances of �
, 1ZN , � � � � � �, , ,  ,  and , , 1 , 2 , 3 , 4 , 5 , 6Z Z Z Z Z ZN N N N N N  as:

 

σ σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

=

+ +








+ + +





+





� �

�

�

�

�

�

�

�

�

�

�

4

1

2 mix
2

2
, 1

2
2

,1
2

,2
2

2

2
2 ,1

2
1

1

,2

2

,4
2

,5

2

,6

2

mix

2

2

2 ,1
2

,4
2

2

2
,1

2

,5
2

2

2
,1

2

,6
2

2

2

mix , 1

,2

,1

3

1

,4

,1

,5

,1

,5

,1

z

a z

z

z
a

z z z z z

z

a
z

z

z

z

z

z

Z
N

Z

N

N

Z

Z

N
a

N
a

N N
a

N
a

Z

Z

N

N

Z

Z

N

N

Z

Z

N

N

Z

Z

N

N

N

N

N

N

N

N

N

N

N

 (4.59)

Since Yacoub et al. (1999),
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The ( )mix thN z  is obtained after some algebra and presented as integral-form 
expression:
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where 3E  is:
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The closed form expression for ( )mix thN z  can be obtained by evaluating the inte-
grals 3E  given in equation (4.62) by LBAM for five-folded integrals already 
given in equation (4.52), where γ = 1, whereas ( ),   ,   ,  , 1 , 2 , 4 , 5 , 6g z z z z zN N N N N  and 

( ),   ,   ,  , 1 , 2 , 4 , 5 , 6f z z z z zN N N N N  for the considered case are, respectively:
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The AFDmix is evaluated as:

 ( ) ( )
( )=AFDmix th

mix th

mix th

z
F z

N z
 (4.65)

4.6.3 nuMErIcal rESulTS for MIxEd v2v rf-fSo coMMunIcaTIonS

In Figures 4.10 and 4.11, HOS results for a V2V mixed R-A RF-FSO-RF A–F commu-
nication link in mixed TF and F environments are presented. It can be seen that exact 

FIGURE 4.10 Normalized ( )mix thN z  for V2V R-A mixed RF-FSO-RF triple-hop A–F relay 
link for various system model parameters.
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analytical expressions fit well with approximations (closed form expression approxi-
mated by LBAM), especially for higher values of the signal envelope output threshold 

thz [dB]. The RF sections of R-AV2V RF-FSO-RF links are each modelled with the 
α– –d µ distribution and numerically evaluated for various α– –d µ distribution 

parameters such as non-homogeneity parameter a, fading severity parameters µ 1m , 
µ µ µ,  , 2 5 6m m m , and normalized, ϑ ϑ ϑ ϑ= = = = 11 2 5 6m m m m . The variances in equa-
tion (4.59) are expressed as �σ ϑ µ( )= =f iZ mi mi miN i

π / ,  1,2,5,62 2 2

, 
 where the maximum 

DFs are assumed to be the same, ( ) ( )= = = = = +1 2 5 6 ms
2

md
2

f f f f f f fm m m m m , 
where msf  and mdf  are maximum DFs for R-A V2V RF-FSO-RF link of the s-v and 
d-v, respectively.

The FSO section of a V2V RF-FSO-RF A–F relay link is modelled with gamma–
gamma distribution, where numerical results are computed for various optical fading 
severity parameters (α II, β II) and various gamma–gamma irradiance variance values 

(σ α β α β( )= + +1/ 1/ 1/GG
2 II II II II ) (Andrews and Phillips, 2005). The σ �

2
3ZN
 and σ �

2
4ZN
 

in equation (4.59) are assumed to take the same values and in the case of the GZM 
rvs can be expressed as σ σ σ σ= = =� � � π2 2 2

0
2 2

GG
2

3 4
f ZZ Z ZN N

, as obtained in Jurado-

Navas et al. (2017), where = 1Z  for gamma–gamma distribution. 0f  is the frequency 

of fades and can be further expressed as ( )=f t1/ π 20 0  (Jurado-Navas et al., 2017). 

FIGURE 4.11 Normalized ( )AFDmix thz  for V2V R-A mixed RF-FSO-RF triple-hop A–F 
relay link for various system model parameters.
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Furthermore, λ= /0t S u is the turbulence correlation time, where λ is the optical 
window, S is the optical distance, and u is the average wind speed (Jurado-Navas et 
al., 2017).

Figure 4.10 reports the behaviour of ( )mix thN z  for various FSO sets of parameters 
(α β,  II II, λ = 1,550 nm, = =1 m/s,   200 mu S ) and for various RF sets of parame-
ters (µ 1m , µ µ µ =,  ,  ,   ,   90 Hz2 5 6 a fm m m m ). It can be seen that by increasing RF fading 
severity as well as FSO optical severity parameters (µ 1m , µ µ µ α,  ,  ,  2 5 6

II
m m m and β II), 

the ( )mix thN z  decreases, as expected. A similar trend can be noticed by increasing the 
non-homogeneity parameter .a  Moreover, it is evident that (µ 1m , µ µ µ α,  ,  ,  2 5 6

II
m m m

and β II) have slightly stronger impact on ( )mix thN z  than a for the considered system 
values.

The behaviour of ( )AFDmix thz  is shown in Figure 4.11. By increasing non-homoge-
neity parameter, multipath severity, and turbulence severity parameters, ( )AFDmix thz  
decreases in the lower dB output regime while ( )AFDmix thz  increases in the higher 
dB output regime.

4.7  V2V COOPERATIVE MIXED RF-FSO COMMUNICATIONS 
WITH DIRECT AND RELAY-ASSISTED RF LINKS

The V2V direct link supported by a redundant multi-hop R-A mixed RF-FSO-RF 
V2V link consisting of source vehicle (s-v), two AF RSU-relays and destination vehi-
cle (d-v) is shown in Figure 4.12, whereas a V2V R-A link supported by redundant 
multi-hop R-A mixed RF-FSO-RF V2V link is shown on Figure 4.13.

FIGURE 4.12 V2V direct RF link supported by V2V mixed RF-FSO-RF A–F relay link.

FIGURE 4.13 V2V R-A RF links supported by V2V mixed RF-FSO-RF A–F relay link.
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4.7.1  v2v cooPEraTIvE MIxEd rf-fSo coMMunIcaTIonS wITh dIrEcT 
and rElay-aSSISTEd rf lInkS ovEr dSc and Tf channElS

The PDF and CDF of a V2V direct RF link supported by a mixed RF-FSO-RF A–F 
relay link at the output of the proposed model with SC-AS system at reception (for 
the scenario presented in Figure 4.10) is:

 ( ) ( ) ( ) ( ) ( )= +α αcoop, 1 coop, 1 mix coop, 1 – – coop, 1 – – coop, 1 mix coop, 1p z p z F z p z F zd µ d µ  (4.66)

 ( ) ( ) ( )= αcoop, 1 coop, 1 – – coop, 1 mix coop, 1F z F z F zd µ  (4.67)

where α– –pd µ and α– –Fd µ are PDF and CDF of direct V2V communications over 
α– –d µ fading channels obtained in equations (4.3) and (4.5), respectively, while 

mixp and mixF  are PDF and CDF at the output of V2V mixed RF-FSO A–F relay system 
obtained in equations (4.49) and (4.50), respectively.

Similarly, the PDF and CDF of V2V R-A RF links supported by a mixed 
RF-FSO-RF A–F relay link with SC-AS (for the scenario presented in Figure 4.11) is:

 ( ) ( ) ( ) ( ) ( )= +α  coop, 2 coop, 2 sd coop, 2 – – coop, 1 sd coop, 2 mix coop, 2p z p z F z F z F zd µ  (4.68)

 ( ) ( ) ( )=coop, 2 coop, 2 sd coop, 2 mix coop, 2F z F z F z  (4.69)

where sdp  and sdF  are PDF and CDF of R-A V2V communications over α– –d µ fad-
ing channels obtained in equations (4.14) and (4.15), respectively.

4.7.2  PErforMancE MEaSurES of v2v cooPEraTIvE MIxEd rf-fSo 
coMMunIcaTIonS wITh dIrEcT and rElay-aSSISTEd rf lInkS

The LCR at the output of the SC-AS with two i.n.i.d. branches for the scenario pre-
sented in Figures 4.12 and 4.13 are, respectively:

 ( ) ( ) ( ) ( ) ( )= +α αcoop, 1 th mix th – – th – – th mix thN z N z F z N z F zd µ d µ  (4.70)

 ( ) ( ) ( ) ( ) ( )= +coop, 2 th mix th sd th sd th mix thN z N z F z N z F z  (4.71)

where ( ) ( )α , – – th sd thN z N zd µ , and ( )mix thN z  are the LCR expressions at the output 
of the direct V2V link, R-A V2V link, and mixed R-A V2V RF-FSO-RF A–F link 
obtained in equations (4.9), (4.26), and (4.61), respectively. AFD at the output of the 
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direct V2V link and R-A V2V supported by redundant mixed R-A V2V RF-FSO-RF 
A–F link are, respectively:

 ( ) ( )
( )=AFD  coop, 1 th

coop, 1 th

coop, 1 th

z
F z

N z
 (4.72)

 ( ) ( )
( )=AFD  coop, 2 th

coop, 2 th

coop, 2 th

z
F z

N z
 (4.73)

4.7.3  nuMErIcal rESulTS for v2v cooPEraTIvE MIxEd rf-fSo 
coMMunIcaTIonS wITh dIrEcT and rElay-aSSISTEd rf lInkS

The HOS measures of cooperative V2V mixed RF-FSO-RF A–F relay link with a direct 
RF V2V link (scenario presented in Figure 4.12) evaluated from exact integral-form 
expressions (equations 4.70 and 4.72) for various sets of RF-FSO-RF link parameters 
µ µ µ µ α β λ= = = =( , ,  ,  ,   ,   ,  90 Hz,  1,550 nm,  1 m/s, 200 m)1 2 5 6

II II f u Sm m m m m  
and various values of direct RF link parameters (µ µ =,  ,  ,  90 Hz1 2 a fm ) are pre-
sented in Figures 4.14 and 4.15, respectively.

FIGURE 4.14 LCR (s−1) for dual-hop R-A RF V2V link supported by redundant mixed V2V 
RF-FSO-RF A–F relay link for various system model parameters.
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Since =f vf cm c / , where v is speed, fc is the carrier frequency, and c is the speed of 
light, it can be seen that by increasing fm (by increasing speed or carrier frequency), 
the ( )coop, 1 thN z  increases, while ( )AFDcoop, 1 thz  decreases. Similarly, by increasing 
the fading severity parameters and non-homogeneity parameter, ( )coop, 1 thN z  and 

( )AFDcoop, 1 thz  decrease for lower thz  values. It can be concluded from Figure 4.10 
that the direct V2V link assisted by a R-A RF-FSO-RF link provides a significant 
decrease of ( )coop, 1 thN z  values for lower thz  if compared with a single RF-FSO-RF link. 
Interestingly, the direct V2V assisted by RF-FSO-RF link has the same ( )coop, 1 thN z  
values for higher thz  as the single RF-FSO-RF link. Although the addition of the 
direct V2V link tends to decrease the values of ( )AFDcoop, 1 thz  for the same values of 
the system model parameters, in boundary regions (for small and high thresholds), 
the direct V2V assisted by a RF-FSO-RF link has the same of ( )AFDcoop, 1 thz  values 
as the single RF-FSO-RF link.

The HOS measures of a cooperative V2V mixed RF-FSO-RF link with a relay-assisted 
RF V2V link (scenario presented in Figure 4.13) evaluated from exact integral-form 
expressions (equations 4.71 and 4.73) for various sets of RF-FSO-RF link parameters 
µ µ µ µ α β λ= = = =( , ,  ,  ,   ,   ,  90 Hz,  1,550 nm,  1 m/s,   200 m)1 2 5 6

II II f u Sm m m m m  
and various values of direct RF link parameters (µ µ µ µ =,  ,  ,  ,  ,  90 Hz1 2 1 2 a fx x y y m ) 
are presented in Figures 4.14 and 4.15, respectively.

FIGURE 4.15 AFD (s) for dual-hop R-A RF V2V link supported by redundant mixed V2V 
RF-FSO-RF A–F relay link for various system model parameters.
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In particular, by comparing the mixed V2V RF-FSO-RF link and the dual-hop 
R-A V2V link assisted by a redundant V2V RF-FSO-RF link in terms of HOS mea-
sures presented in Figures 4.14 and 4.15, one can conclude that the addition of a 
parallel dual-hop R-A V2V RF link can lead to the decrease of the ( )coop thN z  and 

( )AFDcoop thz .

4.8 CONCLUSIONS

This chapter considers HOS performance measures of V2V communications over 
d–α-µ fading channels enabled through direct RF links, relay-assisted RF links, 
cooperative relay-assisted RF links as well as through redundant RF-FSO links. The 
TF in FSO links is modelled with gamma–gamma distribution. Numerical examples 
in terms of HOS measures show that exact analytical expressions fit well with the 
approximations, especially in the higher signal envelope dB output regime. The HOS 
performance measures of the considered V2V configurations are analysed under 
different propagation conditions. Namely, in less severe fading conditions (e.g., by 
increasing the values of multipath fading and non-homogeneity parameters) the sys-
tem performance improvement in terms of HOS measures can be achieved. In the 
case of mixed RF-FSO-RF V2V scenarios, the less severe RF fading conditions and 
TF severity conditions improve the system performance.

Moreover, in relation to the considered mixed RF-FSO-RF and cooperative 
mixed RF-FSO-RF V2V scenarios, the direct V2V communications assisted by a 
RF-FSO-RF link ensure the lowest LCR values for the lower thresholds under the 
same propagation conditions. Since the mathematical complexity of exact integral 
expressions as well as approximate expressions derived by LBAM with addition 
of V-Comm multi-hop and cooperative multi-hop systems increases, the provided 
mathematical expressions can be subjected to machine learning techniques in order 
to additionally decrease the computation time; this will be considered in our future 
work.
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5.1  INTRODUCTION

Telecommunication industry is already deploying 5G standard-based [1] networks, 
but the process has a lot of challenges, not only from a technological perspective 
but also from a financial point of view [2]. The process is inevitable as the user den-
sity is rising at an incredible rate, but with unpredictable clustering, due to the user 
mobility. It is expected that the traffic consumption will rise exponentially with the 
massive machine-type communication (mMTC) [3], which will be imposed by the 
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penetration of Internet of Things (IoT), thus the need for increased traffic capacity, 
both on the 5G radio access network (RAN) and on the core network. But the chal-
lenge expands further into solving power consumption problems as well as providing 
low data rates for the consumers.

The last decade focused on virtualization technologies that acted as driver for 
cloud services, both private and public. Most of the services were virtualized using 
virtual machines and appliances, followed by containerization, which has further 
improved the usage scenarios, allowing complex end-to-end services, with reduced 
economic impact driven by the economy of scale. Networking concepts are included 
this stream. Software-defined networking (SDN) allowed the separation of the con-
trol plane and the data plan and has improved the cloud orchestration significantly. 
Network functions virtualization (NFV) architecture has allowed the virtualization 
of the network functions (VNFs) on a commodity hardware, improving the finan-
cial aspect of the new networking concepts, but also allowing agile approach toward 
building scalable and adaptable network services. Although different, SDN and 
NFV complement each other and have become key technology enablers [4] of the 
5G networks.

Another 5G requirement is the need for user plane latency of just 1 ms for ultra-
reliable low-latency communications (URLLC) [5], which will allow mission-critical 
and safety-critical applications to run on the network with high reliability. This has to 
be provided in a situation where there are many connected entities that require high 
bandwidth and, in many cases, communicate among each other, and in many cases 
quality of service (QoS) needs to be provided. The SDN and the NFV architecture 
are the key enablers of the services in such cases, and allow simple and fast service 
provisioning, network management automation, and innovative service development 
approach, while at the same time the CAPEX and OPEX are significantly reduced. 
The ETSI Industry Specification Group for Network Functions Virtualization (ETSI 
ISG NFV) [6] is responsible for the standardization of the NFV architecture within 
telecom networks.

The 5G networks have to comply with strict requirements, and yet the services 
built upon them require increased reliability, scalability, and availability. One option 
is to bring the compute and storage resources used by the services and the application 
that drive them, close to the end user and the network edge. This is applicable not 
only to the virtualized RAN (vRAN) but also to the 5G core network. It can be done 
using an NFV-based approach, where the NFV elements are distributed geographi-
cally in multiple locations, allowing the network to grow toward the edge. The NFV 
Architecture Framework [7] is depicted in Figure 5.1.

The OpenFlow (OF) communication protocol is one of the first standards defined 
in SDN. It allows the network flow among the control plane and the data plane. 
The controllers communicate with the networking elements through the southbound 
APIs, but also with the business logic through the northbound API. OpenFlow 
is used by the controllers to push updates into the flow tables of the OF-capable 
switches and routers in the data plane. The path of the individual packets is defined 
through the flow tables [8], which are updated every time a new path is needed. The 
packets come directly into the data plane of the SDN network where its source and 
destination addresses are matched to an entry into the flow table. If such an entry 
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is found, the packet continues its journey, but if an entry isn’t found, the packet is 
directed into the control plane, which calculates its optimal path [9–11]. The control-
ler updates the flow table accordingly and any consecutive packet is directed to its 
destination immediately without the need to interact with the control plane. This 
concept complements the concept of the NFV, and the possibility for distribution of 
the SDN control plane has been researched and analyzed [12–14].

In this work, we are investigating the possibilities for distribution of the NFV 
architecture and the impact that such a distribution has on the network latency. We 
have created analytical models for three scenarios: centralized infrastructure, an 
environment with distributed data plane and central management and orchestration 
(MANO), and finally fully distributed infrastructure in which every location has 
a data plane and a MANO environment. Our motive is to evaluate the impact that 
distribution of the network architecture has on the packet sojourn time when an end-
to-end service is built in a monolith architecture and when the service spans across 
multiple locations, thus bringing it closer to the end consumer. This is a significant 
prediction in a 5G-based environment. For the analytical models, we are using the 
queuing theory and we model the network elements: the switches, the controllers, 
the VNFs, and the VNF manager as M/M/1 queues. The system is conceptualized 
as a Jackson network. In the distributed environment, the communication among 
the location is on both the data plane level and the MANO level. We consider the 
network packet delay caused within one location due to the OF concept, but also 
the delay caused by the distribution and the links that connect the geo-locations. The 
modes are tested in different scenarios of MATLAB [15] simulation that can help to 
pinpoint the main factors that have an effect on the network latency.

FIGURE 5.1 NFV reference architectural framework [7].
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In the next phase, we are introducing an experimental environment based on an 
NFV infrastructure (NVFI) with two geographically separated datacenters. We con-
duct experiments to analyze and to compare the latencies within single-location ser-
vices and distributed services. It is important to consider the proximity of the service 
to the end user. The availability and the reliability of the service must be on a highest 
possible level; thus, this scenario is valid for disaster recovery planning. At the end 
we compare the analytical results with the experimental results in order to evaluate 
the validity of the analytical models.

Most of the works toward distribution of the NFV-based network are concen-
trated on specific parts of the architecture. Some authors are investigating the SDN 
approach to evaluate the network performance [16,17]. Software algorithms for SDN 
elements placements are often proposed [18]. Others are evaluating only the control 
plane and the latency it adds to the system [19] or only the data plane and its elements 
[20]. Our work distinguishes in the approach that combines SDN and NFV, as they 
are inevitably connected in practice. ETSI has presented this connection as given in 
Figure 5.2 [21].

The analytical models of systems as complex as this have multiple degrees of 
freedom. We are making some simplifications and generalizations in the models, but 
the use of queuing theory in the modeling comes naturally when OF elements are 
modeled. Other authors have used M/M/1 queues [17,22], but other types of queues 
such as M/M/m and G/G/m are also used [23,24]. Another stream of exploration is 
the network slicing in 5G researches [25], which divide the network architecture 

FIGURE 5.2 NFV and SDN domains interaction according to ETSI [21].
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horizontally, on multiple slices, each with its own purpose. NFV architecture is a 
basis for it also.

The objective of our work to help researchers and network architects to build 
cost-effective, secure, easily manageable, and innovative network environments that 
will form a basis for new generation services, especially in the 5G era. The conclu-
sions that we take are usable when building the RAN network, but also in the later 
stages when services are planned upon it, especially for the latency in an NFV-based 
environment.

In the next sections, we will go through the related work on this subject and then 
we will present the analytical models that are proposed. The simulations conducted 
in MATLAB are shown next. Latter we present the experimental environment and 
the results from it. In the end, we draw the conclusions.

5.2  RELATED WORK

The academic community, but also the related industries, are researching the possi-
bilities for building optimized services by using NFV architecture that will fully uti-
lize the potentials that 5G mobile networks are providing. It is a broad field and many 
aspects are being investigated. Some authors have chosen a theoretical path by con-
structing mathematical models to simulate different scenarios and predict the behav-
ior of the system [17,22,23,26,27]. Markovian queuing models are the most used 
approximation of the VNFs and the network elements that constitute the MANO. 
Other authors are proposing algorithms, applications, and frameworks that are opti-
mizing some process within the NFV environment [28,29]. Experimental researches 
are also being performed to confirm or to improve the features of the services that 
run within the system [30,31].

In our work, we are both proposing analytical models that represent different 
network topologies in which we introduce an NFV geo-distribution and testing the 
efficiency of the proposed models in terms of network packet delay. We are also 
introducing a novel experimental testbed in which we calculate the delay in the ser-
vice chains that span across separated geo-locations, and we compare the results with 
monolithic service chains on a centralized NFV environment.

The authors of [17] modeled an SDN environment with a single SDN controller 
and a data plane with multiple nodes. Every node has a single switch. The controller 
is modeled as an M/M/1 queue, and the data plane is modeled as an open Jackson 
network, similar to our work. They performed simulations to evaluate key system 
metrics such as the average time a packet spends in the network. Our work distin-
guishes from theirs because we consider an NFV-based system taking into consid-
eration the NFV MANO that consisted of a controller but also an VNF manager. In 
the analytical models we consider, the MANO can be also distributed in multiple 
locations, with multiple controllers and VNF managers that communicate among 
each other.

Jarschel et al. [26] modeled an SDN-based system in which the controller and 
the switch were modeled as Markovian servers with an M/M/1 forward model and 
an M/M/1-S for the feedback model. Their model was based on a single switch and 
a single controller and their accent was on the probability of packet loss in such a 
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system. The authors of [22] worked on an OpenFlow SDN environment that had 
a single controller and multiple switches. They analyzed how the probability of 
packet-in messages impacted the performance of the switches and the controllers. 
The  controller was modeled as an M/M/1 queue, while the switches were modeled as  
M/H2/1 queues. They concluded that the latency in the network rises exponentially 
with a linear rise of the probability for OF packet-in messages. In our analytical mod-
els we are also using M/M/1 queues to model the switches and the controllers. But 
our main accent is on the distribution of the NFV-based model and the impact that it 
has on the packet sojourn time.

In the work of [23], the subject of the analytical model was the network chains 
made of VNFs that form the data layer of the system. The VNFs were modeled 
as G/G/m queues in a three-tiered architecture that represented an LTE virtualized 
Mobility Management Entity.

Sarkar et al. [27] explored an SDN environment and they also used M/M/1 queues. 
They propose two scenarios, one in which they explore the limitation of the control-
ler regarding the number of OF switches it can handle based on the flow rate, and a 
second one in which they explored the tolerance of the OF switches based on packet 
sojourn time to decide when to shift from one to another controller.

Sadaf et al. [28] used software modeling of an NFVI. An integrated process 
modeling and enactment environment called MAPLE was introduced. They gener-
ated traceability information and used analysis support built into Eclipse Papyrus 
to review the automation of network service management in NFV. The goal was to 
define an automated process for the design, deployment, and management of network 
services that form a VNF chain.

A review of NFV and service function chain (SFC) implementation frameworks 
is done in [29]. Based on the primary objectives of each of the surveyed frameworks 
they categorized them into three: resource allocation and service orchestration, per-
formance tuning, and resilience and fault recovery. Their accent was also on the 
NFV slicing, which is related to the NFV distribution that we are investigating in 
our research.

A novel experimental testbed of an NFV-based system is proposed by Vergara-
Reyes et al. [30]. Their main objective was to benchmark a selected set of supervised 
machine learning (ML) algorithms to efficiently classify the traffic within the system. 
Such an analysis was important for performing various tasks within an NFV envi-
ronment, such as QoS, deep packet inspection (DPI), establishing network security, 
and controlling the virtual network. As the traffic mostly goes in the virtual layer in 
the east–west direction, such an analysis was a challenge. Our experimental testbed 
uses similar tools, but the experiments and the research go in another direction.

The authors of [31] implemented a novel experimental testbed, which they named 
5GIIK. They focused on the management and orchestration of network slices. They 
both identified design criteria that are a superset of the features present in other tes-
tbeds and determined appropriate open-source tools for implementing them. Their 
testbed was about slice provision dynamicity, real-time monitoring of VMs, and 
VNF onboarding to different virtual infrastructure managers (VIM). We are also 
introducing an experimental NFV testbed, but the concept of network slices is more 
focused on the virtual network overlays, which divides the network horizontally, 
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while our investigation is on the architecture distribution and the vertical network 
division.

In [32], a framework that uses network slicing is proposed to provide seamless 
and isolated access to corporate-based content while moving through heterogeneous 
networks. This solution allows mobile network operators to dynamically instantiate 
isolated network slices for corporate users, and handover them between 3GPP and 
non-3GPP networks while users move away from the corporate network. The authors 
investigated remote working in a corporate environment in which multiple locations 
were used, which is related to our network distribution research.

5.3  ANALYTICAL MODELS

To create the models for a system built upon NFV architecture we are using queuing 
theory principles. We are using SDN principle and the interaction between the SDN 
and the NFV is given in Figure 5.2. There are three models that are examined [33]:

• A centralized system where all the elements are in a single location (usually 
a single data center). The system has one controller, one VNF manager, and 
one switch.

• A system that has a distributed data plane, meaning that it has NFVI 
 elements on multiple locations. The VNF chains can span on multiple data-
centers and different geographical locations. Every location has one switch. 
The MANO environment has one controller and one VNF manager that 
serve all locations.

• Fully distributed system, where every location has all the elements of the 
NFV. Every location has a data plane made upon NFVI with a single switch, 
and MANO with a controller and a VNF manager. The controllers com-
municate with each other and every controller is aware of the entire system.

5.3.1  aSSuMPTIonS

In practice, it is normal that a single location has multiple switches. In our models, we 
are simplifying the system with a single switch on every location. The approximation 
does not have a high impact on the overall system generalization as multiple serially 
connected switches that are connected with high bandwidth links on a small distance 
can easily be replaced with a single more powerful switch. We are modeling the data 
plane as a Jackson network, similar to [24]. The switches are Jackson’s servers. The 
arrival of the data at every location is assumed to be a Poisson process [34,35].

We assume that the arrival of network packets at the nodes and the service times 
of the nodes are independent from each other. The system is OF-based. The packet 
service time has an exponential distribution [32,36]. The network queues are in bal-
anced state and every component can serve the required traffic, which means that the 
network queues have reached a balanced state with utilization less than one.

Under these assumptions, we can model the switches, the controllers, and the 
VNF managers as M/M/1 queues that have infinite queue sizes. We assume that all 
the packets that arrive in the system are processed and there is no packet drop-out.
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In the models with a single controller, it is responsible for all the changes in the 
OF tables, in all locations. In the models with multiple controllers, every control-
ler is responsible for changes in the OF tables in the switches. The controllers that 
have received the packet-in message are responsible for the packet-out message. The 
controllers communicate with each other and every controller is completely aware of 
the entire setup and the architecture in all locations in order to calculate the optimal 
packet flow. The SDN service chain can span on multiple locations.

The VNF managers are connected to the element managers (EM) and the VNFs 
and control their creation, destruction, and scaling. The VNF managers are con-
nected to the controllers and react in the NFVI when the controller cannot find an 
available VNF for the service.

The VIM is connected to the NFVI, but we assume that it controls the infrastruc-
ture independently. The infrastructure always has available resources, which can be 
assigned to the VNFs when a certain threshold is reached, thus it does not contribute 
to the network packets sojourn time. Due to this, we do not put the VIM into the 
analytical models.

5.3.2  cEnTralIzEd nfv ModEl

A graphical representation of the centralized NFV model can be seen in Figure 5.3. 
The arrival rate at the switch is λ0. The probability of packet-in message is denoted 
as q0. While the probability of packet going from the controller to the VNF manager 
is denoted as rm. A full explanation of the notation used is given in Table 5.1.

The utilization of the controller, the switch, and the VNF manager is 
calculated as:

 ρ = Λ
µ

 (5.1)

We calculate the total arrival rate at the switch Λ0 as a sum of the external arrival 
rates and the packets sent to the switch by the controller:

 λ λΛ = + ⋅0 0 0 0q  (5.2)

Similarly, we calculate the total arrival rate at the controller Λc and the total arrival 
rate at the VNF manager Λv  as:

 λ λΛ = ⋅ + ⋅ ⋅0 0 0 0q r qc V  (5.3)

 λΛ = ⋅ ⋅0 0r qV V  (5.4)

The average time the packets spend in the switch, the controller, and the VNF 
 manager are calculated as:
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FIGURE 5.3 Model of a centralized NFV.
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In this centralized scenario, we assume that all network traffic goes within a single 
datacenter. The transmission and the propagation latency of the connections among 
elements are minimal and do not produce additional latency. The average time the 
packet spends in the system [ ]AVGM T  is a sum of the average times given in equations 
(5.5–5.7).

 = + +[ ] [ ] [ ] [ ]AVG 0M T M T M T M Tc V  (5.8)
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TABLE 5.1
Notation Used

Symbol Parameter

λi Arrival rate at switch i

qi Probability of packet going from switch i to controller

pij Probability of packet going from switch i to switch j

rV Probability of packet going from controller to VNF manager

μi Service rate of the switch i

μc Service rate of the controller

μV Service rate of the VNF manager

B Binary decision, 0 or 1

Λi Total arrival rate at the switch i

Λc Total arrival rate at the controller

ΛV Total arrival rate at the VNF manager

Ti Sojourn time at the switch i

Tc Sojourn time at the controller

TV Sojourn time at the VNF manager

M[T] Mean value for the sojourn time of packets in M/M/1 queue

LT Transmission latency

LP Propagation latency

LTij Transmission latency from i to j

LPij Propagation latency from i to j

TN Time spent in network

TNC Time spent in the network for packets going to the controller

TNS Time spent in the network for packets going between switches

M[TNC] Mean value for the sojourn time for packets going to the controller

M[TNS] Mean time for the sojourn time for packets going between switches

Bij Number of packets on link from i to j

Bwij Bandwidth on link from i to j

dij Distance from i to j

s Speed of data in link
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5.3.3  nfv ModEl wITh dISTrIbuTEd daTa PlanE and cEnTral Mano

The following model shows a scenario in which the data plane is distributed among 
multiple physical location, meaning multiple data centers, which can be in different 
geographical regions. These regions are used by almost all public cloud providers 
and are defined as a set of datacenters deployed within a latency-defined perim-
eter and connected through a dedicated regional low-latency network [37,38]. The 
MANO is central and manages the entire data plane. This scenario can be used for 
services that are logically near the end consumer. One such example is multimedia 
services, such as IPTV, where the streaming services are close to the viewers, while 
the backend can be in completely different location, together with the MANO ele-
ments. The MANO is used to start and stop streaming containers on the distributed 
locations. The model is graphically represented in Figure 5.4.

The number of locations is k. The arrival rate at switch i is denoted as λi where:

 { }∈ …1, 2, 3, , i k . 

The utilization of the switch, the controller, and the VNF manager are given in 
 equation (5.1). The switches are in balanced state and the total arrival rate for the 
switch i is a sum of the arrival rate from outside and the arrival rates from the other 
switches.

 ∑σ λ σ= + ⋅
= ≠

( )
1, 

p bi i

j j i

k

ij ij j (5.10)

As in the VNF chains, there can be a situation where there is no connection between 
some switches, we set bij at value 0 when there is no connection between switches i 
and j, or value 1 when there is no connection between switches i and j.
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The total arrival rates for the switch i, the controller c, and the VNF manager v are:

 ∑σ λ σΛ = + ⋅ + ⋅
= ≠
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q q bi i i i

j j i
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FIGURE 5.4 NFV model with distributed data plane and central MANO.
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The average time the packets spend in the switch, the controller, and the VNF man-
ager are:
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With this we can calculate the average time the packet spends in the system, without 
the impact of the links between the distributed locations:
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To calculate the impact of the links to the packet sojourn time, we calculate the 
 transmission and the propagation latency between i and j as:
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 (5.19)

 =
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The total latency is made of the latencies of the communication between the switches 
and the controller, and between the switches, given with:

 ∑ ∑ ∑ ( )( )= ⋅ + + ⋅ + ⋅
= = = ≠
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1 1 1,
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i Tic Pic

i

k

j j i

k
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With this, the overall packet latency in the system is a sum of the latency caused by 
the system [ ]SYSM T  and the latency caused by the network links [ ]M TN :

 = +[ ] [ ] [ ]AVG SYSM T M T M TN  (5.22)

5.3.4  fully dISTrIbuTEd nfv ModEl

The fully distributed environment is set up with a separate data plane and MANO 
elements, including a controller and a VNF manager in every location. In real 
situation, every location must have a VIM manager that manages the underlying 
physical infrastructure, but we choose not to model it as the assumption are that 
the infrastructure has sufficient resources and the VIM manager does not influence 
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the packet sojourn time. As we noted, the controllers communicate with each other 
synchronously and every controller is fully aware of the total network infrastruc-
ture. This process goes parallel with the main controller function, to update the OF 
tables, so it also does not influence the packet sojourn time. The model is presented 
in Figure 5.5.

The fully distributed architecture is mostly used when it is needed that the ser-
vices are close to the end consumer, but the VNF chain is such that all the VNFs are 
in a single location. If the chain is spread across multiple locations, the traffic will 
go through the links multiple times, and the overall network latency will be depend-
able from the latency caused by the links among the datacenters or the regions. If 
the chain spreads across three or more regions, the links have a decisive role in the 
overall latency, so such a scenario is used only if necessary for the purpose it is built 
for. This architecture is beneficial when disaster recovery is planned, and it can apply 
zero downtime if a certain region fails.

The number of locations is k. The locations are noted as i, j where:

 { }∈ …,  1, 2, 3, , .i j k  

Similar to equation (5.1), the utilization is given as:

 ρ = Λ 
 µ

i
i

i

 (5.23)

The switches, controllers, and the VNF managers are in balanced state. The net input 
σ i  is calculated in equation (5.24), while the total arrival rate of the switch is calcu-
lated with equation (5.25).

FIGURE 5.5 Fully distributed NFV model.
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 ∑σ λ σΛ = + ⋅ + ⋅
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The total arrival rates of the VNF managers and the controllers on location i are 
calculated as:

 ∑λ λΛ = ⋅ ⋅ + ⋅ ⋅
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With these formulas we can calculate the average sojourn time that the packets spend 
in the elements:
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Now, the average time the packet spends in the system [ ]SYSM T , without the impact of 
the links between the distributed locations is given in equation (5.31):
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The transmission and propagation latency are calculated as in equations (5.19 and 
5.20). The total latency produced from the inter-location links for the communica-
tions between the switches and the controllers is given in equations (5.32 and 5.33).
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With this, the overall latency produced by the links that connect the distributed loca-
tions is equation (5.34):

 ∑ ∑ ∑ ∑( ) ( )= ⋅ + ⋅ + ⋅ + ⋅
= = ≠ = = ≠
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The average packet sojourn time in the system is equation (5.35):

 = +[ ] [ ] [ ]AVG SYSM T M T M TN  (5.35)

5.4  PERFORMANCE EVALUATION OF THE ANALYTICAL MODELS

Simulations of the proposed models are done using MATLAB programs. In the sim-
ulations, we are going with an assumption that 4% of the packets need to go from 
the switch to the controller [16,17,39,40], which is a OF parameter that is widely 
measured and established. We also assume that 4% of the packets that go through the 
controller need to go to the VNF manager that has to react in the VNFs and create 
new VNF instances.

We also define that the controller’s service rate is 90,000 pkts/seconds and the 
VNF manager’s service rate is 95,000 pkts/seconds. For the links, we have taken that 
the distance between the distributed locations is 100 km and that the bandwidth of 
the links is 10 Gbps.

The first simulation that we’ve done is to check the packet sojourn time when there 
is a change in the number of packets (as a percentage) that are sent from the switch to 
the controller. As expected, the simulations have shown that in all the scenarios, the 
packet sojourn time rises with the rise of the packets sent to the controller. The rise 
is exponential with linear rise of the probability for packets sent to the controllers. 
Also, as expected, with scenarios with multiple controllers, the rise is more visible.

Another simulation done to check the dependency of the packet sojourn time from 
the possibility of packets sent to the VNF manager. Again, as expected, the packet 
sojourn time rises with the rise of the possibility for packets sent to the VNF man-
ager, which means that the VNF manager needed to intervene more often in the 
VNF chains by creating/starting or removing new VNFs. There are multiple studies 
[37,38,41] that are researching this part of the NFV-based system. The packet sojourn 
time, and the overall system performance can be optimized by using “smart VNF 
managers” that are using artificial intelligence, pattern learning, and ML methods to 
predict the need for new VNFs and to create them in a timely manner.

The number of distributed locations is one of the main factors that impact the 
latency of a VNF chain that spans multiple locations. We compare the two scenarios 
when the arrival rate at the switches is steady at λ = 50,000 pkts/seconds. Figure 5.6 
shows how the packet sojourn time rises as the number of locations rises. It can be 
concluded that for two locations, the systems behave almost the same, but the sce-
nario with central controller behaves much worse as the number of locations rises. 
This happens due to the packet-in messages that always have to travel through a 
network link, while in the fully distributed scenario the controller is on-site, within a 
same datacenter, which significantly reduces the latency.
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In the next simulation, we were investigating the impact that probability of pack-
ets sent to the controller has on the system latency. First, we work on the distributed 
system with central MANO. If more packets are sent to the controller the latency gets 
higher. The latency rises faster as the number of switches gets larger. The simulations 
are done with service rates: λ = 10,000 pkts/seconds, λ = 11,000 pkts/seconds, and 
λ = 12,000 pkts/seconds. The results are graphically presented in Figures 5.7–5.9. We 
were working with situations in which there are 5, 10, and 15 distributed locations.

The fully distributed system behaves similar to the data plane distributed system 
when we simulate the service time relative to the probably of Openflow table-miss 
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FIGURE 5.6 Packet sojourn time relative to the number of locations.
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and the packet is forwarded to the controller. From Figures 5.10–5.12 we can see that 
the service time is better when we simulate five and ten locations. But if we see the 15 
locations scenario the service time of the system with central MANO is much worse.

We also compare the two distributed scenarios in a situation where we investigate 
the dependency of the service time relative to the probability of packets going from 
one distributed location to another. We again have three simulations, with 5, 10, 
and 15 locations (each with one switch as).

If we analyze Figures 5.13–5.15, we can draw the following conclusions:
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When the number of locations is small, the architecture with central MANO and 
the fully distributed environment behave similarly. But in the same situation, when 
the probability of packets sent to other distributed location is higher, the fully distrib-
uted environment is better.

In the ten locations scenario, again when the probability of packets sent to 
other  location is small, the central MANO architecture is better. But this changes 
rapidly as the probability for packets sent to other locations gets higher. So, if the 
VNF chain spans across multiple locations, the fully distributed environment per-
forms better.
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When we simulate 15 locations, the fully distributed scenario is much more 
effective.

5.5  EXPERIMENTAL EVALUATION OF A DISTRIBUTED NFV

The previous simulations are purely theoretical. We have laid down the assumptions 
and we have made analytical models that were then tested using MATLAB simula-
tions. Another point of view over the distribution of the NFV architecture, in order 
to analyze the packet latency, is the experimental approach. We have made a novel 
experimental testbed in order to compare the network packet latencies in a central-
ized network architecture versus a distributed network architecture. The conclusion 
that we draw are of a high importance, especially for the 5G networks and the pos-
sibility to bring the services close to the consumer, which will then use the 5G RAN 
to connect to the network. The service has to be stable and reliable. The scenarios 
that we simulate can also be used for designing disaster recovery sites, to predict the 
influence that the migration of the service chain to a different geo-location will have 
when the primary location fails. This research is important for the network architects 
when they plan the services that will run on the network platform. The most cost-
effective scenario can be used, which will allow the services to have the smallest 
possible latency.

5.5.1  ExpErimEntal tEstbEd

In order to simulate a distributed NFV environment we have laid down our infra-
structure on two geographically separated datacenters [42]. They are 160 km apart 
and are connected with a 10 Gbps link. There is no QoS implemented. Two hyper-
visors were used, one on each side. The hypervisors were based on Ubuntu 18.04 
LTS and Oracle VirtualBox [43] for the machines. Open vSwitch [44] was used for 
network connection. Each hypervisor has a network card with 1 Gbps bandwidth.
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To simulate the data plane, we used Mininet [45] on which we have built virtual 
network. Each location has 200 virtual VNFs that are interconnected on Mininet 
switches and links. GRE tunneling was used to connect the Mininet infrastructure to 
the Open vSwitch so that the VNF chains have outside access.

The MANO part of the NFV was simulated with Mininet network generator as a 
VNF manager and Ryu Controller [46] was used as a controller. It is installed on a 
separate VM that is connected to Mininet instances on both locations.

We used Distributed Internet Traffic Generator (D-ITG) [47] to generate both 
TCP- and UDP-based traffic. The generator is designed to produce traffic at packet 
level, replicating appropriate stochastic processes for both IDT (inter-departure time) 
and PS (packet size) random variables. We used it to create multiple simultaneous 
flows with standard payload information. IDT was set with normal distribution.

The traffic was captured inside specially installed VMs that were used as a desti-
nation machine for the flows. Wireshark [48] was used for packet capturing.

For each experiment, we were conducting 30 iterations, which lasted from 30 
seconds to 10 minutes. The time intervals on which traffic was generated follow the 
Poisson distribution. We were using 4, 8, 12, and 16 parallel dataflows in the experi-
ments. Using the captured data, we were calculating the mean packet delivery time. An 
average result from all the iterations within an experiment was taken as a final result.

The experimental environment is illustrated in Figure 5.16.

5.5.2  ExPErIMEnTal rESulTS

First, we will present the results when the VNF service chain is on a single location, 
in our case the primary location, meaning that the end consumer is very close to 

FIGURE 5.16 Experimental testbed of a distributed NFV.
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the network services. We are only chaining the number of concurrent data flows in 
the network, with a destination, the VM on the primary location. As expected, the 
mean packet delivery time that we conclude from the iterations rises as the number 
of concurrent flows is bigger, but it can be noted that the overall latency is just a few 
milliseconds. The results can be seen in Table 5.2 and are graphically represented in 
Figure 5.17.

When the VNF chain is distributed in two locations, the network packets can pass 
through the link multiple times, depending on the type of VNFs needed in the chain. 
To test this scenario, we have made experiments when every flow goes through the 
link 1, 3, 5, and 7 times. As the number of passes is odd and the source is always in 
the primary location, the destination is always in the secondary location. Again, we 
are using 4, 8, 12, and 16 simultaneous dataflows, and 30 measurement iterations 
for every situation. The data results are given in Table 5.3 and Figure 5.18. It can be 
seen that the link has a significant impact on the overall latency. The mean packet 
delivery time rises exponentially as the number of passes through the link rises. Now 
the latency is not just a few milliseconds, but it is much larger. From deduction, we 
can conclude that the switches that are connecting the two datacenters and are used 
for link termination add a lot of the transport latency. In our case, the switches work 
in traffic-shaping mode.
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FIGURE 5.17 Packet delivery time in single location.

TABLE 5.2
Mean Packet Delivery Time – Centralized System

Flows 4 8 12 16

Mean packet delivery time in ms 0.434 1.629 2.971 5.86
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We have made another experiment to see the dependence of the mean packet 
delivery time from the percentage of traffic flows that pass through the link. In this 
case, the destination of the flows can be in the primary, or in the secondary location, 
but we manage the percentage of flows that go to the secondary location. Now we 
have used 40 concurrent dataflows. We can mention that when 100% of the dataflows 
were directed through the link, the network interfaces of the hypervisors were 97% 
utilized, which means that we have reached the limit of the setup. We made 30 itera-
tions for every case (for 10%, 20%, 30%, etc.) As it can be seen in Figure 5.19 and 
Table 5.4, the mean packet delivery time rises exponentially as the percentage of the 
dataflows through the link rises linearly. The time is from 5 ms when only 10% of 
the traffic goes to the second location, up to almost 200 ms when all the traffic goes 
through the link. This experiment can be viewed from a disaster recovery perspec-
tive. If the primary location fails and the end service consumer is close to it, all 
services will run on the second location, meaning that all the traffic will go through 
the link. Of course, we assume that the link itself is stable and is not affected by the 
disaster.
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TABLE 5.3
Mean Packet Delivery Time – Two Locations

No. of Passes 
Through Link

Concurrent Flow

4 8 12 16
1 5.121 ms 5.67 ms 6.195 ms 6.634 ms

3 5.72 ms 11.21 ms 31.461 ms 48.389 ms

5 8.432 ms 31.961 ms 61.31 ms 89.455 ms

7 19.651 ms 58.12 ms 112.942 ms 193.82 ms
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The presented experiments are beneficial for network architects that can draw 
conclusions for VNF chains that span across multiple locations and to plan develop-
ment of the network, including disaster recovery (DR) scenarios. It can be seen that 
the proximity of the VNF chain (from both geographical and network point of view) 
can be crucial for the stability of the service that is offered. If regulatory, legal, or 
contractual obligations are taken, it is important to be able to predict the system 
behavior in different situations.

5.6  CONCLUDING REMARKS

The SDN technology and the NFV architecture are providers of advanced services 
that must be brought close to the end user in order to comply with existing standards 
and increase the service to the end entities, especially now, when the 5G enters the 
market with high speed. Distributing the NFV architecture and deploying virtual 
network features in separate locations close to the end user significantly helps to that 
end. This conclusion is proven by the research done in this work.

To draw the conclusions, the first approach is to make analytical models of systems 
using VNF service chains that are operating on a centralized and distributed NFV 
architecture. The models are made using assumptions that are derived by analyzing, 
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TABLE 5.4
Mean Packet Delivery Time Relative to the % of Flows through the Link

% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean packet delivery 
time in ms

5.86 9.82 16.13 22.07 28.91 35.87 5005 61.81 100.12 191.58
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synthesizing, and comparing the data used in our research, with other researches that 
work on similar problems, as well as with the classical physical networks. MATLAB 
programs are used to simulate the analytical models. The results have proved the 
initial hypothesis that NFV distribution can be of a great value when the network 
latency is a key factor for a successful end-to-end service. But, the distribution has 
to be handled carefully, as spanning the service chain across multiple locations can 
have an opposite effect. Using the models, network architects can assess the network 
setup and design an optimal solution from a point of technical efficiency, but also 
from a point of financial impact of the setup.

Further, an experimental scenario is built, using two geographically distant 
location, to evaluate the network packets sojourn time (and thus the latency) in an 
SDN service chain that is built on top of an NFV architecture. Different scenarios 
of service placement were explored, which also confirmed the initial hypothesis. 
This scenario is also feasible when designing a highly available DR system with two 
redundant locations. It allows a researcher to predict the latency that will be caused 
by a DR scenario when one of the two locations becomes unavailable.
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6.1  INTRODUCTION

Artificial intelligence of things (AIoT) represents combination of artificial intelli-
gence (AI) technologies and Internet of things (IoT) infrastructure with the goal of 
achieving more efficient services, improving human–machine interaction, as well 
as improving data management and analytics [1–7]. The convergence of AI and IoT 
is an obvious logical progression in the evolution of these technologies. Data col-
lected by IoT devices and sensors can now be effectively analyzed and contextual-
ized using AI models. These two technological concepts absolutely complement each 
other, developing rapidly and have vital role in industry and society [8–11]. AI is the 
real driving force behind the full potential of IoT. However, in reality there are still 
many challenges. AI and IoT encompass different design principles, industry stan-
dards, and operate on heterogeneous computing platforms and network topologies. A 
successful AIoT environment requires standardization that includes interoperability, 
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compatibility, reliability, and efficiency of new devices that can be self-configured 
and self-adapted [12–19].

Mobile network systems have evolved from communication infrastructure to criti-
cal and necessary industrial and social infrastructure. The concept of ICon intelligent 
connections is based on the combination of the new 5th-generation (5G) networks 
and AI, in order to accelerate technological development and digital transforma-
tion. With the continuous development, new opportunities and challenges arise. The 
technical success of 5G depends on providing a wide range of data rates for much 
wider set of devices and users. The capacity of the 5G network has been greatly 
increased and supports the connection for huge number of IoT devices. Increased 
data rates, reduced end-to-end (E2E) latency, improved coverage, as well as network 
slicing (NS) and mobile edge computing (MEC) support even the most demanding 
and sophisticated industrial IoT (IIoT) applications. The convergence of 5G and AI 
enables the development of flexible and adaptive intelligent networks that support 
scalability by using NS techniques and orchestration, decentralized intelligence by 
moving AI computing capabilities from central nodes to the edge, improved opera-
tional efficiency by reducing human intervention and simpler technological complex-
ity, as well as improved network security by big data (BD) analysis. The convergence 
is expected to take center stage in key vertical domains: industrial manufacturing, 
transportation and logistics, healthcare, security, and the entertainment industry. 
However, there are numerous 5G-AIoT challenges that need to be addressed in the 
near future. For AIoT systems with a high level of complexity, it is possible to apply 
the concept of digital twins (DT) to create a digital representation of physical enti-
ties. The DT solution has been developed over the years under different names such 
as virtual space, digital mirror, digital copy, and then the term digital twins. The 5G 
systems and the DT support each other: the new use cases are based on DT, and on 
the other hand, DT allows us to better understand how 5G fits into our connectivity 
ecosystem.

The major sections of this chapter introduce 5G, IoT and AI, and smart connec-
tivity for critical IoT. In the first part, the key characteristics of co-design of 5G and 
AI as well as ICon intelligent connectivity in complex use cases are presented. In 
the second part, IIoT framework as well as DT models and application scenarios are 
outlined. We conclude with remarks on opportunity and challenges of 5G-AIoT.

6.2  5G FOR SMART IoT CONNECTIVITY

The past few years have seen the rapid growth and convergence of mobile networks, 
devices, and applications. AI and IoT have advanced with a new innovative combi-
nation called artificial intelligence of things (AIoT). The 5G-AIoT paradigm repre-
sents the convergence of networking, intelligence, and things (Figure 6.1). The new 
intelligent network, based on 5G communication, is designed to connect the sensing 
regions (sensors) and the processing center (cloud). Cloud computing (CC) is the 
concept of sharing the resources of remote servers located on the Internet for data 
storage, management, and processing. Data is stored on the Internet platform instead 
of on local devices. The 5G-AIoT is a new field of research into the various capabili-
ties of mobile networks and AI algorithms [20–28].



2555G-Artificial Intelligence of Things

The IoT ecosystem is highly complex, fragmented, and rapidly evolving. The IoT 
ecosystem is not fully developed in terms of technology and application. It is in the 
early stage of implementation, and different applications have been developed for 
different services. Internet facilities have a huge potential for the transformation of 
industry, transport, healthcare, smart home, and smart city. However, there are sev-
eral key challenges such as standardization and interoperability. IoT supports various 
system functions, such as detection, identification, activation, communication, and 
management. Before moving to the application layer, it is necessary to store the data 
and process it efficiently. AI and machine learning (ML) algorithms and analytics 
are essential for the development of AIoT systems. There are three main components 
in IoT: data collection, communication, and computing infrastructure and analyt-
ics. In the implementation and development of IoT analytics, there are the following 
life-cycle stages. The acquisition unit contains smart devices, sensors, production 
systems, and other objects, from which it collects raw data. It is necessary to check 
data integrity, accuracy, and consistency, and prepare for transmission. The Internet 
is the backbone of the communication infrastructure. It connects the acquisition to 
the computerized data center (DC), which processes and analyzes the data. The pro-
cessed data is delivered to smart devices in real time. Therefore, these three compo-
nents also contain numerous challenges.

A typical IoT architecture connects objects to the network at any time via a com-
munication infrastructure. The IoT has great potential for the development of smart 
applications and as a key provider activates new business models based on the IoT 
services. The deployed applications can be classified into four groups: monitoring 
(control devices, environmental status, notifications, alerts), control (device function 

FIGURE 6.1 5G-AIoT convergence of networking, intelligence, and smart objects.
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control), optimization (device performance, diagnostics, repair, etc.), and autonomy 
(autonomous operations). In the implementation and development of IoT applications 
it is necessary to consider the key issues of availability, management, reliability, 
interoperability, scalability (large expansion and integration), security, and privacy. 
The IoT network enables the integration of different objects with embedded technol-
ogy, so that they communicate with both internal systems and the external environ-
ment at the same time [29–33].

Applications utilize information from IoT sensors and objects that can also com-
municate on the Internet. The system supports personalized, automated, and more 
intelligent services. In this regard, there are trends of cloud computing (CC) for 
large-scale data storage and big data (BD) analysis on the huge amount of collected 
IoT data. At the same time, the implementation of 5G mobile networks enables new 
speed ranges and low-latency wireless communication with ultrahigh reliability and 
availability. A huge amount of data is generated in one large IoT system, so edge 
computing (EC) services are necessary close to the device for reliable local unload-
ing and background cloud integration for real-time data processing and content local-
ization. EC edge computing technology is fundamental in addressing the various 
network demands posed by different applications. Mobile edge computing (MEC) as 
platform plays a significant role in this architecture. The three core functionalities it 
enables are real-time and low-latency analysis, local content/caching, close collabo-
ration, and complementarity with CC. EC is suitable for local, real-time, short-term 
data processing and analysis, while CC focuses on global, long-term, non-real-time 
processing and analysis of BD.

The deep integration of IoT technology with BD and AI enables solutions for many 
platforms. AI provides algorithms that analyze data collected from IoT devices, iden-
tify different modes of operation, and make intelligent predictions and decisions. 
When using AI-based applications, any added value comes from the collected data. 
BD analytics can then be used to create predictions, gain insights, and trigger actions 
using defined workflows. In other words, information becomes action in AIoT.

The 5G network technology is becoming the key infrastructure for intelligent 
business and social transformation. The development of the digital economy is pro-
moted through the industrial Internet and intelligent upgrades of traditional indus-
tries. Despite supporting innovative solutions, there are various challenges such as 
integration, connectivity, scalability, adaptability as well as economic issues. The 
emergence of new technologies has forced competitors to adapt in order to maintain 
relevant position in the market. As technology continues to grow, there are both best 
practices and risks that are associated with it [34–41].

6.2.1  co-dESInG of aI and 5G nETwork TEchnoloGy

The focus of mobile system development is communication aspects, while other ser-
vices were introduced in the final design phase with low priority. The consequence is 
that the achieved performance is not optimal or the system capabilities are not fully 
utilized. In the 5G systems, the co-design of AI and IoT technologies is not only 
desirable, but also critical to achieve high performance of future network services 
[42–45].
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AI is not a new concept. Over the last few decades, there was several cycles of 
development, alternating with phases of disappointment and funding cuts (AI Winter). 
Today’s huge investment in AI has significantly fueled the progress and many prac-
tical applications that are now being implemented. Many modern AI methods are 
based on advanced statistical methods. Traditional AI research problems include rea-
soning, knowledge representation, planning, learning, natural language processing, 
perception, and the ability to move and manipulate objects. Probably the most relevant 
method of AI at the moment is ML. Machine learning refers to a set of algorithms that 
automatically improves through experience and data usage. Within ML, a significant 
category is deep learning (DL), which uses multilayer neural networks (DNNs) and 
convolutional neural networks (CNNs). The three most common ML methods are 
supervised (SL), unsupervised (USL), and reinforcement learning (RFL).

• Supervised learning (SL) method relies on manually labeled data samples, 
which are used to train the model so that it can then be applied to similar 
but new and unlabeled data. The two basic types of supervised models are 
regression and classification. Some widely used examples of supervised ML 
algorithms include linear regression (regression problems), random forest 
(classification and regression problems), and support vector machines (clas-
sification problems).

• Unsupervised (USL) method attempts to automatically discover structures 
and patterns from unlabeled data. The main goal is to discover previously 
unknown patterns in the data. Unsupervised ML is used when there is no 
data on the desired outcomes. Typical applications of USL include clus-
tering (automatically divide a data set into groups based on similarity), 
anomaly detection (automatically detect unusual data points in a data set), 
association mining (identify clusters items that frequently occur together 
in a data set), and latent variable models (data pre-processing, reducing the 
number of features in a data set – dimensionality reduction).

• Reinforcement learning (RFL) combines trial-and-error approach with 
rewards or penalties. An agent learns to achieve its goals in an uncertain, 
potentially complex environment. The goal of the agent is to maximize the 
total reward for the actions it performs in the simulation. One of the fun-
damental challenges in RFL is creating an appropriate simulation environ-
ment. For example, an RFL environment for training autonomous driving 
algorithms should realistically simulate road situations. The advantage is 
that it is usually much more convenient to train model in simulated envi-
ronment, rather than risk damaging real physical objects by using model in 
development. However, challenge is then to transfer the model out of the 
training environment and into the real world.

A specialized area within ML is artificial neural networks (ANNs), ambiguously 
inspired by the neural networks that constitute biological brains. An ANN is repre-
sented by a collection of connected nodes called neurons. Each connection can trans-
mit signals to other neurons similar to synapses in the human brain. The receiving 
neuron processes the incoming signal and then signals to other connected neurons. 
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Signals are numbers, which are computed using statistical functions. Neuron con-
nections are weighted, increasing or decreasing signal strength. Weights can be itera-
tively adjusted in learning process. Neurons are grouped into layers, where different 
layers perform different transformations on their input signals. Signals propagate 
through these layers, potentially multiple times. The adjective deep in DL refers to 
the use of multiple layers in these networks. A popular implementation of ANNs is 
convolutional neural networks (CNNs), which are often used for processing visual 
and other two-dimensional data. Another example is generative adversarial networks 
(GANs), where multiple networks compete with each other.

Understanding the basic categories of AIoT data and their corresponding AI meth-
ods is key to the success of R&D project. In ML, we need datasets for training and test-
ing models. A dataset is a collection of data (set of files or a specific table in a database). 
The rows in the table correspond to the members of the data set, while each column 
of the table represents specific variable. The dataset is usually divided into training 
(approximately 60%), validation (approximately 20%), and testing datasets (approxi-
mately 20%). The training data set is used to train the model. Validation sets are used 
to select and tune the final ML model by evaluating the tuned model compared to other 
models. The test data set is used to evaluate how well the model is trained.

The use cases of AI technologies in the 5G ecosystem can be grouped into service 
management (operations support systems, resource provisioning, fault localization, 
fault root analysis, business support systems, security), network and cloud resource 
management (flexible feature deployment, network function virtualization (NFV) 
orchestration, network cutting, green operation), and radio link management (air 
interface coordination, site collaboration, user mobility).

In the first step, ML is applied to optimize and configure the network and devices. 
The mobile network, as well as the devices, contain hundreds or even thousands of 
operational parameters that can be configured. Algorithms for radio resource man-
agement are used, for example, for efficiently allocating radio resources, performing 
handovers, and assigning devices to different frequency bands. The use of ML has 
the potential to improve network configuration and optimize radio resource man-
agement algorithms, in particular when multiple algorithms interact. As a second 
step, 5G networks are being developed toward the wider application of ML. ML 
essentially depends on the availability of data for training and analysis. New 5G 
systems will provide improved reporting mechanisms to support machine learning-
based algorithms.

In 2017 the International Telecommunications Union Radiocommunication sector 
(ITU-R) defined the fundamental framework for the work on 5G by the publication 
of the report Minimum requirements related to technical performance for IMT-2020 
radio interfaces(s). It presents the uses cases and requirements associated with the 
so-called International Mobile Telecommunication-2020 (IMT-2020) system. IMT-
2020 is what in layman’s terms is referred to as 5G. IMT-2020 is intended to support 
three major categories of use cases, namely mMTC, cMTC, and eMBB. At the end 
of 2015, 3GPP has started studies to develop channel models for wireless networks 
operating above 6 GHz and to define 5G requirements. In R14 a study item for a new 
5G New Radio (NR) air interface was concluded and R15 work item has been defined 
for NR specification. R15 will provide a first phase of an NR specification, which will 
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be extended with a second phase in R16 that builds on studies on NR enhancements 
and significant extensions. The work items R17 approved in December 2019 lead 
to the introduction of new features for the three main use case families: enhanced 
mobile broadband (eMBB), URLLC, and massive machine-type communications 
(mMTC). The 3GPP has plans to publish the release at the end of the first quarter of 
2022. The roadmap toward 5G-Advanced begins with R17. Meanwhile, the discus-
sions on the scope of R18 are well underway. The 3GPP RAN standardization team 
began discussing the scope in June 2021 and aims for approval of the detailed scope 
by December 2021. 5G-Advanced early planning indicates that it will significantly 
evolve 5G in the areas of AI and extended XR reality. It improves the user experience 
in many ways by lowering latency, expanding bandwidth, and improving reliability 
and energy savings. We expect a final R18 standard by the end of 2023, so the first 
5G-Advanced networks won’t appear until 2025 [46].

In order to efficiently support such use cases that are in-between eMBB, URLLC, 
and mMTC, 3GPP has studied reduced-capability NR devices (NR-RedCap), previ-
ously known as NR-light and NR-lite, in R17. The RedCap study item has been com-
pleted in December 2020 and is continued as a work item. The use cases envisioned 
for RedCap include industrial wireless sensor network (IWSN), video surveillance 
cameras, and wearables (smart watches, rings, eHealth-related devices, medical mon-
itoring devices, etc.). The following general requirements are common to all RedCap 
use cases: lower device cost and complexity as compared to high-end eMBB and 
URLLC devices of R15/R16, smaller device size or compact form factor, and sup-
port deployment in all FR1/FR2 bands for frequency division duplex (FDD) and time 
division duplex (TDD). In order to meet the above generic requirements, and more 
specifically the one on device complexity and device size, the following features have 
been considered in the RedCap study item: reduced number of user equipment (UE) 
receiver (Rx) and/or transmitter (Tx) branches, UE bandwidth reduction, half-duplex 
FDD, relaxed UE processing time, relaxed UE processing capability. The complexity 
reduction features that are expected to have the largest impact on coverage perfor-
mance are reduced number of UE Rx/Tx branches and UE bandwidth reduction. 
The NR-RedCap UE is designed to have lower cost, lower complexity (e.g., reduced 
bandwidth and number of antennas), a longer battery life, and enable a smaller form 
factor than regular NR UEs. These devices support all frequency range bands (FR1 
and FR2) for both FDD and TDD operations [47–49].

Next, as envisioned today, 6G mobile communication networks are expected to pro-
vide extreme peak data rates over 1 Tbps. The end-to-end delays will be imperceptible 
and lie even beneath 0.1 ms. 6G networks will provide access to powerful edge intel-
ligence that has processing delays falling below 10 ns. Network availability and reli-
ability are expected to go beyond 99.99999%. An extremely high connection density of 
over 107 devices/km2 is expected to be supported to facilitate IoE. The spectrum effi-
ciency of 6G will be over 5× than 5G, while support for extreme mobility up to 1,000 
kmph is expected. Many new research works and projects are start ups that concen-
trated on developing technologies, use cases, applications, and standards. According to 
presented technology roadmap, collaborative efforts of industry and academia focus on 
5G-Advanced evolution for the first five years, while setting the specifications of 6G. 
The first 6G testbeds can be expected to appear only post-2025 [48–56].
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6.2.2  InTEllIGEnT connEcTIvITy In coMPlEx uSE caSES

In the case of AIoT systems with high level of complexity, it is possible to apply the 
concept of digital twins (DT) to create digital representation of physical entities. The 
concept enables efficient management of complexity and the formation of semantic 
layer on top of technical layers. DT is a key enabler of data-driven decision-making, 
complex systems monitoring, product validation and simulation, and object life-cycle 
management. Relatively recent developments in 5G are undoubtedly innovative and 
based on the experiences of complex systems simulation [57–59].

DT is virtual representation of physical object or process in real time. Continuous 
upgrading and growing demands of DT technology generate new requirements and 
trends. In addition, DT can be divided into three categories based on different levels 
of integration, different degrees of data, and information flow that exist between the 
physical object and the digital copy (Figure 6.2):

• Digital model (DM) is digital version of an existing or planned physical 
object. There is no need for automatic data exchange between the physical 
model and the DM. DM examples are building plans, design, and product 
development. When a DM is created, a change made to the physical object 
has no effect on the DM in any way.

• Digital shadow (DS) is a digital representation of an object that contains 
direct one-way data flow between the physical and digital object. Changing 
the state of physical object causes a change in the digital object, but not vice 
versa.

• Digital twin (DT) establishes data flows between an existing physical 
object and a digital object, so that they are fully bidirectionally integrated. 
A change made to a physical object automatically leads to a change in the 
digital object, and vice versa.

Traditional three-dimensional (3D) DT model contains three components: physi-
cal entity in physical space, virtual entity in virtual space, and link between data 
and information that connects the physical and virtual entities. The new modeling 

FIGURE 6.2 The concept of digital model (DM), digital shadow (DS), and digital twin 
(DT).
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requirements extend the five-dimensional (5D) DT model by adding DT data and 
services.

• DT creates virtual models for physical entities digitally and simulates their 
behavior. The physical world is the basis of DT and includes devices, prod-
ucts, physical systems, activity processes, and organizations. DT conducts 
activities in accordance with physical laws in uncertain environments. 
Physical entities can be divided based on functions and structures, which 
are unit level, system level, and system of systems (SoS).

• Virtual models are faithful replicas of physical entities, so they reproduce 
physical geometries, properties, behaviors, and rules. The 3D geometric 
models describe the characteristics of a physical entity (shape, size, toler-
ance, and structural relation). Based on the physical properties, the model 
reflects the physical properties of the entity. The behavioral model describes 
state transition, performance degradation, and coordination, as well as 
entity response mechanisms to changes in the external environment. The 
rule model describes DT logical abilities such as reasoning, judgment, eval-
uation, and autonomous decision-making, following rules based on histori-
cal data or domain expert rules.

• DT data is multi-temporal, multidimensional, multisource, and hetero-
geneous, and is the fundamental driver. Individual data is generated by 
 physical entities, including static attribute data and dynamic condition data. 
The data also generates virtual models as a result of the simulation. Some 
data is obtained from the service that describes the calling and execution of 
the service. Individual data represents the knowledge of experts in the field 
or generated from existing data. There is also fusion data, which is the result 
of the integration of all the above data.

• Service is an essential DT component. The model provides users with appli-
cation services related to simulation, verification, monitoring, optimization, 
diagnosis, and prediction. In the process of building functional DT, a num-
ber of third-party services are needed, such as data services, knowledge 
services, and algorithm services. Finally, the functioning of DT requires 
the ongoing support of various service platforms, which can accommodate 
custom software development, model building, and service delivery.

• Digital representations are dynamically linked to their real-world counter-
parts, enabling advanced simulation, operations, and analysis. Connections 
between physical entities, virtual models, services, and data enable the 
exchange of information and data. The following DT relationships exist 
between physical entities and virtual models, between physical entities 
and data, between physical entities and services, between virtual models 
and data, between virtual models and services, between services and data. 
Connections enable the cooperation of four parts: physical entity, virtual 
entity, data, and services.

DT digital twins establish semantic layer on top multiple technical layers, thus sup-
porting the realization of business goals and the implementation of AI/ML solutions. 
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A key advantage of the DT concept is managing complexity through abstraction. 
Especially for complex, heterogeneous collections of physical assets, the concept 
allows complexity to be managed through well-defined interfaces and relationships 
between different DT instances.

6.3  5G ARTIFICIAL INTELLIGENCE IoT

The 5G network provides a great opportunity for IoT growth with huge bandwidth, 
better coverage, and overall higher speeds compared to previous mobile networks. 
IoT is developing globally, so its ecosystems are built on key elements:

• collect data generated from the connections of devices and information
• connect heterogeneous devices and information
• cache involving stored information in the distributed IoT computing 

environment
• compute with advanced processing and computation of data and information
• cognize information analytics, insights, extractions, real-time AI processing
• create new interactions, services, experiences, business models, and 

solutions.

Next-generation AIoT applications embrace AI technology in a dynamic IoT envi-
ronment. Localized IoT environments are formed by heterogeneous devices (edge 
computers as well as resource-constrained devices) that execute semi-autonomous 
IoT applications, which include functions for sensing, action, reasoning, and manage-
ment functions. Next-generation applications require a paradigm shift from classic 
ML to distributed, low-latency, and reliable machine learning at the wireless network 
edge [60–63].

Intelligent IoT environments require an efficient, reliable, and secure communi-
cation infrastructure, by which resource-constrained IoT devices and more power-
ful edge assets must be efficiently managed. Computing and communication form 
a closed-loop system through which the infrastructure is integrally optimized. The 
infrastructure enables URLLC ultra-reliable low-latency communication through 
dynamic network management and heterogeneous network technologies (5G NR, 
NB-IoT). The wireless front-end is specially designed to support the communication 
requirements of advanced techniques.

AIoT applications are moving from the cloud to the network edge, so that comput-
ing is performed in the local environment of data producers and consumers. While 
IoT/edge devices can provide the computing side of the infrastructure, the communi-
cation side is driven by advanced networking technologies, such as 5G-NR extensions 
to private networks and industrial IoT. The solutions enable efficient use of spec-
trum in the downlink (DL) direction, with massive sensory feedback on the uplink 
(UL) link. Ultra-reliable, low-latency communication for industrial IoT requires 5G 
mmWave radio link (with comparable fiber-optic data rate, real-time reactivity, and 
massive sensing capacity).

EC enables services to leverage local devices by providing computing resources 
closer to the end nodes, thus enabling ultra-low latency and high data rate 
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communication. At the same time, EC supports managing and limiting the propagation 
of sensitive data. Multiaccess edge computing is an European Telecommunications 
Standards Institute (ETSI) standard for 5G networks, among other things, to offload 
processing and data storage from mobile and IoT devices to the edge of mobile net-
works instead of transporting all data and computing to data centers (DCs). Fog 
computing (FC) is closely related to both EC and CC. FC mainly refers to the logical 
architecture that covers caching, data processing, and analytics that occur near the 
data source, such as improved performance at the network edges, reduced load on 
DC data centers and core networks, as well as improved resilience against network-
ing problems [64–76].

Multiple committees, working groups, and standardization bodies around the 
world have been created. The most important ones are MEC industry specification 
group (ISG) within the ETSI, and MEC in 5G networks within the 3rd Generation 
Partnership Project (3GPP). Technical specification 3GPP TS 23.501, on the archi-
tecture for 5G systems, introduces new functional enablers for integration of MEC 
in 5G networks as an application function (AF). On the other hand, ETSI MEC 
introduces a reference architecture and technical requirements enabling efficient and 
seamless execution as well as interoperability and deployment of a wide range of EC 
scenarios that include IIoT. Important aspects such as latency, energy efficiency, sys-
tem resource utilization, network throughput, and quality of service are constantly 
emphasized.

6.3.1  IIoT fraMEwork

IIoT is a specific segment that enables high level of resilience, communication 
availability, security, precision, automation, and Industry 4.0 compatibility. There 
is a constant trend of the need for high production efficiency, increasing product 
customization, shortening the production cycle, and dynamic global supply chain. 
Industries are extremely incorporating IoT and key technologies. The combination of 
IoT and AI provides the basis for communication, management, and automated data 
 acquisition, while data analysis processes expand data into meaningful information 
[77–82].

IIoT applies IoT approaches in an industrial context to support the digital trans-
formation of sectors, such as manufacturing, process industry, energy distribution, 
and so forth. IIoT is part of critical system operation. The consequences of incorrect 
operation are, in extreme cases, may at the worst be production stops, power outage, 
and the like. As result, extremely high reliability and availability, resilience, as well 
as cybersecurity are prerequisites for successful IIoT adoption. Many IIoT use cases 
also contain real-time operation requirements [83–89].

Next-generation industrial automation adopts AI technologies, leading to 5G, 
AI, and IoT convergence with noticeable improvements in efficiency, modularity, 
management, automation, and usability of future smart factories in all layers of 
manufacturing processes. Real-time processing of collected data from industrial IoT 
devices continuously brings intelligence to 5G orchestration mechanisms. ML mech-
anisms are designed and applied to support various industrial processes, such as 
time- critical operations, mobile robotics, and predictive maintenance functionalities. 
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The first step in this direction is based on accurate profiling of IIoT applications in 
terms of resource usage, capacity constraints, and reliability characteristics. Profiling 
vertical industry applications in terms of resource consumption, resilience efficiency, 
ability to adapt to dynamic network conditions and failures, as well as identifying 
patterns in overall application behavior are extremely useful.

IIoT is a network of intelligent devices connected into systems that monitor, 
collect, exchange, and analyze data. IIoT applications, on the other hand, connect 
machines and devices in industries such as utilities and manufacturing. System 
failures and downtime in IIoT implementation can result in high-risk situations or 
life-threatening situations. IIoT applications are aimed at improving efficiency by 
improving security, in relation to the user-centric nature of IoT applications.

In the industrial IoT sector, many devices require extremely low-latency to 
achieve maximum operational efficiency, depending on the application. The digital 
transformation in the 5G vertical industry and the huge number of users promote the 
rapid development of Industry 4.0. Smart factories not only need low-latency and 
high stability, they need to adopt customized NS technology based on user needs. 
Smart manufacturing requires devices connected to the cloud via a network, a plat-
form based on ultrahigh computing power, and real-time operation and control of 
the manufacturing process through BD and AI. Therefore, wireless communication 
networks with extremely low-latency and high reliability are necessary in the intel-
ligent manufacturing process [90–95].

Factory equipment typically requires different networking based on use, purpose, 
and connected factories. 5G NS E2E technology enables different quality of ser-
vices in the core network and flexible adjustment on demand. Solutions applicable in 
various production scenarios are supported, as well as real-time efficiency and low 
energy consumption.

• NS technology provides on-demand allocation of network resources to meet 
network demands in various production scenarios. NS capabilities combined 
with new technologies support flexible and dynamic resource allocation. In 
the process of creating network slices, it is necessary to schedule infrastruc-
ture resources, including reception, transmission, and CC resources.

• In addition to critical NS, 5G smart factories also require mobile broadband 
NS connections and massive NS connections. Different NSs share the same 
infrastructure within the management system planning and do not interfere 
with each other. Instead, they support the independence of their services.

• 5G optimizes network connections and offloads local traffic to meet low-
latency requirements. The optimization of each NS for business needs is not 
only reflected in different network functions and characteristics, but also in 
flexible deployment schemes.

• In addition, it adopts distributed CC technology to deploy industrial appli-
cations and main network functions based on NFV technology in local or 
centralized data centers in a flexible manner.

• The high-bandwidth and low-latency characteristics of 5G networks have 
greatly improved the capabilities of intelligent processing by migrating to 
the cloud and directed the improvement of intelligence.
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6.3.2  dT ModElS and aPPlIcaTIon ScEnarIoS

The DT technology enables a simple and economical approach to 5G with highly 
 flexible and repeatable development approaches. DT enables proactive modeling 
of data traffic and security risks for testing/validation purposes, promotes opera-
tional and energy efficiency, and accelerates research and time to market of new 
services [96].

However, DT occurrence in networks is not common, despite the obvious poten-
tial in the development and deployment of complex 5G systems. The key difference 
between DT and conventional simulation methods is the two-way data connection 
and updating process. 5G DT would handle how data is generated during network 
maintenance, operations, design, development, testing, and validation, and how it is 
routed and used at the destination object. It is important that the 5G DT architecture 
allows the virtual system to start with a simple form and then, using AI mechanisms, 
evolve to a more comprehensive model with high precision through data updating.

The coherence relations of different 5G DT components are shown in Figure 6.3. 
ML supports DT for continuous prototyping, testing, assuring, and self-optimizing a 
functional 5G network for different use cases. 5G has enabled cloud-native core and 
virtualized radio access network (Cloud-RAN) since the R15 standard. Thus, AI/
cloud-based DT technology has the potential to accelerate processes.

DT usage is evolving from the manufacturing environment and later in the IoT 
and cyber–physical systems (CPS). It captures the properties, conditions, and behav-
iors of a real object through models and data. DT is a set of realistic models that can 
simulate the behavior of an object in the deployed environment. DT represents its 
physical twin and remains its virtual counterpart throughout the object’s life cycle. 
DT has a dual role in IoT: implemented and recognized as the basic approach for 
creating IoT applications, and at the same time, DT is naturally associated with the 
ability to discover and activate IoT technologies.

DT objects can be deployed either on end devices, at the edge of the network, or 
in cloud. Depending on the application, the DT architecture can be divided into three 
categories: digital twin at the network edge, digital twin on the cloud, and edge-
cloud-based collaborative digital twin. Edge-based twin objects are more suitable for 
applications with strict latency constraints (bulk URLLC) due to their location near 
the end devices. Cloud-based DTs are used for latency-tolerant and computationally 
demanding applications. In general, the available computing power in the cloud is 
greater than that at the edge of the network, but with higher latency and higher com-
munication costs. Edge-cloud-based twins take advantage of both cloud-based twins 
(high computing power) and edge-based twins (instant analytics with low commu-
nication costs).

FIGURE 6.3 Digital twin for 5G.
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Various DT performance metrics are shown in Table 6.1. Considering scalability, 
DT at the edge of the network has the most value because it has the lowest latency 
compared to its cloud-based twins. It is possible to add endpoints in the case of twins 
at the edge of the network, up to their maximum serving limit without significantly 
increasing latency. However, the cloud twin has low scalability due to the increase in 
latency when the number of devices increases. Therefore, depending on the require-
ments of the 5G application, it is necessary to deploy the DT object on the appropri-
ate location in the selected system architecture [97–100].

Since 2002, interest in the DT concept has grown exponentially, both in industry 
and academia. In recent years several standard development organizations (SDOs) 
have been working on standardizing the definition of DTs to facilitate common 

TABLE 6.1
Comparison of Edge-, Cloud-, and Edge-Cloud-Based Twins

Metrics Description
Edge-Based 

Twin
Cloud-

Based Twin
Edge-Cloud-
Based Twin

Scalability Scalability refers to fulfilling latency 
requirements for massive number of 
6G devices. Furthermore, the 
addition of new nodes should not 
significantly degrade the system 
performance in terms of latency.

High Lowest Low

Latency This metric represents the overall 
delay that accounts for latency from 
service request until service 
provision in providing 6G services.

Low High Medium

Geo-distribution This metric tells us about the 
geographical distribution of twin 
objects for enabling a 6G service.

Distributed Centralized Hybrid

Elasticity This metric refers to on-demand 
dynamic resource allocation for 
digital twins operation in an elastic 
way in response to highly dynamic 
requirements.

High Low High

Context awareness Context awareness is the function 
that deals with the knowledge about 
the end devices location and 
network traffic.

High Low Medium

Mobility support Mobility support deals with the 
ability of digital twins to seamlessly 
serve mobile end devices.

High Low Medium

Twins’ robustness 
(reliability)

Robustness refers to seamless 
operation of digital-twin-enabled 
6G application in case of failure of 
twin objects.

Highest (for 
multiple 
edge-based 
twins)

Lowest Medium
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understanding, align stakeholder requirements and expectations, and improve clar-
ity on the topic. There are various activities regarding standardization of DT, even if 
not directly termed as digital twin. IEC 62832 is a well-established standard, which 
defines a digital factory framework with the representation of digital factory assets 
in its center, although it is not called digital twin. ISO/IEC JTC1 provided a technol-
ogy trend report by its joint advisory group on emerging technology and innovation 
(JETI). In the report, DT was identified as the number one area needing in-depth 
analysis, where JETI is also looking at how cooperation with the open source com-
munity can be established. SC 41 IoTs and DT subcommittees prepare standards for 
the IoT and has widened its scope and terms of reference to include DT, building on 
the exploratory work of JTC 1 Advisory Group. In addition to the working group WG 
6 Digital Twin, SC 41 established an advisory group AG 27 related to the technology, 
which is expected to identify synergies with existing SC 41 activities and relation-
ships as well as elaborate standardization strategy. The group will especially address 
life-cycle issues, standardization opportunities in virtual systems, devices, and sen-
sors. The key standards to track from ISO/IEC include:

• ISO/IEC AWI 30172 Digital twin use cases are currently under develop-
ment and at Stage 10.99 (Proposal) – now approved as a new project with a 
working draft under development.

• ISO/IEC AWI 30173 Digital twin concepts and terminology are currently 
under development and at Stage 20 (Preparatory) with a working draft 
already prepared, comments received, and approved for registration as a 
Committee Draft.

• ISO/FDIS AWI 23247 series defines a framework to support the creation of 
DTs of observable manufacturing elements including personnel, equipment, 
materials, manufacturing processes, facilities, environment, products, and 
supporting documents. Part 1 overview and general principles, Part 2 refer-
ence architecture, Part 3 Digital representation of manufacturing elements, 
and Part 4 Information exchange between entities within the reference archi-
tecture. This framework enables plug and play for twin elements, focusing 
mainly on the interfaces and functions of DTs.

In addition, in 2019, the IEEE Standards Association initiated a project IEEE 
P2806 that aims to define the system architecture of digital representation for physi-
cal objects in factory environments. The German Plattform Industrie 4.0 launched 
Asset Administration Shell as the implementation of the DT for smart manufactur-
ing, IEC PAS 63088. This was deepened by partnerships between France, Italy, and 
Germany.

6.3.2.1  5G-AIoT Initiative
In the AIoT initiative, the DT concept has been assigned a significant role in provid-
ing a semantic abstraction layer. The IoT provides a connectivity service. AI is an 
important tool for the reconstruction process in which a virtual representation is cre-
ated based on the input data from the sensors. After the DT is reconstructed, another 
AI algorithm is applied on the semantically rich DT representation [101–106].
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DT is a very good synergy example of IoT, BD, and AI. A DT can be defined as 
a virtual representation of either physical objects, workflows, or systems in general. 
The technology is enabled by a huge number of IoT sensors. DT is a virtual repre-
sentation of a physical asset, machine, vehicle, or device on an IoT platform. The DT 
represents the data, processes, operating states, and life cycle of the asset. The DT 
design requires inputs from massive sensors that collect relevant characteristics (in 
the form of BD) of the physical twin. In this case, AI is an effective tool to discover 
the underlying characteristics of a physical entity, offer recommendations and insight 
to performance validation. AI also effectively reacts to dynamic DT contexts and 
enables real-time improvements.

It is necessary for the DT system to continuously learn and change its mode of 
operation based on inputs and updates using methods such as AI and ML. Dynamic 
DT models enable the projection of technical objects into the digital platform.

DT technology includes the creation of virtual simulation models of technical and 
physical objects that are maintained and changed by information inside the physical 
object. The models are quite dynamic and accept real-time information readings 
from sensors of physical objects, sensors of control devices, and the environment. 
Models also include historical information to adjust the parameters of the physical 
asset. It is necessary that the models are dynamically updated in the DT concept in 
order to function correctly. The systems update measurements in real time and are 
regularly refreshed with new and old data using ML algorithms. The goal of the 
system is to achieve optimal operational capabilities of the physical facility through 
regular and dynamic updates.

DT integrates seamlessly into IoT and data analytics by connecting the physical 
and virtual twin. The data collected by IoT sensors is huge. Due to the transfer of 
large data between virtual and physical assets in DT, it is necessary to implement a 
high-performance network. The combination of 5G networks, IoT, and AI enables 
improved services and new technology applications. The DT applies analytical algo-
rithms to manage this data. The IoT is particularly dependent on AI to help pro-
tect facilities, support analytics, reduce fraud, and enable automated data analysis 
decisions.

An obvious DT synergy of AI and IoT technologies is emerging, which also 
results in common challenges. The first step in facing challenges is to identify them. 
Some of the challenges in the field of data analytics are general IT infrastructure, 
data quality, privacy and security, trust, and expectations. Challenges in the IoT area 
are infrastructure, connectivity, data, privacy, security and trust, and expectations. 
The next challenges within all forms of DT development are caused by the lack 
of a standardized modeling approach. A standard approach from DT design initia-
tion to simulation, whether physics-based or design-based, is essential. Standardized 
approaches ensure domain and user understanding, while ensuring the flow of infor-
mation within each phase of DT development and implementation. Another chal-
lenge is to transfer information related to each of the development and functional 
stages of the modeling of a DT. Domain compatibility is ensured, allowing success-
ful use of DT in the future.
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6.3.2.2  5G Network Digital Twin
The adoption of digital twins to support network operation and maintenance, as well 
as network planning and design, is the first step toward 5G DT. The new approach 
to testing and provisioning provides an emulated, software-based replica of a 5G 
physical network that enables continuous prototyping, testing, provisioning, and self-
optimization of the living network [102–107].

A simulation behaves similar to the system being modeled and gives us insight 
into how something works. Emulation behaves exactly like a system being mod-
eled. It follows all the rules of the system being emulated, creating an exact, always-
updated replica that functions in a completely identical manner and exhibits features 
and results accurately. The ability to continuously monitor and deliver reliable results, 
emulation provides significant advantages (simplicity, cost-effectiveness, repeatabil-
ity, and predictability) in testing complicated real-world network conditions. The 
benefits further add to greater flexibility, comfort, confidence, cost savings, and a 
momentum for research and development.

Simulation may not be sufficient to operate and manage the complex 5G system, 
real network emulation is necessary, a task well suited for DT. Emulation of the core 
network, base stations (gNodeB), and channels (interference evaluation) is suggested. 
Each of these system components can be connected to the DT. Examples of specific 
use cases are a private 5G network in a factory, NS operations and management, 
and 5G-based V2X communication between vehicles and infrastructure for virtual 
vehicle testing.

Emulators are used to test the performance of a functional network, as well as 
network functions and services that are too remote, complex, and expensive to easily 
configure and access. A software-emulated replica of the 5G physical network is DT 
and enables continuous prototyping, testing, assuring, and self-optimizing a living 
network.

6.3.2.3  Manufacturing Digital Twin
DT is one of the most promising technologies driving digitization in the industry. 
DT is a digital replica or model of any physical object (physical twin). What differ-
entiates DT from digital or CAD models is the automatic two-way exchange of data 
between the digital and physical twins in real time. The benefits of implementing DT 
in the sector include reduced operating costs and time, increased productivity, bet-
ter decision-making, improved predictive/preventive maintenance, and so forth. DT 
technology finds its application in basic industries undergoing digital transformation: 
aerospace, manufacturing, healthcare, energy, automotive, public sector (education), 
mining, maritime, and agriculture [108–110].

Manufacturing is widely seen as the leading vertical for DT. Digital transforma-
tion is shaping Industry 4.0 with new technologies such as AI, IoT, and EC. New 
technologies are capable of optimizing processes and creating value, while 5G is 
becoming key to connectivity and digital transformation. It includes a range of capa-
bilities to transform industry use cases: low latency, high bandwidth, high capacity, 
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strong reliability, advanced mobility, and longer battery life. In the context of DT, 5G 
is critical for use cases that depend on data being transported from one location to 
another quickly, securely, and reliably.

Digitization in manufacturing opens new options for significant improvements in 
the productivity and effectiveness of complex systems. The integration of cutting-
edge technologies such as IoT, ML, data mining, and BD enable the smart production 
of Industry 4.0. A significant feature of smart manufacturing is the interaction of 
both physical and cyber systems. The CPS consists of a set of physical devices and 
products that communicate in virtual cyberspace through a communication network. 
DT technology is rapidly developing and Industry 4.0 has been marked as the begin-
ning of a new era of production, leading to a complete transformation of existing 
production systems and their management. Industry 4.0 brings together technologies 
that remove the boundaries of the physical and digital realms. Each physical object 
is represented by a digital prototype that extends data, information, and knowledge 
about the physical object.

Uncertainty, imperfection, and unknown information are inherent in production 
processes, so the DT approach is a more suitable method for optimizing the entire 
process than simulation. An accurate DT model improves safety, reduces costs, accel-
erates manufacturing of new products, and implements new processes. Much research 
describes the DT on the basis of its three components: the physical model, the collected 
data and information, and the virtual model. Comprehensive, accurate, and extensive 
virtual model is important for a variety of fields of manufacturing and production.

The five-dimensional structure of DT is shown in Figure 6.4. The basic data 
storage layer contains collected data from the physical model, historical data, and 
data from the enterprise’s production systems. In the next primary processing layer, 
appropriate processes on the collected data are executed. The primary processing 
layer performs operations such as data-to-information conversion to enable the flow 
of information between different levels of production. Mathematical, statistical, and 
CAD models are stored in the models and algorithms layer. The fourth layer is the 
analysis layer for prediction, optimization, reconfiguration, monitoring, and manage-
ment. The last layer is the visualization and user interface layer, which provides users 
with a graphical interface to access the DT.

6.4  CONCLUDING REMARKS

The IoT ecosystem is highly complex, fragmented, and rapidly evolving. AI is the 
real driving force behind the IoT’s full potential. However, there are several key 
challenges such as standardization and interoperability. The 5G network is emerging 

FIGURE 6.4 5D cross-industry DT application model.
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as an excellent opportunity for further IoT growth, with massive bandwidth, better 
coverage, and overall higher speeds. The convergence of 5G-IoT and AI represents 
a breakthrough in the evolution of these technologies. As technology continues to 
grow, there are both opportunities and challenges that are associated with it. AI and 
IoT encompass different design principles, industry standards, and developments. 
They function on heterogeneous computer platforms and network topologies. A suc-
cessful AIoT environment requires standardization that supports the interoperability, 
compatibility, reliability, and efficiency of new devices. The technical success of 
5G depends on bringing a wider range of data rates to a much wider set of devices 
and users. 5G-AIoT is expected to play a fundamental role in key vertical industry 
domains.

For AIoT systems with a high level of complexity, it is justified to apply the con-
cept of digital twin DT to create a digital representation of physical entities. A key 
advantage of DT is managing complexity through abstraction. DT and 5G support 
each other in a virtuous circle – leverage digital twins to build the use case for 5G 
and understand how 5G fits within your connectivity ecosystem and existing con-
nectivity solutions.

An obvious DT synergy of AI and IoT technologies is emerging, which also 
results in common challenges. The first step in facing challenges is to identify them. 
The numerous challenges within all forms of DT development are caused by the lack 
of a standardized modeling approach. The standardization process ensures domain 
and user understanding, development, and implementation, enabling successful DT 
use in the future.
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7.1  OVERVIEW OF 5G/6G

5G is the fifth generation of wireless networks. It is a combination of two radio tech-
nologies namely New Radio (NR) and Long-Term Evolution (LTE) [1]. In the early 
stages of 5G development, the 5G network was a non-standalone NR architecture, 
which was finalized in 2017. LTE also formed part of this architecture to enable 
initial access to the network as well as mobility handling. In 2018, the standalone 
architecture was completed and in 2019, the final version of 5G was released.

5G uses OFDM (orthogonal frequency-division multiplexing) technology as the 
modulation method and is able to provide enhanced flexibility and scalability com-
pared to LTE. 5G technology caters for greater bandwidth by using a broader range 
of frequencies in both lower bands below 1 GHz to mid bands (from 1 to 6 GHz) and 
higher bands known as millimeter wave (mmWave). The peak data rate achievable by 
5G is 20 Gbps and the average data rate is 100 Mbps [2].

5G is designed to support a 100-fold more traffic than LTE and has significantly 
low latency of 1 ms. It is used for three main types of services, namely massive 
IoT, mission-critical communications, and more importantly, enhanced broadband 
through new experiences such as virtual reality (VR) and augmented reality (AR) [2]. 
Works pertaining to 5G advanced Evolution have started in 2022 and the latter will 
build on works completed in Releases 15, 16, and 17.

Sixth-generation (6G) wireless technology is the successor to 5G technology 
and will enable the use of even greater frequencies compared to those used by 5G 
networks. The use of terahertz spectrum will increase capacity, improve spectrum 
sharing, and lower latency. One of the objectives of 6G is to support 1 µs latency as 
compared to 1 ms in 5G. The incorporation of artificial intelligence (AI) into the 6G 
infrastructure will enable huge improvements in areas of imaging, presence technol-
ogy, and location awareness [3]. 6G will have the capacity to support ten times more 
devices per area than 5G, thus enabling the collection of a great amount of data from 
countless devices as well as its storage [4]. The peak data rate achievable by 6G is 
estimated to be around 1 Terabyte per second and it will support sub-mm Waves 
(wavelengths less than 1 mm) and frequency selectivity. 6G networks will have built-
in Mobile Edge computing while currently it is a separate entity from the 5G net-
works. This will enable better access to AI technology and support for sophisticated 
mobile devices and systems. 6G is targeted for commercial launch in 2030.

7.2  DEFINITION AND IMPORTANCE OF SCHEDULING

In 5G, scheduling can be described as the method of allocating resources for trans-
mission of data. There are a number of variables that can influence how and when 
resources are given to a certain user. Figure 7.1 depicts some factors considered for 
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scheduling in 5G. 5G uses OFDM technology as the modulation method and is able 
to provide enhanced flexibility and scalability compared to LTE. 5G technology 
caters for greater bandwidth by using a broader range of frequencies in both lower 
bands below 1 GHz to mid bands (from 1 to 6 GHz) and higher bands known as mil-
limeter wave (mmWave). The peak data rate achievable by 5G is 20 Gbps and the 
average data rate is 100 Mbps [2].

When allocating resources among UEs for the scheduler operation, each UE’s 
QoS needs and those of the radio carriers it is connected to, are considered, together 
with the condition of the UE buffers. The scheduler’s resource allocation may also 
be impacted by the radio circumstances at the UE, which are determined by mea-
surements effected at the base station and/or reported by the UE. The distribution 
of radio resources is made using slots (e.g., one mini-slot, one slot, or several slots), 
and they consist of resource blocks. After a scheduling request, the UE will receive 
a scheduling channel and will subsequently learn the resources allotted. The reports 
for the uplink buffer status, which assess the data stored in the logical channel queues 
of the UE, are one of the measurements used to determine scheduler operation. 
They are used to facilitate QoS-aware packet scheduling. In addition, power-aware 
packet scheduling makes use of power headroom reports, which assess the dispar-
ity between the UE’s peak transmit power and the approximated power for uplink 
transmission [5].

Frequency domain scheduling and time-domain scheduling are the two main 
scheduling categories used in 5G [6]. The fundamental time-frequency unit of 
resource, which can be employed for uplink or downlink transmission, is called a 
resource element. It can as well be defined a single subcarrier over a single OFDM 
symbol [7]. Twelve subcarriers that are continuous in frequency and span one-time 
slot constitute a resource block (RB), in which i is the smallest radio resource unit 
that can be allotted to an individual user. The four types of radio resource categories 
are radio frames, subframes, slots, and mini-slots. Ten subframes, each of duration 1 
ms, make up the radio frame, which has a duration of 10 ms. One or more adjacent 

BSRMeasurement (UE/Network) (Buffer Status Report)

QoS requirementSR

Associated Radio Bearer

(Scheduling Request)

Resource Block Allocation /TTI

Scheduler

FIGURE 7.1 5G scheduler (5G/NR – scheduling) [5].
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slots with 14 OFDM symbols make up each subframe. As illustrated in Figure 7.2, in 
Release 15, a mini-slot consists of 2, 4, and 7 OFDM symbols, and the length for one 
slot is dependent on the spacing of the subcarrier [8].

To accommodate the considerably high number of users and sophisticated func-
tionalities, 5G has introduced numerous novel scheduling methods. Massive MIMO 
is one of the key features that 5G has introduced. It comprises utilizing a large number 
of antennas and terminals. Multi-User MIMO (MU MIMO) is essential for Massive 
MIMO [9]. The transmission of multiple data streams would cause interference with 
a single antenna, but in MU MIMO, the signals are sent over separate pathways, 
allowing the receiving antenna, with the appropriate encoding, to reconstruct the 
initial signal. One more aspect that has gained in viability is dynamic TDD, which 
mainly alters the frame configuration of the cell to adapt to the fluctuating traffic so 
as to maximize the throughput of the system. With the ability to adapt the pattern of 
TDD to the uplink or downlink transmission of a specific user, the use of dynamic 
TDD has turned out to be more feasible in small cell scenarios. The end-to-end 
latency of 5G was also designed to be ten times lower than that of LTE. This covers 
the frame size, round-trip time, HARQ processing time, transmit time interval, and 
intermittent reception [10].

7.3  SCHEDULING SCHEMES IN 5G/6G 

Figure 7.3 depicts the block diagram of a 5G communication system.
A transport channel is included in the downlink shared channel (DL-SCH), which 

is used, among other things, to transmit user data. To obtain transport and control 
resources via the radio transmission link, control and data are encoded and decoded 
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Subframe 1 msSub-carrier 
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30 
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250 µs
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FIGURE 7.2 Structure of frame for 5G [8].
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to and from the media access control (MAC) layer [11]. Error detection, error correc-
tion, rate matching, interleaving, and transport channel, or control information map-
ping onto/splitting from physical channels are the building components that make up 
a channel coding system.

Figure 7.4 illustrates the building blocks of the DL-SCH [12].
Errors on transport blocks are found using the cyclic redundancy check (CRC). 

The block of transport is taken into account when generating the CRC parity bits, 
and the results are then connected to the transport block. The type of channel coding 
used determines how code blocks are segmented. More often, LPDC coding is uti-
lized with code rate R:D = K/R where the parity check matrix H uses D–K to encode 
the K filler bits, where D denotes the quantity of encoded bits and D–K is the amount 
of parity check bits.

Each coded bit stream identifies the rate matching for LDPC transport channels. 
The outputs from the rate matching block are consecutively concatenated in order 
to perform code block concatenation. The DL-SCH coded data is transported over 
the physical downlink shared channel (PDSCH). Figure 7.5 illustrates the building 
blocks that the PDSCH is comprised of [13].

The following procedures describe the simplified steps:

• Scrambling of the coded bits is performed for transmission
• Complex-valued modulation symbols are generated by modulating the 

 output from the scrambling block
• The output of the modulation phase is mapped onto a single or several layers 

of transmission.

Code Block Transport Block 
CRC Attachment Segmentation

Channel 
Coding

Rate 
Matching

Code Block 
Concatenation

FIGURE 7.4 DL-SCH processing blocks [12].
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FIGURE 7.3 5G system model [11].

Scrambling
Modulation 

Mapper
Layer 

Mapper
Codewords Layers

FIGURE 7.5 PDSCH processing blocks [13].
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The precoding block in Figure 7.3 is then used to precode the modulation symbols 
before transmission to the antenna ports. The symbols of modulation are assigned 
to resource elements at each antenna port. The CP-OFDM (Cyclic Prefix-OFDM) 
 generates complex-valued time-domain OFDM signals for each antenna port. After 
that, a channel is used to send the CP-OFDM block’s output. To compare the received 
waveform at the timing sync block, the PDSCH demodulation reference signal 
 (DM-RS) is utilized. OFDM demodulation is then performed on the synchronized 
signal [11].

The PDSCH DM-RS is used at the channel estimation block. The precoding 
matrix for the subsequent transmission is produced using singular value decomposi-
tion (SVD). By averaging the channel conditions, a singular matrix is produced for 
the entire assignment. Hence, there was a possibility for the precoding matrix to be 
less accurate for higher bandwidths assigned in cases where there is frequency selec-
tivity in the channel [11].

Then, using the demodulation and descrambling of the recovered PDSCH symbols 
along with an estimation of the noise, a codeword estimate is created. The DL-SCH 
decoder block further decodes the vector of decoded soft bits and the block CRC 
error is acquired. The system’s throughput is generated using the error. For a hybrid 
automatic repeat request (HARQ) procedure, the block CRC error is also recorded.

Some common time-domain packet scheduling techniques used in 5G are stud-
ied. By analyzing variable channel conditions, the maximum rate scheduling method 
takes high capacity and maximum throughput into account. Users with better chan-
nel conditions are preferred by the algorithm, and UEs having serious channel deg-
radation are not scheduled. Hence, the allocation of resources for users is not fair. 
The scheduling technique chooses a UE maximizing the subsequent algorithm at 
each TTI:

 ( )=x y ti i  (7.1)

where yi(t) shows the user i’s instantaneous data rate while he or she is utilizing the 
entire bandwidth at time t.

In LTE mobile systems, the round robin (RR) scheduling method was devel-
oped to distribute resources equally across users. As opposed to the maximum rate 
algorithm, the RR algorithm permits users to transmit packets in turn with equal 
opportunity. Hence, the RR technique hugely enhances fairness but it also leads to 
throughput degradation because of the fact that channel quality is not taken into 
consideration [14]. The proportional fair (PF) scheduling technique was first created 
for CDMA networks serving non-guaranteed bit rate (GBR) services. By improv-
ing the throughput of UEs with better momentary attainable data rates than average 
throughput, it sought to accomplish a fair trade-off between fairness and throughput. 
Owing to the fact that the PF algorithm does not consider the buffer status of the UE, 
it is not the most appropriate algorithm for real-time services. PF technique can be 
represented by the following equations.

 ( ) ( )
( )

=a t
b t
B t

i
i

i

 (7.2)
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where 
( )b ti  indicates the instantaneous rate of data for user i generated through time 

interval t,
( )B ti  represents the average throughput of user i for time interval t,
( )+1C ti  denotes the choice of packet for transmission for time interval t + 1,

tc indicates a time constant that could be utilized to make the most of throughput 
and fairness with the PF algorithm.

The blind equal throughput (BET) scheduling technique has been used mostly in 
LTE systems and it does not consider channel conditions to allocate resources. On 
the other hand, the past instance mean throughput of each UE is considered in order 
to reach a fair assignment of resources among UEs. The BET technique can be rep-
resented as follows:

 ( ) ( )
= 1

d t
B t

i
i

 (7.5)

where ( )d ti  indicates the what the UE prefers at a particular time interval and ( )B ti  
denotes the mean throughput for user i during time interval t.

Due to the fact that the BET algorithm does not consider channel conditions, 
it is not appropriate to generate high throughput as opposed to PF and maximum 
rate algorithms. The delay prioritized scheduling (DPS) technique comprises packet 
delay information. The DPS algorithm prioritizes UEs in downlink LTE networks 
that have delays, which are more than a threshold so as to fulfill the QoS require-
ments for GBR services. The following equation represents the DPS algorithm [10].

 ( ) ( )= −x t T F ti i i  (7.6)

where 
( )F ti  indicates the head of line (HoL) packet delay for user i during time interval t,

Ti  represents the threshold for the delay of the buffer, which relies on the category 
of service,

( )x ti  denotes the real time of the HoL packet for user i during time interval t.

Increasing the QoS of real-time UEs is the goal of the modified-largest weighted 
delay first (M-LWDF) scheduling strategy. The M-LWDF method takes into account 
a number of variables, including packet delay, mean throughput, instantaneous data 
rate, and bandwidth. Systems with CDMA-high data rate (HDR) have employed this 
algorithm. The following equation represents the M-LWDF algorithm [10].
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where 
gi denotes the QoS requirement of user i,

( )F ti  indicates user i’s HoL packet delay through time interval t,
( )b ti  denotes the instantaneous data rate,
( )B ti  indicates the mean throughput for user i for time interval t,

δ i denotes the packet loss ratio and Ti  denotes the threshold of the buffer delay for 
user i.

The HDR/CDMA framework used the exponential rule (EXP) scheduling mecha-
nism primarily for real-time and non-real-time services. The EXP scheduling tech-
nique can be illustrated by the following equations.
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where 
( )k ti  indicates the priority for user i to obtain packets for time interval t,

α i represents user i’s QoS requirement,
( )F ti  denotes user i’s HoL packet delay for time interval t,

( )b t  indicates the instantaneous data rate,
( )B ti  represents the mean throughput for user i for time interval t

N denotes the overall quantity of users.

Channel-dependent earliest due deadline (CD-EDD) scheduling technique was cre-
ated in order to handle mobile systems with sensitive traffic. While displaying a 
similarity to the M-LWDF and EXP algorithms, the CD-EDD scheduling algorithm 
considers the mean throughput, instantaneous data rate, and information regarding 
packet delay when allocating resources. In the event that a user’s mean throughput 
and instantaneous data rate are similar, the CD-EDD will prioritize transmission for 
the user with the more pressing HoL delay. On the other hand, the M-LWDF and 
EXP algorithms give priority to the base station’s longest buffer delay. The following 
formula represents the CD-EDD algorithm.
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where 
( )m ti  represents the precedence for user I for time interval t,

α i indicates user i’s QoS requirement,
( )b ti  denotes the momentary data rate,
( )B ti  denotes the average throughput for user i for time interval t,
( )F ti  denotes user i’s HoL packet delay for time interval t,

Ti  denotes user i’s threshold of the buffer delay.

The user with the highest channel quality indicator (CQI) is chosen by the Best CQI 
algorithm. Essentially, this algorithm allocates resources according to feedback from 
the UE regarding the radio channel quality, including BER, CQI, and SINR. Since 
the allocation of resources largely depends on the channel’s condition or the strength 
of the radio signal, fairness is not a concern for this method. CQI vs. MCS tables are 
already specified in both the 5G-NR and LTE specifications. To transmit data, one of 
the available transport block sizes is chosen based on the CQI value supplied by the 
UE. When a high CQI value is provided, data transmission uses a bigger transport 
block size [15]. The Best CQI algorithm can be demonstrated using the following 
equation.

 ( )( )=
= −
max

1   
n P t

t N
i  (7.12)

where N is the overall quantity of active users, ( )P ti  is the data rate that a specific UE 
i can maintain at time t, and n is the user.

7.4  MACHINE LEARNING TECHNIQUES USED IN 5G/6G

Machine learning forms part of AI and has undergone many advances recently. It 
enables a particular device to perform tasks without giving specific instructions on 
the procedures involved in solving them. It creates a learning process, whereby the 
device identifies patterns and makes decisions in accordance with a user-defined 
goal [16].

7.4.1  SuPErvISEd lEarnInG

The system is taught by example in this learning approach. When given a set of 
desired inputs and outputs, the machine learning algorithm creates a function to map 
the inputs to the outputs. An operator monitors results and is able to intervene to 
correct predictions made by the algorithm. The algorithm undergoes a training pro-
cess until the required level of accuracy is achieved. Supervised learning is further 
divided into three categories namely classification, regression, and forecasting [16].

7.4.1.1  Classification
In classification duties, the machine learning program has to reach a decision from 
values observed and classify the values into categories. An example would be a pro-
gram that filters emails as “spam” or “not spam” by considering the existing obser-
vational data and filtering emails accordingly [17].
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Some classifications of machine learning algorithms are elaborated upon.
The Naïve Bayes classifier. The Naïve Bayes classifier is called so because it pre-

sumes that the occurrence of a specific feature is independent of the presence of other 
features [18]. For example, if a device is identified on the basis of size, shape, and 
capacity then a small, rectangular, and 32 Gb device can be generally identified as a 
pen drive. The Naïve Bayes algorithm depends on the principle of the Bayes theorem. 
The latter is a formula utilized for generating conditional probabilities. A conditional 
probability is the gauge of the probability of an incident happening provided that a 
previous incident has happened. The formula is given as follows [19]:

 ( ) ( ) ( )
( )

=  |
| .   

P A B
P B A P A

P B
 (7.13)

where P(A|B) is the probability of event A occurring provided that event B has already 
happened, also called the posterior probability.

P(B|A) denotes the probability of event B happening provided that A has already 
happened, also called the likelihood probability.

P(A) indicates the probability of A occurring before the event happens, also called 
the prior probability

P(B) is the probability of B occurring also known as the marginal probability.
Thus, the Bayes theorem indicates a means of discovering a probability when 

other probabilities are known. It considers each feature as independent and equally 
contributing toward the results.

K-nearest neighbors algorithm. This algorithm is utilized for both classification 
and regression problems but it is more often utilized for classification. It collects all 
cases available and classifies the new case or new data according to a similarity mea-
sure. It considers the classification of a neighbor data point in order to classify a new 
data point [20]. An example would be the case of determining whether a particular 
device is a pen drive or hard disk. Using the K-nearest neighbor (KNN) algorithm, 
the latter will identify the similarities between the device and either a pen drive or a 
hard disk and based on the most similar features, the algorithm will classify it as pen 
drive or hard disk. The KNN mainly forms a majority vote based on the most similar 
instances to a particular observation [20]. The similarity can be defined as a distance 
metric between two data points. The Euclidean distance method forms part of the 
distance metric method that is used in the KNN algorithm [20].

 ∑( ) ( )= −
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i

k
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where: 
( ),   d x y indicates the distance between two points in Euclidean k-space,

xi and yi are Euclidean vectors, starting from the original point,
k indicates k-space.

Other distance metric methods that are used include Manhattan, Minkowski, and 
Hamming distance methods.
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Support vector machine. The support vector machine (SVM) algorithm is a 
classification technique in which raw data is plotted as points in an n-dimensional 
space (where n indicates the quantity of instances present). The value of a particular 
instance is attached to a specific coordinate, thus enabling easier classification of data 
[18]. Basically, it is an algorithm, which sorts data into one of two categories [21].

A simple example would be a 2D model with a set of data points. The objective is 
to separate those data points into different categories by using a line called the deci-
sion boundary, which is the line between the two closest points that keep the other 
data points separated (Figure 7.6).

7.4.1.2  Regression
Regression machine learning algorithm is mainly used for prediction and forecast-
ing as the machine learning program needs to estimate and realize how different 
variables are related. This technique focuses on one dependent variable while other 
variables are changing. Linear regression is used for the prediction of the value of 
a variable based on another variable. Thus, the value to be predicted is the depen-
dent variable while the other variable is independent. A relationship is determined 
between those variables in the form of a line known as the regression line that is 
represented by the following equation [18].

 = +*Y a X b (7.15)

where 
y is the dependent variable, x is the independent variable,
a is the slope and b is the intercept,
a and b are obtained by reducing the sum of squared difference of distance 

between the data points and the regression line.

A simple example to explain the linear regression algorithm would be arrang-
ing devices in increasing order of their capacity but the capacity of each device is 

FIGURE 7.6 Example for SVM [21].
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unknown to the operator. In this case the operator will have to guess the capacity 
by performing a check for the size, shape, and manufacturing date of the devices. 
Thus, a combination of those parameters will give an estimate of the capacity of the 
device.

7.4.1.3  Decision Trees
Decision trees can be used for classification or regression models. In classification 
models, the decision tree is finite while in regression models, it is continuous. The 
dataset is split into smaller subsets and the tree is developed into decision nodes and 
leaf nodes [22]. A decision node is made up of two or more branches and it represents 
values for the attribute tested. Lead node indicates the decision on the numerical 
target. The root note is the uppermost decision node in a tree, which correlates with 
the best forecaster. Both categorical and numerical data can be managed by a deci-
sion tree [22]. The main algorithm for constructing decision trees is called ID3 by 
J. Quinlan that consists of a top-down, greedy search without backpedaling through 
the space of possible branches.

An example of a decision tree is illustrated in Figure 7.7.

7.4.1.4  Forecasting
Forecasting algorithm takes into account past and present data to make future predic-
tions and this method is used to identify trends.

7.4.2  SEMI-SuPErvISEd lEarnInG

The difference between this learning method and supervised learning is the utiliza-
tion of both labeled and unlabeled data. Labeled data indicates data that has specific 
labels in order for the algorithm to interpret the data correctly while unlabeled data 
do not have any specific label. Thus, by using both types of data, machine learning 
algorithms can manage to label the unlabeled data [17].
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FIGURE 7.7 Example of decision tree for classifying network traffic [22].
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The procedures for semi-supervised learning are as follows [23]:

 a. The machine is first trained with a small amount of training data as in 
supervised learning until target results are obtained.

 b. The unlabeled training data set are then used with the model to predict 
pseudo labels that are not as accurate.

 c. The labels from the original training data are linked with the pseudo labels.
 d. The data inputs in the labeled training data are matched with the inputs of 

the unlabeled set.
 e. The model is then trained in a similar manner as with the labeled data set in 

order to get more accurate results.

A simple example would be a text document classifier where there is a significant 
number of unlabeled documents.

7.4.3  unSuPErvISEd lEarnInG

In unsupervised learning, there is no operator to monitor the process. The machine 
learning algorithm identifies patterns and correlations by studying the data available. 
In this process, the algorithm mainly organizes the data into groups and as more data 
is being assessed, the algorithm improves its capability of making decisions on that 
data.

There are two categories of unsupervised learning namely clustering and dimen-
sion reduction. Clustering consists of gathering similar sets of data according to a 
particular criteria and carrying out an analysis on the data sets to investigate correla-
tions. Dimension reduction consists of reducing the quantity of variables that is taken 
into consideration, to output the required data [17].

Some clustering algorithms are illustrated subsequently.

7.4.3.1  K-Means Algorithm
In this algorithm, the data is arranged into a number of clusters (identified as K) such 
that all the components of the cluster are homogenous and heterogenous from the 
components of other clusters [24].

The procedure involved in this algorithm is as follows:

 a. K number of data points called centroids are selected for every cluster.
 b. Data points are gathered into a cluster such that the sum of the squared dis-

tance between the data points and the centroid of a particular cluster is at a 
minimum value.

 c. New centroids are recalculated
 d. The shortest distance for each data point is generated for the new centroids 

and this procedure is repeated until a constant value is obtained

The equation used by the K-means algorithm is called the squared error function and 
is as follows [24].
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where 
−� �x vi j  represents the Euclidean distance between xi and v j ,

ci denotes the quantity of data points in the ith cluster,
C indicates the quantity of cluster centers,
V is the set of data centers.

The new centroids are calculated based on the following equation
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where xi is the ith data point.
A simple example would be the installation of new access points. The K-means 

algorithm can be used based on some information, for example, at which location 
there are more clients being connected, how many clients are being connected at any 
given time, and how to keep the distance between the access point and the server to 
a minimum.

7.4.3.2  Hidden Markov Model
The hidden Markov model designates a probabilistic model used to generate the 
probabilistic characteristic of any random process [25]. In this model, an observed 
event is thus linked to a set of probability distributions. If the event is believed to be 
a Markov chain and there are some hidden states, those hidden states are assumed 
to form part of the main Markov process. The main objective of HMM is to gather 
information about a Markov chain by studying the hidden states. An example of an 
HMM is if an agent B sends the results of data analysis to agent A on a daily basis. 
Agent A assumes two states from the data analysis report. First, that the system is 
generating the data correctly and that B is accessing the data for that particular day. 
On the day A does not receive a report from B, A again assumes two states, either B 
has not accessed the data or the system is faulty. Thus, A can deduce hidden states 
based on whether or not the report is received.

The HMM is a process whereby a symbol is generated from some alphabet Σ at 
every time step in accordance with emission probability depending on state.

 ( )= Σ,  ,  , M Q a e  (7.18)

where Q denotes a finite set of n states,
A = n*n transition probability.

 ( ) = = =+ +Matrix , Pr[ | ] ( is the state in position in the sequence)1 1a i j q j q i q tt t t

 σ σ{ }Σ = …,  , 1 k  
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e(i, j) is the probability of generating symbol σj in state qi = P[ai = σj | qt = i];
where at is the tth element of the generated sequence.

7.4.3.3  Deep Learning
Deep learning consists of a category of machine learning that is established on the 
parameterization of multiplayer (deep) neural networks, which can manage to grasp 
representations of the data [16].

Deep learning is widely used in image classification, speech recognition, and lan-
guage processing. The neural network strives to reproduce the behavior of the human 
brain, allowing it to learn from a consequent amount of data [16]. Deep learning dif-
fers from other machine learning algorithms according to the type of data used as 
well as the learning techniques. While machine learning mainly use structured data 
that are first pre-processed, deep learning does not require data to be pre-processed. 
Deep learning algorithms can process unstructured data and feature recognition is 
automated [26]. An example using deep learning is a set of pictures of different 
devices and the objective is to categorize the devices as “storage,” “accessories,” 
and so forth. The deep learning algorithm can establish which features are the most 
essential in order to correctly differentiate one device from another. In other machine 
learning algorithms, this priority order of features is determined by a human opera-
tor. Thus, through a process of gradient descent and backpropagation, the deep 
learning algorithm evolves and becomes more accurate, enabling it to predict a new 
picture more precisely. Gradient descent is an algorithm used to calculate errors in 
predictions and afterwards alters the function by going through the layers in order 
to train the model. Two main types of deep learning algorithms are utilized namely 
convolutional neural networks (CNNs) and recurrent neural network (RNNs). CNNs 
are used mainly in image classification applications, and RNNs are used for speech 
recognition [26].

7.4.4  rEInforcEMEnT lEarnInG

A set of parameters, actions, and end values are provided to the machine learning 
algorithm in reinforcement learning (RL). The algorithm aims to discover several 
options and possibilities while assessing each outcome to determine which is the 
best after a set of rules has been defined [17]. It is a trial-and-error method whereby 
the machine learns from past experience and uses the knowledge to make accurate 
future decisions.

In RL, decisions have to be made or actions taken so that the idea of cumulative 
reward is maximized [27]. As opposed to supervised learning, labeled inputs/outputs 
are not required and correction of suboptimal actions is not needed. The main goal is 
achieving an equilibrium between exploration and exploitation. The Markov decision 
process (MDP) is usually utilized to model the problem in RL applications. However, 
the RL algorithms used do not follow the explicit mathematical model of the MDP 
[28]. RL is also described as approximate dynamic programming or neurodynamic 
programming. RL uses function approximation and samples to handle large environ-
ments and to optimize performance [27].

The setup of a RL model is given in Figure 7.8 [28].
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The agent denotes the learner and decision maker.
The environment is where the agent learns and makes decisions to act.
Action refers to the set of actions that the agent is able to do.
State refers to the state of the agent in the particular environment.
Reward refers to the feedback provided by the environment to the agent for every 

action the agent performs.
An example is rewarding a driver for changing state. In this case, the driver is the 
agent in the environment, which is the city. Two states are defined namely the driver 
sitting and driving. The agent (driver) performs an action by driving, thus changing 
its current state. The policy is defined as a technique to choose an action based on a 
specific state, in expectation of a better outcome is the specific state. Thus, the agents 
receive a reward or penalty as per its current state [29].

There are three methods for implementing RL algorithms:

 a. Value-based: in value based, a value function V(s) is maximized. In this 
technique, the agent expects a long-term return of the current states.

 b. Policy-based: in this method, an action is performed to yield maximum 
reward. There are two types of policy-based methods namely deterministic 
and stochastic. In deterministic, the same action is output by the policy for 
any state while in stochastic, every action has a probability determined by a 
specific function.

 c. Model-based: in this method a virtual model is created for each environment.

The two learning models mainly used are the MDP and Q-learning. MDP has been 
illustrated in the previously discussed cat example.

In Q-learning, a value-based method is used to inform the agent which action it 
should take.

7.5  OVERVIEW OF PREVIOUS WORKS USING MACHINE 
LEARNING FOR SCHEDULING IN 5G/6G SYSTEMS

In this section a review of state-of-the-art machine learning techniques used to 
enhance the conventional scheduling algorithms in 5G systems is provided.

Agent

Environment

State

reward

Action

FIGURE 7.8 Interaction of agent–environment [28].
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7.5.1  rEInforcEMEnT lEarnInG-baSEd SchEdulInG 
for daTa TraffIc ManaGEMEnT

In this chapter, the authors have developed a new scheduling program to choose vari-
ous scheduling algorithms according to the momentary scheduler states to reduce 
delays and drop rates of packets for applications with harsh QoS requirements. Real-
time scheduling is made possible by using RL rules to map the scheduling algorithms 
to every state and determine when to execute each algorithm. To deal with the com-
plexity of the RL model, neural networks are also utilized as function approxima-
tions and to represent the scheduler space state [30]. The proposed RL framework is 
shown in Figure 7.9. The optimal action-value functions are given as follows:

 θ( )( ) ( )= ψ* ,K v h vt  (7.19)

 θ( )( ) ( )= ψ* ,  ,J v d h vd
t
d  (7.20)

where {h, h1, h2, …, hD} represent the neural networks serving as a rough guide 
for the value and action-value functions, ( )ψ v  indicates the feature vector, and 
θ θ θ θ…{ ,  ,  , ,  }1 2 D  represent the set of weights that should be tuned.

Five RL algorithms were implemented and evaluated, namely QV-learning, QV2-
learning, QVMAX-learning, QVMAX2-learning, and actorcritic learning automata 
(ACLA). Variable window size, traffic type, objective metrics, and ever-changing 
network conditions were all taken into consideration when evaluating their perfor-
mance. The scheduling algorithms used were exponential 1 (EXP 1), exponential 2 
(EXP 2), logarithmic rule (LOG), and earliest deadline first (EDF) rule.

The system was implemented using a RRMScheduler C/C++ object-oriented 
 utility tool that includes the LTESim.

Other scheduler parameters are depicted in Table 7.1.
Simulation results showed that the average percentage of possible TTIs remains 

relatively constant for the delay target, when the windowing factor is varied. 

Action Selection
(Improvement or 

Evauation)

RL Algorithm

Functions

Central Controller
(Learning or Exploitation 

Stage)

Inputs

FIGURE 7.9 Proposed RL framework [30].
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However, it was discovered that QVMAX and QVMAX2 outperformed over a range 
of ρ = {5.5, 100} while ACLA outperformed both for a range of ρ = {200, 400}. When 
the PDR target is taken into account, for ρ = {5.5}, the QV policy has the fewest pen-
alties and most reasonable rewards, while the QVMAX2 algorithms perform better 
for values of ρ = {100, 200, 400}. However, ACLA and QVMAX2 produced the low-
est average percentage when ρ = {5.5, 100, 200} when both delay and PDR targets are 
taken into account. In cases where there are wide windows used in PDR simulations, 
the policies are limited and apply the scheduling algorithms to satisfy PDR require-
ments. For VBR traffic, it is noticed that QV, QVMAX2, and ACLA display better 
performance for ρ = {5.5} and when the windowing factor is enhanced to ρ = {200, 
400}. The following policies produce the best outcomes when merging the delay 
and PDR targets: QV, QVMAX2, ACLA for ρ = 5.5, ACLA, QVMAX, QVMAX2 
for ρ = 100, and QVMAX for ρ = {200, 400}. The simulations suggest that RL algo-
rithms learn more effectively under VBR traffic compared to CBR traffic [30].

The RL-based framework was then compared with the four baseline schedul-
ing algorithms namely EXP 1, EXP 2, LOG, and EDF. It was observed that the 
novel technique outperformed the scheduling rules in terms of average percent-
age of TTIs, q for both CBR and VBR traffic. When CBR traffic is scheduled, the 
suggested framework obtains more than 10% of viable TTIs across all windowing 
factor settings. At every TTI, the most appropriate scheduling technique is invoked, 
enabling all active users to adhere to the lower limit of the delay parameter. When 
the VBR traffic is scheduled with ρ = 5.5 for q [%] = {90, 92, 94}, a degradation is 
noticed.

TABLE 7.1
Parameters for the Packet Scheduler [30]

Parameters Value

Bandwidth/radius of cell 20 MHz (100 RBs)/1,000 m

Speed of user/mobility model 120 kmph/random direction

Channel Jakes model

Path loss/penetration Loss Macro cell model/10 dB

Interfered cells/shadowing standard deviation 6/8 dB

Frequency of carrier/power for DL 2 GHz/43 dBm

Structure of frame FDD

Reporting mode for CQI Full-band, periodic at each TTI

PUCCH model Errorless

Type of traffic CBR, VBR

Number of users that can be scheduled 10 each TTI

RLC ARQ Acknowledged model (five retransmissions)

Levels for AMC QPSK, 16-QAM, 64-QAM

BLER target 10%

Quantity of users Variable: 15–120

Exploration/exploitation duration 500/95 seconds

Factor for windowing, ρ {5.5, 100, 200, 200}
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The proposed system performed best when optimizing the percentages of possible 
TTIs when all active users met the requirements for both packet delay and PDR. The 
novel technique outperforms traditional scheduling techniques for the CBR traffic 
type and the windowing factor of ρ = {5.5, 100, 200, 400} by more than 15% by 
selecting appropriate scheduling strategies for diverse traffic loads, network condi-
tions, and QoS requirements. The system developed showed a gain of about 10% for 
VBR traffic due to the fact that some VBR packets are larger in size when compared 
with CBR.

7.5.2  rEInforcEMEnT lEarnInG for 5G SchEdulInG 
ParaMETEr oPTIMIzaTIon

In [31], the authors proposed a model to use RL with the cross-entropy method to 
learn the best set of parameters for a certain traffic profile. The outcomes are con-
trasted with those obtained using hand-tuned parameter thresholds by RF subject 
matter experts (SME) [31].

An environment with three 5G UEs and one 5G cell with no other user was set 
up. To enter commands and implement the system, a vendor-provided scripting lan-
guage and a unique operation and maintenance interface were used. The environ-
ment  created offered fundamental ways to carry out complete steps with the specified 
actions and return the new state, much as OpenAI’s gym [32]. The environment was 
then connected to an RL algorithm built using the cross-entropy method (CEM). 
Almost 50 sessions were generated. The architecture of the system is depicted in 
Figure 7.10.

Simulation results showed that as from 25 iterations, the algorithm outperformed 
the SME-generated results. The simulations were terminated by the 140th iteration 
because the overall rewards did not considerably improve with more iterations. The 
algorithm was able to deliver 25th percentile rewards by epoch 140, which were 
 consistently superior to the baseline.

5G UE 1
(Excellent 
Coverage)

5G UE 2 
(Medium 
Coverage)

5G UE 3
(Low 

Coverage)

5G gNB

CEM Algorithm

1. O&M interface to implement
parameter changes
2. Tracing interface to capture
real time values of scheduling
indicators including
throughputs, error rates,
utilization etc

Environment
Implements Actions, return 
new state after applying 
defined constraints

1. Generate n sessions for every
epoch
2. Tune the policy function
using a Neural Network based
on rewards

FIGURE 7.10 Proposed RL framework [31].
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7.5.3  knowlEdGE-aSSISTEd dEEP rEInforcEMEnT 
lEarnInG In 5G SchEdulEr dESIGn

In this research, the authors generated a deep RL algorithm for wireless schedulers 
in 5G with traffic that is sensitive to time. Utilizing a deterministic scheduling policy, 
the RL algorithm links the channel and queue states to scheduling operations. The 
approach takes advantage of information about the scheduler design problem, such 
as the QoS and the target scheduling policy, by adapting a deep deterministic policy 
gradient (DDPG). A deep RL framework was first established where a MDP process 
was applied to create the model [33]. A knowledge-assisted (K-DDPG) algorithm 
was designed. The scheduler was trained and fine-tuned in accordance with feedback 
from actual networks. In the 5G downlink scheduler considered, K users were served 
by a single base station (BS). The kth user’s packets were waiting in the kth queue in 
the BS’s buffer, and every queue was handled in FIFO (first-in, first-out) order. The 
structure of the novel algorithm is shown in Figure 7.11.

The simulation setup is shown in Table 7.2.
In the simulation framework, the users’ movement were random with a velocity 

of 5 m/s in a cell of radius 100 m. The path loss model is defined as 45 + 30 log(l) 
dB where l stands for the measurement in meters separating a user from the BS. 
At the start, the users are placed at random positions in the cell. The BS is assumed to 

TABLE 7.2
Simulation Setup [33]
Spectrum density for transmit power spectrum 20 dBm/Hz

Spectrum density for noise power −90 dBm/Hz

Time slot duration (one TTI) 125 μs

Bandwidth of a RB 180 kHz

Packet size 32 bytes

Packet arrival probability 10%

Required decoding error probability 10–5

Timeliness requirement [5,7]

Maximum SNR 3.8
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FIGURE 7.11 Proposed online DDPG architecture.
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be in a factory and a Rician distribution is thought to govern the small-scale channel 
gain [34]. The mean power in the line-of-sight path was set to be 0.6 times greater 
than that in the non-line-of-sight ways. In the simulation, a discrete-time channel 
model was taken into account. In the actual slot, the small-scale channel gain slot 
was maintained in the following slot when the probability is 80%. When the prob-
ability is 20%, the channel gain changes depending on the Rician fading. One input 
layer, one output layer, and two hidden levels were shared by both the actor and the 
critic.

Every five episodes, the packet loss probabilities were calculated. According to 
simulation data, DDPG converged in the T-DRL framework after 25 minutes when 
there are few users. DDPG did not, however, unite to a strategy with little probabili-
ties of packet loss. When compared to DDPG, K-DDPG can further cut convergence 
time by 50% (in the T-DRL framework). In cases when there are a lot of users, 
DDPG can scarcely get a scheduler that is satisfactory without help from knowl-
edge. The scheduler learned more quickly using K-DDPG in the T-DRL system than 
in circumstances where knowledge or theoretical models are lacking. The reward 
of various DDPG algorithms, including the original DDPG, an extension of DDPG 
in [35], and the K-DDPG created in this work, is then compared with the T-DRL 
system. The outcomes show that the method in [35] results in a greater reward at 
the start of the training phase. This is due to the fact that exploration uses a human-
written scheduler, which performs better than the new scheme’s randomly initialized 
actor. Toward the end of the training phase, the K-DDPG, however, outperformed 
the other two algorithms in terms of learning speed and performance. Simulation 
results demonstrated that the novel approach reduced the convergence time of DDPG 
to a large extent and yielded better QoS than the current schedulers (reducing packet 
losses by 30%–50%). The novel framework obtained superior initial QoS with offline 
initialization than random initialization, according to experimental data, and online 
fine-tuning converges quickly.

7.5.4  dEEP rEInforcEMEnT lEarnInG for radIo 
rESourcE SchEdulInG In 5G Mac layEr

The authors in [36] have developed a novel deep reinforcement learning model called 
learn to schedule (LEASCH), which managed to resolve the issue concerning radio 
resource scheduling pertaining to the MAC layer of 5G networks. LEASCH has 
been assessed under several numerology settings. In order to increase the adapt-
ability of training the agents and shorten training time, an off-simulator training 
strategy was proposed. The scheduling problem was converted into an episodic deep 
reinforcement learning (DRL) problem during the training phase, and LEASCH was 
trained until convergence. The deployment of LEASCH takes place during the test-
ing phase using a 5G system-level simulator. For a number of episodes, LEASCH 
was trained. Every episode started with the creation of a random state. The agent was 
subsequently instructed in a series of episode steps. In each phase, the agent guides 
the online Q-neural network, and the learnt parameters were then applied to the 
target critic neural network. The memory R was replayed following the conclusion 
of an episode, and the acquired weights were then applied to the subsequent episode, 
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and so on. Each episode begins with a reset of the state. Following the training stage, 
LEASCH is put into a 5G simulator for testing. No retraining was required at this 
step. The parameters used for simulations are displayed in Table 7.3.

The 5G simulation was implemented using MATLAB 2019b. Simulation results 
showed that less than 300 episodes were necessary for LEASCH to converge. A 
stable learning of LEASCH, depicted by a steady increase, was noticed for the theo-
retical (long-term) reward. Two baseline algorithms, namely PF and RR, have been 
used to compare with and assess the novel scheduler. Results from the first set of set-
tings, 5 MHz BW and 15 kHz SCS, showed that LEASCH outperformed the baseline 
in every KPI. As opposed to PF and RR, LEASCH boosted throughput by 2.4% and 
18%, respectively. In terms of goodput, LEASCH performed better than PF and RR 
by 3% and 20%, respectively, suggesting greater stability in LEASCH performance 
as opposed to the benchmark. In comparison to PF and RR, LEASCH increased 
throughput for the other set of settings, 10 MHz BW and 30 kHz SCS, by ≈ 3% and 
19%, respectively. LEASCH outperformed PF and RR with regard to goodput by 
≈3.3% and 21%, respectively. The third set of parameters, 20 MHz BW and 60 kHz 
SCS, likewise demonstrated comparable performance, with LEASCH increasing 
throughput by ≈3% and 18%, respectively, above PF and RR. In terms of goodput, 
LEASCH fared better than PF and RR by ≈4% and 20%, respectively. Additionally, 
LEASCH was able to scale effectively and enhance the performance when choos-
ing a setting with a greater potential throughput (for instance, 10 MHz with 30 kHz 
SCS as opposed to 5 MHz with 15 kHz SCS). Additionally, to retest all approaches, 
the quantity of UEs was doubled, and the second settings were chosen. The findings 
demonstrated that even with a wider number of UEs, the suggested model could still 
produce accurate results. It outperformed PF and RR in terms of throughput by 5% 
and 13%, respectively. In terms of goodput, it outperformed PF and RR by 7% and 
14%, respectively.

TABLE 7.3
Parameters for Testing of LEASCH in 5G

Parameter Value

Number of frames 250 frames

Simulation scenario 100 runs with various deployment scenarios

Numerology index {0, 1, 2}

Bandwidth {5, 10, 20 MHz}

Number of UEs 4

Subcarrier spacing {15, 30, 60 kHz}

Number of resource blocks {25, 24, 24}

Period of scheduling 1 resource block group (RBG)

RBG size 2 resource blocks

Total tested RBGs 250 × 100 × {130, 240, 480} RBGs

Channel Randomly changes each ¼ s

HARQ True
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7.5.5  InTEllIGEnT rESourcE SchEdulInG for 5G 
radIo accESS nETwork SlIcInG

In this study, the authors have presented an intelligent resource scheduling method 
(iRSS) for 5G RAN slicing [37]. The basic objective of iRSS was to create a frame-
work for collaborative learning that combines deep learning (DL) and RL. While 
RL is utilized for online resource scheduling to address small-scale network dynam-
ics, comprising erroneous prediction and unanticipated network states, DL is pri-
marily employed for large-scale resource allocation. iRSS can alter the importance 
between prediction and online decision modules with flexibility and this depends 
on the capacity of historical traffic data and thus assist the RAN to make resource 
scheduling decisions. Long short-term memory (LSTM) was utilized to investigate 
the consistency of data traffic and produce allocation of RAN slices’ resources over 
a long period of time. Moreover, the distributed architecture-based asynchronous 
advantage actor-critic (A3C) method was used to carry out online resource sched-
uling of RAN slices in order to deal with faulty prediction and unanticipated net-
work conditions in brief timescales. In the large timescale, LSTM was employed 
as a DL technique to anticipate traffic volume for resource assignment, and in the 
small timescale, the parallel computing-based A3C algorithm was used for resource 
scheduling. When iRSS was compared with other benchmark algorithms, significant 
performance improvements were seen in the cumulated reward and resource usage. 
The proposed iRSS was evaluated through extensive simulations. The Gaussian dis-
tribution was used to simulate the data traffic at the start of the training process of 
iRSS. In the simulation trials, the quantity of slices, M, was fixed at 10. To guarantee 
the convergence of the method, the step-size in the actor process and the step-size in 
the critic process were specified as constants at extremely low values.

According to the simulation results, the MSE can ultimately approach a minimum 
value in about 18 epochs. Thus, the LSTM can merge at the conclusion of a prediction 
window and deliver the best prediction outcomes. Additionally, for almost all cases 
at that specific MSE point, the errors between the targets and outputs were mostly on 
either side of 0, demonstrating that the LSTM algorithm could be used to predict the 
traffic volume. Different numbers of network slices and resource blocks were used 
to contrast the mean network system rewards. To analyze the system average cost, 
the simulation included a range of 1–20 network slices and 1–200 RBs, respectively. 
When the quantity of RBs was fixed, the simulation results revealed that the system 
mean cost grew monotonically as the quantity of slices increased. That happened as a 
result of the need for extra resources to accommodate the growing quantity of slices. 
The system mean cost, on the other hand, dropped to zero when the number of RBs 
was raised while the number of slices was fixed. The effectiveness of the proposed 
iRSS was also evaluated against other cutting-edge machine learning techniques, 
such as the conventional (or tabular) Q-learning and the standard AC algorithm, in 
addition to a heuristic resource allocation approach (HRSA). Utilization of resources 
and the total reward were two of the performance criteria employed. While the other 
configurations remained the same as in the prior experiment, the resource utilization 
(RU) of the four methods was examined as the number of DTIs was increased from 
0 to 200. It should be noted that the RU of the iRSS algorithm consistently appeared 
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greater than that of the Q-learning, traditional AC, and HRSA techniques, respec-
tively. Additionally, it was shown that the RU of Q-learning, AC, and HRSA changed, 
although that of iRSS fluctuated just slightly, when the number of DTIs was less than 
40. When there were more than 40 DTIs, the four algorithms’ RUs  progressively sta-
bilized, and the RU of iRSS was greater than those of Q-learning, AC methods, and 
HRSA by roughly 16.3%∼19.8%, 8.3%∼13.7%, 30.5%∼34.7%, respectively.

7.5.6  dElay-awarE cEllular TraffIc SchEdulInG wITh drl

In this research, cellular packet scheduling was designed using DRL. The observed 
system status was mapped to scheduling choices using a delay-aware cell traffic 
scheduling method. An RNN was employed to estimate the ideal action-policy func-
tion owing to the size of the state space. In contrast to traditional rule-based sched-
uling techniques, the proposed approach might take into account communications 
with the environment and determine the optimal scheduling choice for each TTI 
adaptively. The MDP was utilized to model the packet scheduling issue. To grasp a 
delay-optimized scheduling solution via communications with the environment, a 
deep-Q-learning agent built on a RNN was developed [38].

Consideration was given to cellular network downlink transmission in which base 
stations supplied UEs (BS). The case where 2 UEs were requesting data from the 
BS was considered whereby one UE followed the Poisson distribution and the other 
UE followed the uniform distribution. The maximum queue length Qmax was set as 
100. The highest quantity of bits that could be transferred on the RB was calculated 
based on the assumption that the quality of each RB could be gauged at each TTI. In 
this simulation, it was believed that the most bits that could be evenly broadcast on 
the RB for a particular UE could only take distinct values from a set of {2, 3, 4, 5}. 
In the neural network used, between the input and the output, there was three levels: 
two dense layers and one LSTM layer. Each layer had 50 neurons and the number of 
episodes was 200. The total number of steps in each episode was 300. One thousand 
simulations were generated and the results averaged. According to the simulation 
results, the reward value started to converge after about 100 episodes of training. 
Additionally, at about training episode 150, the maximum award was earned. To 
attain the optimum performance, the ideal training episode count could be 150. 
Moreover, the proposed DRL-based scheduling algorithm was shown to have the 
lowest delay, 0.4049 seconds. The proposed algorithm had a latency that was nearly 
3.5 times as high as max-CQI’s, which sought to increase traffic throughput. The 
max-CQI technique, however, had the longest queue, which was about nine times 
longer than the novel approach.

7.5.7  a faIrnESS-orIEnTEd SchEdulEr uSInG MulTIaGEnT rl

The issue of fairness-oriented user scheduling was looked into in this work, particu-
larly for the distribution of RB groups. To augment the fairness of the communica-
tion system, a user scheduler was created utilizing multiagent reinforcement learning 
(MARL), which carried out distributional optimization. The agents explored the best 
solution in accordance with a clearly defined reward function designed to optimize 
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fairness, using cross-layer information (such as RSRP, Buffer size, etc.) as state and 
the RBG assignment outcome as action. Additionally, the performance of MARL 
scheduling was compared with that of PF scheduling and RRF scheduling by run-
ning a large number of simulations. The fifth%-tile data rate (5TUDR) of a user was 
chosen as the key performance indicator (KPI) of fairness. An LTE network with one 
BS scheduling its RBGs to multiple users in bursty traffic was considered. In MARL, 
there are multiple agents interacting with the environment. In this work, each agent 
was responsible for a single RBG and a MARL system was built to learn a schedul-
ing policy, which maximizes the system fairness. All the agents were set to be fully 
cooperative and accept the specific cross-layer network data as input [39].

The UE arrival in the BS configuration was modeled as a Poisson process and the 
arrival rate λ was considered. Each UE requested a unique, but limited, quantity of 
traffic data on arrival. The data was kept in the transmitter’s buffer. After its request 
was completed, the corresponding UE suddenly left the network and this action sim-
ulated the bursty traffic mode. Furthermore, the frequency resources were divided 
into RBGs. The most common network setting was considered in which one RBG 
could be assigned a maximum of one UE in each TTI. The simulation parameters 
are illustrated in Table 7.4.

The agents were trained following the parameters listed earlier. One epoch repre-
sented one simulation, which lasted 1,000 TTIs. The system was evaluated using four 
schedulers, namely MARL scheduling, PF1 scheduling, PF2 scheduling, and RRF 
scheduling, respectively. Experimental results showed that the MARL scheduling 
outperformed the other three schedulers in most of the simulations considering the 
5TUDR. The simulation results showed that MARL scheduling could significantly 
improve the fairness while maintaining good performance in average user data rate. 
After a period of scheduling, the number of users changed, and some users left the 
BS. For the MARL scheduling, it insisted upon following the distributional policy 
and allocating the RBGs to different users. But PF scheduling and RRF scheduling 
still assigned all the RBGs to a unique user. Moreover, users with lower buffer size 
took higher priorities in two instances of MARL scheduling.

TABLE 7.4
The Base Station Parameters
Each RBs transmit power 18 dBm

Quantity of RB in every RBG 3

Bandwidth 10 MHz

Noise power density −174 dBm/Hz

Minimum MCS 1

Maximum MCS 29

HARQ number 8

Feedback period of HARQ 8

Initial RB CQI value 4

Each RB’s transmit power 18 dBm
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7.5.8  dEEP lEarnInG-baSEd uSEr SchEdulInG for 
MaSSIvE MIMo downlInk SySTEM

In this chapter, the authors have investigated a scheduling technique for users with 
massive multiple-input multiple-output (MIMO) systems using corelated Rician fad-
ing channels. A novel user scheduling algorithm was proposed in order to reduce 
latency and achieve high throughput. Only statistical channel state information (CSI) 
was used by the algorithm [40]. Through supervised learning, the scheduling net-
work developed was taught to comprehend the mapping from the statistical signal 
and interference pattern to the scheduling decision of the user. After offline train-
ing, it can forecast the ideal scheduling strategy based on statistical CSI without 
requiring iterative calculation. The novel scheduling network was also resistant to 
changes in the channel environment and the quantity of transmit antennas owing to 
the normalization of the input data. The transmission system under consideration 
was a single-cell massive MIMO system. A uniform linear antenna array (ULA) 
having M antennas was installed in the BS. The BS could service up to Ut users and 
was assumed to have L single-antenna users. Two benchmark algorithms were used 
to compare with the proposed scheduling framework. The first algorithm used was 
the one in [41] and the second one was the “sum rate-based” scheduling technique, 
which used exhaustive search to optimize the ergodic sum rate approximation. For 
simulation, a massive MIMO downlink transmission system having L = 20, M = 64, 
Ut = 6 was considered. The scheduling network was trained offline using a unique 
GPU from an NVIDIA RTX2080 Ti card. The loss function was minimized and the 
network’s parameters were settled using the stochastic gradient descent optimizer, 
which had the maximum forecast precision on the validation set. The regularization 
coefficient ε was 0.0001, the training period 150, and the batch size 1,024. Every 40 
epochs, the original learning rate of 0.1 was multiplied by 0.1. Since the sum rate-
based strategy was the ideal scheduling algorithm utilized to provide the training 
labels for the novel scheduling system, simulation results demonstrated that the algo-
rithm attained the highest mean sum rate. Although the scheduling system’s mean 
sum rate performance could not outperform the best scheduling algorithm, it could 
be noticed that the scheduling system developed outperformed the method in [41] 
in the low and middle SNR zones and was almost as effective overall. The novel 
scheduling network performed somewhat worse than the two benchmark algorithms 
in the high SNR region. A different user scheduling system having its training data 
produced under an SNR of 26 dB was developed in order to make up for the perfor-
mance loss in the high SNR zone. It was found that the novel technique performed 
better and nearly equal to the optimal scheduling technique in the high SNR region. 
Additionally, the proposed algorithm significantly decreased the computing time 
needed to produce the scheduling scheme while maintaining the system’s excellent 
spectral efficiency.

7.5.9  SchEdulInG baSEd on drl ModEl for uav vIdEo

For the purpose of solving the resource elements (RE) scheduling problem, the 
authors of this research suggested a deep-Q network (DQN) method constructed 
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on the requirements of low time latency and high resource usage rate [42]. In set 
conditions of time latency and RU rate, the best RE distribution system is developed 
for four users. In order to prepare the neural network, replay memory – which keeps 
track of states, rewards, and actions – were used. The Q network was created with 
three feedforward hidden layers for DQN that are fully connected. A schedule for 
resource items was founded on the DRL method. As the starting network context for 
the modeling of bandwidth allocation, 100 MHz was utilized. The three QoS indi-
ces of time latency, RB usage rate, and fairness were used to assess reward ratings 
of actions from one state to another. In essence, the bandwidth resource allocation 
procedure was a MDP. For simulation, the RB rate was set to 90%, the time latency 
to 200 ms, and the fairness index to 0.5. The DQN algorithm utilized to estimate 
the action-value consisted of three fully connected feedforward hidden layers and 
the quantity of neurons in the layers were 256, 256, and 512, respectively. When the 
replay memory was fully loaded with 400 transfer samples, the training procedure 
begins. While the exploration stage was set at 100,000 steps, the observation stage 
had 300 steps. A random action was chosen from the present set of actions during the 
observation step. Following that, a choice was made in the exploration stage that had 
a lower probability than a particular value of εk. The following equation was utilized 
to update the value of εk.

 ε = × −



0.8    1  

k
K

k  (7.21)

where K represents the total number of training steps, while k represents the current 
step.

The DQN structure was created using a Python program based on the 
aforementioned constraints and modeling parameters, and the Q network was 
trained using the continuously generated transfer samples. The scheme shown in 
Figure 7.12 for the ultimate allocation strategy was given to show the impact of 
RB allocation.

Fr
eq
ue
nc
y

FIGURE 7.12 Resource elements allocation result for four users [42].
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7.5.10  rEInforcEMEnT lEarnInG alGorIThMS In faIrnESS-orIEnTEd  
ofdMa SchEdulErS

In order to address the user fairness criteria for scheduling, a reinforcement learning-
based system was developed in this work [43]. For the PF scheduler, this framework 
used feedforward neural systems to translate instantaneous states to the appropriate 
parameterization choices. To augment the fraction of time (measured in TTIs) dur-
ing which the next generation of mobile networks (NGMN) fairness criteria was 
satisfied, a reinforcement learning-based solution was utilized. This solution learns 
the generalized PF (GPF) parameterization on each instantaneous state. The pro-
posed RL framework communicates with the scheduler environment in an effort to 
continuously refine its selection of the GPF parameterization scheme founded on a 
significant quantity of iterations. The developed RL method updates the neural net-
work weights as nonlinear functions up until some error-based convergence criterion 
is satisfied. In order to identify the GPF parameters reliably and quickly, so that 
the NGMN fairness provisioning is increased, this study targeted to train nonlinear 
functions using a selection of RL techniques. This chapter built upon work from [44] 
and a scheduling framework was proposed that satisfied the NGMN fairness criteria 
for downlink OFDMA systems.

The RRM-Scheduler simulator [45] was used for simulations using a C++ utility 
that built upon the long-term evolution simulator (LTE-Sim) by adding new features 
such as cutting-edge OFDMA schedulers, RL algorithms applied to various schedul-
ing issues, neural network approximation for RL decisions, and CQI compression 
techniques. Q-Learning, DQ-Learning, SARSA, QV, QV2, QVMAX, QVMAX2, 
and ACLA were some of the RL algorithms that were employed. Each of these RL 
methods requires training a total of 11 neural networks at each TTI. For approxi-
mately 3,000 seconds, the learning step was carried out on all RL techniques under 
the same networking settings (i.e., channel conditions, user activity, and data quota 
in the queues). The entire number of available resource blocks, B = 100 and a system 
bandwidth of 20 MHz were taken into account. In the simulations, a cluster of seven 
cells and a radius of 1 km was considered. The scheduling performance was assessed 
in the central cell, while the interference levels were provided by the other cells. 
During the learning and exploitation phases, the number of users varied between 
Ut = [15, 120], with Umax = 10 being the ideal number of maximum users who may be 
scheduled. At each 1,000 TTIs during the learning phase, a random number between 
15 and 120 active users is selected. In both the learning and exploitation phases, each 
user takes into account a full buffer traffic model and travels at a speed of 120 km/h 
while employing a random direction mobility model to investigate a wide range of 
CQI distributions. The parameters used for simulations are illustrated in Table 7.5.

The top five RL algorithms were compared for various windowing factor values. 
When the average proportion of TTIs with viable zones was quantified, all RL algo-
rithms offered almost the same performance when the windowing factor assumed 
low values, such as ρ = 2.0. The examined RL algorithms offered roughly similar 
performance by gradually increasing the number of possible TTIs by employing win-
dowing factors in the span of ρ ∈ {2.25, 2.5, 3.0}. The best solutions for determin-
ing the smallest percentage of TTIs when the scheduler is inequitable were ACLA, 
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CACLA-1, and CACLA-2 when the windowing factor was increased to ρ = 4.0. When 
ρ = 4.25, ACLA, CACLA-1, and CACLA-2 remained the best choice. However, as 
opposed to the performance attained for ρ = 4.25, CACLA-2 and ACLA delivered 
the best outcomes when ρ = 4.5, with the average percentage of TTIs with over-fair 
states higher by nearly 10. In comparison to other RL options, CACLA-2 was the best 
option when the windowing factor was increased to ρ = 5.0 by reducing the number 
of TTIs with unfair states and raising the proportion of possible TTIs with more than 
15%. QV2, QVMAX2, ACLA, CACLA-1, and CACLA-2 all performed similarly for 
low windowing factors (i.e., ρ ∈ [2.0, 3.0]).

7.6  CONCLUSION

Machine learning is a key component in several current and future mobile communi-
cation systems. Although machine learning has not yet been fully applied in 5G com-
munication systems, various research done has demonstrated that the use of machine 
learning techniques such as RL and DL can contribute considerably in improving 
the performance of 5G systems. The use of machine learning in scheduling for 5G 
processes can enable the automatic selection of an optimal scheduling algorithms 
based on several scheduling factors such as radio conditions, KPI, and distance from 
the user. In this chapter several previous works based on RL, DRL, and multiagent 
learning have been reviewed. It has been observed that these techniques are very 
promising when applied to 5G scheduling and several future works can be performed 
to further improve these schemes by hybridizing these schemes.
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Detection for 5G and 
Beyond Wireless Systems
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8.1  INTRODUCTION

Wireless communications and networking have undergone exceptional revolutionary 
progress over the past years. The deployment rate of the fifth generation (5G) mobile 
technology and its associated standards continue to increase. This has led research-
ers, standardization bodies, and industry to turn their attention to the realization 
and implementation of the sixth generation (6G) communication system with target 
goals such as 1 Tbps peak data rate with 1 ms end-to-end latency and up to 20 years 
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of battery life. Topics of special interest for driving 5G communications toward the 
6G technology include THz communications, big data analytics as well as cell-free 
networks and AI.

To fully optimize the 6G networks, AI and ML have been chosen as key enablers. 
AI and ML will be applied to various parts of the 6G network by mapping AI algo-
rithms to the physical, data link, network, and application layers. Thrusts such as 
novel approaches to dynamic security as well as network slice management are being 
studied to deliver an intelligent 6G ecosystem. ML algorithms will be applied to vari-
ous components of the 6G networks that will perform tasks independently as well as 
precisely determining 6G parameters and supporting interactive decision-making.

8.2  DEEP LEARNING WITH 6G TECHNOLOGY

Models based on DL employ signal processing algorithms to study the behavior or 
sequences of the 6G communication system. These models originate from explicitly 
mathematical algorithms such as classifications, regression as well as exchanges of a 
smart negotiator with the wireless background. It has been shown that when a model 
recognizes the features of the 6G communication system, also known as a qualified 
model, then it can learn the features of such a system [1]. Recently, some latest DL 
models as well as massive data sets and high computing power [2,3] have enabled the 
application of AI to 6G networks. The academic community is presently focusing on 
the application of DL algorithms such as supervised, unsupervised, and reinforce-
ment to 6G [4]. The salutary effect of such application will help to process the last 
amount of metadata with fewer resources and less computational power thus achiev-
ing an efficient ecosystem. In the following sections we give a brief explanation of 
the various deep learning techniques that can be applied to 6G networks. Table 8.1 
presents the latest surveys related to DL and mobile networks.

With a view to optimize, monitor as well as manage the broadband spectrum in 
mobile networks, wireless signal reception (WSR) is employed in mobile networks. 
Recently, a great deal of research and focus has been made in the area of WSR 
including modulation and detection. Conventional algorithms of modulation and 
detection employ the likelihood-based (LB) and feature-based (FB) approaches as 

TABLE 8.1
Summary of Existing Surveys in Deep Learning and Mobile Networks

Publication Summary

LeCun et al. [5] A milestone overview of deep learning.

Schmidhuber [6] A comprehensive deep learning survey.

Liu et al. [7] A survey on deep learning and its applications.

Deng et al. [8] An overview of deep learning methods and applications.

Deng [9] A tutorial on deep learning.

Pouyanfar et al. [10] A recent survey on deep learning.

Arulkumaran et al. [11] A survey of deep reinforcement learning.

Hussein et al. [12] A survey of imitation learning.
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detailed in [13]. Statistical theory such as hypothesis testing is employed in the LB 
approach, which results in optimal performance of the wireless system but includes 
large computational complexity. In practical wireless communication system, it is 
the FB approach that is suitable due to its low complexity of implementation but the 
performance achieved is suboptimal.

With the advent of ML algorithms, it has been shown that FB approaches can 
significantly achieve high performance by employing support vector machine (SVM) 
[14]. However, there are some degradation rates with ML methods, although advan-
tages such as classification efficiency and performance are obtained. In wireless envi-
ronment, there are many variations in the conditions of channels due to the obstruction 
of objects. With DL it has been shown that salutary performance can be achieved in 
computer vision [15] and natural language processing [16,17]. Moreover, modulation 
classification has been applied to convolutional neural networks (CNN) model, which 
validated outstanding performance in terms of efficiency and  accuracy [10].

The concept of DL instigates from the study on artificial neural network and the 
goal is to recognize data by mirroring the contrivance of the human brain [18,19]. 
There are three major sections of a basic neural network as shown in Figure 8.1. The 
hidden layer may support more than one sublayer or node, which is a basic opera-
tional unit where the input vector is multiplied by a series of weights and the sum 
value is fed to an activation function f.

There has been significant research progress in deep learning by Hinton [20] and 
many DL architectures composed of various stacked layers of neural networks have 
been developed. These layers contribute to meaningful information and high-level 
representations. Large-scale data is necessary for the training process in a DL model 
and this data is accessible from various components of the wireless system. In a DL 
architecture, the feature engineering component is primordial in signal recognition 
schemes.

It has been reported in [21] that in the FB approach of DL the received signal 
may be impractical or inaccurate in estimating many parameters but this approach 

FIGURE 8.1 Layered neural network.
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performs well for certain solutions that employ self-learning models [22]. Concerning 
LB approaches, it is well known that optimal performance can be achieved when 
considering unknown parameters in modulation recognition. This has been possible 
by using the probability density function (PDF) of the wireless channel. However, 
there are high computational complexities as well as mismatching of the theoretical 
system model to the practical one in such approaches. To deal with the high com-
plexity of LB approaches some features of the received signal are extracted and then 
reasonable classifiers are used to classify different modulation schemes. Table 8.2 
illustrates the latest research associated with the application of DL algorithms to 
modulation and detection in mobile 5G and beyond.

8.3  DEEP LEARNING CLASSIFICATIONS

DL can be classified as supervised, unsupervised, and reinforcement learning.

8.3.1  SuPErvISEd lEarnInG

In an artificial neural network (ANN) applied to a 5G wireless communication sys-
tem the structure of the channel can be used to solve problems such as spectrum 
and resource allocations [30–33]. It has been shown lately in [33] that ANN can be 
transformed to deep neural network (DNN) with more applicability and capabilities.

Moreover, in kNN DL algorithms, the distance between various feature values 
is used to study the system. These algorithms form the basis of classification and 
regression theories. Consider a situation where most of the neighbors belong to a 
certain class then the learned sample is assigned to this class. If the DL framework 
employs Bayes theorem, which consists of a simple probabilistic classification model, 
then the framework is known to use the Naïve Bayes algorithm [34].

In a random forest supervised learning there are multiple decision trees. The algo-
rithm constructs a tree with branches by randomly selecting a subset of features 
and each decision tree is assigned a new data set with the data samples to be found 
classified into a specific class. Figure 8.2 depicts an example of the random forest 
learning model.

CNN form part of a DL model consisting of neurons that can be optimized by 
themselves [33]. This model has been extensively applied to image processing and 

TABLE 8.2
Deep Learning Algorithms and Modulation

Mean/Range Mean/Range

[23–25] Deep neural network

[26,27] Deep belief network

[21] Convolutional neural network

[28] Long–short-term memory

[29] Convolutional restricted Boltzmann machine
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pattern recognition with a complete CNN architecture as shown in Figure 8.3. The 
architectures of CNN are made up of several distinct layers as can be seen. All the 
layers have one similarity that the input to them is a 3D volume and undergo a trans-
form through the corresponding layer by employing differential equations and output 
a 3D volume parameter. The responsibilities of each layer are summarized next.

Input image layer. The raw pixel values of an image that is represented as a 3D 
matrix with dimensions Width × Height × Depth where Depth refers to the number of 
color channels in the image.

FIGURE 8.2 Random forest learning model.

FIGURE 8.3 CNN architecture.
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Convolutional layer. By using convolutions the output nodes will be computed 
and dot products are calculated between a set of weights called a filter and the values 
associated with a local region of the input.

Activation layer. In this layer, the convolved data is fed to an element-wise activa-
tion function called the rectified-linear unit (ReLu), which will determine whether 
an input node will trigger when the input is fed. A maximization function such as 
max(0, x) is used in the convolutional process with threshold set to 0.

Pooling and fully connected layers. To decrease the width and height of the 
output data a downsampling strategy is used in the pooling layer. The convolved and 
reduced features are then fed to the fully connected layer to every node in the volume 
of features being fed-forward.

In a recurrent neural network (RNN) sequential or time series data are used to 
solve ordinal or temporal problems such as natural language processing, speech rec-
ognition, and image captioning. A RNN model is one type of long-term short mem-
ory (LTSM). RNNs are also used to present issues related to gradient determination, 
classification, processing, and determining predictions based on time series data. 
The major benefits and limitations of supervised DL methods discussed earlier are 
provided in Table 8.3 [35,36].

8.3.2  unSuPErvISEd lEarnInG

In unsupervised learning, a given set of unlabeled data is used to accurately predict 
the output data. The unsupervised algorithms have been widely used for aggregation 
as well as clustering and regression problems. Some most commonly used unsuper-
vised algorithms are: K-means, Self-organizing maps (SOMs), hidden Markov model 
(HMM), auto-encoders (AEs), principal component analysis (PCA), and restricted 
Boltzmann machine (RBM). In [32] it has been observed that the performance can be 
enhanced by employing unsupervised learning algorithms. Below is a brief descrip-
tion of some unsupervised learning algorithms.

K-means. It is an algorithm used to generate various different clusters from the 
unlabeled raw input data [32]. The K-means algorithm allocates each new input data 
to a cluster with the rule that its distance is from the nearest associated centroid. The 
allocated data points that have been previously allocated are used to create centroids.

TABLE 8.3
Major Benefits and Restrictions of Supervised Learning

Supervised Method Benefits Limitations

ANN Strong error acceptance

Knn Capable of parallel processing and robust to noise Depend on the architecture

Naïve Bayes Employs trial and error

Decision tree No training step and nonparametric

Random forest Easy to implement Expensive and subtle to noise

CNN Needs homogeneous features

RNN Has real-time applicability and fast
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Self-organizing maps (SOMs). In issues related to reduction of data clustering 
and dimensionality the SOM algorithm can be used [32]. The SOM algorithm cre-
ates a map during the training process by using a competitive unsupervised learning 
approach. In [32] it has been shown that during a competition the winning neuron 
will determine the cluster in which any new input vector is classified. Figure 8.4 
shows a conventional SOM model.

Auto-encoders. The goal of the AE unsupervised learning algorithms is to have 
the minimum possible deviation from some learning circuits that copy inputs into the 
output data. These algorithms yield excellent performance when applied to problems 
related to classification and regression. AEs employ stacked approaches and in the 
training process both supervised and unsupervised learning methods are used. The 
benefits and limitations of the most commonly used unsupervised DL algorithms 
are tabulated in Table 8.4. 

FIGURE 8.4 Self-organizing map model.

TABLE 8.4
Benefits and Limitations of Unsupervised Learning

Unsupervised 
Learning Approach Benefits Limitations

K-means Simple implementation and suitable to large 
datasets

Parameter k large dependent 
on performance

SOM Simple to analyze, design and implement

Auto-encoders Capable to work with large complex datasets Requires big data

PCA Creates similarities and errors in the sample 
vectors

HMM De-noising training and can reduce 
dimensionality

Highly complex and prone 
to overfitting

RBM Fast and can reduce dimensionality Unable to work with features 
that are not linear
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8.3.3  rEInforcEMEnT lEarnInG

Inspired by the way a child learns to carry out a new task and based on the  principles 
of behaviorist psychology the reinforcement learning model has been developed [31]. 
The reinforcement learning algorithm has been extensively studied in [37], which pro-
vides excellent performance with algorithms employed such as Q-learning, SARSA, 
and policy-based algorithms such as policy gradient and actor–critic [33,34,38]. 
Figure 8.5 illustrates an example of reinforcement learning.

Some advantages and limitations of the most common reinforcement learning 
algorithms are listed in Table 8.5.

8.4  DEEP LEARNING AND MODULATION 
IN BEYOND 5G NETWORKS

Modulated waveforms are crucial communication components for dynamic and het-
erogeneous networks for 5G and beyond wireless technologies. It is imperative to 
accurately select and identify a specific modulation type, which the transmitter will 
use at a given time to demodulate and decode the data with high reliability. Hence 
considerable challenges exist in the DL algorithms for modulation classification. In 
this section, a DL framework in the form of modified architectures of CNN is applied 
to the modulation and detection processes of a beyond 5G network [39].

TABLE 8.5
Benefits and Limitations of Reinforcement Learning

Reinforcement Learning Benefits Limitations

Q-learning Relatively fast and low cost 
of implementation

SARSA Efficient for offline learning Not effective for online learning

Policy gradient High per-sample variance

Actor–critic Fast and efficient for online 
learning datasets

Learning methods that are offline 
do not offer efficiency

FIGURE 8.5 Reinforcement learning.
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The architectures referred to in this work is called CLDNNs for convolutional 
LSTM (LTSM) deep neural networks that employ a learning parameter known as 
the mean cumulative sum (MCS), which significantly improves the modulation clas-
sification accuracy. To reduce the dimensions of the DL algorithm a statistical func-
tion called the PCA is used with a view to reduce the training time period. It will be 
shown that the CLDNN model outperforms a conventional CNN one and takes less 
training time. Moreover, in this novel CLDNN architecture, it has been possible to 
classify ten modulation schemes, which makes it highly practical for 5G and beyond 
wireless systems.

Beyond 5G wireless communication systems have multi-path fading channels with 
many variations in the channel states. For this reason, it is necessary to use adaptive 
modulation schemes at the base stations to achieve an acceptable error performance 
in terms of block error rates. Therefore, modulation classification algorithm needs 
to be designed and implemented in beyond 5G networks. Moreover, with the advent 
of multiple-input multiple-output (MIMO) systems with very large antenna arrays 
there are more degradation of the signal waveforms in terms of the power transmitted 
resulting in the identification of signals at the receiver side [39]. Hence a real-time 
system to classify the modulation schemes at the receiver is required. Recently, a 
few algorithms for automatic classifications of modulation and detection have been 
reported in [40]. These algorithms accurately allocate the modulation scheme but 
the classification procedure is time-consuming, which results in delays in the com-
munication system.

According to the latency standard defined by the beyond 5G wireless system it is 
reported in [41] that the desired latency should be of the order of 0.1 ms. To meet this 
requirement of minimum latency and high accuracy, DL algorithms are employed 
in the modulation classification process. It has been recently shown in [40] that it is 
possible to use deep learning-based modulation classifications for MIMO systems 
employing CNN learning algorithms. In this work, an architecture of DL called 
CLDNN that combined CNN, LSTM, and DenseNet for modulation classification is 
described. It will be shown that the memory unit in the LSTM part of the architec-
ture increases the memory unit while the DenseNet section will reduce the latency. 
To further decrease the latency in terms of training time, the PCA will be used.

8.4.1  cldnn-baSEd ModulaTIon

The classification system of modulation schemes is shown in Figure 8.6. Consider 
the  transmitter that sends s(t; ui) baseband data to a receiver that retrieves signal 
r(t), which is fed to the analog-to-digital converter (ADC) followed by the PCA 

FIGURE 8.6 CLDNN communication system.
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component. The complex received signal r(t) can be represented by equation (8.1), 
where n(t) denotes complex Gaussian noise and s(t) in equation (8.1) can be written 
as in equation (8.2). The symbol ( )gk

i  represents k-modulated symbols taken from the 
ith modulated symbol period and ξ indicates the normalized epoch for the time offset 
between the transmitter and receiver, respectively. The output of the PCA component 
is of reduced dimension and it is fed to the CLDNN section whose output is then sent 
to the decoder that outputs symbol bi.

 ( ) ( ) ( )= +r t s t n t  (8.1)
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8.4.1.1  Architecture of the CLDNN
The CLDNN architecture proposed in this work is illustrated in Figure 8.7, which 
combines CNN, LSTM, and dense network models. The CNN with L layers compris-
ing L connections between each layer and its next one thereby providing L(L + 1)/2 
direct connections. Moreover, a LSTM architecture is combined with that of the 
CNN with the input as time series modulated data. In this architecture, features are 
extracted and used for the modulation classifications. A typical LSTM architecture 
introduced in [42] is employed in this work and is shown in Figure 8.8. As depicted 
in Figure 8.7 a DenseNet architecture is connected to the LSTM one. Also, smaller 
training set sizes have been observed and the vanishing-gradient problem is miti-
gated and feature propagation is strengthened.

In this DL framework, there is one additional component used called the MCS. 
It has been shown in [39] that the combined architecture of CNN, LSTM, and 
DenseNet along with the MCS pooling provides significantly improved performance 
and efficiency.

8.4.1.2  Principal Component Analysis
PCA is a multivariate analysis described in [43], also called a factor analysis, and 
considered as an effective technique to reveal the internal structure of the data in 
terms of its variance. The eigenvector parameter is principally used in the PCA to 
represent a picture in a reduced lower dimensional space. It has been demonstrated 
in [43] that the dimension of the data can be significantly reduced. Figure 8.9 shows 
the application of PCA to modulation classification scheme employed in this research 

FIGURE 8.7 CLDNN architecture.
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work. The test data is inputted to the centering block that subtract a mean from it 
and afterward the covariance matrix is determined from the mean subtracted value. 
Then, the eigenvector and value are computed and finally the principal component 
vectors are found from the eigen data and the resulting information is fed as an input 
to the CLDNN architecture.

Table 8.6 shows the dataset attributes employed in this work. A continuous voice 
data is used as input to the DL architecture, which consists of acoustic speech with 
some interludes and off times.

Training and testing phases. The experimental setup, described in [39], was 
carried out at the Keras library. Almost 840,000 samples have been used for training 
phase and the remaining 360,000 samples have been reserved for testing phase. An 
Adam optimizer, which is an optimal-based DL parameter, is used with a learning 
parameter rate set to 0.0018.

Results and discussions. The simulation results obtained from the experimen-
tal setup will now be presented and discussed in detail for each component of the 
CLDNN architecture.

FIGURE 8.8 LSTM architecture.

FIGURE 8.9 Components of PCA to CLDNN.
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The results obtained in [39] clearly demonstrates that less accurate performance at 
low SNR is observed but at high SNR there is considerable improved performance. 
It has been shown that at high values of SNR, an accuracy of 72% is achieved in the 
correct modulation classification scheme.

8.4.1.3  CLDNN Architecture
The simulated data employed by the experiment is tabulated in Table 8.7 for the 
entire CLDNN architecture.

It has been observed that with low signal power of the modulated signal, that is for 
a case of SNR at −20 dB, the CLDNN architecture does not perform well and there 
are few desired features registered. However, when SNR grows above 0 dB there is 
significant diagonalization indicating that most modulation schemes are being cor-
rectly classified. It is worth noting that with this CLDNN architecture an accuracy 
of 98% is recorded with a low SNR of −1 dB. This clearly indicates that compared 
to the classical CNN this new architecture performs much better. The accuracy 
curves shown in [39] were obtained for varying distances and plotted for comparison 
purposes.

8.4.1.4  Error Performance of CLDNN Architecture
The error rate performance of any communication system is crucial for the evaluation 
and effectiveness of such system. In this section, the bit error rate probability (Pb), 
is derived and analyzed for a DL framework that employs the CLDNN architecture. 
It is assumed that BPSK modulation is used and the channel is modeled as additive 

TABLE 8.7
Dataset Attributes in CLDNN

Training and Testing SNR Modulation Schemes

70% (840,000) samples, 
30% (360,000) samples

−20 to +18 dB BPSK, AM-DSB, CPFSK, 
GFSK, PAM

TABLE 8.6
Dataset Attributes in PCA

Dataset Parameter Specification

Number of samples 12,000,00

Number of modulation scheme 10

Modulation scheme CPFSK, BFSK, 16QAM, 64QAM, BPSK, QPSK,  
8 PSK, 4PAM, AM-DSB, WB-FM

Temporal resolution 128 µs each

Sampling rate 1 million samples/seconds



321Modulation and Detection for 5G and Beyond Wireless Systems

white Gaussian noise (AWGN). Mathematically, the received signal at the demodula-
tor side of the CLDNN network can be found by using equation (8.3), where p is the 
transmitted signal with BPSK modulation and ρ ∈ {A, −A} assuming amplitudes of 
the BPSK signal are A and –A; n is called the AWGN component defined as n ~ CN 
(0, σ2); σ2 = No equivalent to the spectral density of noise; and εP  denotes an error 
factor defined as 0 < εP  < 1.

 = + + εq p n P  (8.3)

Moreover, to introduce the error in a modulation classification scheme the parameter 
ε is defined as complex and represented as ε {Re(−A, +A) + Im(−A, +A)}. Due to 
a wrong classification scheme then a wrong modulation and constellation will be 
chosen. Furthermore, P represents a parameter defined as P = 1–a, where a is called 
the accuracy with P = 1 indicating that an error always occurs and P = 0 then no error 
is introduced in the modulation and detection processes. The mean and variance of 
ε is taken to be 0 and 2p2, respectively. Hence the bit error probability can be found 
by using equation (8.6) is given next. Using the Gaussian Q-function it can be shown 
that (8.6) reduces to (8.7).

 η ε σ= + +






~ 0, 
2

re re re

2
2n N p  (8.4)

 η ε σ= + +






  ~ 0, 
2

Im Im Im

2
2n N p  (8.5)

 ∫η
σ σ

( )= > =

+






−

+
























∞

 
1

2π
2

exp

2
2

2
2

2

2
2

P P A

p

x

p

dxb

A

 (8.6)

 
σ

=

+
























2

2
2

P Q
A

p

b  (8.7)

Assuming an accuracy of a = 0.99 then P = 1 – a = 0.01 and if the SNR is varied from 
0 to 12 dB then the bit error probability of a BPSK modulation scheme for CLDNN 
model can be found using (8.5). It can be observed from [39] that at a low error rate 
of 1 × 10−5 the SNR is at a low value of 10 dB. It has been further shown in [39] that 
the CLDNN model outperform a simple CNN one since the proposed CLDNN archi-
tecture is composed of LSTM and DenseNet models.
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8.4.2  dEEP nEural nETwork archITEcTurES for 
ModulaTIon claSSIfIcaTIonS

To achieve a high accuracy of correctly recognizing the modulation scheme of sig-
nals in the beyond 5G network, it is imperative to fine-tune the CNN architecture 
and add more convolutional and dense layers [44]. It has been shown that approxi-
mately 75% accuracy can be achieved in the wireless signal recognition procedure by 
employing DL architectures. Improved accuracy of approximately 83.8% has been 
observed at high SNR in [44]. Furthermore, it is possible to increase accuracy by 
employing residual networks and densely connected networks.

The architecture of a 7-layer CNN, as illustrated in Figure 8.10, consists of input/
output data plane as well as four convolutional layers with two dense layers. The 
hyper parameters that are optimized are learning rate, drop-out rate, filter size, num-
ber of filters per layer, and the network depth. The dense layers have been configured 
to contain 128 and 11 neurons in order of their depth in the network.

It has been observed in [44] that the DenseNet architecture improves the infor-
mation flow between layers than ResNet does because each layer obtains additional 
inputs from all preceding layers and passes on its own feature maps to all subsequent 
layers. Another efficient DL architecture has been designed and implemented in [44] 
that significantly improves the accuracy of modulation classifications. The latter con-
sists of eight layers comprising of four convolutional layers, one LSTM layer, and 
two DenseNet layers. The LSTM layer has 50 computing units, which yield the best 
accuracy result compared to other layered architectures.

Table 8.8 illustrates the error introduced in the wireless signal modulation clas-
sification process using the eight-layered architecture. The number of columns shows 

TABLE 8.8
Accuracy Results for Various Modulation Schemes

Error in Modulation Classification Percentage

8PSK/QPSK 5.5

16QAM/64QAM 58.48

64QAM/16QAM 20.14

Wideband FM/AM-DSB 59.6

Wideband FM/GFSK 3.3

FIGURE 8.10 Seven-layer CNN deep learning architecture.
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the % of the left-hand side modulation type that is misclassified as the modulation 
type on the right-hand side. It can be clearly seen that a low error occurs for 8PSK/
QPKS classification and also for the wideband FM/GFSK recognition. However, for 
16QAM/64QAM wireless modulation classification as well as wideband AM-DSB 
there are significant deviations with high percentages in error resulting in low 
accuracy.

8.5  CONCLUDING REMARKS

DL is presently playing a crucial role in the mobile and wireless networks domain. In 
this chapter DL models have been discussed, and further detailing how to tailor them 
to modulation and detection for 5G and beyond 5G networks. We have described the 
latest findings from several researchers and the basic principle of DL in mobile and 
wireless communications. The modified architecture of CNN called CLDNN has 
been explained and applied to modulation and detection in the form of modulation 
classifications. Moreover, the error rate performance for a DL framework employing 
the CLDNN is derived and analyzed in the presence of AWGN channel for BPSK 
modulation. It is shown that accuracy in the modulation classification algorithm is 
improved and low error rates at low SNR values are achieved. We conclude by hoping 
that this work will become a comprehensive guide to researchers and practitioners 
interested in applying DL to solve complex problems in modulation and detection for 
beyond 5G networks.
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9.1  INTRODUCTION

5G New Radio (NR) is the latest generation of mobile communications networks, 
which uses state-of-the-art technologies to provide high-performance mobile con-
nectivity, capable of supporting a wide variety of vertical industries. The techni-
cal specifications of 5G NR are actively being defined by the Third-Generation 
Partnership Project (3GPP). The 3GPP Release 14 introduced 5G NR with a thorough 
study of the technology. Release 15 onward consisted of the technical specifications 
for 5G NR.

5G NR is being designed to suit three main service classes mainly:

 1. Enhanced Mobile Broadband (eMBB). 5G NR should meet peak data rate 
requirements of 20 Gbps and 10 Gbps in the downlink and uplink, respec-
tively, and a user plane latency of 4 ms (ITU, 2017). Such specifications 
allow 5G to support data-intensive services.

 2. Ultra-Reliable Low-Latency Communications (URLLC). 5G NR should 
be capable of providing a latency as low as 1 ms with a reliability of 10−5 
for packets of 32 bytes (ITU, 2017). These specifications should allow 5G to 
support delay-sensitive services such as autonomous driving and telesurgery.

 3. Massive Machine-Type Communications (mMTC). 5G NR networks 
should support a connection density of 1 million connected devices per km2 
(ITU, 2017) with low-energy communications for enabling the Internet of 
Things (IoT).

Channel codes are essential components in the physical layer of the 5G NR com-
munications system, which have a significant impact on the performance of the lat-
ter. Currently, low-density parity check (LDPC) codes and polar codes have been 
included in 5G NR for the data channel and control channels, respectively, for eMBB 
services (Zhu et al., 2018). The channel codes used in 5G NR need to meet strict 
requirements such as a high decoding throughput of at least 20 Gbps, a low decoding 
latency, good error correction capabilities, flexibility to adapt to various data sizes, 
and low complexity (Indoonundon and Fowdur, 2021).

Machine learning (ML) is a mechanism widely used for solving high-complex-
ity problems by relying on a machine, which has undergone learning through the 
automatic identification of meaningful patterns in data. Recently, as high computing 
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power has become more accessible, ML has become of significant help to researchers 
in several fields by providing effective solutions to hard problems and useful insights 
into bulks of data. Over the past decade, researchers have also integrated ML with 
channel codes to provide design and performance enhancements. For example, neu-
ral networks are being used to learn and execute tasks in decoders to reduce their 
computational complexity and ideal decoders’ parameters such as scaling factors and 
normalization factors based on specific channel conditions that are determined by 
ML algorithms to provide performance gains. An in-depth literature review of such 
schemes is given in Sections 9.2 and 9.3.

ML algorithms can be categorized as either supervised or unsupervised learn-
ing algorithms. Supervised learning algorithms require details about the expected 
output for given inputs to be fed to the machine for training purposes. This generally 
implies that additional efforts from a human operator are required. Supervised learn-
ing algorithms are mainly used for regression and classification. On the other hand, 
unsupervised learning algorithms do not require such details. However, to achieve 
high accuracy, unsupervised learning requires larger datasets to identify similari-
ties and differences between them. Unsupervised learning is mainly performed for 
data clustering (Fowdur et al., 2021). One ML technique, which has paved its way 
in numerous fields is reinforcement learning. In reinforcement learning, an agent 
is placed in a training environment in which it takes random actions to cumulate 
rewards. The agent learns to maximize its rewards based on the sequences of actions 
it can take and thus eventually learn the best course of action required to solve a 
problem. The different types of ML algorithms are summarized in Figure 9.1, along 
with examples for each of them.

ML algorithms can also be categorized as either shallow learning or deep learn-
ing algorithms. While shallow learning consists of three learning steps, namely data 
collection, manual feature selection, and regression, deep learning requires only the 
data collection step and combines the feature selection and regression steps in a sin-
gle step (Fowdur et al., 2021).

9.2  APPLICATION OF ML IN 5G NR LDPC CODES

In this section, an overview of LDPC codes used in 5G NR is first given followed by 
a review of ML techniques that have been employed to enhance the performance of 
these codes.

FIGURE 9.1 Types of machine learning algorithms.
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9.2.1  5G nr ldPc codES

LDPC codes are forward error correction codes, which were introduced by Gallager 
(1962). They were, however, initially ignored due to their computational complexity 
and the limited access to high computing power at that time and were rediscovered 
by MacKay and Neal in 1996. Since then, there has been significant research focus on 
LDPC codes as they have near Shannon limit performances and were therefore con-
sidered to be the most powerful classes of error-correcting codes developed. LDPC 
codes have been adopted in multiple communications standards such as WiMax, 
DVBT2, and IEEE 802.11n (Fowdur and Indoonundon, 2017).

More recently, LDPC codes have been chosen as the channel codes for the data 
channel of 5G NR eMBB services (Session Chairman [Nokia], 2016). 5G NR employs 
protograph-based quasi-cyclic (QC) LDPC codes based on two rate-compatible base 
graphs, which can generate parity check matrices using a defined lifting size. The 
first base graph is optimized for the transmission of large blocks of sizes of up to 
8,448 bits at high code rates of up to 8/9. On the other hand, the second base graph is 
used mainly for the transmission of small blocks of sizes of up to 3,840 bits at codes 
rates as low as 1/5 (3GPP, 2019).

The LDPC decoding algorithms supported by 5G NR are the belief propagation 
(BP), layered belief propagation, normalized min-sum, and offset min-sum algo-
rithms. Each of these algorithms has different error performances, computational 
complexities, and decoding latencies and therefore the choice of the decoding algo-
rithms should be made carefully based on the service to be provided.

Recently, several research studies have proposed LDPC decoding schemes using 
ML to further enhance the error performance. An overview is given in the following 
subsections.

9.2.2  ldPc codES wITh nEural nETworkS

9.2.2.1  Linear Approximation Min-Sum-Based ML 
for Optimizing LDPC Decoding

Wu, Jiang, and Zhao (2018) proposed a new scheme for optimizing simplified LDPC 
BP decoding algorithms with the use of ML. They introduced a generalized min-
sum (MS) algorithm, named the linear approximation min-sum (LAMS) in which 
the check node outputs are altered by a linear function containing both a normalized 
and an offset factor. These factors are optimized using a neural network, which runs 
over a single iteration of the decoding process. After an iteration, the optimized fac-
tors determined by the neural network are used to calculate the log-likelihood ratios 
(LLRs) for the following iteration. This approach of finding the optimal factors for 
each iteration instead of a globally optimal factor for all iterations allows the neu-
ral network to be shallow and thus less complex. The low complexity of the neural 
network allows the LAMS decoder to be optimized for LDPC codes of diverse code 
lengths and iteration numbers.

In the input layer of the neural network, the received LLRs are assigned to the 
next layer similar to the message-passing process from variable nodes to check 
nodes. In the hidden layer, LLRs are calculated in a similar way as in the check 
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node update process. Finally, in the output layer, the LLRs are updated using the 
linear adjustment method of the magnitude of the channel LLRs. The neural network 
optimizes the factors in the hidden and output layers (Wu et al., 2018). The structure 
of the neural network is illustrated in Figure 9.2. The key network requirements for 
space-to-ground networking capability are flexible addressing and routing, satellite 
bandwidth capability, admission control of satellites, admission control by satellites, 
edge computing, and storage.

The authors used TensorFlow to build the neural network, using a learning rate of 
0.1 with a total of 500 rounds of training and a batch size of 500. The training dataset 
consisted of the LLRs obtained from a binary phase-shift keying (BPSK) signal of 
an all-zero codeword transmitted over an additive white Gaussian noise (AWGN) 
channel with an Es/N0 of −4 dB. The performance of the trained neural network 
was then evaluated using simulations. The simulation results show that with 15 itera-
tions, the proposed LAMS decoder outperforms both the conventional normalized 
min-sum (NMS) and offset min-sum (OMS) algorithms. At SNRs above −2.5 dB, 
the proposed algorithm is also found to outperform the BP algorithm as the latter is 
not optimized for low iteration numbers and short codewords (Wu et al., 2018). By 
providing a better error performance than BP, NMS and OMS which are used in 5G 
NR for eMBB, the proposed scheme is a good candidate for eMBB in future 5G NR 
releases.

9.2.3  nEural MS dEcodEr for ProToGraPh-baSEd ldPc codES

A novel neural MS decoder that utilizes the lifting structure of protograph-based 
LDPC (PB-LDPC) codes has been proposed in Dai et al. (2021). The authors used 
5G NR’s LDPC codes to demonstrate the performance of their decoder. In PB-LDPC 
codes, the structural properties of the base graph are identical to that of the lifted 
graph. This allowed the authors to use a parameter-sharing mechanism whereby 
groups of edges that are obtained from the same edge from the base graph share the 

FIGURE 9.2 Structure of proposed neural network (Wu et al., 2018).
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same parameters. This mechanism reduces the decoder’s computational complexity 
by minimizing the parameter array’s size and makes it easily applicable to LDPC 
codes with a variety of codelengths (Dai et al., 2021).

For training their neural network, the authors used an iteration-by-iteration greedy 
training method in which only the parameters from the decoder’s last iteration are 
learnable. This method resolves the vanishing gradient problems in the MS decoder 
and it also eliminates message correlation caused by short cycles in the LDPC codes. 
This method allows the neural decoder’s configurations to be determined in a single 
iteration and therefore reduces the training complexity (Dai et al., 2021).

During the training phase of the neural network, the authors use LDPC codes 
of different code lengths and code rates, obtained from a single base code to 
address the overfitting problem, making their network become more generalized. 
Simulations were performed using an AWGN channel to compare the proposed 
decoder against the conventional sum-product (SP), MS, NMS, and OMS decod-
ers. Simulation results showed that for short LDPC codes with lifting size, Z = 3, 
the proposed neural MS decoder outperforms the conventional decoders whereas, 
for medium and long LDPC codes, the decoder is slightly outperformed by the SP 
decoder. The performance gain of the proposed neural MS decoder over the SP 
decoder for short codes can be attributed to the better approximation that the former 
provides for the normalization and offset factors. The authors also explained that 
the performance boost is generally due to the elimination of short cycles, which 
their algorithm provides using well-learnt parameters. Thus, for longer codewords, 
the reduced number of short cycles allowed the SP decoder to provide better perfor-
mance (Dai et al., 2021).

A complexity analysis performed in their research showed that by avoiding hyper-
bolic tangent functions, the proposed neural MS decoder provides a similar compu-
tational complexity to that of NMS and OMS. However, the storage of additional 
parameters required by the neural MS decoder increases the latter’s memory require-
ments (Dai et al., 2021).

9.2.4  blInd rEcoGnITIon METhod uSInG 
convoluTIonal nEural nETworkS

Blind recognition is a technique used by receivers to estimate channel code parame-
ters such as the code rate and code length. This technique is particularly useful when 
the parameters are dynamically changed based on the channel conditions. A group of 
researchers proposed a novel LDPC codes’ blind recognition method, which relies on 
convolutional neural networks (CNNs) (Li et al., 2021). The method involves deter-
mining the LDPC matrix based on the received codeword and a candidate set, which 
is based on five LDPC codes used in 5G NR.

The proposed method consists of two main components. The first one retrieves 
the demodulator’s output to generate a feature matrix, which splits the output into α 
rows and L columns where α is the smallest possible length of the parity check matrix 
and L is the number of vectors of size α, which can be obtained from the demodula-
tor’s output. The second component is a one-dimensional (1D) CNN, which evaluates 
the blind recognition outcome. The convolutional filters in the CNN use the feature 
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matrix for feature extraction. The authors used the cross-entropy loss function and 
the Adam optimizer and trained the CNN using backpropagation (Li et al., 2021).

The authors opted for variable hyperparameters for the 1D CNN. The latter is 
composed of up to two convolutional layers, 64–256 filters per convolutional layer 
and a kernel size of 8–16. Rectified linear unit (ReLU) is used as the activation 
function in the convolutional layers, which are followed by batch normalization and 
a pooling layer. The convolutional layer’s output is pooled by a global average and 
forwarded to a dense neural network, which performs the classification of the code 
parameter. The first layer of this dense neural network uses ReLU activation and the 
second layer employs a softmax function (Li et al., 2021).

To make their method work with several channel models, the author considered 
three channel models: the AWGN channel, the Rayleigh fading channel, and the 
Rician fading channel. The two later channels are also cascaded with an AWGN 
channel to perform SNR simulations. The neural network is trained and then simula-
tions are performed to compare the proposed method with an existing conventional 
method. In the AWGN channel, the proposed method is found to determine the code 
parameters with similar accuracy as the conventional method. The authors claim 
that the accuracy of their method can further be increased by making their neu-
ral network deeper. When using the two other channels, the proposed method has 
a correct parameter identification probability above 70% when the SNR is greater 
than 1 dB, while the conventional method performs poorly with a correct parameter 
identification probability below 30% for all tested SNRs. This demonstrates the high 
performance of the proposed method (Li et al., 2021).

9.2.5  dEEP lEarnInG-baSEd unIfIEd Polar-ldPc dEcodEr

With a view to save implementation resources, researchers have proposed a deep 
learning-based unified polar-LDPC decoder (Wang et al., 2018). The input to the 
neural network is a sequence consisting of the received symbols concatenated with 
an indication section, which is used to specify the channel coding type. The hid-
den layers are used to determine the decoding function (polar or LDPC codes) and 
employ the ReLU activation functions. The output layer employs the sigmoid activa-
tion function and outputs an estimation of the information bits. The mean squared 
error (MSE) loss function between the output estimated bits and the actual informa-
tion bits is minimized through training

The authors justified their use of the deep neural network (DNN) over CNN and 
long–short-term memory (LSTM) through simulations where they demonstrated that 
LDPC and polar codes decoding using DNN provides better BER performance than 
with CNN and LSTM. The authors attribute this to the better ability of DNN to 
work with 1D data. Similarly, based on BER simulations, the indicator section is 
chosen to be of a single bit, which the authors may increase if more channel  coding 
methods are to be included and the layer size of the DNN is opted to be (512, 256, 
128), which is found to provide a reasonable BER performance at reasonable com-
plexity. Training is performed using SNR values between 0 and 5 dB in 0.5 dB 
steps at 50,000 epochs to improve the generalization abilities of the decoder (Wang  
et al., 2018). The DNN is built to decode polar and LDPC codes of size (16, 8) and 
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the indicator section is configured to have the value of ‘1’ or ‘−1’ for polar codes and 
LDPC codes, respectively. Testing is performed using 4 × 105 samples making a total 
of 3.2 × 106 bits (Wang et al., 2018).

When polar coding is used, the proposed DNN-based unified polar-LDPC decoder 
provides nearly the same performance as the conventional BP polar decoder. At a 
BER of 10-2, the proposed decoder offers an Eb/N0 loss of only 0.2 dB with respect 
to the conventional decoder. The authors stated that this gap may be reduced by 
increasing the size of the neural network at the cost of increased complexity and 
they also justify the gap with the addition of the indicator section. On the other hand, 
when LDPC coding is used, the proposed decoder is capable of significantly outper-
forming the conventional BP LDPC decoder. At a BER of 10-2, the proposed decoder 
provides an important Eb/N0 gain of 0.8 dB over the conventional decoder (Wang  
et al., 2018). Compared to the conventional BP decoder, the proposed decoder pro-
vides a throughput gain of six orders of magnitude. Furthermore, compared to the 
traditional isolated DNN-based decoders, the proposed decoder uses 0.3% less over-
head at a tradeoff of 0.4% loss in throughput (Wang et al., 2018).

9.2.6  nEural norMalIzEd MIn-SuM ldPc dEcodInG nETwork

The high complexity of DNNs for long codes decoding has been addressed by a 
novel neural normalized min-sum (NNMS) LDPC decoding network (Wang et al., 
2020), which accelerates the decoding process by unfolding the iterative decoding 
progress between the check nodes and variable nodes into a feedforward propaga-
tion network. The NNMS is then extended to a shared neural normalized min-sum 
(SNNMS) decoder, which reduces the complexity by reusing the same correction 
factors in each layer.

The system model used by the author involves executing LDPC encoding on infor-
mation bits to obtain the LDPC codeword, which is modulated using BPSK before 
being transmitted through an AWGN channel. The LLRs of the received symbols 
are calculated and sent to the deep feedforward neural network, which estimates the 
information bits. In the NNMS network, for each iteration, the messages between the 
check node and variable node layers are multiplied by different correction factors, 
which is similar to setting weight values to the edges of the Tanner graph. The check 
node layer determines the messages sent from the check nodes to variable nodes, 
whereas the variable node layer determines the messages sent from the variable 
nodes to the check nodes. The neural network uses three types of neurons. One cal-
culates the check nodes to variable node messages in the check node layer. Another 
type calculates the variable nodes to check node messages in the variable node layer 
and the last type calculates the output of the output layer. On the other hand, the pro-
posed SNNMS decoder shares the same correction factors in the same layer, which 
brings minor changes to the equations used by the three different types of neurones. 
This technique is also more similar to the one used in conventional LDPC codes 
(Wang et al., 2020).

A complexity analysis based on the number of mathematical operations used in 
each decoder shows that the SNNMS decoder has lower complexity than the NNMS 
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and nearly matches the complexity of the conventional normalized MS (CNMS) 
decoder. Simulations were performed with the SNNMS, NNMS, and CNMS decod-
ers to evaluate their BER performances. The results showed that irrespective of the 
number of iterations used, the SNNMS outperformed both the two other decoders. At 
a BER of 10–7, the SNNMS decoder provides a 0.4 dB gain over the NNMS. Hence, 
the lower complexity and better BER performance make the SNNMS decoder suit-
able for long LDPC codes (Wang et al., 2020).

9.2.7  nEural 2d nMS (n-2d-nMS) dEcodErS

Another similar work in which the NNMS decoder is further enhanced and adapted 
to short codes is the paper in which a family of neural 2D NMS (N-2D-NMS) decod-
ers was introduced (Wang et al., 2021). The authors solve the high memory issue to 
implement the NNMS decoder by iteratively conducting backpropagation and stor-
ing parameters efficiently.

The proposed N-2D-NMS decoders make use of multiplicative weights applied 
to the messages in the check and variable nodes. The different types of N-2D-NMS 
they introduced are as follows (Wang et al., 2021):

The type 1 decoder applies similar weights to edges, which have the same vari-
able and check node degrees. The type 2 decoder does not share the weights between 
the variable and check node degrees. The type 3 and type 4 decoders consider only 
variable node and check node degrees, respectively. The type 5 decoder assigns the 
same weight to edges of the same type. The type 6 and type 7 decoders are simplified 
versions of the type 5 decoder, which assign parameters only based on the horizontal 
and vertical layers, respectively. The type 8 decoder uses iteration-distinct param-
eters (Wang et al., 2021).

Simulations are performed to evaluate the proposed enhanced NNMS decoder 
and family of N-2D-NMS decoders with DVBS-2 LDPC codes and protograph-
based raptor-like (PBRL) LDPC codes. BPSK modulation is used and the modulated 
message is transmitted through an AWGN channel. With DVBS-2 LDPC codes, 
results showed that the NNMS decoder outperforms the conventional BP decoder 
with a significant Eb/N0 gain of 1.3 dB. The NNMS decoder was outperformed by 
Type 1 and 2 decoders. As the variable node weights of the DVBS-2 LDPC codes 
had a larger dynamic range than the check node weights, the Type 2 and 4 decoders 
outperformed the Type 3 decoder (Wang et al., 2021).

The simulation results when PBRL LDPC codes were used showed that the 
NNMS decoder provided a 0.5 dB Eb/N0 gain over the conventional NMS decoder. 
The NNMS decoder provided the same performance as the Type 1, 2, and 5 decod-
ers but the latter have a lower complexity due to the smaller number of parameters 
needed. It was also observed that the weight-sharing mechanisms did not result 
in performance degradation. However, assigning weights based on variable nodes 
instead of the check nodes resulted in performance degradation. The proposed 
NNMS decoder slightly outperformed the Type 4,7 decoders by at most 0.2 dB. 
The complexity reduction of this scheme could make it suitable for 5G mMTC 
services.
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9.2.8  nEural layErEd MS dEcodEr for 
ProToGraPh-baSEd ldPc codES

A group of researchers proposed a neural layered MS decoder for protograph-based 
LDPC codes, which exploits their lifting structure (Zhang et al., 2021). The decoding 
process is converted to a neural network in which messages are processed in a feed-
forward manner. A conventional layered LDPC decoder processes subsets of check 
nodes called layers sequentially instead of all of the check nodes at once to improve 
the convergence speed.

The proposed decoder takes the vector of LLRs obtained from the channel output 
at the input layer and outputs processing elements at the output layer. The architec-
ture of the conventional layered decoder is imitated by the neural network by split-
ting the layers into small groups containing a variable node sublayer, a check node 
sublayer, and a decision sublayer. The neurons in the sublayers forward messages 
delivered over the edge from the nodes to their adjacent nodes. The decision sublayer 
notes the most recent update and outputs temporary decoding results, which are used 
for calculating the loss function. The network’s output layer sends the late decision 
sublayer’s output as the final decoding result (Zhang et al., 2021).

The authors provide the flexibility to optimize both weights and biases unlike 
weighted SP decoder and neural NMS. These weights and biases are also made to 
vary in each iteration for increasing the level of optimization. Parameters are sharing 
for some edges within the same iteration, in order to minimize the complexity and 
the memory requirement of the neural network and to make the network compatible 
with arbitrary code lengths (Zhang et al., 2021).

MSE was used as the loss function between the actual message and the outputs of 
the decision sublayers. The loss function was minimized by gradient-based optimiza-
tion techniques to optimize the decoder. To prevent the vanishing gradient problem, 
the weights and biases obtained after training one layer are used without any change 
in subsequent layers and only the weights and biases of the last layer are made learn-
able (Zhang et al., 2021).

The 5G NR LDPC codes, which are protograph-based, were used to build and 
test the performance of the proposed decoder. Simulation results showed that the 
proposed decoder outperforms the conventional layered MS decoder and even the 
conventional layered SP decoder at high SNRs with both an AWGN channel and 
Rayleigh fading channel. For LDPC codes with longer code lengths, the proposed 
decoder outperforms the conventional layered MS decoder but is slightly outper-
formed by the layered SP decoder. However, the lower complexity of the proposed 
decoder makes it a good alternative to the SP decoder (Zhang et al., 2021).

9.3  LDPC CODES WITH REINFORCEMENT LEARNING

9.3.1  MulTIarMEd bandIT-baSEd nodE-wISE 
SchEdulInG (Mab-nS) SchEME

In the conventional iterative decoding of LDPC codes, all check nodes and variable 
nodes are updated simultaneously. This method is called flooding. Another updated 
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method, which has proven to lead to enhanced performances, consists of sending 
messages from a single check node at a time and consecutive check nodes are sched-
uled based on the difference between the subsequent messages emerging from the 
check node (Casado et al., 2010). This update method is called node-wise schedul-
ing (NS) but is known to be more computationally complex than the conventional 
update method. Habib, Beemer, and Kliewer (2021) proposed a multiarmed ban-
dit-based node-wise scheduling (MAB-NS) scheme, adapted to short LDPC codes, 
which aims at reducing the computational complexity of NS. Basically, a multiarmed 
bandit problem is a reinforcement learning problem in which an agent is allocated 
numerical rewards based on the course of actions it chooses to take. The agent aims 
to maximize this reward through optimal choices of actions. The proposed scheme 
is based on Q-learning, which is a model-free reinforcement learning algorithm for 
learning the value of an action in a given state. As LDPC codes have a large number 
of check nodes, the authors proposed to group them into clusters to make them more 
suitable for Q-learning. The clusters are determined such that they have separate 
state and action spaces and that they have a low dependence on each other.

In the proposed scheme, a single check node sends messages to all of its connected 
variable nodes, which subsequently send messages to their connected check nodes, in 
a single message-passing iteration. Check node scheduling is then executed sequen-
tially until a specific stopping condition is met. The decoder relies on an action-value 
function to determine its scheduling policy to minimize its computational complex-
ity. In this scheme, the Q-learning agent is informed of the state of the decoder and 
the reward obtained after scheduling a check node. The agent then learns to enhance 
the reward earned, thus optimizing the decoder (Habib et al., 2021). The authors 
categorized their Q-learning schemes based on the clustering method used. They 
denoted the schemes as MQC, MQR, and MQO for contiguous, random, and cycle-
optimized clusters, respectively.

Simulations are performed to compare the proposed schemes mainly with the 
conventional flooding decoder, NS decoder, and an NS decoder based on Thompson 
sampling (NS-TS). Simulation results show that MQO offers the best BER perfor-
mance and shares the least amount of messages between check nodes and variable 
nodes, which implies a reduced message-passing complexity (Habib et al., 2021). 
The benefits of a good BER performance and a reduced complexity can make the 
proposed scheme a good option for mMTC services where low-energy processing 
is required.

9.3.2  rEInforcEMEnT lEarnInG and MonTE carlo TrEE SEarch

Deep reinforcement learning has also been tested for the construction of high-perfor-
mance LDPC codes (Zhang et al., 2018). The authors used reinforcement learning and 
Monte Carlo tree search (MCTS) to train a neural network to search for edge growth 
routes in the construction of LDPC codes. The MCTS technique involves construct-
ing and traversing a search tree while taking arbitrary actions at each node until the 
best solution to the problem is obtained and is commonly used for  addressing con-
struction and planning problems. Their method provides a long-term vision, which 
leads to performance enhancements and flexibility in terms of code length, code rate, 
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and the degree distribution at a lower complexity than the progressive-edge-growth 
(PEG) method, making it appropriate for 5G NR, which is designed to be flexible.

The DNN is trained using codes constructed by the MCTS. The construction 
stage is repeated using the trained DNN from the last learning stage to optimize the 
network. The construction involves updating an all-zero parity check matrix with 1 s 
at the selected edges sequentially based on the specified degree distribution until the 
complete LDPC matrix is obtained. The edges are considered as the states whereas 
the selection of the next edge is considered an action (Zhang et al., 2018). The authors 
selected the construction of a quasi-cyclic LDPC (QC-LDPC) code to evaluate their 
proposed method. QC-LDPC codes were chosen because they have a massive struc-
ture and hence enhancement in their constructions may be easier to notice. They 
selected a code length of 64 bits with a code rate of 1/2. The circulant size, variable 
node degree, and check node degree are chosen to be 8, 3, and 6, respectively. The 
base matrix of the LDPC code is chosen to be of size 4 × 8 with a circulant permuta-
tion matrix of size 8 × 8 (Zhang et al., 2018).

During the training, the BER performance of the constructed LDPC code is used 
to rate the code. The DNN takes a 4 × 8 × 2 image stack as input and uses three 
convolutional layers, each with a different number of filters. The output of the last 
convolutional layer is fed to a policy head and a value head. The policy head consists 
of one convolutional layer and a fully connected layer, which gives an output using a 
softmax activation function. The value head consists of one convolutional layer and 
two fully connected linear layers. All the convolutional layers used in the network 
are activated using ReLU (Zhang et al., 2018).

The proposed construction method is compared to the PEG method through 
BER simulations and it was observed that both methods provide the same error 
 performance with the added benefits of flexibility and lower complexity (Zhang 
et al., 2018).

9.4  APPLICATION OF ML IN 5G NR POLAR CODES

In this section, an overview of polar codes used in 5G NR is first given, followed by 
a review of ML techniques that have been employed to enhance the performance of 
these codes.

9.4.1  5G nr Polar codES

Polar codes are high-performance channel codes introduced by Arikan in 2009. 
Arikan proved that, unlike other channel codes, polar codes are capacity-achieving. 
Polar codes make use of the polarization effects of the Kronecker powers of a kernel 
matrix to create virtual channels having different reliabilities, to transmit one bit 
each. In the polar encoding process, K message bits are assigned to the most reliable 
channels while the other remaining N–K channels are filled with frozen bits, which 
are usually set to 0 (Pillet et al., 2020).

Since its introduction, polar codes have attracted much research attention and 
have even been deployed in 5G NR’s control channel for eMBB services and in 5G 
NR’s broadcast channel (Bae et al., 2019). 5G NR utilizes the CRC-aided (CA) polar 



339AI-Based 5G/6G Communications

codes, which support rate-matching. 5G NR’s polar codes are decoded using the 
CRC-aided successive cancellation list (CA-SCL) algorithm. Unlike the BPA and 
NMSA LDPC decoding algorithms, the CA-SCL decoding is performed in a SISO 
manner (Arikan, 2009). This implies that the decoding of bits in the codeword is 
performed sequentially.

Compared to the simpler successive cancellation (SC) decoding algorithm, the 
CA-SCL decoding algorithm makes use of more than one decoder working in paral-
lel, providing multiple decoding paths and leading to a better error performance than 
the SC decoding algorithm. Furthermore, the addition of CRC to the decoder is used 
for accurate codeword selection. The decoding path having the smallest path metric 
and passing the CRC is selected as the decoded codeword.

9.4.2  Polar codES wITh nEural nETworkS

9.4.2.1  Neural Network-Based Frame Error Rate 
Prediction of Polar Codes

Leonardon and Gripon (2021) developed a neural network with the ability to predict 
the frame error rate (FER) of polar codes based on the parameters used for their con-
struction, which can ease the design of high-performance polar codes. The dataset 
used for training the neural network consisted of frozen bit sequences paired with 
their corresponding FERs, which are determined by Monte Carlo simulations. The 
simulations are performed such that no other parameters than the frozen bit sequence 
are changed across the communication system to obtain the FER. Most of the train-
ing dataset consisted of poor performance frozen bit sequences to lead the neural 
network in predicting high FERs.

The training is performed on both short (256, 128) and large (1,024, 512) polar 
codes with SCL decoders of list sizes 4 and 32, respectively. The FER data is gener-
ated using Eb/N0 values 3.2 and 2.7 dB for short and large polar codes, respectively. 
80% of the data set is used for training the neural network whereas 20% is used for 
validation. After the validation phase, it was observed that the predicted FERs gen-
erally do not deviate by more than 6% from the actual FERs. Worst-case scenarios 
brought this deviation to not more than 30%, which was still considered acceptable 
by the authors (Leonardon and Gripon, 2021).

The authors experimented with their neural network by changing the training 
parameters to evaluate the outcomes. The authors found that the best inflation of 
error (IOE) was obtained by increasing the neurons number, keeping the number of 
layers to three or nine, or using small gap lengths. The epoch number should not be 
excessive as this leads to increases in the IOE (Leonardon and Gripon, 2021). For 
the construction of high-performance polar codes, the authors employed the pro-
jected gradient descent (PGD) methodology, which aims at using gradient descent 
to change the neural network’s input such that it minimizes the output, which is 
the FER. For large codes, the neural network was able to come up with a frozen 
bit sequence, which provided an FER of 1.01 × 10-5 that is considerably lower than 
the minimum FER in the training set which was 5.75 × 10-5. Short codes provided 
less significant gains mainly because the frozen bit sequence possibilities are very 
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limited due to their size and the training set already contained well-optimized frozen 
bit sequences (Leonardon and Gripon, 2021).

9.4.2.2  Transfer Learning-Based Decoder Training Method
Lee, Seo, Ju, and Kim used transfer learning to propose an efficient decoder train-
ing method (2020). The authors opted for multilayer perceptrons (MLP) and LSTM 
models for their neural network decoder (NND). To ease the learning process, the 
authors restricted the codeword size to 16 and 32 (short polar codes). The MLP model 
used consists of an input layer, an output layer, and three hidden layers of 128-64-32 
nodes and is a fully connected feedforward neural network. The hidden layers utilize 
the ReLU and the output layer utilizes the sigmoid function. The LSTM model uses 
a single LSTM cell with an output dimension of 256 and the nodes use the sigmoid 
function. To emulate noisy transmission during training, a noisy layer is added to the 
input of the neural network. Due to the virtually unlimited amount of data available, 
the concept of an epoch is ignored and instead, the speed and complexity of the train-
ing are evaluated with the number of batches of data used.

The authors set the objective of their experiment to obtain a decoder with perfor-
mances comparable to the maximum a posteriori (MAP) decoder. They employed 
transfer learning by transferring the learned decoder state for one codeword to the 
decoder for the next codeword until the last codeword’s decoder’s training is exe-
cuted. MSE and stochastic gradient descent (SGD) are used as the cost function and 
optimizer, respectively (Lee et al., 2020).

To evaluate their proposed schemes, the authors used TensorFlow for training 
the neural network. The proposed transfer learning method is compared to a sepa-
rate learning method. For polar codes of length, N = 16, the decoder trained using 
separate learning had a similar performance as the MAP decoder while the decoder 
trained using transfer learning provided quicker training. It is observed that the more 
the code rate is increased, the proposed scheme provides a better bit error rate (BER) 
performance than that with separate learning. With an information message of length 
K = 8, MLP and LSTM employing the proposed learning scheme were found to 
achieve coding gains of 0.6 and 0.5 dB, respectively (Lee et al., 2020).

For polar codes of length N = 32, the proposed scheme outperformed the stan-
dard learning scheme at high code rates whereas, at low code rates, both schemes 
showed the same performance. At a BER of 10-3, the transfer learning-based MLP 
decoder provided performance gains of 0.5, 0.7, 0.9, and 1.0 dB for K = 8, 9, 10, and 
11, respectively. The transfer learning-based LSTM decoder provided performance 
gains of 0.2, 0.2, 0.3, 0.5, and 0.5 dB for K = 8, 9, 10, 11, and 12, respectively. The 
proposed scheme was also found to overcome the underfitting problem of separate 
learning (Lee et al., 2020).

9.4.2.3  A CNN-Based Polar Decoder
Qin and Liu designed a CNN polar decoder having a structure adapted to decode 
long polar codes (2019). The authors justified their choice of using CNN based on 
tests they performed, which showed that a CNN decoder has a closer performance to 
that of an SC decoder than an MLP decoder. The CNN is adapted to perform polar 
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decoding by changing its input and feature map from a 1D image to a 1D vector and 
by using a filter size of 1 × 3 instead of a square size.

The CNN consisted of several convolutional, pooling, and fully connected layers. 
At the convolutional layers, the input codeword was used to generate feature maps. 
The pooling layers reduced the number of feature maps to half and the fully con-
nected layer output the decoded codeword over which a sigmoid function is applied. 
Some typical CNN components such as the dropout and batch normalization are 
excluded from the CNN’s structure to minimize the complexity (Qin and Liu, 2019).

The CNN is adapted to long codes by using auxiliary labels to mark the position 
of frozen bits so that their information can be used in the backpropagation process. 
Measures were also taken to reduce the size of the CNN for it to work with long polar 
codes without increasing the complexity too much. By considering that some neural 
network connections having higher weight can outweigh the contribution of those 
having lower weight, connections weighing below a set threshold were removed from 
the convolutional layers, in a layer-by-layer sequence (Qin and Liu, 2019).

The simulation performed consisted of a message, which was encoded using a 
polar code encoder and then modulated using BPSK. The modulated codeword was 
sent to the receiver through an AWGN channel and decoding was then performed 
using the CNN decoder. Training of the CNN decoder was performed by feeding the 
latter with both the received message from the channel and the actual message that 
was transmitted. The training and validation data were obtained at SNR values of 
0, 1, 2, 3, and 4 dB to generalize the decoder. The authors also concluded from the 
training phase that using a high filter size did not provide performance gains. Cross-
entropy was used to compare the decoder’s output with the expected output (Qin and 
Liu, 2019).

After the training was completed, the performance of the decoder was evalu-
ated. The authors observed that the pruning mechanism provided SNR gains to the 
system. Results also showed that their proposed decoder was found to perform faster 
than the conventional SC decoder at the tradeoff of a small BER performance loss 
(Qin and Liu, 2019). The work can be extended to compare the proposed scheme with 
an SCL decoder to test its suitability for 5G NR.

9.4.2.4  A Residual NND for Polar Codes
Zhu, Cao, Zhao, and Li (2020) worked on a residual NND (RNND) for polar codes, 
which uses residual learning to increase the SNR of received symbols. The RNND 
consisted of a residual learning denoiser placed in front of a NND.

The residual learning denoiser is similar to a commonly used image denoiser but 
with a 1D input instead. The denoiser consists of stacked weight layers and a shortcut 
connection. The parameters of the denoiser are optimized such that the difference 
between its output and the transmitted signal is minimal. The stacked weight layer 
could be an MLP, a CNN, or an RNN and therefore, the authors used all three of 
them as different schemes (MLP-RNND, CNN-RNND, and RNN-RNND) to deter-
mine the most suitable one. The loss function used for the denoising task is MSE. The 
NND placed after the denoiser works by categorizing the received symbols as either 
0 s or 1 s and also uses MSE as the loss function (Zhu et al., 2020).
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The authors also employed a unique multitask learning method so that the entire 
RNND can perform both denoising and decoding effectively. Hence the denoising 
and decoding losses are summed to obtain a final loss function with the expectation 
that the denoiser and decoder can reinforce each other. The learning of the denoiser 
is enhanced by the gradient signal decoder and the denoiser reduces the noise level 
making decoding more accurate (Zhu et al., 2020).

The training data were generated by using all the 256 possible codewords that 
could be obtained from (16, 8) polar codes. The codewords were modulated using 
BPSK and transmitted over an AWGN channel with an SNR of 0 dB to obtain the 
training data. Batch-based training was performed by sending the codewords into 
the model in batches before evaluating the loss function. Backpropagation was used 
to calculate the gradients and the Adam model was used to update the parameters of 
the model. After training, testing was performed using symbols obtained from the 
AWGN with noise levels not used in training (Zhu et al., 2020).

Simulation results showed that the MLP-RNND and the RNN-RNND have 
the same denoising abilities and they outperform the CNN-RNND. The proposed 
RNNDs were compared to NNDs and it was observed that the MLP-RNND has 
the closest BER performance to the SC decoder and it also has a 0.2 dB gain over 
the MLP-NND at a BER of 10-4. The MLP-RNND was also found to be 100 times 
faster than the SC decoder. However, all the RNNDs were found to be slightly slower 
than their NND counterparts. Hence the speed-reliability tradeoff must be taken into 
good consideration when choosing between the NNDs and the RNNDs for decoding 
(Zhu et al., 2020).

9.4.2.5  A Differentiable Neural Computer-
Aided Flip Decoding Algorithm

Tao and Zhang (2021) proposed a differentiable neural computer (DNC)-aided flip 
decoding algorithm to provide high error correction performance by bit flipping 
which SCL decoders perform poorly when bits have long-distance dependencies in 
the code sequence. DNCs are considered to be more performant than LSTM control-
lers because the DNCs use an external memory, which allows them to solve problems 
having long-distance dependencies and many computational steps.

The proposed decoder consisted of two decoding phases. The first phase starts 
by performing conventional decoding. If the decoding fails, as indicated by the 
CRC, a flip DNC (F-DNC) ranks the potentially erroneous bit positions based on 
their probabilities of being erroneous and generates a flip vector, which is then used 
to perform multi-bit flipping at those bit positions. In case the CRC still fails after 
the multi-bit flipping, the decoding proceeds to the second phase in which bits are 
flipped successively and a flip-validate DNC (FV-DNC) is used to verify if each 
flip is correct. The rationale behind this method is that among the erroneous bit 
positions determined by the F-DNC, several may be actual erroneous bit positions 
while some can be error-free bit positions. The sequence of flipping in the second 
phase is determined by the ranks of the error positions determined in the first phase 
(Tao and Zhang, 2021).

The training was performed offline so that the complexity of the proposed solution 
stays low. During the training phase, phase 1’s F-DNC was trained to recognize error 
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positions. The state information derived from LLRs and path metrics was paired 
with the corresponding reference flip vectors to form the training set. To obtain the 
training set for the FV-DNC in phase 2, supervised flip decoding based on the refer-
ence flip vectors was performed. Bits in the first five error positions are flipped one 
by one and the corresponding state encoding details are recorded and categorized 
as successful erroneous bit flipping. Then five random non-error bit positions are 
flipped and the corresponding state encoding details are recorded and categorized as 
unsuccessful erroneous bit flipping.

The performance of the trained system was evaluated using long polar codes 
of codelengths 256 and 1,024 bits. Simulation results showed that compared to a 
conventional SCL decoder and an LSTM-based decoder, the proposed solution has 
higher bit-flipping accuracy, which leads to improved error performance and requires 
fewer flip decoding attempts.

9.4.2.6  Neural Network-Based Bit Flipping
Another work which focuses on enhancing the bit-flipping process is the introduction 
of neural network architecture by Ivanov, Kotov, and Alexey (2022) for generating a 
bit-flipping critical set, which can be used to enhance the error performance of polar 
decoders. The authors preferred using CNN instead of LSTM for this work.

The authors defined the bit-flipping problem as a ML problem to be resolved 
through classification. They used a metric for estimating the probability of error of 
chosen decoder paths as the input to their neural network. The metric has the ability 
to use information from both discarded and continued paths, making it very efficient. 
Before being fed to the network, the metric is standardized by excluding the mean-
ing and using scaling. The neural network outputs the details of bit positions which 
caused SCL decoding to fail (Ivanov et al., 2022).

Simulations with an SCL decoder were performed at Eb/N0 values between 0 
and 2 dB to obtain the training dataset, which consists of samples of values of the 
metrics paired with the bit positions that require flipping for enhancing the error 
performance. The authors compared the available types of neural networks and 
activation functions and chose the one with the highest performance. Their final 
choice was a convolutional neural network with 1D convolutional layers, a pooling 
layer, and a normalization layer. The activation function chosen was the Harswish 
function. The kernel size of the convolutional layers and maximum pooling was set 
to four and cross-entropy was selected as the loss function. The Adam optimizer 
was used for training and the learning rate was set to 5 × 10-3, which was decreased 
by a factor of five if the loss function did not decrease after five iterations (Ivanov 
et al., 2022).

The trained neural network was tested in a communication system where BPSK 
modulation and an AWGN channel were used with polar codes of both codelengths 
512 and 1,024. The proposed network was compared with an LSTM neural network 
and a conventional SCL decoder. The simulation results showed that when the same 
list size was used in all of the tested decoders, the proposed decoder provides the best 
error performance with Eb/N0 gains of up to 0.25 dB. The proposed decoder was 
also able to achieve the efficiency of an SCL decoder with a list size of 32 using only 
a critical set size of 20. The proposed solution hence provided error performance 
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gains with reduced memory requirements which can make it a good candidate for 
5G NR (Ivanov et al., 2022).

9.4.2.7  Stacked Denoising Autoencoder for Polar Codes
Li and Cheng (2020) introduced a stacked denoising autoencoder (SDAE) to improve 
the FER performance of polar codes over Rayleigh fading channels. The authors’ 
design consisted of two DNNs concatenated with each other and placed before the 
SC decoder. The DNNs are based on SDAE over which offline training is performed. 
The inputs of the DNNs are the estimated symbols obtained from the channel. The 
role of the DNNs is to reduce the impact that the channel had on the symbols. The 
outputs of the DNNs are sent to the SC decoder for recovering the transmitted infor-
mation. The authors explained that the ability of the DNNs to extract features from 
corrupted inputs makes them efficient in performing their tasks.

The first DNN is trained to minimize distortions in the symbols containing infor-
mation bits and then the second DNN is trained to estimate the complete codeword 
for more accurate decoding. The use of the second DNN helps by adding a second 
layer of error correction in the information symbols, hence leading to more success-
ful polar decoding. Training samples for the first DNN consist of sets of actual infor-
mation bits being transmitted paired with the received symbols corresponding to the 
information bits whereas the second DNN uses the remaining symbols not used by 
the first DNN as training samples (Li and Cheng, 2020).

The performance of the proposed solution was evaluated by simulating the trans-
mission of polar codewords of lengths 16 and 32 bits, with code rate 1/2 over a 
Rayleigh fading channel. The first and second DNNs were configured with two hid-
den layers. The first DNN had 32 and 16 nodes in the first and second hidden layers, 
respectively, for the 16 bits polar code and had 64 and 32 nodes in the first and second 
hidden layers, respectively, for the 32 bits polar code. The second DNN had 64 and 
32 nodes in the first and second hidden layers, respectively, for the 16 bits polar code 
and had 128 and 64 nodes in the first and second hidden layers, respectively, for the 
32 bits polar codes. Adaptive moment estimation with a learning rate of 0.001 was 
used for optimizing the training process. As a reference for comparison, simulations 
for a conventional polar decoder using the one-dimensional method with SCL decod-
ing were performed. At an FER of 0.001, the proposed scheme provided a signifi-
cant E_b/N_0 gain of 1 dB over the conventional scheme. The proposed scheme was 
then compared with a conventional feedforward neural network (FFNN) structure. 
Results showed that for the same training dataset size used, the proposed scheme 
outperforms the FFNN scheme by 0.5 dB at an FER of 0.001 (Li and Cheng, 2020).

9.4.2.8  A Machine Learning-Based Multi-Flips SC Decoding Scheme
A team of researchers introduced a machine learning-based multi-flips successive 
cancellation decoding scheme (ML-MSCF) with better performance and lower 
latency than the dynamic SC flipping (DSCF) decoding algorithm (He et al., 2020). 
The scheme consisted of decoding received data using a SC decoder and feeding the 
LLR sequence and syndromes to an LSTM network if SC decoding fails. The LSTM 
network generates a flip-bits list. The SC decoder is used again after flipping the first 
erroneous bit and if the decoded codeword is not error-free, the output of the LSTM 



345AI-Based 5G/6G Communications

network and the syndrome are fed to a Q-table which outputs another flip list. The 
flip process is continuously performed until the CRC is successful or a maximum flip 
number is reached.

The LSTM network used consists of an LSTM layer, two fully connected layers, 
two dropout layers and one output layer, as shown in Figure 9.3. The output layer 
has the same amount of neurones as the polar codelength and these neurones are 
activated by a softmax function. Training is performed using data obtained from 
the Monte Carlo simulation of SC decoding using BPSK modulation and an AWGN 
channel. The network’s input consisted of the LLR sequence, and the syndrome, and 
the first erroneous bit position for each data sample is specified using one-hot encod-
ing. The output of the LSTM is given in the form of an index list of the flipping bits. 
The reward function is made dependent on the number of bit errors connected by the 
network (He et al., 2020).

The training of the LSTM network was performed using 2 × 104 samples, a mini-
batch of size 1,000, 60 epochs, a dropout layer ratio of 0.05, a hidden layer of size 
256, a learning rate of 0.001, a discount factor of 0.7, and exploration factor of 0.2 
and 2 × 104 training processes for the Q-table. The Adam optimizer was used in the 
LSTM network (He et al., 2020).

Simulations using the trained network in the proposed ML-MSCF decoder showed 
that the latter provides performance gains over the flip-successive cancellation (SCF) 
and the dynamic SCF (DSCF) decoders when the Eb/N0 is above 2.5 dB. The FER 
gains over the DSCF are in the range of 0.2–0.3 dB. The performance gain is attrib-
uted to the ability of the algorithm to correct more than only the first erroneous bit. 
Furthermore, the absence of exponential and logarithmic functions in the proposed 
decoder allows it to have the same processing latency as the DSCF. The proposed 

FIGURE 9.3 Proposed LSTM network (He et al., 2020).
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scheme, therefore, is a better option than SCF and DSCF for wireless technologies 
such as 5G NR (He et al., 2020).

9.4.2.9  Double Long–Short-Term Memory-Based SC Flipping Decoder
A double long–short-term memory (DLSTM)-based SC flipping decoder was intro-
duced to address the performance loss encountered by the SC flipping algorithm with 
short polar codes (Cui et al., 2021). The authors performed an analysis of the error 
propagation effects of the first, second and third error bits in a polar codeword and 
observed that the first error bit was the root cause of most subsequent errors in the 
codeword. Hence the authors made use of their DLSTM network to predict the first 
error bit.

For (N, K) polar codes, the network is composed of an input layer, a DLSTM layer 
with 2N hidden LSTM units, and an output layer of K fully connected neurones. An 
LLR sequence which fails the CRC check in the polar decoder is fed at the input of 
the DLSTM network and the network outputs a vector of probabilities of error for 
each information bit. Compared to traditional LSTM, the proposed DLSTM network 
is better at retrieving historical data features and maintaining long-term relevancy 
(Cui et al., 2021).

The training phase consisted of generating 2 × 106 polar codewords transmitted 
over an AWGN channel after being modulated using BPSK. Only the LLR sequences 
of codewords which failed the CRC process are used as training and validation sam-
ples, paired with a one-hot encoding of the first error bit. In the output layer, the fro-
zen bits are clipped as flipping them can cause more error propagations. 80% of the 
samples were used for training and 20% were used for validation. The loss between 
the expected and predicted values is measured using a cross-entropy function. For 
reducing the complexity of the decoder, channel reliability ordering details were also 
used to identify multiple error bits (Cui et al., 2021).

Simulations were performed using an Intel(R) Xeon(R) Gold 6,132 CPU @ 
2.60 GHz server with BPSK modulation and an AWGN channel with polar codes of 
sizes (64, 32) and (16, 8). Performance results showed that the proposed algorithm 
takes the same amount of computing time as the machine learning-based multi-bit 
flipping SC (ML-MSCF) algorithm. When compared to DSCF, the proposed algo-
rithm minimizes the use of exponential and logarithmic functions and thus uses up to 
27.68% less time for decoding at Eb//N0  = 1.0 dB. The proposed decoder used up to 
3.64% less time for decoding than CA-SCL with a list size of 2 when N = 32 and up 
to 31.26% less time for decoding than CA-SCL with a list size of 4. At a block error 
rate (BLER) of 10-3, the proposed decoder provided Eb/N0 gains of 0.21 dB, 0.36 dB 
and 0.55 dB over the ML-MSCF, DSCF and CA-SCL (list size of 2) respectively (Cui 
et al., 2021).

9.4.3  Polar codES wITh rEInforcEMEnT lEarnInG

9.4.3.1  Reinforcement Learning for Polar Codes Construction
Another approach to constructing high-performance polar codes is by mapping them 
to a game in which a SARSA (λ) agent is trained to find its way through a maze (Liao 
et al., 2022). The objective of the ML algorithm was to identify the optimal frozen 



347AI-Based 5G/6G Communications

bit positions in an (N, K) polar code which can enhance the error performance of the 
polar code.

The learning environment consisted of a maze of width K + 1 and height N – 
K + 1, with the starting position being the upper leftmost cell and the terminal posi-
tion being the bottom rightmost cell. The rule of the game was that the learning agent 
had to reach the terminal cell or receive a non-zero reward by making only down and 
right movements across the environment (Liao et al., 2022). An example of a learn-
ing environment and a possible sequence of actions, represented by arrows, is given 
in Figure 9.4.

The construction of the polar code is based on the actions that the agent takes. The 
kth bit is set to a frozen bit if the kth step is downwards and if the step is rightwards, 
the bit is set to an information bit. The allocated reward is linked to the SCL-Genie 
decoding process and the agent had to maximize the expected return while travers-
ing the maze. The decoding process involves decoding one bit after the other in a 
sequential fashion and the decoding of a bit is independent of whether the following 
bits are frozen or not. This allows the reward to be determined instantly. For training, 
a table of the value function Q is updated by the learning agent using an ε-greedy 
policy. The exploration rate is decreased after each training episode. The authors 
highlighted that the devised training process is highly efficient. Only 2,000 training 
samples are required for constructing (16, 8) polar codes, with each sample being 
used a single time in the training (Liao et al., 2022).

The polar code constructed by the ML algorithm is evaluated using the conven-
tional SCL and CRC-aided SCL (CA-SCL) with list sizes 2, 4, and 8. For the list size 
of 2, the generated code performs similarly to standard polar codes whereas for the 
list sizes of 4 and 8. The generated code outperforms the standard one over the whole 
tested SNR range. The code generated by the proposed algorithm is found to perform 
best for long codewords with CRC (Liao et al., 2022). Such a polar code construction 
method can help design strong polar codes for 5G NR.

FIGURE 9.4 Reinforcement learning for polar codes construction (Liao et al., 2022).
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9.4.3.2  A Reinforcement Learning-Aided CRC-Aided BP Decoder 
Doan, Hashemi, and Gross (2020) defined the factor-graph permutations’ selection 
for polar codes in the CRC-aided BP (CABP) decoder as a multiarmed bandit prob-
lem. They designed a reinforcement learning-aided CABP (RL-CABP) which per-
forms online learning, i.e., the agent learns to do the permutations selection task 
during the decoding process. The authors use the ε-greedy, upper confidence bound 
(UCB), and Thompson sampling (TS) algorithms to tackle the multiarmed bandit 
problem. The ε-greedy and UCB algorithms are used to estimate the expected reward 
value whereas the TS algorithm estimates the distribution of the reward value linked 
to every possible action. To eliminate any additional latency to suit 5G uRLLC ser-
vices’ requirements which can be added by these algorithms, the latter is performed 
in parallel with the first CABP decoding attempt.

In case the CRC fails during CABP decoding using the original factor-graph 
 permutations, the proposed decoder performs a random selection of factor-graph 
permutations. The decoder is awarded either a numerical reward of ‘1’ if the CRC 
passes with the selected factor-graph permutation or a numerical reward of ‘0’ if the 
CRC fails. In this way, the learning agent learns to maximize the reward (Doan et al., 
2020).

The proposed RL-CABP decoder was evaluated using 5G NR’s eMBB polar 
codes of size 128 bits with 64 information bits and a CRC length of 16. The per-
formance of the proposed decoder was compared to that of the conventional CABP, 
cyclically shifted permutations CABP (CP-CABP) and random factor-graph per-
mutations CABP (RP-CABP) and CA-SCL decoders. Simulations were performed 
at Eb/N0  = 3.0 dB to obtain the k value of the k-armed bandit which can result in 
maximum rewards. This value was obtained as c = 500. The ε-greedy algorithm was 
found to provide the highest average reward whereas the TS algorithm provided the 
least average reward. The ε-greedy algorithm also has the lowest computational com-
plexity among the three algorithms (Doan et al., 2020).

Experimental results showed that the proposed RL-CABP decoder provides an 
Eb/N0 gain of 0.62 dB over the conventional CABP decoder and of at least 0.125 dB 
over CP-CABP and RP-CABP at an FER of 10-4. At that same FER, the proposed 
decoder significantly outperforms a BP decoding algorithm by 0.92 dB. However, 
compared to CA-SCL decoders, the proposed decoder can only provide a perfor-
mance gain of 0.12 dB when the list size is 2 and is even outperformed by the former 
when the list size is 4 (Doan et al., 2020).

9.5  GAPS IN PREVIOUS RESEARCH

The different discussed works generally show that ML algorithms can provide 
enhancements in error performance, decoding speed, and computational complexity. 
The proposals for new solutions are made mainly to address channel coding prob-
lems encountered by conventional channel decoders. However, a gap observed in the 
works discussed in Sections 9.2 and 9.3 is the consideration of the suitability of the 
proposed solutions for 5G NR based on eMBB, URLLC, or mMTC requirements.

Most of the discussed works focused on demonstrating the effectiveness of ML 
solutions on short channel codes mainly because schemes, which involve neural 
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networks become significantly more complex as the codelength increases. Research 
on adapting those schemes which were performant on short codes to longer codes 
will be very useful for determining their suitability for eMBB services. Furthermore, 
most of the discussed research focuses on the channel decoder. By designing an 
encoder jointly with the decoder, with a code construction method which works best 
with the proposed decoder, better performance gains can be expected.

It was also observed that only a few research included a latency analysis of the 
proposed schemes as the researchers mostly focused on the error performance and 
the complexity of their schemes. Thus an extension of the works to assess their suit-
ability for 5G URLLC based on their decoding latency would be useful.

A common practice observed in the discussed works was the use of a single SNR 
value to train ML algorithms. Some researchers proved that using a wider range of 
SNRs for training helped generalize their decoder. By adopting this same method-
ology, better performance gains could have been obtained from the proposed ML 
schemes. Similarly, instead of limiting the training with BPSK modulation, research-
ers could have used a wider set of modulation orders to make their proposed schemes 
more generalized and appropriate to a wider range of requirements.

9.6  SUMMARY

5G NR is being designed to fulfill stringent performance requirements to support the 
three service classes: eMBB, mMTC, and URLLC. Channel codes are considered to 
be one of the most essential aspects of the communication system, which can help 
achieve the stringent requirements and hence, it is crucial to select the right channel 
codes for the system. The rise in ML and its integration in the channel coding field 
has till now proven to be promising. ML can provide significant gains in error cor-
rection performance, computation complexity and latency in both LDPC and polar 
codes. While some ML schemes show their suitability for one service class, there 
is still room for the development of both channel encoders and channel decoders 
embedded with machine learning algorithms, which can suit the requirements of 5G 
NR or even of future 6G mobile network technologies.

BIBLIOGRAPHY

3GPP. (2019). TS 38.212: Multiplexing and channel coding. In 3rd Generation Partnership 
Project; Technical Specification Group Radio Access Network.

Arikan, E. (2009). Channel polarization: A method for constructing capacity-achieving codes 
for symmetric binary-input memoryless channels. IEEE Transactions on Information 
Theory, 55(7), 3051–3073. https://doi.org/10.1109/TIT.2009.2021379.

Bae, J., Abotabl, A., Lin, H., Song, K., & Lee, J. (2019). An overview of channel coding 
for 5G NR cellular communications. APSIPA Transactions on Signal and Information 
Processing, 8(1), e17. https://doi.org/10.1017/ATSIP.2019.10.

Casado, A., Griot, M., & Wesel, R. (2010). LDPC decoders with informed dynamic scheduling. 
IEEE Transactions on Communications, 58(12), 3470–3479. https://doi.org/10.1109/
TCOMM.2010.101910.070303.

Cui, J., Kong, W., Zhang, X., Chen, D., & Zeng, Q. (2021). DLSTM-based successive cancella-
tion flipping decoder for short polar codes. Entropy, 23(7), 863. https://doi.org/10.3390/
e23070863.

https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1109/TCOMM.2010.101910.070303
https://doi.org/10.1109/TCOMM.2010.101910.070303
https://doi.org/10.3390/e23070863
https://doi.org/10.3390/e23070863


350 Driving 5G Mobile Communications with AI towards 6G

Dai, J., Tan, K., Si, Z., Niu, K., Chen, M., Poor, H., & Cui, S. (2021). Learning to decode 
protograph LDPC codes. IEEE Journal on Selected Areas in Communications, 39(7), 
1983–1999. https://doi.org/10.1109/JSAC.2021.3078488.

Doan, N., Hashemi, S., & Gross, W. (2020). Decoding polar codes with reinforcement learn-
ing. In GLOBECOM 2020–2020 IEEE Global Communications Conference. https://doi.
org/10.1109/GLOBECOM42002.2020.9348007.

Fowdur, T., & Indoonundon, M. (2017). A hybrid statistical and prioritised unequal error pro-
tection scheme for IEEE 802.11n LDPC codes. International Journal of Electrical and 
Computer Engineering Systems, 8(1), 1–9. https://doi.org/10.32985/ijeces.8.1.1.

Fowdur, T., Babooram, L., Rosun, M., & Indoonundon, M. (2021). Real-Time Cloud Computing 
and Machine Learning Applications. New York: Nova Science Publishers, Inc.

Gallager, R. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 
8(1), 21–28. https://doi.org/10.1109/TIT.1962.1057683.

Habib, S., Beemer, A., & Kliewer, J. (2021). Belief propagation decoding of short graph-
based channel codes via reinforcement learning. IEEE Journal on Selected Areas in 
Information Theory, 2(2), 627–640. https://doi.org/10.1109/JSAIT.2021.3073834.

He, B., Wu, S., Deng, Y., Yin, H., Jiao, J., & Zhang, Q. (2020). A machine learning based multi-
flips successive cancellation decoding scheme of polar codes. In IEEE 91st Vehicular 
Technology Conference (VTC2020-Spring). https://doi.org/10.1109/VTC2020-Spring 
48590.2020.9128875.

Indoonundon, M., & Fowdur, T. (2021). Overview of the challenges and solutions for 5G chan-
nel coding schemes. Journal of Information and Telecommunication, 5(4), 460–483. 
https://doi.org/10.1080/24751839.2021.1954752.

ITU. (2017). Minimum requirements related to technical performance for IMT-2020 radio 
interface(s). Report ITU-R M.2410-0.

Ivanov, F., Kotov, F., & Alexey, Z. (2022). Method of critical set construction for successive 
cancellation list decoder of polar codes based on deep learning of neural networks. SSRN 
Electronic Journal, 1–6. https://doi.org/10.2139/ssrn.4111931.

Lee, H., Seo, E., Ju, H., & Kim, S. (2020). On training neural network decoders of rate com-
patible polar codes via transfer learning. Entropy, 22(5), 496. https://doi.org/10.3390/
e22050496.

Leonardon, M., & Gripon, V. (2021). Using deep neural networks to predict and improve 
the performance of polar codes. In 11th International Symposium on Topics in Coding 
(ISTC). https://doi.org/10.1109/ISTC49272.2021.9594059.

Li, J., & Cheng, W. (2020). Stacked denoising autoencoder enhanced polar codes over Rayleigh 
fading channels. IEEE Wireless Communications Letters, 9(3), 354–357. https://doi.
org/10.1109/LWC.2019.2954907.

Li, L., Huang, Z., Liu, C., Zhou, J., & Zhang, Y. (2021). Blind recognition of LDPC codes using 
convolutional neural networks. In IEEE 4th International Conference on Electronics 
Technology (ICET). https://doi.org/10.1109/ICET51757.2021.9450940.

Liao, Y., Hashemi, S., Cioffi, J., & Goldsmith, A. (2022). Construction of polar codes with 
reinforcement learning. IEEE Transactions on Communications, 70(1), 185–198. https://
doi.org/10.1109/TCOMM.2021.3120274.

MacKay, D. J. C., & Neal, R. M. (1996). Near Shannon limit performance of low density parity 
check codes. Electronics Letters, 32, 1645–1646.

Pillet, C., Bioglio, V., & Condo, C. (2020). On list decoding of 5G-NR polar codes. In 2020 
IEEE Wireless Communications and Networking Conference (WCNC). https://doi.
org/10.1109/WCNC45663.2020.9120686.

Qin, Y., & Liu, F. (2019). Convolutional neural network-based polar decoding. In 2nd 
World Symposium on Communication Engineering (WSCE). https://doi.org/10.1109/
WSCE49000.2019.9040920.

https://doi.org/10.1109/JSAC.2021.3078488
https://doi.org/10.1109/GLOBECOM42002.2020.9348007
https://doi.org/10.1109/GLOBECOM42002.2020.9348007
https://doi.org/10.32985/ijeces.8.1.1
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/JSAIT.2021.3073834
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128875
https://doi.org/10.1080/24751839.2021.1954752
https://doi.org/10.2139/ssrn.4111931
https://doi.org/10.3390/e22050496
https://doi.org/10.3390/e22050496
https://doi.org/10.1109/ISTC49272.2021.9594059
https://doi.org/10.1109/LWC.2019.2954907
https://doi.org/10.1109/LWC.2019.2954907
https://doi.org/10.1109/ICET51757.2021.9450940
https://doi.org/10.1109/TCOMM.2021.3120274
https://doi.org/10.1109/TCOMM.2021.3120274
https://doi.org/10.1109/WCNC45663.2020.9120686
https://doi.org/10.1109/WCNC45663.2020.9120686
https://doi.org/10.1109/WSCE49000.2019.9040920
https://doi.org/10.1109/WSCE49000.2019.9040920
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128875


351AI-Based 5G/6G Communications

Session Chairman (Nokia). (2016). Chairman’s Notes of Agenda item 7.1.5 Channel coding 
and modulation. In 3GPP TSG RAN WG1 Meeting 87, R1-1613710.

Tao, Y., & Zhang, Z. (2021). DNC-aided SCL-flip decoding of polar codes. In IEEE Global 
Communications Conference (GLOBECOM). https://doi.org/10.1109/GLOBECOM 
46510.2021.9685277.

Wang, L., Chen, S., Nguyen, J., Dariush, D., & Wesel, R. (2021). Neural-network-optimized 
degree-specific weights for LDPC minsum decoding. In 11th International Symposium 
on Topics in Coding (ISTC). https://doi.org/10.1109/ISTC49272.2021.9594227.

Wang, Q., Wang, S., Fang, H., Chen, L., Chen, L., & Guo, Y. (2020). A model-driven deep 
learning method for normalized min-sum LDPC decoding. In IEEE International 
Conference on Communications Workshops (ICC Workshops). https://doi.org/10.1109/
ICCWorkshops49005.2020.9145237.

Wang, Y., Zhang, Z., Zhang, S., Cao, S., & Xu, S. (2018). A unified deep learning based polar-
LDPC decoder for 5G communication systems. In 10th International Conference on 
Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/
WCSP.2018.8555891.

Wu, X., Jiang, M., & Zhao, C. (2018). Decoding optimization for 5G LDPC codes by 
machine learning. IEEE Access, 6, 50179–50186. https://doi.org/10.1109/ACCESS. 
2018.2869374.

Zhang, D., Dai, J., Tan, K., Niu, K., Chen, M., Poor, H., & Cui, S. (2021). Neural layered 
min-sum decoding for protograph LDPC codes. In IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/ICASSP 
39728.2021.9414543.

Zhang, M., Huang, Q., Wang, S., & Wang, Z. (2018). Construction of LDPC codes based on deep 
reinforcement learning. In 10th International Conference on Wireless Communications 
and Signal Processing (WCSP). https://doi.org/10.1109/WCSP.2018.8555714.

Zhu, H., Cao, Z., Zhao, Y., & Li, D. (2020). Learning to denoise and decode: A novel residual 
neural network decoder for polar codes. IEEE Transactions on Vehicular Technology, 
69(8), 8725–8738. https://doi.org/10.1109/ICASSP39728.2021.9414543.

Zhu, H., Pu, L., Xu, H., & Zhang, B. (2018). Construction of quasi-Cyclic LDPC codes 
based on fundamental theorem of arithmetic. Wireless Communications and Mobile 
Computing, 2018, 1–9. https://doi.org/10.1155/2018/5264724.

https://doi.org/10.1109/ISTC49272.2021.9594227
https://doi.org/10.1109/ICCWorkshops49005.2020.9145237
https://doi.org/10.1109/ICCWorkshops49005.2020.9145237
https://doi.org/10.1109/WCSP.2018.8555891
https://doi.org/10.1109/WCSP.2018.8555891
https://doi.org/10.1109/ACCESS.2018.2869374
https://doi.org/10.1109/ICASSP39728.2021.9414543
https://doi.org/10.1109/WCSP.2018.8555714
https://doi.org/10.1109/ICASSP39728.2021.9414543
https://doi.org/10.1155/2018/5264724
https://doi.org/10.1109/ACCESS.2018.2869374
https://doi.org/10.1109/ICASSP39728.2021.9414543
https://doi.org/10.1109/GLOBECOM46510.2021.9685277
https://doi.org/10.1109/GLOBECOM46510.2021.9685277


https://taylorandfrancis.com


Part 3

Artificial Intelligence towards 6G



https://taylorandfrancis.com


355

10 Enabling Technologies 
and Applications 
of 5G/6G-Powered 
Intelligent Connectivity

Tulsi Pawan Fowdur, Lavesh Babooram, 
Madhavsingh Indoonundon, and Anshu P. Murdan
University of Mauritius

Zoran S. Bojkovic and Dragorad A. Milovanovic
University of Belgrade

CONTENTS

10.1 Introduction ................................................................................................. 356
10.2 Enabling Technologies of Intelligent Connectivity ..................................... 359

10.2.1 Internet of Things .......................................................................... 361
10.2.1.1 Cellular IoT ................................................................... 365
10.2.1.2 Massive IoT ................................................................... 365
10.2.1.3 Broadband IoT .............................................................. 367
10.2.1.4 Critical IoT .................................................................... 367
10.2.1.5 Industrial Automation ................................................... 369

10.2.2 5G Mobile Networks ..................................................................... 369
10.2.2.1 5G-IoT Requirements ................................................... 371
10.2.2.2 5G-IoT-Enabling Technologies ..................................... 372
10.2.2.3 Wireless Network Function Virtualization .................... 372
10.2.2.4 Heterogeneous Networks .............................................. 373
10.2.2.5 Device-to-Device Communications (D2D)................... 373
10.2.2.6  Advanced Spectrum Sharing and Interference 

Management ..................................................................374
10.2.3 Artificial Intelligence ..................................................................... 374

10.2.3.1 Intelligent Networks ...................................................... 375
10.2.3.2  AI-Enabled Autonomous Systems and Human 

Interaction ......................................................................377
10.2.4 Cloud Computing and Networking................................................380

10.2.4.1 Cloud Deployment Models and Service Classes ..........380
10.2.4.2 Intelligent CC and Networks ........................................ 382

DOI: 10.1201/9781003205494-13

https://doi.org/10.1201/9781003205494-13


356 Driving 5G Mobile Communications with AI towards 6G

10.1 INTRODUCTION

With the fusion of 5G, the Internet of things (IoT), artificial intelligence (AI), cloud 
computing, and blockchain, the concept of intelligent connectivity paves the way to 
expedite technological advancement and gives rise to modern disruptive digital ser-
vices. The agenda of intelligent connectivity consists of analyzing and interpreting 
the digital data aggregated by machines, devices, and sensors comprising the IoT, 
through AI technologies, to generate a more considerable, relevant, and expressive 
output to users. This translates into a combination of better actions taken as well as 
customized deliverables to clients, tightening the gap between users and the environ-
ment they are interacting with. The continuous progress in computing power, the rise 
in awareness of data scientists, and the fact that machine learning tools, with inten-
sive documentation, are available at the click of a button have propelled the develop-
ment of AI practices. These edges the IoTs a step closer to attaining colossal global 
popularity and attention. 5G acts as the glue that sticks together these technologies 
such that the intelligent connectivity vision can be achieved. The ultra-high-speed 
and ultralow-latency characteristics that accentuate 5G networks, coupled with the 
massive amount of information collected by the IoTs, as well as the refined abilities 
of AI technologies to make intricate decisions, will lead to modern groundbreaking 
potentials. This will eventually transcend into every industry sector and seep through 
our society as well as our daily lives [1]. Figure 10.1 illustrates the main components 
of intelligent connectivity.

The evolution from 4G to 5G is the main driving element for intelligent connectiv-
ity. The 5G connections are expected to reach 1.2 billion globally by 2025, according 
to GSMA Intelligence. 5G has the potential to significantly boost network capac-
ity, speed, and responsiveness, allowing operators to customize connections for each 
application. This sets the stage for a range of forthcoming and prospective applica-
tions. The last decade witnessed the dramatic rise of cloud-based applications, which 
are bound to further boon, with the looming worldwide 5G deployment. Intelligent 
connectivity is thus referred to as the eventual crossover between the IoT, blockchain, 
and AI, where the junction corresponds to a collaboration of the involved technolo-
gies operating in unison [2].

10.2.5 Blockchain ..................................................................................... 385
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Equipped with unparalleled responsiveness, 5G networks will allow an immersive 
and closer experience between the user and the machine, evoking the impression of 
a more tangible Internet where users can remotely take major decisions at the ease of 
their fingertips, impacting both businesses and consumers. Operators will be able to 
practically remove network latency in many circumstances, allowing users to engage 
virtually with each other and their surroundings through virtual reality (VR) and 
augmented reality (AR). 5G will bring along novel networking techniques to yield 
real-time or near-real-time facilities. Split-second decisions required by self-driving 
vehicles and immersive gaming are unfeasible and unreliable in the era of current 4G 
networks. Low-latency connectivity will speed up response times, allowing vehicles 
and devices to promptly intervene, laying the basis for the launch of autonomous 
cars, drones, and robots. On the same wavelength, a variety of smart city applications 
will be enabled, such as intelligent traffic management and real-time crime detection, 
as shown in Figure 10.2 [3].

The jolt caused by COVID-19 has urged digital transformation with regard to 
almost every industry [4]. Existing digital infrastructure, together with ICT infra-
structure expansion policies, can help prevent a K-shaped recovery pattern and fuel 
a more equal and resilient future development model. The standards refined by 
COVID-19 in fact point toward the adoption of intelligent connectivity, thus high-
lighting the following properties:

• Increased demand for high-speed connectivity in teleworking and online 
education.

• Cloud computing affordability pertaining to corporate operations as well as 
deployment of scalable frameworks for data storage, processing, and distri-
bution of facilities.

INTELLIGENT 
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5G IoT AI
APPLICATIONS

CLOUD

BLOCKCHAIN

FIGURE 10.1 Components of intelligent connectivity [1].
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• AI to facilitate accurate decision-making and workflow automation with 
services such as chatbots.

• IoT gadgets equipped with automation capabilities of processes and deliver-
ables, to refine resistance and recovery abilities.

• Technologies that lower the total cost of processes and operational 
expenses of telecom networks and data centers. Some examples are AI, 
IoT, and measures for renewable energy, energy digitization, and cooling 
practices. The benefits of such technologies include (a) an improvement 
in deployment practicality and network growth on the supply side and (b) 
the mitigation of the carbon emissions caused by the ICT industry, into 
the atmosphere.

Worldwide governments have laid out plans for the integration of the listed 
technologies, deemed as essential intelligent connectivity facilitators, into their 
economies. The value generated by intelligent connectivity revolves around col-
laborative ecosystems. In contrast with the twentieth century where oil was the 
economy’s driving factor, the fuel for the twenty-first century is simply data, act-
ing as a form of viable progress. The amount and properties of generated data 
dictate the tempo of intelligent connectivity structures, which consist of AI, cloud 
services, and IoT. A greater availability of unstructured and fitting data means 
better AI analysis, and thus enhanced intelligent connectivity. This is backed by 
the collection of large quantities of high-quality input, through which customiz-
able products and services can be developed to increase the number of clients and 
target real-world issues [5].

In this chapter, a framework as well as an overview of the key enabling tech-
nologies for intelligent connectivity will be discussed in Section 10.2. Section 10.3 
will elaborate upon the five most important use cases of intelligent technology, and 
Section 10.4 will conclude the chapter.
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10.2 ENABLING TECHNOLOGIES OF INTELLIGENT CONNECTIVITY

A typical reference model for intelligent connectivity with a four-layer representation 
is shown in Figure 10.3.

The layers of this model are described as follows:
Intelligent perception and actuating layer. The physical sensors present in the 

IoT, whose purpose is to gather and handle data, make up the first layer, also known 
as the objects (devices) or perception layer. This layer contains sensors and actuators 
that trigger different responses, including polling features such as location, weight, 
temperature, vibration, motion, humidity, and acceleration. Interchangeable plug-
and-play techniques need to be implemented by the perception layer for the auto-
matic configuration of a diverse range of devices [6,7]. By means of secure channels, 
this layer sends digitized data to the network and communications layer. This is also 
the starting point of the big data created by the IoT.

As the most fundamental operations in 5G/6G networks, sensing and detection 
are processes where these systems intelligently receive and perceive data from physi-
cal surroundings using an array of large devices such as cameras, sensors, vehicles, 
drones, and smartphones. This may also include gatherings of people. By being sub-
stantially closer to the physical environment, AI-enabled sensing and detection pro-
vide dynamic and active data collection architectures such as radio-frequency usage 
identification, environment monitoring, spectrum sensing, infringement detection, 
and more [8]. The collection of large amounts of scalable data is thus possible.

Due to the ultrahigh-reliability and ultralow-communication latency required by 
5G/6G networks, high-accuracy sensing, real-time sensing, and robust sensing are all 
of paramount importance. Furthermore, dynamic 6G networks introduce variability 
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FIGURE 10.3 Intelligent connectivity layers.
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in spectrum characteristics, making robust and accurate sensing challenging. AI 
approaches can provide precise, real-time, and resilient spectrum sensing, where 
fuzzy support vector machine (SVM) and nonparallel hyperplane SVM are resistant 
to instabilities in the environment. Likewise, sensing precision and correctness can 
be improved by CNN-based cooperative detection with low intricacy. By combining 
K-means clustering and SVM, real-time detection can be accomplished by using 
low-dimensional input samples for the training stage. Similarly, by handling het-
erogeneous data fusion, Bayesian training may solve considerably large and diverse 
detection challenges [8].

Communications layer. The connection to other smart things, network appli-
ances, and servers relies on the network layer. It contains support and implementa-
tion to transmit and process sensor data, which can be transmitted through multiple 
technologies including RFID, GSM, 3G, UMTS, Wi-Fi, infrared, ZigBee, Bluetooth 
Low Energy, etc. However, in the case of intelligent connectivity, 5G networks are 
used for the data transfer as it provides ultrahigh reliability and low latency. It also 
has support for massive IoT [9].

Data analytics layer. This layer is in charge of interpreting the data collected 
by the perception layer and transmitted by the communications layer. It performs a 
number of machine learning tasks such as prediction, classification, and clustering, 
among others, on different types of data including big data and real-time data. The 
analytics can be done on cloud-hosted servers and the cloud databases may be used 
for the storage of gathered data. Based on the analytics, this layer can send results to 
end users as well as instructions to the actuators found at the perception layer to trig-
ger certain actions. These could range from controlling a watering plant to a robot’s 
arm in a production environment [10].

Applications layer. The application layer handles the queries made by the clients. 
For example, in an interaction where a user asks for temperature and air humidity 
measurements, the application layer is responsible for handling that particular provi-
sion. This means that this layer has the ability to manage high-quality smart services, 
to meet the requirements of the customers, which sums up its importance. A wide 
range of vertical sectors is governed by the application layer, including smart homes, 
smart buildings, factory equipment, and intelligent healthcare [10].

The driving force of AI can achieve smart programming and strategic planning to 
sustain more diverse high-level intelligent and advanced applications, such as auto-
mated processes, smart industry, smart transportation, smart city, smart grid, and 
smart health while also catering for the worldwide effective management of all sorts 
of smart systems. The smart application layer manages all of the operations of smart 
devices, terminals, and facilities in 6G networks using AI approaches to achieve self-
organization capabilities in networking [8].

This layer also aims to assess service performance, by gauging a variety of crite-
ria and factors such as QoS, QoE, and the quality of both gathered data and acquired 
knowledge. Simultaneously, cost dimension metrics should also be considered, in 
terms of resource efficiency, including spectral utilization ability, computational 
effectiveness, energy efficiency, and storage efficiency [8].

The main enabling technologies of intelligent connectivity are 5G, IoT, AI, cloud, 
and blockchain, which are covered in the subsections that follow.
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10.2.1 InTErnET of ThInGS

The IoT consists of interconnections between three possibilities: (i) people to peo-
ple, (ii) people to machine/things, and (iii) things/machine to things/machine. The 
primary purpose of the IoTs is to ensure a constant connection between things, at 
anytime, anywhere, with anything, and anyone, preferably via any route/network, 
and any service. Objects become identifiable and gain intelligence by making or 
facilitating context-related judgments due to their ability to convey information about 
themselves [11]. They can acquire intelligence obtained by other devices or act as 
bits of sophisticated services. An overview of IoT capabilities is given in Figure 10.4.

IoT-enabling technologies and components. IoT is not a standalone technology, 
but rather a combination of several hardware and software technologies. It holds the 
key to the integration of information technology, which corresponds to the whole 
architecture involving both software and hardware used for storage, retrieval, and pro-
cessing of data. This framework also consists of communication paradigms, i.e., elec-
tronic systems for transmission of information between individual users, or groups. 
An exhaustive list of enabling technologies for IoT is given in Figure 10.5 [11].

From these enabling technologies, the main elements of IoT are formed as depicted 
in Figure 10.6 [12].

These elements are defined as follows.
Identification. In order for the IoT to link the services required to their demand, 

identification is essential. Several such systems are accessible, such as electronic 
product codes (EPC) and ubiquitous codes (uCode) [13]. Moreover, it is imperative 
that the IoT objects undergo addressing, such that the Object ID and its network 
address can be differentiated. The Object ID corresponds to a device’s name, e.g., a 
temperature sensor, while its address pertains to its identifier in a communications 
system. Methods for addressing include IPv6 and IPv4. A compression method is 
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FIGURE 10.4 IoT capabilities [11].
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provided by 6LoWPAN [14,15], through IPv6 headers where the latter’s address-
ing is made suitable for low-power wireless systems. Allocating a unique address 
to an object is essential since identification patterns around the world have not been 
standardized, giving rise to the crucial importance to differentiate between the 
object and its address. Furthermore, networks can contain objects that use public IP 
addresses instead of private ones. Thus, identification hands out crystal-clear identi-
ties to objects such that they are easily identifiable.

Sensing. Generally, IoT sensing encompasses the processes involved in collecting 
data from objects in a system and transmitting it to a data warehouse, database, or 

IOT IDENTIFCATION SENSING COMMUNICATION COMPUTATION SERVICES+ + + += + SEMANTICS

FIGURE 10.6 IoT elements [12].
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cloud framework. The required services then dictate the course of action to be taken. 
Smart sensors, actuators, and wearable data collection devices are examples of IoT 
sensors. Wemo, revolv, and SmartThings are example of companies that supply intel-
ligent hubs and mobile applications to remotely track and evaluate smart gadgets and 
devices indoors [16–18]. Single board computers (SBCs) with built-in sensors and 
TCP/IP architectures along with security frameworks are mostly utilized to produce 
IoT products. Some examples are Raspberry PI, Arduino Yun and BeagleBone Black 
[13]. Such devices are often linked to a single administration site to supply the neces-
sary services queried by the customers.

Communication. Intricate and customized smart services are made possible by 
connecting together a diversified range of objects that make up the IoT communica-
tion model. The IoT nodes usually function with low power within communication 
systems filled with noise and losses. Common communication systems that govern 
IoT are Wi-Fi, Bluetooth, IEEE 802.15.4, Z-wave, LTE-Advanced, and 5G [11], while 
more distinct ones include RFID, near-field communication (NFC), and ultra-wide 
bandwidth (UWB). With relation to intelligent connectivity, the main focus is on cel-
lular IoT with emphasis on 5G. An overview of cellular IoT is given in Section 10.2.

Computation. Computation represents the processing capabilities of the IoT, 
i.e., the “brain,” consisting of units such as microcontrollers, microprocessors, and 
FPGAs, as well as software aspects. To execute IoT applications, many hardware 
platforms were designed, e.g., Arduino, FriendlyARM, Raspberry PI, Arduino, 
UDOO, Gadgeteer, Intel Galileo, Cubieboard, BeagleBone, Mulle, Z1, WiSense, and 
T-Moke Sky. These are topped up with software platforms that render IoT function-
alities possible. Since the operating system runs throughout the device’s lifetime, 
it is of utmost importance during the designing stage. Various real-time operating 
systems (RTOS) are suitable for the development of RTOS-based IoT applications. 
For example, the Contiki RTOS is often employed in IoT environments [19]. For set-
tings requiring lightweight OS implementations, TinyOS [20], LiteOS [21], and Riot 
OS [22] are fitting. Additionally, the realm of Internet of vehicles (IoV) is headed for 
improvement with the established Open Auto Alliance (OAA) between auto manu-
facturing leaders and Google, to integrate new functionalities on Android [23]. An 
IoT microcontroller is essentially an embedded system comprising computer hard-
ware equipment paired up with appropriate software. It can be either standalone or 
part of a larger architecture. An embedded system is often implemented in massive 
automatic electrical or mechanical models and is therefore automated by a controller, 
thus making up the RTOS. It is generally employed as a fully functioning device that 
contains both hardware and mechanical components [24]. On the same spectrum, 
cloud platforms are of equal importance in the computational sphere [12]. Cloud 
systems are responsible for the storage of data sensed by smart objects, after which 
big data is analyzed in real-time before returning the requested response to the exact 
query demanded by the end user.

Services. Overall, IoT services can be summarized by four classes [25,26]:

• Identity-related services – They are the most basic, yet possibly one of the 
most significant services supplied to an IoT application. Some form of iden-
tity-related service is integrated and present in every IoT application. This is 
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due to the necessity of the IoT to map the physical realm to the digital one, 
requiring the application to identify all connected devices [27]. This type of 
service is handled by most IoT applications through the use of RFID tech-
nology. The RFID tag holds a device-specific identifying code. The latter is 
scanned by the RFID reader, which searches the RFID server for the device, 
before delivering the detailed information required by the application [28].

• Information aggregation services – These gather and consolidate raw sen-
sory readings for processing and reporting to the IoT application. By com-
bining identity-related services with other systems such as wireless sensor 
networks (WSNs) and access points, they gather and transmit data to the 
application for analysis. This means that the information aggregation ser-
vice simply routes the collected data to the application. Between the collec-
tion terminals such as sensors and RFID tags to the application, the sensed 
data may also be processed.

• Collaborative-aware services – They sit just above the information aggre-
gation services, using the collected information to respond appropriately. 
The primary distinction between these two types of adjacent services is the 
application of acquired data to make choices and alter the course of action 
in environments such as a smart house. Speed, network security, and ter-
minal computing capability are all required for developing a collaborative-
aware service. It is no longer convenient for terminals to be solely sensors 
that have no capabilities of affecting the surrounding based on analysis. 
There is a growing requirement for embedded devices within the same net-
work that can take decisions based on collected data [27].

• Ubiquitous services – These services up the ante by aiming to ensure that 
collaborative-aware services are allocated to anyone, anytime, and any-
where [27]. They are thus the epitome of the IoTs. Ubiquitous services 
intend to enable total access and control over everything around us, irre-
spective of the device in question. A smart city figures on the list of applica-
tions requiring ubiquitous services.

Semantics. In the context of IoT, semantics is the concept of intelligently extract-
ing meaningful information from different devices. Deriving important knowl-
edge from information consists of using resources and generating models. It also 
revolves around identifying and evaluating facts in order to make the proper decision 
to deliver the best service [29]. Consequently, semantic serves as the IoT’s brain, 
routing requests to the appropriate resource. The resource description framework 
(RDF) and the web ontology language (OWL) form part of semantic web technolo-
gies, which supports this requirement. The World Wide Web Consortium (W3C) 
recommended the Efficient XML Interchange (EXI) standard in 2011 [30]. The 
EXI format is deemed crucial for IoT architectures with its ability to dynamically 
improve XML applications where resources are scarce. This occurs by minimizing 
bandwidth requirements without compromising collateral resources such as battery 
life, code size, processing power, and memory allocation. To accommodate for this 
optimization, XML messages are transformed to binary by EXI, to reduce required 
bandwidth and storage space.
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10.2.1.1 Cellular IoT
The adoption of cellular IoT was witnessed internationally when early IoT applica-
tions were deployed on 2G and 3G networks. The 4G era brought about increased 
bandwidth, lower response times, and enhanced assistance for highly populated cells. 
With the presence of 5G on the horizon, these features will be further strengthened, 
starting originally with the 5G New Radio (NR) standard. Support for progressively 
important and responsive applications is expected with the advent of 5G networks 
that will allow ultrareliable low-latency communications (URLLC).

Hitting two birds with one stone, cellular IoT is equipped with the potential of 
solving both the comparatively simpler needs of the colossal IoT market, in addi-
tion to the more tailored and delicate requirements of tricky systems and applica-
tions. Thus, cellular IoT connectivity supported by narrowband IoT (NB-IoT) and 
long-term evolution for machines (LTE-M) is proliferating. By 2024, the number 
of machines linked by massive IoT and other upcoming cellular technologies is 
expected to reach 4.1 billion. Cellular IoT is a fast-expanding sector centered around 
3GPP international norms, with support from a growing number of mobile telecom 
companies, gadgets, microprocessors, components, and network infrastructure sup-
pliers [31].

In terms of unrivaled worldwide coverage, cellular IoT outperforms other low-
power wide area (LPWA) network technologies [31]. It also offers improved QoS, 
flexibility, reliability, and the versatility to address the various needs for a wide scope 
of uses. This expansion in IoT networking is likely to intensify due to two primary 
factors:

• An attempt is being made to computerize and modernize businesses such as 
industrial, automobile, and utility companies.

• Telecommunication companies are increasingly interested in expanding 
their present business beyond mobile Internet.

According to Ericsson, cellular IoT can be categorized as massive IoT, broadband IoT, 
critical IoT, and industrial automation IoT. This is summarized in Figure 10.7 [31].

An overview of these four categories of cellular IoT is discussed in the following 
sections.

10.2.1.2 Massive IoT
Massive IoT connects low-sophisticated IoT devices to cellular networks using nar-
row band-IoT and Category M (CAT-M) technology. It is aimed at large numbers of 
devices with limited complexity that communicate data rarely. The traffic generated 
is frequently forgiving of delays, and common use cases include low-cost detectors, 
monitors, gadgets, and trackers. Devices of such nature are often employed in tough 
radio and wireless environments such as a facility’s basement, which translates into 
the imperative requirement of extended coverage. They may also depend entirely on 
stored battery energy, putting high demands on the device’s battery life.

In Release 13, three giant new innovations were established by 3GPP. They include 
EC-GSM-IoT, LTE-M, and NB-IoT. LTE-M enhances LTE by adding additional 
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capabilities such as enhanced battery life, expanded reception distance, and support 
for devices with solely simple features, called CAT-M. NB-IoT is an independent 
radio access technology based on LTE foundations that offer exceptional coverage 
and prolonged battery life for ultralow-complexity gadgets. The radio range per cell 
tower is increased by repeating messages and taking advantage of flexible data rate 
and delay constraints.

To improve battery life, techniques such as extended discontinuous reception 
(eDRX) and power saving mode (PSM) are used by putting the device in sleep mode 
for prolonged periods of time. The use of restricted bandwidths, half-duplex pro-
cessing, and the integration of a singular transceiver antenna on the unit keep the 
intricacy of CAT-M and NB-IoT devices to a minimum. NB-IoT devices are rela-
tively less performing than CAT-M ones and therefore, less complex. NB-IoT has a 
bandwidth of 200 kHz, while that supported by CAT-M is 1.4 MHz with CAT-M1, 
and 5 MHz with CAT-M2.

Despite existing functionalities for operating CAT-M devices in full-duplex mode, 
the current CAT-M infrastructure only allows half-duplex mode in order to restrict 
device intricacy and battery consumption. The use cases for CAT-M and NB-IoT 
should be complementary. CAT-M is ideal for applications seeking greater band-
width, lower response times, linked mode mobility, improved geolocation position-
ing, and voice communications. Wearables, detectors, monitors, alarm panels, and 
helpdesk consoles are examples of typical CAT-M use cases, all of which offer voice 
and data interactions. NB-IoT is better adapted for extremely low throughput applica-
tions that can tolerate latency but necessitate substantial reach, including basic utility 
devices and sensors stationed in difficult radio circumstances.

Another benefit for telecom operators is that NB-IoT may be placed in an LTE 
carrier’s guard-band, utilizing otherwise idle frequencies. CAT-M and NB-IoT are 
regarded as long-term plans with respect to 5G systems [32,33]. They can seamlessly 
cooperate with 5G NR in the same band and already meet all 5G large machine-type 
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communications (MTC) standards. As summarized by the IMT-2020 and 3GPP 
standards, the same specificities can be used with regard to features such as distance 
reach, latency, transmission rate, battery life, and number of connections per cell 
[34,35].

10.2.1.3 Broadband IoT
Broadband IoT leverages mobile broadband access for IoT, delivering faster data rates 
and lower delay than massive IoT. It employs features tailored to MTC to enhance 
coverage and improve the unit’s battery life. Built around 4G and 5G NR radio access 
platforms, this category addresses a wide range of applications in transportation, 
unmanned aerial vehicles (UAVs), augmented reality/VR (AR/VR), services, indus-
trial, and wearable gadgets. LTE includes a variety of device types that are well-
suited for such applications. For instance, it already provides mobile connectivity 
to millions of modern vehicles. The extent achievable by broadband IoT has been 
enlarged with the advent of NR. NR-based broadband IoT functions in both previ-
ous and modern spectrums through substantially larger bandwidths. It also contains 
additional features to handle notably higher throughputs, achieving the threshold of 
tens of Gbps and lowering delay to around 5 ms [31].

10.2.1.4 Critical IoT
Critical IoT paves the way to incredibly low radio interface delay, as low as 1 ms, 
or high reliability of up to 99.9999%, with stringent delay boundaries at a range of 
transmission speeds. Reliability pertains to the probability of successfully deliver-
ing information within a limited delay. Certain applications in smart power systems, 
intelligent industry, smart vehicles, intelligent healthcare, and immersive AR/VR 
necessitate ultralow latency in the range of 5–20 ms, along with reliability achieving 
heights of 99.9999%. Such situations require continuous real-time connectivity and 
communications between devices [36]. These include:

• Automation of power transmission.
• Fault diagnosis and repair in smart grid environments.
• Real-time management of industrial robots.
• Synchronization of self-driving cars and transport systems in real time.

Furthermore, some applications also require human involvement, notably remotely 
controlled vehicles and teleoperated surgeries, demanding even more reliability. 
However, due to the significant difference in awareness, response, and reaction times 
between humans and machines, latency is not as crucial as reliability.

5G NR is unquestionably a remarkable technology for supporting critical IoT. 
Even in its initial 3GPP deployment, Rel-15 in 2018, NR offers more capabilities than 
LTE for supporting URLLC. NR uses a wider spectrum of bands and significantly 
bigger bandwidths than LTE to deliver considerably higher throughputs to a greater 
number of machines while maintaining relatively low latencies and ultrahigh consis-
tency. The evolution route laid down for NR is crystal clear. As per 3GPP Rel-16, the 
establishment for NR-based, improved URLLC is already in the works. As shown in 
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Figure 10.8, NR can accommodate critical IoT across all of its frequencies, enabling 
broad area and small area use scenarios.

In low radio frequencies with corresponding bandwidth allocations, due to optimal 
radio wave propagation, NR frequency division duplex (FDD) yields exceptionally 
low response times and ultrahigh reliabilities with large geographical areas per cell 
tower. However, link transmissions in the lower frequency regions are constrained. 
These frequencies should thus specifically serve vast regions.

NR revolves around a wide variety of enablers for URLLC. The ultralow latency 
characteristics are:

• Communications with extremely short intervals.
• Approaches for instantaneous delivery to reduce data communication latencies.
• Strategies for rapid retransmission that mitigate feedback latencies from a 

receiver to an emitter.
• Mechanisms for immediate cancellation and prioritizing.
• Handovers between base towers to occur without interruption.
• Devices and base stations equipped with high processing performances.

A wide variety of communication designs that still thrive in difficult radio environ-
ments is imperative to cater for the ultrahigh reliability requirements. This high link 
connection consistency is assured by redundancy methods such as multi-site connec-
tivity and carrier aggregation. There is a gradual growing prospect to enhance the 
link budget with sophisticated antenna designs. At the core of NR lies the vendor-
specific scheduling techniques and link adaptation algorithms, such that the proper 
resource maintenance and usage are guaranteed.

There are inherent compromises when it comes to factors such as delay, reliability, 
distance covered, and spectral efficiency, with regard to a particular rollout. Ultra-short 
broadcasts, e.g., that aim for extremely low response times, might diminish the network 
strength that accommodates for each base station. As a result, strong signal emissions 
necessitate additional unused spectrum, lowering throughput per base station. NR 

FIGURE 10.8 Critical IoT support in different bands by NR.
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allows for a significant deal of flexibility in optimizing these trade-offs. As per 3GPP 
Rel-15, studies and assessments have previously verified that the NR radio interface is 
capable of sending a small payload in a maximum delivery timeframe of 1 ms, with 
99.999% consistency with regard to both uplink and downlink [37,38]. The 99.9% to 
99.9999% consistencies are being further analyzed by 3GPP Rel-16 where latency is 
found in the range of 1–7 ms, with transmission speeds ranging between Kbps and 
Mbps [39].

10.2.1.5 Industrial Automation
The concept of industrial automation IoT revolves around implementations for pro-
duction frameworks as well as control regimes for metros together with the gen-
eration of electricity and its consequent supply. These processes require sensors 
placed in the surroundings, along with monitoring gadgets for stock and delivery 
supervision. There is thus a growing need for automated guided vehicles (AGV) and 
state-of-the-art real-time monitors, along with robot expert systems in the production 
process. These pieces of equipment are usually wired.

Therefore, an industrial network is made up of a blend between massive, broad-
band, and critical IoT, along with industrial automation IoT, centered around 5G NR, to 
fill the shortcomings in performance. However, this void in capabilities is envisioned 
to handle a deterministic system where both ultralow response times and consistent 
secured delivery are needed. In short, 5G is anticipated to embed functionalities that 
allow minimal latency fluctuations and remarkable low loss, both ensured at once.

10.2.2 5G MobIlE nETworkS

The gap between mobile broadband and massive IoT is being bridged by the advent 
of fifth-generation wireless networks (5G). The point at which 5G demarcates 
itself from today’s 4G and 4.5 (LTE-advanced) apart from upturns in transmission 
speeds is the basis laid out for welcoming new IoT and life-depending communica-
tion scenarios. For context, small response times are the pillar that enable real-time 
exchanges with services that contact the cloud. This can be observed in the case of 
autonomous vehicles. Similarly, the necessity for recurrent human intervention is 
removed with low power consumption capabilities, thus allowing gadgets to extend 
their uptimes to months or years [37].

Contrary to current norms where performance trade-offs are often employed as 
solutions for wireless technologies including 3G, 4G, and Wi-Fi, 5G includes built-in 
and seamless functionalities to enable massive IoT. Figure 10.9 outlines the advance-
ments with regard to transmission speeds, starting with 3.5G.

Figure 10.10 shows the eight main targets, which 5G aims to achieve namely with 
regard to data rate, availability, coverage, energy usage, battery life number of con-
nected devices, bandwidth, and latency.

Figure 10.11 depicts the ecosystem of forthcoming 5G networks consisting of the 
trident: (i) enhanced mobile broadband (eMBB), (ii) ultrareliable and low-latency 
communications (URLLC), and (iii) massive MTC (mMTC) [38,40].

The coming of every new generation wireless network marked the arrival of new 
possibilities, as illustrated in Figure 10.12. 
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10.2.2.1 5G-IoT Requirements
The revolutionary experience surrounding the surge of 5G can be classified as real-
time, programmable, exclusively online, and loaded with social-oriented innovations 
[38].

These definitions call for an armature of end-to-end coordination capabilities, 
with rapid, autonomous, and smart adaptive tasks set up at every step [41]. The fol-
lowing list summarizes the expectations of 5G:

• Establish conceptually separate networks depending on application needs.
• Rebuild radio access infrastructures (RAN) using cloud-based radio access 

networks (Cloud-RAN).

4G

3G

2G

1G

5G 5G networks expand broadband wireless services beyond mobile internet to IoT and critical communications segments.

4.5G (LTE advanced) networks doubled data speeds from 4G

4G networks brought all-IP services (Voice and Data), a fast broadband internet experience,
with unified networks architectures and protocols

3.5G networks brought a true ubiquitous mobile internet experience, unleashing the success of mobile apps eco-systems.

3G networks brought a better mobile internet experience but with limited success to unleash massive data services adoption

2G networks brought digital cellular voice services and basic data services (SMS, GPRS) – 
 as well as roaming services across networks

1G networks brought mobility to analogue voice services

FIGURE 10.12 Mobile standards capabilities evolution [38,40].
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FIGURE 10.11 5G ecosystem [38,40].
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• Deliver extensive links bearing different protocols while enforcing on-
demand installation of RAN purposes needed by 5G.

• Enable on-demand programming of network functions to simplify core net-
work ecosystem [41].

• Provide support for high transmission speeds in an era where high-quality 
video streaming is established as a social norm and VR presses for increas-
ingly high data rates of the order of 25 Mbps for up-to-par performances 
[41].

• Exhibit ultralow latencies in 5G-IoT use cases including AR, tactile 
Internet, and VR video games where latencies around 1 ms are consid-
ered acceptable.

• Extend coverage distance and improve handover smoothness for IoT devices 
and customers.

• Implement cutting-edge security policies and concepts for IoT applications 
such as mobile banking and electronic wallets.

• Effectively implement energy-saving methodologies to feed low-power and 
low-cost IoT devices over sweeping time periods.

• Support high connection density and mobility for interconnected commu-
nication exchanges.

10.2.2.2 5G-IoT-Enabling Technologies
Starting from the physical paradigm and ascending all the way up to the complete 
IoT application, the 5G-enabled IoT sphere is held uptight by various key factors that 
fall into the following five components [37]:

5G-IoT architecture. Since the 5G-IoT rests on 5G wireless infrastructures, 
the framework typically consists of two planes, notably the data plane and control 
plane. The former concentrates on monitoring and recording data through software-
defined front-haul networks while the latter is geared toward network orchestration 
tools, customizable services, and applications providers [42]. The following fields are 
dependable on the 5G-IoT architecture and their demands should be met:

• Network function virtualization (NFV), expandability, and cloud migrations.
• Refined and complex network management including mobility control, 

intrusion detection and prevention, and effective network virtualization.
• Inclusion of big data analysis for intelligent services providers.

10.2.2.3 Wireless Network Function Virtualization
Compatible with 5G networks, wireless network function virtualization (WNFV) 
will shoulder the virtualization of complete network functions, in turn simplifying 
the implementation of 5G-IoT. NFV will fractionate scalable and malleable hardware 
such that 5G-IoT is enabled on broadscale cloud servers [43]. Likewise, NFV will 
allow tailored network slicing on top of distributed cloud to generate customizable 
networks for 5G-IoT scenarios [44]. It allows a physical medium to be concatenated 
into several virtual networks, as depicted in Figure 10.13. Thus, the devices can sim-
ply be reprogrammed to exhibit the characteristics required by the IoT application.
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NFV technology renders the applications faster, more intensive, and equipped 
with optimized coverage in the logically sliced networks such that requirements per-
taining to a singular network slice can be realized.

10.2.2.4 Heterogeneous Networks
Heterogenous Networks (HetNet) is a pioneering networking architecture suggested 
to attain the needs of service-driven 5G IoT. HetNets operate with regard to the high-
speed rates of 5G-IoT applications. Several 5G HetNet solutions have been developed 
recently. With the expected deployment of a colossal number of resource-capped 
devices, various HetNet solutions have been suggested [45,46].

10.2.2.5 Device-to-Device Communications (D2D)
The typical macrocell base station (MBS) is synchronized in HetNet to deliver low-
energy BSs. For short-range transmissions between two gadgets, device-to-device 
communication (D2D) is a novel suggested data communication method. This will 
bring about improvements in 5G-IoT with regard to reduced energy usage, load bal-
ancing, and improved QoS for end users. D2D facilitates exchange of information 
between user equipment, bypassing the use of BSs, thus functioning as a “cell tier” 
in 5G-IoT [37].

Over 60% of the IoT systems demand minimal power, higher battery capacity, 
and extensive network coverage. Current technological solutions, among the likes of 
Bluetooth Low Energy (BLE), Zigbee, Wi-Fi, and 2G/3G/4G, do not go hand in hand 
with these requirements. To therefore meet the aforementioned demands, emerging 
innovations include LPWA, NB-IoT, LoRa, Sigfox, LTE-M, etc. D2D communica-
tion is quickly ramping up the technology ladder when it comes to short-range wire-
less communications of less than 200 m. It satisfies the necessity of low power and 
high QoS surrounding massive device communication [37].

As an add-on to NB-IoT uplinks, the D2D protocol is used to set up mobile links 
through NB-IoT [47–49]. D2D is implemented in IoT in conjunction with cellular 

FIGURE 10.13 5G NFV technology [44].
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NB-IoT end devices. In short, D2D is equipped with the potential of improving 
energy and spectrum efficiency in 5G-IoT.

10.2.2.6 Advanced Spectrum Sharing and Interference Management
To address the discrepancies orbiting around network coverage and traffic conges-
tion, 5G-IoT will be thoroughly doped with a massive number of interconnected 
devices. Consequently, a proper structure and accommodation is required for the 
management of spectrum and interference with densely populated and congested 
areas. HetNet seems to assertively address handle interference control in 5G-IoT.

Massive MIMO is critical to attain higher spectrum efficiency. A variety of 
sophisticated MIMO approaches, including multiuser MIMO (MU-MIMO), very 
large MIMO (VLM), and others, have been introduced in recent years. By capitaliz-
ing on an abundance of antennas at the BS, the 3GPP LTE-A involved MU-MIMO to 
considerably boost network coverage and power [50]. The fate of 5G-IoT frameworks 
resides on the amalgamation of technologies such as millimeter wave (mmWave), 
software-defined networking (SDN), MTC, multiaccess edge computing (MEC), 
narrowband IoT (NB-IoT), and NFV.

10.2.3 arTIfIcIal InTEllIGEncE

As global networks flourish in terms of novelty, magnitude, and intricacy, network 
traffic is growing at a sky-rocketing pace with the mushrooming number of inter-
linked devices. The near future is expected to bring about autonomous sensing, 
computing, learning, analytics, and even decision-making with regard to business 
without human intervention. The coupling of AI with networking is pivotal to the 
inception of automation, complexity and scalability management, and exploitation of 
live information obtained from distributed architectures.

The AI sphere is surrounded by multifaceted approaches involving machine 
learning, deep learning, game theory, optimization theory, and meta-heuristics [51]. 
Machine learning can be further categorized into supervised learning, unsupervised 
learning, and reinforcement learning. With a constant need to monitor and man-
age wireless networks in terms of resources, security, and performance, the ever-
increasing widespread involvement of machine learning and deep learning does not 
go unnoticed. An overview of the main subfields of AI is as follows [52]:

Supervised learning. Supervised learning makes use of pre-categorized training 
instances to put together the learning model through the training process. The two 
main offshoots are (i) regression and (ii) supervised learning. Supervised learning 
makes use of pre-categorized training instances to put together the learning model 
through the training process. The two main offshoots are regression and classifica-
tion. Classification deals with the prediction of outcomes that are typically classes 
or categories by first analyzing a pre-labeled dataset, before predicting the class 
for an unlabeled set of inputs. Some prevalent algorithms are decision trees (DT), 
SVM, and K-nearest neighbors (KNN). On the other hand, regression deals with the 
forecasting of variables that change with time by analyzing a particular number of 
inputs. Some common mathematical concepts are support vector regression (SVR) 
and Gaussian process regression (DPR).
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Unsupervised learning. The motive behind unsupervised learning is to uncover 
trends that happen between the lines and are otherwise unnoticed to superficial 
judgment. It is broadly classified into clustering and dimension reduction. The basic 
premise of dimension reduction is to reduce the number of variables, characteristics, 
or features making up a dataset, in a way that the new data remains useful. Some 
techniques for dimensionality reduction are principal component analysis (PCA) 
and isometric mapping (ISOMAP). Likewise, with the aim of grouping together 
similar entities, clustering primarily comprises K-means clustering and hierarchical 
clustering.

Reinforcement learning (RL). Generally, in RL, an agent dynamically analyses 
and exploits its environment to learn and therefore act heuristically, via trial and error 
in an attempt to optimize long-term payoff. Q-learning, policy learning, Markov 
decision process (MDP), actor–critic (AC), deep reinforcement learning (DRL), and 
multi-armed bandit (MRB) are conventional instances of RL methodologies.

Deep learning. Deep learning seeks to tighten the gap between computers and the 
human brain by mimicking the latter’s analytical approaches to create artificial neu-
ral networks. Equipped with several layers of neurons, the training model falls into 
the supervised, semi-supervised, and unsupervised categories. Deep neural network 
(DNN), convolutional neural network (CNN), recurrent neural network (RNN), and 
long-short-term memory (LSTM) are all examples of typical deep learning concepts.

10.2.3.1 Intelligent Networks
Telecommunication providers in every corner of the world are either preparing for, 
or already deploying 5G. With aforementioned qualities such as autonomous sens-
ing, computing, training, and decision-taking on the horizon, the emergence of 
zero-touch cognitive networks is anticipated [53]. Fresh from the oven, the endless 
possibilities of modern networks will yield opportunities for exploitation as well as 
open tons of doors for the management of the rapid surge of data flows. Despite the 
inevitable complexity of network topologies associated with the plethora of innova-
tive use cases of network edge and cloud, future networks are expected to comfort-
ably stay afloat. However, this breakthrough comes packaged with new challenges 
with respect to intricacy, upgradability, toughness, and reliability as well as instal-
lation factors such as the provision of up-to-par network services itself, design, and 
deployment [54]. Conventionally, telecom specialists develop and maintain mobile 
infrastructures, relying significantly on their vast expertise of network architecture, 
customer mobility, traffic consumption trends, and wave transmission models to cre-
ate and implement the protocols and rules that fundamentally ensure the continuous 
operation of the immense network. The complexity of network topologies has sig-
nificantly increased, given the arrival of smaller cells and state-of-the-art radio tech-
nology. Not only have traffic trends grown harder to predict but radio transmission 
models have also become more difficult to evaluate considering the new spectrum 
frequencies and densely populated networks. AI therefore sits at the throne when it 
comes to providing support to service providers, to ease the deployment and mainte-
nance process of 5G networks. Moreover, AI is considered indispensable and primor-
dial to ensure zero-touch provisioning of these sophisticated networks, in addition to 
be entrusted with autonomous analysis and decision-making functionalities.



376 Driving 5G Mobile Communications with AI towards 6G

A mobile network is embedded with distributed and decentralized properties. 
Figure 10.14 depicts the addition of AI into the networking framework where data 
processing is envisioned. In this case, this can happen both locally and centrally. 
Therefore, AI can be integrated with both central and local edge sites. Similarly, 
local learning and outcome generation occur at distributed sites, whereas data and 
understanding are merged throughout locations to provide a full global overview of 
links between networks, facilities, and network operations.

Every local site provides quantitative information on the state of the various com-
ponents, the timeframes of events, and related data. This data may be harnessed to 
create representations and patterns of local behavior. However, computational logic 
is necessary to interpret the information acquired throughout sites and extrapolate 
meaningful understandings of the whole framework. Ultimately, the information and 
findings obtained at a single site may be steered into valuable insights to forecast 
those of other sites. Network characteristics are constantly changing and there is an 
increasing need to embed real-time support via modular and customizable analyt-
ics solutions to address the amount, speed, and diversity of real-time information. 
Algorithms are gradually evolving by being provisioned with capabilities for real-
time decisions.

The integration of sophisticated intelligence to networks, applications, and busi-
ness systems will result in a gradual shift toward a statistics-geared strategy, which 
will promote a superior level of automation, reliability, and productivity. Equipped 
with increased control, telecommunication providers will be able to act upon its net-
working systems with greater efficiency, based on analytics on captured data. By 
tailoring and eventually mapping specific functions to network behavioral patterns, 
each service can be rendered more secure, reliable, as well as robust, further propel-
ling the provision of mobile services to higher gear with regard to both industrial and 
societal advancements [55].

IOT

CENTRAL SITE

DISTRIBUTED SITE

DISTRIBUTED SITE

DISTRIBUTED SITE

LOCAL SITES LOCAL SITES LOCAL SITES LOCAL SITESLOCAL SITES

FIGURE 10.14 Learning at local and global levels with autonomous decision-making in 
widely distributed networks [53,55].
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Within a massive distributed architecture, decision-making processes exist at sev-
eral sites and stages. Some actions are determined by strict-control systems with low 
delay and are dependent on local data, while some require intensive and well-planned 
decisions that alter the behavior of the whole network and are therefore fueled by 
the collection of data from multiple sites. Such decisions commonly fall into the 
critical category, thereby needing immediate, real-time attention. Examples include 
power-grid outages and collateral transient faults. To continuously and exquisitely 
feed this global and monumental architecture, the governing intelligence should be 
built around the distributed characteristic of the topology.

In many cases, data created at the edge, i.e., within the device’s perimeter will 
require immediate local computation. Transferring this data to a centralized cloud 
may not always be the best option, with potential laws stating the location at which 
data can only be stored. This infers that data may not, in certain cases, undergo trans-
fer at all. The decisions revolving around certain applications are usually lightweight 
and the algorithms can be housed at the local site itself. The trade-off, however, is a 
total misjudgment during analytics, leading to a setback in performance and in turn, 
delivery of services. This necessitates an upscale in distribution and the building of 
adequate local models capable of accurately meeting established requirements, while 
at the same time transferring the forecasts to other sites for increased model growth.

A possible workaround of this complication is to learn about global data trends 
directly from multiple networking nodes without having to transfer it to a central-
ized system. This gives rise to federated learning, a way of training the algorithms 
across multiple decentralized edge devices, bypassing the need to exchange data. 
Distributed training patterns include vertical federated learning and split learning. 
Machine learning models are thus more prone to understanding the purpose for 
which they were designed for, by closely adhering to transfer and computing require-
ments, along with memory and resource allocation, while guaranteeing exceptional 
performance. Given the variable nature of networks, intensive research is essential 
to bring about stronger and more reliable conclusions with regard to model reliability 
and security.

The conditions that would satisfy the giant necessities of both local and global 
data frameworks are planned to be distributed and decentralized. Finding proper 
ways to disseminate acquired knowledge while ensuring timely delivery across 
devices is also imminent. In the wireless oasis, the partnership between machine 
learning, AI algorithms, and such frameworks can pave the way for technologies 
such as self-management, self-optimization, and self-evolution.

10.2.3.2 AI-Enabled Autonomous Systems and Human Interaction
With increasingly complex decisions needed to be made by machines, either on their 
own, or with human assistance, these devices require a fundamental understanding 
of the problem such that they can act upon the solution effectively. A clear distinction 
between observation by sensors, and the action required, needs to be made. Since 
humans set the onus on the machine, it needs to be fitted with more autonomous fea-
tures that will allow a fine line to be drawn between what to do and what to achieve. 
They thus need to be inculcated with relevant domain knowledge. These declarative 
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objective specifications, also known as intents, are characterized as being functional, 
nonfunctional, and operational objectives; challenges; and requisites [56].

Formal designs are used in knowledge-driven structures to understand apparent 
conditions and implement actions based on intelligent and smart decisions. The dif-
ferent methods to generate such models are by either using machine learning algo-
rithms created by experts or logically inferring through a search.

Using a completely conventional data science technique, in which a model is 
developed using all accessible data, has various drawbacks. To begin with, a typical 
technique may not develop, thus becoming unrealistic. The variable matrix might 
include an outsized range of attributes, yielding limitless permutations of scenarios 
for training during analytics. Furthermore, since there is no input on which the train-
ing model can be based, such a strategy cannot handle unforeseen circumstances. 
The problem should instead be partitioned into smaller, more achievable blocks 
through an agent-based approach, as shown in Figure 10.15. These agents are in 
the form of conventional machine learning (ML) elements, mathematical methods, 
expert standards, etc. A continuous optimization pattern can shoulder the orchestra-
tion of agents by correlating present and required states (defined by intent) based on 
the system’s perception of the network state.

It is crystal clear that hybrid techniques will bring about better effectiveness in 
next-generation smart systems. Intricate models trained through robust learning with 
mathematical notation will offer knowledge bases, logic, and interpretation capabili-
ties. For instance, the expertise could include fundamental laws of the universe or the 
most well-known procedures in a certain sector. Automated architectures must be 
bestowed with the power to make independent judgments to achieve specific goals, 
the resilience to handle a challenge in multiple perspectives, and the versatility in rea-
soning by leveraging diverse elements of both pre-stored and acquired intelligence.

AI

Intent-driven
Declarative formal specifications 
of objectives, requirements and 
constraints.

on Based 
Knowledge Intensive

pre-learned, 
and provisioned inferred 

Autonomous
Make decisions and adapt to 
unforeseen situations without 
human intervention.

domain models.

Multi-agent
Variety of specialised agents 
orchestrated and driven by 
continuous optimization loops.

FIGURE 10.15 Properties of future systems that take automation to the next level [56].
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Interconnected, smart sensors of many forms, spanning from virtual personal 
assistants to industrial robotics or collaborative robots, are seemingly seeping 
through our lives [57]. It is helpful for better interaction that these technologies 
properly interpret human needs and intentions. Moreover, all machine-related data 
should be ready for provision for situation-based insights. AI efficiently bridges the 
gap between humans and machines to improve abilities and enable collaboration.

Natural language processing and computer vision advancements have enabled 
robots to read human input more accurately. Nonverbal human traits such as body 
language and voice tonality are factors that have made this possible. Precise emotion 
recognition is currently emerging and can help identify more complicated feelings 
such as fatigue and focus. Furthermore, evolution in areas such as better environ-
ment understanding and the extraction of semantic information is critical to estab-
lishing a thorough map of the ecosystem. Figure 10.16 shows the properties needed 
for human–machine interaction. The devices uphold the responsibility of extrapolat-
ing the maximum amount of possible information from the surroundings for the most 
favorable collaborative. Bearing such properties is RL where a system is entrusted 
to critically analyze current states before taking measures to affect the future states. 
The adoption of RL is increasingly gaining popularity [57]. To prevent dangerous 
scenarios, solutions such as safe AI are being researched to make security and safety 
arrangements throughout the RL model life cycle.

With the incorporation of digital twins, AI has also facilitated a comprehensive 
overview of machine operation. The use of extended reality (XR) equipment and 
facilities is increasingly becoming important to generate mixed-reality setups that 
contain several technologies including AI, thus enabling interaction with digital 
twins. This elevates machine breakdown, analysis, and comprehension to a whole 
new level, allowing the anticipation of a chain of events. Explainable AI (XAI) can 
be added as a building block to further understand why a particular decision was 
taken by a device. XAI accounts for transparency in the AI sphere to produce logs 

SENSOR DATA COMMUNICATION
-Visual input
-Voice input
-Digital Twin

-Cellular (5G/6G)
-Non cellular (Wifi / LoRa)

AI

DISTRIBUTED COMPUTING
Cloud / Edge

REMOTE PROCESSING
-Scene understanding
-NLP
-RL
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ONBOARD PROCESSING
-Low Data Volume Processing

PROCESSING OUTPUT
-Actions
-Detected Objects
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FIGURE 10.16 Properties needed for human–machine collaboration [57].
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and relevant databases that can be produced for stakeholders, explaining the deci-
sions taken. This technology can be paired up with several AI frameworks such as 
supervised learning, RL, ML mixed with reasoning, etc. [58]. XAI thus acts as the 
pillar that supports the increasingly crucial use of AI models in networks by provid-
ing decision-making justification to AI customers, and is therefore regarded as a 
fundamental requirement in cases where worldwide standardization parties such as 
IEEE and ETSI demand transparency and highlight the credibility and integrity of 
smart communication systems.

For collaboration between machines and humans to be effective, rapid response 
criteria must be met. A distributed intelligence approach is needed to deliver real-time 
interactions since the AI techniques used in the shared environment may have sig-
nificant processing intricacy while machines may have hardware-limited resources. 
This translates into the networking system acting as the pivot in the process by 
accommodating for high-reliability and ultralow-latency communication paradigms.

10.2.4 cloud coMPuTInG and nETworkInG

According to the ITU, cloud computing (CC) can be referred to as [59] “A Paradigm 
for enabling network access to a scalable and elastic pool of shareable physical or vir-
tual resources with self-service provisioning and administration on-demand.” These 
resources can be operating systems, servers, software, networks, storage equipment, 
and applications.

Cloud computing is a methodology for providing technology solutions through 
the dynamic utilization of virtual machines, with upgradability and management 
features. The properties that make up the cloud as we know it are summarized in 
Table 10.1 [60].

10.2.4.1 Cloud Deployment Models and Service Classes
The four main types of cloud deployment architectures are defined as follows by the 
NIST [61]:

Private cloud. A single enterprise with several users is granted entirely private 
access to the cloud architecture (e.g., business units). The infrastructure may be local 
or off-shore, while still being governed, controlled, and run by the company.

Community cloud. A group of customers from firms with similar challenges is 
given exclusive access to the cloud infrastructure. The shared concerns may include 
objectives, security needs, protocols, and compliance requirements. This means that 
it may be governed, controlled, and run by one or more community groups, a foreign 
member, or a mixture of both. The infrastructure can be local or off-shore.

Public cloud. The public is authorized to use the cloud platform without restric-
tion. A commercial, educational, governmental body, or a combined party may own, 
administer, and run it. It is present on the cloud provider’s property.

Hybrid cloud. This type of cloud platform is made up of two or more different 
cloud environments ranging from private to public to community, each of which is 
independent and continues to exist as a separate entity, but which are connected by 
regularized or exclusive technologies that allow data and application migration and 
mobility. An example enabling load balancing is cloud bursting between clouds.
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The most common CC services privately provided or by external vendors are: 
software-as-a-service (SaaS), platform as a service (PaaS), and infrastructure as a 
service (IaaS), which are defined as follows by the NIST [61]:

Software-as-a-service (SaaS). The client is given access to the cloud provid-
er’s applications that ultimately run on the platform. A variety of thin client inter-
faces such as web browsers or graphical user interfaces allow clients to access such 

TABLE 10.1
Features of Cloud Computing

Feature Description

Massively 
scalable 
infrastructure

From the subscriber’s standpoint, massive scalability indicates that the end user 
manages the complete provision of computing or storage resources as 
necessary. By offering quick virtualized resource deployment, streamlined 
hardware, and continuous data storage features, cloud technology significantly 
simplifies this procedure.

Universal access Universal accessibility is another feature that accentuates cloud computing. 
Despite private email services once needing local connectivity or virtual 
private network (VPN) accessibility, we now have global access to email from 
several companies over the Internet. A similar tactic may be used to provide 
universal access to cloud computing services.

Fine-grained 
usage controls 
and pricing

Given the rapidly evolving nature of online tasks, processing resources can be 
bought and subscribed to, through cloud computing platforms. Likewise, 
storage is also purchased depending on what is truly required in the moment. 
Purchasing choices are no longer bound to factors specific to a single 
component such as maximum capacity requirements for a server. When 
demand is sky-high, more cloud resources can be dynamically and flexibly 
allocated and eventually unsubscribed to, after achieving the said demands. In 
turn, clients are only charged for what is actually used.

Standardized 
resources

Cloud computing offers regularized hardware, virtualization, and software 
services. However, regularization does not infer homogeneity. Cloud 
computing provides a great deal of flexibility when it comes to providing a 
variety of tailored solutions. For instance, cloud technologies provide services 
ranging from configured server, to different operating systems, to an array of 
application stacks among the likes of Linux, Microsoft Oss, and LAMP 
(Linux, Apache HTTP Server, MySQL database and Perl/Python programming 
languages).

Management 
support services

The lack of proper support and administration, strips cloud computing of its full 
potential of delivery for all its services. Management support services assist 
with both the managerial and operational elements of cloud computing. They 
offer the insights required to fine-tune cloud services. An example is the 
generation of reports detecting low usage in certain areas where more servers, 
than required, have been deployed. Network traffic statistics and storage 
reports may be produced to, e.g., better choose between either moving data to 
and from the cloud constantly, or employing a service that solely focuses on 
permanent uplink storage.
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applications and services. Apart from the likely exclusion of a small number of par-
ticular software configuration choices to the discretion of the client, the latter does 
not handle the actual building blocks of the cloud framework, which includes net-
works, servers, operating systems, storage, or even tailored application capabilities.

Platform as a service (PaaS). The consumer is handed the ability of deploying 
custom-made or procured applications, onto the cloud platform, through application 
development software, libraries, servers, and in-house tools. Although the hosted 
programs and perhaps the configuration options for the framework are within the 
control of the customer, the latter has no further management rights or influence over 
the actual cloud infrastructure.

Infrastructure as a service (IaaS). The consumer is given access to processing, 
storage, networks, and other essential computing services, on which the client can 
install and execute required software such as operating systems and custom-made 
applications. Likewise, the consumer has no control over the cloud infrastructure 
that upholds the services with the exception of a small number of network elements 
such as host firewalls.

However, software service architectures have evolved and several variants have 
been developed as outlined in Table 10.2.

10.2.4.2 Intelligent CC and Networks
The trend followed by IT companies for the management of their departments is 
fueled by the rise of AI and ML paired up with CC aspects, also deemed as revolu-
tionary for the foreseeable future. The coupling of AI and ML with cloud networking 
indicates smarter networks that are mostly geared toward reducing workload and 
optimizing performance. Network administrators will then only have to perform the 
most elementary setups, from which AI and ML can pick up with self-optimization 
features. The power of AI and ML will be considerably felt, even in intricate cases 
such as BYOD or IoT where devices can be identified and mapped to their respective 
users, through fingerprints or traffic patterns, after which they are allocated appro-
priate user profiles and undergo access control mechanisms. Another feature on the 
list is self-healing, allowing issues to be automatically resolved before spreading [67].

Similar to how the power grid provided households with electricity, thus leading 
to the second industrial revolution, the partnership between cloud and networking to 
yield smart cloud networks will drive forward the digital economy by dynamically 
and globally distributing computing resources and smart components to every sector. 
This result will be a surge in production capability for corporates, as illustrated in 
Figure 10.17 [68].

The three unique features making up the intelligent cloud network are [69]:
Network digitalization. Through the use of digital technologies, the state of the 

whole network may be determined and digitally duplicated, allowing for uniform 
and standard cloud storage and network design for any architecture. This paves the 
way for standardized and regularized network management on the cloud, with real-
time breakdowns of network behavior.

Network intelligence. In order to enhance the cloud–network partnership, tech-
nological advances such as AI and big data may be applied when network digitali-
zation is established. The outcome is packed with novel features such as intelligent 
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TABLE 10.2
Cloud Service Models [62]

Feature Description

Data-as-a-
service (DaaS)

Real-time industry and client data are provided via innovated DaaS solutions. 
DaaS separates data from its connected services without taking into account the 
ecosystem or site in order to provide consumers with useful information. 
Enterprise resource planning (ERP) systems, data warehouses, transactional 
databases, and customer relationship management (CRM) tools are just a few 
examples of the diverse datasets that may be extracted using the techniques that 
DaaS combines together.

Data-analytics-
as-a-service 
(DAaaS)

In order to supply analytical techniques in scalable format, data-analytics-as-a-
service (DAaaS) or analyticsas-a-service (DAaaS) employs a cloud-based 
delivery approach [63]. This service is packed with a multitude of analytical tools 
for homogeneous data analysis. Housed with machine learning concepts as its 
backend, corporate data collected at the client’s side is uploaded to the cloud 
where analysis occurs to yield useful information.

DataBase-as-a-
service 
(DBaaS)

By seemingly bypassing the configuration and setup of physical hardware, DBaaS 
provides a cloud computing service model where users have the ability to access 
and use actual databases. As one of the fundamental rules of cloud computing, in 
DBaaS, consumers only pay for what they really use, i.e., the capacities and tools 
associated with the subscribed database. Through an application programming 
interface (API), the DBaaS database management module handles the actual 
backend database instances.

Hadoop-as-a-
service (HaaS)

Numerous big data initiatives and companies use Hadoop as their foundational 
framework. This mechanism for processing data storage makes it possible to store 
information, share documents, analyze statistics, and more. Hadoop is widely 
employed by businesses including Facebook and Yahoo as worldwide social 
media and Internet usage sky-rocket. Local, on-shore Hadoop has been 
superseded by HaaS.

Big-data-as-a-
service 
(BDaaS)

With BDaaS, businesses may implement big data solutions from beginning to end. 
It is ultimately a hybridization between HDaaS, DaaS and DAaaS. One of the 
main forces at play in this market is the enormous expansion of data.

Information-as-
a-service 
(INaaS)

INaaS is a service that enables the systematic and safe creation, management, 
interchange, and extraction of useful knowledge from all existing data at the 
appropriate time and in the suitable manner. This relates to the accessibility to 
APIs as well as the usage of dedicated hosted content.

Business-
process-as-a-
service (BPaaS)

Enterprises are using streamlining processes to boost productivity and specify 
precise corporate goals. The use of web interfaces via web browsers on devices 
including PCs, smartphones, and tablets to engage in corporate processes such as 
payroll systems, printing, and e-shopping is referred to as a business-process-as-
a-service (BPaaS).

Security-as-a-
service 
(SECaaS)

SeCaas is elevated by software-as-a-service (SaaS) but is, however, only applicable 
to certain information security services. SeCaas is an information security leasing 
model where services such as antivirus software are distributed across the 
Internet. Likewise, it may also apply to cybersecurity services that are offered 
internally by a third-party company.

(Continued)



384 Driving 5G Mobile Communications with AI towards 6G

POWER GRID
Wind Power Hydro-Power Coal Power

END USERS

TRANSMITTING ELECTRIC POWER

INDUSTRIES HOUSEHOLDS TRANSPORT

CLOUD NETWORK
PUBLIC PRIVATE COMMUNITY

END USERS

DELIVERING COMPUTING POWER

INDUSTRIES HOUSEHOLDS TRANSPORT

Industrialisation driven by electricity in the past. Digitalisation now driven by the cloud.

FIGURE 10.17 Cloud networking and digitalization compared with power grid and indus-
trialization [68].

TABLE 10.2 (Continued)
Cloud Service Models [62]

Feature Description

Testing-as-a-
service (TaaS)

TaaS is an outsourced strategy where testing tasks related to company operations 
are delegated to a foreign entity with expertise in mimicking real-world testing 
conditions in accordance to customer needs. TaaS may employ specialists to 
assist and counsel staff members or only outsource a fraction of assessments to 
the third-party. This unravels new room for growth in the business sector, as well 
as difficulties and expectations for creative service models, validation strategies, 
and QoS regulations [64].

Communication-
as-a-service 
(CaaS)

CaaS points to the offloading of a corporate communications service. The onus of 
providing and managing the required software and hardware lies on the CaaS 
vendor, which is the provider of this kind of cloud solution. The backbone 
enables services such as voice over IP (VoIP), instant messaging (IM), and video 
conferencing. The entirety of hardware and software deployed is managed by the 
CaaS supplier, who is in turn fully responsible for reliability and performance. 
This calls for an accord for a particular service-level where CaaS providers are 
expected to provide assured QoS [65].

Network-as-a-
service (NaaS)

NaaS is a cloud deployment architecture that makes network management 
straightforward for companies. It allows for substantial adaptability and 
versatility together with the option to shift from CapEx to OpEx. This makes it 
possible for enterprises to get desired results without having to own, construct, or 
manage infrastructure. Without the requirement of a proper network management 
structure, NaaS is described by Cisco as a cloud architecture that allows 
participants to effortlessly administer the network and obtain the results that they 
anticipate from it [66].
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network O&M, drastically improved diagnostic effectiveness, smart security defense 
strategies, and a better equilibrium between cloud and network resources.

Network-as-a-service (NaaS). Network services can be purchased at the ease of 
our fingertips, immediately uplifting network rapidity, responsiveness, and agility by 
adopting cloud capabilities. The latter matches the high demands of corporates by 
favoring open network programming and more versatile cloud compatibilities. The 
union between the cloud, networking, and security leads to the provision of better 
all-rounded cloud–network services.

The integration of both CC and AI makes up an intelligent cloud with several 
interesting capabilities that would incorporate:

Cloud agents. By replacing certain human interactions such as making health-
care appointments or searching for the best deals on shopping items, cloud agents 
will be performing at unprecedented heights, with limitless computational resources, 
logic and intelligent data.

Sensors everywhere. The presence of sensors and monitoring devices in every 
nook and cranny of the world calls for the necessity of being able to communicate 
among themselves, as well as activate one another in a network. Similarly, they are 
closely bound by the intelligent cloud, which allows fluent communication.

Robot assistants. Machines will need to be extremely precise, trustworthy, and 
be able to adapt to changing circumstances with the widespread demands for robotic 
companions, autonomous cars, drones, industrial bots, and humanoid employees. 
Connectivity, intelligent analytics, sensory engagement, contextual understanding, 
and deep learning will all be available through the intelligent cloud.

AR heads-up displays. The near future will possibly unfold highly envisioned 
capabilities such as the implantation of an AR layer in our eyewear, corrective lenses, 
or even retinas to improve our contextual and surrounding awareness. With our eyes 
being one of the main biological sensory “equipment” that takes a massive inflow of 
information within a small timeframe, the intelligent cloud will provide the basis for 
such accommodation.

10.2.5 blockchaIn

Blockchain is an important component of intelligent connectivity as it can enhance 
processes in 5G, IoT, and AI.

Blockchain is widely recognized as the underlying technology that powers Bitcoin 
[70,71]. It is built upon a decentralized foundation, which translates into its databases 
being distributed and dispersed over a number of users, rather than being housed in a 
single place. For records maintained on blockchains, this decentralized model offers 
exceptional resilience and confidentiality with the absence of a single point of fail-
ure. Furthermore, all participants in the network witness every transaction, making 
the blockchain visible. This is made possible via a process developed as consensus, 
which consists of a set of guidelines to ensure that all parties are in accord over the 
state of the blockchain ledger. The blockchain concept is illustrated in Figure 10.18.

Blockchains can typically be divided into two categories: public (permission-less) 
and private (requires privileges) ones [72]. A public blockchain is open to all users, 
who may join, execute business, and partake in the agreement procedure. Bitcoin 
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and Ethereum are two of the most renowned public blockchain implementations. The 
other side of the coin pertains to private blockchains where access is only possible 
via invitations, and it is generally run by a single organization. A validation method 
must grant authorization to a member. A list of major elements found in blockchain 
is discussed next.

Data block. A blockchain is a collection of interconnected blocks that begins with 
a parent node and forms a link with each subsequent update. A hash label connects 
each block to the preceding one, establishing a secure relationship between them and 
eliminating the danger of alteration. Each data block is made up of two fundamental 
components, which involve a blockchain header and the transaction records [28]. The 
sequence of events is organized in a Merkle tree format comprising all previously 
made transactions. Additionally, the block header consists of the hash value, Merkle 
root, nonce value, and timestamp, making a total of four small elements. Figure 10.19 
depicts a characteristic blockchain configuration [70].

Distributed ledger (database). By first duplicating the database, it is dispersed 
among all network users. It keeps track of and maintains user-generated events, and 
the mining process ensures functional agreement, which in its entirety, corresponds 
to the “proof-of-work” (PoW) concept. The distributed ledger enforces a distinct 
cryptographic signature upon each entry, not linked with a timestamp, making the 
ledger immune to modification. Furthermore, consensus algorithms prevent security 
loopholes such as double-spending invasions by dedicating the responsibility of mov-
ing a block over a chain to all users, instead of a single entity managing it [29]. This 
thus eradicates vulnerabilities with regard to security. From a blockchain perspective, 
this consensus acts as an agreement basis, guarding safe transactions among par-
ties. For example, the fundamental consensus technique for managing transactions 
in Bitcoin is the PoW methodology [7]. Nodes that have high processing features can 
participate in mining while simultaneously competing with one another to win the 
race of validating a transaction. The winner is then given a set quantity of coins as a 
prize for their mining work. New consensus techniques such as proof-of-stake (PoS) 
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FIGURE 10.18 The concept of blockchain operation [70].
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and Byzantine fault tolerant (BFT), among others have emerged with the develop-
ment of blockchain. Further details about these methods can be obtained in [72,73].

Smart contracts. A smart contract is an autonomous program embedded on a 
blockchain, which is triggered when predetermined conditions are met. Following 
the first Ethereum-based smart contract in 2015 [73], it gained massive popularity 
over the past years. Smart contracts are typically used to automate the execution of 
a consensus where the involved parties are immediately exposed to the outcome, 
without any loss of time. They are triggered by the receipt of a transaction or mes-
sage from users. In addition, smart contracts are fed by coins, which in Ethereum 
terms, is known as “gas.” The clauses governing a smart contract cannot be changed 
or affected by any party, nor is its functioning run and managed by any foreign entity. 
These traits are what renders smart contracts highly resilient to outsiders and foreign 
attacks [74]. With such properties, smart contracts are favorable in a multitude of 
scenarios, such as banking transactions, exchange of medical records, and business 
logistics management [75].

10.2.5.1 Blockchain in 5G
There are several key characteristics of blockchain, which makes it suitable for 5G 
networks as described subsequently [70]:

Immutability. It refers to the irreversible nature of transaction data once made 
on the blockchain. This feature is embedded in the blockchain ledger. As aforemen-
tioned, modifying the contents of a particular block escalates into the successive 
blocks being invalid, which requires their hashes to also be updated. This renders fal-
sifications nearly impossible, since invalid data will quickly be detected. As a result, 
a particular transaction cannot be repudiated since the latter is governed by digital 
signatures, a pair of cryptographic keys as well as consensus methods observed by 
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miners. With all nodes witnessing any changes made by a particular individual, non-
repudiation is thus ensured. This feature of blockchain enables safe data exchange 
and retention in 5G applications, such as private network virtualization, confiden-
tial spectrum access, and D2D connectivity. Immutability goes hand in hand with 
5G’s needs to perform accounting operations such as unchangeable database sharing, 
global, and crystal-clear visibility and robust security implementations for the user. 
Irreversible transaction ledgers thus lead to networks inhibiting strong and secure 
paradigms that eventually allow extensive heterogenous networking and computing, 
as well as IoT partnerships or edge computing across non-transparent and shady IoT 
ecosystems.

Decentralization. It refers to the absence of a central or singular party for data-
base management. In a decentralized P2P architecture such as blockchain, informa-
tion flows through all nodes in the network and can thus be monitored and processed 
easily without any intervention. This eradicates the need for third-party management 
terminals, with the use of the PoW concept where the security of both the secure 
chain and database is maintained. Such characteristics permit the development of 
a storage platform with excellent non-repudiation, resilience, and fast data access 
properties. Further, foreign third parties are not required for maintaining regulations 
and policies. This therefore bypasses frequency licensing, spectrum administrators, 
and database supervisors in resource management. Smartphone communications do 
not require central/edge service managers. 5G UAV networks can function without a 
UAV management center, while also eliminating complex cryptographic measures in 
5G IoT architectures. The absence of a central point of failure, combined with hashed 
blocks and transaction ledgers keeps data safe, secure, and reliable over the network.

Transparency. All transactional data on blockchains concerning permission-less 
ones is observable and viewable by all parties, thereby contributing to a blockchain’s 
visibility. To put it differently, a clone of transactional records is replicated through-
out the whole community of nodes for public verification. With data gathered at local 
nodes, a user can always access it from anywhere and in turn share their ability to 
validate events based on their roles in the chain. For example, miners will cater for 
verifying the mining process while meta data checking is performed by slight nodes. 
Transparency is thus achieved and maintained with the involvement of each and 
every node, giving rise to increased data integrity. Such features are accentuated by 
5G application requirements where availability and equality are important prerequi-
sites. For example, blockchain can be paired up with cooperative cognitive network 
slicing in IoT systems by providing the same transparent ledger databases to allow 
service suppliers to monitor and trace back transactions to their origin. Furthermore, 
features such as smart contracts can be used to trigger tasks such as mobile resource 
trading in 5G IoT. This means more visibility and reliability when different service 
suppliers come together with IoT customers.

Security and privacy. Public and private keys dictate the security of blockchain. 
The implementation of asymmetric cryptography, which uses random sequences to 
create keys so that hackers cannot intercept events, is the pillar underpinning secure 
blockchain practices [32]. Additionally, the non-repudiation and consensus features 
guarantee the confidentiality of any information held. Users have a bird’-eye view 
of the network, enabling transaction tracing and monitoring. The bottleneck caused 
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by hashing and mining lead to data being preserved inside the block. By offering 
distributed secure architectures along with increased access validation, blockchain 
uplifts the security of 5G networks, which allows 5G facilities to defend themselves 
and guarantee confidentiality. Cybercriminals face a huge brick wall when trying 
to get past authentication systems since 5G systems store IoT metadata over several 
devices in the network. Additionally, smart contracts might enable 5G solutions such 
as data validation, user identification, and protection of resources from threats [70].

10.2.5.2 Blockchain in IoT
Blockchain plays several crucial roles in boosting the domain of IoT applications. 
These are summarized as follows [76]:

Providing high scalability. With the massive influx of devices onto IoT net-
works for sensing and monitoring 5G environments, networks are filled with lag 
and eventually become money pits. This bottleneck is due to the microtransactions 
requiring authentication and validation. The consensus concept around blockchain 
instigates high scalability, allowing latencies during verification processes to be miti-
gated [77,78]. On the same wavelength, in totalitarian areas where some organiza-
tions dominate the control, processing and possession of a massive repository of 
people’s details, the shift from a centralized to a P2P distributed paradigm eradicates 
monopolistic behaviors, central breakdown points, and expanding capabilities [79]. 
Improved architecture flexibility, uptime, and high availability are further benefits of 
decentralizing the design. The vision of improving IoT scalability would also assist 
in reducing IoT silos.

Preserving full data privacy. With different levels of access rights determined 
by public or private access for reading and writing transactions according to the 
consensus, IoT users benefit from the use of fictitious names, also known as pseud-
onyms, which translates into the prevention of connecting transactions to specific 
individuals [80]. Blockchain promotes transaction anonymity among its regulations, 
with enhanced privacy-preserving methods. Secure multiparty computing, zero 
information checks, commitment plans, ring signatures, and homomorphic conceal-
ing are some of the most significant cryptographic methods and strategies for identity 
protection in blockchain [81].

Orchestration of connected IoT devices. The blockchain coordinates the admin-
istration of smart contracts and IoT technology in a particular setting. The choices 
that are pertinent to IoT applications are defined by smart contracts. The amalgam 
of devices and their communications, access management, data production and pro-
cessing, flexible location adaptation, and container changes including software ser-
vices are all aided by blockchain [82]. The scheduling of specific IoT operations 
is linked to a variety of integrity and perceived risks, including documenting the 
identities of all IoT nodes in the network, tracking the source of sensor data as well 
as that of other parties joining the platform, in addition to using smart contracts to 
track the stages [83].

Ensuring interoperability. Interoperability refers to the possibility of connecting 
and sharing data between two or more wholly separate IoT structures. With block-
chain in the picture, cross-chain communication allows blockchain-based IoT systems 
to merge and connect with one another [84–86]. Integration with current systems is 
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guaranteed, together with the start of activities on other chains, making transactions 
with other links, and thereby connecting the application on the same chain. The two 
major methods used for archiving data in cross-chain communication are atomic 
swaps and stateless simplified payment verifications (SPVs). The former involves the 
exchange of the same cryptocurrency in straightforward P2P proceedings. Atomic 
swaps therefore bind two parties through a transaction event, through proper coor-
dination, despite it not being regarded as a real type of cross-chain communication. 
Smart contracts may validate a portion of the transaction history logs using stateless 
SPVs. Block headers and other events are validated by relays on another chain. By 
using a relay chain, combined consensus makes it possible for chains to communicate 
with each other in both directions. A chosen set of trustworthy members is permit-
ted to authenticate the occurrences of one chain by another in the case of alliances.

10.2.5.3 Blockchain in AI
The combination of blockchain and AI in fact leads to a synergy whereby these two 
techniques can bring added values to each other. The combined benefits of block-
chain and AI are as follows [87]:

Authenticity. Explainable AI is addressed by blockchain’s digital ledger, which 
provides a backstory on the theories related to AI as well as the origin of the material 
it uses. This boosts trust in the accuracy of the data and, consequently, in the sugges-
tions and conclusions that AI generates. Combining blockchain with the deployment 
of AI facilities leads to the availability of an audit trail as well as improved security 
measures.

Augmentation. Blockchain-based corporate systems are envisioned to be revolu-
tionized with the thorough comprehensiveness and dynamic data correlation abilities 
of AI, which is lightning-paced. Blockchain enables AI to expand by managing data 
consumption and model exchange, facilitating access to vast amounts of data from 
both inside and outside enterprises, and producing a reliable and open data market.

Automation. Bringing together AI, blockchain and automation may provide new 
value to business operations involving numerous stakeholders by reducing friction, 
and boosting speed and productivity. For instance, AI models built into smart con-
tracts that run on a blockchain can highlight recalled goods that are past their expiry 
dates, carry out events such as stock investments or ordering based on predetermined 
baselines and circumstances, settle arguments, and choose the most environmentally 
friendly delivery option.

10.3 APPLICATIONS OF INTELLIGENT CONNECTIVITY

Intelligent connectivity has several application areas and is even playing a major role 
in driving the UN SDGs as reported in the works of [88,89].

The five following sectors are predicted to witness the significant impact of intel-
ligent connectivity [1]:

• transportation and logistics
• industrial and manufacturing operations
• smart city
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• health care
• education

An overview of the role of intelligent connectivity in these application areas is given 
in the following subsections.

10.3.1 TranSPorTaTIon

Road transportation will be significantly better and more efficient if every vehicle 
and individual in the environment can seamlessly communicate among themselves. 
Real-time positioning information from automobiles, bicycles, and pedestrians may 
be shared with other people in the area, allowing AI-integrated expert systems to pre-
vent accidents. In fact, according to recent study by Bosch, connectivity among cars 
will prevent 11,000 deaths by 2025, thus minimizing annual road accident casualties 
by 350,000 [90]. Additionally, the integration of traffic management systems in the 
5G realm can elevate driving itself to a much safer level where cars have real-time 
updated information about when to reduce their speeds or when they are free to hit 
the gas. This even gives rise to the talk of the possible removal of speed cameras and 
traffic lights. The inclusion of radar and computer vision in 5G will thus further edify 
and smoothen traffic systems.

When it comes to the driving dynamics, 5G will bring about significant improve-
ment by disseminating sensitive details from adjacent cars and road-related entities 
along the route. In situations where surrounding vehicles suddenly hit their brakes, 
data is relayed instantaneously to neighboring ones, where the integrated processor 
is also instructed to appropriately reduce speed. With embedded eCall services, cars 
can automatically make the required help and hotline calls upon particular impacts. 
The interconnected mesh network operates with a continuous feed of live information 
being sensed by real-time road interactions in particular areas, by drivers, cyclists, 
and pedestrians [91]. This is where AI can then be employed to analyze weather- 
and road-related constraints to warn users in real-time about possible trajectory and 
location information. It is paramount that all information about road users inhibit 
anonymity, privacy, and security features [3].

With intelligent connectivity, the combination of D2D communication, smart 
traffic systems, and public transportation, traffic bottlenecks will be lessened, while 
uplifting the longevity, reliability, and efficiency of traditional transport methods. 
The combination of these technologies can be referred to as smart-transportation 
systems (STSs). Also known as the IoV, the architecture involves an interconnec-
tion between each passenger vehicle in a given area via D2D and vehicle-to-vehicle 
(V2V) data transmissions. With the aid of IoT technology, every car may be moni-
tored during emergencies. Previously collected data can also be used to forecast and 
determine optimum paths at a given moment. The near future expects mobile appli-
cations such as Google Maps to integrate real-time data about vehicles [92].

5G will ultimately lead to trustworthy autonomous vehicles. The on-board com-
puter chip will be AI-based, with a range of interconnected local sensors as well as 
those ready to receive information from other road-related events, which all form 
this colossal 5G network. This allows the vehicle to be aware of its surroundings and 
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therefore thrive and overcome any circumstance. As for cloud functionalities, auton-
omous vehicles will give rise to a novel mobility-as-a-service model, comparable to 
the current Uber services that already exist, but adapted for driverless transportation. 
The simplicity of requesting for a self-driving ride instead of buying your personal 
vehicle will sky-rocket, given the array of associated benefits [93]. A few simple 
taps on your mobile phone summons a driverless taxi, waiting at your doorsteps for 
pickup. The near-future networked automobile will be equipped with the necessary 
sensitive on-board sensors and intelligent chips to transport humans securely and 
effectively thereby providing trusted and ultralow delay communication [1,3].

10.3.2 InduSTry 4.0 and ManufacTurInG oPEraTIonS

In this age of machines, intelligent connectivity has laid the basis for a fourth indus-
trial era where robots and computers drive manufacturing operations, with continu-
ous production upgrades and massively scalable industries. Some of the essential 
propellers of Industry 4.0 are AI, CC, and IoT. By exploiting licensed frequency 
bands, edge computing, and network slicing, which are products of the mentioned 
combination, 5G will contribute to the delivery of tremendously reliable and ultralow 
delay connections, in turn allowing the dynamic prioritization of certain applica-
tions. Mobile carriers, partnered with edge computing may deliver incredibly con-
sistent services, allowing industries to ease their reliance on cables, thus increasing 
adaptability. By being remotely controlled without requiring physical human pres-
ence, production plants can upscale their output, in turn generating larger sales and 
meeting client demands more easily.

The hallmark of Industry 4.0 will be the self-sustaining manufacturing plants 
that analyze constant information intakes, to dynamically adjust to situations, such 
as a supply deficit, indicators of a probable equipment malfunction, or a new client 
request. Specialized robots will be designed to create 3D structures on command, 
allowing manufacturers to replace damaged parts. To turn this idea into a reality, the 
facility’s main controller unit requires a comprehensive and elaborate digital twin 
of every component that lies on the production lines such that real-time reporting 
and maintenance are possible. With industries embarking on the automation train, 
employees can access and control equipment remotely. Eventually, firms will have 
far more freedom to choose where to establish manufacturing facilities since fewer 
personnel will be required on-premise, enabling manufacturers to shift their focus 
toward different priorities rather than qualified employees. Consequently, this will 
require uninterrupted connections, smart clouds, and top-notch connectivity among 
IoT devices.

The digitization of manufacturing applications and the remote management of 
devices such as robotic systems will benefit from 5G’s ultrahigh speeds, ultralow 
latencies, and exceptional stability. For instance, ML algorithms may gather infor-
mation from sensors and video feeds along a production line to instantly notify a 
worker about any discrepancies in the system, after which AI systems may promptly 
and autonomously repair the error or take actions. Using interconnected equipment 
such as touch-enabled gloves and virtual or augmented reality (VR/AR) headgear, 
employees will be able to virtually watch and modify Industry 4.0 operations from 
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a distance while interacting with machinery in a live fashion, giving this feeling of a 
more tangible Internet.

Performing operations from anywhere around the world, including audits, ser-
vicing, and equipment adjustments would also be possible thanks to haptic Internet 
applications powered by intelligent connectivity. As a consequence, remotely con-
trolling machines in risky, difficult-to-reach, or hostile places, such as nuclear facili-
ties, oil rigs, or mining areas, leads to minimal expenses and prevents associated 
threats to human life. The same gear may be used to carry out or assist staff training 
as well as mimic complicated scenarios in a secure virtual setting.

10.3.3 SMarT cITIES

The conquest of 5G has expanded and reached the doorstep of companies, enabling 
massive commercial prospects and digital business. This erected the vision for novel 
smart city architectures, in light of bettering life for city residents [94]. The founda-
tion of smart cities is the omnipresence of IoT devices, diverse networking systems, 
scalable data storage capabilities, and the deployment of increasingly specific ser-
vices. Buildings and cities are already witnessing the proliferation of mobile con-
nectivity, being rendered smarter, safer, and more financially viable. This pattern 
will be expedited with the deployment of 5G, i.e., the sky-rocketing presence of inter-
connected sensors and actuators onto our networks. As a result, local governments, 
businesses, and private entities will have a continuous eagle’s view of their properties 
and manage access.

Intelligent connectivity may also be leveraged to remotely manage physical entry 
to a facility without dependence on physical keys or access cards that can often be lost. 
Instead of requiring employees to return their keycards when they leave a firm, it is 
now feasible to communicate updated biometric credentials or a passcode to the lock-
ing device. Smart locks have the potential to revolutionize access control by eliminat-
ing necessity for an abundance of keys, which are time-consuming to handle since 
keys can be misplaced while locks need to be maintained and updated. On the same 
wavelength, customers will have the ability to remotely operate their houses with their 
smartphones, through smart home platforms with built-in 5G support. For instance, 
Orange envisions the connection of smart home gadgets to the wireless router such 
that they can be remotely controlled. In collaboration with Groupama, Orange also 
plans to provide a security service called Protected Home that will interconnect 
homes to a video-monitoring hub that can ping enforcement agencies if necessary [3].

An exorbitantly high volume of monitoring information will be continually 
produced by pervasive live video feeds in 5G smart cities. On a wide scale, it is 
exceedingly difficult to instantly recognize unusual items and happenings, or dis-
cern harmful behavior from millions of video frames. To accomplish large-scale 
data processing in this situation, the construction of distributed edge computing sys-
tems is extremely effective [95,96]. From a security standpoint, blockchain would be 
a logical choice for establishing decentralized security mechanisms by graciously 
linking edge devices, IoT gadgets, and city inhabitants, whereby data exchange, pro-
cessing, and commercial transactions can be handled on the blockchain ledger plat-
form. In terms of reduced delay, power usage, improved customer service, quicker 
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user responsiveness, and privacy and security commitments, it is also shown that 
the adoption of decentralized blockchain delivers more advantages than centralized 
designs with a single cloud platform [97].

10.3.4 hEalTh carE

Intelligent connectivity wrapped around the healthcare sector will contribute to the 
delivery of more efficient preventive care at a lower cost, since healthcare facili-
ties can be more easily managed and operated. Intelligent connectivity could also 
bring about remote consultation and treatment, possibly redefining healthcare access, 
which is currently constrained by the physical locations of medical specialists [98].

In light of the COVID-19 pandemic, substantial emphasis has been given to 5G’s 
ability to enhance telemedicine solutions, with examples ranging from virtual health 
check-ups to doctor appointments, which offer tremendous advantages in terms 
of removing the need for patients to physically visit medical centers. The current 
Internet backbone, along with 4G connectivity easily accommodate simple, one-on-
one, low-touch interactions. That being said, 5G technology is expected to signifi-
cantly consolidate these exchanges. For instance, by incorporating sensing devices 
and VR technology into videoconferencing, medical professionals will be able to 
remotely monitor patients’ health status during live sessions. Additionally, with 
5G’s ability of conveying staggering data flows, it is also feasible to employ cloud- 
connected scanning devices to continuously monitor patients with illnesses, for 
abnormalities in their pulse, glucose levels, and heart rate. These developments 
would then open up new perspectives on the general treatment of mankind.

Another major element that 5G-integrated equipment could track is the mobility 
of healthcare specialists, personnel, and patients around the hospital, along with core 
health parameters. The facility’s electronic medical records (EMR) system might 
then be upgraded to incorporate these findings, allowing for the visualization and 
refined management of healthcare proceedings at a pace and level never achieved 
before. The increased transparency would serve as the foundation for very success-
ful managerial improvement. From a futuristic standpoint, 5G may impact the way 
healthcare professionals give medical treatment and affect how patients and physi-
cians interact. The rise of telemedicine is only starting to be felt and will eventually 
become a norm, with the increasingly intensifying adoption of wearable technology 
such as advanced fitness trackers. This collaboration between 5G and the healthcare 
industry, facilitated by wearables, has been coined “Internet of the body.”

The most highlighted prospect of 5G, however, is the possibility for remote opera-
tions. Despite the current possibilities of performing visual presentations of surgeries 
and broadcasting the procedures in real time, all eyes remain locked on the introduc-
tion of the “tactile Internet.” The latter would revolutionize healthcare by allowing 
doctors to operate on patients physically present in another geographical location. 
The most awaited breakthrough is the possibility of physicians conducting operations 
in one geographical location through mere movements, resulting into the registered 
actions to be immediately replicated by complex computerized equipment, physi-
cally connected to the patient at another location. This heavily addresses the scarcity 
of doctors that work on intricate surgeries [98].
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10.3.5 EducaTIon

The education sector is envisioned to be also hit by the massive 5G wave, where 
improved education access and opportunities are expected, thereby raising the over-
all standard of teaching and learning. Having gained immense popularity among 
gamers, VR and AR gear can potentially be applied in the education realm. For 
instance, trainees, engineers, technicians, and medical students could be exposed to 
thorough tasks, tailored to match real-world scenarios with VR and AR simulators. 
Likewise, the teaching of certain subjects such as biology and geography is simpli-
fied by adapting information collected in the real world, in the form of imagery, to 
simulate tailored VR environments. This is efficient in the case of highly specific 
concepts that can be aided through visualization.

5G has enabled the ongoing development of ideas that decades ago would have 
sounded absurd, leading toward the possibility of intriguing and fascinating advance-
ments in education and on-the-job training. Current research on the interconnection 
of digital technologies with the teaching sphere has been yielding promising insights. 
For example, education is being steered toward a more hands-on approach with the 
lurking likes of AR, VR, and extended reality (XR). Equipped with super low delay 
and high-speed attributes, 5G technology provides students and trainees additional 
possibilities to further grasp their field of study in a more immersive and dynamic 
setting, which bears similar characteristics as issues they expect to face in the work-
place. This encourages educators to favor mixed-reality applications in all nooks 
and crannies of the education spectrum. The benefit of mixed reality in educational 
spaces is that it fosters a richer intuitive comprehension of the topic. Educators may 
communicate difficult and hypothetical situations to pupils in a stimulating and vir-
tual context through headsets, visors, and sensors to add a realistic dimension to the 
learning experience [99].

The partnership between British Telecom and North Lanarkshire Council in 2021 
resulted in the provision of the first 5G-equipped classroom to Scotland [100]. With 
BT’s EE 5G network as the foundation, the classroom is brought to life by being ren-
dered into a 360-degree room where the student can explore a range of environments 
and land masses, resulting into a more involved and “real” experience. Moreover, 
instructors may essentially live broadcast from anywhere with little to no interrup-
tion with the possibility of connecting way more devices onto networks where 5G 
is bestowed with increased bandwidth. Students can participate in a comprehensive 
learning opportunity that ranges from closely witnessing the Northern Lights to 
being on top of Mount Everest the next second and transitioning to a safari tour the 
next instant. BT simply exhibits how cutting-edge technology and ultra-fast data flow 
can elevate communication and experiences in all sorts of ways.

5G will also help workers in different fields to master their profession and add skills 
to their repertoire. Mixed-reality applications can increase employee involvement, cut 
training expenses, and make learning faster and easier, with other benefits such as 
constant skill development and more opportunities for career progression. A smoother 
transition from theoretical concepts to practical implementations is made possible in 
some industries such as manufacturing and logistics, with AR and VR technology. 
Moreover, XR headsets may deliver real-time, step-by-step guidance and enable 
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teachers to immediately critique practical sessions. This is especially useful for practi-
cal work that requires hands-on training since it enables quicker, more frequent train-
ing while providing a safe, regulated setting. With the idea of tactile Internet marking 
its territory in every sector, training around manual tasks is envisioned to be rendered 
easier. 5G will also enable real-time haptic feedback for applications where mobility 
dictates actions, with achievable requirements for latencies in the order of 20 ms.

10.3 SUMMARY

In this chapter a review of revolutionary technologies such as 5G, AI, IoT, CC, and 
blockchain has been made. These technologies have the potential of revolutionizing 
the daily life of people by making connectivity omnipresent, extremely reactive and 
adaptable. The quality of the daily human life will be elevated, with intelligent con-
nectivity affecting the way people study, work, and engage as a community. In a 
realm where the ability to access any information and service relies on a few taps, 
companies and governments are on their way to increased productivity and efficiency. 
With intelligent connectivity, the underlying of 5G architecture will catapult the IoT 
toward greatness, where it will significantly expand by accommodating real-world 
data that can be fed to AI models. Sophisticated AI technology will be geared toward 
providing a broad spectrum of innovative, novel solutions, that in the long run, is able 
to forecast the desires and requirements of individuals, thereby even assisting them in 
overcoming obstacles in life. In parallel scalable storage and processing power from 
the cloud along with enhanced security provided by blockchain will further facilitate 
the deployment and reach of several intelligent connectivity applications. 5G also 
acts as one of the fundamental components for a brighter development. The transpor-
tation industry for example can provide higher safety and efficiency levels with the 
inclusion of 5G in autonomous vehicles, by enabling several links at once, allowing 
individuals to have a global overview of the system. In fact several other use cases 
such as health care, education, Industry 4.0, and smart cities are expected to thrive 
with the advent of intelligent connectivity. Ultimately, data acquired by 5G networks 
will assist mankind in addressing a handful of its urgent issues, such as global warm-
ing, aging populations, and the rise of both persistent and contagious illnesses.
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11.1 INTRODUCTION

Advances in display and novel interaction technologies have led to computational 
devices being able to overlay computer-generated elements (e.g., text, images, and 
video) onto the real environment or embed aspects of the real world into computer-
generated virtual environments. The umbrella term referring to immersive tech-
nologies associated with both real and virtual environments is referred to extended 
reality (XR), and encompasses technologies including augmented reality (AR), 
virtual reality (VR), and mixed reality (MR). During recent years, XR technolo-
gies have undergone rapid development and are increasingly being used in various 
domains including training, education, and manufacturing, among others. Among 
the XR technologies, the AR market is expected to grow from US$14.7 billion in 
2020 to US$88.4 billion by 2026, particularly due to the increasing demands for AR 
devices, growth in investments in AR market, and quickly rising number of applica-
tions in sectors including healthcare and commerce (Markets and Markets, 2021). 
Similarly, an increase in the number of global VR device shipments is expected to 
grow from 13.48 million units in 2020 to 112.62 million units by 2026 particularly 
due to increasing VR applications in training and adoption of VR gaming at home 
(LLP, 2021).

As the 5G era has united high bit rate, low latency, high-energy efficiency, increased 
availability, and intelligent networks, various opportunities for XR technologies have 
emerged, which are also facilitated by advances in artificial intelligence (AI; Yang  
et al., 2020). The convergence of these distinct technologies has the potential to cre-
ate unique applications and experiences for end users within different areas including 
medical training, travel and tourism, education, and even gaming. Furthermore, due 
to the promising future of the combination of these technologies, Mark Zuckerberg, 
co-founder and CEO of Meta Platforms presented the company’s vision of the meta-
verse, which is an integrated network of 3D virtual worlds, as the successor to the 
mobile Internet. Although the metaverse is still in the early stages, the concept has 
created a major boost in the advancement of AI-assisted XR, which are key tech-
nologies involved in the metaverse along with cellular data networks. Nevertheless, 
the absolute XR experience is still challenging to be achieved in the 5G era because 
certain features require high-quality video and 3D animations to be generated and 
displayed in real-time thereby requiring a minimum of 10 Gbps data rate (Mumtaz 
et al., 2017). The enhanced capabilities of the sixth-generation cellular data networks 
can potentially enable such features to be realized and bring further advancements 
to XR technologies as well as boosting their proliferation. Furthermore, over the 
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previous two decades, AI and machine learning have progressed dramatically, and 
their applications are widespread, notably within intelligent agents, robot control sys-
tems, and chatbots, among others (Jordan & Mitchell, 2015). Such advances were 
also driven by the rapid growth in the networked and mobile computing systems hav-
ing the ability to collect and transmit huge amounts of data within different contexts. 
These data have been successfully used as training data within machine learning by 
scientists and engineers in order to derive useful insights, predictions, and decisions 
for different kinds of problems. With the improved capabilities in the 5G and 6G eras, 
more significant progress in AI and machine learning are anticipated and can signifi-
cantly extend capabilities of XR technologies. As such, during the 5G and 6G eras, 
the convergence of XR technologies with AI and the new generations of cellular data 
networks are expected to progressively strengthen, to the benefit of XR technologies 
and applications whereby creating new opportunities at various levels. However, the 
development of AI-assisted XR systems and solutions in these eras, their diffusion, 
and adoption are not going to be without challenges. These issues are important to be 
investigated and addressed in a timely manner in order to contribute to the achieve-
ment of the absolute XR experience. This chapter discusses the opportunities created 
by the integration of AI and advancements in cellular data networks within XR tech-
nologies, toward advancing AI-assisted XR in the 5G/6G eras. In addition, the key 
challenges that are expected to hamper the development of AI-assisted XR toward 
6G are discussed, along with prospective solutions to these challenges.

11.2  BACKGROUND: THE CONVERGENCE OF XR, 
AI, AND CELLULAR DATA NETWORKS

The fifth generation of cellular networks (5G) has brought a huge step ahead in terms 
of connectivity, network speed, capacity, and scalability in addition to reduction in 
latency and energy consumption as compared to 4G. These include high data rates of 
up to 100 times faster than 4G, ranging between 1 and 10 Gbps in real networks, in 
addition to reduced latency of 1 ms round trip time as compared to the 10 ms round 
trip time within 4G (reduction by ten times). Moreover, 5G brought enhanced connec-
tivity, availability, and geographical coverage whereby enabling support of billions of 
connected devices within the network. However, the rapid proliferation of data-centric 
and automated systems is expected to exceed the capabilities of 5G wireless systems 
(Chowdhury et al., 2020). For example, certain technologies such as VR require fea-
tures beyond 5G for high-quality video and 3D animations to be generated and dis-
played in real-time thereby requiring a minimum of 10 Gbps data rate (Mumtaz et al., 
2017). In order to address these limitations of 5G, a sixth-generation (6G) wireless sys-
tem with enhanced capabilities is required. This new generation of wireless systems 
will encompass enhancements in features such as higher data rates, higher through-
put, enhanced energy efficiency, higher reliability, massive connectivity, and network 
densification. Such enhanced capabilities are expected to bring advancements and 
help proliferation of various technologies such as XR, wearables, AI, and intelligent 
environments, among others, which generate and process massive volume of data and 
require high data rate connectivity per device (Chowdhury et al., 2020). A compara-
tive summary of the key capabilities of 5G and 6G is provided in Table 11.1.
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The vision of extended reality is expected to accelerate due to advances in the cel-
lular networks as illustrated in Table 11.1 and this will produce improved XR experi-
ences to users (Patil & Kumar, 2019). Founded on the reality–virtuality continuum, 
XR is an umbrella term that encompasses any sort of technology that alters reality by 
adding digital elements to the physical or real-world environment by any extent, as 
illustrated in Figure 11.1. Within the acronym XR, X is a variable englobing current 
and future spatial computing technologies implemented under this umbrella term 
and include AR, VR, and MR. In the last few years, XR has received renewed atten-
tion within academia and the industry due to recent technological developments that 
led to cheaper and lighter devices that have more powerful processing capabilities 
than previous generations (Çöltekin et al., 2020). This expanded the spread of the 
associated group of technologies from the lab and specialized domains to a wider 
uptake within businesses and the society for applications in training, emergency 

TABLE 11.1
A Comparison of 5G and 6G

Feature 5G 6G

Peak data rate 10 Gbps 1 Tbps

Latency 1 ms 1 μs

Frequency bands Sub 6 GHz mmWave for fixed 
access

Sub 6 GHz mmWave for mobile 
access exploration of THz 
bands (above 140 GHz) non-RF 
bands

Maximum spectral efficiency 30 bps/Hz 100 bps/Hz

Mobility support Up to 500 km/h Up to 1,000 km/h

Reliability 99.999% 99.99999%

Connection density 106 devices/km2 107 devices/km2

FIGURE 11.1 Extended reality.
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preparedness, gaming, and aviation, among others. The key technologies under the 
umbrella term XR are as follows.

11.2.1 auGMEnTEd rEalITy

AR provides an interactive experience of the real-world environment where com-
puter-generated elements (e.g., images, 3D models, animations) and meaningful digi-
tal information are superimposed on the user’s view of the real world with the aim 
to enhance the perception of reality. A common example of AR is Pokémon Go, 
where players need to physically explore the physical world to find locations of digi-
tal Pokémon that are superimposed on the screen of their mobile devices. In addi-
tion, AR has shown prospects in medical training and surgical procedures whereby 
enabling computer-generated images or 3D models to be overlaid in real time on 
the body parts of patients, models, or even images of body parts in order to enable 
visualization of unapparent anatomical details and obtain key information (Pessaux 
et al., 2015).

11.2.2 vIrTual rEalITy

VR is an artificial and interactive computer-generated virtual environment, which 
provides a completely immersive experience to the end user. Within the environment, 
the user has the ability to look around the computer-generated world, move and inter-
act with virtual features or items. Such experience is complemented principally with 
visual and auditory feedback, in addition to other sensor feedback such as haptic. 
VR has various applications in practice including training and education, gaming 
and entertainment, among others. As an example, in the film industry, cinematic VR 
(CVR) enables a viewer to watch omnidirectional movies whereby freely choosing 
viewing direction using head-mounted displays (HMD) or other VR devices.

11.2.3 MIxEd rEalITy

MR is a blend of AR and VR, where the real and virtual worlds are combined to pro-
duce new environments and experiences to the end user. Within the environment, the 
end user can interact with both physical and digital objects that coexist in real time. 
MR has prospects in various industries and its applications are proliferating. An 
example of MR involves its use in medical training where students at Case Western 
can study human anatomy using Microsoft HoloLens. In this application, students 
are exposed to a life-sized, standing 3D image and they can then walk around, 
manipulate, dissect with hand gestures, listen to sounds, and examine different parts 
from unobstructed points of view, which is challenging to achieve when learning 
with cadavers since one organ must be removed in order to view another one.

In addition, XR technologies are expected to benefit from the huge recent develop-
ments in AI toward furthering intelligence in XR solutions. Although the application 
of AI within the context of AR, VR, and MR is not new, the capabilities brought by 
the developments in cellular networking technologies are expected to resolve earlier 
challenges such as enabling the processing of computationally intensive tasks on the 
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edge, fog, or cloud servers, thereby facilitating the integration of intelligence. These 
capabilities are further discussed in later sections of this chapter, in which different 
AI-related terms are involved, which are defined as follows:

11.2.4 arTIfIcIal InTEllIGEncE

AI relates to intelligence demonstrated by a machine that is able to make decisions 
in a manner similar to human intelligence. In other words, AI refers to systems or 
machines that mimic human intelligence to perform tasks and that can iteratively 
improve themselves based on the information collected. An example of AI includes 
recommender systems integrated into e-commerce websites that recommend items 
for purchase based on products viewed or recently bought by a customer. Similarly, 
chatbots utilize AI in order to understand customer problems quickly and respond in 
the most effective manner.

11.2.5 MachInE lEarnInG 

It is a sub-branch of AI where machines process data and learn on their own, without 
constant human supervision. Machine learning is behind applications such as chat-
bots, language translation applications, and recommender systems, among others. 
There are three subcategories of machine learning, notably, supervised, unsuper-
vised, and reinforcement learning. Supervised machine learning is the most common 
type among the three and involves training models with labeled data sets in order to 
allow the models to learn and grow more accurately over time. On the other hand, 
within unsupervised machine learning, a program looks for patterns in unlabeled 
data. Finally, reinforcement machine learning trains machines through trial and 
error to take the best action by establishing a reward system.

11.2.6 dEEP lEarnInG

Deep learning is a subset of machine learning and distinguishes itself from machine 
learning by the type of data that it works with and the methods in which it learns. 
Deep learning involves the application of artificial neural networks, algorithms 
inspired by the human brain, to learn from large amounts of data. Deep learning 
drives many AI solutions that enable automation, perform analytical and physical 
tasks without human intervention, such as automatic credit card fraud detection or 
self-driving cars.

11.3 AI-ASSISTED XR: OPPORTUNITIES IN THE 5G AND 6G ERA

In the 5G and 6G eras, the integration of AI and cellular data networks within 
XR technologies is expected to progressively strengthen, thereby enabling further 
advancements in XR technologies. As such, various opportunities are anticipated 
during different stages involved within the creation of AI-assisted XR solutions in 
both eras and these are discussed in the following sections.
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11.3.1 aI-aSSISTEd ar

Even though AR, AI, and cellular networks are distinct technologies, their combina-
tion can enable application developers to create unique experiences for end users. 
In the past, reliable connectivity, bandwidth, and latency have been major hurdles 
that inhibit high-fidelity telepresence and collaborative applications that implement 
innovative technologies such as AR (Orlosky et al., 2017). Since AR systems involve 
camera image processing where rendered images with augmentations are projected 
onto the display technology used, integration of AI and machine learning to AR 
systems offer various benefits including adaptability and versatility of such systems 
(Sahu et al., 2021). These benefits are expected to be boosted with the support of 5G 
and 6G, where enhanced connectivity can bring improved cloud support for process-
ing or storage, and these can be leveraged in order to extend features of AI-assisted 
AR applications.

In the 5G and 6G eras, developments in AI-assisted AR are expected to generate 
voluminous information through camera-imagery files (images, videos, audio, etc.) 
and connectivity enhancements provided by 5G and 6G can potentially resolve such 
issues to enable voluminous and high-speed camera-imagery data to be sent to and 
retrieved from remote servers for processing and real-time display. In addition, AI 
techniques such as machine learning and deep learning can benefit from continuous 
data from camera and multiple sensors integrated with the device including GPS or 
accelerometer to further train algorithms being used and improve their accuracy and 
reliability. In the 5G and 6G eras, such voluminous data needs to be rapidly commu-
nicated to the cloud for timely processing and feedback to the user (Wang et al., 2018) 
and the high data rates of such networks will be key requirements. Furthermore, con-
tinuous localization of the end user could proliferate further in the 5G and 6G eras. 
The next sections further discuss how AR is expected to be enhanced with advance-
ments in AI within the 5G and 6G eras, in relation to different stages of development 
of AR applications.

11.3.1.1 Camera Calibration and Pose Estimation
In the initial stages involved in the development of AR-based systems, camera cali-
bration is essential. This process involves preparing the virtual camera by correctly 
configuring the internal parameters in order to effectively detect and track real-world 
objects. This task can be conducted in both online and offline modes and can be 
supported by both AI and cellular networking technologies. For instance, AI tech-
niques such as convolutional neural network (CNN) and neural network (NN) can 
be utilized in order to automatically determine key parameters from a camera. A 
previous study proposed a CNN-based approach that estimates intrinsic parameters 
of a camera (Bogdan et al., 2018), where the CNN is trained using omnidirectional 
images retrieved from the Internet and applied to estimate parameters of the camera. 
Similarly, another study attempted to estimate parameters of a camera such as depth, 
camera intrinsics, and object motion, following input of multiple consecutive image 
frames from videos to neural networks (Gordon et al., 2019). Fetching images from 
the Internet and cloud processing can be greatly benefited with improved data rates 
and reduced latency in the 5G and 6G eras to enable timely configurations and thus 



410 Driving 5G Mobile Communications with AI towards 6G

enhancing user experience. Furthermore, a key objective of proper camera calibra-
tion is to effectively detect and track objects so that the pose can be correctly esti-
mated. Pose estimation involves getting the position and orientation of the camera 
from the scene in relation to an object. In this endeavor, AI provides opportunities 
for directly estimating camera-pose in AR and work has been undertaken in this 
area. For instance, a pretrained GoogLeNet has been used to directly estimate the 
6-DoF pose consisting of depth and out-of-plane rotation of a monocular camera 
in real-time (Kendall et al., 2015). Again, implementation and use of such models 
involve cloud processing, which are facilitated with enhanced capabilities of cellular 
networks and are expected to develop further in the 5G and 6G eras.

11.3.1.2 Detection and Tracking of Real Objects
A key purpose of AR systems involves augmenting the real-world with superimposed 
meaningful information. As such, a core task within AR systems involves effective 
real-time detection, identification, and tracking of targets to be augmented in the real 
world. The two common methods for object detection are marker-based and markerless 
detection. The marker-based approach involves placing fiducials on objects identifiable 
by the AR system. These fiducials have characteristics such as distinct shapes or pat-
terns that are easily detectable by the camera. Although the fiducials are easily track-
able and provide robustness, particularly in poor lighting conditions, placing fiducials 
on trackable objects is a manual process which is not desirable in various contexts (e.g., 
industrial settings). On the other hand, markerless AR involves detection and tracking 
of specific points or natural features within objects. To achieve this, AR development 
platforms predominantly used traditional computer vision techniques such as simulta-
neous localization and mapping (SLAM) where visual features between camera frames 
are compared in real time in order to track changes in the environment.

In the object detection process, high accurate trackers are needed because even 
minor tracker errors can lead to significant issues in placement and alignment of 
virtual objects in relation to the real objects. For accurate detection and tracking 
of targets within AR-based applications, proper illumination is necessary. This is a 
challenging task in scenarios where adequate light is not available around targeted 
objects or within scenes. Various works have been undertaken that estimate distribu-
tion of light around objects or within scenes (Gruber et al., 2012) to eventually apply 
AI techniques and algorithms to attempt correction of illumination and more effec-
tively detect objects in real-time. As such, while the application of AI necessitates 
high volumes to train models, 5G and 6G can enable delivery of large training sets 
quickly such that illumination can be corrected within the least possible duration 
during the use of AR systems. In addition to proper illumination, other challenges 
that hinder effective detection of targets in the real world include camera quality and 
even characteristics of objects, where it is challenging to identify large and shiny 
objects, as well as differentiating between objects that look alike (Bekaroo et al., 
2018). As a promising solution to address this issue and to facilitate real-world object 
recognition, CNN within deep learning can be used. These techniques can enhance 
accuracy and robustness of calibration, object identification, recognition, and track-
ing within different lighting conditions. While deep learning has good learning capa-
bilities in feature extraction to even find complex structures in data, the application 
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of CNN even showed excellent performance in image feature extraction, which is 
important, especially in real-time image recognition and rendering (Cheng et al., 
2020). The bandwidth, low latency, and reliable connections provided within 5G and 
6G are key to resolve networking-related challenges involved in the transmission of 
image files and other data required in the process.

11.3.1.3 Creation of Virtual Objects
Virtual objects are essential components within AR applications and are typically 
used to display meaningful information to end users. These virtual objects can be 
in the form of text, images, voice, animations, and 3D models, among others. The 
virtual objects can be created manually during the development phase and dis-
played accordingly when real objects are identified by camera during runtime of the 
AR application. A more innovative approach involves the application of AI-based 
methods to create virtual objects during runtime. For instance, 2D images can be 
generated using AI-based techniques where images from the camera can be fed to 
AI-generated models in order to produce appropriate augmentations. For example, 
different attempts have been made to produce sketches of real objects identified by 
the camera using AI-based techniques, including CNN, RNN, and even reinforce-
ment learning (Muhammad et al., 2018). In terms of practical applications, ClipDrop 
enables users to scan real-world objects using their mobile phone camera and convert 
them into digital objects, where AI is used to accurately remove any background 
from the scanned object. Similarly, SketchAr is a drawing application that scans pen 
movements during drawing to create digital sketches, which can be converted into 
other forms (e.g., cartoons) through the application of AI. In addition to images, AI 
has also been utilized in sound synthesis and audio recognition within the context 
of AR applications where for example if a user says a particular word such as ‘pet’, 
a virtual object of a dog can be created and brought on the visual display. Moreover, 
AI-based 3D reconstruction methods are available to produce 2D models, point 
clouds or meshes when the application is running, based on image fed by the camera. 
Machine learning and deep learning can be used in the development of adaptable 
augmentations within virtual object creation and to also assist in the selection of 
data to be displayed during rendering. In order to reduce the size of the AR applica-
tion, processing can be performed over the edge or cloud where images of the real 
object are sent so that appropriate algorithm can be applied in order to generate the 
sketch and sent back to the display interface. In such features necessitating network-
ing capabilities, 5G and 6G provide various benefits discussed earlier.

11.3.1.4 Displaying Virtual Objects
After generating the virtual objects, their placement and alignment with regard to the 
user’s environment are essential. This process is called registration and involves the 
various parameters recorded during camera calibration so that the virtual objects are 
correctly placed and displayed on the visual interface (e.g., screen of mobile phone 
or AR glasses). Within AR applications, misregistration can also occur where the 
virtual object is not correctly positioned and aligned with regard to the corresponding 
object in the real world. For example, mismatch in virtual and physical distances can 
take place as the distance to real objects in relation to the display interface can vary 
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when the user moves around. Consequently, incorrectly positioned and aligned over-
lays provide misleading information to the user as the context assumed by the user is 
inaccurate and as such, user experience deteriorates quickly when accuracy is lost. 
Misregistration can occur thereby resulting in incorrect focus, while also impacting 
display parameters of the virtual object (e.g., contrast and brightness), which is recog-
nizable by human eyes (Olshannikova et al., 2015). Various parameters are involved in 
order to prevent such misregistration problems such as hardware requirements in the 
form of long-range accurate sensors, camera quality, and even external factors such 
as illumination (Wang, 2009), as discussed earlier. Moreover, AI has its potential to 
resolve registration errors (e.g., improper spacing between the real and virtual objects, 
depth, or angular errors), where different techniques can be applied to correctly deter-
mine the placement and alignment of virtual objects based on parameters such as 
camera calibration settings. In the 5G and 6G eras, there are further opportunities 
pertaining to the application of AI to effectively resolve registration errors.

After registration, the virtual objects are displayed onto the main interface of the 
AR application and this process is called rendering. In this process, two important 
decisions need to be taken, notably what data to display and how to represent the data 
to be displayed. A key challenge that often arises during rendering is limited display 
capacity and as such, it is essential to determine what information to display on the 
AR interface. In order to overcome this challenge, filtering techniques and visualiza-
tion layouts are particularly useful, and these can be assisted through AI techniques 
that can be better executed over the cloud with advances in cellular data networks. 
While AI-assisted filtering techniques can help to reduce the amount of information 
to be presented into more meaningful argumentations, AI-driven visualization lay-
outs can help to better arrange and represent the information to be displayed to the 
end user. An example of the application of such techniques in practice involves 3D 
rendering of MRIs using AI techniques in order to accurately overlay such images 
upon the actual heart of patients to assist surgeons prior and during surgery (Teich, 
2020). In this endeavor, the surgeon needs to have minimal delay in response time 
since much of the computation takes place in the cloud or even in the edge, and trans-
missions can be enhanced by the new generations of cellular networks beyond 5G.

11.3.2 aI-aSSISTEd vIrTual rEalITy

The major aim of fully immersive VR is to create a digital real-time experience, 
which imitates human perception to its fullest, whereby recreating every image seen 
by human eyes, every little sound heard by human ears, along with various other 
cognitive aspects, including touch and smell. In other words, the more the VR model 
resembles the human brain model, the more the user feels immersed and being pres-
ent in the simulated virtual world. This technology is characterized by high immer-
sion, dynamic interactive response, and multidimensional information digitization. 
The convergence of technologies including AI, VR, and advanced cellular networks 
is expected to create innovative VR applications that are seemingly endless and to the 
benefit of various industries including medical training and gaming. The application 
of AI in the different stages of development of VR applications is discussed as follows.
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11.3.2.1 Content Creation
In this phase, the visual elements of the VR application, notably, 2D, 3D, and ani-
mation are created. In this process, tools such as Unity 3D and Unreal Engine 
are involved to translate the design into a prototype. In other words, technical 
development is conducted by the programming team who produce the codes for 
determining what happens when events are triggered and translate the actions that 
occur when the user interacts with virtual objects, makes choices, or changes envi-
ronment. In this endeavor, machine learning provides powerful features to inte-
grate intelligence to the contents that developers attempt to create. For instance, 
machine learning can automate slow and difficult processes while also removing 
technical and creative hurdles. Examples include photoconversion, where images 
can be digitized for integration in virtual environments, enhancing resolution of 
images, smartly adding filters and corrections, among others. In addition, AI also 
automates various processes, which are labor-intensive and time-consuming where 
some include skinning and rigging. While rigging attempts to create the skeleton of 
a person or living thing, skinning attempts to draw the exterior around the skeleton 
up to the skin, all to be utilized in game engines or animations. In this endeavor, 
deep learning is helpful in automating involved processes. Other examples of 3D 
content creation using AI include the NVIDIA tool called Audio2Face, which cre-
ates expressive facial animation from an audio source. Such tool typically simplifies 
the generation of animated 3D character to match the voice-over track. Similarly, 
DeepStream from NVIDIA enables the application of AI to create human pose for 
animated characters.

11.3.2.2 Optimization and Rendering
During recent years, advancements in computer graphic techniques have signif-
icantly enhanced VR applications in general and the integration of intelligence 
along with enhanced connectivity has the potential to significantly improve experi-
ence and immersion. In order to achieve such experience and immersion, VR sys-
tems should be able to display images at a realistic rate. In other words, real-time 
rendering is essential as it involves creating sensory images fast enough so as to 
be perceived as continuous to the eyes of the end user for smooth representation 
of the virtual world. This process should be an optimized one, whereby adjusting 
and finding the balance between different parameters pertaining to the quality of 
display, performance, and development time to also ensure that visuals are syn-
chronized with other forms of feedback such as sound. Recently, AI-driven cloud-
based rendering was found to provide various benefits as it reduces overheads on 
the client side (Li et al., 2020). Such approach allows the user to choose between 
various platforms with high processing capabilities in order to provide the opti-
mum experience for the user. In the process, the application of AI can help to pro-
vide the balance between the parameters such as display quality and performance. 
In addition, with 5G and 6G, the high bandwidth and low latency capabilities can 
make real-time rendering smoother than ever to deliver realistic and high-quality 
experience within VR applications.
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11.3.2.3 Interaction in the Virtual World
A key element of any VR experience involves interaction with a virtual world. At the 
most fundamental level, the display of the virtual world should correspond with the 
user’s physical movement or corresponding actions triggered by the end user. There 
are different ways in which end users can interact within a VR experience, notably 
direct user control, physical control, virtual control, and agent-based control (Mine, 
1995). AI can be of assistance in the different forms of interaction in order to more 
effectively capture the intention of the user in order to prepare the VR system for 
potential events or actions. In addition to the use of specialized hardware for interac-
tion with the virtual world, research and development has actively been conducted 
involving the use of body movements, voice, eye tracking, and gestures to send sig-
nals in human–computer interaction. For all these interaction mechanisms, AI and 
cellular networks can provide enhanced capabilities. For instance, previous works 
have been undertaken involving the application of AI, such as KNN rapid recogni-
tion method, in order to obtain feature values during human gestures and move-
ments (Zhang, 2021) toward enhancing human interaction within the virtual world. 
Likewise, the application of machine learning to improve eye tracking in the context 
of VR has been studied (Pettersson & Falkman, 2020). In the 5G and 6G eras, further 
developments are also anticipated in the area of AI-assisted interaction, which is key 
to achieving the metaverse vision.

11.3.3 aI-aSSISTEd MIxEd rEalITy

Mixed reality, which is also referred to as hybrid reality, is the most recent develop-
ment within the reality technologies, notably, after AR and VR. In MR, new envi-
ronments and visualizations are produced, where physical and digital objects coexist 
and interact in real-time, somewhere between AR and VR. In other words, MR takes 
place not only in the physical or the virtual world but is a mix of actual reality and 
VR. MR takes place in two main forms, where the first one involves the user starting 
with the real world, where virtual objects are overlaid and that the user can interact 
with both real and virtual objects, to create a MR environment. In the second form 
of MR, the user starts in a virtual environment where the real world is replaced by a 
digital environment. Within the same virtual environment, some virtual objects are 
also physically represented by corresponding real-world objects, that the user can 
interact with, thus creating a MR environment. As such, MR development inspires 
a lot from AR and VR, and thus the convergence of AI and 5G/6G technologies dis-
cussed in earlier sections are applicable to AI-assisted MR in the 5G and 6G eras. In 
other words, AI is applicable to different tasks involved in the creation of MR solu-
tions and these include camera calibration, modeling of the space and simulation, 
object detection, recognition and tracking, registration and rendering, as discussed 
earlier, and all these benefit from enhancements in the new generations of cellular 
data networks.

As such, in the 5G and 6G eras, MR services are expected to use enormous cloud 
computing capacity due to their high computational complexity where HMD provid-
ing such services will be wirelessly connected and major processing taking place on 
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the edge, fog, or the cloud (Doppler et al., 2017). These services will be enhanced in 
the 5G and 6G eras with higher data rates and lower latencies, to even bring major 
enhancements in free viewpoint videos, thereby giving the user complete freedom 
of movement when experiencing MR solutions through HMDs. AI is expected to 
enhance such capabilities to effectively adapt perspective and display digital contents 
when the user is walking around and trying to view contents at different angles.

11.4 CHALLENGES AND PROSPECTIVE SOLUTIONS

An absolute and truly exciting visualization experience involving the XR technolo-
gies necessitates a combination of aspects including computing, hardware, storage, 
and transmission, in addition to sensory aspects notably, human senses (vision, hear-
ing, and touch). While the convergence of 5G networks and AI are expected to fur-
ther advance XR technologies, the absolute XR experience is expected to be only 
achievable after the sixth-generation mobile network (Minopoulos & Psannis, 2022). 
Nevertheless, even in the 5G era, XR technologies have prospects to advance, and a 
plethora of applications are expected to emerge. The development of such systems, 
their diffusion and adoption are however not going to be without challenges. As such, 
it is important to investigate and address key challenges in a timely manner in order 
to prepare toward the absolute XR experience. These challenges as well as prospec-
tive solutions are discussed as follows.

11.4.1 PorTabIlITy and coMPaTIbIlITy ISSuES

Various XR systems have cross-compatibility issues such that applications imple-
mented on one platform cannot be easily converted to another platform. For instance, 
various companies offer their own platforms to create VR environments, which have 
their hardware or software specificities, and compatibility issues may arise in case 
of changes in such components (Velev & Zlateva, 2017). For instance, a VR solution 
for one IoT application cannot be easily translated or even deployed and utilized in 
another application directly due to lack of cross-platform support (Hu et al., 2021). 
Portability is further adversely impacted because of strict hardware requirements 
and configuration settings that prevent deployment on other hardware.

Furthermore, deployment is limited in case hard-coding is thoroughly used dur-
ing the creation of XR systems. For instance, in order to create AR systems, author-
ing tools are involved that enable the integration of different functions to control the 
relationships between real and virtual objects. Authoring tools to build AR-based 
systems can be broadly categorized into tools meant for programmers and authoring 
tools for non-programmers. The former are code libraries that necessitate knowledge 
in computer programming, while the latter include drag-and-drop interfaces for cre-
ating applications without writing any lines of codes. A key limitation in the author-
ing process is that determining what information to display to the user is usually 
hard-coded and this also particularly due to the absence of suitable software libraries 
for generating complex virtual objects (e.g., animations) in real-time, thereby fur-
ther limiting the portability of applications. Moreover, backward compatibility issues 
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may also arise when new versions of authoring tools are released on the market, thus 
introducing new challenges pertaining to the upgrade of XR solutions.

In order to address cross-platform issues, it has been envisioned that web-based 
solutions with natural cross-platform benefits can potentially solve this issue and has 
become active areas of research pertaining to system design of XR solutions (Qiao 
et al., 2018). For instance, research and development of XR cross-platform tools has 
already started where the GhostBustXR cross-platform tool was created at the MIT 
Reality Hack that can potentially work across all XR device platforms and similar 
platforms are anticipated to emerge as XR technologies are advancing. On the other 
hand, to address the challenge of hard-coding virtual objects, AI techniques men-
tioned in the previous section can be utilized in order to better incorporate context 
awareness within solutions. Also, with the boost in remote processing capabilities 
of XR solutions in the 5G and 6G eras, the need for hard-coding is anticipated to 
diminish.

11.4.2 SkEPTIcISM In adoPTIon of xr SoluTIonS

Even though a growing number of XR-based solutions are being released on the 
market, acceptance by the public and enterprises is still slow due to various hurdles 
(Avasant, 2022). Also, even for many users who adopt the solution, the duration of 
use is considered to be shorter than expected and as such, the technology is not 
regarded to be useful for the long term due to poor quality of contents as well as low 
standards designs, typically for AR mobile applications (Jha et al., 2019). In order to 
get people to adopt XR-based solutions, acceptance-based issues need to be inves-
tigated and addressed, where these range from unobtrusive fashionable appearance 
and costs of equipment used (e.g., gloves, helmets, etc.) to enlightening the benefits 
of the technology and addressing privacy concerns (Hughes et al., 2005). In the 5G 
and 6G eras, better quality of contents and designs of XR solutions are anticipated 
as the technologies are advancing. More up-to-date features and contents through 
crowd-sourcing and application of AI can also potentially boost the adoption of XR 
solutions in the same eras.

11.4.3 ISSuES wITh vISual InTErfacES

A major issue with the implementation of XR-based systems is the technological 
gap involving the use of XR display interfaces. For instance, the experience of using 
an AR system on an AR gear is completely different as compared to using the same 
application on a smartphone. Some AR gear systems have also been reported to be 
bulky, while at the same time expensive, thus adversely impacting adoption by the 
public as discussed earlier. Similarly, VR predominantly displays visualized infor-
mation on screens and the displays on the VR helmets can lead to discomfort due 
to close-to-the-eye proximity principally driven by low display resolution and high 
graininess (Olshannikova et al., 2015). In addition to being bulky and expensive, 
some visual interfaces could be of small screen size thus limiting the amount of 
information to be displayed to the user. A key challenge remains the ability to dis-
play concise information to the user to also prevent information overload (Pascoal & 
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Guerreiro, 2017). Having too much information on screen, especially in the context 
of AR applications, could also possibly harm the user due to physical security risks, 
as attention is also shifted away from the real world as a consequence of lack of 
details. Manufacturers are aware of issues pertaining to visual interfaces and actions 
are being taken in order to enhance underlying hardware so that visual experiences 
when using XR solutions are improved. Moreover, prior to building AR and VR sys-
tems, it is important to follow design guidelines and best practices in order to prevent 
issues such as information overload or visuals that overly distract end users when 
utilizing such XR applications (Kourouthanassis et al., 2015).

11.4.4 ProcESSInG rEquIrEMEnTS and rESourcE conSTraInTS

For realizing smooth experience, immersion, and interaction within XR applica-
tions, intensive graphic capabilities are required, which may be challenging to be 
implemented via standard computer equipment (Velev & Zlateva, 2017). Moreover, 
such graphics are also challenging to be rendered on resource constrained display 
interfaces. The challenges due to intensive graphic and processing requirements of 
XR solutions as well as resource constraints of equipment introduce various issues in 
such systems, including latency and errors, which adversely impact user experience.

As a solution to address the intensive graphic and processing requirements, com-
putationally intensive tasks can be migrated to more resourceful cloud, fog, or edge 
servers. This solution does not only increase computational capacity of low-cost 
equipment used in XR systems but can also save battery energy, which is essential to 
portable devices involved (Bastug et al., 2017). In order to address system delays or 
latency, AI techniques discussed in the previous sections could be applied, in addi-
tion to techniques such as pre-calculation, temporal stream matching, prediction of 
future viewpoints, and image warping (Van Krevelen & Poelman, 2010).

11.4.5 TEchnoloGIcal lIMITaTIonS

Technological limitations remain a key obstacle to the development, widespread 
adoption, and ultimate experience of XR systems. For instance, AR applications 
need highly accurate trackers to prevent improper placement and alignment (regis-
tration) between real and virtual objects. Similarly, VR systems require specialized 
hardware for end users to experience such technology and to interact with the virtual 
world. Moreover, wearable device-based VR equipment has integrated processor and 
battery thus making such hardware heavy to wear, inconvenient to carry, and are 
costly at the same time (Hu et al., 2021). Furthermore, as discussed earlier, the abso-
lute XR experience is only expected to be achievable only after the sixth generation 
of cellular data networks given the high-quality video and graphics playback require-
ments. The advancement of these technologies depends heavily on both industrial 
and academic efforts in various related domains such as hardware optimization and 
algorithm developments to improve underlying technological-related issues. The 
projected growth in the XR markets as discussed earlier has already led to a major 
boost research and development (R&D) by key stakeholders including leading enter-
prises such as Microsoft and Meta platforms, along with the leading universities and 
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research communities, among others. As such, technological limitations are antici-
pated to be progressively addressed that can potentially lead to enhanced develop-
ment, improved adoption, and the ultimate experience of XR systems.

11.4.6 PowEr and ThErMal EffIcIEncy

Since XR applications and gadgets are expected to process high-quality images from 
camera in real-time and require intensive graphic capabilities to display contents 
such as generated images and animations for lengthy durations, huge battery life is 
a key requirement, with the need for rapid revival equivalent to more than 100 times 
than typical charging in some contexts (Patil & Kumar, 2019). The power require-
ments also imply the need for effective cooling. As key opportunities and solutions 
to address this issue, manufacturers should work to improve battery limit and cooling 
strategies. In addition to content optimization and rendering, AI techniques can be 
helpful to effectively analyze battery utilization in order to better apply power-saving 
techniques and cooling strategies.

11.4.7 challEnGES rElaTEd To ThE crEaTIon of conTEnTS

As highlighted earlier, the duration of use of XR systems is considered to be shorter 
than expected due to poor quality of new and updated contents (Jha et al., 2019). 
Existing 3D content creation software is considered to be slow and complex, whereby 
further adding to the challenges related to content creation (Mindy Support, 2021). 
Similarly, in the current VR market, there are limited UHD video sources owing 
to the lack of video acquisition equipment and the lengthy video shooting process 
(Hu et al., 2021). Another challenge is that computer-generated contents tend to look 
fake due to invariant coloring that do not completely look like objects in real-life 
(Patil & Kumar, 2019). In order to address such challenges, AI and computer vision 
can potentially be used to compare and apply illumination algorithms in order to 
dynamically generate, render, and overlay more realistic virtual contents.

Furthermore, a potential solution to address the challenges related to contents cre-
ation in the 5G and 6G eras involve crowdsourced content generation. Earlier, such 
approach was limited by bandwidth, storage, and processing capabilities, which are 
expected to be facilitated with the key benefits brought by the new generations of cel-
lular network. More content-sharing platforms are expected to emerge where on one 
end, developers can post details on required content for different kinds of XR sys-
tems, and on the other end, content creators globally can attempt to fulfill demands. 
Such platforms also provide opportunities for new business models to emerge related 
to content creation and sharing.

11.4.8 lack of SkIllS and coMPETEncIES

Since this group of technologies is yet to completely mature and because of a lack 
of suitable authoring tools, development of commercial XR applications is often 
regarded as a long and non-intuitive task that involves experts in the domain (Jee 
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et al., 2014). The creation of XR solutions as well as their contents necessitates 
different kinds of skills and proficiency with different kinds of hardware and soft-
ware. Since these technologies are still developing and new kinds of hardware 
(including visual interfaces and equipment) and software (such as authoring tools, 
libraries, content creation software, etc.) regularly emerge on the market, devel-
opers of such solutions need to effectively update themselves and build key com-
petencies. As such, it also means that developers competent in one platform may 
not be familiar to various other platforms, and such lack of skills often pose chal-
lenges to companies requiring these skills for the development of new products. 
In order to address such demand in competencies, a growing number of courses 
are being provided on online learning platforms and are also integrated within 
curriculum of higher education programs at both undergraduate and postgraduate 
levels. Course contents also include the development of AI-assisted XR systems 
using cellular networking technologies whereby focusing on teaching the use of 
3D modeling tools and 3D tools for creation tool of photoreal visuals and immer-
sive experiences, among others.

11.4.9 challEnGES rElaTEd To aPPlIcaTIon of aI

Training data is regarded as the core of machine learning systems since without 
sufficient data, it is challenging to accurately build the model in order to effectively 
solve problems. Even though various communities have made important contribu-
tions on open datasets, it is still considered as not enough for effectively mining key 
features and for accurately training models in relation to different contexts pertain-
ing to XR systems (Hu et al., 2021). In addition, data sets potentially have various 
limitations such as missing data within datasets, lack of coverage, domain specificity, 
and labeling issues, among others (Davahli et al., 2021). These limitations have been 
actively researched during previous years and techniques such as data augmenta-
tion and synthetic data have commonly been used, as these techniques are expected 
to further transform AI toward extending applications in various domains (Toews, 
2022). Moreover, with advances in various technologies discussed in this chapter, 
there are opportunities for more datasets to be produced and made available publicly, 
to the benefit of the wider AI community.

Due to the challenges to train AI using real-world data, learning environments 
are often used as substitute for training models using experimental data (Reiners 
et al., 2021). For instance, training AI for urban self-driving vehicles in the urban 
area necessitates significant logistical arrangements and resources, among others. 
A safer and cost-efficient solution is to conduct the training in a learning envi-
ronment. However, following the implementation of the solution, a key challenge 
involves transferring results from the learning environment to the real world. This 
is because various aspects can be difficult to capture precisely and respond to in 
the real world (Amini et al., 2020). A combination of XR, AI, and cellular net-
works is expected to provide opportunities for further developments in domain 
adaptation so that results transfer from the learning environments to the real 
world are more effective.
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11.4.10 cEllular daTa nETwork challEnGES and dEPloyMEnT ISSuES

The cellular data networks (5G and 6G) have their own limitations, which can 
potentially adversely impact the development and deployment of XR solutions. For 
instance, key 5G issues that need further attention include deployment in dense het-
erogeneous networks, multiple access techniques as well as full-duplex transmission 
(Li et al., 2018). Deployment of 5G has been done progressively as significant invest-
ments is required in the process to install the required infrastructure (e.g., deploy-
ing 1,000 of new cell sites) as well as to upgrade required software, thus slowing 
down the process in some countries. Also, existing hardware used in XR has to be 
compliant with 5G to be able to use the network technology. Similar challenges are 
expected in the early stages of the 6G era that can potentially delay the integration of 
the networking technology within XR solutions. Nevertheless, upgrading from one 
generation of cellular network technology is a familiar process for telecommunica-
tion companies and Internet service providers often came up with effective deploy-
ment strategies driven by cost-benefit analyses to the advantage of consumers of such 
networks.

11.4.11 PrIvacy and SEcurITy ISSuES

With enhanced connectivity, XR systems can potentially create, collect, and analyze 
voluminous data for the purposes of deriving intelligence, and this could adversely 
lead to privacy and security concerns (Hu et al., 2021). The risks are even higher with 
complex XR applications that necessitate always-on sensing and camera, which are 
also connected to the cloud. As an example, a malicious AR software could illegiti-
mately leak user’s data including location, images, and video feed to its servers. This 
has been implemented in the visual malware named PlaceRaider that produces 3D 
models of indoor environments of users by utilizing data from smartphone sensors 
collected in a stealth manner (Templeman et al., 2012). Moreover, AR applications 
that require always-on cameras and sensory data such as location can create privacy 
issues for bystanders since such risks have been considered to hamper widespread 
adoption of AR (Van Krevelen & Poelman, 2010).

In order to address privacy and security risks, designers of XR systems must 
consider security and privacy issues right from the design phase of such systems 
whereby considering the granularity of permissions and security of data being trans-
mitted over networks. This can be facilitated by the adoption of privacy and security 
preserving frameworks where different risks are individually treated, with appro-
priate mechanisms implemented toward securing XR systems. For instance, such 
frameworks can include mechanisms to anonymize or blur bystanders in real-time 
within applications that require always-on camera through the use of AI techniques.

11.5 CONCLUSIONS

AI-assisted XR technologies are expected to advance massively in the 5G and 6G 
eras, thereby creating multitude innovations and opportunities across areas such as 
medial training, gaming, industrial settings, and even the social media through the 
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metaverse. However, the absolute XR experience is challenging to be achieved in 
the 5G era because certain features require high-quality video and 3D animations to 
be generated and displayed in real-time. These features require more than 10 Gbps 
data rate and are only attainable after the 6G era. As such, the integration of AI and 
cellular data networks to XR technologies is intended to be progressive toward the 
ultimate XR experience. AI and the new generations of cellular data networks have 
the potential to massively advance XR technologies, notably, AR, VR, and MR in 
order to create opportunities during different stages involved within the creation of 
AI-assisted XR solutions including camera calibration, content creation, and ren-
dering. These various opportunities have been discussed in this chapter and can be 
used as reference for advancing R&D in relation to AI-assisted XR technologies in 
the 5G/6G eras. Nevertheless, advancing toward the truly exciting XR visualiza-
tion experience is not going to be without challenges, which are also expected to 
grow as the technologies are advancing. Some of the key challenges discussed in this 
chapter include issues with visual interfaces, adoption, application of AI, processing 
and resources, privacy, and security, among others. It is important to investigate and 
address key challenges in a timely manner in order to prepare toward the absolute 
XR experience envisioned by the world.
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and Control
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12.1 INTRODUCTION

In recent years, many novel smart grid (SG) system architectures have been proposed 
and published on integration of high-speed bidirectional data communications network 
in the power grid. On the other hand, the research on Internet of things (IoT) systems 
is in its infancy stage. It was found that SG places real and diverse challenges on new 
5G network technologies. On the one hand, power grids represent one of key critical 
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infrastructures of each country, and its planning and operation must be done very care-
fully, considering a number of aspects, e.g., costs, reliability, efficacy, and quality of 
the service. To enable optimal operation of power grids, particularly optimal integra-
tion of renewable energy sources, implementation of novel sensor and communication 
infrastructure is a must. They are enablers of novel applications supporting reduction of 
CO2 emission, but also optimal utilization of all available energy resources, also those 
going beyond pure power grids, e.g., gas, or heat networks. Integration of different 
energy networks is leading to integrated energy networks, possessing higher flexibility, 
as well as resilience. New technologies must have interoperability and compatibility 
with existing technologies. The existing infrastructure of the power network should 
be utilized optimally and modifications should be compatible with the 5G standards.

The recent generation of 5G mobile networks supports the integration of highly 
reliable and low-latency wide-area monitoring, protection, and control (WAMPAC) 
laying a solid foundation for the realization of integrated systems [1–3]. The SG 
requirements of real-time interconnection and two-way interaction determine the 
development of electric power communications network in the direction of massive 
connections, high reliability, and low latency [4–6]. The key infrastructure sup-
porting the development of SGs is the information and communications technology 
(ICT) [7]. The 5G-IoT technology is the main development direction of the next 
generation of machine-type (MTC) wireless communications systems. The first year 
of 5G deployment was 2019, while the second phase, standardization of technical 
specifications and system architecture, was finalized in 2020.

We are very keen to provide a detailed discussion on needs, opportunities, and chal-
lenges related to the application of 5G and IoT technologies in modern power systems, 
power systems with high penetration of renewable energy resources, and systems with 
significantly changed dynamics and expectations. Here, e.g., aspects related to changed 
system inertia and fault level will be addressed. These two are directly related to power 
system stability in general terms, more specifically frequency and voltage stability. At 
the same time, the importance of the application of novel sensor and communication 
technologies will be discussed, from the perspective of opportunities and challenges. 
Examples of the following high-impact practical projects, in which the first author 
of the chapter acted as PI on behalf of academia, will be presented: VISOR, EFCC, 
Supergen Multi-Energy Networks Hub, and MIGRATE projects.

This chapter is organized as follows. In the first part, we will investigate require-
ments and symbiotic relationship between two of the modes in 5G, namely massive 
machine-type communications (mMTC) and ultrareliable low-latency communica-
tions (uRLLC) and the SG communication, which are essential to apply IoT. In the 
second part, we emphasize unification of standardization efforts to avoid deployment 
issues such as interoperability. In the third part, we present high-impact practical 
projects and 5G-IoT integration issues in future SG application scenarios.

12.2 REQUIREMENTS

A smart grid SG is a new generation of electric power systems that integrate advanced 
sensing, information, control, and energy storage technology, enabling the reliable, 
economical, and efficient operation of electrical grids. SG includes five major stages: 
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electricity generation, transmission, transformation, distribution, and consumption. 
The trend of SGs research and development is clean electricity generation, safe and 
efficient electricity transmission and transformation, flexible and reliable electricity 
distribution, and diverse and interactive electricity consumption. In the electricity 
generation stage, renewable energy has gradually replaced traditional fossil energy, 
through transformation from centralized energy supply to cooperation with distribu-
tion, and interactivity of supply and demand. The traditional single energy network 
is transforming into a multi-energy complementary system, where electrical grids 
and ICT are deeply integrated into various types of equipment in multiple nodes and 
wide coverage. Therefore, massive terminals need to be monitored and controlled in 
real-time two-way communication.

The SG usage of scenarios of wireless communications is collection and con-
trol. The collection-type scenarios mainly include advanced metering, quality assur-
ance, and the application of videos in smart grids, whereas the control-type scenarios 
include the automation of distributed intelligent electricity distribution, demand-side 
response to electrical load, and distributed energy regulation. Recent developments 
in SG applications were enabled by advanced smart metering and measurement 
devices. The phasor measurement unit (PMU) plays an essential role in monitoring 
long transmission lines, supporting different applications contributing to enhanced 
system stability, or prevention of cascading events, or potential blackouts. PMUs 
are slowly becoming a part of modern control systems in distribution networks. 
Intelligent electronic devices (IED) are used to detect faults, protection relaying, 
event recording, measurement, control, and automation aims in power network. A 
smart meter (SM) records near real time and report regularly information such as 
consumption of electric energy, voltage levels, current, and power factor.

The core of a smart grid is real-time situational awareness, traditionally consid-
ered as real-time monitoring. The inspection of important corridors at all levels of 
the grid introduces new visualized and real-time operation methods. State estimation 
(SE) aims to provide an estimate of the system state variables (voltage magnitude 
and angles) at all the buses of the grid from a set of remotely acquired measure-
ments. The centralized (classical and SCADA-supported) SE schemes may prove 
inapplicable to emerging decentralized and dynamic power grids, due to large com-
munication delays and high computational complexity that compromise their ability 
for real-time operation. Just-in-time monitoring the state of power grid is supported 
by integration of widely deployed PMUs with communication and advanced compu-
tations. Accuracy of PMU measurements for phase angle, frequency, and voltage is 
approximately 0.05° and 0.5% for voltage angle and magnitude for most measure-
ments. A PMU should be able to reliably measure frequency up to 0.001 Hz most of 
the time. PMUs may require calibration adjustments from time to time to achieve 
these measurements. Dynamically changing conditions of a power system or near-
ing the limits of a PMU’s measurement range will likely degrade measurements to 
the limits specified in the standard. Experience of authors on SE will include recent 
publications [8–11].

At present, the PMU services are mainly applied to the backbone network and 
supported by optical fiber communications, but the deployment of optical fibers in 
the distribution network is costly. Through 5G networks, the current and voltage 
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phases in the electrical distribution can be fed back to the control center in time. 
Network needs of distribution PMU scenario are 2 Mbps bandwidth and 3–20 ms 
delay, reliability 99.999%, and connection density (10–2,000)/km2. A terminal needs 
timing accuracy 10 μs, available through 5G network.

New 5G requirements of achieving low latency and high reliability for many IoT 
use cases are very important, besides the enhanced mobile broadband (eMBB). In 
the context of new use cases, IoT applications have been categorized into two classes: 
massive machine-type communications (mMTC) and ultrareliable low-latency com-
munications (uRLLC). The former consists of a large number of low-cost devices 
with high requirements on scalability and increased battery lifetime. In contrast, 
uRLLC requirements relate to mission-critical applications, where uninterrupted 
and robust exchange of data is important. Both 3GPP (Third Generation Partnership 
Project) and the ITU (International Telecommunication Union) have defined require-
ments for mMTC. Technical specifications LTE-M and NB-IoT are candidates for 
fulfilling these requirements and thus to be considered as 5G technologies. NB-IoT 
are oriented to cover the MTC scenario with extended coverage, support of massive 
number of low throughput devices, ultralow device cost, low device power consump-
tion, and optimized network architecture.

12.3 5G-IoT STANDARDIZATION AND INTEROPERABILITY

Since its conception, 5G is anticipated to become a major IoT enabler. The robust 5G 
infrastructure will act as the backbone to which different types of 5G devices will 
be connected, forming a massive 5G IoT network. The implementation of such a net-
work is complex as the latter must be compliant with the standards and specifications 
developed by 5G standardization bodies. One such major 5G standardization body 
is the 3GPP, which is also known for the standardization of previous generations of 
mobile networks. An appropriate solution to implement an integrated IoT system is 
to utilize 5G machine-type connectivity and to incorporate an interoperable data 
model [12–16].

The 5G requirements defined by ITU-R broadly cover three main service classes:

• uRLLC, which includes critical IoT communications for mission-critical 
applications and industrial IoT (IIoT).

• mMTC, which can support a high density of connections, provide a wide 
network coverage, and enable long device operational lifetimes.

• eMBB, which improves significantly access to high-quality multime-
dia content, enabling services such as remote video inspection and video 
conferencing.

All of the above service classes are covered by 3GPP in the final 5G specifications.
The requirements for IoT usage scenarios are extremely diverse. To address these 

requirements, the following three connectivity segments, which are allowed to coex-
ist in a single 5G network are defined:
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• Critical IoT connectivity. This segment is defined for time-critical com-
munications, which have strict latency requirements. The segment must be 
supported by the 5G uRLLC technology and shall flexibly adapt to various 
data rate requirements. Reliability in this context can be further defined as 
the rate of successful and timely data transmission. Moreover, in this seg-
ment data exchange must not be congested even in heavily loaded networks.

• Massive IoT connectivity. This segment is utilized to allow a large num-
ber of low-cost, narrow-bandwidth devices to communicate infrequently 
using small volumes of data. Since 2017, NB-IoT and LTE-M have been co-
existing with LTE in 4G networks and they already fulfill all of the mMTC 
requirement defined for 5G by ITU and 3GPP. The NB-IoT standalone radio 
access technology can support high system capacity and has high spectrum 
efficiency while LTE-M can provide extended coverage that may be accessed 
by low-complexity devices. There is also already a panoply of devices that 
are supported by the NB-IoT and LTE-M network on the market.

• Broadband IoT connectivity. This segment aims at providing high data 
throughputs and low latencies to enable IoT capabilities such as extended 
coverage, high uplink throughputs, and high-precision device positioning. 
Typical service scenarios that are supported by this segment are remote 
inspection using drones and voice communications (manual maintenance 
and inspection).

The critical IoT use cases require latency and reliability enhancements of networks, 
devices, and applications for their proper implementation. The end-to-end latency in 
a network is the sum of the latencies contributed by the radio, transport and core net-
works, and the overall reliability of the network is largely dependent on the reliability 
of the weakest component in the network. However, the reliability and the latency of 
a network can be enhanced by the allocation of more spectrum resources.

The 5G uRLLC is the most appropriate wireless communications technology for 
supporting critical IoT. The 5G New Radio (NR) can provide low communication 
latencies below 1 ms and reliability of up to 99.9999%. The latency contributed by 5G’s 
core network is insignificant compared to that contributed by 5G’s transport network. 
The transport network latency is dependent on transmission distances and the channel 
and therefore varies widely between regions. Latency in the transport layer is usually 
optimized by switching copper connections to fiber ones and by decreasing the number 
of router hops. For example, the round-trip time between two cities 1.3 km apart in a 
European country has been halved by incorporating fiber connections. The latency is 
today just 16 ms, which is near the 13 ms theoretical optical fiber latency. Other tech-
nologies that may reduce the transport network latency to implement critical IoT use 
cases are edge computing, distributed anchor points, local break-out, and on-premise 
full-core deployments. On-premise full-core deployment dedicates network resources 
that allow local data to be managed autonomously locally, hence satisfying ultralow 
latency and ultrareliability requirements. Furthermore, roaming for mobile IoT devices 
can be enabled by connecting the local area network to a public network (Figure 12.1).
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The Service and System Aspects Technical Specification Group (TSG-SA) is 
actively developing the overall architecture and service capabilities of 5G-IoT 
systems that are based on 3GPP specifications. The 3GPP technical standards 
are published in the form of releases. URLLC specifications for 5G NR and 
5G-Core (5GC) were introduced in Release 15 and evolved further in Release 16 
and Release 17.

To promote and accelerate the standardization process of 5G, ITU released a 
global schedule for 5G standardization works in 2015, which the 3GPP uses as a 
reference for delivering the 5G standards. Furthermore, the 3GPP discussed 5G 
applications, requirements, and key technologies, and formulated a work plan for 
5G standardization in September 2015 during the 5G workshop held in Phoenix, 
United States. Subsequently, in the 3GPP Release 14 issued in February 2016, 
3GPP published research works on the targets, requirements, and technical solu-
tions for 5G. The 3GPP also issued a research report on 5G in December 2016. 
In December 2017, the Radio Access Network (RAN) working group released 
standards for 5G new air interface, which will operate in non-standalone (NSA) 
network mode and the working group on business and SA (Stand-Alone) released 
5G’s core network architecture and 5G’s process standard. At the 80th plenary 
meeting of 3GPP held in June 2018, 5G’s independent networking standard was 
officially frozen and released by the RAN working group. During that same meet-
ing, the Core Network and Terminals (CT) working group released Release 15’s 
new core network design standards for 5G independent networking. These events 
marked the completion of the standardization for 5G SA networks, which are 
expected to satisfy the requirements from the vertical industries that will bring 
unprecedented opportunities to carriers and collaborating industries. However, 
there were still some challenges, which 5G from Release 15 needs to face to com-
pletely satisfy the throughput, latency, and reliability requirements of certain ver-
tical industries. Hence, 3GPP organized more than 70 research projects, which 
focused on the standardization of the uRLLC and mMTC in the final phase of 
Release 16, which was completed in June 2020.

The 3GPP technologies are considered to be suitable for IoT applications 
due to their almost worldwide availability and their use of licensed spectrum.  

FIGURE 12.1 Core network deployment examples to support critical IoT use cases.
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In 3GPP Release 13, enhanced MTC (eMTC) and narrowband IoT (NB-IoT) were 
introduced and these two distinct standards were further enhanced in subsequent 
releases. The NB-IoT and LTE-M 3GPP standards are known to satisfy the long-
term 5G low power wide-area networks (LPWAN) requirements. The 3GPP tech-
nology is also investigating methods to use LTE-M and NB-IoT RANs with the 
5G core network (Figure 12.2). The development of 6G technology is expected to 
enable new use cases and applications, and to address the rapid growth of traffic, 
for which contiguous and wider channel bandwidth is desirable than currently 
available for mobile systems. As the amount of spectrum required for mobile 
services increases, it becomes increasingly desirable to harmonize existing and 
newly allocated and identified spectrum. A continuous and wider spectrum from 
a range of frequency bands, aligned with future technology development, would 
support achieving the objectives of the 6G systems, reducing device complexity, 
avoiding interference, and developing ecosystems. 

• NB-IoT is a fast-growing 3GPP mMTC standard that was introduced in 
Release 13. The latter addresses the LPWAN requirements optimized 
for the low-end massive IoT. It was standardized and classified as a 5G 
technology by 3GPP in 2016, and it will continue evolving with the 5G 
specification.

• LTE-M LPWAN technology provides coverage of up to 11 km in remote 
regions with a bandwidth of up to 20 MHz. The technology’s objectives 
were introduced in Release 12 and are as follows: low device price, 
long battery life, wide radio coverage, and variable throughputs ranging 
from 10 kbps to 1 Mbps depending on coverage requirements. In-band 
deployment of LTE-M is supported and this allows it to coexist with 
other services and existing base stations may be upgraded to cater for 
its support.

FIGURE 12.2 Timeline of 3GPP standardization process.
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To meet the requirements for 5G mMTC and the emergence of new MTC applica-
tions, the 3GPP Release 15 focused on the optimization of even further enhanced 
MTC (eFeMTC) and further enhanced NB-IoT (FeNB-IoT).

The success of 5G-IoT depends fundamentally on having robust interoperabil-
ity characteristics. Challenges encountered in IoT are constantly being addressed 
by several academic and industry proposals, and the development of a panoply of 
devices and IoT platforms has substantially been made in the last few years. However, 
interoperability issues crop up by the infrastructure, devices, and data format differ-
ences between the different solutions. Some IoT device suppliers implement vendor 
lock-in to restrict customers from choosing products from different suppliers. IoT 
device suppliers also limit the use of their devices to their proprietary IoT platforms, 
which lead to more interoperability issues. Such issues are caused by the lack of 
standards and have become a burden in large-scale IoT deployments. The 5G-based 
IoT solutions will be capable of addressing interoperability issues by offering a scal-
able architecture through the use of software-defined networking (SDN) and network 
functions virtualization (NFV), which will be flexible enough to cater for the needs 
of different use cases.

The increasing amount of attention that IoT has received is causing significant 
research to be conducted to improve IoT by addressing interoperability issues. IoT 
standardization, frameworks, and novel applications are reviewed in [17]. Various 
aspects including devices, semantics, networks, platforms, and interoperability have 
been surveyed [18]. The following EU-funded Horizon programs addressing IoT 
interoperability issues were organized among others.

• SymbIoTe (Symbiosis of smart objects across IoT environments) – For 
designing an interoperability framework for different IoT platforms.

• BIG IoT (Bridging the Interoperability Gap of the IoT) – For addressing 
interoperability issues using a unified web application programming inter-
face (API).

• VICINITY – For providing a platform for supporting interoperability as a 
service across IoT ecosystems used around the world.

• INTER-IoT – For supporting voluntary interoperability across heteroge-
neous IoT platforms.

However, more research covering the energy and data flow aspects need to be per-
formed [19].

12.4 USE CASES

Energy networks exist primarily to exploit and facilitate temporal and spatial diver-
sity in energy production and use. As technology changes the planning, design, and 
operation of energy networks need to be revisited and optimized. Current energy 
networks research does not fully embrace a whole systems approach. The energy 
networks community would strongly benefit from a more diverse, open, supportive 
community such as computing science, statistics, and applied mathematics to help 
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implement a whole systems approach. Application of data analytics and artificial 
intelligence are on its way to support monitoring, protection, and control of future 
electricity networks.

12.4.1 SMarTzonE

SmartZone, a geographic entity located in the area of the city of York, is a typical 
example of a wide-area monitoring in a segment of the Great Britain (GB) network, 
which includes nonsynchronous renewable energy resources. A number of opera-
tional problems related to, e.g., frequency control, are introduced. The developed 
SmartZone app monitors the capacity transfer (of active and reactive powers) over the 
existing transmission network. For this purpose, PMUs were installed in key power 
system substations at the 400 kV voltage level. These PMUs provided information 
about voltage and current phasors to the central data concentrator, at which informa-
tion obtained was processed. First, the system state was estimated, and after that, 
the capacity margin, taking into account the weather conditions and information 
received from the Meteorological Office, has been calculated. The entire process is 
visualized and provided available as Web app (Figure 12.3) [1]. Adequate situational 
awareness was used for controlling a so-called operational tripping scheme (OTS), 
responsible for intentional disconnection of generation resources in cases in which 
the capacity margin is not maintained at the acceptable level.

FIGURE 12.3 SmartZone web app https://svtapp.000webhostapp.com/demo2/.

https://svtapp.000webhostapp.com
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Recent studies have explored algorithms for optimal placement of PMUs to mini-
mize the number of devices required to collect sufficient information. PMU-based 
wide-area monitoring systems (WAMSs) use the global position system (GPS) to syn-
chronize PMU measurements. Such synchronized measurements allow two quanti-
ties to be compared in the real-time analysis of grid conditions. Through wide-area 
monitoring and synchronization, PMUs have made great strides in power system 
stability, which was often hindered by SCADA’s slow state updates. The implementa-
tion of synchrophasors has also allowed voltage and current data from diverse loca-
tions to be accurately time-stamped in order to assess system conditions in real time. 
Synchrophasors are also available in protection devices, but since requirements for 
protection devices are fairly restrictive, the full integration of synchrophasors into 
line protection is still debated. The increasing application of synchrophasors in wide-
area monitoring, protection and control systems, post-disturbance analyses, and sys-
tem model validation has made these measurement tools invaluable.

The need for situational awareness also motivated the development of sensor net-
works. Phasor measurements provide a dynamic perspective of the grid’s operations 
because their faster sampling rates help capture dynamic system behavior. PMUs 
measure voltage and current phasors and can calculate watts, vars, frequency, and 
phase angles 120 times per power line cycle. PMU data immediately enhance topol-
ogy error correction, SE for robustness and accuracy, faster solution convergence, 
and enhanced observability. Hence, one interest of the community is shifting from 
centralized to distributed SE algorithms based on more sophisticated optimization 
techniques beyond the classical weighted least square approaches. In addition to this 
goal, novel approaches involving stochastic description of the monitoring processes, 
as well as robust and outliers insensitive approaches, are proposed.

PMU-based measurements in a distribution system should work just as well as 
in transmission. They can be used for a variety of applications in the same way as 
for transmission or possibly new ones. The principal issues to resolve for PMUs in 
distribution systems are determining the measurement parameters that are the most 
needed and setting requirements to assure they are measured at the accuracy and 
reliability required for the intended applications.

12.4.2 vISor

Equivalent to the above-described SmartZone use case, results from a large-scale, 
US$10 million, Ofgem-funded [15] VISOR innovation project [16] is presented but 
viewed from the perspective of application of 5G and IoT. The project as such has 
by now significantly contributed to the situational awareness of the GB network, 
elimination of dangerous subsynchronous resonance, and application of hybrid state 
estimator.

The creation of a suitable WAMS is widely recognized as an essential aspect of 
delivering a power system that will be secure, efficient, and sustainable for the fore-
seeable future. In Great Britain (GB), the deployment of the first WAMS to monitor 
the entire power system in real time was the responsibility of the visualization of 
real-time system dynamics using enhanced monitoring (VISOR) project. The core 
scope of the VISOR project is to deploy this WAMS and demonstrate how WAMS 
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applications can in the near term provide system operators and planners with clear, 
actionable information. In Figure 12.4, the architecture of the VISOR-WAMPAC 
system is presented [17].

Measurements of voltage and current phasors are recorded by PMUs installed 
across a wide-area power system and time tagged at the point of measurement using 

FIGURE 12.4 VISOR-WAMPAC architecture for power system monitoring and visualiza-
tion of real-time dynamics.
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a common time reference. Synchronizing the angle measurements to a common time 
reference allows them to be combined into a single data record in real time that 
represents a snapshot of the system at that time, which with existing technology is 
updated at a rate of up to once per cycle. With suitable supporting communication 
and computing resources, a sequence of these snapshots can be used to visualize 
system dynamics in real time. However, these synchronized snapshots can be used 
for far more than visualization of dynamics. Advances in the computing resources 
available to power system engineers have enabled the development of a wide range 
of new algorithms that process WAMS data online to support the operation of power 
systems. Examples of these online WAMS applications include the real-time esti-
mation of oscillation parameters (e.g., interarea oscillations), the dynamic rating of 
transmission lines, and hybrid and linear SE.

Many WAMS applications have been deployed in power systems and many more 
proposed. The application for monitoring of oscillations and deliver real-time moni-
toring, visualization, and alarming in range: very low frequency (VLF), low fre-
quency (LF), and subsynchronous. The application for model-based simulation of 
dynamic behavior is critical to the proper planning and operation of a power system. 
It is used for both steady-state and post-fault contingency analyses to determine if the 
system is operating within security margins and quality of supply standards. Model 
inadequacies can thus have real and significant consequences for the power system. 
The focus of the hybrid SE application is on improving the reliability of convergence 
in post-processing, integration, fusion, and distributed HSE. Application correlation 
based for improving the accuracy of the line parameters of power system could have 
real benefits in stability assessment.

12.4.3 Efcc and MIGraTE

The authors are ambitious to demonstrate opportunities of implementing 5G and 
IoT technologies to results achieved through massive, large-scale GB/European 
Horizon 2020 projects, respectively, US$13 million EFCC [18] and US$20+ million 
MIGRATE [19] projects. The first author of the chapter acted as the PI on behalf of 
academia (University of Manchester, Manchester, UK) in both projects. The aim of 
MIGRATE (Massive InteGRATion of power Electronic devices) is to find solutions 
for the technological challenges in the grid.

A significant increase in the volume of renewables providing electricity 
reduces system inertia and gives rise to an increase in the volume and speed 
of frequency response to maintain system frequency. It will require the devel-
opment of new, significantly faster and coordinated response solutions using 
renewables, demand-side resources, and other new technologies. The enhanced 
frequency control capability (EFCC) project has been designed to find a resolu-
tion to electricity system challenge in wide-area frequency control. The aim of 
the EFCC project was to develop and demonstrate an innovative new monitoring 
and control system (MCS), which obtains accurate frequency data at a regional 
level, calculates the required rate and volume of fast response, and then enables 
the initiation of this required response within 0.5 seconds of a detected system 
frequency event (Figure 12.5). 
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12.5 INTEGRATION OF ADVANCED IoT ARCHITECTURES

In this section, a comprehensive overview of the interoperability of advanced IoT 
architectures is presented. With the major advancements in the development of IoT 
technologies and the global access to renewable energy resources, energy genera-
tion and distribution techniques are evolving. The integration of the IoT architec-
ture, ICT-based end-to-end digital energy chains, energy-aware real-time platforms, 
and intelligent monitoring and control algorithms to SGs allows energy supply and 
demand to be balanced in real-time [20]. Some IoT-based SG architectures that are 
already available are listed below:

• Smart Grid Architecture Model (SGAM),
• Three-layered architecture (perception, network, and application layers),
• Four-layered architecture (perception, network, platform, and application 

layers),
• Cloud-based architecture,
• Web-enabled architecture.

The layered architectures are very generic and do not meet all the requirements of 
SG, whereas the cloud- and web-enabled SG architectures can support IoT along 
with additional useful services.

Advanced IoT architectures are based on huge dynamic global network infra-
structure with the connectivity, data formatting, and network analytics. Intelligent 
applications are classified by network type, scalability, coverage, flexibility, and het-
erogeneity. Applications include SG, smart monitoring, and integrated multi-energy 
systems. An SG is composed of a data communications network integrated with a 
power grid to perform collection and analysis of data retrieved from transmission 
lines, distribution substations, and end users.

FIGURE 12.5 EFCC block diagram (note that RTDS hardware in the loop testing facilities 
were used for validation of a new frequency control paradigm).
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The use of uRLLC and network slicing (NS) in SG communication for energy 
monitoring, control, and distributed automation represents a large business potential 
for 5G. The 5G infrastructure ensures that 5G communication links are extremely 
robust and provide guaranteed low latency and high reliability. Furthermore, uRLLC 
can be a major step toward SG automation. The 3GPP specifies that uRLLC may 
be used in wide-area monitoring and control systems for SGs in the Technical 
Report (TR) 22.862 titled “Feasibility study on new services and markets technology 
enablers for critical communications” [21]. SG systems are appropriate examples of 
mission-critical use case in wide-area monitoring and control systems. For services 
requiring ultrareliable communications, acceptable levels of reliability and latency 
should be committed to the service at all times. Support for mission-critical services 
requires significant improvements in end-to-end latency, security, robustness, avail-
ability, and reliability compared to normal telecommunication services.

Network slicing (NS) is a key enabler of 5G-IoT. It allows the creation of several 
logical networks over mutually shared radio, core, and transport network infrastruc-
tures, which helps in improving cost-efficiency, scalability, and flexibility. The two 
methods that network operators can opt for to provide IoT connectivity are as follows:

• The operator can allocate one network slice for each cellular IoT segment 
offered to multiple enterprises.

• The operator can allocate one network slice to support multiple IoT con-
nectivity segments at once, serving different enterprises.

To provide optimal performances, network slices should be configured with appro-
priate network resources and slicing should be performed end-to-end. The radio, 
transport, and core network must all be sliced accordingly. Network resources can be 
physical or virtual and can be reserved to a specific slice or shared between different 
slices. The creation of slices on demand shall also be supported [22].

Proper isolation of different use cases from each other can ease their management. 
For each slice, the underlying network needs to be reconfigured and the appropriate 
network functions must be enabled on an on-demand basis. Such requirements in 
5G are satisfied by the use of virtualization and softwarization. Software-defined 
networking (SDN) is an example of softwarization. It is a paradigm where network 
functions are implemented using software and they are managed in a logical central 
authority known as an SDN controller, which dynamically manages network ele-
ments and links by defining routes and policies that adapt the network capabilities 
to the requirements of the network operator. Therefore, SDN significantly simplifies 
network management, monitoring, and reconfiguration. Consequently, SDN improves 
the flexibility of slicing by providing an effective way to install links requested by 
virtual network functions (VNFs) for service function chains (SFCs). An SFC is in 
fact a set of VNFs, which shall be executed in a specific order. Additionally, path 
separation or traffic isolation can be provided by SDN to avoid traffic from one slice 
to affect traffic in another slice.

A virtual phasor measurement unit PMU (vPMU) network function enables pre-
cise state measurements to be made across an entire gird. In principle, fast sampling 
will be enriched with software-based synchronization algorithms.
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Network data analytics of data extracted from network monitoring tools, appli-
cations, and devices may provide valuable insights on the network and thus help 
optimizing it. The 5G network data analytics functions were introduced in the 3GPP 
Release 15, and they were further enhanced in Release 16. They provide the follow-
ing functions:

• Detection of anomalies originating from devices by searching for abnormal 
traffic patterns.

• Generation of a suitable policy for background data transfer based on the 
analysis of the network’s key performance indicators such as traffic volume, 
congestion level, and load status details in the specific network area.

• Determination of the optimal traffic routes dynamically by analyzing 
the network status, the source of the packets, and their corresponding 
destination.

• Optimization of the performance of applications having predictable net-
work performances by analyzing the users’ throughputs, the devices’ loca-
tions, and the network’s health.

• Enhancement of network automation capabilities by providing the net-
work slice orchestrator with analyzed data about the network status so that 
resource allocation for the slices can be optimized.

In SGs, 5G NS network slicing allows different slices to be customized with differ-
ent network functions and different service-level agreement (SLA) assurances based 
on the different service requirements across the SGs. We point out two typical SG 
application scenarios that may require 5G wireless communications and NS [23].

DA service scenario. Distribution automation makes use of an integrated infor-
mation management system to regulate energy consumption and to enhance the reli-
ability of power supplies. In the centralized distribution automation scenario, the 
network mainly transmits data such as telemetry and tele-indication information 
uploaded from terminals to primary sites and routine or remote control commands 
sent from primary sites to terminals for the isolation and restoration of faulty lines. 
With evolutions in communication systems, additional automatic control features 
are being added in DA systems. Such functions enable the DA systems to integrate 
a supervisory control and data acquisition (SCADA) system, a power distribution 
geographic information system, DSM, a dispatcher scheduling simulator, a fault call 
service system, and a work management system. Additionally, a distribution man-
agement system (DMS) may be included. This system supports more than 140 func-
tions such as capacitor bank regulation control, substation automation, remote meter 
reading, feeder section switch control and user load control. The prerequisites for 
DA networks are as follows: ultralow latency of a few milliseconds, high isolation 
(distribution automation is a service in the I/II production area of the power grid, and 
it must be completely isolated from services in III/IV management areas), and high 
reliability of 99.999%.

LD service scenario. Millisecond-level precise load control allows interruptible 
loads of low importance to be disconnected upon power grid failures, whereas in 
traditional power distribution networks, there is no flexibility to choose which load 
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to be disconnected and instead, the entire power distribution line needs to be dis-
connected. The stability control system can promptly disconnect the load to mini-
mize damage to the power grid. In scenarios where the precise load control system 
based on the stability control technology is used, emergency handling requirements 
may be met as uninterruptible load within enterprises that are not disconnected, thus 
minimizing the financial loss and bad customer experience. The prerequisites for 
millisecond-level load control networks are as follows: ultralow latency of a few mil-
liseconds, high isolation (precise load control is a service in the I/II production area 
of the power grid, and it must be completely isolated from services in III/IV manage-
ment areas), and a high reliability of 99.999% (Table 12.1).

Based on the application scenarios of smart grids and the architecture of 5G NS, 
the overall architecture of 5G SG design and management is shown in Figure 12.6. 
The technical specification requirements of different service scenarios are met using 
the slices of information acquired from intelligent distributed feeder automation, and 
millisecond-level precise load control. Domain-specific slice management and inte-
grated end-to-end (E2E) slice management are used to meet service requirements in 
these scenarios [23–25].

TABLE 12.1
5G Network Slices Requirements in DA (Distribution Automation) and LD 
(Millisecond-Level Precise Load Control) Smart Grid Scenarios

Service 
Scenario

Communication 
Latency Reliability Bandwidth

Terminal 
Quantity

Service 
Isolation

Service 
Priority NS Type

DA +++ +++ + ++ +++ +++ uRLLC

LD +++ +++ +/++ ++ +++ ++/+++ uRLLC

FIGURE 12.6 5G network slicing architecture of smart grid scenarios: (a) distribution auto-
mation (DA) and (b) millisecond-level precise load control (LD).
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Cost-efficiency may be improved by managing and maintaining the various 
SG network slices in a unified manner. The analysis of SG application scenarios 
shows that their service requirements and technical specifications are not uniform. 
Operation enterprises and network equipment vendors should come up with their 
network architecture designs based on their security, service isolation, end-to-end 
latency, and technical specification requirements and they should perform proper 
technical verification and demonstration of the solutions [26–32].

12.6 CONCLUDING REMARKS

In recent years there is a continued demand for information and communication 
technologies that enable the Smart Grid with highly reliable and low-latency wide 
area monitoring, protection and control. Wireless telecommunication technology 
offers ease deployment, low-latency communication, standard-based solutions, huge 
data-carrying capacity, and excellent network coverage capability. IoTs provide an 
interactive real-time network connection and the cooperation required to realize two-
way and high-speed data sharing across various applications, enhancing the overall 
efficiency of a SG. The application of the IoT in SGs can be classified based on 
the three-layered IoT architecture: IoT smart devices for the monitoring of equip-
ment states, IoT for information collection from equipment with the help of its con-
nected IoT smart devices through communication networks, and IoT for controlling 
the SG through application interfaces. Significant challenges come from application 
requirements as well as the infrastructure complexity and heterogeneity. In the SG 
generation level, the IoT helps to increase the controllability and observability from 
an operator point of view. In distribution layer, the implementation of IoT improves 
the observability of lines, which results in better monitoring of the transmission grid. 
In smart cities, smart buildings, and smart homes as well as industrial IoT, different 
types of sensors and ICT infrastructure help efficient management of resources and 
assets.

The new 5G mobile networks are emerging and are rapidly being deployed world-
wide enabling huge capacity, zero delay, faster service development, elasticity and 
optimal deployment, less energy consumption, and enhanced security. Perhaps the 
highest novelty is radio access technology (RAT) design, which includes applications 
requirements of SG. The 5G manila supports distributed monitoring and control 
functionality applications. However, the analysis of communication delay character-
istics is necessary for designing a reliable network. Also, 5G cellular networks have 
a great potential for support massive IoT machine interconnections and transmit data 
very quickly with ultrareliability and low-latency. We pointed out a symbiotic rela-
tionship between two 5G mMTC and uRLLC modes in SG communication.

However, the lack of standards and interoperability could slows the 5G-IoT deploy-
ment. IoT-based SG is a complex system that needs heterogeneous communication 
technologies to fulfill diverse requirements. Hence, the primary objective of commu-
nication standardization is to achieve interoperability among different components 
of SG system. 5G is focused on supporting various vertical industries, such as energy, 
manufacturing, and transport. The energy sector is one of the most demanding 5G 
use case, which poses significant new requirements. In this chapter, we focus on the 
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exploration of requirements and identification of 5G innovative concepts toward the 
realization of a SG use case that will stress 5G-IoT current results. We point out the 
main types of 5G network slices: massive Machine Type Communication (mMTC), 
and ultra-Reliable and Low-Latency (uRLLC), and enhanced Mobile Broadband 
(eMBB).

To investigate the opportunities and challenges of integrated SG architectures, 
we first analyze the two-way communication delays in a wide-area monitor system 
(WAMS, which may cause power system fluctuations and expand the fault area. The 
highest novelty in 5G is uRLLC, which aims to provide extremely robust links with 
guaranteed latency and reliability. The uRLLC service transmits data within 1 ms 
and contributes to improve real-time state awareness capabilities, SE state estima-
tion, and load forecasting. Therefore, fast real-time algorithms of state awareness, 
prediction algorithms of cascading failures, and decision-making algorithms of con-
trolling massive action terminals should be further studied. Furthermore, collected 
big data requires analytics and visualization in an intuitive way for operators and 
users to manage their devices.

Next, we pointed out that the interoperable 5G-IoT solutions are fully compliant 
and aligned with standards developed by 3GPP consortia. Technical specifications 
of LTE-M and NB-IoT are fulfilling ITU requirements and thus considered as 5G 
MTC technology for IoT devices. The 5G-based IoTs can doubtless provide better 
infrastructure for advanced SG use cases. However, there are still many issues, which 
need to be addressed by the standardization community to deal with interoperabil-
ity issues of IoT-based SG systems. Moreover, our analysis shows that the service 
requirements based on technical specifications vary greatly according to scenarios. 
Researchers should further quantify network technical specifications and integrated 
architecture design, including further quantifying 5G network slice requirements, 
and end-to-end uRLLC latency requirements as well as performing technical verifi-
cation of the solutions.
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13 Privacy Requirements in a 
Hyper-Connected World
Data Innovation vs. 
Data Protection

Myriah Abela
Betsson Group

13.1 INTRODUCTION

As new use cases for processing of personal data continue to emerge with the evolu-
tion of mobile telephony, this chapter aims to explain some of the functionalities of 
mobile telephony technologies to explore the implications and risks to data privacy 
and review current and proposed legislation setting out rights and obligations for the 
actors involved (all relevant industries, authorities and users). Mobile telephony is 
today a pervasive tool used in almost every aspect of a user’s daily life. This evolu-
tion of digital application, artificial intelligence (AI) and the unlimited possibilities 
offered to both entities and consumer groups has introduced the need for specialised 
privacy legal protection. However, in order not to limit AI innovation, while ensuring 
such technology does not pose a threat to the rights and freedoms of users, a norma-
tive response is necessary to maintain the right balance.

The General Data Protection Regulation (GDPR) EU 2016/679, which came into 
effect on 25 May 2018, is a technology-neutral law whose application adapts with 
society’s technological progress, including through AI. AI cannot serve the public 
good without strong rules in place. GDPR enforces user rights relating to the pro-
cessing of their personal data as well as imposes obligations on the various actors 
(controllers and processors), thereby shaping the way AI is developed and applied. 
The principles of privacy and data protection by design and default, restriction to 
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automated decision-making without human intervention and rights to meaningful 
information on the logic involved are just some of concepts, which shall be further 
analysed in this chapter.

In 2018, the European Commission announced a programme pledging to make 
the EU fit for the digital age with the Commission publishing a White Paper on AI in 
2020 [1]. The strategy includes a proposed AI Regulation laying down harmonised 
rules with the aim of developing an ethical approach towards human-centric, secure 
and trustworthy AI. AI adoption continues to increase at a rapid rate across every 
sector of the economy with the COVID-19 pandemic accelerating the automation of 
processes. At the same time, we can expect the challenges posed by big data and digi-
tal technologies, including the threat of cybercriminals abusing these technologies 
(e.g., spreading disinformation through deepfakes, AI-supported password crack-
ing and hacking, social engineering, human impersonation, facilitation of terrorism 
through AI-empowered crypto-trading by terrorist groups, morphed passports), to 
continue emerging over the coming years. A regulatory framework safeguards the 
fundamental rights and freedoms of natural persons, sets ethical standards, enhances 
growth, embeds trust in businesses and allows users to fully reap the benefits of such 
new technologies.

13.2  EVOLUTION OF SECURITY AND PRIVACY 
ISSUES IN WIRELESS SYSTEMS

Each decade since 1980 has undergone a significant advancement in wireless com-
munication technology, with each generation introducing innovative functionalities 
supporting the demand for enhanced performance, efficiency and novelty. However, 
this progress has also brought with it new threats to user privacy and data security. 
Through the generations, security became an increasingly primary concern due to 
the potentially severe consequences. When assessing security in mobile systems, the 
main objective is in preventing the loss of confidentiality and integrity of a user’s or 
operator’s data, as well as ensuring the availability of data.

During the 1980s the 1G network was established to provide mobile device users 
with the functionality for transmission of data over analog signals, supporting only 
voice calls with a maximum speed of 2.4 Kbps. 1G prioritised function and disre-
garded data privacy as the network was not encrypted. This caused the network to 
be prone to several threats including eavesdropping and impersonation attacks [2]. 
In 1991, 2G was introduced based on digital modulation techniques moving away 
from the analog signals used for 1G. 2G follows the Global Systems for Mobile 
Communications (GSM) standard which further defined how communication from 
one mobile station (MS) to another is performed. This system is still used to this day 
as the baseline for modern communication. The maximum speed increased to 14.4 
Kbps allowing for the possibility to have both voice calls and short message services 
(SMS). The 2G network evolved into 2.5G with the introduction of the General Packet 
Radio Service (GPRS) standard which supported the Internet Protocol (IP) allowing 
mobile devices to connect to the Internet through the Wireless Application Protocol 
(WAP). The maximum speed allowed by 2.5G went up to 53.6 Kbps allowing the 
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user to use the Multimedia Message Service (MMS) whereby media such as pictures 
could be sent. 2G networks provided for anonymity through the usage of tempo-
rary identifiers and authentication via encryption performed through the Subscriber 
Identity Module (SIM) card. Nevertheless, this was a one-way authentication with 
the network identifying the user, but there was no way for the user to authenticate the 
network. This allowed for rogue base stations to disguise themselves as legitimate 
networks to access user data, rendering the network susceptible to eavesdropping. 
On top of this, recent discoveries have shown that the 2G network has backdoors 
implemented, revolving around a supposedly 64-bit encryption key used by GEA-1 
which in reality is as effective as a 40-bit length key, thus making the key much less 
secure than proclaimed [3].

In less than 10 years, the 3G network was introduced in 1998 providing a high-
speed data transmission. The speed depended on the device mobility reaching a 
maximum speed of 384 Kps for moving devices and 2 Mps for non-moving devices. 
This allowed for the introduction of certain services including video calling, access 
to mobile Internet and TV streaming. While the security framework of 3G is based 
on 2G technology, some of the weaknesses noted in the 2G system were remedi-
ated through the introduction of a new technology called the Universal Mobile 
Telecommunication System-Authentication and Key Agreement (UMTS-AKA) 
protocol [4]. As already noted, the 2G network only had a one-way authentication. 
This was remediated via AKA which introduced two-way authentication between 
the mobile phone and the 3G network. Like 2G, the 3G network evolved into 3.5G 
and 3.75G as more features were introduced before the emergence of the 4G network. 
Nevertheless, the 3G network, which is still in use primarily as a fall-back to newer 
networks, remains vulnerable to attacks which can be performed on the IP, including 
threats to the confidentiality, integrity and availability of data:

• Eavesdropping – messages intercepted without detection.
• Masquerading – use of impersonation to gain unauthorised access.
• Traffic analysis – observation of metadata to identify a user’s location.
• Message Forgery – also known as man-in-the-middle attacks, involving 

the interception of messages and modification of content without the user’s 
knowledge.

• Misuse of privileges – exploitation of privileges to gain unauthorised access 
to services/information.

• Distributed Denial of Service (DDOS) – use of several hosts to launch an 
attack by sending excessive data to a network, beyond its intended capac-
ity, with the intention of bringing down a network, thereby disrupting 
availability.

• No cryptographic separation of keys – session keys generated for a network 
are valid for another network due to no cryptographic separation of security 
keys between roaming networks.

In 2009, the 4G technology, also known as Long-Term Evolution (LTE) network, was 
introduced. LTE is a series of upgrades to the UMTS technology, offering high speed 
and low latency to allow for more advanced services including IP Telephony VoIP, 
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High-Definition (HD) mobile television, video conferencing with multiple active par-
ticipants, fast mobile web access, gaming and cloud computing. 4G introduced a 
new set of cryptographic algorithms such as EPS Encryption Algorithms (EEA) and 
EPS Integrity Algorithms (EIA), and the Evolved Packet System-Authentication and 
Key Agreement (EPS-AKA). However, despite the efforts to enhance the network’s 
security, the security architecture still suffered from various weaknesses. Since the 
4G network is heavily based on IP technology, the threats noted in LAN and WAN 
networks were transferred to the 4G network. Furthermore, the large-scale use of the 
network resulted in an increase in the scale and frequency of these threats. The 4G 
SIM communicates its identity to the network in plain text. This can pose problems 
as attackers are able to intercept the data being transferred. This feature has been 
remediated in the 5G network by adding a layer of encryption embedded within the 
5G SIM called a SUCI (Subscription Concealed Identifier). As a result, unencrypted 
data such as the IMSI is not sent across 5G networks, allowing for the approval of 
lawful interceptions in specific cases. For example, where the court issues subpoena 
for investigation, operators may intercept communications on behalf of authorised 
law enforcement agents. The 5G network was globally implemented by 2020 and is 
the first technology to use unified authentication, supporting Wi-Fi, cable and 3GPP 
networks, offering speeds 100 times faster than 4G. Three disruptive technologies 
for 5G technology: virtualisation, edge computing and geolocation allow for new 
applications in various sectors such as autonomous driving cars, telehealth solutions, 
cloud investments for financial services and augmented reality. Through Multi-
Access Edge Computing (MEC), execution resources for applications with network-
ing are moved closer to the end user, typically within the mobile telephony network 
of a telecommunications operator, or may be placed in premises such as factories, 
homes and in vehicles (such as planes, trains and cars). Instead of sending all data to 
the cloud for processing, the network edge analyses, processes and stores the data, 
resulting in low latency, high bandwidth, as well as trusted computing and storage. 
This allows for capabilities close to real time, which are essential for certain use 
cases such as autonomous vehicles, smart homes, smart energy and remotely assisted 
surgery. Furthermore, with 5G location data is more accurate due to the smaller cells 
(areas covered by one antenna), providing very detailed data to network operators.

The technological leap is now occurring from 5G to the 6G wireless net-
work technology which is expected to be implemented around the year 2030 
enabling hyper-connectivity between people and things. It is also expected to 
extend mobile communication to a new generation of services using AI as its 
main driver, machine learning (ML), enhanced edge computing and distributed 
ledger (DL) technologies such as blockchain. Data processing, threat detection, 
traffic analysis and data encryption are considered the most critical issues in 6G 
networks. With the considerable increase of coverage and network heterogene-
ity, there are concerns that 6G security and privacy can be more impacted than 
the previous generations. For example, the involvement of connected devices in 
everyday life poses serious risks of security attacks which are not limited to 
pecuniary or reputational damage but could also be fatal (e.g., fatal car crash 
due to attacks on autonomous driving). Further, the achievements of AI can be 
misused for large-scale online surveillance.
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Risks to users’ data privacy present in previous technologies continue to increase 
with the pervasiveness of new technologies, including risks of precise user geoloca-
tion; profiling including automated decision-making; existence of multiple actors in 
the chain of processing potentially leading to ambiguity and unaccountability with 
respect to responsibility for the data processing; lack of a homogeneous security 
framework (as 5G allows for the existence of multiple parties in the chain of commu-
nication); and cross-border data processing implications [5]. To ensure this techno-
logical revolution is ethical and considerate of the primary societal values of privacy, 
security and transparency, entities shall take into account the following obligations:

• Analysis of the functional roles of the parties in the data processing chain 
to assign responsibilities accordingly. The concepts of controller, joint con-
troller and processor play an essential role in the application of the GDPR, 
since they establish who shall be responsible for compliance with different 
obligations, and how users can exercise their rights in practice.

• Information provided to users, including the purpose of processing, the 
legal basis, the reliance on automated decisions, including profiling, as well 
as the users’ data subject rights, must be laid out in a clear and understand-
able manner.

• Carrying out a data protection impact assessment (DPIA) where the data 
processing is likely to result in a high risk to the rights and freedoms of data 
subjects, and at least in the cases of: (i) systematic and extensive evaluation 
of data subjects, including profiling, with decisions producing legal or simi-
larly significant effects on the user; (ii) processing of special category data 
on a large scale (e.g., health data); and (iii) systematic monitoring of public 
areas on a large scale.

• Application of privacy by design and default from the very early stages of 
the design process of 5G products and services.

13.2.1 whaT IS claSSIfIEd aS PErSonal daTa?

With 5G technology permeating most areas of our lives to facilitate sectors includ-
ing financial, energy, transport, health and the entertainment industry, this amounts 
to new purposes and means for collecting and processing of a huge volume of data, 
including personally identifiable information. With the prospects of 6G technology, 
the potential for new business models, novel services and data processing could be 
limitless. Existing technology-neutral privacy regimes address such data processing 
and lay down the requirements to ensure that any such data processing is done fairly, 
lawfully and in a transparent manner.

The GDPR has come into effect during a period of digital change where users 
(also known as data subjects) are faced with considerable risks to their privacy rights 
and freedoms. GDPR specifically regulates the processing of personal data, which is 
defined as any information relating to an identified or identifiable natural person who 
can be identified, directly or indirectly. The definition for personal data is purposely 
wide to ensure GDPR’s horizontal rules to protect users consistently regardless of 
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the technology or industry. As per Recital 26 of the GDPR, personal data which has 
only undergone pseudonymisation, and which can therefore be attributed to a natural 
person by use of additional information, is still be considered as ‘personal data’. Such 
additional information must be separately retained and secured through adequate 
organisational or technical measures, such as encryption.

Throughout its text, the GDPR also uses the term ‘data’, which should be under-
stood as data other than personal data as defined above. This non-personal data con-
sists of either data which originally does not relate to any identified or identifiable 
natural person (e.g., information on weather conditions), or data which was originally 
personal data and was rendered anonymous. Adequately anonymised data must be 
distinguished from pseudonymous data as it cannot be attributed to a specific person, 
even if combined with additional data. Such ‘data’ is out of the Regulation’s scope. In 
the case of IoT, AI environments and technologies enabling big data analytics, a data-
set is more likely to be composed of both personal and non-personal data, referred 
to as a ‘mixed dataset’. Where the non-personal data and the personal data parts are 
‘inextricably linked’, the rights and obligations enforced by GDPR shall apply to the 
entire mixed dataset, even where the personal data comprise only a small percent-
age of the whole dataset. The concept of ‘inextricably linked’ refers to a scenario 
where the separation of personal data from non-personal data is economically inef-
ficient, not technically feasible or would otherwise decrease the dataset’s value. For 
example, in the case of mobile health applications, the separation between personal 
and non-personal data is not so clear-cut. Nevertheless, while the value of such data 
sources to improve on healthcare is undisputed, the strict requirements relating to 
special category data under GDPR must be adhered to [6].

As a result of the higher capacities in 5G technology and high density of small 
cells, the knowledge of the cell, which is related to a user, can divulge more detailed 
personal data. High-efficiency device positioning has led to the processing of more 
precise geolocation information of the device’s user which can reveal further data by 
cross-checking information about a location. As a result, possible identification of 
personal data could be used for user profiling and tracking. While location-tracking 
data is highly valuable for legitimate purposes such as advertising and surveillance, 
without having adequate controls in place users may suffer from significant harm 
(e.g., such data may be used by unauthorised parties for purposes ranging from unso-
licited advertising communication to targeting vulnerable data subjects for political, 
religious persecution or other criminal purposes).

Big data is at the heart of 5G technology which can support massive connectiv-
ity across billions of devices generating huge amounts of data. Big data is often 
described in terms of five main components: (i) the volume of data generated; (ii) 
the variety of data sources and formats of data; (iii) the velocity with which the data 
is produced and the speed at which the data flows; (iv) the veracity/quality of data; 
and (v) the value of data [7]. This involves the creation and analysis of vast datasets 
which may also include personal information, e.g., personal data derived from moni-
toring devices in clinical trials, geolocation information and biometric data from 
body-worn devices. Big data analytics also can generate new personal data, e.g., car 
sensors produce information about the vehicle itself but can also be used to analyse 
patterns in people’s driving behaviour which can be used in determining insurance 
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premiums. In certain cases, personal data is irrevocably removed prior to the analy-
sis, and the now anonymised data is aggregated to obtain insight about the target 
population as whole. This is the case with data from clinical trials which undergoes 
anonymisation before it is used for data analysis. Anonymisation should not only be 
regarded to avoid regulatory burdens since it is out of scope of GDPR, but is ulti-
mately a means towards risk mitigation, allowing big data analytics to give users the 
assurance that the data will not identify them.

13.2.2 PrIncIPlES for daTa ProcESSInG

With its extraterritorial reach the GDPR does not only apply to organisations estab-
lished within the EEA but extends to non-EEA-established organisations which 
offer goods or services and/or monitors the behaviour of individuals in the European 
Union (EU). The GDPR enshrines seven foundational principles regarding personal 
data: (i) lawfulness, fairness and transparency; (ii) purpose limitation; (iii) data 
minimisation; (iv) accuracy; (v) storage limitation; (vi) integrity and confidentiality; 
and (vii) accountability. Although not specifically mentioned in the GDPR, its provi-
sions apply to the new ways of personal data processing enabled by AI. However, 
the traditional foundational principles present a challenge to their application to AI 
processing.

Firstly, AI systems entail the processing of personal data for multiple purposes 
that may not be known at the time of collection. For example, when big data analyt-
ics is engaged, unexpected correlations of data are discovered which are used for a 
new purpose. Under the purpose limitation principle, the GDPR requires controllers 
to distinguish between these purposes and identify an adequate legal basis for each 
one, as without proper control such multiple purposes may result in the unforeseen 
use of personal data. However, the purpose limitation principle is not compatible 
with big data operations [8]. This is where the GDPR throws big data processes a 
lifeline by providing for the scenario of ‘further processing’. Via Article 6(4) of the 
GDPR, entities are permitted to further process the personal data for compatible 
purposes by carrying out a compatibility assessment to guarantee a balance between 
their own interests and the rights and freedoms of affected users, unless the lawful 
bases of consent or legal obligation can be relied upon. Where the further process-
ing is compatible no additional legal basis from that which allowed the collection of 
the personal data in the first place is required. Through the compatibility assessment 
entities must consider five factors to establish whether the reuse of personal data is 
compatible with the original purpose, including (i) any link between the purposes of 
the initial and further processing; (ii) the reasonable expectation of the user; (iii) the 
nature of the personal data; (iv) the potential consequences of the further processing; 
and (v) whether adequate safeguards will be implemented such as pseudonymisation 
and encryption.

The reuse of data for scientific or historical research or statistical purposes (e.g., 
big data applications aimed at market research) is presumed by GDPR to be com-
patible with the initial purpose and would therefore be admissible unless it involves 
risks for the user which cannot be mitigated. The GDPR specifically clarifies that the 
use of personal data for scientific purposes should be broadly interpreted to include 
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technological development and demonstration, fundamental research, applied 
research, privately funded research and studies conducted in the public interest in 
public health. Nevertheless, this broad interpretation must not be stretched beyond 
its common understanding that ‘scientific research is a research project set up in 
accordance with relevant sector-related methodological and ethical standards, in 
conformity with good practice’ [9]. As noted, the GDPR specifies that this exception 
subsists provided that adequate safeguards are applied. These technical and organ-
isational measures include controls to ensure data minimisation (such as anonymi-
sation or pseudonymisation of data), aggregate results and that these results are not 
used in support of measures or decisions regarding a specific user. Yet, this marks 
another challenge for big data analytics as results are sometimes used in a unique 
interaction with a user. For example, while a company may benefit from this excep-
tion to measure the customer engagement rate, it shall not be able to use the results 
to target specific customers with direct marketing without identifying an adequate 
legal basis.

In certain cases, consent would be required, otherwise ‘further processing’ 
would not be deemed compatible, e.g., tracking and profiling for purposes of direct 
marketing, behavioural advertisement, data-brokering, location-based advertising 
or tracking-based digital market research [10]. The use of consent for ‘further pro-
cessing’ necessitates the same requirements as in the case of consent for initial 
collection. Entities must be aware of the high bar set for consent to be deemed 
valid. Not only can users withdraw their consent at any time, but to be able to rely 
on consent, organisations must ensure that the consent is freely given, specific, 
informed, unambiguous, involves a clear affirmative act on the part of the user and 
is documented. This means that users must have all required information to make a 
free determination on how their data can be used without any detriment. This may 
pose a challenge to operations involving AI as their dynamic and complex nature 
severely contradicts the notion of transparency and explainability. Furthermore, 
intellectual property rights and competition issues may restrict the publication of 
such information. In certain cases, transparency may also hinder both public and 
private entities from carrying out their duties (e.g., predictive policing systems or 
anti-money laundering controls of subject persons) or may prejudice the data con-
troller’s information security controls by allowing users to bypass such controls. 
Against this context, the GDPR Article 13(1)(f) stipulates the requirement for the 
data controller to disclose ‘meaningful information about the logic involved, as 
well as the significance and the envisaged consequences’ for the user. Data con-
trollers may reveal the type of input data and the intended output, explaining also 
the variables, rather than providing specific detail on the correlation each variable 
has in regard to the output. For users to make a free determination, the relationship 
must not be characterised by a power imbalance. This is likely within the public 
sector and the workplace, where the data subject would not have any realistic alter-
native to accepting the terms set by the controller. In such cases, the controller 
must assess whether there are other lawful bases which are more appropriate for 
the processing operation in question. Where the user has given consent for specific 
‘further processing’, the controller may further process the personal data irrespec-
tive of the compatibility of the purposes.
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The principle of data minimisation requires entities to only process data which is 
adequate, relevant and limited to what is strictly necessary in relation to the purposes 
for which they are collected and/or further processed, as well as for the data to be 
kept for no longer than is necessary. This again poses a challenge for big data which 
as stated earlier involves the processing of a large amount of data from a variety of 
data sources which may be used to discover unexpected correlations. Due to the 
volume and variety of datasets available, the issue is not only whether the data pro-
cessed is excessive but also whether it is relevant. There are various techniques that 
can be implemented to ensure organisations only process the minimum personal data 
necessary for their purpose. During the training phase, entities must analyse whether 
all input variables included in a dataset are relevant for the purpose through feature 
selection techniques. Non-informative or redundant features should be removed to 
not only cater for this principle but improve the model’s statistical accuracy. Training 
data can be biased if it represents previous discriminatory decisions, due to inten-
tional discrimination, feature selection or overrepresentation of a particular group. 
Imbalanced training data may be balanced out with the addition or removal of data 
on the underrepresented segments. For example, the use of facial recognition tech-
nology has been criticised for violation of privacy rights, perpetuating gender norms 
and racial bias. These systems were found to generally work best on middle-aged 
White men, but performed poorly on people of colour, women, children or the elderly 
[11]. The curse of dimensionality, as coined by Richard E. Bellman in 1961, observes 
that when a model is supplied with the optimal number of features, this is said to 
increase the model’s statistical accuracy. By adding a large number of features, the 
model is more likely to overfit the training data, thereby producing a model that per-
forms particularly well during testing scenarios but fails to classify correctly once 
deployed. This means that data minimisation not only safeguards users’ data pri-
vacy but also ensures that classification results that can discriminate against minority 
groups are eliminated from the model’s features during the training phase. Moreover, 
AI models which are trained with biased data will reproduce that bias which may 
be discriminatory on the basis of racial or ethnic origin, political opinion, religious 
beliefs, trade union membership, genetic or health status or sexual orientation [12]. 
The case of 20-year-old Dylan Fugett and 21-year-old Bernard Parker illustrates this 
classification discrimination. In 2013 Fugett and Parker were arrested in Florida, 
United States for drug possession. They both had previously committed crimes of the 
same nature. The model determined the probability of recidivism by giving a score 
between 1 and 10 (10 being highly likely to re-offend). While Parker was scored as 
10, Fugett was scored as 3, with the only discernible difference being that Parker was 
Black while Fugett was White. Fugett was later arrested for drug possession, while 
Parker did not commit any subsequent offences [13].

On the other hand, removing certain features might have the unintended adverse 
effect of reducing the model’s statistical accuracy. While the principle of accuracy 
under GDPR requires entities to take all reasonable measures to ensure personal data 
is kept up to date, in the context of AI statistical accuracy refers to the proportion 
of answers which the AI model guesses correctly. This means that having a 100% 
statistically accurate model is not necessary to comply with the principle of accuracy, 
but it is rather necessary for compliance with the fairness principle, i.e., the personal 
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data is not used in a manner which could have unjustified adverse effects on the 
user. The GDPR does refer to statistical accuracy in recital 71, requiring entities to 
use appropriate mathematical or statistical procedures for the profiling of users to 
mitigate the risk of inaccuracies, errors and discrimination. Entities should there-
fore test statistical accuracy at the design stage but also review the measures applied 
throughout the model’s lifecycle. Privacy-preserving techniques such as anonymisa-
tion or pseudonymisation may be adopted to ensure compliance without compromis-
ing statistical accuracy.

AI may produce automated decisions which have a legal or similarly significant 
effect on users, and as a result, specific lawful bases need to be applied. Solely auto-
mated decision-making can be only carried out when the decision is (i) necessary 
for entering into or performance of a contract; (ii) based on the individual’s explicit 
consent; or (iii) authorised by law. Even when the first and second exceptions apply, 
organisations are required to implement adequate measures when the automated deci-
sion is made by giving users clear information about the logic behind the AI model, 
explain the significance and envisaged consequences of the processing, introduce 
simple means for users to request human intervention or challenge a decision and 
carry out regular checks to ensure the model is working as intended. Furthermore, 
entities cannot base automate decisions on special category data (data on race, health 
and sexual orientation, amongst others) unless the user gave explicit consent or the 
processing is necessary for substantial public interest on the basis of law. For ‘human 
intervention’ to be deemed adequate entities must ensure that this oversight is car-
ried out by someone who has the authority and competence to overturn the deci-
sion. Without any actual influence on the decision, this would still be a decision 
based solely on automated processing. The forthcoming proposed AI Regulation also 
includes the requirement for ‘human oversight’ for high-risk AI systems which need 
to be designed in a way that can be effectively overseen by natural persons before 
placing them on the market. While the AI Regulation does not specify which mea-
sures must be taken to implement this human oversight, the European Commission’s 
Whitepaper on AI provides potential mechanisms which may be applied to comply 
with this requirement: (i) the AI system output is not effective unless it is reviewed 
and validated by a human; (ii) the AI system output is immediately effective but 
human intervention is ensured afterwards; (iii) monitoring the AI system while in 
operation with the ability to intervene in real time and deactivate; and (iv) imposition 
of operational constraints on the AI model at the design stage [14]. As for the require-
ment to implement adequate measures to safeguard users, generally the output of an 
AI model is not to be considered as factual information on the user but rather repre-
sents a statistically informed prediction. Errors or bias in the data or in the automated 
decision-making process can result in incorrect predictions and may impact the user 
negatively. In order not to misinterpret such outputs as factual information, entities 
should explain that the model makes statistically informed predictions. Moreover, 
users should be given the opportunity to request the inclusion of additional explana-
tory information in their record to counter any incorrect inferences.
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13.3 DATA PRIVACY BY DESIGN

As 5G technology becomes increasingly widespread, entities are required to ensure 
that it is used in a way that respects users’ data privacy rights. GDPR enshrines 
the principle of data protection by design and by default as well as the obligation 
of carrying out DPIA to ensure appropriate technical and organisational measures 
are in place to mitigate possible risks to users’ data privacy rights. In line with the 
risk-based approach, carrying out a DPIA is not mandatory for every processing 
operation, but only for high-risk processing activities in relation to personal data. 
Where AI technology involves the processing of personal data, a DPIA needs to be 
carried out to address the inherent risks in AI systems to ensure non-discrimination, 
fairness, equity and security. AI actors are accountable for the design and imple-
mentation of AI systems in such a way as to ensure that personal data is protected 
throughout the life cycle of the AI system.

First, entities involved in the development and deployment of AI systems must 
analyse what role they play in the data processing chain. The GDPR concepts of 
‘controller’, ‘joint controller’ and ‘processor’ are functional concepts which aim to 
assign responsibilities according to the actual roles of the parties. The controller 
generally determines the purposes and means of the processing, i.e., the why and 
how of the processing, while some more practical aspects of implementation are left 
to the processor. It is also not necessary for an entity to have access to the data that 
is being processed to be qualified as a controller. On the other hand, for an entity to 
qualify as a processor it must be a separate entity in relation to the controller and it 
processes personal data on the controller’s behalf and on its instructions. The con-
troller’s instructions may leave a certain degree of discretion on how to best reach 
the controller’s ultimate purpose for processing, allowing the processor to choose the 
most adequate technical and organisational means. In the context of AI systems, an 
entity could be designated as controller where it is ultimately taking decisions with 
respect to the broad kind of ML algorithm that will be used to create the model (e.g., 
regression models, decision trees, random forests, neural networks); feature selec-
tion; the model’s parameters; evaluation metrics and loss functions (e.g., the trade-off 
between false positives and false negatives); decisions on the source and nature of 
personal data used to train the model; the purpose(s) of processing; the target vari-
ables of the model; and for how long the data is to be retained. A processor may still 
be afforded some discretion to make decisions to support the AI model, including 
the programming language and code libraries the tools are written in; the configu-
ration of storage solutions; how to optimise learning algorithms to minimise their 
consumption of computing resources; the details on how the model will be deployed 
(e.g., choice of virtual machines, microservices and APIs); and the graphical user 
interface [15]. The roles are not as clear-cut in those cases where an AI model is 
continuously being upgraded and enhanced while in use by the provider’s clients. If 
an AI service provider isolates client-specific models, this enables its clients to act as 
the ultimate decision-maker for the model, rendering them as sole controllers, while 
the provider as the processor.
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AI also raises notable risks for the rights and freedoms of users, as well as 
compliance challenges for entities. The data protection implications of AI depend 
on the specific use case, the characteristics of the user population and the varying 
likelihood and severity of the rights and freedoms of natural persons. A DPIA is 
an important tool for demonstrating accountability as it allows entities to manage 
these risks resulting from the processing of personal data by adopting risk-based 
controls. The requirement for a DPIA is also included within Article 29(6) of the 
EU’s proposed AI Regulation where users of high-risk AI systems are required to 
perform a DPIA. In the context of AI, it is unrealistic to adopt a ‘zero tolerance’ 
approach to risks to users’ rights and freedoms. Entities are rather required to 
ensure that these risks are identified and mitigated. Generally, the use of AI will 
involve data processing which is likely to result in a high risk to users (e.g., use 
of new technologies or novel application of existing technologies, data matching, 
geo-tracking or behavioural tracking) and therefore shall require a DPIA. Entities 
which determine that their use of AI does not subject them to this obligation must 
still document their justification.

A sandbox-based approach would be appropriate to assess the AI system in a fully 
controllable environment, prior to its deployment and widespread use. By means 
of the DPIA entities are to document: (i) a description of the data flows and stages 
when AI processes and automated decisions may produce effects on users; (ii) the 
statistical accuracy of the model which may affect the fairness of the personal data 
processing; (iii) the degree of human involvement in the decision-making process 
and at which stage this takes place; (iv) the compatibility assessment for any further 
processing; (v) the assessment of any existing or potential trade-offs (e.g., data mini-
misation and explainability versus statistical accuracy); (vi) how individual rights are 
ensured; (vii) the assessment of risks to users such as discrimination as a result of 
bias and inaccuracy of datasets used, misuse of data analytics to target users based 
on their race, political opinion, gender (e.g., to manipulate swing voters), as well as 
risk scenarios related to insufficient security measures; and (viii) the current and 
proposed controls to mitigate the identified risks (e.g., data minimisation, storage 
limitation and purpose limitation or compatibility assessment for further processing, 
and providing users the option to opt-out of the data processing). The risk assessment 
must identify possible attack paths that a threat actor can use to exploit the vulner-
abilities [16], including the following:

• Misconfiguration of infrastructure allowing for the penetration of threat 
actors via external interfaces resulting in the compromise of data.

• Lack of access controls allowing unauthorised actors to perform adverse 
actions leading to confidentiality/integrity/or availability breach.

• Espionage by actors using malware abusing the vulnerability of low-quality 
server components.

• Actors may target end users, e.g., through scam messages as part of a large-
scale phishing attack.

• Exploitation of low security devices such as IoT (e.g., sensors, home appli-
ances, etc.) to attack the network by overwhelming its signalling plane.

• Network failure due to interruption of electricity supply or natural disasters.
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On a risk-based approach, entities are to identify which contractual, technical and 
organisational controls need to be implemented to mitigate the identified risks, 
including the implementation of strict access controls on a need-to-know basis; phys-
ical security; software updates and patch management; business continuity plans; 
incident response management procedures; performing pre-contractual supplier 
due diligence, and ongoing audits on third-party providers where AI systems are 
purchased, licensed or leased; entering into adequate agreements to ensure the per-
sonal data is safeguarded when processed by third parties on behalf of the control-
ler; ensuring appropriate data transfer mechanisms are applied and transfer impact 
assessments are carried out in the case of transfers of personal data outside of the 
EU/EEA. Recital 78 of the GDPR is relevant in this respect as it encourages entities 
developing AI systems to take into account data privacy at the design stage. The con-
troller is ultimately responsible for the fulfilment of the privacy by design obligation 
for the processing carried out by its processors and sub-processors. At procurement 
stage, controllers should set out the system requirements and conduct an evaluation 
of the trade-offs as part of the supplier due diligence process. If the applied controls 
do not mitigate the inherent high risk to an acceptable level, entities must first con-
sult with their competent supervisory authority prior to the commencement of the 
processing. The necessary efforts must likewise be made for the identification and 
the mitigation of new risks through risk management procedures throughout the AI 
system lifecycle.

Major 5G network and IoT device manufacturers are in third countries outside 
the EU/EEA, where personal data may be subject to a greater risk as the data pro-
tection standards are not ‘essentially equivalent’ to those of the EU under GDPR. 
In most cases, the 5G function would require the cooperation of numerous network 
providers located in different jurisdictions worldwide. In the Schrems II judgement 
(C-311/18), the Court of Justice of the European Union (CJEU) clarified that the pro-
tection granted to personal data in the EU/EEA must travel with the data wherever it 
goes. The CJEU clarified that the level of protection in third countries does not need 
to be identical to that guaranteed under GDPR but must be ‘essentially equivalent’. 
The transfer mechanisms under Article 46 of the GDPR are the first step in ensuring 
the transfer is lawful, but these do not operate in a vacuum and must be accompanied 
by a transfer impact assessment. The CJEU noted that the data exporters in collabo-
ration with the importer in the third country are responsible for verifying if the law or 
practice of the third country impinges on the effectiveness of these transfer mecha-
nisms. In those cases, exporters must implement supplementary measures to elevate 
the protection afforded to data up to the level required by EU law [17]. In the context 
of AI entities must consider measures for the de-identification of data. While data 
which has been irreversibly anonymised would be out of scope of GDPR, since it is 
no longer personal data, with large datasets processed for big data analytics there are 
uncertainties as to whether anonymisation can be truly achieved. A Massachusetts 
Institute of Technology (MIT) study of anonymised credit card data established that 
four vague pieces of information were enough to identify 90% of users in a dataset 
recording 3 months of credit card transaction by 1.1 million users in 10,000 shops in 
a single country. The bank had removed their customer names, credit card numbers, 
shop addresses and the exact time of the transactions. The remaining information 



458 Driving 5G Mobile Communications with AI towards 6G

included the amounts spent, the name and location of the shops at which the pur-
chases took place and a random identification number representing each customer. 
Since each customer’s spending pattern is unique, the data had a very high ‘unic-
ity’ rendering it vulnerable to ‘correlation attacks’, i.e., through correlation of the 
available data with information about the users from outside sources, user identity 
could be revealed [18]. This means knowing whether anonymisation has been truly 
achieved is never clear-cut, and furthermore anonymisation decreases the data util-
ity. To preserve levels of utility while safeguarding the data, entities should consider 
the following supplementary measures:

• the personal data transferred is pseudonymised, i.e., processed in such a 
manner that the personal data can no longer be attributed to a specific user, 
nor be used to single out the user in a larger group without combining the 
data with other data sets.

• this additional information is held exclusively by the data exporter and 
kept separately within the EEA or in a third country offering an essentially 
equivalent level of protection to that guaranteed within the EEA.

• the data exporter must retain sole control of the algorithm or repository 
that enables re-identification of the pseudonymised data using the additional 
information.

• transport encryption is used with state-of-the-art encryption protocols 
providing effective protection against attacks from state actors within the 
third country, including testing for software vulnerabilities and potential 
backdoors.

• where transport encryption is not effective by itself (due to vulnerabilities 
of the infrastructure or software used) personal data must also be encrypted 
end-to-end on the application layer.

13.4 AI REGULATION AND ACCOUNTABILITY

As we continue evolving beyond 5G, the landscape is becoming more complex. The 
massive amounts of data generated by IoT connections and devices will allow for new 
opportunities for data analytics and AI services. Nevertheless, with such rapid tech-
nological advancement, maintaining public trust is key to sustainable development. 
The European Commission has been working towards the concept of ‘Trustworthy 
AI’ by seeking to maximise the benefits of AI through human-centric systems while 
preventing and minimising the risks to the user. Trustworthy AI is comprised of 
three main components, which must be met throughout the AI system’s life cycle. 
The system must be (i) lawful, complying with all applicable laws; (ii) ethical, ensur-
ing adherence to ethical principles and values including fairness and respect to 
human autonomy; and (iii) robust, both from a technical and social perspective by 
taking into account the context and environment in which it operates [19]. To date, 
AI systems are already subject to a number of horizontal legally binding rules at 
European, national and international level including EU primary law (the Treaties 
of the European Union and Its Charter of Fundamental Rights), EU secondary law 
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(such as the GDPR, the Product Liability Directive, the Regulation on the Free Flow 
of Non-Personal Data, anti-discrimination Directives and consumer law), the UN 
Human Rights treaties and the European Convention on Human Rights and laws 
adopted by EU member states. Furthermore, there are various industry-specific rules 
which apply to particular AI applications such as the Medical Device Regulation for 
the healthcare sector. In April 2021, the European Commission submitted its pro-
posal for the EU regulatory framework on AI. The Artificial Intelligence Act (AIA) 
[20,21] represents the first attempt to horizontally regulate AI. The AIA follows a 
risk-based approach by distinguishing between four levels of risk in AI: prohibited 
AI systems which cause an unacceptable risk, high-risk AI systems which are sub-
ject to stricter requirements, limited and minimal risk systems. High-risk systems 
include AI technologies implemented in the following use cases:

• critical infrastructures (e.g., road traffic, supply of water, gas, heating and 
electricity) that could put the life and health of users at risk.

• educational or vocational training (e.g., scoring of exams) that may deter-
mine the access to education and professional course of users.

• safety components of products (e.g., AI application in remote-assisted 
surgery).

• recruitment (e.g., CV-sorting software) and performance assessment of 
employees.

• essential private and public services (e.g., credit scoring denying users oppor-
tunity to obtain a loan).

• law enforcement practices (e.g., assessing the risk of offending/re-offending).
• migration, asylum and border control management (e.g., verification of the 

authenticity of travel documents).
• administration of justice and democratic processes (e.g., applying the law to 

a concrete set of facts).

The AIA requires providers of high-risk AI systems to conduct a conformity 
assessment before placing it on the market, to adopt technical documentation pro-
viding all information necessary on the system with clear information provided to 
the user, to implement appropriate human oversight measures, to use high-quality 
datasets to minimise issues with statistical accuracy and to ensure an overall high 
level of robustness and security. After a high-risk system is put into use, the pro-
viders must adopt a post-launch monitoring system to ensure continuous compli-
ance and implement any necessary controls throughout the high-risk AI system’s 
lifecycle. Limited-risk AI systems which include those intended to interact with 
humans (e.g., chatbots), systems used for emotion recognition and biometric cat-
egorisation systems or those that generate or manipulate content (e.g., deep fakes) 
are only subject to transparency obligations. The main requirement is to design the 
system in a way that people are informed they are interacting with, or using, an AI 
system, unless this is obvious from the circumstances and the context of use. This 
overlaps with the GDPR transparency requirements which already require entities 
processing personal data to be transparent about the use of profiling and automated 
decision-making. As for minimal risk systems (e.g., AI-enabled video games), the 
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AIA allows for their free use and suggests that these are mainly regulated through 
voluntary codes of conduct.

Apart from adopting a similar risk-based approach as to the GDPR, there are 
other commonalities between the GPDR and the AIA. The extraterritorial reach of 
the AIA echoes the approach taken with respect to the protection of personal data 
under the GDPR. The AIA applies to not only users of AI systems located within 
the EU but also providers that place AI systems on the EU market irrespective of 
whether they are established in the EU. Furthermore, third-country providers and 
users of AI systems fall within the scope of the AIA if the output produced by such 
systems is used in the EU. The AIA extends the principle of accountability on all 
operators involved in the supply chain by placing horizontal obligations on provid-
ers of high-risk AI systems but also provides for proportionate obligations for users 
and other players within the AI chain, such as importers, distributors and authorised 
representatives.

Whether the AIA will trigger a ripple effect on a global level much like the GDPR, 
which has been dubbed as the golden standard for data protection, is yet to be seen. It 
is evident that the use of novel, often-opaque, AI practices requires higher transpar-
ency, ethical consideration as well as accountability on the part of different actors. 
Much will depend upon the uniform application of the requirements and adequate 
enforcement. Furthermore, given the complexity of interpreting specific data protec-
tion requirements in the context of AI, ML and big data, data protection authorities 
need to engage in dialogues with stakeholders to develop appropriate guidelines. 
Consistent application of data protection principles, when combined with the abil-
ity to use AI technology to its full potential, can contribute to the success of AI by 
generating trust and mitigating risks.
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14.1 INTRODUCTION

The latest generation of mobile network technology (5G) is being implemented in 
many regions of the world from 2020. The second phase 5G-Advanced continues to 
evolve in 3GPP R17 and R18 versions from 2022 to 2024. In parallel, 6G is starting 
to create a new mobile platform for 2030. If we want to prepare for all these new 
challenges, technological research that enables improved and new usage scenarios is 
necessary. The key performance indicators (KPI) of the 5G system can also be used 
for the development of new 6G technologies. However, it is necessary to critically 
analyze KPIs, and to evaluate new indicators.
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The development of 5G is a response to the anticipated demand for increased 
capacity from users, as well as productivity requirements from industrial sectors. 
Technical success relies on delivering wider range of data rates to much wider set of 
devices and users. The 6G technology adopts much more holistic approach, involving 
all community to profile representational requirements. This approach identifies the 
trends, demands, and challenges fronting society until 2030, thus avoiding the defini-
tion of the system capabilities based only on commercial criteria in the global mar-
ket. Despite the fact that 5G development is based on the requirements of a number of 
vertical industry sectors, the dominant implementation is driven by mobile network 
operators (MNOs). The new 6G ecosystem will be based on efficient short-range con-
nectivity solutions beyond traditional MNOs. Smartphones will be probably replaced 
by immersive virtual experiences through lightweight wearable glasses that enable 
excellent resolution, frame rate, and dynamic range. Telepresence is enabled by high-
resolution imaging and sensing, wearable displays, mobile robots and drones, and 
next-generation wireless networks. Autonomous vehicles for environmentally sus-
tainable transport and logistics are enabled by integrated space–ground networks 
and distributed artificial intelligence (AI) and sensors. By applying AI and machine 
learning (ML), users are supported to connect the physical and digital world in real 
time, and to capture, retrieve, and access large amount of information. The 6G AI 
delivers intelligent services to every person in every moment.

Industry and academia have dedicated enormous funds and resources for 6G 
research. The ultimate goal is to improve network performance and efficiency. In the 
present period, the results published in large number of journal publications and con-
ferences, keynote talks, and panel discussions at conferences, workshops, seminars, 
as well as working groups of standardization bodies are important. ITU-R WP5D 
recommendation IMT 2030 Vision defines the framework and overall objectives of 
the development of international mobile telecommunications (IMT) until 2030. An 
analysis of the overall trends of requirements from the user’s perspective and the def-
inition of the key capabilities of the 6G system are presented. At the macro level, the 
driving forces toward 2030 usage scenarios are based on market forecast, network 
requirements, and 5G gap analysis. At the micro level, service challenges, choice of 
typical use cases, service models, and users define a set of key system capabilities 
associated with representative usage scenarios. Key areas of future 6G development 
are also presented.

In this chapter, we evaluate representative 6G use cases, immersive multime-
dia and holographic communication, tactile and haptic communication, as well as 
space–ground integrated networks. In the second part, we analyze usage scenarios 
and technology trends, identify network requirements, and define system capabili-
ties, as well as key areas for further study.

14.2 EMERGING USE CASES AND APPLICATIONS

Until the advent of 5G system, the focus in the development of mobile communica-
tions has been on communication aspects, while other services have had low priority, 
they are introduced in the only final stages of system design. The consequence is that 
performance is not optimal or system capabilities are not fully utilized. Co-design of 
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the necessary drivers is not only desirable, it is critical for the high performance of 
future network services. Mixed reality (MR) is very demanding with numerous com-
ponents for positioning, 3D mapping, fusion of digital content with a physical model, 
and extremely fast low-latency communication. Such integrated services are inher-
ently supported by dense, wireless networks, with high-frequency antenna arrays and 
lots of computing power at the edge. An additional challenge is to achieve this in an 
energy-efficient manner.

The 5G systems are inevitably based on trade-offs in energy, cost, hardware com-
plexity, throughput, latency, and end-to-end reliability. For example, the require-
ments of mobile broadband access and ultrareliable low-latency communications are 
achieved by different configurations of 5G networks. On the contrary, 6G develop-
ment makes it possible to jointly meet strict network requirements (ultrahigh reli-
ability, capacity, efficiency, and low latency) in a holistic approach. The applications 
and services enabled by future wireless communication technology altogether will 
connect not only people but also machines and various things.

14.2.1 IMMErSIvE MulTIMEdIa and holoGraPhIc coMMunIcaTIon

The human-centered multimedia and communication will deliver an immersive 
physical experience through interaction with the digital world. Mixed reality (MR) 
and holographic telepresence will become the norm for both work and social inter-
action, enabling an immersive 3D experience with a tight integration of virtual and 
reality, as well as a quality of interaction very close to reality. Digital twins (DT) 
enable virtual experiences for humans and computer control for machines. It has the 
potential to provide ubiquitous tools and platforms for modeling assets, resources, 
environments, and situations, and to enable monitoring, design, management, analy-
sis, diagnostics, simulation, navigation, and interactive mapping. It uses advanced 
technology such as the integration of communication with AI, sensing, and comput-
ing. DT will also synchronize the digital world with the physical world and provide 
connections between digital replica components. It also supports applications such 
as human digital twin, construction planning, real estate management, and smart 
city (SC). DT technology is still in the early stages of development, so reaching 
its full potential requires addressing significant limitations and challenges such as 
cost, complexity and information maintenance, lack of standards and regulations, 
and issues of cybersecurity and communications.

Enhanced human-centric communication enables highly immersive experience 
and multisensory interactions as well as remote telepresence with seamless user 
experience. New human–machine interfaces are being developed that extend the user 
experience across multiple physical and virtual platforms, where interactive haptic 
and multisensory communication will support teleoperation. Telepresence enables 
interaction with both physical and digital objects, enabled by wearable devices with 
intuitive interfaces that are fully context-aware. Immersive human–machine inter-
action will be possible in applications, for example, in telesurgery and medicine, 
remote control of machines in industry, and transportation. Applications facilitate 
remote work from home, out-of-office collaboration, teacher–student interaction, 
and improved diagnostics in teleconsultations enabling full human interaction.  
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The ultimate immersive entertainment experience is made possible by immersive 
multimedia and remote live performances. All of this can be associated together 
through the metaverse and cyber-physical systems (CPS), which are developed on the 
Internet platform to provide users with truly immersive experiences via appropriate 
interactive activities between physical space, cyberspace, and users.

The 6G platform supports the emergence of exciting immersive applications and 
technology trends.

• Virtual reality (VR) refers to computer-generated 3D environment in which 
users can explore and interact virtually, using specialized equipment. VR 
can be used to simulate realistic or artificial environments in a full 360° 
viewing panorama, and therefore provides great flexibility to content cre-
ators and allows users to engage in new interactive experiences. There are a 
variety of devices and sensors designed to fully immerse users in a virtual 
environment.

• Augmented reality (AR) and mixed reality (MR) refer to overlaying com-
puter-generated virtual content over the user’s view of the real environ-
ment to create an augmented version of reality. Virtual content consists of 
images or videos and can even be expanded to multiple sensory modalities 
(visual, auditory, haptic). One of the main advantages of AR is that it does 
not change the user’s perception of the real environment, and the integra-
tion of immersive sensory stimuli that are perceived as an actual part of the 
environment.

5G has driven the early adoption of AR/VR. However, scaling the use of AR/VR 
applications in 6G requires system capacity above 1 Tb/seconds, in contrast to the 
peak data rate of 20 Gb/seconds specified for 5G. In addition, to meet the latency 
requirements that enable real-time user interaction in immersive environment, AR/
VR cannot be compressed (encoding and decoding is a time-consuming process). 
Therefore, the data transfer rate per user is up to 1 Gbps, as opposed to the relaxed 
target of 100 Mbps for 5G systems. The latency requirement reaches sub-millisec-
ond, and 1,000s of synchronized viewing angles are necessary, as opposed to the 
few required for AR/VR. Moreover, to fully realize the immersive experience at a 
distance, all five human senses are intended to be digitized and transmitted through 
future networks, increasing the overall target data rate. The data rate requirement for 
a 3D holographic display (raw hologram, without any compression, with color, full 
parallax, and 30 fps) is 4 Tb/seconds.

A hologram is a 3D picture, created with imaging projection. Holographic and 
MR communications have entered the market with the development of 5G, giving 
consumers first-hand experience in MR applications. Today’s applications for holo-
grams are limited to static images, then moving to dynamic images later. An ideal 
holographic display should be based on the naked eye. When necessary, it can be 
realized with the help of technologies such as AR/VR. Holographic technology on 
6G networks can be assumed to be integrated into many application scenarios such 
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as communication, telemedicine, office design, and entertainment games. The char-
acteristics and advantages of the technology are the ability to integrate real-world 
and virtual information that contains real-time interactivity and at the same time 
brings brightness to the users. AR holographic technology continues to develop and 
many companies have focused their research on AR and 3D technology. Holographic 
images can be used not only in entertainment, art, and education, but also in media 
science, technology design, and AR.

Holographic displays enable a realistic 3D experience for the end user delivering 
3D images from one or more sources to multiple destinations. As consequence of 
interactive holographic service in the network, combination of very high data rates 
and ultralow latency is necessary. Depending on how the hologram is constructed, 
the data transfer rate is determined. Also, the type of screen and the required num-
ber of images that need to be synchronized are important. The data rate required 
for hologram transmission can be reduced by using 3D data compression tech-
niques. On the other hand, holograms require a huge bandwidth from tens of Mbps 
to 4 Tbps for a human-sized hologram based on image processing to generate the 
hologram.

Holographic telepresence is an emerging technology that projects 3D volumetric 
human beings and objects in full motion, in real-time, with free-viewing position and 
orientation, and high-resolution at a remote location. By placing objects/people in 
remote locations, holographic telepresence removes physical boundaries and revolu-
tionizes the way people communicate with each other and interact with the physical 
world. Despite its great potential, the realization of holographic telepresence faces 
the great challenge of delivering extremely large amounts of 3D point cloud data in 
real time under inherent bandwidth limitations. Holographic networking is becom-
ing a new frontier in emerging 3D point cloud compression research, 3D human 
reconstruction, and 3D streaming video communication in real time.

• Holographic usage scenarios require ultralow latency. If sub-millisecond 
latency is required, haptic capabilities are added. There are numerous cases 
where synchronization needs to be associated with holographic communi-
cations. For example, when streams include video, audio, and tactile data, 
precise/strict interstream synchronization ensures timely packet delivery.

• Security requirements depend on the application (remote surgery, security 
coordination of multiple co-flows).

• Resilience refers to minimizing packet loss, jitter, and delay. Relevant ser-
vice metrics are availability and reliability for holographic communication. 
Resilience is the main parameter for maintaining QoS requirements.

• Computing implies significant computational challenges in real time at 
processing steps of hologram generation and reception. There is a trade-
off between a higher level of compression, computational bandwidth, and 
latency, which needs to be optimized. Note that high data rates cannot take 
advantage of existing compression techniques since holographic signals are 
fundamentally different from moving image video.
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14.2.2 TacTIlE/haPTIc-baSEd coMMunIcaTIon

The tactile internet (TI) use case enables human–machine haptic interaction ser-
vices with high reliability and sub-millisecond latency as limiting factor for many 
developing services. Internet-based applications empower real-time remote physi-
cal interaction with physical or virtual objects at long distance from the operator. 
Sensors, actuators, robotics, computer components, and dedicated hardware are the 
basic components of human–machine interaction, which can be organized into three 
domains: main domain, network domain, and controlled domain.

In industrial applications, tactile communication allows flexibility and lower 
maintenance costs despite the fact that they require low latency and high reliability. 
Cloudification in cases of industrial use represents a significant step toward reducing 
pollution, unplanned stops of industrial activities, and zero accidents. An advanced 
real-time robotics scenario in production requires maximum latency in the commu-
nication link of about 100 ms, while the round-trip reaction time will be 1 ms.

In autonomous driving, constrained latency of several milliseconds is necessary 
for collision avoidance and remote driving. Advanced driver assistance and fully 
automated driving are the key 6G application areas with the first components imple-
mented in the 3GPP R16 standard specification.

Examples of 6G applications in healthcare are tele-diagnosis, remote surgery, and 
tele-rehabilitation. Using advanced tele-diagnosis tools, medical consultations would 
be available anywhere and anytime, regardless of the location of the patient and the 
doctor. Remote and robotic surgery is an application in which the surgeon monitors 
real-time audio-visual information about the patient undergoing operation.

The data transfer rate depends on the application requirements. The correspond-
ing reaction times of the human brain at the input of the sensor are from 1 to 100 ms. 
It takes up to 100 ms to decode audio, 10 ms to understand visual information, and 
1 ms to receive tactile signals. Robotics and industrial machines need sub-millisec-
ond latency. It is necessary to synchronize real-time inputs from different locations. 
Machine control has fast reaction time so the inputs need to be also synchronized.

14.2.3 SPacE–TErrESTrIal InTEGraTEd nETworkS

This use case scenario is about on Internet access via the seamless integration of 
terrestrial and space networks. The idea of providing the Internet from space using 
large constellations of low Earth orbit (LEO) satellites has regained popularity in 
recent years (previous attempts, such as the Iridium project in the late 1990s, were 
unsuccessful). The key benefits of using Telesat, OneWeb, and SpaceX satellite sys-
tems are ubiquitous Internet access on a global scale, including mobile platforms 
(planes, ships, etc.), extending the Internet path based on domain-boundary traversal 
protocols relative to the terrestrial Internet, and ubiquitous caching on the edges and 
computer science. Mobile devices for these integrated systems enable satellite access 
without relying on ground-based infrastructure that is limited by geographic layout.

In this example, the goal is to use interconnected low earth orbit (LEO) satellites 
and other non-terrestrial network nodes and platforms to build a parallel Internet net-
work that can be compared to its terrestrial counterpart. The integrated framework 



469Evaluation of Representative 6G Use Cases

has numerous advantages: ubiquitous access to the Internet on a global scale, includ-
ing rural areas such as oceans, deserts, as well as mobile platforms such as ships and 
airplanes; enriched Internet paths that could lead to better data delivery performance 
compared to those over the terrestrial Internet determined by cross-domain border 
gateway protocol (BGP) configurations; ubiquitous edge caching, and computing ser-
vices that provide lightweight, embedded computing and storage resources on LEO 
satellites.

The key network requirements for space-to-ground networking capability are 
flexible addressing and routing, satellite bandwidth capability, admission control of 
satellites, admission control by satellites, edge computing, and storage.

14.3  EVOLUTION OF USAGE SCENARIOS 
AND TECHNOLOGY TRENDS

The 6G usage scenario is expected to expand beyond communications and include 
significant improvements, as well as new innovations and paradigms, such as scal-
ing sensing, intelligent interaction, immersive media experiences, and multisensory 
communications. Six usage scenarios are predicted, with the first three scenarios 
being extension of enhanced mobile broadband (eMBB), ultrareliable low-latency 
communications (uRLLC), and massive machine-type communications (mMTC) as 
shown in Figure 14.1. The last three extend 6G into new domains of global broad-
band, spatiotemporal services, and compute-AI services. Each usage scenario is 
associated with a set of key system capabilities. 

• An immersive multimedia and multisensory communication usage sce-
nario extends eMBB and covers the future of intense human–machine 
interaction. Typical applications are immersive XR and holographic com-
munications, remote multisensory telepresence, tactile feedback, and 
industrial robot tactile feedback and control. Standalone support of voice 
services is an integral part of immersive communication. New communi-
cation devices, such as smart glasses, will gradually change the traditional 

FIGURE 14.1 Extension and expansion of 6G usage scenarios.
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eMBB ways of acquiring information and interacting. With very high 
sampling density of environment data, reliable online computing will 
be used to offload computationally complex processing and rendering or 
to remotely access rendered images in real time. The scenario requires 
extremely high data transfer rates, as well as lower latency and larger sys-
tem capacity. It covers all types of deployments, from dense urban hotspot 
to rural.

• Critical use scenario applies to use cases with very strict transmission 
reliability and availability requirements, such as extreme uRLLC (time 
sensitive, trust). It is also applicable to nonconnectivity services, for exam-
ple, dependable compute, accurate positioning or characterization of con-
nected or disconnected objects, data distribution, AI native RAN design, 
and other network platform functionalities. Data transfer rate, latency, jit-
ter sensitivity, power constraints, device connection density, etc. are also 
requirements which vary depending on the use case being considered. 
Limitation or at least predictability of performance variation for individ-
ual applications is vital for this usage scenario. Typical use cases include 
smart industry within all work domains, as well as new applications such 
as automation and control, autonomous and teleoperation, interaction and 
collaboration, digital representation, collaborative robotics, drone swarm, 
different human–machine real-time interaction, autonomous driving in 
intelligent transportation systems, smart energy, smart household, per-
sonalized digital human for precision medicine, remote medical surgery, 
in-body distributed sensor, and communication networks. This set of use 
cases is characterized by situations where the failure of a communication 
service can cause catastrophic or even life-threatening consequences for 
(safety) critical services.

• The usage scenario of omnipresent Internet of things (IoT) includes large 
number of sensors, where not only the number but also the geographical dis-
tribution is high, for example in manufacturing, smart cities/digital twins, 
transport, material and goods tracking, or environment monitoring. All 
this places high requirements on coverage. Also, different types of devices 
(sensors or actuators) will have significantly different requirements, where 
some harvest energy and depend on low-energy protocols, while others will 
require higher data rates. In remote areas, it is necessary to support devices 
that really do not require maintenance. Key capabilities for omnipresent IoT 
usage scenario are coverage and support for a wide range of devices (device 
diversity) (Table 14.1).

6G is based on diversified and advanced requirements. The technological require-
ments for implementation depend on the improvement of existing technologies, as 
well as on new technologies that were not taken into account during the previous 5G 
development (Table 14.2).
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The development of 6G is expected to enable new use cases and applications, 
and to address the rapid growth of traffic, for which contiguous and wider channel 
bandwidth is desirable than currently available for mobile systems. As the amount of 
spectrum required for mobile services increases, it becomes increasingly desirable to 
harmonize existing and newly allocated and identified spectrum. A continuous and 

TABLE 14.1
Immersive, Intelligent, and Ubiquitous Usage Scenarios with Candidate Use 
Cases Trends

Scenarios Use Cases Trends

Immersive Holographic communication 
(extremely immersive 
experience)

• User experienced data rate (Gbps/Tbps)
• Latency (<10 ms) and synchronization (strictly)
• Computing and intelligence (large computing power)
• Security (sensitive information)

Immersive cloud XR (broad 
virtual space)

• User experienced data rate (Gbps)
• Air latency <2.5 ms
• Multidimensional sensing (accuracy of location/

touch)
• Computing and intelligence (distributed cloud 

computing)
• Energy efficiency (low-power terminals)

Intelligent interaction 
(interactions of feelings and 
thoughts)

• User experienced data rate 100 Mbps
• Reliability 99.99999%
• Computing and intelligence (ubiquitous AI services)
• Security (privacy of user data)

Intelligent Proliferation of intelligence 
(ubiquitous smart core)

• Transmission (massive training data), area traffic 
capacity

• Distributed connection (collaborative learning)
• Connection density 10–1,000/km2

• Computing (real-time efficient computing power)
• AI service accuracy/efficiency >90%

Digital twins (digital mirror 
of physical world)

• Data rate (peak 100 Gbps, user 1 Gbps)
• Air traffic capacity 0.1–10 Gbps/m2

• Latency (sub-ms)
• Connection density (107–108 device connections per km2)

Machine control and 
communication (fusion of 
DT, edge computing, AI)

• User experienced data rate 100 Mbps, reliability 
99.99999%

• Latency <0.1 ms jitter microsec-level
• Computing (distributed computing supports sensing 

& control)
• Sensing (multidimensional, accuracy, & transmission 

latency)

(Continued)
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TABLE 14.2
The Candidate 6G Technologies

Technology Trends

New network with native AI • AI native–air interface
• AI-driven RAN architecture and 

optimization
• Radio network for AI

Enhanced wireless air interface technologies • Basic physical layer technologies
• Ultra-massive MIMO
• In-band full duplex
• Efficient spectrum utilization
• Energy-efficient RAN

Wireless transmission technologies on new physical 
dimensions

• Natively support real-time communications
• Reconfigurable intelligent surface (RIS)
• Orbital angular momentum (OAM)
• Intelligent holographic radio (IHR)

Terahertz and visible light technologies • Terahertz communications (THz)
• Visible light communications (VLC)

Integrated communications and sensing • Sensing-based ultrahigh accuracy 
positioning and localization

Distributed autonomous network architecture • Self-synthesizing networks

Convergence of communications and computing 
architecture

• Split computing
• Pervasive compute
• Ubiquitous computing and data services

Native network security based on multilateral trust 
model

• AI is inherent part of the infrastructure, and 
of the network management and operations

TABLE 14.1 (Continued)
Immersive, Intelligent, and Ubiquitous Usage Scenarios with Candidate Use 
Cases Trends

Scenarios Use Cases Trends

Ubiquitous Sensory interaction (fusion  
all senses)

• User experienced data rate <100 Mbps
• Latency <1–10 ms and synchronization <10–20 ms
• Computing and intelligence (large computing power)
• Reliability (99.999%)

Communication for sensing  
(extending functions of 
converged communication)

• Sensing accuracy (cm-level) and resolution (cm-level)
• Computing and intelligence (ubiquitous AI services)
• Detection rate and false alarm rate

Global seamless coverage  
(3D connections)

• User experienced data rate (100 Mbps/Gbps)
• Latency 100 ms
• Coverage (extension to global coverage)
• Mobility >100 kmph
• Link availability >90%
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wider spectrum from a range of frequency bands, aligned with future technology 
development, would support achievement of the objectives of the 6G systems, reduc-
ing device complexity, avoiding interference, and developing ecosystems.

14.3.1 rEquIrEMEnTS on nETwork oPEraTIon

Future wireless networks are expected to support a wide range of sometimes conflict-
ing requirements. 6G is expected to become the first wireless standard requiring hyper-
fast links with peak throughput per link exceeding the terabits per second (Tbps). 6G 
use cases, such as wireless factory automation, require highly sophisticated operations 
such as ultrahigh-reliability, ultralow-latency communication, high-resolution local-
ization (at the centimeter level), and high-accuracy interdevice synchronicity (within 
1 ms). Different reliability requirements specific to individual use cases are expected. 
One of the most extreme is industrial control where only one erroneous bit is allowed 
in a billion transmitted bits with a delay of 0.1 ms (Table 14.3).

TABLE 14.3
Representative Use Cases and Key Network Requirements

Use Cases Requirements

Holographic-type communications (HTC) High bandwidth, low latency, multistream 
synchronization, edge computation, security,  
and reliability

Digital twin (DT) Connect many more sensors and devices, the 
high-speed ubiquitous connectivity, the improved 
reliability and redundancy, and ultralow power 
consumption

Tactile Internet for remote operations Ultralow latency, ultralow loss, ultrahigh 
bandwidth, strict synchronization, differentiated 
prioritization levels, reliable transmission, 
security

Industrial IoT (IIoT) High reliability, low latency, flexibility, and 
security (E2E latency of 1–2 ms and reliability  
of 99.999%)

Space–terrestrial integrated network New addressing and routing mechanisms, 
bandwidth capacity at the satellite side, 
admission control by satellites, edge computing, 
and storage

Network and computing convergence New addressing and routing mechanisms, 
bandwidth capacity at the satellite side, 
admission control by satellites, edge computing, 
and storage

Intelligent operation network Intelligent closed-loop control, instantaneous 
high-volume data collection for network status, 
programmability and softwarization, low-latency 
event-driven response with data prioritization
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We have compared the requirements of the selected use cases by relative scoring 
the proposed dimensions (Table 14.4).

Based on the analysis, the most prominent requirements of each case can be easily 
extracted, and their accumulated statistics further provide network designers with a 
high-level perspective of the various dimensions of future use cases.

14.3.2 dEfInITIon of SySTEM caPabIlITIES

6G systems are expected to expand and support the various usage scenarios and 
applications that represent the 5G evolution. Moreover, the wide range of possibilities 
is closely related to the selected 6G usage scenarios and applications. The capabilities 
of systems necessary to support usage scenarios can be seen as an extension of those 
for 5G. There will be classic capabilities that were used to define 5G, but in addition 
new ones to support extended and expanded usage scenarios.

Different aspects of the wide range of capabilities are differently relevant and 
applicable in reference use scenarios. Key design principles include supremacy, 
efficiency, flexibility, trust, native intelligence and automation, and sustainability to 
serve diverse use cases in the future of connected intelligence.

The overall capabilities of the 6G system include those with quantitative indica-
tors and those with only functional indicators. Under each of the categories, one 
or more key capabilities are defined, which will lead to performance and feature 
requirements: performance, localization and sensing, connectivity, services, and 
terminal/device.

We anticipate significant increase in data traffic and the number of connected 
things with 6G. Device density grows to hundreds of devices per cubic meter, which 
impose stringent requirements on area or spatial spectral efficiency and required 

TABLE 14.4
Relative Scores of Network Requirement in Selected Use Cases

Use Cases Bandwidth Time Security AI

Holographic-type 
communications

+++ ++ + +

Digital twin ++ ++ +++ +
Tactile Internet for 
remote operations

+ +++ ++ +

Industrial IoT ++ +++ ++ +
Space–terrestrial 
integrated 
network

+ ++ ++ +

Network and 
computing 
convergence

+ +++ +++ +

Intelligent 
operation 
network

+ ++ ++ +++
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frequency bands for connectivity. Security, privacy, and reliability are important 
emerging KPIs. 6G is hyper-secure with demanding requirements for industrial and 
high-end users, while at the same time it will be low cost and low complexity for IoT 
applications (Table 14.5).

Improved 6G system capabilities support new use cases, including applications 
that require very high data rate communications, large numbers of connected devices, 
and ultralow-latency, high-reliability applications (Figure 14.2).

Significant improvements are needed in the quality of user experience and peak 
data rates, energy and spectral efficiency, air latency, connection density, and reli-
ability. 6G systems are expected to reuse existing 5G capabilities whenever possible, 
with improved requirements and KPIs. New capabilities are introduced as needed 
when existing capabilities are insufficient to support 6G usage scenarios. It is essen-
tial that the overall capabilities provide design flexibility and system optimization. 
Realization of the technical possibilities implies significant challenges that should 
be overcome.

14.3.3 focuS arEaS for furThEr STudy

Development planning of 6G takes into account the deadlines associated with their 
implementation, which depend on a number of factors such as user trends, user require-
ments and demand, technical capabilities and technology development, standards 
specification and their enhancement, spectrum issues, regulatory considerations, and 
system deployment. All of these factors are interrelated. The first five have been and 

TABLE 14.5
6G vs. 5G KPI Key Capability Indicators

KPI Target Range

Performance User experience data rates Gbps (10–100×)

Area traffic capacity 01.–10 Gbps (10–1,000×)

Peak data rate 100 Gbps–Tbps (5–100×)

Connection density 107–108/km2 (10–100×)

Air latency 0.1–1 ms (1/10×)

Jitter Micro-second-level

Mobility 1,000 kmph (2×)

Reliability 99.99999% (100×)

Coverage Extension to global coverage

Sensing/positioning accuracy Centimeter level

AI services accuracy/efficiency >90%

Efficiency Spectrum efficiency 1.5–3×
Energy efficiency 20×
Cost-efficiency Low cost in network 

construction and O&M

Trustworthiness Balanced security, durable 
privacy protection, and 
advanced system resilience
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will continue to be addressed within ITU. The development and implementation of 
the system relates to the practical aspects of deploying new networks, taking into 
account the need to minimize additional investments in infrastructure and to allow 
time for users to adopt the services of the new system.

• In the mid-term period (up to the year 2030), it is predicted that the future 
development of 5G systems will progress with the continuous improvement 
of initial implementation capabilities, as demanded by the global market in 
addressing the needs of users and as permitted by the status of technical 
development.

• The long-term period (starting around the year 2030) is associated with the 
potential introduction of 6G systems that could be deployed around 2030 in 
some countries. The research is encouraged to focus on the key areas such 
as radio interface(s) and their interoperability, access network issues, spec-
trum issues, and traffic characteristics.

6G services are suitable for offering new spectrum bands. It should be noted that the 
existing bands for 5G will continue and are reframed for 6G. For 6G systems, the 
spectrum from 100 GHz to 1 THz is considered. Using all windows will not be suit-
able for all use cases. For example, the first window of interest from 140 to 350 GHz 

FIGURE 14.2 Improvements of 6G vs. 5G key capabilities (KPI).
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(high mmWaves) has advantages because there are many tens of GHz of bandwidth 
that are currently unused while developing ultra-massive multiple input–multiple 
output (MIMO) antenna arrays with reasonable factors. The array factor is a func-
tion of the position of the antennas in the array and the weights used. By adjusting 
these parameters, the performance of the antenna array is optimized and the desired 
properties are achieved. The spectrum in higher windows is accompanied by greater 
absorption loss. One can use high frequency up to 10 THz at the expense of beyond 
hardware realization challenges.

In 6G networks, the 5G paradigm will be refined and expanded. One possibility is 
the virtualization of (critical) end-to-end connectivity from the device over the cel-
lular network to the packet data network and to the cloud. Under the 6G paradigm, 
the network seeks to maximize the quality of experience (QoE) through intelligent 
traffic management, edge computing, and policies set by the user either proactively 
or per transaction or through traffic orchestration. The latter may, for example, use 
policies set by the user or by the operator for a group of subscribers who are each 
treated equally within that group. It is network neutral in the sense that it treats all 
applications in the network and all users with the same subscription type equally.

Recently, there has been a growing interest in machine learning (ML) and artifi-
cial intelligence (AI). ML relies on Big Data that is mined to gain information and 
knowledge. There are other needs in networking that require intelligence such as 
self-configuration or complexity management. In addition to Big Data, AI relies on 
an abundance of computing power. 6G uses the growing computing power for coping 
with the higher transmission rates, but also to achieve additional flexibility. However, 
power consumption increases dramatically, which requires further research.

14.4 CONCLUDING REMARKS

The sixth-generation (6G) mobile network is envisaged to be commercially deployed 
around 2030, which will profoundly change people’s lifestyles and accelerate the 
digitalization of society. Each usage scenario is related to a set of key capabilities. 
To ensure that the requirements of 6G can be achieved, it is essential to establish a 
set of key performance indicators (KPIs). This chapter comprehensively assesses the 
KPIs not only from the service requirements but also from the technical feasibility 
points of view.

The 6G wireless communications support services in various usage scenarios 
and applications, including enhanced mobile broadband (eMBB), low-latency com-
munications (uRLLC), and machine mass communication (mMTC) with stringent 
performance dimensions such as increased system capacity, low latency, high reli-
ability, higher spectral efficiency, as well as enabling the massive IoTs (mIoTs) into 
a fully connected, intelligent digital world. Furthermore, 6G communication net-
works are the first generation of AI native networks. This means that AI will not just 
be an application, but an inherent part of infrastructure, network management, and 
operations.

In conclusion, we have an exciting future ahead of us. The road to overcoming 
the challenge is filled with challenges, but there are enough insights to start research 
toward promising directions that will serve as motivation for researchers in the near 
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future. The network complexity could potentially be overcome in convergence with 
6G and AI, paving the way to a sustainable ecosystem. Challenges remain on how to 
tailor AI on edge nodes and systematically work toward green 6G. 
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