
Itamar Levi
Alexander Fish

Dual Mode
Logic
A New Paradigm for Digital IC Design

Dual Mode Logic

Itamar Levi • Alexander Fish

Dual Mode Logic
A New Paradigm for Digital IC Design

Itamar Levi
Faculty of Engineering
Bar-Ilan University
Ramat Gan, Israel

Alexander Fish
Faculty of Engineering
Bar-Ilan University
Ramat Gan, Israel

ISBN 978-3-030-40785-8 ISBN 978-3-030-40786-5 (eBook)
https://doi.org/10.1007/978-3-030-40786-5

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40786-5

We are eternally grateful to our dear families
who helped us be dual-mode fathers and
husbands throughout the long period we
spent writing this book. Without your
support, we would never have been able to
bring it to fruition.

Dear Anat, my beautiful wife, and my
wonderful children, Arad and Negev, thank
you for putting up with me (or without me),
Itamar.

Dear Marianna, my beloved wife, and my
beautiful children, Tom, Daniel and Yonatan,
thank you for your support and constant
reminders to work on the book whenever I
had spare time, Alex.

Preface

Digital integrated circuits play an important role in the energy, performance,
reliability, and cost targets of almost all electronic devices and silicon-based sys-
tems. Over the last four decades, conventional Static Complementary Metal Oxide
Semiconductor (CMOS) Logic has become the dominant design methodology and
is now widely used in the semiconductor industry. The advantages of CMOS design
include strong “on” and “off” digital states, low leakage energy, high reliability, and
simple physical implementation. These features have led to the standardization of
CMOS, which has resulted in the development of CMOS-compatible EDA tools and
CMOS-based digital libraries. However, the complementary nature of CMOS gates,
which require 2N transistors for the implementation of an N-input gate, translates
into the large area and capacitance of the gate and results in relatively high power
consumption and poor performance. The energy–delay (E-D) tradeoff in CMOS is
considerable, making it very challenging to optimize CMOS gates simultaneously
for speed and energy efficiency. Although static CMOS Logic remains the most
popular design approach, many attempts have been made to find a better alternative
to achieve lower energy consumption, a smaller size, and better performance.
However, no one solution has managed to tackle all three metrics successfully.

This book attempts to provide a comprehensive solution to this problem by
presenting an innovative design paradigm for digital IC design, dubbed Dual Mode
Logic (DML). DML logic gates can operate in two modes, each optimized for a
different metric. DML designs allow on-the-fly switching between the operational
modes at the gate, block, and system levels and provide a very high level of E-
D optimization flexibility. We show that the DML paradigm makes it possible to
implement digital circuits that dissipate less energy while simultaneously improving
performance and reducing area. All these are achieved without a significant
compromise in reliability. DML design methodology is shown to be compatible
with existing standard electronic design automation (EDA) tools, thus providing
the opportunity for a new generation of DML-based designs as a solid alternative
to CMOS. This book covers all aspects of DML methodology, starting from the
basic concept, through single gate optimization, the general module optimization,
design tradeoffs, and new ways in which DML can be integrated into standard

vii

viii Preface

design flows. Scalability of DML gates is also discussed. The first part of this book
(Chaps. 1, 2, 3, 4, and 5) presents the concepts behind basic DML operations and
provides a detailed exploration of design tradeoffs and optimization methods. The
second part (Chaps. 6, 7, 8, and 9) shows how DML modes of operation can be
controlled on the fly from the architecture to the gate levels. The compatibility of
DML with standard design flow is analyzed as well as the unique capabilities of
DML in advanced technologies.

Researchers, engineers, and graduate students can all draw on this book to design
and optimize advanced energy efficient, high performance digital ICs for a wide
range of applications. DML can be used in conjunction with any other design style
so designers can implement and integrate the DML solution with existing designs,
thus significantly improving the power and performance of these designs.

This book is the result of extensive research, conducted by the editors along with
other faculty members, postdoctoral fellows, Ph.D., and Master’s students from Bar
Ilan (BIU) and Ben Gurion (BGU) Universities, Israel, EPFL Switzerland as well
as the University of Calabria, Italy. Sagi Fisher contributed to introduction of the
DML concept in general, and subthreshold operation of DML gates in particular.
Asaf Kaizerman was involved in low voltage DML operation, model analysis, and
parameter extraction. Dr. Alexander Belenky was the co-developer of the logic
effort design methodology for DML. Dr. Adam Teman, Viacheslav Yuzhaninov,
and Lior Atias contributed to the development of the design flow, synthesis, and
characterization methodology for DML. Prof. Shmuel Wimer and Amir Albek were
closely involved in Dual Mode Square (DM2) concept development. This concept
is a key part of the DML control methodology at the architecture level. Dr. Ramiro
Taco and Prof. Marco Lanuzza led the research on optimization of DML on FD-
SOI process and contributed to the evaluation of DML in nanoscaled technologies.
Netanel Shavit and Inbal Stanger worked on the implementation of DML in FinFet
process.

The development of the DML was supported by the Israel Innovation Authority
and the Israel Science Foundation. Specifically, Israel Innovation Authority (IIA)
MAGNET programs have supported DML-related projects through the High-
Performance (HiPer) consortium and the Generic Processor (GenPro) consortium.
The content is based on more than 13 scientific journal articles and conference
papers.

A special thanks goes to TSMC and STMicroelectronics for their support with
test-chips design and fabrication throughout the research in various technology
nodes and a variety of processes; and to Cadence and Synopsis for their help with
tailored tools and adaptation of design stages for advanced research purposes.

Ramat-Gan, Israel Itamar Levi
Ramat-Gan, Israel Alexander Fish
November 2019

Contents

1 Introduction . 1
1.1 Energy-Efficient and High-Performance Digital Design

Limitations . 1
1.2 Introduction to the Design of Digital Logic Families 3

1.2.1 Complementary Metal Oxide Semiconductor (CMOS) 4
1.2.2 Dynamic Logic . 6
1.2.3 Other Design Styles in Standard CMOS Technology 11

1.3 Energy–Delay (E–D) Tradeoff Paradigms. 15
1.4 Book Outline . 17
References . 18

2 Introduction to Dual Mode Logic (DML) . 25
2.1 DML Concept and Transistor-Level Architecture. 25
2.2 DML Advantages . 29

2.2.1 Robust Operation, Inherent Keeper, and High
Performance . 29

2.3 DML: The Best of Both Worlds . 30
References . 33

3 Optimization of DML Gates . 35
3.1 Introduction . 35
3.2 Overview: Standard Logical Effort (LE) Model for a Simple

CMOS Inverter Chain . 36
3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain 38

3.3.1 Basic Assumptions . 39
3.3.2 Defining the Optimization Target for a Simple

Inverter Chain. 40
3.3.3 The Complete Un-approximated Method (CS)

for DML Sizing Factors of an Inverter Chain 42
3.3.4 The Complete Approximated Method (CA) for DML

Sizing Factors of an Inverter Chain. 43

ix

x Contents

3.3.5 The Semi-approximated Method (SA) for DML
Sizing Factors of an Inverter Chain. 46

3.4 Generalizing the DML-LE Method for Complex Gates and
Branches . 46
3.4.1 Exploring a General DML Gate Delay Structure 46
3.4.2 Delay Optimization Under the Complete

Approximated (CA) Model for Complex Gates 47
3.5 Comparing the DML-LE Methods . 50

3.5.1 Delay Error for a Given N . 50
3.5.2 Nopt Comparison . 52
3.5.3 Delay Error for a Variable N . 52

3.6 Example of a DML-LE Evaluation: a 40 nm Process 53
3.7 Conclusion . 56
References . 57

4 Low-Voltage DML . 59
4.1 Introduction . 59
4.2 DML Under Low-Voltage Operation . 60
4.3 DML Modeling and Sizing Using the Transregional Model 61

4.3.1 Modeling Ion Using the Transregional Model 61
4.3.2 Low-Voltage DML Sizing Methodology . 62
4.3.3 Logical Effort Parameters for Low-Voltage Operation 64

4.4 DML Benchmark Measurements . 67
4.4.1 DML Robustness and Design Metrics Under Low

Voltage . 68
4.4.2 Energy and Delay Analysis . 69

4.5 Conclusion . 71
References . 72

5 DML Energy-Delay Tradeoffs and Optimization . 75
5.1 Introduction: Static DML as a Semi-Energy-Optimal CMOS 75
5.2 Critical-Path-DML Approaches to Energy Efficiency

and High Performance . 76
5.3 Solution for Critical Path Timing Violations and Energy

Consumption Reduction . 77
5.4 Modular Benchmark Example: Carry Save Adder Design 78

5.4.1 The CMOS CSA Design . 79
5.4.2 DML Critical Path Design . 80

5.5 Energy-Delay Plane as a Function of VDD and n . 81
5.5.1 The E-D Plane as f (VDD) . 81
5.5.2 The E-D Plane as f (N) . 84
5.5.3 Stimuli Input Vector Complexity . 84

5.6 Conclusion . 86
References . 86

Contents xi

6 DML Control . 89
6.1 Coarse-Grain DML Mode Selection Controller . 89

6.1.1 Dual-Mode Addition (DMADD) Approach Overview 90
6.1.2 Dual-Mode2 (DM2) System Architecture

and Transistor Sizing . 91
6.1.3 Computing Energy Savings . 95
6.1.4 Benchmark Results and Analysis . 96
6.1.5 Coarse-Grain Control Conclusions . 105

6.2 Fine-Grain DML Mode Selection Controller. 106
6.2.1 Design Example: Carry Look-Ahead Adder 107
6.2.2 Fine-Grain Controller Simulation Results 110
6.2.3 Fine-Grain Control Conclusions . 112

References . 113

7 Towards a DML Library Characterization and Design
with Standard Flow . 115
7.1 Introduction . 115
7.2 Characterization and Standard Design Flow Challenges 116

7.2.1 Standard Design Flow: Overview and DML
Integration Challenges . 116

7.2.2 Dynamic Operation Mode Design Challenges 118
7.3 A Step Forward with DML Standard Design Flow 121

7.3.1 Pseudo-static Library and Multi-library Representation. 121
7.3.2 Pseudo-static Synthesis and Library Mapping 124

7.4 Characterization Process . 128
7.4.1 Pseudo-static Library . 130
7.4.2 Dynamic Library . 131
7.4.3 Static Library . 133

7.5 Benchmarks and Results . 133
7.5.1 Characterization . 133
7.5.2 Design Flow . 135

7.6 A Step Towards a DML Standard Flow: Conclusions 138
References . 141

8 Towards a DML Optimized Synthesis . 143
8.1 DML-Optimized Synthesis Challenges . 143
8.2 DML Synthesis Approach and Constraints . 144

8.2.1 Constraints . 144
8.2.2 The Approach. 149

8.3 Implementation Results . 151
8.3.1 Simulation Methodology. 151
8.3.2 Simulation Results . 152

8.4 Automated DML Synthesis: Conclusion . 155
References . 155

xii Contents

9 Dual Mode Logic in FD-SOI Technology . 157
9.1 UTBB FD-SOI Technology . 157
9.2 DML Design Optimization in UTBB FD-SOI Technology 158

9.2.1 Design Optimization . 158
9.2.2 Performance and Robustness Analysis . 159

9.3 Design: Dynamically Adaptable Multiply-Accumulate
Circuit in 28 nm FD-SOI . 162
9.3.1 DML Column Bypassing Partial Product Reduction

Tree . 163
9.3.2 Adaptive Final DML Carry-Skip Adder. 164
9.3.3 Measurement Results. 167

9.4 Conclusion . 174
References . 175

10 Conclusion . 177

A SA Method for the Sizing Factors of DML Inverter Chain 179

Index . 183

Acronyms

ASIC Application specific integrated circuit
BGU Ben Gurion University
BIU Bar Ilan University
CLA Carry look-ahead adder
CML Current mode logic
CMOS Complementary metal oxide semiconductor
CNFET Carbon nanotube field effect transistor
DIBL Drain-induced barrier lowering
DML Dual mode logic
DPL Double pass transistor logic
DTMOS Dynamic threshold CMOS
DVFS Dynamic voltage–frequency scaling
EDA Electronic design automation
EPFL École Polytechnique Fédérale de Lausanne
FD-SOI Fully depleted silicon on insulator
FET Field effect transistor
GDI Gate diffusion input
GIDL Gate-induced drain leakage
GTL Gate-level netlist
HDL High description language
IC Integrated circuit
IVC Input vector control
LE Logical effort
MAC Multiplier and accumulator
MCML MOS current mode logic
MDP Minimum delay point
MEP Minimum energy point
MOS Metal oxide semiconductor
MOSFET Metal oxide semiconductor field effect transistor
MRAM Memristive RAM
MTJ Magnetic tunnel junction

xiii

xiv Acronyms

PDK Process design kit
PTL Pass transistor logic
RBB Reversed body bias
RRAM Resistivity RAM
SABL Sense amplifier-based logic
SBB Self-body-bias
SCL Source coupled logic
SDF,STDF Standard design flow
SNM Static noise margin
SOI Silicon on insulator
VLSI Very large-scale integration
VTC Voltage transfer characteristic

Chapter 1
Introduction

This chapter introduces the basic concepts and methodologies behind digital design.
We start with current practices and the layout limitations of standard design method-
ologies. We then survey different alternatives for digital design (logic families) that
can be implemented with standard CMOS processes. We discuss the tradeoffs and
paradigms of energy and delay in digital designs. These lay the groundwork and
provide the reader with the basic concepts. We end with a presentation of the general
outline of this book.

1.1 Energy-Efficient and High-Performance Digital Design
Limitations

Today’s rapid advances in technology and the expansion of mobile applications
have made energy consumption, which places one of the fundamental limits on
both high-performance microprocessors and low-to-medium performance portable
systems, a crucial issue in very large-scale integration (VLSI) digital design [1–10].
In high-performance systems, energy and peak power curtail further increases in
performance and circuit density, because of the difficulties inherent to conveying
power to circuits and removing the heat they generate. Correlatively, the integration
of circuits with different workloads and activity profiles results in the formation
of hot spots and temperature gradients over the die. This can impact long-
term reliability and complicate system verification [11], thus turning temperature
monitoring into a major component of design [12]. In portable battery-operated
devices such as cellular phones, bio-medical instruments, sensor networks, etc.,
energy consumption is critical since it determines the lifetime of the battery (for
non-rechargeables) or the time between recharges. It also affects packaging, cost,
and weight.

Many architectures and techniques have been researched, analyzed and fab-
ricated for power reduction and energy minimization of combinational circuits

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_1

2 1 Introduction

[1, 13–17]. In general, power reduction methodologies can be implemented at
different levels of design abstraction from the system, algorithm, architecture,
gate, and circuit to the level of the technology itself. At the algorithm level, for
example, methods for simplifying the logic involved in computation and coding
for smaller Hamming distances have been developed [18–20]. Examples of energy
reduction design approaches at the system level include the ubiquitous power-
saving modes, dynamic voltage scaling [21–23], clock gating [24–27], and leakage
power reduction management [28, 29]. Other examples of highly efficient system
level solutions include the Razor-2 processor [15] which takes process voltage
temperature drifts into account, the Razor-free architecture [16], and low-power
wake-up modes [30, 31]. The sleepy-stack/keeper approach to reducing leakage
power [29], reduced swing techniques by special circuit families such as current
mode logic (CML) [32] and reduced swing circuits [33], advanced subthreshold
device sizing and balancing optimization techniques such as [34], and the use of
high-cost functions for power hungry gates while optimizing circuits are all part
of the panoply of current techniques to reduce power at the gate level. A variety of
design techniques, such as input vector control (IVC) [35–37], the reverse body bias
(RBB) technique [38–41], self-body bias (SBB) and unique control mechanisms
[17, 42], dynamic threshold CMOS (DTMOS) [43, 44], and numerous others, can
be implemented at the circuit and transistor levels to reduce both dynamic power and
static power [3, 45–48]. Finally, at the technology level, fabrication technology that
can operate under supply voltage reduction can substantially reduce both dynamic
and leakage power [8, 49, 50]. Novel devices and integration methodologies have
become increasingly available for mass production (e.g., RRAM, CNFET, and 3D
integration [51] and MRAM devices [52]); in turn, these emerging technologies
suggest that significant advances can be made in the near future.

During the process of standard design flow (SDF), the logical representation of
integrated circuits (ICs) (in high description language (HDL)) is synthesized to a
library of standard digital cells. These logical cells are implemented according to
a well-optimized layout structure that also adheres to the device’s dimensions and
the physical guidelines of the digital library provider. Digital libraries have different
flavors of gates. Most digital circuits are implemented using standard CMOS logic.
Static CMOS logic has been the most popular design approach for the past 30
years or so. Many attempts have been made to come up with a better alternative
logic family that would achieve lower power dissipation, take up less area, and
yield higher performance. Early on, the pass transistor logic (PTL) was hailed as a
promising alternative to static CMOS logic [45, 53–58]. Unfortunately, the leakage
of PTL implementations of monotonic gates was shown to be much higher than
that of CMOS implementations. Some PTL techniques, such as double PTL (DPL),
were tested to solve these and other problems [56, 58, 59]. However, most solutions
resulted in an increased transistor count and area, a large number of required buffers,
and a degradation in signal integrity. Recently, a variety of interesting emerging
logic families have been described that usually combine transistors with memristor
devices [60, 61], solely on a magnetic tunnel junction [62], to implement logic

1.2 Introduction to the Design of Digital Logic Families 3

gates. However, these families are not widely used since the fabrication process
of memristors for this purpose is still not commercially available as of this writing.

Dynamic logic [63–65] has certain hallmarks of an efficient alternative for high-
performance operations. Computation using dynamic gates operates in two phases:
precharge and evaluation. The advantages of dynamic logic include the high driving
strength of its evaluation network and its much lower transistor count. On the
other hand, dynamic logic has a number of significant drawbacks such as charge
leakages, charge sharing, signal integrity and restoration issues, high dynamic power
consumption, and susceptibility to glitches with no data recovery. These sensitivities
are intensified with process scale-down, supply voltage reduction, and increased
process variations.

In a given standard cell library, the same gate can be designed in several flavors
that are optimized for different objectives. While utilizing a digital logic family
such as CMOS, the traditional paradigm assumes that high performance comes
at the expense of energy efficiency; that is, one can design low-energy cells that
operate at low frequencies or high-performance cells that consume higher energy.
Research and optimizations to disentangle this paradigm (i.e., getting the best of
both worlds) are typically carried out at the algorithm or architectural levels of the
design by operations in different modes, dynamic voltage, and frequency scaling
(DVFS), in different power domains, algorithmic optimizations, etc. This objective
is more difficult to achieve at lower abstraction levels such as the gate and transistor
levels. When utilizing standard CMOS gates, the optimization space at the gate level
is very small. This is primarily because the low-energy flavors of cells (gates) are
typically bounded by the amount of energy reduction they can provide as compared
to the high-performance flavors for the same supply voltage and frequency.

In traditional sequential designs, performance is dominated by the circuit’s most
critical (slowest) path, whereas energy consumption is basically the sum of all the
design consumers (i.e., all the gates/cells in the design). The typical optimization
strategy implemented by automated tools targeted by the specification to achieve
both low-energy and high-energy performances is to find the design’s most critical
paths and to assign high-performance gates to them (gates consuming relatively high
energy) while the rest of the paths (that are not timing-critical) are left to remain in
a fairly low-performance mode that consumes little energy.

1.2 Introduction to the Design of Digital Logic Families

Numerous circuit styles can implement a given logic function. These styles are
called logic families. Every logic family inherently has its own advantages and
shortcomings, and the designer’s choice of an appropriate family depends on the
application and its specifications such as energy, performance, area, temperature,
reliability, etc. The most common logic styles are complementary metal oxide semi-
conductor (CMOS) [45–47, 53], pseudo-nMOS logic and pass transistor logic (PTL)
[56–59], gate diffusion input (GDI) [7, 66–69], dynamic logic (i.e., Domino/CMOS

4 1 Introduction

NORA, etc.) [63–65], current mode logic (CML) [32, 33], and sense amplifier based
logic (SABL) [70, 71]. This range of styles has shrunk over the last 30 or so years to
the handful of popular logic families found today (mainly CMOS for noncustom
designs). However, as discussed above, new logic families are constantly being
proposed (e.g., utilizing memristors [60, 61] or RRAM-based [72] and magnetic
tunnel junction (MTJ) [62]). However, to date (and for the near future) process
design kits (PDKs) which contain such devices are not likely to become available
commercially, i.e., there are no fully characterized or tested libraries for high-
yield IC fabrication. It is worth noting that some proposals involve building logic
devices that decode ternary logic levels (e.g., [73]). Clearly, such advances should
go hand in hand with optimization algorithms at higher abstraction levels such as
synthesizers, partitioning algorithms, etc. Thus, current modern designs consist of a
limited selection of well-known and explored logic families for automate or semi-
automate design flow. In the following subsections, we present the key features of
the most common logic families. We primarily address logic styles that serve as the
basic building blocks for the DML family, which is the topic of this book.

1.2.1 Complementary Metal Oxide Semiconductor (CMOS)

The most common design logic family today is CMOS. It is based on the use of
complementary MOS transistors to perform logic functions (see Fig. 1.1) with a
very small consumption of static current. CMOS gates are based on the fundamental
inverter circuit which consists of two transistors. Both transistors are MOSFETs,
with one n-channel whose source is grounded, and one p-channel whose source is
connected to the VDD. Their gates are connected to form the input, and their drains
are connected to form the output. The two MOSFETs are designed to have matching
characteristics and thus are complementary. When off, their resistance is very high

1in
2in

nin
)nin...,2in,1in(F

make a connection from :Up-Pull
1)=nin...,2in,1in(to F when F DDV

make a connection from :Down-Pull
0)=nin...,2in,1in(to F when F SSV

1in
2in

nin

DDV

SSV

Fig. 1.1 Standard CMOS logic. Reproduced from [74]

1.2 Introduction to the Design of Digital Logic Families 5

(theoretically infinite), but when on, their channel resistance is low. Since the gate is
essentially an oxide isolated circuit, it draws no current (except small gate leakage)
in the steady state, and the output voltage is equal to one of the strong power supply
voltages, depending on which transistor is conducting [74].

The advantages of conventional CMOS design methodology are well-known,
so they are only partially detailed here. Its key features include strong on and
off states, rail-to-rail logic levels, and until the advent of recent processes, very
low static power consumption. The main drawbacks of CMOS consist of its large
number of transistors (twice the number of inputs), which reflects the very large
input and output capacitances responsible for increasing the delay. In most advanced
nanoscale processes where the feature size is scaled to less than 65 nm, the static
leakage current increases radically as a result of the increment in the subthreshold
slope factor [1]. This problem constitutes a significant obstacle to low-voltage
designs. The increased leakage results in a decreased on/off current ratio and
thus increased delay, especially under low-voltage operation. The decreased on/off
ratio is a recipe for high-probability failure mechanisms, especially when there are
global process variations for high-frequency applications if these are not designed
correctly [75, 76]. More typical sensitivities come into play with scaled process
nodes such as gate-induced drain leakage (GIDL), drain-induced barrier lowering
(DIBL) [76, 77], punch through [78], gate tunneling [79], etc. Some of these issues
have been partially resolved by FinFET technology. CMOS performance in low-
voltage regimes is discussed in the next subsection.

Threshold voltage needs to scale with frequency, current, and future CMOS
technology generations. However, the techniques used to decrease the threshold
voltage increase its variability and leakage power. In CMOS, gates are generally
designed to have a stacked network and a parallel network whose leakage can
be substantial. Thus, summing large leakage currents which are intensified by VT
variations makes the CMOS design particularly vulnerable to process variations
in nanometer CMOS. VT sensitivity is caused by random dopant fluctuations,
line edge roughness, oxide thickness variations, etc. These effects combine to
yield an exponential change in the ON or leakage (OFF) currents under low-
voltage operation [80]. The utilization of low-voltage CMOS gates is associated
with a number of challenges [80], including low worst-case frequency (which is
determined by the design’s most critical path), relatively large leakage currents
in modern processes, as well as large areas and capacitances. All these make
low-voltage CMOS design impractical in many applications where performance is
important, and shunt CMOS low-voltage designs to applications such as medical
devices [81, 82] and portable applications with very low performance requirements
[6, 83].

Unlike the complementary CMOS which implements a symmetric voltage
transfer characteristic (V T C) and has robust high and low noise margins, dynamic
logic [84–86] was traditionally considered as the solution to counterbalance the
symmetric nature of CMOS to provide high performance. Naturally this comes at
the cost of greater energy consumption, as discussed next.

6 1 Introduction

1.2.2 Dynamic Logic

Dynamic logic [84–86] was developed for high-performance digital circuits. It can
be described as a technique to operate specially designed logic gates in two different
phases: the precharge phase where the dynamic node is charged to logic level “1”,
and the evaluation phase which may lead to a discharge of the dynamic output node.
The two phases are synchronized using a CLK signal. Figure 1.2 presents the basic
scheme of a dynamic gate:

Unlike static families (constant low resistive connections to a constant supply
of VDD or GND, e.g., CMOS), a dynamic design has very high performance, has
reduced area utilization, and inherently eliminates short circuit currents. Static gates
can evolve to high or low logic levels with equal probability; for this reason, they
are sized for equal high-to-low (TPHL

) and low-to-high (TPLH
) times. A dynamic

gate has only one transition during evaluation, and each output can only change
once (in contrast to CMOS where sporadic changes may occur). Therefore, several
chargings of the same network do not take place in dynamic operation and the gates
can be sized to optimize only one transition.

Dynamic logic presents a number of design challenges, especially in modern
nanoscaled technologies. These challenges are associated with issues such as
increased leakage currents, charge sharing, crosstalk sensitivity, signal integrity
and restoration, high dynamic power consumption (at each cycle, even with clock
gating), susceptibility to glitches with no data replenishment, and the increased
complexity of dynamic design clock distribution and control. These sensitivities
and challenges are intensified by the device dimensions, supply voltage scaling,
process variations, and temperature fluctuations. Worse, there are no standard design
flow tools or libraries for design with dynamic families (unlike CMOS). These
challenges have significantly undermined the popularity of dynamic logic in the
last 10 years. In fact, dynamic logic is almost never used in modern state-of-the-art

Fig. 1.2 Basic scheme of a
dynamic gate. Reproduced
from [85]

NM

PMCLK

CLK

out
1in
2in

nin
CL

DDV

SSV

1.2 Introduction to the Design of Digital Logic Families 7

designs. However, as will be shown in the next sections on DML, the basic concepts
of dynamic logic can be utilized in conjunction with other design styles to achieve
fast and reliable operation.

1.2.2.1 The Cascading Challenge and Dynamic Logic Topologies

The cascading of several basic dynamic gates using the same clock signal (CLK)
leads to a built-in race condition. An illustration of this race condition, depicted by
two cascaded n-type dynamic inverters, is shown in Fig. 1.3.

During the precharge phase (i.e., CLK = “0”), the outputs of both inverters are
precharged to VDD. On the rising edge of the clock, output Out1 starts to discharge.
The second output needs to remain in the precharged state of VDD because its
expected value is “1” (Out1 transitions to “0” during evaluation). However, there is
a finite propagation delay for the input to discharge Out1 to GND during which the
second output also discharges. The conducting path is between Out2 and GND, and
precious charge is lost at Out2 until Out1 reaches VT Hn . The conducting path is only
disabled once Out1 reaches VT Hn . This leaves Out2 at an intermediate voltage level
and the correct level will not be recharged. Clearly, dynamic gates rely on capacitive
storage unlike static gates such as CMOS. The charge loss leads to lesser noise
margins and potential malfunctioning in all dynamic families and topologies. To
remedy this, and achieve a correct-by-design implementation, two major dynamic
design families were suggested:

• Domino logic
• NORA or np-CMOS logic

The domino logic topology ensures “0” in the gates’ output nodes immediately
after the precharge period. The cascading problem is resolved by adding an inverter
after each dynamic gate that cuts off the next stage pull-down network during the

NM

PMCLK

CLK

out1

In
NM

PMCLK

CLK

out2

t
CLK

t

In t
out1

t
out2

VT

ΔV

V

Fig. 1.3 Cascade of dynamic n-type blocks. Reproduced from [85]

8 1 Introduction

N1

P1Clk

Clk N3

P2Clk

Clk

DDV

SSV

DDV

SSV

1in
2in

nin

1in
2in

nin

out

out
Pre-charge

high

Pre-charge
low

Fig. 1.4 Basic domino logic gate. Reproduced from [86]

NM

PMCLK

CLK

PDN

DDV

SSV

out1

NM

PMCLK

CLK

PDN

DDV

SSV

out2

4in

Fig. 1.5 Domino dynamic logic topology, cascaded gates

precharge period. Figure 1.4 outlines the general structure of a basic domino gate.
Figure 1.5 provides an example of a cascade connection of precharge high gates.

The np-CMOS (alternatively, NORA) topology (Fig. 1.6) was introduced to
improve performance and uses all the evaluation time for logic computation. This
method constitutes an alternative to cascading dynamic logic by using two flavors
(n-block and p-block types) of dynamic logic. In a p-block logic gate, pMOS

devices are used to build a PUN , including a pMOS evaluation transistor. The
nMOS is a predischarge transistor that drives the output flow during precharge.
The output makes a conditional “0” → “1” transition during evaluation depending
on the p-block gates. The n-block gates are controlled by CLK , and the p-block
gates are controlled by CLK . n-block gates can push the p-block gates directly and
vice versa. During the precharge phase (CLK = “0”), the output of the n-block
gates, Out1, is charged to VDD, while the output of the p-block discharges to the
ground (“0”). During evaluation, the output of the n-block gate can only switch

1.2 Introduction to the Design of Digital Logic Families 9

NM

PMCLK

CLK MN

MPCLK

CLK

PDN PUN4in
1in

2in
3in out2

out1

To other N-Blocks To other P-Blocks

Fig. 1.6 np-CMOS dynamic logic topology

through a “1” → “0” transition that conditionally turns on some transistors in the
p-block. This ensures that no false glitches take place. One of the shortcomings
of this logic is that half of the total number of transistors are pMOSs. They are
larger and slower (given their low driving strength) and have a lesser ability to push
current in comparison to nMOSs (related to mobility differences). Therefore, under
optimization that targets propagation delays, the pMOSs will consume a large area.
However, in state-of-the-art processes such as FinFET, the difference between the
driving strength of pMOS and nMOS is negligible.

1.2.2.2 A Footer Implementation

n-type dynamic gate inputs are low during precharge, so the designer may find it
tempting to eliminate the evaluation transistor (footer). Clearly, elimination of the
footer leads to a reduction in the sizes of the stacked devices in the evaluation
network, less tree distribution efforts and load, and an increase in the pull-down
drive strength. All these result in a better evaluation delay. Unfortunately, this
change also prolongs the precharge period. In particular, the precharge will now
ripple through the logic network, whereas originally it ran as a parallel operation for
all gates in a chain at the same time. An example of a dynamic chain without footer
transistors appears in Fig. 1.7.

An optional mitigation of the precharge ripple effect consists of the insertion of a
logic stage with a footer every few stages. This is considered to be a reasonable
compromise between the fast evaluation phase on one hand and an acceptable
precharge phase duration on the other. Another critical negative effect of a rippling
precharge is the extra power dissipation that takes place when both the pull-up and
pull-down devices are on. To eliminate these short circuit currents, designers aim to
delay the arrival of the clock between the dynamic gates, as shown in Fig. 1.8.

10 1 Introduction

PMCLK
DDV

SSV

1in

out1

PMCLK
DDV

SSV

PMCLK
DDV

SSV

2in

out2

nin

outn

Fig. 1.7 Dynamic chain without footer transistors

Fig. 1.8 Delay insertion for static power consumption mitigation

Thus, a footer constitutes a tradeoff between the evaluation phase duration and
the subsequent precharge phase. Both periods form the operation cycle of a circuit,
but typically the evaluation is much longer and the precharge phase can be concealed
with multi-phasing clocks [85].

1.2.2.3 Low-Voltage Dynamic Logic

The rationale for operating dynamic logic in the subthreshold and near-threshold
regions was to enhance performance as compared to low-voltage CMOS while still
dissipating significantly less energy than in the super-threshold region. Attempts to
use low-voltage dynamic logic were made in [84] where the conventional domino
logic was implemented with an operational voltage below the transistor’s threshold
voltage. Although these efforts produced very interesting results, they are not
practical for modern commercial applications because of their high sensitivity to
process variations in advanced technologies. The use of dynamic logic in recent
versions was also abandoned because of its increased control and clock complexity.
In addition, domino circuits have been shown to exhibit poor tolerance to device
subthreshold leakage [87]. Another attempt to modify standard dynamic logic to

1.2 Introduction to the Design of Digital Logic Families 11

1P/1 2P/1 8P/1

1Q 2Q

1P

1N

2I 3I

CLK

Keeper

Gate O/PDomino node
1I

NMOS
logic
block

Fig. 1.9 An eight-input HS-domino OR gate. Reproduced from [63]

allow reliable sub − VT H operation was reported in [63], as shown in Fig. 1.9.
Despite the fact that this system demonstrated high performance, it still suffered
from high design complexity and area overhead.

Thus overall, dynamic logic operation with low voltage supply is daunting and
complex and presents high sensitivities to process variations. Typically, it functions
best in subthreshold and near-threshold designs if major modifications and extreme
design efforts are implemented.

1.2.3 Other Design Styles in Standard CMOS Technology

This overview of existing logic families began with CMOS and dynamic logic
families since they are the basic building blocks of a DML gate (as discussed in
the next subsection). However, many other design styles have been suggested over
the years in addition to CMOS and dynamic logics. In this section we overview a
few of these alternative logic families.

1.2.3.1 Pass Transistor Logic (PTL)

In contrast to CMOS, which only addresses the primary inputs that drive the gate
terminals of MOSFETs, pass transistor logic allows the primary inputs to drive
source or drain terminals as well. The key advantage of this family is that a
one pass transistor network (either nMOS or pMOS) is sufficient to perform a
logic computation, which results in a reduced transistor count and smaller input
and output loads, in particular when using nMOS-based PTL cells. Similarly, the

12 1 Introduction

Fig. 1.10 PTL AND gate

N1

N2

B

0

A

B

F=AB

advantages of PTL have to do with its low transistor count, small loads, and, in
some cases, improved delay. An example of an AND PTL gate appears in Fig. 1.10.
However, the threshold voltage drop (VT-drop) through the nMOS transistors while
passing a logic “1” makes swing (level) restoration at the gate outputs mandatory to
avoid static currents at the next gate output (say a CMOS).

To decouple gate inputs and outputs and to provide acceptable output driving
capabilities, inverters are usually attached to the gate outputs. Special design efforts
must be made because in PTL, MOS networks are connected to the gate inputs rather
than to constant power lines. If two networks are open (“On”) at the same time while
one drives GND and the other drives VDD, it will lead to short circuit currents and
high power consumption. This forbidden state is often called a “sneak path” and
entails several logic restrictions when constructing PTL networks. Each PTL design
must have a multiplexer general structure to avoid these “sneak paths.” This issue is
very restrictive and is one of the key obstacles to automate tools for PTL. For these
reasons, certain restrictions need to be enforced when designing with PTL, i.e., both
networks require the addition of a swing restoration circuit and an additional buffer.
Furthermore, some PTL circuits are ratioed, which means that they are very sensitive
to the sizing of their transistors. Hence, numerous sizing restrictions are required to
preserve their functionality. The swing restoration circuitry (also called a keeper)
is also size dependent and may not fully mitigate the static power. Usually, PTL
circuits require an increased design effort (mostly custom and not automate design).
While some PTL circuits are implemented in super-threshold designs, mainly for
area reduction, they are sensitive to voltage scaling [57]. Under low voltage, PTL
gates have reduced noise margins and experience reliability issues with low yield.

1.2.3.2 Gate Diffusion Input (GDI)

This logic family was presented by A. Morgenstein et al., in 2002 [66, 67]. This
family combines notions deriving from the physical structures of CMOS and PTL
gates. It is based on the use of a single simple cell, as shown in Fig. 1.11a. At first
glance, the basic cell is reminiscent of the standard CMOS inverter. However, the
GDI cell contains three inputs: G (the common gate input of both the nMOS and
the pMOS), P (the input to the source/drain of the pMOS), and N (the input
to the source/drain of the nMOS). This simple cell can effectively implement a

1.2 Introduction to the Design of Digital Logic Families 13

Fig. 1.11 Basic GDI cell: (a)
Original version. (b) Standard
CMOS process compatible.
Reproduced from [68]

Out

P

G

N

VddP

Out

N

a b

Outa

b

a b

a

a

VDD

Out

b

SR
SR

a

Fig. 1.12 (a) F1 with SR transistor. (b) F2 with SR transistor. Reproduced from [68, 88]

large range of Boolean functions, most of which are very complex in static CMOS.
The GDI approach was originally developed for fabrication in silicon on insulator
(SOI) and twin-well CMOS processes. The GDI cell shown in Fig. 1.11b [68]
is a modification of the basic cell depicted in Fig. 1.11a and is also compatible
with any standard CMOS fabrication process. In the past, various combinational
and sequential circuits, such as adders, multipliers, comparators, flip-flops, and
counters have been implemented in processes down to 65 nm and can exhibit a
power reduction of up to 40%.

The main disadvantage of GDI is its lack of a full swing in some logic functions
and its finite input resistance. Recently, a solution using a self-restoring (SR)
transistor to regain the swing (two versions are shown in Fig. 1.12) [68, 88] was
suggested. However, these gates are beyond the scope of automate design flows and
have not been tested under low supply voltages.

1.2.3.3 Source-Coupled Logic (SCL) or Current Mode Logic (CML)

The general structure of source-coupled logic (SCL) (or current mode logic, CML)
family gates [32, 33] was first implemented by bipolar transistors and extended to

14 1 Introduction

Fig. 1.13 A conventional
SCL-based inverter/buffer.
Reproduced from [90]

inV

BNV

LR LR

SSI

outV

DDV

SSV

Load
Resistance

NMOS
switching
network

applications with MOS transistors. This logic, dubbed MOS current mode logic
(MCML), is a useful logic style for the implementation of high-speed circuits.
These circuits operate with a constant bias current for each gate and are appropriate
for markets requiring accurate high-speed mixed signal applications. The general
structure of this type of gate is depicted in Fig. 1.13. Typically, SCL circuits are
differential and need a special analog layout periphery. These circuits are primarily
for mixed-signal applications where dI/dt is of major importance (such as D/A

or A/D converters). Due to the almost constant current and their inherent small
voltage swing, they are highly immune to crosstalk noise incurred by switching
current spikes (unlike CMOS) and are also advantageous for cryptographic circuits.
Whereas MCML dissipates constant static power (the main power dissipation source
of MCML), they require less dynamic power than conventional logic because
of their smaller output swings, which are controlled and hence not sensitive to
voltage scaling. The reduced output swing for each differential node is induced and
controlled by the pMOS resistor and the saturated constant current nMOS. These
are designed for a constant reduced swing for the whole circuit. The reduced swing
makes switching rapid, which is the main performance boost in these circuits. M.
Alioto et al. [89] investigated the fit of this logic to the subthreshold regime. They
showed that the total energy consumed by a MCML circuit in subthreshold (static
power) could be less than the total energy (switching plus static) of a CMOS circuit.
In [90] the values of a 10 pA constant bias current were listed for a subthreshold
MCML circuit. Although these results are striking and promising, many aspects of
MCML implementation in large scale and advanced nodes still require study. In
addition, the compatibility of the MCML to standard design flow and tools needs to
be examined.

1.3 Energy–Delay (E–D) Tradeoff Paradigms 15

1.3 Energy–Delay (E–D) Tradeoff Paradigms

For years, energy efficiency and performance have been the main metrics to assess
digital electronic systems. Traditionally, energy efficiency comes at the expense
of high performance and vice versa. R. G. Dreslinski et al., presented the general
tradeoff of energy and performance as a function of the supply voltage (VDD) [91].
Figures 1.14 and 1.15 present well-known illustrations of the tradeoffs between
energy per operation and speed for different supply voltages.

The traditional designs that dominate today’s market use supply voltages in the
range of 0.9 V–1.8 V to operate their digital and analog circuits. In these designs all
the “on” transistors operate in what is known as the super-VT region (see Fig. 1.14),
far above the switching threshold of a transistor. In this region the “Ion” current
of the transistor used for switching digital gates from one state to another is very
strong, which leads to a ratio of many orders of magnitude between the “Ion” and
the “Ioff” (parasitic leakage) currents. This makes the super-VT operation very fast

Fig. 1.14 Energy and
performance tradeoff for
different supply voltages.
Reproduced from [91]

ygrenE
/

noitarep
O

Supply
Voltage

Lo
g(

yale
D

)

-Sub
 THV

-Near
 THV

-Super
 THV

Large
delay

increase

Large
energy

reduction

THV nominalV

~10X

~2X

~50X-
100X
~10X

Balanced
Trade-offs

16 1 Introduction

Fig. 1.15 Pareto-optimal energy–delay curve showing the minimum energy point (MEP) and the
minimum delay point (MDP). Reproduced from [7]

and reliable. The minimum delay point (MDP), which indicates the best possible
performance of a given circuit topology, is obtained in the super-VT region, as
depicted in Fig. 1.15. However, these traditional designs consume vast amounts of
energy and are not suitable for many modern applications where energy dissipation
is the main concern.

Low-voltage operation in the sub-VT or near-VT regions has been shown to
be the ideal way to dramatically reduce energy dissipation. In sub-VT designs,
all transistors are operated from the supply voltage, which is below the transistor
switching threshold voltage. This approach, which was put forward as early as the
1960s, is radically different since operation in the subthreshold regions exploits the
parasitic leakage current and uses it as its primary operation current. This means
that according to the classical definition, most of the transistors are in the “off” state
even during their operation and switching. Subthreshold operation can substantially
reduce both leakage and switching (dynamic) energy dissipation and thus results in
minimum energy dissipation. Dynamic power is greatly reduced, primarily due to
the quadratic dependency on supply voltage and the complete elimination of certain
components. Similarly, the static leakage is also much lower since it also depends on
the supply voltage (exponential dependency at low voltages). The minimum energy
point (MEP) is usually situated in the subthreshold region, as shown in Figs. 1.14
and 1.15. Lowering the supply voltage below the MEP causes an increase in energy

1.4 Book Outline 17

consumption (see Fig. 1.14). Below the MEP, the circuit delay is exponentially
larger (an exponential increase with supply voltage reduction). In turn, this makes
the leakage currents of sub-VT devices start to dominate the energy per operation.

Although maximum energy efficiency is achieved in the sub-VT region because
the subthreshold currents are much weaker than standard “super-threshold” currents,
the time needed to change a digital gate state is significantly longer, which limits
the operation frequency of the circuit considerably. At the MEP, the delay is at least
three orders of magnitude greater than at the MDP, which consumes an order of
magnitude more energy. The energy–delay (E–D) curve is practically flat around
the MEP, such that significant performance improvement can be achieved by a slight
increase in the supply voltage above the MEP and by moving into the near-VT region
(see Fig. 1.15). In near-VT (NT) designs, all the transistors are operated between the
weak and moderate inversion regions. Since operation in the NT region presents
a good tradeoff in terms of energy performance and leads to significant energy
reduction with only a moderate drop in performance (as compared to the super-
threshold region), it has become very attractive for many modern applications.

At first glance this description suggests that a simple reduction in the power
supply voltage of traditional circuits could provide reliable sub − /near-threshold
operation. Unfortunately, this turns out to be false, since the power supply reduction
is accompanied by a number of problems and significant challenges. The low
voltage associated with frequency reduction is not suitable for all modes of
operation so that an adaptive voltage control mechanism may be required. Lower
supply voltages also mean lower noise margins, a reduced yield, and increased
vulnerability to process variations and temperature fluctuations. The characteristics
of semiconductor behavior in the sub − /near-threshold are not well represented
by standard transistor models and differ from those in the super-threshold region,
resulting in variations in device sizing and ratio optimizations. Although some logic
families such as CMOS are known to be fully operational in all voltage regions,
many logic families including the ratioed-logic and dynamic families have been
shown to be inapplicable in low-voltage regions. By contrast, the dual-mode logic
(DML) discussed in this book is fully functional at all voltage regions. Crucially,
the DML’s capability to switch between different modes of operation (static or
dynamic) enables it to achieve energy efficient operation under a wide range of
supply voltages, while exhibiting a significant improvement in performance as
compared to conventional CMOS logic.

1.4 Book Outline

After a general introduction to logic families and energy–delay tradeoffs in digital
design, Chap. 2 introduces the reader to the basics of the DML logic family. This
chapter consists of a description of the DML paradigm that depicts the transistor
level architecture of basic DML gates and the principles of their operation. The
optimization of DML gates is presented in Chap. 3. A dedicated logical effort

18 1 Introduction

(LE) approach was chosen to illustrate the optimization of sizing and topology
of DML gates. First, the optimization is shown for a simple case of a chain of
inverters, and un-approximated, approximated, and semi-approximated methods
are discussed to characterize the tradeoff between the precision and complexity
of the model. Then, a general DML–LE method is introduced to optimize more
complex gates and branches. The methodology is evaluated at the end of the chapter.
Chapter 4 details the operation of DML circuits at low voltages. Since sub−/near-
threshold regions are not well represented by conventional transistor models and
are different from those in the super-threshold region, DML modeling and sizing
using a transregional model are presented. The transregional model is used to better
capture DML behavior at low voltages. It also serves as a basis for the extraction of
DML logical effort parameters and DML sizing methodology development under
low voltage. DML robustness and silicon measurements of a benchmark conclude
the chapter. DML energy–delay tradeoffs and optimization are investigated in detail
in Chap. 5. In particular, the critical-path DML approaches are presented to optimize
both energy efficiency and performance. Practical challenges, such as critical-path
timing violations, are discussed, and DML energy–delay tradeoffs are presented
using a Carry Look-Ahead adder benchmark example. Chapter 6 introduces the
reader to a number of approaches for DML control. The first consists of a coarse-
grain DML mode selection controller which is followed by a practical example of
an energy-efficient dual-mode2 (DM2) system architecture. Then, an approach to
fine-grain DML mode selection control is shown on an example of a CLA adder,
followed by an example of a DML multiplier accumulator (MAC) with a self-
adjustment mechanism, designed and fabricated in 28 nm FD-SOI. As mentioned,
compatibility of a logic family to standard design flow is crucial. However, in
many cases, including DML, the adaptation of a logic family to a conventional
flow and standard design tools is far from straightforward. This topic is analyzed in
Chaps. 7 and 8. In particular, standard design flow challenges with respect to DML
are discussed, DML library characterization is presented, and a design with DML
using standard flow is shown using simple benchmarks. Finally, a simple approach
to DML synthesis is provided. In Chap. 9 we analyze and evaluate DML use in
advanced technology nodes with advanced capabilities (namely, the FD-SOI 28 nm
process). Chapter 10 outlines future challenges.

This book consolidates and combines results from a long and extensive research
activity [92–104], conducted by the editors along with other faculty members,
postdoctoral fellows, and PhD and master’s students from Bar-Ilan (BIU) and Ben-
Gurion (BGU) Universities, Israel, EPFL Switzerland, as well as the University of
Calabria, Italy.

References

1. J. Rabaey, Low Power Design Essentials (Springer, Berlin, 2009)
2. K. Roy, S.C. Prasad, Low-power CMOS VLSI Circuit Design (Wiley, New York, 2009)

References 19

3. J.M. Rabaey, M. Pedram, Low Power Design Methodologies, vol. 336 (Springer, Berlin, 2012)
4. D. Flynn, R. Aitken, A. Gibbons, K. Shi, Low Power Methodology Manual: For System-on-

chip Design (Springer, Berlin, 2007)
5. B.H. Calhoun, Y. Cao, X. Li, K. Mai, L.T. Pileggi, R.A. Rutenbar, K.L. Shepard, Digital

circuit design challenges and opportunities in the era of nanoscale CMOS. Proc. IEEE 96,
343–365 (2008)

6. B.H. Calhoun, J. Bolus, S. Khanna, A.D. Jurik, A.C. Weaver, T.N. Blalock, Sub-threshold
operation and cross-hierarchy design for ultra low power wearable sensors, in Proceedings of
the 2009 IEEE International Symposium on Circuits and Systems (IEEE, New York, 2009),
pp. 1437–1440

7. D. Markovic, C.C. Wang, L.P. Alarcon, T.-T. Liu, J.M. Rabaey, Ultralow-power design in
near-threshold region. Proc. IEEE 98(2), 237–252 (2010)

8. D. Bol, D. Kamel, D. Flandre, J.-D. Legat, Nanometer MOSFET effects on the minimum-
energy point of 45 nm subthreshold logic, in Proceedings of the 2009 ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design (ACM, New York, 2009), pp. 3–8

9. T. Jang, G. Kim, B. Kempke, B. Henry, N. Chiotellis, C. Pfeiffer, A. Grbic, D. Sylvester,
D. Blaauw, Circuit and system designs of ultra-low power sensor nodes with illustration
in a miniaturized GNSS logger for position tracking: Part II—Data communication, energy
harvesting, power management, and digital circuits. IEEE Trans. Circuits Syst. I, Reg. Papers
64(9), 2250–2262 (2017)

10. M. Alioto, Enabling the Internet of Things: From Integrated Circuits to Integrated Systems
(Springer, Berlin, 2017)

11. M. Pedram, S. Nazarian, Thermal modeling, analysis, and management in VLSI circuits:
Principles and methods. Proc. IEEE 94(8), 1487–1501 (2006)

12. S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim, D. Blaauw, D. Sylvester, A fully-integrated 71 nW CMOS
temperature sensor for low power wireless sensor nodes. IEEE J. Solid State Circuits 49(8),
1682–1693 (2014)

13. A. Wang, A. Chandrakasan, A 180-mV subthreshold FFT processor using a minimum energy
design methodology. IEEE J. Solid State Circuits 40(1), 310–319 (2005)

14. L.P. Alarcón, T.-T. Liu, M.D. Pierson, J.M. Rabaey, Exploring very low-energy logic: a case
study. J. Low Power Electron. 3(3), 223–233 (2007)

15. D. Blaauw, et-al., Razor II: in situ error detection and correction for PVT and SER tolerance,
in Proceedings of the 2008 IEEE International Solid-State Circuits Conference (ISSCC)
(2008), pp. 400–622

16. Y. Wu, S. Thomson, H. Sun, D. Krause, S. Yu, G. Kurio, Free razor: a novel voltage scaling
low-power technique for large SoC designs. IEEE Trans. Very Large Scale Integr. VLSI Syst.
23(11), 2431–2437 (2015)

17. G. de-Streel, F. Stas, T. Gurné, F. Durant, C. Frenkel, A. Cathelin, D. Bol, SleepTalker: a
ULV 802.15. 4a IR-UWB transmitter SoC in 28-nm FDSOI achieving 14 pJ/b at 27 Mb/s
with channel selection based on adaptive FBB and digitally programmable pulse shaping.
IEEE J. Solid State Circuits 52(4), 1163–1177 (2017)

18. L. Benini, G. De Micheli, State assignment for low power dissipation. IEEE J. Solid State
Circuits 30(3), 258–268 (1995)

19. Y. Xia, A.E.A. Almaini, Genetic algorithm based state assignment for power and area
optimisation. IEE Proc. Comput. Digit. Tech. 149(4), 128–133 (2002)

20. L. Xie, P. Qiu, Q. Qiu, Partitioned bus coding for energy reduction, in Proceedings of the
2005 Asia and South Pacific Design Automation Conference (ACM, New York, 2005), pp.
1280–1283

21. B.H. Calhoun, A.P. Chandrakasan, Ultra-dynamic voltage scaling (UDVS) using sub-
threshold operation and local voltage dithering. IEEE J. Solid State Circuits 41(1), 238–245
(2006)

22. B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, The limit of dynamic voltage scaling and
insomniac dynamic voltage scaling. IEEE Trans. Very Large Scale Integr. VLSI Syst. 13(11),
1239–1252 (2005)

20 1 Introduction

23. J. Shinde, S.S. Salankar, Clock gating—A power optimizing technique for VLSI circuits,
in Proceedings of the 2011 Annual IEEE India Conference (INDICON) (IEEE, New York,
2011), pp. 1–4

24. L. Li, W. Wang, K. Choi, S. Park, M.-K. Chung, SeSCG: selective sequential clock gating
for ultra-low-power multimedia mobile processor design, in Proceedings of the 2010 IEEE
International Conference on Electro/Information Technology (EIT) (IEEE, New York, 2010),
pp. 1–6

25. W. Shen, Y. Cai, X. Hong, J. Hu, An effective gated clock tree design based on activity and
register aware placement. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(12), 1639–
1648 (2010)

26. H. Mahmoodi, V. Tirumalashetty, M. Cooke, K. Roy, Ultra low-power clocking scheme using
energy recovery and clock gating. IEEE Trans. Very Large Scale Integr. VLSI Syst. 17(1),
33–44 (2009)

27. R. Bhutada, Y. Manoli, Complex clock gating with integrated clock gating logic cell, in
Proceedings of the International Conference on Design and Technology of Integrated Systems
in Nanoscale Era (2007 DTIS) (IEEE, New York, 2007), pp. 164–169

28. P.K. Pal, R.S. Rathore, A.K. Rana, G. Saini, New low-power techniques: leakage feedback
with Stack and Sleep stack with keeper, in Proceedings of the 2010 International Conference
on Computer and Communication Technology (ICCCT) (IEEE, New York, 2010), pp. 296–
301

29. S. Dropsho, V. Kursun, D.H. Albonesi, S. Dwarkadas, E.G. Friedman, Managing static
leakage energy in microprocessor functional units, in Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002 (MICRO-35) (IEEE, New
York, 2002), pp. 321–332

30. S. Jeong, I. Lee, D. Blaauw, D. Sylvester, A 5.8 nW CMOS Wake-Up Timer for Ultra-Low-
Power Wireless Applications. IEEE J. Solid State Circuits 50(8), 1754–1763 (2015)

31. T. Jang, M. Choi, S. Jeong, S. Bang, D. Sylvester, D. Blaauw, A 4.7 nW 13.8 ppm/◦ C self-
biased wakeup timer using a switched-resistor scheme, in Proceedings of the 2016 IEEE
International Solid-State Circuits Conference (ISSCC) (2016), pp. 102–102

32. S. Badel, Y. Leblebici, Breaking the power-delay tradeoff: design of low-power high-speed
MOS current-mode logic circuits operating with reduced supply voltage, in Proceedings of
the IEEE International Symposium on Circuits and Systems 2007 (ISCAS 2007) (IEEE, New
York, 2007), pp. 1871–1874

33. A. Inoue, V.G. Dklobdzija, W.W. Walker, M. Kai, T. Izawa, A low power SOI adder using
reduced-swing charge recycling circuits, in Proceedings of the 2001 IEEE International
Solid-State Circuits Conference, 2001. Digest of Technical Papers (ISSCC) (IEEE, New York,
2001), pp. 316–317

34. M. Li, C.-I. Ieong, M.-K. Law, P.-I. Mak, M.-I. Vai, S. -H. Pun, R.-P. Martins, Energy
Optimized Subthreshold VLSI Logic Family With Unbalanced Pull-Up/Down Network and
Inverse Narrow-Width Techniques. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(12),
3119–3123 (2015)

35. H.-P. Keil, M. Momeni, A. Guntoro, A.G. Ortiz, M. Glesner, A novel leakage-estimation
method for input-vector control, in Proceedings of the IEEE Asia Pacific Conference on
Circuits and Systems, 2008 (APCCAS 2008) (IEEE, New York, 2008), pp. 570–573

36. H. Jeon, Y.-B. Kim, M. Choi, A novel technique to minimize standby leakage power
in nanoscale CMOS VLSI, in Proceeding of the IEEE Instrumentation and Measurement
Technology Conference, 2009 (I2MTC’09) (IEEE, New York, 2009), pp. 1372–1375

37. S. Mukhopadhyay, C. Neau, R.T. Cakici, A. Agarwal, C.H. Kim, K. Roy, Gate leakage
reduction for scaled devices using transistor stacking. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 11(4), 716–730 (2003)

38. J.-L. Kuo, H. Wang, A 24 GHz CMOS power amplifier using reversed body bias technique
to improve linearity and power added efficiency, in Proceedings of the 2012 IEEE MTT-S
International Microwave Symposium Digest (MTT) (IEEE, New York, 2012), pp. 1–3

References 21

39. L. Xiao, C. Liu, Y. Sun, A novel adaptive reverse body bias technique to minimize standby
leakage power and compensate process and temperature variations, in Cross Strait Quad-
Regional Radio Science and Wireless Technology Conference (CSQRWC 2011), vol. 2 (IEEE,
New York, 2011), pp. 1565–1568

40. K.K. Kim, Y.-B. Kim, Optimal body biasing for minimum leakage power in standby mode,
in Proceedings of the IEEE International Symposium on Circuits and Systems, 2007 (ISCAS
2007) (IEEE, New York, 2007), pp. 1161–1164

41. K.K. Kim, Y.-B. Kim, Optimal body biasing for minimum leakage power in standby mode,
in Proceedings of the IEEE International Symposium on Circuits and Systems, 2007 (ISCAS
2007) (IEEE, New York, 2007), pp. 1161–1164

42. W. Zhao, Y. Ha, M. Alioto, Novel self-body-biasing and statistical design for near-threshold
circuits with ultra energy-efficient AES as case study. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 23(8), 1390–1401 (2015)

43. H.-S. Won, K.-S. Kim, K.-O. Jeong, K.-T. Park, K.-M. Choi, J.-T. Kong, An MTCMOS
design methodology and its application to mobile computing, in Proceedings of the 2003
International Symposium on Low Power Electronics and Design, 2003 (ISLPED’03) (IEEE,
New York, 2003), pp. 110–115

44. Z. Liu, V. Kursun, Characterization of wake-up delay versus sleep mode power consumption
and sleep/active mode transition energy overhead tradeoffs in MTCMOS circuits, in Proceed-
ing of the 51st Midwest Symposium on Circuits and Systems, 2008 (MWSCAS 2008) (IEEE,
2008), pp. 362–365

45. J.P. Halter, F.N. Najm, A gate-level leakage power reduction method for ultra-low-power
CMOS circuits, in Proceedings of the IEEE 1997 Custom Integrated Circuits Conference,
1997 (IEEE, 1997), pp. 475–478

46. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEICE
Trans. Electron. 75(4), 371–382 (1992)

47. G. Schrom, S. Selberherr, Ultra-low-power CMOS technologies, in Proceeding of the
International Semiconductor Conference 1996, vol. 1 (IEEE, New York, 1996), pp. 237–246

48. A.P. Chandrakasan, R.W. Brodersen, Minimizing power consumption in digital CMOS
circuits. Proc. IEEE 83(4), 498–523 (1995)

49. S.-M.S. Kang, Elements of low power design for integrated systems, in Proceedings of the
2003 International Symposium on Low Power Electronics and Design, 2003 (ISLPED’03)
(IEEE, New York, 2003), pp. 205–210

50. N. Verma, A.P. Chandrakasan, A 256 kb 65 nm 8t subthreshold SRAM employing sense-
amplifier redundancy. IEEE J. Solid State Circuits 43(1), 141–149, 2008

51. H.-S. Won, K.-S. Kim, K.-O. Jeong, K.-T. Park, K.-M. Choi, J.-T. Kong, Hyperdimensional
computing exploiting carbon nanotube FETs, Resistive RAM, and their monolithic 3D
integration. IEEE J. Solid State Circuits 53(11), 3183–3196 (2018)

52. R. Patel, X. Guo, Q. Guo, E. Ipek, E.-G. Friedman, Reducing switching latency and energy in
STT-MRAM caches with field-assisted writing. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 24(1), 129–138 (2016)

53. N.H. Weste, K. Eshraghian, Principles of CMOS VLSI design, vol. 188 (Addison-Wesley,
New York, 1985)

54. W. Al-Assadi, A.P. Jayasumana, Y.K. Malaiya, Pass-transistor logic design. Int. J. Electron.
Theor. Exp. 70(4), 739–749 (1991)

55. I.S. Abu-Khater, A. Bellaouar, M.I. Elmasry, Circuit techniques for CMOS low-power high-
performance multipliers. IEEE J. Solid State Circuits 31(10), 1535–1546 (1996)

56. R. Zimmermann, W. Fichtner, Low-power logic styles: CMOS versus pass-transistor logic.
IEEE J. Solid State Circuits 32(7), 1079–1090 (1997)

57. K. Yano, Y. Sasaki, K. Rikino, K. Seki, Top-down pass-transistor logic design. IEEE J. Solid
State Circuits 31(6), 792–803 (1996)

58. M. Anis, M. Allam, M. Elmasry, Impact of technology scaling on CMOS logic styles. IEEE
Trans. Circuits Syst. II Analog Digit. Signal Process. 49(8), 577–588 (2002)

22 1 Introduction

59. S.-F. Hsiao, M.-Y. Tsai, C.-S. Wen, Transistor sizing and layout merging of basic cells in pass
transistor logic cell library, in IEEE International Symposium on VLSI Design, Automation
and Test, 2008 (VLSI-DAT 2008) (IEEE, New York, 2008), pp. 89–92

60. S. Kvatinsky, et al., Memristor-based material implication (IMPLY) logic: design principles
and methodologies. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(10), 2054–2066
(2014)

61. S. Kvatinsky, et-al., MAGIC—Memristor-aided logic. IEEE Trans. Circuits Syst. II Express
Briefs 61(11), 895–899 (2014)

62. J.-S. Friedman, A.-V. Sahakian, Complementary magnetic tunnel junction logic. IEEE Trans.
Electron. Devices 61(4), 12070–1210 (2014)

63. M.W. Allam, M.H. Anis, M.I. Elmasry, High-speed dynamic logic styles for scaled-down
CMOS and MTCMOS technologies, in Proceedings of the 2000 International Symposium on
Low Power Electronics and Design (ACM, New York, 2000), pp. 155–160

64. N.F. Goncalves, H. De Man, NORA: A racefree dynamic CMOS technique for pipelined logic
structures. IEEE J. Solid State Circuits 18(3), 261–266 (1983)

65. R. Hossain, High Performance ASIC Design (Cambridge University, Cambridge, 2008)
66. A. Morgenshtein, A. Fish, A. Wagner, Gate-diffusion input (GDI)-a novel power efficient

method for digital circuits: a design methodology, in Proceedings of the 14th Annual IEEE
InternationalASIC/SOC Conference, 2001 (IEEE, New York, 2001), pp. 39–43

67. A. Morgenshtein, A. Fish, I.A. Wagner, Gate-diffusion input (GDI)-a technique for low
power design of digital circuits: analysis and characterization, in Proceedings of the IEEE
International Symposium on Circuits and Systems, 2002 (ISCAS 2002), vol. 1 (IEEE, New
York, 2002), pp. I–I

68. A. Morgenshtein, I. Shwartz, A. Fish, Gate diffusion input (GDI) logic in standard CMOS
nanoscale process, in Proceedings of the 2010 IEEE 26th Convention of Electrical and
Electronics Engineers in Israel (IEEEI) (IEEE, New York, 2010), pp. 000776–000780

69. V. Sze, A.P. Chandrakasan, A 0.4-v UWB baseband processor, in Proceedings of the 2007
International Symposium on Low Power Electronics and Design (ACM, New York, 2007),
pp. 262–267

70. H. Soeleman, K. Roy, B.C. Paul, Robust subthreshold logic for ultra-low power operation.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 9(1), 90–99 (2001)

71. B. Nikolic, V.G. Oklobdzija, V. Stojanovic, W. Jia, J.K.-S. Chiu, M.M.-T. Leung, Improved
sense-amplifier-based flip-flop: design and measurements. IEEE J. Solid State Circuits 35(6),
876–884 (2000)

72. A.-P. James, L.-R. Francis, D.-S. Kumar, Resistive threshold logic. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 2(1), 190–195 (2014)

73. V.-T. Gaikwad, P.-R. Deshmukh, Design of CMOS ternary logic family based on single supply
voltage, in Proceedings of the 2015 International Conference on Pervasive Computing (ICPC)
(2015), pp. 1–6

74. J.M. Rabaey, A.P. Chandrakasan, B. Nikolic, Digital Integrated Circuits, vol. 2 (Prentice Hall,
Englewood Cliffs, 2002)

75. K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and
leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–
327 (2003)

76. A. Agarwal, S. Mukhopadhyay, A. Raychowdhury, K. Roy, C.H. Kim, Leakage power
analysis and reduction for nanoscale circuits. IEEE Micro 26(2), 68–80 (2006)

77. J. Kao, S. Narendra, A. Chandrakasan, Subthreshold leakage modeling and reduction
techniques, in Proceedings of the 2002 IEEE/ACM International Conference on Computer-
Aided Design (ACM, New York, 2002), pp. 141–148

78. B. Zhai, S. Hanson, D. Blaauw, D. Sylvester, Analysis and mitigation of variability in
subthreshold design, in Proceedings of the 2005 International Symposium on Low Power
Electronics and Design (ACM, New York, 2005), pp. 20–25

79. D. Bol, R. Ambroise, D. Flandre, J.-D. Legat, Analysis and minimization of practical energy
in 45 nm subthreshold logic circuits, in Proceedings of the IEEE International Conference on
Computer Design, 2008 (ICCD 2008) (IEEE, New York, 2008), pp. 294–300

References 23

80. C.-I. Kim, H. Soeleman, K. Roy, Ultra-low-power DLMS adaptive filter for hearing aid
applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11(6), 1058–1067 (2003)

81. Y.-S. Lin, D. Sylvester, D. Blaauw, A sub-pW timer using gate leakage for ultra low-
power sub-Hz monitoring systems, in Proceedings of the IEEE Custom Integrated Circuits
Conference, 2007 (CICC’07) (IEEE, New York, 2007), pp. 397–400

82. H. Soeleman, K. Roy, B. Paul, Robust ultra-low power sub-threshold DTMOS logic, in
Proceedings of the 2000 International Symposium on Low Power Electronics and Design
(ACM, New York, 2000), pp. 25–30

83. W.M. Penney, L. Lau, MOS Integrated Circuits: Theory, Fabrication, Design, and Systems
Applications of MOS LSI (Krieger Publishing, Florida, 1979)

84. H. Soeleman, K. Roy, B. Paul, Sub-domino logic: ultra-low power dynamic sub-threshold
digital logic, in Proceedings of the Fourteenth International Conference on VLSI Design,
2001 (IEEE, New York, 2001), pp. 211–214

85. D. Harris, M.A. Horowitz, Skew-tolerant domino circuits. IEEE J. Solid State Circuits 32(11),
1702–1711 (1997)

86. H. Soeleman, K. Roy, Ultra-low power digital subthreshold logic circuits, in Proceedings of
the 1999 International Symposium on Low Power Electronics and Design (ACM, New York,
1999), pp. 94–96

87. S. Thompson, I. Young, J. Greason, M. Bohr, Dual Threshold Voltages and Substrate Bias:
Keys to High Performance, Low Power, 0.1 m Logic Designs, in Proceedings of the IEEE
Institute of Electrical and Electronics Symposium on VLSI Technology (1997), pp. 69–70

88. A. Morgenshtein, V. Yuzhaninov, A. Kovshilovsky, A. Fish, Full-Swing Gate Diffusion Input
logic—Case-study of low-power CLA adder design. Integration VLSI J. 47(1), 62–70 (2014)

89. M. Alioto, G. Palumbo, Design strategies for source coupled logic gates. IEEE Trans. Circuits
Systems I Fund. Theory Appl. 50(5), 640–654 (2003)

90. A. Tajalli, E.J. Brauer, Y. Leblebici, E. Vittoz, Subthreshold source-coupled logic circuits for
ultra-low-power applications. IEEE J. Solid State Circuits 43(7), 1699–1710 (2008)

91. R.G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, T. Mudge, Near-threshold
computing: reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE
98(2), 253–266 (2010)

92. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 21(5), 979–983 (2012)

93. I. Levi, O. Bass, A. Kaizerman, A. Belenky, A. Fish, High speed dual mode logic carry
look ahead adder, in Proceedings of the 2012 IEEE International Symposium on Circuits
and Systems (ISCAS) (IEEE, New York, 2012), pp. 3037–3040

94. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: model analysis and parameter
extraction. Microelectron. J. 44(6), 553–560 (2013)

95. I. Levi, A. Fish, Dual mode logic—design for energy efficiency and high performance. IEEE
Access 1, 258–265 (2013)

96. I. Levi, A. Belenky, A. Fish, Logical effort for cmos-based dual mode logic gates. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 22(5), 1042–1053 (2013)

97. A. Fish, A. Kaizerman, S. Fisher, I. Levy, Device and Method for Dual-mode Logic (2014).
US Patent 8,901,965

98. R. Taco, I. Levi, M. Lanuzza, A. Fish, Evaluation of dual mode logic in 28 nm FD-SOI
technology, in Proceedings of the 2017 IEEE International Symposium on Circuits and
Systems (ISCAS) (IEEE, New York, 2017), pp. 1–4

99. V. Yuzhaninov, I. Levi, A. Fish, Design flow and characterization methodology for dual mode
logic. IEEE Access 3, 3089–3101 (2015)

100. R. Taco, I. Levi, M. Lanuzza, A. Fish, An 88-fj/40-MHZ [0.4v]–0.61-pj/1-GHZ [0.9v] dual-
mode logic 8 × 8 bit multiplier accumulator with a self-adjustment mechanism in 28-nm
FD-SOI. IEEE J. Solid State Circuits 54(2), 560–568 (2018)

101. L. Moyal, I. Levi, A. Teman, A. Fish, Synthesis of dual mode logic. Integration 55, 246–253
(2016)

24 1 Introduction

102. I. Levi, A. Albeck, A. Fish, S. Wimer, A low energy and high performance DM2 adder. IEEE
Trans. Circuits Syst. I Regul. Pap. 61(11), 3175–3183 (2014)

103. R. Taco, I. Levi, M. Lanuzza, A. Fish, Live demo: an 88FJ/40 MHZ [0.4v]–0.61 pj/1ghz [0.9v]
dual mode logic 8 × 8-bit multiplier accumulator with a self-adjustment mechanism in 28 nm
fd-soi, in Proceedings of the 2019 IEEE International Symposium on Circuits and Systems
(ISCAS) (IEEE, New York, 2019), pp. 1–1

104. A. Fish, A. Kaizerman, S. Fisher, I. Levy, Device and method for dual-mode logic (2014). US
Patent 8,901,965

Chapter 2
Introduction to Dual Mode Logic (DML)

This chapter discusses the concept behind DML. It presents DML basic architec-
tures at the circuit level and describes the two modes of DML operation in detail.
Specifically, it elaborates on the range of device-level topologies to construct a
DML gate and the valid DML gate-level combinations. This is followed by a short
discussion on the rationales, advantages, and disadvantages of each topology, as well
as DML in general. In this chapter, we mainly focus on speed (performance) and
energy consumption as evaluation metrics and compare DML designs to standard
CMOS designs.

2.1 DML Concept and Transistor-Level Architecture

The main rationale guiding DML is to provide high-level energy–delay (E–D)
optimization flexibility [1–3] at design time and runtime. The innovative capability
of DML gates to switch between different operational modes at the gate level on-
the-fly enables the circuit to respond to changing workloads and system states
in real time. The DML paradigm makes it feasible to implement digital circuits
that dissipate less energy while improving performance and reducing area at the
same time. All these gains can be implemented without significant compromise in
reliability.

DML operates in what are termed the static mode and the dynamic mode. In
the static mode, DML gates consume very low energy, with some performance
degradation compared to standard CMOS gates. On the other hand, dynamic DML
gate operation exhibits very high performance at the expense of increased energy
dissipation. A DML basic gate is based on a static logic family gate, e.g., a
conventional CMOS gate, and an additional transistor. Although DML gates have
a very simple and intuitive structure, they need an unconventional sizing scheme to
achieve the desired functionality, as discussed below [1, 3].

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_2

26 2 Introduction to Dual Mode Logic (DML)

A basic DML gate architecture is made up of an un-clocked static gate, e.g.,
CMOS, and an additional transistor M1, whose gate is connected to a global clock
signal [1], as shown in Fig. 2.1. This chapter discusses DML gates whose static gate
implementation is based on conventional CMOS targeting a simple introduction
(although there are other alternatives). A DML gate implementation can be either
Type-A and Type-B, as shown in Fig. 2.1(a–d), respectively. In the static DML mode
of operation (static mode), the M1 transistor is off by applying the high clock
signal for the Type-A and the low Clk for the Type-B topology. This means that
the gates of both topologies operate similarly to the static logic gate, in this case,
CMOS. For dynamic operation of the gate (dynamic mode), the Clk is enabled for
toggling, thus providing two separate phases: precharge and evaluation. During the
precharge phase, the output is charged to VDD in Type-A gates and discharged to
GND in Type-B gates. During evaluation, the output is evaluated according to the

Static
logic

In Out

CLKA

VDD

M1 Static
logic

In Out

CLKA

VDD

M1

M2

footer
CLKA

pe

Static
logic

In Out

CLKB
M1

p

pe

e

VDD

Static
logic

In Out

CLKB

VDD

M1

M2

header
CLKB

a b

c d

pe

Fig. 2.1 Basic DML gate topologies: (a) Type-A footless. (b) Type-A footed. (c) Type-B footless.
(d) Type-B footed. pe traces denotes the evaluation paths for each topology

2.1 DML Concept and Transistor-Level Architecture 27

IN1

IN2

VDD
VDD

IN1

CLK A

OUT

IN1

IN2

VDD

IN1
CLKB

OUT

a b

Fig. 2.2 DML NOR2. (a) Efficient Type-A gate. (b) Less-efficient Type-B gate

values at the gate inputs, as is done in the NORA/np-CMOS implementations [4, 5].
Studies have confirmed that DML gates exhibit very robust operation in both the
static and dynamic modes under process variations and at low supply voltages [1–3].
Dynamic mode robustness is mainly achieved through the intrinsic active restorer
(pull-up network in Type-A and pull-down network in Type-B). This restorer can,
however, also sustain glitches, charge leakage, and charge sharing, which are known
sensitivities of standard dynamic logic families. Since DML gates have a topology
which is very similar to CMOS, the design of a basic DML gate is very simple: it
involves “gluing” an additional transistor for the precharge phase and, in the case of
a footed gate, adding an additional nMOS transistor as a footer in Type-A gates and
a pMOS transistor as a header in Type-B gates.

As discussed in the previous paragraph, the most efficient DML gates are
typically the ones with a precharge (or predischarge) transistor connected in parallel
to a group of serially stacked transistors that are minimally sized (either pull-up or
pull-down). Therefore, the evaluation network is usually dominated by parallel paths
which contribute to a very fast evaluation period (small evaluation path resistance
and reduced output capacitance). In general, the designer is not obligated to use
these guidelines and the precharge transistor can be placed in parallel to a parallel
path network, but this will result in relatively slow DML gates (compared to the
opposite type). Hence, to fully exploit the DML advantages, specific gates are better
utilized in certain types. Figure 2.2 illustrates this principle, where a DML Type-A
NOR2 gate is very fast in comparison to a DML Type-B NOR2 gate.

The unique sizing of the DML gate transistors is the key factor in achieving
low energy consumption in the static DML mode (where the topology of the gate is
identical to the static gate). This sizing is also responsible for the reduction of all the
capacitances of the gate. Similarly, the unique transistor sizing and utilization of an
appropriate topology enables evaluation by a low resistance network, thus achieving
fast operation in the dynamic mode.

An intuitive visualization of the tradeoff inherently related to DML is shown
in Fig. 2.3. Energy efficiency in the static DML mode comes at the cost of slower
operation (low energy and low performance, left side of the fulcrum). By contrast,

28 2 Introduction to Dual Mode Logic (DML)

Fig. 2.3 DML gates
tradeoffs in the static and
dynamic operation regimes Mode a:

Save energy

Low
Performance

Low Energy
High

Performance

High Energy

Static

Dynamic Mode b:
Work fast

PUN

PDN
Inputs Output

Network equivalent
width:

f·β·Wmin

Network
equivalent width:

minW·f

CMOS
gate

PUN

PDNInputs
Output

All
 :devices

 minW

Network
equivalent width:

minW·S

Un-Footed DML
Type_A gate

VDD

CLK PUN

PDN

Inputs Output

All
 :devices

 minW

Network
equivalent width:

minW·rμ·S

Un-Footed DML
Type_B gate

CLK

(c)(b)(a)

Fig. 2.4 DML characteristics: (a) general un-f ooted Type-A CMOS-based DML gate with
detailed sizing, (b) general un-f ooted Type-B CMOS-based DML gate with detailed sizing, and
(c) general CMOS gate with detailed sizing

the dynamic mode is characterized by high performance, although with increased
energy consumption (high energy and high performance, right side of the fulcrum).
These tradeoffs enable very high levels of flexibility at the system level, as described
in detail in the following chapters.

Figure 2.4a and b shows the sizing of CMOS-based DML gates in Type-A and
Type-B, respectively. These (exemplary) DML gates are optimized for dynamic
operation for which the equivalent widths of the evaluation networks are SẆmin

and SμrẆmin for the Type-A and Type-B, respectively. Figure 2.4c depicts the
conventional sizing of a standard CMOS gate where WMIN is the minimal transistor
width, β is the PUN to PDN inherent upsizing factor (which mainly comes from hole
and electron mobility ratio), and f is the general upsizing factor of the gate [3, 6, 7].
Note that although the upsizing factors S and f of DML and CMOS gates have
the same meaning, they are calculated in a slightly different way, as described in
the next chapter. The in/out capacitances of the DML gates are significantly smaller
than CMOS gates, as a result of the utilization of minimal width transistors in the
complementary networks. The size of the precharge transistor remains the same
S×WMIN to preserve a fast precharge period, despite the output load upsized gate,
where S again is the evaluation network upsizing factor. More details are provided
in [3].

2.2 DML Advantages 29

As is the case for other dynamic families, DML gates can be designed with or
without a footer for Type-A DML (or a header for Type-B DML). Figure 2.1b and d
illustrates the footed Type-A and the headed Type-B DML gates, respectively. These
topologies are explained in detail in [8]. They enable the successful precharge of
a cascaded topology of standard static gates/sequential devices to DML logic. The
footer is also used to cut down on the precharge time by eliminating the ripple
effect of the data advancing through the cascaded gates and by allowing for faster
precharge. Many features of DML gate sizing, as well as the preferred set of gates
for Type-A and Type-B topologies, have been analyzed and discussed. Optimization
to find the best upsizing parameters for a network (pull-up and pull-down), in the
sense of fast load driving, has been explored using the logical effort (LE) method
[3]. The main advantage to DML is that while presenting very high performance in
the dynamic mode through its sizing, the same topology also leads to considerable
energy efficiency in the static mode as compared to a conventional CMOS.

2.2 DML Advantages

2.2.1 Robust Operation, Inherent Keeper,
and High Performance

In addition to its unique ability to switch between its two operating modes, DML
nodes that run in the dynamic mode have a number of major advantages over
conventional dynamic nodes which are due to the sizing and topology of DML
transistors, as discussed in this section.

Throughout this book, we focus on DML gate optimization to improve speed
in the dynamic mode, while still maintaining a very low minimum energy point
during static operation. We consider this form of optimization to be the most inter-
esting/practical approach. Thus, although we primarily optimize for performance,
DML systems still provide an overall minimum energy operation, as compared to
their CMOS counterparts. Unlike CMOS gates, each DML gate can be implemented
in two ways, only one of which is energy efficient. Since performance in the
dynamic mode is mainly determined by evaluation speed, the preferred topology
is where the precharge transistor is placed in parallel to the stacked transistors, i.e.,
NOR in Type-A is preferred over NAND, and NAND in Type-B is preferred over
NOR. In this case, the evaluation is performed through the parallel transistors and
therefore is faster. As noted above, minimum-sized transistors are utilized in the
active self-restore network. This allows capacitance reduction at the gate output,
especially for gates with a large fan-in. The strength of the evaluation network is set
to be equivalent to one minimum-sized nMOS transistor, similar to the standard
CMOS methodology. It is worth noting that all gates can be designed as either
Type-A or Type-B, by ignoring the optimization guidelines mentioned above (e.g.,
NOR gates in Type-A and NAND gates in Type-B). The optimal design methodology

30 2 Introduction to Dual Mode Logic (DML)

when designing with DML gates is thus to connect Type-A and Type-B gates, exactly
as in np-CMOS gates. Even though this design methodology will allow maximum
performance by minimizing area and power efficiency, it is also possible to connect
gates of the same type using an inverter, and buffering between them, as in domino
logic. Connecting gates of the same type without inverters is also possible when
a footer/header is used at each stage; however, this structure will cause glitching
after the end of precharge until the evaluation data ripples through the chain. These
are standard challenges when designing with dynamic gates [9], but unlike standard
dynamic logic, DML’s inherent keeper helps recover the logical values.

DML’s key advantages lie in its abilities to scale with the technology and with the
power supply voltage (these features are covered throughout this book). Due to the
active inherent keeper (pull-up network in a Type-A gate and pull-down network in
a Type-B gate), DML can operate dynamically down to subthreshold voltage while
still providing the same (and sometimes even more) benefits as in super-threshold
operation. For the same reasons, it solves charge-sharing and leakage issues through
its clocked devices, unlike other dynamic families which proved to be not robust to
scaling and lowering of the supply voltage.

These features constitute even stronger reasons to utilize DML for low-voltage
operation with high(er) performance. Ultra-low/subthreshold operations are still not
widely adapted, because of their significant degradation in performance. Domino
low-voltage logic was suggested as a possible solution [10], but its high sensitivity
to process variations is a real drawback. Even dynamic logic with process scaling is
being abandoned in the super-threshold regime, given its very low yield and logic
failures. However, the main issues and shortcomings of low-voltage dynamic logic
are elegantly solved or simply avoided when using DML. Charge leakage and charge
sharing are no longer problematic in DML, since the complementary part acts as a
keeper and restores the logical level, without requiring a high-power-consuming
bleeder or an area and power-consuming keeper. The ability to properly restore the
logical levels also avoids the back gate coupling issue. In the following chapters,
we discuss the optimization of the DML gates and derive the transistor sizes for
mid-low-voltage operations.

2.3 DML: The Best of Both Worlds

The performance of most digital circuits and systems is determined by the delay of
the Critical Path (CP). Even though standard synthesis tools are geared to design
logic blocks without CP [11–13] (i.e., equalized path delay), the slack from the
targeted clock frequency still exists and needs to be remedied during the design
phase. Many methods have been proposed to address these slacks. These include
adaptive voltage scaling with a CP emulator circuit [14], multi-oxide thickness-
driven threshold voltages, multichannel lengths for energy reduction in the non-CPs,
and performance boost in the CPs [15, 16]. Meijer et al. and Liu et al. applied a body
bias on a non-CP to improve energy consumption and increase performance of the

2.3 DML: The Best of Both Worlds 31

Fig. 2.5 A circuit
pre-processed and mapped for
CPs and non-CPs where the
former operates in the
dynamic DML mode and the
latter in the static
energy-efficient DML mode

Critical Path
Logic

Non Critical
Path Logic

Dynamic DML gates
Static DML gates

n-
ger tib

.

n-
bi

t r
eg

.

CPs, respectively [8, 17], and many other more recent techniques are discussed in
Sect. 1.1. Although these methods solve the critical path slack problem, in most
cases they also lead to a significant increase in energy consumption or resource
overhead.

The overall approach to DML design aims to meet the delay requirements of CPs
while also lowering the overall energy consumption of the design by utilizing the
powerful modularity of DML. First, the design is analyzed to locate the CPs; then
during runtime the on-the-fly modularity of DML is utilized to operate these paths
in the boosted (dynamic) performance mode. The noncritical paths are operated
in the low-energy static DML mode which does not affect the performance of the
design. Since in most design cases the majority of the gates are not on the CPs,
the increase in energy consumption of the critical paths is negligible compared to
the general circuit consumption. DML static gates dissipate less power than their
CMOS counterparts, resulting in less power dissipation of the whole design. These
features are illustrated in Fig. 2.5.

In terms of the big picture of what we aim to achieve with DML, the utilization
of DML makes it possible to extend classic E–D curves and operations in both the
energy and performance directions, i.e., the goal is to lower the minimum energy
point (MEP) of the design while still providing a lower minimum delay point (MDP)
or a more worthwhile tradeoff between the two. In other words, with the same
design, by switching from the static mode to the dynamic mode, we can extend both
the MEP and the MDP as compared to conventional static CMOS design. This idea
is schematically illustrated in Fig. 2.6. The figure presents the traditional E–D space,
with its design characteristics (energy per operation and worst-case delay). Each
point on the graphs represents operations under a different power supply voltage.
For standard CMOS designs with high-supply voltage, the MDP is achieved by
trading off energy characteristics. On the other hand, when lowering the power

32 2 Introduction to Dual Mode Logic (DML)

Delay/Worst Case Operation

En
er

gy
/O

pe
ra

tio
n

DML Static ---

DML Dynamic

(a) (b)

MEP

CMOS - - -

CMOS
Infeasible Area

Delay/Worst Case Operation
En

er
gy

/O
pe

ra
tio

n

DML Static ---

DML static with CP
DML Dynamic ----

MEP

CMOS - - -

CMOS
Infeasible Area

MDP
MDP

Fig. 2.6 E–D space for CMOS, the DML dynamic mode, and the DML static mode as a function
of VDD . (a) Entire design either in Dynamic or Static DML mode (b) Only the critical-path is
operated in the DML Dynamic mode while the rest of the design is operated in the Static mode

supply voltage, performance is reduced as well as the energy reaching the MEP
at a given voltage. In DML, when the entire design is operated in the dynamic mode
(orange curve), the MDP will improve (although with increased energy), as shown in
Fig. 2.6a. When the entire design is operated in the static mode (dark blue curve), the
MEP will improve (for more details on the power supply voltage dependency, see the
next two chapters). As shown in the illustration of Fig. 2.6b, the main goal/challenge
of DML is to find a “combined” mode at the system level that achieves the best of
both worlds. The natural strategy is to only operate critical elements/paths in the
dynamic mode, while the rest (most) of the system is operated in the static mode.
This is highlighted by the light blue curve in the figure. Note that depending on
the control strategy at the architectural level, the system will alternate between the
dark blue curve (when high performance is not needed) and the light blue curve
(when it is). As in the optimization process (in most cases), we give more priority to
performance. The MDP is the best possible for DML, whereas the MEP is typically
suboptimal due to the energy overheads of the control circuitry.

Now that the reader is slightly better acquainted with DML, we take this
opportunity to restate the main objective of the following chapters. We detail the
basic properties of the DML family, the optimization criteria, and evaluation metrics
(e.g., energy consumption, performance, robustness). We provide several examples
of the systematic utilization of DML at the system level. Finally, we show how to
control DML modes of operation and present both data-driven and external signal-
driven control schemes.

References 33

References

1. A. Kaizerman, S. Fisher, and A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 21(5), 979–983 (2013)

2. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: Model analysis and parameter
extraction. Microelectron. J. 44(6), 553–560 (2013)

3. I. Levi, A. Belenky, A. Fish, Logical effort for cmos-based dual mode logic gates. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 22(5), 1042–1053 (2014)

4. J.M. Rabaey, A.P. Chandrakasan, B. Nikolic, Digital Integrated Circuits, vol. 2 (Prentice Hall,
Englewood Cliffs, 2002)

5. N.F. Goncalves, H. De Man, Nora: A racefree dynamic cmos technique for pipelined logic
structures. IEEE J. Solid-State Circuits 18(3), 261–266 (1983)

6. M.K. Stojčev, Jan m. rabaey, anantha chandrakasan, and borivoje nikolić: Digital integrated
circuits: A design perspective, 2/e. Facta Univ. Ser. Electron. Energetics 16(1), 155–157 (2003)

7. I.E. Sutherland, R.F. Sproull, D.F. Harris, Logical Effort: Designing Fast CMOS Circuits
(Morgan Kaufmann, San Francisco, 1999)

8. M. Meijer, J.P. de Gyvez, Body-bias-driven design strategy for area-and performance-efficient
cmos circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(1), 42–51 (2012)

9. R. Hossain, High Performance ASIC Design: Using Synthesizable Domino Logic in an ASIC
Flow (Cambridge University Press, Cambridge, 2008)

10. H. Soeleman, K. Roy, B. Paul, Sub-domino logic: ultra-low power dynamic sub-threshold
digital logic, in Fourteenth International Conference on VLSI Design, 2001 (IEEE, Piscataway,
2001), pp. 211–214

11. Y. Kukimoto, M. Berkelaar, K. Sakallah, Static timing analysis, in Logic Synthesis and
Verification (Springer, Boston, 2002), pp. 373–401

12. T. Sasao, Switching Theory for Logic Synthesis (Springer Science & Business Media, New
York, 2012)

13. J.J. Zasio, K.C. Choy, D.R. Parham, Static timing analysis of semiconductor digital circuits.
May 8 1990, US Patent 4,924,430

14. M. Elgebaly, M. Sachdev, Efficient adaptive voltage scaling system through on-chip critical
path emulation, in Proceedings of the 2004 International Symposium on Low Power Electronics
and Design (ACM, New York, 2004), pp. 375–380

15. H.I. Chen, E.K. Loo, J.B. Kuo, M.J. Syrzycki, Triple-threshold static power minimization tech-
nique in high-level synthesis for designing high-speed low-power soc applications using 90nm
mtcmos technology, in 2007 Canadian Conference on Electrical and Computer Engineering
(IEEE, Piscataway, 2007), pp. 1671–1674

16. N. Sirisantana, L. Wei, K. Roy, High-performance low-power cmos circuits using multiple
channel length and multiple oxide thickness, in 2000 International Conference on Computer
Design, 2000. Proceedings (IEEE, Piscataway, 2000), pp. 227–232.

17. X. Liu, S. Mourad, Performance of submicron cmos devices and gates with substrate biasing, in
The 2000 IEEE International Symposium on Circuits and Systems, 2000. Proceedings. ISCAS
2000 Geneva, vol. 4 (IEEE, Piscataway, 2000), pp. 9–12

Chapter 3
Optimization of DML Gates

This chapter presents several techniques to achieve high-performance and/or low-
energy operation of DML circuits. We introduce several optimization methodologies
for DML circuits while focusing on gate-level techniques. This goal is primarily
achieved by utilizing the logical effort model (LE) which was uniquely adapted to
DML. We discuss several approaches which trade off the accuracy of the solution
with simplicity and complexity (i.e., the complete and approximate LE models). The
method is then generalized to complex gates and branches. Finally, we compare and
evaluate the methods discussed.

3.1 Introduction

Logic optimization and timing estimations are basic tasks for digital circuit design-
ers. The logical effort (LE) method was first presented by Sutherland et al.[1–4]
for easy and fast evaluation and optimization of delays in CMOS logic paths. Its
elegance has made the LE method a very popular tool for designing and education
purposes and is the basis for several EDA tools [3–7]. Although LE is mainly used
for standard CMOS logic, it has also been shown to be useful for other logic families
such as the pass transistor logic (PTL) [8]. In this chapter we tackle the natural
questions of the feasibility of adapting LE to optimize one or both dual mode logic
(DML) modes. DML gates have a very simple, intuitive structure, but they require
an unconventional sizing methodology to achieve target performance. Conventional
LE methodology cannot be used with the DML family since it does not consider its
unconventional sizing rules and topology. For this reason, and to keep the discussion
general, in this book we refer to the LE device-sizing technique for the CMOS-based
DML family.

The objective of this chapter is to develop a simple method for minimizing delays
and achieving an optimized number of stages in logical paths containing CMOS-
based DML gates. A unified LE method is introduced for the delay evaluation and

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_3

36 3 Optimization of DML Gates

optimization of logic paths constructed with DML logic gates. DML-LE solves
complete (non-approximate) design problems, which can be solved numerically,
and simplifies these problems to straightforward, easy to perform computational
problems (with approximate and semi-approximate solutions) by applying a unified
analytic model. This model estimates the minimum to maximum error under delay
approximation and the error in the optimal number of stages for a given logic
function. We compare DML-LE theoretical results to simulation results using
the Cadence Virtuoso optimizer tool implementing standard 40 nm technology.
To begin, we first lay out the development of a DML-LE model for simple
inverter chains with three different levels of approximation. These methods are then
compared in terms of their simplicity and accuracy. The dependence of the optimal
number of stages is also described, along with an intuitive graphic visualization of
the problem. DML-LE is then expanded to complex nets containing branching, and
finally, the efficiency of the DML-LE theoretical optimization is examined for a
standard technology process. We end with a discussion on the use and applicability
of DML-LE.

3.2 Overview: Standard Logical Effort (LE) Model
for a Simple CMOS Inverter Chain

LE is a simplified transistor sizing optimization method to achieve improved metrics
in combinational logic. The detailed description of the conventional LE semantics
can be found in many works, as indicated in the previous subchapter. These
techniques were extended here to include advanced features of latest technologies
such as temperature/voltage, low voltage, interconnect inclusion, energy–delay
optimization, and complex cell fitting. In LE the gate normalized delay of stage
i (Di) in a gate chain can be expressed as the sum of the stage (fi) and parasitic (pi)
efforts:

Di = fi + pi (3.1)

where fi=gi · hi · bi , gi is the logical effort of the stage and hi is the electrical effort
of the stage:

hi
Δ= Cout_i

Cin_i

(3.2)

where Cout_i and Cin_i are the output and input capacitance of the stage i element,
respectively, and bi is the branching effort of the stage:

bi = Con_path_i + Coff _path_i

Con_path_i

(3.3)

3.2 Overview: Standard Logical Effort (LE) Model for a Simple CMOS. . . 37

where Con_path_i and Coff _path_i denote the output capacitance portion which is
associated with the logical path under optimization and the rest of the stage load
(off-paths).

We use the terminology presented in [8]. The logical effort of the stage is denoted
by LEi and the electrical effort is expressed by fi . The equation is normalized, for
all parameters, to a simple inverter; therefore:

pi
Δ= Rgate_i

Rinv

· CD,gate_i

CD,inv

(3.4)

where Rgate_i and CD,gate_i are the gate’s resistance and inherent output (drain)
capacitance, respectively. Rinv and CD,inv are normalization factors. Specifically,
the resistance and output capacitance of a minimum sized inverter (their exact
formulation follows) are:

LEi = gi
Δ= Rgate_iCG,gate_i

RinvCG,inv

(3.5)

where CG,gate_i and CG,inv are the gate’s inherent input (gate) capacitance and the
input capacitance of a minimum sized inverter, respectively.

Using this terminology, the delay of a gate in stage i is:

Di = tpd_i = tP 0(pi ∗ γ + LEi ∗ βi ∗ Con_path_i

Cin_gate_i

) = tP 0(pi ∗ γ + EFi) (3.6)

EFi = LEi · bi · hi (3.7)

and

tP 0 = 0.69RinvCd_inv

γ
= tp.inv

γ
(3.8)

where γ is a process parameter, deduced from:

Cd_inv

γ
= Cg_inv (3.9)

In CMOS logic, the pMOS pull-up network (PUN) to nMOS pull-down network
(PDN) sizing ratio is denoted by β. β parameter is due to holes and electron mobility
differences. In the case of average gate resistance, the PUN and PDN resistance
ratio is:

βopt ≈
√

Reqp

Reqn

=
√

μe

μp

(3.10)

38 3 Optimization of DML Gates

Rinv �
(
Reqn + Reqp

β

)
2

; Reqp � μe

μp

Reqn (3.11)

Conventional LE provides a well-explored solution for the upsizing of a given
CMOS gate chain. The upsizing factors and number of gates required in the chain
are constrained by the load capacitance, CLOAD , logical functions, area, delay, and
power requirements. First, the chain delay is estimated:

D = tpd =
N∑
1

Di = tP 0

N∑
1

(pi ∗ γ + EFi) (3.12)

The optimal chain sizing considers upsizing each stage by an optimal electrical
effort (EFopt), which is given by:

EFopt = N
√

PE = N

√
F ∗

∏
LEi ∗

∏
bi (3.13)

where PE is the path effort and F is the CLOAD to input capacitance ratio. For a
given chain, containing N CMOS gates, N is not necessarily equal to the optimal
number of stages, Nopt . If N < Nopt , a number of inverters can be added to better fit
the stage effort of the path and therefore improve its delay. For N < Nopt , EFopt is
given by:

EFopt = 3.6 (for γ = 1) (3.14)

For this case, Nopt is given by Nopt
√

PE = EFopt . For N > Nopt , EFopt can be
approximated as:

N
√

PE = EFopt (3.15)

Note that EFopt (γ, pinv-dependent) may not be feasible in a path where N , PE

are constrained.

3.3 Logical Effort (LE) Model for a Simple DML Inverter
Chain

To optimize the performance of the DML gates, we employ, modify, and approx-
imate the LE technique [1, 2]. Although LE is a well-known method and is
widely used by designers, we need a few different metrics and terminologies. The
terminology used in this chapter appears in the previous subsection. The logical
effort formulation of DML is very different from the conventional CMOS-LE

3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain 39

(and domino logic LE)[1, 2] which was discussed above. This is because of the
unique structure and unconventional sizing methodology of DML gates. Achieving
the optimal non-approximate solution is an exhausting task. However, with minor
simplifications it can be solved similarly to the standard CMOS-LE method. In
this subsection, we first present a complete non-approximated LE method for DML
CMOS-based gates. Although this solution is very precise, it is highly complex and
distinctly not designer friendly. We thus provide two approximated solutions whose
complexity is much lower, but still achieve very high precision. Finally, we discuss
these approaches as they apply to DML-LE for all CMOS-based gates.1

3.3.1 Basic Assumptions

DML gates are designed to optimize their dynamic mode delay so that only
one transition out of Tplh and Tphl, which is part of the evaluation phase, is
considered. This means that only an equivalent resistance of the pull-down network
(nMOSs) plays a role in the delay optimization of Type-A gates, and the pull-up
network (pMOSs) will be applicable to the optimization of Type-B gates. When
designing conventional CMOS gates, the pull-up network is typically upsized with
β, independently of the sizing factor EFopt , which is the sizing contribution of the
load driving effort. This β is the outcome of the optimal delay of an unloaded gate.
Generally, β, derived for an optimal gate delay, differs from βsym that achieves
symmetric gate operation (Tphl = Tplh). However, in most technologies β is
approximately equal to βsym (β = βsym) [8]. In DML, each standalone gate is not
sized with β since the delay in the dynamic mode is determined by a single transition
through PDN or PUN so that there is no need of symmetric transitions. Only one
sizing factor, Si , for each i stage gate impacts the evaluation network and the
precharge transistor, as shown in Fig. 3.1. In the CMOS-LE method, normalization
is performed on a standard CMOS inverter. DML gates are normalized to a standard
minimal inverter (DML_INV) of Type-A, which represents the minimal standalone
gate delay unit. A minimal inverter of “Type B”İ presents an increased delay
because it evaluates the data through pMOS. In this chapter we assume that each
DML chain starts with Type-A gates, followed by Type-B gates (as in a NORA np-
CMOS flavor [8, 9]). As mentioned in the previous subsection, γ is the fabrication
technology-dependent factor that defines the transistor gate capacitance to transistor
drain capacitance ratio. Typically, in most nanometer-scale processes γ is close to
1. For CMOS inverters it also describes the gate-to-drain capacitance of a single
MOS transistor. However, for an all-minimal transistor width DML_INV Type-A
or Type-B:

1Note that DML’s dual-mode methodology can be applied over other static-logic families, e.g.,
PTL and not only CMOS; however, in this case the DML-LE approach in this chapter would not
apply directly.

40 3 Optimization of DML Gates

All
transistor

s - Wmin

net
equiv. to:
S1*Wmin

VDD

CLK

CLK

out

BasicDML
“Type-A”gate

BasicDML
“Type-B”gate

All
transistors

- Wmin

VDD

net
equiv. to:

S2*Wmin

VDD

in1
in2

in1
in2

in1
in2

in1
in2

net equiv.
to:

S1*Wmin

Basic CMOS
gate

net equiv.
to:

S1*β*Wmin

VDD

in1
in2

in1
in2

out

Static
logic gate

inputs

CLK

out

M1 Static
logic gate

inputs

CLK

out

M1

a b

c d

out

Fig. 3.1 (a) Type-A DML topology. (b) Type-B DML. (c) CMOS-based DML gate with sizing
factors. (d) Standard CMOS gate with sizing factors

Cd_inv_DML

Cg_inv_DML

= 3Cd_MOS

2Cg_MOS

(3.16)

where Cd_MOS and Cg_MOS are a minimum-sized MOS transistor drain and gate
capacitance, respectively. All of which yields:

γ ′ = 3γ /2 (3.17)

where γ ′ represents the equivalent γ factor corresponding to the DML inverters.

3.3.2 Defining the Optimization Target for a Simple Inverter
Chain

In order to extract the optimal sizing factors for a simple DML inverter chain, we
assume a chain, shown in Fig. 3.2. The delay of a general gate i in the chain is given
next.

3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain 41

VDD

CLK

In

VDD
VDD

CLK

CLK

A-Type B-Type A-Type

S2∙Wm
Wm

Si∙WmS1∙Wm

Wm

Wm

VDD

CLK
VDD

Out

CLK

A-Type B-Type

SN∙Wm
Wm

S(N-1)∙Wm
Wm

SN∙Wm
CLoad

S(N-1)∙WmSi∙Wm

S2∙Wm

S1∙Wm

Fig. 3.2 DML inverter chain with sizing factors (Wm stands for Wmin)

tpd_i
= ln(2) · Rmin _ACD,min

γ ′︸ ︷︷ ︸
tp0_DML

⎛
⎜⎜⎜⎝

p_DML︷ ︸︸ ︷
Rgate

Rinv

· CD,gate

CD,inv

γ ′ +
LE_DML︷ ︸︸ ︷

Rgate

Rinv

· CG,gate

CG,inv

CLoad

CG,gate︸ ︷︷ ︸
f _DML

⎞
⎟⎟⎟⎠ ,

(3.18)

where Rmin_A, CD,min are the resistance and drain (output) capacitance of a minimal
Type-A DML inverter. The normalized delay of each odd gate (Type-A) and each
even gate (Type-B) can be described in terms of the delay of a Type-A minimal
DML inverter tp0_DML:

tpd_i_odd = tp0_DML

(
(2si+1)

3si
γ ′ + (si+1+1)

2si

)
tpd_i_even = tp0_DML

(
μn/p

[
(2si+1)

3si
γ ′ + (si+1+1)

2si

]) . (3.19)

where μn/p is defined as μn/μp and Si is the ith stage sizing factor (shown in
Fig. 3.2). Then, assuming an even number of inverters N in the chain, the delay of
the chain can be expressed by adding the delays of all the chain components:

D =
∑

i

tpd_i = tp0_DML

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
odd_i

T ype_A

(
(2si+1)

3si
γ ′ + (si+1+1)

2si

)
+

+ ∑
even_i

T ype_A

(
μn/p

[
(2si+1)

3si
γ ′ + (si+1+1)

2si

])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.20)

In the following subsections, three different solutions to the delay optimization
problem are developed. The first is a complete un-approximated solution, the second
is a complete approximated solution, and the third is a partially/semi-approximated
solution. These solutions illustrate tradeoffs between complexity and accuracy.

42 3 Optimization of DML Gates

3.3.3 The Complete Un-approximated Method (CS) for DML
Sizing Factors of an Inverter Chain

In order to solve this problem, we differentiate Eq. (3.20) by all Si factors of the
chain and equate to 0, i.e., dD

dsi
= 0. After simplification and substituting γ ′, the

following expression can be written for all odd i′s Eq. (3.21) and all even i′s
Eq. (3.22):

odd i : Si

Si−1
= (γ + 1 + Si+1)

Si

1

μn/p

, (3.21)

even i : Si

Si−1
= (γ + 1 + Si+1)

Si

μn/p. (3.22)

Typically, the first gate in the chain is composed of all minimally sized transistors
and therefore S1 = 1. Assuming B = μn/p , B2 = (γ + 1)μn/p, Eq. (3.21) and
(3.22) can be represented by the set of expressions as shown in Eq. (3.23). This is a
set of N equations with N unknown variables; each equation is nonlinear, containing
mixed variable multiplication. In general, it can be solved numerically. This type of
solution is the best, most accurate solution for DML inverter chain sizing (denoted
by CS for “complex solution”). However, solving it is a Herculean task, since it is
much more complex than a simple CMOS-LE optimal solution which is derived
with no assumptions or approximations, as was shown in Sect. 3.2. The DML CS
method complexity is the outcome of the nonstandard sizing of transistors connected
in parallel to the Clk-ed transistor.

S1 = 1
0 = B2S1 − S2

2 + BS1S3

0 = B2S2 − B2S3
2 + BS2S4

0 = B2S3 − S4
2 + BS3S5

0 = B2S4 − B2S5
2 + BS4S6

...
...

...
...

...

SN
2 = B2SN−1 + BSN−1SN+1

. (3.23)

Note that the following assumptions will be used in the rest of this chapter. First,
as assumed in the last subsection, the first gate of any chain is minimum-sized, i.e.,
S1 = 1. Bear in mind that S1 can be generalized to any possible size as a function
of any input capacitance. Second, an even number of stages N is assumed. This is
the result of the topology of DML chains which basically consist of Type-B gates
following Type-A gates. However, the solution for a chain that has an odd number
of stages can easily be derived using the same methodology.

3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain 43

3.3.4 The Complete Approximated Method (CA) for DML
Sizing Factors of an Inverter Chain

To reduce the complexity of the LE method, a complete approximated solution
which trades off complexity and accuracy is presented.

As explained Eq. (3.20) provides the general delay expression for the whole
chain, assuming an even number of inverters N . The CA method assumes that the
contribution of minimal transistors to the drain and gate capacitances is negligible as
compared to 2Si and to Si+1 for all stages of the chain. As shown in the following
subsections, neglecting these transistors for complex gates enhances the accuracy
with respect to inverters. Next, Eq. (3.20) can be rewritten by:

D =
∑
N

Di = tp0_DML

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
odd_i

T ype_A

(
(2si+1)

3si
γ ′ + (si+1+1)

2si

)
+

+ ∑
even_i

T ype_B

(
μn/p

[
(2si+1)

3si
γ ′ + (si+1+1)

2si

])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.24)

These assumptions are only justified when the output load capacitance of the chain
is large since a large load capacitance affects the sizing factors Si . Since Si increases
as i increases along the chain, this approximation will increase in accuracy for large
i′s. After simplification, Eq. (3.24) can be rewritten as:

D =
∑
N

Di = tp0_DML

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
odd_i

T ype_A

(
2

3
γ ′ + si+1

2si

)
+

∑
even_i

T ype_B

(
μn/p

[
2

3
γ ′ + si+1

2si

])
⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.25)
By differentiating dD/dsi = 0 and following the same procedure for all odd i′s and
all even i′s:

odd i : Si

Si−1
= Si+1

Si

1

μn/p

, (3.26)

even i : Si

Si−1
= Si+1

Si

μn/p. (3.27)

The sizing factor solution to this complete approximated approach is very similar to
the standard CMOS solution. Like CMOS, the upsizing factor is constant; however,
all even stages are factored by an additional

√
μn/p. For the N -size chain, the sizing

factors can be written in series as in Table 3.1:

44 3 Optimization of DML Gates

Table 3.1 Inverter chain sizing factors, Si , for the CA method

S1 S2 S3 S4 S5 SN−1 SN

1
√

μn/pA0.5 A
√

μn/pA1.5 A2 √
μn/pA(N

2 −0.5) A
N
2

where A is expressed in Eq. (3.29). Thus, while in CMOS the sizing factors were
derived from the load to input capacitance ratio, in DML they are determined by the
ratio of the first to the last sizing factors, i.e.:

In CMOS: F = CLoad

Cin,g

= f N, f = N
√

F, (3.28)

In DML:
SN+1

S1
= A

N
2 , FDML = SN+1

S1
= fDML

N
2 , A = fDML = N

2
√

FDML,

(3.29)

where, assuming S1 = 1, SN+1 can be extracted from:

(SN+1 + 1)WLmin

(S1 + 1)WLmin
= SN+1 + 1

2
= CLoad

Cin,g

. (3.30)

This methodology supports the calculation of sizing factors for a given N size chain
of inverters. Next, it will be extended to derive the optimal chain length Nopt under a
given load capacitance. The problem will be defined as derived by Sutherland et al.
[1–3].

Consider a path of DML gates containing n1 stages, to which we append n2
additional DML inverters to obtain a path with N = n1 + n2 stages. We assume
that the original n1 stages cannot be altered, except for scaling, since they perform
necessary logic functions. However, any positive n2 can be chosen to reduce the
delay of the chain. Moreover, assuming that the optimum length will be larger than
n1, we also assume that n2 is even and that the logic function will not be altered. It
has been shown that adding CMOS inverters to a path does not affect the electrical
effort of the path. Since the sizing of DML inverters is very different from CMOS
and they are added in the subsequent Type-A/Type-B structures, the electrical effort
of the path is changed by adding these DML buffers. By using the term for the
definition of LE, it can be demonstrated that the LE of the DML A–B inverter pair
(for large i′s) can be approximated by: LEinvA · LEinvB |

LARGE i′s
∼= 1

2 · μn/p

2 .

The electrical effort factorization means that for μn/p = 4 alone, the electrical
effort of the chain will not be affected. The solution can be presented for any value
of μn/p; however, in this chapter we assume μn/p = 4, for simplicity. Note that this
approximation is valid for many nanometer processes [10]. The delay of the whole
chain is represented by the sum of the delays of all n1 logic stages and all the added
n2 inverters. Differentiating the chain delay by N and equating to 0 yields:

3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain 45

γ (μn/p
−0.5 + μn/p

0.5)︸ ︷︷ ︸
C1

+ N
√

FDML −
N
√

FDML ∗ ln(FDML)

N
= 0. (3.31)

where C1 = γ (μn/p
−0.5+μn/p

0.5) and the optimal sizing factor can be numerically
solved using: fDML_opt = exp(1 + C1/fDML_opt), which leads to fDML_opt =
4.65. As developed in Sect. 3.2, for large FDML, which means that Nopt >

Nminimum, Nopt can be approximated by:

Nopt
∼= logfDML_opt

(FDML). (3.32)

As presented by Sutherland et al. [1–3], the deviation from the minimum delay
obtained under Nopt length implementation can be expressed as:

Dopt (Dev · N)

Dopt (Nopt)
= C1 · Dev + Dev · fopt

1/Dev

C1 + fopt

, (3.33)

where Dev represents the deviation factor from Nopt , the lowercase opt stands for
optimal, Dopt (N) is the optimal delay for a given general N , and Dopt (Nopt) is the
optimal delay with the optimal N .

Figure 3.3 depicts the normalized delay as a function of the normalized N =
Nopt for the CA method (from Eq. (3.33)).

The graph values were normalized to Dopt (Nopt). Note that the only difference as
compared to the CMOS solution is the constant C1 which affects the graph slopes.
As depicted in the figure, DML behaves similarly to the CMOS solution, and an
overestimation in N is preferable than its underestimation in terms of delay. For
example, when N = Nopt/2, a 68.8% deviation in delay is observed. However,
when N = 2Nopt , the deviation drops to 30.2%.

0 1 2 3 4

N/Nopt

D
op

t(
N
)/
D
op

t(
N
op

t)

0.5,1.688

1,1 2,1.302

5 6 7 8 9 10
0

2

4

6

8

10

Fig. 3.3 Normalized delay as a function of normalized N/Nopt for the CA method

46 3 Optimization of DML Gates

3.3.5 The Semi-approximated Method (SA) for DML Sizing
Factors of an Inverter Chain

As a compromise to the methods presented in the previous subsections, a semi-
approximated (SA) approach was developed. The SA approach achieves relatively
high precision with reduced computational effort with respect to the CS method.
This is done by only neglecting the first and the second terms of Eq. (3.20), as
compared to omitting all the terms of the gate and drain capacitances (CA method).
The solution to the SA is very simple, but in addition to the standard CMOS-LE
optimization calculation, the designer needs to use a simple lookup table (given in
advance). Since this method is beyond the scope of this chapter, it only appears in
Appendix A.

3.4 Generalizing the DML-LE Method for Complex Gates
and Branches

This subsection presents a generalization of the DML-LE method for complex gate
topologies and intersecting nets and justifies the efficiency of these methods for
complex DML gates. It is shown that the CA and SA methods achieve high precision
results. The CA method is generalized below. Note that by implementing the same
approach, the SA method can also be generalized.

3.4.1 Exploring a General DML Gate Delay Structure

Equation (3.20) described the general delay expression for a DML gate. This
expression can be generalized by taking into account the branching effort and the
mobility ratio factor which differentiates Type-A from Type-B gates:

D = tp0_DML

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p_DML︷ ︸︸ ︷
(NS_drainsi + Nmin _drain)

2si
γ +

LE_DML︷ ︸︸ ︷
(XS_gatesi + 1)

2 · si
• bi︸︷︷︸

b_DML

• CLoad_on

(XS_gatesi + 1)

︸ ︷︷ ︸
(f ·b)_DML︸ ︷︷ ︸

EF_DML

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.34)

where CLoad_on denotes the load capacitance on the critical path under optimization,
Nmin_drain is the number of complementary network transistors of gates directly
connected to the output (in terms of minimal width transistors), Ns_drain is the

3.4 Generalizing the DML-LE Method for Complex Gates and Branches 47

number of transistors in the evaluation network and the precharge transistors that are
directly connected to the gate output (these transistors are sized with the S factor),
and Xs_gate is the upsizing factor of the transistors in the evaluation network of
a gate, which expresses the upsizing of these transistors relative to S (similarly
to Xs_Load , if we represent the load capacitance in terms of gate capacitance).
For a Type-B gate the expression on the right side of Eq. (3.35) needs to be
multiplied by μn/p. Table 3.2 lists the delay expressions for the approximated
and non-approximated stages with and without branching. The table also lists the
approximated branching effort version. The branching effort in CMOS Eq. (3.20)
is independent of the sizing factors if all the gates in the same stage i are sized
by the same Si . Since in DML the branching effort depends on the sizing factors
Si , it should be approximated to simplify the delay expression. The approximated
branching effort expression appears in Eq. (3.35), where

∑
XS_gate stands for

summing all the Xs_gate of levels i and Xs_gate_on_path_i is the only Xs_gate factor
which is on the optimized path.

bi_Approximated =

∑
(On+ Off) Path_i

XS_gate

XS_gate_on_path_i

(3.35)

In Sect. 3.3.4 two expressions for LE and p were approximated for inverters:
2si + 1 → 2si , si+1 + 1 → si+1, where Si is the i’th stage sizing factor (for i > 2).
In this subsection, it is shown that in most cases of complex gates, the approximated
values are even more negligible. Table 3.3 lists several approximation examples for
p and LE for several complex gates.

As listed in Table 3.3, the approximation error decreases when implementing
complex gates (compared to an inverter) in the majority of cases. As discussed
above, the preferred DML gate topology is such that the precharge transistor is
placed in parallel to the stacked transistors [11–13], i.e., NOR in Type-A is preferred
over a NAND, and NAND in Type-B is preferred over NOR. Therefore, Table 3.3
only lists the preferred gates.

3.4.2 Delay Optimization Under the Complete Approximated
(CA) Model for Complex Gates

Optimizing the delay under the CA model requires the use of the approximated
LE,P for all stages of the design along with the approximated branching shown in
Table 3.2. P,LE, and f are marked with a lowercase “approximated” to emphasize
that they are approximated. Summing Eq. (3.35) listed in Table 3.2 for the length N

chain (Type-A and Type-B alternately), then differentiating by the sizing factors and
equating to 0, results in:

48 3 Optimization of DML Gates
Ta

bl
e
3.
2

G
en

er
al

iz
ed

D
M

L
de

la
y

ex
pr

es
si

on
s

fo
r

“t
yp

e
A

”
ga

te
s

(f
or

“t
yp

e
B

”
ga

te
s

al
le

qu
at

io
ns

ne
ed

to
be

m
ul

tip
lie

d
by

μ
n
/
p

)

W
ith

ou
tb

ra
nc

hi
ng

t p
0_

D
M

L

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝p
_D

M
L

_A
p
p
r
o
x
im

a
te

d
︷

︸︸
︷

N
S

_d
r
a
in

2
γ

+

L
E

_D
M

L
_A

p
p
r
o
x
im

a
te

d
︷︸

︸︷
X

S
_g

a
te

2

X
S

_L
o
a
d

·s i
+1

X
S

_g
a
te

·s i
︸

︷︷
︸

(f
·b)

_D
M

L
_A

p
p
r
o
x
im

a
te

d

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

In
cl

ud
in

g
br

an
ch

in
g

t p
0_

D
M

L

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝p
_D

M
L

_A
p
p
r
o
x
im

a
te

d
︷

︸︸
︷

N
S

_d
r
a
in

2
γ

+

E
F

_A
p
p
r
o
x
im

a
te

d
︷

︸︸
︷

L
E

_D
M

L
_A

p
p
r
o
x
im

a
te

d
︷︸

︸︷
X

S
_g

a
te

2

∑
O

n
+

O
f
f

P
a
th

_i
(X

S
_g

a
te

)

X
S

_g
a
te

_o
n

_p
a
th

_i
︸

︷︷
︸

b
_D

M
L

_A
p
p
r
o
x
im

a
te

d

X
S

_L
o
a
d

_o
n

·s i
+1

X
S

_g
a
te

·s i

︸
︷︷

︸
(f

·b)
_D

M
L

_A
p
p
r
o
x
im

a
te

d

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

N
on

-a
pp

ro
xi

m
at

ed
st

ag
es

—
Fo

r
i
=

1,
2

W
ith

ou
tb

ra
nc

hi
ng

t p
0_

D
M

L

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝p
_D

M
L

_n
o
n
−A

p
p
r
o
x
im

a
te

d
︷

︸︸
︷

(N
S

_d
r
a
in

s i
+

N
m

in
_d

r
a
in

)

2s
i

γ
+

L
E

_D
M

L
_n

o
n
−A

p
p
r
o
x
im

a
te

d
︷

︸︸
︷

(X
S

_g
a
te

s i
+

1)

2
·s i

C
L

o
a
d

(X
S

_g
a
te

s i
+

1)
︸

︷︷
︸

(f
·b)

_D
M

L
_n

o
n
−A

p
p
r
o
x
im

a
te

d

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

In
cl

ud
in

g
br

an
ch

in
g

t p
0_

D
M

L

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝p
_D

M
L

_n
o
n
−A

p
p
r
o
x
im

a
te

d
︷

︸︸
︷

(N
S

_d
r
a
in

s i
+

N
m

in
_d

r
a
in

)

2s
i

γ
+

L
E

_D
M

L
_n

o
n
−A

p
p
r
o
x
im

a
te

d
︷

︸︸
︷

(X
S

_g
a
te

s i
+

1)

2
·s i

b
i ︸︷︷︸

b
_D

M
L

_n
o
n
−

A
p
p
r
o
x
im

a
te

d

C
L

o
a
d

_o
n

(X
S

_g
a
te

s i
+

1)

︸
︷︷

︸
(f

·b)
_D

M
L

_n
o
n
−A

p
p
r
o
x
im

a
te

d
︸

︷︷
︸

E
F

_n
o
n
−A

p
p
r
o
x
im

a
te

d

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

3.4 Generalizing the DML-LE Method for Complex Gates and Branches 49

Table 3.3 P and LE

approximations for several
complex gates

Gates p and LE approximations

NAND3_B, NOR3_A (4si + 1)/si → 4

OAI21_B, AOI21_A (4si + 2)/si → 4

OAI21_A, AOI21_B (5si + 2)/si → 5

NAND2_B, NOR2_A (3si + 1)/si → 3

Table 3.4 Complex gate chain sizing factors (Si) for the CA method

S1 S2 S3 S4 SN+1

1 EF
√

μn/p

〈1〉X2
EF 2 1

〈1〉〈2〉X2X3
EF 3

√
μn/p

〈1〉〈2〉〈3〉X2X3X4
EF N 1

〈1〉〈2〉〈3〉...〈N〉X2X3...XN+1

odd i : Si

Si−1
= Si+1

Si

〈i〉 Xi+1

μn/p 〈i − 1〉Xi

, (3.36)

even i : Si

Si−1
= Si+1

Si

μn/p

〈i〉 Xi+1

〈i − 1〉 Xi

, (3.37)

where, for simplicity, the next terms are defined:

〈i〉 = LEDML_ibDML_i

Xs_gate_i

; Xs_gate_i = Xi. (3.38)

The sizing factors series, Si , are presented in Table 3.4 and were extracted from
the following equation:

EFDML = N

√√√√SN+1XN+1

S1X1

N∏
i=1

LEDML_i

N∏
i=1

bDML_i , (3.39)

where FDML = SN+1XN+1
S1X1

and the branching and logic effort values are approxi-
mated. For the general case, the sizing factors can be calculated in a series from the
last i = N + 1 (load) to the first i = 1 by using the following expressions:

even i : Si+1Xi+1 = EFi

LEi ·bi ·√μn/p
SiXi

odd i : Si+1Xi+1 = EFi ·√μn/p

LEi ·bi
SiXi

. (3.40)

The optimal number of stages for a given load can be computed similarly to
Eq. (3.31):

γ (μn/p
−0.5 + μn/p

0.5)︸ ︷︷ ︸
C1

+ N
√

PEDML −
N
√

PEDML ∗ ln(PEDML)

N
= 0, (3.41)

50 3 Optimization of DML Gates

where the optimal sizing factor can be numerically solved using: EFDML_OPT =
e

(
1+ C1

EFDML_OPT

)
which leads to EFDMLopt = 4.65. Similar to the results presented

above for inverters, for large FDML, Nopt can be approximated by:

Nopt
∼= log EFopt_DML

(PE) = log EFopt_DML
(F ∗ LE ∗ B). (3.42)

Thus, the CA computation effort and the final mathematical results for complex
gates are intuitive and as user-friendly as for the standard CMOS-LE. The SA
method, which can also easily be derived for the complex gates, is also very simple
and uses an additional lookup table.

3.5 Comparing the DML-LE Methods

This subsection presents a comparison of the SA, CS, and CA techniques in terms
of their simplicity, accuracy, and dependence on the optimal number of stages and
how these affect the delay.

3.5.1 Delay Error for a Given N

In order to compare the solutions in terms of error in delay, the CS method, which is
the most precise, was chosen as the reference. Delays for the same chains (N = 6)
were calculated using expressions presented in the previous subsections. Typical
γ = 1 and μn/p = 4 values [10] were assumed. We first examine the sizing factor
deviation for the SA, CS, and CA techniques, as shown in Fig. 3.4. Two extreme load
cases are considered. Figure 3.4a, which depicts the case of a large load of CLoad =
50 · Cin, presents sizing factor deviations of less than −35% for both approximated
methods. Crucially, these negative deviations result in smaller transistor sizes and
smaller areas in the approximated methods. This improvement in area achieved by
the CS and SA methods comes at the expense of a slight increase in the delay, as
shown in the figures.

Figure 3.4b shows that for a small load of CLoad = 5Cin, both approximated
methods present relatively large negative deviations in sizing factors (max −56%
for SA and −67% for CS) which means that they are more area efficient for small
loads. Note that the realistic maximum load capacitances in standard logic chains
and global interconnect (with repeaters) are around 10Cin − −20Cin. However,
recently, a unified logical effort that utilizes and optimizes the sizing of logic gates
as repeaters in long interconnect wires was proposed [14]. It showed that a load
capacitance of around 100Cin was realistic. Since the goal of this book is not to
limit the DML-LE to standard cases, we provide results for loads of up to 100Cin.
The delay for all methods as a function of the load capacitances is presented in

3.5 Comparing the DML-LE Methods 51

Fig. 3.4 Deviation of sizing factors from the complete solution: (a) CLoad = 50Cin, (b) CLoad =
5Cin

Fig. 3.5 Normalized delay as a function of the normalized CLOAD

Fig. 3.5. These results were normalized to the delay of a minimum-sized Type-
A DML inverter. This was done by calculating the expression in Eq. (3.20) with
the sizing factors for each method. The graph shows that as CLoad increases, the
relative error decreases significantly. For example, for the SA technique, minimum
and maximum errors of 2.49% and 0.01% were achieved for loads of CLoad = 5Cin

and CLoad = 100Cin, respectively. For the CA method, these errors increased to
6.37% and 0.19%. Note that the choice of best solution depends to a great extent on
the level of accuracy required. In most cases, it is safe to say that due to the error
inherently related to the LE method, the SA method is sufficient with a very small
maximal error of ∼ 2%. As can be seen, both methods yield highly precise results.
It is clear that for cases with small load capacitances and/or short chains, the SA
method is preferable. However, the CA method is sufficient for most cases.

52 3 Optimization of DML Gates

Fig. 3.6 Nopt for all three methods and for different CLOAD

3.5.2 Nopt Comparison

Nopt was calculated for various output load capacitances, for all three methods.
The Nopt calculation for the CS method requires solving a set of N − 1 nonlinear
equations (see Eq. (3.23)). MAT LAB software was used to numerically solve
the equations by guessing roughly the correct solution area for each N until the
numerical simulations converged to the correct solution. In contrast to the CS
method, the Nopt calculations using the CA and SA techniques were simple and
straightforward, as presented in the previous subsection.

Figure 3.6 compares Nopt as a function of CLoad for all methods. It is clear that
the deviations in Nopt are quite small for all methods. As discussed in the next
subsection, in most cases the error in Nopt leads to a zero error in the delay, since
only integer Ns are possible.

3.5.3 Delay Error for a Variable N

In Sect. 3.3.4, the normalized delay as a function of the normalized N to Nopt was
formulated for the CA method; see Fig. 3.3. In this subsection, the same ratio is
derived for the CS method, as shown in Fig. 3.7. As expected, the deviation in delay
depends on the load capacitance. Similar to the behavior presented in Fig. 3.3, an
overestimation of N is preferable to its underestimation. Moreover, for different
loads, the curve rotates around the normalization point. Therefore, overestimating
N is even more advantageous for larger loads.

3.6 Example of a DML-LE Evaluation: a 40 nm Process 53

Fig. 3.7 Normalized delay of the CS method as a function of normalized N/Nopt for different
loads

3.6 Example of a DML-LE Evaluation: a 40 nm Process

Here we evaluate the methodologies by comparing the LE optimization results to
those derived by the Cadence Virtuoso optimizer tool. We evaluated on two different
logic networks, implemented in a low-power standard 40 nm technology. First, a
simple logic chain, identical to the chain theoretically analyzed in Sect. 3.3.2, with
N = 6 is discussed. The objective of this test was to compare the results of the delay
optimization of all the LE methods to the results of the Cadence Virtuoso optimizer
tool for different loads. The simulated delay (SPICE) of the chain, sized according
to the DML-LE CS method, and the delay optimization derived by the Cadence
optimizer are shown in Fig. 3.8.

In addition, to compare the precision of the proposed DML-LE methodology to
a standard CMOS-LE, the same testbench was constructed with CMOS logic and
was optimized with the Cadence Virtuoso optimizing tool. The results of this test
are presented in Fig. 3.9.

The analysis indicates that both cases achieved a very similar maximum error
(3% for CMOS-LE and 2.4% for DML-LE). The maximum LE error in comparison
to the optimal optimizer solution was 3% for CMOS-LE. It is worth noting that a
variety of different chains were examined and very similar errors were observed
for all test cases. Figure 3.10 compares the SA, CS, and CA methods as well as
the results of the Cadence Virtuoso optimizer. As visualized in the figure, all the
methods presented very similar results, which implies that the CA methodology
should be preferred over the CS and SA due to its significantly less computation
complexity. Note as well that the DML-LE sizing factors of the CA and SA
techniques were highly similar to those of the optimizer (errors of 2–3% or less).

54 3 Optimization of DML Gates

Fig. 3.8 Six DML inverter chain delays as a function of the normalized load capacitance for the
DML CS method and for the Cadence optimizer solution

Fig. 3.9 Six CMOS inverter chain delays as a function of the normalized load capacitance for the
LE solution and for the Cadence optimizer solution

Fig. 3.10 Six DML inverter chain delays as a function of the normalized load capacitance of all
the DML-LE solutions and for the Cadence optimizer solution

Thus, the area and energy overhead were extremely low, as compared to the
optimizer solution.

To investigate the performance of the SA, CS, and CA techniques in depth, the
deviations in delays from the complete solution which is optimal for DML were
calculated, as shown in Fig. 3.11.

3.6 Example of a DML-LE Evaluation: a 40 nm Process 55

Fig. 3.11 DML CA and SA delay deviations from the CS method

Fig. 3.12 DML complex network scheme

As expected, CA precision improved for larger loads. The precision of the SA
was also very high for cases of small loads (large N). Therefore, the SA method
provides a good tradeoff between computational complexity and precision for these
cases. To evaluate the performance of an optimized DML complex logic network
which includes branches (schematically shown in Fig. 3.12), it was compared to the
same CMOS network. While the CMOS network was optimized using a standard
LE, the DML network was sized according to the SA DML-LE methodology.
Figure 3.13 shows the results of this comparison. Application of the DML-LE effort

56 3 Optimization of DML Gates

Fig. 3.13 DML and CMOS complex network delays, optimized using DML- and CMOS-LEs,
respectively. In addition, the Virtuoso optimizer results for both methods are presented

in a complex network resulted in a maximum error of only ∼4.5% for small loads,
as compared to the Cadence optimizer results. This is very close to the ∼3.8% error
achieved by the CMOS-LE optimization.

3.7 Conclusion

The DML-LE approach enables efficient optimization of DML logic networks for
maximum performance in the dynamic mode of operation. DML logic, optimized
according to LE methods, provides extended flexibility in optimizing the structures
of DML networks. This optimization utilizes DML’s inherent properties of signif-
icantly reduced parasitic capacitance and ultra-low-power dissipation in the static
operation mode [11–13]. Three different approaches that trade off computation
complexity and accuracy were discussed in this chapter. The complex CS method
was only examined to frame the error analysis comparison for the other methods.
The CA method is identical to the CMOS-LE computation, with very small error,
and the SA method is also identical to the CMOS-LE computation with the addition
of one more lookup table (which is easily derived for all cases and loads). With these
tools in hand, a design can achieve very high performance results. For designers,
this chapter should shed light on the advantages and tradeoffs of each method. The
simulation results, which were carried out in a standard 40 nm process, document
the efficiency of the approach as compared to CMOS-LE.

References 57

References

1. R.F. Sproull, I.E. Sutherland, Logical effort: Designing for speed on the back of an envelope.
IEEE Adv. Res. VLSI, 1–16 (1991)

2. I.E. Sutherland, R.F. Sproull, D.F. Harris, Logical Effort: Designing Fast CMOS Circuits
(Morgan Kaufmann, Boston, 1999)

3. A. Kabbani, D. Al-Khalili, A.J. Al-Khalili, Delay analysis of cmos gates using modified logical
effort model. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 24(6), 937–947 (2005)

4. B. Lasbouygues, S. Engels, R. Wilson, P. Maurine, N. Azémard, D. Auvergne, Logical effort
model extension to propagation delay representation. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 25(9), 1677–1684 (2006)

5. S.K. Karandikar, S.S. Sapatnekar, Technology mapping using logical effort for solving the
load-distribution problem. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 27(1), 45–58
(2008)

6. S.K. Karandikar, S.S. Sapatnekar, Logical effort based technology mapping, in Proceedings
of the 2004 IEEE/ACM International Conference on Computer-aided Design (IEEE Computer
Society, Washington, 2004), pp. 419–422

7. P. Rezvani, A.H. Ajami, M. Pedram, H. Savoj, Leopard: a logical effort-based fanout optimizer
for area and delay, in Proceedings of the 1999 IEEE/ACM International Conference on
Computer-aided Design (IEEE Press, Piscataway, 1999), pp. 516–519

8. J.M. Rabaey, A.P. Chandrakasan, B. Nikolic, Digital Integrated Circuits, vol. 2 (Prentice Hall,
Englewood Cliffs, 2002)

9. N.F. Goncalves, H. De Man, Nora: A racefree dynamic cmos technique for pipelined logic
structures. IEEE J. Solid-State Circuits 18(3), 261–266 (1983)

10. W.P. Chen, P. Su, J. Wang, C. Lien, C. Chang, K. Goto, C. Diaz, A new series resistance
and mobility extraction method by bsim model for nano-scale mosfets, in 2006 International
Symposium on VLSI Technology, Systems, and Applications (2006)

11. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 21(5), 979–983 (2013)

12. I. Levi, O. Bass, A. Kaizerman, A. Belenky, A. Fish, High speed dual mode logic carry
look ahead adder, in 2012 IEEE International Symposium on Circuits and Systems (IEEE,
Piscataway, 2012), pp. 3037–3040

13. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: Model analysis and parameter
extraction. Microelectron. J. 44(6), 553–560 (2013)

14. A. Morgenshtein, E.G. Friedman, R. Ginosar, A. Kolodny, Unified logical effort—a method for
delay evaluation and minimization in logic paths with interconnect. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 18(5), 689–696 (2010)

Chapter 4
Low-Voltage DML

This chapter examines DML performance, energy consumption, static noise mar-
gins, delay distribution, robustness, and other design metrics under low-voltage
operation. It still focuses on the gate level and DML operations in subthreshold
and near-threshold regions illustrated using the transregional model. Measurement
results for fabricated test structures of a variety of DML benchmarks are presented,
covering a wide range of operating conditions, supply voltages, etc. Whereas the last
chapter mainly dealt with performance optimization of the DML dynamic mode,
the main goal of this chapter is to provide an in-depth description of the superior
performance of DML with regard to robustness and process variation immunity, and
its operation at low voltages. The DML designs are compared to standard CMOS
and (dynamic) domino to provide the reader with a better grasp of DML’s key
features, compared to current alternatives.

4.1 Introduction

The progress achieved in the fields of portable, wearable, and internet-of-things
devices, their ever-increasing popularity (and projected market growth), and the
fact that battery technology cannot keep up the pace have prompted researchers
to actively explore the field of low-power design [1–6]. Low-voltage digital circuit
design in particular is a very popular approach for ultra-low-power applications [7–
9]. Typically, the circuits operate in the subthreshold (ST) and/or near-threshold
(NT) regions, from a supply voltage (VDD) that is close or even less than the
threshold voltages of the transistors. This aggressive reduction of supply voltage
leads to significant savings in dynamic and static power. Unfortunately, low-voltage
circuits suffer from degradation in performance, increased sensitivity to process
variations, and device mismatch [10]. Extensive research has attempted to overcome

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_4

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_4

60 4 Low-Voltage DML

these sensitivities under low-voltage regimes, including suggestions such as the
adaptive body bias or dynamic voltage scaling for adaptive power applications [11–
16].

As presented in Chap. 1, for decades, CMOS has been considered the most
efficient VLSI design methodology. CMOS gates are very robust, achieve rail-to-rail
logic levels, have strong on and off states, and until the advent of recent processes
also had exceptionally low static power consumption. Unsurprisingly, CMOS logic
has also become the most common design logic family for low-voltage operation.
In many cases, it achieves more robust operation than its Pass Transistor Logic
(PTL) and dynamic logic counterparts. However, the low-voltage CMOS delay is
significantly degraded, making ST and NT CMOS designs impractical for many
applications (as briefly discussed in Sect. 1.2.1).

Low-voltage dynamic logic, such as domino, has been proposed as a better alter-
native with higher performance than low-voltage CMOS designs [17]. However,
the challenges of dynamic logic such as charge sharing, susceptibility to glitches
and crosstalk noise, and sensitivity to process variations in nanoscaled technologies
make it a poor choice.

By contrast, DML logic allows both ultra-low power dissipation and high
performance under extreme low-voltage operation. In fact, the unique structure
of the DML gate, which inherently contains CMOS complementary networks,
leads to robust operation of the DML gate in the dynamic mode even under low
voltages. In addition, the ability to operate as a dynamic gate compensates for the
lack of performance of the CMOS part of the DML gate. This chapter reports
simulations and measurements showing that DML gates are fully functional at
supply voltages as low as 0.3 V. In low-power 40 nm technology, the chains of
subthreshold basic DML-NAND/NOR/FA gates achieve a tenfold improvement in
speed in the dynamic mode compared to the standard CMOS while dissipating
only 150% more power. In the static mode, it achieves a 50% reduction of power
dissipation, as compared to basic domino logic, at the expense of a single magnitude
decrement in performance. Recall that switching between modes is very easy and
can be performed on-the-fly, making DML ideal for computing platforms where a
flexible workload is required. The energy consumption of the DML static mode
leads to less energy consumption and lower Minimum Energy Point (MEP), as
compared to conventional CMOS operation. These metrics are the hallmarks of the
flexibility of the DML family in terms of achieving high-performance or low-power
operation, as a function of time-dependent system requirements.

4.2 DML Under Low-Voltage Operation

The optimization space of DML gates, like the majority of VLSI designs, is
composed of area, power, and speed. Since ST and NT designs suffer from reduced
performance, this chapter targets DML gate optimization for speed. To optimize the
performance of DML gates, we use the logical effort (LE) technique to evaluate

4.3 DML Modeling and Sizing Using the Transregional Model 61

the delay [18] as was done in the previous chapter. Recall that in the LE technique,
the gate delay (d) can be expressed as the sum of the stage effort (f) and the parasitic
capacitance (p):

d = f + p, (4.1)

where f = g · h · b, g is the logical effort of the stage,1 h is the electrical effort,
and b is the branching effort. The main goal of this chapter is to show the feasibility
of using LE for less trivial transistor current models. To do so, we first need to
evaluate the logical effort (g) of the gate, which is defined as the ratio of the input
capacitance of the gate to that of an inverter, assuming that both gates drive the same
current. g is an intrinsic property of the gate and is constant. In order to evaluate g,
we need to set the transistor widths so the DML gate can deliver the same amount of
output current as the inverter. Section 4.3 presents a transregional current model for
low-voltage operation, i.e., ST and NT regions. This model is used to evaluate the
capabilities of the stacked transistor fitting parameters to achieve the same current
as driven by a single transistor. Based on these derived fitting parameters, the DML
sizing architecture is presented and the logical effort parameters are calculated.

4.3 DML Modeling and Sizing Using the Transregional
Model

4.3.1 Modeling Ion Using the Transregional Model

In 2006, Keane et al. [19] presented a subthreshold logical effort (LE) framework
that had unconventional device sizing. Given the simplicity of their approach and
modeling, we apply this to DML gates and extend its application to include the NT
region, which complies with advanced nanoscale processes. Since the characteristics
of MOS transistors operating in the ST and NT regions are substantially different
from transistors operating in strong inversion, we use the transregional model
developed by Harris et al. [20]. In this model, the on-current (Ion) of the transistor
is modeled by:

Ion = I0We
VDT −αV 2

DT
nvT . (4.2)

where VDT stands for VDD-VT, α and n are empirical fitting parameters, and vT is
the thermal voltage. For purposes of illustration, the model parameters were derived
by curve-fitting Spectre simulations for the chosen low-power 40 nm technology.

1g was denoted by LE in the previous chapter. In this chapter, for conciseness, we use the original
notations.

62 4 Low-Voltage DML

0.1 0.2 0.3 0.4 0.5 0.6
VDD[V] VDD[V] VDD[V]

Model
Simulation

0.1 0.2 0.3 0.4 0.5 0.6

C
ur

re
nt

[A
]

C
ur

re
nt

[A
]

0.1 0.2 0.3 0.4 0.5 0.6

10-12

10-14

10-12

10-10

10-8

10-6

10-4

10-14

10-12

10-10

10-8

10-6

10-4
a b c

10-10

10-8

10-6

C
ur

re
nt

[A
]

Model
Simulation Model

Simulation

Fig. 4.1 ION current vs. VDD: theoretical calculation for the transregional model vs. the simula-
tion results. (a) Single transistor fitting, (b) two-stack transistor fitting, and (c) three-stack transistor
fitting

Ion is a function of VDT, so that changes in VT caused by process variations or body
biasing do not require the re-fitting of I0, α and n. VDD was swept to extract the
model parameters for Eq. (4.2), as shown in Fig. 4.1a. The figure plots the simulation
results against the calculated model. The model must be accurate in the functional
ST and NT regions to be further used to derive the required transistor widths. As
shown in Fig. 4.1a, throughout the entire range from the functional subthreshold
region (VDD >0.25 V) to the NT vicinity, the least square error fit had an average
error of less than 1% and a maximum error of 9%.

To show that the transregional model is not restricted to modeling of a single
transistor, it was also examined for a stack of two and three transistors. Figure 4.1b
and c shows that the model fits the operational regions accurately with an average
least square fit error of 3% and a maximal error of 14%. The modeling of stacks
of several transistors is important during LE development for DML. Note that
the accuracy is very high because the transregional model is “curve fitted.” The
maximum error of 9–14% is achieved for 250 mV supply voltage. For supply
voltages exceeding 250 mV, the error falls off very rapidly and becomes negligible.

4.3.2 Low-Voltage DML Sizing Methodology

In the dynamic mode, a fast evaluation period is critical. For this reason we analyze
a DML topology where the precharge transistor is placed in parallel to the stacked
transistors (i.e., NORs in Type-A and NANDs in Type-B). In addition, we analyze
the size of the footer and evaluation transistors (i.e., a stack of two transistors in
an optimal parallel evaluation net). The vast majority of gates are un-footed. In
complex logic gates (i.e., AOI/IOA cells) the evaluation net can comprise more than
one transistor, even without a footer. The complementary serial transistors, which
are parallel to the precharge transistor, are sized to minimal width to decrease the
gate capacitances and intrinsic delay and thus enable fast dynamic operation. The
precharge transistor also needs to have minimal width, to limit leakage currents.

4.3 DML Modeling and Sizing Using the Transregional Model 63

Fig. 4.2 Ratio of the calculated widths of transistors in a stack to the width of a single transistor

The precharge transistor can be sized even larger, as was described in the previous
chapter. The gain in output capacitance from using a minimally sized precharge
transistor is negligible.

We implement the transregional current model to calculate the widths of the
footer and evaluation transistors (W ′) required to drive the same on-current as drives
a single transistor (W). The Ion,single of a single transistor is equated to Ion,2 stack and
Ion,3 stack, and W is extracted as a function of the fitting parameters, as can be seen
in Eq. (4.3). The variables marked with a tick (“′”) are for the stacked transistors.

W ′

W
= I0

I
′
0

· exp(
VDT − αV 2

DT

nvT

− V
′
DT − α′(V ′

DT)2

n′vT

). (4.3)

Figure 4.2 shows the ratio of the calculated widths of the transistors in a stack to
the width of a single transistor. Note that the widths of the transistors in a stack
are not constant, but rather a function of VDD. Thus, the optimal width varies
with the supply voltage and is different from region to region. This optimization is
advantageous for ST and NT region circuits, since traditional sizing (a ratio of two
and three, for the two and three transistor stacks, respectively) is not precise at low
voltages. For example, at a 0.3 V supply voltage, the sizing factor needed to obtain
the same current through two-stack transistors as for the case of a single minimal
transistor is 3.3 (for a three-stack, 5.6, and for a four-stack, 10). Nevertheless, for
the strong inversion regime, the width converges to nominal values (not shown in
Fig. 4.2).

64 4 Low-Voltage DML

Table 4.1 Optimal transistor width for CMOS, dynamic logic, and DML in all topologies for
VDD = 0.3 V

Footed
DML Type-A

Footed DML
Type-B

Un-footed
DML Type-A

Un-footed
DML Type-B Dynamic

NOR3
VDD

B

CLK

Out

C

VDD

A

3.3

1

1

11

3.33.33.3

A

CLK

Out

B

C

10*β
10*β
10*β
10*β

111 1

VDD
VDD

CLK

Out

B

C
VDD

A 1

1

11

111

VDD

A

CLK

Out

B
C

5.6*β
5.6*β

5.6*β

1111

CLK

OutB C

VDD

A
1

3.3
3.3

3.33.3

111

VDD

Out

B

C

A 5.6*β

5.6*β
5.6*β

NAND3 A B
CLK

Out

C VDD

10

1111

10

10
10

VDD

B

CLK

Out
A C 1

1

1

1

3.3*β
3.3*β 3.3*β 3.3*β

B
CLK

Out

A C
VDD

5.6
1 1 1 1

5.6

5.6

VDDA B

CLK

Out

C

1

1

1

1

β
ββ

A

B

CLK

OutC

VDD

10

1

10

10

10

A B

Out

C VDD

5.6

5.6

5.6

β
ββ

CMOS

Based on this analysis, we calculated the optimal transistor sizing of basic DML
gates. Table 4.1 presents an example of optimized transistor sizing, normalized
to the minimal transistor width for NAND and NOR gates with a fan-in of 3 for
VDD =0.3 V for DML, CMOS, and domino designs for both footed and un-footed
topologies. The same stacked-transistor analysis was also used to calculate the
widths of CMOS/dynamic transistors. The sizing factor β, which is defined as the
optimal ratio for transistors of the pull-up to the pull-down network, was simulated
and found to be ∼1.5 for the 40 nm process, which is thus used as the factor for all
calculations henceforth.

4.3.3 Logical Effort Parameters for Low-Voltage Operation

Using the transistor widths from the previous sections, we calculated the LE
parameters shown in Table 4.2. Note that the derived values are smaller than their
CMOS/domino counterparts for the un-footed Type-A NOR3 and Type-B NAND3
gates. These delays are related to DML operation in the dynamic mode. For the
static mode, it is clear that DML gates are slower than CMOS because of the
unsymmetrical sizing and minimum-sized complementary network. However, due
to the reduced input and output capacitances, the degradation in performance in
the static mode is not very large. Thus DML designers would clearly benefit from
designing their logic in such a way that gates can be constructed with a high-stack
pull-up network in Type-A and high-stack pull-down network in Type-B and avoid as
much as possible incorporating other combinations such as un-footed Type-A NAND
or Type-B NOR. This type of design approach yields very fast circuits. Recall that
footed gates are used infrequently and are only presented here for completeness.

4.3 DML Modeling and Sizing Using the Transregional Model 65

Ta
bl
e
4.
2

T
ra

ns
is

to
r

w
id

th
an

d
L

E
pa

ra
m

et
er

ca
lc

ul
at

io
ns

G
at

e
Te

ch
no

lo
gy

pM
O

S
w

id
th

nM
O

S
w

id
th

C
lo

ck
tr

an
si

st
or

w
id

th
p

g
d

=
p

+
g
h
b

fo
r
h

=
3

b
=

1

N
O

R
3

C
M

O
S

8.
4

1
11

.4
/3

9.
4/

3
13

.2

D
om

in
o

1
3.

3
1

10
.9

/3
3.

3/
3

7.
2

U
n-

fo
ot

ed
D

M
L

—
Ty
pe
-A

1
1

1
5/

3
2/

3
3.

66
7

U
n-

fo
ot

ed
D

M
L

—
Ty
pe
-B

8.
4

1
1

12
.4

/3
9.

4/
3

13
.5

33

Fo
ot

ed
D

M
L

—
Ty
pe
-A

1
3.

3
1

11
.9

/3
4.

3/
3

8.
26

7

Fo
ot

ed
D

M
L

—
Ty
pe
-B

15
1

1
19

/3
16

/3
22

.3
3

N
A

N
D

3
C

M
O

S
1.

5
5.

6
10

.1
/3

7.
1/

3
10

.4
67

D
om

in
o

1
10

1
11

/3
10

/3
13

.6
67

U
n-

fo
ot

ed
D

M
L

—
Ty
pe
-A

1
5.

6
1

9.
6/

3
6.

6/
3

9.
8

U
n-

fo
ot

ed
D

M
L

—
Ty
pe
-B

1.
5

1
1

6.
5/

3
2.

5/
3

4.
66

7

Fo
ot

ed
D

M
L

—
Ty
pe
-A

1
10

1
14

/3
11

/3
15

.6
67

Fo
ot

ed
D

M
L

—
Ty
pe
-B

5
1

1
17

/3
6/

3
11

.6
67

N
ot

e:
L

E
fo

r
al

l
dy

na
m

ic
lo

gi
cs

on
ly

ta
ke

s
th

e
ev

al
ua

te
d

tr
an

si
tio

n
in

to
ac

co
un

t
(i

.e
.,

th
es

e
va

lu
es

ar
e

fo
r

co
m

pa
ri

so
n

pu
rp

os
es

on
ly

in
th

e
dy

na
m

ic
m

od
e)

66 4 Low-Voltage DML

Fig. 4.3 Simulated speed for CMOS, domino, and DML (static and dynamic)

Figure 4.3 shows the frequency of a 40 nm NAND–NOR DML chain (a chain
of 20 gates, 10 NAND gates in Type-B, and 10 NOR gates in Type-A), as well as
CMOS and domino chains with a fan-out of 3 of the same length for different supply
voltages. It should be noted that a very noticeable gain is achieved when testing more
complicated designs, as discussed in the following sections.

A NOR DML gate operating in static mode is on average 33% slower than a
CMOS gate. Switching a DML gate from the static mode to the dynamic mode
represents an average speed improvement of 2× in the footed topology (e.g., at
VDD =0.3 V, whereas the dynamic DML achieves 66 MHz, the CMOS achieves only
50 MHz, and the static DML 35 MHz). In the un-footed topology, an improvement
of up to 14× was observed [21]. As expected, domino logic can operate at the
highest frequency but is susceptible to process variations. On average, dynamic
DML operation consumes 100% more energy than static DML, as discussed in
Sect. 4.4.

In this section we derived the logical effort parameters under modeling of the
current through a single transistor. An example of a normalized delay by LE analysis
based CMOS, domino, and un-footed Type-A DML NOR gates with fan-in of 3 is
illustrated in Fig. 4.4. The CMOS NOR gate has the largest LE value and hence has

4.4 DML Benchmark Measurements 67

Fig. 4.4 Normalized delay as a function of the electrical effort. The delay is related linearly to g

and the offset of p

the highest delay for any given h, whereas the DML un-footed NOR has the smallest
LE and parasitic delay, hence the smallest normalized delay for a given h. This is
consistent with expectations.2

4.4 DML Benchmark Measurements

A low-voltage 40 nm DML Full Adder (FA) was designed to illustrate the func-
tionality and robustness of the low-voltage DML methodology. The adder was
compared to CMOS and dynamic FAs [22]. The design of the DML FA was based
on the optimization developed in the previous subsections such that the sizing of
the stacked transistors in all designs was based on the analysis above. Figure 4.5
depicts the implementation of the FA in these logic families. The conventional
CMOS (CCMOS) design has 24 transistors, the dynamic design has 20, and the
DML has 30 transistors. It should be noted that the increased transistor count in the
DML FA does not lead to area increase, since more than 50% are minimum-sized
transistors. All the adders were designed and characterized in a standard low-
power 40 nm process using the Cadence Virtuoso-based Spectre simulator. Power
supplies between 150 and 600 mV were evaluated for energy estimation. Monte-
Carlo statistical simulations were conducted at 300 mV to compare the sensitivity
of the simulated adders to process variations and mismatch.

2Note that domino logic in subthreshold voltages (e.g., 0.3 V) is not robust and does not function
correctly under variations, as discussed below; therefore, we compare it here to a footed domino
implementation to derive the LE parameters.

68 4 Low-Voltage DML

Fig. 4.5 FA implementation: (a) CCMOS. (b) Dynamic logic (c) DML

4.4.1 DML Robustness and Design Metrics Under Low Voltage

To investigate the performance and robustness of the FAs, a Static Noise Margin
(SNM) analysis was performed. This test quantitatively estimates the robustness
of the design and its susceptibility to process variations. SNM was measured in a
very similar way to that introduced by Kwong et al. [23]. This method consists of
a butterfly plot analysis and verifies proper VOL and VOH values. The inputs of two
FAs are cross-coupled so they act as inverters and feed each other. Then the input
voltage is swept, and the two output curves of the FAs are superimposed to create
a butterfly curve. SNM is measured as the largest square inscribed in the smaller
lobe of the butterfly plot. Since this metric is applicable to static-logic families as
is, we used it to evaluate the robustness of CMOS and DML in the static mode.
Figure 4.6 shows the Monte-Carlo SNM results. The SNM from static DML was
slightly higher than CMOS (86 µ in CMOS as compared to 91 µ in DML). Overall,
DML in the static mode appeared to be as robust as CMOS. As implied in Fig. 4.5b,
the dynamic version of the FA failed to operate at 300 mV as discussed next.

4.4 DML Benchmark Measurements 69

Fig. 4.6 Monte-Carlo SNM analysis, VDD = 0.3 V. μDML_Static = 91 m, σDML_Static = 8 m.
μCMOS = 86 µ, σCMOS = 6 m

Fig. 4.7 DUT configuration for delay analysis. Inputs are marked with data rising/falling wave-
forms

4.4.2 Energy and Delay Analysis

Each FA was tested to evaluate energy and delay. The DML gates were tested
in both the static and dynamic modes. Each FA implementation was analyzed to
determine its critical path. The simulation setup with the Device Under Test (DUT)
is depicted in Fig. 4.7. The configuration of the connection between the FAs in the
chain was selected to strain the chain considerably. A 5k point Monte-Carlo transient
simulation was performed to measure delay, as shown in Fig. 4.8. As expected,
the low-voltage dynamic FA failed on most of the tests. When it did succeed, its
performance was poor (with a higher mean delay than CMOS) and it displayed the
highest overall variance. On the other hand, dynamic DML exhibited the lowest
overall delay. The CMOS and static mode DML presented very similar slower
delays.

To analyze performance and energy consumption, we constructed a 20-bit ripple
adder using the FAs illustrated in Fig. 4.7. The delay–energy (E–D) analysis of
a single block of the ripple adder chain is presented in Fig. 4.9. As expected,
static DML consumed less energy than CMOS with degraded performance, while

70 4 Low-Voltage DML

Fig. 4.8 Monte-Carlo FA delay analysis, VDD = 0.3 V. μCMOS = 155n, σCMOS = 84n.
μDynamic = 150n, σDynamic = 141n. μDML_Static = 190n, σDML_Static = 80n. μDML_Dynamic = 96n,
σDML_Dynamic = 48n

dynamic DML consumed less energy than dynamic logic but achieved boosted
performance as compared to its CMOS counterpart. Furthermore, in all cases the
MEPs were located in the ST region [24, 25]. Interestingly, the operation at the
MEP of the static DML (250 mV) had an iso-frequency of 1.62 MHz with less than
0.72 fJ of energy consumption, whereas switching to the dynamic mode provided
roughly a 2.3× frequency boost to 3.69 MHz with less than a 40% increase in
energy consumption. To verify the parameter estimation of the transregional model,
we compared the analytical delay graphs versus the measurement delay graphs for
different voltages. These showed no practically visible error for voltages exceeding
300 mV and an average least square fit error of less than 1–2% (for all 1–3 transistor
stacks). This implies that the model was very accurate.

The activity factor for the E–D graph shown in Fig. 4.9 was set at 1. An activity
factor typically reveals tradeoffs with respect to switching and leakage energy and
serves to analyze them separately. This activity factor was selected to represent the
worst-case scenario for DML gates (in terms of the objective of energy). At all times
and in all operation modes, DML logic had at least one minimum-sized transistor
network. The energy dissipation in these voltage regions is known to be dominated
by the subthreshold and gate leakage currents which are linearly dependent on the
transistor widths, thus making the DML leakage substantially lower. Therefore, an
activity factor of 1 constitutes a stringent criterion and is a pessimistic expectation.

4.5 Conclusion 71

0.2V0.25V
0.3V

0.35V
0.4V

0.45V

0.5V
0.55V

0.2V0.25V

0.3V
0.35V

0.4V

0.45V

0.5V

0.2V

0.25V

0.3V

0.35V

0.4V

0.45V

0.5V

0.55V

0.2V
0.25V0.3V

0.35V

0.019 0.19 1.9 19

0.4V
0.45V

0.5V

0.55V

0.4

0.9

1.4

1.9

2.4

2.9

3.4

3.9

En
er

gy
\o

pe
ra

tio
n

[f
J]

log (Delay [10e-7]) [Sec]

CMOS DML-Dynamic

Dynamic DML-Static

Fig. 4.9 FA E–D plots (per operation) of CMOS, dynamic, DML dynamic, and DML static as a
function of VDD

4.5 Conclusion

To provide the reader with a better understanding of DML circuits, this chapter
discussed DML gate operation and optimization for low-voltage operations. It
detailed device sizing analyses and optimizations for the ST and NT regions.
It demonstrated simulated and fabricated devices, DML chains of NORs/NANDs,
and FAs and compared them to their CMOS and domino counterparts. Finally,
we reviewed the robustness characteristics of DML (through the SNM metric)
from near- to subthreshold voltages. Monte-Carlo simulations were conducted and
showed that in the dynamic mode, the DML FA was more robust and consumed less
power than domino logic and was faster than the CMOS gate with a higher power
value. Specifically, dynamic operation of the DML FA provided a 200% better
performance than CMOS, whereas the static operation provides improved power
consumption with reduced speed compared to its CMOS counterpart. Starting in
the next chapter we extend this “gate-level” analysis to aspects of the system-level
architecture and control mechanisms for DML.

72 4 Low-Voltage DML

References

1. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power cmos digital design. IEICE Trans.
Electron. 75(4), 371–382 (1992)

2. C. Piguet, Low-power Electronics Design (CRC Press, Boca Raton, 2018)
3. P. Kalyani, P.S. Kumar, P.C. Sekhar, Design of subthreshold adiabatic logic based combi-

national and sequential circuits, in 2017 International Conference on Emerging Trends &
Innovation in ICT (ICEI) (IEEE, Piscataway, 2017), pp. 9–14

4. S.B. Nasir, S. Sen, A. Raychowdhury, Switched-mode-control based hybrid ldo for fine-grain
power management of digital load circuits. IEEE J. Solid-State Circuits 53(2), 569–581 (2017)

5. S. Kim, S.-Y. Lee, S. Park, K.R. Kim, S. Kang, A logic synthesis methodology for low-power
ternary logic circuits. IEEE Trans. Circ. Syst. I Regul. Pap. 67(9), 3138–3151 (2020)

6. Y. Chen, H. Jiao, Standard cell optimization for ultra-low-voltage digital circuits, in 2019
International Conference on IC Design and Technology (ICICDT) (IEEE, Piscataway, 2019),
pp. 1–4

7. J. Kwong, Y.K. Ramadass, N. Verma, A.P. Chandrakasan, A 65 nm sub-microcontroller with
integrated sram and switched capacitor dc-dc converter. IEEE J. Solid-State Circuits 44(1),
115–126 (2009)

8. D. Markovic, C.C. Wang, L.P. Alarcon, T.-T. Liu, J.M. Rabaey, Ultralow-power design in near-
threshold region. Proc. IEEE 98(2), 237–252 (2010)

9. G. Gammie, A. Wang, H. Mair, R. Lagerquist, M. Chau, P. Royannez, S. Gururajarao, U. Ko,
Smartreflex power and performance management technologies for 90 nm, 65 nm, and 45 nm
mobile application processors. Proc. IEEE 98(2), 144–159 (2010)

10. B. Zhai, S. Hanson, D. Blaauw, D. Sylvester, Analysis and mitigation of variability in
subthreshold design, in Proceedings of the 2005 International Symposium on Low Power
Electronics and Design (ACM, New York, 2005), pp. 20–25

11. G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. Engel, P. Royannez,
R. Lagerquist, H. Mair et al., A 45nm 3.5 g baseband-and-multimedia application processor
using adaptive body-bias and ultra-low-power techniques, in 2008 IEEE International Solid-
State Circuits Conference-Digest of Technical Papers (IEEE, Piscataway, 2008), pp. 258–611

12. B.H. Calhoun, A.P. Chandrakasan, Ultra-dynamic voltage scaling (udvs) using sub-threshold
operation and local voltage dithering. IEEE J. Solid-State Circuits 41(1), 238–245 (2006)

13. M.-E. Hwang, K. Roy, Abrm: Adaptive-ratio modulation for process-tolerant ultradynamic
voltage scaling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(2), 281–290 (2010)

14. M.-A. LaCroix, H. Wong, Y.H. Liu, H. Ho, S. Lebedev, P. Krotnev, D.A. Nicolescu, D. Petrov,
C. Carvalho, S. Alie et al., 6.2 a 60gb/s pam-4 adc-dsp transceiver in 7nm cmos with snr-based
adaptive power scaling achieving 6.9 pj/b at 32db loss, in 2019 IEEE International Solid-State
Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 114–116

15. G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, Adaptive voltage/frequency scaling and
core allocation for balanced energy and performance on multicore cpus, in 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA) (IEEE, Piscataway,
2019), pp. 133–146

16. M. Pons, C.T. Müller, D. Ruffieux, J.-L. Nagel, S. Emery, A. Burg, S. Tanahashi, Y. Tanaka,
A. Takeuchi, A 0.5 v 2.5 μw/mhz microcontroller with analog-assisted adaptive body bias pvt
compensation with 3.13 nw/kb sram retention in 55nm deeply-depleted channel cmos, in 2019
IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2019), pp. 1–4

17. H. Soeleman, K. Roy, B. Paul, Sub-domino logic: ultra-low power dynamic sub-threshold
digital logic, in Fourteenth International Conference on VLSI Design, 2001 (IEEE, Piscataway,
2001), pp. 211–214

18. I.E. Sutherland, R.F. Sproull, D.F. Harris, Logical Effort: Designing Fast CMOS Circuits
(Morgan Kaufmann, Boston, 1999)

References 73

19. J. Keane, H. Eom, T.-H. Kim, S. Sapatnekar, C. Kim, Subthreshold logical effort: a systematic
framework for optimal subthreshold device sizing, in Proceedings of the 43rd Annual Design
Automation Conference (ACM, New York, 2006), pp. 425–428

20. D.M. Harris, B. Keller, J. Karl, S. Keller, A transregional model for near-threshold circuits
with application to minimum-energy operation, in 2010 International Conference on Micro-
electronics (IEEE, Piscataway, 2010), pp. 64–67

21. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 21(5), 979–983 (2013)

22. C.-H. Chang, J. Gu, M. Zhang, A review of 0.18-/spl mu/m full adder performances for
tree structured arithmetic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6),
686–695 (2005)

23. J. Kwong, A.P. Chandrakasan, Variation-driven device sizing for minimum energy sub-
threshold circuits, in Proceedings of the 2006 International Symposium on Low Power
Electronics and Design (ACM, New York, 2006), pp. 8–13

24. B.H. Calhoun, A. Wang, A. Chandrakasan, Modeling and sizing for minimum energy operation
in subthreshold circuits. IEEE J. Solid-State Circuits 40(9), 1778–1786 (2005)

25. S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K.K. Das, W. Haensch, E.J.
Nowak, D.M. Sylvester, Ultralow-voltage, minimum-energy cmos. IBM J. Res. Dev. 50(4.5),
469–490 (2006)

Chapter 5
DML Energy-Delay Tradeoffs
and Optimization

As shown in the previous chapters, DML design provides very high energy-delay
(E-D) optimization flexibility at the gate level. In this chapter, this flexibility is
utilized to enhance the energy efficiency and performance of larger combinatorial
circuits. In other words, we go up the design hierarchy to the (small) block level.
The goal is to overview DML energy-delay tradeoffs for a composite block and
present solutions that capitalize on the DML’s unique structure to achieve energy
reduction and performance improvement. Specifically, we present critical-path-
DML approaches that analyze the design’s critical paths and selectively allow for
their operation in the fast, dynamic mode; by contrast, the energy reduction is
achieved by static operation of the non-critical path of the system. These approaches
are demonstrated on a Carry Look-Ahead DML adder example. The analysis is
carried out as a function of supply voltage and the operand size of the adder (n).

5.1 Introduction: Static DML as a Semi-Energy-Optimal
CMOS

The design space of a CMOS gate is primarily influenced by VT, the transistor width,
VDD, the channel length, oxide thickness, and body voltage. The impact of these
parameters on E-D plane optimization has attracted considerable attention. In the
CMOS family, the symmetry of the gate (i.e., equal rise and fall times) is crucial
since in a combinational system there is always some uncertainty as to the tran-
sition, which is data-dependent, delay-dependent, parasitic, and implementation-
dependent. Thus, the pull-up network (PUN) of CMOS gates, which is constructed
with low mobility PMOS devices,1 is sized up by the β parameter [1]. When

1In many modern nano-scale technologies, such as FinFET, the strength of the PMOS devices can
be very similar to the strength of the NMOS devices.

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_5

76 5 DML Energy-Delay Tradeoffs and Optimization

optimizing CMOS gate energy to the detriment of its performance, the transistor
width is the prime parameter for reducing energy consumption, for a number of
reasons that are enumerated below:

1. The switching energy is proportional to the load and quadratically dependent
on VDD. Under energy optimization, symmetry in gate performance does not
constitute a constraint so that the transistor width can also be made smaller as
well as β. This lessens the load capacitances considerably.

2. With the advent of VDD lowering and technology scaling, leakage energy has
become one of the key sources of total power dissipation. Leakage energy is
caused by numerous leakage currents in the device but the main ones are the sub-
threshold and gate leakage currents [2]. Thus, in the case of energy optimization,
the transistor width can be reduced significantly, as well as the β of the gate.

CMOS-based DML gates operated in the static mode with transistor sizes opti-
mized for the dynamic mode are de-facto a semi-energy-optimal CMOS structure
with an additional negligible output capacitance for clocked transistors (transistors
M1 and M2 in Fig. 2.1). In fact, when optimizing sizes for the dynamic mode,
the complementary network is composed of minimum sized gates so that in the
static mode these minimum sized transistors have minimal dynamic and static
energy consumption (currents through the gate). Static DML is still highly robust
because of its complementarity [3, 4] and can withstand aggressive voltage scaling,
as discussed above. Thus, this methodology can also be seen as a stand-alone semi-
optimal technique for reducing the energy consumption of digital circuits in general.

5.2 Critical-Path-DML Approaches to Energy Efficiency
and High Performance

This section describes approaches to the energy efficient and high performance
design of combinatorial systems. We start by presenting an approach that utilizes
DML gates in the dynamic mode on the CPs to improve their delays. Then, we turn
to factors affecting energy reduction in all the non-CP portions of the design.

Theoretically, a general DML design can be controlled (data-driven or external-
signal-driven control) to operate each gate in either the static or the dynamic mode.
What this means is that a general design can be operated in 2g different ways, where
g denotes the number of gates in the design. Each mode leads to a different operating
point on the E-D space of the design. Figure 5.1a visualizes this modularity. The
degenerated approaches for operating all the gates in one of the two modes, are
shown in Figs. 5.1b and c. Switching between modes results in a clear-cut tradeoff
since the design is optimized to either achieve maximum performance or minimum
energy consumption.

5.3 Solution for Critical Path Timing Violations and Energy Consumption. . . 77

Stat. Stat.
Stat. Stat. Stat.

Stat.

Stat. Stat.
Stat. Stat. Stat.

Stat.

Dyn.\
Stat. Stat.
Stat. Dyn.\

Stat. Stat.
Stat.

Stat. Dyn.\
Stat.

Stat. Stat. Dyn.\
Stat.

Stat.

Dyn. Dyn.
Dyn. Dyn. Dyn.

Dyn.

Dyn. Dyn.
Dyn. Dyn. Dyn.

Dyn.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Dyn.\
Stat.

Energy Efficient Low
performance mode.

High Performance and Energy
mode.

Energy Efficiency
With Boosted Performance.

operation modes) g(2

a b

Critical Path

R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

c d

Fig. 5.1 DML-based design modes: (a) DML design optional operation modes, (b) DML design
degenerated to the dynamic mode, (c) DML design degenerated to the static mode, (d) DML design
where only the CPs are dynamically operated, while the rest of the design operates in the low
energy static mode, where Dyn. stands for Dynamic and Static stands for Static DML or CMOS
logic

5.3 Solution for Critical Path Timing Violations and Energy
Consumption Reduction

Standard design flow tools automatically identify the CPs of a design. By replacing
these paths with DML gates and applying the DML dynamic mode in these paths,
their delay can be shortened. The rest of the design can be implemented using
standard CMOS static logic. Clearly, special design constraints need to be enforced
at all the intersections between the static paths and dynamic paths. In some of these
cases, a footer should be applied [3–6]. Figure 5.1d illustrates a design in which the
CPs were located and only those paths were allowed to toggle between the dynamic
and static modes as a function of the system requirements. Whereas under some
workloads the system can withstand slower operation, the CP logic will operate
in the static mode. By contrast, when for other workloads the system must meet a
clock with a shorter period, the CPs will operate in the dynamic mode. Normally,
the number of gates on the CP is low as compared to the total number of gates in
the design. Thus, in most cases, the inherent dynamic-operation energy of these CPs
will not lead to a significant increase in the total energy consumption of the design.

78 5 DML Energy-Delay Tradeoffs and Optimization

Fig. 5.2 A mapped circuit
for CPs and non-CPs when
the former is operating in the
dynamic mode and the latter
in the static mode

Critical Path
Logic

Non Critical
Path Logic

Dynamic DML gates
Static DML gates

n-
ger tib

.

n-
bi

t r
eg

.

As noted in the previous paragraph, the CPs are mapped and operated in the
dynamic DML mode. In the paragraph above, the rest of the circuit was assumed to
preserve a standard CMOS logic gate topology. This explains why the design was
built to solve the CPs’ timing constraints at the expense of a slight degradation in
energy consumption, as compared to a complete CMOS design. Next, we describe a
different approach in which all the components of the design that are not part of the
CPs are mapped to static mode DML gates (similar to the semi-energy optimized
CMOS gates described in the previous section). In most designs, these non-CPs
are not time-constrained so that the asymmetric behavior of their transitions and by
extension their performance degradation do not affect the clock period. The use of
the static DML mode for the vast majority of gates in the design leads to a notable
reduction in the total dynamic and static energy consumption. Figure 5.2 charts this
approach.

5.4 Modular Benchmark Example: Carry Save Adder
Design

In this section, we detail the benchmark chosen to illustrate the approaches
discussed in this chapter so far. The design can be operated in one of the three
modes:

1. A CP acceleration, which has two operation options:

• “DML Carry Path-Dynamic”—The DML CPs are activated in the dynamic
mode.

• “DML Carry Path-Static”—The DML CPs are activated in the static mode.

In both, the rest of the non-CP portions of the system are designed with standard
CMOS.

5.4 Modular Benchmark Example: Carry Save Adder Design 79

2. A CP acceleration mode with low energy consuming non-CPs, which has two
operation options:

• “DML Carry Path-Dynamic with low energy non-CPs-Static”—The DML
CPs are activated in the dynamic mode, while the rest of the system operates
in the DML static mode.

• “DML Carry Path-Static with low energy non-CPs-Static”—The DML CPs
are activated in the DML static mode, similarly to the rest of the system.

3. CMOS equivalent design.

A Carry Save Adder (CSA; also called a carry bypass adder in some works) was
chosen as the benchmark to demonstrate and evaluate this concept. The CP of the
CSA increases in length as a function of the number of inputs, making it a simple
candidate to evaluate E-D trends as a function of the CPs’ lengths. Crucially, note
that these methods can be applied to any combinatorial circuit and that CSA was
chosen as a benchmark solely for its modularity and simplicity.

5.4.1 The CMOS CSA Design

A conventional CSA is composed of a set of Ripple Carry Adder (RCA) blocks.
They utilize the carry propagation to skip the carry from one RCA block to the
next RCA block. Because the propagation of the carry by a simple XOR gate
can be predicted [7], the delay can be substantially reduced [8]. The CP in CSA
is active when the carry ripples through the first block, then skips the rest of the
middle blocks, and then ripples again through the last block. This is the longest
possible route in the CSA. Lehman et al. investigated CSAs that had a non-
uniform size (the same input size) for the RCA blocks [9]. Majerski presented a
multi-level carry-skip propagation architecture [10]. Guyot et al. and Oklobdzija
et al. put forward algorithms for choosing optimized block sizes [11, 12]. Other
enhancements and implementations of advanced CSAs have been investigated in
recent publications, e.g., [13–15]. For simplicity’s sake, a CMOS CSA design with
a fixed block size of 4 bits was implemented, as shown in Fig. 5.3. Again, the
methods presented in this section can be generalized to any CSA block size constant
or variable and any multi- or single-level carry path. The general single-bit FA
equations are

S = A ⊕ B ⊕ Cin, (5.1)

Cout = AB + Cin(A + B), (5.2)

P = A ⊕ B, (5.3)

80 5 DML Energy-Delay Tradeoffs and Optimization

M
U

X

FAFA FAFA

P3

P2
P1
P0

X0 Y0

4 bit block

Carry propagation

4 bit block

Carry propagation

4 bit block

Carry propagation

4 bit block

Carry propagation

P0·P1·P2·P3P4·P5·P6·P7P8·P9·P10·P11P12·P13·P14·P15

P0·P1·P2·P3

AB

Ci A

A

B A B Ci B
A
Ci
Ci

B

ABACi

BA

B

Carry
S

X6

X3X2

X44·iXF

2·iXF

Carry

S

XiYi

MUX

Sel

A

Sel

Sel

BA

Sel

X2

X4 B

Sel

X2

X1

Out

FA

X1 Y1X2 Y2X3 Y3

C0C1C2C3
C4

C0 S0S1S2S3

C0C4C8C12C16

Fig. 5.3 Test-bench circuit: CMOS designed CSA where the non-elementary CMOS gates such
as the mirror FA and MUX are presented with transistor sizes. Transistor sizes are marked by an
X’Number’, where X represents the multiplication by Wmin (minimum transistor width). P and C

stand for the propagate and carry signals

where ⊕ is the conventional XOR symbol. For an RCA, Cout will be an input to the
next FA. For the CP, the carry will propagate through all FAs. Given the fact that
Cout is on the CP for each RCA, the mirror circuit for computing Cout is used [8], as
shown in Fig. 5.3. This circuit calculates the inverted value Cout , and when serially
chained, it reduces the circuitry on the CP (i.e., it eliminates one inverter for each
FA). Furthermore, the use of the mirror adders makes it obligatory to have inverting
inputs for all odd FAs and inverting outputs for all even FAs [7], as shown in Fig. 5.3.
All the logical gates presented in the figure are constructed with standard CMOS.
A standard sizing optimization for the RCA of mirror FAs using Logical Effort [16]
yields the sizing factor Fi (as shown in Fig. 5.3 for all the carry path gates) for all
is, which are a multiple of 4, Fi = 1 and for all the rest Fi = 3.5.

5.4.2 DML Critical Path Design

Figure 5.4 shows the DML implementation of the CSA’s CP. The CP flows through
the first NOR (under the assumption that the carry in of the whole design is “0”) and
through all the MUXs of the design. The gate-level implementation of the CP can
be constructed with numerous topologies of DML, but it is worth noting that DML
NOR gates are more efficiently implemented in Type-A topologies and NAND gates
in Type-B, as discussed in the previous chapters (and in [3–5]). Boolean logic does
not allow for an efficient implementation of a MUX with a NOR following a NAND
or vice versa, which is the preferred topology for DML logic design. Thus, in this
topology, the CP is composed solely of NANDs (where one is implemented using an
efficient Type-B and the other has a less optimal Type-A structure). The last inverter
in each RCA block is a headed Type-B inverter that maintains the correct precharge

5.5 Energy-Delay Plane as a Function of VDD and n 81

DML
Mux Footed DML

Type B

~8% - DML designed to operate
in dynamic\static mode

~92% - DML designed to operate
in the static mode

Carry
propagation

Ci+4

Ci

Pi·P(i+1)·P(i+2)·P(i+3)
B
A

Carry
propagation

4 bit
block

Cin=0C4C8

P0·P1·P2·P3P4·P5·P6·P7

A
B

CLK

Out

CLK
X6

X1

A
B

In1

In2 CLK

In2

B

Sel

CLK

X1

A

Sel

CLK

X2
Sel

Fig. 5.4 DML critical path design for the benchmark CSA. The figure shows transistor widths for
the gates of interest

phase for the CP. The sizes of the transistors in terms of minimal transistor width
are shown in Fig. 5.4. In the design, when implemented in this way, only 8% of
the transistors will (optionally) operate dynamically, and the remaining 92% stay in
the low energy static mode. This modular design has the same complexity and the
same dynamic-to-static-gates ratio for different input vector lengths of N bits.

5.5 Energy-Delay Plane as a Function of VDD and n

The modular benchmark circuits described in the previous section were simulated
in a standard 40nm CMOS process using a Cadence Virtuoso simulator. The modes
(and methods) of the benchmark CSAs are primarily illustrated over the E-D plane
and as a function of the CP length and the operating voltage. Note that the naming
conventions for the different designs and operating modes are listed in Sect. 5.4. All
the energy and delay metrics provided below are per-operation.

5.5.1 The E-D Plane as f (VDD)

To examine the approaches discussed above for low voltage and strong inversion
operations, evaluations were carried out with supply voltages ranging from 0.4V to
1.1V.

82 5 DML Energy-Delay Tradeoffs and Optimization

The E-D curves for all designs of a 128-bit CSA are plotted in Fig. 5.5. As shown
in the figures, the order of the curves from top to bottom represents the following
designs:

1. CMOS.
2. CMOS design with a CP in the dynamic DML mode.
3. CMOS design with a CP in the static DML mode.
4. DML design with low energy static-DML mode operation for the non-CPs and

CPs operating in the dynamic DML mode.
5. DML design with low energy static-DML mode operation for the non-CPs and

CPs operating in the static DML mode.

The latter two curves are in the lower region of the plane which represents the low
energy achieved by implementing all non-CPs in the low energy DML static mode
(which, as described above, can also be referred to as a low energy CMOS flavor).
The two areas of interest are circled on the edges of Fig. 5.5a and are enlarged in
Fig. 5.5b and c. Figure 5.5b shows the tradeoff area for a 1.1V operating voltage for
all designs. Figure 5.5c presents the same tradeoff for 400mV power supply. These
two extremes clearly show that these designs are highly flexible in terms of energy
consumption and performance for the whole range of voltages. This comparison of
the DML enhanced CP plots (second and third curves) to the CMOS plot (first curve)
for the 0.4V supply (Fig. 5.5c) clearly shows that the DML enhanced CP exhibits
a significant improvement in performance. This achievement comes nevertheless at
the cost of a 16% increase in energy consumption. For example, consider a multi-
frequency system where the module’s frequency can vary in time. When a low power
operation is required, the static mode (with a low frequency) can be applied, yielding
2.5X energy improvement with a penalty of a performance drop of 1.3X. This ability
to change operating conditions on the E-D plane on-the-fly is a feature that can
easily be exploited to improve system flexibility and E-D efficiency.

For the 1.1V supply (Fig. 5.5b), boosting the performance of the CP by 20% only
increases energy consumption by 3%. When a low power operation is needed, the
static mode can be applied, which leads to a 1.5X energy improvement at the cost
of a performance drop of 1.4X. These results help show that a low voltage operation
magnifies the differences between the different modes which can be accounted for as
follows. The first is that the performance superiority of DML circuits in the dynamic
mode over standard CMOS intensifies with a drop in supply voltage lowering [3–
5]. The second, less dominant factor, is the reduced sensitivity of DML circuits to
increased leakage currents at low supply voltages [3–5].

Inspecting the DML performance optimized CP with low energy non-CP plots
(the two lowermost curves), makes it clear that the total energy drops two- to three-
fold for all voltage regions. Moreover, the 1.3X and 2.1X improvement in CP
performance was also found for the 1.1V and 400mV supplies, respectively. These
CP performance results are comparable to the results obtained for operation without
the low energy non-CP gates. This is because the CPs themselves have not changed.
Thus, overall, the flexibility of the DML design leads to significant improvements
in both energy and performance.

5.5 Energy-Delay Plane as a Function of VDD and n 83

Fig. 5.5 E-D measurements
for all 128-bit designs. (a)
E − log(D) plots for all
supply voltages from 0.4V to
1.1V. (b) Enlarged E-D plots
for 0.4–0.5V supply voltages.
(c) Enlarged E-D plots for
1–1.1V supply voltages

a

b

c

4.0E-14

9.0E-14

1.4E-13

1.9E-13

2.4E-13

5.0E-08 2.5E-07 4.5E-07 6.5E-07 8.5E-07

En
er

gy
/W

or
st

 C
as

e
O

p
[J

]

Axis Log scale Delay [s](1) CMOS
(2) DML Carry Path- Dynamic
(3) DML Carry Path- Static
(4) DML Carry Path- Dynamic. With Low Energy non-CPs- Static
(5) DML Carry Path- Static. With Low Energy non-CPs- Static

~X2 Performance
Improvement

~X1.33 Performance
Degradation

~X2.5
Energy
Improvement

4.0E-13

5.0E-13

6.0E-13

7.0E-13

8.0E-13

9.0E-13

1.0E-12

1.1E-12

1.2E-12

1.0E-09 1.5E-09 2.0E-09 2.5E-09 3.0E-09

E
ne

rg
y/

W
or

st
 C

as
e

O
p

[J
]

Axis Log scale Delay [s](1) CMOS
(2) DML Carry Path- Dynamic
(3) DML Carry Path- Static
(4) DML Carry Path- Dynamic. With Low Energy non-CPs- Static
(5) DML Carry Path- Static. With Low Energy non-CPs- Static

~X1 in
Energy

~X1.2 Performance
Improvement

~X1.5 Energy
Improvement

~X1.4 Performance
Degradation

84 5 DML Energy-Delay Tradeoffs and Optimization

5.5.2 The E-D Plane as f (N)

This section examines the efficiency of the concept as a function of the CP’s length,
which is closely related to the size of the design. The CSA’s size\length depends
on the number of input bits, N . Figure 5.6 depicts the E-D trends for all designs
as a function of N . Each plot starts with the minimal CP associated with a size
of N = 4 and goes up to the longest examined CP of N = 128; namely, the
point where N = 128 appears in both Figs. 5.5 and 5.6. The key purpose of this
analysis is to show the scalability of the method for various design sizes and not
only for a very long CP. Figure 5.6a and b demonstrates that as N increases, the ratio
between the energy/performance of the different designs is almost constant. Thus,
the design remains fully scalable for 400mV and 1.1V. Figure 5.6b also depicts
another interesting feature of the 128-bit design with VDD =1.1V: the low energy
design (DML static mode for non-CPs) with CPs operated in the dynamic mode
consumes slightly more energy than the standard CMOS non-CP design with DML
dynamic CP but achieves more than a 2X improvement in performance.

As shown in Fig. 5.6a, all designs (N = 4...128) with performance-enhanced
CPs showed a significant improvement in performance at 400mV compared to
their CMOS counterparts. However, for the 1.1V supply (Fig. 5.6b), this efficiency
was only observed from N = 32. This behavior naturally depends on the specific
gate topology of the chain, as discussed in the previous chapter. The specific CSA
design represents an average case where some of the DML gates on the CP are
very fast compared to CMOS, such as Type-B NAND, and others make very small
improvements, such as Type-A NAND. For this reason, we expect that for other
benchmarks, the improvement in E-D will be clear-cut for some N > NMIN .

5.5.3 Stimuli Input Vector Complexity

The results presented in the previous subsections examined input stimuli that
activated the CP of each circuit. These stimuli triggered the worst delays possible
for these designs since each circuit requires different inputs to activate its CP. The
worst case scenario for energy consumption also occurs with a specific input vector
when it switches as many gates as possible for each RCA chain (the static portions
of the design). In the previous two subsections, for the case of 128-bit CSA, the
input vectors were chosen to switch 40 outputs independently of the CP switching.
This arrangement is highly unlikely, since the average number of switching outputs
is generally below 40. Let us assume equal probabilities for a logic “1” and a logic
“0” for each input. The probability of a carry in a FA is q = 0.5. The probability for
a carry to propagate through K successive bits is

5.5 Energy-Delay Plane as a Function of VDD and n 85

Fig. 5.6 E-D measurements as a function of the CSA size. (a) For 0.4V. (b) For 1.1V.

86 5 DML Energy-Delay Tradeoffs and Optimization

qk = 1

2
· 1

2
· 1

2
· · · 1

2︸ ︷︷ ︸
K

= 1

2k
. (5.4)

Alternatively, the probability of a carry being either “killed” or generated through
K successive bits is 1 − qk . Thus, the probability of propagating more than 4 bits
is 6.25%, which is quite low. For example, let us take the 128-bit design composed
of 4 bit RCAs (i.e., 32 segments): the rippling of 2 bits within each 4 bit RCA (in
addition to the switching of the whole CP) is a quite reasonable or even a stringent
case in terms of probability. As anticipated when input vectors that are more energy-
consuming for the static parts of the design were simulated (60 and 80 switched
outputs), the input stimulus complexity rose and the additional energy required for
the dynamic operated CP became increasingly negligible in comparison to the total
energy of the designs. These results are reassuring for all worst-, typical-, and best-
case input vectors in terms of energy.

5.6 Conclusion

Timing closure and energy minimization are critical issues in all digital circuits. The
vast possibilities inherent to designs with DML gates leverage the flexibility of the
design to meet CP timing constraints while reducing the total energy consumed by
the circuit, as demonstrated in this chapter. Today, the CP timing issue is closely
related to the rise in the consumed energy associated with conventional methods. In
this chapter, we counter this paradigm by showing that both timing and low energy
consumption requirements can be met. We showed that the performance of the 40-
nm CSA benchmark circuit is improved by 2X, while also achieving a reduction
in energy consumption of 2.5X. Since the CSA circuit is not optimal for DML
implementations, these improvements should be even greater for other designs, as
is shown in the following chapters.

References

1. M.K. Stojčev, J.M. Rabaey, A. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design
Perspective, 2nd edn. Facta Universitatis-Series: Electronics and Energetics, vol. 16(1), pp.
155–157, 2003

2. S.P. Mohanty, N. Ranganathan, E. Kougianos, P. Patra, Low-Power High-Level Synthesis for
Nanoscale CMOS Circuits (Springer Science & Business Media, 2008)

3. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 21(5), 979–983 (2013)

4. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: Model analysis and parameter
extraction. Microelectronics J. 44(6), 553–560 (2013)

References 87

5. I. Levi, A. Belenky, A. Fish, Logical effort for cmos-based dual mode logic gates. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 22(5), 1042–1053 (2014)

6. I. Levi, O. Bass, A. Kaizerman, A. Belenky, A. Fish, High speed dual mode logic carry look
ahead adder, in 2012 IEEE International Symposium on Circuits and Systems (IEEE, 2012),
pp. 3037–3040

7. I. Koren, Computer Arithmetic Algorithms (Universities Press, 2002)
8. A.T. Tran, B.M. Baas, Design of an energy-efficient 32-bit adder operating at subthreshold

voltages in 45-nm cmos, in 2010 Third International Conference on Communications and
Electronics (ICCE) (IEEE, 2010), pp. 87–91

9. M. Lehman, N. Burla, Skip techniques for high-speed carry-propagation in binary arithmetic
units. IRE Trans. Electron. Comput. EC-10(4), 691–698 (1961)

10. S. Majerski, On determination of optimal distributions of carry skips in adders. IEEE Trans.
Electron. Comput. EC-16(1), 45–58 (1967)

11. A. Guyot, B. Hochet, J.-M. Muller, A way to build efficient carry-skip adders. IEEE Trans.
Comput. 36(10), 1144–1152 (1987)

12. V.G. Oklobdzija, E.R. Barnes, Some optimal schemes for alu implementation in VLSI
technology, in 1985 IEEE 7th Symposium on Computer Arithmetic (ARITH) (IEEE, 1985),
pp. 2–8

13. S. Patel, B. Garg, A. Mahajan, S. Rai, Area-delay efficient and low-power carry skip adder
for high performance computing systems, in 2019 IEEE International Symposium on Smart
Electronic Systems (iSES) (Formerly iNiS) (IEEE, 2019), pp. 300–303

14. R. Abinaya, S. Gayathri, S. Atchaya, G.H. Kumar, G.N. Balaji, Power efficient carry skip adder
based on static 125nm cmos technology. Int. J. Innov. Res. Sci. Technol. 5(8), 32–36 (2019)

15. B. Sanjana, K. Ragini, Design of a novel high-speed-and energy-efficient 32-bit carry-skip
adder, in Innovations in Electronics and Communication Engineering (Springer, 2019), pp.
335–343

16. I.E. Sutherland, R.F. Sproull, D.F. Harris, Logical Effort: Designing Fast CMOS Circuits
(Morgan Kaufmann, 1999)

Chapter 6
DML Control

This chapter focuses on the granularity of the DML mode control. First, we describe
a coarse-grain data-dependent controller that controls DML at the block level. We
show that the operation mode of DML can be selected by critical path prediction
architectures that considerably enhance performance. Then, we present a design
example of a fine-grain, data-dependent controller that operates at the logic path
level. The main goal of this chapter is to show that DML primitives can be utilized
to make improvements at numerous abstraction levels even though these are more
often associated with the gate level. We provide several examples illustrating how
primitives can be controlled as a function of gate, path, block, and architecture level
requirements.

6.1 Coarse-Grain DML Mode Selection Controller

This subsection introduces the features related to the granularity of DML mode
control signals. A sophisticated coarse-grain block-level data-dependent controller
is discussed. We show that the DML operation mode can be selected by critical path
prediction logic and treated at the architectural level, thus enhancing performance.
For purposes of illustration we examine the dual mode square (DM2) adder
architecture as an example.

Achieving energy efficiency and low peak power while maintaining compu-
tational performance is one of the most sought-after goals of processor designs
today. Energy reduction and performance improvement have been studied exten-
sively starting from the very high level of application algorithms, through system
[1], architecture [2, 3], and logic levels, to the gate [3–8], circuit, device, and
interconnect levels [9, 10]. Energy reduction in the context of pipelined digital
systems has also been investigated [3, 11]. For example, approaches such as
circuit sizing and supply voltage scaling have been utilized and analyzed [3]. To
combat energy cost, more recently, researchers are focusing on environmental-aware

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_6

90 6 DML Control

voltage and frequency scaling [12–14], on efficient power supply regulation and
architectures [15–17].

This chapter combines two proposed gate and architecture level approaches. It
shows how employing two separate methods leads to considerable performance
enhancement and energy efficiency. The first method is known as dual-mode
addition (DMADD) [18]. It takes advantage of the carry probability to perform
low-power addition and results in a substantial energy reduction of up to 50% over
conventional designs. However, it requires some pipeline modifications to support
multi-cycle addition. The second method is the DML gate family and will draw on
what we have learned from the previous chapters [19–23].

The chapter introduces the dual mode square (DM2) approach that combines
DMADD and DML. The main objective of DM2 is to eliminate the need for multi-
cycle addition in the DMADD by replacing its standard CMOS logic with DML,
thus avoiding architectural overheads (multi-cycle). The main idea is to switch at
the block level to the DML fast dynamic mode to complete the computation in
a single cycle. DM2 enables considerable energy savings related to the inherent
properties of DML gates in the static mode (which operate most of the time). Two
adders were implemented using the DM2 method in a standard 40 nm process; as
described below, the theoretical analysis and post-layout simulations showed that
the DM2 resulted in energy savings of up to 36%, as compared to the DMADD.

The DM2 adder achieves low energy, high performance, and small area by
combining these two independent techniques. The main ingredients are (1) on-the-
fly adaptation of the gates to real-time system requirements by tapping DML’s static
and dynamic modes and their energy-performance tradeoff and (2) sophisticated
control mechanisms to control these gates (using the probabilistic DMADD archi-
tecture).

The remainder of this subsection is organized as follows. We start by briefly
presenting the DMADD and DML techniques. This is followed by the integration of
the DMADD and DML into the DM2 architecture, which incorporates a theoretical
analysis and circuit design optimization. Finally, we support this architecture by
describing simulations of 40 nm DM2 adders and comparing them to standard
CMOS-based DMADD, Brent–Kung, and Ripple adders.

6.1.1 Dual-Mode Addition (DMADD) Approach Overview

DMADD is made up of two addition modes [18]. The energy-efficient one-cycle
mode, called normal, is used most of the time to properly compute addition. It takes
advantage of the average (expected) longest carry-in addition, which is O(log2n),
which therefore is much shorter than the adder size n. The probability of an O(n)-
bit carry propagation is nearly zero [24]. The second mode, called extended, occurs
very infrequently and requires several clock cycles to properly add. The decision as
to which mode should take place requires an appropriate control circuit. When this

6.1 Coarse-Grain DML Mode Selection Controller 91

control is used in a pipelined processor, it selects the right mode at the instruction
decode (ID) stage, prior to the arithmetic logic unit (ALU) stage.

The probability q of a carry to propagate through a bit is 1/2; thus, the
propagation probability through successive k-bits is 2−k . The probability qk that
it will take exactly k bits for a carry to either be generated or “killed” is:

qk = Pr

(∏k−1

i=1
pi = 1

)
× Pr (pk = 0) = 2−k, (6.1)

where pi is the propagate signal of bit i. It was shown in [18] that adders
designed for 2log2n-bit carry propagation have considerably more energy efficiency
compared to ordinary n-bit carry propagation designs. An n-bit DMADD comprises
groups of k bits each, where n = mk, such that the carry propagation delay
of two k-bit adders meets the clock cycle. It makes several design alternatives
to reduce energy dissipation. A design for a (2k − 1)-bit delay rather than n-bit
enables transistor downsizing, high threshold voltage usage, or voltage scaling [1].
To compensate for cases where the carry propagates through more than (2k − 1)
bits, m clock cycles are used to complete the computation. The normal operation
mode of the DMADD requires each m group to “kill” or generate a carry, for which
the probability qnorm is:

qnorm (k,m) =
(

1 − 2−k
)m = 1 − m2−k + O

(
2−2k

)
> 1 − m2−k, (6.2)

whereas the probability qext of the extended mode is:

qext (k,m) < m2−k. (6.3)

The deployment of DMADD in an in-order pipelined processor calls for stalling
the pipe for m cycles in the case of extended-mode addition. This causes some
design overhead and performance degradation. More critically, DMADD in out-of-
order [25] architectures may be extremely difficult to implement. Here, we show
how the utilization of DML avoids the extended multi-cycle mode by ensuring
that regardless of the carry propagation, the DMADD will always compute properly
within a single cycle.

6.1.2 Dual-Mode2 (DM2) System Architecture
and Transistor Sizing

6.1.2.1 DM2 Architecture

The DM2 adder example is an n-bit RCA divided into m = n/k groups of k-
bits each, as illustrated in Fig. 6.1. As discussed in the previous subsection, the

92 6 DML Control

Propagation
Calculate

Mode Decision

Propagation
Calculate

Propagation
Calculate

P

`

X Y

St /Dy

DML RCA
(Block 0)

DML RCA
(Block i)

DML RCA
(Block m=n/k)

op.
mode

S

op.-mode

P

X Y

S

k k// k/k/ k k//

k/ k/ k/

k/ k/ k/S

X Y

op.-mode

Fig. 6.1 DMADD adder topology and control circuit

probability of the normal addition mode is approximately 1 − m/2k . The longest
carry path in this mode does not exceed (2k − 1) bits, which is far shorter than the
n-bit worst case. The underlying DML gates can therefore be operated in their static,
energy-efficient mode. In its extended mode, where the carry propagates through
more than 2k − 1-bits with probability m/2k , the DML logic will toggle to its fast
dynamic mode. In this mode, the worst-case n-bit carry path must be completed
within the given clock cycle, which is done by transistor sizing.

The tradeoff here is clear: most of the time the DMADD consumes very low
power, and high power consumption is rare. Obviously, k must be defined such that
the propagation delay of a (2k − 1)-bit carry path, where the logic is static, will not
exceed the clock cycle. To minimize the dynamic mode probability, k is maximized
as a function of this delay constraint.

Current-day processors are pipelined. To capture the advantages of DM2, we
used a simple, yet realistic in-order pipelined processor [25]. We took advantage of
the fact that the ID stage occurs one cycle prior to execution, thus making the ALU
arguments available one cycle ahead of their use. This also makes it possible to
determine the operation mode of the DMADD by using a mode decision block, as
illustrated in Fig. 6.2.

The mode decision block architecture is depicted in Fig. 6.1, where St and Dy

denote the static-normal and dynamic-extended modes, respectively. The RCA is
standard and is composed of alternating polarity FAs [26]. The alternating polarity
of the RCA bits and the inherent DML alternating precharge polarity [19, 20, 23]
dictate the differences in internal designs of the polarity alternating FA. Figure 6.3

6.1 Coarse-Grain DML Mode Selection Controller 93

R
eg

Instruction Decode (ID) Execute (Ex)

R
eg

Reg.
File

Inst.
yr

o
me

M

A
dder
Instruction

Control

In B

In A

Result

Instruction Fetch (IF)

Mode
Decision

ID

Fig. 6.2 Incorporation of mode decision logic

details the internal circuits of these two bit types. To speed up the critical path, it
uses un-footed gates in even and odd bits.

It is crucial to note that the precharge of all the bits occurs simultaneously and
hence does not affect the critical path delay. To ensure proper precharge, the gates
connected to the RCA inputs are footed Type-A in the even bits and footed Type-B
in the odd ones. The transistor-level schematics and the sizes of the alternating bits
are shown in Fig. 6.3b. They are based on CCMOS (mirror) FA [26].

6.1.2.2 DM2 Transistor Sizing

Let T be the system’s clock cycle and Tpre the precharge delay of a full adder. The
size of the DML gates is determined so that the carry evaluation through all the n

bits will meet T − Tpre = nTeval, where Teval is the carry evaluation delay of a FA.
Note that the precharge takes place simultaneously for all bits prior to evaluation, as
illustrated in Fig. 6.4.

It is equally important to note that in DML, only the transistors involved in
the evaluation network are susceptible to upsizing, whereas the other half of
the complementary transistors stays minimal [19–23]. Furthermore, not all the
evaluation transistors require upsizing, i.e., just those designated by S, as shown
in Fig. 6.5, for the carry logic of two successive bits. The DML design methodology
requires these to be opposite types.

As shown in Fig. 6.5a, the critical carry path in the Type-A gate passes through
the lower left branch, whereas in the Type-B gate, it passes through the upper left
branch. Consequently, the remaining evaluation transistors can remain minimal and
are designated by 1. The smallest sizing factor S of the evaluation transistors that
meet the timing constraints was based on a simulation.

Once the transistor sizes have been determined by the DML dynamic mode, the
maximal group size complying with the timing constraints in the static mode can be
set. Recall that in the DMADD normal mode, the static DML mode is operational,
where the carry propagates through 2k − 1-bits at most.

94 6 DML Control

A B Ci B
A
Ci

Ci
B
ABACin

Carry

1

111
1
1

1
1

AB

Cin

A

A
BBA

B
CLK

Cout

CLK

B A

Type_B Carry

A
B

A
B

BSS 1
1

A
S

SS

1

1

S

1 1
1
1

1

11
11 1

A B Ci B
A
Ci

Ci
B
ABACi

Carry
S1

111
1
1

1
1

Transistor level:
 Type_A Carry

Ai Bi Ai+1 Bi+1

Ci+2

Type B Type AType AType B

FA
Type_A

FA
Type_B

Ci+1
Si+1

Ci

Static INV

Si

CLK
Gate level:

CLK CLK
S

Even FA Odd FA
b

a

Fig. 6.3 Even and odd FAs. At the (a) gate level (b) transistor level

The worst-case delay path for the static DM2 mode is different from the dynamic
path. Figure 6.5b illustrates the critical path in the static mode that passes through
the highly resistive minimal size transistors.

6.1 Coarse-Grain DML Mode Selection Controller 95

Extended Mode: Dynamic DML
Used to: Size Transistors

Normal Mode: Static DML
Used to: Find k

Fig. 6.4 System timing diagram

CLK

Type_A Carry

CLK

Type_B Carry

S S 1

1S

S S

1

1

S

1 1

1

1

1

11

11 1

Cin

(2)

(1)

(3)

(1)

(2)

(3)

VDD

CLK

Type_A Carry

VDD

CLK

Type_B Carry

VDD

S S 1

1S

S S

1

1

S

1 1

1

1

1

11

11 1

Cin

a b

Fig. 6.5 DML worst-case delay path: (a) DML dynamic mode and (b) DML static mode, where
the blocks represent (1) the evaluation path (2) the complementary networks, and (3) the precharge
transistors

Let Tstat denote the carry delay in a FA operated in the DML static mode. The
group size k is determined to satisfy T = (2k − 1) Tstat, yielding:

k = 1

2

(
T

Tstat
+ 1

)
= 1

2

(
Tpre + nTeval

Tstat
+ 1

)
. (6.4)

Usually, n is a power of two, and for practical design considerations, k is set to
the nearest power of two [18]. Because the size of the devices was chosen to be as
small as possible, k must always be rounded down, since rounding up may cause
timing violations.

6.1.3 Computing Energy Savings

Although the main rationale for DM2 is to avoid the DMADD architecture
overheads described above, it also leads to notable energy savings. To assess the
DM2 energy savings compared to DMADD, the latter was optimally designed in

96 6 DML Control

ordinary CMOS logic to meet the worst 2k − 1-bit delay occurring in group size
k. Once the size of the gates was determined, the switching and leakage energies,
EDMADD

switch and EDMADD
leakage , were measured by simulation. Let’s consider DM2 adder

energy consumption per addition, and let EDM2

stat and EDM2

dyn be the worst-case static-
normal mode (most often) and dynamic-extended mode (less often), respectively.
Given that the normal mode probability is 1 − m/2k , we obtain:

EDM2

EDMADD =
(
1 − m

/
2k

)
EDM2

stat + m
/

2kEDM2

dyn

EDMADD
switch + EDMADD

leakage + (m − 1) m
/

2kEDMADD
leakage

, (6.5)

The term (m − 1)m
/

2kEDMADD
leakage in Eq. (6.5) follows from the extra m−1 cycles

required by the DMADD extended mode. Equation (6.5) can be simplified by noting
that m

/
2k
 1, EDM2

dyn � 4EDM2

stat for a DML FA (obtained by simulation), and that

EDMADD
switch +EDMADD

leakage � (m − 1)m
/

2kEDMADD
leakage . All in all, we obtain the following

approximation:

EDM2

EDMADD � EDM2

stat

EDMADD
switch + EDMADD

leakage

(6.6)

Note that we did not include the energy consumed by the adder’s controller since
it is similar to DMADD and DM2 adders.

6.1.4 Benchmark Results and Analysis

DMADD 32- and 64-bit adders were compared to a DM2 adder. In addition, DM2

performance was tested against ripple carry and Brent–Kung adders designed in
a 40 nm process technology and targeting a 1 GHz clock frequency. Energy, area,
and extended-mode probability and reliability were analyzed. As described in the
previous subsection, the first DM2 design step is to set the device sizes S of the FAs
to meet the clock cycle in the DML dynamic mode, which defines the optimal group
size k.

Note that the DM2 adder requires extra circuitry for precharge, which should
be carefully designed. In terms of the other components, the precharge circuits
were carefully designed under PVT corners and mismatch, and the necessary
margins were adhered to. The energy and delay overheads, which are negligible,
are represented by the final results, as reported in this section.

6.1 Coarse-Grain DML Mode Selection Controller 97

6.1.4.1 Transistor Sizing and Setting the Group Size

Figure 6.6 presents the delays for the 32-, 64-, and 128-bit adders operating in
both the dynamic and static modes. The delay of the dynamic mode decreases as
S increases and is given by:

Teval = (n − 1)
R

S
(αC + βSC) + R

S
(δC + γ SC) , (6.7)

where R is the resistance and C is the capacitance of a minimal size transistor,
and α, β and γ are process dependent parameters. The (n − 1) factor represents
the first (n − 1) gate delays in the chain that charges similar capacitors, whereas the
second term represents the last gate that charges the output register. Though not fully
intuitive, the delay in the static DML mode increases with the increase in transistor
size. This follows from the inherent structures of DML logic. Recall that in Type-A
the size of the pull-up transistors through which the capacitive load is precharged
is minimal. Similar arguments apply to the Type-B pull-down transistors (Fig. 6.5b).
Overall, the static delay is given by:

Tstat = (2k − 1) R (αC + βSC) + R (δC + γ SC) . (6.8)

Consider the design of a 32-bit adder targeting a 1 GHz clock frequency. Ignoring
setup time, the intersection point (a) of the dynamic curve with the 1 GHz horizontal
line in Fig. 6.7 dictates the smallest sizing factor S that corresponds to the timing
constraints. Ideally DM2 should aim for the largest possible group size k, which
results in the smallest probability of the dynamic (high energy) mode. This could

Fig. 6.6 Delays of 32-, 64-, and 128-bit DM2 adders operated in both the dynamic and static
modes

98 6 DML Control

2.E-09

(a)

(b) (b')

(a')

1.E-09

5.E-10

0.E+00

D
el

ay
 T

im
e

(s
)

Sizing Factor (S)
1 3

Static:
Static:
Dynamic:

16b
32b

f = 1[GHz]
32bit Sizing

8b

Fig. 6.7 32-bit adder design operation point

2.E-09

1.E-09

D
el

ay
 T

im
e

(s
)

0.E+00

Sizing Factor (S)

Static:
Static:
Dynamic:
Dynamic:

8b
16b
32b
64b
f = 1[GHz]
64b Sizing

1 3 5 7 9

Fig. 6.8 64-bit adder design operation point

theoretically be achieved by the static curve passing through (a). Practically, since k

is a power of two, it is obtained by the nearest match below point (a).
To mimic the common design methodology where sizing factors are integers and

the DMADD group size is a power of two, the nearest practical design point (a’)
corresponding to S = 2 was chosen. The largest practical group size that met the
delay constraints for S = 2 was (b’), yielding a 32-bit adder for which 2k = 16.

Another 64-bit adder was designed with similar features, yielding 2k = 16 and
S = 5, as illustrated in Fig. 6.8 (the intersection of the dynamic, static, and clock
cycle curves at a single point is purely a coincidence).

6.1 Coarse-Grain DML Mode Selection Controller 99

Fig. 6.9 (a) Layouts of a complete DM2 adder occupying 400 µm2 and a single FA cell in (b)

The procedure to find the minimal device sizing factor automatically determines
the maximal group size, which in turn minimizes the dynamic DML operation mode
probability. To summarize, the determination of the device sizes, on one hand, and
the group size, on the other, is optimal via all means, and there is no other design
point meeting the clock cycle that yields lower energy (Fig. 6.9).

The dynamic operation mode probability is derived by substituting n and k into
Eq. (6.3), which for a 32-bit adder yields 1.56%, and 3.12% for a 64-bit adder.

6.1.4.2 Energy Saving Measurements and Bounds

To evaluate energy dissipation, the adder inputs were set such that the worst-case
scenario of maximum energy consumption would occur. Figure 6.10 illustrates two
successive bits of alternating types as defined by the DML design methodology.
To trigger the worst case, the gates of all the evaluating devices in the Type-A cell
should be at the “1” logic level. This is achieved by providing two “1” input bits
and enforcing “1” in carry-in, which is obtained by providing two “0” logic levels
to the inputs of a Type-B cell. The symmetric argument of ensuring that all the
evaluating devices in the Type-B cell are conducting holds similarly. The gates of
all the evaluating devices in the Type-B cell should be at the “0” logic level. This
is obtained by providing two “0” input bits and enforcing “0” in the carry-in, by
providing two “1” logic levels to the inputs of the Type-A cell.

Consequently, as shown in Fig. 6.3 and the alternating polarity of successive

FA bits, the worst input of the adder is
A[0 : n − 1] 111111 · · · 1111
B[0 : n − 1] 111111 · · · 1111

. This worst-

case input applies to both the static and dynamic DML modes. However, there is
a considerable difference between them. Whereas the energy in the static mode is
consumed by the evaluation devices alone, the dynamic mode consumes additional
precharge energy, which was measured in the experiments. It is worth noting that
the propagate signals of all the bits are “0”; therefore, since it is embedded in the
pipeline, the DM2 adder controller will turn it into a normal static mode. Bear in

100 6 DML Control

VDD

CLK

Type_A Carry

VDD

CLK

Type_B Carry

VDD

S S 1

1S

S S

1

1

S

1 1

1

1

1

11

11 1

Cin

Fig. 6.10 Worst-case energy triggered paths in both the static-normal and dynamic-extended
modes

mind that although we used this input to calculate the worst dynamic mode energy
consumption, in the actual pipeline this scenario will operate in the static DML
mode.

To compare the energy consumption of the ordinary DMADD CMOS adder to
the DM2, the worst-case stimuli were used for both adders. For the DMADD normal
mode, the inputs resulted in the longest carry propagation through 2k − 1 bits,
whereas in the extended mode it propagated through the entire n bits. The worst
stimulus for DM2 is the one described previously.

Both DMADD and DM2 adders were implemented in a 40 nm process tech-
nology. The layout of the 64-bit DM2 adder is shown in Fig. 6.9. It was designed
with Cadence Virtuoso tool and extracted and simulated with SPICE. The energy
measure for each mode was weighted by its corresponding probability. The results
are summarized in Fig. 6.11 and revealed a 36% energy reduction for the 32-bit DM2

adder and a 27% reduction for the 64 bit compared to the corresponding DMADD
adders.

Recall that the rationale for DM2 design was to simplify the pipeline and avoid
the multi-cycle mode required by the DMADD design. Note that there is no tradeoff
in achieving the primary objective but that considerable energy savings are achieved.

6.1.4.3 Comparison of DM2 to Brent–Kung and Simple Ripple Carry
Adders

Extensive experiments were carried out on both the 32- and 64-bit adders to compare
the average power per cycle (henceforth power) efficiency of DM2 to a variety of

6.1 Coarse-Grain DML Mode Selection Controller 101

Fig. 6.11 Energy consumption for the 32-bit and the 64-bit adders

adder architectures. The experiments covered three architectures at the same target
frequency: a high-performance Brent–Kung [27], a low-performance Ripple carry
adder, and DMADD, which is the basic addition architecture [18] used for DM2 (see
the results reported above). As shown in Table 6.1, DM2 achieved a power reduction
of 1.9×–5×. All the adders were designed to meet 1 GHz performance, and their
power consumption was minimized. Adders were Verilog designed and synthesized
with the Register Transfer Level (RTL) compiler synthesis tool with the given 40 nm
technology library and the Cadence encounter place and route capabilities. Then,
all the designs were imported into Cadence Virtuoso for specter (SPICE) analog
simulations. All the adders were simulated with their worst-case input transitions for
power measurements and their slowest critical path frequency, as was implemented
in the previous subsection for DM2 and DMADD.

In the first experiment, the Brent–Kung architecture was used to meet the 1 GHz
clock frequency; all the related attributes for the synthesis tool were set to minimize
the power consumption. This resulted in a power consumption of ∼2.6× (593/230)
and ∼2.1× (1082/520) for the 32- and 64-bit designs, respectively, compared to the
DM2 adder. Note that the Brent–Kung architecture is the only alternative if very
high performance is required. For example, the maximum frequency of 2.5 GHz can
be achieved by this architecture, but at a very significant cost in power consumption.
In this case the power consumption increased to ∼12.2× and ∼9.2× compared to
1 GHz DM2 for the 32- and 64-bit designs, respectively.

The purpose of the second experiment was to compare the DM2 adder to the
RCA at 1 GHz. Unfortunately, the ripple carry adder failed to meet this design goal
with the 40 nm technology (due to STD cell library sizing factors). The maximum
achievable frequencies were 370 and 195 MHz for the 32- and 64-bit designs,
respectively.

Nevertheless, to show that DM2 is more power efficient than the ripple carry
adder, it was optimally designed to meet the 370 MHz and 195 MHz frequencies
(32 and 64 bits). In this case the DM2 design achieved a power reduction of ∼4×
(410/102) and ∼5.8× (435/75), compared to the ripple carry adders. It is worth

102 6 DML Control

Table 6.1 Performance, power, area, and number of cells. Comparison of Brent–Kung and ripple
adders to DM2

#bits Brent Kung Brent Kung DM2 DM2 RCA

32-bit adder Power (µW) 410 102 230 593 2840

Frequency (GHz) 0.38 0.3728 1 1.09 2.503

Area (µm)2 488 290 400 824 824

#Cells 130 435 435

64-bit adder Power (µW) 435 75 520 1082 4800

Frequency (GHz) 0.199 0.194 1 1.06 2.142

Area (µm2) 967 350 800 1200 1594

#Cells 260 926 926

Table 6.2 32- and 64-bit control circuitry’s (mode decision) average power consumption and
performance

Clock cycle (ps) Delay time (ps) Av. power consumption (µW) Control circuit #bits

32 61 320 1000

64 119 380 1000

noting that in this case, the difference in power improvement between the 32- and
the 64-bit designs (4 and 5.8) was not significant since some of the DM2 gates were
already minimum-sized given the relaxed performance specifications.

6.1.4.4 Mode Decision Overhead

As discussed above, the mode decision operates in the ID Stage. In order to
fully grasp the system tradeoffs, we extracted both the 32- and the 64-bit control
circuitry’s (mode decision) average power consumption and performance. These
are listed in Table 6.2.

As emerges clearly from the table, the mode decision logic delay was much
shorter than the clock periods. As shown in Fig. 6.2, the logic used the output of
the register file, which is usually not a critical path, and therefore consumed less
than half a clock cycle (1 GHz). The ID stage could thus tolerate the incorporation
of the decision logic with no timing problems. The simulation results showed that
the average power of the mode decision circuitry was ∼20–25% of the DM2 adder.
Up to now, the mode decision average power has not been taken into account
(Table 6.1). Although the mode decision clearly injects power overhead, it was
negligible and did not disconfirm the advantages of the DM2 compared to the
other alternatives. Table 6.3 presents the average power dissipation of the DM2

adder including the mode decision unit. As shown, there was a ∼2× (593/291)
and ∼1.7× (1082/639) power reduction compared to the Brent–Kung operating at
1 GHz for the 32- and 64-bit designs, respectively. Compared to RCA operating at its
maximum frequency, a ∼2.51× (410/163) and ∼2.24× (435/194) power reduction
was achieved for the 32- and 64-bit designs.

6.1 Coarse-Grain DML Mode Selection Controller 103

Table 6.3 Average power dissipation of the DM2 adder including the mode decision unit

Brent Kung DM2 DM2 RCA

32-bit power (µW) 410 163 291 593

32-bit frequency (GHz) 0.38 0.3728 1 1.09

64-bit power (µW) 435 194 639 1082

64-bit frequency (GHz) 0.199 0.194 1 1.06

Table 6.4 Computed vs. measured parameter comparison

#bits k EDM2

EDMADD Eq. (6.5) EDM2

EDMADD Eq. (6.6)

32-bit adder Computed 12.2 0.59 0.59

Measured 8 0.64

Inaccuracy [%] 7.8 7.8

64-bit adder Computed 9.3 0.69 0.65

Measured 8 0.73

Inaccuracy [%] 5.5 11

6.1.4.5 Design Accuracy Analysis

To grasp the accuracy of the optimal DM2 design analysis, the calculated energy
reduction was compared to the SPICE simulation results for 32-bit and 64-bit
adders. For the 32-bit adder the following parameters were measured. Note that
these parameters are the delays and energy measurements per bit.

Tpre = 10−10 [s], EDM2

dyn = 4.76 · 10−14 [J],
Teval = 3.13 · 10−11 [s], EDM2

stat = 6.42 · 10−15 [J],
Tstat = 4.68 · 10−11 [s], EDM2

stat + EDMO
leakage = 1.08 · 10−14[J].

(6.9)

For the 64-bit adder the following parameters were measured:

Tpre = 10−10 [s], EDM2

dyn = 4.96 · 10−14 [J],
Teval = 1.56 · 10−11 [s], EDM2

stat = 7.24 · 10−15 [J],
Tstat = 6.25 · 10−11 [s], EDM2

stat + EDMO
leakage = 1.11 · 10−14 [J].

(6.10)

Table 6.4 shows the measured k derived from Figs. 6.7 and 6.8 for the 32-bit and
64-bit adders, respectively, and the corresponding rounded off k (for practical and
obvious reasons). Energy reductions of 36% and 27%, respectively, were achieved.
Note that the computed energies are lower bounds since the group size k may be
smaller in practice than the computed k due to rounding off.

The table shows that the energies measured in the simulations are close to those
computed by Eq. (6.5), with only small inaccuracies of 7.8% and 5.5%, respectively,
for the 32-bit and 64-bit adder designs.

104 6 DML Control

6.1.4.6 Reliability

Dynamic voltage and frequency scaling (DVFS) has become a highly popular
energy reduction technique. Sensitivity to process variations has also become a
major design concern. This explains why it is so important to verify the voltage
scalability of the DM2 design and its sensitivity to process variations. Ideally, we
want the minimum energy design point at which the group size k was determined to
be invariant to the operation voltage.

Recall that the value of k is set such that the n-bit DML dynamic mode
propagation delay is equal to a (2k − 1)-bit static mode propagation delay. This
means that the delay ratio should be independent of the operation voltage. The
following expression shows an approximate delay ratio:

Teval(n)
Tstat(2k−1)

=
nCdyn

VDD/2∫
0

dV
Idyn

(2k−1)Cstat

VDD/2∫
0

dV
Istat

=
nCdyn
δdyn

VDD/2∫
0

dV
f (VDD)

(2k−1)Cstat
δstat

VDD/2∫
0

dV
f (VDD)

≈ nCdynδstat
(2k−1)Cstatδdyn

(6.11)

The constant ratio in Eq. (6.11) stems from the current equation Idyn =
δdynf (VDD) and Istat = δstatf (VDD). The factors δdyn and δstat are the current driving
strength of the respective topologies, which depend solely on the device sizes and
process parameters. f (VDD) depicts the current dependency on the supply voltage,
when the device is operated in one of the possible operation modes, e.g., strong
inversion, near-threshold, and subthreshold.

Figure 6.12a illustrates the n-bit dynamic and (2k − 1)-bit static delays in
a logarithmic scale. The two curves should theoretically coincide. They may in
actuality be separated slightly as a result of rounding off (see Fig. 6.7). Figure 6.12b
depicts the ratio of these delays and shows that it is almost constant across a wide
voltage range.

To examine its sensitivity to process variations, the DM2 and ordinary CMOS
DMADD adders were tested by running 2000 Monte-Carlo simulations for its static
and dynamic modes. The results are summarized in Table 6.5 and show only a very
small change in the sensitivity of the DM2 adder compared to the DMADD. This
comes as no surprise, since DML was previously shown to be robust.

6.1.4.7 Area Utilization

DM2 and DMADD adders were designed to compare their areas. Figure 6.9 shows
the layout of the DM2 which was custom-designed. The DMADD was synthesized
with a Cadence Encounter RTL Compiler. The DM2 was 32% smaller than the

6.1 Coarse-Grain DML Mode Selection Controller 105

Fig. 6.12 (a) n = 64-bit dynamic and (2k − 1) = 16-bit static delays and (b) their ratio

Table 6.5 2000 runs Monte-Carlo delay results

Dynamic 64-bit Static 16-bit DMADD CMOS 64-bit

Delay variance (σ) 131 ps 58 ps 123 ps

DMADD due to the smaller cell sizes of the DML family compared to the CMOS (in
DML, either the pull-up or the pull-down transistor network is always the minimum
size).

6.1.5 Coarse-Grain Control Conclusions

In this subsection we demonstrated how the dual-modularity of the DML gates,
along with architectural and block-level control signals, can be exploited to enable
considerable gains in performance, energy, and area. The mode selection was
done in coarse-grain for a complete logical block. The test case discussed was a
low-energy, high-performance DM2 adder combining DML logic and dual-mode
addition to control the modes. This simplifies the usage of dual-mode addition in a
pipelined processor while further reducing the computation energy by 36–27% for
32-bit and 64-bit adders, respectively, compared to the DMADD implementation.
The DM2 adder required 32% less area and its robustness for process variations was

106 6 DML Control

clearly proven. The combination of novel circuit topologies and a probability-based
computational circuit architecture thus has the potential to achieve considerably
higher efficiency than traditional designs. We believe that specifically tailored
solutions (like the DM2 adder) can be employed for multipliers and larger arithmetic
circuits that are currently being used in electronic systems.

6.2 Fine-Grain DML Mode Selection Controller

In this subsection the goal is to present a much finer-grain selection of DML modes.
That is, we will be looking at mode selection per logic path in a circuit in compliance
with system requirements. For this purpose we take a Carry Look-Ahead adder as
an example.

Fast data processing abilities are highly influenced by the ALU’s implemented
processor adder speed. Statistically, addition operations are often the main instruc-
tion performed while processing [28, 29]. Many adder architectures have been
researched, analyzed, and proposed for speed improvement and power reduction
[30]. The Carry Lookahead Adder (CLA) [31, 32] was suggested as an alternative
for the speed enhancement of a simple ripple adder [31]. CLA speed is usually
determined by the slowest critical carry path delay. In general, the CLA critical path
is data-dependent and changes during CLA operation. Current solutions improve
the slowest critical path to ensure proper operation in the worst case. Typically,
these solutions improve the slowest CLA critical path delay by a sizing optimization
of the CMOS gates or implementation with alternative design styles such as PTL
or dynamic logic [30, 33]. This speed improvement is however associated with a
significant increase in the power dissipation of the adder.

The CLA discussed here was implemented with dual mode logic (DML) utilizing
the very low power dissipation of the static mode at moderate performance and
higher performance in the dynamic mode, although with increased power dissipa-
tion. The CLA utilizes this powerful capability of DML by a dynamic selection of
critical paths according to the input vectors. The critical paths (and only those) are
operated in the dynamic mode and improve the CLA delay. The remainder of the
CLA operates in the DML static mode, thus improving CLA power consumption. A
32-bit DML CLA was designed in a 40 nm low-power TSMC process. Simulation
results showed a 45% gain in speed and 70% in power dissipation compared to the
CMOS and dynamic CLA, respectively. In addition, the simulations evidence full
functionality and robustness to global and local process variations at supply voltages
as low as 0.6 V.

Below, we review the characteristics of DML and then present the CLA design
approach, including the CLA architecture and principles of operation. We end with
a performance analysis of the CLA and summarize the results.

6.2 Fine-Grain DML Mode Selection Controller 107

6.2.1 Design Example: Carry Look-Ahead Adder

We start this subsection by underscoring several DML-related design considerations
which need addressing when we want to employ logic path-based DML mode
selection. Although design with DML methodology is generally very intuitive and
has been discussed in detail in the previous chapters, there are a few important points
related to the design of the CLA that need to be emphasized:

1. Implementation through NP-like blocks: In general, when cascading dynamic
logic gates (such as dynamic-NP or domino gates), the family structure imposes
several limitations. The design here was implemented through un-footed DML
gates, which were cascaded in an NP-like fashion.

2. If an un-footed DML is connected in a cascade, the inputs to the DML Type-A
gate must come from the DML Type-B gate and vice versa. This rule aims to
prevent short circuit currents and a possible fault mechanism. In particular, in
complex systems, this specification requires special design solutions.

3. When designing a standalone un-footed DML system dedicated for use in a
CMOS-like environment (or between registers), the inputs to the system during
the precharge must be kept high or low, depending on whether the system is
implemented using Type-A or Type-B. We solve this issue by implementing the
footer solely at the first input-chain gate.

The CLA design enables shorter delays at the cost of higher hardware complexity
[29]. In the standard CMOS implementation, the critical path will always be the
longest carry route and is determined by the number of bits: 2log2(N) − 1. The
solution here allows the critical path of the CLA to be selected dynamically and
accelerated by operating the DML gates of that path in the dynamic mode. The
critical path is identified according to the inputs during operation per clock cycle
and set by 2log2(i) − 1, where i < N is the max index of the generated carry.
The longer the critical path, the greater the improvement in delay. To implement
this mechanism, decision logic, which identifies the critical path and creates the
appropriate clock signals for the DML gates in this path, is required.

6.2.1.1 Decision Logic

The decision whether to accelerate a carry route is based on the input to the CLA.
This route should only be dynamically operated in cases where the carry-out is
generated. Table 6.6 depicts a simple case where two corresponding bits Xi and
Yi of CLA inputs X and Y are examined. It shows that a simple NOR operation
between Xi and Yi will ensure the dynamic operation of the path in the case of carry-
out generation. However, this simple solution will also operate 33% of the paths
dynamically when the dynamic operation is not required, resulting in increased
power dissipation of the adder. Figure 6.13 illustrates an implementation of a simple
single-bit decision circuitry which is responsible for switching between the dynamic

108 6 DML Control

Table 6.6 False–true dynamic activation as a function of the input vectors

Xi Yi Cin Cnext

Dynamic
activation is
needed

NOR(xi, yi): when = 0 the
route is dynamically activated

False dynamic
activation

0 0 0 0 1

0 0 1 0 1

1 0 0 0 0 Yes

1 0 1 1 Yes 0

0 1 0 0 0 Yes

0 1 1 1 Yes 0

1 1 0 1 Yes 0

1 1 1 1 Yes 0

Fig. 6.13 Single-bit
mode-decision. The PTL is
composed of low-VT devices

iX
iY

Clk

Clk_Not

Clk_i

Clk_Not_i

and static modes of operation. This very simple single-bit decision circuitry consists
of two low-VT based transmission gates controlled by a two-input NOR gate.

The decision is made based on Xi and Yi bits (one bit from each input), and
the circuits’ outputs are connected to the precharge transistors of the DML logic
on the carry route. The CLK_i controls the precharge operation of Type-A DML
logic, and CLK_Not_i controls the precharge of the Type-B logic. In situations
where dynamic operation is not required, the outputs of the decision circuitry disable
all M1 transistors in the route, resulting in the static operation of the DML gates.
The system is self-controlled and self-switched between static and partial-dynamic
operations.

A very simple single-bit decision circuit is illustrated. However, a more precise
decision can be implemented using more complex k-bits based decision gates, which
will decrease the power dissipation by reducing the number of dynamically operated
gates at the expense of area. It can be shown that the optimal solution (via a power–
area tradeoff) can be achieved with a 2–4-bit based decision circuitry.

6.2.1.2 CLA Architecture

The architecture of the 32-bit CLA is shown in Fig. 6.14. The core of the CLA
is very similar to the well-known highly investigated conventional CLA design
composed of two basic building blocks: A and B. The functionality of these blocks
is as follows:

6.2 Fine-Grain DML Mode Selection Controller 109

31Y31X31S

B0.7

A31 A30 A29 A28

31Ap
gA31

CA31

30Ap
30AC 29Ap

29Ag
29AC

28Ap
28Ag

2.7Bp
2.7Bg

28AC

30Y30X30S 29Y29X29S 28Y28X28S

30Ag

7Y7X7S

B0.1

A7 A6 A5 A4

6Y6X6S 5Y5X5S 4Y4X4S

2.1Bp
2.1Bg

3Y3X3S

B0.0

A3 A2 A1 A0

2Y2X2S 1Y1X1S 0Y0X0S

B1.1 B1.0

B2.0
1.1Bp

1.1Bg

2.0Bp
2.0Bg

4AC

inC

1.0Bp
1.0Bg

16AC

32A
C

Fig. 6.14 Improved CLA implementation

The B blocks are indexed by m, j , where m represents the hierarchical level
of the block (m = 0, 1, 2). The inputs and outputs to a B block are presented in
Fig. 6.15a. As can be seen in Fig. 6.15b, the X and Y indices are in the form of
i + kl (where l is a subseries, l = 0, 1, 2, 3). The i, k indexes depend on the B block
hierarchical level, such that they depend on m (m = 0, 1 or 2):

m = 0 → i = 0, 4, 8, . . . , 4n; kl = 1, 2, 3;
m = 1 → i = 3, 19, 35, . . . , (42n + 3); kl = 4, 8, 12;
m = 2 → i = 15, 79, . . . , (43n + 15); kl = 16, 32, 48.

(6.12)

Inspection of the B0,j (m = 0) block shown in Fig. 6.15 reveals that besides
the standard structure and logic functions which exist in conventional CMOS
implementations, there are four extra single-bit decision circuits. Each circuit is
responsible for the dynamic or static operation of a specific path. For example, if
the Xi , Yi inputs are such that a carry is needed, the CA(i+1) route is dynamically
operated. Note that if inputs Xi+3, Yi+3; Y = 0, 4, 8, . . . , 28 are such that a carry
is needed, the carry is the output of a higher hierarchical level B block (Bm,j),
and therefore the entire carry route (CA(i+4); Y = 0, 4, 8, . . . , 28) is dynamically
operated. This means that the inputs pout , gout (or pB(2, imod3), gB(2, imod3))
are dynamically operated from the B0,j block (Table 6.7).

It is clear that this recursive simple structure can be expanded to any CLA size.
The third level four-bit CLA is a recursive implementation of the previous level
which only uses half of its hardware.

It is important to note that gates with a footer should be used at the first level
of each B block to allow for efficient precharge. To enable correct operation,
static signals must be stable at the system’s inputs before evaluation, i.e., they
must overlap the precharge periods. This can be done by pipelining, which is not
discussed here.

110 6 DML Control

Bi.j
pin3 gin3 Cout3 pin2 gin2 Cout2 pin1 gin1 Cout1 pin0 gin0

Cout0pout gout

(b)

a

iX iY

C
lk ddV

C
lk

_N
ot

G
N

D

C
lk

_i

1k
+iX

1k
+iY

C
lk ddV

C
lk

_N
ot

G
N

D

C
lk

_i
+

1

C
lk

_N
ot

_i
+

1

2k
+iX

2 k
+iY

C
lk ddV

C
lk

_N
ot

G
N

D

C
lk

_i
+

2

C
lk

_N
ot

_i
+

2

3k
+iX

3k
+iY

C
lk ddV

C
lk

_N
ot

G
N

D

C
lk

_i
+

3

C
lk

_N
ot

_i
+

3

C
lk

_iC
lk

_i

C
lk

_N
ot

_i
C

lk
_N

ot
_i

C
lk

_i
+

1

C
lk

_i
+

1

C
lk

_i
+

1
C

lk
_N

ot
_i

+
1

C
lk

_i
+

2

C
lk

_i
+

2

C
lk

_i
+

2

C
lk

_i
+

2

C
lk

_i
+

3

C
lk

_i
+

3

C
lk

_i
+

3

C
lk

_i
+

3

C
lk

_i
+

3
C

lk
_N

ot
_i

+
3

C
lk

_N
ot

_i
+

3

C
lk

_N
ot

_i
+

2

outgoutp 3_outC 2_outC 1_outC

p i
n3

g i
n3

p i
n2

g i
n2

p i
n1

g i
n 1

C
in

0
p i

n0

g i
n0

g i
n0

C
in

0

p i
n

0p i
n1

g i
n1g i
n0p i
n1

p i
n2

C
in

0
p i

n0
p i

n 1
p i

n2

g i
n2

p i
n2

g i
n1

p i
n3

p i
n0

p i
n 1

p i
n2

p i
n1

p i
n2

g i
n0

p i
n3p i
n 3

b

Fig. 6.15 (a) Inputs and outputs of a B block and (b) the structure of the B0,j block

Table 6.7 A and B block functionalities

Block A Block B

si = Xi ⊕ Yi ⊕ CAi

gAi = XiYi

pAi = Xi + Yi

pout =
3∏

r=0
pinr

gout = gin0pin1pin2pin3 + gin1pin2pin3 + gin2pin3 + gin3

Cout1 = gin0 + pin0Cin; Cout_2 = gin1 + gin0pin1 + Cinpin0pin1

Cout3 = gin2 + gin1pin2 + gin0pin1pin2 + Cinpin0pin1pin2

6.2.2 Fine-Grain Controller Simulation Results

The 32-bit CLA was tested and characterized in a low power 40 nm TSMC process
using a SPICE-based Virtuoso simulator. Power supplies between 0.6 and 1 V were
applied to examine proper functionality. CLA functionality was examined in the
presence of global and local process variations. DML CLA performance, power
dissipation, and area were compared to the CMOS and dynamic counterparts.
Figure 6.16 depicts an example of the simulation of two routes (out<3> and
out<31>) and the global clock under standard 1.1 V operation. As shown, the
routes are operated dynamically or statically, depending on the input (which are
not shown in Fig. 6.16). As can be seen, for example, the route of out<31> is in
the dynamic mode at 2.9 µs, whereas the route of out<3> is computed statically.

6.2 Fine-Grain DML Mode Selection Controller 111

Fig. 6.16 Transient analysis of two routes

405 pS

277 pS

DML CLA delay
CMOS delay

D
el

ay
 (p

ic
o

se
c)

Adder Size (bits)

Fig. 6.17 DML CLA delay compared to CMOS CLA

While the DML CLA achieves the same performance as a fully dynamically
operated adder (the proposed architecture ensures the dynamic operation of all
critical paths), it exhibits improved delay compared to the CMOS CLA. Figure 6.17
compares the delay of the DML CLA to the conventional CMOS implementation.
The delay is shown as a function of the adder size. As illustrated, the proposed
architecture can achieve a delay improvement of up to 45% for a 32-bit size adder.

Energy dissipation (for a single computation) of the DML CLA architecture
versus CMOS and the fully dynamic architecture is shown in Fig. 6.18.

The energy was measured for the case with simple input vectors (a small number
of dynamic carry routes) and for the case with complex vectors (eight paths of

112 6 DML Control

Fig. 6.18 Energy per transition comparison

Table 6.8 Transistor count comparison

Table content: transistor count CMOS DML CLA with single-bit switches

32-bit adder 2524 3834

64-bit adder 5180 7882

the design are dynamically operated). As can be seen, the DML CLA architecture
achieved significant power reduction compared to the fully dynamic logic CLA. On
the other hand, the fully static implementation had lower power dissipation. The
power dissipation of the DML CLA increased as the vector became more complex
(eight concurrent dynamic paths).

Table 6.8 compares the number of transistors in CMOS and DML of 32- and 64-
bit adders. The area overhead decreases for large adders, where the overhead due
to additional switches becomes negligible, while the precharge and footer device
overhead tends toward a constant value.

Note that a larger number of transistors does not necessarily imply a larger layout
or capacitances since about 50% of the transistors in the DML implementation are
minimum-sized.

6.2.3 Fine-Grain Control Conclusions

This subsection described how the dual modularity of the DML gates can be utilized
along with architectural and local path-level control signals to achieve considerable
gains in performance with minimum energy overhead. The mode selection involved
a fine-grain per critical path in the design and was very local. This approach yielded
high-performance CLA. By building the CLA while using DML logic, we provide
a way for the critical path of the CLA to be dynamically chosen and accelerated by
operation in the dynamic mode. The architecture of the DML CLA was presented
as well as its operating principles.

References 113

References

1. W. Kim, M.S. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-core DVFS
using on-chip switching regulators, in 2008 IEEE 14th International Symposium on High
Performance Computer Architecture (IEEE, Piscataway, 2008), pp. 123–134

2. B.R. Zeydel, D. Baran, V.G. Oklobdzija, Energy-efficient design methodologies: high-
performance VLSI adders. IEEE J. Solid State Circuits 45(6), 1220–1233 (2010)

3. H.Q. Dao, B.R. Zeydel, V.G. Oklobdzija, Energy optimization of pipelined digital systems
using circuit sizing and supply scaling. IEEE Trans. Very Large Scale Integr. Syst. 14(2), 122
(2006)

4. W. Shen, Y. Cai, X. Hong, J. Hu, An effective gated clock tree design based on activity and
register aware placement.IEEE Trans. Very Large Scale Integr. Syst. 18(12), 1639–1648 (2010)

5. J. Shinde, S. Salankar, Clock gating—a power optimizing technique for VLSI circuits, in 2011
Annual IEEE India Conference (IEEE, Piscataway, 2011), pp. 1–4

6. K. Roy, S.C. Prasad, Low-Power CMOS VLSI Circuit Design (Wiley, London, 2009)
7. M. Alioto, Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE

Trans. Circuits Syst. I: Reg. Papers 59(1), 3–29 (2012)
8. D. Bol et al., Robust and energy-efficient ultra-low-voltage circuit design under timing

constraints in 65/45 nm CMOS. J. Low Power Electron. Appl. 1(1), 1–19 (2011)
9. H. Zhang, J. Rabaey, Low-swing interconnect interface circuits, in Proceedings of the 1998

International Symposium on Low power Electronics and Design (ACM, New York, 1998), pp.
161–166

10. J.-S. Seo, H. Kaul, R. Krishnamurthy, D. Sylvester, D. Blaauw, A robust edge encoding
technique for energy-efficient multi-cycle interconnect. IEEE Trans. Very Large Scale Integr.
Syst. 19(2), 264–273 (2011)

11. S.J. Wilton, S.-S. Ang, W. Luk, The impact of pipelining on energy per operation in field-
programmable gate arrays, in International Conference on Field Programmable Logic and
Applications (Springer, Berlin, 2004), pp. 719–728

12. S. Kiamehr, M. Ebrahimi, M.S. Golanbari, M.B. Tahoori, Temperature-aware dynamic voltage
scaling to improve energy efficiency of near-threshold computing. IEEE Trans. Very Large
Scale Integr. Syst. 25(7), 2017–2026 (2017)

13. S. Höppner, Y. Yan, B. Vogginger, A. Dixius, J. Partzsch, F. Neumärker, S. Hartmann,
S. Schiefer, S. Scholze, G. Ellguth et al., Dynamic voltage and frequency scaling for
neuromorphic many-core systems, in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS) (IEEE, Piscataway, 2017), pp. 1–4

14. F. ur Rahman, V. Sathe, Quasi-resonant clocking: continuous voltage-frequency scalable
resonant clocking system for dynamic voltage-frequency scaling systems. IEEE J. Solid State
Circuits 53(3), 924–935 (2018)

15. S.B. Nasir, S. Sen, A. Raychowdhury, Switched-mode-control based hybrid LDO for fine-grain
power management of digital load circuits. IEEE J. Solid State Circuits 53(2), 569–581 (2017)

16. S. Bang, W. Lim, C. Augustine, A. Malavasi, M. Khellah, J. Tschanz, V. De, 25.1 a
fully synthesizable distributed and scalable all-digital LDO in 10 nm CMOS, in 2020 IEEE
International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 380–382

17. F. Atallah, K. Bowman, H. Nguyen, J. Jeong, D. Yingling, Y. Sun, B. Appel, A. Polomik,
M. Harinath, J. Morelli et al., 19.3 a 7 nm all-digital unified voltage and frequency regulator
based on a high-bandwidth 2-phase buck converter with package inductors, in 2019 IEEE
International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 316–318

18. S. Wimer, A. Albeck, I. Koren, A low energy dual-mode adder. Comput. Electr. Eng. 40(5),
1524–1537 (2014)

19. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale
Integr. Syst. 21(5), 979–983 (2013)

20. I. Levi, A. Belenky, A. Fish, Logical effort for CMOS-based dual mode logic gates. IEEE
Trans. Very Large Scale Integr. Syst. 22(5), 1042–1053 (2014)

114 6 DML Control

21. I. Levi, A. Fish, Dual mode logic—design for energy efficiency and high performance. IEEE
Access 1, 258–265 (2013)

22. I. Levi, O. Bass, A. Kaizerman, A. Belenky, A. Fish, High speed dual mode logic carry
look ahead adder, in 2012 IEEE International Symposium on Circuits and Systems (IEEE,
Piscataway, 2012), pp. 3037–3040

23. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: model analysis and parameter
extraction. Microelectron. J. 44(6), 553–560 (2013)

24. P. Behrooz, Computer Arithmetic: Algorithms and Hardware Designs, vol. 19 (Oxford
University Press, 2000), pp. 512583–512585

25. K.C. Yeager, The Mips R10000 superscalar microprocessor. IEEE Micro 16(2), 28–41 (1996)
26. N.H.E. Weste, D.M. Harris, CMOS VLSI Design: A Circuit and System Perspective, 4th edn.

(Pearson Education India, 2015)
27. R.P. Brent, H.-T. Kung, A regular layout for parallel adders. IEEE Trans. Comput. 3, 260–264

(1982)
28. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach (Elsevier,

Amsterdam, 2011)
29. M.A. Franklin, T. Pan, Performance comparison of asynchronous adders, in Proceedings of

1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems (IEEE,
1994)

30. F.-C. Cheng, S.H. Unger, M. Theobald, Self-timed carry-lookahead adders. IEEE Trans.
Comput. 49(7), 659–672 (2000)

31. C.R. Kime, M. Morris Mano, Logic and computer design fundamentals (Prentice Hall, 2003)
32. I. Flores, The logic of computer arithmetic (1963)
33. A. De Gloria, M. Olivieri, Statistical carry lookahead adders. IEEE Trans. Comput. 45(3),

340–347 (1996)

Chapter 7
Towards a DML Library
Characterization and Design
with Standard Flow

After discussing the DML foundations and presenting several conceptual use cases
of DML, we now introduce the reader to ways to scale up the utilization space
of DML. Specifically, this chapter presents an approach to a DML cell-library
characterization and describes the methodology that paves the way for the design
of DML circuits using standard tools. We detail the specific library characterization
process and show how to design DML systems using standard Electronic Design
Automation (EDA) tools. Finally, we synthesize the results from a large number of
benchmarks and compare them to standard CMOS flow. While the results indicate
that DML design flow can enable exploitation of DML advantages, they also show
that standard flow still cannot really exploit the inherent advantages of DML and
still does not provide a solid solution for DML-based designs. In the next chapter
we discuss a different alternative to utilizing standard design tools which shows that
there are many other ways to better harness DML’s unique benefits.

7.1 Introduction

In the previous chapters we looked at several custom designs of DML circuits that
have been shown to be very efficient. The goal of this chapter is to demonstrate
that the DML logic family can be compatible with the standard design flow and
be optimized by various tools such as synthesis and physical design in the future.
Nevertheless, implementing DML circuits using the standard design flow and EDA
tools is highly challenging, since DML gates operate in two different modes, each
with its own characteristics and operating mechanisms. We take the example of one
of the possible ways to integrate DML with existing and conventional design tools.

Standard static-logic compatible EDA flows have received empirical attention
for almost 50 years. Multiple algorithms and heuristics have been put forward and
tested for each step and tool of the design flow, and numerous abstractions have been
added to reduce complexity [1–3]. These EDA tools have reached a high level of

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_7

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_7

116 7 Towards a DML Library Characterization and Design with Standard Flow

integrity and have yielded cross-verified quality results with a short time-to-market.
However, fundamental design challenges still arise when the logic underpinning the
automation tools is dynamic-based [4–8].

In this chapter we introduce a design flow for DML that overcomes a few of the
best-known dynamic design hurdles. This automation method is implemented on a
dedicated DML standard cell library that was constructed and fully characterized
for this book. The DML flow offers fully automation-compatible steps, innovative
approaches, and the use of standard tools, which results in a flexible design in
terms of energy–delay tradeoffs that capitalize on the inherent capability of the
DML to switch between different operational modes. The main points discussed
as follows:

• The formulation of a DML standard cell-library characterization methodology
and the ability to utilize it within a design flow.

• The adaptation of the standard design flow (STDF) to DML when utilizing
popular commercial EDA tools to address the unique needs of DML.

The structure of this chapter is as follows. We start by presenting the challenges
involved in DML adaptation to the automated application-specific integrated circuit
(ASIC) design flow and then shift to the digital design flow for DML and the
DML library characterization methodology. We close this chapter by summarizing
the outcomes of this DML standard library characterization and EDA flow with
practical results.

7.2 Characterization and Standard Design Flow Challenges

This subsection presents some of the challenges associated with a DML cell-library
characterization and digital flow integration.

7.2.1 Standard Design Flow: Overview and DML Integration
Challenges

For a number of reasons, automated ASIC design flows have been governed by
the need to simplify and abstract the underlying models of cells and primitives.
Satisfactory reliable abstraction relies on the characteristics of the CMOS digital
logic family and in particular its superior robustness and large noise margins, rail-
to-rail logic levels, unidirectional information flow, and low leakage. Nowadays,
the key virtue of static CMOS is its design compatibility with EDA tools, which
continue to evolve considerably, since changes in the logic family can lead to unex-
pected and deteriorated results from EDA tools. When using CMOS, a relatively
small set of design rules must be applied for successful EDA integration. This

7.2 Characterization and Standard Design Flow Challenges 117

Fig. 7.1 Simplified ASIC standard design flow

clearly reduces the automation tool complexity. Needless to say, most contemporary
standard EDA tools are also completely oriented toward static CMOS designs. The
ASIC industry adheres to a well-defined and tested STDF throughout the entire
design cycle, starting with the product specification definition up to submission of
the production files to the foundry. A typical flow fragment of the design phase
(verification excluded) is shown in Fig. 7.1 [3]:

The key STDF stages are:

1. RTL-synthesis: conversion of RTL to generic gates and registers while optimiz-
ing the logic efficiency and then mapping it to a real library of characterized cells
by revamping it for best design metrics.

2. Standard cell library: a library of real, laid-out, and characterized logic gates for
the synthesizer mapping process. These include the geometric, timing, and power
metric data.

3. Static Tinimg Analysis (STA): Evaluation of all timing paths within the logic
networks of the design and monitoring for any timing constraint violations.

For simplicity, a DML gate can be depicted as a static CMOS gate that can
operate dynamically when an active clock is applied to it. By contrast, an inactive

118 7 Towards a DML Library Characterization and Design with Standard Flow

clock signal will degenerate the DML gate into its CMOS counterpart. This
abstraction cannot be exploited as a starting point for a static STDF adaptation.
However:

1. DML operates statically or dynamically, and as such, the design flow needs to be
able to differentiate between these two substantially different cases.

2. As introduced in Sect. 7.2.2.1, the composition of a dynamic logic network is
subject to a bipartite criterion which implies that not all strictly valid designs are
feasible from a dynamic operation perspective.

7.2.2 Dynamic Operation Mode Design Challenges

This subsection highlights the main challenges in the design of the DML dynamic
mode (where standard dynamic logic challenges are, generally speaking, a subset of
these obstacles). We present these challenges as a foundation for Sects. 7.3 and 7.4,
where the proposed approach to characterization and Design Flow (DF) integration
tackles them.

7.2.2.1 Non-unate Boolean Functions

As defined in [1], a function is unate in all its variables if and only if it is
either monotonically increasing or monotonically decreasing for all of its variables.
Monotonicity in a variable x1 described as:

finc(0, x2 . . . , xn) ≤ finc(1, x2 . . . , xn) ∀(x2 . . . , xn)

fdec(0, x2 . . . , xn) ≥ finc(1, x2 . . . , xn) ∀(x2 . . . , xn)
(7.1)

Hence, the unateness and monotonicity terms are interchangeable throughout
this chapter. The non-unate functions are crucial to dynamic logic-based designs
because implementing them can lead to an area increase and the addition of logically
redundant gates. In what follows, we clarify this point; specifically, dynamic logic
takes advantage of absent or degraded complementary evaluation networks [9–
11] and thus propagates faster than CMOS logic. As explained in Chapter 2, all
dynamic logic styles must apply a proper cascading policy of evaluation networks
to ensure correct data propagation. Figure 7.2a provides an example of improper
cascading of dynamic gates and the subsequent corruption of the propagating data.
This example makes it clear that right after the precharge (start of evaluation) of
serially connected nMOS evaluation network-based dynamic gates, the second gate
will start discharging regardless of the actual output to be evaluated at the output of
the first gate.

This concept can be generalized even further. If a logic gate with a preferred
nMOS evaluation network is seen as a vertically striped vertex (Type-A in DML

7.2 Characterization and Standard Design Flow Challenges 119

CLK

CLK

IN

O2O1’1’

t0

≈ t1

≈

t0
t0

≈

t1 p-network

n-network

VDD

in

CLK

out

CLK

VDD

n-
network

VDD

in

CLK

PDN

Up-skewed
p-network out

p-network
in out

n-network

a b

c d

Fig. 7.2 Color classification of dynamic logic cells: (a) improper dynamic cascading link, (b) np-
CMOS (NORA) cascading link, (c) n-domino cascading link, and (d) generic dynamic cascading
link

terminology), and a gate with a pMOS evaluation network is seen as a horizontally
striped vertex (Type-B in DML terminology), a correct dynamic logic cascading
exists if every vertex has complementary predecessor and successor vertices
(horizontal and vertical stripes). This concept has its analogy in graph theory and is
known as a two-colored graph or bipartite graph [12]. Figure 7.2 depicts the color
classification of the (b) np-CMOS, (c) n-domino logic families, and (d) the generic
dynamic style.

The output logic level of a non-unate Boolean function fnu(x̄) =
fnu(x1, x2 . . . , xn) will evaluate to logical “0” or “1” depending on the change
of xi and the status of the other inputs xi �=j [13]. This implies a reconvergence of
paths with unbalanced odd and even numbers of logic stages prior to the non-unate
stage (gate of reconvergence), Gf . G0,G1 . . . , Gn, shown in Fig. 7.3, represent
logic levels from the primary inputs to the output fnu(x̄). A non-unate function can
always be represented as in Fig. 7.3, where the difference in logic levels between
two reconvergent branches must be odd.

As depicted in Fig. 7.3, a logic network of non-unate Boolean functions must
have at least two reconvergent paths with an odd difference of logic depths. This
conflicts with the cascading policy described above, such that none of the CMOS-
based dynamic logic styles is able to implement these functions as is. Unfortunately,

120 7 Towards a DML Library Characterization and Design with Standard Flow

Fig. 7.3 Typical network fraction of a non-unate Boolean function

G0

G0

G1

G

...

G0

G0

G1

G

**...
...

a b

()→
()→

Fig. 7.4 Logic cone duplication and bubble pushing: (a) before and (b) after

these directly inapplicable sets of non-unate Boolean functions include a few vital
functions such as XOR or MUX. The only conventional generic method to deal
with this restriction, unless a clock signal is also used to control the data flow,
is the duplication of the logic cones prior to the non-unate function node, which
transforms its logic cone into a monotonic network [1, 14].

Logic duplication is also closely related to the “trapped inverter” problem
in domino logic [8], where both polarities of the input signals are required
simultaneously but standalone inverters are not available. This method is rescued
in part by recursive unate transformations (bubble pushing) before the duplication
that push the trapped inversion stages down the logic path to the primary inputs
(PI), thus preserving the unateness. The primary inputs of a given dynamic logic
domain are defined as its input ports adjacent to other logic domains. Figure 7.4a
depicts the general logic structure of a non-unate function, and Fig. 7.4b shows the
same function after duplication and bubble pushing, where the ∗ symbol denotes the
unate transformed logic and Λ represents a logical cone.

7.2.2.2 Dynamic Operation Characterization Challenges

In this subsection, we briefly present the main characterization challenges facing a
DML standard cell library (.lib).

1. Characterization of asymmetric behavior: As stated above, DML is capable of
operating the gates in the dynamic mode, which runs with synchronization to
the clock signal. Hence, some adjustments to the standard static characterization
need to be made. In contrast to static CMOS logic, the evaluation of data

7.3 A Step Forward with DML Standard Design Flow 121

throughout a dynamic logic network is asymmetric (i.e., it only performs one
high-to-low or low-to-high transition); thus the assessment of the propagation
delay, input capacitance, and dynamic power must be tailored to differentiate and
only capture the specific transitions of logic cells alone (typically the evaluation
path under each input transition and gate topology).

2. Inter-data timing relations: Typically, the timing closure provided by the static
synthesis tools for combinational cells does not incorporate information on
ways to handle a synchronizing input (clock signal) to the gates. The dynamic-
mode DML characterization requires the definition of a new inter-data timing
relationship to address this issue and is presented in later sections.

7.3 A Step Forward with DML Standard Design Flow

This section paints a step-by-step picture of the proposed dynamic DML flow
and then details and explains the rationale for each step according to the design
flowchart in Fig. 7.5. To aid in visualization, the flowchart in Fig. 7.5 summarizes
the entire workflow, including partitioning into characterization and the design flow.
Section 7.3.1 charts the rationale behind the use of a dummy pseudo-static library
during synthesis and mapping. Section 7.3.2 details the synthesis and mapping of the
DF, including its associated complexities, and Sects. 7.3.2.1 and 7.3.2.2 conclude
the DML DF with a few key netlist adaptations and STA.

7.3.1 Pseudo-static Library and Multi-library Representation

As discussed above, both of the DML’s functional modes must be verified sepa-
rately. Thus, each mode requires its own library (with the same gates) describing
the characteristics induced by the operating mechanism of the mode. A static library
is almost identical to a standard CMOS library, whereas a dynamic library is more
complex, because it also contains the timing relationships involved in synchronizing
the clock signal vs. the data pins.

As noted, the standard synthesis tools are static, but the dynamic mode of DML
involves clock synchronization. The assertion of a clock signal, which is used to
bring the dynamic logic to a predefined initial condition, is called a precharge (or
predischarge) value. This preset phase is followed by a logic evaluation phase during
which the clock is inactive and the logic state is determined solely by data pins.
Recall, that an inactive clock degenerates the DML into its static form; thus, a
dynamic DML gate acts identically to a static gate in terms of data propagation
during the evaluation phase. The data begin to propagate from a predefined state
and are recurrently pulled up and down by the evaluation networks of the gates
throughout the logic path (see Fig. 7.6).

122 7 Towards a DML Library Characterization and Design with Standard Flow

Fig. 7.5 Proposed DML standard design flowchart

7.3 A Step Forward with DML Standard Design Flow 123

Fig. 7.6 DML data propagation during the dynamic evaluation phase

The arrival evaluation delay at the destination logic OUT node is bounded by the
summation value of all transitions on the path (see the left-hand term of the next
equation):

tev,OUT =
Nn∑
i

t
(n)
ev,i+

Np∑
j

t
(p)
ev,j

∣∣∣∣∣∣{ t
(n)
ev =t

(p)
ev =tev

Nn+Np=N

} =
N∑
i

tev,i , (7.2)

where tev denotes the evaluation phase delay, N is the logic depth of the data
propagation path, and the n, p indices denote the PDN and PUN, respectively.

Standard synthesis and timing tools are incapable of computing this evalua-
tion delay. An intuitive way we suggest to manipulate the automatic tool is to
duplicate the evaluation network delay (pull-up or pull-down transition) values
to the complementary transition of the same gate, which will make the tool take
on the correct value regardless of transition direction (as though the gate was
static), thus simplifying the timing analysis. For example, a Type-A gate always
evaluates from high-to-low; hence, the characterized (simulated) high-to-low

delay will be copied to the low-to-high delay tables despite the fact that this
transition is not possible in dynamic operation. We term this type of library
characterization “pseudo-static.” This form of characterization can be treated as an
enforced symmetric (t (n)

ev = t
(p)
ev) dummy pseudo-static .lib library of DML cells (as

expressed in the previous equation). This library is used for dynamic synthesis when
utilizing a static tool. This yields an initial candidate design which is post-processed
later on by two additional libraries for complete timing checks of the static and
dynamic modes as described in the next subsection.

124 7 Towards a DML Library Characterization and Design with Standard Flow

7.3.2 Pseudo-static Synthesis and Library Mapping

As presented above, dynamic logic networks must enforce a set of rules to ensure
their functionality. This set of connection constraints is applied by reading the
pseudo-static .lib content and setting the connection_class attribute [15]
of Synopsys® LIBERTY on each of the library cell’s data pins. The attribute is
considered a design rule and should be followed by the synthesis tool during
mapping, since otherwise connection_class violations are reported. The
mapping process can be enforced to apply these connections. The connection rules
of ordinary DML cells defined as in Fig. 7.7 ensure correct cascading.

Note that the LIBERTY connection_class attribute support is neglected
by the Synopsys® Design Compiler, which was initially utilized for voltage island
design. However, it is part of the LIBERTY gate-level library modeling industry
standards, which is compatible with all EDA mapping tools if they choose to use it.
The connection_class is one way to adhere to the connection restrictions.
However, it is obvious that designers can implement it differently. Each pin of
each library cell is explicitly attributed to a single valid connection_class
before the mapping, since it is hard for the tool to abide by all the constraints
simultaneously if they have been loosely specified. For this purpose, several dummy
cells are defined to separate different valid connection scenarios, whereas all the
connection classes are defined distinctly at the cell level.

All primary inputs should be imposed with footed cells; otherwise functionality
might be lost. This differentiation of PIs is done by assigning a dedicated PI
connection_class. All the input pins of cells that are authorized to link to
these primary inputs are assigned to the PI class. Cells that are valid to link to
primary inputs are all footed or semi-footed. Semi-footed refers to a cell that has
a serial stack of transistors in the evaluation path; if so, one of its inputs could also
interact directly with the primary inputs (as long as the other input can cut off the
evaluation network at the beginning of evaluation phase).

As noted above, not all Boolean functions can be realized with a bipartite
network; thus the workflow should also be capable of generating correct designs
for (a) monotonic and (b) non-unate functions.

A
IN1

IN2

OUT
a_class

b_class

b_class

B
IN1

IN2

OUT
b_class

a_class

a_class

a b

Fig. 7.7 DML regular footless cell connection classes: (a) Type-A cell and (b) Type-B cell

7.3 A Step Forward with DML Standard Design Flow 125

7.3.2.1 Monotonic (Unate) Network Mapping

In the case of a monotonic logic network, the mapping process is trivial since no
color conflicts are observed. It results in a clean report of connection_class
violations and valid logic network structures.

7.3.2.2 Non-unate Network Mapping

Not all logic networks can be classified as monotonic, which means that color
conflicts are inevitable in the case of a non-unate Boolean function realization.
There are two strategies to cope with non-monotonic networks: either making
them monotonic [8] or a multi-phased clocking scheme [8, 16]. The latter method
is not discussed in this book, since it complicates the design and its clock trees
considerably. The monotonic transformation of the logic network is only considered
as an alternative solution if the following attempts fail to construct a feasible, valid
design.

The report of connection_class violations is used to locate the color
conflicting nodes of the non-unate logic network. This includes violating the
pin_name of the conflicting gates and their cell_name, which is parsed and
is used for the automatic resolution by replacement procedure, where possible.

Before illustrating the removal procedure of connection_class violations,
we present the cell-naming nomenclature. The output class of the cell is denoted
by a capital A or B letter prefix. The class of each INi input of the cell is denoted
by lowercase a (amber) or b (blue) letters reflected by appending the cell_name
with suffix letters in their order of appearance. For example, a Type-A NAND2 cell
is abbreviated A_ND2_bb, and a Type-A crossed NAND2 cell written A_ND2_ab
describes IN1 that should be driven by a Type-A cell, whereas IN2 should be
driven by a Type-B cell. The input connectivity suffix of ordinary DML cells can
be omitted, because all the inputs have the opposite connection class to the cell’s
output. By contrast, crossed cells have a combination of input classes, so more
information is required.

Figure 7.8 provides an example of a connection_class violation removal
procedure, where the conflicting NAND2 cell is replaced by its crossed dummy
version. Resolvable conflicting sites are repaired by replacing the conflicting cells
with their dummy crossed cell clones. On the other hand, unresolvable color
conflicts require a monotonic transformation. Resolvable color conflicts are handled
by reinitiating an additional incremental synthesis run, whereas the entire logic
network other than connection_class violators is frozen for changes (the
dont_touch attribute is set). In this way, the logic structure remains intact except
for the insertion of crossed dummy cells and delay balancing buffers to meet data-
to-data timing constraints. The operation of the crossed cells is described in the next
paragraph.

126 7 Towards a DML Library Characterization and Design with Standard Flow

B

Replace

A
A_ND2

IN2

IN1

B

A

BA
A_ND2_ab

IN2

IN1

B

A

a_class

B

Replace

A
A_ND2

IN2

IN1

A

B

BA
A_ND2_ab

IN2

IN1

A

B

Swap
pins

b_class
a b

Fig. 7.8 Resolvable color conflicts by crossed cells: (a) resolvable color conflict at IN1 and (b)
resolvable color conflict at IN2

Crossed (Stacked) Gates

Some logic gates can absorb two conflicting colors if a specific input condition
is met. The basic concept behind these crossed cells takes advantage of a serial
transistor stack inside the evaluation path. This serial stack allows for a mixture
of two signals with opposite precharged states, because one of them cuts off
the evaluation path and prevents the gate’s false evaluation. Unfortunately, this
solution depends on the data-to-data timing interdependence of the gate’s inputs.
Figure 7.9a illustrates this for the case of a Type-A (horizontal stripes) NAND2 gate.

Figure 7.9b and c waveforms depict two cases of a cell’s correct and false
response, respectively. The correct response does not include a transient glitch of
output node Z unlike in the failed response, since the input signals do not have
a “high”-level overlap. A failed response of the Z output node takes place when
both the A and B signals are “high” and trigger an erroneous evaluation. This input
data timing criterion imposed by the mapping tool with respect to the data-to-data

timing constraints is defined in the pseudo-static .lib. In the case of a Type-A crossed
cell, the earliest rise min(trise(B)) of the Type-B input should occur later than the
latest fall max(tf all(A)) of the Type-A input. If this condition is met, the crossed

cell behaves as expected.
Note that a failed response is transient and necessarily converges to its correct

value after the arrival of both inputs. However, this incurs a false pull-down and
then a pull-up evaluation, which propagates through the rest of the logic nodes and
forces them to evaluate the data through their degraded complementary networks,
which results in a much slower response. This behavior is unacceptable because
it deviates from the modeled timing frame of the entire design and also consumes
unnecessary power at the same time.

7.3 A Step Forward with DML Standard Design Flow 127

VDD

A

B

Z

CLKA

ME1

ME2

A

CLKA

Bc

Ac

Zc

p.c. evaluation p.c.
CLKA

B f

A f

Zf

p.c. evaluation p.c.

a

b c

Fig. 7.9 NAND2 crossed cell example: (a) crossed Type-A NAND2 cell and (b) correct evaluation
response (c) failed evaluation response

Delay Balancing

The delay balancing step assesses the feasibility of meeting the crossed cell input
data-arrival timing constraint at a reasonable cost (see end of this paragraph). For
instance, the automatic insertion of a number of buffers to meet crossed cell inter-
data timing might be far more efficient than the duplication of the entire preceding
logic cone. If this solution is classified as infeasible, the netlist is recovered in its
initial state (no crossed cells or delay balancing). In this book, the criterion of a
maximum 10% gate count increase was used. Note that this arbitrary threshold
parameter is a choice for the designer to make, based on the design specifications.

Monotonic Transformation

Impractical crossed cell conflict removal leads to the somewhat costly solution of
a monotonic transformation of part of the logic network. Unlike the widespread
dynamic domino logic design style [9], there is no need for recursive bubble
pushing caused by trapped inversion stages [8], since the proposed DML flow
is based on discrete inverting logic stages. Thus, the monotonic transformation
consists solely of preceding logic cone duplication at conflicting nodes. Logic

128 7 Towards a DML Library Characterization and Design with Standard Flow

duplication is carried out with a monotonic_transform script that parses
the gate-level netlist and replicates the subnetworks prior to the splitting points
of the connection_class violated cells and re-maps (swap of types) them
complementarily (see Fig. 7.4b). The duplication script minimizes logic redundancy
by constantly updating and re-using already cloned subnetworks, hence saving on
energy and area.

7.3.2.3 Post-Synthesis Netlist Adaptation

At this point, the pseudo-static gate-level netlist is clear of connection rule violations
and is ready to be associated with real DML libraries. This is easy to achieve by
implementing a few procedural steps:

1. CLKA and CLKB signals are added to the global module port list.
2. CLKA and CLKB signals are added to the port list of each DML gate locally, and

globally propagated to the higher hierarchy via the port list of the module.

In this way, the full structural DML netlist is ready to be analyzed for timing with
a standard STA tool.

7.3.2.4 Static Timing Analysis (STA)

As explained above, the dynamic .lib contains various clock-related timing con-
straints, which need to be verified for proper dynamic functionality. The clock
affinity is not included in standard STA tools; hence, the clock port of each DML cell
is defined as a dummy data port. These inter-data timing relationships are reminis-
cent of the conventional setup and entail constraints during the characterization of
sequential elements. These timing constraints are satisfied just like standard timing
constraints by relaxing the operation frequency and delay corrections which can
be remedied with proactive buffering or place and route tools. The STA of a static
library has no timing issues by default as long as the operating frequency is met.

7.4 Characterization Process

This section deals with the construction of the multiple standard cell DML libraries
required for the proposed DF, as summarized in Fig. 7.5.

The cascading topology of the DML network was chosen to be similar to np-
CMOS [11] (see Fig. 7.2b), which utilizes both types (Type-A and Type-B) of gates
and thus gives more optimization space for the synthesis tool. For simplicity and
proof of concept, only a small but universal set of logic gates was constructed. This
set was composed of NAND2, NOR2 gates and inverters of both the A and B types;

7.4 Characterization Process 129

Table 7.1 Implemented DML cells with connection classes

Cell name IN1 class IN2 class OUT class Notes

A_INV Type-B Type-A

A_INV_f PI (Primary input) Type-A Footed

A_ND2 Type-B Type-B Type-A

A_ND2_ab Type-A Type-B Type-A Crossed

A_ND2_pb PI Type-B Type-A Stacked

A_ND2_f PI PI Type-A Footed

A_NR2 Type-B Type-B Type-A

A_NR2_sf PI Type-B Type-A Semi-f ooted

A_NR2_f PI PI Type-A Footed

B_INV Type-A Type-B

B_INV_f PI Type-B Footed

B_ND2 Type-A Type-A Type-B

B_ND2_sf PI Type-A Type-B Semi-f ooted

B_ND2_f PI PI Type-B Footed

B_NR2 Type-A Type-A Type-B

B_NR2_ab Type-A Type-B Type-B Crossed

B_NR2_pa PI Type-A Type-B Stacked

B_NR2_f PI PI Type-B Footed

each had several flavors as explained below. Beyond type coding, the DML cells
were divided into three additional subcategories:

1. Footless cells: ordinary logic cells that are extensively applied unless a specific
condition is encountered.

2. Footed or semi-footed cells: logic cells that have a clock controllable evaluation
path. These cells are required for interfacing with other non-DML logic domains.
Semi-footed cells have one controllable evaluation path and another ordinary
footless evaluation branch. This structure provides a further degree of delay
optimization during the mapping process.

3. Dummy cells: auxiliary cells that are logically identical to other footless cells
and are used to force the mapping tool to abide by the inter-cell connection rules
(see Type-A NAND2 example in Fig. 7.8).

Table 7.1 presents the entire set of implemented cells characterized throughout
the flow.

Cell Naming Conventions and Types of .libs
<type>_<cellname>_<connectivity_suffix>
<type> – notes the type of the cell, which implies the precharge value.
<cell_name> – abbreviation of logic function and the corresponding fan-in.
<connectivity_suffix> – outlines the input connectivity notations:

130 7 Towards a DML Library Characterization and Design with Standard Flow

• f —footed cell.
• sf —semi-footed cell.
• ab—IN1 has Type-A source, while IN2 has a Type-B source.
• pa, pb—IN1 has PI source, while IN2 has a Type-A or Type-B source.

As introduced in Sect. 7.3.1, the DML flow requires three different libraries of
characterized cells:

1. Pseudo-static .lib: the auxiliary library used for construction of valid logic
networks.

2. Dynamic and static .lib: real libraries that characterize the design metrics of
DML cells in their different operational modes.

The entire set of DML gates was simulated, laid out, and extracted for parasitic
elements and represented in the form of a SPICE netlist for further characterization.
The following subsections go into the specifics of the characterization process
and relate its content to the proposed design automation flow. Note that the
characterization of only one type (A) of DML gates is described, since the other
type is characterized along the same guidelines as the general procedure.

7.4.1 Pseudo-static Library

The rationale for the pseudo-static library of standard cells is to imitate the dynamic
behavior of DML cells without clock synchronization. In addition, it is also subject
to the enforcement of connection rules to generate dynamically compatible logic
networks.

7.4.1.1 Design Metric Characteristics

To resemble dynamic behavior, cells within the library were characterized solely for
relevant evaluation transitions, i.e., input capacitance, intrinsic propagation delay,
and power consumption tested during high-to-low (Type-A) or low-to-high (Type-
B) evaluation transitions. Complementary dummy timing arcs artificially duplicated
these characterized metrics:

1. Intrinsic high-to-low evaluation delay, measured relative to the data IN port
(see Fig. 7.10).

ids,n = CLoad
dv
dt

⇒ t
(n)
ev = ∫ tpHL

0 dt = CLoad

∫ VDD
2

VDD

dvout

ids,n(vout)
.

2. Data input capacitance: CIN =
∫ T

0 iIN (t)dt

VDD
.

3. Power consumption: Ptotal = Pleak + Pdyn, where:

a. pdyn = VDD

T

∫ T

0 iVDD,dyn(t)dt , and
b. Pleak = VDD · IVDD,leak

7.4 Characterization Process 131

Fig. 7.10 Intrinsic
high-to-low evaluation delay
definition

where IVDD,leak , iVDD,dyn are the leakage static current and the dynamic transient
current flowing through the cell and P is the stand notation for power.

4. Area footprint was taken from the layout.

Some of these standard cell characteristics were simulated as a function of a
parametric two- or one-dimensional grid of the IN node transition slope and the
capacitive load of the OUT node. These simulations were arranged in tables that
can be linearly interpolated or extrapolated by the tool.

7.4.1.2 Data-to-Data Timing Constraints

As stated above, data-to-data timing constraints are mandatory to generate valid
dynamic non-monotonic logic networks. These constraints are used to apply a
skew relationship between data pins. The definition of inter-data timing constraints
is once again shown with the familiar example of a crossed NAND2 cell. As
illustrated in Fig. 7.11, a skew has to separate the arrival of two conflicting types to
prevent competition of the Z node. This constraint is defined by the timing_type
group of non_seq_∗ parameters of the Synopsys® LIBERTY library modeling
standard format [15, 17]. To define the skew timing constraint between the rise
(evaluation) of the Type-B IN1 input and the fall (evaluation) of the Type-A IN2
input, the non_seq_setup_rising timing constraint was defined relative to the
IN1 pin, and the IN2 pin governed by the fall_constraint parameter values
was denoted as t(su,r−f) in Fig. 7.11. These timing parameters were simulated and
derived with the characterization tool based on appropriate criteria such as the OUT

node voltage drop, excessive current drawn, etc.

7.4.2 Dynamic Library

The design characteristics described in pseudo-static .lib are somewhat different
from those of dynamic .lib because of the distinction between the data evaluation
and precharge phases which have completely different goals.

132 7 Towards a DML Library Characterization and Design with Standard Flow

AIN1

IN2

Logic (path 1)

Logic (path 2)D Q

D QD1

D2
CLKA

Z

evaluation pre-charge

(constrained)

(related)

violation

a

b

Fig. 7.11 Definition example of data-to-data timing constraint: (a) data-to-data timing constraint,
data path example, and (b) data-to-data timing constraint, waveform example

Fig. 7.12 Intrinsic precharge
delay definition

7.4.2.1 Design Metric Characteristics

For the evaluation phase period in the clock cycle, the characterization is identical
to the pseudo-static .lib. By contrast, during the precharge phase there are a number
of changes in the design metric assessments:

1. The intrinsic precharge delay is measured relative to the CLK edge and is
irrelevant in terms of data propagation and thus only applies to the propagation
of the precharged state, as illustrated in Fig. 7.12.

2. The data input capacitance CIN is also irrelevant, since its discharge does not
affect data propagation.

3. The CLK port input capacitance CCLK is averaged to assess its switching:

CCLK =
∫ T

0 iCLK(t)dt

VDD
.

4. Power consumption: Pav = Pleak + Pdyn, where:

a. pdyn = VDD

T

∫ T

0 iVDD,dyn(t)dt , where all the current drawn is related to the
transient short circuit caused by non-imminent propagation of the precharge
state.

b. Pleak = VDD · IVDD,leak, where no stable short circuit condition is assumed.

7.5 Benchmarks and Results 133

7.4.2.2 Timing Constraints

The main goal of the dynamic DML library characterization is to identify its cells’
timing constraints, which are defined to ensure that the tools have proper dynamic
functionalities. One group of timing constraints has already been covered in the
pseudo-static library subsection: the data-to-data constraints. Its characterization
dynamic lib characterization is identical. This group aims to enforce the skew
relationship between constrained data signals. The other group of constraints can
be classified as data-to-clock but is only an abstraction, since DML clock pins
are categorized as data pins. This group has several timing constraints that are
reminiscent of the classic setup and involve constraints on sequential components.
All of the following timing constraint parameters are characterized to be integrated
into the Synopsys® LIBERTY library modeling standard format [15].

Setup/hold parameters—Timing parameters to avoid data signal transitions
within the safety margins before/after edges of CLKA, which are intended to isolate
the evaluation and precharge phases and avoid data corruption.

7.4.3 Static Library

The standard CMOS-like library characterizes the design metrics of DML cells
when the gate clock signals are disabled.

7.5 Benchmarks and Results

This subsection summarizes the results of the DML characterization methodology
and its design flow.

7.5.1 Characterization

To evaluate the quality of the results on a .lib cell level, some fundamental design
metrics of all the library cells were compared to their CMOS counterparts with the
same technology node.

7.5.1.1 Performance

The evaluation delay measurements on the dynamic DML library were compared to
the CMOS propagation delays on top of a two-dimensional grid of transition slope
vs. capacitive load vectors. Figures 7.13, 7.14, and 7.15 speedup results consolidate

134 7 Towards a DML Library Characterization and Design with Standard Flow

DML_A

DML_B

CMOS

Fig. 7.13 Speedup of dynamic DML inverter vs. CMOS

the early theoretical assessment of DML’s dynamic performance superiority. All the
surface plots reveal a similar dynamic speedup pattern, where the most efficient type
of DML cell (Figs. 7.13, 7.14) displays a significant performance boost, whereas the
least efficient type of cell exhibits at worst the same speed as its CMOS counterpart.
For example, a NOR2 Type-A cell presents roughly a 25% performance gain for a
nominal capacitance of 2fF and a rise time of 10 ps.

7.5.1.2 Area and Leakage

Area and leakage are usually tightly related, as shown in Fig. 7.16. It should be
noted that the average leakage during the dynamic mode of DML exhibited similar
behavior but was assessed somewhat differently because the precharge combination
has more dominant weight over the rest, given its half cycle duration.

7.5 Benchmarks and Results 135

DML_A
DML_B
CMOS

Fig. 7.14 Speedup of dynamic DML NAND2 vs. CMOS

7.5.1.3 Equivalent Input Capacitance

Recall that the switching energy is linearly related to the equivalent capacitance
(Esw ∝ αCeqV 2

DD), which is dominated by the input DATA and CLK capacitances
of the cells. Figure 7.17 shows that DML cells are more efficient in terms of data
switching, but that continuous (α = 1) clock toggling tips the scales in favor of
CMOS.

7.5.2 Design Flow

The evaluation of the DML automated design flow results was based on the synthesis
of a set of combinational RTL benchmarks. These benchmarks included typical
logic blocks such as multiplexers, decoders, comparators, adders, complex Boolean
logic functions with varying fan-ins, etc. Two concurrent synthesis processes
were executed on the basis of the DML vs. CMOS equivalent standard libraries.
To avoid black-box uncertainty regarding the commercial CMOS library, it was

136 7 Towards a DML Library Characterization and Design with Standard Flow

~25%

DML_A
DML_B
CMOS

Fig. 7.15 Speedup of dynamic DML NOR2 vs. CMOS

independently laid out and re-characterized with similar conventions. Both libraries
included identical minimal logic sets: NAND2, NOR2, and an inverter. The results
fall into two groups: those that include and exclude non-unate logic. Tables 7.2 and
7.3 summarize the average design metrics of the unate and non-unate benchmarks
for several gate count ranges.

Unate logic benchmarks exhibited better performing designs in terms of dynamic
performance and slight power savings compared to the CMOS counterparts when
operated statically. For example, the combinational barrel shifter presented in
Table 7.4 dynamically sped up by 10%, with a power shift of about 20% in the static
mode, whereas its gate count and area expanded by only about 4%. Furthermore,
50 generic combinational logic designs (with no particular functionality) were
simulated and showed an average dynamic speedup of about 9%, a static power
saving in the region of 20%, a similar gate count, and a slight area expansion of 8%.

By contrast, the non-unate benchmarks usually only had a dynamic performance
gain, but lagged behind in terms of area and presented similar power consumption
in the static mode (due to timing constraints which enforce delay insertion or logic
duplication). For instance, the dual priority decoder presented in Table 7.5 had a
similar static mode power consumption as CMOS due to a logic redundancy of
about 21%, but still had a dynamic speedup of about 4%. Figure 7.18 depicts the E–

7.5 Benchmarks and Results 137

6.
9E

-1
3

6.
9E

-1
3

4.
1E

-1
3

1.
2E

-1
2

9.
6E

-1
3

1.
1E

-1
2

8.
2E

-1
3

1.
4E

-1
2

1.
4E

-1
2

0.0E+00

INV NAND2 NOR2

INV NAND2 NOR2

2.0E-13

4.0E-13

6.0E-13

8.0E-13

1.0E-12

1.2E-12

1.4E-12
a

b

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

3.
4E

-1
1

3.
2E

-1
1

2.
6E

-1
1

5.
4E

-1
0

2.
9E

-1
0

5.
3E

-1
0

1.
6E

-1
0

5.
7E

-1
0

5.
7E

-1
0

0E+00

1E-10

2E-10

3E-10

4E-10

5E-10

6E-10

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

Fig. 7.16 Area and leakage comparison of cells: (a) area of cells m2 and (b) Static DML leakage
of cells W

D plane of the typical DML non-unate benchmarks relative to the static CMOS
and graphically highlights the performance gains (linear x-axis) of the dynamic
mode, although consuming much more power (logarithmic y-axis). The static mode
exhibited much less extreme behavior and slight power savings at the expense of a
moderate slowdown. The striking rise in power consumption of the dynamically
operated DML was associated with a continuous refreshing of the entire logic
networks at CLK speeds. Thus, the dynamic performance boost of DML non-unate
designs should be carefully optimized to prevent persistent loads.

138 7 Towards a DML Library Characterization and Design with Standard Flow

3.
3E

-1
6 4.
1E

-1
6

4.
2E

-1
6

3.
8E

-1
6

4.
0E

-1
6 5.
0E

-1
6

3.
0E

-1
6

5.
4E

-1
6

5.
3E

-1
6

0E+00

INV NAND2 NOR2

1E-16

2E-16

3E-16

4E-16

5E-16

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

D
M
L-
A

D
M
L-
B

CM
O
S

Fig. 7.17 Input capacitance F and switching energy of cells

Table 7.2 Average metrics for unate designs vs. CMOS, segmented by gate count ranges

Gate count range (sample space) 0–50 (20) 50–100 (15) 100–250 (10) 250–500 (5)

Area expansion +12.5% +6.9% +5.8% +3.1%

Gate count +4.4% +1.3% +5.0% −0.8%

Power shift (static) −17.4% −20.1% −22.1% −28.9%

Power shift (dynamic) +315% +323% +299% +340%

Speedup (dynamic) +7.8% +9.9% +11.2% +10.4%

Slowdown (static) −32.7% −31.1% −37.7% −41.5%

7.6 A Step Towards a DML Standard Flow: Conclusions

This chapter discussed ways to implement standard design tools and flows for
DML. It introduced a few ideas for DML characterization methodology for both
of its modes. Despite the numerous challenges of dynamic logic characterization
and design, the automated flow was able to generate timing compliant netlists and
in some cases exhibited better results in terms of design metrics as compared to
CMOS. The results here indicate that the DML design flow sometimes enables the
exploitation of DML advantages and provides a reasonably simple characterization
and design flow.

7.6 A Step Towards a DML Standard Flow: Conclusions 139

Table 7.3 Average metrics for non-unate designs vs. CMOS, segmented by gate count ranges

Gate count range (sample space) 0–50 (20) 50–100 (15) 100–250 (10) 250–500 (5)

Area expansion +20.2% +41.2% +36.4% +47.8%

Gate count +4.3% +11.8% +15.2% +21.8%

Power shift (static) −3.20% +3.40% −0.70% +5.20%

Power shift (dynamic) +324% +302% +315% +351%

Speedup (dynamic) +7.4% +8.4% +16.1% +12.2%

Slowdown (static) −36.0% −40.3% −32.9% −38.3%

Table 7.4 Design metric comparison vs. CMOS of unate designs

Barrel shifter 16 bits AND 128 bits 4to16 decoder Avg. of 50 BMs

Area expansion 4.7% 1.9% 9.8% 8.5%

Gate count 3.4% −2.3% 21.4% 3.1%

Power shift (static) −20.4% −24.7% −6.0% −20.3%

Power shift (dynamic) 243.0% 224.8% 305.7% 316%

Speedup (dynamic) 10.2% 9.4% 9.6% 9.4%

Slowdown (static) −29.7% −39.1% −32.7% −34.1%

However, as can clearly be seen from the comparison of DML standard flow
designs to CMOS, the DML characteristics are far removed from the ones achieved
by DML custom designs. This relates to static and dynamic power, delay, and
area. For example, in all cases, DML custom designs showed an area reduction
of up to 15%, compared to CMOS designs. In the next chapter, we show how the
behavior of synthesized DML designs can be improved by introducing a DML-
oriented synthesis. It is worth noting that by enabling voltage scaling on top of DML
mode controllability, an extended E–D range can be achieved. The design of DML
in conjunction with dynamic voltage and frequency scaling (DVFS) can be carried
out in exactly the same manner as with standard CMOS. In other words, the DML
library should be characterized for a desired number of voltages, and the physical
implementation flow should be the same.

140 7 Towards a DML Library Characterization and Design with Standard Flow

Ta
bl
e
7.
5

D
es

ig
n

m
et

ri
c

co
m

pa
ri

so
n

v
s.

C
M

O
S

of
no

n-
un

at
e

de
si

gn
s

4-
bi

tm
ag

ni
tu

de
co

m
pa

ra
to

r
4-

bi
tC

L
A

ad
de

r
16

bi
t-

du
al

pr
io

ri
ty

de
co

de
r

A
vg

.o
f

50
B

M
s

A
re

a
ex

pa
ns

io
n

49
.9

%
50

.6
%

37
.9

%
32

.5
%

G
at

e
co

un
t

20
.8

%
15

.1
%

28
.7

%
10

.5
%

Po
w

er
sh

if
t(

s
ta

ti
c
)

−7
.2

%
−1

1.
4%

−0
.9

%
−3

.6
%

Po
w

er
sh

if
t(

d
y
n
a
m

ic
)

30
1%

28
2%

32
7%

31
8%

Sp
ee

du
p

(d
y
n
a
m

ic
)

11
.5

%
12

.0
%

3.
8%

9.
9%

Sl
ow

do
w

n
(s

ta
ti

c
)

−5
9.

4%
−2

5.
0%

−3
7.

9%
−3

6.
9%

References 141

Fig. 7.18 E–D plane representation of typical non-unate benchmark designs. Edyn/cycle fJ vs.

Delay ns

References

1. G. D. Hachtel, F. Somenzi, Logic Synthesis and Verification Algorithms (Springer Science &
Business Media, 2006)

2. M.-B. Lin, Introduction to VLSI Systems: A Logic, Circuit, and System Perspective (CRC Press,
2011)

3. N. Weste, D. Harris, A. Banerjee, CMOS VLSI Design: A Circuits and Systems Perspective,
vol. 11 (Addison-Wesle, Upper Saddle River, 2005), p. 739

4. A. Pal, A. Mukherjee, Synthesis of two-level dynamic cmos circuits, in Proceedings of the
IEEE Computer Society Workshop On VLSI’99 (IEEE, 1999), pp. 82–92

5. G. Yee, C. Sechen, Dynamic logic synthesis, in Proceedings of the IEEE Custom Integrated
Circuits Conference, 1997 (IEEE, 1997), pp. 345–348

6. M. Zhao, S.S. Sapatnekar, Technology mapping for domino logic, in Proceedings of the 1998
IEEE/ACM International Conference on Computer-Aided Design (ACM, 1998), pp. 248–251

7. T.J. Thorp, G.S. Yee, C.M. Sechen, Design and synthesis of dynamic circuits. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 11(1), 141–149 (2003)

8. R. Hossain, High Performance ASIC Design: Using Synthesizable Domino Logic in an ASIC
Flow (Cambridge University Press, Cambridge, 2008)

9. R. Krambeck, C.M. Lee, H.-F. Law, High-speed compact circuits with cmos. IEEE J. Solid
State Circuits 17(3), 614–619 (1982)

10. T. Williams, Dynamic logic: Clocked and asynchronous, in Tutorial notes at the International
Solid State Circuits Conference, 1996

142 7 Towards a DML Library Characterization and Design with Standard Flow

11. N.F. Goncalves, H. De Man, Nora: A racefree dynamic cmos technique for pipelined logic
structures. IEEE J. Solid State Circuits 18(3), 261–266 (1983)

12. G. Chartrand, Introduction to Graph Theory (Tata McGraw-Hill Education, 2006)
13. Y. Crama, P.L. Hammer, Boolean Functions: Theory, Algorithms, and Applications (Cam-

bridge University Press, Cambridge, 2011)
14. J. Cortadella, A. Kondratyev, L. Lavagno, C. Sotiriou, Coping with the variability of combina-

tional logic delays, in Proceedings of the IEEE International Conference on Computer Design:
VLSI in Computers and Processors, 2004. ICCD 2004 (IEEE, 2004), pp. 505–508

15. Liberty User Guides and Reference Manual, Synopsys, 2007
16. D. Harris, M.A. Horowitz, Skew-tolerant domino circuits. IEEE J. Solid State Circuits 32(11),

1702–1711 (1997)
17. J. Bhasker, R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach

(Springer Science & Business Media, 2009)

Chapter 8
Towards a DML Optimized Synthesis

In the previous chapter we discussed ways how to characterize DML cells into
several libraries and use these with standard EDA tools. In this chapter we outline
an optimized synthesis procedure for DML design. In a nutshell, this methodology
involves changing certain steps within the tools. We present an algorithm for DML-
optimized synthesis and show the implementation of this algorithm in Perl language.
The synthesis results indicate that while this approach still has a significant room for
improvement, it can boost performance gains and reduce the energy consumption of
a design.

8.1 DML-Optimized Synthesis Challenges

Chapter 7 showed that the utilization of a new logic family within the standard
design flow is extremely challenging. In practice, all the steps in the standard digital
design flow (SDDF) assume that all the digital components are static CMOS or
comply with the features of static CMOS. Given this assumption, highly automated
EDA tools can place millions of gates on a single die and rapidly analyze their
performance. As a result, any new logic family must come equipped with a
solution for its integration with existing tools and design flows to enable smooth
implementation within existing processes.

Logic synthesis, which is defined as the process of converting a high-level
hardware description language (HDL) into a gate-level netlist (GTL), is one of the
key components of the SDDF. Current synthesizers, which map behavioral register
transfer level (RTL) code to specific standard cells, only support CMOS compliant
gates that have static output levels driven by low-resistance devices, high-resistance
capacitive inputs, and asynchronous combinational logic. Dynamic logic solutions
like DM are characterized by different features and cannot be synthesized with
current tools in a straightforward manner.

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_8

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_8

144 8 Towards a DML Optimized Synthesis

Several methods have been put forward to integrate dynamic logic families into
the SDDF [1–5]. Yee et al. [1] suggested a way to synthesize dynamic logic, in
a way similar to procedure in [2] and [3], and described a CMOS-based solution
with complex timing races that need to be addressed. Chappel et al. [4] introduced
a system-level solution for integrating domino logic into the SDDF followed by a
specific solution for synthesis, proposed by Parmar [5]. However, none of these
approaches has considered logic such as DML that can function with several
performance characteristics at the same operating corner. Similarly, they fail to take
any of the constraints required for correct DML functionality into account.

This chapter details an approach to the synthesis of DML, as an initial funda-
mental step in the future full integration of DML into the SDDF. This approach
manipulates standard synthesis tools and introduces a methodology to optimize
the design which is attuned to the flexibility of DML and can cope with all
the constraints related to DML. By applying this methodology, DML can reap
the benefits of well-explored and highly optimized algorithms that are already
part of the standard synthesis toolbox, but at the same time enable additional
optimizations specifically for DML in a smooth integration process. To best
illustrate this approach, more than 20 large benchmark circuits were synthesized
in a 40 nm CMOS process and mapped to a DML library. The results demonstrate
an improvement of up to 17% in timing and with up to 15% power reduction for
large designs.

Specifically, this chapter describes:

• A fully automated design flow for DML enabling seamless integration into
the SDDF, which make this new logic family applicable to modern large-scale
designs

• A methodology for using DML to cut the delay of combinational logic in
instances where this is required

• Results showing that this approach is effective in harnessing DML to reduce the
power consumption of high-speed components without any additional changes to
the implementation architecture, when performance can be sacrificed1

8.2 DML Synthesis Approach and Constraints

8.2.1 Constraints

In this chapter, only combinational logic is applied with the DML approach. In
other words, the use of DML assumes a standard RTL design with the inference
of CMOS registers that separate the paths of combinational logic. This approach

1Note that a designer can control and switch between the high-performance and low-energy modes
on-the-fly.

8.2 DML Synthesis Approach and Constraints 145

CMOS DFFs

CMOS
Combina�onal

block

DML
Combina�onal

block

DML
Combina�onal

block

Q

Q
SET

CLR

D

CMOS DFFs

Q

Q
SET

CLR

D CMOS
Combina�onal

block

Fig. 8.1 Combinational block between two registers with DML and CMOS paths

enables the seamless integration of DML and static CMOS combinational blocks
within a single system, as shown in Fig. 8.1, such that if the methodology does not
generate an efficient solution for implementing a given path with DML gates, a
design-time decision can be made to revert to static CMOS for a given path.

The synthesis of RTL to a standard CMOS library is a well-known procedure,
and the constraints required to produce a logically equivalent netlist that meets the
design requirements can be found in various commercially available EDA tools.
The most common form of synthesis optimizes synchronous paths between two
sequential elements (such as those illustrated in Fig. 8.1), ensuring that the max-
delay (setup) and min-delay (hold) timing requirements are both met. A similar
approach is used by DML, but by employing static CMOS sequential elements
and requiring that the paths between these sequentials meet the standard setup
and hold constraints. However, like dynamic logic, the efficient operation of DML
in the dynamic mode relies on the precharge (PC) phase to drive the output to a
predetermined level which at most should only change once during the evaluation
phase, and thus requires additional constraints.

The next subsection defines three constraints that take these scenarios into
account: namely, the correct precharge (CPC), footed gates (FG), and the single
transition requirement (STR). The fundamentals behind these constraints have been
already presented in the previous chapters of this book but are summarized here to
make it easier for the reader to grasp the principles of the DML synthesis method-
ology. The definition of the constraints is followed by the synthesis methodology.

8.2.1.1 Correct Precharge (CPC)

In order to ensure that a DML gate starts the evaluation clock phase with a strong
output level, the evaluation network must be cut off during the precharge (PC)
phase. If the previous stages are all DML gates, their state during the PC phase
is predetermined and known: Type-A gates precharge the output to “1” (VDD) and
Type-B gates predischarge the output to “0”. The determination of the precharge
input vector of a given gate leads to the selection of the gate type (Type-A or Type-
B): The network that is cut off by this input vector is chosen to be the evaluation
network, and the network that is enabled is chosen to be the precharge network.

146 8 Towards a DML Optimized Synthesis

Type A
DML Gate

Type B
DML Gate

Type B
DML Gate

Type A
DML Gate

1

0

Compl.
Network

Evaluation
Network

clk

1

0

clkM0 M1

M2

M3

M4

1

c

a b

Fig. 8.2 CMOS-based DML gates in the PC phase. (a) NAND2 DML gate driven by an input
vector of “10.” (b) CMOS-based Type-A DML building blocks with correct precharge. (c) Type-A
NAND gate with correct precharge

A simple example of a decision as to the type of DML gate is given in Fig. 8.2a,
which shows a DML NAND gate driven by one Type-A and one Type-B DML gate.
During the PC phase, the Type-A gate provides a “1” and the Type-B gate provides
a “0” to the cascaded NAND gate. Given this precharge state (“10” or “01”), the
structure of the NAND dictates that its PUN is conducting and its PDN is cut off.
Therefore, we choose the PUN to be the precharge network and the PDN to be
the evaluation network, which is the definition of a Type-A DML gate, as shown in
Fig. 8.2b and c. A simple trick to figure out which gate should be used is that the
gate type should match its precharge logic function, with Type-A matching a “1” and

8.2 DML Synthesis Approach and Constraints 147

Type-B matching a “0”. For the NAND example above, a “10” input to a NAND is
resolved to “1”, matching a Type-A gate. An “11” input vector, on the other hand,
would resolve to a “0”, leading to the choice of a Type-B DML NAND gate.

8.2.1.2 Footed Gates (FG)

By complying with this constraint, a strong precharge level is ensured when
cascading DML gates. However, one of the basic tenets of digital design with DML
is that only combinational elements are dual-mode, while sequential elements are
realized with standard CMOS gates. Unlike DML driven inputs, the state of CMOS-
driven inputs is unknown during the PC phase, as is the state of the macro input
ports. For this reason, a conducting evaluation network could occur, which can
deplete the precharged output level before the evaluation starts.

The solution to this quandary is simply to use footed gates to implement the first
DML stage after primary inputs (CMOS logic or input ports). This will ensure that
the evaluation network is cut off during the precharge clock stage at the cost of an
extra serially connected device.

8.2.1.3 Single Transition Requirement (STR)

According to the CPC constraints, the DML gate type will be chosen to match the
determined input vector in the PC phase. This resolves standard cascading issues,
but fails to take signal glitching into account. Due to the inherently unbalanced
delays between the PDN and PUN of DML gates [6], there is a high likelihood of
glitching on the internal combinatorial nodes prior to stabilization at their final state.
If a node temporarily toggles to the wrong value and needs to be replenished, this
will result not only in wasted power, but also in a considerable delay penalty if the
node must be charged or discharged through the non-optimized network of its gate
type. If the output of a DML gate switches more than once, this undermines the
main advantages of using dynamic DML.

An example of this type of hazard is illustrated in Fig. 8.3. In this example,
the first stage of NAND gates were chosen to be Type-B, and according to the
FG constraint, footed gates were used. Thereafter, both the inverter and the output
NAND were determined to be Type-A gates, according to the CPC constraint as
described above. Now let’s assume that the 3-bit input, in[2:0], transitions from
011 to 010, as illustrated in the associated waveforms in Fig. 8.3. The shorter path
to internal node W will transition before the path to internal node Y, thus causing an
unwanted temporary glitch to “0” on the output node Z.

In the above example, the selected configuration of DML gates (starting with the
choice of Type-B NAND gates in the first stage) will lead to an STR violation, so
that this configuration should be disqualified. However, most arbitrary circuits have
at least one configuration that will not violate the STR constraint. The following
procedure provides an algorithmic way to test adherence to this constraint and
should be applied to every DML gate in the design.

148 8 Towards a DML Optimized Synthesis

Y

W

Z

X

TypeBfooted

TypeBfooted

TypeA TypeA

clk
In[2:0] 011 010

In[0]

In[1]

In[2]

W
X
Y
Z Glitch

Fig. 8.3 Single transition hazard example

To conduct the STR check, the truth table of each logic gate is represented by
a state diagram, with each input vector defining a state (i.e., 2N states for a gate
with a fan-in of N). Each state is assigned an output value, which is the gate output
w.r.t the relative input vector, and the transitions between the states represent the
transition of a single input. For example, the state diagram of a two-input NAND
gate is shown in Fig. 8.4. To test the STR constraint, the initial state is the input
vector due to precharge, and thereafter, the possible transitions should be followed
to determine whether a particular order of arrivals of inputs would cause an output
glitch.

The example in Fig. 8.3 illustrates an STR hazard. The next example shows a
successful configuration. In this case, the first stage gates are implemented with
Type-A footed NANDs, leading to the choice of a Type-B inverter and a Type-
A output NAND, according to the CPC constraint, as depicted in Fig. 8.5a. The
precharge input vector of the output NAND in this case is [in1,in2]=10, which
is the initial state of the state diagram of Fig. 8.4. The only applicable transition that
could possibly cause a glitch is the input arrival order in1→ in2, since the path to
in2 is longer than the path to in1. Therefore, the state machine is used to follow the
state 10 through 00 (in1 changes from “1” to “0”) to 01 (in2 changes from “0” to
“1”). Continuing along the state diagram shows that the output of the NAND gate
remains at “1” while traversing these states, thus indicating that the STR constraint
is met. In this case, all three constraints (CPC, FG, and STR) are complied with, so
that this configuration is valid for efficient DML implementation. Choosing a one
Type-A and one Type-B gate for the first stage of NANDs would also have led to

8.2 DML Synthesis Approach and Constraints 149

Fig. 8.4 NAND2 single
transition test

1

10

in1↑

in1↓

in2↑

in1↓

in2↓ in2↓

in1↑

in2↑

1

00

1

01

0

11

NAND 2
in1
in2

valid configurations. A methodology for implementing a design with DML logic
and validating these constraints is presented next.

8.2.2 The Approach

The methodology for DML synthesis takes all the requirements listed in the previous
subsection into consideration and converts the CMOS netlist into a DML netlist. The
gates in the netlist do not change; the only purpose of this process is to choose their
DML type: Type-A or Type-B, and whether the gate is footed or not.

The DML standard library cells in use should be fully characterized to include
all energy components and in particular the energy of the clocked elements.
Furthermore, a suitable setup and a hold delay characterization are needed to verify
both the timing and the DML constraints (CPC, FG, and STR).

The methodology consists of the following stages, as illustrated in Fig. 8.6:

1. Determine the first-stage gates. These gates have inputs that originate from
primary inputs (sequential elements and macro inputs). They are implemented
with footed Type-A or Type-B DML gates, according to the FG constraints. The
first-stage gates can easily be found by tracing the outputs of the sequential
elements and primary inputs of the design.

2. Choose a DML type for each of the first-stage gates. For N first-stage gates,
there are 2N possible solutions to choose their DML types.

3. Derive the DML type of the internal gates by advancing through the netlist,
stage by stage. The DML type of each gate is determined by its logic function
and the inputs at the PC phase to meet the CPC constraints.

4. Calculate arrival times. To ensure that all DML constraints are met, the timing
for each node in the netlist needs to be calculated with standard static timing
analysis (STA) methods. The capacitance and timing data are taken from DML
timing libraries, characterized for the dynamic mode of operation.

150 8 Towards a DML Optimized Synthesis

Y

W

Z

X

TypeAfooted

TypeAfooted

TypeB TypeA

In[0]

In[1]

In[2]

in1
in2

1

10

in1

in2

1

00

1

01

a

b

Fig. 8.5 Example of first-stage gate selection and single transition constraint checking. (a)
Example logic block, including precharge values and selected gate types. (b) State transition
diagram, showing glitch-free operation

Find First-
stage gates

Initialize first-
stage gates

Determine all
gate types

Constraints
met?

Yes

Write Netlist

Read
Netlist

Capacitance
and timing
calculation

No

Fig. 8.6 Approach flowchart

5. Check glitching requirements. Every internal gate must be checked to ensure
that its output cannot make more than one transition. This is done by advancing
through the gate state diagram, as described for the STR constraint.

8.3 Implementation Results 151

Fig. 8.7 Divide and
conquer—logic divided to
sub-netlists

a

b

c

d

1

2

3

6. If all constraints are met, a new GTL netlist is created that contains the
DML gates. Otherwise, the current configuration is discarded, and a different
choice of first-stage gate types is made, by returning to stage 3 of the flow.

Given the large number of possible first-stage combinations, a divide and conquer
heuristic is used to eliminate redundant possibilities which cuts down significantly
necessary runtime for finding a feasible solution. Large logic blocks are divided
into smaller components and the constraints are applied to these sub-blocks. This is
demonstrated in the example in Fig. 8.7, where a logic block is divided into three
sub-netlists. The two inner sub-blocks (marked “1” and “2”) are equivalent to the
network in Fig. 8.5, which has only three possible solutions: AA, AB, and BA, as
shown earlier. Therefore, all the other possible combinations can be omitted from
the constraint checking of the higher-level module (marked “3” in Fig. 8.7). This
reduces the number of possible input combinations for module “3” from 24 to 32

possibilities. The approach enables the application of this methodology to large
designs.

8.3 Implementation Results

This subsection illustrates the application of the approach to several designs of
varying sizes and complexities to test its performance when applied to real-life
designs and challenging netlists. The flow was implemented in Perl.

8.3.1 Simulation Methodology

The simulation methodology is illustrated in the block diagram in Fig. 8.8. Several
high-level RTL benchmarks of varying sizes and complexities were used for this
evaluation, including some ISCAS’89 benchmarks. Each benchmark was synthe-
sized using a Cadence RTL compiler (RC) and mapped to a 40 nm CMOS standard

152 8 Towards a DML Optimized Synthesis

static .lib dynamic .libStandard Cell Library

RTL Synthesize Insert DML
gates

Static Timing
Analysis

Fig. 8.8 Simulation flowchart

cell library to produce a CMOS gate-level (GTL) netlist. Each design was over-
constrained to achieve the lowest possible delay (highest frequency) achievable
with a standard CMOS library. The resulting GTL netlist was used as the input
to the algorithm, which was applied to produce a DML GTL netlist. The resulting
netlist was loaded back into RC and Synopsys PrimeTime (PT) to perform STA and
analyze the results. The results for the two modes of DML operation were compared
to the results of the standard CMOS implementation before the application of the
algorithm.

As presented in the previous chapter, standard library characterization flows are
not designed to correctly characterize DML gates. For this reason, a specialized
characterization flow was developed in collaboration with Dolphin Integration based
on the Dolphin Smash characterization tool to produce the Liberty timing files (.lib)
that enable integration with standard EDA tools (the same library characterization
as developed in the previous chapter). The DML library used here was developed in-
house and characterized with this tool, subsequent to design, verification, and layout
with Cadence Virtuoso. In particular, two separate libraries were constructed: a
static mode library and a dynamic mode library as discussed in detail in the previous
chapter. Proprietary setup and hold timing arcs were defined for each gate, and their
characterization was extracted in addition to standard CMOS-like timing arcs. By
using this approach, the results take into account all the features of the power and
performance evaluation, including those attributed to clocking and precharge which
do not occur in combinational CMOS gates. The outputs of this characterization
process were verified by comparison to Spectre simulations on selected logic paths.

8.3.2 Simulation Results

To evaluate the methodology, each benchmark circuit was first synthesized by
targeting the minimum delay (maximum frequency) with static CMOS libraries.
The power, performance, and area results of the static CMOS implementation were
extracted for reference comparison with the DML implementations. Then, the static
CMOS GTL netlist was used as the input to the algorithm and mapped to DML
libraries targeting the high performance dynamic mode. The resulting timing and
power characteristics of 12 of the evaluated benchmarks are presented in Fig. 8.9.

8.3 Implementation Results 153

Fig. 8.9 Timing and power comparisons of the DML static and dynamic modes in 12 test-case
benchmark circuits. (a) Delay (normalized to static CMOS). (b) Power (normalized to static
CMOS)

The predicted superiority of dynamic DML over CMOS and the delay penalty
for operating in static mode are clearly confirmed in Fig. 8.9a. Similarly, the power-
saving advantages of operating in the static DML mode over CMOS and the power
penalty for operating in the dynamic mode are shown in Fig. 8.9b. However, this

154 8 Towards a DML Optimized Synthesis

-10%

-5%

0%

5%

10%

15%

20%

5 6 7 11 13 15 16 19 24 25
Logic Depth

(DML Dynamic/CMOS) Timing
(DML Static/CMOS) Power
(DML/CMOS) Area

Fig. 8.10 Timing, power, and area improvement of DML compared to CMOS

figure points to the fact that the efficiency of using DML is strongly dependent
on the characteristics of the underlying circuit. For example, using DML for the
implementation of the 8b-MUX design was clearly a bad choice, since even in the
static mode, this benchmark was inferior to CMOS. This suggests that an additional
analysis could provide better insights into the relative effectiveness of using DML
in a given design.

An extended analysis appears in Fig. 8.10, which plots the dependence of the
achievable performance, area, and power improvements of DML as a function of
the length of the logic path in which it is used. To extract these data, all of the logic
paths in the implemented benchmarks were categorized as a function of the number
of stages from startpoint to endpoint. The average delay, energy, and area of these
paths was compared against their CMOS equivalents.2

These results clearly demonstrate that the speed improvement when operating
DML in the dynamic mode monotonically increases with path depth, to reach as
much as 17% for paths with 25 stages. This was expected, since the first stages
of all DML paths are realized with footed gates, which are slower than standard
DML gates. The effect of these gates is greater for shorter paths. When utilizing
the static mode of DML, the energy efficiency increases sharply, with the power
reduction exceeding 10% for paths with over 6 stages. This makes sense due to the
inherent penalty of footed gates, which is considerable for short logic paths. The
smaller footprint of DML gates also provides an area reduction for paths with more
than 6 stages and stabilized at an average improvement of approximately 10% for

2The evaluation of both static and dynamic DML modes was applied to the same synthesized
netlist, targeted in the dynamic mode.

References 155

paths with 19 or more stages. This also reflects the inherent efficiency of DML in
constructing gates with smaller capacitance and superior performance.

Thus overall, DML was clearly shown to provide advantages over traditional
CMOS in terms of the key features of digital design. By automating the integration
of DML into the SDDF in conjunction with the design of smart controls to switch
between the static and dynamic modes on-the-fly, DML can successfully meet all
the traditional challenges of digital design.

8.4 Automated DML Synthesis: Conclusion

In this chapter, we overviewed a methodology for carrying out DML-compatible
logic synthesis to efficiently map an RTL design onto a DML standard cell library.
A fully automated DML synthesis flow compatible with standard tools and library
characterization formats was presented and applied to numerous benchmark circuits.
The synthesized circuits were evaluated for performance, power consumption, and
area requirements in both the static and dynamic modes of operation, and exhibited
average performance improvements as high as 17% for deep logic paths, with the
ability to switch to an energy-efficient mode to save over 10% in energy. This
was achieved with smaller silicon footprints, thus providing a 10% average area
reduction. While we showed that integration of out-of-the-box logic families (such
as DML) into the standard digital design flow is feasible, custom DML circuits still
present better characteristics, leaving room for more improvements in the DML to
SDF adaptation process. We hope that these results will pave the way for the usage
of this logic family.

References

1. G. Yee, C. Sechen, Dynamic logic synthesis, in Custom Integrated Circuits Conference, 1997,
Proceedings of the IEEE 1997 (IEEE, Piscataway, 1997), pp. 345–348

2. A. Pal, A. Mukherjee, Synthesis of two-level dynamic CMOS circuits, in IEEE Computer
Society Workshop On VLSI’99. Proceedings (IEEE, Piscataway, 1999), pp. 82–92

3. D. Samanta, A. Pal, N. Sinha, Synthesis of high performance low power dynamic CMOS
circuits, in Proceedings of the 2002 Asia and South Pacific Design Automation Conference
(IEEE Computer Society, Washington, 2002), p. 99

4. B. Chappell, P. Saxena, J. Vendrell, X. Wang, P. Patra, M. Venkateshmurthy, S. Jain, H. Krish-
namurthy, S. Hussain, S. Gupta et al., A system-level solution to domino synthesis with 2 GHz
application, in 2012 IEEE 30th International Conference on Computer Design (ICCD) (IEEE
Computer Society, Washington, 2002), pp. 164–164

5. D.M. Parmar, M. Sarma, D. Samanta, A novel approach to domino circuit synthesis, in 20th
International Conference on VLSI Design, 2007. Held Jointly with 6th International Conference
on Embedded Systems (IEEE, Piscataway, 2007), pp. 401–406

6. I. Levi, A. Fish, Dual mode logic – design for energy efficiency and high performance. Access
IEEE 1, 258–265 (2013)

Chapter 9
Dual Mode Logic in FD-SOI Technology

Now that we have explored DML operation and efficiency in a conventional bulk
CMOS, this chapter evaluates the DML technique in a relatively advanced 28 nm
FD-SOI technology. Throughout, we provide fabricated ASIC measurements data to
support the analysis and theoretical foundations presented in the previous chapters.
In addition we show how DML logic can utilize the unique features of an ultra-thin
body and box (UTBB) fully depleted silicon on insulator (FD-SOI) technology to
achieve high-speed and energy-efficient designs for a wide range of supply voltage
operations. This chapter starts with a brief comparison of DML and conventional
static and dynamic CMOS logics for NAND–NOR chains in 28 nm FD-SOI. This
basic analysis is followed by the construction of a real-life benchmark, a two-
stage pipelined multiply-accumulate (MAC) circuit which was selected to assess
the advantages of DML in terms of speed, energy, and area as compared to a
conventional CMOS design. We show that the self-adjusted DML MAC achieves
both a performance boost of up to 92% with 16% less energy consumption than
the equivalent standard CMOS implementation. The energy saved can reach up to
35% when the low-power (fully static) mode is enabled. In addition, the DML MAC
occupies 25% less area.

9.1 UTBB FD-SOI Technology

Ultra-thin body and box (UTBB) fully depleted silicon on insulator (FD-SOI) is
an emerging technology that draws on the conventional planar bulk CMOS process
while keeping pace with the efficiency improvements projected by Moore’s law [1,
2]. Because it constitutes a relatively simple evolution from the conventional CMOS
process, UTBB FD-SOI can provide reduced die size and power consumption along
with increased performance and functionality. These benefits are achieved without
radical complex manufacturing steps. ST 28 nm UTBB FD-SOI technology devices
are planar CMOS transistors fabricated in a 7 nm layer of silicon placed over a 25

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_9

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_9

158 9 Dual Mode Logic in FD-SOI Technology

nm buried oxide (BOX). The ultra-thin silicon film ensures that all the electrical
paths between the source and the drain are confined to the gate region, which yields
improved subthreshold slope and drain-induced barrier lowering (DIBL) [1]. The
fully depleted channel of devices avoids the issue of random dopant fluctuation,
which lessens device variability. Since the BOX constitutes a dielectric isolator of
the source and drain from the underlying n/p-well, which eliminates the parasitic
effects of body biasing, the feasible body bias range is larger than standard bulk
CMOS technologies and makes it one of the main calling cards of UTBB FD-
SOI technology. It authorizes high performance and low power for increased energy
efficiency [3].

In this chapter, the DML technique is evaluated in 28 nm STM UTBB FD-SOI
technology to demonstrate high-energy-efficient designs in a wide supply voltage
operation range. The dependence of power dissipation (and performance) on the
supply voltage dictated the circuit design for dynamic voltage and frequency scaling
capability [4–6]. As shown below, the combination of DML properties and the
extended body bias capability of the UTBB SOI technology makes it possible to
design highly energy-efficient digital systems.

9.2 DML Design Optimization in UTBB FD-SOI Technology

This subsection focuses on design optimization and the related properties of the
DML primitives in UTBB FD-SOI technology. The energy, delay, and sensitivity
of the DML technique to process variations is compared to conventional static and
dynamic CMOS logic designs.

9.2.1 Design Optimization

Figure 9.1 illustrates the design strategy for (a) Type-A un-footed, (b) Type-B
unfooted, (c) Type-A footed, and (d) Type-B headed DML gates, respectively.
In UTBB FD-SOI there are two “well”-topologies, which are known as the
conventional well (CW) for regular voltage threshold (RVT) devices and the flip-
well (FW) for low-voltage threshold (LVT) transistors. When implementing the
CW, the reverse body bias (RBB) range can be as low as −3 V and for FW, the
forward body bias (FBB) as high as 3 V [5]. As depicted in Fig. 9.1(a–d), we
assumed that the FW configuration fully exploited the powerful knob (not available
in nanoscale bulk CMOS technologies) provided by the FBB to compensate for
variations and/or boost performance in a broad power supply operating range [7].
In what follows, we only consider symmetrical back biasing with Vbb = GND in
the static operation mode and three possibilities in the dynamic operation mode
(Vbb = GND/V DD/2 ∗ V DD). The physical design guarantees that for all

9.2 DML Design Optimization in UTBB FD-SOI Technology 159

Fig. 9.1 LVT transistors for DML gate design in UTBB FD-SOI technology: (a) Type-A un-
footed, (b) Type-B un-footed, (c) Type-A footed, (d) Type-B headed, and (e) cross-section

possible operating modes, all the parasitic diodes associated with the devices are
maintained in the reverse mode (see Fig. 9.1e).

9.2.2 Performance and Robustness Analysis

The DML approach was compared to its CMOS static and dynamic counterparts
over a large power supply range (VDD: 0.3–1 V). For the first benchmark, we used
a test chain composed of 20 fan-outs of four (FO4) interleaved NAND–NOR gates
(one footed/headed gate for every five gates to reasonably confine the short circuit
energy [8]). The NOR gates were implemented in the efficient A DML type and the
NANDs were implemented in the efficient B DML type, thus resulting in a structure
similar to a np-CMOS/NORA design. To ensure a fair comparison, the same choice
was made for the CMOS dynamic gates. To prevent charge loss and improve noise
tolerance, a weak keeper transistor was used for the CMOS dynamic gates.

The static CMOS gates were sized for a symmetrical switching delay at a power
supply voltage of 0.6 V, and the pull-down network strength was set to be the
equivalent of a single NMOS sized with W = 240 nm. The strength of the evaluation
network of both the DML and CMOS dynamic gates was set to be equivalent to
the corresponding transistor network of the static CMOS gates. In contrast, for
the DML design, the complementary network transistors were sized with W =
120 nm to reduce intrinsic capacitances. Thus, in the dynamic operation mode, the
fast transition was used for evaluation and the slow transition was employed for
precharge. Bear in mind that fast evaluation is mandatory, since circuit performance
is determined by the length of the total critical path under evaluation. However,
while in precharge, a slower transition is possible since the precharge is a parallel
fast process. Clearly, this favors speed in the dynamic operation mode at the price of

160 9 Dual Mode Logic in FD-SOI Technology

100p 1n 10n 100n

0

25f

50f

75f

100f

125f

150f

1n 10n

10f

20f

30f

40f

50f

0.4V

0.5V

0.6V

0.4V

0.5V

0.6V

0.4V

0.5V

0.6V 0.4V

0.5V

0.6V

- 3.3X

E
n

er
g

y/
C

yc
le

(J
)

Delay (s)

CMOS stat.
CMOS dyn.
DML stat. mode
DML dyn. mode

+1.8X

0.3V

En
er

gy
/C

yc
le

 (J
)

Delay (s)

CMOS stat.
CMOS dyn.
DML stat. mode
DML dyn. mode

1V

Fig. 9.2 Comparison in terms of the energy delay of DML and CMOS (static and dynamic gates)

an increased delay in the static mode. Finally, the precharge/discharge transistors (of
both DML and conventional dynamic logic gates) were sized for the same strength
as a NMOS sized with W = 120 nm.

Figure 9.2 shows the comparative energy–delay results obtained from the
simulation setup presented above. Because of the asymmetric transistor sizing, when
in the static mode, the DML design exhibited lower energy consumption (−37%
on average) than its static CMOS counterpart, but experienced an increased delay
(+64% on average). After switching to the dynamic mode, the DML design achieved
a 3.2× frequency boost on average, with an energy consumption increase of about
1.9×, on average. In the dynamic mode, the DML chain was faster (20% on average)
than the np-CMOS design but also consumed less energy (20% energy consumption
saved on average) by avoiding the keeper transistor (and the additional driving
inverter).

One of the interesting features of the FD-SOI technology is its extended back-
biasing capability. This FD-SOI feature enables the energy–delay space extension of
the DML design. This is depicted in Fig. 9.3, where three different Vbb voltage levels
are plotted in the dynamic operation mode. The strong body effect (∼60–80 mV/V)
of the technology effectively trades off energy for performance at a given VDD. By
contrast, a combination of dynamic body bias and voltage scaling can be exploited
for energy savings. For instance, a comparable maximum operating frequency as
the one achieved in the static mode by the DML chain for VDD = 0.9 V can be
produced in the dynamic mode by operating at VDD = 0.5 with Vbb = 1 V. Thus,
∼40% energy can be economized.

9.2 DML Design Optimization in UTBB FD-SOI Technology 161

200p 1n 10n 100n

10f

100f

200f

0.5V

DML stat. mode (Vbb=GND)
DML dyn. mode (Vbb=GND)
DML dyn. mode (Vbb=VDD)
DML dyn. mode (Vbb=2*VDD)

En
er

gy
/C

yc
le

 (J
)

Delay (s)

FBB

0.3V

1V

- 40%

0.9V

Fig. 9.3 Effects of the extended forward body bias voltage on the DML NAND–NOR chain in
28 nm UTBB FD-SOI

To analyze the effects of process variations on the delays produced by each
circuit, Monte-Carlo (MC) simulations on 10K runs were conducted. The results
appear in Fig. 9.4, which shows the delay variability (defined as σ /μ) and 3-sigma
delay (defined as μ + 3σ). Analysis of the dynamic CMOS logic gates indicated that
their variability was significantly higher (in particular at lower VDD) than that of the
static CMOS logic. This is most likely due to the positive feedback associated with
the keeper transistor which not only degrades the speed of dynamic logic (because
of the current contention with the evaluation network) but also increases the delay
variability [9].

As noted above, this positive feedback is not needed for DML gates and has a
favorable impact on delay variability in the dynamic operation mode. Figure 9.4a
shows that the delay variability of the DML design (in both the static and dynamic
operating modes) was always under 7% for the whole VDD range tested. The MC
results in Fig. 9.4b show that as expected, the DML chain operating in the static
mode had the largest 3-sigma delay. By contrast, the DML design presented the
lowest 3-sigma delay when operating in the dynamic mode. Bear in mind that the 3-
sigma delay of the dynamic CMOS chain degrades rapidly for lower-power supplies
(a consequence of the larger variability) and becomes about 2× that of the dynamic
DML design for VDD = 0.3 V.

162 9 Dual Mode Logic in FD-SOI Technology

Fig. 9.4 Variability of the designs from VDD = 0.3 to 1 V

9.3 Design: Dynamically Adaptable Multiply-Accumulate
Circuit in 28 nm FD-SOI

This subsection discusses the potential of the DML technique to provide E–D
optimizations at runtime by implementing of an 8 × 8 bit dynamically adaptable
multiply-accumulate (MAC) unit implemented in a 28 nm FD-SOI process. This is
a meaningful benchmark since the MAC block is the prime circuit for assessing the
operating characteristics in many digital signal processing (DSP) applications such
as convolution, digital filtering, and the fast Fourier transform (FFT) [10, 11]. When
performance is the goal, the mixed operating mode is enabled and a low-complexity
self-adjustment mechanism is implemented at runtime to identify the gates/blocks
that need to work in the energy-efficient mode (i.e., static mode), while those that
are part of the longer logic (critical) paths can operate in the faster dynamic mode.
In addition, the MAC circuit can run in the fully static mode to ensure the lowest
energy consumption when speed is secondary.

Figure 9.5 illustrates the top-level architecture of the two-stage pipelined MAC
unit, where low-complexity extra clock control circuitry blocks are required for
the DML design. The first stage originates from the column bypassing the partial
product reduction tree (CB-PPRT) [12] which was custom re-designed for the
DML-based architecture. The CB-PPRT provides reduced partial products in the
carry-save (CS) format that are added to the result (in the conventional binary
format) generated by the second stage in the previous clock cycle. This function
is handled by the 3:2 DML compressor (using simple DML full adders (FAs) [13]),

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 163

Fig. 9.5 Architecture of the DML MAC

which generates a CS-format number for the second stage. In the second stage, the
DML carry-skip adder (CSA) generates the final output.

The DML MAC incorporates a self-adjustment mechanism triggered in mixed-
mode operation. This mechanism operates in the first stage and dynamically controls
the operation mode (static or dynamic) of gates/blocks in the DML design. Part of
the self-adjustment mechanism is embedded in each cell of the CB-PPRT, and the
rest is implemented in the prediction circuit (PC); both are explained in more detail
in Sects. 9.3.1 and 9.3.2. The architecture supports two arithmetic operations: MAC
and multiply.

9.3.1 DML Column Bypassing Partial Product Reduction Tree

The CB technique suggested by Wen et al. [12] saves dynamic energy consumption
by cleverly exploiting the observation that the outputs of all the FAs in column j of
the PPRT can be predicted early if the corresponding bit in the multiplicand Aj is
at the low logical level. Thus, depending on the number of zeros in the word of the
multiplier A, the switching activity of a certain number of FAs can be reduced while
maintaining their correct functionality.

For this purpose, the generic FA in the PPRT is modified to add two tristate
gates at the input operands and a 2:1 multiplexer at the output sum controlled by
the corresponding Aj bit [12]. When Aj is 0, the inputs of the FA are disabled and

164 9 Dual Mode Logic in FD-SOI Technology

the multiplexer allows the FA to be bypassed. Otherwise, the normal operation is
executed. More details on the CB-PPRT are available in the works by Wen et al.
[12, 14].

The design presented in this chapter implements the Wen et al. technique in
a different way [12]. As shown in Fig. 9.6a, when the mixed-mode operation is
enabled, FAs belonging to column j which can be bypassed (Aj = 0) are selected
for pseudo-static operation, while the remainder run in the dynamic mode. This
permits energy savings without incurring delay penalties. Further energy reductions
are guaranteed by the bypass circuitry embedded in the modified DML mirror FA,
as depicted in Fig. 9.6b and c. When Aj is 0, the extra bypass transistors (M0–M6)
avoid energy-hungry glitches while setting the correct outputs of the DML FA.

Figure 9.6d depicts the behavior of the modified DML FA when running in the
static and mixed modes. When launched in the DML MAC static mode, the bypass
circuitry reduces switching activity, as discussed in Wen et al. [12]. In the DML
MAC mixed mode, with Aj = bp = 0, the output carry (Co) is set early during
the precharge phase and is maintained at 0 by the incoming inputs in the evaluation
phase. The correct output sum (So) is computed (no glitches can be generated) by
the transistors M3–M6 in the evaluation phase.

9.3.2 Adaptive Final DML Carry-Skip Adder

As extensively discussed, the probability that the longest carry path of an adder
circuit will be triggered by the input operands is very low, since in most cases, the
actual carry path propagation in the addition operation is much shorter than the
adder’s low-probable critical path [15]. Concretely, this means that the final DML
CSA can complete most operations at a slower speed (static mode), thus conserving
precious energy and boosting its performance (dynamic mode) when a low-probable
set of input vectors triggers longer carry propagation paths. This capability to adjust
the computation to the incoming input vectors is provided by the PC, which enables
even more energy savings when the MAC is operating in the mixed mode.

As depicted in Fig. 9.7a, when the DML MAC operates in the mixed mode, just
by checking the signals S[6 : 5] and C[6 : 5] produced by the CB-PPRT, the PC can
detect the existence of a longer carry path propagation than the authorized timing
budget and switches the operation of the final DML CSA to the dynamic mode.
Crucially, the signals S[6 : 5] and C[6 : 5] are processed in the first stage of
the MAC to produce clock signals for the DML CSA in the second stage without
impacting the delay of the final adder. In addition, these signals are not on the critical
path of the MAC circuit in the first pipeline stage, so that the energy savings are
achieved without compromising on performance.

Figure 9.7b and c illustrates the two operating modes of the adaptable 16-bit
DML CSA. To avoid timing violations and save energy when the DML MAC is
operating in the mixed mode, the final adder is optimized to achieve a similar delay
in both the static and dynamic operation modes. Figure 9.7d provides a behavioral

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 165

Fig. 9.6 (a) The DML CB-PPRT in the mixed-mode operation. (b) Sketch of a group of modified
FA cells in the CB-PPRT. (c) Schematic of the modified DML mirror FA. (d) Behavioral
waveforms of the DML FA in the static and mixed modes

166 9 Dual Mode Logic in FD-SOI Technology

Fig. 9.7 (a) Schematics of the prediction circuit, the critical path of the DML CSA operating in
the (b) static mode and (c) dynamic mode and (d) behavioral waveforms in the static and mixed
operation modes

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 167

depiction of the working modes of the DML adder when the static and mixed MAC
operation modes are enabled. As shown, the CSA only operates in the dynamic
mode when the active low CLK_EN signal has been asserted (within the mixed-
mode operation of the entire MAC).

9.3.3 Measurement Results

The self-adjusted MAC architecture was fabricated in a 28 nm FD-SOI technology.
A conventional CMOS counterpart, based on the same two-stage pipelined archi-
tecture as our DML MAC (in other words, a CB-PPRT + 3:2 compressor for the
first pipelining stage and a CSA for the second stage), was also fabricated to act
as a reference design for comparison purposes. The CMOS MAC was designed
to exploit a full custom approach, which is roughly 50% less energy greedy than
the equivalent standard cell design while also improving the frequency and area
occupation.

Below, we present the measurement results and examine the circuit in terms of
energy, performance, robustness, and area. These results are based on measurements
of ten test chips bonded to a QFN64 package. The die photograph is shown in
Fig. 9.8a. To allow for modular validation, the experimental framework illustrated
in Fig. 9.8b included a printed circuit board that was interfaced to a Virtex-5 field-
programmable gate array (FPGA) development board used to stimulate and control
the device under test through an FPGA mezzanine card connection. Local (and
regulated) power supply generators supplied power to the isolated power domains
of the test circuits on the die.

A controllable temperature isolation circuit monitored the device, allowing for
external-temperature analysis in the 0–70 ◦C range. Figure 9.8c shows the physical
implementation of the 8 × 8 CMOS and DML MACs. Despite the extra circuitry
needed to implement the self-adjustment mechanism, the DML MAC occupies less
silicon area because of its unconventional sizing strategy described in detail by the
authors in Chaps. 2 and 3 (and in [16, 17]), which uses minimum-sized transistors
for most of the DML gates. As a result, the DML design achieves a 25% reduction
in total area as compared to the CMOS implementation (2084 versus 2811 μm2).
The extra sub-circuits needed for the self-adaptive mechanism (i.e., PC and CLK
controls) cause very small area overhead (i.e., roughly 3% of the total area) in the
DML MAC design.

9.3.3.1 Energy Consumption and Performance

For a fair comparison, both DML and CMOS designs were optimized for a supply
voltage of 0.6 V, which is consistent with the contemporary trend of energy-efficient
designs in advanced technology nodes [18]. Energy per operation (E/Op) was
evaluated for different activity factors (i.e., α = 0.1, 0.3, and 0.5); for each activity

168 9 Dual Mode Logic in FD-SOI Technology

Fig. 9.8 (a) Micrograph of the test chip, (b) experimental setup, and (c) layouts of the CMOS
(top) and DML (bottom) designs

10M 100M 1G

0.2

0.4

0.6

0.8

1.0

1.2

120M 200M 300M 370M

0.2

0.3

0.4

DML (static) CMOS DML (mixed)

0.4V

0.9V

Freq. (Hz)

Freq. = -34%

Av
g.

 E
/O

p.
 (p

J)

Av
g.

 E
/O

p.
 (p

J)

Freq. (Hz)

VDD = 0.6V

E/Op = -35%

E/Op = -9%
Freq. = +46%

Fig. 9.9 Average E/Op versus frequency for VDD ranging from 0.4 to 0.9 V; the inset shows a
comparison at VDD = 0.6 V (α = 0.3)

factor, the E/Op was averaged over a set of 1k input transitions, which corresponded
to this type of activity. For the DML MAC, energy measurements included all the
additional control circuits. Figure 9.9 depicts the energy frequency characteristics
of the circuits for VDD ranging from 0.4 to 0.9 V with α = 0.3. Our circuit,
which operates in the mixed DML mode, exhibited lower energy consumption and
higher frequency than the CMOS design for the entire power supply range; it had a
maximum speed advantage of 92% at 0.9 V (55% on average) with average energy

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 169

Fig. 9.10 Average E/Op versus frequency for (a) CMOS and (b) DML mixed design evaluated
for different activity factors α from 0.1 to 0.5 (T = room temperature)

savings of ∼16%. The zoomed-in subfigure compares the CMOS and DML circuits
at the device-sizing optimization point of 0.6 V; the MAC circuit operating in the
DML static mode yielded an energy reduction of 35% at the expense of a 34%
frequency reduction. By contrast, when in the mixed DML mode, it outperformed
the CMOS in terms of speed by 46% and reduced the E/Op by 9%.

As shown in Mahant-Shetti et al. [19], energy savings are achieved by avoid-
ing/reducing glitches in the PPRT of the multipliers. Thanks to the inherent
properties of dynamic logic-based styles, the DML MAC design is glitch-free when
operating in the mixed mode. Furthermore, as a result of its adaptive mechanism,
low-activity nodes in the design rarely operate in the DML dynamic mode (i.e.,
when the DML MAC is in the mixed mode). These two features lead to the energy
savings of the DML MAC in the mixed operation mode as compared to the static
CMOS approach. To illustrate this behavior, energy and frequency measurements
were obtained by asserting inputs to the MACs that corresponded to different
activity factors. As shown in Fig. 9.10, at the highest activity factor, whereas the
static CMOS approach increased its energy consumption by as much as 41% (38%
for DML MAC in static mode), our circuit in the mixed DML mode increased the
energy by only 10%.

170 9 Dual Mode Logic in FD-SOI Technology

10M 100M 1G

0.2

0.4

0.6

0.8

1.0

1.2

CMOS Vbb = 0V
DML (static) Vbb = 0V
DML (mixed) Vbb = 0V

CMOS Vbb = 1.2V
DML (static) Vbb = 1.2V
DML (mixed) Vbb = 1.2V

0.4V

Av
g.

 E
/O

p.
 (p

J)

Freq. (Hz)

0.9V

Fig. 9.11 Average E/Op versus frequency under symmetric forward body biased voltage (α = 0.5,
T = room temperature)

One of the main features of the FD-SOI technology is its wide allowable
FBB voltage range for LVT transistors [7, 20]. The efficiency of this feature, i.e.,
symmetric FBB of Vbb = 1.2 V, was evaluated and is depicted in Fig. 9.11. Both
the DML and CMOS designs increased their operating frequency by roughly 20%.
However, as expected, this came at a price, in that the E/Op also increased by
33%/20% for DML MAC in the mixed/static modes and by 17% for the CMOS.
In the DML design, the FBB can be used to boost the frequency of the MAC in the
static mode so that it is practically equal to the CMOS frequency while at the same
time reducing the energy consumption by 14%.

9.3.3.2 Robustness and Process/Voltage/Temperature Variations

The impact of process variations with respect to both energy and frequency was
analyzed over all the dies. The means and standard deviations of both the frequency
and energy were calculated (denoted by μFREQ, σFREQ, μEOP , and σEOP). The
values appear in Fig. 9.12 for VDD = 0.6 V. The DML MAC in the mixed mode
of operation exhibited lower variability (in terms of σ /μ). The mean frequency of
the DML MAC in the mixed mode confirmed the results reported in Sect. 9.3.3.1
(46% faster). In terms of variability (σ /μ), the MAC results in the static DML
mode demonstrated its greater robustness (in terms of both energy and frequency)
as compared to the CMOS circuit.

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 171

Fig. 9.12 Variability of E/Op versus frequency over 10 test chips (VDD = 0.6 V, α = 0.5 and
T = room temperature)

Fig. 9.13 Minimum VDD (measured) over 10 test chips of (a) conventional CMOS, (b) DML
static, and (c) DML mixed designs

To further probe the functionality of our design in different DML modes, the
minimum operating voltage was evaluated (over all the dies). Figure 9.13 shows
the cumulative distribution of the number of dies that were functional per supply
voltage at the sub- to low-near-threshold voltage regions. The results in Fig. 9.13
demonstrate that all the measured DML MAC circuits were fully functional at
400 mV in all modes, and that in the static mode, even a lower voltage of 380 mV
was achieved. These results are very similar to the CMOS circuits, where all the
samples were operational at 360 mV.

172 9 Dual Mode Logic in FD-SOI Technology

Fig. 9.14 Effect of temperature in frequency and average energy per operation

One of the key goals was to explore the sensitivity of the DML-based MAC to
temperature, especially in the near-threshold domain. Figure 9.14 charts the energy
and frequency values against temperature for low 0 ◦C and high 70 ◦C (device-
external temperature). The y-axis for frequency appears on the left and the energy
y-axis appears on the right of Fig. 9.14. The comparison indicates that in cases
of VDD exceeding 0.5 V, the DML MAC in the mixed mode outperformed the
CMOS design and showed less sensitivity throughout the entire power supply range.
However, as expected, both the CMOS circuit and the DML MAC in the static mode
were significantly affected in terms of frequency at low voltages. In the static mode,
the DML MAC was more sensitive in terms of frequency, but this only became
substantial for supply voltages below 450 mV. Nevertheless, the CMOS and the
DML MAC in the static mode only exhibited a slight increase in terms of energy in
the near-subthreshold region.

9.3.3.3 Comparison to the State of the Art

The self-adjusted DML MAC is compared to several recent descriptions of
MAC/multiplier circuits in Table 9.1. This comparison served to identify
implementations with similar technology nodes and architectures that also cover a
similar voltage supply range. Table 9.1 lists two low-voltage (400 mV) designs: an

9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28 nm. . . 173

Ta
bl
e
9.
1

C
om

pa
ri

so
n

to
st

at
e-

of
-t

he
-a

rt
M

A
C

s

A
-S

SC
C

’1
4

[2
2]

M
IX

D
E

S
’1

6
[2

1]
D

M
L

(i
n

th
is

ch
ap

te
r)

T
V

L
SI

’1
7

[2
3]

Te
ch

no
lo

gy
de

si
gn

(N
.B

its
)

28
nm

FD
-S

O
I

16
×

16
M

A
C

28
nm

FD
-S

O
I

8
×

8
M

A
C

28
nm

FD
-S

O
I

8
×

8
M

A
C

65
nm

16
×

16
M

ul
tip

lie
r

Pi
pe

lin
ed

co
lu

m
n

by
pa

ss
in

g

D
ee

p
pi

pe
lin

ed
m

od
-

ifi
ed

B
au

gh
-W

oo
le

y
D

M
L

C
M

O
S

D
M

L

A
rc

hi
te

ct
ur

e
Pi

pe
lin

ed
M

A
C

St
at

ic
M

ix
ed

St
at

ic
M

ix
ed

C
M

O
S

1-
st

ag
e

m
ul

tip
lie

r

V
D

D
[V

]
0.

4
0.

4
0.

4
0.

8
0.

8

L
at

en
cy

[C
yc

le
s]

32
2

2
2

1

Fr
eq

ue
nc

y
[M

H
z]

8.
75

a,
b

51
b

20
.3

40
.1

32
.5

36
7.
5

80
0.
4

42
8.

8
37

0b

(1
0.
15

c)
(2
0.
1c
)

(1
6.

3c)
(1
83
.7
5c
)

(4
00
.2
c)

(2
14

.4
c)

E
/O

p.
[p

J]
0.

39
b

0.
09

b
0.
08

0.
11

0.
13

0.
39

0.
49

0.
6

3.
8b

(0
.3
2c
)

(0
.4
4c
)

(0
.5

2c)
(1
.5
6c
)

(1
.9
6c
)

(2
.4

c)

A
re

a
[μ

m
2
]

75
69

22
08

20
84

28
11

20
84

28
11

–

(6
27
1d
)

(7
02

9d
)

(6
27
1d
)

(7
02

9d
)

Te
st

ch
ip

�
–

�
–

T
he

bo
ld

re
pr

es
en

tt
he

ad
de

d
va

lu
e

of
th

is
w

or
k

a Fr
eq

ue
nc

y
is

no
rm

al
iz

ed
to

a
tw

o-
st

ag
e

pi
pe

lin
ed

M
A

C
b
T

he
da

ta
ar

e
ex

tr
ap

ol
at

ed
fr

om
re

la
te

d
pa

pe
rs

c E
ne

rg
y

an
d

fr
eq

ue
nc

y
w

er
e

ev
al

ua
te

d
fo

r
a

16
-b

it
de

si
gn

ac
co

rd
in

g
to

th
e

fo
llo

w
in

g
fo

rm
ul

a
in

[2
1]

an
d

[2
2]

,
re

sp
ec

tiv
el

y:
E
/
op

(8
-b

it)
∗4

=
E
/
op

(1
6-

bi
t)

;
Fr

eq
(8

-b
it)

∗0
.5

=
Fr

eq
(1

6-
bi

t)

174 9 Dual Mode Logic in FD-SOI Technology

equivalent 8 × 8 MAC presented by Vatanjou et al. [21] and the deeply pipelined
(32 stages) 16 × 16 MAC put forward by Reyserhove et al. [22]. Cerqueira and
Seok [23] reported a comparison point at a higher-voltage regime (800 mV) with
a one-stage multiplier architecture [23]. Note that for the sake of comparison, we
also provide a projection of the measurement values of the DML MAC to a 16 × 16
architecture by multiplying the area utilization of the PPRT by four and the final
adder by two, the energy by four, and dividing the frequency by two [22, 23]. This
is reasonable since the energy/delay advantages of the proposed implementation are
likely to be maintained (if not better) when the size of the architecture scales for
larger operands.

At 400 mV, the DML MAC in the static mode achieved ≈ × 1.2 in performance
while reducing the energy consumption by ≈18% as compared to [22]. In the
mixed mode, performance increased by more than twofold, and the energy was
only slightly degraded by 5%. When evaluated against [21], in the mixed mode,
the DML MAC results were similar; however, the static mode provided an 11%
energy reduction and a ≈6% area reduction (bear in mind that [21] exploited
asymmetric body biasing that can also be applied to our design; the results are pre-
silicon and therefore not exhaustive). As for the high-supply-voltage region, when
compared to [23], the DML MAC showed a performance gain of ≈ × 1.11 while
reducing the energy consumption significantly by ≈ × 1.9. Table 9.1 also presents
the measurement results for the CMOS MAC that was designed and measured in the
same environment since it is a natural candidate for comparison. The results clearly
illustrate the unique tradeoff of the self-adjusted MAC architecture for all modes of
operation.

9.4 Conclusion

This chapter evaluated the DML technique in an FD-SOI 28 nm technology node
for a very broad supply voltage operation range and aggressive (far from nominal)
operating conditions. The flexibility of DML gates to operate either in the static or
dynamic mode to provide E–D optimization at runtime was illustrated by silicon
measurements in 28 nm FD-SOI.

The findings showed once again that the combination of DML gates operating
in the dynamic mode (according to the longer logic paths), while the remainder
save energy by operating in the static mode, leads to improvement in both speed
and energy in terms of the actual circuit workload for a wide range of supply
voltages. As a test case, an 8 × 8 bit MAC unit was fabricated and compared to
an equivalent full-custom CMOS implementation. The experimental results showed
that the DML MAC outperformed its CMOS counterpart in terms of speed (46%),
energy (35%), and area (25%) at 0.6 V. Furthermore, when compared to state-of-
the-art designs, our self-adjusted DML MAC presented unique E–D tradeoffs in all
modes of operation.

References 175

References

1. D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud, G. Cesana, T. Di Gilio, C. Lecocq,
T. Roy, A. Chhabra, et al. A 3 ghz dual core processor arm cortex tm-a9 in 28 nm utbb fd-soi
cmos with ultra-wide voltage range and energy efficiency optimization. IEEE J. Solid-State
Circuits 49(4), 812–826 (2014)

2. P. Magarshack, P. Flatresse, G. Cesana, Utbb fd-soi: A process/design symbiosis for
breakthrough energy-efficiency, in Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium (2013), pp. 952–957

3. D. Puschini, J. Rodas, E. Beigne, M. Altieri, S. Lesecq, Body bias usage in utbb fdsoi designs:
A parametric exploration approach. Solid-State Electron. 117, 138–145 (2016)

4. S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthukumar, M.
Srinivasan, A. Kumar, S.K. Gb et al., A 280mv-to-1.2 v wide-operating-range ia-32 processor
in 32nm cmos, in 2012 IEEE International Solid-State Circuits Conference (IEEE, Piscataway,
2012), pp. 66–68

5. P. Flatresse, B. Giraud, J.-P. Noel, B. Pelloux-Prayer, F. Giner, D.-K. Arora, F. Arnaud, N.
Planes, J. Le Coz, O. Thomas et al., Ultra-wide body-bias range ldpc decoder in 28nm
utbb fdsoi technology, in 2013 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (IEEE, Piscataway, 2013), pp. 424–425

6. E. Beigne, I. Miro-Panades, Y. Thonnart, L. Alacoque, P. Vivet, S. Lesecq, D. Puschini,
F. Thabet, B. Tain, K. Benchehida et al., A fine grain variation-aware dynamic vdd-hopping
avfs architecture on a 32nm gals mpsoc, in 2013 Proceedings of the ESSCIRC (ESSCIRC)
(IEEE, Piscataway, 2013), pp. 57–60

7. R. Taco, I. Levi, M. Lanuzza, A. Fish, Low voltage logic circuits exploiting gate level dynamic
body biasing in 28 nm utbb fd-soi. Solid-State Electron. 117, 185–192 (2016)

8. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 21(5), 979–983 (2012)

9. M. Alioto, G. Palumbo, M. Pennisi, Understanding the effect of process variations on the delay
of static and domino logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(5), 697–710
(2009)

10. G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. De Ambroggi, T. Majo, P. Zambotti,
M. Ayodhyawasi, H. Singh et al., 14.1 a 2.9 tops/w deep convolutional neural network soc in
fd-soi 28nm for intelligent embedded systems, in 2017 IEEE International Solid-State Circuits
Conference (ISSCC) (IEEE, Piscataway, 2017), pp. 238–239

11. T.T. Hoang, M. Sjalander, P. Larsson-Edefors, A high-speed, energy-efficient two-cycle
multiply-accumulate (mac) architecture and its application to a double-throughput mac unit.
IEEE Trans. Circ. Syst. I Regul. Pap. 57(12), 3073–3081 (2010)

12. M.C. Wen, S.J. Wang, Y.N. Lin, Low-power parallel multiplier with column bypassing.
Electron. Lett. 41(10), 581–583 (2005)

13. I. Levi, A. Fish, Dual mode logic—design for energy efficiency and high performance. IEEE
Access 1, 258–265 (2013)

14. M. Wen, S.J. Wang, Y.N. Lin, Low power parallel multiplier with column bypassing, in 2005
IEEE International Symposium on Circuits and Systems, vol. 2 (2005), pp. 1638–1641

15. P. Behrooz, Computer Arithmetic: Algorithms and Hardware Designs (Oxford University
Press, Oxford, 2000), pp. 19:512,583–512,585

16. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: Model analysis and parameter
extraction. Microelectron. J. 44(6), 553–560 (2013)

17. I. Levi, A. Belenky, A. Fish, Logical effort for cmos-based dual mode logic gates. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 22(5), 1042–1053 (2013)

18. R.G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, T. Mudge, Near-threshold comput-
ing: Reclaiming moore’s law through energy efficient integrated circuits. Proc. IEEE 98(2),
253–266 (2010)

176 9 Dual Mode Logic in FD-SOI Technology

19. S.S. Mahant-Shetti, P.T. Balsara, C. Lemonds, High performance low power array multiplier
using temporal tiling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7(1), 121–124 (1999)

20. G. de Streel, D. Bol, Impact of back gate biasing schemes on energy and robustness of ulv
logic in 28nm utbb fdsoi technology, in Proceedings of the 2013 International Symposium on
Low Power Electronics and Design (IEEE Press, Piscataway, 2013), pp. 255–260

21. A.A. Vatanjou, T. Ytterdal, S. Aunet, 28 nm utbb-fdsoi energy efficient and variation tolerant
custom digital-cell library with application to a subthreshold mac block, in 2016 MIXDES-23rd
International Conference Mixed Design of Integrated Circuits and Systems (IEEE, Piscataway,
2016), pp. 105–110

22. H. Reyserhove, N. Reynders, W. Dehaene, Ultra-low voltage datapath blocks in 28nm utbb fd-
soi, in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC) (IEEE, Piscataway, 2014),
pp. 49–52

23. J.P. Cerqueira, M. Seok, Temporarily fine-grained sleep technique for near-and subthreshold
parallel architectures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(1), 189–197
(2016)

Chapter 10
Conclusion

In this book we presented dual mode logic, a new paradigm for digital IC, and cover
multiple aspects of DML utilization in digital circuits and systems in depth. The
overarching DML approach is based on DML gates that operate in two modes, each
optimized for a different design metric. DML gates can trade off energy efficiency
and high performance at the circuit and architecture levels. This is because DML
architectures enable on-the-fly switching between operational modes at the gate,
block and system levels, thus enabling significant optimization flexibility without
compromising robustness. Numerous control mechanisms for DML architectures
were covered in this volume.

We hope to have given the reader a thorough introduction to DML gate-level
design methodology, single and multiple gate optimization, and the architectural
optimization of modules and larger constructs such as arithmetic circuits. We
examined several different control strategies for DML designs based on the
input data and the architecture. We also demonstrated new approaches for DML
integration into standard design flows in a scalable way and showed how DML can
enhance technologies such as FD-SOI, thus demonstrating that DML can harness
this technology to provide larger gains.

This book is intended for researchers, engineers, and graduate students. Any
interested reader can find detailed responses as to how and where to use DML and
what types of improvements and flexibility it can provide.

Extensive studies conducted by a range of researchers in addition to the authors
make it clear that DML can enrich a whole host of fabricated designs in a variety of
technologies and different architectures, supported by fully custom to standard cell-
based flows. Today, the DML effort has made enormous strides forward: DML has
been demonstrated in a FINFET 16 nm complex SoC, and it is also being calibrated
to boost many advanced architectures within complex datapaths, processing, and
arithmetic blocks. We express our deepest gratitude to all the researchers whose
contributions made this book a reality.

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40786-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-40786-5_10

Appendix A
SA Method for the Sizing Factors
of DML Inverter Chain

This appendix describes a semi-approximated (SA) approach of the LE method-
ology, presented in Sect. 3.3.5. The goal of SA, which is a compromise between
the CA and the CS methods, is to achieve relatively high precision with reduced
computational effort as compared to the CS method. Omitting all terms of the gate or
drain capacitances in (3.20) may lead to increased error when calculating the delay.
This error can primarily be ascribed to the first and the second terms of (3.20).
Therefore, the SA approach only approximates terms starting from stage i = 3,
denoted by an overbar. Thus, (3.20) turns into:

D =
∑
N

Di = tp0_DML

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2s1+1)
3s1

γ ′ + (s2+1)
2s1

+ ∑
odd_i > 1

Type_A : 3, 5, 7

(
(2si+1)

3si
γ ′ + (si+1+1)

2si

)

+
(
μn/p

[
(2s2+1)

3s2
γ ′ + (s3+1)

2s2

])

+ ∑
even_i > 2

Type_B : 4, 6, .8 . . .

(
μn/p

[
(2si+1)

3si
γ ′ + (si+1+1)

2si

])

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)

Differentiating (A.1) by all Si and equating to 0 leads to the following set of N

expressions:

dD
dS2

= 0 → S2
S1

= (γ+1+S3)
S2

μn/p

∀ (odd_ i > 1) , (3, 5, 7 . . .) : Si

Si−1
= Si+1

Si ·μn/p

∀ (even _i > 2) , (4, 6, 8 . . .) : Si

Si−1
= Si+1·μn/p

Si

(A.2)

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5

179

https://doi.org/10.1007/978-3-030-40786-5

180 A SA Method for the Sizing Factors of DML Inverter Chain

The solution to this set of equations results in the Si sizing factors, where S2 is the
solution to the quadratic equation:

S2(A1) =
√

A1μn/p + √
A1μn/p + 4(γ + 1)μn/p

2
, (A.3)

and A1 is given by:

A1 =
[
SN+1

S1

2

1 + √
1 + 4(γ + 1)/A1

] 2
N

. (A.4)

Note that the calculation of A1 requires extraction of SN+1 from CLoad . The set of
equations (A.2) can be solved for any CLoad and any N using Matlab or a similar
tool to produce one lookup table for increased user convenience/automation.

As shown, the difference between the SA and CA methods lies in the addition of
the term in (A.3). Thus, in order to utilize the SA method, the sizing factors should
be calculated from the FDML and A1 metrics:

A1 = fDML = N
2
√

FDML (A.5)

FDML = SN+1

S1

2

1 + √
1 + 4(γ + 1)/A1

= fDML

N
2 (A.6)

To calculate the optimal chain length Nopt , under a given CLoad , (A.5) and (A.6)
are substituted in (A.1) to obtain the delay D:

D = tp0_DML

⎛
⎜⎝

(2s1+1)
3s1

γ ′ + (s2+1)
2s1

+ μn/p

[
(2s2+1)

3s2
γ ′ + (s3+1)

2s2

]
+

+
(

(N−2)
2 γ (1 + μn/p) + (N − 2)

√
μn/pA1

0.5

2

)
⎞
⎟⎠ (A.7)

Consequently, S1–S3 from (A.3) and Table A.1 are substituted in (A.7), in which,
using (A.8), N is then differentiated and 0 equated:

N(A1) =
2 ln

(
2SN+1

S1(1+√
A1+4(1+γ))

)
ln(A1)

(A.8)

Table A.1 Inverter chain sizing factors, Si , of the SA method

S1 S2 S3 S4 S5 SN−1 SN

1 S2(A1)
A 1

0.5√
μn/p

S2(A 1) A1S2(A1)
A 1

1.5√
μn/p

S2(A 1) A1
N
2 −1S2(A1)

A1

N−1
2√

μn/p
S2(A1)

A SA Method for the Sizing Factors of DML Inverter Chain 181

Finally, we get (A.9) which only contains A1:

⎛
⎜⎜⎜⎜⎜⎜⎝

√
μn/p

⎡
⎢⎣(

A1
−0.5+b

)⎡⎢⎣ 1
8+ − (1+γ)

2[
2S2(A1)√

μn/p

]2

⎤
⎥⎦ − 1

4A1
−0.5 + N(A1) · A1

−0.5

4

⎤
⎥⎦ ∗

∗
[

ln(A1)
4b·(1+γ)

A1
2(1+b)

− N(A1)

A1

]
+

(
γ
2 (1 + μn/p) +

√
μn/p∗A1

0.5

2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0,

(A.9)
where, b = (A1 + 4(1 + γ))−0.5. To get the optimal number of stages Nopt , we
further numerically solve (A.9) for A1 and substitute A1 in (A.8).

Index

A
Adders, 16, 17, 67, 69, 75, 78–81, 89–93,

96–112, 135, 140, 162–167, 174
A footed gate (FG), 27, 64, 93, 144, 145, 147,

149, 150, 154
A header gate, 27
Application specific integrated circuit (ASIC),

116, 117, 157
Area expansion, 136, 138–140
Arithmetic logic unit (ALU), 91, 92, 95
Automation, v, 115–117, 130, 180

B
Body bias, 2, 60, 158, 160, 161, 170, 174
Branching effort, 36, 46, 47, 61
Brent–kung, 90, 96, 100–102
Buried oxide (BOX), 158

C
Cadence, vi, 36, 53, 54, 56, 67, 81, 100, 101,

104, 151, 152
Carry look-ahead (CLA), 18, 75, 106–112, 140
Carry propagation, 79, 81, 90, 91, 100, 164
Carry save adder (CSA), 78–82, 84–86, 162
Carry skip adder (CSA), 163–167
Cascading, 7–9, 107, 118, 119, 124, 128, 147
Characterization, vi, 18, 115–141, 149, 151,

154
CMOS-LE, 38, 39, 42, 46, 50, 53, 56
Coarse grain, 89–106
Complementary metal oxide semiconductor

(CMOS), 2, 25, 35, 59, 75, 90, 115,
143, 157

Complete approximated method (CA), 43–56,
179, 180

Complete un-approximated method (CS), 42,
46, 50, 52–56

Connection_class, 122, 124, 125, 128
Constraints, 76–78, 86, 92, 93, 97, 117, 122,

124–128, 131–133, 136, 144–151
Correct precharge (CPC), 80, 145, 146, 149,

150
Critical path (CP), 5, 18, 30, 31, 46, 69, 75–78,

80–81, 89, 93, 101, 102, 106, 107, 111,
112, 159, 162, 164, 166

Crossed cells, 122, 125–127
Current mode logic (CML), 2, 4, 13–14,

61, 63

D
Data-dependent controller, 89
Delay-energy, 69
Delay error, 50–52
DML-LE, 18, 36, 39, 46–56
DML synthesis, 18, 144–151, 155
Domino logic, 7, 8, 39, 60, 66, 67, 71, 119,

120, 127, 144
Drain induced barrier lowering (DIBL), 5, 158
Drive strength, 9
Dual mode addition (DMADD), 90–93, 95–7,

99–101, 103–105
Dual mode logic (DML), v, vi, 4, 7, 11, 17, 18,

25–32, 35–56, 59–71, 75–86, 89–112,
115–141, 143–155, 157–174, 177–181

Dummy cells, 125, 129
Duplication, 120, 127, 128, 136
Dynamically adaptable, 162–174

© Springer Nature Switzerland AG 2021
I. Levi, A. Fish, Dual Mode Logic, https://doi.org/10.1007/978-3-030-40786-5

183

https://doi.org/10.1007/978-3-030-40786-5

184 Index

Dynamic logic, 3, 6–11, 27, 30, 60, 64, 65,
68, 70, 106, 112, 118–121, 124, 138,
143–145, 160, 161, 169

Dynamic mode, 25–29, 31, 32, 39, 56, 59, 60,
62, 64–66, 69–71, 75–79, 84, 90, 92,
95, 96, 99, 104, 106, 107, 110, 112,
120, 121, 123, 134, 145, 150, 152–155,
160–162, 164, 166, 169, 174

Dynamic voltage and frequency scaling
(DVFS), 3, 104, 139, 158

E
Electrical effort, 36, 37, 44, 61, 67
Electronic design automation (EDA), v, 35,

115–117, 124, 143, 145, 152
Energy efficiency, v, 3, 15, 17, 18, 27, 29,

75–77, 89–91, 154, 177
Footless, 26, 124, 129
Evaluation phase, 6, 9, 10, 39, 121, 123, 124,

132, 164
Extended mode, 91, 92, 95, 96, 100

F
Fan-out, 66, 159
Fine-grain, 18, 89, 106–112
Footed gates (FG), 27, 64, 93, 145, 147, 149,

150, 154
Footer, 9–10, 26, 27, 29, 30, 62, 63, 77, 107,

109, 112
Forward body bias (FBB), 158, 161, 170
Full adder (FA), 60, 67–71, 79, 80, 84, 92–94,

96, 99, 162–165
Fully depleted silicon on insulator (FD-SOI),

18, 157–174

G
Gate count, 127, 136, 138–140
Gate diffusion input (GDI), 3, 12–13
Gate induced drain leakage (GIDL), 5
Gate level (GTL), vi, 2, 3, 25, 35, 59, 71, 75,

80, 89, 94, 117, 122, 124, 128, 143,
150–152, 177

Gate sizing, 29
Glitching, 30, 147, 150

H
Hardware description language (HDL), 143
Header, 26, 27, 29, 30
High description language (HDL), 2

High performance, vi, 1–3, 5, 6, 11, 15, 25,
28–30, 32, 35, 56, 60, 76–77, 90, 100,
101, 105, 112, 144, 152, 158, 177

High voltage threshold (HVT), 91

I
Input vectors, 2, 81, 84–86, 106, 108, 111,

145–147, 149, 164
Integrated circuits (ICs), v, vi, 2, 4, 116, 177
Inverter chain, 36–38, 40–46, 54, 179–181
ISCAS benchmarks, 151

K
Keeper, 2, 11, 12, 29–30, 159–161

L
Liberty, 124, 131, 133, 152
Logical effort (LE), 18, 29, 35–56, 60–62,

64–67, 80, 179
Low-energy, 3, 25, 27, 28, 31, 77, 79, 81–84,

86, 90, 105, 144
Low voltage, vi, 5, 10–11, 15, 16, 18, 30, 36,

59–71, 81, 82, 158, 172
Low voltage threshold (LVT), 158, 159, 170

M
Mapping, 117, 121, 124–129
Minimum delay point (MDP), 16, 17, 31, 32
Minimum energy point (MEP), 16, 17, 29, 31,

32, 60, 69, 104
Mode control, 89
Mode selection, 18, 89–112
Monotonicity, 118
Monte-Carlo (MC), 68–71, 104, 105, 161
Multiply accumulate (MAC), 18, 157, 162–174

N
Near threshold (NT), 10, 11, 17, 59–63, 71,

104, 171, 172
Non-unate, 118–120, 122, 124–128, 136, 137,

139–141
Normal mode, 93, 95, 96
np-CMOS, 7–9, 26, 30, 39, 107, 119, 128, 159,

160

O
On-current, 61, 63

Index 185

P
Partial product reduction tree (PPRT),

162–165, 167, 169, 174
Pass transistor logic (PTL), 2, 3, 11–12, 35, 39,

60, 106, 108
Performance, 2, 25, 35, 59, 76, 89, 134, 143,

157, 177
Perl, 143, 151
Post synthesis, 128
Precharge phase, 6–10, 26, 27, 131–133
Prediction circuit (PC), 145–147, 150, 163,

164, 166
Process design kits (PDKs), 4
Pseudo-static, 121–128, 130–133, 164
Pull-down network (PDN), 7–9, 27, 28, 30, 37,

39, 64, 105, 119, 123, 146, 147, 159
Pull-up network (PUN), 8, 9, 27–30, 37, 39,

64, 75, 105, 123, 146, 147

R
Reliability, v, 1, 3, 12, 25, 96, 104
Reverse body bias (RBB), 2, 158
Ripple carry adder (RCA), 79, 80, 84, 86,

91–93, 96, 100–103
Robustness, 18, 27, 32, 59, 67–69, 71, 105,

106, 116, 159–162, 167, 170–172, 177
RTL-synthesis, 117

S
Semi approximated method (SA), 18, 46, 179
Semi footed cells, 124, 129, 130
Sense amplifier based logic (SABL), 4
Short circuit, 6, 9, 12, 107, 132, 159
Single transition requirements (STR), 145,

147–150
Sizing, 2, 25, 35, 61, 80, 89, 160, 180
Sizing factors, 39–45, 47, 49–51, 53, 63, 64,

80, 93, 97, 98, 101, 179–181
Sizing optimization, 36, 69, 80, 106
Slowdown, 137–140
Speedup, 133–136, 138–140
Squared dual mode (DM2), vi, 18, 89–97,

99–106
Stacked transistors, 27, 29, 47, 61, 63, 64, 67
Standard cell library, 3, 116, 117, 120, 152,

155

Standard cells, 3, 116, 117, 120, 128, 130, 131,
143, 152, 155, 167, 177

Standard design flow (SDF), vi, 2, 14, 18, 77,
115–128, 177

Standard flow, 18, 115–141
Static logic, 25, 26, 39, 68, 77, 115
Static mode, 25, 26, 29, 31, 32, 60, 64, 66, 68,

69, 76–79, 81, 82, 84, 90, 93–97, 99,
104, 106, 108, 136, 137, 152–154, 157,
160, 162, 164, 166, 169–172, 174

Static noise margin (SNM), 59, 68, 69, 71
Static timing analysis (STA), 117, 121, 122,

128, 150, 152
Strong inversion, 61, 63, 81
Subthreshold (ST), 59–63, 71, 157
Super-threshold, 10, 12, 17, 18, 30
Synopsis, vi

T
Temperature variation, 170–172
Transregional model, 18, 59, 61–67, 70
Type-A, 26–30, 39–42, 44, 46, 47, 62, 64–66,

80, 84, 93, 97, 99, 107, 108, 118,
123–131, 134, 145–147, 149, 150, 158,
159

Type-B, 26–30, 39–42, 44, 46, 47, 62, 64–66,
80, 84, 93, 97, 99, 107, 108, 119,
124–126, 128–131, 145–147, 149, 150,
158, 159

U
Ultra-thin box and body (UTBB), 157–162
Unfooted, 158, 159
Upsizing, 28, 29, 38, 39, 43, 47, 93

V
Variability, 5, 158, 161, 162, 170, 171
Very large scale integration (VLSI), 1, 60, 173
Violations, 18, 77–78, 95, 117, 122, 124, 125,

128, 132, 147, 164
Voltage threshold (VT H), 7, 11, 12, 15–17, 61,

75, 108, 158
Voltage transfer characteristics (VTC), 5

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 Energy-Efficient and High-Performance Digital DesignLimitations
	1.2 Introduction to the Design of Digital Logic Families
	1.2.1 Complementary Metal Oxide Semiconductor (CMOS)
	1.2.2 Dynamic Logic
	1.2.2.1 The Cascading Challenge and Dynamic Logic Topologies
	1.2.2.2 A Footer Implementation
	1.2.2.3 Low-Voltage Dynamic Logic

	1.2.3 Other Design Styles in Standard CMOS Technology
	1.2.3.1 Pass Transistor Logic (PTL)
	1.2.3.2 Gate Diffusion Input (GDI)
	1.2.3.3 Source-Coupled Logic (SCL) or Current Mode Logic (CML)

	1.3 Energy–Delay (E–D) Tradeoff Paradigms
	1.4 Book Outline
	References

	2 Introduction to Dual Mode Logic (DML)
	2.1 DML Concept and Transistor-Level Architecture
	2.2 DML Advantages
	2.2.1 Robust Operation, Inherent Keeper, and HighPerformance

	2.3 DML: The Best of Both Worlds
	References

	3 Optimization of DML Gates
	3.1 Introduction
	3.2 Overview: Standard Logical Effort (LE) Model for a Simple CMOS Inverter Chain
	3.3 Logical Effort (LE) Model for a Simple DML Inverter Chain
	3.3.1 Basic Assumptions
	3.3.2 Defining the Optimization Target for a Simple Inverter Chain
	3.3.3 The Complete Un-approximated Method (CS)for DML Sizing Factors of an Inverter Chain
	3.3.4 The Complete Approximated Method (CA) for DML Sizing Factors of an Inverter Chain
	3.3.5 The Semi-approximated Method (SA) for DML Sizing Factors of an Inverter Chain

	3.4 Generalizing the DML-LE Method for Complex Gates and Branches
	3.4.1 Exploring a General DML Gate Delay Structure
	3.4.2 Delay Optimization Under the Complete Approximated (CA) Model for Complex Gates

	3.5 Comparing the DML-LE Methods
	3.5.1 Delay Error for a Given N
	3.5.2 Nopt Comparison
	3.5.3 Delay Error for a Variable N

	3.6 Example of a DML-LE Evaluation: a 40nm Process
	3.7 Conclusion
	References

	4 Low-Voltage DML
	4.1 Introduction
	4.2 DML Under Low-Voltage Operation
	4.3 DML Modeling and Sizing Using the Transregional Model
	4.3.1 Modeling Ion Using the Transregional Model
	4.3.2 Low-Voltage DML Sizing Methodology
	4.3.3 Logical Effort Parameters for Low-Voltage Operation

	4.4 DML Benchmark Measurements
	4.4.1 DML Robustness and Design Metrics Under LowVoltage
	4.4.2 Energy and Delay Analysis

	4.5 Conclusion
	References

	5 DML Energy-Delay Tradeoffs and Optimization
	5.1 Introduction: Static DML as a Semi-Energy-Optimal CMOS
	5.2 Critical-Path-DML Approaches to Energy Efficiency and High Performance
	5.3 Solution for Critical Path Timing Violations and Energy Consumption Reduction
	5.4 Modular Benchmark Example: Carry Save Adder Design
	5.4.1 The CMOS csa Design
	5.4.2 DML Critical Path Design

	5.5 Energy-Delay Plane as a Function of VDD and n
	5.5.1 The E-D Plane as f(VDD)
	5.5.2 The E-D Plane as f(N)
	5.5.3 Stimuli Input Vector Complexity

	5.6 Conclusion
	References

	6 DML Control
	6.1 Coarse-Grain DML Mode Selection Controller
	6.1.1 Dual-Mode Addition (DMADD) Approach Overview
	6.1.2 Dual-Mode2 (DM2) System Architecture and Transistor Sizing
	6.1.2.1 DM2 Architecture
	6.1.2.2 DM2 Transistor Sizing

	6.1.3 Computing Energy Savings
	6.1.4 Benchmark Results and Analysis
	6.1.4.1 Transistor Sizing and Setting the Group Size
	6.1.4.2 Energy Saving Measurements and Bounds
	6.1.4.3 Comparison of DM2 to Brent–Kung and Simple Ripple Carry Adders
	6.1.4.4 Mode Decision Overhead
	6.1.4.5 Design Accuracy Analysis
	6.1.4.6 Reliability
	6.1.4.7 Area Utilization

	6.1.5 Coarse-Grain Control Conclusions

	6.2 Fine-Grain DML Mode Selection Controller
	6.2.1 Design Example: Carry Look-Ahead Adder
	6.2.1.1 Decision Logic
	6.2.1.2 CLA Architecture

	6.2.2 Fine-Grain Controller Simulation Results
	6.2.3 Fine-Grain Control Conclusions

	References

	7 Towards a DML Library Characterization and Design with Standard Flow
	7.1 Introduction
	7.2 Characterization and Standard Design Flow Challenges
	7.2.1 Standard Design Flow: Overview and DML Integration Challenges
	7.2.2 Dynamic Operation Mode Design Challenges
	7.2.2.1 Non-unate Boolean Functions
	7.2.2.2 Dynamic Operation Characterization Challenges

	7.3 A Step Forward with DML Standard Design Flow
	7.3.1 Pseudo-static Library and Multi-library Representation
	7.3.2 Pseudo-static Synthesis and Library Mapping
	7.3.2.1 Monotonic (Unate) Network Mapping
	7.3.2.2 Non-unate Network Mapping
	7.3.2.3 Post-Synthesis Netlist Adaptation
	7.3.2.4 Static Timing Analysis (STA)

	7.4 Characterization Process
	7.4.1 Pseudo-static Library
	7.4.1.1 Design Metric Characteristics
	7.4.1.2 Data-to-Data Timing Constraints

	7.4.2 Dynamic Library
	7.4.2.1 Design Metric Characteristics
	7.4.2.2 Timing Constraints

	7.4.3 Static Library

	7.5 Benchmarks and Results
	7.5.1 Characterization
	7.5.1.1 Performance
	7.5.1.2 Area and Leakage
	7.5.1.3 Equivalent Input Capacitance

	7.5.2 Design Flow

	7.6 A Step Towards a DML Standard Flow: Conclusions
	References

	8 Towards a DML Optimized Synthesis
	8.1 DML-Optimized Synthesis Challenges
	8.2 DML Synthesis Approach and Constraints
	8.2.1 Constraints
	8.2.1.1 Correct Precharge (CPC)
	8.2.1.2 Footed Gates (FG)
	8.2.1.3 Single Transition Requirement (STR)

	8.2.2 The Approach

	8.3 Implementation Results
	8.3.1 Simulation Methodology
	8.3.2 Simulation Results

	8.4 Automated DML Synthesis: Conclusion
	References

	9 Dual Mode Logic in FD-SOI Technology
	9.1 UTBB FD-SOI Technology
	9.2 DML Design Optimization in UTBB FD-SOI Technology
	9.2.1 Design Optimization
	9.2.2 Performance and Robustness Analysis

	9.3 Design: Dynamically Adaptable Multiply-Accumulate Circuit in 28nm FD-SOI
	9.3.1 DML Column Bypassing Partial Product ReductionTree
	9.3.2 Adaptive Final DML Carry-Skip Adder
	9.3.3 Measurement Results
	9.3.3.1 Energy Consumption and Performance
	9.3.3.2 Robustness and Process/Voltage/Temperature Variations
	9.3.3.3 Comparison to the State of the Art

	9.4 Conclusion
	References

	10 Conclusion
	A SA Method for the Sizing Factors of DML Inverter Chain
	Index

