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Preface
We are proud that this book is the recipient of the Textbook
Excellence Award from the Text & Academic Authors Asso-
ciation. Its quality owes much to the many professors who
have taken the time to write and share their pedagogical
expertise. We thank them all.

This 12th edition of Elementary Linear Algebra has a new
contemporary design, many new exercises, and some orga-
nizational changes suggested by the classroom experience
ofmany users. However, the fundamental philosophy of this
book has not changed. It provides an introductory treatment
of linear algebra that is suitable for a first undergraduate
course. Its aim is to present the fundamentals of the sub-
ject in the clearest possible way, with sound pedagogy being
the main consideration. Although calculus is not a prereq-
uisite, some optional material here is clearlymarked for stu-
dents with a calculus background. If desired, that material
can be omitted without loss of continuity. Technology is not
required to use this text. However, clearly marked exercises
that require technology are included for those who would
like to use MATLAB, Mathematica, Maple, or other soft-
ware with linear algebra capabilities. Supporting data files
are posted on both of the following sites:

www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in this Edition
Many parts of the text have been revised based on an exten-
sive set of reviews. Here are the primary changes:

• Earlier Linear Transformations — Selected mate-
rial on linear transformations that was covered later in
the previous edition has been moved to Chapter 1 to
provide amore complete early introduction to the topic.
Specifically, some of the material in Sections 4.10 and
4.11 of the previous edition was extracted to form the
new Section 1.9, and the remaining material is now in
Section 8.6.

• New Section 4.3 Devoted to Spanning Sets— Sec-
tion 4.2 of the previous edition dealt with both sub-
spaces and spanning sets. Classroom experience has
suggested that too many concepts were being intro-
duced at once, so we have slowed down the pace and
split off the material on spanning sets to create a new
Section 4.3.

• New Examples — New examples have been added,
where needed, to support the exercise sets.

• New Exercises — New exercises have been added
with special attention to the expanded early introduc-
tion to linear transformations.

Alternative Version
As detailed on the front endpapers, this version of the
text includes numerous real-world applications. However,
instructors who want to cover a range of applications
in more detail might consider the alternative version of
this text, Elementary Linear Algebra with Applications by
Howard Anton, Chris Rorres, and Anton Kaul (ISBN
978-1-119-40672-3). That version contains the first nine
chapters of this text plus a tenth chapter with 20 detailed
applications. Additional applications, listed in the Table of
Contents, can be found on the the websites that accompany
this text.

Hallmark Features
• Interrelationships Among Concepts— One of our
main pedagogical goals is to convey to the student
that linear algebra is not a collection of isolated defi-
nitions and techniques, but is rather a cohesive subject
with interrelated ideas. One way in which we do this
is by using a crescendo of theorems labeled “Equiva-
lent Statements” that continually revisit relationships
among systems of equations, matrices, determinants,
vectors, linear transformations, and eigenvalues. To get
a general sense of this pedagogical technique see The-
orems 1.5.3, 1.6.4, 2.3.8, 4.9.8, 5.1.5, 6.4.5, and 8.2.4.

• Smooth Transition to Abstraction — Because the
transition from Euclidean spaces to general vector
spaces is difficult formany students, considerable effort
is devoted to explaining the purpose of abstraction and
helping the student to “visualize” abstract ideas by
drawing analogies to familiar geometric ideas.

• Mathematical Precision — We try to be as mathe-
matically precise as is reasonable for students at this
level. But we recognize that mathematical precision is
something to be learned, so proofs are presented in a
patient style that is tailored for beginners.

• Suitability for a Diverse Audience — The text
is designed to serve the needs of students in engi-
neering, computer science, biology, physics, busi-
ness, and economics, as well as those majoring in
mathematics.

• Historical Notes—We feel that it is important to give
students a sense of mathematical history and to con-
vey that real people created themathematical theorems
and equations they are studying. Accordingly, we have
included numerous “Historical Notes” that put various
topics in historical perspective.

http://www.howardanton.com
http://www.wiley.com/college/anton
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About the Exercises
• GradedExercise Sets—Each exercise set begins with
routine drill problems and progresses to problems with
more substance. These are followed by three categories
of problems, the first focusing on proofs, the second on
true/false exercises, and the third on problems requir-
ing technology. This compartmentalization is designed
to simplify the instructor’s task of selecting exercises for
homework.

• True/False Exercises — The true/false exercises are
designed to check conceptual understanding and log-
ical reasoning. To avoid pure guesswork, the students
are required to justify their responses in some way.

• Proof Exercises—Linear algebra courses vary widely
in their emphasis on proofs, so exercises involv-
ing proofs have been grouped for easy identification.
Appendix A provides students some guidance on prov-
ing theorems.

• Technology Exercises—Exercises that require tech-
nology have also been grouped. To avoid burdening the
student with typing, the relevant data files have been
posted on the websites that accompany this text.

• Supplementary Exercises—Each chapter ends with
a set of exercises that draws from all the sections in the
chapter.

Supplementary Materials for Students
Available on the Web
• Self Testing Review—This edition also has an excit-
ing new supplement, called the Linear Algebra Flash-
Card Review. It is a self-study testing system based on
the SQ3R study method that students can use to check
their mastery of virtually every fundamental concept in
this text. It is integrated intoWileyPlus, and is available
as a free app for iPads. The app can be obtained from the
Apple Store by searching for:

Anton Linear Algebra FlashCard Review

• Student Solutions Manual — This supplement
provides detailed solutions to most odd-numbered
exercises.

• Maple Data Files — Data files in Maple format for
the technology exercises that are posted on thewebsites
that accompany this text.

• Mathematica Data Files— Data files in Mathemat-
ica format for the technology exercises that are posted
on the websites that accompany this text.

• MATLABData Files—Data files inMATLAB format
for the technology exercises that are posted on the web-
sites that accompany this text.

• CSV Data Files — Data files in CSV format for the
technology exercises that are posted on the websites
that accompany this text.

• How to Read and Do Proofs — A series of videos
created by Prof. Daniel Solow of the Weatherhead
School of Management, Case Western Reserve Univer-
sity, that present various strategies for proving theo-
rems. These are available through WileyPLUS as well
as the websites that accompany this text. There is also
a guide for locating the appropriate videos for specific
proofs in the text.

• MATLAB Linear Algebra Manual and Laboratory
Projects— This supplement contains a set of labora-
tory projects written by Prof. Dan Seth of West Texas
A&M University. It is designed to help students learn
key linear algebra concepts by using MATLAB and is
available in PDF form without charge to students at
schools adopting the 12th edition of this text.

• Data Files— The data files needed for the MATLAB
Linear Algebra Manual and Lab Projects supplement.

• How to Open and Use MATLAB Files — Instruc-
tional document on how to download, open, and use
the MATLAB files accompanying this text.

Supplementary Materials for Instructors
• Instructor Solutions Manual — This supplement
provides worked-out solutions to most exercises in the
text.

• PowerPoint Slides — A series of slides that display
important definitions, examples, graphics, and theo-
rems in the book. These can also be distributed to stu-
dents as review materials or to simplify note-taking.

• Test Bank—Test questions and sample examinations
in PDF or LaTeX form.

• Image Gallery — Digital repository of images from
the text that instructors may use to generate their own
PowerPoint slides.

• WileyPLUS — An online environment for effective
teaching and learning. WileyPLUS builds student con-
fidence by taking the guesswork out of studying and by
providing a clear roadmap of what to do, how to do it,
andwhether itwas done right. Its purpose is tomotivate
and foster initiative so instructors can have a greater
impact on classroom achievement and beyond.

• WileyPLUS Question Index — This document lists
every question in the current WileyPLUS course and
provides the name, associated learning objective, ques-
tion type, and difficulty level for each. If available, it
also shows the correlation between the previous edi-
tion WileyPLUS question and the current WileyPLUS
question, so instructors can conveniently see the evolu-
tion of a question and reuse it from previous semester
assignments.
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A Guide for the Instructor
Although linear algebra courses vary widely in content and
philosophy, most courses fall into two categories, those
with roughly 40 lectures, and those with roughly 30 lec-
tures. Accordingly, we have created the following long and
short templates as possible starting points for constructing
your own course outline. Keep in mind that these are just
guides, and we fully expect that you will want to customize
them to fit your own interests and requirements. Neither of
these sample templates includes applications, so keep that
in mind as you work with them.

Long Template Short Template

Chapter 1: Systems 8 lectures 6 lectures
of Linear Equations
and Matrices

Chapter 2: 3 lectures 3 lectures
Determinants

Chapter 3: Euclidean 4 lectures 3 lectures
Vector Spaces

Chapter 4: General 8 lectures 7 lectures
Vector Spaces

Chapter 5: 3 lectures 3 lectures
Eigenvalues and
Eigenvectors

Chapter 6: Inner 3 lectures 2 lectures
Product Spaces

Chapter 7: 4 lectures 3 lectures
Diagonalization and
Quadratic Forms

Chapter 8: General 4 lectures 2 lectures
Linear
Transformations

Chapter 9: Numerical 2 lectures 1 lecture
Methods

Total: 39 lectures 30 lectures

Reviewers
The following people reviewed the plans for this edition,
critiqued much of the content, and provided insightful ped-
agogical advice:

Charles Ekene Chika, University of Texas at Dallas
Marian Hukle, University of Kansas
Bin Jiang, Portland State University
Mike Panahi, El Centro College
Christopher Rasmussen,Wesleyan University
Nathan Reff, The College at Brockport: SUNY
Mark Smith,Miami University
Rebecca Swanson, Colorado School of Mines
R. Scott Williams, University of Central Oklahoma
Pablo Zafra, Kean University

Special Contributions
Our deep appreciation is due to a number of people who
have contributed to this edition in many ways:

Prof. Mark Smith, who critiqued the FlashCard program
and suggested valuable improvements to the text exposition.
Prof. Derek Hein, whose keen eye helped us to correct
some subtle inaccuracies.
Susan Raley, who coordinated the production process and
whose attention to detail made a very complex project run
smoothly.
Prof. Roger Lipsett, whose mathematical expertise and
detailed review of the manuscript has contributed greatly to
its accuracy.
The Wiley Team, Laurie Rosatone, Terri Ward, Melissa
Whelan, Tom Kulesa, Kimberly Eskin, Crystal Franks,
Laura Abrams, Billy Ray, and Tom Nery each of whom con-
tributed their experience, skill, and expertise to the project.

HOWARD ANTON
ANTON KAUL
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CHAPTER 1

Systems of Linear
Equations and Matrices
CHAPTER CONTENTS

1.1 Introduction to Systems of Linear Equations 2

1.2 Gaussian Elimination 11

1.3 Matrices andMatrix Operations 25

1.4 Inverses; Algebraic Properties of Matrices 40

1.5 Elementary Matrices and a Method for Finding A−1 53

1.6 More on Linear Systems and Invertible Matrices 62

1.7 Diagonal, Triangular, and Symmetric Matrices 69

1.8 Introduction to Linear Transformations 76

1.9 Compositions of Matrix Transformations 90

1.10 Applications of Linear Systems 98

• Network Analysis (Traffic Flow) 98
• Electrical Circuits 100
• Balancing Chemical Equations 103
• Polynomial Interpolation 105

1.11 Leontief Input-Output Models 110

Introduction
Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices often
appear as tables of numerical data that arise from physical observations, but they occur
in various mathematical contexts as well. For example, we will see in this chapter that all
of the information required to solve a system of equations such as

5x + y = 3
2x − y = 4

is embodied in the matrix

[52
1

−1
3
4]

and that the solution of the system can be obtained by performing appropriate opera-
tions on this matrix. This is particularly important in developing computer programs for
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solving systems of equations because computers are well suited for manipulating arrays
of numerical information. However, matrices are not simply a notational tool for solving
systems of equations; they can be viewed as mathematical objects in their own right, and
there is a rich and important theory associated with them that has a multitude of practi-
cal applications. It is the study of matrices and related topics that forms the mathematical
field that we call “linear algebra.” In this chapter we will begin our study of matrices.

1.1 Introduction to Systems of
Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology
and discuss a method for solving such systems.

Linear Equations
Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)
and in three dimensions a plane in a rectangular xyz-coordinate system can be represented
by an equation of the form

ax + by + cz = d (a, b, c not all 0)
These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b (1)
where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, wewill often use variableswithout subscripts andwrite linear equa-
tions as

a1x + a2 y = b (2)
a1x + a2 y + a3z = b (3)

In the special case where b = 0, Equation (1) has the form
a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All vari-
ables occur only to the first power and do not appear, for example, as arguments of trigono-
metric, logarithmic, or exponential functions. The following are linear equations:

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x− y+ 3z = −1 x1 + x2 + ⋅ ⋅ ⋅ + xn = 1

The following are not linear equations:

x+ 3y2 = 4 3x+ 2y− xy = 5
sin x+ y = 0 √x1 + 2x2 + x3 = 1
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Afinite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4 (5–6)

A general linear system ofm equations in the n unknowns x1, x2, . . . , xn can be written as
The double subscripting on
the coefficients ai j of the
unknowns gives their loca-
tion in the system—the first
subscript indicates the equa-
tion in which the coefficient
occurs, and the second
indicates which unknown
it multiplies. Thus, a12 is
in the first equation and
multiplies x2.

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn
makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1, −2) and (1, 2, −1)

in which the names of the variables are omitted. This notation allows us to interpret these
solutions geometrically as points in two-dimensional and three-dimensional space. More
generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn
of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems in Two and Three Unknowns
Linear systems in two unknowns arise in connectionwith intersections of lines. For exam-
ple, consider the linear system

a1x + b1y = c1
a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and con-
sequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.
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x

y

No solution

x

y

One solution

x

y

In,nitely many
solutions

(coincident lines)

FIGURE 1.1.1

In general, we say that a linear system is consistent if it has at least one solution
and inconsistent if it has no solutions. Thus, a consistent linear system of two equa-
tions in two unknowns has either one solution or infinitely many solutions—there are
no other possibilities. The same is true for a linear system of three equations in three
unknowns

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any, corre-
spond to points where all three planes intersect, so again we see that there are only three
possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions
(three parallel planes;

no common intersection)

No solutions
(two parallel planes;

no common intersection)

No solutions
(no common intersection)

In5nitely many solutions
(planes are all coincident;

intersection is a plane)

In5nitely many solutions
(intersection is a line)

One solution
(intersection is a point)

No solutions
(two coincident planes

parallel to the third;
no common intersection)

In5nitely many solutions
(two coincident planes;

intersection is a line)

FIGURE 1.1.2

Wewill prove later that our observations about the number of solutions of linear sys-
tems of two equations in two unknowns and linear systems of three equations in three
unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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EXAMPLE 2 | A Linear System with One Solution

Solve the linear system
x− y = 1
2x+ y = 6

Solution We can eliminate x from the second equation by adding−2 times the first equa-
tion to the second. This yields the simplified system

x− y = 1
3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first equa-

tion we obtain x = 1+ y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system intersect
at the single point ( 73 ,

4
3 ). We leave it for you to check this by graphing the lines.

EXAMPLE 3 | A Linear System with No Solutions

Solve the linear system
x+ y = 4

3x+ 3y = 6

Solution We can eliminate x from the second equation by adding−3 times the first equa-
tion to the second equation. This yields the simplified system

x+ y = 4
0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that they
have the same slope but different y-intercepts.

EXAMPLE 4 | A Linear System with Infinitely Many Solutions

Solve the linear system
4x− 2y = 1
16x− 8y = 4

Solution We can eliminate x from the second equation by adding−4 times the first equa-
tion to the second. This yields the simplified system

4x− 2y = 1
0 = 0

The second equation does not impose any restrictions on x and y and hence can be omitted.
Thus, the solutions of the system are those values of x and y that satisfy the single equation

4x− 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original sys-
tem coincide. Oneway to describe the solution set is to solve this equation for x in terms of y to
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obtain x = 1
4 +

1
2 y and then assign an arbitrary value t (called aparameter) to y. This allows

us to express the solution by the pair of equations (called parametric equations)

x = 1
4 +

1
2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numerical
values for the parameter t. For example, t = 0 yields the solution ( 14 , 0), t = 1 yields the

solution ( 34 , 1), and t = −1 yields the solution (− 1
4 , −1). You can confirm that these are

solutions by substituting their coordinates into the given equations.

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x= t be the
parameter. The resulting
parametric equations would
look different but would
define the same solution set.

EXAMPLE 5 | A Linear System with Infinitely Many Solutions

Solve the linear system
x− y+ 2z = 5

2x− 2y+ 4z = 10
3x− 3y+ 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and that
those values of x, y, and z that satisfy the equation

x− y+ 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9). We can
do this by first solving this equation for x in terms of y and z, then assigning arbitrary values
r and s (parameters) to these two variables, and then expressing the solution by the three
parametric equations

x = 5+ r− 2s, y = r, z = s
Specific solutions can be obtained by choosing numerical values for the parameters r and s.
For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and Elementary Row Operations
As the number of equations and unknowns in a linear system increases, so does the com-
plexity of the algebra involved in finding solutions. The required computations can be
mademoremanageable by simplifying notation and standardizing procedures. For exam-
ple, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the linear
system

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers

⎡⎢⎢⎢⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2
...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤⎥⎥⎥⎥
⎦

This is called the augmentedmatrix for the system. For example, the augmented matrix

As noted in the introduc-
tion to this chapter, the
term “matrix” is used in
mathematics to denote a
rectangular array of num-
bers. In a later section we
will study matrices in detail,
but for now we will only be
concerned with augmented
matrices for linear systems.

for the system of equations
x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

is [
1 1 2 9
2 4 −3 1
3 6 −5 0

]
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Historical Note

Maxime Bôcher
(1867–1918)

The first known use of augmented matrices appeared between
200 B.C. and 100 B.C. in a Chinesemanuscript entitledNineChapters
of Mathematical Art. The coefficients were arranged in columns
rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns.
The actual use of the term augmentedmatrix appears to have been
introduced by the American mathematician Maxime Bôcher
in his book Introduction to Higher Algebra, published in 1907.
In addition to being an outstanding research mathematician and
an expert in Latin, chemistry, philosophy, zoology, geography,
meteorology, art, andmusic, Bôcherwas an outstanding expositor
of mathematics whose elementary textbooks were greatly appre-
ciated by students and are still in demand today.

[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations

and an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply to
understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

x + y + 2z = 9
2x + 4y − 3z = 1
3x + 6y − 5z = 0

⎡
⎢
⎢
⎣

1 1 2 9
2 4 −3 1
3 6 −5 0

⎤
⎥
⎥
⎦
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Add−2 times the first equation to the second
to obtain

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

Add−2 times the first row to the second to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
3 6 −5 0

⎤
⎥
⎥
⎦

Add −3 times the first equation to the third
to obtain

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

Add −3 times the first row to the third to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
0 3 −11 −27

⎤
⎥
⎥
⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

3y − 11z = −27

Multiply the second row by 1
2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27

⎤
⎥
⎥
⎦

Add −3 times the second equation to the
third to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

− 1
2 z = − 3

2

Add−3 times the second row to the third to
obtain

⎡
⎢
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2

⎤
⎥
⎥
⎥
⎦

Multiply the third equation by−2 to obtain
x + y + 2z = 9

y − 7
2 z = − 17

2
z = 3

Multiply the third row by−2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3

⎤
⎥
⎥
⎦

Add−1 times the second equation to the first
to obtain

x + 11
2 z =

35
2

y − 7
2 z = − 17

2
z = 3

Add−1 times the second row to the first to
obtain

⎡
⎢
⎢
⎢
⎣

1 0 11
2

35
2

0 1 − 7
2 − 17

2
0 0 1 3

⎤
⎥
⎥
⎥
⎦

Add−11
2 times the third equation to the first

and 7
2 times the third equation to the second

to obtain x = 1
y = 2

z = 3

Add− 11
2 times the third row to the first and

7
2 times the third row to the second to obtain

⎡
⎢
⎢
⎣

1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎥
⎥
⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as
the ordered triple (1, 2, 3)
with the understanding that
the numbers in the triple
are in the same order as
the variables in the system,
namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x1,
x2, and x3.

a. x1 + 5x2 −√2 x3 = 1 b. x1 + 3x2 + x1x3 = 2

c. x1 = −7x2 + 3x3 d. x−21 + x2 + 8x3 = 5

e. x3/51 − 2x2 + x3 = 4 f. 𝜋x1 −√2 x2 = 71/3

2. In each part, determine whether the equation is linear in x
and y.

a. 21/3x+√3y = 1 b. 2x1/3 + 3√y = 1

c. cos (𝜋7 )x− 4y = log 3 d. 𝜋
7 cos x− 4y = 0

e. xy = 1 f. y+ 7 = x
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3. Using the notation of Formula (7), write down a general linear
system of

a. two equations in two unknowns.
b. three equations in three unknowns.
c. two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a system of linear equations in the
unknowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. a. [
2 0 0
3 −4 0
0 1 1

] b. [
3 0 −2 5
7 1 4 −3
0 −2 1 7

]

6. a. [
0 3 −1 −1 −1
5 2 0 −3 −6]

b.
⎡
⎢
⎢
⎢
⎣

3 0 1 −4 3
−4 0 4 1 −3
−1 3 0 −2 −9
0 0 0 −1 −2

⎤
⎥
⎥
⎥
⎦

In each part of Exercises 7–8, find the augmented matrix for the lin-
ear system.

7. a. −2x1 = 6
3x1 = 8
9x1 = −3

b. 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

c. 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1
6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. a. 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

b. 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

c. x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1
3x1 − 5x2 − 3x3 = 1

a. (3, 1, 1) b. (3,−1, 1) c. (13, 5, 2)

d. ( 132 ,
5
2 , 2) e. (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

a. ( 57 ,
8
7 , 1) b. ( 57 ,

8
7 , 0) c. (5, 8, 1)

d. ( 57 ,
10
7 ,

2
7) e. ( 57 ,

22
7 , 2)

11. In each part, solve the linear system, if possible, and use the
result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

a. 3x− 2y = 4
6x− 4y = 9

b. 2x− 4y = 1
4x− 8y = 2

c. x− 2y = 0
x− 4y = 8

12. Under what conditions on a and b will the linear system have
no solutions, one solution, infinitely many solutions?

2x− 3y = a
4x− 6y = b

In each part of Exercises 13–14, use parametric equations to describe
the solution set of the linear equation.
13. a. 7x− 5y = 3

b. 3x1 − 5x2 + 4x3 = 7

c. −8x1 + 2x2 − 5x3 + 6x4 = 1

d. 3𝑣 − 8𝑤 + 2x− y+ 4z = 0

14. a. x+ 10y = 2

b. x1 + 3x2 − 12x3 = 3

c. 4x1 + 2x2 + 3x3 + x4 = 20

d. 𝑣 +𝑤 + x− 5y+ 7z = 0

In Exercises 15–16, each linear system has infinitely many solutions.
Use parametric equations to describe its solution set.

15. a. 2x− 3y = 1
6x− 9y = 3

b. x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. a. 6x1 + 2x2 = −8
3x1 + x2 = −4

b. 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that will
create a 1 in the upper left corner of the given augmentedmatrix and
will not create any fractions in its first row.

17. a. [
−3 −1 2 4
2 −3 3 2
0 2 −3 1

] b. [
0 −1 −5 0
2 −9 3 2
1 4 −3 3

]

18. a. [
2 4 −6 8
7 1 4 3

−5 4 2 7
] b. [

7 −4 −2 2
3 −1 8 1

−6 3 −1 4
]

In Exercises 19–20, find all values of k for which the given aug-
mented matrix corresponds to a consistent linear system.

19. a. [1 k −4
4 8 2] b. [1 k −1

4 8 −4]

20. a. [ 3 −4 k
−6 8 5] b. [k 1 −2

4 −1 2]
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21. The curve y = ax2 + bx+ c shown in the accompanying fig-
ure passes through the points (x1, y1), (x2, y2), and (x3, y3).
Show that the coefficients a, b, and c form a solution of the
system of linear equations whose augmented matrix is

⎡
⎢
⎢
⎣

x21 x1 1 y1
x22 x2 1 y2
x23 x3 1 y3

⎤
⎥
⎥
⎦

y

x

y = ax2 + bx + c

(x1, y1)

(x3, y3)

(x2, y2)

FIGURE Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations
x1 + kx2 = c and x1 + l x2 = d

have the same solution set, then the two equations are identi-
cal (i.e., k = l and c = d).

24. Consider the system of equations
ax + by = k
cx + dy = l
ex + 𝑓y = m

Discuss the relative positions of the lines ax+ by = k,
cx+ dy = l, and ex+𝑓y = m when

a. the system has no solutions.

b. the system has exactly one solution.

c. the system has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat, 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food 1: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, 1 unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains 1 unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Let x, y, and z denote the number of ounces of the first, sec-
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in x, y, and z
whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and c such that
the parabola y = ax2 + bx+ c passes through the points
(1, 1), (2, 4), and (−1, 1). Find (but do not solve) a system
of linear equations whose solutions provide values for a, b,
and c. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that
the sum of the numbers is 12, the sum of two times the first
plus the second plus two times the third is 5, and the third
number is one more than the first. Find (but do not solve) a
linear system whose equations describe the three conditions.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. A linear system whose equations are all homogeneous

must be consistent.

b. Multiplying a row of an augmented matrix through by
zero is an acceptable elementary row operation.

c. The linear system

x − y = 3
2x − 2y = k

cannot have a unique solution, regardless of the value of k.

d. A single linear equation with two or more unknowns
must have infinitely many solutions.

e. If the number of equations in a linear system exceeds
the number of unknowns, then the system must be
inconsistent.

f. If each equation in a consistent linear system ismultiplied
through by a constant c, then all solutions to the new sys-
tem can be obtained by multiplying solutions from the
original system by c.

g. Elementary row operations permit one row of an aug-
mented matrix to be subtracted from another.

h. The linear system with corresponding augmented matrix

[2 −1 4
0 0 −1]

is consistent.

Working with Technology
T1. Solve the linear systems in Examples 2, 3, and 4 to see how

your technology utility handles the three types of systems.

T2. Use the result in Exercise 21 to find values of a, b, and c for
which the curve y = ax2 + bx+ c passes through the points
(−1, 1, 4), (0, 0, 8), and (1, 1, 7).
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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear equa-
tions. The procedure is based on the idea of performing certain operations on the rows of
the augmentedmatrix that simplify it to a form fromwhich the solution of the system can
be ascertained by inspection.

Considerations in Solving Linear Systems
When considering methods for solving systems of linear equations, it is important to dis-
tinguish between large systems that must be solved by computer and small systems that
can be solved by hand. For example, there are many applications that lead to linear sys-
tems in thousands or even millions of unknowns. Large systems require special tech-
niques to deal with issues of memory size, roundoff errors, solution time, and so forth.
Such techniques are studied in the field of numerical analysis and will only be touched
on in this text. However, almost all of the methods that are used for large systems are
based on the ideas that we will develop in this section.

Echelon Forms
In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z by
reducing the augmented matrix to the form

[
1 0 0 1
0 1 0 2
0 0 1 3

]

fromwhich the solution x = 1, y = 2, z = 3 became evident. This is an example of amatrix
that is in reduced row echelon form. To be of this form, amatrix must have the following
properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 | Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

[
1 0 0 4
0 1 0 7
0 0 1 −1

], [
1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

, [0 0
0 0]
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The following matrices are in row echelon form but not reduced row echelon form.

[
1 4 −3 7
0 1 6 2
0 0 1 5

], [
1 1 0
0 1 0
0 0 0

], [
0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1

]

EXAMPLE 2 | More on Row Echelon and Reduced
Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading 1.
Thus, with any real numbers substituted for the ∗’s, all matrices of the following types are in
row echelon form:

⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

All matrices of the following types are in reduced row echelon form:

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 | Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and x4
has been reduced by elementary row operations to

⎡
⎢
⎢
⎢
⎣

1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5

⎤
⎥
⎥
⎥
⎦

This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5, which can
also be expressed as the 4-tuple (3,−1, 0, 5).
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EXAMPLE 4 | Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns x, y,
and zhas been reduced by elementary row operations to the given reduced row echelon form.
Solve the system.

(a) [
1 0 0 0
0 1 2 0
0 0 0 1

] (b) [
1 0 3 −1
0 1 −4 2
0 0 0 0

] (c) [
1 −5 1 4
0 0 0 0
0 0 0 0

]

Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the linear
system corresponding to the augmented matrix is

x + 3z = −1
y − 4z = 2

In general, the variables in a linear system that correspond to the leading l’s in its augmented
matrix are called the leading variables, and the remaining variables are called the free vari-
ables. In this case the leading variables are x and y, and the variable z is the only free variable.
Solving for the leading variables in terms of the free variables gives

x = −1− 3z
y = 2+ 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t, which then determines values for x and y. Thus, the solution
set can be represented by the parametric equations

x = −1− 3t, y = 2+ 4t, z = t

By substituting various values for t in these equations we can obtain various solutions of the
system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the zero
rows, in which case the linear system associated with the augmented matrix consists of the
single equation

x− 5y+ z = 4 (1)

fromwhichwe see that the solution set is a plane in three-dimensional space. Although (1) is
a valid formof the solution set, there aremany applications inwhich it is preferable to express
the solution set in parametric form. We can convert (1) to parametric form by solving for the
leading variable x in terms of the free variables y and z to obtain

x = 4+ 5y− z

From this equation we see that the free variables can be assigned arbitrary values, say y = s
and z = t, which then determine the value of x. Thus, the solution set can be expressed para-
metrically as

x = 4+ 5s− t, y = s, z = t (2)

We will usually denote
parameters in a general
solution by the letters
r, s, t, . . . , but any letters
that do not conflict with the
names of the unknowns can
be used. For systems with
more than three unknowns,
subscripted letters
such as t1, t2, t3, . . .
are convenient.
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Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

Definition 1

If a linear system has infinitely many solutions, then a set of parametric equa-
tions from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.

Thus, for example, Formula (2) is a general solution of system (iii) in the previous
example.

Elimination Methods
We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step algorithm that
can be used to reduce any matrix to reduced row echelon form. As we state each step in
the algorithm, we will illustrate the idea by reducing the following matrix to reduced row
echelon form.

⎡
⎢
⎢
⎣

0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

⎤
⎥
⎥
⎦

Step 1. Locate the leftmost column that does not consist entirely of zeros.

0 0 2 0 7 12

2 4 10 6 12 28

2 4 5 6 5 1

Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.

[
2 4 −10 6 12 28
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first and second rows in the
preceding matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the
first row by 1/a in order to introduce a leading 1.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first row of the preceding matrix
was multiplied by 12 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
0 0 5 0 −17 −29

] −2 times the first row of the preceding
matrix was added to the third row.
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Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

1 2 5 3 6 14

0 0 2 0 7 12

0 0 5 0 17 29

Leftmost nonzero column

in the submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 5 0 17 29

The -rst row in the submatrix was

multiplied by 1
2

                                 to introduce a
leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column

in the new submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

–5 times the Arst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1 2

The ,rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon
form we need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.

[
1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2

] 7
2 times the third row of the preceding
matrix was added to the second row.

[
1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2

] −6 times the third row was added to the
first row.

[
1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2

] 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.

The algorithm we have just described for reducing a matrix to reduced row echelon
form is called Gauss–Jordan elimination. It consists of two parts, a forward phase in
which zeros are introduced below the leading 1’s and a backward phase in which zeros
are introduced above the leading 1’s. If only the forward phase is used, then the procedure
produces a row echelon form and is called Gaussian elimination. For example, in the
preceding computations a row echelon form was obtained at the end of Step 5.
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Historical Note

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear
when the great German mathematician Carl Friedrich Gauss
used it to help compute the orbit of the asteroid Ceres from lim-
ited data. What happened was this: On January 1, 1801 the Sicil-
ian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “miss-
ing planet.” He named the object Ceres andmade a limited num-
ber of positional observations but then lost the object as it neared
the Sun. Gauss, then only 24 years old, undertook the problem of
computing the orbit of Ceres from the limited data using a tech-
nique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work
of Gauss created a sensation when Ceres reappeared a year later
in the constellation Virgo at almost the precise position that he
predicted! The basic idea of the method was further popularized
by the German engineer Wilhelm Jordan in his book on geodesy
(the science of measuring Earth shapes) entitled Handbuch der
Vermessungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
https://en.wikipedia.org/wiki/Andrey_Markov#/media/

File:Andrei_Markov.jpg. Public domain. (Jordan)]

EXAMPLE 5 | Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6

⎤
⎥
⎥
⎥
⎦

Adding−2 times the first row to the second and fourth rows gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6

⎤
⎥
⎥
⎥
⎦

Multiplying the second row by−1 and then adding−5 times the new second row to the third
row and−4 times the new second row to the fourth row gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2

⎤
⎥
⎥
⎥
⎦

https://en.wikipedia.org/wiki/Andrey_Markov#/media/
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Interchanging the third and fourth rows and then multiplying the third row of the resulting
matrix by 1

6 gives the row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the forward phase since
there are zeros below the leading 1’s.

Adding−3 times the third row to the second row and then adding 2 times the second row of
the resulting matrix to the first row yields the reduced row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the backward phase since
there are zeros above the leading 1’s.

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 1
3

(3)

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Finally, we express the general solution of the system parametrically by assigning the free
variables x2, x4, and x5 arbitrary values r, s, and t, respectively. This yields

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Note that in constructing
the linear system in (3) we
ignored the row of zeros
in the corresponding aug-
mented matrix. Why is this
justified?

Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11 x1 + a12 x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21 x1 + a22 x2 + ⋅ ⋅ ⋅ + a2nxn = 0
...

...
...

...
am1 x1 + am2 x2 + ⋅ ⋅ ⋅ + amnxn = 0

Every homogeneous systemof linear equations is consistent because all such systemshave
x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution; if there
are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.
• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 [a1,b1 not both zero]

a2x + b2y = 0 [a2,b2 not both zero]

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).
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x

y

Only the trivial solution

x

y

In0nitely many
solutions

a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2y = 0

a2x + b2y = 0

FIGURE 1.2.1

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.

EXAMPLE 6 | A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe that this system is the same as that in Example 5 except for the constants
on the right side, which in this case are all zero. The augmented matrix for this system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 0
0 0 5 10 0 15 0
2 6 0 8 4 18 0

⎤
⎥
⎥
⎥
⎦

(5)

which is the same as that in Example 5 except for the entries in the last column, which are
all zeros in this case. Thus, the reduced row echelon form of this matrix will be the same as
that of the augmentedmatrix in Example 5, except for the last column. However, a moment’s
reflection will make it evident that a column of zeros is not changed by an elementary row
operation, so the reduced row echelon form of (5) is

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 0

(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r, s, and t, respectively, then
we can express the solution set parametrically as

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.
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Free Variables in Homogeneous Linear Systems
Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.

2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous lin-
ear system has any zero rows, the linear system corresponding to that reduced row
echelon formwill either have the same number of equations as the original system or
it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading vari-
able, the homogeneous system corresponding to the reduced row echelon form of the aug-
mented matrix must have r leading variables and n − r free variables. Thus, this system is
of the form

xk1 + ∑( ) = 0
xk2 + ∑( ) = 0

. . .
...

xkr + ∑( ) = 0

(8)

where in each equation the expression∑( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

Theorem 1.2.1

Free Variable Theorem for Homogeneous Systems
If a homogeneous linear system has n unknowns, and if the reduced row echelon
form of its augmented matrix has r nonzero rows, then the system has n − r free
variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2
applies only to homoge-
neous systems—a non-
homogeneous system with
more unknowns than equa-
tions need not be consistent.
However, we will prove
later that if a nonhomoge-
neous system with more
unknowns than equations
is consistent, then it has
infinitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system hasm equa-
tions in n unknowns, and ifm < n, then it must also be true that r < n (why?). This being
the case, the theorem implies that there is at least one free variable, and this implies that
the system has infinitely many solutions. Thus, we have the following result.

Theorem 1.2.2

A homogeneous linear system with more unknowns than equations has infinitely
many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.



November 12, 2018 13:09 C01 Sheet number 20 Page number 20 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

20 CHAPTER 1 Systems of Linear Equations and Matrices

Gaussian Elimination and Back-Substitution
For small linear systems that are solved by hand (such asmost of those in this text), Gauss–
Jordan elimination (reduction to reduced row echelon form) is a good procedure to use.
However, for large linear systems that require a computer solution, it is generally more
efficient to use Gaussian elimination (reduction to row echelon form) followed by a tech-
nique known as back-substitution to complete the process of solving the system. The
next example illustrates this technique.

EXAMPLE 7 | Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:
Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5
x3 = 1− 2x4 − 3x6
x6 = 1

3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5
x3 = −2x4
x6 = 1

3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r, s, and t, respectively, the general
solution is given by the formulas

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.
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EXAMPLE 8 | Existence and Uniqueness of Solutions

Suppose that thematrices below are augmentedmatrices for linear systems in the unknowns
x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row echelon
form. Discuss the existence and uniqueness of solutions to the corresponding linear systems

(a)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

(b)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(c)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables x1, x2,
and x3 correspond to leading 1’s and hence are leading variables. The variable x4 is a free
variable. With a little algebra, the leading variables can be expressed in terms of the free
variable, and the free variable can be assigned an arbitrary value. Thus, the system must
have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9
we obtain x3 = 9. You should now be able to see that if we continue this process and substi-
tute the known values of x3 and x4 into the equation corresponding to the second row, we
will obtain a unique numerical value for x2; and if, finally, we substitute the known values
of x4, x3, and x2 into the equation corresponding to the first row, we will produce a unique
numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon Forms
There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row opera-
tions, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A Simple
Proof,” by Thomas Yuster,Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix𝐴 have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of𝐴. The
columns containing the leading 1’s in a row echelon or reduced row echelon form
of 𝐴 are called the pivot columns of 𝐴, and the rows containing the leading 1’s are
called the pivot rows of 𝐴. A nonzero entry in a pivot position of 𝐴 is called a pivot
of 𝐴.

EXAMPLE 9 | Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

𝐴 = [
0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

] to be [
1 2 −5 3 6 14
0 0 1 0 − 7

2 −6
0 0 0 0 1 2

]

The leading 1’s occur in (row 1, column 1), (row 2, column 3), and (row 3, column 5). These
are the pivot positions of𝐴. The pivot columns of𝐴 are 1, 3, and 5, and the pivot rows are 1,
2, and 3. The pivots of 𝐴 are the nonzero numbers in the pivot positions. These are marked
by shaded rectangles in the following diagram.

0 0 2 0 7 12

2 4A = 10 6 12 28

2 4 5 6 5 1

Pivot columns

If A is the augmented matrix
for a linear system, then
the pivot columns identify
the leading variables. As an
illustration, in Example 5
the pivot columns are 1,
3, and 6, and the leading
variables are x1, x3, and x6.

Roundoff Error and Instability
There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculationsmaydegrade an answer to a degree
that makes it useless. Algorithms in which this happens are called unstable. There are
various techniques for minimizing roundoff error and instability. For example, it can be
shown that for large linear systems Gauss–Jordan elimination involves roughly 50%more
operations than Gaussian elimination, so most computer algorithms are based on the lat-
ter method. Some of these matters will be considered in Chapter 9.

Exercise Set 1.2

In Exercises 1–2, determine whether the matrix is in row echelon
form, reduced row echelon form, both, or neither.

1. a. [
1 0 0
0 1 0
0 0 1

] b. [
1 0 0
0 1 0
0 0 0

] c. [
0 1 0
0 0 1
0 0 0

]

d. [
1 0 3 1
0 1 2 4] e.

⎡
⎢
⎢
⎢
⎣

1 2 0 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

f. [
0 0
0 0
0 0

] g. [
1 −7 5 5
0 1 3 2]

2. a. [
1 2 0
0 1 0
0 0 0

] b. [
1 0 0
0 1 0
0 2 0

] c. [
1 3 4
0 0 1
0 0 0

]

d. [
1 5 −3
0 1 1
0 0 0

] e. [
1 2 3
0 0 0
0 0 1

]

f.
⎡
⎢
⎢
⎢
⎣

1 2 3 4 5
1 0 7 1 3
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

g. [
1 −2 0 1
0 0 1 −2]
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In Exercises 3–4, suppose that the augmentedmatrix for a linear sys-
tem has been reduced by row operations to the given row echelon
form. Identify the pivot rows and columns and solve the system.

3. a. [
1 −3 4 7
0 1 2 2
0 0 1 5

]

b. [
1 0 8 −5 6
0 1 4 −9 3
0 0 1 1 2

]

c.
⎡
⎢
⎢
⎢
⎣

1 7 −2 0 −8 −3
0 0 1 1 6 5
0 0 0 1 3 9
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 7 1
0 1 4 0
0 0 0 1

]

4. a. [
1 0 0 −3
0 1 0 0
0 0 1 7

]

b. [
1 0 0 −7 8
0 1 0 3 2
0 0 1 1 −5

]

c.
⎡
⎢
⎢
⎢
⎣

1 −6 0 0 3 −2
0 0 1 0 4 7
0 0 0 1 5 8
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 0 0
0 0 1 0
0 0 0 1

]

In Exercises 5–8, solve the system by Gaussian elimination.

5. x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0
−2x1 + 5x2 + 2x3 = 1
8x1 + x2 + 4x3 = −1

7. x − y + 2z − 𝑤 = −1
2x + y − 2z − 2𝑤 = −2
−x + 2y − 4z + 𝑤 = 1
3x − 3𝑤 = −3

8. − 2b + 3c = 1
3a + 6b − 3c = −2
6a + 6b + 3c = 5

In Exercises 9–12, solve the system by Gauss–Jordan elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous system has
nontrivial solutions by inspection (without pencil and paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0
7x1 + x2 − 8x3 + 9x4 = 0
2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0
x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any method.

15. 2x1 + x2 + 3x3 = 0
x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0
−x + 2y − 3z = 0
x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

18. 𝑣 + 3𝑤 − 2x = 0
2u + 𝑣 − 4𝑤 + 3x = 0
2u + 3𝑣 + 2𝑤 − x = 0

−4u − 3𝑣 + 5𝑤 − 4x = 0

19. 2x + 2y + 4z = 0
𝑤 − y − 3z = 0
2𝑤 + 3x + y + z = 0

−2𝑤 + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0
x1 + 4x2 + 2x3 = 0
− 2x2 − 2x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0
x1 − 2x2 − x3 + x4 = 0

21. 2𝐼1 − 𝐼2 + 3𝐼3 + 4𝐼4 = 9
𝐼1 − 2𝐼3 + 7𝐼4 = 11
3𝐼1 − 3𝐼2 + 𝐼3 + 5𝐼4 = 8
2𝐼1 + 𝐼2 + 4𝐼3 + 4𝐼4 = 10

22. 𝑍3 + 𝑍4 + 𝑍5 = 0
−𝑍1 − 𝑍2 + 2𝑍3 − 3𝑍4 + 𝑍5 = 0
𝑍1 + 𝑍2 − 2𝑍3 − 𝑍5 = 0
2𝑍1 + 2𝑍2 − 𝑍3 + 𝑍5 = 0

In each part of Exercises 23–24, the augmented matrix for a lin-
ear system is given in which the asterisk represents an unspecified
real number. Determine whether the system is consistent, and if so
whether the solution is unique. Answer “inconclusive” if there is not
enough information to make a decision.

23. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

] b. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0

]

c. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

] d. [
1 ∗ ∗ ∗
0 0 ∗ 0
0 0 1 ∗

]

24. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 1

] b. [
1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗

]

c. [
1 0 0 0
1 0 0 1
1 ∗ ∗ ∗

] d. [
1 ∗ ∗ ∗
1 0 0 1
1 0 0 1

]

In Exercises 25–26, determine the values of a for which the system
has no solutions, exactly one solution, or infinitely many solutions.
25. x + 2y − 3z = 4

3x − y + 5z = 2
4x + y + (a2 − 14)z = a+ 2
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26. x + 2y + z = 2
2x − 2y + 3z = 1
x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c satisfy
for the linear system to be consistent?

27. x + 3y − z = a
x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a
−x − 2y + z = b
3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b, and c are
constants.

29. 2x + y = a
3x + 6y = b

30. x1 + x2 + x3 = a
2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of

[1 3
2 7]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce

[
2 1 3
0 −2 −29
3 4 5

]

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋, and 0 ≤ 𝛾 ≤ 2𝜋.

sin𝛼 + 2 cos𝛽 + 3 tan𝛾 = 0
2 sin𝛼 + 5 cos𝛽 + 3 tan𝛾 = 0
− sin𝛼 − 5 cos𝛽 + 5 tan𝛾 = 0

[Hint: Begin by making the substitutions x = sin𝛼,
y = cos𝛽, and z = tan𝛾.]

34. Solve the following system of nonlinear equations for the
unknown angles𝛼, 𝛽, and 𝛾, where 0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋,
and 0 ≤ 𝛾 < 𝜋.

2 sin𝛼 − cos𝛽 + 3 tan𝛾 = 3
4 sin𝛼 + 2 cos𝛽 − 2 tan𝛾 = 2
6 sin𝛼 − 3 cos𝛽 + tan𝛾 = 9

35. Solve the following system of nonlinear equations for x, y,
and z.

x2 + y2 + z2 = 6
x2 − y2 + 2z2 = 2
2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions 𝑋 = x2, 𝑌 = y2,
𝑍 = z2.]

36. Solve the following system for x, y, and z.
1
x +

2
y −

4
z = 1

2
x +

3
y +

8
z = 0

− 1
x +

9
y +

10
z = 5

37. Find the coefficients a, b, c, and d so that the curve shown in
the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx+ d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11)
(4, –14)

FIGURE Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx+ cy+ d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

FIGURE Ex-38

39. If the linear system
a1x+ b1y+ c1z = 0
a2x− b2y+ c2z = 0
a3x+ b3 y− c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x+ b1y+ c1z = 3
a2x− b2y+ c2z = 7
a3x+ b3 y− c3z = 11

40. a. If 𝐴 is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

b. If 𝐵 is a matrix with three rows and six columns, then
what is themaximumpossible number of parameters in the
general solution of the linear system with augmented
matrix 𝐵?

c. If𝐶 is amatrixwith five rows and three columns, thenwhat
is the minimum possible number of rows of zeros in any
row echelon form of 𝐶?

41. Describe all possible reduced row echelon forms of

a. [
a b c
d e 𝑓
g h i

] b.
⎡
⎢
⎢
⎢
⎣

a b c d
e 𝑓 g h
i j k l
m n p q

⎤
⎥
⎥
⎥
⎦
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42. Consider the system of equations
ax+ by = 0
cx+ dy = 0
ex+𝑓y = 0

Discuss the relative positions of the lines ax+ by = 0,
cx+ dy = 0, and ex+𝑓y = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. a. Prove that if ad− bc ≠ 0, then the reduced row echelon
form of

[a b
c d] is [1 0

0 1]

b. Use the result in part (a) to prove that if ad− bc ≠ 0, then
the linear system

ax+ by = k
cx+ dy = l

has exactly one solution.

True-False Exercises
TF. In parts (a)–(i) determine whether the statement is true or

false, and justify your answer.
a. If a matrix is in reduced row echelon form, then it is also

in row echelon form.

b. If an elementary row operation is applied to a matrix that
is in row echelon form, the resulting matrix will still be in
row echelon form.

c. Every matrix has a unique row echelon form.

d. A homogeneous linear system in n unknowns whose cor-
responding augmentedmatrix has a reduced row echelon
form with r leading 1’s has n− r free variables.

e. All leading 1’s in amatrix in row echelon formmust occur
in different columns.

f. If every column of a matrix in row echelon form has a
leading 1, then all entries that are not leading 1’s are zero.

g. If a homogeneous linear system of n equations in n
unknowns has a corresponding augmented matrix with a
reduced row echelon form containing n leading 1’s, then
the linear system has only the trivial solution.

h. If the reduced row echelon form of the augmentedmatrix
for a linear system has a row of zeros, then the system
must have infinitely many solutions.

i. If a linear system has more unknowns than equations,
then it must have infinitely many solutions.

Working with Technology
T1. Find the reduced row echelon form of the augmented matrix

for the linear system

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1
7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent
and, if so, find its solution.

T2. Find values of the constants 𝐴, 𝐵, 𝐶, and 𝐷 that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x
(x2 + 2x+ 2)(x2 − 1) =

𝐴x+𝐵
x2 + 2x+ 2

+ 𝐶
x− 1

+ 𝐷
x+ 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this
as a problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices
for linear systems. In this section we will begin to study matrices as objects in their own
right by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and Terminology
In Section 1.2we used rectangular arrays of numbers, called augmentedmatrices, to abbre-
viate systems of linear equations. However, rectangular arrays of numbers occur in other
contexts as well. For example, the following rectangular array with three rows and seven
columns might describe the number of hours that a student spent studying three subjects
during a certain week:
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2 3

3

1

2

1

3

4

4

1

1

3

0

4

2

0

2

2

2

Mon.

Math

History

Language

Tues. Wed. Thurs. Fri. Sat. Sun.

0

4

If we suppress the headings, then we are left with the following rectangular array of num-
bers with three rows and seven columns, called a “matrix”:

[
2 3 2 4 1 4 2
0 3 1 4 3 2 2
4 1 3 1 0 0 2

]

More generally, we make the following definition.

Definition 1

A matrix is a rectangular array of numbers. The numbers in the array are called
the entries of the matrix.

Matrix brackets are often
omitted from 1× 1 matrices,
making it impossible to tell,
for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from
the context.

EXAMPLE 1 | Examples of Matrices

Some examples of matrices are

[
1 2
3 0

−1 4
], [2 1 0 −3],

⎡
⎢
⎢
⎣

e 𝜋 −√2
0 1

2 1
0 0 0

⎤
⎥
⎥
⎦
, [13], [4]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 × 2). In a size description, the
first number always denotes the number of rows, and the second denotes the number of
columns. The remaining matrices in Example 1 have sizes 1 × 4, 3 × 3, 2 × 1, and 1 × 1,
respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a rowmatrix), and amatrix with only one column, such as the fourth in that example,
is called a column vector (or a columnmatrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

𝐴 = [2 1 7
3 4 2] or 𝐶 = [a b c

d e 𝑓]

Whendiscussingmatrices, it is common to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.
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The entry that occurs in row i and column j of a matrix𝐴will be denoted by aij. Thus
a general 3 × 4 matrix might be written as

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]

and a generalm × nmatrix as

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

(1)

When a compact notation is desired, matrix (1) can be written as
𝐴 = [aij]m×n or 𝐴 = [aij]

the first notation being used when it is important in the discussion to know the size, and
the secondwhen the size need not be emphasized. Usually, wewill match the letter denot-
ing a matrix with the letter denoting its entries; thus, for a matrix 𝐵 we would generally
use bij for the entry in row i and column j, and for amatrix𝐶wewould use the notation cij.

The entry in row i and column j of amatrix𝐴 is also commonly denoted by the symbol
(𝐴)ij. Thus, for matrix (1) above, we have

(𝐴)ij = aij
and for the matrix

𝐴 = [2 −3
7 0]

we have (𝐴)11 = 2, (𝐴)12 = −3, (𝐴)21 = 7, and (𝐴)22 = 0.
Row and column vectors are of special importance, and it is common practice to

denote them by boldface lowercase letters rather than capital letters. For such matrices,
double subscripting of the entries is unnecessary. Thus a general 1 × n row vector a and
a generalm × 1 column vector b would be written as

a = [a1 a2 ⋅ ⋅ ⋅ an] and b =
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

Amatrix 𝐴 with n rows and n columns is called a square matrix of order n, and the
shaded entries a11, a22, . . . , ann in (2) are said to be on themain diagonal of 𝐴.

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

(2)

Operations on Matrices
So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of matri-
ces” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

Definition 2

Two matrices are defined to be equal if they have the same size and their corre-
sponding entries are equal.
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EXAMPLE 2 | Equality of Matrices

Consider the matrices

𝐴 = [2 1
3 x], 𝐵 = [2 1

3 5], 𝐶 = [2 1 0
3 4 0]

If x = 5, then𝐴 = 𝐵, but for all other values of x the matrices 𝐴 and 𝐵 are not equal, since
not all of their corresponding entries are the same. There is no value of x for which 𝐴 = 𝐶
since𝐴 and 𝐶 have different sizes.

The equality of two matrices

A=[aij] and B=[bij]
of the same size can be
expressed either by writing

(A)i j=(B)i j
or by writing

ai j= bi j

Definition 3

If𝐴 and 𝐵 are matrices of the same size, then the sum𝐴 + 𝐵 is the matrix obtained
by adding the entries of 𝐵 to the corresponding entries of 𝐴, and the difference
𝐴 − 𝐵 is the matrix obtained by subtracting the entries of 𝐵 from the corresponding
entries of 𝐴. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if 𝐴 = [aij] and 𝐵 = [bij] have the same size, then

(𝐴 + 𝐵)ij = (𝐴)ij + (𝐵)ij = aij + bij and (𝐴 − 𝐵)ij = (𝐴)ij − (𝐵)ij = aij − bij

EXAMPLE 3 | Addition and Subtraction

Consider the matrices

𝐴 =
⎡⎢⎢⎢
⎣

2 1 0 3
−1 0 2 4
4 −2 7 0

⎤⎥⎥⎥
⎦

, 𝐵 =
⎡⎢⎢⎢
⎣

−4 3 5 1
2 2 0 −1
3 2 −4 5

⎤⎥⎥⎥
⎦

, 𝐶 = [1 1
2 2]

Then

𝐴+𝐵 =
⎡⎢⎢⎢
⎣

−2 4 5 4
1 2 2 3
7 0 3 5

⎤⎥⎥⎥
⎦

and 𝐴−𝐵 =
⎡⎢⎢⎢
⎣

6 −2 −5 2
−3 −2 2 5
1 −4 11 −5

⎤⎥⎥⎥
⎦

The expressions𝐴+𝐶, 𝐵 +𝐶,𝐴−𝐶, and 𝐵 −𝐶 are undefined.

Definition 4

If 𝐴 is any matrix and c is any scalar, then the product c𝐴 is the matrix obtained
by multiplying each entry of the matrix 𝐴 by c. The matrix c𝐴 is said to be a scalar
multiple of 𝐴.

In matrix notation, if 𝐴 = [aij], then

(c𝐴)ij = c(𝐴)ij = caij
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EXAMPLE 4 | Scalar Multiples

For the matrices

𝐴 = [2 3 4
1 3 1], 𝐵 = [ 0 2 7

−1 3 −5], 𝐶 = [9 −6 3
3 0 12]

we have

2𝐴 = [4 6 8
2 6 2], (−1)𝐵 = [0 −2 −7

1 −3 5],
1
3𝐶 = [3 −2 1

1 0 4]

It is common practice to denote (−1)𝐵 by−𝐵.

Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries and
subtracted by subtracting corresponding entries, it would seem natural to definemultipli-
cation of matrices bymultiplying corresponding entries. However, it turns out that such a
definition would not be very useful. Experience has led mathematicians to the following
definition, the motivation for which will be given later in this chapter.

Definition 5

If 𝐴 is an m × r matrix and 𝐵 is an r × n matrix, then the product 𝐴𝐵 is the
m × n matrix whose entries are determined as follows: To find the entry in row i
and column j of 𝐴𝐵, single out row i from the matrix 𝐴 and column j from the
matrix 𝐵. Multiply the corresponding entries from the row and column together,
and then add the resulting products.

EXAMPLE 5 | Multiplying Matrices

Consider the matrices

𝐴 = [1 2 4
2 6 0], 𝐵 = [

4 1 4 3
0 −1 3 1
2 7 5 2

]

Since 𝐴 is a 2 × 3 matrix and 𝐵 is a 3 × 4 matrix, the product 𝐴𝐵 is a 2 × 4 matrix. To
determine, for example, the entry in row 2 and column 3 of𝐴𝐵, we single out row 2 from𝐴
and column 3 from𝐵. Then, as illustrated below, wemultiply corresponding entries together
and add up these products.

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2
26

(2 4) (6 3) (0 5) 26

The entry in row 1 and column 4 of𝐴𝐵 is computed as follows:

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2

13

(1 3) (2 1) (4 2) 13
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The computations for the remaining entries are

(1 ⋅ 4) + (2 ⋅ 0) + (4 ⋅ 2) = 12
(1 ⋅ 1) − (2 ⋅ 1) + (4 ⋅ 7) = 27
(1 ⋅ 4) + (2 ⋅ 3) + (4 ⋅ 5) = 30
(2 ⋅ 4) + (6 ⋅ 0) + (0 ⋅ 2) = 8
(2 ⋅ 1) − (6 ⋅ 1) + (0 ⋅ 7) = −4
(2 ⋅ 3) + (6 ⋅ 1) + (0 ⋅ 2) = 12

𝐴𝐵 = [12 27 30 13
8 −4 26 12]

The definition of matrix multiplication requires that the number of columns of the
first factor 𝐴 be the same as the number of rows of the second factor 𝐵 in order to form
the product 𝐴𝐵. If this condition is not satisfied, the product is undefined. A convenient
way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.

A

m r

Inside

Outside

B

r n

AB

m n

(3)

EXAMPLE 6 | Determining Whether a Product Is Defined

Suppose that𝐴, 𝐵, and 𝐶 are matrices with the following sizes:

𝐴 𝐵 𝐶
3 × 4 4 × 7 7 × 3

Then, 𝐴𝐵 is defined and is a 3 × 7 matrix; 𝐵𝐶 is defined and is a 4 × 3 matrix; and 𝐶𝐴 is
defined and is a 7 × 4 matrix. The products𝐴𝐶, 𝐶𝐵, and 𝐵𝐴 are all undefined.

In general, if 𝐴 = [aij] is an m × r matrix and 𝐵 = [bij] is an r × n matrix, then, as
illustrated by the shading in the following display,

AB =

a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr

b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn

(4)

the entry (𝐴𝐵)ij in row i and column j of 𝐴𝐵 is given by

(𝐴𝐵)i j = ai1b1j + ai2b2 j + ai3b3 j + ⋅ ⋅ ⋅ + airbr j (5)

Formula (5) is called the row-column rule for matrix multiplication.

Partitioned Matrices
A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are
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three possible partitions of a general 3 × 4 matrix 𝐴—the first is a partition of 𝐴 into four
submatrices 𝐴11, 𝐴12, 𝐴21, and 𝐴22; the second is a partition of 𝐴 into its row vectors r1,
r2, and r3; and the third is a partition of 𝐴 into its column vectors c1, c2, c3, and c4:

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [𝐴11 𝐴12
𝐴21 𝐴22

]

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [
r1
r2
r3
]

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [c1 c2 c3 c4]

Matrix Multiplication by Columns and by Rows
Partitioning has many uses, one of which is for finding particular rows or columns of a
matrix product 𝐴𝐵 without computing the entire product. Specifically, the following for-
mulas, whose proofs are left as exercises, show how individual column vectors of 𝐴𝐵 can
be obtained by partitioning 𝐵 into column vectors and how individual row vectors of 𝐴𝐵
can be obtained by partitioning 𝐴 into row vectors.

𝐴𝐵 = 𝐴[b1 b2 ⋅ ⋅ ⋅ bn] = [𝐴b1 𝐴b2 ⋅ ⋅ ⋅ 𝐴bn] (6)

(AB computed column by column)

𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

a1
a2...
am

⎤
⎥
⎥
⎥
⎦

𝐵 =
⎡
⎢
⎢
⎢
⎣

a1𝐵
a2𝐵...
am𝐵

⎤
⎥
⎥
⎥
⎦

(7)

(AB computed row by row)

In words, these formulas state that

jth column vector of 𝐴𝐵 = 𝐴[ jth column vector of 𝐵] (8)

ith row vector of 𝐴𝐵 = [ith row vector of 𝐴]𝐵 (9)

Historical Note

Gotthold Eisenstein
(1823–1852)

The concept of matrix multiplication is due to the Ger-
man mathematician Gotthold Eisenstein, who introduced the
idea around 1844 to simplify the process of making substi-
tutions in linear systems. The idea was then expanded on
and formalized by Arthur Cayley (see p. 36) in his Memoir
on the Theory of Matrices that was published in 1858.
Eisensteinwas a pupil ofGauss,who rankedhimas the equal of
Isaac Newton and Archimedes. However, Eisenstein, suffering
from bad health his entire life, died at age 30, so his potential
was never realized.

[Image: University of St Andrews/Wikipedia]
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EXAMPLE 7 | Example 5 Revisited

If𝐴 and𝐵 are the matrices in Example 5, then from (8) the second column vector of𝐴𝐵 can
be obtained by the computation

[1 2 4
2 6 0] [

1
−1
7
] = [ 27−4]

�

Second column
of 𝐵

�
Second column
of𝐴𝐵

and from (9) the first row vector of𝐴𝐵 can be obtained by the computation

1 2 4

4 1 4 3

0 1 3 1

2 7 5 2

12 27 30 13

First row of A First row of AB

[ ][ ]

Matrix Products as Linear Combinations
The following definition provides yet another way of thinking about matrix multipli-
cation.

Definition 6

If 𝐴1, 𝐴2, . . . , 𝐴r are matrices of the same size, and if c1, c2, . . . , cr are scalars, then
an expression of the form

c1𝐴1 + c2𝐴2 + ⋅ ⋅ ⋅ + cr𝐴r

is called a linear combination of 𝐴1, 𝐴2, . . . , 𝐴r with coefficients c1, c2, . . . , cr.

To see how matrix products can be viewed as linear combinations, let 𝐴 be anm × n
matrix and x an n × 1 column vector, say

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

and x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

Then

𝐴x =
⎡
⎢
⎢
⎢
⎣

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

⎤
⎥
⎥
⎥
⎦

= x1
⎡
⎢
⎢
⎢
⎣

a11
a21...
am1

⎤
⎥
⎥
⎥
⎦

+ x2
⎡
⎢
⎢
⎢
⎣

a12
a22...
am2

⎤
⎥
⎥
⎥
⎦

+ ⋅ ⋅ ⋅ + xn
⎡
⎢
⎢
⎢
⎣

a1n
a2n...
amn

⎤
⎥
⎥
⎥
⎦
(10)

This proves the following theorem.
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Theorem 1.3.1

If 𝐴 is an m × n matrix, and if x is an n × 1 column vector, then the product 𝐴x
can be expressed as a linear combination of the column vectors of 𝐴 in which the
coefficients are the entries of x.

EXAMPLE 8 | Matrix Products as Linear Combinations

The matrix product

[
−1 3 2
1 2 −3
2 1 −2

][
2

−1
3
] = [

1
−9
−3

]

can be written as the following linear combination of column vectors:

2[
−1
1
2
] − 1[

3
2
1
] + 3[

2
−3
−2

] = [
1

−9
−3

]

EXAMPLE 9 | Columns of a Product AB as Linear
Combinations

We showed in Example 5 that

𝐴𝐵 = [
1 2 4
2 6 0

] [
4 1 4 3
0 −1 3 1
2 7 5 2

] = [
12 27 30 13
8 −4 26 12

]

It follows from Formula (6) and Theorem 1.3.1 that the jth column vector of 𝐴𝐵 can be
expressed as a linear combination of the column vectors of 𝐴 in which the coefficients in
the linear combination are the entries from the jth column of 𝐵. The computations are as
follows:

[
12
8
] = 4 [

1
2
] + 0 [

2
6
] + 2 [

4
0
]

[
27
−4] = [

1
2
] − [

2
6
] + 7 [

4
0
]

[
30
26
] = 4 [

1
2
] + 3 [

2
6
] + 5 [

4
0
]

[
13
12
] = 3 [

1
2
] + [

2
6
] + 2 [

4
0]

Column-Row Expansion
Partitioning provides yet another way to viewmatrix multiplication. Specifically, suppose
that an m × r matrix 𝐴 is partitioned into its r column vectors c1, c2, . . . , cr (each of size
m × 1) and an r × nmatrix 𝐵 is partitioned into its r row vectors r1, r2, . . . , rr (each of size
1 × n). Each term in the sum

c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr
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has size m × n so the sum itself is an m × n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the
right side of Formula (5), from which it follows that

𝐴𝐵 = c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr (11)

We call (11) the column-row expansion of 𝐴𝐵.

EXAMPLE 10 | Column-Row Expansion

Find the column-row expansion of the product

𝐴𝐵 = [
1 3
2 −1] [

2 0 4
−3 5 1

] (12)

Solution The column vectors of𝐴 and the row vectors of 𝐵 are, respectively,

c1 = [
1
2
], c2 = [

3
−1]

; r1 = [2 0 4], r2 = [−3 5 1]

Thus, it follows from (11) that the column-row expansion of𝐴𝐵 is

𝐴𝐵 = [
1
2
] [2 0 4] + [

3
−1] [

−3 5 1]

= [
2 0 4
4 0 8

] + [
−9 15 3
3 −5 −1]

(13)

As a check, we leave it for you to confirm that the product in (12) and the sum in (13) both
yield

𝐴𝐵 = [
−7 15 7
7 −5 7

]

Summarizing Matrix Multiplication
Putting it all together, we have given five different ways to compute amatrix product, each
of which has its own use:

1. Entry by entry (Definition 5)
2. Row-column method (Formula (5))
3. Column by column (Formula (6))
4. Row by row (Formula (7))
5. Column-row expansion (Formula (11))

Matrix Form of a Linear System
Matrix multiplication has an important application to systems of linear equations. Con-
sider a system ofm linear equations in n unknowns:

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm
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Since two matrices are equal if and only if their corresponding entries are equal, we can
replace them equations in this system by the single matrix equation

⎡
⎢
⎢
⎢
⎣

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

Them × 1 matrix on the left side of this equation can be written as a product to give

⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

If we designate thesematrices by𝐴, x, and b, respectively, thenwe can replace the original
system ofm equations in n unknowns by the single matrix equation

𝐴x = b

The matrix 𝐴 in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus the The vertical partition line

in the augmented matrix
[A ∣ b] is optional, but is a
useful way of visually sepa-
rating the coefficient matrix
A from the column vector b.

augmented matrix is

[𝐴 ∣ b] =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤
⎥
⎥
⎥
⎦

Transpose of a Matrix
We conclude this section by defining two matrix operations that have no analogs in the
arithmetic of real numbers.

Definition 7

If 𝐴 is any m × nmatrix, then the transpose of A, denoted by 𝐴𝑇 , is defined to be
the n ×mmatrix that results by interchanging the rows and columns of 𝐴; that is,
the first column of 𝐴𝑇 is the first row of 𝐴, the second column of 𝐴𝑇 is the second
row of 𝐴, and so forth.

EXAMPLE 11 | Some Transposes

The following are some examples of matrices and their transposes.

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

], 𝐵 = [
2 3
1 4
5 6

], 𝐶 = [1 3 5], 𝐷 = [4]

𝐴𝑇 =
⎡
⎢
⎢
⎢
⎣

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

⎤
⎥
⎥
⎥
⎦

, 𝐵𝑇 = [2 1 5
3 4 6], 𝐶𝑇 = [

1
3
5
], 𝐷𝑇 = [4]
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Observe that not only are the columns of 𝐴𝑇 the rows of 𝐴, but the rows of 𝐴𝑇 are the
columns of𝐴. Thus the entry in row i and column j of𝐴𝑇 is the entry in row j and column i
of𝐴; that is,

(𝐴𝑇)i j = (𝐴)j i (14)

Note the reversal of the subscripts.
In the special case where 𝐴 is a square matrix, the transpose of 𝐴 can be obtained by

interchanging entries that are symmetrically positioned about the main diagonal. In (15) we
see that𝐴𝑇 can also be obtained by “reflecting”𝐴 about its main diagonal.

(15)A

1 2 4

3 7 0

5 8 6

1 2 4

3 7 0

5 8 6

AT

1 3 5

2 7 8

4 0 6

Interchange entries that are
symmetrically positioned
about the main diagonal.

Trace of a Matrix

Definition 8

If 𝐴 is a square matrix, then the trace of A, denoted by tr(𝐴), is defined to be the
sum of the entries on the main diagonal of𝐴. The trace of𝐴 is undefined if𝐴 is not
a square matrix.

Historical Note

James Sylvester
(1814–1897)

Arthur Cayley
(1821–1895)

The term matrix was first used by the English mathematician James Sylvester, who defined
the term in 1850 to be an “oblong arrangement of terms.” Sylvester communicated his work
on matrices to a fellow English mathematician and lawyer named Arthur Cayley, who then
introduced some of the basic operations on matrices in a book entitledMemoir on the Theory
of Matrices that was published in 1858. As a matter of interest, Sylvester, who was Jewish,
did not get his college degree because he refused to sign a required oath to the Church of
England. He was appointed to a chair at the University of Virginia in the United States but
resigned after swatting a student with a stick because he was reading a newspaper in class.
Sylvester, thinking he had killed the student, fled back to England on the first available ship.
Fortunately, the student was not dead, just in shock!

[Images: © Bettmann/CORBIS (Sylvester); Wikipedia Commons (Cayley)]
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EXAMPLE 12 | Trace

The following are examples of matrices and their traces.

𝐴 = [
a11 a12 a13
a21 a22 a23
a31 a32 a33

], 𝐵 =
⎡
⎢
⎢
⎢
⎣

−1 2 7 0
3 5 −8 4
1 2 7 −3
4 −2 1 0

⎤
⎥
⎥
⎥
⎦

tr(𝐴) = a11 + a22 + a33 tr(𝐵) = −1+ 5+ 7+ 0 = 11

In the exercises you will have some practice working with the transpose and trace
operations.

Exercise Set 1.3

In Exercises 1–2, suppose that𝐴, 𝐵, 𝐶,𝐷, and 𝐸 are matrices with
the following sizes:

𝐴 𝐵 𝐶 𝐷 𝐸
(4 × 5) (4 × 5) (5 × 2) (4 × 2) (5 × 4)

In each part, determine whether the given matrix expression is
defined. For those that are defined, give the size of the resulting
matrix.

1. a. 𝐵𝐴 b. 𝐴𝐵𝑇 c. 𝐴𝐶 +𝐷

d. 𝐸(𝐴𝐶) e. 𝐴− 3𝐸𝑇 f. 𝐸(5𝐵 +𝐴)

2. a. 𝐶𝐷𝑇 b. 𝐷𝐶 c. 𝐵𝐶 − 3𝐷

d. 𝐷𝑇(𝐵𝐸) e. 𝐵𝑇𝐷 +𝐸𝐷 f. 𝐵𝐴𝑇 +𝐷

In Exercises 3–6, use the followingmatrices to compute the indicated
expression if it is defined.

𝐴 = [
3 0

−1 2
1 1

], 𝐵 = [4 −1
0 2], 𝐶 = [1 4 2

3 1 5],

𝐷 = [
1 5 2

−1 0 1
3 2 4

], 𝐸 = [
6 1 3

−1 1 2
4 1 3

]

3. a. 𝐷 +𝐸 b. 𝐷 −𝐸 c. 5𝐴

d. −7𝐶 e. 2𝐵 −𝐶 f. 4𝐸 − 2𝐷

g. −3(𝐷 + 2𝐸) h. 𝐴−𝐴 i. tr(𝐷)

j. tr(𝐷 − 3𝐸) k. 4 tr(7𝐵) l. tr(𝐴)

4. a. 2𝐴𝑇 +𝐶 b. 𝐷𝑇 −𝐸𝑇 c. (𝐷 − 𝐸)𝑇

d. 𝐵𝑇 + 5𝐶𝑇 e. 1
2𝐶𝑇 − 1

4𝐴 f. 𝐵 −𝐵𝑇

g. 2𝐸𝑇 − 3𝐷𝑇 h. (2𝐸𝑇 − 3𝐷𝑇)𝑇 i. (𝐶𝐷)𝐸

j. 𝐶(𝐵𝐴) k. tr(𝐷𝐸𝑇) l. tr(𝐵𝐶)

5. a. 𝐴𝐵 b. 𝐵𝐴 c. (3𝐸)𝐷

d. (𝐴𝐵)𝐶 e. 𝐴(𝐵𝐶) f. 𝐶𝐶𝑇

g. (𝐷𝐴)𝑇 h. (𝐶𝑇𝐵)𝐴𝑇 i. tr(𝐷𝐷𝑇)

j. tr(4𝐸𝑇 −𝐷) k. tr(𝐶𝑇𝐴𝑇 + 2𝐸𝑇) l. tr((𝐸𝐶𝑇)𝑇𝐴)

6. a. (2𝐷𝑇 −𝐸)𝐴 b. (4𝐵)𝐶 + 2𝐵

c. (−𝐴𝐶)𝑇 + 5𝐷𝑇 d. (𝐵𝐴𝑇 − 2𝐶)𝑇

e. 𝐵𝑇(𝐶𝐶𝑇 −𝐴𝑇𝐴) f. 𝐷𝑇𝐸𝑇 − (𝐸𝐷)𝑇

In Exercises 7–8, use the following matrices and either the row
method or the column method, as appropriate, to find the indicated
row or column.

𝐴 = [
3 −2 7
6 5 4
0 4 9

] and 𝐵 = [
6 −2 4
0 1 3
7 7 5

]

7. a. the first row of𝐴𝐵 b. the third row of𝐴𝐵

c. the second column of𝐴𝐵 d. the first column of 𝐵𝐴

e. the third row of𝐴𝐴 f. the third column of𝐴𝐴

8. a. the first column of𝐴𝐵 b. the third column of 𝐵𝐵

c. the second row of 𝐵𝐵 d. the first column of𝐴𝐴

e. the third column of𝐴𝐵 f. the first row of 𝐵𝐴

In Exercises 9–10, use matrices𝐴 and 𝐵 from Exercises 7–8.

9. a. Express each column vector of𝐴𝐴 as a linear combination
of the column vectors of𝐴.

b. Express each column vector of 𝐵𝐵 as a linear combination
of the column vectors of 𝐵.
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10. a. Express each column vector of𝐴𝐵 as a linear combination
of the column vectors of𝐴.

b. Express each column vector of 𝐵𝐴 as a linear combination
of the column vectors of 𝐵.

In each part of Exercises 11–12, findmatrices𝐴,x, andb that express
the given linear system as a single matrix equation 𝐴x = b, and
write out this matrix equation.
11. a. 2x1 − 3x2 + 5x3 = 7

9x1 − x2 + x3 = −1
x1 + 5x2 + 4x3 = 0

b. 4x1 − 3x3 + x4 = 1
5x1 + x2 − 8x4 = 3
2x1 − 5x2 + 9x3 − x4 = 0

3x2 − x3 + 7x4 = 2

12. a. x1 − 2x2 + 3x3 = −3
2x1 + x2 = 0

− 3x2 + 4x3 = 1
x1 + x3 = 5

b. 3x1 + 3x2 + 3x3 = −3
−x1 − 5x2 − 2x3 = 3

− 4x2 + x3 = 0

In each part of Exercises 13–14, express thematrix equation as a sys-
tem of linear equations.

13. a. [
5 6 −7

−1 −2 3
0 4 −1

][
x1
x2
x3
] = [

2
0
3
]

b. [
1 1 1
2 3 0
5 −3 −6

][
x
y
z
] = [

2
2

−9
]

14. a. [
3 −1 2
4 3 7

−2 1 5
][

x1
x2
x3
] = [

2
−1
4
]

b.
⎡
⎢
⎢
⎢
⎣

3 −2 0 1
5 0 2 −2
3 1 4 7

−2 5 1 6

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑤
x
y
z

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

In Exercises 15–16, find all values of k, if any, that satisfy the
equation.

15. [k 1 1] [
1 1 0
1 0 2
0 2 −3

][
k
1
1
] = 0

16. [2 2 k] [
1 2 0
2 0 3
0 3 1

][
2
2
k
] = 0

In Exercises 17–20, use the column-row expansion of𝐴𝐵 to express
this product as a sum of matrix products.

17. 𝐴 = [
4 −3
2 −1]

, 𝐵 = [
0 1 2

−2 3 1
]

18. 𝐴 = [
0 −2
4 −3]

, 𝐵 = [
1 4 1

−3 0 2
]

19. 𝐴 = [
1 2 3
4 5 6

], 𝐵 =
⎡
⎢
⎢
⎣

1 2
3 4
5 6

⎤
⎥
⎥
⎦

20. 𝐴 = [
0 4 2
1 −2 5

], 𝐵 =
⎡
⎢
⎢
⎣

2 −1
4 0
1 −1

⎤
⎥
⎥
⎦

21. For the linear system in Example 5 of Section 1.2, express the
general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical
entries. [Suggestion: Rewrite the general solution as a single
column vector, then write that column vector as a sum of col-
umn vectors each of which contains at most one parameter,
and then factor out the parameters.]

22. Follow the directions of Exercise 21 for the linear system in
Example 6 of Section 1.2.

In Exercises 23–24, solve the matrix equation for a, b, c, and d.

23. [ a 3
−1 a+ b] = [ 4 d− 2c

d+ 2c −2 ]

24. [ a− b b+ a
3d+ c 2d− c] = [8 1

7 6]

25. a. Show that if 𝐴 has a row of zeros and 𝐵 is any matrix for
which𝐴𝐵 is defined, then𝐴𝐵 also has a row of zeros.

b. Find a similar result involving a column of zeros.

26. In each part, find a 6 × 6 matrix [ai j] that satisfies the stated
condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

a. ai j = 0 if i ≠ j b. aij = 0 if i > j

c. ai j = 0 if i < j d. aij = 0 if |i− j| > 1

In Exercises 27–28, how many 3× 3 matrices 𝐴 can you find for
which the equation is satisfied for all choices of x, y, and z?

27. 𝐴[
x
y
z
] = [

x+ y
x− y
0

] 28. 𝐴[
x
y
z
] = [

xy
0
0
]

29. Amatrix𝐵 is said to be a square root of amatrix𝐴 if𝐵𝐵 = 𝐴.

a. Find two square roots of𝐴 = [2 2
2 2].

b. How many different square roots can you find of

𝐴 = [5 0
0 9] ?

c. Do you think that every 2 × 2matrix has at least one square
root? Explain your reasoning.

30. Let 0 denote a 2 × 2 matrix, each of whose entries is zero.
a. Is there a 2 × 2matrix𝐴 such that𝐴 ≠ 0 and𝐴𝐴 = 0? Jus-

tify your answer.

b. Is there a 2 × 2 matrix 𝐴 such that 𝐴 ≠ 0 and 𝐴𝐴 = 𝐴?
Justify your answer.

31. Establish Formula (11) by using Formula (5) to show that

(𝐴𝐵)i j = (c1r1 + c2r2 + ⋅ ⋅ ⋅ + crrr)ij
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32. Find a 4 × 4 matrix 𝐴 = [ai j] whose entries satisfy the stated
condition.

a. aij = i+ j b. ai j = i j−1

c. aij = { 1 if |i− j| > 1
−1 if |i− j| ≤ 1

33. Suppose that type I items cost $1 each, type II items cost $2
each, and type III items cost $3 each. Also, suppose that the
accompanying table describes the number of items of each
type purchased during the first four months of the year.

TABLE Ex-33

Type I Type II Type III

Jan. 3 4 3

Feb. 5 6 0

Mar. 2 9 4

Apr. 1 1 7

What information is represented by the following product?

⎡
⎢
⎢
⎢
⎣

3 4 3
5 6 0
2 9 4
1 1 7

⎤
⎥
⎥
⎥
⎦

[
1
2
3
]

34. The accompanying table shows a record of May and June unit
sales for a clothing store. Let𝑀 denote the 4 × 3matrix ofMay
sales and 𝐽 the 4 × 3 matrix of June sales.
a. What does the matrix𝑀 + 𝐽 represent?
b. What does the matrix𝑀 − 𝐽 represent?
c. Find a column vector x for which𝑀x provides a list of the

number of shirts, jeans, suits, and raincoats sold in May.

d. Find a rowvector y forwhich y𝑀 provides a list of the num-
ber of small, medium, and large items sold in May.

e. Using the matrices x and y that you found in parts (c) and
(d), what does y𝑀x represent?

TABLE Ex-34

May Sales

Small Medium Large

Shirts 45 60 75

Jeans 30 30 40

Suits 12 65 45

Raincoats 15 40 35

June Sales

Small Medium Large

Shirts 30 33 40

Jeans 21 23 25

Suits 9 12 11

Raincoats 8 10 9

Working with Proofs

35. Prove: If𝐴 and 𝐵 are n × nmatrices, then

tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵)

36. a. Prove: If 𝐴𝐵 and 𝐵𝐴 are both defined, then 𝐴𝐵 and 𝐵𝐴
are square matrices.

b. Prove: If𝐴 is anm × nmatrix and𝐴(𝐵𝐴) is defined, then
𝐵 is an n ×mmatrix.

True-False Exercises
TF. In parts (a)–(o) determine whether the statement is true or

false, and justify your answer.

a. The matrix [1 2 3
4 5 6] has no main diagonal.

b. Anm × nmatrix hasm column vectors and n row vectors.

c. If𝐴 and 𝐵 are 2 × 2 matrices, then𝐴𝐵 = 𝐵𝐴.

d. The ith row vector of a matrix product 𝐴𝐵 can be com-
puted by multiplying𝐴 by the ith row vector of 𝐵.

e. For every matrix𝐴, it is true that (𝐴𝑇)𝑇 = 𝐴.

f. If𝐴 and 𝐵 are square matrices of the same order, then

tr(𝐴𝐵) = tr(𝐴)tr(𝐵)

g. If𝐴 and 𝐵 are square matrices of the same order, then

(𝐴𝐵)𝑇 = 𝐴𝑇𝐵𝑇

h. For every square matrix𝐴, it is true that tr(𝐴𝑇) = tr(𝐴).

i. If 𝐴 is a 6 × 4 matrix and 𝐵 is an m × n matrix such that
𝐵𝑇𝐴𝑇 is a 2 × 6 matrix, thenm = 4 and n = 2.

j. If𝐴 is an n × nmatrix and c is a scalar, then
tr(c𝐴) = c tr(𝐴).

k. If 𝐴, 𝐵, and 𝐶 are matrices of the same size such that
𝐴−𝐶 = 𝐵 −𝐶, then𝐴 = 𝐵.

l. If𝐴,𝐵, and𝐶 are square matrices of the same order such
that𝐴𝐶 = 𝐵𝐶, then𝐴 = 𝐵.

m. If𝐴𝐵 +𝐵𝐴 is defined, then𝐴 and𝐵 are squarematrices
of the same size.

n. If𝐵 has a column of zeros, then so does𝐴𝐵 if this product
is defined.

o. If𝐵 has a column of zeros, then so does𝐵𝐴 if this product
is defined.

Working with Technology
T1. a. Compute the product 𝐴𝐵 of the matrices in Example 5,

and compare your answer to that in the text.

b. Use your technology utility to extract the columns of 𝐴
and the rows of 𝐵, and then calculate the product 𝐴𝐵 by
a column-row expansion.
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T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type II items at $2.15 each, and Type III items at $3.95
each. Suppose also that the accompanying table describes the
purchases of those items (in thousands of units) for the first
quarter of the year. Find a matrix product, the computation
of which produces a matrix that lists the manufacturer’s
expenditure in each month of the first quarter. Compute that
product.

Type I Type II Type III

Jan. 3.1 4.2 3.5

Feb. 5.1 6.8 0

Mar. 2.2 9.5 4.0

Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties
of Matrices

In this section we will discuss some of the algebraic properties of matrix operations. We
will see that many of the basic rules of arithmetic for real numbers hold for matrices, but
we will also see that some do not.

Properties of Matrix Addition and Scalar Multiplication
The following theorem lists the basic algebraic properties of the matrix operations.

Theorem 1.4.1

Properties of Matrix Arithmetic
Assuming that the sizes of the matrices are such that the indicated operations can
be performed, the following rules of matrix arithmetic are valid.
(a) 𝐴 + 𝐵 = 𝐵 + 𝐴 [Commutative law for matrix addition]

(b) 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 [Associative law for matrix addition]

(c) 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 [Associative law for matrix multiplication]

(d) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 [Left distributive law]

(e) (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴 [Right distributive law]

(𝑓) 𝐴(𝐵 − 𝐶) = 𝐴𝐵 − 𝐴𝐶
(g) (𝐵 − 𝐶)𝐴 = 𝐵𝐴 − 𝐶𝐴
(h) a(𝐵 + 𝐶) = a𝐵 + a𝐶
(i) a(𝐵 − 𝐶) = a𝐵 − a𝐶
( j) (a + b)𝐶 = a𝐶 + b𝐶
(k) (a − b)𝐶 = a𝐶 − b𝐶
(l) a(b𝐶) = (ab)𝐶
(m) a(𝐵𝐶) = (a𝐵)𝐶 = 𝐵(a𝐶)

To prove any of the equalities in this theorem one must show that the matrix on the left
side has the same size as that on the right and that the corresponding entries on the two
sides are the same. Most of the proofs follow the same pattern, so we will prove part (d)
as a sample. The proof of the associative law for multiplication is more complicated than
the rest and is outlined in the exercises.
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Proof (d) Wemust show that𝐴(𝐵 + 𝐶) and𝐴𝐵 + 𝐴𝐶 have the same size and that corre-
sponding entries are equal. To form 𝐴(𝐵 + 𝐶), the matrices 𝐵 and 𝐶 must have the same
size, say m × n, and the matrix 𝐴 must then have m columns, so its size must be of the
form r ×m. This makes𝐴(𝐵 + 𝐶) an r × nmatrix. It follows that𝐴𝐵 + 𝐴𝐶 is also an r × n
matrix and, consequently, 𝐴(𝐵 + 𝐶) and 𝐴𝐵 + 𝐴𝐶 have the same size.

Suppose that 𝐴 = [aij], 𝐵 = [bij], and 𝐶 = [cij]. We want to show that corresponding
entries of 𝐴(𝐵 + 𝐶) and 𝐴𝐵 + 𝐴𝐶 are equal; that is,

(𝐴(𝐵 + 𝐶))ij = (𝐴𝐵 + 𝐴𝐶)ij
for all values of i and j. But from the definitions of matrix addition and matrix multiplica-

There are three basic ways
to prove that two matrices
of the same size are equal—
prove that corresponding
entries are the same, prove
that corresponding row vec-
tors are the same, or prove
that corresponding column
vectors are the same.

tion, we have
(𝐴(𝐵 + 𝐶))ij = ai1(b1j + c1j) + ai2(b2j + c2j) + ⋅ ⋅ ⋅ + aim(bmj + cmj)

= (ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + aimbmj) + (ai1c1j + ai2c2j + ⋅ ⋅ ⋅ + aimcmj)
= (𝐴𝐵)ij + (𝐴𝐶)ij = (𝐴𝐵 + 𝐴𝐶)ij

Remark Although the operations of matrix addition and matrix multiplication were
defined for pairs of matrices, associative laws (b) and (c) enable us to denote sums and
products of threematrices as𝐴 + 𝐵 + 𝐶 and𝐴𝐵𝐶 without inserting any parentheses. This
is justified by the fact that no matter how parentheses are inserted, the associative laws
guarantee that the same end result will be obtained. In general, given any sum or any prod-
uct ofmatrices, pairs of parentheses can be inserted or deleted anywherewithin the expression
without affecting the end result.

EXAMPLE 1 | Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

𝐴 = [
1 2
3 4
0 1

], 𝐵 = [4 3
2 1], 𝐶 = [1 0

2 3]

Then

𝐴𝐵 = [
1 2
3 4
0 1

] [4 3
2 1] = [

8 5
20 13
2 1

] and 𝐵𝐶 = [4 3
2 1] [

1 0
2 3] = [10 9

4 3]

Thus

(𝐴𝐵)𝐶 = [
8 5
20 13
2 1

] [1 0
2 3] = [

18 15
46 39
4 3

]

and

𝐴(𝐵𝐶) = [
1 2
3 4
0 1

] [10 9
4 3] = [

18 15
46 39
4 3

]

so (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶), as guaranteed by Theorem 1.4.1(c).

Properties of Matrix Multiplication
Do not let Theorem 1.4.1 lull you into believing that all laws of real arithmetic carry over
to matrix arithmetic. For example, you know that in real arithmetic it is always true that
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ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,
however, the equality of 𝐴𝐵 and 𝐵𝐴 can fail for three possible reasons:

1. 𝐴𝐵 may be defined and 𝐵𝐴may not (for example, if 𝐴 is 2 × 3 and 𝐵 is 3 × 4).
2. 𝐴𝐵 and 𝐵𝐴may both be defined, but they may have different sizes (for example, if 𝐴

is 2 × 3 and 𝐵 is 3 × 2).
3. 𝐴𝐵 and 𝐵𝐴 may both be defined and have the same size, but the two products may

be different (as illustrated in the next example).

EXAMPLE 2 | Order Matters in Matrix Multiplication

Consider the matrices
𝐴 = [−1 0

2 3] and 𝐵 = [1 2
3 0]

Multiplying gives

𝐴𝐵 = [−1 −2
11 4] and 𝐵𝐴 = [ 3 6

−3 0]

Thus,𝐴𝐵 ≠ 𝐵𝐴.

Because, as this example shows, it is not generally true that𝐴𝐵 = 𝐵𝐴, we say thatmatrix
multiplication is not commutative. This does not preclude the possibility of equality in
certain cases—it is just not true in general. In those special cases where there is equality
we say that 𝐴 and 𝐵 commute.

Zero Matrices
Amatrix whose entries are all zero is called a zero matrix. Some examples are

[0 0
0 0], [

0 0 0
0 0 0
0 0 0

], [0 0 0 0
0 0 0 0],

⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

, [0]

We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote them × n zero matrix by 0m×n.

It should be evident that if 𝐴 and 0 are matrices with the same size, then
𝐴 + 0 = 0 + 𝐴 = 𝐴

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the numer-
ical equation a + 0 = 0 + a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

Theorem 1.4.2

Properties of Zero Matrices
If c is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:
(a) 𝐴 + 0 = 0 + 𝐴 = 𝐴
(b) 𝐴 − 0 = 𝐴
(c) 𝐴 − 𝐴 = 𝐴 + (−𝐴) = 0
(d) 0𝐴 = 0
(e) If c𝐴 = 0, then c = 0 or 𝐴 = 0.
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Sincewe know that the commutative lawof real arithmetic is not valid inmatrix arith-
metic, it should not be surprising that there are other rules that fail as well. For example,
consider the following two laws of real arithmetic:

• If ab = ac and a ≠ 0, then b = c. [The cancellation law]

• If ab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

EXAMPLE 3 | Failure of the Cancellation Law

Consider the matrices

𝐴 = [0 1
0 2], 𝐵 = [1 1

3 4], 𝐶 = [2 5
3 4]

We leave it for you to confirm that

𝐴𝐵 = 𝐴𝐶 = [3 4
6 8]

Although 𝐴 ≠ 0, canceling 𝐴 from both sides of the equation 𝐴𝐵 = 𝐴𝐶 would lead to the
incorrect conclusion that 𝐵 = 𝐶. Thus, the cancellation law does not hold, in general, for
matrix multiplication (though there may be particular cases where it is true).

EXAMPLE 4 | A Zero Product with Nonzero Factors

Here are two matrices for which𝐴𝐵 = 0, but𝐴 ≠ 0 and 𝐵 ≠ 0:

𝐴 = [0 1
0 2], 𝐵 = [3 7

0 0]

Identity Matrices
A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

[1], [1 0
0 1], [

1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

An identity matrix is denoted by the letter 𝐼. If it is important to emphasize the size, we
will write 𝐼n for the n × n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 × 3matrix𝐴 on each side by an identity matrix. Multiplying on
the right by the 3 × 3 identity matrix yields

𝐴𝐼3 = [a11 a12 a13
a21 a22 a23

] [
1 0 0
0 1 0
0 0 1

] = [a11 a12 a13
a21 a22 a23

] = 𝐴
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and multiplying on the left by the 2 × 2 identity matrix yields

𝐼2𝐴 = [1 0
0 1] [

a11 a12 a13
a21 a22 a23

] = [a11 a12 a13
a21 a22 a23

] = 𝐴

The same result holds in general; that is, if 𝐴 is anym × nmatrix, then

𝐴𝐼n = 𝐴 and 𝐼m𝐴 = 𝐴

Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equation a ⋅ 1 = 1 ⋅ a = a.

As the next theorem shows, identity matrices arise naturally as reduced row echelon
forms of squarematrices.

Theorem 1.4.3

If 𝑅 is the reduced row echelon form of an n × nmatrix𝐴, then either 𝑅 has at least
one row of zeros or 𝑅 is the identity matrix 𝐼n.

Proof Suppose that the reduced row echelon form of 𝐴 is

𝑅 =
⎡
⎢
⎢
⎢
⎣

r11 r12 ⋅ ⋅ ⋅ r1n
r21 r22 ⋅ ⋅ ⋅ r2n
...

...
...

rn1 rn2 ⋅ ⋅ ⋅ rnn

⎤
⎥
⎥
⎥
⎦

Either the last row in this matrix consists entirely of zeros or it does not. If not, the matrix
contains no zero rows, and consequently each of the n rows has a leading entry of 1. Since
these leading 1’s occur progressively farther to the right as wemove down thematrix, each
of these 1’s must occur on the main diagonal. Since the other entries in the same column
as one of these 1’s are zero, 𝑅 must be 𝐼n. Thus, either 𝑅 has a row of zeros or 𝑅 = 𝐼n.

Inverse of a Matrix
In real arithmetic every nonzero number a has a reciprocal a−1(= 1/a) with the property

a ⋅ a−1 = a−1 ⋅ a = 1

The number a−1 is sometimes called the multiplicative inverse of a. Our next objective is
to develop an analog of this result for matrix arithmetic. For this purpose we make the
following definition.

Definition 1

If 𝐴 is a square matrix, and if there exists a matrix 𝐵 of the same size for which
𝐴𝐵 = 𝐵𝐴 = 𝐼, then 𝐴 is said to be invertible (or nonsingular) and 𝐵 is called an
inverse of 𝐴. If no such matrix 𝐵 exists, then 𝐴 is said to be singular.

The relationship 𝐴𝐵 = 𝐵𝐴 = 𝐼 is not changed by interchanging 𝐴 and 𝐵, so if 𝐴 is
invertible and 𝐵 is an inverse of 𝐴, then it is also true that 𝐵 is invertible, and 𝐴 is an
inverse of 𝐵. Thus, when 𝐴𝐵 = 𝐵𝐴 = 𝐼 we say that 𝐴 and 𝐵 are inverses of one another.
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EXAMPLE 5 | An Invertible Matrix

Let
𝐴 = [ 2 −5

−1 3] and 𝐵 = [3 5
1 2]

Then
𝐴𝐵 = [ 2 −5

−1 3] [
3 5
1 2] = [1 0

0 1] = 𝐼

𝐵𝐴 = [3 5
1 2] [

2 −5
−1 3] = [1 0

0 1] = 𝐼

Thus,𝐴 and 𝐵 are invertible and each is an inverse of the other.

EXAMPLE 6 | A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this is so,
consider the matrix

𝐴 =
⎡⎢⎢⎢
⎣

1 4 0
2 5 0
3 6 0

⎤⎥⎥⎥
⎦

To prove that𝐴 is singular we must show that there is no 3 × 3 matrix 𝐵 such that

𝐴𝐵 = 𝐵𝐴 = 𝐼
For this purpose let c1, c2, 0 be the column vectors of𝐴. Thus, for any 3 × 3 matrix𝐵 we can
express the product 𝐵𝐴 as

𝐵𝐴 = 𝐵[c1 c2 0] = [𝐵c1 𝐵c2 0] [Formula (6) of Section 1.3]

The column of zeros shows that 𝐵𝐴 ≠ 𝐼 and hence that𝐴 is singular.

As in Example 6, we will
frequently denote a zero
matrix with one row or one
column by a boldface zero.

Properties of Inverses
It is reasonable to ask whether an invertible matrix can have more than one inverse. The
next theorem shows that the answer is no—an invertible matrix has exactly one inverse.

Theorem 1.4.4

If 𝐵 and 𝐶 are both inverses of the matrix 𝐴, then 𝐵 = 𝐶.

Proof Since 𝐵 is an inverse of 𝐴, we have 𝐵𝐴 = 𝐼.Multiplying both sides on the right by
𝐶 gives (𝐵𝐴)𝐶 = 𝐼𝐶 = 𝐶. But it is also true that (𝐵𝐴)𝐶 = 𝐵(𝐴𝐶) = 𝐵𝐼 = 𝐵, so 𝐶 = 𝐵.

As a consequence of this important result, we can now speak of “the” inverse of an

Warning The symbol A−1

should not be interpreted as
1/A. Division by matrices is
not a defined operation.

invertible matrix. If 𝐴 is invertible, then its inverse will be denoted by the symbol 𝐴−1.
Thus,

𝐴𝐴−1 = 𝐼 and 𝐴−1𝐴 = 𝐼 (1)

The inverse of 𝐴 plays much the same role in matrix arithmetic that the reciprocal a−1
plays in the numerical relationships aa−1 = 1 and a−1a = 1.
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In the next sectionwewill develop amethod for computing the inverse of an invertible
matrix of any size. For nowwe give the following theorem that specifies conditions under
which a 2 × 2 matrix is invertible and provides a simple formula for its inverse.

Theorem 1.4.5

The matrix
𝐴 = [a b

c d]

is invertible if and only if ad − bc ≠ 0, in which case the inverse is given by the
formula

𝐴−1 = 1
ad − bc [

d −b
−c a] (2)

We will omit the proof, because we will study a more general version of this theorem

The quantity ad− bc in
Theorem 1.4.5 is called the
determinant of the 2× 2
matrix A and is denoted by

det(A) = ad− bc

or alternatively by

|||
a b
c d

||| = ad− bc

later. For now, you should at least confirm the validity of Formula (2) by showing that
𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼.det(A) =               = ad – bc

a    b

c    d

FIGURE 1.4.1
Remark Figure 1.4.1 illustrates that the determinant of a 2 × 2 matrix 𝐴 is the product
of the entries on its main diagonal minus the product of the entries off its main diagonal.

Historical Note

The formula for 𝐴−1 given in Theorem 1.4.5 first appeared (in a more general form) in
Arthur Cayley’s 1858Memoir on the Theory of Matrices. The more general result that Cay-
ley discovered will be studied later.

EXAMPLE 7 | Calculating the Inverse of a 2 × 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

(a) 𝐴 = [6 1
5 2] (b) 𝐴 = [−1 2

3 −6]

Solution (a) The determinant of 𝐴 is det(𝐴) = (6)(2) − (1)(5) = 7, which is nonzero.
Thus,𝐴 is invertible, and its inverse is

𝐴−1 = 1
7
[ 2 −1
−5 6] = [

2
7 − 1

7

− 5
7

6
7
]

We leave it for you to confirm that𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼.
Solution (b) The matrix is not invertible since det(𝐴) = (−1)(−6) − (2)(3) = 0.

EXAMPLE 8 | Solution of a Linear System by Matrix Inversion

A problem that arises in many applications is to solve a pair of equations of the form

u = ax+ by
v = cx+ dy
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for x and y in terms ofu and v.One approach is to treat this as a linear systemof two equations
in the unknowns x and y and use Gauss–Jordan elimination to solve for x and y. However,
because the coefficients of the unknowns are literal rather than numerical, that procedure
is a little clumsy. As an alternative approach, let us replace the two equations by the single
matrix equation

[u
v
] = [ax+ by

cx+ dy]

which we can rewrite as
[u
v
] = [a b

c d] [
x
y]

If we assume that the 2 × 2 matrix is invertible (i.e., ad− bc ≠ 0), then we can multiply
through on the left by the inverse and rewrite the equation as

[a b
c d]

−1

[u
v
] = [a b

c d]
−1

[a b
c d] [

x
y]

which simplifies to

[a b
c d]

−1

[u
v
] = [xy]

Using Theorem 1.4.5, we can rewrite this equation as

1
ad− bc

[ d −b
−c a] [

u
v
] = [xy]

from which we obtain
x = du− bv

ad− bc
, y = av− cu

ad− bc

The next theorem is concerned with inverses of matrix products.

Theorem 1.4.6

If 𝐴 and 𝐵 are invertible matrices with the same size, then 𝐴𝐵 is invertible and
(𝐴𝐵)−1 = 𝐵−1𝐴−1

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that

(𝐴𝐵)(𝐵−1𝐴−1) = (𝐵−1𝐴−1)(𝐴𝐵) = 𝐼
But

(𝐴𝐵)(𝐵−1𝐴−1) = 𝐴(𝐵𝐵−1)𝐴−1 = 𝐴𝐼𝐴−1 = 𝐴𝐴−1 = 𝐼
and similarly, (𝐵−1𝐴−1)(𝐴𝐵) = 𝐼.

Although we will not prove it, this result can be extended to three or more factors:

A product of any number of invertible matrices is invertible, and the inverse of the
product is the product of the inverses in the reverse order.

EXAMPLE 9 | The Inverse of a Product

Consider the matrices
𝐴 = [1 2

1 3], 𝐵 = [3 2
2 2]
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We leave it for you to show that

𝐴𝐵 = [7 6
9 8], (𝐴𝐵)−1 = [

4 −3
− 9

2
7
2
]

and also that

𝐴−1 = [ 3 −2
−1 1], 𝐵−1 = [

1 −1
−1 3

2
], 𝐵−1𝐴−1 = [

1 −1
−1 3

2
] [ 3 −2
−1 1] = [

4 −3
− 9

2
7
2
]

Thus, (𝐴𝐵)−1 = 𝐵−1𝐴−1 as guaranteed by Theorem 1.4.6.

If a product of matrices is
singular, then at least one of
the factors must be singular.
Why?

Powers of a Matrix
If 𝐴 is a squarematrix, then we define the nonnegative integer powers of 𝐴 to be

𝐴0 = 𝐼 and 𝐴n = 𝐴𝐴 ⋅ ⋅ ⋅ 𝐴 [n factors]

and if 𝐴 is invertible, then we define the negative integer powers of 𝐴 to be

𝐴−n = (𝐴−1)n = 𝐴−1𝐴−1 ⋅ ⋅ ⋅ 𝐴−1 [n factors]

Because these definitions parallel those for real numbers, the usual laws of nonnegative
exponents hold; for example,

𝐴r𝐴s = 𝐴r+s and (𝐴r)s = 𝐴rs

In addition, we have the following properties of negative exponents.

Theorem 1.4.7

If 𝐴 is invertible and n is a nonnegative integer, then:
(a) 𝐴−1 is invertible and (𝐴−1)−1 = 𝐴.
(b) 𝐴n is invertible and (𝐴n)−1 = 𝐴−n = (𝐴−1)n.
(c) k𝐴 is invertible for any nonzero scalar k, and (k𝐴)−1 = k−1𝐴−1.

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c) Properties (m) and (l) of Theorem 1.4.1 imply that
(k𝐴)(k−1𝐴−1) = k−1(k𝐴)𝐴−1 = (k−1k)𝐴𝐴−1 = (1)𝐼 = 𝐼

and similarly, (k−1𝐴−1)(k𝐴) = 𝐼. Thus, k𝐴 is invertible and (k𝐴)−1 = k−1𝐴−1.

EXAMPLE 10 | Properties of Exponents

Let𝐴 and𝐴−1 be the matrices in Example 9; that is,

𝐴 = [1 2
1 3] and 𝐴−1 = [ 3 −2

−1 1]

Then
𝐴−3 = (𝐴−1)3 = [ 3 −2

−1 1] [
3 −2

−1 1] [
3 −2

−1 1] = [ 41 −30
−15 11]
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Also,

𝐴3 = [1 2
1 3] [

1 2
1 3] [

1 2
1 3] = [11 30

15 41]

so, as expected from Theorem 1.4.7(b),

(𝐴3)−1 = 1
(11)(41) − (30)(15) [

41 −30
−15 11] = [ 41 −30

−15 11] = (𝐴−1)3

EXAMPLE 11 | The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + ab+ ab+ b2 = a2 + 2ab+ b2

However, in matrix arithmetic, where we have no commutative law for multiplication, the
best we can do is to write

(𝐴 + 𝐵)2 = 𝐴2 +𝐴𝐵 +𝐵𝐴+𝐵2

It is only in the special case where𝐴 and 𝐵 commute (i.e.,𝐴𝐵 = 𝐵𝐴) that we can go a step
further and write

(𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 +𝐵2

Matrix Polynomials
If 𝐴 is a square matrix, say n × n, and if

p(x) = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + amxm

is any polynomial, then we define the n × nmatrix p(𝐴) to be
p(𝐴) = a0𝐼 + a1𝐴 + a2𝐴2 + ⋅ ⋅ ⋅ + am𝐴m (3)

where 𝐼 is the n × n identity matrix; that is, p(𝐴) is obtained by substituting 𝐴 for x and
replacing the constant term a0 by the matrix a0𝐼. An expression of form (3) is called a
matrix polynomial in A.

EXAMPLE 12 | AMatrix Polynomial

Find p(𝐴) for
p(x) = x2 − 2x− 5 and 𝐴 = [−1 2

1 3]

Solution

p(𝐴) = 𝐴2 − 2𝐴− 5𝐼

= [−1 2
1 3]

2

− 2 [
−1 2
1 3] − 5 [

1 0
0 1]

= [3 4
2 11] − [−2 4

2 6] − [5 0
0 5] = [0 0

0 0]

or more briefly, p(𝐴) = 0.
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Remark It follows from the fact that 𝐴r𝐴s = 𝐴r+s = 𝐴s+r = 𝐴s𝐴r that powers of a square
matrix commute, and since a matrix polynomial in 𝐴 is built up from powers of 𝐴, any
twomatrix polynomials in𝐴 also commute; that is, for any polynomials p1 and p2 we have

p1(𝐴)p2(𝐴) = p2(𝐴)p1(𝐴) (4)

Properties of the Transpose
The following theorem lists the main properties of the transpose.

Theorem 1.4.8

If the sizes of the matrices are such that the stated operations can be performed,
then:
(a) (𝐴𝑇)𝑇 = 𝐴
(b) (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇
(c) (𝐴 − 𝐵)𝑇 = 𝐴𝑇 − 𝐵𝑇
(d) (k𝐴)𝑇 = k𝐴𝑇

(e) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

If you keep in mind that transposing a matrix interchanges its rows and columns, then
you should have little trouble visualizing the results in parts (a)–(d ). For example, part
(a) states the obvious fact that interchanging rows and columns twice leaves a matrix
unchanged; and part (b) states that adding two matrices and then interchanging the rows
and columns produces the same result as interchanging the rows and columns before
adding. We will omit the formal proofs. Part (e) is less obvious, but for brevity we will
omit its proof as well. The result in that part can be extended to three or more factors and
restated as:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.

The following theorem establishes a relationship between the inverse of a matrix and
the inverse of its transpose.

Theorem 1.4.9

If 𝐴 is an invertible matrix, then 𝐴𝑇 is also invertible and

(𝐴𝑇)−1 = (𝐴−1)𝑇

Proof We can establish the invertibility and obtain the formula at the same time by show-
ing that

𝐴𝑇(𝐴−1)𝑇 = (𝐴−1)𝑇𝐴𝑇 = 𝐼
But from part (e) of Theorem 1.4.8 and the fact that 𝐼𝑇 = 𝐼, we have

𝐴𝑇(𝐴−1)𝑇 = (𝐴−1𝐴)𝑇 = 𝐼𝑇 = 𝐼
(𝐴−1)𝑇𝐴𝑇 = (𝐴𝐴−1)𝑇 = 𝐼𝑇 = 𝐼

which completes the proof.
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EXAMPLE 13 | Inverse of a Transpose

Consider a general 2 × 2 invertible matrix and its transpose:

𝐴 = [a b
c d] and 𝐴𝑇 = [a c

b d]

Since 𝐴 is invertible, its determinant ad− bc is nonzero. But the determinant of 𝐴𝑇 is also
ad− bc (verify), so𝐴𝑇 is also invertible. It follows from Theorem 1.4.5 that

(𝐴𝑇)−1 =
⎡
⎢
⎢
⎣

d
ad− bc

− c
ad− bc

− b
ad− bc

a
ad− bc

⎤
⎥
⎥
⎦

which is the same matrix that results if𝐴−1 is transposed (verify). Thus,

(𝐴𝑇)−1 = (𝐴−1)𝑇

as guaranteed by Theorem 1.4.9.

Exercise Set 1.4

In Exercises 1–2, verify that the followingmatrices and scalars satisfy
the stated properties of Theorem 1.4.1.

𝐴 = [3 −1
2 4], 𝐵 = [0 2

1 −4],

𝐶 = [ 4 1
−3 −2], a = 4, b = −7

1. a. The associative law for matrix addition.

b. The associative law for matrix multiplication.

c. The left distributive law.
d. (a+ b)𝐶 = a𝐶 + b𝐶

2. a. a(𝐵𝐶) = (a𝐵)𝐶 = 𝐵(a𝐶)

b. 𝐴(𝐵 −𝐶) = 𝐴𝐵 −𝐴𝐶 c. (𝐵 + 𝐶)𝐴 = 𝐵𝐴+𝐶𝐴
d. a(b𝐶) = (ab)𝐶

In Exercises 3–4, verify that the matrices and scalars in Exercise 1
satisfy the stated properties.

3. a. (𝐴𝑇)𝑇 = 𝐴 b. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

4. a. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 +𝐵𝑇 b. (a𝐶)𝑇 = a𝐶𝑇

In Exercises 5–8, use Theorem 1.4.5 to compute the inverse of the
matrix.

5. 𝐴 = [2 −3
4 4] 6. 𝐵 = [3 1

5 2]

7. 𝐶 = [2 0
0 3] 8. 𝐷 = [ 6 4

−2 −1]

9. Find the inverse of

[
1
2 (ex + e−x) 1

2 (ex − e−x)
1
2 (ex − e−x) 1

2 (ex + e−x)
]

10. Find the inverse of

[ cos𝜃 sin𝜃
− sin𝜃 cos𝜃]

In Exercises 11–14, verify that the equations are valid for the matri-
ces in Exercises 5–8.
11. (𝐴𝑇)−1 = (𝐴−1)𝑇 12. (𝐴−1)−1 = 𝐴

13. (𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1 14. (𝐴𝐵𝐶)𝑇 = 𝐶𝑇𝐵𝑇𝐴𝑇

In Exercises 15–18, use the given information to find𝐴.

15. (7𝐴)−1 = [−3 7
1 −2] 16. (5𝐴𝑇)−1 = [−3 −1

5 2]

17. (𝐼 + 2𝐴)−1 = [−1 2
4 5] 18. 𝐴−1 = [2 −1

3 5]

In Exercises 19–20, compute the following using the given matrix𝐴.

a. 𝐴3 b. 𝐴−3 c. 𝐴2 − 2𝐴+ 𝐼

19. 𝐴 = [3 1
2 1] 20. 𝐴 = [2 0

4 1]

In Exercises 21–22, compute p(𝐴) for the given matrix 𝐴 and the
following polynomials.

a. p(x) = x− 2

b. p(x) = 2x2 − x+ 1

c. p(x) = x3 − 2x+ 1
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21. 𝐴 = [3 1
2 1] 22. 𝐴 = [2 0

4 1]

In Exercises 23–24, let

𝐴 = [
a b
c d

], 𝐵 = [
0 1
0 0

], 𝐶 = [
0 0
1 0

]

23. Find all values of a, b, c, and d (if any) for which the matrices
𝐴 and 𝐵 commute.

24. Find all values of a, b, c, and d (if any) for which the matrices
𝐴 and 𝐶 commute.

In Exercises 25–28, use the method of Example 8 to find the unique
solution of the given linear system.

25. 3x1 − 2x2 = −1
4x1 + 5x2 = 3

26. −x1 + 5x2 = 4
−x1 − 3x2 = 1

27. 6x1 + x2 = 0
4x1 − 3x2 = −2

28. 2x1 − 2x2 = 4
x1 + 4x2 = 4

If a polynomial p(x) can be factored as a product of lower degree
polynomials, say

p(x) = p1(x)p2(x)

and if𝐴 is a square matrix, then it can be proved that

p(𝐴) = p1(𝐴)p2(𝐴)
In Exercises 29–30, verify this statement for the stated matrix𝐴 and
polynomials

p(x) = x2 − 9, p1(x) = x+ 3, p2(x) = x− 3

29. The matrix𝐴 in Exercise 21.

30. An arbitrary square matrix𝐴.

31. a. Give an example of two 2 × 2 matrices such that

(𝐴 + 𝐵)(𝐴 − 𝐵) ≠ 𝐴2 −𝐵2

b. State a valid formula for multiplying out

(𝐴 + 𝐵)(𝐴 − 𝐵)

c. What condition can you impose on𝐴 and𝐵 that will allow
you to write (𝐴 + 𝐵)(𝐴 − 𝐵) = 𝐴2 −𝐵2?

32. Thenumerical equation a2 = 1 has exactly two solutions. Find
at least eight solutions of the matrix equation 𝐴2 = 𝐼3. [Hint:
Look for solutions in which all entries off the main diagonal
are zero.]

33. a. Show that if a square matrix 𝐴 satisfies the equation
𝐴2 + 2𝐴+ 𝐼 = 0, then 𝐴 must be invertible. What is the
inverse?

b. Show that if p(x) is a polynomial with a nonzero constant
term, and if𝐴 is a square matrix for which p(𝐴) = 0, then
𝐴 is invertible.

34. Is it possible for 𝐴3 to be an identity matrix without 𝐴 being
invertible? Explain.

35. Can a matrix with a row of zeros or a column of zeros have an
inverse? Explain.

36. Can amatrix with two identical rows or two identical columns
have an inverse? Explain.

In Exercises 37–38, determine whether𝐴 is invertible, and if so, find
the inverse. [Hint: Solve 𝐴𝑋 = 𝐼 for 𝑋 by equating corresponding
entries on the two sides.]

37. 𝐴 = [
1 0 1
1 1 0
0 1 1

] 38. 𝐴 = [
1 1 1
1 0 0
0 1 1

]

In Exercises 39–40, simplify the expression assuming that 𝐴, 𝐵, 𝐶,
and𝐷 are invertible.
39. (𝐴𝐵)−1(𝐴𝐶−1)(𝐷−1𝐶−1)−1𝐷−1

40. (𝐴𝐶−1)−1(𝐴𝐶−1)(𝐴𝐶−1)−1𝐴𝐷−1

41. Show that if 𝑅 is a 1 × nmatrix and𝐶 is an n × 1 matrix, then
𝑅𝐶 = tr(𝐶𝑅).

42. If𝐴 is a square matrix and n is a positive integer, is it true that
(𝐴n)𝑇 = (𝐴𝑇)n? Justify your answer.

43. a. Show that if𝐴 is invertible and𝐴𝐵 = 𝐴𝐶, then 𝐵 = 𝐶.
b. Explain why part (a) and Example 3 do not contradict one

another.

44. Show that if 𝐴 is invertible and k is any nonzero scalar, then
(k𝐴)n = kn𝐴n for all integer values of n.

45. a. Show that if 𝐴, 𝐵, and 𝐴+𝐵 are invertible matrices with
the same size, then

𝐴(𝐴−1 +𝐵−1)𝐵(𝐴 + 𝐵)−1 = 𝐼
b. What does the result in part (a) tell you about the matrix

𝐴−1 +𝐵−1?

46. A square matrix𝐴 is said to be idempotent if𝐴2 = 𝐴.
a. Show that if𝐴 is idempotent, then so is 𝐼 − 𝐴.
b. Show that if𝐴 is idempotent, then 2𝐴− 𝐼 is invertible and

is its own inverse.

47. Show that if 𝐴 is a square matrix such that 𝐴k = 0 for some
positive integer k, then the matrix 𝐼 − 𝐴 is invertible and

(𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 + ⋅ ⋅ ⋅ + 𝐴k−1

48. Show that the matrix

𝐴 = [
a b
c d

]

satisfies the equation
𝐴2 − (a+ d)𝐴 + (ad− bc)𝐼 = 0

49. Assuming that all matrices are n×n and invertible, solve
for𝐷.

𝐶𝑇𝐵−1𝐴2𝐵𝐴𝐶−1𝐷𝐴−2𝐵𝑇𝐶−2 = 𝐶𝑇

50. Assuming that all matrices are n × n and invertible, solve
for𝐷.

𝐴𝐵𝐶𝑇𝐷𝐵𝐴𝑇𝐶 = 𝐴𝐵𝑇

Working with Proofs

In Exercises 51–58, prove the stated result.

51. Theorem 1.4.1(a) 52. Theorem 1.4.1(b)

53. Theorem 1.4.1( f ) 54. Theorem 1.4.1(c)
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55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)

True-False Exercises
TF. In parts (a)–(k) determine whether the statement is true or

false, and justify your answer.
a. Two n × nmatrices,𝐴 and 𝐵, are inverses of one another

if and only if𝐴𝐵 = 𝐵𝐴 = 0.

b. For all square matrices𝐴 and𝐵 of the same size, it is true
that (𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 +𝐵2.

c. For all square matrices𝐴 and𝐵 of the same size, it is true
that𝐴2 −𝐵2 = (𝐴− 𝐵)(𝐴+ 𝐵).

d. If 𝐴 and 𝐵 are invertible matrices of the same size, then
𝐴𝐵 is invertible and (𝐴𝐵)−1 = 𝐴−1𝐵−1.

e. If 𝐴 and 𝐵 are matrices such that 𝐴𝐵 is defined, then it
is true that (𝐴𝐵)𝑇 = 𝐴𝑇𝐵𝑇.

f. The matrix

𝐴 = [a b
c d]

is invertible if and only if ad− bc ≠ 0.

g. If 𝐴 and 𝐵 are matrices of the same size and k is a con-
stant, then (k𝐴+𝐵)𝑇 = k𝐴𝑇 +𝐵𝑇.

h. If𝐴 is an invertible matrix, then so is𝐴𝑇.

i. If p(x) = a0 + a1x+ a2x2 + ⋅ ⋅ ⋅ + amxm and 𝐼 is an iden-
tity matrix, then p(𝐼) = a0 + a1 + a2 + ⋅ ⋅ ⋅ + am.

j. A square matrix containing a row or column of zeros can-
not be invertible.

k. The sum of two invertible matrices of the same size must
be invertible.

Working with Technology
T1. Let𝐴 be the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 1
2

1
3

1
4 0 1

5
1
6

1
7 0

⎤
⎥
⎥
⎥
⎦

Discuss the behavior of 𝐴k as k increases indefinitely, that is,
as k→∞.

T2. In each part use your technology utility to make a conjecture
about the form of𝐴n for positive integer powers of n.

a. 𝐴 = [
a 1
0 a

] b. 𝐴 = [
cos𝜃 sin𝜃

− sin𝜃 cos𝜃]

T3. The Fibonacci sequence (named for the Italian mathemati-
cian Leonardo Fibonacci 1170–1250) is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

the terms of which are commonly denoted as

𝐹0, 𝐹1, 𝐹2, 𝐹3, . . . , 𝐹n, . . .

After the initial terms 𝐹0 = 0 and 𝐹1 = 1, each term is the
sum of the previous two; that is,

𝐹n = 𝐹n−1 +𝐹n−2

Confirm that if

𝑄 = [
𝐹2 𝐹1

𝐹1 𝐹0
] = [

1 1
1 0

]

then

𝑄n = [
𝐹n+1 𝐹n

𝐹n 𝐹0
]

1.5 Elementary Matrices and a Method for
Finding A−1

In this section we will develop an algorithm for finding the inverse of a matrix, and we
will discuss some of the basic properties of invertible matrices.

Elementary Matrices
In Section 1.1 we defined three elementary row operations on a matrix 𝐴:

1. Multiply a row by a nonzero constant c.
2. Interchange two rows.
3. Add a constant c times one row to another.
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It should be evident that if we let 𝐵 be the matrix that results from𝐴 by performing one of
the operations in this list, then the matrix 𝐴 can be recovered from 𝐵 by performing the
corresponding operation in the following list:

1. Multiply the same row by 1/c.
2. Interchange the same two rows.
3. If 𝐵 resulted by adding c times row ri of 𝐴 to row rj, then add −c times rj to ri.

It follows that if 𝐵 is obtained from𝐴 by performing a sequence of elementary row opera-
tions, then there is a second sequence of elementary row operations, which when applied
to 𝐵 recovers 𝐴. Accordingly, we make the following definition.

Definition 1

Matrices𝐴 and𝐵 are said to be rowequivalent if either (hence each) can be obtained
from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an ele-
mentary row operation.

Definition 2

A matrix 𝐸 is called an elementary matrix if it can be obtained from an identity
matrix by performing a single elementary row operation.

EXAMPLE 1 | Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

[1 0
0 −3]

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

1 0 3
0 1 0
0 0 1

⎤⎥⎥⎥
⎦

⎡⎢⎢⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥
⎦

�

Multiply the
second row of
𝐼2 by−3.

�

Interchange the
second and fourth
rows of 𝐼4.

�

Add 3 times
the third row of
𝐼3 to the first row.

�

Multiply the
first row of
𝐼3 by 1.

The following theorem, whose proof is left as an exercise, shows that when amatrix𝐴
is multiplied on the left by an elementary matrix 𝐸, the effect is to perform an elementary
row operation on 𝐴.

Theorem 1.5.1 will be a
useful tool for developing
new results about matrices,
but as a practical matter
it is usually preferable to
perform row operations
directly.

Theorem 1.5.1

Row Operations by Matrix Multiplication
If the elementary matrix 𝐸 results from performing a certain row operation on 𝐼m
and if 𝐴 is an m × n matrix, then the product 𝐸𝐴 is the matrix that results when
this same row operation is performed on 𝐴.



November 12, 2018 13:09 C01 Sheet number 55 Page number 55 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.5 Elementary Matrices and a Method for Finding A−1 55

EXAMPLE 2 | Using Elementary Matrices

Consider the matrix

𝐴 = [
1 0 2 3
2 −1 3 6
1 4 4 0

]

and consider the elementary matrix

𝐸 = [
1 0 0
0 1 0
3 0 1

]

which results from adding 3 times the first row of 𝐼3 to the third row. The product 𝐸𝐴 is

𝐸𝐴 = [
1 0 2 3
2 −1 3 6
4 4 10 9

]

which is precisely the matrix that results when we add 3 times the first row of 𝐴 to the
third row.

Weknow from the discussion at the beginning of this section that if𝐸 is an elementary
matrix that results from performing an elementary row operation on an identity matrix
𝐼, then there is a second elementary row operation, which when applied to 𝐸 produces 𝐼
back again. Table 1 lists these operations. The operations on the right side of the table are
called the inverse operations of the corresponding operations on the left.

TABLE 1

Row Operation on I Row Operation on E
That Produces E That Reproduces I

Multiply row i by c ≠ 0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c times row i to row j Add−c times row i to row j

EXAMPLE 3 | Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the 2 × 2 identity matrix
to obtain an elementary matrix 𝐸, then 𝐸 is restored to the identity matrix by applying the
inverse row operation.

[1 0
0 1] ⟶ [1 0

0 7] ⟶ [1 0
0 1]

�

Multiply the second
row by 7.

�

Multiply the second

row by 17 .
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[1 0
0 1] ⟶ [0 1

1 0] ⟶ [1 0
0 1]

�

Interchange the first
and second rows.

�

Interchange the first
and second rows.

[1 0
0 1] ⟶ [1 5

0 1] ⟶ [1 0
0 1]

�

Add 5 times the
second row to
the first.

�

Add−5 times the
second row to the
first.

The next theorem is a key result about invertibility of elementary matrices. It will be
a building block for many results that follow.

Theorem 1.5.2

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Proof If 𝐸 is an elementary matrix, then 𝐸 results by performing some row operation on
𝐼. Let 𝐸0 be the matrix that results when the inverse of that operation is performed on 𝐼.
Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the effect
of each other, it follows that

𝐸0𝐸 = 𝐼 and 𝐸𝐸0 = 𝐼

Thus, the elementary matrix 𝐸0 is the inverse of 𝐸.

Equivalence Theorem
One of our objectives as we progress through this text is to show how seemingly diverse
ideas in linear algebra are related. The following theorem, which relates results we have
obtained about invertibility of matrices, homogeneous linear systems, reduced row ech-
elon forms, and elementary matrices, is our first step in that direction. As we study new
topics, more statements will be added to this theorem.

Theorem 1.5.3

Equivalent Statements
If𝐴 is an n × nmatrix, then the following statements are equivalent, that is, all true
or all false.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.



November 12, 2018 13:09 C01 Sheet number 57 Page number 57 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.5 Elementary Matrices and a Method for Finding A−1 57

Proof We will prove the equivalence by establishing the chain of implications: The following figure
illustrates that the sequence
of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a)
implies that

(d) ⇒ (c) ⇒ (b) ⇒ (a)
and hence that

(a) ⇔ (b) ⇔ (c) ⇔ (d)
(see Appendix A).

(a)

(c)

(d) (b)

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a)⇒ (b) Assume 𝐴 is invertible and let x0 be any solution of 𝐴x = 0. Multiplying both
sides of this equation by 𝐴−1 gives

(𝐴−1𝐴)x0 = 𝐴−10
from which it follows that x0 = 0, so 𝐴x = 0 has only the trivial solution.

(b)⇒ (c) Let 𝐴x = 0 be the matrix form of the system
a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = 0
...

...
...

...
an1x1 + an2x2 + ⋅ ⋅ ⋅ + annxn = 0

(1)

and assume that the system has only the trivial solution. If we solve by Gauss–Jordan
elimination, then the system of equations corresponding to the reduced row echelon form
of the augmented matrix will be

x1 = 0
x2 = 0. . .

xn = 0

(2)

Thus, the augmented matrix

⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n 0
a21 a22 ⋅ ⋅ ⋅ a2n 0
...

...
...

...
an1 an2 ⋅ ⋅ ⋅ ann 0

⎤
⎥
⎥
⎥
⎦

for (1) can be reduced to the augmented matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋅ ⋅ ⋅ 0 0
0 1 0 ⋅ ⋅ ⋅ 0 0
0 0 1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for (2) by a sequence of elementary row operations. If we disregard the last column (all
zeros) in each of these matrices, we can conclude that the reduced row echelon form of𝐴
is 𝐼n.

(c)⇒ (d) Assume that the reduced row echelon form of𝐴 is 𝐼n, so that𝐴 can be reduced
to 𝐼n by a finite sequence of elementary row operations. By Theorem 1.5.1, each of these
operations can be accomplished by multiplying on the left by an appropriate elementary
matrix. Thus we can find elementary matrices 𝐸1, 𝐸2, . . . , 𝐸k such that

𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐴 = 𝐼n (3)
By Theorem 1.5.2, 𝐸1, 𝐸2, . . . , 𝐸k are invertible. Multiplying both sides of Equation (3) on
the left successively by 𝐸−1k , . . . , 𝐸−12 , 𝐸−11 we obtain

𝐴 = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k 𝐼n = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k (4)
By Theorem 1.5.2, this equation expresses 𝐴 as a product of elementary matrices.

(d)⇒ (a) If 𝐴 is a product of elementary matrices, then from Theorems 1.4.6 and 1.5.2,
the matrix 𝐴 is a product of invertible matrices and hence is invertible.
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AMethod for Inverting Matrices
As a first application of Theorem1.5.3, wewill develop a procedure (or algorithm) that can
be used to tell whether a givenmatrix is invertible, and if so, produce its inverse. To derive
this algorithm, assume for the moment, that 𝐴 is an invertible n × nmatrix. In Equation
(3), the elementary matrices execute a sequence of row operations that reduce 𝐴 to 𝐼n. If
we multiply both sides of this equation on the right by 𝐴−1 and simplify, we obtain

𝐴−1 = 𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐼n

But this equation tells us that the same sequence of row operations that reduces𝐴 to 𝐼n will
transform 𝐼n to 𝐴−1. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix 𝐴, find a sequence of
elementary row operations that reduces𝐴 to the identity and then perform that same
sequence of operations on 𝐼n to obtain 𝐴−1.

A simple method for carrying out this procedure is given in the following example.

EXAMPLE 4 | Using Row Operations to Find A−1

Find the inverse of

𝐴 = [
1 2 3
2 5 3
1 0 8

]

Solution Wewant to reduce𝐴 to the identitymatrix by rowoperations and simultaneously
apply these operations to 𝐼 to produce 𝐴−1. To accomplish this we will adjoin the identity
matrix to the right side of𝐴, thereby producing a partitioned matrix of the form

[𝐴 ∣ 𝐼]
Then we will apply row operations to this matrix until the left side is reduced to 𝐼; these
operations will convert the right side to𝐴−1, so the final matrix will have the form

[𝐼 ∣ 𝐴−1]
The computations are as follows:

⎡
⎢
⎢
⎣

1 2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 −2 5 −1 0 1

⎤
⎥
⎥
⎦

We added−2 times the first
row to the second and−1 times
the first row to the third.

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 −1 −5 2 1

⎤
⎥
⎥
⎦

We added 2 times the
second row to the third.

⎡
⎢
⎢
⎣

1 2 3 1 0 0
0 1 −3 −2 1 0
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We multiplied the
third row by−1.
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⎡
⎢
⎢
⎣

1 2 0 −14 6 3
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We added 3 times the third
row to the second and−3 times
the third row to the first.

⎡
⎢
⎢
⎣

1 0 0 −40 16 9
0 1 0 13 −5 −3
0 0 1 5 −2 −1

⎤
⎥
⎥
⎦

We added−2 times the
second row to the first.

Thus,

𝐴−1 = [
−40 16 9
13 −5 −3
5 −2 −1

]

Often it will not be known in advance if a given n × nmatrix𝐴 is invertible. However,
if it is not, then by parts (a) and (c) of Theorem 1.5.3 it will be impossible to reduce 𝐴 to
𝐼n by elementary row operations. This will be signaled by a row of zeros appearing on the
left side of the partition at some stage of the inversion algorithm. If this occurs, then you
can stop the computations and conclude that 𝐴 is not invertible.

EXAMPLE 5 | Showing That a Matrix Is Not Invertible

Consider the matrix

𝐴 = [
1 6 4
2 4 −1

−1 2 5
]

Applying the procedure of Example 4 yields

[
1 6 4 1 0 0
2 4 −1 0 1 0

−1 2 5 0 0 1
]

[
1 6 4 1 0 0
0 −8 −9 −2 1 0
0 8 9 1 0 1

] We added−2 times the first
row to the second and added
the first row to the third.

[
1 6 4 1 0 0
0 −8 −9 −2 1 0
0 0 0 −1 1 1

] We added the second
row to the third.

Since we have obtained a row of zeros on the left side,𝐴 is not invertible.

EXAMPLE 6 | Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.
(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0
x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0
2x1 + 4x2 − x3 = 0
−x1 + 2x2 + 5x3 = 0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has only
the trivial solution if and only if its coefficient matrix is invertible. From Examples 4 and 5
the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus, system
(a) has only the trivial solution while system (b) has nontrivial solutions.
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Exercise Set 1.5

In Exercises 1–2, determine whether the given matrix is elementary.

1. a. [
1 0

−5 1] b. [
−5 1
1 0]

c. [
1 1 0
0 0 1
0 0 0

] d.
⎡
⎢
⎢
⎢
⎣

2 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

2. a. [
1 0
0 √3

] b. [
0 0 1
0 1 0
1 0 0

]

c. [
1 0 0
0 1 9
0 0 1

] d. [
−1 0 0
0 0 1
0 1 0

]

In Exercises 3–4, find a row operation and the corresponding ele-
mentary matrix that will restore the given elementary matrix to the
identity matrix.

3. a. [
1 −3
0 1] b. [

−7 0 0
0 1 0
0 0 1

]

c. [
1 0 0
0 1 0

−5 0 1
] d.

⎡
⎢
⎢
⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

4. a. [
1 0

−3 1] b. [
1 0 0
0 1 0
0 0 3

]

c.
⎡
⎢
⎢
⎢
⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎢
⎣

1 0 − 1
7 0

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

In Exercises 5–6 an elementary matrix 𝐸 and a matrix𝐴 are given.
Identify the row operation corresponding to 𝐸 and verify that the
product 𝐸𝐴 results from applying the row operation to𝐴.

5. a. 𝐸 = [0 1
1 0], 𝐴 = [−1 −2 5 −1

3 −6 −6 −6]

b. 𝐸 = [
1 0 0
0 1 0
0 −3 1

], 𝐴 = [
2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1

]

c. 𝐸 = [
1 0 4
0 1 0
0 0 1

], 𝐴 = [
1 4
2 5
3 6

]

6. a. 𝐸 = [−6 0
0 1], 𝐴 = [−1 −2 5 −1

3 −6 −6 −6]

b. 𝐸 = [
1 0 0

−4 1 0
0 0 1

], 𝐴 = [
2 −1 0 −4 −4
1 −3 −1 5 3
2 0 1 3 −1

]

c. 𝐸 = [
1 0 0
0 5 0
0 0 1

], 𝐴 = [
1 4
2 5
3 6

]

In Exercises 7–8, use the following matrices and find an elementary
matrix 𝐸 that satisfies the stated equation.

𝐴 = [
3 4 1
2 −7 −1
8 1 5

], 𝐵 = [
8 1 5
2 −7 −1
3 4 1

]

𝐶 = [
3 4 1
2 −7 −1
2 −7 3

], 𝐷 = [
8 1 5

−6 21 3
3 4 1

]

𝐹 = [
8 1 5
8 1 1
3 4 1

]

7. a. 𝐸𝐴 = 𝐵 b. 𝐸𝐵 = 𝐴

c. 𝐸𝐴 = 𝐶 d. 𝐸𝐶 = 𝐴

8. a. 𝐸𝐵 = 𝐷 b. 𝐸𝐷 = 𝐵

c. 𝐸𝐵 = 𝐹 d. 𝐸𝐹 = 𝐵

In Exercises 9–10, first use Theorem 1.4.5 and then use the inversion
algorithm to find𝐴−1, if it exists.

9. a. 𝐴 = [1 4
2 7] b. 𝐴 = [

2 −4
−4 8

]

10. a. 𝐴 = [1 −5
3 −16] b. 𝐴 = [

6 4
−3 −2]

In Exercises 11–12, use the inversion algorithm to find the inverse of
the matrix (if the inverse exists).

11. a.
⎡
⎢
⎢
⎣

1 2 3
2 5 3
1 0 8

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

−1 3 −4
2 4 1

−4 2 −9

⎤
⎥
⎥
⎦

12. a.
⎡
⎢
⎢
⎢
⎣

1
5

1
5 − 2

5
1
5

1
5

1
10

1
5 − 4

5
1
10

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

1
5

1
5 − 2

5
2
5 − 3

5 − 3
10

1
5 − 4

5
1
10

⎤
⎥
⎥
⎥
⎦

In Exercises 13–18, use the inversion algorithm to find the inverse of
the matrix (if the inverse exists).

13. [
1 0 1
0 1 1
1 1 0

] 14.
⎡
⎢
⎢
⎣

√2 3√2 0
−4√2 √2 0
0 0 1

⎤
⎥
⎥
⎦

15. [
2 6 6
2 7 6
2 7 7

] 16.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7

⎤
⎥
⎥
⎥
⎦
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17.
⎡
⎢
⎢
⎢
⎣

2 −4 0 0
1 2 12 0
0 0 2 0
0 −1 −4 −5

⎤
⎥
⎥
⎥
⎦

18.
⎡
⎢
⎢
⎢
⎣

0 0 2 0
1 0 0 1
0 −1 3 0
2 1 5 −3

⎤
⎥
⎥
⎥
⎦

In Exercises 19–20, find the inverse of each of the following 4× 4
matrices, where k1, k2, k3, k4, and k are all nonzero.

19. a.
⎡
⎢
⎢
⎢
⎣

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

k 1 0 0
0 1 0 0
0 0 k 1
0 0 0 1

⎤
⎥
⎥
⎥
⎦

20. a.
⎡
⎢
⎢
⎢
⎣

0 0 0 k1
0 0 k2 0
0 k3 0 0
k4 0 0 0

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

k 0 0 0
1 k 0 0
0 1 k 0
0 0 1 k

⎤
⎥
⎥
⎥
⎦

In Exercises 21–22, find all values of c, if any, for which the given
matrix is invertible.

21. [
c c c
1 c c
1 1 c

] 22. [
c 1 0
1 c 1
0 1 c

]

In Exercises 23–26, express the matrix and its inverse as products of
elementary matrices.

23. [−3 1
2 2] 24. [ 1 0

−5 2]

25. [
1 0 −2
0 4 3
0 0 1

] 26. [
1 1 0
1 1 1
0 1 1

]

In Exercises 27–28, show that the matrices 𝐴 and 𝐵 are row equiv-
alent by finding a sequence of elementary row operations that pro-
duces 𝐵 from 𝐴, and then use that result to find a matrix 𝐶 such
that𝐶𝐴 = 𝐵.

27. 𝐴 = [
1 2 3
1 4 1
2 1 9

], 𝐵 = [
1 0 5
0 2 −2
1 1 4

]

28. 𝐴 = [
2 1 0

−1 1 0
3 0 −1

], 𝐵 = [
6 9 4

−5 −1 0
−1 −2 −1

]

29. Show that if

𝐴 = [
1 0 0
0 1 0
a b c

]

is an elementary matrix, then at least one entry in the third
row must be zero.

30. Show that

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 a 0 0 0
b 0 c 0 0
0 d 0 e 0
0 0 𝑓 0 g
0 0 0 h 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is not invertible for any values of the entries.

Working with Proofs
31. Prove that if 𝐴 and 𝐵 are m × n matrices, then 𝐴 and 𝐵 are

row equivalent if and only if 𝐴 and 𝐵 have the same reduced
row echelon form.

32. Prove that if𝐴 is an invertible matrix and 𝐵 is row equivalent
to𝐴, then 𝐵 is also invertible.

33. Prove that if 𝐵 is obtained from 𝐴 by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, whichwhen applied to𝐵 recov-
ers𝐴.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. The product of two elementary matrices of the same size

must be an elementary matrix.

b. Every elementary matrix is invertible.

c. If 𝐴 and 𝐵 are row equivalent, and if 𝐵 and 𝐶 are row
equivalent, then𝐴 and 𝐶 are row equivalent.

d. If𝐴 is an n × nmatrix that is not invertible, then the lin-
ear system𝐴x = 0 has infinitely many solutions.

e. If 𝐴 is an n × n matrix that is not invertible, then the
matrix obtained by interchanging two rows of 𝐴 cannot
be invertible.

f. If 𝐴 is invertible and a multiple of the first row of 𝐴
is added to the second row, then the resulting matrix is
invertible.

g. An expression of an invertible matrix 𝐴 as a product of
elementary matrices is unique.

Working with Technology
T1. It can be proved that if the partitioned matrix

[
𝐴 𝐵
𝐶 𝐷]

is invertible, then its inverse is

[
𝐴−1 +𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 −𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1

−(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 (𝐷 − 𝐶𝐴−1𝐵)−1
]

provided that all of the inverses on the right side exist. Use
this result to find the inverse of the matrix

⎡⎢⎢⎢⎢
⎣

1 2 1 0
0 −1 0 1
0 0 2 0
0 0 3 3

⎤⎥⎥⎥⎥
⎦
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1.6 More on Linear Systems and
Invertible Matrices

In this section we will show how the inverse of a matrix can be used to solve a linear
system, and we will develop some more results about invertible matrices.

Number of Solutions of a Linear System
In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
system either has no solutions, has exactly one solution, or has infinitely many solutions.
We are now in a position to prove this fundamental result.

Theorem 1.6.1

A system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.

Proof If𝐴x = b is a system of linear equations, exactly one of the following is true: (a) the
systemhas no solutions, (b) the systemhas exactly one solution, or (c) the systemhasmore
than one solution. The proof will be complete if we can show that the systemhas infinitely
many solutions in case (c).

Assume that 𝐴x = b has more than one solution, and let x0 = x1 − x2, where x1 and
x2 are any two distinct solutions. Because x1 and x2 are distinct, the matrix x0 is nonzero;
moreover,

𝐴x0 = 𝐴(x1 − x2) = 𝐴x1 − 𝐴x2 = b − b = 0
If we now let k be any scalar, then

𝐴(x1 + kx0) = 𝐴x1 + 𝐴(kx0) = 𝐴x1 + k(𝐴x0)
= b + k0 = b + 0 = b

But this says that x1 + kx0 is a solution of 𝐴x = b. Since x0 is nonzero and there are
infinitely many choices for k, the system 𝐴x = b has infinitely many solutions.

Solving Linear Systems by Matrix Inversion
Thus far we have studied two procedures for solving linear systems—Gauss–Jordan
elimination andGaussian elimination. The following theorem provides an actual formula
for the solution of a linear system of n equations in n unknowns in the case where the
coefficient matrix is invertible.

Theorem 1.6.2

If 𝐴 is an invertible n × nmatrix, then for every n × 1 matrix b, the system of equa-
tions 𝐴x = b has exactly one solution, namely, x = 𝐴−1b.

Proof Since 𝐴(𝐴−1b) = b, it follows that x = 𝐴−1b is a solution of 𝐴x = b. To show that
this is the only solution, we will assume that x0 is an arbitrary solution and then show
that x0 must be the solution 𝐴−1b.

If x0 is any solution of 𝐴x = b, then 𝐴x0 = b. Multiplying both sides of this equa-
tion by 𝐴−1, we obtain x0 = 𝐴−1b.
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EXAMPLE 1 | Solution of a Linear System Using A−1

Consider the system of linear equations

x1 + 2x2 + 3x3 = 5
2x1 + 5x2 + 3x3 = 3
x1 + 8x3 = 17

In matrix form this system can be written as𝐴x = b, where

𝐴 = [
1 2 3
2 5 3
1 0 8

], x = [
x1
x2
x3
], b = [

5
3
17
]

In Example 4 of the preceding section, we showed that𝐴 is invertible and

𝐴−1 = [
−40 16 9
13 −5 −3
5 −2 −1

]

By Theorem 1.6.2, the solution of the system is

x = 𝐴−1b = [
−40 16 9
13 −5 −3
5 −2 −1

][
5
3
17
] = [

1
−1
2
]

or x1 = 1, x2 = −1, x3 = 2.

Keep in mind that the
method of Example 1
applies only when the sys-
tem has as many equations
as unknowns and the coeffi-
cient matrix is invertible.

Linear Systems with a Common Coefficient Matrix
Frequently, one is concerned with solving a sequence of systems

𝐴x = b1, 𝐴x = b2, 𝐴x = b3, . . . , 𝐴x = bk
each of which has the same square coefficient matrix 𝐴. If 𝐴 is invertible, then the
solutions

x1 = 𝐴−1b1, x2 = 𝐴−1b2, x3 = 𝐴−1b3, . . . , xk = 𝐴−1bk
can be obtained with one matrix inversion and kmatrix multiplications. An efficient way
to do this is to form the partitioned matrix

[𝐴 ∣ b1 ∣ b2 ∣ ⋅ ⋅ ⋅ ∣ bk] (1)

inwhich the coefficientmatrix𝐴 is “augmented” by all k of thematricesb1,b2, . . . ,bk, and
then reduce (1) to reduced row echelon form by Gauss–Jordan elimination. In this way
we can solve all k systems at once. This method has the added advantage that it applies
even when 𝐴 is not invertible.

EXAMPLE 2 | Solving Two Linear Systems at Once

Solve the systems

(a) x1 + 2x2 + 3x3 = 4
2x1 + 5x2 + 3x3 = 5
x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1
2x1 + 5x2 + 3x3 = 6
x1 + 8x3 = −6
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Solution The two systems have the same coefficient matrix. If we augment this coefficient
matrix with the columns of constants on the right sides of these systems, we obtain

[
1 2 3 4 1
2 5 3 5 6
1 0 8 9 −6

]

Reducing this matrix to reduced row echelon form yields (verify)

[
1 0 0 1 2
0 1 0 0 1
0 0 1 1 −1

]

It follows from the last two columns that the solution of system (a) is x1 = 1, x2 = 0, x3 = 1
and the solution of system (b) is x1 = 2, x2 = 1, x3 = −1.

Properties of Invertible Matrices
Up to now, to show that an n × n matrix 𝐴 is invertible, it has been necessary to find an
n × nmatrix 𝐵 such that

𝐴𝐵 = 𝐼 and 𝐵𝐴 = 𝐼
The next theorem shows that if we can produce an n × nmatrix 𝐵 satisfying either condi-
tion, then the other condition will hold automatically.

Theorem 1.6.3

Let 𝐴 be a square matrix.
(a) If 𝐵 is a square matrix satisfying 𝐵𝐴 = 𝐼, then 𝐵 = 𝐴−1.
(b) If 𝐵 is a square matrix satisfying 𝐴𝐵 = 𝐼, then 𝐵 = 𝐴−1.

We will prove part (a) and leave part (b) as an exercise.

Proof (a) Assume that 𝐵𝐴 = 𝐼. If we can show that𝐴 is invertible, the proof can be com-
pleted by multiplying 𝐵𝐴 = 𝐼 on both sides by 𝐴−1 to obtain

𝐵𝐴𝐴−1 = 𝐼𝐴−1 or 𝐵𝐼 = 𝐼𝐴−1 or 𝐵 = 𝐴−1

To show that𝐴 is invertible, it suffices to show that the system𝐴x = 0 has only the trivial
solution (see Theorem 1.5.3). Let x0 be any solution of this system. If we multiply both
sides of 𝐴x0 = 0 on the left by 𝐵, we obtain 𝐵𝐴x0 = 𝐵0 or 𝐼x0 = 0 or x0 = 0. Thus, the
system of equations 𝐴x = 0 has only the trivial solution.

Equivalence Theorem
We are now in a position to add two more statements to the four given in Theorem 1.5.3.

Theorem 1.6.4

Equivalent Statements
If 𝐴 is an n × nmatrix, then the following are equivalent.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.



November 12, 2018 13:09 C01 Sheet number 65 Page number 65 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.6 More on Linear Systems and Invertible Matrices 65

(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.

Proof Since we proved in Theorem 1.5.3 that (a), (b), (c), and (d) are equivalent, it will
be sufficient to prove that (a)⇒ ( f )⇒ (e)⇒ (a).

(a)⇒ ( f ) This was already proved in Theorem 1.6.2.

(f )⇒ (e) This is almost self-evident, for if𝐴x = b has exactly one solution for every n × 1
matrix b, then 𝐴x = b is consistent for every n × 1 matrix b.

(e)⇒ (a) If the system 𝐴x = b is consistent for every n × 1 matrix b, then, in particular,
this is so for the systems

𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , 𝐴x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Let x1, x2, . . . , xn be solutions of the respective systems, and let us form an n × nmatrix 𝐶
having these solutions as columns. Thus 𝐶 has the form

𝐶 = [x1 ∣ x2 ∣ ⋅ ⋅ ⋅ ∣ xn]
As discussed in Section 1.3, the successive columns of the product 𝐴𝐶 will be

𝐴x1, 𝐴x2, . . . , 𝐴xn
[see Formula (8) of Section 1.3]. Thus,

𝐴𝐶 = [𝐴x1 ∣ 𝐴x2 ∣ ⋅ ⋅ ⋅ ∣ 𝐴xn] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐼

By part (b) of Theorem 1.6.3, it follows that C=A−1. Thus, 𝐴 is invertible.

It follows from the equiv-
alency of parts (e) and ( f )
that if you can show that
𝐴x = b has at least one
solution for every n× 1
matrix b, then you can
conclude that it has exactly
one solution for every n× 1
matrix b.

We know from earlier work that invertible matrix factors produce an invertible prod-
uct. Conversely, the following theorem shows that if the product of square matrices is
invertible, then the factors themselves must be invertible.

Theorem 1.6.5

Let 𝐴 and 𝐵 be square matrices of the same size. If 𝐴𝐵 is invertible, then 𝐴 and 𝐵
must also be invertible.
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Proof We will show first that 𝐵 is invertible by showing that the homogeneous system
𝐵x = 0 has only the trivial solution. If we assume that x0 is any solution of this system,
then

(𝐴𝐵)x0 = 𝐴(𝐵x0) = 𝐴0 = 0

so x0 = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible matrix 𝐴𝐵. Thus,
𝐵x = 0 has only the trivial solution, which implies that 𝐵 is invertible. But this in turn
implies that 𝐴 is invertible since 𝐴 can be expressed as

𝐴 = 𝐴(𝐵𝐵−1) = (𝐴𝐵)𝐵−1

which is a product of two invertible matrices. This completes the proof.

In our later work the following fundamental problemwill occur frequently in various
contexts.

A Fundamental Problem Let𝐴 be a fixedm × nmatrix. Find allm × 1 matrices b such
that the system of equations 𝐴x = b is consistent.

If𝐴 is an invertiblematrix, Theorem 1.6.2 completely solves this problem by asserting
that for every m × 1 matrix b, the linear system𝐴x = b has the unique solution x = 𝐴−1b.
If𝐴 is not square, or if𝐴 is square but not invertible, then Theorem 1.6.2 does not apply. In
these cases bmust usually satisfy certain conditions in order for 𝐴x = b to be consistent.
The following example illustrates how themethods of Section 1.2 can be used to determine
such conditions.

EXAMPLE 3 | Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + x2 + 2x3 = b1
x1 + x3 = b2
2x1 + x2 + 3x3 = b3

to be consistent?

Solution The augmented matrix is

[
1 1 2 b1
1 0 1 b2
2 1 3 b3

]

which can be reduced to row echelon form as follows:

[
1 1 2 b1
0 −1 −1 b2 − b1
0 −1 −1 b3 − 2b1

] −1 times the first row was added
to the second and−2 times the
first row was added to the third.

[
1 1 2 b1
0 1 1 b1 − b2
0 −1 −1 b3 − 2b1

] The second row was
multiplied by−1.

[
1 1 2 b1
0 1 1 b1 − b2
0 0 0 b3 − b2 − b1

] The second row was added
to the third.



November 12, 2018 13:09 C01 Sheet number 67 Page number 67 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.6 More on Linear Systems and Invertible Matrices 67

It is now evident from the third row in the matrix that the system has a solution if and only
if b1, b2, and b3 satisfy the condition

b3 − b2 − b1 = 0 or b3 = b1 + b2
To express this condition another way,𝐴x = b is consistent if and only if b is a matrix of the
form

b = [
b1
b2

b1 + b2
]

where b1 and b2 are arbitrary.

EXAMPLE 4 | Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + 2x2 + 3x3 = b1
2x1 + 5x2 + 3x3 = b2
x1 + 8x3 = b3

to be consistent?

Solution The augmented matrix is

[
1 2 3 b1
2 5 3 b2
1 0 8 b3

]

Reducing this to reduced row echelon form yields (verify)

[
1 0 0 −40b1 + 16b2 + 9b3
0 1 0 13b1 − 5b2 − 3b3
0 0 1 5b1 − 2b2 − b3

] (2)

In this case there are no restrictions on b1, b2, and b3, so the system has the unique solution

x1 = −40b1 + 16b2 + 9b3, x2 = 13b1 − 5b2 − 3b3, x3 = 5b1 − 2b2 − b3 (3)

for all values of b1, b2, and b3.

What does the result in
Example 4 tell you about
the coefficient matrix of the
system?

Exercise Set 1.6

In Exercises 1–8, solve the system by inverting the coefficient matrix
and using Theorem 1.6.2.
1. x1 + x2 = 2

5x1 + 6x2 = 9
2. 4x1 − 3x2 = −3

2x1 − 5x2 = 9

3. x1 + 3x2 + x3 = 4
2x1 + 2x2 + x3 = −1
2x1 + 3x2 + x3 = 3

4. 5x1 + 3x2 + 2x3 = 4
3x1 + 3x2 + 2x3 = 2

x2 + x3 = 5

5. x + y + z = 5
x + y − 4z = 10

−4x + y + z = 0

6. − x − 2y − 3z = 0
𝑤 + x + 4y + 4z = 7
𝑤 + 3x + 7y + 9z = 4

−𝑤 − 2x − 4y − 6z = 6

7. 3x1 + 5x2 = b1
x1 + 2x2 = b2

8. x1 + 2x2 + 3x3 = b1
2x1 + 5x2 + 5x3 = b2
3x1 + 5x2 + 8x3 = b3

In Exercises 9–12, solve the linear systems. Using the given values for
the b’s solve the systems together by reducing an appropriate aug-
mented matrix to reduced row echelon form.
9. x1 − 5x2 = b1

3x1 + 2x2 = b2
i. b1 = 1, b2 = 4 ii. b1 = −2, b2 = 5

10. −x1 + 4x2 + x3 = b1
x1 + 9x2 − 2x3 = b2
6x1 + 4x2 − 8x3 = b3
i. b1 = 0, b2 = 1, b3 = 0 ii. b1 = −3, b2 = 4, b3 = −5
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11. 4x1 − 7x2 = b1
x1 + 2x2 = b2
i. b1 = 0, b2 = 1 ii. b1 = −4, b2 = 6

iii. b1 = −1, b2 = 3 iv. b1 = −5, b2 = 1

12. x1 + 3x2 + 5x3 = b1
−x1 − 2x2 = b2
2x1 + 5x2 + 4x3 = b3
i. b1 = 1, b2 = 0, b3 = −1
ii. b1 = 0, b2 = 1, b3 = 1
iii. b1 = −1, b2 = −1, b3 = 0

In Exercises 13–17, determine conditions on the bi’s, if any, in order
to guarantee that the linear system is consistent.

13. x1 + 3x2 = b1
−2x1 + x2 = b2

14. 6x1 − 4x2 = b1
3x1 − 2x2 = b2

15. x1 − 2x2 + 5x3 = b1
4x1 − 5x2 + 8x3 = b2

−3x1 + 3x2 − 3x3 = b3

16. x1 − 2x2 − x3 = b1
−4x1 + 5x2 + 2x3 = b2
−4x1 + 7x2 + 4x3 = b3

17. x1 − x2 + 3x3 + 2x4 = b1
−2x1 + x2 + 5x3 + x4 = b2
−3x1 + 2x2 + 2x3 − x4 = b3
4x1 − 3x2 + x3 + 3x4 = b4

18. Consider the matrices

𝐴 = [
2 1 2
2 2 −2
3 1 1

] and x = [
x1
x2
x3
]

a. Show that the equation 𝐴x = x can be rewritten as
(𝐴 − 𝐼)x = 0 and use this result to solve𝐴x = x for x.

b. Solve𝐴x = 4x.

In Exercises 19–20, solve the matrix equation for𝑋.

19. [
1 −1 1
2 3 0
0 2 −1

]𝑋 = [
2 −1 5 7 8
4 0 −3 0 1
3 5 −7 2 1

]

20. [
−2 0 1
0 −1 −1
1 1 −4

]𝑋 = [
4 3 2 1
6 7 8 9
1 3 7 9

]

Working with Proofs

21. Let𝐴x = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k
is any positive integer, then the system 𝐴kx = 0 also has only
the trivial solution.

22. Let 𝐴x = 0 be a homogeneous system of n linear equations
in n unknowns, and let 𝑄 be an invertible n × n matrix.
Prove that 𝐴x = 0 has only the trivial solution if and only if
(𝑄𝐴)x = 0 has only the trivial solution.

23. Let 𝐴x = b be any consistent system of linear equations, and
let x1 be a fixed solution. Prove that every solution to the sys-

tem can be written in the form x = x1 + x0, where x0 is a solu-
tion to 𝐴x = 0. Prove also that every matrix of this form is a
solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. It is impossible for a system of linear equations to have

exactly two solutions.

b. If 𝐴 is a square matrix, and if the linear system 𝐴x = b
has a unique solution, then the linear system𝐴x = c also
must have a unique solution.

c. If 𝐴 and 𝐵 are n × n matrices such that 𝐴𝐵 = 𝐼n, then
𝐵𝐴 = 𝐼n.

d. If 𝐴 and 𝐵 are row equivalent matrices, then the linear
systems𝐴x = 0 and 𝐵x = 0 have the same solution set.

e. Let 𝐴 be an n × n matrix and 𝑆 is an n × n invertible
matrix. If x is a solution to the system (𝑆−1𝐴𝑆)x = b,
then 𝑆x is a solution to the system𝐴y = 𝑆b.

f. Let𝐴 be an n × nmatrix. The linear system𝐴x = 4x has
a unique solution if and only if 𝐴− 4𝐼 is an invertible
matrix.

g. Let𝐴 and𝐵 be n × nmatrices. If𝐴 or𝐵 (or both) are not
invertible, then neither is𝐴𝐵.

Working with Technology
T1. Colors in print media, on computer monitors, and on tele-

vision screens are implemented using what are called “color
models.” For example, in theRGBmodel, colors are created by
mixing percentages of red (R), green (G), and blue (B), and in
the YIQ model (used in TV broadcasting), colors are created
by mixing percentages of luminescence (Y) with percentages
of a chrominance factor (I) and a chrominance factor (Q). The
conversion from the RGB model to the YIQ model is accom-
plished by the matrix equation

⎡
⎢
⎢
⎣

Y
I
Q

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

.299 .587 .114

.596 −.275 −.321

.212 −.523 .311

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

R
G
B

⎤
⎥
⎥
⎦

What matrix would you use to convert the YIQ model to the
RGB model?

T2. Let

𝐴 =
⎡
⎢
⎢
⎣

1 −2 2
4 5 1
0 3 −1

⎤
⎥
⎥
⎦
, 𝐵1 =

⎡
⎢
⎢
⎣

0
1
7

⎤
⎥
⎥
⎦
, 𝐵2 =

⎡
⎢
⎢
⎣

11
5
3

⎤
⎥
⎥
⎦
, 𝐵3 =

⎡
⎢
⎢
⎣

1
−4
2

⎤
⎥
⎥
⎦

Solve the linear systems 𝐴x = 𝐵1,𝐴x = 𝐵2,𝐴x = 𝐵3 using
the method of Example 2.
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1.7 Diagonal, Triangular, and
Symmetric Matrices

In this section we will discuss matrices that have various special forms. These matrices
arise in a wide variety of applications and will play an important role in our subsequent
work.

Diagonal Matrices
A squarematrix inwhich all the entries off themain diagonal are zero is called a diagonal
matrix. Here are some examples:

[2 0
0 −5], [

1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

6 0 0 0
0 −4 0 0
0 0 0 0
0 0 0 8

⎤
⎥
⎥
⎥
⎦

, [0 0
0 0]

A general n × n diagonal matrix 𝐷 can be written as

𝐷 =
⎡
⎢
⎢
⎢
⎣

d1 0 ⋅ ⋅ ⋅ 0
0 d2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ dn

⎤
⎥
⎥
⎥
⎦

(1)

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in this
case the inverse of (1) is

𝐷−1 =
⎡
⎢
⎢
⎢
⎣

1/d1 0 ⋅ ⋅ ⋅ 0
0 1/d2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1/dn

⎤
⎥
⎥
⎥
⎦

(2)

We leave it for you to confirm that 𝐷𝐷−1 = 𝐷−1𝐷 = 𝐼m.
Powers of diagonal matrices are easy to compute; we also leave it for you to verify that

if 𝐷 is the diagonal matrix (1) and k is a positive integer, then

𝐷k =
⎡
⎢
⎢
⎢
⎢
⎣

dk1 0 ⋅ ⋅ ⋅ 0
0 dk2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ dkn

⎤
⎥
⎥
⎥
⎥
⎦

(3)

EXAMPLE 1 | Inverses and Powers of Diagonal Matrices

If

𝐴 = [
1 0 0
0 −3 0
0 0 2

]

then

𝐴−1 =
⎡
⎢
⎢
⎣

1 0 0
0 − 1

3 0
0 0 1

2

⎤
⎥
⎥
⎦
, 𝐴5 = [

1 0 0
0 −243 0
0 0 32

], 𝐴−5 =
⎡
⎢
⎢
⎣

1 0 0
0 − 1

243 0
0 0 1

32

⎤
⎥
⎥
⎦



November 12, 2018 13:09 C01 Sheet number 70 Page number 70 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

70 CHAPTER 1 Systems of Linear Equations and Matrices

Matrix products that involve diagonal factors are especially easy to compute. For
example,

[
d1 0 0
0 d2 0
0 0 d3

][
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

] = [
d1a11 d1a12 d1a13 d1a14
d2a21 d2a22 d2a23 d2a24
d3a31 d3a32 d3a33 d3a34

]

⎡
⎢
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

⎤
⎥
⎥
⎥
⎦

[
d1 0 0
0 d2 0
0 0 d3

] =
⎡
⎢
⎢
⎢
⎣

d1a11 d2a12 d3a13
d1a21 d2a22 d3a23
d1a31 d2a32 d3a33
d1a41 d2a42 d3a43

⎤
⎥
⎥
⎥
⎦

Inwords, tomultiply amatrix𝐴 on the left by a diagonalmatrix𝐷,multiply successive
rows of 𝐴 by the successive diagonal entries of 𝐷, and to multiply 𝐴 on the right by 𝐷,
multiply successive columns of 𝐴 by the successive diagonal entries of 𝐷.

Triangular Matrices
A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a squarematrix in which all the entries below themain diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

EXAMPLE 2 | Upper and Lower Triangular Matrices

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a44

A general 4 × 4 upper
triangular matrix

A general 4 × 4 lower
triangular matrix

Remark Observe that diagonal matrices are both upper triangular and lower triangu-
lar since they have zeros below and above the main diagonal. Observe also that a square
matrix in row echelon form is upper triangular since it has zeros below themain diagonal.

Properties of Triangular Matrices
Example 2 illustrates the following four facts about triangular matrices that we will state
without formal proof:

• A square matrix𝐴 = [aij] is upper triangular if and only if all entries below the main

i > j

i < j

FIGURE 1.7.1

diagonal are zero; that is, aij = 0 if i > j (Figure 1.7.1).
• A square matrix 𝐴 = [aij] is lower triangular if and only if all entries above the main
diagonal are zero; that is, aij = 0 if i < j (Figure 1.7.1).

• A square matrix 𝐴 = [aij] is upper triangular if and only if the ith row starts with at
least i − 1 zeros for every i.

• A square matrix 𝐴 = [aij] is lower triangular if and only if the jth column starts with
at least j − 1 zeros for every j.
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The following theorem lists some of the basic properties of triangular matrices.

Theorem 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the trans-
pose of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product
of upper triangular matrices is upper triangular.

(c) A triangularmatrix is invertible if and only if its diagonal entries are all nonzero.
(d) The inverse of an invertible lower triangular matrix is lower triangular, and the

inverse of an invertible upper triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by
reflecting the entries about the main diagonal; we omit the formal proof. We will prove
(b), but we will defer the proofs of (c) and (d) to the next chapter, where we will have the
tools to prove those results more efficiently.

Proof (b) We will prove the result for lower triangular matrices; the proof for upper tri-
angular matrices is similar. Let𝐴 = [aij] and 𝐵 = [bij] be lower triangular n × nmatrices,
and let 𝐶 = [cij] be the product 𝐶 = 𝐴𝐵. We can prove that 𝐶 is lower triangular by show-
ing that cij = 0 for i < j. But from the definition of matrix multiplication,

cij = ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + ainbnj
If we assume that i < j, then the terms in this expression can be grouped as follows:

cij = ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + ai ( j−1)b( j−1) j⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
Terms in which the row
number of b is less than
the column number of b

+ ai jbj j + ⋅ ⋅ ⋅ + ainbnj⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
Terms in which the row
number of a is less than
the column number of a

In the first grouping all of the b factors are zero since 𝐵 is lower triangular, and in the
second grouping all of the a factors are zero since 𝐴 is lower triangular. Thus, cij = 0,
which is what we wanted to prove.

Remark Observe that in
this example the diagonal
entries of AB and BA are
the same and are the prod-
ucts of the corresponding
diagonal entries of A and B.
Also observe that the diag-
onal entries of A−1 are the
reciprocals of the diagonal
entries of A. In the exercises
we ask you to show that this
happens whenever upper or
lower triangular matrices
are multiplied or inverted.

EXAMPLE 3 | Computations with Triangular Matrices

Consider the upper triangular matrices

𝐴 =
⎡⎢⎢⎢
⎣

1 3 −1
0 2 4
0 0 5

⎤⎥⎥⎥
⎦

, 𝐵 =
⎡⎢⎢⎢
⎣

3 −2 2
0 0 −1
0 0 1

⎤⎥⎥⎥
⎦

It follows from part (c) of Theorem 1.7.1 that the matrix 𝐴 is invertible but the matrix 𝐵 is
not. Moreover, the theorem also tells us that𝐴−1,𝐴𝐵, and𝐵𝐴must be upper triangular. We
leave it for you to confirm these three statements by showing that

𝐴−1 =
⎡
⎢
⎢
⎢
⎣

1 − 3
2

7
5

0 1
2 − 2

5
0 0 1

5

⎤
⎥
⎥
⎥
⎦

, 𝐴𝐵 =
⎡⎢⎢⎢
⎣

3 −2 −2
0 0 2
0 0 5

⎤⎥⎥⎥
⎦

, 𝐵𝐴 =
⎡⎢⎢⎢
⎣

3 5 −1
0 0 −5
0 0 5

⎤⎥⎥⎥
⎦
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Symmetric Matrices

Definition 1

A square matrix 𝐴 is said to be symmetric if 𝐴 = 𝐴𝑇 .

EXAMPLE 4 | Symmetric Matrices

The following matrices are symmetric since each is equal to its own transpose (verify).

[ 7 −3
−3 5],

⎡⎢⎢⎢
⎣

1 4 5
4 −3 0
5 0 7

⎤⎥⎥⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⎤
⎥
⎥
⎥
⎥
⎦

It is easy to recognize
a symmetric matrix by
inspection: The entries on
the main diagonal have
no restrictions, but mirror
images of entries across
the main diagonal must
be equal. Here is a picture
using the second matrix in
Example 4:

1 4 5

4 3 0

5 0 7

Remark It follows from Formula (14) of Section 1.3 that a square matrix 𝐴 is symmetric
if and only if

(𝐴)ij = (𝐴)ji (4)

for all values of i and j.

The following theorem lists themain algebraic properties of symmetric matrices. The
proofs are direct consequences of Theorem 1.4.8 and are omitted.

Theorem 1.7.2

If 𝐴 and 𝐵 are symmetric matrices with the same size, and if k is any scalar, then:
(a) 𝐴𝑇 is symmetric.
(b) 𝐴 + 𝐵 and 𝐴 − 𝐵 are symmetric.
(c) k𝐴 is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To see
why this is so, let𝐴 and 𝐵 be symmetric matrices with the same size. Then it follows from
part (e) of Theorem 1.4.8 and the symmetry of 𝐴 and 𝐵 that

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 = 𝐵𝐴

Thus, (𝐴𝐵)𝑇 = 𝐴𝐵 if and only if 𝐴𝐵 = 𝐵𝐴, that is, if and only if 𝐴 and 𝐵 commute. In
summary, we have the following result.

Theorem 1.7.3

The product of two symmetric matrices is symmetric if and only if the matrices
commute.
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EXAMPLE 5 | Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not sym-
metric, and the second shows a product of symmetric matrices that is symmetric. We con-
clude that the factors in the first equation do not commute, but those in the second equation
do. We leave it for you to verify that this is so.

[1 2
2 3] [

−4 1
1 0] = [−2 1

−5 2]

[1 2
2 3] [

−4 3
3 −1] = [2 1

1 3]

Invertibility of Symmetric Matrices
In general, a symmetric matrix need not be invertible. For example, a diagonal matrix
with a zero on the main diagonal is symmetric but not invertible. However, the following
theorem shows that if a symmetric matrix happens to be invertible, then its inverse must
also be symmetric.

Theorem 1.7.4

If 𝐴 is an invertible symmetric matrix, then 𝐴−1 is symmetric.

Proof Assume that 𝐴 is symmetric and invertible. From Theorem 1.4.9 and the fact that
𝐴 = 𝐴𝑇 , we have

(𝐴−1)𝑇 = (𝐴𝑇)−1 = 𝐴−1

which proves that 𝐴−1 is symmetric.

Later in this text, we will obtain general conditions on 𝐴 under which 𝐴𝐴𝑇 and 𝐴𝑇𝐴
are invertible.However, in the special casewhere𝐴 is square, we have the following result.

Theorem 1.7.5

If 𝐴 is an invertible matrix, then 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are also invertible.

Proof Since𝐴 is invertible, so is𝐴𝑇 by Theorem 1.4.9. Thus𝐴𝐴𝑇 and𝐴𝑇𝐴 are invertible,
since they are the products of invertible matrices.

Products AAT and ATA are Symmetric
Matrix products of the form 𝐴𝐴𝑇 and 𝐴𝑇𝐴 arise in a variety of applications. If 𝐴 is an
m × nmatrix, then 𝐴𝑇 is an n ×mmatrix, so the products 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are both square
matrices—the matrix𝐴𝐴𝑇 has sizem ×m, and the matrix𝐴𝑇𝐴 has size n × n. Such prod-
ucts are always symmetric since

(𝐴𝐴𝑇)𝑇 = (𝐴𝑇)𝑇𝐴𝑇 = 𝐴𝐴𝑇 and (𝐴𝑇𝐴)𝑇 = 𝐴𝑇(𝐴𝑇)𝑇 = 𝐴𝑇𝐴
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EXAMPLE 6 | The Product of a Matrix and Its Transpose
Is Symmetric

Let𝐴 be the 2 × 3 matrix

𝐴 = [1 −2 4
3 0 −5]

Then

𝐴𝑇𝐴 = [
1 3

−2 0
4 −5

] [1 −2 4
3 0 −5] = [

10 −2 −11
−2 4 −8
−11 −8 41

]

𝐴𝐴𝑇 = [1 −2 4
3 0 −5] [

1 3
−2 0
4 −5

] = [ 21 −17
−17 34]

Observe that𝐴𝑇𝐴 and𝐴𝐴𝑇 are symmetric as expected.

Exercise Set 1.7

In Exercises 1–2, classify the matrix as upper triangular, lower tri-
angular, or diagonal, and decide by inspection whether the matrix
is invertible. Recall that a diagonal matrix is both upper and lower
triangular, so there may be more than one answer in some parts.

1. a. [
2 1
0 3

] b. [
0 0
4 0

]

c.
⎡
⎢
⎢
⎣

−1 0 0
0 2 0
0 0 1

5

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

3 −2 7
0 0 3
0 0 8

⎤
⎥
⎥
⎦

2. a. [
4 0
1 7

] b. [
0 −3
0 0

]

c.
⎡
⎢
⎢
⎣

4 0 0
0 3

5 0
0 0 −2

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

3 0 0
3 1 0
7 0 0

⎤
⎥
⎥
⎦

In Exercises 3–6, find the product by inspection.

3. [
3 0 0
0 −1 0
0 0 2

] [
2 1

−4 1
2 5

]

4. [ 1 2 −5
−3 −1 0] [

−4 0 0
0 3 0
0 0 2

]

5. [
5 0 0
0 2 0
0 0 −3

] [
−3 2 0 4 −4
1 −5 3 0 3

−6 2 2 2 2
]

6. [
2 0 0
0 −1 0
0 0 4

][
4 −1 3
1 2 0

−5 1 −2
][

−3 0 0
0 5 0
0 0 2

]

In Exercises 7–10, find𝐴2,𝐴−2, and𝐴−k (where k is any integer) by
inspection.

7. 𝐴 = [1 0
0 −2] 8. 𝐴 = [

−6 0 0
0 3 0
0 0 5

]

9. 𝐴 =
⎡
⎢
⎢
⎣

1
2 0 0
0 1

3 0
0 0 1

4

⎤
⎥
⎥
⎦

10. 𝐴 =
⎡
⎢
⎢
⎢
⎣

−2 0 0 0
0 −4 0 0
0 0 −3 0
0 0 0 2

⎤
⎥
⎥
⎥
⎦

In Exercises 11–12, compute the product by inspection.

11.
⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 0 0
0 5 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 0
0 2 0
0 0 1

⎤
⎥
⎥
⎦

12.
⎡
⎢
⎢
⎣

−1 0 0
0 2 0
0 0 4

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

3 0 0
0 5 0
0 0 7

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

5 0 0
0 −2 0
0 0 3

⎤
⎥
⎥
⎦

In Exercises 13–14, compute the indicated quantity.

13. [
1 0
0 −1]

39

14. [
1 0
0 −1]

1000

In Exercises 15–16, use what you have learned in this section
about multiplying by diagonal matrices to compute the product by
inspection.
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15. a.
⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

u 𝑣
𝑤 x
y z

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

r s t
u 𝑣 𝑤
x y z

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

16. a.
⎡
⎢
⎢
⎣

u 𝑣
𝑤 x
y z

⎤
⎥
⎥
⎦
[
a 0
0 b

] b.
⎡
⎢
⎢
⎣

a 0 0
0 b 0
0 0 c

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

r s t
u 𝑣 𝑤
x y z

⎤
⎥
⎥
⎦

In Exercises 17–18, create a symmetric matrix by substituting appro-
priate numbers for the ×’s.

17. a. [
2 −1
× 3

] b.
⎡⎢⎢⎢⎢
⎣

1 × × ×
3 1 × ×
7 −8 0 ×
2 −3 9 0

⎤⎥⎥⎥⎥
⎦

18. a. [
0 ×
3 0

] b.
⎡⎢⎢⎢⎢
⎣

1 7 −3 2
× 4 5 −7
× × 1 −6
× × × 3

⎤⎥⎥⎥⎥
⎦

In Exercises 19–22, determine by inspection whether the matrix is
invertible.

19. [
0 6 −1
0 7 −4
0 0 −2

] 20. [
−1 2 4
0 3 0
0 0 5

]

21.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
2 −5 0 0
4 −3 4 0
1 −2 1 3

⎤
⎥
⎥
⎥
⎦

22.
⎡
⎢
⎢
⎢
⎣

2 0 0 0
−3 −1 0 0
−4 −6 0 0
0 3 8 −5

⎤
⎥
⎥
⎥
⎦

In Exercises 23–24, find the diagonal entries of𝐴𝐵 by inspection.

23. 𝐴 = [
3 2 6
0 1 −2
0 0 −1

], 𝐵 = [
−1 2 7
0 5 3
0 0 6

]

24. 𝐴 = [
4 0 0

−2 0 0
−3 0 7

], 𝐵 = [
6 0 0
1 5 0
3 2 6

]

In Exercises 25–26, find all values of the unknown constant(s) for
which𝐴 is symmetric.

25. 𝐴 = [
4 −3

a+ 5 −1]

26. 𝐴 = [
2 a− 2b+ 2c 2a+ b+ c
3 5 a+ c
0 −2 7

]

In Exercises 27–28, find all values of x for which 𝐴 is invertible.

27. 𝐴 = [
x− 1 x2 x4

0 x+ 2 x3

0 0 x− 4
]

28. 𝐴 =
⎡
⎢
⎢
⎢
⎣

x− 1
2 0 0

x x− 1
3 0

x2 x3 x+ 1
4

⎤
⎥
⎥
⎥
⎦

29. If 𝐴 is an invertible upper triangular or lower triangular
matrix, what can you say about the diagonal entries of𝐴−1?

30. Show that if𝐴 is a symmetric n × nmatrix and𝐵 is any n ×m
matrix, then the following products are symmetric:

𝐵𝑇𝐵, 𝐵𝐵𝑇, 𝐵𝑇𝐴𝐵

In Exercises 31–32, find a diagonal matrix𝐴 that satisfies the given
condition.

31. 𝐴5 = [
1 0 0
0 −1 0
0 0 −1

] 32. 𝐴−2 = [
9 0 0
0 4 0
0 0 1

]

33. Verify Theorem 1.7.1(b) for the matrix product𝐴𝐵 and Theo-
rem 1.7.1(d) for the matrix𝐴, where

𝐴 = [
−1 2 5
0 1 3
0 0 −4

], 𝐵 = [
2 −8 0
0 2 1
0 0 3

]

34. Let𝐴 be an n × n symmetric matrix.
a. Show that𝐴2 is symmetric.

b. Show that 2𝐴2 − 3𝐴+ 𝐼 is symmetric.

35. Verify Theorem 1.7.4 for the given matrix𝐴.

a. 𝐴 = [ 2 −1
−1 3] b. 𝐴 = [

1 −2 3
−2 1 −7
3 −7 4

]

36. Find all 3 × 3 diagonal matrices𝐴 that satisfy
𝐴2 − 3𝐴− 4𝐼 = 0.

37. Let𝐴 = [ai j] be ann × nmatrix. Determinewhether𝐴 is sym-
metric.
a. ai j = i2 + j2 b. ai j = i2 − j2

c. ai j = 2i+ 2j d. ai j = 2i2 + 2j3

38. On the basis of your experience with Exercise 37, devise a gen-
eral test that can be applied to a formula for aij to determine
whether𝐴 = [ai j] is symmetric.

39. Find an upper triangular matrix that satisfies

𝐴3 = [1 30
0 −8]

40. If the n × nmatrix𝐴 can be expressed as𝐴 = 𝐿𝑈, where 𝐿 is
a lower triangularmatrix and𝑈 is an upper triangularmatrix,
then the linear system 𝐴x = b can be expressed as 𝐿𝑈x = b
and can be solved in two steps:
Step 1. Let𝑈x = y, so that 𝐿𝑈x = b can be expressed as

𝐿y = b. Solve this system.
Step 2. Solve the system𝑈x = y for x.
In each part, use this two-step method to solve the given
system.

a. [
1 0 0

−2 3 0
2 4 1

][
2 −1 3
0 1 2
0 0 4

][
x1
x2
x3
] = [

1
−2
0
]

b. [
2 0 0
4 1 0

−3 −2 3
][

3 −5 2
0 4 1
0 0 2

][
x1
x2
x3
] = [

4
−5
2
]
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In the text we defined a matrix𝐴 to be symmetric if𝐴𝑇 = 𝐴. Anal-
ogously, a matrix 𝐴 is said to be skew-symmetric if 𝐴𝑇 = −𝐴.
Exercises 41–45 are concerned with matrices of this type.
41. Fill in the missing entries (marked with ×) so the matrix 𝐴 is

skew-symmetric.

a. 𝐴 = [
× × 4
0 × ×
× −1 ×

] b. 𝐴 = [
× 0 ×
× × −4
8 × ×

]

42. Find all values of a, b, c, and d for which𝐴 is skew-symmetric.

𝐴 = [
0 2a− 3b+ c 3a− 5b+ 5c

−2 0 5a− 8b+ 6c
−3 −5 d

]

43. We showed in the text that the product of symmetric matrices
is symmetric if and only if the matrices commute. Is the prod-
uct of commuting skew-symmetric matrices skew-symmetric?
Explain.

Working with Proofs

44. Prove that every square matrix𝐴 can be expressed as the sum
of a symmetric matrix and a skew-symmetric matrix. [Hint:
Note the identity𝐴 = 1

2 (𝐴 +𝐴𝑇) + 1
2 (𝐴 −𝐴𝑇).]

45. Prove the following facts about skew-symmetric matrices.
a. If 𝐴 is an invertible skew-symmetric matrix, then 𝐴−1 is

skew-symmetric.

b. If 𝐴 and 𝐵 are skew-symmetric matrices, then so are 𝐴𝑇,
𝐴+𝐵,𝐴−𝐵, and k𝐴 for any scalar k.

46. Prove: If the matrices 𝐴 and 𝐵 are both upper triangular or
both lower triangular, then the diagonal entries of both 𝐴𝐵
and 𝐵𝐴 are the products of the diagonal entries of𝐴 and 𝐵.

47. Prove: If𝐴𝑇𝐴 = 𝐴, then𝐴 is symmetric and𝐴 = 𝐴2.

True-False Exercises
TF. In parts (a)–(m) determine whether the statement is true or

false, and justify your answer.
a. The transpose of a diagonal matrix is a diagonal matrix.

b. The transpose of an upper triangular matrix is an upper
triangular matrix.

c. The sum of an upper triangular matrix and a lower trian-
gular matrix is a diagonal matrix.

d. All entries of a symmetric matrix are determined by the
entries occurring on and above the main diagonal.

e. All entries of an upper triangular matrix are determined
by the entries occurring on and above the main diagonal.

f. The inverse of an invertible lower triangular matrix is an
upper triangular matrix.

g. A diagonal matrix is invertible if and only if all of its diag-
onal entries are positive.

h. The sum of a diagonal matrix and a lower triangular
matrix is a lower triangular matrix.

i. A matrix that is both symmetric and upper triangular
must be a diagonal matrix.

j. If𝐴 and𝐵 are n × nmatrices such that𝐴+𝐵 is symmet-
ric, then𝐴 and 𝐵 are symmetric.

k. If 𝐴 and 𝐵 are n × n matrices such that 𝐴+𝐵 is upper
triangular, then𝐴 and 𝐵 are upper triangular.

l. If𝐴2 is a symmetricmatrix, then𝐴 is a symmetricmatrix.

m. If k𝐴 is a symmetric matrix for some k ≠ 0, then 𝐴 is a
symmetric matrix.

Working with Technology
T1. Starting with the formula stated in Exercise T1 of Section 1.5,

derive a formula for the inverse of the “block diagonal”matrix

[
𝐷1 0
0 𝐷2

]

in which𝐷1 and𝐷2 are invertible, and use your result to com-
pute the inverse of the matrix

𝑀 =
⎡⎢⎢⎢⎢
⎣

1.24 2.37 0 0
3.08 −1.01 0 0
0 0 2.76 4.92
0 0 3.23 5.54

⎤⎥⎥⎥⎥
⎦

1.8 Introduction to Linear Transformations
Up to now we have treated matrices simply as rectangular arrays of numbers and have
been concerned primarily with developing algebraic properties of those arrays. In this
section we will view matrices in a completely different way. Here we will be concerned
with how matrices can be used to transform or “map” one vector into another by matrix
multiplication. This will be the foundation for much of our work in subsequent sections.

Recall that in Section 1.1 we defined an “ordered n-tuple” to be a sequence of n real num-
bers, and we observed that a solution of a linear system in n unknowns, say

x1 = s1, x2 = s2, . . . , xn = sn
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can be expressed as the ordered n-tuple
(s1, s2, . . . , sn) (1)

Recall also that if n = 2, then the n-tuple is called an “ordered pair,” and if n = 3, it is
called an “ordered triple.” For two ordered n-tuples to be regarded as the same, they must
list the same numbers in the same order. Thus, for example, (1, 2) and (2, 1) are different
ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by the symbol 𝑅n. The ele- The term “vector” is used in
various ways in mathemat-
ics, physics, engineering,
and other applications. The
idea of viewing n-tuples as
vectors will be discussed in
more detail in Chapter 3,
at which point we will also
explain how this idea relates
to a more familiar notion of
a vector.

ments of 𝑅n are called vectors and are denoted in boldface type, such as a, b, v,w, and x.
When convenient, ordered n-tuples can be denoted in matrix notation as column vectors.
For example, the matrix

⎡
⎢
⎢
⎢
⎣

s1
s2...
sn

⎤
⎥
⎥
⎥
⎦

(2)

can be used as an alternative to (1).We call (1) the comma-delimited form of a vector and
(2) the column-vector form. For each i = 1, 2, . . . ,n, let ei denote the vector in 𝑅n with a
1 in the ith position and zeros elsewhere. In column form these vectors are

e1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, e2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , en =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

We call the vectors e1, e2, . . . , en the standard basis vectors for 𝑅n. For example, the
vectors

e1 = [
1
0
0
], e2 = [

0
1
0
], e3 = [

0
0
1
]

are the standard basis vectors for 𝑅3.
The vectors e1, e2, . . . , en in 𝑅n are termed “basis vectors” because all other vectors in

𝑅n are expressible in exactly one way as a linear combination of them. For example, if

x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

then we can express x as
x = x1e1 + x2e2 + ⋅ ⋅ ⋅ + xnen

Functions and Transformations
Recall that a function is a rule that associates with each element of a set 𝐴 one and only
one element in a set 𝐵. If 𝑓 associates the element b with the element a, then we write

b = 𝑓(a)
and we say that b is the image of a under 𝑓 or that 𝑓(a) is the value of 𝑓 at a. The set 𝐴 is
called the domain of 𝑓 and the set 𝐵 the codomain of 𝑓 (Figure 1.8.1). The subset of the

a
b = f(a)

f

Domain
A

Codomain
B

FIGURE 1.8.1

codomain that consists of all images of elements in the domain is called the range of 𝑓.
Inmany applications the domain and codomain of a function are sets of real numbers,

but in this text we will be concerned with functions for which the domain is 𝑅n and the
codomain is 𝑅m for some positive integers m and n. In this setting it is common to use
italicized capital letters for functions, the letter 𝑇 being typical.
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Definition 1

If 𝑇 is a function with domain 𝑅n and codomain 𝑅m, then we say that 𝑇 is a trans-
formation from𝑅n to𝑅m or that𝑇maps from𝑅n to𝑅m, whichwe denote bywriting

𝑇∶𝑅n → 𝑅m

In the special case wherem = n, a transformation is sometimes called an operator
on 𝑅n.

Matrix Transformations
In this section we will be concerned with the class of transformations from 𝑅n to 𝑅m that
arise from linear systems. Specifically, suppose thatwe have the systemof linear equations

w1 = a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn
w2 = a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn...

...
...

...
wm = am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn

(3)

which we can write in matrix notation as

⎡
⎢
⎢
⎢
⎣

w1
w2...
wm

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

(4)

or more briefly as

w = 𝐴x (5)

Up to nowwe have been viewing (5) as a compact way of writing system (3). Another way
to view this formula is as a transformation that maps a vector x in 𝑅n into a vector w in
𝑅m by multiplying x on the left by 𝐴. We call this a matrix transformation (or matrix
operator in the special case wherem = n). We denote it by

𝑇𝐴 ∶𝑅n → 𝑅m
(see Figure 1.8.2). This notation is useful when it is important to make the domain and

x

TA : R
n → Rm

TA(x)

TA

Rn Rm

FIGURE 1.8.2

codomain clear. The subscript on 𝑇𝐴 serves as a reminder that the transformation results
frommultiplying vectors in 𝑅n by thematrix𝐴. In situations where specifying the domain
and codomain is not essential, we will express (5) as

w = 𝑇𝐴(x) (6)
We call the transformation𝑇𝐴multiplicationbyA. On occasionwewill find it convenient
to express (6) in the schematic form

x
𝑇𝐴⟶ w (7)

which is read “𝑇𝐴 maps x intow.”

EXAMPLE 1 | AMatrix Transformation from R4 to R3

The transformation from 𝑅4 to 𝑅3 defined by the equations

𝑤1 = 2x1 − 3x2 + x3 − 5x4
𝑤2 = 4x1 + x2 − 2x3 + x4
𝑤3 = 5x1 − x2 + 4x3

(8)
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can be expressed in matrix form as

[
𝑤1

𝑤2

𝑤3

] = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

]
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

from which we see that the transformation can be interpreted as multiplication by

𝐴 = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

] (9)

Although the image under the transformation 𝑇𝐴 of any vector

x =
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

in𝑅4 could be computed directly from the defining equations in (8), we will find it preferable
to use the matrix in (9). For example, if

x =
⎡
⎢
⎢
⎢
⎣

1
−3
0
2

⎤
⎥
⎥
⎥
⎦

then it follows from (9) that

𝑇𝐴(x) = 𝐴x = [
2 −3 1 −5
4 1 −2 1
5 −1 4 0

]
⎡
⎢
⎢
⎢
⎣

1
−3
0
2

⎤
⎥
⎥
⎥
⎦

= [
1
3
8
]

EXAMPLE 2 | Zero Transformations

If 0 is them × n zero matrix, then
𝑇0(x) = 0x = 0

so multiplication by zero maps every vector in 𝑅n into the zero vector in 𝑅m. We call 𝑇0 the
zero transformation from 𝑅n to 𝑅m.

EXAMPLE 3 | Identity Operators

If 𝐼 is the n × n identity matrix, then
𝑇𝐼(x) = 𝐼x = x

so multiplication by 𝐼 maps every vector in 𝑅n to itself. We call 𝑇𝐼 the identity operator on
𝑅n.
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Properties of Matrix Transformations
The following theorem lists four basic properties of matrix transformations that follow
from properties of matrix multiplication.

Theorem 1.8.1

For every matrix𝐴 the matrix transformation 𝑇𝐴 ∶𝑅n→𝑅m has the following prop-
erties for all vectors u and v and for every scalar k:
(a) 𝑇𝐴(0) = 0
(b) 𝑇𝐴(ku) = k𝑇𝐴(u) [Homogeneity property]

(c) 𝑇𝐴(u + v) = 𝑇𝐴(u) + 𝑇𝐴(v) [Additivity property]

(d) 𝑇𝐴(u − v) = 𝑇𝐴(u) − 𝑇𝐴(v)

Proof All four parts are restatements from the transformation viewpoint of the following
properties of matrix arithmetic given in Theorem 1.4.1:

𝐴0 = 0, 𝐴(ku) = k(𝐴u), 𝐴(u + v) = 𝐴u + 𝐴v, 𝐴(u − v) = 𝐴u − 𝐴v

It follows from parts (b) and (c) of Theorem 1.8.1 that a matrix transformationmaps a
linear combination of vectors in 𝑅n into the corresponding linear combination of vectors
in 𝑅m in the sense that

𝑇𝐴(k1u1 + k2u2 + ⋅ ⋅ ⋅ + krur) = k1𝑇𝐴(u1) + k2𝑇𝐴(u2) + ⋅ ⋅ ⋅ + kr𝑇𝐴(ur) (10)

Matrix transformations are not the only kinds of transformations. For example, if
w1 = x21 + x22
w2 = x1x2

(11)

then there are no constants a, b, c, and d for which

[
w1

w2
] = [

a b
c d

] [
x1
x2
] = [

x21 + x22
x1x2

]

so that the equations in (11) do not define a matrix transformation from 𝑅2 to 𝑅2.
This leads us to the following two questions.

Question 1. Are there algebraic properties of a transformation 𝑇∶ 𝑅n→𝑅m that can be
used to determine whether 𝑇 is a matrix transformation?
Question 2. If we discover that a transformation 𝑇∶ 𝑅n → 𝑅m is a matrix transforma-
tion, how can we find a matrix 𝐴 for which 𝑇 = 𝑇𝐴?

The following theorem and its proof will provide the answers.

Theorem 1.8.2

𝑇∶𝑅n→𝑅m is amatrix transformation if and only if the following relationships hold
for all vectors u and v in 𝑅n and for every scalar k:
(i) 𝑇(u + v) = 𝑇(u) + 𝑇(v) [Additivity property]

(ii) 𝑇(ku) = k𝑇(u) [Homogeneity property]
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Proof If 𝑇 is a matrix transformation, then properties (i) and (ii) follow respectively from
parts (c) and (b) of Theorem 1.8.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there exists
anm × nmatrix 𝐴 such that

𝑇(x) = 𝐴x
for every vector x in 𝑅n. Recall that the derivation of Formula (10) used only the additivity
and homogeneity properties of 𝑇𝐴. Since we are assuming that 𝑇 has those properties, it
must be true that

𝑇(k1u1 + k2u2 + ⋅ ⋅ ⋅ + krur) = k1𝑇(u1) + k2𝑇(u2) + ⋅ ⋅ ⋅ + kr𝑇(ur) (12)
for all scalars k1, k2, . . . , kr and all vectors u1,u2, . . . ,ur in 𝑅n. Let 𝐴 be the matrix

𝐴 = [𝑇(e1) ∣ 𝑇(e2) ∣ ⋅ ⋅ ⋅ ∣ 𝑇(en)] (13)
where e1, e2, . . . , en are the standard basis vectors for 𝑅n. It follows from Theorem 1.3.1
that 𝐴x is a linear combination of the columns of 𝐴 in which the successive coefficients
are the entries x1, x2, . . . , xn of x. That is,

𝐴x = x1𝑇(e1) + x2𝑇(e2) + ⋅ ⋅ ⋅ + xn𝑇(en)
Using Formula (10) we can rewrite this as

𝐴x = 𝑇(x1e1 + x2e2 + ⋅ ⋅ ⋅ + xnen) = 𝑇(x)
which completes the proof.

The two properties listed in Theorem 1.8.2 are called linearity conditions, and a
transformation that satisfies these conditions is called a linear transformation. Using
this terminology Theorem 1.8.2 can be restated as follows.

Theorem 1.8.3

Every linear transformation from 𝑅n to 𝑅m is a matrix transformation and con-
versely every matrix transformation from 𝑅n to 𝑅m is a linear transformation.

Briefly stated, this theorem tells us that for transformations from 𝑅n to 𝑅m the terms “lin-
ear transformation” and “matrix transformation” are synonymous.

Depending on whether n-tuples and m-tuples are regarded as vectors or points, the
geometric effect of a matrix transformation 𝑇𝐴∶ 𝑅n→𝑅m is to map each vector (point) in
𝑅n into a vector (point) in 𝑅m (Figure 1.8.3).

x
TA(x)

Rn Rm

x TA(x)

Rn Rm

0
0

TA maps points to points.TA maps vectors to vectors.

FIGURE 1.8.3

The following theorem states that if two matrix transformations from 𝑅n to 𝑅m have
the same image for each point of 𝑅n, then the matrices themselves must be the same.

Theorem 1.8.4

If 𝑇𝐴∶ 𝑅n→𝑅m and 𝑇𝐵 ∶ 𝑅n→𝑅m are matrix transformations, and if 𝑇𝐴(x) = 𝑇𝐵(x)
for every vector x in 𝑅n, then 𝐴 = 𝐵.
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Proof To say that 𝑇𝐴(x) = 𝑇𝐵(x) for every vector in 𝑅n is the same as saying that

𝐴x = 𝐵x

for every vector x in 𝑅n. This will be true, in particular, if x is any of the standard basis
vectors e1, e2, . . . , en for 𝑅n; that is,

𝐴ej = 𝐵ej ( j = 1, 2, . . . ,n) (14)

Since every entry of ej is 0 except for the jth, which is 1, it follows from Theorem 1.3.1
that 𝐴ej is the jth column of 𝐴 and 𝐵ej is the jth column of 𝐵. Thus, (14) implies that
corresponding columns of 𝐴 and 𝐵 are the same, and hence that 𝐴 = 𝐵.

Theorem1.8.4 is significant because it tells us that there is a one-to-one correspondence
betweenm × nmatrices andmatrix transformations from 𝑅n to 𝑅m in the sense that every
m × n matrix 𝐴 produces exactly one matrix transformation (multiplication by 𝐴) and
every matrix transformation from 𝑅n to 𝑅m arises from exactly onem × nmatrix; we call
that matrix the standard matrix for the transformation.

A Procedure for Finding Standard Matrices
In the course of proving Theorem 1.8.2 we showed in Formula (13) that if e1, e2, . . . , en are
the standard basis vectors for 𝑅n (in column form), then the standard matrix for a linear
transformation 𝑇∶ 𝑅n → 𝑅m is given by the formula

𝐴 = [𝑇(e1) ∣ 𝑇(e2) ∣ ⋅ ⋅ ⋅ ∣ 𝑇(en)] (15)

This formula reveals a key property of linear transformations from 𝑅n to 𝑅m, namely, that
they are completely determined by their actions on the standard basis vectors for 𝑅n. It
also suggests the following procedure that can be used to find the standard matrix for
such transformations.

Finding the Standard Matrix for a Matrix Transformation
Step 1. Find the images of the standard basis vectors e1, e2, . . . , en for 𝑅n.

Step 2. Construct thematrix that has the images obtained in Step 1 as its successive columns.
This matrix is the standard matrix for the transformation.

EXAMPLE 4 | Finding a Standard Matrix

Find the standardmatrix𝐴 for the linear transformation𝑇∶ 𝑅2 → 𝑅3 defined by the formula

𝑇([x1
x2
]) =

⎡
⎢
⎢
⎣

2x1+ x2
x1− 3x2

−x1+ x2

⎤
⎥
⎥
⎦

(16)



November 12, 2018 13:09 C01 Sheet number 83 Page number 83 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.8 Introduction to Linear Transformations 83

Solution We leave it for you to verify that

𝑇(e1) = 𝑇([1
0
]) =

⎡
⎢
⎢
⎣

2
1

−1

⎤
⎥
⎥
⎦

and 𝑇(e2) = 𝑇([0
1
]) =

⎡
⎢
⎢
⎣

1
−3
1

⎤
⎥
⎥
⎦

Thus, it follows from Formulas (15) and (16) that the standard matrix is

𝐴 = [𝑇(e1) ∣ 𝑇(e2)] =
⎡
⎢
⎢
⎣

2 1
1 −3

−1 1

⎤
⎥
⎥
⎦

As a check, observe that

𝐴[x1x2
] = [

2 1
1 −3

−1 1
] [x1x2

] = [
2x1+ x2
x1− 3x2

−x1+ x2
]

which shows that multiplication by𝐴 produces the same result as the transformation𝑇 (see
Equation (16)).

EXAMPLE 5 | Computing with Standard Matrices

For the linear transformation in Example 4, use the standardmatrix𝐴 obtained in that exam-
ple to find

𝑇([1
4
])

Solution The transformation is multiplication by𝐴, so

𝑇([1
4
]) =

⎡
⎢
⎢
⎣

2 1
1 −3

−1 1

⎤
⎥
⎥
⎦
[
1
4
] =

⎡
⎢
⎢
⎣

6
−11

3

⎤
⎥
⎥
⎦

Although we could have
obtained the result in Exam-
ple 5 by substituting values
for the variables in (13),
the method used in that
example is preferable for
large-scale problems in that
matrix multiplication is
better suited for computer
computations.

For transformation problems posed in comma-delimited form, a good procedure is to
rewrite the problem in column-vector form and use the methods previously illustrated.

EXAMPLE 6 | Finding a Standard Matrix

Rewrite the transformation 𝑇(x1, x2) = (3x1 + x2, 2x1 − 4x2) in column-vector form and
find its standard matrix.

Solution
𝑇([x1

x2
]) = [

3x1+ x2
2x1− 4x2

] = [
3 1
2 −4] [

x1
x2
]

Thus, the standard matrix is

[
3 1
2 −4]
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EXAMPLE 7 |

Find the standard matrix𝐴 for the linear transformation 𝑇∶ 𝑅2 → 𝑅2 for which

𝑇([−11]) = [−55], 𝑇([
2

−1]) = [ 7
−6] (17)

Solution Our objective is to find the images of the standard basis vectors and then use For-
mula (15) to obtain the standard matrix. To start, we will rewrite the standard basis
vectors as linear combinations of

[−11] and [ 2
−1]

This leads to the vector equations

[10] = c1[
−1
1] + c2[

2
−1] and [01] = k1[

−1
1] + k2[

2
−1] (18)

which we can rewrite as

[−1 2
1 −1][

c1
c2
] = [10] and [−1 2

1 −1][
k1
k2
] = [01]

As these systems have the same coefficient matrix, we can solve both at once using the
method in Example 2 of Section 1.6. We leave it for you to do this and to show that

c1 = 1, c2 = 1, k1 = 2, k2 = 1

Substituting these values in (18) and using the linearity properties of 𝑇, we obtain

𝑇([10]) = 𝑇([−11])+𝑇([ 2
−1]) = [−55] + [ 7

−6] = [ 2
−1]

𝑇([01]) = 2𝑇([−11])+𝑇([ 2
−1]) = [−1010] + [ 7

−6] = [−34]

Thus, it follows from Formula (15) that the standard matrix for 𝑇 is

𝐴 = [ 2 −3
−1 4]

You can check this result using multiplication by𝐴 to verify (17).

Remark This section is but a first step in the study of linear transformations, which is
one of the major themes in this text. We will delve deeper into this topic in Chapter 4, at
which point we will have more background and a richer source of examples to work with.

There are many ways to transform the vector spaces 𝑅2 and 𝑅3, some of the most
important of which can be accomplished by matrix transformations. For example, rota-
tions about the origin, reflections about lines and planes through the origin, and projec-
tions onto lines and planes through the origin can all be accomplished using a matrix
operator with an appropriate 2 × 2 or 3 × 3 matrix.

Reflection Operators
Some of the most basic matrix operators on 𝑅2 and 𝑅3 are those that map each point into
its symmetric image about a fixed line or a fixed plane that contains the origin; these are
called reflection operators.Table 1 shows the standardmatrices for the reflections about
the coordinate axes and the line y = x in 𝑅2, and Table 2 shows the standard matrices for
the reflections about the coordinate planes in 𝑅3. In each case the standard matrix was
obtained by finding the images of the standard basis vectors, converting those images
to column vectors, and then using those column vectors as successive columns of the
standard matrix.
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TABLE 1

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Reflection about
the x-axis
𝑇(x, y) = (x,−y)

𝑇(e1) = 𝑇(1, 0) = (1, 0)
𝑇(e2) = 𝑇(0, 1) = (0,−1) [1 0

0 −1]

T(x)

x

(x, y)

(x, –y)

x

y

Reflection about
the y-axis
𝑇(x, y) = (−x, y)

𝑇(e1) = 𝑇(1, 0) = (−1, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 1) [−1 0

0 1]

T(x) x

(x, y)(–x, y)

x

y

Reflection about
the line y = x
𝑇(x, y) = (y, x)

𝑇(e1) = 𝑇(1, 0) = (0, 1)
𝑇(e2) = 𝑇(0, 1) = (1, 0) [0 1

1 0]T(x)

x (x, y)

(y, x)
y = x

x

y

TABLE 2

Operator Illustration Images of e𝟏, e𝟐, e𝟑 Standard Matrix

Reflection about
the xy-plane
𝑇(x, y, z) = (x, y,−z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0,−1) [

1 0 0
0 1 0
0 0 −1

]

y

(x, y, z)

(x, y, –z)

z

x T(x)

x

Reflection about
the xz-plane
𝑇(x, y, z) = (x,−y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0,−1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
1 0 0
0 −1 0
0 0 1

]

y

(x, y, z)(x, –y, z)

z

x

T(x) x

Reflection about
the yz-plane
𝑇(x, y, z) = (−x, y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (−1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
−1 0 0
0 1 0
0 0 1

]

y(x, y, z)

(–x, y, z)

z

x

T(x)

x

Projection Operators
Matrix operators on 𝑅2 and 𝑅3 that map each point into its orthogonal projection onto a
fixed line or plane through the origin are called projection operators (or more precisely,
orthogonal projection operators). Table 3 shows the standard matrices for the orthogo-
nal projections onto the coordinate axes in 𝑅2, and Table 4 shows the standard matrices
for the orthogonal projections onto the coordinate planes in 𝑅3.
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TABLE 3

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Orthogonal projection
onto the x-axis
𝑇(x, y) = (x, 0)

𝑇(e1) = 𝑇(1, 0) = (1, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 0) [1 0

0 0]

T(x)

x

(x, y)

(x, 0) x

y

Orthogonal projection
onto the y-axis
𝑇(x, y) = (0, y)

𝑇(e1) = 𝑇(1, 0) = (0, 0)
𝑇(e2) = 𝑇(0, 1) = (0, 1) [0 0

0 1]

x

(x, y)(0, y)

x

y

T(x)

TABLE 4

Operator Illustration Images of e𝟏, e𝟐, e𝟑 Standard Matrix

Orthogonal projection
onto the xy-plane
𝑇(x, y, z) = (x, y, 0)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 0)

[
1 0 0
0 1 0
0 0 0

]

y

(x, y, z)

(x, y, 0)

z

x
T(x)

x

Orthogonal projection
onto the xz-plane
𝑇(x, y, z) = (x, 0, z)

𝑇(e1) = 𝑇(1, 0, 0) = (1, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 0, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
1 0 0
0 0 0
0 0 1

]

y

(x, y, z)(x, 0, z)

z

x

T(x)
x

Orthogonal projection
onto the yz-plane
𝑇(x, y, z) = (0, y, z)

𝑇(e1) = 𝑇(1, 0, 0) = (0, 0, 0)
𝑇(e2) = 𝑇(0, 1, 0) = (0, 1, 0)
𝑇(e3) = 𝑇(0, 0, 1) = (0, 0, 1)

[
0 0 0
0 1 0
0 0 1

]

y

(x, y, z)

(0, y, z)
z

x

T(x)

x

Matrix multiplication is really not needed to accomplish the reflections and projec-
tions in these tables, as the results are evident geometrically. For example, although the
computation

[
1 0 0
0 0 0
0 0 1

][
x
y
z
] = [

x
0
z
]

shows that the orthogonal projection of (x, y, z) onto the xz-plane is (x, 0, z), that result
is evident from the illustration in Table 4. However, in the next section and subsequently
we will study more complicated matrix transformations in which the end results are not
evident and matrix multiplication is essential.

Rotation Operators
Matrix operators on 𝑅2 that move points along arcs of circles centered at the origin are
called rotation operators. Let us consider how to find the standard matrix for the rota-
tion operator 𝑇∶ 𝑅2→𝑅2 that moves points counterclockwise about the origin through a
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positive angle 𝜃. Figure 1.8.4 shows a typical vector x in 𝑅2 and its image 𝑇(x) under such

x

y T(x)

θ

x

FIGURE 1.8.4

a rotation. As illustrated in Figure 1.8.5, the images of the standard basis vectors e1 and
e2 under a rotation through an angle 𝜃 are

𝑇(e1) = 𝑇(1, 0) = (cos 𝜃, sin 𝜃) and 𝑇(e2) = 𝑇(0, 1) = (− sin 𝜃, cos 𝜃)

so it follows from Formula (15) that the standard matrix for 𝑇 is

𝐴 = [𝑇(e1) ∣ 𝑇(e2)] = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃]

e1

e2
(–sin θ, cos θ)

(cos θ, sin θ)

x

y

T

T1
1

θ

θ

FIGURE 1.8.5

In keeping with common usage we will denote this matrix as

𝑅𝜃 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃] (19)

and call it the rotation matrix for 𝑅2. These ideas are summarized in Table 5.

In the plane, counterclock-
wise angles are positive
and clockwise angles are
negative. The rotation
matrix for a clockwise
rotation of−𝜃 radians can
be obtained by replacing
𝜃 by−𝜃 in (19). After
simplification this yields

R−𝜃 = [ cos𝜃 sin𝜃
−sin𝜃 cos𝜃]

TABLE 5

Operator Illustration Images of e𝟏 and e𝟐 Standard Matrix

Counterclockwise
rotation about the
origin through an
angle 𝜃

 ( 1,  2)

 (x, y)

x

w

y

xθ

𝑇(e1) = 𝑇(1, 0) = (cos𝜃, sin𝜃)
𝑇(e2) = 𝑇(0, 1) = (− sin𝜃, cos𝜃) [cos𝜃 − sin𝜃

sin𝜃 cos𝜃]

EXAMPLE 8 | A Rotation Matrix

Find the image of x = (1, 1) under a rotation of 𝜋/6 radians (= 30∘) about the origin.
Solution It follows from (19) with 𝜃 = 𝜋/6 that

𝑅𝜋/6x = [
√3
2 − 1

2

1
2

√3
2

] [11] = [
√3−1
2

1+√3
2

] ≈ [0.371.37]

or in comma-delimited notation, 𝑅𝜋/6(1, 1) ≈ (0.37, 1.37).

Concluding Remark
Rotations in𝑅3 are substantiallymore complicated than those in𝑅2 andwill be considered
later in this text.
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Exercise Set 1.8

In Exercises 1–2, find the domain and codomain of the transforma-
tion 𝑇𝐴(x) = 𝐴x.

1. a. 𝐴 has size 3 × 2. b. 𝐴 has size 2 × 3.
c. 𝐴 has size 3 × 3. d. 𝐴 has size 1 × 6.

2. a. 𝐴 has size 4 × 5. b. 𝐴 has size 5 × 4.
c. 𝐴 has size 4 × 4. d. 𝐴 has size 3 × 1.

In Exercises 3–4, find the domain and codomain of the transforma-
tion defined by the equations.

3. a. 𝑤1 = 4x1 + 5x2
𝑤2 = x1 − 8x2

b. 𝑤1 = 5x1 − 7x2
𝑤2 = 6x1 + x2
𝑤3 = 2x1 + 3x2

4. a. 𝑤1 = x1 − 4x2 + 8x3
𝑤2 = −x1 + 4x2 + 2x3
𝑤3 = −3x1 + 2x2 − 5x3

b. 𝑤1 = 2x1 + 7x2 − 4x3
𝑤2 = 4x1 − 3x2 + 2x3

In Exercises 5–6, find the domain and codomain of the transforma-
tion defined by the matrix product.

5. a. [
3 1 2
6 7 1] [

x1
x2
x3
] b. [

2 −1
4 3
2 −5

] [x1x2
]

6. a. [
6 3

−1 7] [
x1
x2
] b. [

2 1 −6
3 7 −4
1 0 3

][
x1
x2
x3
]

In Exercises 7–8, find the domain and codomain of the transforma-
tion 𝑇 defined by the formula.

7. a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2)
b. 𝑇(x1, x2, x3) = (4x1 + x2, x1 + x2)

8. a. 𝑇(x1, x2, x3, x4) = (x1, x2)
b. 𝑇(x1, x2, x3) = (x1, x2 − x3, x2)

In Exercises 9–10, find the domain and codomain of the transforma-
tion 𝑇 defined by the formula.

9. 𝑇([x1x2
]) = [

4x1
x1 − x2
3x2

] 10. 𝑇([
x1
x2
x3
]) =

⎡
⎢
⎢
⎢
⎣

x1
x2

x1 − x3
0

⎤
⎥
⎥
⎥
⎦

In Exercises 11–12, find the standard matrix for the transformation
defined by the equations.

11. a. 𝑤1 = 2x1 − 3x2 + x3
𝑤2 = 3x1 + 5x2 − x3

b. 𝑤1 = 7x1 + 2x2 − 8x3
𝑤2 = − x2 + 5x3
𝑤3 = 4x1 + 7x2 − x3

12. a. 𝑤1 = −x1 + x2
𝑤2 = 3x1 − 2x2
𝑤3 = 5x1 − 7x2

b. 𝑤1 = x1
𝑤2 = x1 + x2
𝑤3 = x1 + x2 + x3
𝑤4 = x1 + x2 + x3 + x4

13. Find the standard matrix for the transformation 𝑇 defined by
the formula.

a. 𝑇(x1, x2) = (x2,−x1, x1 + 3x2, x1 − x2)
b. 𝑇(x1, x2, x3, x4) = (7x1 + 2x2 − x3 + x4, x2 + x3,−x1)
c. 𝑇(x1, x2, x3) = (0, 0, 0, 0, 0)
d. 𝑇(x1, x2, x3, x4) = (x4, x1, x3, x2, x1 − x3)

14. Find the standard matrix for the operator 𝑇 defined by the
formula.

a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2)
b. 𝑇(x1, x2) = (x1, x2)
c. 𝑇(x1, x2, x3) = (x1 + 2x2 + x3, x1 + 5x2, x3)
d. 𝑇(x1, x2, x3) = (4x1, 7x2,−8x3)

15. Find the standard matrix for the operator𝑇∶ 𝑅3→𝑅3 defined
by

𝑤1 = 3x1 + 5x2 − x3
𝑤2 = 4x1 − x2 + x3
𝑤3 = 3x1 + 2x2 − x3

and then compute 𝑇(−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

16. Find the standard matrix for the transformation 𝑇∶ 𝑅4 → 𝑅2

defined by
𝑤1 = 2x1 + 3x2 − 5x3 − x4
𝑤2 = x1 − 5x2 + 2x3 − 3x4

and then compute𝑇(1,−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

In Exercises 17–18, find the standard matrix for the transformation
and use it to compute𝑇(x). Check your result by substituting directly
in the formula for 𝑇.
17. a. 𝑇(x1, x2) = (−x1 + x2, x2); x = (−1, 4)

b. 𝑇(x1, x2, x3) = (2x1 − x2 + x3, x2 + x3, 0);
x = (2, 1,−3)

18. a. 𝑇(x1, x2) = (2x1 − x2, x1 + x2); x = (−2, 2)
b. 𝑇(x1, x2, x3) = (x1, x2 − x3, x2); x = (1, 0, 5)

In Exercises 19–20, find 𝑇𝐴(x), and express your answer in matrix
form.

19. a. 𝐴 = [1 2
3 4]; x = [ 3

−2]

b. 𝐴 = [−1 2 0
3 1 5]; x = [

−1
1
3
]

20. a. 𝐴 = [
−2 1 4
3 5 7
6 0 −1

]; x = [
x1
x2
x3
]

b. 𝐴 = [
−1 1
2 4
7 8

]; x = [x1x2
]
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In Exercises 21–22, use Theorem 1.8.2 to show that 𝑇 is a matrix
transformation.
21. a. 𝑇(x, y) = (2x+ y, x− y)

b. 𝑇(x1, x2, x3) = (x1, x3, x1 + x2)

22. a. 𝑇(x, y, z) = (x+ y, y+ z, x)
b. 𝑇(x1, x2) = (x2, x1)

In Exercises 23–24, use Theorem 1.8.2 to show that𝑇 is not a matrix
transformation.
23. a. 𝑇(x, y) = (x2, y)

b. 𝑇(x, y, z) = (x, y, xz)

24. a. 𝑇(x, y) = (x, y+ 1)
b. 𝑇(x1, x2, x3) = (x1, x2, √x3)

25. A function of the form 𝑓(x) = mx+ b is commonly called a
“linear function” because the graph of y = mx+ b is a line. Is
𝑓 a matrix transformation on 𝑅?

26. Show that𝑇(x, y) = (0, 0) defines amatrix operator on𝑅2 but
𝑇(x, y) = (1, 1) does not.

In Exercises 27–28, the images of the standard basis vectors for 𝑅3

are given for a linear transformation 𝑇∶ 𝑅3 → 𝑅3. Find the stan-
dard matrix for the transformation, and find 𝑇(x).

27. 𝑇(e1) = [
1
3
0
], 𝑇(e2) = [

0
0
1
], 𝑇(e3) = [

4
−3
−1

] ; x = [
2
1
0
]

28. 𝑇(e1) = [
2
1
3
], 𝑇(e2) = [

−3
−1
0
], 𝑇(e3) = [

1
0
2
] ; x = [

3
2
1
]

29. Use matrix multiplication to find the reflection of (−1, 2)
about the
a. x-axis. b. y-axis. c. line y = x.

30. Use matrix multiplication to find the reflection of (a, b) about
the
a. x-axis. b. y-axis. c. line y = x.

31. Use matrix multiplication to find the reflection of (2,−5, 3)
about the
a. xy-plane. b. xz-plane. c. yz-plane.

32. Use matrix multiplication to find the reflection of (a, b, c)
about the
a. xy-plane. b. xz-plane. c. yz-plane.

33. Use matrix multiplication to find the orthogonal projection of
(2,−5) onto the
a. x-axis. b. y-axis.

34. Use matrix multiplication to find the orthogonal projection of
(a, b) onto the
a. x-axis. b. y-axis.

35. Use matrix multiplication to find the orthogonal projection of
(−2, 1, 3) onto the
a. xy-plane. b. xz-plane. c. yz-plane.

36. Use matrix multiplication to find the orthogonal projection of
(a, b, c) onto the
a. xy-plane. b. xz-plane. c. yz-plane.

37. Use matrix multiplication to find the image of the vector
(3,−4)when it is rotated about the origin through an angle of
a. 𝜃 = 30∘. b. 𝜃 = −60∘.

c. 𝜃 = 45∘. d. 𝜃 = 90∘.

38. Use matrix multiplication to find the image of the nonzero
vector v = (𝑣1, 𝑣2)when it is rotated about the origin through
a. a positive angle 𝛼. b. a negative angle−𝛼.

39. Let 𝑇∶ 𝑅2 → 𝑅2 be a linear operator for which the images
of the standard basis vectors for 𝑅2 are 𝑇(e1) = (a, b) and
𝑇(e2) = (c, d). Find 𝑇(1, 1).

40. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [
a b
c d]

and let e1 and e2 be the standard basis vectors for 𝑅2. Find the
following vectors by inspection.

a. 𝑇𝐴(ke1) b. 𝑇𝐴(ke1 + le2)
41. Let 𝑇𝐴∶ 𝑅3→𝑅3 be multiplication by

𝐴 = [
−1 3 0
2 1 2
4 5 −3

]

and let e1, e2, and e3 be the standard basis vectors for 𝑅3. Find
the following vectors by inspection.

a. 𝑇𝐴(e1), 𝑇𝐴(e2), and 𝑇𝐴(e3)

b. 𝑇𝐴(e1 + e2 + e3) c. 𝑇𝐴(7e3)
42. For each orthogonal projection operator in Table 4 use the

standard matrix to compute 𝑇(1, 2, 3), and convince yourself
that your result makes sense geometrically.

43. For each reflection operator in Table 2 use the standardmatrix
to compute 𝑇(1, 2, 3), and convince yourself that your result
makes sense geometrically.

44. If multiplication by 𝐴 rotates a vector x in the xy-plane
through an angle 𝜃, what is the effect of multiplying x by
𝐴𝑇? Explain your reasoning.

45. Find the standard matrix 𝐴 for the linear transformation
𝑇∶ 𝑅2 → 𝑅2 for which

𝑇([11]) = [ 1
−2], 𝑇([

2
3]) = [−25]

46. Find the standard matrix 𝐴 for the linear transformation
𝑇∶ 𝑅3 → 𝑅3 for which

𝑇([
1
0
2
]) = [

2
−3
10
], 𝑇([

1
1
1
]) = [

1
3
8
], 𝑇([

−3
−1
2
]) = [

−5
−11

7
]

47. Let x0 be a nonzero column vector in 𝑅2, and suppose that
𝑇∶ 𝑅2→𝑅2 is the transformation defined by the formula
𝑇(x) = x0 +𝑅𝜃x, where 𝑅𝜃 is the standard matrix of the
rotation of 𝑅2 about the origin through the angle 𝜃. Give a
geometric description of this transformation. Is it a matrix
transformation? Explain.
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48. In each part of the accompanying figure, find the standard
matrix for the pictured operator.

z

y

x

(x , y, z)

(x , z, y)

z

y

x
(x , y, z)

(z, y, x)

z

y

x

(x , y, z)

(y, x , z)

(a) (b) (c)

FIGURE Ex-48

49. In a sentence, describe the geometric effect of multiplying a
vector x by the matrix

𝐴 = [cos
2 𝜃 − sin2 𝜃 −2 sin𝜃 cos𝜃

2 sin𝜃 cos𝜃 cos2 𝜃 − sin2 𝜃]

Working with Proofs

50. a. Prove: If 𝑇∶ 𝑅n→𝑅m is a matrix transformation, then
𝑇(0) = 0; that is, 𝑇 maps the zero vector in 𝑅n into the
zero vector in 𝑅m.

b. The converse of this is not true. Find an example of a map-
ping 𝑇∶ 𝑅n → 𝑅m for which 𝑇(𝟎) = 𝟎 but which is not a
matrix transformation.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If𝐴 is a 2 × 3 matrix, then the domain of the transforma-

tion 𝑇𝐴 is 𝑅2.

b. If 𝐴 is an m × n matrix, then the codomain of the trans-
formation 𝑇𝐴 is 𝑅n.

c. There is at least one linear transformation 𝑇∶ 𝑅n → 𝑅m

for which 𝑇(2x) = 4𝑇(x) for some vector x in 𝑅n.

d. There are linear transformations from 𝑅n to 𝑅m that are
not matrix transformations.

e. If𝑇𝐴∶ 𝑅n → 𝑅n and if𝑇𝐴(x) = 0 for every vector x in𝑅n,
then𝐴 is the n × n zero matrix.

f. There is only one matrix transformation 𝑇∶ 𝑅n → 𝑅m

such that 𝑇(−x) = −𝑇(x) for every vector x in 𝑅n.

g. If b is a nonzero vector in 𝑅n, then 𝑇(x) = x+ b is a
matrix operator on 𝑅n.

1.9 Compositions ofMatrix Transformations

In this sectionwewill discuss the analogs ofmatrixmultiplication andmatrix inversion for
matrix transformations, and we illustrate those ideas with familiar geometric operations
such as rotations, reflections, and projections in the plane. One of the by-products of our
work on compositions will be an explanation of whymatrix multiplication was defined in
such an unusual way.

Compositions of Matrix Transformations
Simply stated, the “composition” of matrix transformations is the process of first applying
a matrix transformation to a vector and then applying another matrix transformation to
the image vector. For example, suppose that 𝑇𝐴 is a matrix transformation from 𝑅n to 𝑅k
and 𝑇𝐵 is a matrix transformation from 𝑅k to 𝑅m. If x is a vector in 𝑅n, then 𝑇𝐴 maps
this vector into a vector 𝑇𝐴(x) in 𝑅k, and 𝑇𝐵 , in turn, maps that vector into the vector
𝑇𝐵(𝑇𝐴(x)) in 𝑅m. This process creates a transformation directly from 𝑅n to 𝑅m that we
call the composition of 𝑻𝑩 with 𝑻𝑨 and which we denote by the symbol

𝑇𝐵 ∘ 𝑇𝐴
which is read “𝑇𝐵 circle 𝑇𝐴.” As illustrated in Figure 1.9.1, the transformation 𝑇𝐴 in the
formula is performed first; that is,

(𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐵(𝑇𝐴(x)) (1)
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Rn Rk Rmx TA(x)

TA TB

TB ° TA

TB(TA(x))

FIGURE 1.9.1

In the introduction to this section we promised to explain why matrix multiplication
was defined in such an unusual way. The following theorem does that by showing that
our definition of matrix multiplication is precisely what is required to ensure that the
composition of twomatrix transformations has the same effect as the transformation that
results when the underlying matrices are multiplied.

Theorem 1.9.1

If 𝑇𝐴∶ 𝑅n→𝑅k and 𝑇𝐵∶ 𝑅k→𝑅m are matrix transformations, then 𝑇𝐵 ∘ 𝑇𝐴 is also
a matrix transformation and

𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐵𝐴 (2)

Proof First we will show that 𝑇𝐵 ∘ 𝑇𝐴 is a linear transformation, thereby establishing
that it is a matrix transformation by Theorem 1.8.3. Then we will show that the standard
matrix for this transformation is BA to complete the proof.

To prove that 𝑇𝐵 ∘ 𝑇𝐴 is linear wemust show that it has the additivity and homogene-
ity properties stated in Theorem 1.8.2. For this purpose, let x and y be vectors in 𝑅n and
observe that

(𝑇𝐵 ∘ 𝑇𝐴)(x + y) =𝑇𝐵(𝑇𝐴(x + y))
=𝑇𝐵(𝑇𝐴(x) + 𝑇𝐴(y)) [because TA is linear]
=𝑇𝐵(𝑇𝐴(x)) + 𝑇𝐵(𝑇𝐴(y)) [because TB is linear]
= (𝑇𝐵 ∘ 𝑇𝐴)(x) + (𝑇𝐵 ∘ 𝑇𝐴)(y)

which proves additivity. Moreover,
(𝑇𝐵 ∘ 𝑇𝐴)(kx) =𝑇𝐵(𝑇𝐴(kx))

=𝑇𝐵(k𝑇𝐴(x)) [because TA is linear]
= k𝑇𝐵(𝑇𝐴(x)) [because TB is linear]
= k(𝑇𝐵 ∘ 𝑇𝐴)(x)

which proves homogeneity and establishes that 𝑇𝐵 ∘ 𝑇𝐴 is a matrix transformation. Thus,
there is anm × nmatrix 𝐶 such that

𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶 (3)
To find the appropriate matrix 𝐶 that satisfies equation (3), observe that

𝑇𝐶(x) = (𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐵(𝑇𝐴(x)) = 𝑇𝐵(𝐴x) = 𝐵(𝐴x) = (𝐵𝐴)x = 𝑇𝐵𝐴(x)
It now follows from Theorem 1.8.4 that 𝐶 = BA.

EXAMPLE 1 | The Standard Matrix for a Composition

Let 𝑇1∶ 𝑅3→𝑅2 and 𝑇2∶ 𝑅2→𝑅3 be the linear transformations given by

𝑇1(x, y, z) = (x+ 2y, x+ 2z− y)
and

𝑇2(x, y) = (3x+ y, x, x− 2y)
Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

Solution The standard basis vectors for𝑅3 are e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).
From which it follows that

𝑇1(e1) = (1, 1), 𝑇1(e2) = (2,−1) and 𝑇1(e3) = (0, 2)
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Thus
𝐴 = [1 2 0

1 −1 2]

is the standard matrix for 𝑇1. Similarly, the standard basis vectors for 𝑅2 are e1= (1, 0) and
e2= (0, 1), so

𝑇2(e1) = (3, 1, 1) and 𝑇2(e2) = (1, 0, 2)
Thus

𝐵 = [
3 1
1 0
1 −2

]

is the standard matrix for 𝑇2. Applying equation (3), the standard matrix for 𝑇2 ∘ 𝑇1 is

𝐵𝐴 = [
3 1
1 0
1 −2

] [1 2 0
1 −1 2] = [

4 5 2
1 2 0

−1 4 −4
]

and the standard matrix for 𝑇1 ∘ 𝑇2 is

𝐴𝐵 = [1 2 0
1 −1 2] [

3 1
1 0
1 −2

] = [5 1
4 −3]

Commutativity of Matrix Transformations
Since it is not generally true that AB = BA, it is also not generally true that 𝑇𝐴𝐵 = 𝑇𝐵𝐴, so
in general

𝑇𝐴 ∘ 𝑇𝐵 ≠ 𝑇𝐵 ∘ 𝑇𝐴
Thus, composition of matrix transformations is not commutative. In those special cases
where equality holds, we say that 𝑇𝐴 and 𝑇𝐵 commute. Note, for example, that the linear
transformations in Example 1 do not commute, since AB ≠ BA.

EXAMPLE 2 | Composition Is Not Commutative

Let𝑇𝐴∶ 𝑅2→𝑅2 be the reflection about the line y = x, and let𝑇𝐵∶ 𝑅2→𝑅2 be the orthogonal
projection onto the y-axis. Figure 1.9.2 illustrates graphically that𝑇𝐴 ∘ 𝑇𝐵 and𝑇𝐵 ∘ 𝑇𝐴 have
different effects on a vector x. This same conclusion can be reached by showing that the
standard matrices for 𝑇𝐴 and 𝑇𝐵 do not commute:

𝐴𝐵 = [0 1
1 0] [

0 0
0 1] = [0 1

0 0]

𝐵𝐴 = [0 0
0 1] [

0 1
1 0] = [0 0

1 0]

so𝐴𝐵 ≠ 𝐵𝐴.

y

x

TA(x)

x

y = x
TB(TA(x))

y

x

TB(x)

TA(TB(x))

x

y = x

TB ° TA TA ° TB

FIGURE 1.9.2



November 12, 2018 13:09 C01 Sheet number 93 Page number 93 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.9 Compositions of Matrix Transformations 93

EXAMPLE 3 | Composition of Rotations Is Commutative

It is evident geometrically that the effect of rotating a vector about the origin through an
angle𝜃1 and then rotating the resulting vector through an angle 𝜃2 has the same effect as first
rotating through the angle 𝜃2 and then rotating through the angle 𝜃1 since in both cases the
original vector has been rotated through a total angle of 𝜃 = 𝜃1+𝜃2=𝜃2 + 𝜃1. This suggests
that the matrix transformations 𝑇𝐴1 ∶ 𝑅2 → 𝑅2 and 𝑇𝐴2 ∶ 𝑅2 → 𝑅2 that rotate vectors about
the origin through the angles 𝜃1 and 𝜃2, respectively, should commute; that is

𝑇𝐴1 ∘𝑇𝐴2 = 𝑇𝐴2 ∘𝑇𝐴1

or equivalently
𝑇𝐴!𝐴2 = 𝑇𝐴2𝐴1

To verify that this is so, we need only show that 𝐴1𝐴2 = 𝐴2𝐴1. But from Table 5 of Section
1.8 we know that

𝐴1 = [cos𝜃1 − sin𝜃1
sin𝜃1 cos𝜃1

] and 𝐴2 = [cos𝜃2 − sin𝜃2
sin𝜃2 cos𝜃2

]

so (with the help of some basic trigonometric identities) it follows that

𝐴1𝐴2 = [cos𝜃1 − sin𝜃1
sin𝜃1 cos𝜃1

][cos𝜃2 − sin𝜃2
sin𝜃2 cos𝜃2

]

= [cos𝜃1 cos𝜃2 − sin𝜃1 sin𝜃2 −(cos𝜃1 sin𝜃2 + sin𝜃1 cos𝜃2)
sin𝜃1 cos𝜃2 + cos𝜃1 sin𝜃2 − sin𝜃1 sin𝜃2 + cos𝜃1 cos𝜃2

]

= [cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

] = [cos(𝜃2 + 𝜃1) − sin(𝜃2 + 𝜃1)
sin(𝜃2 + 𝜃1) cos(𝜃2 + 𝜃1)

]

= 𝐴2𝐴1

Using the notation R𝜃 for
a rotation of R2 about the
origin through an angle 𝜃,
the computation in Example
3 shows that

R𝜃1R𝜃2 = R𝜃1+𝜃2

EXAMPLE 4 | Composition of Two Reflections

Let 𝑇1 ∶ 𝑅2 → 𝑅2 be the reflection about the y-axis, and let 𝑇2 ∶ 𝑅2 → 𝑅2 be the reflec-
tion about the x-axis. In this case 𝑇1 ∘ 𝑇2 and 𝑇2 ∘ 𝑇1 are the same; both map every vec-
tor x = (x, y) into its negative −x = (−x,−y) (as evidenced by the following computation
and Figure 1.9.3):

(𝑇1 ∘ 𝑇2)(x, y) = 𝑇1(x,−y) = (−x,−y)
(𝑇2 ∘ 𝑇1)(x, y) = 𝑇2(−x, y) = (−x,−y)

The equality of 𝑇1 ∘ 𝑇2 and 𝑇2 ∘ 𝑇1 can also be deduced by showing that the standard matri-
ces for 𝑇1 and 𝑇2 commute. For this purpose let the standard matrices for these transforma-
tions be𝐴1 and𝐴2, respectively. Then it follows from Table 1 of Section 1.8 that

𝐴1𝐴2 = [−1 0
0 1][

1 0
0 −1] = [−1 0

0 −1]

𝐴2𝐴1 = [1 0
0 −1][

−1 0
0 1] = [−1 0

0 −1]

We see from Figure 1.9.3 that the composition 𝑇 1𝑇 2(x)=𝑇 2𝑇 1(x) has the net effect of
rotating the vector x through an angle of 𝜋/2 (= 180∘), thereby reflecting that vector
through the origin into the vector −x. We call the linear operator 𝑇(x)=−x the reflec-
tion about the origin.
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(x , y)

T2 ° T1T1 ° T2

FIGURE 1.9.3

Compositions can be defined for anyfinite succession ofmatrix transformationswhose
domains and ranges have the appropriate dimensions. For example, to extend Formula (3)
to three factors, consider the matrix transformations

𝑇𝐴∶ 𝑅n → 𝑅k, 𝑇𝐵 ∶ 𝑅k → 𝑅l, 𝑇𝐶 ∶ 𝑅l → 𝑅m

We define the composition (𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴)∶ 𝑅n → 𝑅m by
(𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴)(x) = 𝑇𝐶(𝑇𝐵(𝑇𝐴(x)))

As above, it can be shown that this is a matrix transformation whose standard matrix is
CBA and that

𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶𝐵𝐴 (4)

EXAMPLE 5 | Composition of Three Matrix Transformations

Find the image of a vector

x = [xy]

under the matrix transformation that first rotates x about the origin through an angle of
𝜋/6, then reflects the resulting vector about the line y = x, and then projects that vector
orthogonally onto the y-axis.

Solution Let𝐴, 𝐵, and𝐶 be the standard matrices for the rotation, the reflection, and the
orthogonal projection, respectively. Then fromTables 1, 3, and 5 of Section 1.8 thesematrices
are

𝐴 = [cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)], 𝐵 = [0 1

1 0], 𝐶 = [0 0
0 1]

The three transformations in the stated succession can be viewed as the composition

𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴 = 𝑇𝐶𝐵𝐴

whose standard matrix is

𝐶𝐵𝐴 = [0 0
0 1][

0 1
1 0][

cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)]

= [0 0
1 0][

cos(𝜋/6) − sin(𝜋/6)
sin(𝜋/6) cos(𝜋/6)]

= [ 0 0
cos(𝜋/6) − sin(𝜋/6)]

Thus, the image of the vector x expressed as a column vector is

[ 0 0
cos(𝜋/6) − sin(𝜋/6)][

x
y] = [ 0 0

√3/2 −1/2][
x
y] = [ 0

(√3/2)x− (1/2)y]
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Invertibility of Matrix Operators
If 𝑇𝐴∶ 𝑅n → 𝑅n is a matrix operator whose standard matrix 𝐴 is invertible, then we say
that 𝑇𝐴 is invertible, and we define the inverse of 𝑇𝐴 as

𝑇−1
𝐴 = 𝑇𝐴−1 (5)

or restated in words, the inverse of multiplication by A is multiplication by the inverse of A.
Thus, by definition, the standard matrix for 𝑇−1

𝐴 is 𝐴−1, from which it follows that

𝑇−1
𝐴 ∘ 𝑇𝐴 = 𝑇𝐴−1 ∘ 𝑇𝐴 = 𝑇𝐴−1𝐴 = 𝑇𝐼

It follows from this that for any vector x in 𝑅n

(𝑇−1
𝐴 ∘ 𝑇𝐴) (x) = 𝑇𝐼 (x) = 𝐼x = x

and similarly that (𝑇𝐴 ∘ 𝑇−1
𝐴 ) (x) = x. Thus, when 𝑇𝐴 and 𝑇−1

𝐴 are composed in either
order they cancel out the effect of one another (Figure 1.9.4).

Rn

TA–1

TA

x
TA(x)

Rn

FIGURE 1.9.4

EXAMPLE 6 | Inverse of a Rotation Operator

Let 𝑇∶ 𝑅2 → 𝑅2 be the operator that rotates each vector in 𝑅2 through the angle 𝜃, so the
standard matrix for 𝑇 is

𝑅𝜃 = [cos𝜃 − sin𝜃
sin𝜃 cos𝜃]

It is evident geometrically that to undo the effect of 𝑇, one must rotate each vector in 𝑅2

through the angle −𝜃. But this is precisely what 𝑇−1 does, since it follows from (5) and
Theorem 1.4.5 that the standard matrix for this transformation is

𝑅−1
𝜃 = [ cos𝜃 sin𝜃

− sin𝜃 cos𝜃] = [cos(−𝜃) − sin(−𝜃)
sin(−𝜃) cos(−𝜃)] = 𝑅−𝜃

EXAMPLE 7 | Inverse Transformations from Linear Equations

Consider the operator 𝑇∶ 𝑅2 → 𝑅2 defined by the equations

w1 = 2x1 + x2
w2 = 3x1 + 4x2

Find 𝑇−1(𝑤1,𝑤2).
Solution The matrix form of these equations is

[w1
w2
] = [2 1

3 4][
x1
x2
]
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so the standard matrix for 𝑇 is
𝐴 = [2 1

3 4]

This matrix is invertible, and the standard matrix for 𝑇−1 is

𝐴−1 = [
4
5 − 1

5
− 3

5
2
5
]

Thus

𝐴−1[w1
w2
] = [

4
5 − 1

5
− 3

5
2
5
][w1
w2
] = [

4
5w1 − 1

5w2

− 3
5w1 + 2

5w2
]

from which we conclude that

𝑇−1(w1,w2) = ( 45w1 − 1
5w2,− 3

5w1 + 2
5w2)

Since not everymatrix has an inverse, it should not be surprising that the same is true
for matrix transformations. As a simple example, consider a transformation 𝑇∶𝑅2 → 𝑅2
that projects a vector x orthogonally onto either the x-axis or the y-axis. You can see in
Table 3 of Section 1.8 that the standard matrices for these transformations are not invert-
ible, so in neither case does an invertible matrix 𝐴 exist to satisfy Equation (5).

Exercise Set 1.9

In Exercises 1–4, determine whether the operators 𝑇1 and 𝑇2 com-
mute; that is, whether 𝑇1 ∘ 𝑇2 = 𝑇2 ∘ 𝑇1.

1. a. 𝑇1 ∶ 𝑅2 → 𝑅2 is the reflection about the line y = x, and
𝑇2 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the x-axis.

b. 𝑇1 ∶ 𝑅2 → 𝑅2 is the reflection about the x-axis, and
𝑇2 ∶ 𝑅2 → 𝑅2 is the reflection about the line y = x.

2. a. 𝑇1 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the x-axis,
and 𝑇2 ∶ 𝑅2 → 𝑅2 is the orthogonal projection onto the
y-axis.

b. 𝑇1 ∶ 𝑅2 → 𝑅2 is the rotation about the origin through an
angle of 𝜋/4, and 𝑇2 ∶ 𝑅2 → 𝑅2 is the reflection about the
y-axis.

3. 𝑇1 ∶ 𝑅3 → 𝑅3 is the reflection about the xy-plane and
𝑇2 ∶ 𝑅3 → 𝑅3 is the orthogonal projection onto the yz-plane.

4. 𝑇1 ∶ 𝑅3 → 𝑅3 is the reflection about the xy-plane and
𝑇2 ∶ 𝑅3 → 𝑅3 is given by the formula 𝑇(x, y, z) = (2x, 3y, z).

In Exercises 5–6, let 𝑇𝐴 and 𝑇𝐵 be the operators whose standard
matrices are given. Find the standard matrices for 𝑇𝐵 ∘ 𝑇𝐴 and
𝑇𝐴 ∘ 𝑇𝐵.

5. 𝐴 = [1 −2
4 1], 𝐵 = [2 −3

5 0]

6. 𝐴 = [
6 3 −1
2 0 1
4 −3 6

], 𝐵 =
⎡⎢⎢
⎣

4 0 4
−1 5 2
2 −3 8

⎤⎥⎥
⎦

7. Find the standard matrix for the stated composition in 𝑅2.

a. A rotation of 90∘, followed by a reflection about the line
y = x.

b. An orthogonal projection onto the y-axis, followed by a 45∘
degree rotation about the origin.

c. A reflection about the x-axis, followed by a rotation about
the origin of 60∘.

8. Find the standard matrix for the stated composition in 𝑅2.

a. A rotation about the origin of 60∘, followed by an orthog-
onal projection onto the x-axis, followed by a reflection
about the line y = x.

b. An orthogonal projection onto the x-axis, followed by a
rotation about the origin of 45∘, followed by a reflection
about the y-axis.

c. A rotation about the origin of 15∘, followed by a rotation
about the origin of 105∘, followed by a rotation about the
origin of 60∘.

9. Find the standard matrix for the stated composition in 𝑅3.

a. A reflection about the yz-plane, followed by an orthogonal
projection onto the xz-plane.

b. A reflection about the xy-plane, followed by an orthogonal
projection onto the xy-plane.

c. An orthogonal projection onto the xy-plane, followed by a
reflection about the yz-plane.
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10. Find the standard matrix for the stated composition in 𝑅3.

a. A reflection about the xy-plane, followed by an orthogonal
projection onto the xz-plane, followed by the transforma-
tion that sends each vector x to the vector−x.

b. A reflection about the xy-plane, followed by a reflection
about the xz-plane, followed by an orthogonal projection
onto the yz-plane.

c. Anorthogonal projection onto the yz-plane, followedby the
transformation thatmaps each vector x to the vector 2x, fol-
lowed by a reflection about the xy-plane.

11. Let 𝑇1(x1, x2) = (x1 + x2, x1 − x2) and
𝑇2(x1, x2) = (3x1, 2x1 + 4x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.
b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.
c. Use the matrices obtained in part (b) to find formulas for

𝑇1(𝑇2(x1, x2)) and 𝑇2(𝑇1(x1, x2)).

12. Let 𝑇1(x1, x2, x3) = (4x1,−2x1 + x2,−x1 − 3x2) and
𝑇2(x1, x2, x3) = (x1 + 2x2,−x3, 4x1 − x3).
a. Find the standard matrices for 𝑇1 and 𝑇2.
b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.
c. Use the matrices obtained in part (b) to find formulas for

𝑇1(𝑇2(x1, x2, x3)) and 𝑇2(𝑇1(x1, x2, x3)).

13. Let 𝑇1(x1, x2) = (x1 − x2, 2x2 − x1, 3x1) and
𝑇2(x1, x2, x3) = (4x2, x1 + 2x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

c. Use the matrices obtained in part (b) to find formulas for
𝑇1(𝑇2(x1, x2, x3)) and 𝑇2(𝑇1(x1, x2)).

14. Let 𝑇1(x1, x2, x3, x4) = (x1 + 2x2 + 3x3, x2 − x4) and
𝑇2(x1, x2) = (−x1, 0, x1 + x2, 3x2).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2.

c. Use the matrices obtained in part (b) to find formulas for
𝑇1(𝑇2(x1, x2)) and 𝑇2(𝑇1(x1, x2, x3, x4)).

15. Let 𝑇1 ∶ 𝑅2 → 𝑅4 and 𝑇2 ∶ 𝑅4 → 𝑅3 be given by:
𝑇1(x, y) = (y, x, x+ y, x− y)
𝑇2(x, y, z,𝑤)= (x+𝑤, y+𝑤, z+𝑤).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1.

c. Explain why 𝑇1 ∘ 𝑇2 is not defined.

d. Use the matrix found in part (b) to find a formula for
(𝑇2 ∘ 𝑇1)(x, y).

16. Let 𝑇1 ∶ 𝑅2 → 𝑅3 and 𝑇2 ∶ 𝑅3 → 𝑅4 be given by:
𝑇1(x, y) = (x+ 2y, 0, 2x+ y)
𝑇2(x, y, z) = (3z, x− y, 3z, y− x).
a. Find the standard matrices for 𝑇1 and 𝑇2.

b. Find the standard matrices for 𝑇2 ∘ 𝑇1.

c. Explain why 𝑇1 ∘ 𝑇2 is not defined.

d. Use the matrix found in part (b) to find a formula for
(𝑇2 ∘ 𝑇1)(x, y).

In Exercises 17–18, express the equations in matrix form, and then
use Theorem 1.5.3(c) to determine whether the operator defined by
the equations is invertible.

17. a. w1 = 8x1 + 4x2
w2 = 2x1 + x2

b. w1 = −x1 + 3x2 + 2x3
w2 = 2x1 + 4x3
w3 = x1 + 3x2 + 6x3

18. a. w1 = 2x1 − 3x2
w2 = 5x1 + x2

b. w1 = x1 + 2x2 + 3x3
w2 = 2x1 + 5x2 + 3x3
w3 = x1 + 8x3

19. Determine whether the matrix operator 𝑇∶ 𝑅2→𝑅2 defined
by the equations is invertible; if so, find the standard matrix
for the inverse operator, and find 𝑇−1(w1,w2).

a. w1 = x1 + 2x2
w2 = −x1 + x2

b. w1 = 4x1 − 6x2
w2 = −2x1 + 3x2

20. Determine whether the matrix operator 𝑇∶ 𝑅3→𝑅3 defined
by the equations is invertible; if so, find the standard matrix
for the inverse operator, and find 𝑇−1(w1,w2,w3).

a. w1 = x1 − 2x2 + 2x3
w2 = 2x1 + x2 + x3
w3 = x1 + x2

b. w1 = x1 − 3x2 + 4x3
w2 = −x1 + x2 + x3
w3 = − 2x2 + 5x3

In Exercises 21–22, determine whether the matrix operator is invert-
ible. If so, describe in words the effect of its inverse.
21. a. Reflection about the x-axis in 𝑅2.

b. A 60∘ rotation about the origin in 𝑅2.

c. Orthogonal projection onto the x-axis in 𝑅2.

22. a. Reflection about the line y = x.

b. Orthogonal projection onto the y-axis.
c. Reflection about the origin.

In Exercises 23–24, determinewhether𝑇𝐴 is invertible. If so, compute
𝑇−1
𝐴 (x).

23. a. 𝐴 = [1 2
1 1]; x = [12] b. 𝐴 = [1 1

1 1]; x = [12]

24. a. 𝐴 = [
1 2 0
1 1 1
2 3 1

]; x = [
1
2
3
]

b. 𝐴 = [
1 1 0
0 1 1
1 0 1

]; x = [
1
2
3
]

25. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [ 0 −1
−1 0]

a. What is the geometric effect of applying this transformation
to a vector x in 𝑅2?

b. Express the operator 𝑇𝐴 as a composition of two linear
operators on 𝑅2.

26. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by

𝐴 = [cos
2 𝜃 − sin2 𝜃 −2 sin𝜃 cos𝜃

2 sin𝜃 cos𝜃 cos2 𝜃 − sin2 𝜃]
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a. What is the geometric effect of applying this transformation
to a vector x in 𝑅2?

b. Express the operator 𝑇𝐴 as a composition of two linear
operators on 𝑅2.

Working with Proofs

27. Prove that the matrix transformations 𝑇𝐴 and 𝑇𝐵 commute if
and only if the matrices𝐴 and 𝐵 commute.

28. Let 𝑇𝐴 and 𝑇𝐵 be matrix operators on 𝑅n. Prove that 𝑇𝐴 ∘ 𝑇𝐵
is invertible if and only if both 𝑇𝐴 and 𝑇𝐵 are invertible.

29. Prove that the matrix operator 𝑇𝐴 on 𝑅n is invertible if and
only if for every b in 𝑅n there exists a unique vector x in 𝑅n

such that 𝑇𝐴(x) = b.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If 𝑇𝐴 and 𝑇𝐵 are matrix operators on 𝑅n, then

𝑇𝐴(𝑇𝐵(x)) = 𝑇𝐵(𝑇𝐴(x)) for every vector x in 𝑅n.

b. If 𝑇𝐴 and 𝑇𝐵 are matrix operators on 𝑅n and x is a vector
in 𝑅n, then 𝑇𝐵 ∘ 𝑇𝐴(x)=BAx

c. A composition of two rotation operators about the origin
of 𝑅2 is another rotation about the origin.

d. A composition of two reflection operators in𝑅2 is another
reflection operator.

e. The inverse transformation for a reflection in𝑅2 about the
line y = x is the reflection about the line y = x.

f. The inverse transformation for a 90∘ rotation about the
origin in 𝑅2 is a 90∘ rotation about the origin.

g. The inverse transformation for a reflection about the ori-
gin in 𝑅2 is a reflection about the origin.

Working with Technology
T1. a. Find the standard matrix for the linear operator on𝑅2 that

performs a counterclockwise rotation of 47∘ about the ori-
gin, followed by a reflection about the y-axis, followed by
a counterclockwise rotation of 33∘ about the origin.

b. Find the image of the point (1, 1) under the operator in
part (a).

1.10 Applications of Linear Systems
In this section we will discuss some brief applications of linear systems. These are but
a small sample of the wide variety of real-world problems to which our study of linear
systems is applicable.

Network Analysis
The concept of a network appears in a variety of applications. Loosely stated, a network is
a set of branches through which something “flows.” For example, the branches might be
electrical wires through which electricity flows, pipes through which water or oil flows,
traffic lanes through which vehicular traffic flows, or economic linkages through which
money flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the
flowdivides. For example, in an electrical network, nodes occurwhere three ormorewires
join, in a traffic network they occur at street intersections, and in a financial network they
occur at banking centers where incoming money is distributed to individuals or other
institutions.

In the study of networks, there is generally some numerical measure of the rate at
which the medium flows through a branch. For example, the flow rate of electricity is
oftenmeasured in amperes, the flow rate ofwater or oil in gallons perminute, the flow rate
of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros
per day. We will restrict our attention to networks in which there is flow conservation at
each node, by which we mean that the rate of flow into any node is equal to the rate of flow
out of that node. This ensures that the flow medium does not build up at the nodes and
block the free movement of the medium through the network.
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Acommonproblem innetwork analysis is to use knownflow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

EXAMPLE 1 | Network Analysis Using Linear Systems

Figure 1.10.1 shows a network with four nodes in which the flow rate and direction of flow
in certain branches are known. Find the flow rates and directions of flow in the remaining
branches.

Solution As illustrated in Figure 1.10.2, we have assigned arbitrary directions to the
unknown flow rates x1, x2, and x3. We need not be concerned if some of the directions are
incorrect, since an incorrect direction will be signaled by a negative value for the flow rate
when we solve for the unknowns.

It follows from the conservation of flow at node𝐴 that

x1 + x2 = 30

Similarly, at the other nodes we have

x2 + x3 = 35 (node 𝐵)
x3 + 15 = 60 (node 𝐶)
x1 + 15 = 55 (node𝐷)

These four conditions produce the linear system

x1 + x2 = 30
x2 + x3 = 35

x3 = 45
x1 = 40

which we can now try to solve for the unknown flow rates. In this particular case the system
is sufficiently simple that it can be solved by inspection (work from the bottom up). We leave
it for you to confirm that the solution is

x1 = 40, x2 = −10, x3 = 45

The fact that x2 is negative tells us that the direction assigned to that flow in Figure 1.10.2 is
incorrect; that is, the flow in that branch is into node𝐴.

35

30

55

60

15

FIGURE 1.10.1
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FIGURE 1.10.2

EXAMPLE 2 | Design of Traffic Patterns

The network in Figure 1.10.3a shows a proposed plan for the traffic flow around a new park
that will house the Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a comput-
erized traffic light at the north exit on Fifth Street, and the diagram indicates the average
number of vehicles per hour that are expected to flow in and out of the streets that border
the complex. All streets are one-way.
(a) Howmany vehicles per hour should the traffic light let through to ensure that the aver-

age number of vehicles per hour flowing into the complex is the same as the average
number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in and out of the
complex, what can you say about the average number of vehicles per hour that will flow
along the streets that border the complex?
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Solution (a) If, as indicated in Figure 1.10.3b, we let x denote the number of vehicles per
hour that the traffic light must let through, then the total number of vehicles per hour that
flow in and out of the complex will be

Flowing in: 500+ 400+ 600+ 200 = 1700
Flowing out: x+ 700+ 400

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per hour
pass through.

Solution (b) To avoid traffic congestion, the flow in must equal the flow out at each inter-
section. For this to happen, the following conditions must be satisfied:

Intersection Flow In Flow Out
𝐴 400+ 600 = x1 + x2
𝐵 x2 + x3 = 400+ x
𝐶 500+ 200 = x3 + x4
𝐷 x1 + x4 = 700

Thus, with x = 600, as computed in part (a), we obtain the following linear system:

x1 + x2 = 1000
x2 + x3 = 1000

x3 + x4 = 700
x1 + x4 = 700

We leave it for you to show that the system has infinitely many solutions and that these are
given by the parametric equations

x1 = 700− t, x2 = 300+ t, x3 = 700− t, x4 = t (1)

However, the parameter t is not completely arbitrary here, since there are physical constraints
to be considered. For example, the average flow rates must be nonnegative since we have
assumed the streets to be one-way, and a negative flow rate would indicate a flow in the
wrong direction. This being the case, we see from (1) that t can be any real number that
satisfies 0 ≤ t ≤ 700, which implies that the average flow rates along the streets will fall in
the ranges

0 ≤ x1 ≤ 700, 300 ≤ x2 ≤ 1000, 0 ≤ x3 ≤ 700, 0 ≤ x4 ≤ 700

N

W E

S

Liberty
Park

Market St.

Chestnut St.

400

400

600

500

200

700

Tra=c
light

400

400

600

500

200

700
AD

C B

x1

x2

x

x3

x4

(a) (b)

Si
xt

h
 S

t.

F
if

th
 S

t.

FIGURE 1.10.3

Electrical Circuits
Next we will show how network analysis can be used to analyze electrical circuits con-
sisting of batteries and resistors. A battery is a source of electric energy, and a resistor,
such as a lightbulb, is an element that dissipates electric energy. Figure 1.10.4 shows a

+ –

Switch

FIGURE 1.10.4

schematic diagram of a circuit with one battery (represented by the symbol ), one resis-
tor (represented by the symbol ), and a switch. The battery has a positive pole (+)
and a negative pole (−). When the switch is closed, electrical current is considered to
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flow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhead in the figure).

Electrical current, which is a flow of electrons through wires, behaves much like the
flow of water through pipes. A battery acts like a pump that creates “electrical pressure” to
increase theflow rate of electrons, and a resistor acts like a restriction in a pipe that reduces
the flow rate of electrons. The technical term for electrical pressure is electrical potential;
it is commonlymeasured in volts (V). The degree to which a resistor reduces the electrical
potential is called its resistance and is commonlymeasured in ohms (Ω). The rate of flow
of electrons in awire is called current and is commonlymeasured in amperes (also called
amps) (A). The precise effect of a resistor is given by the following law:

Ohm’s Law If a current of 𝐼 amperes passes through a resistor with a resistance of 𝑅
ohms, then there is a resulting drop of𝐸 volts in electrical potential that is the product
of the current and resistance; that is,

𝐸 = 𝐼𝑅

A typical electrical network will have multiple batteries and resistors joined by some
configuration of wires. A point at which three or more wires in a network are joined is
called a node (or junction point). A branch is a wire connecting two nodes, and a closed
loop is a succession of connected branches that begin and end at the same node. For
example, the electrical network in Figure 1.10.5 has two nodes and three closed loops—

+ – + –

FIGURE 1.10.5

two inner loops and one outer loop. As current flows through an electrical network, it
undergoes increases and decreases in electrical potential, called voltage rises and voltage
drops, respectively. The behavior of the current at the nodes and around closed loops is
governed by two fundamental laws:

Kirchhoff’s Current Law The sum of the currents flowing into any node is equal to the
sum of the currents flowing out.

Kirchhoff’sVoltageLaw In one traversal of any closed loop, the sumof the voltage rises
equals the sum of the voltage drops.

Kirchhoff’s current law is a restatement of the principle of flow conservation at a node
that was stated for general networks. Thus, for example, the currents at the top node in
Figure 1.10.6 satisfy the equation 𝐼1 = 𝐼2 + 𝐼3.

I3

I2

I1

FIGURE 1.10.6

In circuits with multiple loops and batteries there is usually no way to tell in advance
which way the currents are flowing, so the usual procedure in circuit analysis is to assign
arbitrary directions to the current flows in the branches and let the mathematical compu-
tations determinewhether the assignments are correct. In addition to assigning directions
to the current flows, Kirchhoff’s voltage law requires a direction of travel for each closed
loop. The choice is arbitrary, but for consistency we will always take this direction to be
clockwise (Figure 1.10.7). We also make the following conventions:

• A voltage drop occurs at a resistor if the direction assigned to the current through the
resistor is the same as the direction assigned to the loop, and a voltage rise occurs at

+ – + –

Clockwise closed-loop
convention with arbitrary
direction assignments to
currents in the branches

FIGURE 1.10.7

a resistor if the direction assigned to the current through the resistor is the opposite
to that assigned to the loop.

• A voltage rise occurs at a battery if the direction assigned to the loop is from − to +
through the battery, and a voltage drop occurs at a battery if the direction assigned to
the loop is from + to − through the battery.

If you follow these conventions when calculating currents, then those currents whose
directions were assigned correctly will have positive values and those whose directions
were assigned incorrectly will have negative values.
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Historical Note

The German physicist Gustav Kirchhoff was a student of Gauss.
His work on Kirchhoff’s laws, announced in 1854, was a major
advance in the calculation of currents, voltages, and resistances
of electrical circuits. Kirchhoff was severely disabled and spent
most of his life on crutches or in a wheelchair.

[Image: Courtesy of Library of Congress]

Gustav Kirchhoff
(1824–1887)

EXAMPLE 3 | A Circuit with One Closed Loop

Determine the current 𝐼 in the circuit shown in Figure 1.10.8.
Solution Since the direction assigned to the current through the resistor is the same as
the direction of the loop, there is a voltage drop at the resistor. By Ohm’s law this voltage
drop is 𝐸 = 𝐼𝑅 = 3𝐼. Also, since the direction assigned to the loop is from − to + through
the battery, there is a voltage rise of 6 volts at the battery. Thus, it follows from Kirchhoff’s
voltage law that

3𝐼 = 6
fromwhichwe conclude that the current is 𝐼 = 2A. Since 𝐼 is positive, the direction assigned
to the current flow is correct.

+
– 3 Ω6 V

I

FIGURE 1.10.8

+ – + –

5 Ω 20 Ω 10 Ω

50 V 30 V

AI1 I2

I3

B

FIGURE 1.10.9

EXAMPLE 4 | A Circuit with Three Closed Loops

Determine the currents 𝐼1, 𝐼2, and 𝐼3 in the circuit shown in Figure 1.10.9.
Solution Using the assigned directions for the currents, Kirchhoff’s current law provides
one equation for each node:

Node Current In Current Out
𝐴 𝐼1 + 𝐼2 = 𝐼3
𝐵 𝐼3 = 𝐼1 + 𝐼2

However, these equations are really the same, since both can be expressed as

𝐼1 + 𝐼2 − 𝐼3 = 0 (2)

To find unique values for the currents we will need two more equations, which we will
obtain fromKirchhoff’s voltage law.We can see from thenetwork diagram that there are three
closed loops, a left inner loop containing the 50 V battery, a right inner loop containing the
30 V battery, and an outer loop that contains both batteries. Thus, Kirchhoff’s voltage lawwill
actually produce three equations. With a clockwise traversal of the loops, the voltage rises
and drops in these loops are as follows:

Voltage Rises Voltage Drops
Left Inside Loop 50 5𝐼1 + 20𝐼3
Right Inside Loop 30+ 10𝐼2 + 20𝐼3 0
Outside Loop 30+ 50+ 10𝐼2 5𝐼1
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These conditions can be rewritten as
5𝐼1 + 20𝐼3 = 50

10𝐼2 + 20𝐼3 = −30
5𝐼1 − 10𝐼2 = 80

(3)

However, the last equation is superfluous, since it is the difference of the first two. Thus, if
we combine (2) and the first two equations in (3), we obtain the following linear system of
three equations in the three unknown currents:

𝐼1 + 𝐼2 − 𝐼3 = 0
5𝐼1 + 20𝐼3 = 50

10𝐼2 + 20𝐼3 = −30
We leave it for you to show that the solution of this system in amps is 𝐼1 = 6, 𝐼2 = −5, and
𝐼3 = 1. The fact that 𝐼2 is negative tells us that the direction of this current is opposite to that
indicated in Figure 1.10.9.

Balancing Chemical Equations
Chemical compounds are represented by chemical formulas that describe the atomic
makeup of their molecules. For example, water is composed of two hydrogen atoms and
one oxygen atom, so its chemical formula is H2O; and stable oxygen is composed of two
oxygen atoms, so its chemical formula is O2.

When chemical compounds are combined under the right conditions, the atoms in
their molecules rearrange to form new compounds. For example, when methane burns,
the methane (CH4) and stable oxygen (O2) react to form carbon dioxide (CO2) and water
(H2O). This is indicated by the chemical equation

CH4 + O2 ⟶ CO2 +H2O (4)

The molecules to the left of the arrow are called the reactants and those to the right
the products. In this equation the plus signs serve to separate the molecules and are not
intended as algebraic operations. However, this equation does not tell the whole story,
since it fails to account for the proportions of molecules required for a complete reaction
(no reactants left over). For example, we can see from the right side of (4) that to pro-
duce one molecule of carbon dioxide and one molecule of water, one needs three oxygen
atoms for each carbon atom. However, from the left side of (4) we see that onemolecule of
methane and one molecule of stable oxygen have only two oxygen atoms for each carbon
atom. Thus, on the reactant side the ratio of methane to stable oxygen cannot be one-to-
one in a complete reaction.

A chemical equation is said to be balanced if for each type of atom in the reaction,
the same number of atoms appears on each side of the arrow. For example, the balanced
version of Equation (4) is

CH4 + 2O2 ⟶ CO2 + 2H2O (5)

bywhichwemean that onemethanemolecule combineswith two stable oxygenmolecules
to produce one carbon dioxide molecule and two water molecules. In theory, one could
multiply this equation through by any positive integer. For example, multiplying through
by 2 yields the balanced chemical equation

2CH4 + 4O2 ⟶ 2CO2 + 4H2O

However, the standard convention is to use the smallest positive integers that will balance
the equation.

Equation (4) is sufficiently simple that it could have been balanced by trial and error,
but for more complicated chemical equations we will need a systematic method. There
are various methods that can be used, but we will give one that uses systems of linear
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equations. To illustrate themethod let us reexamineEquation (4). To balance this equation
we must find positive integers, x1, x2, x3, and x4 such that

x1 (CH4) + x2 (O2)⟶ x3 (CO2) + x4 (H2O) (6)

For each of the atoms in the equation, the number of atoms on the left must be equal to
the number of atoms on the right. Expressing this in tabular form we have

Left Side Right Side
Carbon x1 = x3
Hydrogen 4x1 = 2x4
Oxygen 2x2 = 2x3 + x4

from which we obtain the homogeneous linear system

x1 − x3 = 0
4x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

The augmented matrix for this system is

[
1 0 −1 0 0
4 0 0 −2 0
0 2 −2 −1 0

]

We leave it for you to show that the reduced row echelon form of this matrix is

⎡⎢⎢⎢
⎣

1 0 0 − 1
2 0

0 1 0 −1 0
0 0 1 − 1

2 0

⎤⎥⎥⎥
⎦

from which we conclude that the general solution of the system is

x1 = t/2, x2 = t, x3 = t/2, x4 = t

where t is arbitrary. The smallest positive integer values for the unknowns occur when
we let t = 2, so the equation can be balanced by letting x1 = 1, x2 = 2, x3 = 1, x4 = 2. This
agreeswith our earlier conclusions, since substituting these values intoEquation (6) yields
Equation (5).

EXAMPLE 5 | Balancing Chemical Equations Using
Linear Systems

Balance the chemical equation

HCl + Na3PO4 ⟶ H3PO4 + NaCl
[hydrochloric acid] + [sodium phosphate]⟶ [phosphoric acid] + [sodium chloride]

Solution Let x1, x2, x3, and x4 be positive integers that balance the equation
x1 (HCl)+ x2 (Na3PO4)⟶ x3 (H3PO4)+ x4 (NaCl) (7)
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Equating the number of atoms of each type on the two sides yields

1x1 = 3x3 Hydrogen (H)
1x1 = 1x4 Chlorine (Cl)
3x2 = 1x4 Sodium (Na)
1x2 = 1x3 Phosphorus (P)
4x2 = 4x3 Oxygen (O)

from which we obtain the homogeneous linear system

x1 − 3x3 = 0
x1 − x4 = 0

3x2 − x4 = 0
x2 − x3 = 0
4x2 − 4x3 = 0

We leave it for you to show that the reduced row echelon form of the augmented matrix for
this system is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −1 0
0 1 0 − 1

3 0

0 0 1 − 1
3 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

from which we conclude that the general solution of the system is

x1 = t, x2 = t/3, x3 = t/3, x4 = t

where t is arbitrary. To obtain the smallest positive integers that balance the equation, we let
t = 3, in which case we obtain x1 = 3, x2 = 1, x3 = 1, and x4 = 3. Substituting these values
in (7) produces the balanced equation

3HCl+Na3PO4 ⟶ H3PO4 + 3NaCl

Polynomial Interpolation
An important problem in various applications is to find a polynomial whose graph passes
through a specified set of points in the plane; this is called an interpolating polynomial
for the points. The simplest example of such a problem is to find a linear polynomial

p(x) = ax + b (8)
whose graph passes through two known distinct points, (x1, y1) and (x2, y2), in the xy-
plane (Figure 1.10.10). Youhave probably encountered variousmethods in analytic geom-
etry for finding the equation of a line through two points, but here we will give a method
based on linear systems that can be adapted to general polynomial interpolation.

The graph of (8) is the line y = ax + b, and for this line to pass through the points

x

y

(x2, y2)

(x1, y1)

y = ax + b

FIGURE 1.10.10(x1, y1) and (x2, y2), we must have
y1 = ax1 + b and y2 = ax2 + b

Therefore, the unknown coefficients a and b can be obtained by solving the linear system
ax1 + b = y1
ax2 + b = y2

We don’t need any fancy methods to solve this system—the value of a can be obtained by
subtracting the equations to eliminate b, and then the value of a can be substituted into
either equation to find b. We leave it as an exercise for you to find a and b and then show
that they can be expressed in the form

a = y2 − y1
x2 − x1

and b = y1x2 − y2x1
x2 − x1

(9)
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provided x1 ≠ x2. Thus, for example, the line y = ax + b that passes through the points

(2, 1) and (5, 4)
can be obtained by taking (x1, y1) = (2, 1) and (x2, y2) = (5, 4), in which case (9) yields

a = 4 − 1
5 − 2 = 1 and b = (1)(5) − (4)(2)

5 − 2 = −1

Therefore, the equation of the line is

y = x − 1

(Figure 1.10.11).

y = x – 1

x

y

(2, 1)

(5, 4)

FIGURE 1.10.11 Now let us consider the more general problem of finding a polynomial whose graph
passes through n points with distinct x-coordinates

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) (10)

Since there are n conditions to be satisfied, intuition suggests that we should begin by
looking for a polynomial of the form

p(x) = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + an−1xn−1 (11)

since a polynomial of this form has n coefficients that are at our disposal to satisfy the n
conditions. However, wewant to allow for cases where the points may lie on a line or have
some other configuration that would make it possible to use a polynomial whose degree
is less than n − 1; thus, we allow for the possibility that an−1 and other coefficients in (11)
may be zero.

The following theorem, which we will not prove, is the basic result on polynomial
interpolation.

Theorem 1.10.1

Polynomial Interpolation
Given any n points in the xy-plane that have distinct x-coordinates, there is a unique
polynomial of degree n − 1 or less whose graph passes through those points.

Let us now consider howwemight go about finding the interpolating polynomial (11)
whose graph passes through the points in (10). Since the graph of this polynomial is the
graph of the equation

y = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + an−1xn−1 (12)

it follows that the coordinates of the points must satisfy
a0 + a1x1 + a2x21 + ⋅ ⋅ ⋅ + an−1xn−11 = y1
a0 + a1x2 + a2x22 + ⋅ ⋅ ⋅ + an−1xn−12 = y2...

...
...

...
...

a0 + a1xn + a2x2n + ⋅ ⋅ ⋅ + an−1xn−1n = yn

(13)

In these equations the values of x’s and y’s are assumed to be known, sowe can view this as
a linear system in the unknowns a0, a1, . . . , an−1. From this point of view the augmented
matrix for the system is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 x1 x21 ⋅ ⋅ ⋅ xn−11 y1
1 x2 x22 ⋅ ⋅ ⋅ xn−12 y2...

...
...

...
...

1 xn x2n ⋅ ⋅ ⋅ xn−1n yn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(14)

and hence the interpolating polynomial can be found by reducing this matrix to reduced
row echelon form, say by Gauss-Jordan elimination, as in the following example.
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EXAMPLE 6 | Polynomial Interpolation by
Gauss–Jordan Elimination

Find a cubic polynomial whose graph passes through the points

(1, 3), (2,−2), (3,−5), (4, 0)
Solution Since there are four points, we will use an interpolating polynomial of degree
n = 3. Denote this polynomial by

p(x) = a0 + a1x+ a2x2 + a3x3

and denote the x- and y-coordinates of the given points by

x1 = 1, x2 = 2, x3 = 3, x4 = 4 and y1 = 3, y2 = −2, y3 = −5, y4 = 0

Thus, it follows from (14) that the augmented matrix for the linear system in the unknowns
a0, a1, a2, and a3 is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1 x21 x31 y1
1 x2 x22 x32 y2
1 x3 x23 x33 y3
1 x4 x24 x34 y4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 1 1 1 3
1 2 4 8 −2
1 3 9 27 −5
1 4 16 64 0

⎤
⎥
⎥
⎥
⎦

We leave it for you to confirm that the reduced row echelon form of this matrix is

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 4
0 1 0 0 3
0 0 1 0 −5
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎦

from which it follows that a0 = 4, a1 = 3, a2 = −5, a3 = 1. Thus, the interpolating polyno-
mial is

p(x) = 4+ 3x− 5x2 + x3

The graph of this polynomial and the given points are shown in Figure 1.10.12.
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FIGURE 1.10.12

Remark Later wewill give amore efficientmethod for finding interpolating polynomials
that is better suited for problems in which the number of data points is large.

0.250 0.5 0.75 1 1.25

0.5

1

x

y

p(x)

sin (πx2/2)

FIGURE 1.10.13

CALCULUS REQUIREDEXAMPLE 7 | Approximate Integration

There is no way to evaluate the integral

∫
1

0
sin (𝜋x

2

2 )dx

directly since there is noway to express an antiderivative of the integrand in terms of elemen-
tary functions. This integral could be approximated by Simpson’s rule or some comparable
method, but an alternative approach is to approximate the integrand by an interpolating
polynomial and integrate the approximating polynomial. For example, let us consider the
five points

x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 0.75, x4 = 1
that divide the interval [0, 1] into four equally spaced subintervals (Figure 1.10.13). The
values of

𝑓(x) = sin (𝜋x
2

2 )
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at these points are approximately

𝑓(0) = 0, 𝑓(0.25) = 0.098017, 𝑓(0.5) = 0.382683,
𝑓(0.75) = 0.77301, 𝑓(1) = 1

The interpolating polynomial is (verify)

p(x) = 0.098796x+ 0.762356x2 + 2.14429x3 − 2.00544x4 (15)

and
∫

1

0
p(x) dx ≈ 0.438501 (16)

As shown in Figure 1.10.13, the graphs of 𝑓 and p match very closely over the interval
[0, 1], so the approximation is quite good.

Exercise Set 1.10

1. The accompanying figure shows a network in which the flow
rate and direction of flow in certain branches are known.
Find the flow rates and directions of flow in the remaining
branches.

30

50

60

40

50

FIGURE Ex-1

2. The accompanying figure shows known flow rates of hydro-
carbons into and out of a network of pipes at an oil refinery.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. Find the flow rates and directions of flow if x4 = 50 and
x6 = 0.

200

25
200

175

150

x1 x4
x5

x6

x3

x2

FIGURE Ex-2

3. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. If the flow along the road from𝐴 to 𝐵 must be reduced for
construction, what is the minimum flow that is required to
keep traffic flowing on all roads?

300
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400
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B

FIGURE Ex-3

4. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

a. Set up a linear system whose solution provides the
unknown flow rates.

b. Solve the system for the unknown flow rates.

c. Is it possible to close the road from𝐴 to 𝐵 for construction
and keep traffic flowing on the other streets? Explain.
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FIGURE Ex-4
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In Exercises 5–8, analyze the given electrical circuits by finding the
unknown currents.

5.

+–

–+

2 Ω 2 Ω 4 Ω

6 V

8 V

I1 I2 I3

6.

–

–

+

+

4 Ω

6 Ω

2 Ω

2 V

1 V

I1

I2

I3

7.

–
+

+
–

20 Ω

20 Ω

20 Ω 20 Ω10 V 10 VI1 I2

I4

I6

I3

I5

8. + –

+–

3 Ω

5 Ω

4 Ω

3 V

+–
4 V

5 V

I3

I1

I2

In Exercises 9–12, write a balanced equation for the given chemical
reaction.

9. C3H8 + O2 → CO2 +H2O [propane combustion]

10. C6H12O6 → CO2 + C2H5OH [fermentation of sugar]

11. CH3COF+H2O→ CH3COOH+HF

12. CO2 +H2O→ C6H12O6 + O2 [photosynthesis]

13. Find the quadratic polynomial whose graph passes through
the points (1, 1), (2, 2), and (3, 5).

14. Find the quadratic polynomial whose graph passes through
the points (0, 0), (−1, 1), and (1, 1).

15. Find the cubic polynomial whose graph passes through the
points (−1,−1), (0, 1), (1, 3), (4,−1).

16. The accompanying figure shows the graph of a cubic polyno-
mial. Find the polynomial.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

FIGURE Ex-16

17. a. Find an equation that represents the family of all second-
degree polynomials that pass through the points (0, 1)
and (1, 2). [Hint: The equation will involve one arbitrary
parameter that produces the members of the family when
varied.]

b. By hand, or with the help of a graphing utility, sketch four
curves in the family.

18. In this section we have selected only a few applications of lin-
ear systems. Using the Internet as a search tool, try to find
somemore real-world applications of such systems. Select one
that is of interest to you and write a paragraph about it.

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. In any network, the sum of the flows out of a node must

equal the sum of the flows into a node.

b. When a current passes through a resistor, there is an
increase in the electrical potential in a circuit.

c. Kirchhoff’s current law states that the sum of the currents
flowing into a node equals the sumof the currents flowing
out of the node.

d. Achemical equation is called balanced if the total number
of atoms on each side of the equation is the same.

e. Given any n points in the xy-plane, there is a unique
polynomial of degree n− 1 or less whose graph passes
through those points.

Working with Technology
T1. The following table shows the lifting force on an aircraft wing

measured in a wind tunnel at various wind velocities. Model
the datawith an interpolating polynomial of degree 5, and use
that polynomial to estimate the lifting force at 2000 ft/s.

Velocity
(100 ft/s) 1 2 4 8 16 32

Lifting Force
(100 lb) 0 3.12 15.86 33.7 81.5 123.0
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T2. (Calculus required)Use themethod of Example 7 to approx-
imate the integral

∫
1

0
ex

2
dx

by subdividing the interval of integration into five equal parts
and using an interpolating polynomial to approximate the
integrand. Compare your answer to that obtained using the
numerical integration capability of your technology utility.

T3. Use the method of Example 5 to balance the chemical
equation

Fe2O3 + Al→ Al2O3 + Fe
(Fe = iron,Al = aluminum,O = oxygen)

T4. Determine the currents in the accompanying circuit.

+ –

–+

3 Ω

2 Ω

470 Ω
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20 V

I2

I1

I2

I1

I3I3

1.11 Leontief Input-Output Models
In 1973 the economist Wassily Leontief was awarded the Nobel prize for his work on eco-
nomic modeling in which he used matrix methods to study the relationships among dif-
ferent sectors in an economy. In this section we will discuss some of the ideas developed
by Leontief.

Inputs and Outputs in an Economy
One way to analyze an economy is to divide it into sectors and study how the sectors
interact with one another. For example, a simple economy might be divided into three
sectors—manufacturing, agriculture, and utilities. Typically, a sector will produce certain
outputs but will require inputs from the other sectors and itself. For example, the agri-
cultural sector may produce wheat as an output but will require inputs of farmmachinery
from the manufacturing sector, electrical power from the utilities sector, and food from
its own sector to feed its workers. Thus, we can imagine an economy to be a network
in which inputs and outputs flow in and out of the sectors; the study of such flows is
called input-output analysis. Inputs and outputs are commonly measured in monetary
units (dollars or millions of dollars, for example), but other units of measurement are also
possible.

The flows between sectors of a real economy are not always obvious. For example,

Manufacturing Agriculture

Utilities

Open
Sector

FIGURE 1.11.1

in World War II the United States had a demand for 50,000 new airplanes that required
the construction of many new aluminum manufacturing plants. This produced an unex-
pectedly large demand for certain copper electrical components, which in turn produced
a copper shortage. The problem was eventually resolved by using silver borrowed from
Fort Knox as a copper substitute. In all likelihood modern input-output analysis would
have anticipated the copper shortage.

Most sectors of an economywill produce outputs, but theremay exist sectors that con-
sume outputs without producing anything themselves (the consumer market, for exam-
ple). Those sectors that do not produce outputs are called open sectors. Economies with
no open sectors are called closed economies, and economies with one or more open sec-
tors are called open economies (Figure 1.11.1). In this section we will be concerned with
economies with one open sector, and our primary goal will be to determine the output
levels that are required for the productive sectors to sustain themselves and satisfy the
demand of the open sector.

Leontief Model of an Open Economy
Let us consider a simple open economywith one open sector and three product-producing
sectors: manufacturing, agriculture, and utilities. Assume that inputs and outputs are
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measured in dollars and that the inputs required by the productive sectors to produce
one dollar’s worth of output are in accordance with Table 1.

TABLE 1

Pr
ov
id
er

Input Required per Dollar Output

Manufacturing Agriculture Utilities

Manufacturing $ 0.50 $ 0.10 $ 0.10

Agriculture $ 0.20 $ 0.50 $ 0.30

Utilities $ 0.10 $ 0.30 $ 0.40

Usually, one would suppress the labeling and express this matrix as

𝐶 = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

] (1)

This is called the consumption matrix (or sometimes the technology matrix) for the
economy. The column vectors

c1 = [
0.5
0.2
0.1

], c2 = [
0.1
0.5
0.3

], c3 = [
0.1
0.3
0.4

]

in 𝐶 list the inputs required by the manufacturing, agricultural, and utilities sectors,
respectively, to produce $1.00 worth of output. These are called the consumption vectors
of the sectors. For example, c1 tells us that to produce $1.00 worth of output the manu-
facturing sector needs $0.50 worth of manufacturing output, $0.20 worth of agricultural
output, and $0.10 worth of utilities output.

Continuing with the above example, suppose that the open sector wants the economy

What is the economic sig-
nificance of the row sums of
the consumption matrix?

to supply it manufactured goods, agricultural products, and utilities with dollar values:
d1 dollars of manufactured goods
d2 dollars of agricultural products
d3 dollars of utilities

The column vector d that has these numbers as successive components is called the out-
side demand vector. Since the product-producing sectors consume some of their own
output, the dollar value of their output must cover their own needs plus the outside
demand. Suppose that the dollar values required to do this are

x1 dollars of manufactured goods
x2 dollars of agricultural products
x3 dollars of utilities

Historical Note

Wassily Leontief
(1906–1999)

It is somewhat ironic that it was the Russian-bornWassily Leon-
tief who won the Nobel prize in 1973 for pioneering the modern
methods for analyzing free-market economies. Leontief was a
precocious student who entered the University of Leningrad at
age 15. Bothered by the intellectual restrictions of the Soviet sys-
tem, hewas put in jail for anti-Communist activities, after which
he headed for the University of Berlin, receiving his Ph.D. there
in 1928. He came to the United States in 1931, where he held
professorships at Harvard and then New York University.

[Image: © Bettmann/CORBIS]
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The column vector x that has these numbers as successive components is called the pro-
duction vector for the economy. For the economy with consumption matrix (1), that por-
tion of the production vector x that will be consumed by the three productive sectors is

x1 [
0.5
0.2
0.1

] + x2 [
0.1
0.5
0.3

] + x3 [
0.1
0.3
0.4

] = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

] [
x1
x2
x3
] = 𝐶x

Fractions
consumed by
manufacturing

Fractions
consumed by
agriculture

Fractions
consumed
by utilities

The vector 𝐶x is called the intermediate demand vector for the economy. Once the
intermediate demand is met, the portion of the production that is left to satisfy the out-
side demand is x − 𝐶x. Thus, if the outside demand vector is d, then x must satisfy the
equation

x − 𝐶x = d
Amount
produced

Intermediate
demand

Outside
demand

which we will find convenient to rewrite as

(𝐼 − 𝐶)x = d (2)

The matrix 𝐼 − 𝐶 is called the Leontief matrix and (2) is called the Leontief equation.

EXAMPLE 1 | Satisfying Outside Demand

Consider the economy described in Table 1. Suppose that the open sector has a demand for
$7900 worth of manufacturing products, $3950 worth of agricultural products, and $1975
worth of utilities.
(a) Can the economy meet this demand?
(b) If so, find a production vector x that will meet it exactly.

Solution The consumption matrix, production vector, and outside demand vector are

𝐶 = [
0.5 0.1 0.1
0.2 0.5 0.3
0.1 0.3 0.4

], x = [
x1
x2
x3
], d = [

7900
3950
1975

] (3)

To meet the outside demand, the vector xmust satisfy the Leontief equation (2), so the prob-
lem reduces to solving the linear system

[
0.5 −0.1 −0.1

−0.2 0.5 −0.3
−0.1 −0.3 0.6

] [
x1
x2
x3
] = [

7900
3950
1975

]

𝐼 − 𝐶 x d

(4)

(if consistent). We leave it for you to show that the reduced row echelon form of the aug-
mented matrix for this system is

[
1 0 0 27,500
0 1 0 33,750
0 0 1 24,750

]

This tells us that (4) is consistent, and the economy can satisfy the demand of the open sector
exactly by producing $27,500 worth of manufacturing output, $33,750 worth of agricultural
output, and $24,750 worth of utilities output.
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Productive Open Economies
In the preceding discussionwe considered an open economywith three product-producing
sectors; the same ideas apply to an open economy with n product-producing sectors. In
this case, the consumption matrix, production vector, and outside demand vector have
the form

𝐶 =
⎡
⎢
⎢
⎢
⎣

c11 c12 ⋅ ⋅ ⋅ c1n
c21 c22 ⋅ ⋅ ⋅ c2n...

...
...

cn1 cn2 ⋅ ⋅ ⋅ cnn

⎤
⎥
⎥
⎥
⎦

, x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

, d =
⎡
⎢
⎢
⎢
⎣

d1
d2...
dn

⎤
⎥
⎥
⎥
⎦

where all entries are nonnegative and
cij = the monetary value of the output of the ith sector that is needed by the jth

sector to produce one unit of output
xi = the monetary value of the output of the ith sector
di = the monetary value of the output of the ith sector that is required to meet

the demand of the open sector

Remark Note that the jth column vector of 𝐶 contains the monetary values that the jth
sector requires of the other sectors to produce one monetary unit of output, and the ith
row vector of𝐶 contains themonetary values required of the ith sector by the other sectors
for each of them to produce one monetary unit of output.

As discussed in our example above, a production vector x that meets the demand d
of the outside sector must satisfy the Leontief equation

(𝐼 − 𝐶)x = d
If the matrix 𝐼 − 𝐶 is invertible, then this equation has the unique solution

x = (𝐼 − 𝐶)−1d (5)

for every demand vector d. However, for x to be a valid production vector it must have
nonnegative entries, so the problem of importance in economics is to determine condi-
tions under which the Leontief equation has a solution with nonnegative entries.

It is evident from the form of (5) that if 𝐼 − 𝐶 is invertible, and if (𝐼 − 𝐶)−1 has non-
negative entries, then for every demand vector d the corresponding x will also have non-
negative entries, and hence will be a valid production vector for the economy. Economies
for which (𝐼 − 𝐶)−1 has nonnegative entries are said to be productive. Such economies
are desirable because demand can always be met by some level of production. The follow-
ing theorem, whose proof can be found in many books on economics, gives conditions
under which open economies are productive.

Theorem 1.11.1

If 𝐶 is the consumption matrix for an open economy, and if all of the column sums
are less than 1, then the matrix 𝐼 − 𝐶 is invertible, the entries of (𝐼 − 𝐶)−1 are
nonnegative, and the economy is productive.

Remark The jth column sum of 𝐶 represents the total dollar value of input that the jth
sector requires to produce $1 of output, so if the jth column sum is less than 1, then the jth
sector requires less than $1 of input to produce $1 of output; in this case we say that the
jth sector is profitable. Thus, Theorem 1.11.1 states that if all product-producing sectors
of an open economy are profitable, then the economy is productive. In the exercises we
will ask you to show that an open economy is productive if all of the row sums of 𝐶 are
less than 1 (Exercise 11). Thus, an open economy is productive if either all of the column
sums or all of the row sums of 𝐶 are less than 1.
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EXAMPLE 2 | An Open Economy Whose Sectors
Are All Profitable

The column sums of the consumption matrix 𝐶 in (1) are less than 1, so (𝐼 − 𝐶)−1 exists
and has nonnegative entries. Use a calculating utility to confirm this, and use this inverse to
solve Equation (4) in Example 1.

Solution We leave it for you to show that

(𝐼 − 𝐶)−1 ≈ [
2.65823 1.13924 1.01266
1.89873 3.67089 2.15190
1.39241 2.02532 2.91139

]

This matrix has nonnegative entries, and

x = (𝐼 − 𝐶)−1d ≈ [
2.65823 1.13924 1.01266
1.89873 3.67089 2.15190
1.39241 2.02532 2.91139

] [
7900
3950
1975

] ≈ [
27,500
33,750
24,750

]

which is consistent with the solution in Example 1.

Exercise Set 1.11

1. An automobile mechanic (𝑀) and a body shop (𝐵) use each
other’s services. For each $1.00 of business that𝑀 does, it uses
$0.50 of its own services and $0.25 of𝐵’s services, and for each
$1.00 of business that 𝐵 does it uses $0.10 of its own services
and $0.25 of𝑀’s services.

a. Construct a consumption matrix for this economy.
b. How much must 𝑀 and 𝐵 each produce to provide cus-

tomers with $7000 worth of mechanical work and $14,000
worth of body work?

2. A simple economy produces food (𝐹) and housing (𝐻). The
production of $1.00 worth of food requires $0.30 worth of food
and $0.10worth of housing, and the production of $1.00 worth
of housing requires $0.20 worth of food and $0.60 worth of
housing.

a. Construct a consumption matrix for this economy.
b. What dollar value of food and housing must be produced

for the economy to provide consumers $130,000 worth of
food and $130,000 worth of housing?

3. Consider the open economy described by the accompany-
ing table, where the input is in dollars needed for $1.00 of
output.

a. Find the consumption matrix for the economy.
b. Suppose that the open sector has a demand for $1930worth

of housing, $3860 worth of food, and $5790 worth of utili-
ties. Use row reduction to find a production vector that will
meet this demand exactly.

TABLE Ex-3

Pr
ov
id
er

Input Required per Dollar Output

Housing Food Utilities

Housing $ 0.10 $ 0.60 $ 0.40

Food $ 0.30 $ 0.20 $ 0.30

Utilities $ 0.40 $ 0.10 $ 0.20

4. A company produces Web design, software, and networking
services. View the company as an open economy described by
the accompanying table, where input is in dollars needed for
$1.00 of output.

a. Find the consumption matrix for the company.
b. Suppose that the customers (the open sector) have a

demand for $5400 worth of Web design, $2700 worth of
software, and $900 worth of networking. Use row reduc-
tion to find a production vector that will meet this demand
exactly.

TABLE Ex-4

Pr
ov
id
er

Input Required per Dollar Output

Web Design Software Networking

Web Design $ 0.40 $ 0.20 $ 0.45

Software $ 0.30 $ 0.35 $ 0.30

Networking $ 0.15 $ 0.10 $ 0.20
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In Exercises 5–6, use matrix inversion to find the production vector
x that meets the demand d for the consumption matrix𝐶.

5. 𝐶 = [0.1 0.3
0.5 0.4] ; d = [5060]

6. 𝐶 = [0.3 0.1
0.3 0.7] ; d = [2214]

7. Consider an open economy with consumption matrix

𝐶 = [
1
2 0

0 1
]

a. Show that the economy can meet a demand of d1 = 2 units
from the first sector and d2 = 0 units from the second sec-
tor, but it cannot meet a demand of d1 = 2 units from the
first sector and d2 = 1 unit from the second sector.

b. Give both a mathematical and an economic explanation of
the result in part (a).

8. Consider an open economy with consumption matrix

𝐶 =
⎡
⎢
⎢
⎢
⎣

1
2

1
4

1
4

1
2

1
8

1
4

1
2

1
4

1
8

⎤
⎥
⎥
⎥
⎦

If the open sector demands the same dollar value from each
product-producing sector, which such sectormust produce the
greatest dollar value to meet the demand?

9. Consider an open economy with consumption matrix

𝐶 = [c11 c12
c21 0 ]

Show that the Leontief equation x−𝐶x = d has a unique
solution for every demand vector d if c21c12 < 1− c11.

Working with Proofs

10. a. Consider an open economy with a consumption matrix
𝐶 whose column sums are less than 1, and let x be the
production vector that satisfies an outside demand d; that
is, (𝐼 − 𝐶)−1d = x. Let dj be the demand vector that is
obtained by increasing the jth entry of d by 1 and leaving

the other entries fixed. Prove that the production vector xj
that meets this demand is

xj = x+ jth column vector of (𝐼 − 𝐶)−1

b. In words, what is the economic significance of the jth col-
umn vector of (𝐼 − 𝐶)−1? [Hint: Look at xj − x.]

11. Prove: If 𝐶 is an n × n matrix whose entries are nonnegative
and whose row sums are less than 1, then 𝐼 − 𝐶 is invertible
and has nonnegative entries. [Hint: (𝐴𝑇)−1 = (𝐴−1)𝑇 for any
invertible matrix𝐴.]

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. Sectors of an economy that produce outputs are called

open sectors.

b. Aclosed economy is an economy that has no open sectors.

c. The rows of a consumption matrix represent the outputs
in a sector of an economy.

d. If the column sums of the consumptionmatrix are all less
than 1, then the Leontief matrix is invertible.

e. The Leontief equation relates the production vector for an
economy to the outside demand vector.

Working with Technology
T1. The following table describes an open economy with

three sectors in which the table entries are the dollar
inputs required to produce one dollar of output. The out-
side demand during a 1-week period if $50,000 of coal,
$75,000 of electricity, and $1,250,000 of manufacturing.
Determine whether the economy can meet the demand.

Pr
ov
id
er

Input Required per Dollar Output

Electricity Coal Manufacturing

Electricity $ 0.1 $ 0.25 $ 0.2

Coal $ 0.3 $ 0.4 $ 0.5

Manufacturing $ 0.1 $ 0.15 $ 0.1

Chapter 1 Supplementary Exercises
In Exercises 1–4 the given matrix represents an augmented matrix
for a linear system. Write the corresponding set of linear equations
for the system, and use Gaussian elimination to solve the linear sys-
tem. Introduce free parameters as necessary.

1. [3 −1 0 4 1
2 0 3 3 −1] 2.

⎡
⎢
⎢
⎢
⎣

1 4 −1
−2 −8 2
3 12 −3
0 0 0

⎤
⎥
⎥
⎥
⎦

3. [
2 −4 1 6

−4 0 3 −1
0 1 −1 3

] 4. [
3 1 −2

−9 −3 6
6 2 1

]

5. Use Gauss–Jordan elimination to solve for x′ and y′ in terms
of x and y.

x = 3
5x

′ − 4
5y

′

y = 4
5x

′ + 3
5y

′
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6. Use Gauss–Jordan elimination to solve for x′ and y′ in terms
of x and y.

x = x′ cos𝜃 − y′ sin𝜃
y = x′ sin𝜃 + y′ cos𝜃

7. Find positive integers that satisfy
x + y + z = 9
x + 5y + 10z = 44

8. Abox containing pennies, nickels, and dimes has 13 coinswith
a total value of 83 cents. How many coins of each type are in
the box? Is the economy productive?

9. Let

[
a 0 b 2
a a 4 4
0 a 2 b

]

be the augmentedmatrix for a linear system. Find for what val-
ues of a and b the system has

a. a unique solution.
b. a one-parameter solution.

c. a two-parameter solution. d. no solution.

10. For which value(s) of a does the following system have zero
solutions? One solution? Infinitely many solutions?

x1 + x2 + x3 = 4
x3 = 2

(a2 − 4)x3 = a− 2

11. Find a matrix𝐾 such that𝐴𝐾𝐵 = 𝐶 given that

𝐴 = [
1 4

−2 3
1 −2

], 𝐵 = [2 0 0
0 1 −1],

𝐶 = [
8 6 −6
6 −1 1

−4 0 0
]

12. How should the coefficients a, b, and c be chosen so that the
system

ax + by − 3z = −3
−2x − by + cz = −1
ax + 3y − cz = −3

has the solution x = 1, y = −1, and z = 2?

13. In each part, solve the matrix equation for𝑋.

a. 𝑋 [
−1 0 1
1 1 0
3 1 −1

] = [ 1 2 0
−3 1 5]

b. 𝑋 [1 −1 2
3 0 1] = [−5 −1 0

6 −3 7]

c. [
3 1

−1 2]𝑋 −𝑋 [1 4
2 0] = [2 −2

5 4]

14. Let𝐴 be a square matrix.

a. Show that (𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 +𝐴3 if𝐴4 = 0.

b. Show that
(𝐼 − 𝐴)−1 = 𝐼 +𝐴+𝐴2 + ⋅ ⋅ ⋅ + 𝐴n

if𝐴n+1 = 0.

15. Find values of a, b, and c such that the graph of the polynomial
p(x) = ax2 + bx+ c passes through the points (1, 2), (−1, 6),
and (2, 3).

16. (Calculus required) Find values of a, b, and c such that the
graph of p(x) = ax2 + bx+ c passes through the point (−1, 0)
and has a horizontal tangent at (2,−9).

17. Let 𝐽n be the n × nmatrix each of whose entries is 1. Show that
if n > 1, then

(𝐼 − 𝐽n)−1 = 𝐼 − 1
n− 1

𝐽n

18. Show that if a square matrix𝐴 satisfies
𝐴3 + 4𝐴2 − 2𝐴+ 7𝐼 = 0

then so does𝐴𝑇.

19. Prove: If 𝐵 is invertible, then 𝐴𝐵−1 = 𝐵−1𝐴 if and only if
𝐴𝐵 = 𝐵𝐴.

20. Prove: If 𝐴 is invertible, then 𝐴+𝐵 and 𝐼 + 𝐵𝐴−1 are both
invertible or both not invertible.

21. Prove: If 𝐴 is an m × n matrix and 𝐵 is the n × 1 matrix each
of whose entries is 1/n, then

𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

r1
r2...
rm

⎤
⎥
⎥
⎥
⎦

where ri is the average of the entries in the ith row of𝐴.

22. (Calculus required) If the entries of the matrix

𝐶 =
⎡
⎢
⎢
⎢
⎣

c11(x) c12(x) ⋅ ⋅ ⋅ c1n(x)
c21(x) c22(x) ⋅ ⋅ ⋅ c2n(x)...

...
...

cm1(x) cm2(x) ⋅ ⋅ ⋅ cmn(x)

⎤
⎥
⎥
⎥
⎦

are differentiable functions of x, then we define

d𝐶
dx

=
⎡
⎢
⎢
⎢
⎢
⎣

c′11(x) c′12(x) ⋅ ⋅ ⋅ c′1n(x)
c′21(x) c′22(x) ⋅ ⋅ ⋅ c′2n(x)...

...
...

c′m1(x) c′m2(x) ⋅ ⋅ ⋅ c′mn(x)

⎤
⎥
⎥
⎥
⎥
⎦

Show that if the entries in𝐴 and𝐵 are differentiable functions
of x and the sizes of the matrices are such that the stated oper-
ations can be performed, then

a. d
dx
(k𝐴) = k

d𝐴
dx

b. d
dx
(𝐴 + 𝐵) = d𝐴

dx
+ d𝐵

dx

c. d
dx
(𝐴𝐵) = d𝐴

dx
𝐵 +𝐴d𝐵

dx
23. (Calculus required) Use part (c) of Exercise 22 to show that

d𝐴−1

dx
= −𝐴−1 d𝐴

dx
𝐴−1

State all the assumptions you make in obtaining this formula.



November 12, 2018 13:09 C01 Sheet number 117 Page number 117 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

Chapter 1 Supplementary Exercises 117

24. Assuming that the stated inverses exist, prove the following
equalities.

a. (𝐶−1 +𝐷−1)−1 = 𝐶(𝐶 +𝐷)−1𝐷
b. (𝐼 + 𝐶𝐷)−1𝐶 = 𝐶(𝐼 + 𝐷𝐶)−1

c. (𝐶 +𝐷𝐷𝑇)−1𝐷 = 𝐶−1𝐷(𝐼 +𝐷𝑇𝐶−1𝐷)−1

Partitioned matrices can be multiplied by the row-column rule just
as if the matrix entries were numbers provided that the sizes of all
matrices are such that the necessary operations can be performed.
Thus, for example, if𝐴 is partitioned into a 2× 2 matrix and 𝐵 into
a 2× 1 matrix, then

𝐴𝐵 = [
𝐴11 𝐴12

𝐴21 𝐴22
] [
𝐵1

𝐵2
] = [

𝐴11𝐵1 +𝐴12𝐵2

𝐴21𝐵1 +𝐴22𝐵2
] (*)

provided that the sizes are such that𝐴𝐵, the two sums, and the four
products are all defined.

25. Let𝐴 and 𝐵 be the following partitioned matrices.

𝐴 =
⎡⎢⎢⎢
⎣

1 0 2 1 4
4 1 0 3 −1

0 −3 4 2 −2

⎤⎥⎥⎥
⎦

= [
𝐴11 𝐴12

𝐴21 𝐴22
]

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0
2 1
4 −1

0 3
2 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
𝐵1

𝐵2
]

a. Confirm that the sizes of all matrices are such that the prod-
uct𝐴𝐵 can be obtained using Formula (∗).

b. Confirm that the result obtained using Formula (∗) agrees
with that obtained using ordinary matrix multiplication.

26. Suppose that an invertible matrix𝐴 is partitioned as

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
]

Show that

𝐴−1 = [
𝐵11 𝐵12

𝐵21 𝐵22
]

where

𝐵11 = (𝐴11 −𝐴12𝐴−1
22𝐴21)−1, 𝐵12 = −𝐵11𝐴12𝐴−1

22

𝐵21 = −𝐴−1
22𝐴21𝐵11, 𝐵22 = (𝐴22 −𝐴21𝐴−1

11𝐴12)−1

provided all the inverses in these formulas exist.

27. In the special case where matrix𝐴21 in Exercise 26 is zero, the
matrix𝐴 simplifies to

𝐴 = [
𝐴11 𝐴12

0 𝐴22
]

which is said to be in block upper triangular form. Use the
result of Exercise 26 to show that in this case

𝐴−1 = [
𝐴−1

11 −𝐴−1
11𝐴12𝐴−1

22

0 𝐴−1
22

]

28. A linear system whose coefficient matrix has a pivot position
in every row must be consistent. Explain why this must be so.

29. What can you say about the consistency or inconsistency of a
linear system of three equations in five unknowns whose coef-
ficient matrix has three pivot columns?
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Introduction
In this chapter we will study “determinants” or, more precisely, “determinant functions.”
Unlike real-valued functions, such as 𝑓(x) = x2, that assign a real number to a real vari-
able x, determinant functions assign a real number 𝑓(𝐴) to a matrix variable𝐴. Although
determinants first arose in the context of solving systems of linear equations, they are
rarely used for that purpose in real-world applications. While they can be useful for solv-
ing very small linear systems (say, two or three unknowns), our main interest in them
stems from the fact that they link together various concepts in linear algebra and provide
a useful formula for the inverse of a matrix.

2.1 Determinants by Cofactor Expansion
In this section we will define the notion of a “determinant.” This will enable us to develop
a specific formula for the inverse of an invertible matrix, whereas up to now we have had
only a computational procedure. This, in turn, will eventually provide us with a formula
for solutions of certain kinds of linear systems.

Recall from Theorem 1.4.5 that the 2 × 2 matrix

𝐴 = [a b
c d]

is invertible if and only if ad − bc ≠ 0 and that the expression ad − bc is called the deter-
Warning It is important
to keep in mind that det(A)
is a number, whereas A is a
matrix.

minant of the matrix 𝐴. Recall also that this determinant is denoted by writing

det(𝐴) = ad − bc or
|||
a b
c d

||| = ad − bc (1)

and that the inverse of 𝐴 can be expressed in terms of the determinant as

𝐴−1 = 1
det(𝐴) [

d −b
−c a] (2)
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Minors and Cofactors
One of our main goals in this chapter is to obtain an analog of Formula (2) that is appli-
cable to square matrices of all orders. For this purpose we will find it convenient to use
subscripted entries when writing matrices or determinants. Thus, if we denote a 2 × 2
matrix as

𝐴 = [a11 a12
a21 a22

]

then the two equations in (1) take the form

det(𝐴) = |||
a11 a12
a21 a22

||| = a11a22 − a12a21 (3)

In situations where it is inconvenient to assign a name to the matrix, we can express this
formula as

det [a11 a12
a21 a22

] = a11a22 − a12a21 (4)

There are variousmethods for defining determinants of higher-order squarematrices.
In this text, we will use an “inductive definition” by which wemean that the determinant
of a square matrix of a given order will be defined in terms of determinants of square
matrices of the next lower order. To start the process, let us define the determinant of a
1 × 1 matrix [a11] as

det [a11] = a11 (5)
from which it follows that Formula (4) can be expressed as

det [a11 a12
a21 a22

] = det[a11] det[a22] − det[a12] det[a21]

Now that we have established a starting point, we can define determinants of 3 × 3
matrices in terms of determinants of 2 × 2 matrices, then determinants of 4 × 4 matri-
ces in terms of determinants of 3 × 3 matrices, and so forth, ad infinitum. The following
terminology and notation will help to make this inductive process more efficient.

Definition 1

If𝐴 is a square matrix, then theminor of entry aij is denoted by𝑀ij and is defined
to be the determinant of the submatrix that remains after the ith row and jth col-
umn are deleted from 𝐴. The number (−1)i+j𝑀ij is denoted by 𝐶ij and is called the
cofactor of entry aij.

Historical Note

The term determinant was first introduced by the German mathematician Carl Friedrich
Gauss in 1801 (see p. 16), who used them to “determine” properties of certain kinds of func-
tions. Interestingly, the termmatrix is derived from a Latin word for “womb” because it was
viewed as a container of determinants.

EXAMPLE 1 | Finding Minors and Cofactors

Let

𝐴 = [
3 1 −4
2 5 6
1 4 8

]
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The minor of entry a11 is

M11 =

3 1 4

2 5 6

1 4 8

=
5 6

4 8
= 16

The cofactor of a11 is
𝐶11 = (−1)1+1𝑀11 =𝑀11 = 16

Similarly, the minor of entry a32 is

M32 =

3 1 4

2 5 6

1 4 8

=
3 4

2 6
= 26

The cofactor of a32 is
𝐶32 = (−1)3+2𝑀32 = −𝑀32 = −26

Warning We have fol-
lowed the standard con-
vention of using capital
letters to denote minors and
cofactors even though they
are numbers, not matrices.

Remark Note that a minor𝑀ij and its corresponding cofactor 𝐶ij are either the same or
negatives of each other and that the relating sign (−1)i+j is either +1 or −1 in accordance
with the pattern in the “checkerboard” array

⎡
⎢
⎢
⎢
⎢
⎢
⎣

+ − + − + ⋅ ⋅ ⋅
− + − + − ⋅ ⋅ ⋅
+ − + − + ⋅ ⋅ ⋅
− + − + − ⋅ ⋅ ⋅
...

...
...

...
...

⎤
⎥
⎥
⎥
⎥
⎥
⎦

For example,
𝐶11 = 𝑀11, 𝐶21 = −𝑀21, 𝐶22 = 𝑀22

and so forth. Thus, it is never really necessary to calculate (−1)i+j to obtain 𝐶ij—you can
simply compute the minor𝑀ij and then adjust the sign in accordance with the checker-
board pattern. Try this in Example 1.

EXAMPLE 2 | Cofactor Expansions of a 2 × 2 Matrix

The checkerboard pattern for a 2 × 2 matrix𝐴 = [aij] is

[+ −
− +]

so that
𝐶11 =𝑀11 = a22 𝐶12 = −𝑀12 = −a21
𝐶21 = −𝑀21 = −a12 𝐶22 =𝑀22 = a11

We leave it for you to use Formula (3) to verify that det(𝐴) can be expressed in terms of
cofactors in the following four ways:

det(𝐴) = |||
a11 a12
a21 a22

|||
= a11𝐶11 + a12𝐶12

= a21𝐶21 + a22𝐶22

= a11𝐶11 + a21𝐶21

= a12𝐶12 + a22𝐶22

(6)
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Each of the last four equations is called a cofactor expansion of det(𝐴). In each cofactor
expansion the entries and cofactors all come from the same row or same column of 𝐴. For
example, in the first equation the entries and cofactors all come from the first row of 𝐴, in
the second they all come from the second row of𝐴, in the third they all come from the first
column of𝐴, and in the fourth they all come from the second column of𝐴.

Historical Note

The termminor is apparently due to the English mathematician James Sylvester (see p. 36),
who wrote the following in a paper published in 1850: “Now conceive any one line and any
one column be struck out, we get . . . a square, one term less in breadth and depth than the
original square; and by varying in every possible selection of the line and column excluded,
we obtain, supposing the original square to consist of n lines and n columns, n2 such minor
squares, each of which will represent what I term a “First Minor Determinant” relative to the
principal or complete determinant.”

Definition of a General Determinant
Formula (6) is a special case of the following general result, which we will state without
proof.

Theorem 2.1.1

If 𝐴 is an n × nmatrix, then regardless of which row or column of 𝐴 is chosen, the
number obtained by multiplying the entries in that row or column by the corre-
sponding cofactors and adding the resulting products is always the same.

This result allows us to make the following definition.

Definition 2

If 𝐴 is an n × nmatrix, then the number obtained by multiplying the entries in any
row or column of 𝐴 by the corresponding cofactors and adding the resulting prod-
ucts is called the determinant of A, and the sums themselves are called cofactor
expansions of A. That is,

det(𝐴) = a1j𝐶1j + a2j𝐶2j + ⋅ ⋅ ⋅ + anj𝐶nj
[cofactor expansion along the jth column]

(7)

and
det(𝐴) = ai1𝐶i1 + ai2𝐶i2 + ⋅ ⋅ ⋅ + ain𝐶in

[cofactor expansion along the ith row]
(8)

EXAMPLE 3 | Cofactor Expansion Along the First Row

Find the determinant of the matrix

𝐴 = [
3 1 0

−2 −4 3
5 4 −2

]

by cofactor expansion along the first row.
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Solution

det(𝐴) =
|||||

3 1 0
−2 −4 3
5 4 −2

|||||
= 3

|||
−4 3
4 −2

||| − 1
|||
−2 3
5 −2

||| + 0
|||
−2 −4
5 4

|||

= 3(−4) − (1)(−11) + 0 = −1

Historical Note

Charles Lutwidge
Dodgson
(Lewis Carroll)
(1832–1898)

Cofactor expansion is not the only method for expressing the
determinant of a matrix in terms of determinants of lower order.
For example, although it is not well known, the English mathe-
matician Charles Dodgson, who was the author ofAlice’s Adven-
tures in Wonderland and Through the Looking Glass under the
pen name of Lewis Carroll, invented such a method, called
condensation. That method has recently been resurrected from
obscurity because of its suitability for parallel processing on
computers.

[Image: Oscar G. Rejlander/Time & Life Pictures/
Getty Images]

EXAMPLE 4 | Cofactor Expansion Along the First Column

Let𝐴 be the matrix in Example 3, and evaluate det(𝐴) by cofactor expansion along the first
column of𝐴.
Solution

det(𝐴) =
|||||

3 1 0
−2 −4 3
5 4 −2

|||||
= 3

|||
−4 3
4 −2

||| − (−2) |||
1 0
4 −2

||| + 5
|||

1 0
−4 3

|||

= 3(−4) − (−2)(−2) + 5(3) = −1
This agrees with the result obtained in Example 3.Note that in Example 4 we

had to compute three cofac-
tors, whereas in Example
3 only two were needed
because the third was mul-
tiplied by zero. As a rule,
the best strategy for cofac-
tor expansion is to expand
along a row or column with
the most zeros.

EXAMPLE 5 | Smart Choice of Row or Column

If𝐴 is the 4 × 4 matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0 0 −1
3 1 2 2
1 0 −2 1
2 0 0 1

⎤
⎥
⎥
⎥
⎦
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then to find det(𝐴) it will be easiest to use cofactor expansion along the second column,
since it has the most zeros:

det(𝐴) = 1 ⋅
|||||

1 0 −1
1 −2 1
2 0 1

|||||
For the 3 × 3 determinant, itwill be easiest to use cofactor expansion along its second column,
since it has the most zeros:

det(𝐴) = (1)(−2) |||
1 −1
2 1

|||
= −2(1+ 2)
= −6

EXAMPLE 6 | Determinant of a Lower Triangular Matrix

The following computation shows that the determinant of a 4 × 4 lower triangular matrix is
the product of its diagonal entries. Each part of the computation uses a cofactor expansion
along the first row.

|
|
|
|
|
|

a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

|
|
|
|
|
|

= a11
|||||

a22 0 0
a32 a33 0
a42 a43 a44

|||||

= a11a22
|||
a33 0
a43 a44

|||
= a11a22a33|a44| = a11a22a33a44

The method illustrated in Example 6 can be easily adapted to prove the following
general result.

Theorem 2.1.2

If 𝐴 is an n×n triangular matrix (upper triangular, lower triangular, or diagonal ),
then det(𝐴) is the product of the entries on the main diagonal of the matrix; that is,
det(𝐴) = a11a22 ⋅ ⋅ ⋅ ann.

A Useful Technique for Evaluating 2 × 2 and
3 × 3 Determinants
Determinants of 2 × 2 and 3 × 3 matrices can be evaluated very efficiently using the pat-
tern suggested in Figure 2.1.1.

a11
a21
a31

a12
a22
a32

a11
a21
a31

a12
a22
a32

a13
a23
a33

a11
a21

a12
a22

FIGURE 2.1.1
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In the 2 × 2 case, the determinant can be computed by forming the product of the entries
on the rightward arrow and subtracting the product of the entries on the leftward arrow.
In the 3 × 3 case we first recopy the first and second columns as shown in the figure, after
which we can compute the determinant by summing the products of the entries on the
rightward arrows and subtracting the products on the leftward arrows. These proceduresWarning The arrow

technique works only for
determinants of 2 × 2 and
3 × 3 matrices. It does not
work for matrices of size
4 × 4 or higher.

execute the computations
|||
a11 a12
a21 a22

||| = a11a22 − a12a21

|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||
= a11

|||
a22 a23
a32 a33

||| − a12
|||
a21 a23
a31 a33

||| + a13
|||
a21 a22
a31 a32

|||
= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

which agrees with the cofactor expansions along the first row.

EXAMPLE 7 | A Technique for Evaluating 2 × 2 and
3 × 3 Determinants

1 2 3

4 5 6

7 8 9

1 2

4 5

7 8

1 2 3

4 5 6

7 8 9

= [45 + 84 + 96]  [105  48  72] = 240 

=

=
3 1

4 2
= (3)( 2)  (1)(4) = 10

3 1

4 2

Exercise Set 2.1

In Exercises 1–2, find all the minors and cofactors of the matrix𝐴.

1. 𝐴 = [
1 −2 3
6 7 −1

−3 1 4
] 2. 𝐴 = [

1 1 2
3 3 6
0 1 4

]

3. Let

𝐴 =
⎡
⎢
⎢
⎢
⎣

4 −1 1 6
0 0 −3 3
4 1 0 14
4 1 3 2

⎤
⎥
⎥
⎥
⎦

Find

a. 𝑀13 and 𝐶13. b. 𝑀23 and 𝐶23.

c. 𝑀22 and 𝐶22. d. 𝑀21 and 𝐶21.

4. Let

𝐴 =
⎡
⎢
⎢
⎢
⎣

2 3 −1 1
−3 2 0 3
3 −2 1 0
3 −2 1 4

⎤
⎥
⎥
⎥
⎦

Find

a. 𝑀32 and 𝐶32. b. 𝑀44 and 𝐶44.

c. 𝑀41 and 𝐶41. d. 𝑀24 and 𝐶24.

In Exercises 5–8, evaluate the determinant of the given matrix. If the
matrix is invertible, use Equation (2) to find its inverse.

5. [ 3 5
−2 4] 6. [4 1

8 2] 7. [−5 7
−7 −2] 8. [

√2 √6
4 √3

]
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In Exercises 9–14, use the arrow technique of Figure 2.1.1 to evaluate
the determinant.

9.
|||
a− 3 5
−3 a− 2

||| 10.
|||||

−2 7 6
5 1 −2
3 8 4

|||||

11.
|||||

−2 1 4
3 5 −7
1 6 2

|||||
12.

|||||

−1 1 2
3 0 −5
1 7 2

|||||

13.
|||||

3 0 0
2 −1 5
1 9 −4

|||||
14.

|||||

c −4 3
2 1 c2

4 c− 1 2

|||||

In Exercises 15–18, find all values of 𝜆 for which det(𝐴) = 0.

15. 𝐴 = [𝜆 − 2 1
−5 𝜆 + 4] 16. 𝐴 = [

𝜆 − 4 0 0
0 𝜆 2
0 3 𝜆 − 1

]

17. 𝐴 = [𝜆 − 1 0
2 𝜆 + 1] 18. 𝐴 = [

𝜆 − 4 4 0
−1 𝜆 0
0 0 𝜆 − 5

]

19. Evaluate the determinant in Exercise 13 by a cofactor expan-
sion along

a. the first row. b. the first column.
c. the second row. d. the second column.
e. the third row. f. the third column.

20. Evaluate the determinant in Exercise 12 by a cofactor expan-
sion along

a. the first row. b. the first column.
c. the second row. d. the second column.
e. the third row. f. the third column.

In Exercises 21–26, evaluate det(𝐴) by a cofactor expansion along a
row or column of your choice.

21. 𝐴 = [
−3 0 7
2 5 1

−1 0 5
] 22. 𝐴 = [

3 3 1
1 0 −4
1 −3 5

]

23. 𝐴 = [
1 k k2

1 k k2

1 k k2
] 24. 𝐴 = [

k+ 1 k− 1 7
2 k− 3 4
5 k+ 1 k

]

25. 𝐴 =
⎡
⎢
⎢
⎢
⎣

3 3 0 5
2 2 0 −2
4 1 −3 0
2 10 3 2

⎤
⎥
⎥
⎥
⎦

26. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0 1 0
3 3 3 −1 0
1 2 4 2 3
9 4 6 2 3
2 2 4 2 3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In Exercises 27–32, evaluate the determinant of the given matrix by
inspection.

27. [
1 0 0
0 −1 0
0 0 1

] 28. [
2 0 0
0 2 0
0 0 2

]

29.
⎡
⎢
⎢
⎢
⎣

0 0 0 0
1 2 0 0
0 4 3 0
1 2 3 8

⎤
⎥
⎥
⎥
⎦

30.
⎡
⎢
⎢
⎢
⎣

1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4

⎤
⎥
⎥
⎥
⎦

31.
⎡
⎢
⎢
⎢
⎣

1 2 7 −3
0 1 −4 1
0 0 2 7
0 0 0 3

⎤
⎥
⎥
⎥
⎦

32.
⎡
⎢
⎢
⎢
⎣

−3 0 0 0
1 2 0 0
40 10 −1 0
100 200 −23 3

⎤
⎥
⎥
⎥
⎦

33. In each part, show that the value of the determinant is inde-
pendent of 𝜃.

a.
|
|
|

sin𝜃 cos𝜃
− cos𝜃 sin𝜃

|
|
|

b.
|||||

sin𝜃 cos𝜃 0
− cos𝜃 sin𝜃 0

sin𝜃 − cos𝜃 sin𝜃 + cos𝜃 1

|||||

34. Show that the matrices

𝐴 = [a b
0 c] and 𝐵 = [d e

0 𝑓]

commute if and only if

|||
b a− c
e d−𝑓

||| = 0

35. By inspection, what is the relationship between the following
determinants?

d1 =
|||||

a b c
d 1 𝑓
g 0 1

|||||
and d2 =

|||||

a+ 𝜆 b c
d 1 𝑓
g 0 1

|||||

36. Show that

det(𝐴) = 1
2
|||
tr(𝐴) 1
tr(𝐴2) tr(𝐴)

|||

for every 2 × 2 matrix𝐴.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number of zeros that a 3 × 3matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries
must be an integer.

Working with Proofs

40. Prove that (x1, y1), (x2, y2), and (x3, y3) are collinear points if
and only if

|||||

x1 y1 1
x2 y2 1
x3 y3 1

|||||
= 0
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41. Prove that the equation of the line through the distinct points
(a1, b1) and (a2, b2) can be written as

|||||

x y 1
a1 b1 1
a2 b2 1

|||||
= 0

42. Prove that if 𝐴 is upper triangular and 𝐵ij is the matrix that
results when the ith row and jth column of𝐴 are deleted, then
𝐵i j is upper triangular if i < j.

43. A matrix in which the entries in each row (or in each col-
umn) form a geometric progression starting with 1 is called
a Vandermonde matrix in honor of the French medical
doctor, mathematician, and musician Alexandre-Théophile
Vandermonde (February 28, 1735–January 1, 1796). Here are
two examples.

𝑉 = [
1 1 1
a b c
a2 b2 c2

] and 𝑉 =
⎡
⎢
⎢
⎢
⎣

1 a a2 a3

1 b b2 b3
1 c c2 c3
1 d d2 d3

⎤
⎥
⎥
⎥
⎦

Vandermonde matrices arise in a variety of applications, such
as polynomial interpolation (see Formula (14) and Example 6
of Section 1.10). Use cofactor expansion to prove that

|
|
|
|
|

1 x1 x21
1 x2 x22
1 x3 x23

|
|
|
|
|
= (x2 − x1)(x3 − x1)(x3 − x2)

True-False Exercises
TF. In parts (a)–( j) determine whether the statement is true or

false, and justify your answer.

a. The determinant of the 2 × 2 matrix [a b
c d] is ad+ bc.

b. Two square matrices that have the same determinant
must have the same size.

c. The minor 𝑀i j is the same as the cofactor 𝐶i j if i+ j is
even.

d. If 𝐴 is a 3 × 3 symmetric matrix, then 𝐶ij = 𝐶ji for all i
and j.

e. The number obtained by a cofactor expansion of a matrix
𝐴 is independent of the row or column chosen for the
expansion.

f. If 𝐴 is a square matrix whose minors are all zero, then
det(𝐴) = 0.

g. The determinant of a lower triangular matrix is the sum
of the entries along the main diagonal.

h. For every squarematrix𝐴 and every scalar c, it is true that
det(c𝐴) = c det(𝐴).

i. For all square matrices𝐴 and 𝐵, it is true that
det(𝐴 + 𝐵) = det(𝐴) + det(𝐵)

j. For every 2 × 2 matrix𝐴 it is true that

det(𝐴2) = (det(𝐴))2

Working with Technology
T1. a. Use the determinant capability of your technology utility

to find the determinant of the matrix

𝐴 =
⎡⎢⎢⎢⎢
⎣

4.2 −1.3 1.1 6.0
0.0 0.0 −3.2 3.4
4.5 1.3 0.0 14.8
4.7 1.0 3.4 2.3

⎤⎥⎥⎥⎥
⎦

b. Compare the result obtained in part (a) to that obtained by
a cofactor expansion along the second row of𝐴.

T2. Let 𝐴n be the n × n matrix with 2’s along the main diagonal,
1’s along the diagonal lines immediately above and below the
main diagonal, and zeros everywhere else. Make a conjecture
about the relationship between n and det(𝐴n).

2.2 Evaluating Determinants by
Row Reduction

In this section we will show how to evaluate a determinant by reducing the associated
matrix to row echelon form. In general, thismethod requires less computation than cofac-
tor expansion and hence is the method of choice for large matrices.

A Basic Theorem
We begin with a fundamental theorem that will lead us to an efficient procedure for eval-
uating the determinant of a square matrix of any size.

Theorem 2.2.1

Let 𝐴 be a square matrix. If 𝐴 has a row of zeros or a column of zeros, then
det(𝐴) = 0.
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Proof Since the determinant of𝐴 can be found by a cofactor expansion along any row or
column, we can use the row or column of zeros. Thus, if we let 𝐶1, 𝐶2, . . . , 𝐶n denote the
cofactors of𝐴 along that row or column, then it follows from Formula (7) or (8) in Section
2.1 that

det(𝐴) = 0 ⋅ 𝐶1 + 0 ⋅ 𝐶2 + ⋅ ⋅ ⋅ + 0 ⋅ 𝐶n = 0

The following useful theorem relates the determinant of amatrix and the determinant
of its transpose.

Theorem 2.2.2

Let 𝐴 be a square matrix. Then det(𝐴) = det(𝐴𝑇).

Proof Since transposing a matrix changes its columns to rows and its rows to columns,

Because transposing a
matrix changes its columns
to rows and its rows to
columns, almost every the-
orem about the rows of a
determinant has a compan-
ion version about columns,
and vice versa.

the cofactor expansion of𝐴 along any row is the same as the cofactor expansion of𝐴𝑇 along
the corresponding column. Thus, both have the same determinant.

Elementary Row Operations
The next theorem shows how an elementary row operation on a square matrix affects the
value of its determinant. In place of a formal proof we have provided a table to illustrate
the ideas in the 3 × 3 case (see Table 1).

The first panel of Table 1
shows that you can bring
a common factor from
any row (column) of a
determinant through the
determinant sign. This is
a slightly different way of
thinking about part (a) of
Theorem 2.2.3.

Theorem 2.2.3

Let 𝐴 be an n × nmatrix.
(a) If 𝐵 is the matrix that results when a single row or single column of 𝐴 is multi-

plied by a scalar k, then det(𝐵) = k det(𝐴).
(b) If 𝐵 is the matrix that results when two rows or two columns of 𝐴 are inter-

changed, then det(𝐵) = − det(𝐴).
(c) If𝐵 is thematrix that resultswhen amultiple of one rowof𝐴 is added to another

or when a multiple of one column is added to another, then det(𝐵) = det(𝐴).

TABLE 1

Relationship Operation

|||||

ka11 ka12 ka13
a21 a22 a23
a31 a32 a33

|||||
= k

|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||
det(𝐵) = k det(𝐴)

In the matrix 𝐵 the first
row of𝐴wasmultiplied
by k.

|||||

a21 a22 a23
a11 a12 a13
a31 a32 a33

|||||
= −

|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||
det(𝐵) = − det(𝐴)

In the matrix 𝐵 the first and
second rows of𝐴 were
interchanged.

|||||

a11 + ka21 a12 + ka22 a13 + ka23
a21 a22 a23
a31 a32 a33

|||||
=
|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||
det(𝐵) = det(𝐴)

In the matrix 𝐵 a multiple of
the second row of𝐴 was
added to the first row.
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We will verify the first equation in Table 1 and leave the other two for you. To start,
note that the determinants on the two sides of the equation differ only in the first row,
so these determinants have the same cofactors, 𝐶11, 𝐶12, 𝐶13, along that row (since those
cofactors depend only on the entries in the second two rows). Thus, expanding the left
side by cofactors along the first row yields

|||||

ka11 ka12 ka13
a21 a22 a23
a31 a32 a33

|||||
= ka11𝐶11 + ka12𝐶12 + ka13𝐶13

= k(a11𝐶11 + a12𝐶12 + a13𝐶13)

= k
|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||

Elementary Matrices
It will be useful to consider the special case of Theorem 2.2.3 in which𝐴 = 𝐼n is the n × n
identity matrix and 𝐸 (rather than 𝐵) denotes the elementarymatrix that results when the
row operation is performed on 𝐼n. In this special case Theorem 2.2.3 implies the following
result.

Theorem 2.2.4

Let 𝐸 be an n × n elementary matrix.
(a) If𝐸 results frommultiplying a rowof 𝐼n by anonzeronumber k, thendet(𝐸) = k.
(b) If 𝐸 results from interchanging two rows of 𝐼n, then det(𝐸) = −1.
(c) If 𝐸 results from adding amultiple of one row of 𝐼n to another, then det(𝐸) = 1.

Observe that the deter-
minant of an elementary
matrix cannot be zero.

EXAMPLE 1 | Determinants of Elementary Matrices

The following determinants of elementarymatrices, which are evaluated by inspection, illus-
trate Theorem 2.2.4.

|||||||

1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

|||||||

= 3,

|||||||

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

|||||||

= −1,

|||||||

1 0 0 7
0 1 0 0
0 0 1 0
0 0 0 1

|||||||

= 1

The second rowof I4
was multiplied by 3.

The first and last rows of
I4 were interchanged.

7 times the last row of I4
was added to the first row.

Matrices with Proportional Rows or Columns
If a square matrix 𝐴 has two proportional rows, then a row of zeros can be introduced by
adding a suitable multiple of one of those rows to the other. Similarly for columns. But
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adding a multiple of one row or column to another does not change the determinant, so
from Theorem 2.2.1, we must have det(𝐴) = 0. This proves the following theorem.

Theorem 2.2.5

If 𝐴 is a square matrix with two proportional rows or two proportional columns,
then det(𝐴) = 0.

EXAMPLE 2 | Proportional Rows or Columns

Each of the followingmatrices has two proportional rows or columns; thus, each has a deter-
minant of zero.

[
−1 4
−2 8

], [
1 −2 7

−4 8 5
2 −4 3

],
⎡⎢⎢⎢⎢
⎣

3 −1 4 −5
6 −2 5 2
5 8 1 4

−9 3 −12 15

⎤⎥⎥⎥⎥
⎦

Evaluating Determinants by Row Reduction
We will now give a method for evaluating determinants that involves substantially less
computation than cofactor expansion. The idea of themethod is to reduce the givenmatrix
to upper triangular form by elementary row operations, then compute the determinant of
the upper triangular matrix (an easy computation), and then relate that determinant to
that of the original matrix. Here is an example.

Even with today’s fastest
computers it would take
millions of years to calculate
a 25 × 25 determinant
by cofactor expansion, so
methods based on row
reduction are often used
for large determinants. For
determinants of small size
(such as those in this text),
cofactor expansion is often a
reasonable choice.

EXAMPLE 3 | Using Row Reduction to Evaluate a Determinant

Evaluate det(𝐴) where

𝐴 = [
0 1 5
3 −6 9
2 6 1

]

Solution Wewill reduce𝐴 to row echelon form (which is upper triangular) and then apply
Theorem 2.1.2.

det(𝐴) =
|||||

0 1 5
3 −6 9
2 6 1

|||||
= −

|||||

3 −6 9
0 1 5
2 6 1

|||||
The first and second rows of
𝐴 were interchanged.

= −3
|||||

1 −2 3
0 1 5
2 6 1

|||||
A common factor of 3 from
the first row was taken
through the determinant sign.
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= −3
|||||

1 −2 3
0 1 5
0 10 −5

|||||
−2 times the first row was
added to the third row.

= −3
|||||

1 −2 3
0 1 5
0 0 −55

|||||
−10 times the second row
was added to the third row.

= (−3)(−55)
|||||

1 −2 3
0 1 5
0 0 1

|||||
A common factor of−55
from the last row was taken
through the determinant sign.

= (−3)(−55)(1) = 165

EXAMPLE 4 | Using Column Operations to
Evaluate a Determinant

Compute the determinant of

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0 0 3
2 7 0 6
0 6 3 0
7 3 1 −5

⎤
⎥
⎥
⎥
⎦

Solution This determinant could be computed as above by using elementary row opera-
tions to reduce𝐴 to row echelon form, but we can put𝐴 in lower triangular form in one step
by adding−3 times the first column to the fourth to obtain

det(𝐴) = det
⎡
⎢
⎢
⎢
⎣

1 0 0 0
2 7 0 0
0 6 3 0
7 3 1 −26

⎤
⎥
⎥
⎥
⎦

= (1)(7)(3)(−26) = −546

Cofactor expansion and row or column operations can sometimes be used in combi-

Example 4 points out that
it is always wise to keep
an eye open for column
operations that can shorten
computations.

nation to provide an effectivemethod for evaluating determinants. The following example
illustrates this idea.

EXAMPLE 5 | Row Operations and Cofactor Expansion

Evaluate det(𝐴) where

𝐴 =
⎡
⎢
⎢
⎢
⎣

3 5 −2 6
1 2 −1 1
2 4 1 5
3 7 5 3

⎤
⎥
⎥
⎥
⎦
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Solution By adding suitable multiples of the second row to the remaining rows, we obtain

det(𝐴) =

|
|
|
|
|
|

0 −1 1 3
1 2 −1 1
0 0 3 3
0 1 8 0

|
|
|
|
|
|

= −
|||||

−1 1 3
0 3 3
1 8 0

|||||
Cofactor expansion along
the first column

= −
|||||

−1 1 3
0 3 3
0 9 3

|||||
We added the first row to
the third row.

= −(−1) |||
3 3
9 3

|||
Cofactor expansion along
the first column

= −18

Exercise Set 2.2

In Exercises 1–4, verify that det(𝐴) = det(𝐴𝑇).

1. 𝐴 = [−2 3
1 4] 2. 𝐴 = [−6 1

2 −2]

3. 𝐴 = [
2 −1 3
1 2 4
5 −3 6

] 4. 𝐴 = [
4 2 −1
0 2 −3

−1 1 5
]

In Exercises 5–8, find the determinant of the given elementarymatrix
by inspection.

5.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −5 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

6. [
1 0 0
0 1 0

−5 0 1
]

7.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

8.
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 − 1

3 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

In Exercises 9–14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

9. [
3 −6 9

−2 7 −2
0 1 5

] 10. [
3 6 −9
0 0 −2

−2 1 5
]

11.
⎡
⎢
⎢
⎢
⎣

2 1 3 1
1 0 1 1
0 2 1 0
0 1 2 3

⎤
⎥
⎥
⎥
⎦

12. [
1 −3 0

−2 4 1
5 −2 2

]

13.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 1 5 3
−2 −7 0 −4 2
0 0 1 0 1
0 0 2 1 1
0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

14.
⎡
⎢
⎢
⎢
⎣

1 −2 3 1
5 −9 6 3

−1 2 −6 −2
2 8 6 1

⎤
⎥
⎥
⎥
⎦

In Exercises 15–22, evaluate the determinant, given that

|||||

a b c
d e 𝑓
g h i

|||||
= −6

15.
|||||

d e 𝑓
g h i
a b c

|||||
16.

|||||

g h i
d e 𝑓
a b c

|||||

17.
|||||

3a 3b 3c
−d −e −𝑓
4g 4h 4i

|||||
18.

|||||

a+ d b+ e c+𝑓
−d −e −𝑓
g h i

|||||

19.
|||||

a+ g b+ h c+ i
d e 𝑓
g h i

|||||
20.

|||||

a b c
2d 2e 2𝑓

g+ 3a h+ 3b i+ 3c

|||||

21.
|||||

−3a −3b −3c
d e 𝑓

g− 4d h− 4e i− 4𝑓

|||||
22.

|||||

a b c
d e 𝑓
2a 2b 2c

|||||

23. Use row reduction to show that

|||||

1 1 1
a b c
a2 b2 c2

|||||
= (b− a)(c− a)(c− b)
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24. Verify the formulas in parts (a) and (b) and then make a con-
jecture about a general result of which these results are special
cases.

a. det[
0 0 a13
0 a22 a23
a31 a32 a33

] = −a13a22a31

b. det
⎡
⎢
⎢
⎢
⎣

0 0 0 a14
0 0 a23 a24
0 a32 a33 a34
a41 a42 a43 a44

⎤
⎥
⎥
⎥
⎦

= a14a23a32a41

In Exercises 25–28, confirm the identities without evaluating any of
the determinants directly.

25.
|||||

a1 b1 a1 + b1 + c1
a2 b2 a2 + b2 + c2
a3 b3 a3 + b3 + c3

|||||
=
|||||

a1 b1 c1
a2 b2 c2
a3 b3 c3

|||||

26.
|||||

a1 + b1t a2 + b2t a3 + b3t
a1t+ b1 a2t+ b2 a3t+ b3

c1 c2 c3

|||||
= (1− t2)

|||||

a1 a2 a3
b1 b2 b3
c1 c2 c3

|||||

27.
|||||

a1 + b1 a1 − b1 c1
a2 + b2 a2 − b2 c2
a3 + b3 a3 − b3 c3

|||||
= −2

|||||

a1 b1 c1
a2 b2 c2
a3 b3 c3

|||||

28.
|||||

a1 b1 + ta1 c1 + rb1 + sa1
a2 b2 + ta2 c2 + rb2 + sa2
a3 b3 + ta3 c3 + rb3 + sa3

|||||
=
|||||

a1 a2 a3
b1 b2 b3
c1 c2 c3

|||||

In Exercises 29–30, show that det(𝐴)= 0 without directly evaluat-
ing the determinant.

29. 𝐴 =
⎡
⎢
⎢
⎢
⎣

−2 8 1 4
3 2 5 1
1 10 6 5
4 −6 4 −3

⎤
⎥
⎥
⎥
⎦

30. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

−4 1 1 1 1
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4

⎤
⎥
⎥
⎥
⎥
⎦

It can be proved that if a square matrix𝑀 is partitioned into block
triangular form as

𝑀 = [𝐴 0
𝐶 𝐵] or 𝑀 = [𝐴 𝐶

0 𝐵]

in which𝐴 and 𝐵 are square, then det(𝑀) = det(𝐴) det(𝐵). Use
this result to compute the determinants of the matrices in Exer-
cises 31 and 32.

31. 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 8 6 −9
2 5 0 4 7 5

−1 3 2 6 9 −2
0 0 0 3 0 0
0 0 0 2 1 0
0 0 0 −3 8 −4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

32. 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 0 0
0 1 2 0 0
0 0 1 0 0

0 0 0 1 2
2 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

33. Let 𝐴 be an n × nmatrix, and let 𝐵 be the matrix that results
when the rows of 𝐴 are written in reverse order. State a theo-
rem that describes how det(𝐴) and det(𝐵) are related.

34. Find the determinant of the following matrix.

⎡
⎢
⎢
⎢
⎣

a b b b
b a b b
b b a b
b b b a

⎤
⎥
⎥
⎥
⎦

True-False Exercises
TF. In parts (a)–(f ) determine whether the statement is true or

false, and justify your answer.
a. If 𝐴 is a 4 × 4 matrix and 𝐵 is obtained from 𝐴 by inter-

changing the first two rows and then interchanging the
last two rows, then det(𝐵) = det(𝐴).

b. If 𝐴 is a 3 × 3 matrix and 𝐵 is obtained from 𝐴 by mul-
tiplying the first column by 4 and multiplying the third
column by 3

4 , then det(𝐵) = 3 det(𝐴).

c. If𝐴 is a 3 × 3 matrix and 𝐵 is obtained from𝐴 by adding
5 times the first row to each of the second and third rows,
then det(𝐵) = 25 det(𝐴).

d. If𝐴 is an n × nmatrix and 𝐵 is obtained from𝐴 by mul-
tiplying each row of𝐴 by its row number, then

det(𝐵) = n(n+ 1)
2

det(𝐴)

e. If 𝐴 is a square matrix with two identical columns, then
det(𝐴) = 0.

f. If the sum of the second and fourth row vectors of a 6 × 6
matrix𝐴 is equal to the last row vector, then det(𝐴) = 0.

Working with Technology
T1. Find the determinant of

𝐴 =
⎡⎢⎢⎢⎢
⎣

4.2 −1.3 1.1 6.0
0.0 0.0 −3.2 3.4
4.5 1.3 0.0 14.8
4.7 1.0 3.4 2.3

⎤⎥⎥⎥⎥
⎦

by reducing the matrix to reduced row echelon form, and
compare the result obtained in this way to that obtained in
Exercise T1 of Section 2.1.
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2.3 Properties of Determinants;
Cramer’s Rule

In this section we will develop some fundamental properties of matrices, and we will use
these results to derive a formula for the inverse of an invertible matrix and formulas for
the solutions of certain kinds of linear systems.

Basic Properties of Determinants
Suppose that 𝐴 and 𝐵 are n × n matrices and k is any scalar. We begin by considering
possible relationships among det(𝐴), det(𝐵), and

det(k𝐴), det(𝐴 + 𝐵), and det(𝐴𝐵)
Since a common factor of any row of amatrix can bemoved through the determinant sign,
and since each of the n rows in k𝐴 has a common factor of k, it follows that

det(k𝐴) = kn det(𝐴) (1)

For example,
|||||

ka11 ka12 ka13
ka21 ka22 ka23
ka31 ka32 ka33

|||||
= k3

|||||

a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||
Unfortunately, no simple relationship exists among det(𝐴), det(𝐵), and det(𝐴+𝐵). In

particular, det(𝐴 + 𝐵)will usually not be equal to det(𝐴) + det(𝐵). The following example
illustrates this fact.

EXAMPLE 1 | det(A + B) ≠ det(A) + det(B)

Consider
𝐴 = [1 2

2 5], 𝐵 = [3 1
1 3], 𝐴 + 𝐵 = [4 3

3 8]

We have det(𝐴) = 1, det(𝐵) = 8, and det(𝐴 + 𝐵) = 23; thus

det(𝐴 + 𝐵) ≠ det(𝐴) + det(𝐵)

In spite of the previous example, there is a useful relationship concerning sums of
determinants that is applicable when the matrices involved are the same except for one
row or column. For example, consider the following two matrices that differ only in the
second row:

𝐴 = [a11 a12
a21 a22

] and 𝐵 = [a11 a12
b21 b22

]

Calculating the determinants of 𝐴 and 𝐵, we obtain
det(𝐴) + det(𝐵) = (a11a22 − a12a21) + (a11b22 − a12b21)

= a11(a22 + b22) − a12(a21 + b21)

= det [ a11 a12
a21 + b21 a22 + b22

]

Thus
det [a11 a12

a21 a22
] + det [a11 a12

b21 b22
] = det [ a11 a12

a21 + b21 a22 + b22
]

This is a special case of the following general result.
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Theorem 2.3.1

Let 𝐴, 𝐵, and 𝐶 be n × n matrices that differ only in a single row, say the rth, and
assume that the rth row of 𝐶 can be obtained by adding corresponding entries in
the rth rows of 𝐴 and 𝐵. Then

det(𝐶) = det(𝐴) + det(𝐵)
The same result holds for columns.

EXAMPLE 2 | Sums of Determinants

We leave it to you to confirm the following equality by evaluating the determinants.

det[
1 7 5
2 0 3

1+ 0 4+ 1 7+ (−1)
] = det[

1 7 5
2 0 3
1 4 7

] + det[
1 7 5
2 0 3
0 1 −1

]

Determinant of a Matrix Product
Considering the complexity of the formulas for determinants and matrix multiplication,
it would seem unlikely that a simple relationship should exist between them. This is what
makes the simplicity of our next result so surprising. We will show that if 𝐴 and 𝐵 are
square matrices of the same size, then

det(𝐴𝐵) = det(𝐴) det(𝐵) (2)
The proof of this theorem is fairly intricate, so we will have to develop some preliminary
results first. We begin with the special case of (2) in which 𝐴 is an elementary matrix.
Because this special case is only a prelude to (2), we call it a lemma.

Lemma 2.3.2

If 𝐵 is an n × nmatrix and 𝐸 is an n × n elementary matrix, then
det(𝐸𝐵) = det(𝐸) det(𝐵)

Proof We will consider three cases, each in accordance with the row operation that pro-
duces the matrix 𝐸.

Case 1 If 𝐸 results from multiplying a row of 𝐼n by k, then by Theorem 1.5.1, 𝐸𝐵 results
from 𝐵 by multiplying the corresponding row by k; so from Theorem 2.2.3(a) we have

det(𝐸𝐵) = k det(𝐵)
But from Theorem 2.2.4(a) we have det(𝐸) = k, so

det(𝐸𝐵) = det(𝐸) det(𝐵)

Cases 2 and 3 The proofs of the cases where 𝐸 results from interchanging two rows of
𝐼n or from adding a multiple of one row to another follow the same pattern as Case 1 and
are left as exercises.
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Remark It follows by repeated applications of Lemma 2.3.2 that if 𝐵 is an n × n matrix
and 𝐸1, 𝐸2, . . . , 𝐸r are n × n elementary matrices, then

det(𝐸1𝐸2 ⋅ ⋅ ⋅ 𝐸r𝐵) = det(𝐸1) det(𝐸2) ⋅ ⋅ ⋅ det(𝐸r) det(𝐵) (3)

Determinant Test for Invertibility
Our next theorem provides an important criterion for determining whether a matrix is
invertible. It also takes us a step closer to establishing Formula (2).

Theorem 2.3.3

A square matrix 𝐴 is invertible if and only if det(𝐴) ≠ 0.

Proof Let 𝑅 be the reduced row echelon form of 𝐴. As a preliminary step, we will show
that det(𝐴) and det(𝑅) are both zero or both nonzero: Let 𝐸1, 𝐸2, . . . , 𝐸r be the elementary
matrices that correspond to the elementary row operations that produce 𝑅 from 𝐴. Thus

𝑅 = 𝐸r ⋅ ⋅ ⋅ 𝐸2𝐸1𝐴
and from (3),

det(𝑅) = det(𝐸r) ⋅ ⋅ ⋅ det(𝐸2) det(𝐸1) det(𝐴) (4)
We pointed out in the margin note that accompanies Theorem 2.2.4 that the determinant
of an elementary matrix is nonzero. Thus, it follows from Formula (4) that det(𝐴) and
det(𝑅) are either both zero or both nonzero, which sets the stage for the main part of the
proof. If we assume first that𝐴 is invertible, then it follows from Theorem 1.6.4 that 𝑅 = 𝐼
and hence that det(𝑅) = 1 (≠ 0). This, in turn, implies that det(𝐴) ≠ 0, which is what we
wanted to show.

Conversely, assume that det(𝐴) ≠ 0. It follows from this that det(𝑅) ≠ 0, which tells

It follows from Theorems
2.3.3 and 2.2.5 that a square
matrix with two propor-
tional rows or two pro-
portional columns is not
invertible.

us that 𝑅 cannot have a row of zeros. Thus, it follows from Theorem 1.4.3 that 𝑅 = 𝐼 and
hence that 𝐴 is invertible by Theorem 1.6.4.

EXAMPLE 3 | Determinant Test for Invertibility

Since the first and third rows of

𝐴 = [
1 2 3
1 0 1
2 4 6

]

are proportional, det(𝐴) = 0. Thus𝐴 is not invertible.

We are now ready for the main result concerning products of matrices.

Theorem 2.3.4

If 𝐴 and 𝐵 are square matrices of the same size, then
det(𝐴𝐵) = det(𝐴) det(𝐵)

Proof We divide the proof into two cases that depend on whether or not 𝐴 is invert-
ible. If the matrix 𝐴 is not invertible, then by Theorem 1.6.5 neither is the product 𝐴𝐵.
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Thus, fromTheorem2.3.3,wehave det(𝐴𝐵) = 0 anddet(𝐴) = 0, so it follows that det(𝐴𝐵) =
det(𝐴) det(𝐵).

Now assume that 𝐴 is invertible. By Theorem 1.6.4, the matrix 𝐴 is expressible as a
product of elementary matrices, say

𝐴 = 𝐸1𝐸2 ⋅ ⋅ ⋅ 𝐸r (5)

so
𝐴𝐵 = 𝐸1𝐸2 ⋅ ⋅ ⋅ 𝐸r𝐵

Applying (3) to this equation yields

det(𝐴𝐵) = det(𝐸1) det(𝐸2) ⋅ ⋅ ⋅ det(𝐸r) det(𝐵)
and applying (3) again yields

det(𝐴𝐵) = det(𝐸1𝐸2 ⋅ ⋅ ⋅ 𝐸r) det(𝐵)
which, from (5), can be written as det(𝐴𝐵) = det(𝐴) det(𝐵).

EXAMPLE 4 | Verifying that det(AB) = det(A) det(B)

Consider the matrices

𝐴 = [
3 1
2 1

], 𝐵 = [
−1 3
5 8

], 𝐴𝐵 = [
2 17
3 14

]

We leave it for you to verify that

det(𝐴) = 1, det(𝐵) = −23, and det(𝐴𝐵) = −23
Thus det(𝐴𝐵) = det(𝐴) det(𝐵), as guaranteed by Theorem 2.3.4.

The following theorem gives a useful relationship between the determinant of an
invertible matrix and the determinant of its inverse.

Theorem 2.3.5

If 𝐴 is invertible, then
det(𝐴−1) = 1

det(𝐴)

Historical Note

In 1815 the great FrenchmathematicianAugustinCauchypub-
lished a landmark paper in which he gave the first systematic
and modern treatment of determinants. It was in that paper
that Theorem 2.3.4 was stated and proved in full generality for
the first time. Special cases of the theorem had been stated and
proved earlier, but it was Cauchy who made the final jump.

[Image: © Bettmann/CORBIS]

Augustin Louis Cauchy
(1789–1857)
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Proof Since 𝐴−1𝐴 = 𝐼, it follows that det(𝐴−1𝐴) = det(𝐼). Therefore, we must have
det(𝐴−1) det(𝐴) = 1. Since det(𝐴) ≠ 0, the proof can be completed by dividing through
by det(𝐴).

Adjoint of a Matrix
In a cofactor expansion we compute det(𝐴) by multiplying the entries in a row or column
by their cofactors and adding the resulting products. It turns out that if one multiplies
the entries in any row by the corresponding cofactors from a different row, the sum of
these products is always zero. (This result also holds for columns.) Although we omit the
general proof, the next example illustrates this fact.

EXAMPLE 5 | Entries and Cofactors from Different Rows

Let

𝐴 =
⎡
⎢
⎢
⎣

3 2 −1
1 6 3
2 −4 0

⎤
⎥
⎥
⎦

We leave it for you to verify that the cofactors of𝐴 are

𝐶11 = 12 𝐶12 = 6 𝐶13 = −16
𝐶21 = 4 𝐶22 = 2 𝐶23 = 16
𝐶31 = 12 𝐶32 = −10 𝐶33 = 16

so, for example, the cofactor expansion of det(𝐴) along the first row is

det(𝐴) = 3𝐶11 + 2𝐶12 + (−1)𝐶13 = 36+ 12+ 16 = 64

and along the first column is

det(𝐴) = 3𝐶11 +𝐶21 + 2𝐶31 = 36+ 4+ 24 = 64

Suppose, however, we multiply the entries in the first row by the corresponding cofactors
from the second row and add the resulting products. The result is

3𝐶21 + 2𝐶22 + (−1)𝐶23 = 12+ 4− 16 = 0

Or suppose we multiply the entries in the first column by the corresponding cofactors from
the second column and add the resulting products. The result is again zero since

3𝐶12 + 1𝐶22 + 2𝐶32 = 18+ 2− 20 = 0

Definition 1

If 𝐴 is any n × nmatrix and 𝐶ij is the cofactor of aij, then the matrix

⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶12 ⋅ ⋅ ⋅ 𝐶1n
𝐶21 𝐶22 ⋅ ⋅ ⋅ 𝐶2n...

...
...

𝐶n1 𝐶n2 ⋅ ⋅ ⋅ 𝐶nn

⎤
⎥
⎥
⎥
⎦

is called thematrix of cofactors from A. The transpose of this matrix is called the
adjoint of A and is denoted by adj(𝐴).
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Historical Note
The use of the term adjoint for the transpose of the matrix of
cofactors appears to have been introduced by the American
mathematician L. E. Dickson in a research paper that he pub-
lished in 1902.

[Image: Courtesy of the American Mathematical Society
(www.ams.org)]

Leonard Eugene Dickson
(1874–1954)

EXAMPLE 6 | Adjoint of a 3 × 3 Matrix

Let

𝐴 = [
3 2 −1
1 6 3
2 −4 0

]

As noted in Example 5, the cofactors of𝐴 are

𝐶11 = 12 𝐶12 = 6 𝐶13 = −16
𝐶21 = 4 𝐶22 = 2 𝐶23 = 16
𝐶31 = 12 𝐶32 = −10 𝐶33 = 16

so the matrix of cofactors is

[
12 6 −16
4 2 16
12 −10 16

]

and the adjoint of𝐴 is

adj(𝐴) = [
12 4 12
6 2 −10

−16 16 16
]

In Theorem 1.4.5 we gave a formula for the inverse of a 2× 2 invertible matrix. Our
next theorem extends that result to n×n invertible matrices.

Theorem 2.3.6

Inverse of a Matrix Using Its Adjoint
If 𝐴 is an invertible matrix, then

𝐴−1 = 1
det(𝐴)adj(𝐴) (6)

http://www.ams.org)]
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Proof We show first that
𝐴 adj(𝐴) = det(𝐴)𝐼

Consider the product

𝐴 adj(𝐴) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n...

...
...

ai1 ai2 . . . ain...
...

...
an1 an2 . . . ann

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶21 . . . 𝐶j1 . . . 𝐶n1

𝐶12 𝐶22 . . . 𝐶j2 . . . 𝐶n2...
...

...
...

𝐶1n 𝐶2n . . . 𝐶jn . . . 𝐶nn

⎤
⎥
⎥
⎥
⎦

The entry in the ith row and jth column of the product 𝐴 adj(𝐴) is
ai1𝐶j1 + ai2𝐶j2 + ⋅ ⋅ ⋅ + ain𝐶jn (7)

(see the shaded lines above).
If i = j, then (7) is the cofactor expansion of det(𝐴) along the ith row of 𝐴 (Theo-

rem 2.1.1), and if i ≠ j, then the a’s and the cofactors come from different rows of 𝐴, so
the value of (7) is zero (as illustrated in Example 5). Therefore,

𝐴 adj(𝐴) =
⎡
⎢
⎢
⎢
⎢
⎣

det(𝐴) 0 ⋅ ⋅ ⋅ 0
0 det(𝐴) ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ det(𝐴)

⎤
⎥
⎥
⎥
⎥
⎦

= det(𝐴)𝐼 (8)

Since 𝐴 is invertible, det(𝐴) ≠ 0. Therefore, Equation (8) can be rewritten as

1
det(𝐴) [𝐴 adj(𝐴)] = 𝐼 or 𝐴 [ 1

det(𝐴)adj(𝐴)] = 𝐼

Multiplying both sides on the left by 𝐴−1 yields

𝐴−1 = 1
det(𝐴)adj(𝐴)

EXAMPLE 7 | Using the Adjoint to Find an Inverse Matrix

Use Formula (6) to find the inverse of the matrix𝐴 in Example 6.

Solution We showed in Example 5 that det(𝐴) = 64. Thus,

𝐴−1 = 1
det(𝐴)adj(𝐴) =

1
64

[
12 4 12
6 2 −10

−16 16 16
] =

⎡
⎢
⎢
⎢
⎢
⎣

12
64

4
64

12
64

6
64

2
64 − 10

64

− 16
64

16
64

16
64

⎤
⎥
⎥
⎥
⎥
⎦

Cramer’s Rule
Our next theorem uses the formula for the inverse of an invertible matrix to produce a
formula, called Cramer’s rule, for the solution of a linear system 𝐴x = b of n equations
in n unknowns in the case where the coefficient matrix 𝐴 is invertible (or, equivalently,
when det(𝐴) ≠ 0).
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Theorem 2.3.7

Cramer’s Rule
If 𝐴x = b is a system of n linear equations in n unknowns such that det(𝐴) ≠ 0,
then the system has a unique solution. This solution is

x1 =
det(𝐴1)
det(𝐴) , x2 =

det(𝐴2)
det(𝐴) , . . . , xn =

det(𝐴n)
det(𝐴)

where 𝐴j is the matrix obtained by replacing the entries in the jth column of 𝐴 by
the entries in the matrix

b =
⎡
⎢
⎢
⎢
⎣

b1
b2...
bn

⎤
⎥
⎥
⎥
⎦

Proof If det(𝐴) ≠ 0, then 𝐴 is invertible, and by Theorem 1.6.2, x = 𝐴−1b is the unique
solution of 𝐴x = b. Therefore, by Theorem 2.3.6 we have

x = 𝐴−1b = 1
det(𝐴)adj(𝐴)b =

1
det(𝐴)

⎡
⎢
⎢
⎢
⎣

𝐶11 𝐶21 ⋅ ⋅ ⋅ 𝐶n1
𝐶12 𝐶22 ⋅ ⋅ ⋅ 𝐶n2...

...
...

𝐶1n 𝐶2n ⋅ ⋅ ⋅ 𝐶nn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b1
b2...
bn

⎤
⎥
⎥
⎥
⎦

Multiplying the matrices out gives

x = 1
det(𝐴)

⎡
⎢
⎢
⎢
⎣

b1𝐶11 + b2𝐶21 + ⋅ ⋅ ⋅ + bn𝐶n1
b1𝐶12 + b2𝐶22 + ⋅ ⋅ ⋅ + bn𝐶n2...

...
...

b1𝐶1n + b2𝐶2n + ⋅ ⋅ ⋅ + bn𝐶nn

⎤
⎥
⎥
⎥
⎦

The entry in the jth row of x is therefore

xj =
b1𝐶1j + b2𝐶2j + ⋅ ⋅ ⋅ + bn𝐶nj

det(𝐴) (9)

Now let

𝐴j =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1j−1 b1 a1j+1 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2j−1 b2 a2j+1 ⋅ ⋅ ⋅ a2n...

...
...

...
...

...
an1 an2 ⋅ ⋅ ⋅ anj−1 bn anj+1 ⋅ ⋅ ⋅ ann

⎤
⎥
⎥
⎥
⎦

Historical Note

Variations of Cramer’s rule were fairly well known before the
Swissmathematician discussed it inworkhe published in 1750.
It was Cramer’s superior notation that popularized themethod
and led mathematicians to attach his name to it.

[Image: Science Source/Photo Researchers]

Gabriel Cramer
(1704–1752)
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Since 𝐴j differs from 𝐴 only in the jth column, it follows that the cofactors of entries
b1, b2, . . . , bn in 𝐴j are the same as the cofactors of the corresponding entries in the jth
column of 𝐴. The cofactor expansion of det(𝐴j) along the jth column is therefore

det(𝐴j) = b1𝐶1j + b2𝐶2j + ⋅ ⋅ ⋅ + bn𝐶nj

Substituting this result in (9) gives

xj =
det(𝐴j)
det(𝐴)

EXAMPLE 8 | Using Cramer’s Rule to Solve a Linear System

Use Cramer’s rule to solve
x1 + + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30
−x1 − 2x2 + 3x3 = 8

Solution

𝐴 = [
1 0 2

−3 4 6
−1 −2 3

], 𝐴1 = [
6 0 2
30 4 6
8 −2 3

],

𝐴2 = [
1 6 2

−3 30 6
−1 8 3

], 𝐴3 = [
1 0 6

−3 4 30
−1 −2 8

]

Therefore,

x1 =
det(𝐴1)
det(𝐴) = −40

44
= −10

11
, x2 =

det(𝐴2)
det(𝐴) = 72

44
= 18

11
,

x3 =
det(𝐴3)
det(𝐴) = 152

44
= 38

11

For n > 3, it is usually more
efficient to solve a linear
system with n equations
in n unknowns by Gauss–
Jordan elimination than by
Cramer’s rule. Its main use
is for obtaining properties of
solutions of a linear system
without actually solving the
system.

Equivalence Theorem
In Theorem 1.6.4 we listed five results that are equivalent to the invertibility of amatrix𝐴.
We conclude this section bymerging Theorem 2.3.3 with that list to produce the following
theorem that relates all of the major topics we have studied thus far.

Theorem 2.3.8

Equivalent Statements
If 𝐴 is an n × nmatrix, then the following statements are equivalent.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 can be expressed as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.
(g) det(𝐴) ≠ 0.



November 12, 2018 15:57 C02 Sheet number 25 Page number 142 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

142 CHAPTER 2 Determinants

OPTIONAL: We now have all of the machinery necessary to prove the following two
results, which we stated without proof in Theorem 1.7.1:

• Theorem 1.7.1(c) A triangular matrix is invertible if and only if its diagonal entries
are all nonzero.

• Theorem 1.7.1(d) The inverse of an invertible lower triangular matrix is lower tri-
angular, and the inverse of an invertible upper triangular matrix is upper triangular.

Proof of Theorem1.7.1(c) Let𝐴 = [aij]be a triangularmatrix, so that its diagonal entries
are

a11, a22, . . . , ann
From Theorem 2.1.2, the matrix 𝐴 is invertible if and only if

det(𝐴) = a11a22 ⋅ ⋅ ⋅ ann
is nonzero, which is true if and only if the diagonal entries are all nonzero.

Proof of Theorem 1.7.1(d) We will prove the result for upper triangular matrices and
leave the lower triangular case for you. Assume that 𝐴 is upper triangular and invertible.
Since

𝐴−1 = 1
det(𝐴)adj(𝐴)

we can prove that 𝐴−1 is upper triangular by showing that adj(𝐴) is upper triangular or,
equivalently, that the matrix of cofactors is lower triangular. We can do this by showing
that every cofactor 𝐶ij with i < j (i.e., above the main diagonal) is zero. Since

𝐶ij = (−1)i+j𝑀ij

it suffices to show that each minor 𝑀ij with i < j is zero. For this purpose, let 𝐵ij be the
matrix that results when the ith row and jth column of 𝐴 are deleted, so

𝑀ij = det(𝐵ij) (10)

From the assumption that i < j, it follows that 𝐵ij is upper triangular (see Figure 1.7.1).
Since𝐴 is upper triangular, its (i + 1)-st row begins with at least i zeros. But the ith row of
𝐵ij is the (i + 1)-st row of𝐴 with the entry in the jth column removed. Since i < j, none of
the first i zeros is removed by deleting the jth column; thus the ith row of 𝐵ij starts with at
least i zeros, which implies that this row has a zero on the main diagonal. It now follows
from Theorem 2.1.2 that det(𝐵ij) = 0 and from (10) that𝑀ij = 0.

Exercise Set 2.3

In Exercises 1–4, verify that det(k𝐴) = kn det(𝐴).

1. 𝐴 = [−1 2
3 4]; k = 2 2. 𝐴 = [2 2

5 −2]; k = −4

3. 𝐴 = [
2 −1 3
3 2 1
1 4 5

]; k = −2

4. 𝐴 = [
1 1 1
0 2 3
0 1 −2

]; k = 3

In Exercises 5–6, verify that det(𝐴𝐵) = det(𝐵𝐴) and determine
whether the equality det(𝐴 + 𝐵) = det(𝐴) + det(𝐵) holds.

5. 𝐴 = [
2 1 0
3 4 0
0 0 2

] and 𝐵 = [
1 −1 3
7 1 2
5 0 1

]

6. 𝐴 = [
−1 8 2
1 0 −1

−2 2 2
] and 𝐵 = [

2 −1 −4
1 1 3
0 3 −1

]

In Exercises 7–14, use determinants to decide whether the given
matrix is invertible.

7. 𝐴 = [
2 5 5

−1 −1 0
2 4 3

] 8. 𝐴 = [
2 0 3
0 3 2

−2 0 −4
]
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9. 𝐴 = [
2 −3 5
0 1 −3
0 0 2

] 10. 𝐴 = [
−3 0 1
5 0 6
8 0 3

]

11. 𝐴 = [
4 2 8

−2 1 −4
3 1 6

] 12. 𝐴 = [
1 0 −1
9 −1 4
8 9 −1

]

13. 𝐴 = [
2 0 0
8 1 0

−5 3 6
] 14. 𝐴 =

⎡⎢⎢⎢
⎣

√2 −√7 0
3√2 −3√7 0

5 −9 0

⎤⎥⎥⎥
⎦

In Exercises 15–18, find the values of k for which the matrix 𝐴 is
invertible.

15. 𝐴 = [k− 3 −2
−2 k− 2] 16. 𝐴 = [k 2

2 k]

17. 𝐴 = [
1 2 4
3 1 6
k 3 2

] 18. 𝐴 = [
1 2 0
k 1 k
0 2 1

]

In Exercises 19–23, decide whether the matrix is invertible, and if so,
use the adjoint method to find its inverse.

19. 𝐴 = [
2 5 5

−1 −1 0
2 4 3

] 20. 𝐴 = [
2 0 3
0 3 2

−2 0 −4
]

21. 𝐴 = [
2 −3 5
0 1 −3
0 0 2

] 22. 𝐴 = [
2 0 0
8 1 0

−5 3 6
]

23. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 1 1
2 5 2 2
1 3 8 9
1 3 2 2

⎤
⎥
⎥
⎥
⎦

In Exercises 24–29, solve by Cramer’s rule, where it applies.
24. 7x1 − 2x2 = 3

3x1 + x2 = 5
25. 4x + 5y = 2

11x + y + 2z = 3
x + 5y + 2z = 1

26. x − 4y + z = 6
4x − y + 2z = −1
2x + 2y − 3z = −20

27. x1 − 3x2 + x3 = 4
2x1 − x2 = −2
4x1 − 3x3 = 0

28. −x1 − 4x2 + 2x3 + x4 = −32
2x1 − x2 + 7x3 + 9x4 = 14
−x1 + x2 + 3x3 + x4 = 11
x1 − 2x2 + x3 − 4x4 = −4

29. 3x1 − x2 + x3 = 4
−x1 + 7x2 − 2x3 = 1
2x1 + 6x2 − x3 = 5

30. Show that the matrix

𝐴 = [
cos𝜃 sin𝜃 0

− sin𝜃 cos𝜃 0
0 0 1

]

is invertible for all values of 𝜃; then find 𝐴−1 using Theo-
rem 2.3.6.

31. Use Cramer’s rule to solve for the unknown y without solving
for the unknowns x, z, and𝑤.

4x + y + z + 𝑤 = 6
3x + 7y − z + 𝑤 = 1
7x + 3y − 5z + 8𝑤 = −3
x + y + z + 2𝑤 = 3

32. Let𝐴x = b be the system in Exercise 31.

a. Solve by Cramer’s rule.
b. Solve by Gauss–Jordan elimination.
c. Which method involves fewer computations?

33. Let

𝐴 = [
a b c
d e 𝑓
g h i

]

Assuming that det(𝐴) = −7, find

a. det(3𝐴) b. det(𝐴−1) c. det(2𝐴−1)

d. det((2𝐴)−1) e. det[
a g d
b h e
c i 𝑓

]

34. In each part, find the determinant given that 𝐴 is a 4 × 4
matrix for which det(𝐴) = −2.

a. det(−𝐴) b. det(𝐴−1) c. det(2𝐴𝑇) d. det(𝐴3)

35. In each part, find the determinant given that 𝐴 is a 3 × 3
matrix for which det(𝐴) = 7.

a. det(3𝐴) b. det(𝐴−1)

c. det(2𝐴−1) d. det((2𝐴)−1)

Working with Proofs

36. Prove that a square matrix𝐴 is invertible if and only if𝐴𝑇𝐴 is
invertible.

37. Prove that if𝐴 is a square matrix, then

det(𝐴𝑇𝐴) = det(𝐴𝐴𝑇)

38. Let 𝐴x = b be a system of n linear equations in n unknowns
with integer coefficients and integer constants. Prove that if
det(𝐴) = 1, the solution x has integer entries.

39. Prove that if det(𝐴) = 1 and all the entries in 𝐴 are integers,
then all the entries in𝐴−1 are integers.

True-False Exercises
TF. In parts (a)–(l) determine whether the statement is true or

false, and justify your answer.
a. If𝐴 is a 3 × 3 matrix, then det(2𝐴) = 2 det(𝐴).

b. If𝐴 and 𝐵 are square matrices of the same size such that
det(𝐴) = det(𝐵), then det(𝐴 + 𝐵) = 2 det(𝐴).

c. If 𝐴 and 𝐵 are square matrices of the same size and 𝐴 is
invertible, then

det(𝐴−1𝐵𝐴) = det(𝐵)
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d. A square matrix𝐴 is invertible if and only if det(𝐴) = 0.

e. The matrix of cofactors of𝐴 is precisely [adj(𝐴)]𝑇.
f. For every n × nmatrix𝐴, we have

𝐴 ⋅ adj(𝐴) = (det(𝐴))𝐼n
g. If 𝐴 is a square matrix and the linear system 𝐴x = 0 has

multiple solutions for x, then det(𝐴) = 0.

h. If 𝐴 is an n × nmatrix and there exists an n × 1 matrix b
such that the linear system𝐴x = b has no solutions, then
the reduced row echelon form of𝐴 cannot be 𝐼n.

i. If 𝐸 is an elementary matrix, then 𝐸x = 0 has only the
trivial solution.

j. If𝐴 is an invertiblematrix, then the linear system𝐴x = 0
has only the trivial solution if and only if the linear system
𝐴−1x = 0 has only the trivial solution.

k. If𝐴 is invertible, then adj(𝐴)must also be invertible.
l. If𝐴 has a row of zeros, then so does adj(𝐴).

Working with Technology
T1. Consider the matrix

𝐴 = [
1 1
1 1+ 𝜖]

in which 𝜖 > 0. Since det(𝐴) = 𝜖 ≠ 0, it follows from The-
orem 2.3.8 that 𝐴 is invertible. Compute det(𝐴) for various
small nonzero values of 𝜖 until you find a value that produces
det(𝐴) = 0, thereby leading you to conclude erroneously that
𝐴 is not invertible. Discuss the cause of this.

T2. We know from Exercise 39 that if 𝐴 is a square matrix then
det(𝐴𝑇𝐴) = det(𝐴𝐴𝑇). By experimenting, make a conjec-
ture as to whether this is true if𝐴 is not square.

T3. The French mathematician Jacques Hadamard (1865–1963)
proved that if 𝐴 is an n × nmatrix each of whose entries sat-
isfies the condition |ai j| ≤ 𝑀, then

|det(𝐴)| ≤ √nn𝑀n

(Hadamard’s inequality). For the following matrix 𝐴, use
this result to find an interval of possible values for det(𝐴),
and then use your technology utility to show that the value of
det(𝐴) falls within this interval.

𝐴 =
⎡⎢⎢⎢⎢
⎣

0.3 −2.4 −1.7 2.5
0.2 −0.3 −1.2 1.4
2.5 2.3 0.0 1.8
1.7 1.0 −2.1 2.3

⎤⎥⎥⎥⎥
⎦

Chapter 2 Supplementary Exercises
In Exercises 1–8, evaluate the determinant of the given matrix by (a)
cofactor expansion and (b) using elementary row operations to intro-
duce zeros into the matrix.

1. [−4 2
3 3] 2. [ 7 −1

−2 −6]

3. [
−1 5 2
0 2 −1

−3 1 1
] 4. [

−1 −2 −3
−4 −5 −6
−7 −8 −9

]

5. [
3 0 −1
1 1 1
0 4 2

] 6. [
−5 1 4
3 0 2
1 −2 2

]

7.
⎡
⎢
⎢
⎢
⎣

3 6 0 1
−2 3 1 4
1 0 −1 1

−9 2 −2 2

⎤
⎥
⎥
⎥
⎦

8.
⎡
⎢
⎢
⎢
⎣

−1 −2 −3 −4
4 3 2 1
1 2 3 4

−4 −3 −2 −1

⎤
⎥
⎥
⎥
⎦

9. Evaluate the determinants in Exercises 3–6 by using the arrow
technique (see Example 7 in Section 2.1).

10. a. Construct a 4 × 4 matrix whose determinant is easy to com-
pute using cofactor expansion but hard to evaluate using
elementary row operations.

b. Construct a 4 × 4 matrix whose determinant is easy to com-
pute using elementary row operations but hard to evaluate
using cofactor expansion.

11. Use the determinant to decide whether the matrices in Exer-
cises 1–4 are invertible.

12. Use the determinant to decide whether the matrices in Exer-
cises 5–8 are invertible.

In Exercises 13–15, find the given determinant by any method.

13.
|||

5 b− 3
b− 2 −3

||| 14.
|||||

3 −4 a
a2 1 2
2 a− 1 4

|||||

15.

|
|
|
|
|
|
|
|

0 0 0 0 −3
0 0 0 −4 0
0 0 −1 0 0
0 2 0 0 0
5 0 0 0 0

|
|
|
|
|
|
|
|

16. Solve for x.
|||
x −1
3 1− x

||| =
|||||

1 0 −3
2 x −6
1 3 x− 5

|||||

In Exercises 17–24, use the adjoint method (Theorem 2.3.6) to find
the inverse of the given matrix, if it exists.

17. The matrix in Exercise 1. 18. The matrix in Exercise 2.

19. The matrix in Exercise 3. 20. The matrix in Exercise 4.

21. The matrix in Exercise 5. 22. The matrix in Exercise 6.

23. The matrix in Exercise 7. 24. The matrix in Exercise 8.
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25. Use Cramer’s rule to solve for x′ and y′ in terms of x and y.
x = 3

5x
′ − 4

5y
′

y = 4
5x

′ + 3
5y

′

26. Use Cramer’s rule to solve for x′ and y′ in terms of x and y.
x = x′ cos𝜃 − y′ sin𝜃
y = x′ sin𝜃 + y′ cos𝜃

27. By examining the determinant of the coefficient matrix, show
that the following system has a nontrivial solution if and only
if 𝛼 = 𝛽.

x + y + 𝛼z = 0
x + y + 𝛽z = 0

𝛼x + 𝛽y + z = 0

28. Let 𝐴 be a 3 × 3 matrix, each of whose entries is 1 or 0. What
is the largest possible value for det(𝐴)?

29. a. For the triangle in the accompanying figure, use trigonom-
etry to show that

b cos𝛾 + c cos𝛽 = a
c cos𝛼 + a cos𝛾 = b
a cos𝛽 + b cos𝛼 = c

and then apply Cramer’s rule to show that

cos𝛼 = b2 + c2 − a2

2bc
b. Use Cramer’s rule to obtain similar formulas for cos𝛽 and

cos𝛾.

a

c

b

α β

γ

FIGURE Ex-29

30. Use determinants to show that for all real values of 𝜆, the only
solution of

x − 2y = 𝜆x
x − y = 𝜆y

is x = 0, y = 0.

31. Prove: If𝐴 is invertible, then adj(𝐴) is invertible and

[adj(𝐴)]−1 = 1
det(𝐴)𝐴 = adj(𝐴−1)

32. Prove: If𝐴 is an n × nmatrix, then
det[adj(𝐴)] = [det(𝐴)]n−1

33. Prove: If the entries in each row of an n × n matrix 𝐴 add up
to zero, then the determinant of𝐴 is zero. [Hint: Consider the
product𝐴x, where x is the n × 1 matrix, each of whose entries
is one.]

34. a. In the accompanying figure, the area of the triangle 𝐴𝐵𝐶
can be expressed as

area𝐴𝐵𝐶= area𝐴𝐷𝐸𝐶 + area 𝐶𝐸𝐹𝐵 − area𝐴𝐷𝐹𝐵

Use this and the fact that the area of a trapezoid equals 1
2

the altitude times the sum of the parallel sides to show that

area𝐴𝐵𝐶 = 1
2

|||||

x1 y1 1
x2 y2 1
x3 y3 1

|||||

[Note: In the derivation of this formula, the vertices are
labeled such that the triangle is traced counterclockwise
proceeding from (x1, y1) to (x2, y2) to (x3, y3). For a clock-
wise orientation, the determinant above yields the negative
of the area.]

b. Use the result in (a) to find the area of the triangle with ver-
tices (3, 3), (4, 0), (−2,−1).

A(x1, y1)

B(x2, y2)

C(x3, y3)

D E F

FIGURE Ex-34

35. Use the fact that

21375, 38798, 34162, 40223, 79154

are all divisible by 19 to show that

|
|
|
|
|
|
|
|

2 1 3 7 5
3 8 7 9 8
3 4 1 6 2
4 0 2 2 3
7 9 1 5 4

|
|
|
|
|
|
|
|

is divisible by 19 without directly evaluating the determinant.

36. Without directly evaluating the determinant, show that

|||||

sin𝛼 cos𝛼 sin(𝛼 + 𝛿)
sin𝛽 cos𝛽 sin(𝛽 + 𝛿)
sin𝛾 cos𝛾 sin(𝛾 + 𝛿)

|||||
= 0

37. Let 𝑇∶𝑅2 → 𝑅 be the mapping (a, b, c, d) 𝑇⟶ det[a b
c d]. Is

this a linear transformation? Justify your answer.
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Introduction
Engineers and physicists distinguish between two types of physical quantities—scalars,
which are quantities that can be described by a numerical value alone, and vectors, which
are quantities that require both a number and a direction for their complete physical
description. For example, temperature, length, and speed are scalars because they can
be fully described by a number that tells “how much”—a temperature of 20∘C, a length
of 5 cm, or a speed of 75 km/h. In contrast, velocity and force are vectors because they
require a number that tells “how much” and a direction that tells “which way”—say, a
boat moving at 10 knots in a direction 45∘ northeast, or a force of 100 lb acting vertically.
Although the notions of vectors and scalars thatwewill study in this text have their origins
in physics and engineering, we will be more concerned with using them to build math-
ematical structures and then applying those structures to such diverse fields as genetics,
computer science, economics, telecommunications, and environmental science.

3.1 Vectors in 2-Space, 3-Space, andn-Space
Linear algebra is primarily concerned with two types of mathematical objects, “matrices”
and “vectors.” In Chapter 1 we discussed the basic properties of matrices, we introduced
the idea of viewing n-tuples of real numbers as vectors, and we denoted the set of all such
n-tuples as Rn. In this section we will review the basic properties of vectors in two and
three dimensions with the goal of extending these properties to vectors in Rn.

Geometric Vectors
Engineers and physicists represent vectors in two dimensions (also called 2-space) or in
three dimensions (also called 3-space) by arrows. The direction of the arrowhead specifies
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the direction of the vector and the length of the arrow specifies the magnitude. Mathe-
maticians call these geometric vectors. The tail of the arrow is called the initial point of
the vector and the tip the terminal point (Figure 3.1.1).

Terminal point

Initial point

FIGURE 3.1.1

In this text we will denote vectors in boldface type such as a, b, v, w, and x, and we
will denote scalars in lowercase italic type such as a, k, 𝑣, 𝑤, and x. When we want to
indicate that a vector v has initial point𝐴 and terminal point 𝐵, then, as shown in Figure
3.1.2, we will write

v = 𝐴𝐵
Vectors with the same length and direction, such as those in Figure 3.1.3, are said to

be equivalent. Since we want a vector to be determined solely by its length and direction,
equivalent vectors are regarded as the same vector even though they may be in different,
but parallel, positions. Equivalent vectors are also said to be equal, which we indicate by
writing

v = w

v

B

A

v = AB

FIGURE 3.1.2

Equivalent vectors

FIGURE 3.1.3

The vector whose initial and terminal points coincide has length zero, so we call this
the zero vector and denote it by 0. The zero vector has no natural direction, so we will
agree that it can be assigned any direction that is convenient for the problem at hand.

Vector Addition
There are a number of important algebraic operations on vectors, all of which have their
origin in laws of physics.

Parallelogram Rule for Vector Addition
If v andw are vectors in 2-space or 3-space that are positioned so their initial points coincide,
then the two vectors form adjacent sides of a parallelogram, and the sum v+w is the vector
represented by the arrow from the common initial point of v andw to the opposite vertex of
the parallelogram (Figure 3.1.4a).

Here is another way to form the sum of two vectors.

Triangle Rule for Vector Addition
If v andw are vectors in 2-space or 3-space that are positioned so the initial point ofw is at
the terminal point of v, then the sum v+w is represented by the arrow from the initial point
of v to the terminal point ofw (Figure 3.1.4b).

In Figure 3.1.4cwe have constructed the sums v +w andw + v by the triangle rule.
This construction makes it evident that

v +w = w + v (1)

and that the sum obtained by the triangle rule is the same as the sum obtained by the
parallelogram rule.

v
v + w

w

(b)

v v
w + v

v + w

w

w

(c)

v v + w

w

(a)

FIGURE 3.1.4
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Vector addition can also be viewed as a process of translating points.

Vector Addition Viewed as Translation
If v,w, and v+w are positioned so their initial points coincide, then the terminal point of
v+w can be viewed in two ways:
1. The terminal point of v+w is the point that results when the terminal point of v is

translated in the direction ofw by a distance equal to the length ofw (Figure 3.1.5a).
2. The terminal point of v+w is the point that results when the terminal point of w is

translated in the direction of v by a distance equal to the length of v (Figure 3.1.5b).
Accordingly, we say that the sum v+w is the translation of v by w or, alternatively, the
translation ofw by v.

v v + w

w

(b)

v v + w

w

(a)

FIGURE 3.1.5

Vector Subtraction
In ordinary arithmetic we can write a − b = a + (−b), which expresses subtraction in
terms of addition. There is an analogous idea in vector arithmetic.

Vector Subtraction
The negative of a vector v, denoted by −v, is the vector that has the same length as v but
is oppositely directed (Figure 3.1.6a), and the difference of v fromw, denoted byw− v, is
defined to be the sum

w− v = w+ (−v) (2)

The difference of v fromw can be obtained geometrically by the parallelogrammethod
shown in Figure 3.1.6b, or more directly by positioning w and v so their initial points
coincide and drawing the vector from the terminal point of v to the terminal point of w
(Figure 3.1.6c).

–v

v

–v v

ww – v

v

w
w – v

(b) (c)(a)

FIGURE 3.1.6

Scalar Multiplication
Sometimes there is a need to change the length of a vector or change its length and reverse
its direction. This is accomplished by a type of multiplication in which vectors are multi-
plied by real numbers, called scalars. As an example, the product 2v denotes the vector
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that has the same direction as v but twice the length, and the product −2v denotes the
vector that is oppositely directed to v and has twice the length. Here is the general result.

Scalar Multiplication
If v is a nonzero vector in 2-space or 3-space, and if k is a nonzero scalar, then we define the
scalar product of v by k to be the vector whose length is |k| times the length of v and whose
direction is the same as that of v if k is positive and opposite to that of v if k is negative. If
k = 0 or v = 0, then we define kv to be 0.

Figure 3.1.7 shows the geometric relationship between a vector v and some of its
scalar multiples. In particular, observe that (−1)v has the same length as v but is oppo-
sitely directed; therefore,

(−1)v = −v (3)

v

2v

(–1)v

(–3)v

v
1
2

FIGURE 3.1.7
Parallel and Collinear Vectors
Suppose that v andw are vectors in 2-space or 3-space with a common initial point. If one
of the vectors is a scalar multiple of the other, then the vectors lie on a common line, so it
is reasonable to say that they are collinear (Figure 3.1.8a). However, if we translate one
of the vectors, as indicated in Figure 3.1.8b, then the vectors are parallel but no longer
collinear. This creates a linguistic problem because translating a vector does not change
it. The only way to resolve this problem is to agree that the terms parallel and collinear
mean the same thing when applied to vectors. Although the vector 0 has no clearly defined
direction, we will regard it as parallel to all vectors when convenient.

v

kv

v

kv

(b)(a)

FIGURE 3.1.8

Sums of Three or More Vectors
Vector addition satisfies the associative law for addition, meaning that when we add
three vectors, say u, v, andw, it does not matter which two we add first; that is,

u + (v +w) = (u + v) +w

It follows from this that there is no ambiguity in the expression u + v +w because the
same result is obtained no matter how the vectors are grouped.

A simple way to construct u + v +w is to place the vectors “tip to tail” in succession
and then draw the vector from the initial point of u to the terminal point of w (Figure
3.1.9a). The tip-to-tail method also works for four or more vectors (Figure 3.1.9b). The
tip-to-tailmethodmakes it evident that ifu, v, andw are vectors in 3-spacewith a common
initial point, thenu + v +w is the diagonal of the parallelepiped that has the three vectors
as adjacent sides (Figure 3.1.9c).
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u
v

x

w
u 

+
 v

 +
 w

 +
 x

u

v

w

u + v

v + wu + (v + w)
(u + v) + w u

u + v + w

v w

(b) (c)(a)

FIGURE 3.1.9

Vectors in Coordinate Systems
Up until now we have discussed vectors without reference to a coordinate system. How-
ever, as we will soon see, computations with vectors are much simpler to perform if a
coordinate system is present to work with.

If a vector v in 2-space or 3-space is positioned with its initial point at the origin of
a rectangular coordinate system, then the vector is completely determined by the coor-
dinates of its terminal point (Figure 3.1.10). We call these coordinates the componentsThe component forms of the

zero vector are 0=(0, 0) in
2-space and 0=(0, 0, 0) in
3-space.

of v relative to the coordinate system. We will write v = (𝑣1, 𝑣2) to denote a vector v in
2-space with components (𝑣1, 𝑣2) and v = (𝑣1, 𝑣2, 𝑣3) to denote a vector v in 3-space with
components (𝑣1, 𝑣2, 𝑣3).

y

z

x

v

( 1,  2,  3)
v

( 1,  2)

x

y

FIGURE 3.1.10

It should be evident geometrically that two vectors in 2-space or 3-space are equiva-
lent if and only if they have the same terminal point when their initial points are at the
origin. Algebraically, this means that two vectors are equivalent if and only if their corre-
sponding components are equal. Thus, for example, the vectors

v = (𝑣1, 𝑣2, 𝑣3) and w = (𝑤1, 𝑤2, 𝑤3)
in 3-space are equivalent if and only if

𝑣1 = 𝑤1, 𝑣2 = 𝑤2, 𝑣3 = 𝑤3

Remark It may have occurred to you that an ordered pair (𝑣1, 𝑣2) can represent either a
vector with components 𝑣1 and 𝑣2 or a point with coordinates 𝑣1 and 𝑣2 (and similarly for
ordered triples). Both are valid geometric interpretations, so the appropriate choice will

x

y

( 1,  2)

FIGURE 3.1.11 The ordered pair
(𝑣1, 𝑣2) can represent a point or a
vector. depend on the geometric viewpoint that we want to emphasize (Figure 3.1.11).

Vectors Whose Initial Point Is Not at the Origin
It is sometimes necessary to consider vectors whose initial points are not at the origin. If
𝑃1𝑃2 denotes the vector with initial point 𝑃1(x1, y1) and terminal point 𝑃2(x2, y2), then the
components of this vector are given by the formula

𝑃1𝑃2 = (x2 − x1, y2 − y1) (4)
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That is, the components of 𝑃1𝑃2 are obtained by subtracting the coordinates of the initial
point from the coordinates of the terminal point. For example, in Figure 3.1.12 the vector

v = P1P2  = OP2 –  OP1

x

y

v

OP2
OP1

P1(x1, y1)
P2(x2, y2)

FIGURE 3.1.12

𝑃1𝑃2 is the difference of vectors 𝑂𝑃2 and 𝑂𝑃1, so

𝑃1𝑃2 = 𝑂𝑃2 − 𝑂𝑃1 = (x2, y2) − (x1, y1) = (x2 − x1, y2 − y1)
As youmight expect, the components of a vector in 3-space that has initial point𝑃1(x1, y1, z1)
and terminal point 𝑃2(x2, y2, z2) are given by

𝑃1𝑃2 = (x2 − x1, y2 − y1, z2 − z1) (5)

EXAMPLE 1 | Finding the Components of a Vector

The components of the vector v = 𝑃1𝑃2 with initial point 𝑃1(2,−1, 4) and terminal point
𝑃2(7, 5,−8) are

v = (7− 2, 5− (−1), (−8) − 4) = (5, 6,−12)

n-Space
The idea of using ordered pairs and triples of real numbers to represent points in two-
dimensional space and three-dimensional space was well known in the eighteenth and
nineteenth centuries. By the dawn of the twentieth century, mathematicians and physi-
cists were exploring the use of “higher dimensional” spaces in mathematics and physics.
Today, even the layman is familiar with the notion of time as a fourth dimension, an idea
used by Albert Einstein in developing the general theory of relativity. Today, physicists
working in the field of “string theory” commonly use 11-dimensional space in their quest
for a unified theory that will explain how the fundamental forces of nature work. Much
of the remaining work in this section is concerned with extending the notion of space to
n dimensions.

To explore these ideas further, we start with some terminology and notation. The set
of all real numbers can be viewed geometrically as points on a line. It is called the real line
and is denoted by 𝑅 or 𝑅1. The superscript reinforces the intuitive idea that a line is one-
dimensional. The set of all ordered pairs of real numbers (called 2-tuples) and the set
of all ordered triples of real numbers (called 3-tuples) are denoted by 𝑅2 and 𝑅3, respec-
tively. The superscript reinforces the idea that the ordered pairs correspond to points in
the plane (two-dimensional) and ordered triples to points in space (three-dimensional).
The following definition extends this idea.

Definition 1

If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers
(𝑣1, 𝑣2, . . . , 𝑣n). The set of all ordered n-tuples is called real n-space and is denoted
by 𝑅n.

Remark You can think of the numbers in an n-tuple (𝑣1, 𝑣2, . . . , 𝑣n) as either the coordi-
nates of a generalized point or the components of a generalized vector, depending on the
geometric image you want to bring to mind—the choice makes no difference mathemat-
ically, since it is the algebraic properties of n-tuples that are of concern.
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Here are some typical applications that lead to n-tuples.

• Experimental Data—A scientist performs an experiment and makes n numerical
measurements each time the experiment is performed. The result of each experiment
can be regarded as a vector y = (y1, y2, . . . , yn) in 𝑅n in which y1, y2, . . . , yn are
the measured values.

• Storage andWarehousing—Anational trucking company has 15 depots for storing
and servicing its trucks. At each point in time the distribution of trucks in the service
depots can be described by a 15-tuple x = (x1, x2, . . . , x15) in which x1 is the number
of trucks in the first depot, x2 is the number in the second depot, and so forth.

• Electrical Circuits—A certain kind of processing chip is designed to receive four
input voltages and produce three output voltages in response. The input voltages
can be regarded as vectors in 𝑅4 and the output voltages as vectors in 𝑅3. Thus, the
chip can be viewed as a device that transforms an input vector v = (𝑣1, 𝑣2, 𝑣3, 𝑣4) in
𝑅4 into an output vectorw = (𝑤1, 𝑤2, 𝑤3) in 𝑅3.

• Graphical Images—Oneway inwhich color images are created on computer screens
is by assigning each pixel (an addressable point on the screen) three numbers that
describe the hue, saturation, and brightness of the pixel. Thus, a complete color
image can be viewed as a set of 5-tuples of the form v = (x, y, h, s, b) in which x and
y are the screen coordinates of a pixel and h, s, and b are its hue, saturation, and
brightness.

• Economics—One approach to economic analysis is to divide an economy into sec-
tors (manufacturing, services, utilities, and so forth) and measure the output of each
sector by a dollar value. Thus, in an economy with 10 sectors the economic output of
the entire economy can be represented by a 10-tuple s = (s1, s2, . . . , s10) in which the
numbers s1, s2, . . . , s10 are the outputs of the individual sectors.

• Mechanical Systems—Suppose that six particles move along the same coordinate
line so that their coordinates are x1, x2, . . . , x6 and their velocities are 𝑣1, 𝑣2, . . . , 𝑣6,
respectively at time t. This information can be represented by the vector

v = (x1, x2, x3, x4, x5, x6, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, t)

in 𝑅13. This vector is called the state of the particle system at time t.

Historical Note

Albert Einstein
(1879–1955)

The German-born physicist Albert Einstein immigrated to the
United States in 1935, where he settled at PrincetonUniversity.
Einstein spent the last three decades of his life working unsuc-
cessfully at producing a unified field theory that would estab-
lish an underlying link between the forces of gravity and elec-
tromagnetism. Recently, physicists have made progress on the
problem using a framework known as string theory. In this the-
ory the smallest, indivisible components of the universe are not
particles but loops that behave like vibrating strings. Whereas
Einstein’s space-time universe was four-dimensional, strings
reside in an 11-dimensional world that is the focus of current
research.

[Image: © Bettmann/CORBIS]
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Operations on Vectors in Rn

Our next goal is to define useful operations on vectors in 𝑅n. These operations will all be
natural extensions of the familiar operations on vectors in 𝑅2 and 𝑅3. We will denote a
vector v in 𝑅n using the notation

v = (𝑣1, 𝑣2, . . . , 𝑣n)
and we will call 0 = (0, 0, . . . , 0) the zero vector.

We noted earlier that in 𝑅2 and 𝑅3 two vectors are equivalent (equal) if and only if
their corresponding components are the same. Thus, we make the following definition.

Definition 2

Vectors v = (𝑣1, 𝑣2, . . . , 𝑣n) andw = (𝑤1, 𝑤2, . . . , 𝑤n) in 𝑅n are said to be equal (also
called equivalent) if

𝑣1 = 𝑤1, 𝑣2 = 𝑤2, . . . , 𝑣n = 𝑤n

We indicate this by writing v = w.

EXAMPLE 2 | Equality of Vectors

The vectors
v = (a, b, c, d) and w = (1,−4, 2, 7)

are equal if and only if a = 1, b = −4, c = 2, and d = 7.

Our next objective is to define the operations of addition, subtraction, and scalar mul-
tiplication for vectors in 𝑅n. To motivate these ideas, we will consider how these opera-
tions can be performed on vectors in 𝑅2 using components. By studyingFigure 3.1.13 you
should be able to deduce that if v = (𝑣1, 𝑣2) andw = (𝑤1, 𝑤2), then

v +w = (𝑣1 + 𝑤1, 𝑣2 + 𝑤2) (6)
kv = (k𝑣1, k𝑣2) (7)

In particular, it follows from (7) that
−v = (−1)v = (−𝑣1, −𝑣2) (8)

and hence that
w − v = w + (−v) = (𝑤1 − 𝑣1, 𝑤2 − 𝑣2) (9)

y

x

v

v 
+

 w

w

( 1,  2)

 1

(!1, !2)

( 1 + !1,  2 + !2)

!1

!2

 2

y

xv

kv
(k 1, k 2)

( 1,  2)

 1

k 1

 2

k 2

FIGURE 3.1.13
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Motivated by Formulas (6)–(9), we make the following definition.

Definition 3

If v = (v1, v2, . . . , vn) and w = (w1,w2, . . . ,wn) are vectors in 𝑅n, and if k is any
scalar, then we define

v +w = (v1 +w1, v2 +w2, . . . , vn +wn) (10)
kv = (kv1, kv2, . . . , kvn) (11)
−v = (−v1, −v2, . . . , −vn) (12)
w − v = w + (−v) = (w1 − v1,w2 − v2, . . . ,wn − vn) (13)

EXAMPLE 3 | Algebraic Operations Using Components

If v = (1,−3, 2) andw = (4, 2, 1), then
v+w = (5,−1, 3), 2v = (2,−6, 4)
−w = (−4,−2,−1), v−w = v+ (−w) = (−3,−5, 1)

In words, vectors are added
(or subtracted) by adding
(or subtracting) their corre-
sponding components, and
a vector is multiplied by a
scalar by multiplying each
component by that scalar.

The following theorem summarizes the most important properties of vector opera-
tions.

Theorem 3.1.1

If u, v, andw are vectors in 𝑅n, and if k andm are scalars, then:
(a) u + v = v + u
(b) (u + v) +w = u + (v +w)
(c) u + 0 = 0 + u = u
(d) u + (−u) = 0
(e) k(u + v) = ku + kv
(𝑓) (k +m)u = ku +mu
(g) k(mu) = (km)u
(h) 1u = u

We will prove part (b) and leave some of the other proofs as exercises.

Proof (b) Let u = (u1,u2, . . . ,un), v = (v1, v2, . . . , vn), andw = (w1,w2, . . . ,wn). Then
(u + v) +w = ((u1,u2, . . . ,un) + (v1, v2, . . . , vn)) + (w1,w2, . . . ,wn)

= (u1 + v1,u2 + v2, . . . ,un + vn) + (w1,w2, . . . ,wn) [Vector addition]
= ((u1 + v1) +w1, (u2 + v2) +w2, . . . , (un + vn) +wn) [Vector addition]
= (u1 + (v1 +w1),u2 + (v2 +w2), . . . ,un + (vn +wn)) [Regroup]
= (u1,u2, . . . ,un) + (v1 +w1, v2 +w2, . . . , vn +wn) [Vector addition]
= u + (v +w)

The following additional properties of vectors in 𝑅n can be deduced easily by express-
ing the vectors in terms of components (verify).
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Theorem 3.1.2

If v is a vector in 𝑅n and k is a scalar, then:
(a) 0v = 0
(b) k0 = 0
(c) (−1)v = −v

Calculating Without Components
One of the powerful consequences of Theorems 3.1.1 and 3.1.2 is that they allow calcula-
tions to be performed without expressing the vectors in terms of components. For exam-
ple, suppose that x, a, and b are vectors in 𝑅n, and we want to solve the vector equation
x + a = b for the vector x without using components. We could proceed as follows:

x + a = b [Given]
(x + a) + (−a) = b + (−a) [Add the negative of a to both sides]

x + (a + (−a)) = b − a [Part (b) of Theorem 3.1.1]

x + 0 = b − a [Part (d) of Theorem 3.1.1]

x = b − a [Part (c) of Theorem 3.1.1]

While this method is obviously more cumbersome than computing with components in
𝑅n, it will become important later in the text where we will encounter more general kinds
of vectors.

Linear Combinations
Addition, subtraction, and scalar multiplication are frequently used in combination to
form new vectors. For example, if v1, v2, and v3 are vectors in 𝑅n, then the vectors

u = 2v1 + 3v2 + v3 and w = 7v1 − 6v2 + 8v3
are formed in this way. In general, we make the following definition.

Note that this definition
of a linear combination is
consistent with that given in
the context of matrices (see
Definition 6 in Section 1.3).

Definition 4

If w is a vector in 𝑅n, then w is said to be a linear combination of the vectors
v1, v2, . . . , vr in 𝑅n if it can be expressed in the form

w = k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr (14)

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the linear
combination. In the case where r = 1, Formula (14) becomes w = k1v1, so that a
linear combination of a single vector is just a scalar multiple of that vector.

Alternative Notations for Vectors
Up to now we have been writing vectors in 𝑅n using the notation

v = (𝑣1, 𝑣2, . . . , 𝑣n) (15)

We call this the comma-delimited form. However, since a vector in 𝑅n is just a list of
its n components in a specific order, any notation that displays those components in the
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correct order is a valid way of representing the vector. For example, the vector in (15) can
be written as

v = [𝑣1 𝑣2 ⋅ ⋅ ⋅ 𝑣n] (16)
which is called row-vector form, or as

v =
⎡
⎢
⎢
⎢
⎣

𝑣1
𝑣2
⋮
𝑣n

⎤
⎥
⎥
⎥
⎦

(17)

which is called column-vector form. The choice of notation is often a matter of taste or
convenience, but sometimes the nature of a problem will suggest a preferred notation.
Notations (15), (16), and (17) will all be used at various places in this text.

Application of Linear Combinations to Color Models
Colors on computer monitors are commonly based on what is
called the RGB color model. Colors in this system are created by
adding together percentages of the primary colors red (R), green
(G), and blue (B). One way to do this is to identify the primary col-
ors with the vectors

r = (1, 0, 0) (pure red),
g = (0, 1, 0) (pure green),
b = (0, 0, 1) (pure blue)

in𝑅3 and to create all other colors by forming linear combinations
of r, g, and b using coefficients between 0 and 1, inclusive; these
coefficients represent the percentage of each pure color in themix.
The set of all such color vectors is called RGB space or the RGB
color cube (Figure 3.1.14). Thus, each color vector c in this cube
is expressible as a linear combination of the form

c = k1r+ k2g+ k3b
= k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1)
= (k1, k2, k3)

where 0 ≤ ki ≤ 1.As indicated in the figure, the corners of the cube
represent the pure primary colors together with the colors black,
white, magenta, cyan, and yellow. The vectors along the diagonal
running from black to white correspond to shades of gray.

Blue

(0, 0, 1)
Cyan

(0, 1, 1)

Yellow

(1, 1, 0)
Red

(1, 0, 0)

Magenta

(1, 0, 1)

Black

(0, 0, 0)
Green

(0, 1, 0)

White

(1, 1, 1)

FIGURE 3.1.14

Exercise Set 3.1

In Exercises 1–2, find the components of the vector.

1.

y

z

x

y

(1, 5)

(4, 1)

(0, 0, 4)

(2, 3, 0)x

a. b. 2.

x

(2, 3)(–3, 3)

(0, 4, 4)

(3, 0, 4)

y

y

z

x

a. b.
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In Exercises 3–4, find the components of the vector 𝑃1𝑃2.

3. a. 𝑃1(3, 5), 𝑃2(2, 8) b. 𝑃1(5,−2, 1), 𝑃2(2, 4, 2)

4. a. 𝑃1(−6, 2), 𝑃2(−4,−1) b. 𝑃1(0, 0, 0), 𝑃2(−1, 6, 1)

5. a. Find the terminal point of the vector that is equivalent to
u = (1, 2) and whose initial point is𝐴(1, 1).

b. Find the initial point of the vector that is equivalent to
u = (1, 1, 3) and whose terminal point is 𝐵(−1,−1, 2).

6. a. Find the initial point of the vector that is equivalent to
u = (1, 2) and whose terminal point is 𝐵(2, 0).

b. Find the terminal point of the vector that is equivalent to
u = (1, 1, 3) and whose initial point is𝐴(0, 2, 0).

7. Find the initial point 𝑃 of a nonzero vector u = 𝑃𝑄 with ter-
minal point𝑄(3, 0,−5) and such that
a. u has the same direction as v = (4,−2,−1).
b. u is oppositely directed to v = (4,−2,−1).

8. Find the terminal point 𝑄 of a nonzero vector u = 𝑃𝑄 with
initial point 𝑃(−1, 3,−5) and such that
a. u has the same direction as v = (6, 7,−3).
b. u is oppositely directed to v = (6, 7,−3).

9. Letu = (4,−1), v = (0, 5), andw = (−3,−3). Find the com-
ponents of

a. u+w b. v− 3u

c. 2(u− 5w) d. 3v− 2(u+ 2w)
10. Let u = (−3, 1, 2), v = (4, 0,−8), andw = (6,−1,−4). Find

the components of

a. v−w b. 6u+ 2v
c. −3(v− 8w) d. (2u− 7w) − (8v+ u)

11. Let u = (−3, 2, 1, 0), v = (4, 7,−3, 2), andw = (5,−2, 8, 1).
Find the components of

a. v−w b. −u+ (v− 4w)
c. 6(u− 3v) d. (6v−w) − (4u+ v)

12. Let u = (1, 2,−3, 5, 0), v = (0, 4,−1, 1, 2), and
w = (7, 1,−4,−2, 3). Find the components of

a. v+w b. 3(2u− v)
c. (3u− v) − (2u+ 4w) d. 1

2 (w− 5v+ 2u) + v

13. Let u, v, andw be the vectors in Exercise 11. Find the compo-
nents of the vector x that satisfies the equation
3u+ v− 2w = 3x+ 2w.

14. Let u, v, andw be the vectors in Exercise 12. Find the compo-
nents of the vector x that satisfies the equation
2u− v+ x = 7x+w.

15. Which of the following vectors in 𝑅6, if any, are parallel to
u = (−2, 1, 0, 3, 5, 1)?
a. (4, 2, 0, 6, 10, 2)
b. (4,−2, 0,−6,−10,−2)
c. (0, 0, 0, 0, 0, 0)

16. For what value(s) of t, if any, is the given vector parallel to
u = (4,−1)?
a. (8t,−2) b. (8t, 2t) c. (1, t2)

17. Let u = (1,−1, 3, 5) and v = (2, 1, 0,−3). Find scalars a and
b so that au+ bv = (1,−4, 9, 18).

18. Let u = (2, 1, 0, 1,−1) and v = (−2, 3, 1, 0, 2). Find scalars a
and b so that au+ bv = (−8, 8, 3,−1, 7).

In Exercises 19–20, find scalars c1, c2, and c3 for which the equation
is satisfied.
19. c1(1,−1, 0) + c2(3, 2, 1) + c3(0, 1, 4) = (−1, 1, 19)

20. c1(−1, 0, 2) + c2(2, 2,−2) + c3(1,−2, 1) = (−6, 12, 4)

21. Show that there do not exist scalars c1, c2, and c3 such that

c1(−2, 9, 6) + c2(−3, 2, 1) + c3(1, 7, 5) = (0, 5, 4)

22. Show that there do not exist scalars c1, c2, and c3 such that

c1(1, 0, 1, 0) + c2(1, 0,−2, 1) + c3(2, 0, 1, 2) = (1,−2, 2, 3)

23. Let 𝑃 be the point (2, 3,−2) and𝑄 the point (7,−4, 1).
a. Find the midpoint of the line segment connecting the

points 𝑃 and𝑄.
b. Find the point on the line segment connecting the points 𝑃

and𝑄 that is 3
4 of the way from 𝑃 to𝑄.

24. In relation to the points 𝑃1 and 𝑃2 in Figure 3.1.12, what can
you say about the terminal point of the following vector if its
initial point is at the origin?

u = 𝑂𝑃1 + 1
2 (𝑂𝑃2 −𝑂𝑃1)

25. In each part, find the components of the vector u+ v+w.

a. b.

x

y

w

v

u

x

y

w

v

u

26. Referring to the vectors pictured in Exercise 25, find the com-
ponents of the vector u− v+w.

27. Let 𝑃 be the point (1, 3, 7). If the point (4, 0,−6) is the mid-
point of the line segment connecting 𝑃 and𝑄, what is𝑄?

28. If the sum of three vectors in 𝑅3 is zero, must they lie in the
same plane? Explain.

29. Consider the regular hexagon shown in the accompanying
figure.

a. What is the sum of the six radial vectors that run from the
center to the vertices?

b. How is the sum affected if each radial vector is multiplied
by 1

2 ?
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c. What is the sum of the five radial vectors that remain if a is
removed?

d. Discuss some variations and generalizations of the result in
part (c).

a

b

c

d

e

f

FIGURE Ex-29

30. What is the sum of all radial vectors of a regular n-sided poly-
gon? (See Figure Ex-29.)

Working with Proofs
31. Prove parts (a), (c), and (d) of Theorem 3.1.1.

32. Prove parts (e)–(h) of Theorem 3.1.1.

33. Prove parts (a)–(c) of Theorem 3.1.2.

True-False Exercises
TF. In parts (a)–(k) determine whether the statement is true or

false, and justify your answer.
a. Two equivalent vectors must have the same initial point.

b. The vectors (a, b) and (a, b, 0) are equivalent.

c. If k is a scalar and v is a vector, then v and kv are parallel
if and only if k ≥ 0.

d. The vectors v+ (u+w) and (w+ v) + u are the same.

e. If u+ v = u+w, then v = w.

f. If a and b are scalars such that au+ bv = 0, then u and v
are parallel vectors.

g. Collinear vectors with the same length are equal.

h. If (a, b, c) + (x, y, z) = (x, y, z), then (a, b, c)must be the
zero vector.

i. If k andm are scalars and u and v are vectors, then

(k+m)(u+ v) = ku+mv

j. If the vectors v andw are given, then the vector equation

3(2v− x) = 5x− 4w+ v

can be solved for x.

k. The linear combinations a1v1 + a2v2 and b1v1 + b2v2 can
only be equal if a1 = b1 and a2 = b2.

3.2 Norm, Dot Product, and Distance in Rn
In this section we will be concerned with the notions of length and distance as they relate
to vectors.Wewill first discuss these ideas inR2 andR3 and then extend themalgebraically
to Rn.

Norm of a Vector
In this text we will denote the length of a vector v by the symbol ‖v‖. As suggested in

x

y

‖v‖

‖v‖

(!1, !2)

!1

!2

P(!1, !2, !3)

y

z

x

O

Q
R

S

(a)

(b)

FIGURE 3.2.1

Figure 3.2.1a, it follows from the Theorem of Pythagoras that the norm of a vector (𝑣1, 𝑣2)
in 𝑅2 is

‖v‖ = √𝑣21 + 𝑣22 (1)
Similarly, for a vector (𝑣1, 𝑣2, 𝑣3) in 𝑅3, it follows from Figure 3.2.1b and two applica-
tions of the Theorem of Pythagoras that

‖v‖2 = (𝑂𝑅)2 + (𝑅𝑃)2 = (𝑂𝑄)2 + (𝑄𝑅)2 + (𝑅𝑃)2 = 𝑣21 + 𝑣22 + 𝑣23
and hence that

‖v‖ = √𝑣21 + 𝑣22 + 𝑣23 (2)
Motivated by the pattern of Formulas (1) and (2), we make the following definition.
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Definition 1

If v = (𝑣1, 𝑣2, . . . , 𝑣n) is a vector in 𝑅n, then the norm of v (also called the length of
v or themagnitude of v) is denoted by ‖v‖, and is defined by the formula

‖v‖ = √𝑣21 + 𝑣22 + ⋅ ⋅ ⋅ + 𝑣2n (3)

EXAMPLE 1 | Calculating Norms

It follows from Formula (2) that the norm of the vector v = (−3, 2, 1) in 𝑅3 is

‖v‖ = √(−3)2 + 22 + 12 = √14

and it follows from Formula (3) that the norm of the vector v = (2,−1, 3,−5) in 𝑅4 is

‖v‖ = √22 + (−1)2 + 32 + (−5)2 = √39

Our first theorem in this sectionwill generalize to𝑅n the following three familiar facts
about vectors in 𝑅2 and 𝑅3:

• Distances are nonnegative.
• The zero vector is the only vector of length zero.
• Multiplying a vector by a scalar multiplies its length by the absolute value of that
scalar.

It is important to recognize that just because these results hold in 𝑅2 and 𝑅3 does not guar-
antee that they hold in 𝑅n—their validity in 𝑅n must be proved using algebraic properties
of n-tuples.

Theorem 3.2.1

If v is a vector in 𝑅n, and if k is any scalar, then:
(a) ‖v‖ ≥ 0
(b) ‖v‖ = 0 if and only if v = 0
(c) ‖kv‖ = |k|‖v‖

We will prove part (c) and leave (a) and (b) as exercises.

Proof (c) If v = (𝑣1, 𝑣2, . . . , 𝑣n), then kv = (k𝑣1, k𝑣2, . . . , k𝑣n), so
‖kv‖ = √(k𝑣1)2 + (k𝑣2)2 + ⋅ ⋅ ⋅ + (k𝑣n)2

= √(k2)(𝑣21 + 𝑣22 + ⋅ ⋅ ⋅ + 𝑣2n)

= |k|√𝑣21 + 𝑣22 + ⋅ ⋅ ⋅ + 𝑣2n
= |k|‖v‖
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Unit Vectors
Two nonzero vectors in 𝑅n are said to have the same direction if each is a positive scalar
multiple of the other and opposite directions if each is a negative scalar multiple of the
other. Thus, for example, the vectors v1 = (2, −4, 1, 8) and v2 = (1, −2, 12 , 4) have the same
direction, whereasw1 = (2, −4, 1, 8) andw2 = (−1, 2, − 1

2 , −4) have opposite directions.
A vector of norm 1 is called a unit vector. Such vectors are useful for specifying a

direction when length is not relevant to the problem at hand. You can obtain a unit vector
in a desired direction by choosing any nonzero vector v in that direction and multiplying
v by the reciprocal of its length. For example, if v is a vector of length 2 in 𝑅2 or 𝑅3, then
1
2 v is a unit vector in the same direction as v. More generally, if v is any nonzero vector in
𝑅n, then

u = 1
‖v‖v (4)

defines a unit vector that is in the same direction as v. We can confirm that (4) is a unit

Warning Sometimes
you will see Formula (4)
expressed as

u = v
‖v‖

This is just a more compact
way of writing that formula
and is not intended to con-
vey that v is being divided
by ‖v‖.

vector by applying part (c) of Theorem 3.2.1 with k = 1/‖v‖ to obtain

‖u‖ = ‖kv‖ = |k|‖v‖ = k‖v‖ = 1
‖v‖‖v‖ = 1

The process of multiplying a nonzero vector by the reciprocal of its length to obtain a unit
vector is called normalizing v.

EXAMPLE 2 | Normalizing a Vector

Find the unit vector u that has the same direction as v = (2, 2,−1).
Solution The vector v has length

‖v‖ = √22 + 22 + (−1)2 = 3

Thus, from (4)
u = 1

3 (2, 2,−1) = ( 23 ,
2
3 , −

1
3)

As a check, you may want to confirm that ‖u‖ = 1.

The Standard Unit Vectors
When a rectangular coordinate system is introduced in 𝑅2 or 𝑅3, the unit vectors in the
positive directions of the coordinate axes are called the standardunit vectors. In𝑅2 these
vectors are denoted by

i = (1, 0) and j = (0, 1)
and in 𝑅3 by

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1)
(Figure 3.2.2). Every vector v = (𝑣1, 𝑣2) in 𝑅2 and every vector v = (𝑣1, 𝑣2, 𝑣3) in 𝑅3 can be

x

y

(0, 1)

(1, 0)i

j

x

y

z

(0, 1, 0)
(1, 0, 0)

(0, 0, 1)

j

i

k

(a)

(b)

FIGURE 3.2.2

expressed as a linear combination of standard unit vectors by writing

v = (𝑣1, 𝑣2) = 𝑣1(1, 0) + 𝑣2(0, 1) = 𝑣1i + 𝑣2 j (5)

v = (𝑣1, 𝑣2, 𝑣3) = 𝑣1(1, 0, 0) + 𝑣2(0, 1, 0) + 𝑣3(0, 0, 1) = 𝑣1i + 𝑣2 j + 𝑣3k (6)

Moreover, we can generalize these formulas to 𝑅n by defining the standard unit vectors
in Rn to be

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1) (7)
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in which case every vector v = (𝑣1, 𝑣2, . . . , 𝑣n) in 𝑅n can be expressed as

v = (𝑣1, 𝑣2, . . . , 𝑣n) = 𝑣1e1 + 𝑣2e2 + ⋅ ⋅ ⋅ + 𝑣nen (8)

EXAMPLE 3 | Linear Combinations of Standard Unit Vectors

(2,−3, 4) = 2i− 3j+ 4k
(7, 3,−4, 5) = 7e1 + 3e2 − 4e3 + 5e4

Distance in Rn

If 𝑃1 and 𝑃2 are points in 𝑅2 or𝑅3, then the length of the vector 𝑃1𝑃2 is equal to the distance
d between the two points (Figure 3.2.3). Specifically, if 𝑃1(x1, y1) and 𝑃2(x2, y2) are points
in 𝑅2, then Formula (4) of Section 3.1 implies that

d = ‖𝑃1𝑃2‖ = √(x2 − x1)2 + (y2 − y1)2 (9)

This is the familiar distance formula fromanalytic geometry. Similarly, the distance between
the points 𝑃1(x1, y1, z1) and 𝑃2(x2, y2, z2) in 3-space is

P2
d

P1

d = ‖P1P2‖

FIGURE 3.2.3

d(u, v) = ‖𝑃1𝑃2‖ = √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (10)

Motivated by Formulas (9) and (10), we make the following definition.

Definition 2

If u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are points in 𝑅n, then we denote the
distance between u and v by d(u, v) and define it to be

d(u, v) = ‖u − v‖ = √(u1 − v1)2 + (u2 − v2)2 + ⋅ ⋅ ⋅ + (un − vn)2 (11) We noted in the previous
section that n-tuples can be
viewed either as vectors or
points in Rn. In Definition 2
we chose to describe them
as points, as that seemed the
more natural interpretation.EXAMPLE 4 | Calculating Distance in Rn

If
u = (1, 3,−2, 7) and v = (0, 7, 2, 2)

then the distance between u and v is

d(u, v) = √(1− 0)2 + (3− 7)2 + (−2− 2)2 + (7− 2)2 = √58

Dot Product
Our next objective is to define a useful multiplication operation on vectors in 𝑅2 and 𝑅3
and then extend that operation to 𝑅n. To do this we will first need to define exactly what
we mean by the “angle” between two vectors in 𝑅2 or 𝑅3. For this purpose, let u and v be
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nonzero vectors in 𝑅2 or 𝑅3 that have been positioned so that their initial points coincide.
We define theangle betweenuandv to be the angle 𝜃 determined byu and v that satisfies
the inequalities 0 ≤ 𝜃 ≤ 𝜋 (Figure 3.2.4).

The angle θ between u and v satis.es 0 ≤ θ ≤ π.

θ

v

u

θ

v

u
θ

vu

θ

v

u

FIGURE 3.2.4

Definition 3

Ifu and v are nonzero vectors in𝑅2 or𝑅3, and if 𝜃 is the angle betweenu and v, then
the dot product (also called the Euclidean inner product) of u and v is denoted
by u · v and is defined as

u · v = ‖u‖‖v‖ cos 𝜃 (12)
If u = 0 or v = 0, then we define u · v to be 0.

If u and v are nonzero, then the sign of the dot product reveals information about the
angle 𝜃 that we can obtain by rewriting Formula (12) as

cos 𝜃 = u · v
‖u‖‖v‖ (13)

Since 0 ≤ 𝜃 ≤ 𝜋, it follows from Formula (13) and properties of the cosine function that

• 𝜃 is acute if u · v > 0. • 𝜃 is obtuse if u · v < 0. • 𝜃 = 𝜋/2 if u · v = 0.

EXAMPLE 5 | Dot Product

Find the dot product of the vectors shown in Figure 3.2.5.

Solution The lengths of the vectors are

‖u‖ = 1 and ‖v‖ = √8 = 2√2
and the cosine of the angle 𝜃 between them is

cos(45∘) = 1/√2
Thus, it follows from Formula (12) that

u · v = ‖u‖‖v‖ cos𝜃 = (1)(2√2)(1/√2) = 2

z

y

x

(0, 0, 1)

(0, 2, 2)

v

u θ = 45°

FIGURE 3.2.5

Component Form of the Dot Product
For computational purposes it is desirable to have a formula that expresses the dot prod-
uct of two vectors in terms of components. We will derive such a formula for vectors in
3-space; the derivation for vectors in 2-space is similar.
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Let u = (u1,u2,u3) and v = (v1, v2, v3) be two nonzero vectors. If, as shown in
Figure 3.2.6, 𝜃 is the angle between u and v, then the law of cosines yields

v

u

θ

z

y

x

P(u1, u2, u3)

Q(v1, v2, v3)

FIGURE 3.2.6

‖𝑃𝑄‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos 𝜃 (14)

Since 𝑃𝑄 = v − u, we can rewrite (14) as
‖u‖‖v‖ cos 𝜃 = 1

2 (‖u‖2 + ‖v‖2 − ‖v − u‖2)
or

u · v = 1
2 (‖u‖2 + ‖v‖2 − ‖v − u‖2)

Substituting
‖u‖2 = u21 + u22 + u23, ‖v‖2 = v21 + v22 + v23

and
‖v − u‖2 = (v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

we obtain, after simplifying,

u · v = u1v1 + u2v2 + u3v3 (15)

The companion formula for vectors in 2-space is

u · v = u1v1 + u2v2 (16)

Remark AlthoughwederivedFormula (15) and its 2-space companionunder the assump-
tion that u and v are nonzero, it turned out that these formulas are also applicable if u= 0
or v= 0 (verify).

Motivated by the pattern in Formulas (15) and (16), we make the following definition.

Definition 4

If u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are vectors in 𝑅n, then the dot prod-
uct (also called the Euclidean inner product) of u and v is denoted by u · v and is
defined by

u · v = u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn (17) In words, to calculate a dot
product multiply corre-
sponding components and
add the resulting products.

Historical Note

JosiahWillard Gibbs
(1839–1903)

The dot product notation was first introduced by the American
physicist and mathematician J. Willard Gibbs in a pamphlet
distributed to his students at Yale University in the 1880s. The
product was originally written on the baseline, rather than cen-
tered as today, and was referred to as the direct product. Gibbs’s
pamphlet was eventually incorporated into a book entitledVec-
tor Analysis that was published in 1901 and coauthored with
one of his students. Gibbs made major contributions to the
fields of thermodynamics and electromagnetic theory and is
generally regarded as the greatest American physicist of the
nineteenth century.

[Image: Wikipedia Commons]
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EXAMPLE 6 | Calculating Dot Products Using Components

(a) Use Formula (15) to compute the dot product of the vectors u and v in Example 5.
(b) Calculate u · v for the following vectors in 𝑅4:

u = (−1, 3, 5, 7), v = (−3,−4, 1, 0)

Solution (a) The component forms of the vectors are u = (0, 0, 1) and v = (0, 2, 2). Thus,
u · v = (0)(0) + (0)(2) + (1)(2) = 2

which agrees with the result obtained geometrically in Example 5.

Solution (b)
u · v = (−1)(−3) + (3)(−4) + (5)(1) + (7)(0) = −4

EXAMPLE 7 | A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.

Solution Let k be the length of an edge and introduce a coordinate system as shown in
Figure 3.2.7. If we let u1 = (k, 0, 0), u2 = (0, k, 0), and u3 = (0, 0, k), then the vector

d = (k, k, k) = u1 + u2 + u3
is a diagonal of the cube. It follows from Formula (13) that the angle 𝜃 between d and the
edge u1 satisfies

cos𝜃 = u1 · d
‖u1‖‖d‖

= k2

(k)(√3k2)
= 1

√3
With the help of a calculator we obtain

𝜃 = cos−1 ( 1
√3

) ≈ 54.74∘

u3

u2

u1 (0, k, 0)

(k, k, k)

(k, 0, 0)

(0, 0, k)

d

θ

z

y

x

FIGURE 3.2.7

Note that the angle 𝜃
obtained in Example 7 does
not involve k. Why was this
to be expected?

Algebraic Properties of the Dot Product
In the special case where u = v in Definition 4, we obtain the relationship

v · v = 𝑣21 + 𝑣22 + ⋅ ⋅ ⋅ + 𝑣2n = ‖v‖2 (18)
This yields the following formula for expressing the length of a vector in terms of a dot
product:

‖v‖ = √v · v (19)

Dot products havemany of the same algebraic properties as products of real numbers.

Theorem 3.2.2

If u, v, andw are vectors in 𝑅n, and if k is a scalar, then:
(a) u · v = v · u [Symmetry property]

(b) u · (v +w) = u · v + u ·w [Distributive property]

(c) k(u · v) = (ku) · v [Homogeneity property]

(d) v · v ≥ 0 and v · v = 0 if and only if v = 0 [Positivity property]
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We will prove parts (c) and (d) and leave the other proofs as exercises.

Proof (c) Let u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn). Then
k(u · v) = k(u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn)

= (ku1)v1 + (ku2)v2 + ⋅ ⋅ ⋅ + (kun)vn = (ku) · v

Proof (d) The result follows from parts (a) and (b) of Theorem 3.2.1 and the fact that
v · v = v1v1 + v2v2 + ⋅ ⋅ ⋅ + vnvn = v21 + v22 + ⋅ ⋅ ⋅ + v2n = ‖v‖2

The next theorem gives additional properties of dot products. The proofs can be
obtained either by expressing the vectors in terms of components or by using the alge-
braic properties established in Theorem 3.2.2.

Theorem 3.2.3

If u, v, andw are vectors in 𝑅n, and if k is a scalar, then:
(a) 0 · v = v · 0 = 0
(b) (u + v) ·w = u ·w + v ·w
(c) u · (v −w) = u · v − u ·w
(d) (u − v) ·w = u ·w − v ·w
(e) k(u · v) = u · (kv)

We will show how Theorem 3.2.2 can be used to prove part (b) without breaking the vec-
tors into components. The other proofs are left as exercises.

Proof (b)
(u + v) ·w = w· (u + v) [By symmetry]

= w·u +w· v [By distributivity]

= u ·w + v ·w [By symmetry]

Formulas (18) and (19) together with Theorems 3.2.2 and 3.2.3 make it possible to
manipulate expressions involving dot products using familiar algebraic techniques.

EXAMPLE 8 | Calculating with Dot Products

(u− 2v) · (3u+ 4v) = u · (3u+ 4v) − 2v · (3u+ 4v)
= 3(u · u) + 4(u · v) − 6(v · u) − 8(v · v)
= 3‖u‖2 − 2(u · v) − 8‖v‖2

Cauchy–Schwarz Inequality and Angles in Rn

Our next objective is to extend to 𝑅n the notion of “angle” between nonzero vectors u and
v. We will do this by starting with the formula

𝜃 = cos−1 ( u · v
‖u‖‖v‖) (20)
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which follows from Formula (13) that we previously derived for nonzero vectors in 𝑅2
and 𝑅3. Since dot products and norms have been defined for vectors in 𝑅n, it would seem
that this formula has all the ingredients to serve as a definition of the angle 𝜃 between two
vectors, u and v, in 𝑅n. However, there is a fly in the ointment, the problem being that
this formula is not valid unless its argument satisfies the inequalities

−1 ≤ u · v
‖u‖‖v‖ ≤ 1 (21)

Fortunately, these inequalities do hold for all nonzero vectors in 𝑅n as a result of the fol-
lowing fundamental result known as the Cauchy–Schwarz inequality.

Theorem 3.2.4

Cauchy–Schwarz Inequality
If u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are vectors in 𝑅n, then

|u · v| ≤ ‖u‖‖v‖ (22)

or in terms of components

|u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn| ≤ (u21 + u22 + ⋅ ⋅ ⋅ + u2n)1/2(v21 + v22 + ⋅ ⋅ ⋅ + v2n)1/2 (23)

We will omit the proof of this theorem because later in the text we will prove a more
general version of which this will be a special case. Our goal for now will be to use this
theorem to prove that the inequalities in (21) hold for all nonzero vectors in 𝑅n. Once
that is done we will have established all the results required to use Formula (20) as our
definition of the angle between nonzero vectors u and v in 𝑅n.

Historical Note

Hermann Amandus
Schwarz
(1843–1921)

Viktor Yakovlevich
Bunyakovsky
(1804–1889)

The Cauchy–Schwarz inequality is named in honor of the French mathematician Augustin
Cauchy (see p. 136) and the German mathematician Hermann Schwarz. Variations of this
inequality occur in many different settings and under various names. Depending on the con-
text in which the inequality occurs, you may find it called Cauchy’s inequality, the Schwarz
inequality, or sometimes even the Bunyakovsky inequality, in recognition of the Russian
mathematician who published his version of the inequality in 1859, about 25 years before
Schwarz.

[Images: Ludwig Zipfel/Wikipedia Common (Schwarz);
University of St-Andrews/Wikipedia (Bunyakovsky)]
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To prove that the inequalities in (21) hold for all nonzero vectors in 𝑅n, divide both
sides of Formula (22) by the product ‖u‖‖v‖ to obtain

|u · v|
‖u‖‖v‖ ≤ 1 or equivalently |||

u · v
‖u‖‖v‖

||| ≤ 1

from which (21) follows.

‖u + v‖ ≤ ‖u‖ + ‖v‖

v

u

u + v

FIGURE 3.2.8

Geometry in Rn

Our next theorem will extend two familiar plane geometry results to 𝑅n: the sum of the
lengths of two sides of a triangle is at least as large as the third side (Figure 3.2.8), and
the shortest distance between two points is a straight line (Figure 3.2.9).

d(u, v) ≤ d(u, w) + d(w, v)

u

w

v

FIGURE 3.2.9

Theorem 3.2.5

If u, v, andw are vectors in 𝑅n, then:
(a) ‖u + v‖ ≤ ‖u‖ + ‖v‖ [Triangle inequality for vectors]

(b) d(u, v) ≤ d(u,w) + d(w, v) [Triangle inequality for distances]

Proof (a)

‖u + v‖2 = (u + v) · (u + v) = (u · u) + 2(u · v) + (v · v)
= ‖u‖2 + 2(u · v) + ‖v‖2
≤ ‖u‖2 + 2|u · v| + ‖v‖2 Property of absolute value

≤ ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2 Cauchy–Schwarz inequality

= (‖u‖ + ‖v‖)2 Algebraic simplification

This completes the proof since both sides of the inequality in part (a) are nonnegative.

Proof (b) It follows from part (a) and Formula (11) that

d(u, v) = ‖u − v‖ = ‖(u −w) + (w − v)‖
≤ ‖u −w‖ + ‖w − v‖ = d(u,w) + d(w, v)

It is proved in plane geometry that for any parallelogram the sum of the squares of
the diagonals is equal to the sum of the squares of the four sides (Figure 3.2.10). The
following theorem generalizes that result to 𝑅n.

v

u

u – v

u + v

FIGURE 3.2.10

Theorem 3.2.6

Parallelogram Equation for Vectors
If u and v are vectors in 𝑅n, then

‖u + v‖2 + ‖u − v‖2 = 2 (‖u‖2 + ‖v‖2) (24)
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Proof
‖u + v‖2 + ‖u − v‖2 = (u + v) · (u + v) + (u − v) · (u − v)

= 2(u · u) + 2(v · v)
= 2 (‖u‖2 + ‖v‖2)

We could state and prove many more theorems from plane geometry that generalize
to 𝑅n, but the ones already given should suffice to convince you that 𝑅n is not so different
from 𝑅2 and 𝑅3 even though we cannot visualize it directly. The next theorem establishes
a fundamental relationship between the dot product and norm in 𝑅n.

Theorem 3.2.7

If u and v are vectors in 𝑅n with the Euclidean inner product, then
u · v = 1

4‖u + v‖2 − 1
4‖u − v‖2 (25)

Proof
‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2
‖u − v‖2 = (u − v) · (u − v) = ‖u‖2 − 2(u · v) + ‖v‖2

from which (25) follows by simple algebra.

Application of Dot Products to ISBN Numbers
Although the system changed in 2007, most older books have been
assigned a unique 10-digit number called an International Stan-
dard Book Number or ISBN. The first nine digits of this number
are split into three groups—the first group representing the coun-
try or group of countries in which the book originates, the second
identifying the publisher, and the third assigned to the book title
itself. The tenth and final digit, called a check digit, is computed
from the first nine digits and is used to ensure that an electronic
transmission of the ISBN, say over the Internet, occurs without
error.

To explain how this is done, regard the first nine digits of the
ISBN as a vector b in 𝑅9, and let a be the vector

a = (1, 2, 3, 4, 5, 6, 7, 8, 9)
Then the check digit c is computed using the following procedure:
1. Form the dot product a · b.
2. Divide a · b by 11, thereby producing a remainder c that is an

integer between 0 and 10, inclusive. The check digit is taken
to be c, with the proviso that c = 10 is written as X to avoid
double digits.

For example, the ISBN of the brief edition of Calculus, sixth edi-
tion, by Howard Anton is

0-471-15307-9

which has a check digit of 9. This is consistent with the first nine
digits of the ISBN, since

a · b = (1, 2, 3, 4, 5, 6, 7, 8, 9) · (0, 4, 7, 1, 1, 5, 3, 0, 7) = 152

Dividing 152 by 11 produces a quotient of 13 and a remainder of
9, so the check digit is c = 9. If an electronic order is placed for a
book with a certain ISBN, then the warehouse can use the above
procedure to verify that the check digit is consistent with the first
nine digits, thereby reducing the possibility of a costly shipping
error.

Dot Products as Matrix Multiplication
There are various ways to express the dot product of vectors using matrix notation. The
formulas depend on whether the vectors are expressed as row matrices or column matri-
ces. Table 1 shows the possibilities.

If 𝐴 is an n × n matrix and u and v are n × 1 matrices, then it follows from the first
row in Table 1 and properties of the transpose that

𝐴u · v = v𝑇(𝐴u) = (v𝑇𝐴)u = (𝐴𝑇v)𝑇u = u·𝐴𝑇v
u ·𝐴v = (𝐴v)𝑇u = (v𝑇𝐴𝑇)u = v𝑇(𝐴𝑇u) = 𝐴𝑇u· v
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TABLE 1

Form Dot Product Example

u a column
matrix and v a
column matrix

u · v = u𝑇v = v𝑇u

u = [
1

−3
5
]

v = [
5
4
0
]

u𝑇v = [1 −3 5] [
5
4
0
] = −7

v𝑇u = [5 4 0] [
1

−3
5
] = −7

u a row matrix
and v a column
matrix

u · v = uv = v𝑇u𝑇

u = [1 −3 5]

v = [
5
4
0
]

uv = [1 −3 5] [
5
4
0
] = −7

v𝑇u𝑇 = [5 4 0] [
1

−3
5
] = −7

u a column
matrix and v a
row matrix

u · v = vu = u𝑇v𝑇
u = [

1
−3
5
]

v = [5 4 0]

vu = [5 4 0] [
1

−3
5
] = −7

u𝑇v𝑇 = [1 −3 5] [
5
4
0
] = −7

u a row matrix
and v a row
matrix

u · v = uv𝑇 = vu𝑇
u = [1 −3 5]
v = [5 4 0]

uv𝑇 = [1 −3 5] [
5
4
0
] = −7

vu𝑇 = [5 4 0] [
1

−3
5
] = −7

The resulting formulas

𝐴u · v = u ·𝐴𝑇v (26)

u ·𝐴v = 𝐴𝑇u· v (27)

provide an important link betweenmultiplication by ann × nmatrix𝐴 andmultiplication
by 𝐴𝑇 .

EXAMPLE 9 | Verifying that Au · v=u ·ATv

Suppose that

𝐴 = [
1 −2 3
2 4 1

−1 0 1
], u = [

−1
2
4
], v = [

−2
0
5
]

Then

𝐴u = [
1 −2 3
2 4 1

−1 0 1
][

−1
2
4
] = [

7
10
5
]

𝐴𝑇v = [
1 2 −1

−2 4 0
3 1 1

][
−2
0
5
] = [

−7
4

−1
]
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from which we obtain
𝐴u · v = 7(−2) + 10(0) + 5(5) = 11
u ·𝐴𝑇v = (−1)(−7) + 2(4) + 4(−1) = 11

Thus, 𝐴u · v = u ·𝐴𝑇v as guaranteed by Formula (26). We leave it for you to verify
that Formula (27) also holds.

A Dot Product View of Matrix Multiplication
Dot products provide another way of thinking about matrix multiplication. Recall that if
𝐴 = [aij] is anm × rmatrix and 𝐵 = [bij] is an r × nmatrix, then by the row-column rule
stated in Formula (5) of Section 1.3 the ijth entry of 𝐴𝐵 is

ai1b1j + ai2b2j + ⋅ ⋅ ⋅ + airbrj
which is the dot product of the ith row vector of 𝐴

[ai1 ai2 ⋅ ⋅ ⋅ air]
and the jth column vector of 𝐵

⎡
⎢
⎢
⎢
⎢
⎣

b1j
b2j
⋮
brj

⎤
⎥
⎥
⎥
⎥
⎦

Thus, if we denote the row vectors of 𝐴 by r1, r2, . . . , rm and the column vectors of the
matrix 𝐵 by c1, c2, . . . , cn, then the matrix product 𝐴𝐵 can be expressed as

𝐴𝐵 =
⎡
⎢
⎢
⎢
⎣

r1 · c1 r1 · c2 ⋅ ⋅ ⋅ r1 · cn
r2 · c1 r2 · c2 ⋅ ⋅ ⋅ r2 · cn...

...
...

rm · c1 rm · c2 ⋅ ⋅ ⋅ rm · cn

⎤
⎥
⎥
⎥
⎦

(28)

Exercise Set 3.2

In Exercises 1–2, find the norm of v, and a unit vector that is oppo-
sitely directed to v.

1. a. v = (2, 2, 2) b. v = (1, 0, 2, 1, 3)

2. a. v = (1,−1, 2) b. v = (−2, 3, 3,−1)

In Exercises 3–4, evaluate the given expression with u = (2,−2, 3),
v = (1,−3, 4), andw = (3, 6,−4).
3. a. ‖u+ v‖ b. ‖u‖ + ‖v‖

c. ‖−2u+ 2v‖ d. ‖3u− 5v+w‖

4. a. ‖u+ v+w‖ b. ‖u− v‖
c. ‖3v‖ − 3‖v‖ d. ‖u‖ − ‖v‖

In Exercises 5–6, evaluate the given expression with
u= (−2,−1,4,5), v= (3,1,−5,7), andw= (−6,2,1,1).
5. a. ‖3u− 5v+w‖ b. ‖3u‖ − 5‖v‖ + ‖w‖

c. ‖‖−‖u‖v
‖
‖

6. a. ‖u‖ + ‖−2v‖ + ‖−3w‖ b. ‖‖u− v‖w‖
7. Let v = (−2, 3, 0, 6). Find all scalars k such that ‖kv‖ = 5.

8. Let v = (1, 1, 2,−3, 1). Find all scalars k such that ‖kv‖ = 4.

In Exercises 9–10, find u · v, u ·u, and v · v.
9. a. u = (3, 1, 4), v = (2, 2,−4)

b. u = (1, 1, 4, 6), v = (2,−2, 3,−2)

10. a. u = (1, 1,−2, 3), v = (−1, 0, 5, 1)
b. u = (2,−1, 1, 0,−2), v = (1, 2, 2, 2, 1)

In Exercises 11–12, find the Euclidean distance betweenu and v and
the cosine of the angle between those vectors. Statewhether that angle
is acute, obtuse, or 90∘.

11. a. u = (3, 3, 3), v = (1, 0, 4)
b. u = (0,−2,−1, 1), v = (−3, 2, 4, 4)

12. a. u = (1, 2,−3, 0), v = (5, 1, 2,−2)
b. u = (0, 1, 1, 1, 2), v = (2, 1, 0,−1, 3)

13. Suppose that a vector a in the xy-plane has a length of 9 units
and points in a direction that is 120∘ counterclockwise from
the positive x-axis, and a vector b in that plane has a length of
5 units and points in the positive y-direction. Find a · b.
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14. Suppose that a vector a in the xy-plane points in a direction
that is 47∘ counterclockwise from the positive x-axis, and a vec-
tor b in that plane points in a direction that is 43∘ clockwise
from the positive x-axis. What can you say about the value of
a · b?

In Exercises 15–16, determine whether the expression makes sense
mathematically. If not, explain why.
15. a. u · (v ·w) b. u · (v+w)

c. ‖u · v‖ d. (u · v) − ‖u‖

16. a. ‖u‖ · ‖v‖ b. (u · v) −w
c. (u · v) − k d. k · u

InExercises 17–18, verify that theCauchy–Schwarz inequality holds.

17. a. u = (−3, 1, 0), v = (2,−1, 3)
b. u = (0, 2, 2, 1), v = (1, 1, 1, 1)

18. a. u = (4, 1, 1), v = (1, 2, 3)
b. u = (1, 2, 1, 2, 3), v = (0, 1, 1, 5,−2)

19. Let r0 = (x0, y0) be a fixed vector in 𝑅2. In each part, describe
in words the set of all vectors r = (x, y) that satisfy the stated
condition.

a. ‖r− r0‖ = 1 b. ‖r− r0‖ ≤ 1 c. ‖r− r0‖ > 1

20. Repeat the directions of Exercise 19 for vectors r = (x, y, z)
and r0 = (x0, y0, z0) in 𝑅3.

Exercises 21–25 The direction of a nonzero vector v in an xyz-
coordinate system is completely determined by the angles α, β, and γ
between v and the standard unit vectors i, j, and k (Figure Ex-21).
These are called the direction angles of v, and their cosines are
called the direction cosines of v.

21. Use Formula (13) to show that the direction cosines of a vector
v = (𝑣1, 𝑣2, 𝑣3) in 𝑅3 are

cos𝛼 = 𝑣1
‖v‖ , cos𝛽 = 𝑣2

‖v‖ , cos𝛾 = 𝑣3
‖v‖

v

α

β
γ

y

z

j

i

k

x

FIGURE Ex-21

22. Use the result in Exercise 21 to show that

cos2 𝛼 + cos2 𝛽 + cos2 𝛾 = 1

23. Show that two nonzero vectors v1 and v2 in 𝑅3 are orthogonal
if and only if their direction cosines satisfy

cos𝛼1 cos𝛼2 + cos𝛽1 cos𝛽2 + cos𝛾1 cos𝛾2 = 0

24. The accompanying figure shows a cube.
a. Find the angle between the vectors d and u to the nearest

degree.

b. Make a conjecture about the angle between the vectors
d and v, and confirm your conjecture by computing the
angle.

d

u

v

z

x

y

FIGURE Ex-24

25. Estimate, to the nearest degree, the angles that a diagonal of a
box with dimensions 10 cm × 15 cm × 25 cm makes with the
edges of the box.

26. If ‖v‖ = 2 and ‖w‖ = 3, what are the largest and smallest
values possible for ‖v−w‖? Give a geometric explanation of
your results.

27. What can you say about two nonzero vectors, u and v, that
satisfy the equation ‖u+ v‖ = ‖u‖ + ‖v‖?

28. a. What relationship must hold for the point p = (a, b, c) to
be equidistant from the origin and the xz-plane?Make sure
that the relationship you state is valid for positive and neg-
ative values of a, b, and c.

b. What relationship must hold for the point p = (a, b, c) to
be farther from the origin than from the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

29. State a procedure for finding a vector of a specified length m
that points in the same direction as a given vector v.

30. Under what conditions will the triangle inequality (Theo-
rem 3.2.5a) be an equality? Explain your answer geometri-
cally.

Exercises 31–32 The effect that a force has on an object depends
on themagnitude of the force and the direction in which it is applied.
Thus, forces can be regarded as vectors and represented as arrows in
which the length of the arrow specifies the magnitude of the force,
and the direction of the arrow specifies the direction in which the
force is applied. It is a fact of physics that force vectors obey the par-
allelogram law in the sense that if two force vectors F1 and F2 are
applied at a point on an object, then the effect is the same as if the
single forceF1 + F2 (called the resultant) were applied at that point
(see accompanying figure). Forces are commonly measured in units
called pounds-force (abbreviated lbf) or Newtons (abbreviated N).

F1

F1 + F2

F2

The single force

F1 + F2 has the
same e3ect as the

two forces F1 and F2.
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31. A particle is said to be in static equilibrium if the resultant of
all forces applied to it is zero. For the forces in the accompa-
nying figure, find the resultant F that must be applied to the
indicated point to produce static equilibrium. Describe F by
giving its magnitude and the angle in degrees that it makes
with the positive x-axis.

32. Follow the directions of Exercise 31.

x

y

60°

10 lb

8 lb

FIGURE Ex-31

x

y

75°

45°

150 N120 N

100 N

FIGURE Ex-32

Working with Proofs

33. Prove parts (a) and (b) of Theorem 3.2.1.

34. Prove parts (a) and (c) of Theorem 3.2.3.

35. Prove parts (d) and (e) of Theorem 3.2.3.

True-False Exercises
TF. In parts (a)–(j) determine whether the statement is true or

false, and justify your answer.

a. If each component of a vector in 𝑅3 is doubled, the norm
of that vector is doubled.

b. In𝑅2, the vectors of norm 5 whose initial points are at the
origin have terminal points lying on a circle of radius 5
centered at the origin.

c. Every vector in 𝑅n has a positive norm.

d. If v is a nonzero vector in 𝑅n, there are exactly two unit
vectors that are parallel to v.

e. If ‖u‖ = 2, ‖v‖ = 1, andu · v = 1, then the angle between
u and v is 𝜋/3 radians.

f. The expressions (u · v) +w and u · (v+w) are both
meaningful and equal to each other.

g. If u · v = u ·w, then v = w.

h. If u · v = 0, then either u = 0 or v = 0.

i. In 𝑅2, if u lies in the first quadrant and v lies in the third
quadrant, then u · v cannot be positive.

j. For all vectors u, v, andw in 𝑅n, we have

‖u+ v+w‖ ≤ ‖u‖ + ‖v‖ + ‖w‖

Working with Technology
T1. Let u be a vector in 𝑅100 whose i th component is i, and let v

be the vector in 𝑅100 whose ith component is 1/(i+ 1). Find
the dot product of u and v.

T2. Find, to the nearest degree, the angles that a diagonal of a
box with dimensions 10 cm × 11 cm × 25 cm makes with the
edges of the box.

3.3 Orthogonality
In the last section we defined the notion of “angle” between vectors in Rn. In this section
we will focus on the notion of “perpendicularity.” Perpendicular vectors in Rn play an
important role in a wide variety of applications.

Orthogonal Vectors
Recall from Formula (20) in the previous section that the angle 𝜃 between two nonzero
vectors u and v in 𝑅n is defined by the formula

𝜃 = cos−1 ( u · v
‖u‖‖v‖)

It follows from this that 𝜃 = 𝜋/2 if and only if u · v = 0. Thus, we make the following
definition.
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Definition 1

Two nonzero vectors u and v in 𝑅n are said to be orthogonal (or perpendicular) if
u · v = 0. We will also agree that the zero vector in 𝑅n is orthogonal to every vector
in 𝑅n.

EXAMPLE 1 | Orthogonal Vectors

(a) Show that u = (−2, 3, 1, 4) and v = (1, 2, 0,−1) are orthogonal vectors in 𝑅4.
(b) Let 𝑆 = {i, j,k} be the set of standard unit vectors in 𝑅3. Show that each ordered pair

of vectors in 𝑆 is orthogonal.

Solution (a) The vectors are orthogonal since

u · v = (−2)(1) + (3)(2) + (1)(0) + (4)(−1) = 0

Solution (b) It suffices to show that

i · j = i · k = j · k = 0

because it will follow automatically from the symmetry property of the dot product that

j · i = k · i = k · j = 0

Although the orthogonality of the vectors in 𝑆 is evident geometrically from Figure 3.2.2, it
is confirmed algebraically by the computations

i · j = (1, 0, 0) · (0, 1, 0) = 0
i · k = (1, 0, 0) · (0, 0, 1) = 0
j · k = (0, 1, 0) · (0, 0, 1) = 0

Using the computations
in R3 as a model, you
should be able to see that
each ordered pair of stan-
dard unit vectors in Rn is
orthogonal.

Lines and Planes Determined by Points and Normals
One learns in analytic geometry that a line in 𝑅2 is determined uniquely by its slope

Formula (1) is called the
point-normal form of a line
or plane and Formulas (2)
and (3) the component
forms.

and one of its points, and that a plane in 𝑅3 is determined uniquely by its “inclination”
and one of its points. One way of specifying slope and inclination is to use a nonzero vec-
tor n, called a normal, that is orthogonal to the line or plane in question. For example,
Figure 3.3.1 shows the line through the point 𝑃0(x0, y0) that has normal n = (a, b) and
the plane through the point 𝑃0(x0, y0, z0) that has normal n = (a, b, c). Both the line and
the plane are represented by the vector equation

n ·𝑃0𝑃 = 0 (1)
where 𝑃 is either an arbitrary point (x, y) on the line or an arbitrary point (x, y, z) in the
plane. The vector 𝑃0𝑃 can be expressed in terms of components as

𝑃0𝑃 = (x − x0, y − y0) [line]

𝑃0𝑃 = (x − x0, y − y0, z − z0) [plane]

Thus, Equation (1) can be written as

a(x − x0) + b(y − y0) = 0 [line] (2)

a(x − x0) + b(y − y0) + c(z − z0) = 0 [plane] (3)

These are called the point-normal equations of the line and plane.
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P(x, y, z)

(a, b, c)

P(x, y)
(a, b)

P0(x0, y0, z0)

P0(x0, y0)

n

z

y

x

n

x

y

FIGURE 3.3.1

EXAMPLE 2 | Point-Normal Equations

It follows from (2) that in 𝑅2 the equation

6(x− 3) + (y+ 7) = 0

represents the line through the point (3,−7)with normal n = (6, 1); and it follows from (3)
that in 𝑅3 the equation

4(x− 3) + 2y− 5(z− 7) = 0
represents the plane through the point (3, 0, 7) with normal n = (4, 2,−5).

When convenient, the terms in Equations (2) and (3) can be multiplied out and the
constants combined. This leads to the following theorem.

Theorem 3.3.1

(a) If a and b are constants that are not both zero, then an equation of the form
ax + by + c = 0 (4)

represents a line in 𝑅2 with normal n = (a, b).
(b) If a, b, and c are constants that are not all zero, then an equation of the form

ax + by + cz + d = 0 (5)

represents a plane in 𝑅3 with normal n = (a, b, c).

EXAMPLE 3 | Vectors Orthogonal to Lines and Planes
Through the Origin

(a) The equation ax+ by = 0 represents a line through the origin in 𝑅2. Show that the
vectorn1 = (a, b) formed from the coefficients of the equation is orthogonal to the line,
that is, orthogonal to every vector along the line.

(b) The equation ax+ by+ cz = 0 represents a plane through the origin in 𝑅3. Show that
the vector n2 = (a, b, c) formed from the coefficients of the equation is orthogonal to
the plane, that is, orthogonal to every vector that lies in the plane.
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Solution We will solve both problems together. The two equations can be written as

(a, b) · (x, y) = 0 and (a, b, c) · (x, y, z) = 0

or, alternatively, as
n1 · (x, y) = 0 and n2 · (x, y, z) = 0

These equations show that n1 is orthogonal to every vector (x, y) on the line and that n2 is
orthogonal to every vector (x, y, z) in the plane (Figure 3.3.1).

Recall that
ax + by = 0 and ax + by + cz = 0

are called homogeneous equations. Example 3.3 illustrates that homogeneous equations Referring to Table 1 of Sec-
tion 3.2, in what other ways
can you write (6) if n and
x are expressed in matrix
form?

in two or three unknowns can be written in the vector form

n · x = 0 (6)

where n is the vector of coefficients and x is the vector of unknowns. In 𝑅2 this is called
the vector form of a line through the origin, and in 𝑅3 it is called the vector form of a
plane through the origin.

Orthogonal Projections
In many applications it is necessary to “decompose” a vector u into a sum of two terms,
one term being a scalar multiple of a specified nonzero vector a and the other term being
orthogonal to a. For example, if u and a are vectors in 𝑅2 that are positioned so their
initial points coincide at a point 𝑄, then we can create such a decomposition as follows
(Figure 3.3.2):

• Drop a perpendicular from the tip of u to the line through a.
• Construct the vectorw1 from 𝑄 to the foot of the perpendicular.
• Construct the vectorw2 = u −w1.

Since
w1 +w2 = w1 + (u −w1) = u

we have decomposed u into a sum of two orthogonal vectors, the first term being a scalar
multiple of a and the second being orthogonal to a.

Q

u

aw1

w2

Q

u

a w1

w2

Q

u

aw1

w2

(a) (b) (c)

FIGURE 3.3.2 Three possible cases.

The following theorem shows that the foregoing results, which we illustrated using
vectors in 𝑅2, apply as well in 𝑅n.

Theorem 3.3.2

Projection Theorem
If u and a are vectors in 𝑅n, and if a ≠ 0, then u can be expressed in exactly one way
in the form u = w1 +w2, where w1 is a scalar multiple of a and w2 is orthogonal
to a.
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Proof Since the vectorw1 is to be a scalar multiple of a, it must have the form
w1 = ka (7)

Our goal is to find a value of the scalar k and a vectorw2 that is orthogonal to a such that
u = w1 +w2 (8)

We can determine k by using (7) to rewrite (8) as
u = w1 +w2 = ka +w2

and then applying Theorems 3.2.2 and 3.2.3 to obtain
u · a = (ka +w2) · a = k‖a‖2 + (w2 · a) (9)

Sincew2 is to be orthogonal to a, the last term in (9) must be 0, and hence kmust satisfy
the equation

u · a = k‖a‖2
from which we obtain

k = u · a
‖a‖2

as the only possible value for k. The proof can be completed by rewriting (8) as

w2 = u −w1 = u − ka = u − u · a
‖a‖2 a

and then confirming that w2 is orthogonal to a by showing that w2 · a = 0 (we leave the
details for you).

The vectorsw1 andw2 in the Projection Theorem have associated names—the vector
w1 is called the orthogonal projection of u on a or sometimes the vector component of
u along a, and the vector w2 is called the vector component of u orthogonal to a. The
vector w1 is commonly denoted by the symbol projau, in which case it follows from (8)
thatw2 = u − projau. In summary,

projau = u · a
‖a‖2 a (vector component of u along a) (10)

u − projau = u − u · a
‖a‖2 a (vector component of u orthogonal to a) (11)

EXAMPLE 4 | Vector Component of u Along a

Letu = (2,−1, 3) and a = (4,−1, 2). Find the vector component ofu along a and the vector
component of u orthogonal to a.

Solution
u · a = (2)(4) + (−1)(−1) + (3)(2) = 15
‖a‖2 = 42 + (−1)2 + 22 = 21

Thus the vector component of u along a is

projau = u · a
‖a‖2 a =

15
21 (4,−1, 2) = ( 207 , −

5
7 ,

10
7 )

and the vector component of u orthogonal to a is

u− projau = (2,−1, 3) − ( 207 , −
5
7 ,

10
7 ) = (− 6

7 , −
2
7 ,

11
7 )

As a check, you may wish to verify that the vectors u− projau and a are perpendicular by
showing that their dot product is zero.
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EXAMPLE 5 | Orthogonal Projection onto a Line
Through the Origin

(a) Find the orthogonal projections of the standard unit vectors e1 = (1, 0) and e2 = (0, 1)
onto the line 𝐿 that makes an angle 𝜃 with the positive x-axis.

(b) Use the result in part (a) to find the standard matrix for the operator 𝑇∶ 𝑅2 → 𝑅2 that
maps each point orthogonally onto 𝐿.

Solution (a) As illustrated in Figure 3.3.3, the vector a = (cos𝜃, sin𝜃) is a unit vector
along the line 𝐿, so our first problem is to find the orthogonal projection of e1 along a. Since

‖a‖ = √sin2 𝜃 + cos2 𝜃 = 1 and e1 · a = (1, 0) · (cos𝜃, sin𝜃) = cos𝜃
it follows from Formula (10) that this projection is

projae1 =
e1 · a
‖a‖2 a = (cos𝜃)(cos𝜃, sin𝜃) = (cos2 𝜃, sin𝜃 cos𝜃)

Similarly, since e2 · a = (0, 1) · (cos𝜃, sin𝜃) = sin𝜃, it follows from Formula (10) that

projae2 =
e2 · a
‖a‖2 a = (sin𝜃)(cos𝜃, sin𝜃) = (sin𝜃 cos𝜃, sin2 𝜃)

Solution (b) It follows from part (a) that the standard matrix for 𝑇 is

𝐴 = [𝑇(e1) ∣ 𝑇(e2)] = [ cos2 𝜃 sin𝜃 cos𝜃
sin𝜃 cos𝜃 sin2 𝜃 ] = [

cos2 𝜃 1
2 sin 2𝜃

1
2 sin 2𝜃 sin2 𝜃 ]

In keeping with common usage, we will denote this matrix by

𝑃𝜃 = [ cos2 𝜃 sin𝜃 cos𝜃
sin𝜃 cos𝜃 sin2 𝜃 ] = [

cos2 𝜃 1
2 sin 2𝜃

1
2 sin 2𝜃 sin2 𝜃 ] (12)

We have included two
versions of Formula (12)
because both are commonly
used. Whereas the first ver-
sion involves only the angle
𝜃, the second involves both
𝜃 and 2𝜃.

y y

xx

e2 = (0, 1)

e1

A

L

B

e2

e1 = (1, 0)cos θ

sin θ

(cos θ, sin θ)

The point A has coordinates (cos2 θ, sin θ cos θ).

The point B has coordinates (sin θ cos θ, sin2 θ).

θ

L

θ

a

FIGURE 3.3.3

EXAMPLE 6 | Orthogonal Projection onto a Line
Through the Origin

Use Formula (12) to find the orthogonal projection of the vector x = (1, 5) onto the line
through the origin that makes an angle of 𝜋/6 (= 30∘) with the positive x-axis.

Solution Since sin(𝜋/6) = 1/2 and cos(𝜋/6) = √3/2, it follows from (12) that the stan-
dard matrix for this projection is

𝑃𝜋/6 = [ cos2(𝜋/6) sin(𝜋/6) cos(𝜋/6)
sin(𝜋/6) cos(𝜋/6) sin2(𝜋/6) ] = [

3
4

√3
4

√3
4

1
4

]
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Thus,

𝑃𝜋/6x = [
3
4

√3
4

√3
4

1
4

] [15] = [
3+5√3

4
√3+5
4

] ≈ [2.911.68]

or in comma-delimited notation, 𝑃𝜋/6(1, 5) ≈ (2.91, 1.68).

Reflections About Lines Through the Origin
In Table 1 of Section 1.8 we listed the reflections about the coordinate axes in 𝑅2. These
are special cases of the more general operator 𝐻𝜃∶ 𝑅2→𝑅2 that maps each point into
its reflection about a line 𝐿 through the origin that makes an angle 𝜃 with the positive
x-axis (Figure 3.3.4). We could find the standard matrix for 𝐻𝜃 by finding the images ofx

Hθx

x

y

θ

L

FIGURE 3.3.4
the standard basis vectors, but instead we will take advantage of our work on orthogonal
projections by using Formula (12) for 𝑃𝜃 to find a formula for𝐻𝜃.

You should be able to see from Figure 3.3.5 that for every vector x in 𝑅n

x

Hθx

Pθx

x

y

θ

L

FIGURE 3.3.5

𝑃𝜃x − x = 1
2 (𝐻𝜃x − x) or equivalently 𝐻𝜃x = (2𝑃𝜃 − 𝐼)x

Thus, it follows from Theorem 1.8.4 that
𝐻𝜃 = 2𝑃𝜃 − 𝐼 (13)

and hence from (12) that

𝐻𝜃 = [cos 2𝜃 sin 2𝜃
sin 2𝜃 − cos 2𝜃] (14)

EXAMPLE 7 | Reflection About a Line Through the Origin

Find the reflection of the vector x = (1, 5) about the line through the origin that makes an
angle of 𝜋/6 (= 30∘) with the x-axis.

Solution Since sin(𝜋/3) = √3/2 and cos(𝜋/3) = 1/2, it follows from (14) that the stan-
dard matrix for this reflection is

𝐻𝜋/6 = [cos(𝜋/3) sin(𝜋/3)
sin(𝜋/3) − cos(𝜋/3)] = [

1
2

√3
2

√3
2 − 1

2

]

Thus,

𝐻𝜋/6x = [
1
2

√3
2

√3
2 − 1

2

] [15] = [
1+5√3

2
√3−5
2

] ≈ [ 4.83
−1.63]

or in comma-delimited notation,𝐻𝜋/6(1, 5) ≈ (4.83,−1.63).

Norm of a Projection
Sometimes we will be more interested in the norm of the vector component of u along a
than in the vector component itself. A formula for this norm can be derived as follows:

‖projau‖ =
‖
‖‖
u · a
‖a‖2 a

‖
‖‖ =

|||
u · a
‖a‖2

||| ‖a‖ =
|u · a|
‖a‖2 ‖a‖

where the second equality follows from part (c) of Theorem 3.2.1 and the third from the
fact that ‖a‖2 > 0. Thus,

‖projau‖ =
|u · a|
‖a‖ (15)
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If 𝜃 denotes the angle between u and a, then u · a = ‖u‖‖a‖ cos 𝜃, so (15) can also be
written as

‖projau‖ = ‖u‖|cos 𝜃| (16)

(Verify.) A geometric interpretation of this result is given in Figure 3.3.6.
a

u

‖u‖

‖u‖ cos θ

θ

(a)  0     θ <
π

2

a

u

‖u‖

– ‖u‖ cos θ

θ

(b)

<−

π

2
<−< θ    π

FIGURE 3.3.6

The Theorem of Pythagoras
In Section 3.2 we found that many theorems about vectors in 𝑅2 and 𝑅3 also hold in 𝑅n.
Another example of this is the following generalization of the Theorem of Pythagoras
(Figure 3.3.7).

v

u

u + v

FIGURE 3.3.7

Theorem 3.3.3

Theorem of Pythagoras in Rn

If u and v are orthogonal vectors in 𝑅n with the Euclidean inner product, then
‖u + v‖2 = ‖u‖2 + ‖v‖2 (17)

Proof Since u and v are orthogonal, we have u · v = 0, from which it follows that
‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2 = ‖u‖2 + ‖v‖2

EXAMPLE 8 | Theorem of Pythagoras in R4

We showed in Example 1 that the vectors

u = (−2, 3, 1, 4) and v = (1, 2, 0,−1)
are orthogonal. Verify the Theorem of Pythagoras for these vectors.

Solution We leave it for you to confirm that

u+ v = (−1, 5, 1, 3)
‖u+ v‖2 = 36
‖u‖2 + ‖v‖2 = 30+ 6

Thus, ‖u+ v‖2 = ‖u‖2 + ‖v‖2

Distance Problems
OPTIONAL: We will now show how orthogonal projections can be used to solve the
following three distance problems:

Problem 1. Find the distance between a point and a line in 𝑅2.
Problem 2. Find the distance between a point and a plane in 𝑅3.
Problem 3. Find the distance between two parallel planes in 𝑅3.

A method for solving the first two problems is provided by the next theorem. Since the
proofs of the two parts are similar, we will prove part (b) and leave part (a) as an exercise.
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Theorem 3.3.4

(a) In 𝑅2 the distance 𝐷 between the point 𝑃0(x0, y0) and the line ax + by + c = 0
is

𝐷 = |ax0 + by0 + c|
√a2 + b2

(18)

(b) In 𝑅3 the distance 𝐷 between the point 𝑃0(x0, y0, z0) and the plane
ax + by + cz + d = 0 is

𝐷 = |ax0 + by0 + cz0 + d|
√a2 + b2 + c2

(19)

Distance from P0 to plane.

D D

P0(x0, y0, z0)

Q(x1, y1, z1)

n = (a, b, c)

projn QP0

FIGURE 3.3.8

Proof (b) The underlying idea of the proof is illustrated inFigure 3.3.8. As shown in that
figure, let 𝑄(x1, y1, z1) be any point in the plane, and let n = (a, b, c) be a normal vector to
the plane that is positioned with its initial point at 𝑄. It is now evident that the distance
𝐷 between 𝑃0 and the plane is simply the length (or norm) of the orthogonal projection
of the vector 𝑄𝑃0 on n, which by Formula (15) is

𝐷 = ‖projn𝑄𝑃0‖ =
|𝑄𝑃0 · n|
‖n‖

But
𝑄𝑃0 = (x0 − x1, y0 − y1, z0 − z1)

𝑄𝑃0 · n = a(x0 − x1) + b(y0 − y1) + c(z0 − z1)

‖n‖ = √a2 + b2 + c2
Thus

𝐷 = |a(x0 − x1) + b(y0 − y1) + c(z0 − z1)|
√a2 + b2 + c2

(20)

Since the point 𝑄(x1, y1, z1) lies in the given plane, its coordinates satisfy the equation of
that plane; thus

ax1 + by1 + cz1 + d = 0
or

d = −ax1 − by1 − cz1
Substituting this expression in (20) yields (19).

EXAMPLE 9 | Distance Between a Point and a Plane

Find the distance𝐷 between the point (1,−4,−3) and the plane 2x− 3y+ 6z = −1.
Solution Since the distance formulas in Theorem 3.3.4 require that the equations of the
line and plane be written with zero on the right side, we first need to rewrite the equation of
the plane as

2x− 3y+ 6z+ 1 = 0
from which we obtain

𝐷 = |2(1) + (−3)(−4) + 6(−3) + 1|

√22 + (−3)2 + 62
= |−3|

7
= 3

7
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The third distance problem posed above is to find the distance between two parallel
planes in 𝑅3. As suggested in Figure 3.3.9, the distance between a plane𝑉 and a plane𝑊
can be obtained by finding any point 𝑃0 in one of the planes, and computing the distance
between that point and the other plane. Here is an example.

V

W

P0

FIGURE 3.3.9 The distance
between the parallel planes𝑉 and
𝑊 is equal to the distance
between 𝑃0 and𝑊.

EXAMPLE 10 | Distance Between Parallel Planes

The planes
x+ 2y− 2z = 3 and 2x+ 4y− 4z = 7

are parallel since their normals, (1, 2,−2) and (2, 4,−4), are parallel vectors. Find the dis-
tance between these planes.

Solution To find the distance𝐷 between the planes, we can select an arbitrary point in one
of the planes and compute its distance to the other plane. By setting y = z = 0 in the equa-
tion x+ 2y− 2z = 3, we obtain the point 𝑃0(3, 0, 0) in this plane. From (19), the distance
between 𝑃0 and the plane 2x+ 4y− 4z = 7 is

𝐷 = |2(3) + 4(0) + (−4)(0) − 7|

√22 + 42 + (−4)2
= 1

6

Exercise Set 3.3

In Exercises 1–2, determine whether u and v are orthogonal vectors.
1. a. u = (6, 1, 4), v = (2, 0,−3)

b. u = (0, 0,−1), v = (1, 1, 1)
c. u = (3,−2, 1, 3), v = (−4, 1,−3, 7)
d. u = (5,−4, 0, 3), v = (−4, 1,−3, 7)

2. a. u = (2, 3), v = (5,−7)
b. u = (1, 1, 1), v = (0, 0, 0)
c. u = (1,−5, 4), v = (3, 3, 3)
d. u = (4, 1,−2, 5), v = (−1, 5, 3, 1)

In Exercises 3–6, find a point-normal form of the equation of the
plane passing through 𝑃 and having n as a normal.
3. 𝑃(−1, 3,−2); n = (−2, 1,−1)
4. 𝑃(1, 1, 4); n = (1, 9, 8) 5. 𝑃(2, 0, 0); n = (0, 0, 2)

6. 𝑃(0, 0, 0); n = (1, 2, 3)

In Exercises 7–10, determine whether the given planes are
parallel.
7. 4x− y+ 2z = 5 and 7x− 3y+ 4z = 8

8. x− 4y− 3z− 2 = 0 and 3x− 12y− 9z− 7 = 0

9. 2y = 8x− 4z+ 5 and x = 1
2 z+

1
4y

10. (−4, 1, 2) · (x, y, z) = 0 and (8,−2,−4) · (x, y, z) = 0

In Exercises 11–12, determine whether the given planes are
perpendicular.
11. 3x− y+ z− 4 = 0, x+ 2z = −1

12. x− 2y+ 3z = 4, −2x+ 5y+ 4z = −1

In Exercises 13–14, find ‖projau‖.

13. a. u = (1,−2), a = (−4,−3)
b. u = (3, 0, 4), a = (2, 3, 3)

14. a. u = (5, 6), a = (2,−1)
b. u = (3,−2, 6), a = (1, 2,−7)

In Exercises 15–20, find the vector component of u along a and the
vector component of u orthogonal to a.

15. u = (6, 2), a = (3,−9) 16. u = (−1,−2), a = (−2, 3)

17. u = (3, 1,−7), a = (1, 0, 5)

18. u = (2, 0, 1), a = (1, 2, 3)

19. u = (2, 1, 1, 2), a = (4,−4, 2,−2)

20. u = (5, 0,−3, 7), a = (2, 1,−1,−1)

In Exercises 21–24, find the distance between the point and the line.

21. (−3, 1); 4x+ 3y+ 4 = 0

22. (−1, 4); x− 3y+ 2 = 0

23. (2,−5); y = −4x+ 2

24. (1, 8); 3x+ y = 5

InExercises 25–26, find the distance between the point and the plane.

25. (3, 1,−2); x+ 2y− 2z = 4

26. (−1,−1, 2); 2x+ 5y− 6z = 4
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In Exercises 27–28, find the distance between the given parallel
planes.
27. 2x− y− z = 5 and −4x+ 2y+ 2z = 12

28. 2x− y+ z = 1 and 2x− y+ z = −1

29. Find a unit vector that is orthogonal to both u = (1, 0, 1) and
v = (0, 1, 1).

30. a. Show that v = (a, b) and w = (−b, a) are orthogonal
vectors.

b. Use the result in part (a) to find two vectors that are orthog-
onal to v = (2,−3).

c. Find two unit vectors that are orthogonal to v = (−3, 4).

31. Do the points 𝐴(1, 1, 1), 𝐵(−2, 0, 3), and 𝐶(−3,−1, 1) form
the vertices of a right triangle? Explain.

32. Repeat Exercise 31 for the points 𝐴(3, 0, 2), 𝐵(4, 3, 0), and
𝐶(8, 1,−1).

33. Show that if v is orthogonal to both w1 and w2, then v is
orthogonal to k1w1 + k2w2 for all scalars k1 and k2.

34. Is it possible to have projau = projua? Explain.

In Exercises 35–36, find the standard matrix for the reflection of 𝑅2

about the stated line, and then use that matrix to find the reflection
of the given point about that line.
35. The reflection of (3, 4) about the line that makes an angle of

𝜋/3 (= 60∘) with the positive x-axis.

36. The reflection of (1, 2) about the line that makes an angle of
𝜋/4 (= 45∘) with the positive x-axis.

In Exercises 37–38, find the standard matrix for the orthogonal pro-
jection of𝑅2 onto the stated line, and then use that matrix to find the
orthogonal projection of the given point onto that line.
37. The orthogonal projection of (3, 4) onto the line thatmakes an

angle of 𝜋/3 (= 60∘) with the positive x-axis.

38. The orthogonal projection of (1, 2) onto the line thatmakes an
angle of 𝜋/4 (= 45∘) with the positive x-axis.

Exercises 39–41 In physics and engineering theworkWperformed
by a constant force F applied in the direction of motion to an object
moving a distance d on a straight line is defined to be

𝑊 = ‖F‖d (force magnitude times distance)

In the case where the applied force is constant but makes an angle
𝜃 with the direction of motion, and where the object moves along a
line from a point 𝑃 to a point𝑄, we call 𝑃𝑄 the displacement and
define the work performed by the force to be

𝑊 = F ·𝑃𝑄 = ‖F‖‖𝑃𝑄‖ cos𝜃
(see accompanying figure). Common units of work are ft-lb (foot
pounds) or Nm (Newton meters).

∥F∥ F

∥F∥ cos θ
θ

∥PQ∥

Work = (∥F∥ cos θ) ∥PQ∥

39. Show that the work performed by a constant force (not neces-
sarily in the direction of motion) can be expressed as

𝑊 = ±‖𝑃𝑄‖‖proj𝑃𝑄F‖
and explain when the+ sign should be used and when the−
sign should be used.

40. As illustrated in the accompanying figure, a wagon is pulled
horizontally by exerting a force of 10 lb on the handle at an
angle of 60∘ with the horizontal. How much work is done in
moving the wagon 50 ft?

10 lb
60°

F

50 ft

41. Asailboat travels 100mduenorthwhile thewind exerts a force
of 500 N toward the northeast. Howmuchwork does the wind
do?

Working with Proofs

42. Letu and v be nonzero vectors in 2- or 3-space, and let k = ‖u‖
and l = ‖v‖. Prove that the vector w = lu+ kv bisects the
angle between u and v.

43. Prove part (a) of Theorem 3.3.4.

44. In 𝑅3 the orthogonal projections onto the x-axis, y-axis, and
z-axis are

𝑇1(x, y, z) = (x, 0, 0), 𝑇2(x, y, z) = (0, y, 0),
𝑇3(x, y, z) = (0, 0, z)

respectively.

a. Show that if 𝑇∶𝑅3→𝑅3 is an orthogonal projection onto
one of the coordinate axes, then for every vector x in 𝑅3,
the vectors 𝑇(x) and x−𝑇(x) are orthogonal.

b. Make a sketch showing x and x−𝑇(x) in the case where
𝑇 is the orthogonal projection onto the x-axis.

45. a. Use Formula (14) and appropriate trigonometric identities
to prove that multiplication by the matrix

𝐻m = 1
1+m2 [

1−m2 2m
2m m2 − 1]

performs a reflection about the line y=mx.

b. Use the result in part (a) to show that multiplication by the
matrix

𝐻 = [
5
13

12
13

12
13 − 5

13
]

performs a reflection about a line through the origin, and
find an equation for that line.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. The vectors (3,−1, 2) and (0, 0, 0) are orthogonal.

b. If u and v are orthogonal vectors, then for all nonzero
scalars k andm, ku andmv are orthogonal vectors.
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c. The orthogonal projection of u on a is perpendicular to
the vector component of u orthogonal to a.

d. If a and b are orthogonal vectors, then for every nonzero
vector u, we have

proja(projb(u)) = 0

e. If a and u are nonzero vectors, then
proja(proja(u)) = proja(u)

f. If the relationship
projau = projav

holds for some nonzero vector a, then u = v.

g. For all vectors u and v, it is true that

‖u+ v‖ = ‖u‖ + ‖v‖

Working with Technology
T1. Find the lengths of the sides and the interior angles of the tri-

angle in 𝑅4 whose vertices are

𝑃(2, 4, 2, 4, 2), 𝑄(6, 4, 4, 4, 6), 𝑅(5, 7, 5, 7, 2)

T2. Express the vector u = (2, 3, 1, 2) in the form u = w1 +w2,
where w1 is a scalar multiple of a = (−1, 0, 2, 1) and w2 is
orthogonal to a.

3.4 The Geometry of Linear Systems
In this section we will use parametric and vector methods to study general systems of
linear equations. Thisworkwill enable us to interpret solution sets of linear systemswithn
unknowns as geometric objects in Rn just as we interpreted solution sets of linear systems
with two and three unknowns as points, lines, and planes in R2 and R3.

Vector and Parametric Equations of Lines in R2 and R3
In the last section we derived equations of lines and planes that are determined by a point
and a normal vector. However, there are other useful ways of specifying lines and planes.
For example, a unique line in𝑅2 or𝑅3 is determined by a point x0 on the line and a nonzero
vector v parallel to the line, and a unique plane in 𝑅3 is determined by a point x0 in the
plane and two noncollinear vectors v1 and v2 parallel to the plane. The best way to visu-
alize the latter is to translate the vectors so their initial points are at x0 (Figure 3.4.1).

x

y

x0

v x0

v1

v2

z

y

x

FIGURE 3.4.1

Let us begin by deriving an equation for the line 𝐿 that contains a point x0 and is

x

y

x0

x

v

L

x – x0

FIGURE 3.4.2

parallel to a nonzero vector v. If x is a general point on such a line, then, as illustrated in
Figure 3.4.2, the vector x − x0 will be some scalar multiple of v, say

x − x0 = tv or equivalently x = x0 + tv

As the variable t (called a parameter) varies from −∞ to ∞, the point x traces out the
line 𝐿. Accordingly, we have the following result.
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Theorem 3.4.1

Let 𝐿 be the line in 𝑅2 or 𝑅3 that contains the point x0 and is parallel to the nonzero
vector v. Then the equation of the line through x0 that is parallel to v is

x = x0 + tv (1)

If x0 = 0, then the line passes through the origin and the equation has the form
x = tv (2)

Although it is not stated
explicitly, it is understood in
Formulas (1) and (2) that
the parameter t varies from
−∞ to∞. This applies to
all vector and parametric
equations in this text except
where stated otherwise.

Vector and Parametric Equations of Planes in R3
Next we will derive an equation for the plane𝑊 that contains a point x0 and is parallel to

x0

x

W

t2v2 t1v1

z

y

x

FIGURE 3.4.3

the noncollinear vectors v1 and v2. As shown inFigure 3.4.3, if x is any point in the plane,
then by forming suitable scalar multiples of v1 and v2, say t1v1 and t2v2, we can create a
parallelogram with diagonal x − x0 and adjacent sides t1v1 and t2v2. Thus, we have

x − x0 = t1v1 + t2v2 or equivalently x = x0 + t1v1 + t2v2

As the parameters t1 and t2 vary independently from−∞ to∞, the point x varies over the
entire plane𝑊. In summary, we have the following result.

Theorem 3.4.2

Let𝑊 be the plane in𝑅3 that contains the point x0 and is parallel to the noncollinear
vectors v1 and v2. Then an equation of the plane through x0 that is parallel to v1 and
v2 is given by

x = x0 + t1v1 + t2v2 (3)
If x0 = 0, then the plane passes through the origin and the equation has the form

x = t1v1 + t2v2 (4)

Remark Observe that the line through x0 represented by Equation (1) is the translation
by x0 of the line through the origin represented by Equation (2) and that the plane through
x0 represented by Equation (3) is the translation by x0 of the plane through the origin
represented by Equation (4) (Figure 3.4.4).

x0

v x

y

x = x0 + tv
x = x0 + t1v1 + t2v2

x = t1v1 + t2v2x = tv

x0

v2

v1

z

y

x

FIGURE 3.4.4

Motivated by the forms of Formulas (1) to (4), we can extend the notions of line and
plane to 𝑅n by making the following definitions.
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Definition 1

If x0 and v are vectors in 𝑅n, and if v is nonzero, then the equation
x = x0 + tv (5)

defines the line through x0 that is parallel to v.

Definition 2

If x0, v1, and v2 are nonzero vectors in 𝑅n, and if v1 and v2 are not collinear, then
the equation

x = x0 + t1v1 + t2v2 (6)
defines the plane through x0 that is parallel to v1 and v2.

Equations (5) and (6) are called vector forms of a line and plane in 𝑅n. If the vec-
tors in these equations are expressed in terms of their components and the corresponding
components on each side are equated, then the resulting equations are called parametric
equations of the line and plane. Here are some examples.

EXAMPLE 1 | Vector and Parametric Equations of
Lines in R2 and R3

(a) Find a vector equation and parametric equations of the line in 𝑅2 that passes through
the origin and is parallel to the vector v = (−2, 3).

(b) Find a vector equation and parametric equations of the line in 𝑅3 that passes through
the point 𝑃0(1, 2,−3) and is parallel to the vector v = (4,−5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the line that are dif-
ferent from 𝑃0.

Solution (a) It follows from (5) with x0 = 0 that a vector equation of the line is x = tv. If
we let x = (x, y), then this equation can be expressed in vector form as

(x, y) = t(−2, 3)
Equating corresponding components on the two sides of this equation yields the parametric
equations

x = −2t, y = 3t

Solution (b) It follows from (5) that a vector equation of the line is x = x0 + tv. If we let
x = (x, y, z), and if we take x0 = (1, 2,−3), then this equation can be expressed in vector
form as

(x, y, z) = (1, 2,−3) + t(4,−5, 1) (7)
Equating corresponding components on the two sides of this equation yields the parametric
equations

x = 1+ 4t, y = 2− 5t, z = −3+ t

Solution (c) A point on the line represented by Equation (7) can be obtained by sub-
stituting a numerical value for the parameter t. However, since t = 0 produces (x, y, z) =
(1, 2,−3), which is the point 𝑃0, this value of t does not serve our purpose. Taking t = 1 pro-
duces the point (5,−3,−2) and taking t = −1 produces the point (−3, 7,−4). Any other
distinct values for t (except t = 0) would work just as well.
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EXAMPLE 2 | Vector and Parametric Equations of
a Plane in R3

Find vector and parametric equations of the plane x− y+ 2z = 5.

Solution Wewill find the parametric equations first.We can do this by solving the equation
for any one of the variables in terms of the other two and then using those two variables as
parameters. For example, solving for x in terms of y and z yields

x = 5+ y− 2z (8)

and then using y and z as parameters t1 and t2, respectively, yields the parametric equations

x = 5+ t1 − 2t2, y = t1, z = t2
To obtain a vector equation of the plane we rewrite these parametric equations as

(x, y, z) = (5+ t1 − 2t2, t1, t2)
or, equivalently, as

(x, y, z) = (5, 0, 0) + t1(1, 1, 0) + t2(−2, 0, 1)

We would have obtained
different parametric and
vector equations in Example
2 had we solved (8) for y or z
rather than x. However, one
can show the same plane
results in all three cases as
the parameters vary from
−∞ to∞.

EXAMPLE 3 | Vector and Parametric Equations of
Lines and Planes in R4

(a) Find vector and parametric equations of the line through the origin of𝑅4 that is parallel
to the vector v = (5,−3, 6, 1).

(b) Find vector and parametric equations of the plane in 𝑅4 that passes through the point
x0 = (2,−1, 0, 3) and is parallel to both v1 = (1, 5, 2,−4) and v2 = (0, 7,−8, 6).

Solution (a) Ifwe letx = (x1, x2, x3, x4), then the vector equationx = tv can be expressed as

(x1, x2, x3, x4) = t(5,−3, 6, 1)
Equating corresponding components yields the parametric equations

x1 = 5t, x2 = −3t, x3 = 6t, x4 = t

Solution (b) The vector equation x = x0 + t1v1 + t2v2 can be expressed as

(x1, x2, x3, x4) = (2,−1, 0, 3) + t1(1, 5, 2,−4) + t2(0, 7,−8, 6)
which yields the parametric equations

x1 = 2+ t1
x2 = −1+ 5t1 + 7t2
x3 = 2t1 − 8t2
x4 = 3− 4t1 + 6t2

Lines Through Two Points in Rn

If x0 and x1 are distinct points in 𝑅n, then the line containing these points is parallel to
the vector v = x1 − x0 (Figure 3.4.5), so it follows from (5) that the line can be expressed

x0

x1
v

FIGURE 3.4.5

in vector form as
x = x0 + t(x1 − x0) (9)

or, equivalently, as

x = (1 − t)x0 + tx1 (10)

These are called the two-point vector equations of a line in 𝑅n.
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EXAMPLE 4 | A Line Through Two Points in R2

Find vector and parametric equations for the line in𝑅2 that passes through the points𝑃(0, 7)
and𝑄(5, 0).
Solution It does not matter which point we take to be x0 and which we take to be x1, so let
us arbitrarily choose x0 = (0, 7) and x1 = (5, 0). It follows that x1 − x0 = (5,−7) and hence
that

(x, y) = (0, 7) + t(5,−7) (11)
which we can rewrite in parametric form as

x = 5t, y = 7− 7t

Had we reversed our choices and taken x0 = (5, 0) and x1 = (0, 7), then the resulting vector
equation would have been

(x, y) = (5, 0) + t(−5, 7) (12)
and the parametric equations would have been

x = 5− 5t, y = 7t

(verify). Although (11) and (12) look different, they both represent the line whose equation
in rectangular coordinates is

7x+ 5y = 35
(Figure 3.4.6). This can be seen by eliminating the parameter t from the parametric equa-
tions (verify).

x

y

2 3 4 5 61

1

2

3

4

5

6

7

7x + 5y = 35

FIGURE 3.4.6

The point x = (x, y) in Equations (9) and (10) traces an entire line in 𝑅2 as the param-
eter t varies over the interval (−∞,∞). If, however, we restrict the parameter to vary from
t = 0 to t = 1, then x will not trace the entire line but rather just the line segment joining
the points x0 and x1. The point x will start at x0 when t = 0 and end at x1 when t = 1.
Accordingly, we make the following definition.

Definition 3

If x0 and x1 are vectors in 𝑅n, then the equation
x = x0 + t(x1 − x0) (0 ≤ t ≤ 1) (13)

defines the line segment from x0 to x1. When convenient, Equation (13) can be
written as

x = (1 − t)x0 + tx1 (0 ≤ t ≤ 1) (14)

EXAMPLE 5 | A Line Segment from One Point to
Another in R2

It follows from (13) and (14) that the line segment in𝑅2 from x0 = (1,−3) to x1 = (5, 6) can
be represented either by the equation

x = (1,−3) + t(4, 9) (0 ≤ t ≤ 1)
or by the equation

x = (1− t)(1,−3) + t(5, 6) (0 ≤ t ≤ 1)
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Dot Product Form of a Linear System
Our next objective is to show how to express linear equations and linear systems in dot
product notation. This will lead us to some important results about orthogonality and
linear systems.

Recall that a linear equation in the variables x1, x2, . . . , xn has the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b (a1, a2, . . . , an not all zero) (15)

and that the corresponding homogeneous equation is

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (a1, a2, . . . , an not all zero) (16)

These equations can be rewritten in vector form by letting

a = (a1, a2, . . . , an) and x = (x1, x2, . . . , xn)

in which case Formula (15) can be written as

a · x = b (17)

and Formula (16) as

a · x = 0 (18)

Except for a notational change from n to a, Formula (18) is the extension to 𝑅n of For-
mula (6) in Section 3.3. This equation reveals that each solution vector x of a homogeneous
equation is orthogonal to the coefficient vector a. To take this geometric observation a step
further, consider the homogeneous system

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = 0

If we denote the successive row vectors of the coefficient matrix by r1, r2, . . . , rm, then we
can rewrite this system in dot product form as

r1 · x = 0
r2 · x = 0
...

...
rm · x = 0

(19)

from which we see that every solution vector x is orthogonal to every row vector of the
coefficient matrix. In summary, we have the following result.

Theorem 3.4.3

If 𝐴 is an m × n matrix, then the solution set of the homogeneous linear system
𝐴x = 0 consists of all vectors in 𝑅n that are orthogonal to every row vector of 𝐴.
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EXAMPLE 6 | Orthogonality of Row Vectors and
Solution Vectors

We showed in Example 6 of Section 1.2 that the general solution of the homogeneous linear
system

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

is
x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

which we can rewrite in vector form as

x = (−3r− 4s− 2t, r,−2s, s, t, 0)
According to Theorem 3.4.3, the vector xmust be orthogonal to each of the row vectors

r1 = (1, 3,−2, 0, 2, 0)
r2 = (2, 6,−5,−2, 4,−3)
r3 = (0, 0, 5, 10, 0, 15)
r4 = (2, 6, 0, 8, 4, 18)

We will confirm that x is orthogonal to r1, and leave it for you to verify that x is orthogonal
to the other three row vectors as well. The dot product of r1 and x is

r1 · x = 1(−3r− 4s− 2t) + 3(r) + (−2)(−2s) + 0(s) + 2(t) + 0(0) = 0

which establishes the orthogonality.

Exercise Set 3.4

In Exercises 1–4, find vector and parametric equations of the line
containing the point and parallel to the vector.

1. Point: (−4, 1); vector: v = (0,−8)

2. Point: (2,−1); vector: v = (−4,−2)

3. Point: (0, 0, 0); vector: v = (−3, 0, 1)

4. Point: (−9, 3, 4); vector: v = (−1, 6, 0)

In Exercises 5–8, use the given equation of a line to find a point on
the line and a vector parallel to the line.

5. x = (3− 5t,−6− t)

6. (x, y, z) = (4t, 7, 4+ 3t)

7. x = (1− t)(4, 6) + t(−2, 0)

8. x = (1− t)(0,−5, 1)

In Exercises 9–12, find vector and parametric equations of the plane
that contains the given point and is parallel to the two vectors.

9. Point: (−3, 1, 0); vectors: v1 = (0,−3, 6) and
v2 = (−5, 1, 2)

10. Point: (0, 6,−2); vectors: v1 = (0, 9,−1) and
v2 = (0,−3, 0)

11. Point: (−1, 1, 4); vectors: v1 = (6,−1, 0) and
v2 = (−1, 3, 1)

12. Point: (0, 5,−4); vectors: v1 = (0, 0,−5) and
v2 = (1,−3,−2)

In Exercises 13–14, find vector and parametric equations of the line
in 𝑅2 that passes through the origin and is orthogonal to v.
13. v = (−2, 3) 14. v = (1,−4)

InExercises 15–16, find vector andparametric equations of the plane
in 𝑅3 that passes through the origin and is orthogonal to v.
15. v = (4, 0,−5) [Hint: Construct two nonparallel vectors

orthogonal to v in 𝑅3.]
16. v = (3, 1,−6)
In Exercises 17–20, find the general solution to the linear system and
confirm that the row vectors of the coefficient matrix are orthogonal
to the solution vectors.
17. x1 + x2 + x3 = 0

2x1 + 2x2 + 2x3 = 0
3x1 + 3x2 + 3x3 = 0

18. x1 + 3x2 − 4x3 = 0
2x1 + 6x2 − 8x3 = 0
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19. x1 + 5x2 + x3 + 2x4 − x5 = 0
x1 − 2x2 − x3 + 3x4 + 2x5 = 0

20. x1 + 3x2 − 4x3 = 0
x1 + 2x2 + 3x3 = 0

21. a. Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those
vectors in𝑅3 that are orthogonal to the vectors a = (1, 1, 1)
and b = (−2, 3, 0).

b. What kind of geometric object is the solution space?

c. Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

22. a. Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those
vectors in 𝑅3 that are orthogonal to a = (−3, 2,−1) and
b = (0,−2,−2).

b. What kind of geometric object is the solution space?

c. Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

23. a. Let x = x0 + tv be a line in 𝑅n and let 𝑇𝐴: 𝑅n → 𝑅n be an
invertible matrix operator on 𝑅n. Show that the image of a
line under multiplication by𝐴 is itself a line.

b. Let 𝑇𝐴: 𝑅2 → 𝑅2 be multiplication by the matrix

𝐴 = [2 1
3 −4]

Find vector and parametric equations for the image under
multiplication by𝐴 of the line x = (1, 3) + t(2,−1).

24. Let 𝑇𝐴: 𝑅3 → 𝑅3 be multiplication by the matrix

𝐴 = [
2 −4 3
3 1 2
1 4 −1

]

Find a vector equation for the image under multiplication by
𝐴 of the line segment
(x, y, z) = (1− t)(2, −3, 1) + t(4, 1, 2) (0 ≤ t ≤ 1)

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. The vector equation of a line can be determined from any

point lying on the line and a nonzero vector parallel to the
line.

b. The vector equation of a plane can be determined from
any point lying in the plane and a nonzero vector parallel
to the plane.

c. The points lying on a line through the origin in 𝑅2 or 𝑅3

are all scalar multiples of any nonzero vector on the line.

d. All solution vectors of the linear system 𝐴x = b are
orthogonal to the row vectors of the matrix 𝐴 if and only
if b = 0.

e. If x1 and x2 are two solutions of the nonhomogeneous lin-
ear system 𝐴x = b, then x1 − x2 is a solution of the cor-
responding homogeneous linear system.

Working with Technology
T1. Find the general solution of the homogeneous linear system

⎡⎢⎢⎢⎢
⎣

2 6 −4 0 4 0
0 0 1 2 0 3
6 18 −15 −6 12 −9
1 3 0 4 2 9

⎤⎥⎥⎥⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡⎢⎢⎢⎢
⎣

0
0
0
0

⎤⎥⎥⎥⎥
⎦

and confirm that each solution vector is orthogonal to every
row vector of the coefficient matrix in accordance with
Theorem 3.4.3.

3.5 Cross Product
This optional section is concerned with properties of vectors in 3-space that are important
to physicists and engineers. It can be omitted, if desired, since subsequent sections do not
depend on its content. Among other things, we define an operation that provides a way
of constructing a vector in 3-space that is perpendicular to two given vectors, and we give
a geometric interpretation of 3 × 3 determinants.

Cross Product of Vectors
In Section 3.2 we defined the dot product of two vectorsu and v in n-space. That operation
produced a scalar as its result. We will now define a type of vector multiplication that
produces a vector as the result but which is applicable only to vectors in 3-space.
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Definition 1

If u = (u1,u2,u3) and v = (v1, v2, v3) are vectors in 3-space, then the cross product
u × v is the vector defined by

u × v = (u2v3 − u3v2,u3v1 − u1v3,u1v2 − u2v1)
or, in determinant notation,

u × v = (|||
u2 u3
v2 v3

||| , −
|||
u1 u3
v1 v3

||| ,
|||
u1 u2
v1 v2

|||) (1)

Remark Instead of memorizing (1), you can obtain the components of u × v as follows:

• Form the 2 × 3 matrix [u1 u2 u3
𝑣1 𝑣2 𝑣3 ] whose first row contains the components of u

and whose second row contains the components of v.
• Tofind the first component ofu × v, delete the first columnand take the determinant;
to find the second component, delete the second column and take the negative of the
determinant; and to find the third component, delete the third column and take the
determinant.

EXAMPLE 1 | Calculating a Cross Product

Find u × v, where u = (1, 2,−2) and v = (3, 0, 1).
Solution From either (1) or the mnemonic in the preceding remark, we have

u × v = ( |||
2 −2
0 1

||| , −
|||
1 −2
3 1

||| ,
|||
1 2
3 0

|||)

= (2,−7,−6)

The following theorem gives some important relationships between the dot product
and cross product and also shows that u × v is orthogonal to both u and v.

Theorem 3.5.1

Relationships Involving Cross Product and Dot Product
If u, v, andw are vectors in 3-space, then
(a) u · (u × v) = 0 [u × v is orthogonal to u]
(b) v · (u × v) = 0 [u × v is orthogonal to v]
(c) ‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2 [Lagrange’s identity]

(d) u × (v ×w) = (u ·w)v − (u · v)w [vector triple product]

(e) (u × v) ×w = (u ·w)v − (v ·w)u [vector triple product]
The formulas for the vector
triple products in parts (d)
and (e) of Theorem 3.5.1 are
useful because they allow
us to use dot products and
scalar multiplications to
perform calculations that
would otherwise require
determinants to calculate
the required cross products.

Historical Note

The cross product notation 𝐴 × 𝐵 was introduced by the American physicist and mathe-
matician J.WillardGibbs, (see p. 163) in a series of unpublished lecture notes for his students
at Yale University. It appeared in a published work for the first time in the second edition of
the book Vector Analysis, by EdwinWilson (1879–1964), a student of Gibbs. Gibbs originally
referred to𝐴 × 𝐵 as the “skew product.”
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Proof (a) Let u = (u1,u2,u3) and v = (v1, v2, v3). Then
u · (u × v) = (u1,u2,u3) · (u2v3 − u3v2,u3v1 − u1v3,u1v2 − u2v1)

= u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1) = 0

Proof (b) Similar to (a).

Proof (c) Since
‖u × v‖2 = (u2v3 − u3v2)2 + (u3v1 − u1v3)2 + (u1v2 − u2v1)2 (2)

and
‖u‖2‖v‖2 − (u · v)2 = (u21 + u22 + u23)(v21 + v22 + v23) − (u1v1 + u2v2 + u3v3)2 (3)

the proof can be completed by “multiplying out” the right sides of (2) and (3) and verifying
their equality.

Proof (d) and (e) See Exercises 40 and 41 (page 199).

EXAMPLE 2 | u × v Is Perpendicular to u and to v

Consider the vectors
u = (1, 2,−2) and v = (3, 0, 1)

In Example 1 we showed that
u × v = (2,−7,−6)

Since
u · (u × v) = (1)(2) + (2)(−7) + (−2)(−6) = 0

and
v · (u × v) = (3)(2) + (0)(−7) + (1)(−6) = 0

u × v is orthogonal to both u and v, as guaranteed by Theorem 3.5.1.

Historical Note

Joseph Louis
Lagrange
(1736–1813)

Joseph Louis Lagrange, who is credited with two of the for-
mulas in Theorem 3.5.1, was a French-Italian mathematician
and astronomer. Although his father wanted him to become a
lawyer, Lagrange was attracted to mathematics and astronomy
after reading a memoir by the astronomer Edmond Halley. At
age 16 he began to studymathematics on his own and by age 19
was appointed to a professorship at the Royal Artillery School
in Turin. The following year he solved some famous problems
using newmethods that eventually blossomed into a branch of
mathematics called the calculus of variations. These methods
and Lagrange’s applications of them to problems in celestial
mechanicswere somonumental that by age 25 hewas regarded
by many of his contemporaries as the greatest living math-
ematician. One of Lagrange’s most famous works is a mem-
oir, Mécanique Analytique, in which he reduced the theory of
mechanics to a few general formulas fromwhich all other nec-
essary equations could be derived. Napoleon Bonaparte was a
great admirer of Lagrange and showered him with many hon-
ors. In spite of his fame, Lagrange was a shy and modest man.
On his death, he was buried with honor in the Pantheon.

[Image: © traveler1116/iStockphoto]
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EXAMPLE 3 | Cross Products of the Standard Unit Vectors

Recall from Section 3.2 that the standard unit vectors in 3-space are

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)
These vectors each have length 1 and lie along the coordinate axes (Figure 3.5.1). Every
vector v = (v1, v2, v3) in 3-space is expressible in terms of i, j, and k since we can write

v = (v1, v2, v3) = v1(1, 0, 0) + v2(0, 1, 0) + v3(0, 0, 1) = v1i+ v2 j+ v3k

For example,
(2,−3, 4) = 2i− 3j+ 4k

From (1) we obtain

i × j = (|||
0 0
1 0

||| , −
|||
1 0
0 0

||| ,
|||
1 0
0 1

|||) = (0, 0, 1) = k

z

k

j

i

y

x

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

FIGURE 3.5.1 The standard unit
vectors.

The main arithmetic properties of the cross product are listed in the next theorem.

Theorem 3.5.2

Properties of Cross Product
If u, v, andw are any vectors in 3-space and k is any scalar, then:
(a) u × v = −(v × u)
(b) u × (v +w) = (u × v) + (u ×w)
(c) (u + v) ×w = (u ×w) + (v ×w)
(d) k(u × v) = (ku) × v = u × (kv)
(e) u × 0 = 0 × u = 0
(𝑓) u × u = 0

Theproofs follow immediately fromFormula (1) andproperties of determinants; for exam-
ple, part (a) can be proved as follows.

Proof (a) Interchanging u and v in (1) interchanges the rows of the three determinants
on the right side of (1) and hence changes the sign of each component in the cross pro-
duct. Thus u × v = −(v × u).

The proofs of the remaining parts are left as exercises.
You should have no trouble obtaining the following results:

i × i = 0 j × j = 0 k × k = 0
i × j = k j × k = i k × i = j
j × i = −k k × j = −i i × k = −j

Figure 3.5.2 is helpful for remembering these results. Referring to this diagram, the cross

i

j
k

FIGURE 3.5.2product of two consecutive vectors going clockwise is the next vector around, and the
cross product of two consecutive vectors going counterclockwise is the negative of the
next vector around.
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Determinant Form of Cross Product
It is also worth noting that a cross product can be represented symbolically in the form

u × v =
|||||

i j k
u1 u2 u3
v1 v2 v3

|||||
= |||

u2 u3
v2 v3

||| i −
|||
u1 u3
v1 v3

||| j +
|||
u1 u2
v1 v2

|||k (4)

For example, if u = (1, 2, −2) and v = (3, 0, 1), then

u × v =
|||||

i j k
1 2 −2
3 0 1

|||||
= 2i − 7j − 6k

which agrees with the result obtained in Example 1.

Remark As evidenced by parts (d) and (e) of Theorem 3.5.1, it is not true in general that
u × (v ×w) = (u × v) ×w. For example,

i × ( j × j) = i × 0 = 0

and
(i × j) × j = k × j = −i

so
i × ( j × j) ≠ (i × j) × j

We know from Theorem 3.5.1 that u × v is orthogonal to both u and v. If u and
v are nonzero vectors, it can be shown that the direction of u × v can be determined
using the following “right-hand rule” (Figure 3.5.3): Let 𝜃 be the angle between u and

u

v

u × v

θ

u

v

u × v

θ

FIGURE 3.5.3

v, and suppose u is rotated through the angle 𝜃 until it coincides with v. If the fingers of
the right hand are cupped so that they point in the direction of rotation, then the thumb
indicates (roughly) the direction of u × v.

You may find it instructive to practice this rule with the products

i × j = k, j × k = i, k × i = j

Geometric Interpretation of Cross Product
If u and v are vectors in 3-space, then the norm of u × v has a useful geometric interpre-
tation. Lagrange’s identity, given in Theorem 3.5.1, states that

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2 (5)

If 𝜃 denotes the angle between u and v, then u · v = ‖u‖‖v‖ cos 𝜃, so (5) can be rewritten
as

‖u × v‖2 = ‖u‖2‖v‖2 − ‖u‖2‖v‖2 cos2 𝜃
= ‖u‖2‖v‖2(1 − cos2 𝜃)
= ‖u‖2‖v‖2 sin2 𝜃

Since 0 ≤ 𝜃 ≤ 𝜋, it follows that sin 𝜃 ≥ 0, so this can be rewritten as

‖u × v‖ = ‖u‖‖v‖ sin 𝜃 (6)

But ‖v‖ sin 𝜃 is the altitude of the parallelogram determined by u and v (Figure 3.5.4).

θ

‖u‖

‖v‖

v

u

‖v‖ sin θ

FIGURE 3.5.4 Thus, from (6), the area 𝐴 of this parallelogram is given by

𝐴 = (base)(altitude) = ‖u‖‖v‖ sin 𝜃 = ‖u × v‖



November 12, 2018 16:03 C03 Sheet number 50 Page number 195 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

3.5 Cross Product 195

This result is even correct if u and v are collinear, since the parallelogram determined by
u and v has zero area and from (6) we have u × v = 0 because 𝜃 = 0 in this case. Thus we
have the following theorem.

Theorem 3.5.3

Area of a Parallelogram
If u and v are vectors in 3-space, then ‖u × v‖ is equal to the area of the parallelo-
gram determined by u and v.

EXAMPLE 4 | Area of a Triangle

Find the area of the triangle determined by the points𝑃1(2, 2, 0),𝑃2(−1, 0, 2), and𝑃3(0, 4, 3).
Solution The area 𝐴 of the triangle is 1

2 the area of the parallelogram determined by the

vectors 𝑃1𝑃2 and 𝑃1𝑃3 (Figure 3.5.5). Using the method discussed in Example 1 of Sec-
tion 3.1, 𝑃1𝑃2 = (−3,−2, 2) and 𝑃1𝑃3 = (−2, 2, 3). It follows that

𝑃1𝑃2 × 𝑃1𝑃3 = (−10, 5,−10)
(verify) and consequently that

𝐴 = 1
2‖𝑃1𝑃2 × 𝑃1𝑃3‖ = 1

2 (15) =
15
2

z

y

x
P1(2, 2, 0)

P3(0, 4, 3)
P2(–1, 0, 2)

FIGURE 3.5.5

Definition 2

If u, v, andw are vectors in 3-space, then

u · (v ×w)
is called the scalar triple product of u, v, andw.

The scalar triple product ofu = (u1,u2,u3), v = (v1, v2, v3), andw = (w1,w2,w3) can
be calculated from the formula

u · (v ×w) =
|||||

u1 u2 u3
v1 v2 v3
w1 w2 w3

|||||
(7)

This follows from Formula (4) since

u · (v ×w) = u · (|||
v2 v3
w2 w3

||| i −
|||
v1 v3
w1 w3

||| j +
|||
v1 v2
w1 w2

|||k)

= |||
v2 v3
w2 w3

|||u1 −
|||
v1 v3
w1 w3

|||u2 +
|||
v1 v2
w1 w2

|||u3

=
|||||

u1 u2 u3
v1 v2 v3
w1 w2 w3

|||||
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EXAMPLE 5 | Calculating a Scalar Triple Product

Calculate the scalar triple product u · (v ×w) of the vectors
u = 3i− 2j− 5k, v = i+ 4j− 4k, w = 3j+ 2k

Solution From (7),

u · (v ×w) =
|||||

3 −2 −5
1 4 −4
0 3 2

|||||

= 3
|||
4 −4
3 2

||| − (−2) |||
1 −4
0 2

||| + (−5) |||
1 4
0 3

|||
= 60+ 4− 15 = 49

Remark The symbol (u · v) ×wmakes no sense because we cannot form the cross prod-
uct of a scalar and a vector. Thus, no ambiguity arises if we write u · v ×w rather than
u · (v ×w). However, for clarity we will usually keep the parentheses.

It follows from (7) that

u · (v ×w) = w· (u × v) = v · (w × u)

since the 3 × 3 determinants that represent these products can be obtained from one
another by two row interchanges. (Verify.) These relationships can be remembered
by moving the vectors u, v, and w clockwise around the vertices of the triangle in
Figure 3.5.6.

w v

u

×

FIGURE 3.5.6

Geometric Interpretation of Determinants
The next theorem provides a useful geometric interpretation of 2 × 2 and 3 × 3 determi-
nants.

Theorem 3.5.4

(a) The absolute value of the determinant

det [u1 u2
v1 v2

]

is equal to the area of the parallelogram in 2-space determined by the vectors
u = (u1,u2) and v = (v1, v2). (See Figure 3.5.7a.)

(b) The absolute value of the determinant

det[
u1 u2 u3
v1 v2 v3
w1 w2 w3

]

is equal to the volumeof the parallelepiped in 3-space determined by the vectors
u = (u1,u2,u3), v = (v1, v2, v3), andw = (w1,w2,w3). (See Figure 3.5.7b.)
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y

x

z

y

x

(v1, v2)

(u1, u2)
u

v

(u1, u2, u3)

(w1, w2, w3)

(v1, v2, v3)w

u

v

u

v

(u1, u2, 0)

(v1, v2, 0)

z

y

x

(a) (b) (c)

FIGURE 3.5.7

Proof (a) The key to the proof is to use Theorem 3.5.3. However, that theorem applies
to vectors in 3-space, whereas u = (u1,u2) and v = (v1, v2) are vectors in 2-space. To cir-
cumvent this “dimension problem,” we will view u and v as vectors in the xy-plane of
an xyz-coordinate system (Figure 3.5.7c), in which case these vectors are expressed as
u = (u1,u2, 0) and v = (v1, v2, 0). Thus

u × v =
|||||

i j k
u1 u2 0
v1 v2 0

|||||
= |||

u1 u2
v1 v2

|||k = det [u1 u2
v1 v2

]k

It now follows from Theorem 3.5.3 and the fact that ‖k‖ = 1 that the area 𝐴 of the paral-
lelogram determined by u and v is

𝐴 = ‖u × v‖ = ‖
‖‖det [

u1 u2
v1 v2

]k‖‖‖ =
|||det [

u1 u2
v1 v2

]||| ‖k‖ =
|||det [

u1 u2
v1 v2

]|||
which completes the proof.

Proof (b) As shown in Figure 3.5.8, take the base of the parallelepiped determined by u,

h =   projv×wu

u

v

v × w

w

FIGURE 3.5.8

v, and w to be the parallelogram determined by v and w. It follows from Theorem 3.5.3
that the area of the base is ‖v ×w‖ and, as illustrated in Figure 3.5.8, the height h of
the parallelepiped is the length of the orthogonal projection of u on v ×w. Therefore, by
Formula (12) of Section 3.3,

h = ‖projv×wu‖ =
|u · (v ×w)|
‖v ×w‖

It follows that the volume 𝑉 of the parallelepiped is

𝑉 = (area of base) ⋅ height = ‖v ×w‖ |u · (v ×w)|‖v ×w‖ = |u · (v ×w)|

so from (7),

𝑉 =
|||||
det[

u1 u2 u3
v1 v2 v3
w1 w2 w3

]
|||||

(8)

which completes the proof.

Remark If 𝑉 denotes the volume of the parallelepiped determined by vectors u, v, and
w, then it follows from Formulas (7) and (8) that

𝑉 = [ volume of parallelepipeddetermined by u, v, andw] = |u · (v ×w)| (9)
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From this result and the discussion immediately following Definition 3 of Section 3.2, we
can conclude that

u · (v ×w) = ±𝑉
where the+ or− results depending on whether umakes an acute or an obtuse angle with
v ×w.

Formula (9) leads to a useful test for ascertaining whether three given vectors lie in
the same plane. Since three vectors not in the same plane determine a parallelepiped of
positive volume, it follows from (9) that |u · (v ×w)| = 0 if and only if the vectors u, v,
andw lie in the same plane. Thus we have the following result.

Theorem 3.5.5

If the vectors u = (u1,u2,u3), v = (v1, v2, v3), andw = (w1,w2,w3) have the same
initial point, then they lie in the same plane if and only if

u · (v ×w) =
|||||

u1 u2 u3
v1 v2 v3
w1 w2 w3

|||||
= 0

Exercise Set 3.5

In Exercises 1–2, let u = (3, 2,−1), v = (0, 2,−3), and
w = (2, 6, 7). Compute the indicated vectors.

1. a. v ×w b. w × v c. (u+ v) ×w
d. v · (v ×w) e. v × v f. (u− 3w) × (u− 3w)

2. a. u × v b. −(u × v) c. u × (v+w)
d. w · (w × v) e. w ×w f. (7v− 3u) × (7v− 3u)

In Exercises 3–4, let u, v, andw be the vectors in Exercises 1–2. Use
Lagrange’s identity to rewrite the expression using only dot products
and scalar multiplications, and then confirm your result by evaluat-
ing both sides of the identity.
3. ‖u ×w‖2 4. ‖v × u‖2

In Exercises 5–6, letu, v, andw be the vectors in Exercises 1–2. Com-
pute the vector triple product directly, and check your result by using
parts (d) and (e) of Theorem 3.5.1.
5. u × (v ×w) 6. (u × v) ×w

In Exercises 7–8, use the cross product to find a vector that is orthog-
onal to both u and v.
7. u = (−6, 4, 2), v = (3, 1, 5)

8. u = (1, 1,−2), v = (2,−1, 2)

In Exercises 9–10, find the area of the parallelogram determined by
the given vectors u and v.
9. u = (1,−1, 2), v = (0, 3, 1)

10. u = (3,−1, 4), v = (6,−2, 8)

In Exercises 11–12, find the area of the parallelogram with the given
vertices.
11. 𝑃1(1, 2), 𝑃2(4, 4), 𝑃3(7, 5), 𝑃4(4, 3)

12. 𝑃1(3, 2), 𝑃2(5, 4), 𝑃3(9, 4), 𝑃4(7, 2)

In Exercises 13–14, find the area of the triangle with the given
vertices.
13. 𝐴(2, 0), 𝐵(3, 4), 𝐶(−1, 2)

14. 𝐴(1, 1), 𝐵(2, 2), 𝐶(3,−3)

In Exercises 15–16, find the area of the triangle in 3-space that has
the given vertices.
15. 𝑃1(2, 6,−1), 𝑃2(1, 1, 1), 𝑃3(4, 6, 2)

16. 𝑃(1,−1, 2), 𝑄(0, 3, 4), 𝑅(6, 1, 8)

In Exercises 17–18, find the volume of the parallelepiped with sides
u, v, andw.
17. u = (2,−6, 2), v = (0, 4,−2), w = (2, 2,−4)

18. u = (3, 1, 2), v = (4, 5, 1), w = (1, 2, 4)

In Exercises 19–20, determine whether u, v, and w lie in the same
plane when positioned so that their initial points coincide.
19. u = (−1,−2, 1), v = (3, 0,−2), w = (5,−4, 0)

20. u = (5,−2, 1), v = (4,−1, 1), w = (1,−1, 0)

In Exercises 21–24, compute the scalar triple product u · (v ×w).
21. u = (−2, 0, 6), v = (1,−3, 1), w = (−5,−1, 1)

22. u = (−1, 2, 4), v = (3, 4,−2), w = (−1, 2, 5)

23. u = (a, 0, 0), v = (0, b, 0), w = (0, 0, c)

24. u = i, v = j, w = k

In Exercises 25–26, suppose that u · (v ×w) = 3. Find
25. a. u · (w × v) b. (v ×w) · u c. w · (u × v)

26. a. v · (u ×w) b. (u ×w) · v c. v · (w ×w)
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27. a. Find the area of the triangle having vertices 𝐴(1, 0, 1),
𝐵(0, 2, 3), and 𝐶(2, 1, 0).

b. Use the result of part (a) to find the length of the altitude
from vertex 𝐶 to side𝐴𝐵.

28. Use the cross product to find the sine of the angle between the
vectors u = (2, 3,−6) and v = (2, 3, 6).

29. Simplify (u+ v) × (u− v).
30. Let a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), and

d = (d1, d2, d3). Show that
(a+ d) · (b × c) = a · (b × c) + d · (b × c)

Exercises 31–32 You know from your own experience that the ten-
dency for a force to cause a rotation about an axis depends on the
amount of force applied and its distance from the axis of rotation.
For example, it is easier to close a door by pushing on its outer edge
than close to its hinges. Moreover, the harder you push, the faster
the door will close. In physics, the tendency for a force vector F to
cause rotational motion is a vector called torque (denoted by 𝝉). It
is defined as

𝝉 = F × d
where d is the vector from the axis of rotation to the point at which
the force is applied. It follows from Formula (6) that

‖𝝉‖ = ‖F × d‖ = ‖F‖‖d‖ sin𝜃
where 𝜃 is the angle between the vectors F and d. This is called the
scalarmoment ofF about the axis of rotation and is typicallymea-
sured in units of Newton meters (Nm) or foot pounds (ft–lb).
31. The accompanying figure shows a force F of 1000 N applied to

the corner of a box.

a. Find the scalar moment of F about the point 𝑃.
b. Find the direction angles of the vector moment of F about

the point 𝑃 to the nearest degree. [See directions for Exer-
cises 21–25 of Section 3.2.]

2 m

1 m

1000 N

1 m

P

Q

z

x

y

FIGURE Ex-31

32. As shown in the accompanying figure, a force of 200 N is
applied at an angle of 18∘ to a point near the end of a monkey
wrench. Find the scalar moment of the force about the center
of the bolt. [Note: Treat the wrench as two-dimensional.]

30 mm

200 mm 200 N

18°

FIGURE Ex-32

Working with Proofs
33. Let u, v, and w be nonzero vectors in 3-space with the same

initial point, but such that no two of them are collinear. Prove
that

a. u × (v ×w) lies in the plane determined by v andw.
b. (u × v) ×w lies in the plane determined by u and v.

34. Prove the following identities.
a. (u+ kv) × v = u × v
b. u · (v × z) = −(u × z) · v

35. Prove: If a, b, c, and d lie in the same plane, then
(a × b) × (c × d) = 0.

36. Prove: If 𝜃 is the angle between u and v and u · v ≠ 0, then
tan𝜃 = ‖u × v‖/(u · v).

37. Prove that if u, v, andw are vectors in𝑅3, no two of which are
collinear, then u × (v ×w) lies in the plane determined by v
andw.

38. It is a theorem of solid geometry that the volume of a tetrahe-
dron is 1

3 (area of base) ⋅ (height). Use this result to prove that
the volume of a tetrahedron whose sides are the vectors a, b,
and c is 1

6 |a · (b × c)| (see accompanying figure).

b
a

c

FIGURE Ex-38

39. Use the result of Exercise 38 to find the volume of the tetrahe-
dron with vertices 𝑃,𝑄, 𝑅, 𝑆.
a. 𝑃(−1, 2, 0), 𝑄(2, 1,−3), 𝑅(1, 1, 1), 𝑆(3,−2, 3)
b. 𝑃(0, 0, 0), 𝑄(1, 2,−1), 𝑅(3, 4, 0), 𝑆(−1,−3, 4)

40. Prove part (d) of Theorem 3.5.1. [Hint: First prove the
result in the case where w = i = (1, 0, 0), then when
w = j = (0, 1, 0), and then when w = k = (0, 0, 1). Finally,
prove it for an arbitrary vector w = (𝑤1,𝑤2,𝑤3) by writing
w = 𝑤1i+𝑤2 j+𝑤3k.]

41. Prove part (e) of Theorem 3.5.1. [Hint: Apply part (a) of Theo-
rem 3.5.2 to the result in part (d) of Theorem 3.5.1.]

42. Prove:
a. Prove (b) of Theorem 3.5.2.

b. Prove (c) of Theorem 3.5.2.

c. Prove (d) of Theorem 3.5.2.

d. Prove (e) of Theorem 3.5.2.

e. Prove ( f ) of Theorem 3.5.2.
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True-False Exercises
TF. In parts (a)–(f ) determine whether the statement is true or

false, and justify your answer.
a. The cross product of two nonzero vectors u and v is a

nonzero vector if and only if u and v are not parallel.

b. A normal vector to a plane can be obtained by taking the
cross product of two nonzero and noncollinear vectors
lying in the plane.

c. The scalar triple product of u, v, and w determines a
vector whose length is equal to the volume of the paral-
lelepiped determined by u, v, andw.

d. If u and v are vectors in 3-space, then ‖v × u‖ is equal to
the area of the parallelogram determined by u and v.

e. For all vectors u, v, andw in 3-space, the vectors

(u × v) ×w and u × (v ×w)

are the same.

f. If u, v, and w are vectors in 𝑅3, where u is nonzero and
u × v = u ×w, then v = w.

Working with Technology
T1. As stated in Exercise 23, the distance d in 3-space from a point

𝑃 to the line𝐿 through points𝐴 and𝐵 is given by the formula

d = ‖𝐴𝑃 ×𝐴𝐵‖

‖𝐴𝐵‖
Find the distance between the point 𝑃(1, 3, 1) and the line
through the points𝐴(2,−3, 4) and 𝐵(4, 7,−2).

Chapter 3 Supplementary Exercises
1. Let u = (−2, 0, 4), v = (3,−1, 6), and w = (2,−5,−5).

Compute

a. 3v− 2u b. ‖u+ v+w‖
c. the distance between−3u and v+ 5w
d. projwu e. u · (v ×w)

f. (−5v+w) × ((u · v)w)

2. Repeat Exercise 1 for the vectors

u = 3i− 5j+ k, v = −2i+ 2k,

and
w = −j+ 4k

3. Repeat parts (a)–(d) of Exercise 1 using the vectors
u = (−2, 6, 2, 1), v = (−3, 0, 8, 0), andw = (9, 1,−6,−6).

4. a. The set of all vectors in 𝑅2 that are orthogonal to a nonzero
vector is what kind of geometric object?

b. The set of all vectors in 𝑅3 that are orthogonal to a nonzero
vector is what kind of geometric object?

c. The set of all vectors in 𝑅2 that are orthogonal to two non-
collinear vectors is what kind of geometric object?

d. The set of all vectors in 𝑅3 that are orthogonal to two non-
collinear vectors is what kind of geometric object?

5. Let 𝐴,𝐵, and 𝐶 be three distinct noncollinear points in
3-space. Describe the set of all points 𝑃 that satisfy the vector
equation𝐴𝑃 · (𝐴𝐵 × 𝐴𝐶) = 0.

6. Let 𝐴,𝐵,𝐶, and 𝐷 be four distinct noncollinear points in
3-space. If 𝐴𝐵 × 𝐶𝐷 ≠ 0 and 𝐴𝐶 · (𝐴𝐵 × 𝐶𝐷) = 0, explain
why the line through𝐴 and 𝐵 must intersect the line through
𝐶 and𝐷.

7. Consider the points 𝑃(3,−1, 4), 𝑄(6, 0, 2), and 𝑅(5, 1, 1).
Find the point 𝑆 in 𝑅3 whose first component is −1 and such
that 𝑃𝑄 is parallel to 𝑅𝑆.

8. Consider the points 𝑃(−3, 1, 0, 6), 𝑄(0, 5, 1,−2), and
𝑅(−4, 1, 4, 0). Find the point 𝑆 in 𝑅4 whose third component
is 6 and such that 𝑃𝑄 is parallel to 𝑅𝑆.

9. Using the points in Exercise 7, find the cosine of the angle
between the vectors 𝑃𝑄 and 𝑃𝑅.

10. Using the points in Exercise 8, find the cosine of the angle
between the vectors 𝑃𝑄 and 𝑃𝑅.

11. Find the distance between the point 𝑃(−3, 1, 3) and the plane
5x+ z = 3y− 4.

12. Show that the planes
3x− y+ 6z = 7

and
−6x+ 2y − 12z = 1

are parallel, and find the distance between them.

In Exercises 13–18, find vector and parametric equations for the line
or plane in question.
13. The plane in 𝑅3 that contains the points 𝑃(−2, 1, 3),

𝑄(−1,−1, 1), and 𝑅(3, 0,−2).

14. The line in𝑅3 that contains the point𝑃(−1, 6, 0) and is orthog-
onal to the plane 4x− z = 5.

15. The line in 𝑅2 that is parallel to the vector v = (8,−1) and
contains the point 𝑃(0,−3).

16. The plane in 𝑅3 that contains the point 𝑃(−2, 1, 0) and is par-
allel to the plane−8x+ 6y− z = 4.

17. The line in 𝑅2 with equation y = 3x− 5.

18. The plane in 𝑅3 with equation 2x− 6y+ 3z = 5.

In Exercises 19–21, find a point-normal equation for the given
plane.
19. The plane that is represented by the vector equation

(x, y, z) = (−1, 5, 6) + t1(0,−1, 3) + t2(2,−1, 0)
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20. The plane that contains the point 𝑃(−5, 1, 0) and is orthogo-
nal to the line with parametric equations x = 3− 5t, y = 2t,
and z = 7.

21. The plane that passes through the points 𝑃(9, 0, 4),
𝑄(−1, 4, 3), and 𝑅(0, 6,−2).

22. Suppose that𝑉 = {v1, v2, v3} and𝑊={w1,w2} are two sets of
vectors such that each vector in 𝑉 is orthogonal to each vec-
tor in 𝑊. Prove that if a1, a2, a3, b1, b2 are any scalars, then
the vectors v = a1v1 + a2v2 + a3v3 andw = b1w1 + b2w2 are
orthogonal.

23. Show that in 3-space the distance d from a point 𝑃 to the line
𝐿 through points𝐴 and 𝐵 can be expressed as

d = ‖𝐴𝑃 ×𝐴𝐵‖

‖𝐴𝐵‖
24. Prove that ‖u+ v‖ = ‖u‖ + ‖v‖ if and only if one of the vec-

tors is a scalar multiple of the other.

25. The equation 𝐴x+𝐵y = 0 represents a line through the ori-
gin in 𝑅2 if 𝐴 and 𝐵 are not both zero. What does this equa-
tion represent in 𝑅3 if you think of it as 𝐴x+𝐵y+ 0z = 0?
Explain.
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Introduction
Recall that we began our study of vectors by viewing them as directed line segments
(arrows). We then extended this idea by introducing rectangular coordinate systems, and
that enabled us to view vectors as ordered pairs and ordered triples of real numbers. As we
developed properties of these vectors we noticed patterns in various formulas that enabled
us to extend the notion of a vector to an n-tuple of real numbers. Although n-tuples took
us outside the realm of our “visual experience,” it gave us a valuable tool for understand-
ing and studying systems of linear equations. In this chapter we will extend the concept
of a vector yet again by using the most important algebraic properties of vectors in 𝑅n as
axioms. These axioms, if satisfied by a set of objects, will enable us to think of those objects
as vectors.

4.1 Real Vector Spaces
In this section we will extend the concept of a vector by using the basic properties of
vectors in 𝑅n as axioms, which if satisfied by a set of objects will guarantee that those
objects behave like familiar vectors.

Vector Space Axioms
The following definition consists of ten axioms, eight of which are properties of vectors
in 𝑅n that were stated in Theorem 3.1.1. It is important to keep in mind that one does
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not prove axioms; rather, they are assumptions that serve as the starting point for proving
theorems.

Definition 1

Let 𝑉 be an arbitrary nonempty set of objects for which two operations are defined:
addition and multiplication by numbers called scalars. By addition we mean a
rule for associating with each pair of objects u and v in 𝑉 an object u + v, called
the sum of u and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object u in 𝑉 an object ku, called the scalar multiple of u
by k. If the following axioms are satisfied by all objects u, v,w in 𝑉 and all scalars
k andm, then we call 𝑉 a vector space and we call the objects in 𝑉 vectors.
1. If u and v are objects in 𝑉, then u + v is in 𝑉.
2. u + v = v + u
3. u + (v +w) = (u + v) +w
4. There exists an object in 𝑉, called the zero vector, that is denoted by 0 and

has the property that 0 + u = u + 0 = u for all u in 𝑉.
5. For each u in 𝑉, there is an object −u in 𝑉, called a negative of u, such that

u + (−u) = (−u) + u = 0.
6. If k is any scalar and u is any object in 𝑉, then ku is in 𝑉.
7. k(u + v) = ku + kv
8. (k +m)u = ku +mu
9. k(mu) = (km)(u)
10. 1u = u

In this text scalars will
be either real numbers or
complex numbers. Vector
spaces with real scalars will
be called real vector spaces
and those with complex
scalars will be called com-
plex vector spaces. For now
we will consider only real
vector spaces.

Observe that the definition of a vector space does not specify the nature of the vectors
or the operations. Any kind of object can be a vector, and the operations of addition and
scalarmultiplication need not have any relationship to those on 𝑅n. The only requirement
is that the ten vector space axioms be satisfied. In the examples that followwewill use four
basic steps to show that a set with two operations is a vector space.

Steps to Show That a Set with Two Operations Is a Vector Space
Step 1. Identify the set𝑉 of objects that will become vectors.

Step 2. Identify the addition and scalar multiplication operations on𝑉.
Step 3. Verify Axioms 1 and 6; that is, adding two vectors in 𝑉 produces a vector in 𝑉,

and multiplying a vector in𝑉 by a scalar also produces a vector in𝑉.
Axiom 1 is called closure under addition, and Axiom 6 is called closure under
scalar multiplication.

Step 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Our first example is the simplest of all vector spaces in that it contains only one object.
Since Axiom 4 requires that every vector space contain a zero vector, the object will have
to be that vector.
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EXAMPLE 1 | The Zero Vector Space

Let𝑉 consist of a single object, which we denote by 0, and define

0+ 0 = 0 and k0 = 0

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call this
the zero vector space.

Our second example is one of the most important of all vector spaces—the familiar
space 𝑅n. It should not be surprising that the operations on 𝑅n satisfy the vector space
axioms because those axioms were based on known properties of operations on 𝑅n.

EXAMPLE 2 | Rn Is a Vector Space

Let𝑉 = 𝑅n, and define the vector space operations on𝑉 to be the usual operations of addi-
tion and scalar multiplication of n-tuples; that is,

u+ v = (u1,u2, . . . , un) + (𝑣1, 𝑣2, . . . , 𝑣n) = (u1 + 𝑣1,u2 + 𝑣2, . . . , un + 𝑣n)
ku = (ku1, ku2, . . . , kun)

The set 𝑉 = 𝑅n is closed under addition and scalar multiplication because the foregoing
operations produce n-tuples as their end result, and these operations satisfy Axioms 2, 3, 4,
5, 7, 8, 9, and 10 by virtue of Theorem 3.1.1.

Historical Note

Hermann Günther
Grassmann
(1809–1877)

The notion of an “abstract vector space” evolved over many
years and had many contributors. The idea crystallized with the
work of theGermanmathematicianH. G. Grassmann, who pub-
lished a paper in 1862 inwhich he considered abstract systems of
unspecified elements on which he defined formal operations of
addition and scalar multiplication. Grassmann’s work was con-
troversial, and others, including Augustin Cauchy (p. 136), laid
reasonable claim to the idea.

[Image: © Sueddeutsche Zeitung Photo/The Image Works]

Our next example is a generalization of𝑅n inwhichwe allow vectors to have infinitely
many components.
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EXAMPLE 3 | The Vector Space of Infinite Sequences of
Real Numbers

Let𝑉 consist of objects of the form

u = (u1,u2, . . . ,un, . . . )
in which u1,u2, . . . ,un, . . . is an infinite sequence of real numbers. We define two infinite
sequences to be equal if their corresponding components are equal, and we define addition
and scalar multiplication componentwise by

u+ v = (u1,u2, . . . ,un, . . . ) + (v1, v2, . . . , vn, . . . )
= (u1 + v1,u2 + v2, . . . ,un + vn, . . . )

ku = (ku1, ku2, . . . , kun, . . . )
In the exercises we ask you to confirm that𝑉 with these operations is a vector space. We will
denote this vector space by the symbol 𝑅∞.

Vector spaces of the type in Example 3 arise when a transmitted signal of indefinite
E(t)
Voltage

Time

t
1

–1

FIGURE 4.1.1 This transmitted
signal continues indefinitely.

duration is digitized by sampling its values at discrete time intervals (Figure 4.1.1).
In the next example our vectors will be matrices. This may be a little confusing at

first because matrices are composed of rows and columns, which are themselves vectors
(row vectors and column vectors). However, from the vector space viewpoint we are not
concerned with the individual rows and columns but rather with the properties of the
matrix operations as they relate to the matrix as a whole.

Note that Equation (1)
involves three different addi-
tion operations: the addition
operation on vectors, the
addition operation on
matrices, and the addition
operation on real numbers.

EXAMPLE 4 | The Vector Space of 2 × 2 Matrices

Let 𝑉 be the set of 2 × 2 matrices with real entries, and take the vector space operations on
𝑉 to be the usual operations of matrix addition and scalar multiplication; that is,

u+ v = [u11 u12
u21 u22

] + [v11 v12
v21 v22

] = [u11 + v11 u12 + v12
u21 + v21 u22 + v22

]

ku = k [
u11 u12
u21 u22

] = [ku11 ku12
ku21 ku22

]

(1)

The set𝑉 is closed under addition and scalarmultiplication because the foregoing operations
produce 2 × 2 matrices as the end result. Thus, it remains to confirm that Axioms 2, 3, 4, 5,
7, 8, 9, and 10 hold. Some of these are standard properties of matrix operations. For example,
Axiom 2 follows from Theorem 1.4.1(a) since

u+ v = [u11 u12
u21 u22

] + [v11 v12
v21 v22

] = [v11 v12
v21 v22

] + [u11 u12
u21 u22

] = v+ u

Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), ( j), and (e), respectively, of that
theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 × 2 matrix 0 in 𝑉 for which
u+ 0 = 0+ u for all 2 × 2 matrices in𝑉. We can do this by taking

0 = [0 0
0 0]

With this definition,

0+ u = [0 0
0 0] + [u11 u12

u21 u22
] = [u11 u12

u21 u22
] = u
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and similarly u+ 0 = u. To verify that Axiom 5 holds we must show that each object u in
𝑉 has a negative−u in 𝑉 such that u+ (−u) = 0 and (−u) + u = 0. This can be done by
defining the negative of u to be

−u = [−u11 −u12
−u21 −u22

]

With this definition,

u+ (−u) = [u11 u12
u21 u22

] + [−u11 −u12
−u21 −u22

] = [0 0
0 0] = 0

and similarly (−u) + u = 0. Finally, Axiom 10 holds because

1u = 1 [
u11 u12
u21 u22

] = [u11 u12
u21 u22

] = u

EXAMPLE 5 | The Vector Space ofm × nMatrices

Example 4 is a special case of a more general class of vector spaces. You should have no trou-
ble adapting the argument used in that example to show that the set 𝑉 of all m × n matri-
ces with the usual matrix operations of addition and scalar multiplication is a vector space.
We will denote this vector space by the symbol𝑀mn. Thus, for example, the vector space in
Example 4 is denoted as𝑀22.

In Example 6 the functions
are defined on the entire
interval (−∞,∞). However,
the arguments used in that
example apply as well on all
subintervals of (−∞,∞),
such as a closed interval
[a, b] or an open interval
(a, b). We will denote the
vector spaces of functions
on these intervals by F[a, b]
and 𝐹(a, b), respectively.

EXAMPLE 6 | The Vector Space of Real-Valued Functions

Let𝑉 be the set of real-valued functions that are defined at each x in the interval (−∞,∞). If
f = 𝑓(x) and g = g(x) are two functions in𝑉 and if k is any scalar, then define the operations
of addition and scalar multiplication by

(f+ g)(x) = 𝑓(x) + g(x) (2)

(kf)(x) = k𝑓(x) (3)

One way to think about these operations is to view the numbers 𝑓(x) and g(x) as “compo-
nents” of f and g at the point x, in which case Equations (2) and (3) state that two functions
are added by adding corresponding components, and a function is multiplied by a scalar by
multiplying each component by that scalar—exactly as in 𝑅n and 𝑅∞. This idea is illustrated
in parts (a) and (b) of Figure 4.1.2. The set𝑉 with these operations is denoted by the symbol
𝐹(−∞,∞). We can prove that this is a vector space as follows:
Axioms 1 and 6: These closure axioms require that if we add two functions that are defined
at each x in the interval (−∞,∞), then sums and scalar multiples of those functions must
also be defined at each x in the interval (−∞,∞). This follows from Formulas (2) and (3).
Axiom 4: This axiom requires that there exists a function 0 in 𝐹(−∞,∞), which when
added to any other function f in𝐹(−∞,∞) produces f back again as the result. The function
whose value at every point x in the interval (−∞,∞) is zero has this property. Geometrically,
the graph of the function 0 is the line that coincides with the x-axis.
Axiom 5: This axiom requires that for each function f in 𝐹(−∞,∞) there exists a function
−f in 𝐹(−∞,∞), which when added to f produces the function 0. The function defined by
−f(x) = −𝑓(x) has this property. The graph of−f can be obtained by reflecting the graph of
f about the x-axis (Figure 4.1.2c).
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Axioms 2, 3, 7, 8, 9, 10: The validity of each of these axioms follows from properties of real
numbers. For example, if f and g are functions in 𝐹(−∞,∞), then Axiom 2 requires that
f+ g = g+ f. This follows from the computation

(f+ g)(x) = 𝑓(x) + g(x) = g(x) + 𝑓(x) = (g+ f)(x)
in which the first and last equalities follow from (2), and the middle equality is a property of
real numbers. We will leave the proofs of the remaining parts as exercises.

x

x

y

f + g

g

f f(x)

f(x) + g(x)
g(x)

x

x

y

f

kf

f(x)

kf(x)

(c)(b)(a)

0
x

y

f

–f

f(x)

–f(x)

FIGURE 4.1.2

It is important to recognize that you cannot impose any two operations on any set 𝑉
and expect the vector space axioms to hold. For example, if 𝑉 is the set of n-tuples with
positive components, and if the standard operations from 𝑅n are used, then𝑉 is not closed
under scalar multiplication because if u is a nonzero n-tuple in 𝑉, then (−1)u has at least
one negative component and hence is not in 𝑉. The following is a less obvious example in
which only one of the ten vector space axioms fails to hold.

EXAMPLE 7 | A Set That Is Not a Vector Space

Let𝑉 = 𝑅2 anddefine addition and scalarmultiplication operations as follows: Ifu = (u1,u2)
and v = (v1, v2), then define

u+ v = (u1 + v1,u2 + v2)
and if k is any real number, then define

ku = (ku1, 0)
For example, if u = (2, 4), v = (−3, 5), and k = 7, then

u+ v = (−1, 9)
ku = 7u = (14, 0)

The addition operation is the standard one from 𝑅2, but the scalar multiplication is not. In
the exercises we will ask you to show that the first nine vector space axioms are satisfied, but
Axiom 10 fails to hold for certain vectors. For example, if u = (u1,u2) is such that u2 ≠ 0,
then

1u = 1(u1,u2) = (u1, 0) ≠ u
Thus,𝑉 is not a vector space with the stated operations.

Our final example will be an unusual vector space that we have included to illustrate
how varied vector spaces can be. Since the vectors in this spacewill be real numbers, it will
be important for you to keep track of which operations are intended as vector operations
and which ones as ordinary operations on real numbers.
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EXAMPLE 8 | An Unusual Vector Space

Let 𝑉 be the set of positive real numbers, let u = u and v = v be any vectors (i.e., positive
real numbers) in𝑉, and let k be any scalar. Define the operations on𝑉 to be

u+ v = uv [Vector addition is numerical multiplication.]
ku = uk [Scalar multiplication is numerical exponentiation.]

Thus, for example, 1+ 1 = 1 and (2)(1) = 12 = 1—strange indeed, but nevertheless
the set 𝑉 with these operations satisfies the ten vector space axioms and hence is a vector
space. We will confirm Axioms 4, 5, and 7, and leave the others as exercises.

• Axiom 4—The zero vector in this space is the number 1 (i.e., 0 = 1) since

u+ 1 = u ⋅ 1 = u

• Axiom 5—The negative of a vector u is its reciprocal (i.e.,−u = 1/u) since

u+ 1
u
= u( 1

u
) = 1 (= 0)

• Axiom 7—k(u+ v) = (uv)k = ukvk = (ku) + (kv).

Some Properties of Vectors
The following is our first theorem about vector spaces. Although the statements in this
theorem closely parallel familiar results in the arithmetic of real numbers, this is no guar-
antee that they are also true in vector arithmetic, so proof of their validity is required. The
proofs are very formal with each step being justified by a vector space axiom or a known
property of real numbers. There will not be many rigidly formal proofs of this type in the
text, but we have included this one to reinforce the idea that the familiar properties of
vectors can all be derived from the vector space axioms.

Theorem 4.1.1

Let 𝑉 be a vector space, u a vector in 𝑉, and k a scalar; then:
(a) 0u = 0
(b) k0 = 0
(c) (−1)u = −u
(d) If ku = 0, then k = 0 or u = 0.

We will prove parts (a) and (c) and leave proofs of the remaining parts as exercises.

Proof (a) We can write
0u + 0u = (0 + 0)u [Axiom 8]

= 0u [Property of the number 0]

By Axiom 5 the vector 0u has a negative, −0u. Adding this negative to both sides above
yields

[0u + 0u] + (−0u) = 0u + (−0u)
or

0u + [0u + (−0u)] = 0u + (−0u) [Axiom 3]

0u + 0 = 0 [Axiom 5]

0u = 0 [Axiom 4]
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Proof (c) To prove that (−1)u = −u, we must show that u + (−1)u = 0. The proof is as
follows:

u + (−1)u = 1u + (−1)u [Axiom 10]

= (1 + (−1))u [Axiom 8]

= 0u [Property of numbers]

= 0 [Part (a) of this theorem]

A Closing Observation
This section of the text is important to the overall plan of linear algebra in that it estab-
lishes a common thread among such diverse mathematical objects as geometric vectors,
vectors in 𝑅n, infinite sequences, matrices, and real-valued functions, to name a few. As
a result, whenever we discover a new theorem about general vector spaces, we will at the
same time be discovering a theorem about geometric vectors, vectors in 𝑅n, sequences,
matrices, real-valued functions, and about any new kinds of vectors that we might dis-
cover.

To illustrate this idea, consider what the rather innocent-looking result in part (a) of
Theorem 4.1.1 says about the vector space in Example 8. Keeping in mind that the vec-
tors in that space are positive real numbers, that scalar multiplication means numerical
exponentiation, and that the zero vector is the number 1, the equation

0u = 0
is really a statement of the familiar fact that if u is a positive real number, then

u0 = 1

Exercise Set 4.1

1. Let𝑉 be the set of all ordered pairs of real numbers, and con-
sider the following addition and scalar multiplication opera-
tions on u = (u1,u2) and v = (v1, v2):

u+ v = (u1 + v1,u2 + v2), ku = (0, ku2)

a. Compute u+ v and ku for u = (−1, 2), v = (3, 4), and
k = 3.

b. Inwords, explainwhy𝑉 is closed under addition and scalar
multiplication.

c. Since addition on 𝑉 is the standard addition operation on
𝑅2, certain vector space axioms hold for𝑉 because they are
known to hold for 𝑅2. Which axioms are they?

d. Show that Axioms 7, 8, and 9 hold.

e. Show that Axiom 10 fails and hence that 𝑉 is not a vector
space under the given operations.

2. Let𝑉 be the set of all ordered pairs of real numbers, and con-
sider the following addition and scalar multiplication opera-
tions on u = (u1,u2) and v = (v1, v2):

u+ v = (u1 + v1 + 1,u2 + v2 + 1), ku = (ku1, ku2)

a. Compute u+ v and ku for u = (0, 4), v = (1,−3), and
k = 2.

b. Show that (0, 0) ≠ 0.
c. Show that (−1,−1) = 0.

d. Show that Axiom 5 holds by producing a vector −u such
that u+ (−u) = 0 for u = (u1,u2).

e. Find two vector space axioms that fail to hold.

In Exercises 3–12, determine whether each set equipped with the
given operations is a vector space. For those that are not vector spaces
identify the vector space axioms that fail.
3. The set of all real numbers with the standard operations of

addition and multiplication.

4. The set of all pairs of real numbers of the form (x, 0) with the
standard operations on 𝑅2.

5. The set of all pairs of real numbers of the form (x, y), where
x ≥ 0, with the standard operations on 𝑅2.

6. The set of all n-tuples of real numbers that have the form
(x, x, . . . , x) with the standard operations on 𝑅n.

7. The set of all triples of real numbers with the standard vector
addition but with scalar multiplication defined by

k(x, y, z) = (k2x, k2y, k2z)

8. The set of all 2 × 2 invertiblematriceswith the standardmatrix
addition and scalar multiplication.

9. The set of all 2 × 2 matrices of the form

[a 0
0 b]

with the standard matrix addition and scalar multiplication.
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10. The set of all real-valued functions 𝑓 defined everywhere on
the real line and such that 𝑓(1) = 0 with the operations used
in Example 6.

11. The set of all pairs of real numbers of the form (1, x) with the
operations

(1, y) + (1, y′) = (1, y+ y′) and k(1, y) = (1, ky)

12. The set of polynomials of the form a0 + a1x with the opera-
tions

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x
and

k(a0 + a1x) = (ka0) + (ka1)x

13. Verify Axioms 3, 7, 8, and 9 for the vector space given in Exam-
ple 4.

14. Verify Axioms 1, 2, 3, 7, 8, 9, and 10 for the vector space given
in Example 6.

15. With the addition and scalarmultiplication operations defined
in Example 7, show that𝑉 = 𝑅2 satisfies Axioms 1–9.

16. Verify Axioms 1, 2, 3, 6, 8, 9, and 10 for the vector space given
in Example 8.

17. Show that the set of all points in 𝑅2 lying on a line is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the line passes
through the origin.

18. Show that the set of all points in 𝑅3 lying in a plane is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the plane passes
through the origin.

In Exercises 19–20, let 𝑉 be the vector space of positive real num-
bers with the vector space operations given in Example 8. Let u = u
be any vector in 𝑉, and rewrite the vector statement as a statement
about real numbers.
19. −u = (−1)u

20. ku = 0 if and only if k = 0 or u = 0.

Working with Proofs
21. The argument that follows proves that if u, v, and w are vec-

tors in a vector space𝑉 such that u+w = v+w, then u = v
(the cancellation law for vector addition). As illustrated, jus-
tify the steps by filling in the blanks.

u+w = v+w Hypothesis
(u+w) + (−w) = (v+w) + (−w) Add−w to both sides.
u+ [w+ (−w)] = v+ [w+ (−w)]
u+ 0 = v+ 0
u = v

22. The seven-step proof of part (b) of Theorem 4.1.1 follows. Jus-
tify each step either by stating that it is true by hypothesis or

by specifying which of the ten vector space axioms applies.
Hypothesis: Let u be any vector in a vector space𝑉, let 0 be the
zero vector in𝑉, and let k be a scalar.
Conclusion: Then k0 = 0.

Proof: (1) k0+ ku = k(0+ u)
(2) = ku
(3) Since ku is in𝑉, −ku is in𝑉.
(4) Therefore, (k0+ ku) + (−ku) = ku+ (−ku).
(5) k0+ (ku + (−ku)) = ku+ (−ku)
(6) k0+ 0 = 0
(7) k0 = 0

In Exercises 23–24, let u be any vector in a vector space 𝑉. Give a
step-by-step proof of the stated result using Exercises 21 and 22 as
models for your presentation.

23. 0u = 0 24. −u = (−1)u

In Exercises 25–27, prove that the given set with the stated operations
is a vector space.
25. The set 𝑉 = {0} with the operations of addition and scalar

multiplication given in Example 1.

26. The set 𝑅∞ of all infinite sequences of real numbers with
the operations of addition and scalar multiplication given in
Example 3.

27. The set𝑀mn of allm × nmatrices with the usual operations of
addition and scalar multiplication.

28. Prove: If u is a vector in a vector space 𝑉 and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k ≠ 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises
TF. In parts (a)–(f) determine whether the statement is true or

false, and justify your answer.
a. A vector is any element of a vector space.

b. A vector space must contain at least two vectors.

c. If u is a vector and k is a scalar such that ku = 0, then it
must be true that k = 0.

d. The set of positive real numbers is a vector space if vec-
tor addition and scalar multiplication are the usual oper-
ations of addition and multiplication of real numbers.

e. In every vector space the vectors (−1)u and −u are the
same.

f. In the vector space 𝐹(−∞,∞) any function whose graph
passes through the origin is a zero vector.
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4.2 Subspaces
It is often the case that some vector space of interest is contained within a larger vector
space whose properties are known. In this section we will show how to recognize when
this is the case, we will explain how the properties of the larger vector space can be used
to obtain properties of the smaller vector space, and we will give a variety of important
examples.

We begin with some terminology.

Definition 1

A subset𝑊 of a vector space 𝑉 is called a subspace of 𝑉 if𝑊 is itself a vector space
under the addition and scalar multiplication defined on 𝑉.

In general, to show that a nonempty set𝑊 with two operations is a vector space one
must verify the ten vector space axioms. However, if𝑊 is a subspace of a known vector
space𝑉, then certain axioms need not be verified because they are “inherited” from𝑉. For
example, it is not necessary to verify that u + v = v + u holds in𝑊 because it holds for
all vectors in 𝑉 including those in𝑊. On the other hand, it is necessary to verify that𝑊 is
closed under addition and scalarmultiplication since it is possible that adding two vectors
in𝑊 or multiplying a vector in𝑊 by a scalar produces a vector in 𝑉 that is outside of𝑊
(Figure 4.2.1). Those axioms that are not inherited by𝑊 are

Axiom 1—Closure of𝑊 under addition
Axiom 4—Existence of a zero vector in𝑊
Axiom 5—Existence of a negative in𝑊 for every vector in𝑊
Axiom 6—Closure of𝑊 under scalar multiplication

so these must be verified to prove that it is a subspace of 𝑉. However, the next theorem
shows that if Axiom 1 and Axiom 6 hold in𝑊, then Axioms 4 and 5 hold in𝑊 as a con-
sequence and hence need not be verified.

ku

W

V

u

v

u + v

FIGURE 4.2.1 The vectors u and v are
in𝑊, but the vectors u+ v and ku are
not.

The Subspace Test states
thatW is a subspace of V
if and only if it is closed
under addition and scalar
multiplication.

Theorem 4.2.1

Subspace Test
If 𝑊 is a nonempty set of vectors in a vector space 𝑉, then𝑊 is a subspace of 𝑉 if
and only if the following conditions are satisfied.

(a) If u and v are vectors in𝑊, then u + v is in𝑊.
(b) If k is a scalar and u is a vector in𝑊, then ku is in𝑊.
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Proof If 𝑊 is a subspace of 𝑉, then all the vector space axioms hold in 𝑊, including
Axioms 1 and 6, which are precisely conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since these are Axioms 1 and
6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from 𝑉, we only need to show that
Axioms 4 and 5 hold in 𝑊. For this purpose, let u be any vector in 𝑊. It follows from
condition (b) that the product ku is also a vector in 𝑊 for every scalar k. In particular,
0u = 0 and (−1)u = −u are in𝑊, which shows that Axioms 4 and 5 hold in𝑊.

It is important to note that the first step in applying the Subspace Test to a set𝑊 is
to confirm that the set is nonempty. This should be clear for all of the examples in this
section, so we will omit its explicit verification.

Note that every vector space
has at least two subspaces,
itself and its zero subspace.

EXAMPLE 1 | The Zero Subspace

If 𝑉 is any vector space, and if 𝑊 = {0} is the subset of 𝑉 that consists of the zero vector
only, then𝑊 is closed under addition and scalar multiplication since

0+ 0 = 0 and k0 = 0

for any scalar k. We call𝑊 the zero subspace of𝑉.

EXAMPLE 2 | Lines Through the Origin Are Subspaces of
R2 and of R3

If𝑊 is a line through the origin of either 𝑅2 or 𝑅3, then adding two vectors on the line or
multiplying a vector on the line by a scalar produces another vector on the line, so 𝑊 is
closed under addition and scalar multiplication (see Figure 4.2.2 for an illustration in 𝑅3).

u

v

u + v

W

(a)  W is closed under addition.

u

ku

W

(b)  W is closed under scalar
        multiplication.

FIGURE 4.2.2

u

v

ku

u + v

W

FIGURE 4.2.3 The vectors u+ v
and ku both lie in the same plane
as u and v.

EXAMPLE 3 | Planes Through the Origin Are Subspaces of R3

If u and v are vectors in a plane𝑊 through the origin of 𝑅3, then it is evident geometrically
that u+ v and ku also lie in the same plane𝑊 for any scalar k (Figure 4.2.3). Thus𝑊 is
closed under addition and scalar multiplication.
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Table 1 gives a list of subspaces of 𝑅2 and of 𝑅3 that we have encountered thus far.
We will see later that these are the only subspaces of 𝑅2 and of 𝑅3.

TABLE 1

Subspaces of 𝑅2 Subspaces of 𝑅3

• {0} • {0}
• Lines through the origin • Lines through the origin
• 𝑅2 • Planes through the origin

• 𝑅3

EXAMPLE 4 | A Subset of R2 That Is Not a Subspace

Let𝑊 be the set of all points (x, y) in 𝑅2 for which x ≥ 0 and y ≥ 0 (the shaded region in
Figure 4.2.4). This set is not a subspace of 𝑅2 because it is not closed under scalar multipli-
cation. For example, v = (1, 1) is a vector in𝑊, but (−1)v = (−1,−1) is not.

y

x

W
(1, 1)

(–1, –1)

FIGURE 4.2.4 𝑊 is not closed
under scalar multiplication.

EXAMPLE 5 | Subspaces ofMnn

Weknow fromTheorem1.7.2 that the sumof two symmetric n × nmatrices is symmetric and
that a scalar multiple of a symmetric n × nmatrix is symmetric. Thus, the set of symmetric
n × nmatrices is closed under addition and scalar multiplication and hence is a subspace of
𝑀nn. Similarly, the sets of upper triangular matrices, lower triangular matrices, and diagonal
matrices are subspaces of𝑀nn.

EXAMPLE 6 | A Subset ofMnn That Is Not a Subspace

The set𝑊 of invertible n × nmatrices is not a subspace of𝑀nn, failing on two counts—it is
not closed under addition and not closed under scalar multiplication. We will illustrate this
with an example in𝑀22 that you can readily adapt to𝑀nn. Consider the matrices

𝑈 = [1 2
2 5] and 𝑉 = [−1 2

−2 5]

The matrix 0𝑈 is the 2 × 2 zero matrix and hence is not invertible, and the matrix 𝑈 +𝑉
has a column of zeros so it also is not invertible.

CALCULUS REQUIREDEXAMPLE 7 | The Subspace C(−∞,∞)

There is a theorem in calculus which states that a sum of continuous functions is continuous
and that a constant times a continuous function is continuous. Rephrased in vector language,
the set of continuous functions on (−∞,∞) is a subspace of𝐹(−∞,∞). We will denote this
subspace by 𝐶(−∞,∞).
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CALCULUS REQUIRED EXAMPLE 8 | Functions with Continuous Derivatives

A function with a continuous derivative is said to be continuously differentiable. There is a
theorem in calculus which states that the sum of two continuously differentiable functions
is continuously differentiable and that a constant times a continuously differentiable func-
tion is continuously differentiable. Thus, the functions that are continuously differentiable
on (−∞,∞) form a subspace of 𝐹(−∞,∞). We will denote this subspace by 𝐶1(−∞,∞),
where the superscript emphasizes that the first derivatives are continuous. To take this a
step further, the set of functions with m continuous derivatives on (−∞,∞) is a subspace
of 𝐹(−∞,∞) as is the set of functions with derivatives of all orders on (−∞,∞). We will
denote these subspaces by 𝐶m(−∞,∞) and 𝐶∞(−∞,∞), respectively.

EXAMPLE 9 | The Subspace of All Polynomials

Recall that a polynomial is a function that can be expressed in the form

p(x) = a0 + a1x+ ⋅ ⋅ ⋅ + anxn (1)

where a0, a1, . . . , an are constants. It is evident that the sum of two polynomials is a polyno-
mial and that a constant times a polynomial is a polynomial. Thus, the set𝑊 of all polynomi-
als is closed under addition and scalar multiplication and hence is a subspace of𝐹(−∞,∞).
We will denote this space by 𝑃∞.

EXAMPLE 10 | The Subspace of Polynomials of Degree ≤ n

Recall that the degree of a polynomial is the highest power of the variable that occurs with
a nonzero coefficient. Thus, for example, if an ≠ 0 in Formula (1), then that polynomial has
degree n. It is not true that the set𝑊 of polynomials with positive degree n is a subspace of
𝐹(−∞,∞) because that set is not closed under addition. For example, the polynomials

1+ 2x+ 3x2 and 5+ 7x− 3x2

both have degree 2, but their sum has degree 1. What is true, however, is that for each non-
negative integer n the polynomials of degree n or less form a subspace of𝐹(−∞,∞). We will
denote this space by 𝑃n.

In this text we regard all
constants to be polynomials
of degree zero. Be aware,
however, that some authors
do not assign a degree to the
constant 0.

The Hierarchy of Function Spaces
It is proved in calculus that polynomials are continuous functions and have continuous
derivatives of all orders on (−∞,∞). Thus, it follows that 𝑃∞ is not only a subspace of
𝐹(−∞,∞), as previously observed, but is also a subspace of 𝐶∞(−∞,∞). We leave it for
you to convince yourself that the vector spaces discussed in Examples 7 to 10 are “nested”
one inside the other as illustrated in Figure 4.2.5.
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Pn

C∞(–∞, ∞)

Cm(–∞, ∞)

C1(–∞, ∞)

F(–∞, ∞)

C(–∞, ∞)

FIGURE 4.2.5

Remark In our previous exampleswe considered functions thatwere defined at all points
of the interval (−∞,∞). Sometimes we will want to consider functions that are only
defined on some subinterval of (−∞,∞), say the closed interval [a, b] or the open interval
(a, b). In such cases we will make an appropriate notation change. For example, 𝐶[a, b] is
the space of continuous functions on [a, b] and𝐶(a, b) is the space of continuous functions
on (a, b).

In the following examples we will illustrate how the Subspace Test can be applied to
various nonempty subsets of 𝑅n,𝑀mn, 𝑃n, and 𝐹(−∞,∞).

EXAMPLE 11 | Applying the Subspace Test in𝑀22

Determine whether the indicated set of matrices is a subspace of𝑀22.
(a) The set𝑈 consisting of all matrices of the form

[ x 0
2x y] (2)

(b) The set𝑊 consisting of all 2 × 2 matrices𝐴 such that

𝐴 [12] = [ 1
−1] (3)

Solution (a) If𝐴 and 𝐵 are matrices in𝑈, then they can be expressed in the form

𝐴 = [ a 0
2a b] and 𝐵 = [ c 0

2c d]

for some real numbers a, b, c, and d. But

𝐴+𝐵 = [ a+ c 0
2(a+ c) b+ d]

is also a matrix in𝑈 since it is of form (2) with x = a+ c and y = b+ d. Thus,𝑈 is closed
under addition. Similarly,𝑈 is closed under scalar multiplication since

k𝐴 = [ ka 0
2ka kb]

is of form (2) with x= ka and y= kb. These two results establish that𝑈 is a subspace of𝑀22.

Solution (b) The set𝑊 is not a subspace of𝑀22. To see that this is so, it suffices to show
that𝑊 is either not closed under addition or not closed under scalar multiplication. To see
that it is not closed under scalar multiplication, let

𝐴 = [ 1 0
−1 0]
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This is a vector in𝑊 since

𝐴[12] = [ 1 0
−1 0] [

1
2] = [ 1

−1]

so𝐴 satisfies Equation (3). However, 2𝐴 does not satisfy Equation (3) since

(2𝐴)[12] = [ 2 0
−2 0] [

1
2] = [ 2

−2]

and hence is not a vector in 𝑊. This alone establishes that 𝑊 is not a subspace of 𝑀22.
However, it is also true that𝑊 is not closed under addition.We leave the proof for the reader.

EXAMPLE 12 | Applying the Subspace Test in 𝑃2

Determine whether the indicated set of polynomials is a subspace of 𝑃2.
(a) The set𝑈 consisting of all polynomials of the form p = 1+ ax− ax2, where a is a real

number.
(b) The set𝑊 consisting of all polynomials p in 𝑃2 such that p(2)= 0.

Solution (a) The set𝑈 is not a subspace of 𝑃2 because it is not closed under addition. For
example, the polynomials p= 1+ x− x2 and q= 1+ 2x− 2x2 are in𝑈, but

p+ q = 2+ 3x− 3x2

is not. We leave it for you to verify that𝑈 is also not closed under scalar multiplication.

Solution (b) If p and q are polynomials in𝑊, and k is any real number, then
(p+ q)(2) = p(2) + q(2) = 0+ 0 = 0

and
(kp)(2) = k ⋅ p(2) = k ⋅ 0 = 0.

Since p + q and kp are in𝑊, it follows that𝑊 is a subspace of 𝑃2.

Building Subspaces
The following theorem provides a useful way of creating a new subspace from known
subspaces.

Theorem 4.2.2

If 𝑊1,𝑊2, . . . ,𝑊r are subspaces of a vector space 𝑉, then the intersection of these
subspaces is also a subspace of 𝑉.

Proof Let 𝑊 be the intersection of the subspaces 𝑊1,𝑊2, . . . ,𝑊r. This set is not empty
because each of these subspaces contains the zero vector of 𝑉, and hence so does their
intersection. Thus, it remains to show that𝑊 is closed under addition and scalar multi-
plication.

To prove closure under addition, let u and v be vectors in𝑊. Since𝑊 is the intersec-

Note that the first step
in proving Theorem
4.2.2 was to establish
thatW contained at least
one vector. This is impor-
tant, for otherwise the
subsequent argument might
be logically correct but
meaningless.

tion of 𝑊1,𝑊2, . . . ,𝑊r, it follows that u and v also lie in each of these subspaces. More-
over, since these subspaces are closed under addition and scalar multiplication, they also
all contain the vectors u + v and ku for every scalar k, and hence so does their intersec-
tion𝑊. This proves that𝑊 is closed under addition and scalar multiplication.
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Solution Spaces of Homogeneous Systems
The solutions of a homogeneous linear system𝐴x = 0 ofm equations in n unknowns can
be viewed as vectors in 𝑅n. The following theorem provides an important insight into the
geometric structure of the solution set.

Theorem 4.2.3

The solution set of a homogeneous system 𝐴x = 0 of m equations in n unknowns
is a subspace of 𝑅n.

Proof Let𝑊 be the solution set of the system. The set𝑊 is not empty because it contains
at least the trivial solution x = 0.

To show that 𝑊 is a subspace of 𝑅n, we must show that it is closed under addition
and scalar multiplication. To do this, let x1 and x2 be vectors in𝑊. Since these vectors are
solutions of 𝐴x = 0, we have

𝐴x1 = 0 and 𝐴x2 = 0
It follows from these equations and the distributive property of matrix multiplication that

𝐴(x1 + x2) = 𝐴x1 + 𝐴x2 = 0 + 0 = 0
so𝑊 is closed under addition. Similarly, if k is any scalar then

𝐴(kx1) = k𝐴x1 = k0 = 0
so𝑊 is also closed under scalar multiplication.

Because the solution set of a homogeneous system in n unknowns is actually a sub-
space of 𝑅n, we will generally refer to it as the solution space of the system.

EXAMPLE 13 | Solution Spaces of Homogeneous Systems

In each part the solution of the linear system is provided. Give a geometric description of the
solution set.

(a) [
1 −2 3
2 −4 6
3 −6 9

][
x
y
z
] = [

0
0
0
] (b) [

1 −2 3
−3 7 −8
−2 4 −6

][
x
y
z
] = [

0
0
0
]

(c) [
1 −2 3

−3 7 −8
4 1 2

][
x
y
z
] = [

0
0
0
] (d) [

0 0 0
0 0 0
0 0 0

][
x
y
z
] = [

0
0
0
]

Solution (a) The solutions are

x = 2s− 3t, y = s, z = t

from which it follows that

x = 2y− 3z or x− 2y+ 3z = 0

This is the equation of a plane through the origin that has n = (1,−2, 3) as a normal.
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Solution (b) The solutions are

x = −5t, y = −t, z = t

which are parametric equations for the line through the origin that is parallel to the vector
v = (−5,−1, 1).
Solution (c) The only solution is x = 0, y = 0, z = 0, so the solution space consists of the
single point {0}.
Solution (d) This linear system is satisfied by all real values of x, y, and z, so the solution
space is all of 𝑅3.

Remark Whereas the solution set of every homogeneous system of m equations in n
unknowns is a subspace of 𝑅n, it is never true that the solution set of a nonhomogeneous
systemofm equations innunknowns is a subspace of𝑅n. There are twopossible scenarios:
first, the systemmay not have any solutions at all, and second, if there are solutions, then
the solution set will not be closed under either addition or scalar multiplication (Exer-
cise 22).

The Linear Transformation Viewpoint
Theorem 4.2.3 can be viewed as a statement about matrix transformations by letting
𝑇𝐴 ∶𝑅n→𝑅m be multiplication by the coefficient matrix 𝐴. From this point of view the
solution space of 𝐴x = 0 is the set of vectors in 𝑅n that 𝑇𝐴 maps into the zero vector in
𝑅m. This set is sometimes called the kernel of the transformation, sowith this terminology
Theorem 4.2.3 can be rephrased as follows.

Theorem 4.2.4

If 𝐴 is anm × nmatrix, then the kernel of the matrix transformation 𝑇𝐴 ∶𝑅n→𝑅m
is a subspace of 𝑅n.

Exercise Set 4.2

In Exercises 1–2, use the Subspace Test to determine which of the sets
are subspaces of 𝑅3.
1. a. All vectors of the form (a, 0, 0).

b. All vectors of the form (a, 1, 1).
c. All vectors of the form (a, b, c), where b = a+ c.

2. a. All vectors of the form (a, b, c), where b = a+ c+ 1.

b. All vectors of the form (a, b, 0).
c. All vectors of the form (a, b, c) for which a+ b = 7.

In Exercises 3–4, use the Subspace Test to determine which of the sets
are subspaces of𝑀nn.
3. a. The set of all diagonal n × nmatrices.

b. The set of all n × nmatrices𝐴 such that det(𝐴) = 0.

c. The set of all n × nmatrices𝐴 such that tr(𝐴) = 0.

d. The set of all symmetric n × nmatrices.

4. a. The set of all n × nmatrices𝐴 such that𝐴𝑇 = −𝐴.
b. The set of all n × n matrices 𝐴 for which 𝐴x = 0 has only

the trivial solution.

c. The set of all n × n matrices 𝐴 such that 𝐴𝐵 = 𝐵𝐴 for
some fixed n × nmatrix 𝐵.

d. The set of all invertible n × nmatrices.
In Exercises 5–6, use the Subspace Test to determine which of the sets
are subspaces of 𝑃3.
5. a. All polynomials a0 + a1x+ a2x2 + a3x3 for which

a0 = 0.

b. All polynomials a0 + a1x+ a2x2 + a3x3 for which
a0 + a1 + a2 + a3 = 0.

6. a. All polynomials of the form a0 + a1x+ a2x2 + a3x3 in
which a0, a1, a2, and a3 are rational numbers.

b. All polynomials of the form a0 + a1x, where a0 and a1 are
real numbers.
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In Exercises 7–8, use the Subspace Test to determine which of the sets
are subspaces of 𝐹(−∞,∞).
7. a. All functions 𝑓 in 𝐹(−∞,∞) for which 𝑓(0) = 0.

b. All functions 𝑓 in 𝐹(−∞,∞) for which 𝑓(0) = 1.

8. a. All functions 𝑓 in 𝐹(−∞,∞) for which 𝑓(−x) = 𝑓(x).
b. All polynomials of degree 2.

In Exercises 9–10, use the Subspace Test to determine which of the
sets are subspaces of 𝑅∞.
9. a. All sequences v in𝑅∞ of the form v = (𝑣, 0, 𝑣, 0, 𝑣, 0, . . . ).

b. All sequences v in𝑅∞ of the form v = (𝑣, 1, 𝑣, 1, 𝑣, 1, . . . ).

10. a. All sequences v in 𝑅∞ of the form

v = (𝑣, 2𝑣, 4𝑣, 8𝑣, 16𝑣, . . . )
b. All sequences in 𝑅∞ whose components are 0 from some

point on.
In Exercises 11–12, use the Subspace Test to determine which of the
sets are subspaces of𝑀22.

11. a. All matrices of the form [a 0
b 0].

b. All matrices of the form [a 1
b 1].

c. All 2 × 2 matrices𝐴 such that

𝐴 [ 1
−1] = [20]

12. a. All 2 × 2 matrices𝐴 such that

𝐴 [ 1
−1] = [00]

b. All 2 × 2 matrices𝐴 such that

𝐴 [ 0 2
−2 1] = [ 0 2

−2 1] 𝐴

c. All 2 × 2 matrices𝐴 for which det(𝐴)= 0.

In Exercises 13–14, use the Subspace Test to determine which of the
sets are subspaces of 𝑅4.
13. a. All vectors of the form (a, a2, a3, a4).

b. All vectors of the form (a, 0, b, 0).

14. a. All vectors x in 𝑅4 such that𝐴x = [01], where

𝐴 = [ 0 −1 0 2
−1 1 0 1]

b. All vectors x in 𝑅4 such that 𝐴x = [01], where 𝐴 is as in

part (a).
In Exercises 15–16, use the Subspace Test to determine which of the
sets are subspaces of 𝑃∞.
15. a. All polynomials of degree less than or equal to 6.

b. All polynomials of degree equal to 6.
c. All polynomials of degree greater than or equal to 6.

16. a. All polynomials with even coefficients.
b. All polynomials whose coefficients sum to 0.

c. All polynomials of even degree.

17. (Calculus Required)Which of the following are subspaces of
𝑅∞?

a. All sequences of the form v = (𝑣1, 𝑣2, . . . , 𝑣n, . . . ) such that
lim
n→∞

𝑣n = 0.

b. All convergent sequences (that is, all sequences of the form
v = (𝑣1, 𝑣2, . . . , 𝑣n, . . . ) such that limn→∞

𝑣n exists).

c. All sequences of the form v = (𝑣1, 𝑣2, . . . , 𝑣n, . . . ) such that
∑∞

n=1 𝑣n = 0.
d. All sequences of the form v = (𝑣1, 𝑣2, . . . , 𝑣n, . . . ) such that

∑∞
n=1 𝑣n converges.

18. A line 𝐿 through the origin in 𝑅3 can be represented by para-
metric equations of the form x = at, y = bt, and z = ct. Use
these equations to show that 𝐿 is a subspace of 𝑅3 by showing
that if v1 = (x1, y1, z1) and v2 = (x2, y2, z2) are points on𝐿 and
k is any real number, then kv1 and v1 + v2 are also points on𝐿.

19. Determine whether the solution space of the system 𝐴x = 0
is a line through the origin, a plane through the origin, or the
origin only. If it is a plane, find an equation for it. If it is a line,
find parametric equations for it.

a. 𝐴 = [
−1 1 1
3 −1 0
2 −4 −5

] b. 𝐴 = [
1 2 3
2 5 3
1 0 8

]

c. 𝐴 = [
1 −3 1
2 −6 2
3 −9 3

] d. 𝐴 = [
1 −1 1
2 −1 4
3 1 11

]

20. (Calculus required) Show that the following sets of functions
are subspaces of 𝐹(−∞,∞).
a. All continuous functions on (−∞,∞).
b. All differentiable functions on (−∞,∞).
c. All differentiable functions on (−∞,∞) that satisfy

f ′ + 2f = 0.

21. (Calculus required) Show that the set of continuous func-
tions f = 𝑓(x) on [a, b] such that

∫
b

a
𝑓(x) dx = 0

is a subspace of 𝐶[a, b].

22. Show that the solution vectors of a consistent nonhomoge-
neous systemofm linear equations innunknowns donot form
a subspace of 𝑅n.

23. If𝑇𝐴 is multiplication by a matrix𝐴with three columns, then
the kernel of𝑇𝐴 is one of four possible geometric objects.What
are they? Explain how you reached your conclusion.

24. Consider the following subsets of 𝑃3: 𝑉 consists of all poly-
nomials a0 + a1x+ a2x2 + a3x3 such that a0 + a3 = 0 and𝑊
consists of all polynomials p such that p(1) = 0.

a. Use the Subspace Test to show that𝑉 and𝑊 are subspaces
of 𝑃3.

b. Show that the set of all polynomials

p = a0 + a1x+ a2x2 + a3x3

such that a0 + a3 = 0 and p(1) = 0 is a subspace of 𝑃3 with-
out using the Subspace Test.
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25. The accompanying figure shows a mass-spring system in
which a block ofmassm is set into vibratorymotion by pulling
the block beyond its natural position at x = 0 and releasing it
at time t = 0. If friction and air resistance are ignored, then the
x-coordinate x(t) of the block at time t is given by a function of
the form

x(t) = c1 cos𝜔t+ c2 sin𝜔t
where 𝜔 is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c1 and c2 are arbi-
trary. Show that this set of functions forms a subspace of
𝐶∞(−∞,∞).

Natural position

m

Released

m

Stretched

m

0

x

0

x

0

x

FIGURE Ex-25

26. Show that Theorem 4.2.2 would be false if the word “inter-
section” was replaced with “union” by giving an example of a
vector space 𝑉 and subspaces𝑈 and𝑊 such that the union
of𝑈 with𝑊 is not a subspace of𝑉.

Working with Proofs
27. A function f = 𝑓(x) in 𝐹(−∞,∞) is even if 𝑓(−a) = 𝑓(a)

for all real numbers a. Prove that the set of even functions is a
subspace of 𝐹(−∞,∞).

28. A function f = 𝑓(x) in 𝐹(−∞,∞) is odd if 𝑓(−a) = −𝑓(a)
for all real numbers a. Prove that the set of odd functions is a
subspace of 𝐹(−∞,∞).

29. If𝑈 and𝑊 are subspaces of a vector space 𝑉, then the sum
of𝑈 and𝑊 is the set𝑈 +𝑊 consisting of all vectors of the
form u+w, where u is a vector in𝑈 andw is a vector in𝑊.
Prove that𝑈 +𝑊 is a subspace of𝑉.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. Every subspace of a vector space is itself a vector space.

b. Every vector space is a subspace of itself.

c. Every subset of a vector space 𝑉 that contains the zero
vector in𝑉 is a subspace of𝑉.

d. The kernel of a matrix transformation 𝑇𝐴 ∶𝑅n→𝑅m is a
subspace of 𝑅m.

e. The solution set of a consistent linear system 𝐴x = b of
m equations in n unknowns is a subspace of 𝑅n.

f. The intersection of any two subspaces of a vector space𝑉
is a subspace of𝑉.

g. The union of any two subspaces of a vector space 𝑉 is a
subspace of𝑉.

h. The set of upper triangular n × nmatrices is a subspace of
the vector space of all n × nmatrices.

Working with Technology
T1. Determine whether the vectors u, v, and w are in the kernel

of 𝑇𝐴, where

𝐴 =
⎡
⎢
⎢
⎢
⎢
⎣

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎤
⎥
⎥
⎥
⎥
⎦

and u=(1,−2, 1, 0, 0), v = (5, 0, 1,−2, 1),
w = (3,−4, 0, 0, 1)

4.3 Spanning Sets
It is often the case that all of the vectors in a vector space 𝑉 can be expressed in terms of
some small subset S of vectors in V. The vectors in S can be viewed as the building blocks
for constructing all of the vectors in V. This is important because it makes it possible to
deduce properties of an entire vector space V by focusing attention on the small set of
vectors in 𝑆.

The following definition, which generalizes Definition 4 of Section 3.1, is fundamental to
the study of vector spaces.
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Definition 1

Ifw is a vector in a vector space𝑉, thenw is said to be a linear combination of the
vectors v1, v2, . . . , vr in 𝑉 ifw can be expressed in the form

w = k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr (1)

where k1, k2, … , kr are scalars. These scalars are called the coefficients of the linear
combination.

If r = 1, then Equation (1)
has the formw = k1v1,
in which case the linear
combination is just a scalar
multiple of v1.

Theorem 4.3.1

If 𝑆 = {w1,w2, . . . ,wr} is a nonempty set of vectors in a vector space 𝑉, then:
(a) The set𝑊 of all possible linear combinations of the vectors in 𝑆 is a subspace

of 𝑉.
(b) The set 𝑊 in part (a) is the “smallest” subspace of 𝑉 that contains all of the

vectors in 𝑆 in the sense that any other subspace that contains those vectors
contains𝑊.

Proof (a) Let𝑊 be the set of all possible linear combinations of the vectors in 𝑆. Wemust
show that𝑊 is closed under addition and scalar multiplication. To prove closure under
addition, let

u = c1w1 + c2w2 + ⋅ ⋅ ⋅ + crwr and v = k1w1 + k2w2 + ⋅ ⋅ ⋅ + krwr

be two vectors in𝑊. It follows that their sum can be written as

u + v = (c1 + k1)w1 + (c2 + k2)w2 + ⋅ ⋅ ⋅ + (cr + kr)wr

which is a linear combination of the vectors in 𝑆. Thus,𝑊 is closed under addition. We
leave it for you to prove that𝑊 is also closed under scalar multiplication and hence is a
subspace of 𝑉.

Proof (b) Let𝑊 ′ be any subspace of 𝑉 that contains all of the vectors in 𝑆. Since𝑊 ′ is
closed under addition and scalar multiplication, it contains all linear combinations of the
vectors in 𝑆 and hence contains𝑊.

Historical Note

George William Hill
(1838–1914)

The term linear combination is due to the Americanmathemati-
cian G. W. Hill, who introduced it in a research paper on plane-
tary motion published in 1900. Hill was a “loner” who preferred
to work out of his home in West Nyack, New York, rather than
in academia, though he did try lecturing at Columbia Univer-
sity for a few years. Interestingly, he apparently returned the
teaching salary, indicating that he did not need the money and
did not want to be bothered looking after it. Although techni-
cally a mathematician, Hill had little interest in modern devel-
opments of mathematics and worked almost entirely on the the-
ory of planetary orbits.

[Image: Courtesy of the American Mathematical Society
(www.ams.org)]

http://www.ams.org)]
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The subspace 𝑊 in Theorem 4.3.1 is called the subspace of 𝑉 spanned by 𝑆. The
vectorsw1,w2, . . . ,wr in 𝑆 are said to span𝑊, and we write

In the case where S is
the empty set ∅, it will be
convenient to agree that
span(∅) = {0}.

𝑊 = span{w1, w2, . . . ,wr} or 𝑊 = span(𝑆)

EXAMPLE 1 | The Standard Unit Vectors Span Rn

Recall that the standard unit vectors in 𝑅n are

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)
These vectors span 𝑅n since every vector v = (𝑣1, 𝑣2, . . . , 𝑣n) in 𝑅

n can be expressed as

v = 𝑣1e1 + 𝑣2e2 + ⋅ ⋅ ⋅ + 𝑣nen
which is a linear combination of e1, e2, . . . , en. Thus, for example, the vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)
span 𝑅3 since every vector v = (a, b, c) in this space can be expressed as

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai+ bj+ ck

EXAMPLE 2 | A Geometric View of Spanning in R2 and R3

(a) If v is a nonzero vector in 𝑅2 or 𝑅3 that has its initial point at the origin, then span{v},
which is the set of all scalar multiples of v, is the line through the origin determined by
v. You should be able to visualize this from Figure 4.3.1a by observing that the tip of
the vector kv can be made to fall at any point on the line by choosing the value of k to
lengthen, shorten, or reverse the direction of v appropriately.

(b) If v1 and v2 are nonzero vectors in 𝑅3 that have their initial points at the origin, then
span{v1, v2}, which consists of all linear combinations of v1 and v2, is the plane through
the origin determined by these two vectors. You should be able to visualize this from
Figure 4.3.1b by observing that the tip of the vector k1v1 + k2v2 can be made to fall at
any point in the plane by adjusting the scalars k1 and k2 to lengthen, shorten, or reverse
the directions of the vectors k1v1 and k2v2 appropriately.

z

y

x

v1
k1v1

span{v1, v2}

v2

k2v2

k1v1 + k2v2

(b)  span{v1, v2} is the plane through the
      origin determined by v1 and v2

z

y

x

v

kv

span{v}

(a)  span{v} is the line through the
       origin determined by v

FIGURE 4.3.1
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EXAMPLE 3 | A Spanning Set for Pn

The polynomials 1, x, x2, . . . , xn span the vector space 𝑃n defined in Example 10 since each
polynomial p in 𝑃n can be written as

p = a0 + a1x+ ⋅ ⋅ ⋅ + anxn

which is a linear combination of 1, x, x2, . . . , xn. We can denote this by writing
𝑃n = span{1, x, x2, . . . , xn}

The next two examples are concerned with two important types of problems:

• Given a nonempty set 𝑆 of vectors in 𝑅n and a vector v in 𝑅n, determine whether v is
a linear combination of the vectors in 𝑆.

• Given a nonempty set 𝑆 of vectors in 𝑅n, determine whether the vectors span 𝑅n.

EXAMPLE 4 | Linear Combinations

Consider the vectorsu = (1, 2,−1) and v = (6, 4, 2) in𝑅3. Show thatw = (9, 2, 7) is a linear
combination of u and v and thatw′ = (4,−1, 8) is not a linear combination of u and v.
Solution In order forw to be a linear combination of u and v, there must be scalars k1 and
k2 such thatw = k1u+ k2v; that is,

(9, 2, 7) = k1(1, 2,−1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2,−k1 + 2k2)
Equating corresponding components gives

k1 + 6k2 = 9
2k1 + 4k2 = 2
−k1 + 2k2 = 7

Solving this system using Gaussian elimination yields k1 = −3, k2 = 2, so

w = −3u+ 2v

Similarly, forw′ to be a linear combination of u and v, there must be scalars k1 and k2
such thatw′ = k1u+ k2v; that is,

(4,−1, 8) = k1(1, 2,−1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2,−k1 + 2k2)
Equating corresponding components gives

k1 + 6k2 = 4
2k1 + 4k2 = −1
−k1 + 2k2 = 8

This system of equations is inconsistent (verify), so no such scalars k1 and k2 exist. Conse-
quently,w′ is not a linear combination of u and v.

EXAMPLE 5 | Testing for Spanning

Determine whether the vectors v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) span the vec-
tor space 𝑅3.

Solution We must determine whether an arbitrary vector b = (b1, b2, b3) in 𝑅3 can be
expressed as a linear combination

b = k1v1 + k2v2 + k3v3



November 12, 2018 15:54 c04 Sheet number 23 Page number 224 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

224 CHAPTER 4 General Vector Spaces

of the vectors v1, v2, and v3. Expressing this equation in terms of components gives

(b1, b2, b3) = k1(1, 1, 2) + k2(1, 0, 1) + k3(2, 1, 3)
or

(b1, b2, b3) = (k1 + k2 + 2k3, k1 + k3, 2k1 + k2 + 3k3)
or

k1 + k2 + 2k3 = b1
k1 + k3 = b2
2k1 + k2 + 3k3 = b3

Thus, our problem reduces to ascertaining whether this system is consistent for all values of
b1, b2, and b3. One way of doing this is to use parts (e) and (g) of Theorem 2.3.8, which state
that the system is consistent if and only if its coefficient matrix

𝐴 = [
1 1 2
1 0 1
2 1 3

]

has a nonzero determinant. But this is not the case here since det(𝐴) = 0 (verify), so v1, v2,
and v3 do not span 𝑅3.

In Examples 4 and 5 the question of whether a given set of vectors spans 𝑅3 was
answered by determiningwhether a corresponding linear systemwas consistent or incon-
sistent. This suggests a more general procedure for deciding whether a nonempty set of
vectors in a vector space 𝑉 spans 𝑉. The procedure we give will be applicable in a wide
variety of vector spaces, though later we will encounter vector spaces in which the proce-
dure does not apply and other methods are required.

A Procedure for Identifying Spanning Sets
Step 1. Let 𝑆 = {w1,w2, . . . ,wr} be a given set of vectors in𝑉, and let x be an arbitrary vector

in𝑉.
Step 2. Set up the augmented matrix for the linear system that results by equating corre-

sponding components on the two sides of the vector equation

k1w1 + k2w2 + ⋅ ⋅ ⋅ + krwr = x (2)

Step 3. Use the techniques developed in Chapters 1 and 2 to investigate the consistency or
inconsistency of that system. If it is consistent for all choices of x, the vectors in 𝑆
span𝑉, and if it is inconsistent for some vector x, they do not.

The next two examples illustrate this procedure.

EXAMPLE 6 | Testing for Spanning in 𝑃2

Determine whether the set 𝑆 spans 𝑃2.
(a) 𝑆 = {1+ x+ x2, −1− x, 2+ 2x+ x2}
(b) 𝑆 = {x+ x2, x− x2, 1+ x, 1− x}

Solution (a) An arbitrary vector in𝑃2 is of the form p = a+ bx+ cx2, and so (2) becomes

k1(1+ x+ x2) + k2(−1− x) + k3(2+ 2x+ x2) = a+ bx+ cx2

which we can rewrite as

(k1 − k2 + 2k3) + (k1 − k2 + 2k3)x+ (k1 + k3)x2 = a+ bx+ cx2
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Equating corresponding coefficients yields a linear system whose augmented matrix is

[
1 −1 2 a
1 −1 2 b
1 0 1 c

]

and whose coefficient matrix is

𝐴 = [
1 −1 2
1 −1 2
1 0 1

]

Because this matrix is square we can apply Theorem 2.3.8. Since thematrix𝐴 has two identi-
cal rows it follows that det(𝐴) = 0, so parts (e) and (g) of that theorem imply that the system
is inconsistent for some choice of a, b, and c; and this tells us that 𝑆 does not span 𝑃2.
Solution (b) Using the sameprocedure as in part (a), the augmentedmatrix corresponding
to (2) is

[
0 0 1 −1 a
1 1 1 −1 b
1 −1 0 0 c

] (3)

Whereas Theorem 2.3.8 was applicable in part (a), it is not applicable here because the coeffi-
cient matrix is not square. However, reducing (3) to reduced row echelon form yields (verify)

⎡
⎢
⎢
⎣

1 0 0 0 −a+b+c
2

0 1 0 0 −a+b−c
2

0 0 1 −1 a

⎤
⎥
⎥
⎦

so (3) is consistent for every choice a, b, and c. Thus, the vectors in 𝑆 span 𝑃2, which we can
express by writing span(𝑆) = 𝑃2.

EXAMPLE 7 | Testing for Spanning in𝑀22

In each part, determine whether the set 𝑆 spans𝑀22.

(a) 𝑆 = {[1 2
0 1], [

1 0
0 1], [

1 2
1 0], [

1 1
1 1]}

(b) 𝑆 = {[1 0
0 0], [

−1 0
1 0], [

0 0
1 0], [

0 1
−1 1]}

Solution (a) An arbitrary vector in𝑀22 is of the form [a b
c d], so Equation (2) becomes

k1[
1 2
0 1] + k2[

1 0
0 1] + k3[

1 2
1 0] + k4[

1 1
1 1] = [a b

c d]

which we can rewrite as

[k1 + k2 + k3 + k4 2k1 + 2k3 + k4
k3 + k4 k1 + k2 + k4

] = [a b
c d]

Equating corresponding entries produces a linear system whose augmented matrix is

⎡⎢⎢⎢
⎣

1 1 1 1 a
2 0 2 1 b
0 0 1 1 c
1 1 0 1 d

⎤⎥⎥⎥
⎦

and whose coefficient matrix is𝐴 =
⎡⎢⎢⎢
⎣

1 1 1 1
2 0 2 1
0 0 1 1
1 1 0 1

⎤⎥⎥⎥
⎦

As in part (a) of Example 6, the coefficient matrix is square, so we can apply parts (e) and
(g) of Theorem 2.3.8. We leave it for you to verify that det(𝐴) = −2 ≠ 0, so the system is
consistent for every choice of a, b, c, and d, which implies that span(𝑆) = 𝑀22.
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Solution (b) Using the same procedure as in part (a), the augmented matrix for the linear
system corresponding to Equation (2) is

⎡⎢⎢⎢⎢
⎣

1 −1 0 0 a
0 0 0 1 b
0 1 1 −1 c
0 0 0 1 d

⎤⎥⎥⎥⎥
⎦

and the coefficient matrix is 𝐴 =
⎡⎢⎢⎢⎢
⎣

1 −1 0 0
0 0 0 1
0 1 1 −1
0 0 0 1

⎤⎥⎥⎥⎥
⎦

which

is square, so once again we can apply parts (e) and (g) of Theorem 2.3.8. Since the second
and fourth rows of this matrix are identical, it follows that det(𝐴) = 0. Thus, the system is
inconsistent for some choice of a, b, c, and d, which implies that 𝑆 does not span𝑀22.

A Concluding Observation
It is important to recognize that spanning sets are not unique. For example, any nonzero
vector on the line in Figure 4.3.1awill span that line, and any two noncollinear vectors in
the plane in Figure 4.3.1bwill span that plane. The following theorem, whose proof is left
as an exercise, states conditions under which two sets of vectors will span the same space.

Theorem 4.3.2

If 𝑆 = {v1, v2, . . . , vr} and 𝑆′ = {w1,w2, . . . ,wk} are nonempty sets of vectors in a
vector space 𝑉, then

span{v1, v2, . . . , vr} = span{w1,w2, . . . ,wk}
if and only if each vector in 𝑆 is a linear combination of those in 𝑆′, and each vector
in 𝑆′ is a linear combination of those in 𝑆.

Exercise Set 4.3

1. Which of the following are linear combinations of
u = (0,−2, 2) and v = (1, 3,−1)?

a. (2, 2, 2) b. (0, 4, 5) c. (0, 0, 0)

2. Express the following as linear combinations of u = (2, 1, 4),
v = (1,−1, 3), andw = (3, 2, 5).

a. (−9,−7,−15) b. (6, 11, 6) c. (0, 0, 0)

3. Which of the following are linear combinations of

𝐴 = [ 4 0
−2 −2], 𝐵 = [1 −1

2 3], 𝐶 = [0 2
1 4] ?

a. [ 6 −8
−1 −8] b. [0 0

0 0] c. [−1 5
7 1]

4. In each part, determine whether the polynomial is a linear
combination of

p1 = 2+ x+ x2, p2 = 1− x2, p3 = 1+ 2x.

a. 1 + x b. 1+ x2 c. 1+ x+ x2

5. In each part, express the vector as a linear combination of

𝐴 = [1 −1
0 2], 𝐵 = [0 1

0 1], 𝐶 = [0 1
0 0], 𝐷 = [2 0

1 −1]

a. [1 2
2 4] b. [3 1

1 2]

6. In each part express the vector as a linear combination of
p1 = 2+ x+ 4x2, p2 = 1− x+ 3x2, and p3 = 3+ 2x+ 5x2.

a. −9− 7x− 15x2 b. 6+ 11x+ 6x2

c. 0 d. 7+ 8x+ 9x2

7. In each part, determine whether the vectors span 𝑅3.

a. v1 = (2, 2, 2), v2 = (0, 0, 3), v3 = (0, 1, 1)
b. v1 = (2,−1, 3), v2 = (4, 1, 2), v3 = (8,−1, 8)

8. Suppose that v1 = (2, 1, 0, 3), v2 = (3,−1, 5, 2), and
v3 = (−1, 0, 2, 1). Which of the following vectors are in
span{v1, v2, v3}?

a. (2, 3,−7, 3) b. (0, 0, 0, 0)
c. (1, 1, 1, 1) d. (−4, 6,−13, 4)

9. Determine whether the following polynomials span 𝑃2.

p1 = 1− x+ 2x2, p2 = 3+ x,
p3 = 5− x+ 4x2, p4 = −2− 2x+ 2x2

10. Determine whether the following polynomials span 𝑃2.
p1 = 1+ x, p2 = 1− x,
p3 = 1+ x+ x2, p4 = 2− x2
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11. In each part, determine whether the matrices span𝑀22.

a. [1 0
1 0], [1 1

0 0], [0 1
0 1], [0 0

1 1]

b. [1 −1
0 1], [0 1

0 0], [1 1
1 0], [1 0

0 1]

c. [1 0
0 0], [1 1

0 0], [1 1
1 0], [1 1

1 1]

12. Let 𝑇𝐴 ∶𝑅2→𝑅2 be multiplication by 𝐴. Determine whether
the vector u= (1, 2) is in the span of {𝑇𝐴(e1), 𝑇𝐴(e2)}.

a. 𝐴 = [1 2
0 1] b. 𝐴 = [1 1

1 1]

13. Let 𝑇𝐴 ∶𝑅2→𝑅3 be multiplication by 𝐴. Determine whether
the vector u = (1, 1, 1) is in the span of {𝑇𝐴(e1), 𝑇𝐴(e2)}.

a. 𝐴 = [
0 2
1 −2
1 0

] b. 𝐴 = [
0 2
1 1
2 0

]

14. Let f = cos2 x and g = sin2 x. Which of the following lie in the
space spanned by f and g?

a. cos 2x b. 3+ x2 c. 1 d. sin x e. 0

15. Let𝑊 be the solution space to the system𝐴x = 0. Determine
whether the set {u, v} spans𝑊.

𝐴 = [
1 1 1 1
1 0 1 0
0 1 0 1

]

a. u = (1, 0, −1, 0), v = (0, 1, 0, −1)
b. u = (1, 0, −1, 0), v = (1, 1, −1, −1)

16. Let𝑊 be the solution space to the system𝐴x = 0. Determine
whether the set {u, v} spans𝑊.

𝐴 = [
0 1 −1 1
0 2 −2 2
0 3 −3 3

]

a. u = (1, 1, 1, 0), v = (0, −1, 0, 1)
b. u = (0, 1, 1, 0), v = (1, 0, 1, 1)

17. In each part, let 𝑇𝐴 ∶𝑅2→𝑅2 be multiplication by 𝐴, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{𝑇𝐴(u1), 𝑇𝐴(u2)} spans 𝑅2.

a. 𝐴 = [1 −1
0 2] b. 𝐴 = [ 1 −1

−2 2]

18. In each part, let 𝑇𝐴 ∶𝑅3→𝑅2 be multiplication by 𝐴, and let
u1 = (0, 1, 1) and u2 = (2,−1, 1) and u3 = (1, 1,−2). Deter-
mine whether the set {𝑇𝐴(u1), 𝑇𝐴(u2), 𝑇𝐴(u3)} spans 𝑅2.

a. 𝐴 = [1 1 0
0 1 −1] b. 𝐴 = [0 1 0

1 1 −3]

19. Let p1 = 1+ x2, p2 = 1+ x+ x2, and q1 = 2x, q2 = 1+ x2.
Use Theorem 4.3.2 to show that span{p1, p2}= span{q1, q2}.

20. Let v1 = (1, 6, 4), v2 = (2, 4,−1), v3 = (−1, 2, 5), and
w1 = (1,−2,−5),w2 = (0, 8, 9). Use Theorem 4.3.2 to show
that span{v1, v2, v3} = span{w1,w2}.

21. Let𝑉 and𝑊 be subspaces of𝑅2 that are spanned by (3, 1) and
(2, 1), respectively. Find a vector v in 𝑉 and a vector w in𝑊
for which v+w = (3, 5).

22. Let 𝑉 be the solution space of the equation 4x− y+ 2z = 0,
and let𝑊 be the subspace of 𝑅3 spanned by (1, 1, 1). Find a
vector v in𝑉 and a vectorw in𝑊 for which

v+w = (1, 0, 1)

Working with Proofs

23. Prove that if {u, v} spans the vector space 𝑉, then {u, u + v}
spans𝑉.

24. Prove Theorem 4.3.2.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. An expression of the form k1v1 + k2v2 + ⋅ ⋅ ⋅ krvr is called

a linear combination.

b. The span of a single vector in 𝑅2 is a line.

c. The span of two vectors in 𝑅3 is a plane.

d. The span of a nonempty set 𝑆 of vectors in𝑉 is the small-
est subspace of𝑉 that contains 𝑆.

e. The span of any finite set of vectors in a vector space is
closed under addition and scalar multiplication.

f. Two subsets of a vector space 𝑉 that span the same sub-
space of𝑉 must be equal.

g. The polynomials x− 1, (x− 1)2, and (x− 1)3 span 𝑃3.

Working with Technology
T1. Recall fromTheorem1.3.1 that a product𝐴x can be expressed

as a linear combination of the column vectors of the matrix𝐴
in which the coefficients are the entries of x. Use matrix mul-
tiplication to compute

v = 6(8,−2, 1,−4) + 17(−3, 9, 11, 6) − 9(13,−1, 2, 4)

T2. Use the idea in Exercise T1 andmatrixmultiplication to deter-
mine whether the polynomial

p = 1+ x+ x2 + x3

is in the span of

p1 = 8− 2x+ x2 − 4x3, p2 = −3+ 9x+ 11x2 + 6x3,
p3 = 13− x+ 2x2 + 4x3

T3. For the vectors that follow, determine whether

span{v1, v2, v3} = span{w1,w2,w3}

v1 = (−1, 2, 0, 1, 3), v2 = (7, 4, 6,−3, 1),
v3 = (−5, 3, 1, 2, 4)

w1 = (−6, 5, 1, 3, 7), w2 = (6, 6, 6,−2, 4),
w3 = (2, 7, 7,−1, 5)
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4.4 Linear Independence
In this section we will consider the question of whether the vectors in a given set are
interrelated in the sense that one ormore of themcan be expressed as a linear combination
of the others. This is important to know in applications because the existence of such
relationships often signals that some kind of complication is likely to occur.

Linear Independence and Dependence
In a rectangular xy-coordinate system every vector in the plane can be expressed in exactly
one way as a linear combination of the standard unit vectors. For example, the only way
to express the vector (3, 2) as a linear combination of i = (1, 0) and j = (0, 1) is

(3, 2) = 3(1, 0) + 2(0, 1) = 3i + 2j (1)

(Figure 4.4.1). Suppose, however, that we were to introduce a third coordinate axis thaty

2

x

3i

j
3i 
+ 
2j

(3, 2)

FIGURE 4.4.1

makes an angle of 45∘ with the x-axis. Call it the𝑤-axis. As illustrated in Figure 4.4.2, the

y

x

 

45°

1 1

√2√2
( ),

w

FIGURE 4.4.2

unit vector along the 𝑤-axis is

w = ( 1
√2

, 1
√2

)

Whereas Formula (1) shows the only way to express the vector (3, 2) as a linear combina-
tion of i and j, there are infinitelymanyways to express this vector as a linear combination
of i, j, andw. Three possibilities are

(3, 2) = 3(1, 0) + 2(0, 1) + 0 ( 1
√2

, 1
√2

) = 3i + 2j + 0w

(3, 2) = 2(1, 0) + (0, 1) + √2 ( 1
√2

, 1
√2

) = 2i + j +√2w

(3, 2) = 4(1, 0) + 3(0, 1) − √2 ( 1
√2

, 1
√2

) = 4i + 3j −√2w

In short, by introducing a superfluous axis we created the complication of having mul-
tiple ways of assigning coordinates to points in the plane.Whatmakes the vectorw super-
fluous is the fact that it can be expressed as a linear combination of the vectors i and j,
namely,

w = ( 1
√2

, 1
√2

) = 1
√2

i + 1
√2

j

This leads to the following definition.

Definition 1

If 𝑆 = {v1, v2, . . . , vr} is a set of two ormore vectors in a vector space𝑉, then 𝑆 is said
to be a linearly independent set if no vector in 𝑆 can be expressed as a linear com-
bination of the others. A set that is not linearly independent is said to be linearly
dependent. If 𝑆 has only one vector, we will agree that it is linearly independent if
and only if that vector is nonzero.

In general, the most efficient way to determine whether a set is linearly independent

In the case where the set S
in Definition 1 has only one
vector, we will agree that
S is linearly independent
if and only if that vector is
nonzero. or not is to use the following theorem whose proof is given at the end of this section.
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Theorem 4.4.1

A nonempty set 𝑆 = {v1, v2, . . . , vr} in a vector space 𝑉 is linearly independent if
and only if the only coefficients satisfying the vector equation

k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr = 0
are k1 = 0, k2 = 0, . . . , kr = 0.

EXAMPLE 1 | Linear Independence of the Standard
Unit Vectors in Rn

The most basic linearly independent set in 𝑅n is the set of standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)
To illustrate this in 𝑅3, consider the standard unit vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)
To prove linear independence we must show that the only coefficients satisfying the vector
equation

k1i+ k2j+ k3k = 0
are k1 = 0, k2 = 0, k3 = 0. But this becomes evident by writing this equation in its compo-
nent form

(k1, k2, k3) = (0, 0, 0)
You should have no trouble adapting this argument to establish the linear independence of
the standard unit vectors in 𝑅n.

EXAMPLE 2 | Linear Independence in R3

Determine whether the vectors

v1 = (1,−2, 3), v2 = (5, 6,−1), v3 = (3, 2, 1) (2)

are linearly independent or linearly dependent in 𝑅3.

Solution The linear independence or dependence of these vectors is determinedbywhether
the vector equation

k1v1 + k2v2 + k3v3 = 0 (3)
can be satisfied with coefficients that are not all zero. To see whether this is so, let us rewrite
(3) in the component form

k1(1,−2, 3) + k2(5, 6,−1) + k3(3, 2, 1) = (0, 0, 0)
Equating corresponding components on the two sides yields the homogeneous linear system

k1 + 5k2 + 3k3 = 0
−2k1 + 6k2 + 2k3 = 0
3k1 − k2 + k3 = 0

(4)

Thus, our problem reduces to determining whether this system has nontrivial solutions.
There are various ways to do this; one possibility is to simply solve the system, which yields

k1 = − 1
2 t, k2 = − 1

2 t, k3 = t
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(we omit the details). This shows that the system has nontrivial solutions and hence that the
vectors are linearly dependent. A secondmethod for establishing the linear dependence is to
take advantage of the fact that the coefficient matrix

𝐴 = [
1 5 3

−2 6 2
3 −1 1

]

is square and compute its determinant. We leave it for you to show that det(𝐴) = 0 from
which it follows that (4) has nontrivial solutions by parts (b) and (g) of Theorem 2.3.8.

Because we have established that the vectors v1, v2, and v3 in (2) are linearly dependent,
we know that at least one of them is a linear combination of the others. We leave it for you
to confirm, for example, that

v3 = 1
2 v1 +

1
2 v2

EXAMPLE 3 | Linear Independence in R4

Determine whether the vectors

v1 = (1, 2, 2,−1), v2 = (4, 9, 9,−4), v3 = (5, 8, 9,−5)
in 𝑅4 are linearly dependent or linearly independent.

Solution The linear independence or linear dependence of these vectors is determined by
whether there exist nontrivial solutions of the vector equation

k1v1 + k2v2 + k3v3 = 0

or, equivalently, of

k1(1, 2, 2,−1) + k2(4, 9, 9,−4) + k3(5, 8, 9,−5) = (0, 0, 0, 0)
Equating corresponding components on the two sides yields the homogeneous linear system

k1 + 4k2 + 5k3 = 0
2k1 + 9k2 + 8k3 = 0
2k1 + 9k2 + 9k3 = 0
−k1 − 4k2 − 5k3 = 0

We leave it for you to show that this system has only the trivial solution

k1 = 0, k2 = 0, k3 = 0

from which you can conclude that v1, v2, and v3 are linearly independent.

EXAMPLE 4 | An Important Linearly Independent Set in Pn

Show that the polynomials
1, x, x2, . . . , xn

form a linearly independent set in 𝑃n.

Solution For convenience, let us denote the polynomials as

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We must show that the only coefficients satisfying the vector equation

a0p0 + a1p1 + a2p2 + ⋅ ⋅ ⋅ + anpn = 0 (5)

are
a0 = a1 = a2 = ⋅ ⋅ ⋅ = an = 0
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But (5) is equivalent to the statement that

a0 + a1x+ a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (6)

for all x in (−∞,∞), so we must show that this is true if and only if each coefficient in (6) is
zero. To see that this is so, recall from algebra that a nonzero polynomial of degree n has at
most n distinct roots. That being the case, each coefficient in (6) must be zero, for otherwise
the left side of the equation would be a nonzero polynomial with infinitelymany roots. Thus,
(5) has only the trivial solution.

The following example shows that the problem of determining whether a given set of
vectors in 𝑃n is linearly independent or linearly dependent can be reduced to determining
whether a certain set of vectors in 𝑅n is linearly dependent or independent.

EXAMPLE 5 | Linear Independence of Polynomials

Determine whether the polynomials

p1 = 1− x, p2 = 5+ 3x− 2x2, p3 = 1+ 3x− x2

are linearly dependent or linearly independent in 𝑃2.

Solution The linear independence or dependence of these vectors is determinedbywhether
the vector equation

k1p1 + k2p2 + k3p3 = 0 (7)
can be satisfied with coefficients that are not all zero. To see whether this is so, let us rewrite
(7) in its polynomial form

k1(1− x) + k2(5+ 3x− 2x2) + k3(1+ 3x− x2) = 0 (8)

or, equivalently, as

(k1 + 5k2 + k3) + (−k1 + 3k2 + 3k3)x+ (−2k2 − k3)x2 = 0

Since this equation must be satisfied by all x in (−∞,∞), each coefficient must be zero (as
explained in the previous example). Thus, the linear dependence or independence of the
given polynomials hinges on whether the following linear system has a nontrivial solution:

k1 + 5k2 + k3 = 0
−k1 + 3k2 + 3k3 = 0

− 2k2 − k3 = 0
(9)

We leave it for you to show that this linear system has nontrivial solutions either by solv-
ing it directly or by showing that the coefficient matrix has determinant zero. Thus, the set
{p1,p2,p3} is linearly dependent.

In Example 5, what rela-
tionship do you see between
the coefficients of the given
polynomials and the column
vectors of the coefficient
matrix of system (9)?

The following useful theorem is concerned with the linear independence of sets with
two vectors and sets that contain the zero vector.

Theorem 4.4.2

(a) A set with finitely many vectors that contains 0 is linearly dependent.
(b) A set with exactly two vectors is linearly independent if and only if neither

vector is a scalar multiple of the other.



November 12, 2018 15:54 c04 Sheet number 31 Page number 232 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

232 CHAPTER 4 General Vector Spaces

We will prove part (a) and leave part (b) as an exercise.

Proof (a) For any vectors v1, v2, . . . , vr, the set 𝑆 = {v1, v2, . . . , vr, 0} is linearly dependent
since the equation

0v1 + 0v2 + ⋅ ⋅ ⋅ + 0vr + 1(0) = 0
expresses 0 as a linear combination of the vectors in 𝑆 with coefficients that are not all
zero.

EXAMPLE 6 | Linear Independence of Two Functions

The functions f1 = x and f2 = sin x are linearly independent vectors in 𝐹(−∞,∞) since
neither function is a scalar multiple of the other. On the other hand, the two functions
g1 = sin 2x and g2 = sin x cos x are linearly dependent because the trigonometric identity
sin 2x = 2 sin x cos x reveals that g1 and g2 are scalar multiples of each other.

A Geometric Interpretation of Linear Independence
Linear independence has the following useful geometric interpretations in 𝑅2 and 𝑅3:

• Two vectors in 𝑅2 or 𝑅3 are linearly independent if and only if they do not lie on the
same line when they have their initial points at the origin. Otherwise one would be
a scalar multiple of the other (Figure 4.4.3).

v1

v2

v1

v2

v1

v2

(a)  Linearly dependent (b)  Linearly dependent (c)  Linearly independent

x x x

z z z

y y y

FIGURE 4.4.3

• Three vectors in 𝑅3 are linearly independent if and only if they do not lie in the same
plane when they have their initial points at the origin. Otherwise at least one would
be a linear combination of the other two (Figure 4.4.4).

v1

v2

v3

v1

v2

v3

v3

v1

v2

z

y

xxx

z z
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(a)  Linearly dependent (c)  Linearly independent(b)  Linearly dependent

FIGURE 4.4.4
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At the beginning of this sectionwe observed that a third coordinate axis in𝑅2 is super-
fluous by showing that a unit vector along such an axis would have to be expressible as
a linear combination of unit vectors along the positive x- and y-axis. That result is a con-
sequence of the next theorem, which shows that there can be at most n vectors in any
linearly independent set 𝑅n.

Theorem 4.4.3

Let 𝑆 = {v1, v2, . . . , vr} be a set of vectors in𝑅n. If r > n, then 𝑆 is linearly dependent.

Proof Suppose that
v1 = (𝑣11, 𝑣12, . . . , 𝑣1n)
v2 = (𝑣21, 𝑣22, . . . , 𝑣2n)...

...
vr = (𝑣r1, 𝑣r2, . . . , 𝑣rn)

and consider the equation

k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr = 0
If we express both sides of this equation in terms of components and then equate the

It follows from Theorem
4.4.3 that a set in R2 with
more than two vectors is
linearly dependent and a
set in R3 with more than
three vectors is linearly
dependent.

corresponding components, we obtain the system

𝑣11k1 + 𝑣21k2 + ⋅ ⋅ ⋅ + 𝑣r1kr = 0
𝑣12k1 + 𝑣22k2 + ⋅ ⋅ ⋅ + 𝑣r2kr = 0
...

...
... ⋮

𝑣1nk1 + 𝑣2nk2 + ⋅ ⋅ ⋅ + 𝑣rnkr = 0

This is a homogeneous system of n equations in the r unknowns k1, . . . , kr. Since r > n,
Theorem 1.2.2 implies that the system has nontrivial solutions, so 𝑆 = {v1, v2, . . . , vr} is a
linearly dependent set.

EXAMPLE 7 | Linear Independence of Row Vectors
in a Row Echelon Form

It is an important fact that the nonzero row vectors of amatrix in row echelon or reduced row
echelon form are linearly independent. To suggest how a general proof might go, consider
the matrix

𝑅 = [
1 a12 a13 a14
0 1 a23 a24
0 0 0 1

]

which is in row echelon form for all choices of the a’s. Denoting the row vectors by r1, r2, r3,
we must show that the only solution of the vector equation

c1r1 + c2r2 + c3r3 = 0 (10)

is the trivial solution c1 = c2 = c3 = 0. We can do this by writing (10) in the row-vector form

[c1 c1a12 + c2 c1a13 + c2a23 c1a14 + c2a24 + c3] = [0 0 0 0]
and comparing corresponding components. We see from the first component that c1 = 0, and
from the second component that c2 = 0, and hence from the fourth component that c3 = 0.
Thus, (10) has only the trivial solution.
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Linear Independence of Functions
Sometimes linear dependence of functions can be deduced from known identities. For
example, the functions

CALCULUS REQUIRED

f1 = sin2 x, f2 = cos2 x, and f3 = 5

form a linearly dependent set in 𝐹(−∞,∞), since the equation
5f1 + 5f2 − f3 = 5 sin2 x + 5 cos2 x − 5

= 5(sin2 x + cos2 x) − 5 = 0
expresses the vector 0 as a linear combination of f1, f2, and f3 with coefficients that are
not all zero.

However, it is relatively rare that linear independence or dependence of functions can
be ascertained by algebraic or trigonometric methods. To make matters worse, there is no
general method for doing that either. That said, there does exist a theorem that can be
useful in certain cases. The following definition is needed for that theorem.

Definition 2

If f1 = 𝑓1(x), f2 = 𝑓2(x), . . . , fn = 𝑓n(x) are functions that are n − 1 times differen-
tiable on the interval (−∞,∞), then the determinant

𝑊(x) =

|
|
|
|
|
|
|

𝑓1(x) 𝑓2(x) ⋅ ⋅ ⋅ 𝑓n(x)
𝑓′1 (x) 𝑓′2 (x) ⋅ ⋅ ⋅ 𝑓′n(x)...

...
...

𝑓(n−1)1 (x) 𝑓(n−1)2 (x) ⋅ ⋅ ⋅ 𝑓(n−1)n (x)

|
|
|
|
|
|
|

is called theWronskian of 𝑓1, 𝑓2, . . . , 𝑓n.

Suppose for the moment that f1 = 𝑓1(x), f2 = 𝑓2(x), . . . , fn = 𝑓n(x) are linearly depen-
dent vectors in 𝐶(n−1)(−∞,∞). This implies that the vector equation

k1f1 + k2f2 + ⋅ ⋅ ⋅ + knfn = 0
is satisfied by values of the coefficients k1, k2, . . . , kn that are not all zero, and for these
coefficients the equation

k1𝑓1(x) + k2𝑓2(x) + ⋅ ⋅ ⋅ + kn𝑓n(x) = 0

is satisfied for all x in (−∞,∞). Using this equation together with those that result by
differentiating it n − 1 times we obtain the linear system

k1𝑓1(x) + k2𝑓2(x) + ⋅ ⋅ ⋅ + kn𝑓n(x) = 0
k1𝑓′1 (x) + k2𝑓′2 (x) + ⋅ ⋅ ⋅ + kn𝑓′n(x) = 0
...

...
...

...
k1𝑓(n−1)1 (x) + k2𝑓(n−1)2 (x) + ⋅ ⋅ ⋅ + kn𝑓(n−1)n (x) = 0

Thus, the assumed linear dependence of f1, f2, . . . , fn implies that the linear system

⎡
⎢
⎢
⎢
⎢
⎣

𝑓1(x) 𝑓2(x) ⋅ ⋅ ⋅ 𝑓n(x)
𝑓′1 (x) 𝑓′2 (x) ⋅ ⋅ ⋅ 𝑓′n(x)...

...
...

𝑓(n−1)1 (x) 𝑓(n−1)2 (x) ⋅ ⋅ ⋅ 𝑓(n−1)n (x)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

k1
k2...
kn

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎦

(11)
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has a nontrivial solution for every x in the interval (−∞,∞), and this in turn implies
that the determinant of the coefficient matrix of (11) is zero for every such x. Thus, the
assumed linear independence of 𝑓1, 𝑓2, . . . , 𝑓n implies that the Wronskian of these func-
tions is identically zero on (−∞,∞); or stated in contrapositive form (see Appendix A),
if the Wronskian is not identically zero on (−∞,∞), then the functions must be linearly
dependent. Thus, we have the following result.

Theorem 4.4.4

If the functions f1, f2, . . . , fn have n−1 continuous derivatives on the interval
(−∞,∞), and if theWronskian of these functions is not identically zero on (−∞,∞),
then these functions form a linearly independent set of vectors in 𝐶(n−1)(−∞,∞).

In Example 6we showed that x and sin x are linearly independent functions by observ-

Warning The con-
verse of Theorem 4.4.4 is
false. If the Wronskian of
f1, f2, . . . , fn is identically
zero on (−∞,∞), then no
conclusion can be reached
about the linear indepen-
dence of {f1, f2, . . . , fn}—this
set of vectors may be lin-
early independent or
linearly dependent.ing that neither is a scalar multiple of the other. The following example shows that this is

consistent with Theorem 4.4.4.

EXAMPLE 8 | Linear Independence Using the Wronskian

Use the Wronskian to show that f1 = x and f2 = sin x are linearly independent vectors in
𝐶∞(−∞,∞).
Solution The Wronskian is

𝑊(x) = |||
x sin x
1 cos x

||| = x cos x− sin x

This function is not identically zero on the interval (−∞,∞) since, for example,

𝑊(𝜋2 ) = 𝜋
2 cos (𝜋2 )− sin (𝜋2 ) = −1

Thus, the functions are linearly independent.

Historical Note

Józef Hoëné
deWroński
(1778–1853)

The Polish-French mathematician Józef Hoëné de Wroński was
born Józef Hoëné and adopted the name Wroński after he mar-
ried. Wroński’s life was fraught with controversy and conflict,
which some say was due to psychopathic tendencies and his exag-
geration of the importance of his own work. Although Wroński’s
workwas dismissed as rubbish formany years, andmuch of it was
indeed erroneous, some of his ideas contained hidden brilliance
and have survived. In addition to his purely mathematical work,
he designed a caterpillar vehicle to compete with trains (though
it was never manufactured) and did research on the famous prob-
lem of determining the longitude of a ship at sea. His final years
were spent in poverty.

[Image: © TopFoto/The Image Works]
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EXAMPLE 9 | Linear Independence Using the Wronskian

Use theWronskian to show that f1 = 1, f2 = ex, and f3 = e2x are linearly independent vectors
in 𝐶∞(−∞,∞).
Solution The Wronskian is

𝑊(x) =
|||||

1 ex e2x

0 ex 2e2x

0 ex 4e2x

|||||
= 2e3x

This function is obviously not identically zero on (−∞,∞), so f1, f2, and f3 form a linearly
independent set.

OPTIONAL: We will close this section by proving Theorem 4.4.1.

Proof of Theorem 4.4.1 We will prove this theorem in the case where the set 𝑆 has two
or more vectors, and leave the case where 𝑆 has only one vector as an exercise. Assume
first that 𝑆 is linearly independent. We will show that if the equation

k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr = 0 (12)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
𝑆 must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific, suppose that k1 ≠ 0. Then we can
rewrite (12) as

v1 = (−k2k1
) v2 + ⋅ ⋅ ⋅ + (− krk1

) vr
which expresses v1 as a linear combination of the other vectors in 𝑆.

Conversely, we must show that if the only coefficients satisfying (12) are

k1 = 0, k2 = 0, . . . , kr = 0

then the vectors in 𝑆 must be linearly independent. But if this were true of the coeffi-
cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

v1 = c2v2 + ⋅ ⋅ ⋅ + crvr
which we can rewrite as

v1 + (−c2)v2 + ⋅ ⋅ ⋅ + (−cr)vr = 0
But this contradicts our assumption that (12) can only be satisfied by coefficients that are
all zero. Thus, the vectors in 𝑆 must be linearly independent.

Exercise Set 4.4

1. Explainwhy the following form linearly dependent sets of vec-
tors. (Solve this problem by inspection.)

a. u1 = (−1, 2, 4) and u2 = (5,−10,−20) in 𝑅3

b. u1 = (3,−1), u2 = (4, 5), u3 = (−4, 7) in 𝑅2

c. p1 = 3− 2x+ x2 and p2 = 6− 4x+ 2x2 in 𝑃2

d. 𝐴 = [−3 4
2 0] and 𝐵 = [ 3 −4

−2 0] in𝑀22

2. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in 𝑅3.

a. (−3, 0, 4), (5,−1, 2), (1, 1, 3)
b. (−2, 0, 1), (3, 2, 5), (6,−1, 1), (7, 0,−2)

3. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in 𝑅4.

a. (3, 8, 7,−3), (1, 5, 3,−1), (2,−1, 2, 6), (4, 2, 6, 4)
b. (3, 0,−3, 6), (0, 2, 3, 1), (0,−2,−2, 0), (−2, 1, 2, 1)
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4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in 𝑃2.

a. 2− x+ 4x2, 3+ 6x+ 2x2, 2+ 10x− 4x2

b. 1+ 3x+ 3x2, x+ 4x2, 5+ 6x+ 3x2, 7+ 2x− x2

5. In eachpart, determinewhether thematrices are linearly inde-
pendent or dependent.

a. [
1 0
1 2] , [1 2

2 1] , [0 1
2 1] in𝑀22

b. [
1 0 0
0 0 0] , [0 0 1

0 0 0] , [0 0 0
0 1 0] in𝑀23

6. Determine all values of k for which the following matrices are
linearly independent in𝑀22.

[1 0
1 k] , [−1 0

k 1] , [2 0
1 3]

7. In each part, determinewhether the three vectors lie in a plane
in 𝑅3.

a. v1 = (2,−2, 0), v2 = (6, 1, 4), v3 = (2, 0,−4)
b. v1 = (−6, 7, 2), v2 = (3, 2, 4), v3 = (4,−1, 2)

8. In each part, determine whether the three vectors lie on the
same line in 𝑅3.

a. v1 = (−1, 2, 3), v2 = (2,−4,−6), v3 = (−3, 6, 0)
b. v1 = (2,−1, 4), v2 = (4, 2, 3), v3 = (2, 7,−6)
c. v1 = (4, 6, 8), v2 = (2, 3, 4), v3 = (−2,−3,−4)

9. a. Show that the three vectors v1 = (0, 3, 1,−1),
v2 = (6, 0, 5, 1), and v3 = (4,−7, 1, 3) form a linearly
dependent set in 𝑅4.

b. Express each vector in part (a) as a linear combination of
the other two.

10. a. Show that the vectors v1 = (1, 2, 3, 4), v2 = (0, 1, 0,−1),
and v3 = (1, 3, 3, 3) form a linearly dependent set in 𝑅4.

b. Express each vector in part (a) as a linear combination of
the other two.

11. For which real values of 𝜆 do the following vectors form a lin-
early dependent set in 𝑅3?

v1 = (𝜆, − 1
2 , −

1
2), v2 = (− 1

2 , 𝜆, −
1
2), v3 = (− 1

2 , −
1
2 , 𝜆)

12. Under what conditions is a set with one vector linearly inde-
pendent?

13. In each part, let 𝑇𝐴 ∶𝑅2→𝑅2 be multiplication by 𝐴, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{𝑇𝐴(u1), 𝑇𝐴(u2)} is linearly independent in 𝑅2.

a. 𝐴 = [1 −1
0 2] b. 𝐴 = [ 1 −1

−2 2]

14. In each part, let 𝑇𝐴 ∶𝑅3→𝑅3 be multiplication by 𝐴, and let
u1 = (1, 0, 0), u2 = (2,−1, 1), and u3 = (0, 1, 1). Determine
whether the set {𝑇𝐴(u1), 𝑇𝐴(u2), 𝑇𝐴(u3)} is linearly indepen-
dent in 𝑅3.

a. 𝐴 = [
1 1 2
1 0 −3
2 2 0

] b. 𝐴 = [
1 1 1
1 1 −3
2 2 0

]

15. Are the vectors v1, v2, and v3 in part (a) of the accompany-
ing figure linearly independent? What about those in part (b)?
Explain.

z

y

x

z

y

x

v1

v1

v2

v2

v3 v3

(a) (b)

FIGURE Ex-15

16. By using appropriate identities, where required, determine
which of the following sets of vectors in 𝐹(−∞,∞) are lin-
early dependent.

a. 6, 3 sin2 x, 2 cos2 x b. x, cos x

c. 1, sin x, sin 2x d. cos 2x, sin2 x, cos2 x

e. (3− x)2, x2 − 6x, 5 f. 0, cos3 𝜋x, sin5 3𝜋x

17. (Calculus required) The functions
𝑓1(x) = x and 𝑓2(x) = cos x

are linearly independent in 𝐹(−∞,∞) because neither func-
tion is a scalar multiple of the other. Confirm the linear inde-
pendence using the Wronskian.

18. (Calculus required) The functions
𝑓1(x) = sin x and 𝑓2(x) = cos x

are linearly independent in 𝐹(−∞,∞) because neither func-
tion is a scalar multiple of the other. Confirm the linear inde-
pendence using the Wronskian.

19. (Calculus required) Use the Wronskian to show that the fol-
lowing sets of vectors are linearly independent.

a. 1, x, ex b. 1, x, x2

20. (Calculus required) Use the Wronskian to show that the
functions 𝑓1(x) = ex, 𝑓2(x) = xex, and 𝑓3(x) = x2ex are lin-
early independent vectors in 𝐶∞(−∞,∞).

21. (Calculus required) Use the Wronskian to show that the
functions 𝑓1(x) = sin x, 𝑓2(x) = cos x, and 𝑓3(x) = x cos x
are linearly independent vectors in 𝐶∞(−∞,∞).

22. Show that for any vectors u, v, and w in a vector space 𝑉,
the vectors u− v, v−w, and w− u form a linearly depen-
dent set.

23. a. In Example 1 we showed that the mutually orthogonal vec-
tors i, j, and k form a linearly independent set of vectors
in 𝑅3. Do you think that every set of three nonzero mutu-
ally orthogonal vectors in 𝑅3 is linearly independent? Jus-
tify your conclusion with a geometric argument.

b. Justify your conclusion with an algebraic argument. [Hint:
Use dot products.]
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Working with Proofs

24. Prove that if {v1, v2, v3} is a linearly independent set of vectors,
then so are {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, and {v3}.

25. Prove that if 𝑆 = {v1, v2, . . . , vr} is a linearly independent set
of vectors, then so is every nonempty subset of 𝑆.

26. Prove that if 𝑆 = {v1, v2, v3} is a linearly dependent set of vec-
tors in a vector space𝑉, and v4 is any vector in𝑉 that is not in
𝑆, then {v1, v2, v3, v4} is also linearly dependent.

27. Prove that if 𝑆 = {v1, v2, . . . , vr} is a linearly dependent set of
vectors in a vector space 𝑉, and if vr+1, . . . , vn are any vectors
in𝑉 that are not in 𝑆, then {v1, v2, . . . , vr, vr+1, . . . , vn} is also
linearly dependent.

28. Prove that in 𝑃2 every set with more than three vectors is lin-
early dependent.

29. Prove that if {v1, v2} is linearly independent and v3 does not lie
in span{v1, v2}, then {v1, v2, v3} is linearly independent.

30. Prove Theorem 4.4.1 in the case where 𝑆 has only one vector.
31. Prove part (b) of Theorem 4.4.2.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. A set containing a single vector is linearly independent.

b. No linearly independent set contains the zero vector.

c. Every linearly dependent set contains the zero vector.

d. If the set of vectors {v1, v2, v3} is linearly independent,
then {kv1, kv2, kv3} is also linearly independent for every
nonzero scalar k.

e. If v1, . . . , vn are linearly dependent nonzero vectors, then
at least one vector vk is a unique linear combination of
v1, . . . , vk−1.

f. The set of 2 × 2 matrices that contain exactly two 1’s and
two 0’s is a linearly independent set in𝑀22.

g. The three polynomials (x− 1)(x+ 2), x(x+ 2), and
x(x− 1) are linearly independent.

h. The functions 𝑓1 and 𝑓2 are linearly dependent if there
is a real number x such that k1𝑓1(x) + k2𝑓2(x) = 0 for
some scalars k1 and k2.

Working with Technology
T1. Devise three differentmethods for using your technology util-

ity to determinewhether a set of vectors in𝑅n is linearly inde-
pendent, and then use each of those methods to determine
whether the following vectors are linearly independent.

v1 = (4,−5, 2, 6), v2 = (2,−2, 1, 3),
v3 = (6,−3, 3, 9), v4 = (4,−1, 5, 6)

T2. Show that 𝑆 = {cos t, sin t, cos 2t, sin 2t} is a linearly indepen-
dent set in𝐶(−∞,∞) by evaluating the left side of the equa-
tion

c1 cos t+ c2 sin t+ c3 cos 2t+ c4 sin 2t = 0
at sufficientlymany values of t to obtain a linear systemwhose
only solution is c1 = c2 = c3 = c4 = 0.

4.5 Coordinates and Basis
We usually think of a line as being one-dimensional, a plane as two-dimensional, and the
space around us as three-dimensional. It is the primary goal of this section and the next
to make this intuitive notion of dimension precise. In this section we will discuss coordi-
nate systems in general vector spaces and lay the groundwork for a precise definition of
dimension in the next section.

Coordinate Systems in Linear Algebra
In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between
points in 3-space and ordered triples of real numbers (Figure 4.5.1). Although rectangular
coordinate systems are common, they are not essential. For example, Figure 4.5.2 shows
coordinate systems in 2-space and 3-space in which the coordinate axes are not mutually
perpendicular.
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Coordinates of P in a rectangular
coordinate system in 2-space.

Coordinates of P in a rectangular
coordinate system in 3-space.

FIGURE 4.5.1
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Coordinates of P in a nonrectangular
coordinate system in 2-space.

Coordinates of P in a nonrectangular
coordinate system in 3-space.

FIGURE 4.5.2

In linear algebra coordinate systems are commonly specifiedusing vectors rather than
coordinate axes. For example, in Figure 4.5.3 we have re-created the coordinate systems
in Figure 4.5.2 by using unit vectors to identify the positive directions and then attaching
coordinates to a point 𝑃 using the scalar coefficients in the equations

𝑂𝑃 = au1 + bu2 and 𝑂𝑃 = au1 + bu2 + cu3

bu2

cu3

bu2

O

O

au1 au1
u1

u2

u3

u1

u2

P(a, b)

P(a, b, c)

FIGURE 4.5.3

Units ofmeasurement are essential ingredients of any coordinate system. In geometry
problems one tries to use the same unit of measurement on all axes to avoid distorting the
shapes of figures. This is less important in applications where coordinates represent phys-
ical quantities with diverse units (for example, time in seconds on one axis and tempera-
ture in degrees Celsius on another axis). To allow for this level of generality, we will relax
the requirement that unit vectors be used to identify the positive directions and require
only that those vectors be linearly independent. We will refer to these as the “basis vec-
tors” for the coordinate system. In summary, it is the directions of the basis vectors that
establish the positive directions, and it is the lengths of the basis vectors that establish the
spacing between the integer points on the axes (Figure 4.5.4).
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Basis for a Vector Space
Our next goal is to extend the concepts of “basis vectors” and “coordinate systems” to
general vector spaces, and for that purpose we will need some definitions. Vector spaces
fall into two categories: A vector space 𝑉 is said to be finite-dimensional if there is a
finite set of vectors in𝑉 that spans𝑉 and is said to be infinite-dimensional if no such set
exists.

Definition 1

If 𝑆 = {v1, v2, . . . , vn} is a set of vectors in a finite-dimensional vector space 𝑉, then
𝑆 is called a basis for 𝑉 if:
(a) 𝑆 spans 𝑉.
(b) 𝑆 is linearly independent.

If you think of a basis as describing a coordinate system for a finite-dimensional vec-
tor space 𝑉, then part (a) of this definition guarantees that there are enough basis vectors
to provide coordinates for all vectors in 𝑉, and part (b) guarantees that there is no interre-
lationship between the basis vectors. Here are some examples.

EXAMPLE 1 | The Standard Basis for Rn

Recall from Example 1 of Section 4.3 that the standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)
span 𝑅n and from Example 1 of Section 4.4 that they are linearly independent. Thus, they
form a basis for 𝑅n that we call the standard basis for Rn. In particular,

i = (1, 0), j = (0, 1)
and

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)
are the standard bases for 𝑅2 and 𝑅3, respectively.
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EXAMPLE 2 | The Standard Basis for Pn

Show that 𝑆 = {1, x, x2, . . . , xn} is a basis for the vector space 𝑃n of polynomials of degree
n or less.

Solution We must show that the polynomials in 𝑆 are linearly independent and span 𝑃n.
Let us denote these polynomials by

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We showed in Example 3 of Section 4.3 that these vectors span 𝑃n and in Example 4 of
Section 4.4 that they are linearly independent. Thus, they form a basis for 𝑃n that we call
the standard basis for Pn.

EXAMPLE 3 | Another Basis for R3

Show that the vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4) form a basis for 𝑅3.

Solution Wemust show that these vectors are linearly independent and span 𝑅3. To prove
linear independence we must show that the vector equation

c1v1 + c2v2 + c3v3 = 0 (1)

has only the trivial solution; and to prove that the vectors span 𝑅3 we must show that every
vector b = (b1, b2, b3) in 𝑅3 can be expressed as

c1v1 + c2v2 + c3v3 = b (2)

By equating corresponding components on the two sides, these two equations can be expressed
as the linear systems

c1 + 2c2 + 3c3 = 0
2c1 + 9c2 + 3c3 = 0
c1 + 4c3 = 0

and
c1 + 2c2 + 3c3 = b1
2c1 + 9c2 + 3c3 = b2
c1 + 4c3 = b3

(3)

(verify). Thus, we have reduced the problem to showing that in (3) the homogeneous system
has only the trivial solution and that the nonhomogeneous system is consistent for all values
of b1, b2, and b3. But the two systems have the same coefficient matrix

𝐴 = [
1 2 3
2 9 3
1 0 4

]

so it follows from parts (b), (e), and (g) of Theorem 2.3.8 that we can prove both results at
the same time by showing that det(𝐴) ≠ 0. We leave it for you to confirm that det(𝐴) = −1,
which proves that the vectors v1, v2, and v3 form a basis for 𝑅3.

From Examples 1 and 3 you
can see that a vector space
can have more than one
basis.

EXAMPLE 4 | The Standard Basis forMmn

Show that the matrices

𝑀1 = [1 0
0 0] , 𝑀2 = [0 1

0 0] , 𝑀3 = [0 0
1 0] , 𝑀4 = [0 0

0 1]

form a basis for the vector space𝑀22 of 2 × 2 matrices.
Solution Wemust show that thematrices are linearly independent and span𝑀22. To prove
linear independence we must show that the equation

c1𝑀1 + c2𝑀2 + c3𝑀3 + c4𝑀4 = 0 (4)
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has only the trivial solution, where 0 is the 2 × 2 zero matrix; and to prove that the matrices
span𝑀22 we must show that every 2 × 2 matrix

𝐵 = [a b
c d]

can be expressed as
c1𝑀1 + c2𝑀2 + c3𝑀3 + c4𝑀4 = 𝐵 (5)

The matrix forms of Equations (4) and (5) are

c1 [
1 0
0 0] + c2 [

0 1
0 0] + c3 [

0 0
1 0] + c4 [

0 0
0 1] = [0 0

0 0]

and
c1 [

1 0
0 0] + c2 [

0 1
0 0] + c3 [

0 0
1 0] + c4 [

0 0
0 1] = [a b

c d]

which can be rewritten as

[c1 c2
c3 c4

] = [0 0
0 0] and [c1 c2

c3 c4
] = [a b

c d]

Since the first equation has only the trivial solution

c1 = c2 = c3 = c4 = 0

the matrices are linearly independent, and since the second equation has the solution

c1 = a, c2 = b, c3 = c, c4 = d

the matrices span𝑀22. This proves that the matrices𝑀1,𝑀2,𝑀3,𝑀4 form a basis for𝑀22.
More generally, themn different matrices whose entries are zero except for a single entry of
1 form a basis for𝑀mn called the standard basis for Mmn.

The simplest of all vector spaces is the zero vector space 𝑉 = {0}. This space is finite-
dimensional because it is spanned by the vector 0. However, it has no basis in the sense of
Definition 1 because {0} is not a linearly independent set (why?). However, we will find it
useful to define the empty set ∅ to be a basis for this vector space.

EXAMPLE 5 | An Infinite-Dimensional Vector Space

Show that the vector space of 𝑃∞ of all polynomials with real coefficients is infinite-
dimensional by showing that it has no finite spanning set.

Solution If there were a finite spanning set, say 𝑆 = {p1,p2, . . . ,pr}, then the degrees of
the polynomials in 𝑆 would have a maximum value, say n; and this in turn would imply that
any linear combination of the polynomials in 𝑆 would have degree at most n. Thus, there
would be no way to express the polynomial xn+1 as a linear combination of the polynomials
in 𝑆, contradicting the fact that the vectors in 𝑆 span 𝑃∞.

EXAMPLE 6 | Some Finite- and Infinite-Dimensional Spaces

In Examples 1, 2, and 4 we found bases for 𝑅n, 𝑃n, and 𝑀mn, so these vector spaces
are finite-dimensional. We showed in Example 5 that the vector space 𝑃∞ is not spanned
by finitely many vectors and hence is infinite-dimensional. Some other examples of infinite-
dimensional vector spaces are𝑅∞,𝐹(−∞,∞),𝐶(−∞,∞),𝐶m(−∞,∞), and𝐶∞(−∞,∞).
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Coordinates Relative to a Basis
Earlier in this section we drew an informal analogy between basis vectors and coordinate
systems. Our next goal is to make this informal idea precise by defining the notion of a
coordinate system in a general vector space. The following theorem will be our first step
in that direction.

Theorem 4.5.1

Uniqueness of Basis Representation
If 𝑆 = {v1, v2, . . . , vn} is a basis for a vector space 𝑉, then every vector v in 𝑉 can be
expressed in the form v = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn in exactly one way.

Proof Since 𝑆 spans 𝑉, it follows from the definition of a spanning set that every vector
in 𝑉 is expressible as a linear combination of the vectors in 𝑆. To see that there is only
oneway to express a vector as a linear combination of the vectors in 𝑆, suppose that some
vector v can be written as

v = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn
and also as

v = k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn
Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + ⋅ ⋅ ⋅ + (cn − kn)vn
Since the right side of this equation is a linear combination of vectors in 𝑆, the linear
independence of 𝑆 implies that

c1 − k1 = 0, c2 − k2 = 0, . . . , cn − kn = 0

that is,
c1 = k1, c2 = k2, . . . , cn = kn

Thus, the two expressions for v are the same.

We now have all of the ingredients required to define the notion of “coordinates” in
a general vector space 𝑉. For motivation, observe that in 𝑅3, for example, the coordinates
(a, b, c) of a vector v are precisely the coefficients in the formula

v = ai + bj + ck

that expresses v as a linear combination of the standard basis vectors for 𝑅3 (see Figure
4.5.5).

k

ck

j

bji

ai
(0, 1, 0)

(a, b, c)

(1, 0, 0)

(0, 0, 1)

z

y

x

FIGURE 4.5.5
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Our next definition will generalize this idea, but first we need to make some obser-
vations about bases. Up to now the order of the vectors in a basis 𝑆 = {v1, v2, . . . , vn} for a
vector space 𝑉 did not matter. The only requirement was that the vectors in the set 𝑆 be
linearly independent and span 𝑉. However, in many cases the order in which the vectors
in 𝑆 are listed matters. A basis in which the listed order of the vectors matters is called
an ordered basis. Thus, for example, if 𝑆 = {v1, v2, . . . , vn} is a basis for a vector space 𝑉,
then 𝑆′ = {v2, v1, . . . , vn} is also a basis, but it is a different ordered basis.

Definition 2

If 𝑆 = {v1, v2, . . . , vn} is an ordered basis for a vector space 𝑉, and
v = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn

is the expression for a vector v in terms of the basis 𝑆, then the scalars c1, c2, . . . , cn
are called the coordinates of v relative to the basis S. The vector (c1, c2, . . . , cn) in
𝑅n constructed from these coordinates is called the coordinate vector of v relative
to S; it is denoted by

(v)𝑆 = (c1, c2, . . . , cn) (6)

Frequently, we will want to express (6) as a columnmatrix, in which case we will use
the notation

[v]𝑆 =
⎡
⎢
⎢
⎢
⎣

c1
c2...
cn

⎤
⎥
⎥
⎥
⎦

Wecall this thematrix form of the coordinate vector and (6) the comma-delimited form.
Observe that (v)𝑆 is a vector in 𝑅n, so that once an ordered basis 𝑆 is given for a vector

space𝑉,Theorem 4.5.1 establishes a one-to-one correspondence between vectors in𝑉 and
vectors in 𝑅n (Figure 4.5.6).

RnV

v (v)S

A one-to-one correspondence

FIGURE 4.5.6

EXAMPLE 7 | Coordinates Relative to the Standard Basis for Rn

In the special case where𝑉 = 𝑅n and 𝑆 is the standard basis, the coordinate vector (v)𝑆 and
the vector v are the same; that is,

v = (v)𝑆
For example, in 𝑅3 the representation of a vector v = (a, b, c) as a linear combination of the
vectors in the standard basis 𝑆 = {i, j,k} is

v = ai+ bj+ ck

so the coordinate vector relative to this basis is (v)𝑆 = (a, b, c), which is the same as the
vector v.
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EXAMPLE 8 | Coordinate Vectors Relative to Standard Bases

(a) Find the coordinate vector for the polynomial

p(x) = c0 + c1x+ c2x2 + ⋅ ⋅ ⋅ + cnxn

relative to the standard basis for the vector space 𝑃n.
(b) Find the coordinate vector of

𝐵 = [a b
c d]

relative to the standard basis for𝑀22.

Solution (a) The given formula for p(x) expresses this polynomial as a linear combination
of the standard basis vectors 𝑆 = {1, x, x2, . . . , xn}. Thus, the coordinate vector for p relative
to 𝑆 is

(p)𝑆 = (c0, c1, c2, . . . , cn)
Solution (b) We showed in Example 4 that the representation of a vector

𝐵 = [a b
c d]

as a linear combination of the standard basis vectors is

𝐵 = [a b
c d] = a [

1 0
0 0] + b [

0 1
0 0] + c [

0 0
1 0] + d [

0 0
0 1]

so the coordinate vector of 𝐵 relative to 𝑆 is
(𝐵)𝑆 = (a, b, c, d)

EXAMPLE 9 | Coordinates in R3

(a) We showed in Example 3 that the vectors

v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4)
form a basis for 𝑅3. Find the coordinate vector of v = (5,−1, 9) relative to the basis
𝑆 = {v1, v2, v3}.

(b) Find the vector v in 𝑅3 whose coordinate vector relative to 𝑆 is (v)𝑆 = (−1, 3, 2).

Solution (a) To find (v)𝑆 we must first express v as a linear combination of the vectors in
𝑆; that is, we must find values of c1, c2, and c3 such that

v = c1v1 + c2v2 + c3v3
or, in terms of components,

(5,−1, 9) = c1(1, 2, 1) + c2(2, 9, 0) + c3(3, 3, 4)
Equating corresponding components gives

c1 + 2c2 + 3c3 = 5
2c1 + 9c2 + 3c3 = −1
c1 + 4c3 = 9

Solving this system we obtain c1 = 1, c2 = −1, c3 = 2 (verify). Therefore,

(v)𝑆 = (1,−1, 2)
Solution (b) Using the definition of (v)𝑆, we obtain

v = (−1)v1 + 3v2 + 2v3
= (−1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4) = (11, 31, 7)
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Exercise Set 4.5

1. Use the method of Example 3 to show that the following set of
vectors forms a basis for 𝑅2.

{(2, 1), (3, 0)}

2. Use the method of Example 3 to show that the following set of
vectors forms a basis for 𝑅3.

{(3, 1,−4), (2, 5, 6), (1, 4, 8)}

3. Show that the following polynomials form a basis for 𝑃2.

x2 + 1, x2 − 1, 2x− 1

4. Show that the following polynomials form a basis for 𝑃3.

1+ x, 1− x, 1− x2, 1− x3

5. Show that the following matrices form a basis for𝑀22.

[3 6
3 −6], [ 0 −1

−1 0], [ 0 −8
−12 −4], [ 1 0

−1 2]

6. Show that the following matrices form a basis for𝑀22.

[1 1
1 1], [1 −1

0 0], [0 −1
1 0], [1 0

0 0]

7. In each part, show that the set of vectors is not a basis for 𝑅3.

a. {(2,−3, 1), (4, 1, 1), (0,−7, 1)}
b. {(1, 6, 4), (2, 4,−1), (−1, 2, 5)}

8. Show that the following vectors do not form a basis for 𝑃2.

1− 3x+ 2x2, 1+ x+ 4x2, 1− 7x

9. Show that the following matrices do not form a basis for𝑀22.

[1 0
1 1], [2 −2

3 2], [1 −1
1 0], [0 −1

1 1]

10. Let𝑉 be the space spanned by v1 = cos2 x, v2 = sin2 x,
v3 = cos 2x.

a. Show that 𝑆 = {v1, v2, v3} is not a basis for𝑉.
b. Find a basis for𝑉.

11. Find the coordinate vector ofw relative to the basis
𝑆 = {u1,u2} for 𝑅2.

a. u1 = (2,−4), u2 = (3, 8); w = (1, 1)
b. u1 = (1, 1), u2 = (0, 2); w = (a, b)

12. Find the coordinate vector ofw relative to the basis
𝑆 = {u1,u2} for 𝑅2.

a. u1 = (1,−1), u2 = (1, 1); w = (1, 0)
b. u1 = (1,−1), u2 = (1, 1); w = (0, 1)

13. Find the coordinate vector of v relative to the basis
𝑆 = {v1, v2, v3} for 𝑅3.

a. v = (2,−1, 3); v1 = (1, 0, 0), v2 = (2, 2, 0),
v3 = (3, 3, 3)

b. v = (5,−12, 3); v1 = (1, 2, 3), v2 = (−4, 5, 6),
v3 = (7,−8, 9)

14. Find the coordinate vector of p relative to the basis
𝑆 = {p1,p2,p3} for 𝑃2.

a. p = 4− 3x+ x2; p1 = 1, p2 = x, p3 = x2

b. p = 2− x+ x2; p1 = 1+ x, p2 = 1+ x2, p3 = x+ x2

In Exercises 15–16, first show that the set 𝑆 = {𝐴1,𝐴2, 𝐴3,𝐴4} is a
basis for𝑀22, then express𝐴 as a linear combination of the vectors
in 𝑆, and then find the coordinate vector of𝐴 relative to 𝑆.

15. 𝐴1 = [1 1
1 1] , 𝐴2 = [0 1

1 1] , 𝐴3 = [0 0
1 1] ,

𝐴4 = [0 0
0 1] ; 𝐴 = [1 0

1 0]

16. 𝐴1 = [1 0
1 0] , 𝐴2 = [1 1

0 0] , 𝐴3 = [1 0
0 1] ,

𝐴4 = [0 0
1 0] ; 𝐴 = [6 2

5 3]

In Exercises 17–18, first show that the set 𝑆 = {p1,p2,p3} is a basis
for𝑃2, then expressp as a linear combination of the vectors in𝑆, and
then find the coordinate vector of p relative to 𝑆.
17. p1 = 1+ x+ x2, p2 = x+ x2, p3 = x2;

p = 7− x+ 2x2

18. p1 = 1+ 2x+ x2, p2 = 2+ 9x, p3 = 3+ 3x+ 4x2;
p = 2+ 17x− 3x2

19. In words, explain why the sets of vectors in parts (a) to (d) are
not bases for the indicated vector spaces.

a. u1 = (1, 2), u2 = (0, 3), u3 = (1, 5) for 𝑅2

b. u1 = (−1, 3, 2), u2 = (6, 1, 1) for 𝑅3

c. p1 = 1+ x+ x2, p2 = x for 𝑃2

d. 𝐴 = [1 0
2 3], 𝐵 = [ 6 0

−1 4], 𝐶 = [3 0
1 7] ,

𝐷 = [5 0
4 2] for𝑀22

20. In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

21. In each part, let 𝑇𝐴 ∶𝑅3→𝑅3 be multiplication by 𝐴, and let
{e1, e2, e3} be the standard basis for𝑅3. Determinewhether the
set {𝑇𝐴(e1), 𝑇𝐴(e2), 𝑇𝐴(e3)} is linearly independent in 𝑅2.

a. 𝐴 = [
1 1 1
0 1 −3

−1 2 0
] b. 𝐴 = [

1 1 2
0 1 1

−1 2 1
]

22. In each part, let 𝑇𝐴 ∶𝑅3→𝑅3 be multiplication by 𝐴, and let
u = (1,−2,−1). Find the coordinate vector of 𝑇𝐴(u) relative
to the basis 𝑆 = {(1, 1, 0), (0, 1, 1), (1, 1, 1)} for 𝑅3.

a. 𝐴 = [
2 −1 0
1 1 1
0 −1 2

] b. 𝐴 = [
0 1 0
1 0 1
0 0 1

]
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23. The accompanying figure shows a rectangular xy-coordin-
ate system determined by the unit basis vectors i and j and
an x′y′-coordinate system determined by unit basis vectors
u1 and u2. Find the x′y′-coordinates of the points whose
xy-coordinates are given.
a. (√3, 1) b. (1, 0) c. (0, 1) d. (a, b)

x

y and y′

x′

30°

i

j and u2

u1

FIGURE Ex-23

24. The accompanying figure shows a rectangular xy-coordinate
system and an x′y′-coordinate system with skewed axes.
Assuming that 1-unit scales are used on all the axes, find the
x′y′-coordinates of the points whose xy-coordinates are given.
a. (1, 1) b. (1, 0) c. (0, 1) d. (a, b)

x and x′

y y′

45°

FIGURE Ex-24

25. The first four Hermite polynomials [named for the French
mathematician Charles Hermite (1822–1901)] are

1, 2t, −2+ 4t2, −12t+ 8t3
These polynomials have a wide variety of applications in
physics and engineering.

a. Show that the first four Hermite polynomials form a basis
for 𝑃3.

b. Let 𝐵 be the basis in part (a). Find the coordinate vector of
the polynomial

p(t) = −1− 4t+ 8t2 + 8t3
relative to 𝐵.

26. The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834–1886)] are

1, 1− t, 2− 4t+ t2, 6− 18t+ 9t2 − t3

a. Show that the first four Laguerre polynomials form a basis
for 𝑃3.

b. Let 𝐵 be the basis in part (a). Find the coordinate vector of
the polynomial

p(t) = −10t+ 9t2 − t3

relative to 𝐵.

27. Consider the coordinate vectors

[w]𝑆 = [
6

−1
4
] , [q]𝑆 = [

3
0
4
] , [𝐵]𝑆 =

⎡
⎢
⎢
⎢
⎣

−8
7
6
3

⎤
⎥
⎥
⎥
⎦

a. Findw if 𝑆 is the basis in Exercise 2.
b. Find q if 𝑆 is the basis in Exercise 3.
c. Find 𝐵 if 𝑆 is the basis in Exercise 5.

28. The basis that we gave for𝑀22 in Example 4 consisted of non-
invertible matrices. Do you think that there is a basis for𝑀22
consisting of invertible matrices? Justify your answer.

Working with Proofs

29. Prove that 𝑅∞ is an infinite-dimensional vector space.

30. Let 𝑇𝐴 ∶𝑅n→𝑅n be multiplication by an invertible matrix
𝐴, and let {u1,u2, . . . ,un} be a basis for 𝑅n. Prove that
{𝑇𝐴(u1), 𝑇𝐴(u2), . . . , 𝑇𝐴(un)} is also a basis for 𝑅n.

31. Prove that if 𝑉 is a subspace of a vector space𝑊 and if 𝑉 is
infinite-dimensional, then so is𝑊.

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. If𝑉 = span{v1, . . . , vn}, then {v1, . . . , vn} is a basis for𝑉.

b. Every linearly independent subset of a vector space𝑉 is a
basis for𝑉.

c. If {v1, v2, . . . , vn} is a basis for a vector space𝑉, then every
vector in 𝑉 can be expressed as a linear combination of
v1, v2, . . . , vn.

d. The coordinate vector of a vector x in 𝑅n relative to the
standard basis for 𝑅n is x.

e. Every basis of 𝑃4 contains at least one polynomial of
degree 3 or less.

Working with Technology
T1. Let𝑉 be the subspace of 𝑃3 spanned by the vectors

p1 = 1+ 5x− 3x2 − 11x3, p2 = 7+ 4x− x2 + 2x3,
p3 = 5+ x+ 9x2 + 2x3, p4 = 3− x+ 7x2 + 5x3

a. Find a basis 𝑆 for𝑉.
b. Find the coordinate vector of p = 19+ 18x− 13x2 − 10x3

relative to the basis 𝑆 you obtained in part (a).

T2. Let𝑉 be the subspace of𝐶∞(−∞,∞) spanned by the vectors
in the set

𝐵 = {1, cos x, cos2 x, cos3 x, cos4 x, cos5 x}

and accept without proof that 𝐵 is a basis for𝑉. Confirm that
the following vectors are in 𝑉, and find their coordinate vec-
tors relative to 𝐵.

f0 = 1, f1 = cos x, f2 = cos 2x, f3 = cos 3x,
f4 = cos 4x, f5 = cos 5x
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4.6 Dimension
We showed in the previous section that the standard basis for Rn has n vectors and hence
that the standard basis for R3 has three vectors, the standard basis for R2 has two vec-
tors, and the standard basis for R1 (= R) has one vector. Since we think of space as three-
dimensional, a plane as two-dimensional, and a line as one-dimensional, there seems to
be a link between the number of vectors in a basis and the dimension of a vector space.
We will develop this idea in this section.

Number of Vectors in a Basis
Our first goal in this section is to establish the following fundamental theorem.

Theorem 4.6.1

All bases for a finite-dimensional vector space have the same number of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.

Theorem 4.6.2

Let𝑉 be a finite-dimensional vector space, and let {v1, v2, . . . , vn} be any basis for𝑉.
(a) If a set in 𝑉 has more than n vectors, then it is linearly dependent.
(b) If a set in 𝑉 has fewer than n vectors, then it does not span 𝑉.

We can now see rather easily why Theorem 4.6.1 is true; for if
𝑆 = {v1, v2, . . . , vn}

is an arbitrary basis for𝑉, then the linear independence of 𝑆 implies that any set in𝑉 with
more than n vectors is linearly dependent and any set in𝑉 with fewer than n vectors does
not span 𝑉. Thus, unless a set in 𝑉 has exactly n vectors it cannot be a basis.

We noted in the introduction to this section that for certain familiar vector spaces
the intuitive notion of dimension coincides with the number of vectors in a basis. The
following definition makes this idea precise.

Definition 1

The dimension of a finite-dimensional vector space 𝑉 is denoted by dim(𝑉) and
is defined to be the number of vectors in a basis for 𝑉. In addition, the zero vector
space is defined to have dimension zero.

Engineers often use the
term degrees of freedom as
a synonym for dimension.

EXAMPLE 1 | Dimensions of Some Familiar Vector Spaces

dim(𝑅n) = n [The standard basis has 𝒏 vectors.]
dim(𝑃n) = n+ 1 [The standard basis has 𝒏 + 𝟏 vectors.]
dim(𝑀mn) = mn [The standard basis has𝒎𝒏 vectors.]
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EXAMPLE 2 | Dimension of Span(S)

If 𝑆 = {v1, v2, . . . , vr} then every vector in span(𝑆) is expressible as a linear combination of
the vectors in 𝑆. Thus, if the vectors in 𝑆 are linearly independent, they automatically form a
basis for span(𝑆), from which we can conclude that

dim [span{v1, v2, . . . , vr}] = r

Inwords, the dimension of the space spanned by a linearly independent set of vectors is equal
to the number of vectors in that set.

EXAMPLE 3 | Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Solution In Example 6 of Section 1.2 we found the solution of this system to be

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

which can be written in vector form as

(x1, x2, x3, x4, x5, x6) = (−3r− 4s− 2t, r,−2s, s, t, 0)
or, alternatively, as

(x1, x2, x3, x4, x5, x6) = r(−3, 1, 0, 0, 0, 0) + s(−4, 0,−2, 1, 0, 0) + t(−2, 0, 0, 0, 1, 0)
This shows that the vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0,−2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)
span the solution space. We leave it for you to check that these vectors are linearly inde-
pendent by showing that none of them is a linear combination of the other two (but see the
remark that follows). Thus, the solution space has dimension 3.

Remark It can be shown that for any homogeneous linear system, the method of the last
example always produces a basis for the solution space of the system. We omit the formal
proof.

Some Fundamental Theorems
We will devote the remainder of this section to a series of theorems that reveal the subtle
interrelationships among the concepts of linear independence, spanning sets, basis, and
dimension. These theorems are not simply exercises in mathematical theory—they are
essential to the understanding of vector spaces and the applications that build on them.

We will start with a theorem (proved at the end of this section) that is concerned with
the effect on linear independence and spanning if a vector is added to or removed from
a nonempty set of vectors. Informally stated, if you start with a linearly independent set
𝑆 and adjoin to it a vector that is not a linear combination of those already in 𝑆, then the
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enlarged set will still be linearly independent. Also, if you start with a set 𝑆 of two or more
vectors in which one of the vectors is a linear combination of the others, then that vector
can be removed from 𝑆 without affecting span(𝑆) (Figure 4.6.1).

The vector outside the plane
can be adjoined to the other
two without a4ecting their
linear independence.

Any of the vectors can
be removed, and the 
remaining two will still
span the plane.

Either of the collinear
vectors can be removed,
and the remaining two
will still span the plane.

FIGURE 4.6.1

Theorem 4.6.3

Plus/Minus Theorem
Let 𝑆 be a nonempty set of vectors in a vector space 𝑉.
(a) If 𝑆 is a linearly independent set, and if v is a vector in 𝑉 that is outside of

span(𝑆), then the set 𝑆 ∪ {v} that results by inserting v into 𝑆 is still linearly
independent.

(b) If v is a vector in 𝑆 that is expressible as a linear combination of other vectors
in 𝑆, and if 𝑆 − {v} denotes the set obtained by removing v from 𝑆, then 𝑆 and
𝑆 − {v} span the same space; that is,

span(𝑆) = span(𝑆 − {v})

EXAMPLE 4 | Applying the Plus/Minus Theorem

Show that p1 = 1− x2, p2 = 2− x2, and p3 = x3 are linearly independent vectors.

Solution The set 𝑆 = {p1,p2} is linearly independent since neither vector in 𝑆 is a scalar
multiple of the other. Since the vector p3 cannot be expressed as a linear combination of the
vectors in 𝑆 (why?), it can be adjoined to 𝑆 to produce a linearly independent set

𝑆 ∪ {p3} = {p1,p2,p3}

In general, to show that a set of vectors {v1, v2, . . . , vn} is a basis for a vector space 𝑉,
one must show that the vectors are linearly independent and span𝑉.However, if we hap-
pen to know that 𝑉 has dimension n (so that {v1, v2, . . . , vn} contains the right number of
vectors for a basis), then it suffices to check either linear independence or spanning—the
remaining condition will hold automatically. This is the content of the following theorem.

Theorem 4.6.4

Let𝑉 be ann-dimensional vector space, and let 𝑆 be a set in𝑉with exactlyn vectors.
Then 𝑆 is a basis for 𝑉 if and only if 𝑆 spans 𝑉 or 𝑆 is linearly independent.
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Proof Assume that 𝑆 has exactly n vectors and spans 𝑉. To prove that 𝑆 is a basis, we
must show that 𝑆 is a linearly independent set. But if this is not so, then some vector v in
𝑆 is a linear combination of the remaining vectors. If we remove this vector from 𝑆, then
it follows from Theorem 4.6.3(b) that the remaining set of n − 1 vectors still spans 𝑉. But
this is impossible since Theorem 4.6.2(b) states that no set with fewer than n vectors can
span an n-dimensional vector space. Thus 𝑆 is linearly independent.

Assume that 𝑆 has exactly n vectors and is a linearly independent set. To prove that 𝑆
is a basis, wemust show that 𝑆 spans𝑉.But if this is not so, then there is some vector v in𝑉
that is not in span(𝑆). If we insert this vector into 𝑆, then it follows from Theorem 4.6.3(a)
that this set of n + 1 vectors is still linearly independent. But this is impossible, since The-
orem 4.6.2(a) states that no set withmore than n vectors in an n-dimensional vector space
can be linearly independent. Thus 𝑆 spans 𝑉.

EXAMPLE 5 | Bases by Inspection

(a) Explain why the vectors v1 = (−3, 7) and v2 = (5, 5) form a basis for 𝑅2.
(b) Explain why the vectors v1 = (2, 0,−1), v2 = (4, 0, 7), and v3 = (−1, 1, 4) form a basis

for 𝑅3.

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form a
linearly independent set in the two-dimensional space 𝑅2, and hence they form a basis by
Theorem 4.6.4.

Solution (b) The vectors v1 and v2 form a linearly independent set in the xz-plane (why?).
The vector v3 is outside of the xz-plane, so the set {v1, v2, v3} is also linearly independent.
Since 𝑅3 is three-dimensional, Theorem 4.6.4 implies that {v1, v2, v3} is a basis for the vector
space 𝑅3.

The next theorem (whose proof is deferred to the end of this section) reveals two
important facts about the vectors in a finite-dimensional vector space 𝑉:
1. Every spanning set for a subspace is either a basis for that subspace or has a basis as

a subset.
2. Every linearly independent set in a subspace is either a basis for that subspace or can

be extended to a basis for it.

Theorem 4.6.5

Let 𝑆 be a finite set of vectors in a finite-dimensional vector space 𝑉.
(a) If 𝑆 spans 𝑉 but is not a basis for 𝑉, then 𝑆 can be reduced to a basis for 𝑉 by

removing appropriate vectors from 𝑆.
(b) If 𝑆 is a linearly independent set that is not already a basis for 𝑉, then 𝑆 can be

enlarged to a basis for 𝑉 by inserting appropriate vectors into 𝑆.

We conclude this section with a theorem that relates the dimension of a vector space
to the dimensions of its subspaces.
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Theorem 4.6.6

If𝑊 is a subspace of a finite-dimensional vector space 𝑉, then:
(a) 𝑊 is finite-dimensional.
(b) dim(𝑊) ≤ dim(𝑉).
(c) 𝑊 = 𝑉 if and only if dim(𝑊) = dim(𝑉).

Proof (a) We will leave the proof of this part as an exercise.

Proof (b) Part (a) tells us that𝑊 is finite-dimensional, so it has a basis
𝑆 = {w1,w2, . . . ,wm}

Either 𝑆 is also a basis for𝑉 or it is not. If it is a basis, then dim(𝑉) = m, whichmeans that
dim(𝑉) = dim(𝑊). If not, then because 𝑆 is a linearly independent set it can be enlarged
to a basis for 𝑉 by part (b) of Theorem 4.6.5. But this implies that dim(𝑊) < dim(𝑉), so
we have shown that dim(𝑊) ≤ dim(𝑉) in all cases.

Proof (c) Assume that dim(𝑊) = dim(𝑉) and that
𝑆 = {w1,w2, . . . ,wm}

is a basis for 𝑊. If 𝑆 is not also a basis for 𝑉, then because it is linearly independent, it
can be extended to a basis for 𝑉 by part (b) of Theorem 4.6.5. But this would mean that
dim(𝑉) > dim(𝑊), which contradicts our hypothesis. Thus 𝑆 must also be a basis for 𝑉,
which means that𝑊 = 𝑉. The converse is obvious.

Figure 4.6.2 illustrates the geometric relationship between the subspaces of 𝑅3 in
order of increasing dimension.

Line through the origin
(1-dimensional)

The origin
(0-dimensional)

Plane through
the origin

(2-dimensional)

R3

(3-dimensional)

FIGURE 4.6.2

OPTIONAL: We conclude this section with optional proofs of Theorems 4.6.2, 4.6.3,
and 4.6.5.

Proof of Theorem 4.6.2(a) Let 𝑆′ = {w1,w2, . . . ,wm} be any set ofm vectors in𝑉,where
m > n. We want to show that 𝑆′ is linearly dependent. Since 𝑆 = {v1, v2, . . . , vn} is a basis,
eachwi can be expressed as a linear combination of the vectors in 𝑆, say

w1 = a11v1 + a21v2 + ⋅ ⋅ ⋅ + an1vn
w2 = a12v1 + a22v2 + ⋅ ⋅ ⋅ + an2vn...

...
...

...
wm = a1mv1 + a2mv2 + ⋅ ⋅ ⋅ + anmvn

(1)

To show that 𝑆′ is linearly dependent, wemust find scalars k1, k2, . . . , km, not all zero, such
that

k1w1 + k2w2 + ⋅ ⋅ ⋅ + kmwm = 0 (2)
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We leave it for you to verify that the equations in (1) can be rewritten in the partitioned
form

[w1 ∣ w2 ∣ ⋅ ⋅ ⋅ ∣ wm] = [v1 ∣ v2 ∣ ⋅ ⋅ ⋅ ∣ vn]
⎡
⎢
⎢
⎢
⎢
⎣

a11 a21 ⋅ ⋅ ⋅ am1
a12 a22 ⋅ ⋅ ⋅ am2...

...
...

a1n a2n ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎥
⎦

(3)

Sincem > n, the linear system

⎡
⎢
⎢
⎢
⎢
⎣

a11 a21 ⋅ ⋅ ⋅ am1
a12 a22 ⋅ ⋅ ⋅ am2...

...
...

a1n a2n ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xm

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
...
0

⎤
⎥
⎥
⎥
⎦

(4)

has more equations than unknowns and hence has a nontrivial solution
x1 = k1, x2 = k2, . . . , xm = km

Creating a column vector from this solution and multiplying both sides of (3) on the right
by this vector yields

[w1 ∣ w2 ∣ ⋅ ⋅ ⋅ ∣ wm]
⎡
⎢
⎢
⎢
⎣

k1
k2...
km

⎤
⎥
⎥
⎥
⎦

= [v1 ∣ v2 ∣ ⋅ ⋅ ⋅ ∣ vn]
⎡
⎢
⎢
⎢
⎢
⎣

a11 a21 ⋅ ⋅ ⋅ am1
a12 a22 ⋅ ⋅ ⋅ am2...

...
...

a1n a2n ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

k1
k2...
km

⎤
⎥
⎥
⎥
⎦

By (4), this simplifies to

[w1 ∣ w2 ∣ ⋅ ⋅ ⋅ ∣ wm]
⎡
⎢
⎢
⎢
⎣

k1
k2...
km

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
...
0

⎤
⎥
⎥
⎥
⎦

which we can rewrite as
k1w1 + k2w2 + ⋅ ⋅ ⋅ + kmwm = 0

Since the scalar coefficients in this equation are not all zero, we have proved that
𝑆′ = {w1,w2, . . . ,wm} is linearly independent.

The proof of Theorem 4.6.2(b) closely parallels that of Theorem 4.6.2(a) and will be
omitted.

Proof of Theorem 4.6.3(a) Assume that 𝑆 = {v1, v2, . . . , vr} is a linearly independent set
in 𝑉, and v is a vector in 𝑉 that is outside of span(𝑆). To show that 𝑆′ = {v1, v2, . . . , vr, v}
is a linearly independent set, we must show that the only scalars that satisfy

k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr + kr+1v = 0 (5)
are k1 = k2 = ⋅ ⋅ ⋅ = kr = kr+1 = 0. But itmust be true that kr+1 = 0 for otherwisewe could
solve (5) for v as a linear combination of v1, v2, . . . , vr, contradicting the assumption that
v is outside of span(𝑆). Thus, (5) simplifies to

k1v1 + k2v2 + ⋅ ⋅ ⋅ + krvr = 0 (6)
which, by the linear independence of {v1, v2, . . . , vr}, implies that

k1 = k2 = ⋅ ⋅ ⋅ = kr = 0

Proof of Theorem 4.6.3(b) Assume that 𝑆 = {v1, v2, . . . , vr} is a set of vectors in 𝑉, and
(to be specific) suppose that vr is a linear combination of v1, v2, . . . , vr−1, say

vr = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cr−1vr−1 (7)
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Wewant to show that if vr is removed from 𝑆, then the remaining set {v1, v2, . . . , vr−1} still
spans 𝑆; that is, we must show that every vector w in span(𝑆) is expressible as a linear
combination of {v1, v2, . . . , vr−1}. But ifw is in span(𝑆), thenw is expressible in the form

w = k1v1 + k2v2 + ⋅ ⋅ ⋅ + kr−1vr−1 + krvr
or, on substituting (7),

w = k1v1 + k2v2 + ⋅ ⋅ ⋅ + kr−1vr−1 + kr(c1v1 + c2v2 + ⋅ ⋅ ⋅ + cr−1vr−1)
which expressesw as a linear combination of v1, v2, . . . , vr−1.

Proof of Theorem4.6.5(a) If 𝑆 is a set of vectors that spans𝑉 but is not a basis for𝑉, then
𝑆 is a linearly dependent set. Thus some vector v in 𝑆 is expressible as a linear combination
of the other vectors in 𝑆. By the Plus/Minus Theorem (4.6.3b), we can remove v from 𝑆,
and the resulting set 𝑆′ will still span 𝑉. If 𝑆′ is linearly independent, then 𝑆′ is a basis
for 𝑉, and we are done. If 𝑆′ is linearly dependent, then we can remove some appropriate
vector from 𝑆′ to produce a set 𝑆″ that still spans 𝑉. We can continue removing vectors
in this way until we finally arrive at a set of vectors in 𝑆 that is linearly independent and
spans 𝑉. This subset of 𝑆 is a basis for 𝑉.

Proof of Theorem 4.6.5(b) Suppose that dim(𝑉) = n. If 𝑆 is a linearly independent set
that is not already a basis for 𝑉, then 𝑆 fails to span 𝑉, so there is some vector v in 𝑉 that
is not in span(𝑆). By the Plus/Minus Theorem (4.6.3a), we can insert v into 𝑆, and the
resulting set 𝑆′ will still be linearly independent. If 𝑆′ spans 𝑉, then 𝑆′ is a basis for 𝑉, and
we are finished. If 𝑆′ does not span 𝑉, then we can insert an appropriate vector into 𝑆′ to
produce a set 𝑆″ that is still linearly independent. We can continue inserting vectors in
this way until we reach a set with n linearly independent vectors in 𝑉. This set will be a
basis for 𝑉 by Theorem 4.6.4.

Exercise Set 4.6

In Exercises 1–6, find a basis for the solution space of the homoge-
neous linear system, and find the dimension of that space.
1. x1 + x2 − x3 = 0

−2x1 − x2 + 2x3 = 0
−x1 + x3 = 0

2. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

3. 2x1 + x2 + 3x3 = 0
x1 + 5x3 = 0

x2 + x3 = 0

4. x1 − 4x2 + 3x3 − x4 = 0
2x1 − 8x2 + 6x3 − 2x4 = 0

5. x1 − 3x2 + x3 = 0
2x1 − 6x2 + 2x3 = 0
3x1 − 9x2 + 3x3 = 0

6. x + y + z = 0
3x + 2y − 2z = 0
4x + 3y − z = 0
6x + 5y + z = 0

7. In each part, find a basis for the given subspace of𝑅3, and state
its dimension.

a. The plane 3x− 2y+ 5z = 0.

b. The plane x− y = 0.

c. The line x = 2t, y = −t, z = 4t.

d. All vectors of the form (a, b, c), where b = a+ c.

8. In each part, find a basis for the given subspace of𝑅4, and state
its dimension.

a. All vectors of the form (a, b, c, 0).

b. All vectors of the form (a, b, c, d), where d = a+ b and
c = a− b.

c. All vectors of the form (a, b, c, d), where a = b = c = d.

9. Find the dimension of each of the following vector spaces.

a. The vector space of all diagonal n × nmatrices.
b. The vector space of all symmetric n × nmatrices.
c. The vector space of all upper triangular n × nmatrices.

10. Find the dimension of the subspace of𝑃3 consisting of all poly-
nomials a0 + a1x+ a2x2 + a3x3 for which a0 = 0.

11. a. Show that the set 𝑊 of all polynomials in 𝑃2 such that
p(1) = 0 is a subspace of 𝑃2.

b. Make a conjecture about the dimension of𝑊.

c. Confirm your conjecture by finding a basis for𝑊.

12. Find a standard basis vector for𝑅3 that can be added to the set
{v1, v2} to produce a basis for 𝑅3.

a. v1 = (−1, 2, 3), v2 = (1,−2,−2)
b. v1 = (1,−1, 0), v2 = (3, 1,−2)
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13. Find standard basis vectors for 𝑅4 that can be added to the set
{v1, v2} to produce a basis for 𝑅4.

v1 = (1,−4, 2,−3), v2 = (−3, 8,−4, 6)

14. Let {v1, v2, v3} be a basis for a vector space 𝑉. Show that
{u1,u2,u3} is also a basis, where u1 = v1, u2 = v1 + v2, and
u3 = v1 + v2 + v3.

15. The vectors v1 = (1,−2, 3) and v2 = (0, 5,−3) are linearly
independent. Enlarge {v1, v2} to a basis for 𝑅3.

16. The vectors v1 = (1, 0, 0, 0) and v2 = (1, 1, 0, 0) are linearly
independent. Enlarge {v1, v2} to a basis for 𝑅4.

17. Find a basis for the subspace of 𝑅3 that is spanned by the
vectors

v1 = (1, 0, 0), v2 = (1, 0, 1), v3 = (2, 0, 1), v4 = (0, 0,−1)

18. Find a basis for the subspace of 𝑅4 that is spanned by the
vectors

v1 = (1, 1, 1, 1), v2 = (2, 2, 2, 0), v3 = (0, 0, 0, 3),
v4 = (3, 3, 3, 4)

19. In each part, let 𝑇𝐴 ∶𝑅3→𝑅3 be multiplication by 𝐴 and find
the dimension of the subspace of 𝑅3 consisting of all vectors x
for which 𝑇𝐴(x) = 0.

a. 𝐴 = [
1 1 0
1 0 1
1 0 1

] b. 𝐴 = [
1 2 0
1 2 0
1 2 0

]

c. 𝐴 = [
1 0 0

−1 1 0
1 1 1

]

20. In each part, let𝑇𝐴 bemultiplication by𝐴 and find the dimen-
sion of the subspace 𝑅4 consisting of all vectors x for which
𝑇𝐴(x) = 0.

a. 𝐴 = [ 1 0 2 −1
−1 4 0 0] b. 𝐴 = [

0 0 1 1
−1 1 0 0
1 0 0 1

]

Working with Proofs

21. a. Prove that for every positive integer n, one can find n+ 1
linearly independent vectors in𝐹(−∞,∞). [Hint:Look for
polynomials.]

b. Use the result in part (a) to prove that𝐹(−∞,∞) is infinite-
dimensional.

c. Prove that𝐶(−∞,∞),𝐶m(−∞,∞), and𝐶∞(−∞,∞) are
infinite-dimensional.

22. Let 𝑆 be a basis for an n-dimensional vector space 𝑉. Prove
that if v1, v2, . . . , vr form a linearly independent set of vectors
in 𝑉, then the coordinate vectors (v1)𝑆, (v2)𝑆, . . . , (vr)𝑆 form
a linearly independent set in 𝑅n, and conversely.

23. Let 𝑆 = {v1, v2, . . . , vr} be a nonempty set of vectors in an n-
dimensional vector space𝑉. Prove that if the vectors in 𝑆 span
𝑉, then the coordinate vectors (v1)𝑆, (v2)𝑆, . . . , (vr)𝑆 span 𝑅n,
and conversely.

24. Prove part (a) of Theorem 4.6.6.

25. Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

26. State the two parts of Theorem 4.6.2 in contrapositive form.

27. In each part, let 𝑆 be the standard basis for 𝑃2. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of 𝑃2 spanned by the given vectors.

a. −1+ x− 2x2, 3+ 3x+ 6x2, 9

b. 1+ x, x2, 2+ 2x+ 3x2

c. 1+ x− 3x2, 2+ 2x− 6x2, 3+ 3x− 9x2

True-False Exercises
TF. In parts (a)–(k) determine whether the statement is true or

false, and justify your answer.
a. The zero vector space has dimension zero.

b. There is a set of 17 linearly independent vectors in 𝑅17.

c. There is a set of 11 vectors that span 𝑅17.

d. Every linearly independent set of five vectors in 𝑅5 is a
basis for 𝑅5.

e. Every set of five vectors that spans 𝑅5 is a basis for 𝑅5.

f. Every set of vectors that spans 𝑅n contains a basis for 𝑅n.

g. Every linearly independent set of vectors in 𝑅n is con-
tained in some basis for 𝑅n.

h. There is a basis for𝑀22 consisting of invertible matrices.

i. If 𝐴 has size n × n and 𝐼n, 𝐴,𝐴2, . . . , 𝐴n2 are distinct
matrices, then {𝐼n, 𝐴,𝐴2, . . . , 𝐴n2 } is a linearly dependent
set.

j. There are at least two distinct three-dimensional sub-
spaces of 𝑃2.

k. There are only three distinct two-dimensional subspaces
of 𝑃2.

Working with Technology
T1. Devise three different procedures for using your technology

utility to determine the dimension of the subspace spanned
by a set of vectors in𝑅n, and then use each of those procedures
to determine the dimension of the subspace of 𝑅5 spanned by
the vectors

v1 = (2, 2,−1, 0, 1), v2 = (−1,−1, 2,−3, 1),
v3 = (1, 1,−2, 0,−1), v4 = (0, 0, 1, 1, 1)

T2. Find a basis for the row space of 𝐴 by starting at the top and
successively removing each row that is a linear combination
of its predecessors.

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3.4 2.2 1.0 −1.8
2.1 3.6 4.0 −3.4
8.9 8.0 6.0 7.0
7.6 9.4 9.0 −8.6
1.0 2.2 0.0 2.2

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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4.7 Change of Basis
A basis that is suitable for one problemmay not be suitable for another, so it is a common
process in the study of vector spaces to change fromone basis to another. Because a basis is
the vector space generalization of a coordinate system, changing bases is akin to changing
coordinate axes in R2 and R3. In this section we will study problems related to changing
bases.

Coordinate Maps
If 𝑆 = {v1, v2, . . . , vn} is a basis for a finite-dimensional vector space 𝑉, and if

(v)𝑆 = (c1, c2, . . . , cn)
is the coordinate vector of v relative to 𝑆, then, as illustrated in Figure 4.5.6, the mapping

v→ (v)𝑆 (1)

creates a connection (a one-to-one correspondence) between vectors in the general vector
space 𝑉 and vectors in the Euclidean vector space 𝑅n. We call (1) the coordinate map
relative to 𝑺 from 𝑉 to 𝑅n. In this section we will find it convenient to express coordinate
vectors in the matrix form

[v]𝑆 =
⎡
⎢
⎢
⎢
⎣

c1
c2...
cn

⎤
⎥
⎥
⎥
⎦

(2)

where the square brackets emphasize the matrix notation (Figure 4.7.1).
RnV

[   ]S c 1
c 2
.
.
.
cn

v

Coordinate map

FIGURE 4.7.1

Change of Basis
There are many applications in which it is necessary to work with more than one coordi-
nate system. In such cases it becomes important to know how the coordinates of a fixed
vector relative to each coordinate system are related. This leads to the following problem.

The Change-of-Basis Problem
If v is a vector in a finite-dimensional vector space 𝑉, and if we change the basis for 𝑉 from
a basis 𝐵 to a basis 𝐵′, how are the coordinate vectors [v]𝐵 and [v]𝐵′ related?

Remark To solve this problem, it will be convenient to refer to the starting basis 𝐵 as
the “old basis” and the ending basis 𝐵′ as the “new basis.” Thus, our objective is to find a
relationship between the old and new coordinates of a fixed vector v in 𝑉.

For simplicity, we will solve this problem for two-dimensional spaces. The solution
for n-dimensional spaces is similar. Let

𝐵 = {u1,u2} and 𝐵′ = {u′1,u′2}
be the old and new bases, respectively. Suppose that the coordinate vectors for the old
basis vectors relative to the new basis are

[u1]𝐵′ = [ab] and [u2]𝐵′ = [cd] (3)

That is,
u1 = au′1 + bu′2
u2 = cu′1 + du′2

(4)
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Now let v be any vector in 𝑉, and suppose that the old coordinate vector for v is

[v]𝐵 = [k1k2
] (5)

so that
v = k1u1 + k2u2 (6)

In order to find the new coordinates of the vector v wemust express v in terms of the new
basis 𝐵′. To do this we will substitute (4) into (6), which yields

v = k1(au′1 + bu′2) + k2(cu′1 + du′2)
or

v = (k1a + k2c)u′1 + (k1b + k2d)u′2
Thus, the new coordinate vector for v is

[v]𝐵′ = [k1a + k2c
k1b + k2d

]

which, by using (5), we can rewrite as

[v]𝐵′ = [a c
b d] [

k1
k2
] = [a c

b d][v]𝐵

This equation states that the new coordinate vector [v]𝐵′ results when the old coordinate
vector is multiplied on the left by the matrix

𝑃 = [a b
c d]

whose columns are the coordinate vectors of the old basis relative to the new basis [see
(3)]. Thus, we are led to the following solution to the change-of-basis problem.

Solution to the Change-of-Basis Problem
If we change the basis for a vector space 𝑉 from an old basis 𝐵 = {u1, u2,. . . , un} to a new
basis 𝐵′ = {u′1,u′2, . . . ,u′n}, then for each vector v in 𝑉, the new coordinate vector [v]𝐵′ is
related to the old coordinate vector [v]𝐵 by the equation

[v]𝐵′ = 𝑃[v]𝐵 (7)

where the columns of 𝑃 are the coordinate vectors of the old basis vectors relative to the new
basis; that is

𝑃 = [[u1]𝐵′ | [u2]𝐵′ | . . . | [un]𝐵′] (8)

Transition Matrices
The matrix 𝑃 in Equations (7) and (8) is called the transition matrix from B to B′ and
will be denoted in this text as

𝑃𝐵→𝐵′ = [[u1]𝐵′ | [u2]𝐵′ | . . . | [un]𝐵′] (9)

to emphasize that it changes coordinates relative to𝐵 into coordinates relative to𝐵′. Anal-
ogously, the transition matrix from B′ to B will be denoted by

𝑃𝐵′→𝐵 = [[u′1]𝐵 | [u′2]𝐵 | . . . | [u′n]𝐵] (10)

Remark In Formula (9) the old basis is 𝐵, and in Formula (10) the old basis is 𝐵′. Rather
than memorizing these formulas, think about both in the following way.
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The columns of the transition matrix from an old basis to a new basis are the coordi-
nate vectors of the old basis relative to the new basis.

EXAMPLE 1 | Finding Transition Matrices

Consider the bases 𝐵 = {u1,u2} and 𝐵′ = {u′1,u′2} for 𝑅2, where

u1 = (1, 0), u2 = (0, 1), u′1 = (1, 1), u′2 = (2, 1)
(a) Find the transition matrix 𝑃𝐵→𝐵′ from 𝐵 to 𝐵′.
(b) Find the transition matrix 𝑃𝐵′→𝐵 from 𝐵′ to 𝐵.

Solution (a) Here the old basis vectors are u1 and u2 and the new basis vectors are u′1 and
u′2. We want to find the coordinate matrices of the old basis vectors relative to the new basis
vectors. To do this, observe that

u1 = −u′1 + u′2
u2 = 2u′1 − u′2

from which it follows that

[u1]𝐵′ = [−11] and [u2]𝐵′ = [ 2
−1]

and hence that
𝑃𝐵→𝐵′ = [−1 2

1 −1]

Solution (b) Here the old basis vectors are u′1 and u′2 and the new basis vectors are u1 and
u2. We want to find the coordinate matrices of the old basis vectors relative to the new basis
vectors. To do this, observe that

u′1 = u1 + u2
u′2 = 2u1 + u2

from which it follows that

[u′1]𝐵 = [11] and [u′2]𝐵 = [21]

and hence that
𝑃𝐵′→𝐵 = [1 2

1 1]

Transforming Coordinates
Suppose now that 𝐵 and 𝐵′ are bases for a finite-dimensional vector space 𝑉. Since multi-
plication by 𝑃𝐵→𝐵′ maps coordinate vectors relative to the basis 𝐵 into coordinate vectors
relative to a basis 𝐵′, and 𝑃𝐵′→𝐵 maps coordinate vectors relative to 𝐵′ into coordinate
vectors relative to 𝐵, it follows that for every vector v in 𝑉 we have

[v]𝐵′ = 𝑃𝐵→𝐵′[v]𝐵 (11)

[v]𝐵 = 𝑃𝐵′→𝐵[v]𝐵′ (12)

EXAMPLE 2 | Change of Coordinates

Let 𝐵 and 𝐵′ be the bases in Example 1. Use an appropriate formula to find [v]𝐵′ given that

[v]𝐵 = [−35]
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Solution To find [v]𝐵′ we need to make the transition from 𝐵 to 𝐵′. It follows from For-
mula (12) and part (a) of Example 1 that

[v]𝐵′ = 𝑃𝐵→𝐵′ [v]𝐵 = [−1 2
1 −1] [

−3
5] = [ 13−8]

Invertibility of Transition Matrices
If 𝐵 and 𝐵′ are bases for a finite-dimensional vector space 𝑉, then

(𝑃𝐵′→𝐵)(𝑃𝐵→𝐵′) = 𝑃𝐵→𝐵

because multiplication by the product (𝑃𝐵′→𝐵)(𝑃𝐵→𝐵′) first maps the 𝐵-coordinates of a
vector into its 𝐵′-coordinates, and then maps those 𝐵′-coordinates back into the original
𝐵-coordinates. Since the net effect of the two operations is to leave each coordinate vector
unchanged, we are led to conclude that 𝑃𝐵→𝐵 must be the identity matrix, that is,

(𝑃𝐵′→𝐵)(𝑃𝐵→𝐵′) = 𝐼 (13)
For example, for the transition matrices obtained in Example 1 we have

(𝑃𝐵′→𝐵)(𝑃𝐵→𝐵′) = [1 2
1 1] [

−1 2
1 −1] = [1 0

0 1] = 𝐼

It follows from (13) that 𝑃𝐵′→𝐵 is invertible and that its inverse is 𝑃𝐵→𝐵′ . Thus, we
have the following theorem.

Theorem 4.7.1

If 𝑃 is the transition matrix from a basis 𝐵 to a basis 𝐵′ for a finite-dimensional
vector space 𝑉, then 𝑃 is invertible and 𝑃−1 is the transition matrix from 𝐵′ to 𝐵.

An Efficient Method for Computing
Transition Matrices between Bases for Rn

Our next objective is to develop an efficient procedure for computing transition matrices
between bases for 𝑅n. As illustrated in Example 1, the first step in computing a transition
matrix is to express each new basis vector as a linear combination of the old basis vec-
tors. For 𝑅n this involves solving n linear systems of n equations in n unknowns, each of
which has the same coefficient matrix (why?). An efficient way to do this is by themethod
illustrated in Example 2 of Section 1.6, which is as follows:

A Procedure for Computing Transition Matrices
Step 1. Form the partitioned matrix [new basis | old basis] in which the basis vectors are

in column form.

Step 2. Use elementary row operations to reduce thematrix in Step 1 to reduced row echelon
form.

Step 3. The resulting matrix will be [𝐼 | transitionmatrix from old to new]where 𝐼 is an
identity matrix.

Step 4. Extract the matrix on the right side of the matrix obtained in Step 3.
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This procedure is captured in the diagram.

[new basis ∣ old basis] row operations⟶ [𝐼 ∣ transition from old to new] (14)

EXAMPLE 3 | Example 1 Revisited

In Example 1 we considered the bases 𝐵 = {u1,u2} and 𝐵′ = {u′1,u′2} for 𝑅2, where

u1 = (1, 0), u2 = (0, 1), u′1 = (1, 1), u′2 = (2, 1)

(a) Use Formula (14) to find the transition matrix from 𝐵 to 𝐵′.
(b) Use Formula (14) to find the transition matrix from 𝐵′ to 𝐵.

Solution (a) Here 𝐵 is the old basis and 𝐵′ is the new basis, so

[new basis | old basis] = [1 2 1 0
1 1 0 1]

By reducing this matrix, so the left side becomes the identity, we obtain (verify)

[𝐼 | transition from old to new] = [1 0 −1 2
0 1 1 −1]

so the transition matrix is
𝑃𝐵→𝐵′ = [−1 2

1 −1]

which agrees with the result in Example 1.

Solution (b) Here 𝐵′ is the old basis and 𝐵 is the new basis, so

[new basis | old basis] = [1 0 1 2
0 1 1 1]

Since the left side is already the identity matrix, no reduction is needed.We see by inspection
that the transition matrix is

𝑃𝐵′→𝐵 = [1 2
1 1]

which agrees with the result in Example 1.

Transition to the Standard Basis for Rn

Note that in part (b) of the last example the column vectors of the matrix that made the
transition from the basis 𝐵 to the standard basis turned out to be the vectors in 𝐵 written
in column form. This illustrates the following general result.

Theorem 4.7.2

Let 𝐵 = {u1,u2, . . . ,un} be any basis for 𝑅n and let 𝑆 = {e1, e2, . . . , en} be the stan-
dard basis for 𝑅n. If the vectors in these bases are written in column form, then

𝑃𝐵→𝑆 = [u1 |u2 | ⋅ ⋅ ⋅ |un] (15)

It follows from this theorem that if
𝐴 = [u1 |u2 | ⋅ ⋅ ⋅ |un]
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is any invertible n × nmatrix, then𝐴 can be viewed as the transitionmatrix from the basis
{u1,u2, . . . ,un} for 𝑅n to the standard basis for 𝑅n. Thus, for example, the matrix

𝐴 = [
1 2 3
2 5 3
1 0 8

]

whichwas shown to be invertible in Example 4 of Section 1.5, is the transitionmatrix from
the basis

u1 = (1, 2, 1), u2 = (2, 5, 0), u3 = (3, 3, 8)
to the basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

Exercise Set 4.7

1. Consider the bases 𝐵 = {u1,u2} and 𝐵′ = {u′1,u′2} for 𝑅2,
where

u1 = [22], u2 = [ 4
−1], u′1 = [13], u′2 = [−1−1]

a. Find the transition matrix from 𝐵′ to 𝐵.
b. Find the transition matrix from 𝐵 to 𝐵′.

c. Compute the coordinate vector [w]𝐵, where

w = [ 3
−5]

and use (11) to compute [w]𝐵′ .
d. Check your work by computing [w]𝐵′ directly.

2. Repeat the directions of Exercise 1 with the same vectorw but
with

u1 = [10], u2 = [01], u′1 = [21], u′2 = [−34]

3. Consider the bases 𝐵 = {u1,u2,u3} and 𝐵′ = {u′1,u′2,u′3} for
𝑅3, where

u1 = [
2
1
1
], u2 = [

2
−1
1
], u3 = [

1
2
1
]

u′1 = [
3
1

−5
], u′2 = [

1
1

−3
], u′3 = [

−1
0
2
]

a. Find the transition matrix from 𝐵 to 𝐵′.

b. Compute the coordinate vector [w]𝐵, where

w = [
−5
8

−5
]

and use (11) to compute [w]𝐵′ .
c. Check your work by computing [w]𝐵′ directly.

4. Repeat the directions of Exercise 3with the same vectorw, but
with

u1 = [
−3
0

−3
], u2 = [

−3
2

−1
], u3 = [

1
6

−1
]

u′1 = [
−6
−6
0
], u′2 = [

−2
−6
4
], u′3 = [

−2
−3
7
]

5. Let𝑉 be the space spanned by f1 = sin x and f2 = cos x.

a. Show that g1 = 2 sin x+ cos x and g2 = 3 cos x form a basis
for𝑉.

b. Find the transition matrix from 𝐵′ = {g1, g2} to
𝐵 = {f1, f2}.

c. Find the transition matrix from 𝐵 to 𝐵′.

d. Compute the coordinate vector [h]𝐵, where
h = 2 sin x− 5 cos x, and use (11) to obtain [h]𝐵′ .

e. Check your work by computing [h]𝐵′ directly.
6. Consider the bases 𝐵 = {p1,p2} and 𝐵′ = {q1,q2} for 𝑃1,

where
p1 = 6+ 3x, p2 = 10+ 2x, q1 = 2, q2 = 3+ 2x

a. Find the transition matrix from 𝐵′ to 𝐵.
b. Find the transition matrix from 𝐵 to 𝐵′.

c. Compute the coordinate vector [p]𝐵, where p = −4+ x,
and use (11) to compute [p]𝐵′ .

d. Check your work by computing [p]𝐵′ directly.
7. Let 𝐵1 = {u1,u2} and 𝐵2 = {v1, v2} be the bases for 𝑅2 in

which u1 = (1, 2),u2 = (2, 3), v1 = (1, 3), and v2 = (1, 4).
a. Use Formula (14) to find the transition matrix 𝑃𝐵2→𝐵1 .

b. Use Formula (14) to find the transition matrix 𝑃𝐵1→𝐵2 .

c. Confirm that the matrices 𝑃𝐵2→𝐵1 and 𝑃𝐵1→𝐵2 are inverses
of one another.

d. Letw = (0, 1). Find [w]𝐵1 and then use the matrix 𝑃𝐵1→𝐵2
to compute [w]𝐵2 from [w]𝐵1 .

e. Letw = (2, 5). Find [w]𝐵2 and then use the matrix 𝑃𝐵2→𝐵1
to compute [w]𝐵1 from [w]𝐵2 .
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8. Let 𝑆 be the standard basis for 𝑅2, and let 𝐵 = {v1, v2} be the
basis in which v1 = (2, 1) and v2 = (−3, 4).
a. Find the transition matrix 𝑃𝐵→𝑆 by inspection.

b. Use Formula (14) to find the transition matrix 𝑃𝑆→𝐵.

c. Confirm that 𝑃𝐵→𝑆 and 𝑃𝑆→𝐵 are inverses of one another.

d. Let w = (5,−3). Find [w]𝐵 and then use Formula (12) to
compute [w]𝑆.

e. Let w = (3,−5). Find [w]𝑆 and then use Formula (11) to
compute [w]𝐵.

9. Let 𝑆 be the standard basis for 𝑅3, and let 𝐵 = {v1, v2, v3}
be the basis in which v1 = (1, 2, 1), v2 = (2, 5, 0), and
v3 = (3, 3, 8).
a. Find the transition matrix 𝑃𝐵→𝑆 by inspection.

b. Use Formula (14) to find the transition matrix 𝑃𝑆→𝐵.

c. Confirm that 𝑃𝐵→𝑆 and 𝑃𝑆→𝐵 are inverses of one another.

d. Let w = (5,−3, 1). Find [w]𝐵 and then use Formula (12)
to compute [w]𝑆.

e. Let w = (3,−5, 0). Find [w]𝑆 and then use Formula (11)
to compute [w]𝐵.

10. Let 𝑆 = {e1, e2} be the standard basis for the vector space 𝑅2,
and let 𝐵 = {v1, v2} be the basis that results when the vectors
in 𝑆 are reflected about the line y = x.

a. Find the transition matrix 𝑃𝐵→𝑆.

b. Let 𝑃 = 𝑃𝐵→𝑆 and show that 𝑃𝑇 = 𝑃𝑆→𝐵.

11. Let 𝑆 = {e1, e2} be the standard basis for the vector space 𝑅2,
and let 𝐵 = {v1, v2} be the basis that results when the vectors
in 𝑆 are reflected about the line that makes an angle 𝜃 with
the positive x-axis.

a. Find the transition matrix 𝑃𝐵→𝑆.

b. Let 𝑃 = 𝑃𝐵→𝑆 and show that 𝑃𝑇 = 𝑃𝑆→𝐵.

12. If 𝐵1, 𝐵2, and 𝐵3 are bases for 𝑅2, and if

𝑃𝐵1→𝐵2 = [3 1
5 2] and 𝑃𝐵2→𝐵3 = [7 2

4 −1]

then 𝑃𝐵3→𝐵1 = .

13. If𝑃 is the transitionmatrix from a basis𝐵′ to a basis𝐵, and𝑄
is the transition matrix from𝐵 to a basis𝐶, what is the transi-
tion matrix from 𝐵′ to 𝐶? What is the transition matrix from
𝐶 to 𝐵′?

14. To write the coordinate vector for a vector, it is necessary to
specify an order for the vectors in the basis. If 𝑃 is the tran-
sition matrix from a basis 𝐵′ to a basis 𝐵, what is the effect
on 𝑃 if we reverse the order of vectors in 𝐵 from v1, . . . , vn to
vn, . . . , v1? What is the effect on 𝑃 if we reverse the order of
vectors in both 𝐵′ and 𝐵?

15. Consider the matrix

𝑃 = [
1 1 0
1 0 2
0 2 1

]

a. 𝑃 is the transitionmatrix fromwhat basis𝐵 to the standard
basis 𝑆 = {e1, e2, e3} for 𝑅3?

b. 𝑃 is the transition matrix from the standard basis
𝑆 = {e1, e2, e3} to what basis 𝐵 for 𝑅3?

16. The matrix

𝑃 = [
1 0 0
0 3 2
0 1 1

]

is the transition matrix from what basis 𝐵 to the basis
{(1, 1, 1), (1, 1, 0), (1, 0, 0)} for 𝑅3?

17. Let 𝑆 = {e1, e2} be the standard basis for 𝑅2, and let
𝐵 = {v1, v2} be the basis that results when the linear transfor-
mation defined by

𝑇(x1, x2) = (2x1 + 3x2, 5x1 − x2)
is applied to each vector in 𝑆. Find the transitionmatrix𝑃𝐵→𝑆.

18. Let 𝑆 = {e1, e2, e3} be the standard basis for the vector space
𝑅3, and let 𝐵 = {v1, v2, v3} be the basis that results when the
linear transformation defined by

𝑇(x1, x2, x3) = (x1 + x2, 2x1 − x2 + 4x3, x2 + 3x3)
is applied to each vector in 𝑆. Find the transitionmatrix𝑃𝐵→𝑆.

19. If [w]𝐵 = w holds for all vectors w in 𝑅n, what can you say
about the basis 𝐵?

Working with Proofs

20. Let 𝐵 be a basis for 𝑅n. Prove that the vectors v1, v2, . . . , vk
span 𝑅n if and only if the vectors [v1]𝐵, [v2]𝐵, . . . , [vk]𝐵
span 𝑅n.

21. Let 𝐵 be a basis for 𝑅n. Prove that the vectors v1, v2, . . . , vk
form a linearly independent set in 𝑅n if and only if the vectors
[v1]𝐵, [v2]𝐵, . . . , [vk]𝐵 form a linearly independent set in 𝑅n.

True-False Exercises
TF. In parts (a)–(f ) determine whether the statement is true or

false, and justify your answer.
a. If 𝐵1 and 𝐵2 are bases for a vector space 𝑉, then there

exists a transition matrix from 𝐵1 to 𝐵2.

b. Transition matrices are invertible.

c. If𝐵 is a basis for a vector space𝑅n, then𝑃𝐵→𝐵 is the iden-
tity matrix.

d. If 𝑃𝐵1→𝐵2 is a diagonal matrix, then each vector in 𝐵2 is a
scalar multiple of some vector in 𝐵1.

e. If each vector in 𝐵2 is a scalar multiple of some vector in
𝐵1, then 𝑃𝐵1→𝐵2 is a diagonal matrix.

f. If 𝐴 is a square matrix, then 𝐴 = 𝑃𝐵1→𝐵2 for some bases
𝐵1 and 𝐵2 for 𝑅n.
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Working with Technology
T1. Let

𝑃 =
⎡
⎢
⎢
⎢
⎣

5 8 6 −13
3 −1 0 −9
0 1 −1 0
2 4 3 −5

⎤
⎥
⎥
⎥
⎦

and
v1 = (2, 4, 3,−5), v2 = (0, 1,−1, 0),
v3 = (3,−1, 0,−9), v4 = (5, 8, 6,−13)

Find a basis𝐵 = {u1,u2,u3,u4} for𝑅4 forwhich𝑃 is the tran-
sition matrix from 𝐵 to 𝐵′ = {v1, v2, v3, v4}.

T2. Given that the matrix for a linear transformation 𝑇∶𝑅4→𝑅4

relative to the standard basis 𝐵 = {e1, e2, e3, e4} for 𝑅4 is

⎡
⎢
⎢
⎢
⎣

1 2 0 1
3 0 −1 2
2 5 3 1
1 2 1 3

⎤
⎥
⎥
⎥
⎦

find the matrix for 𝑇 relative to the basis

𝐵′ = {e1, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4}

4.8 Row Space, Column Space,
and Null Space

In this section we will study some important vector spaces that are associated with matri-
ces. Our work here will provide us with a deeper understanding of the relationships
between the solutions of a linear system and properties of its coefficient matrix.

Matrix Spaces
Recall that vectors can be written in comma-delimited form or in matrix form as either
row vectors or column vectors. In this section we will use the latter two.

Definition 1

For anm × nmatrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

the vectors
r1 = [a11 a12 ⋅ ⋅ ⋅ a1n]
r2 = [a21 a22 ⋅ ⋅ ⋅ a2n]...

...
rm = [am1 am2 ⋅ ⋅ ⋅ amn]

in 𝑅n formed from the rows of 𝐴 are called the row vectors of 𝐴, and the vectors

c1 =
⎡
⎢
⎢
⎢
⎣

a11
a21...
am1

⎤
⎥
⎥
⎥
⎦

, c2 =
⎡
⎢
⎢
⎢
⎣

a12
a22...
am2

⎤
⎥
⎥
⎥
⎦

, . . . , cn =
⎡
⎢
⎢
⎢
⎣

a1n
a2n...
amn

⎤
⎥
⎥
⎥
⎦

in 𝑅m formed from the columns of 𝐴 are called the column vectors of 𝐴.



November 12, 2018 15:54 c04 Sheet number 63 Page number 264 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

264 CHAPTER 4 General Vector Spaces

EXAMPLE 1 | Row and Column Vectors of a 2 × 3 Matrix

Let
𝐴 = [2 1 0

3 −1 4]

The row vectors of𝐴 are

r1 = [2 1 0] and r2 = [3 − 1 4]
and the column vectors of𝐴 are

c1 = [23], c2 = [ 1
−1], and c3 = [04]

The following definition defines three important vector spaces associatedwith amatrix.

Definition 2

If 𝐴 is an m × n matrix, then the subspace of 𝑅n spanned by the row vectors of 𝐴
is denoted by row(𝐴) and is called the row space of 𝐴, and the subspace of 𝑅m
spanned by the column vectors of 𝐴 is denoted by col(𝐴) and is called the column
space of 𝐴. The solution space of the homogeneous system of equations 𝐴x = 0,
which is a subspace of 𝑅n, is denoted by null(𝐴) and is called the null space of 𝐴.

Throughout this section and the next we will consider with two general questions:

Question 1.What relationships exist among the solutions of a linear system𝐴x = b
and the row space, column space, and null space of the coefficient matrix 𝐴?
Question 2.What relationships exist among the row space, column space, and null
space of a matrix?

Starting with the first question, suppose that

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

and x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

It follows from Formula (10) of Section 1.3 that if c1, c2, . . . , cn denote the column vectors
of 𝐴, then the product 𝐴x can be expressed as a linear combination of these vectors with
coefficients from x; that is,

𝐴x = x1c1 + x2c2 + ⋅ ⋅ ⋅ + xncn (1)

Thus, a linear system, 𝐴x = b, ofm equations in n unknowns can be written as

x1c1 + x2c2 + ⋅ ⋅ ⋅ + xncn = b (2)

fromwhich we conclude that𝐴x = b is consistent if and only if b is expressible as a linear
combination of the column vectors of 𝐴. This yields the following theorem.
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Theorem 4.8.1

A system of linear equations 𝐴x = b is consistent if and only if b is in the column
space of 𝐴.

EXAMPLE 2 | A Vector b in the Column Space of A

Let𝐴x = b be the linear system

[
−1 3 2
1 2 −3
2 1 −2

][
x1
x2
x3
] = [

1
−9
−3

]

Show thatb is in the column space of𝐴 by expressing it as a linear combination of the column
vectors of𝐴.
Solution Solving the system by Gaussian elimination yields (verify)

x1 = 2, x2 = −1, x3 = 3

It follows from this and Formula (2) that

2[
−1
1
2
] − [

3
2
1
] + 3[

2
−3
−2

] = [
1

−9
−3

]

The Relationship Between 𝐴x = 0 and 𝐴x = b
In this subsection we will explore the relationship between the solutions of a homoge-
neous linear system 𝐴x = 0 and the solutions (if any) of the nonhomogeneous linear sys-
tem 𝐴x = b with the same coefficient matrix. These are called corresponding linear
systems. By way of example, we will consider the following linear systems that we first
discussed in Examples 5 and 6 of Section 1.2 and then again in Example 3 of Section 4.6.

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

and
⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
−1
5
6

⎤
⎥
⎥
⎥
⎦

In Section 1.2 we found the general solutions of these systems to be
homogeneous⟶ x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0
nonhomogeneous⟶ x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1

3

which we can express in column-vector form as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−3r − 4s − 2t
r

−2s
s
t
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3r − 4s − 2t
r

−2s
s
t
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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By splitting the entries on the right apart and collecting terms with like parameters we
can rewrite these general solutions as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= r

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−3
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−4
0

−2
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
0
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Homogeneous Case

(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= r

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−3
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−4
0

−2
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2
0
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Nonhomogeneous Case

(4)

In Example 3 of Section 4.6 we observed that the three vectors on the right side of (3)
are linearly independent and therefore form a basis for the solution space of the homoge-
neous system. Thus, as illustrated in (5), the general solution x of the nonhomogeneous
system can be divided into two parts, a basis xh for the null space of the homogeneous
system and a term x0 that is a solution of the nonhomogeneous system (in this case, the
solution resulting from setting the parameters to zero).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

x

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3r − 4s − 2t
r

−2s
s
t
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

x0

+ r

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−4
0

−2
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
0
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

xh

(5)

This example illustrates the following general theorem.

Theorem 4.8.2

If x0 is any solution of a consistent linear system 𝐴x = b, and if 𝑆 = {v1, v2, . . . , vk}
is a basis for the null space of 𝐴, then every solution of 𝐴x = b can be expressed in
the form

x = x0 + c1v1 + c2v2 + ⋅ ⋅ ⋅ + ckvk (6)
Conversely, for all choices of scalars c1, c2, . . . , ck, the vector x in this formula is a
solution of 𝐴x = b.

Proof Let x0 be any solution of 𝐴x = b, let 𝑊 denote the null space of 𝐴x = 0, and let
x0 +𝑊 be the set of all vectors that result by adding x0 to each vector in 𝑊. Thus, the
vectors in x0 +𝑊 are those that are expressible in the form

x = x0 + c1v1 + c2v2 + ⋅ ⋅ ⋅ + ckvk
Wemust show that if x is a vector in x0 +𝑊, then x is a solution of𝐴x = b, and conversely
that every solution of 𝐴x = b is in the set x0 +𝑊.

Assume first that x is a vector in x0 +𝑊. This implies that x is expressible in the form
x = x0 +w, where 𝐴x0 = b and 𝐴w = 0. Thus,

𝐴x = 𝐴(x0 +w) = 𝐴x0 + 𝐴w = b + 0 = b
which shows that x is a solution of 𝐴x = b.
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Conversely, let x be any solution of 𝐴x = b. To show that x is in the set x0 +𝑊 we
must show that x is expressible in the form

x = x0 +w (7)

wherew is in𝑊 (i.e.,𝐴w = 0).Wecan do this by takingw = x − x0.This vector obviously
satisfies (7), and it is in𝑊 since

𝐴w = 𝐴(x − x0) = 𝐴x − 𝐴x0 = b − b = 0

The vector x0 in Formula (6) is called a particular solution of 𝐴x = b, and the
remaining part of the formula is called the general solution of 𝐴x = 0. With this ter-
minology Theorem 4.8.2 can be rephrased as:

The general solution of a consistent linear system can be expressed as the sum of a
particular solution of that system and the general solution of the corresponding homo-
geneous system.

Geometrically, the solution set of 𝐴x = b can be viewed as the translation by x0 of the
solution space of 𝐴x = 0 (Figure 4.8.1).

Ax = b

Ax = 0

0

x0

FIGURE 4.8.1 The solution space
of𝐴x = b is a translation of the
solution space of𝐴x = 0.Bases for Row Spaces, Column Spaces, and Null Spaces

In this subsection we will focus on the second problem posed earlier in this section, find-
ing relationships between the row space, column space, and null space of a matrix. We
begin with the following theorem.

Theorem 4.8.3

(a) Row equivalent matrices have the same row space.
(b) Row equivalent matrices have the same null space.

Proof (a) If𝐴 and 𝐵 are row equivalent then each can be obtained from the other by ele-
mentary row operations. As these operations involve only scalar multiplication (multiply
a row by a scalar) and linear combinations (add a scalar multiple of one row to another),
it follows that the row space of each is a subspace of the other, so the two row spaces must
be the same.

Proof (b) If 𝐴 and 𝐵 are row equivalent then each can be obtained from the other by
elementary row operations. But elementary row operations do not change the solution
set of a linear system, so the solution sets of 𝐴x = 0 and 𝐵x = 0 must be the same. That
is, 𝐴 and 𝐵 have the same null space.

Theorem 4.8.3 might tempt you into incorrectly believing that elementary row oper-
ations do not change the column space of a matrix. To see why this is not true, compare
the matrices

𝐴 = [1 3
2 6] and 𝐵 = [1 3

0 0]

The matrix 𝐵 can be obtained from 𝐴 by adding −2 times the first row to the second.
However, this operation has changed the column space of 𝐴, since that column space
consists of all scalar multiples of

[12]
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whereas the column space of 𝐵 consists of all scalar multiples of

[10]

and the two are different spaces.
The following theoremmakes it possible to find bases for the row and column spaces

of a matrix in row echelon form by inspection.

Theorem 4.8.4

If a matrix 𝑅 is in row echelon form, then the row vectors with the leading 1’s (the
nonzero row vectors) form a basis for the row space of 𝑅, and the column vectors
with the leading 1’s of the row vectors form a basis for the column space of 𝑅.

The proof essentially involves an analysis of the positions of the 0’s and 1’s of 𝑅. We omit
the details.

EXAMPLE 3 | Bases for the Row and Column Spaces of a
Matrix in Row Echelon Form

Find bases for the row and column spaces of the matrix

𝑅 =
⎡
⎢
⎢
⎢
⎣

1 −2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

Solution Since the matrix𝑅 is in row echelon form, it follows from Theorem 4.8.4 that the
vectors

r1 = [1 −2 5 0 3]
r2 = [0 1 3 0 0]
r3 = [0 0 0 1 0]

form a basis for the row space of 𝑅, and the vectors

c1 =
⎡
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎦

, c2 =
⎡
⎢
⎢
⎢
⎣

−2
1
0
0

⎤
⎥
⎥
⎥
⎦

, c4 =
⎡
⎢
⎢
⎢
⎣

0
0
1
0

⎤
⎥
⎥
⎥
⎦

form a basis for the column space of 𝑅.

Theorem 4.8.3(a) and Theorem 4.8.4 in combination make it possible to find a basis
for the row space of a matrix 𝐴 by reducing it to a row echelon form 𝑅.

EXAMPLE 4 | Basis for a Row Space by Row Reduction

Find a basis for the row space of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥
⎥
⎥
⎦
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Solution Since elementary row operations do not change the row space of amatrix, we can
find a basis for the row space of 𝐴 by finding a basis for the row space of any row echelon
form of𝐴. Reducing𝐴 to row echelon form, we obtain (verify)

𝑅 =
⎡
⎢
⎢
⎢
⎣

1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

By Theorem 4.8.4, the nonzero row vectors of𝑅 form a basis for the row space of𝑅 and hence
form a basis for the row space of𝐴. These basis vectors are

r1 = [1 −3 4 −2 5 4]
r2 = [0 0 1 3 −2 −6]
r3 = [0 0 0 0 1 5]

Bases Formed from Row and Column Vectors of a Matrix
If a matrix𝐴 is reduced to a row echelon form 𝑅,we know how to find a basis for the row
space and column space of 𝑅 (Example 3). Moreover, we also know that the basis obtained
for the row space of 𝑅 is a basis for the row space of𝐴 (Example 4). What is not true, how-
ever, is that the basis obtained for the column space of 𝑅 is also a basis for the column
space of𝐴, the problem being that elementary row operations can change column spaces.
However, the good news is that elementary row operations do not change dependency rela-
tionships between column vectors. To make this precise, suppose that w1,w2, . . . ,wk are
linearly dependent column vectors of 𝐴, so there are scalars c1, c2, . . . , ck that are not all
zero for which

c1w1 + c2w2 + ⋅ ⋅ ⋅ + ckwk = 0 (8)

If we perform an elementary row operation on 𝐴, then these vectors will be changed into
new column vectorsw′

1,w′
2, . . . ,w′

k. At first glance it would seem possible that the trans-
formed vectors might be linearly independent. However, this is not so, since it can be
proved that these new column vectors are linearly dependent and, in fact, related by an
equation

c1w′
1 + c2w′

2 + ⋅ ⋅ ⋅ + ckw′
k = 0

that has exactly the same coefficients as (8). It can also be proved that elementary row
operations do not alter the linear independence of a set of column vectors. All of these
results are summarized in the following theorem.

Theorem 4.8.5

If 𝐴 and 𝐵 are row equivalent matrices, then:

(a) A given set of column vectors of 𝐴 is linearly independent if and only if the
corresponding column vectors of 𝐵 are linearly independent.

(b) A given set of column vectors of𝐴 forms a basis for the column space of𝐴 if and
only if the corresponding column vectors of𝐵 form a basis for the column space
of 𝐵.

It follows from Theorem
4.8.5(b) that even though an
elementary row operation
can change the column
space, it does not change
the dimension of the column
space.
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EXAMPLE 5 | Basis from the Columns of A

Find a basis for the column space of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥
⎥
⎥
⎦

that consists of column vectors of𝐴.
Solution We observed in Example 4 that the matrix

𝑅 =
⎡
⎢
⎢
⎢
⎣

1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

is a row echelon form of𝐴. Keeping in mind that𝐴 and𝑅 can have different column spaces,
we cannot find a basis for the column space of 𝐴 directly from the column vectors of 𝑅.
However, it follows from Theorem 4.8.5(b) that if we can find a set of column vectors of 𝑅
that forms a basis for the column space of𝑅, then the corresponding column vectors of𝐴will
form a basis for the column space of𝐴.

Since the first, third, and fifth columns of 𝑅 contain the leading 1’s of the row vectors,
the vectors

c′1 =
⎡
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎦

, c′3 =
⎡
⎢
⎢
⎢
⎣

4
1
0
0

⎤
⎥
⎥
⎥
⎦

, c′5 =
⎡
⎢
⎢
⎢
⎣

5
−2
1
0

⎤
⎥
⎥
⎥
⎦

form a basis for the column space of 𝑅. Thus, the corresponding column vectors of𝐴, which
are

c1 =
⎡
⎢
⎢
⎢
⎣

1
2
2

−1

⎤
⎥
⎥
⎥
⎦

, c3 =
⎡
⎢
⎢
⎢
⎣

4
9
9

−4

⎤
⎥
⎥
⎥
⎦

, c5 =
⎡
⎢
⎢
⎢
⎣

5
8
9

−5

⎤
⎥
⎥
⎥
⎦

form a basis for the column space of𝐴.

In Example 4, we found a basis for the row space of a matrix by reducing that matrix
to row echelon form.However, the basis vectors produced by thatmethodwere not all row
vectors of the original matrix. The following adaptation of the technique used in Exam-
ple 5 shows how to find a basis for the row space of a matrix that consists entirely of row
vectors of that matrix.

EXAMPLE 6 | Basis from the Rows of A

Find a basis for the row space of

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 −2 0 0 3
2 −5 −3 −2 6
0 5 15 10 0
2 6 18 8 6

⎤
⎥
⎥
⎥
⎦

consisting entirely of row vectors from𝐴.
Solution We will transpose 𝐴, thereby converting the row space of 𝐴 into the column
space of 𝐴𝑇; then we will use the method of Example 5 to find a basis for the column space
of𝐴𝑇; and then we will transpose again to convert column vectors back to row vectors.
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Transposing𝐴 yields

𝐴𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 2
−2 −5 5 6
0 −3 15 18
0 −2 10 8
3 6 0 6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and then reducing this matrix to row echelon form we obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 2
0 1 −5 −10
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The first, second, and fourth columns contain the leading 1’s, so the corresponding column
vectors in𝐴𝑇 form a basis for the column space of𝐴𝑇; these are

c1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
−2
0
0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, c2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
−5
−3
−2
6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and c4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
6
18
8
6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Transposing again and adjusting the notation appropriately yields the basis vectors

r1 = [1 −2 0 0 3], r2 = [2 −5 −3 −2 6],
r4 = [2 6 18 8 6]

for the row space of𝐴.

Up to now we have focused on methods for finding bases associated with matrices.
Those methods can readily be adapted to the more general problem of finding a basis for
the subspace spanned by a set of vectors in 𝑅n.

EXAMPLE 7 | Basis for the Space Spanned by a Set of Vectors

The following vectors span a subspace of 𝑅4. Find a subset of these vectors that forms a basis
of this subspace.

v1 = (1, 2, 2,−1), v2 = (−3,−6,−6, 3),
v3 = (4, 9, 9,−4), v4 = (−2,−1,−1, 2),
v5 = (5, 8, 9,−5), v6 = (4, 2, 7,−4)

Solution If we rewrite these vectors in column form and construct the matrix that has
those vectors as its successive columns, then we obtain the matrix 𝐴 in Example 7 (verify).
Thus,

span{v1, v2, v3, v4, v5, v6} = col(𝐴)
Proceeding as in that example (and adjusting the notation appropriately), we see that the
vectors v1, v3, and v5 form a basis for

span{v1, v2, v3, v4, v5, v6}

Next we will give an example that adapts the method of Example 5 to solve the fol-
lowing general problem in 𝑅n:
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Problem
Given a set of vectors 𝑆 = {v1, v2, . . . , vk} in 𝑅n, find a subset of these vectors that forms a
basis for span(𝑆), and express each vector that is not in that basis as a linear combination of
the basis vectors.

Had we only been interested
in part (a) of this exam-
ple, it would have sufficed
to reduce the matrix to
row echelon form. It is for
part (b) that the reduced
row echelon form is most
useful.

EXAMPLE 8 | Basis and Linear Combinations

(a) Find a subset of the vectors

v1 = (1,−2, 0, 3), v2 = (2,−5,−3, 6),
v3 = (0, 1, 3, 0), v4 = (2,−1, 4,−7), v5 = (5,−8, 1, 2)

that forms a basis for the subspace of 𝑅4 spanned by these vectors.
(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution (a) We begin by constructing a matrix that has v1, v2, . . . , v5 as its column vec-
tors:

⎡
⎢
⎢
⎢
⎣

1 2 0 2 5
−2 −5 1 −1 −8
0 −3 3 4 1
3 6 0 −7 2

⎤
⎥
⎥
⎥
⎦

↑ ↑ ↑ ↑ ↑
v1 v2 v3 v4 v5

(9)

The first part of our problem can be solved by finding a basis for the column space of this
matrix. Reducing the matrix to reduced row echelon form and denoting the column vectors
of the resulting matrix byw1,w2,w3,w4, andw5 yields

⎡
⎢
⎢
⎢
⎣

1 0 2 0 1
0 1 −1 0 1
0 0 0 1 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

↑ ↑ ↑ ↑ ↑
w1 w2 w3 w4 w5

(10)

The leading 1’s occur in columns 1, 2, and 4, so by Theorem 4.8.4,

{w1,w2,w4}
is a basis for the column space of (6), and consequently,

{v1, v2, v4}
is a basis for the column space of (9).

Solution (b) We will start by expressing w3 and w5 as linear combinations of the basis
vectors w1, w2, w4. The simplest way of doing this is to express w3 and w5 in terms
of basis vectors with numerically smaller subscripts. Accordingly, we will express w3 as a
linear combination of w1 and w2, and we will express w5 as a linear combination of the
vectorsw1,w2, andw4. By inspection of (10), these linear combinations are

w3 = 2w1 −w2

w5 = w1 +w2 +w4

We call these the dependency equations. The corresponding relationships in (9) are

v3 = 2v1 − v2
v5 = v1 + v2 + v4
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The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

Basis for the Space Spanned by a Set of Vectors
Step 1. Form the matrix𝐴 whose columns are the vectors in the set 𝑆 = {v1, v2, . . . , vk}.
Step 2. Reduce the matrix𝐴 to reduced row echelon form 𝑅.
Step 3. Denote the column vectors of 𝑅 byw1,w2, . . . ,wk.

Step 4. Identify the columns of 𝑅 that contain the leading 1’s. The corresponding column
vectors of𝐴 form a basis for span(𝑆).

This completes the first part of the problem.
Step 5. Obtain a set of dependency equations for the column vectors w1,w2, . . . ,wk of 𝑅

by successively expressing eachwi that does not contain a leading 1 of 𝑅 as a linear
combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vectorwi by the vector
vi for i = 1, 2, . . . , k.

This completes the second part of the problem.

Exercise Set 4.8

In Exercises 1–2, express the product𝐴x as a linear combination of
the column vectors of𝐴.

1. a. [ 2 3
−1 4] [

1
2] b. [

4 0 −1
3 6 2
0 −1 4

][
−2
3
5
]

2. a.
⎡
⎢
⎢
⎢
⎣

−3 6 2
5 −4 0
2 3 −1
1 8 3

⎤
⎥
⎥
⎥
⎦

[
−1
2
5
] b. [2 1 5

6 3 −8] [
3
0

−5
]

In Exercises 3–4, determine whether b is in the column space of
𝐴, and if so, express b as a linear combination of the column vec-
tors of𝐴.

3. a. 𝐴 = [
1 1 2
1 0 1
2 1 3

]; b = [
−1
0
2
]

b. 𝐴 = [
1 −1 1
9 3 1
1 1 1

]; b = [
5
1

−1
]

4. a. 𝐴 = [
1 −1 1

−1 1 −1
−1 −1 1

]; b = [
2
0
0
]

b. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 2 0 1
0 1 2 1
1 2 1 3
0 1 2 2

⎤
⎥
⎥
⎥
⎦

; b =
⎡
⎢
⎢
⎢
⎣

4
3
5
7

⎤
⎥
⎥
⎥
⎦

5. Suppose that x1 = 3, x2 = 0, x3 = −1, x4 = 5 is a solution of
a nonhomogeneous linear system 𝐴x = b and that the solu-
tion set of the homogeneous system 𝐴x = 0 is given by the
formulas

x1 = 5r− 2s, x2 = s, x3 = s+ t, x4 = t

a. Find a vector form of the general solution of𝐴x = 0.
b. Find a vector form of the general solution of𝐴x = b.

6. Suppose that x1 = −1, x2 = 2, x3 = 4, x4 = −3 is a solution of
a nonhomogeneous linear system 𝐴x = b and that the solu-
tion set of the homogeneous system 𝐴x = 0 is given by the
formulas

x1 = −3r+ 4s, x2 = r− s, x3 = r, x4 = s

a. Find a vector form of the general solution of𝐴x = 0.
b. Find a vector form of the general solution of𝐴x = b.

InExercises 7–8, find the vector formof the general solution of the lin-
ear system 𝐴x = b, and then use that result to find the vector form
of the general solution of𝐴x = 0.

7. a. x1 − 3x2 = 1
2x1 − 6x2 = 2

b. x1 + x2 + 2x3 = 5
x1 + x3 = −2
2x1 + x2 + 3x3 = 3

8. a. x1 − 2x2 + x3 + 2x4 = −1
2x1 − 4x2 + 2x3 + 4x4 = −2
−x1 + 2x2 − x3 − 2x4 = 1
3x1 − 6x2 + 3x3 + 6x4 = −3
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b. x1 + 2x2 − 3x3 + x4 = 4
−2x1 + x2 + 2x3 + x4 = −1
−x1 + 3x2 − x3 + 2x4 = 3
4x1 − 7x2 − 5x4 = −5

In Exercises 9–10, find bases for the null space and row space of𝐴.

9. a. 𝐴 = [
1 −1 3
5 −4 −4
7 −6 2

] b. 𝐴 = [
2 0 −1
4 0 −2
0 0 0

]

10. a. 𝐴 = [
1 4 5 2
2 1 3 0

−1 3 2 2
]

b. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 4 5 6 9
3 −2 1 4 −1

−1 0 −1 −2 −1
2 3 5 7 8

⎤
⎥
⎥
⎥
⎦

In Exercises 11–12, a matrix in row echelon form is given. By inspec-
tion, find a basis for the row space and for the column space of that
matrix.

11. a. [
1 0 2
0 0 1
0 0 0

] b.
⎡
⎢
⎢
⎢
⎣

1 −3 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

12. a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 5
0 1 −3 0
0 0 1 −3
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

1 2 −1 5
0 1 4 3
0 0 1 −7
0 0 0 1

⎤
⎥
⎥
⎥
⎦

13. a. Use the methods of Examples 6 and 7 to find bases for the
row space and column space of the matrix

𝐴 =
⎡⎢⎢⎢
⎣

1 −2 5 0 3
−2 5 −7 0 −6
−1 3 −2 1 −3
−3 8 −9 1 −9

⎤⎥⎥⎥
⎦

b. Use the method of Example 9 to find a basis for the row
space of𝐴 that consists entirely of row vectors of𝐴.

In Exercises 14–15, find a basis for the subspace of𝑅4 that is spanned
by the given vectors.
14. (1, 1,−4,−3), (2, 0, 2,−2), (2,−1, 3, 2)

15. (1, 1, 0, 0), (0, 0, 1, 1), (−2, 0, 2, 2), (0,−3, 0, 3)

In Exericses 16–17, find a subset of the given vectors that forms a
basis for the space spanned by those vectors, and then express each
vector that is not in the basis as a linear combination of the basis
vectors.

16. v1 = (1, 0, 1, 1), v2 = (−3, 3, 7, 1),
v3 = (−1, 3, 9, 3), v4 = (−5, 3, 5,−1)

17. v1 = (1,−1, 5, 2), v2 = (−2, 3, 1, 0),
v3 = (4,−5, 9, 4), v4 = (0, 4, 2,−3),
v5 = (−7, 18, 2,−8)

In Exercises 18–19, find a basis for the row space of 𝐴 that consists
entirely of row vectors of𝐴.
18. The matrix in Exercise 10(a).

19. The matrix in Exercise 10(b).

20. Construct a matrix whose null space consists of all linear
combinations of the vectors

v1 =
⎡
⎢
⎢
⎢
⎣

1
−1
3
2

⎤
⎥
⎥
⎥
⎦

and v2 =
⎡
⎢
⎢
⎢
⎣

2
0

−2
4

⎤
⎥
⎥
⎥
⎦

21. In each part, let𝐴 = [1 2 0
1 −1 4]. For the given vector b, find

the general form of all vectors x in 𝑅3 for which 𝑇𝐴(x) = b if
such vectors exist.

a. b = (0, 0) b. b = (1, 3) c. b = (−1, 1)

22. In each part, let𝐴 =
⎡
⎢
⎢
⎢
⎣

2 0
0 1
1 1
2 0

⎤
⎥
⎥
⎥
⎦

. For the given vector b, find the

general form of all vectors x in𝑅2 for which𝑇𝐴(x) = b if such
vectors exist.

a. b = (0, 0, 0, 0) b. b = (1, 1,−1,−1)
c. b = (2, 0, 0, 2)

23. a. The equation x+ y+ z = 1 can be viewed as a linear sys-
tem of one equation in three unknowns. Express a general
solution of this equation as a particular solution plus a gen-
eral solution of the associated homogeneous equation.

b. Give a geometric interpretation of the result in part (a).

24. a. The equation x+ y = 1 can be viewed as a linear system
of one equation in two unknowns. Express a general solu-
tion of this equation as a particular solution plus a general
solution of the associated homogeneous system.

b. Give a geometric interpretation of the result in part (a).

25. Consider the linear systems

[
3 2 −1
6 4 −2

−3 −2 1
] [

x1
x2
x3
] = [

0
0
0
]

and

[
3 2 −1
6 4 −2

−3 −2 1
] [

x1
x2
x3
] = [

2
4

−2
]

a. Find a general solution of the homogeneous system.
b. Confirm that x1 = 1, x2 = 0, x3 = 1 is a solution of the non-

homogeneous system.

c. Use the results in parts (a) and (b) to find a general solution
of the nonhomogeneous system.

d. Check your result in part (c) by solving the nonhomoge-
neous system directly.

26. Consider the linear systems

[
1 −2 3
2 1 4
1 −7 5

] [
x1
x2
x3
] = [

0
0
0
]
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and

[
1 −2 3
2 1 4
1 −7 5

] [
x1
x2
x3
] = [

2
7

−1
]

a. Find a general solution of the homogeneous system.
b. Confirm that x1 = 1, x2 = 1, x3 = 1 is a solution of the non-

homogeneous system.

c. Use the results in parts (a) and (b) to find a general solution
of the nonhomogeneous system.

d. Check your result in part (c) by solving the nonhomoge-
neous system directly.

In Exercises 27–28, find a general solution of the system, and use that
solution to finda general solution of the associated homogeneous sys-
tem and a particular solution of the given system.

27. [
3 4 1 2
6 8 2 5
9 12 3 10

]
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

= [
3
7
13
]

28. [
9 −3 5 6
6 −2 3 1
3 −1 3 14

]
⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

= [
4
5

−8
]

29. a. Let

𝐴 = [
0 1 0
1 0 0
0 0 0

]

Show that relative to an xyz-coordinate system in 3-space
the null space of 𝐴 consists of all points on the z-axis and
that the column space consists of all points in the xy-plane
(see the accompanying figure).

b. Find a 3 × 3matrixwhose null space is the x-axis andwhose
column space is the yz-plane.

z

y

x

Null space of A

Column space
of A

FIGURE Ex-29

30. Find a 3 × 3 matrix whose null space is

a. a point. b. a line. c. a plane.

31. a. Find all 2 × 2 matrices whose null space is the line
3x− 5y = 0.

b. Describe the null spaces of the following matrices:

𝐴 = [1 4
0 5], 𝐵 = [1 0

0 5], 𝐶 = [6 2
3 1], 𝐷 = [0 0

0 0]

Working with Proofs
32. Prove Theorem 4.8.4.

33. Prove that the row vectors of an n × n invertiblematrix𝐴 form
a basis for 𝑅n.

34. Suppose that 𝐴 and 𝐵 are n × n matrices and 𝐴 is invertible.
Invent and prove a theorem that describes how the row spaces
of𝐴𝐵 and 𝐵 are related.

True-False Exercises
TF. In parts (a)–( j) determine whether the statement is true or

false, and justify your answer.
a. The span of v1, . . . , vn is the column space of the matrix

whose column vectors are v1, . . . , vn.

b. The column space of a matrix 𝐴 is the set of solutions of
𝐴x = b.

c. If𝑅 is the reduced row echelon form of𝐴, then those col-
umn vectors of 𝑅 that contain the leading 1’s form a basis
for the column space of𝐴.

d. The set of nonzero row vectors of a matrix𝐴 is a basis for
the row space of𝐴.

e. If 𝐴 and 𝐵 are n × n matrices that have the same row
space, then𝐴 and 𝐵 have the same column space.

f. If 𝐸 is an m ×m elementary matrix and 𝐴 is an m × n
matrix, then the null space of 𝐸𝐴 is the same as the null
space of𝐴.

g. If 𝐸 is an m ×m elementary matrix and 𝐴 is an m × n
matrix, then the row space of 𝐸𝐴 is the same as the row
space of𝐴.

h. If 𝐸 is an m ×m elementary matrix and 𝐴 is an m × n
matrix, then the column space of 𝐸𝐴 is the same as the
column space of𝐴.

i. The system 𝐴x = b is inconsistent if and only if b is not
in the column space of𝐴.

j. There is an invertible matrix 𝐴 and a singular matrix 𝐵
such that the row spaces of𝐴 and 𝐵 are the same.

Working with Technology
T1. Find a basis for the column space of

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 6 0 8 4 12 4
3 9 −2 8 6 18 6
3 9 −7 −2 6 −3 −1
2 6 5 18 4 33 11
1 3 −2 0 2 6 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

that consists of column vectors of𝐴.

T2. Find a basis for the row space of the matrix 𝐴 in Exercise T1
that consists of row vectors of𝐴.
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4.9 Rank, Nullity, and the Fundamental
Matrix Spaces

In the last section we investigated relationships between a system of linear equations and
the row space, column space, and null space of its coefficient matrix. In this section we
will be concerned with the dimensions of those spaces. The results we obtain will provide
a deeper insight into the relationship between a linear system and its coefficient matrix.

Row and Column Spaces Have Equal Dimensions
In Examples 6 and 7 of Section 4.8 we found that the row and column spaces of thematrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥
⎥
⎥
⎦

both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the follow-
ing theorem.

Theorem 4.9.1

The row space and the column space of a matrix 𝐴 have the same dimension.

Proof It follows from Theorems 4.8.4 and 4.8.6 (b) that elementary row operations do not
change the dimension of the row space or of the column space of a matrix. Thus, if 𝑅 is
any row echelon form of 𝐴, it must be true that

dim(row space of 𝐴) = dim(row space of 𝑅)
dim(column space of 𝐴) = dim(column space of 𝑅)

so it suffices to show that the row and column spaces of 𝑅 have the same dimension. But
the dimension of the row space of 𝑅 is the number of nonzero rows, and by Theorem
4.8.5 the dimension of the column space of 𝑅 is the number of leading 1’s. Since these two
numbers are the same, the row and column space have the same dimension.

Rank and Nullity

The proof of Theorem 4.9.1
shows that the rank of A
can be interpreted as the
number of leading 1’s in any
row echelon form of A.

The dimensions of the row space, column space, andnull space of amatrix are such impor-
tant numbers that there is some notation and terminology associated with them.

Definition 1

The common dimension of the row space and column space of a matrix 𝐴 is called
the rank of 𝐴 and is denoted by rank(𝐴); the dimension of the null space of 𝐴 is
called the nullity of 𝐴 and is denoted by nullity(𝐴).
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EXAMPLE 1 | Rank and Nullity of a 4 × 6 Matrix

Find the rank and nullity of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

⎤
⎥
⎥
⎥
⎦

Solution The reduced row echelon form of𝐴 is

⎡
⎢
⎢
⎢
⎣

1 0 −4 −28 −37 13
0 1 −2 −12 −16 5
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(1)

(verify). Since thismatrix has two leading 1’s, its rowand column spaces are two-dimensional
and rank(𝐴) = 2. To find the nullity of𝐴, we must find the dimension of the solution space
of the linear system𝐴x = 0. This system can be solved by reducing its augmented matrix to
reduced row echelon form. The resulting matrix will be identical to (1), except that it will
have an additional last column of zeros, and hence the corresponding system of equations
will be

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0
x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0

Solving these equations for the leading variables yields
x1 = 4x3 + 28x4 + 37x5 − 13x6
x2 = 2x3 + 12x4 + 16x5 − 5x6

(2)

from which we obtain the general solution
x1 = 4r+ 28s+ 37t− 13u
x2 = 2r+ 12s+ 16t− 5u
x3 = r
x4 = s
x5 = t
x6 = u

or in column vector form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= r

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
2
1
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

28
12
0
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

37
16
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ u

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−13
−5
0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

Because the four vectors on the right side of Formula (3) form a basis for the solution space
it follows that nullity(𝐴) = 4.

EXAMPLE 2 | Maximum Value for Rank

What is the maximum possible rank of anm × nmatrix𝐴 that is not square?

Solution Since the row vectors of𝐴 lie in 𝑅n and the column vectors in 𝑅m, the row space
of 𝐴 is at most n-dimensional and the column space is at most m-dimensional. Since the
rank of𝐴 is the common dimension of its row and column space, it follows that the rank is
at most the smaller ofm and n. We denote this by writing

rank(𝐴) ≤ min(m,n)
in which min(m,n) is the minimum ofm and n.
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The following theorem establishes a fundamental relationship between the rank and
nullity of a matrix.

Theorem 4.9.2

Dimension Theorem for Matrices
If 𝐴 is a matrix with n columns, then

rank(𝐴) + nullity(𝐴) = n (4)

Proof Since 𝐴 has n columns, the homogeneous linear system 𝐴x = 0 has n unknowns
(variables). These fall into two distinct categories: the leading variables and the free vari-
ables. Thus,

[number of leadingvariables ] + [number of freevariables ] = n

But the number of leading variables is the same as the number of leading 1’s in any row
echelon form of 𝐴, which is the same as the dimension of the row space of 𝐴, which is
the same as the rank of 𝐴. Also, the number of free variables in the general solution of
𝐴x = 0 is the same as the number of parameters in that solution, which is the same as
the dimension of the solution space of 𝐴x = 0, which is the same as the nullity of 𝐴. This
yields Formula (4).

EXAMPLE 3 | The Sum of Rank and Nullity

The matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

⎤
⎥
⎥
⎥
⎦

has 6 columns, so
rank(𝐴) + nullity(𝐴) = 6

This is consistent with Example 1, where we showed that

rank(𝐴) = 2 and nullity(𝐴) = 4

The following theorem, which summarizes results already obtained, interprets rank
and nullity in the context of a homogeneous linear system.

Theorem 4.9.3

If 𝐴 is anm × nmatrix, then
(a) rank(𝐴) = the number of leading variables in the general solution of 𝐴x = 0.
(b) nullity(𝐴) = the number of parameters in the general solution of 𝐴x = 0.
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EXAMPLE 4 | Rank, Nullity, and Linear Systems

(a) Find the number of parameters in the general solution of𝐴x = 0 if𝐴 is a 5 × 7 matrix
of rank 3.

(b) Find the rank of a 5 × 7 matrix 𝐴 for which 𝐴x = 0 has a two-dimensional solution
space.

Solution (a) From (4),

nullity(𝐴) = n− rank(𝐴) = 7− 3 = 4

Thus, there are four parameters.

Solution (b) The matrix𝐴 has nullity 2, so

rank(𝐴) = n− nullity(𝐴) = 7− 2 = 5

Recall from Section 4.8 that if 𝐴x = b is a consistent linear system, then its general
solution can be expressed as the sumof a particular solution of this system and the general
solution of𝐴x = 0. We leave it as an exercise for you to use this fact and Theorem 4.9.3 to
prove the following result.

Theorem 4.9.4

If 𝐴x = b is a consistent linear system ofm equations in n unknowns, and if 𝐴 has
rank r, then the general solution of the system contains n − r parameters.

The Fundamental Spaces of a Matrix
There are six important vector spaces associated with an m × n matrix 𝐴 and its trans-
pose 𝐴𝑇 :

row space of 𝐴 row space of 𝐴𝑇
column space of 𝐴 column space of 𝐴𝑇
null space of 𝐴 null space of 𝐴𝑇

However, transposing a matrix converts row vectors into column vectors and conversely,
so except for a difference in notation, the row space of𝐴𝑇 is the same as the column space
of𝐴, and the column space of𝐴𝑇 is the same as the row space of𝐴. Thus, of the six spaces
listed above, only the following four are distinct:

row space of 𝐴 column space of 𝐴
null space of 𝐴 null space of 𝐴𝑇

These are called the fundamental spaces of the matrix 𝐴. The row space and null
space of 𝐴 are subspaces of 𝑅n, whereas the column space of 𝐴 and the null space of 𝐴𝑇
are subspaces of 𝑅m. The null space of 𝐴𝑇 is also called the left null space of A because
transposing both sides of the equation𝐴𝑇x = 0 produces the equation x𝑇𝐴 = 0𝑇 in which
the unknown is on the left. The dimension of the left null space of 𝐴 is called the left
nullity of A. We will now consider how the four fundamental spaces are related.

Let us focus for a moment on the matrix 𝐴𝑇 . Since the row space and column space
of a matrix have the same dimension, and since transposing amatrix converts its columns
to rows and its rows to columns, the following result should not be surprising.
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Theorem 4.9.5

If 𝐴 is any matrix, then rank(𝐴) = rank(𝐴𝑇).

Proof
rank(𝐴) = dim(row space of 𝐴) = dim(column space of 𝐴𝑇) = rank(𝐴𝑇).

This result has some important implications. For example, if 𝐴 is an m × n matrix,
then applying Formula (4) to the matrix 𝐴𝑇 and using the fact that this matrix has m
columns yields

rank(𝐴𝑇) + nullity(𝐴𝑇) = m

which, by virtue of Theorem 4.9.5, can be rewritten as

rank(𝐴) + nullity(𝐴𝑇) = m (5)

This alternative form of Formula (4) makes it possible to express the dimensions of all
four fundamental spaces in terms of the size and rank of 𝐴. Specifically, if rank(𝐴) = r,
then

dim[row(𝐴)] = r dim[col(𝐴)] = r
dim[null(𝐴)] = n − r dim[null(𝐴𝑇)] = m − r

(6)

Bases for the Fundamental Spaces
An efficient way to obtain bases for the four fundamental spaces of an m × n matrix 𝐴
is to adjoin the m ×m identity matrix to 𝐴 to obtain an augmented matrix [𝐴 | 𝐼] and
apply elementary row operations to this matrix to put 𝐴 in reduced row echelon form 𝑅,
thereby putting the augmentedmatrix in the form [𝑅 | 𝐸]. In the case where𝐴 is invertible
the matrix 𝐸 will be 𝐴−1, but in general it will not. The rank r of 𝐴 can then be obtained
by counting the number of pivots (leading l’s) in 𝑅, and the nullity of 𝐴𝑇 can be obtained
from the relationship

nullity(𝐴𝑇) = m − r (7)
that follows from Formula (5). Bases for three of the fundamental spaces can be obtained
directly from [𝑅 | 𝐸] as follows:

• A basis for row(𝐴) will be the r rows of 𝑅 that contain the leading 1’s (the pivot
rows).

• A basis for col(𝐴) will be the r columns of 𝐴 that contain the leading 1’s of 𝑅 (the
pivot columns).

• A basis for null(𝐴𝑇) will be the bottomm − r rows of 𝐸 (see the proof at the end of
this section)

EXAMPLE 5 | Bases for the Fundamental Spaces

In Example 1 we found a basis for the null space of the 4 × 6 matrix

𝐴 =
⎡⎢⎢⎢
⎣

−1 2 0 4 5 −3
3 −7 2 0 1 4
2 −5 2 4 6 1
4 −9 2 −4 −4 7

⎤⎥⎥⎥
⎦
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so in this example wewill focus on finding bases for the remaining three fundamental spaces
starting with the matrix

⎡⎢⎢⎢
⎣

−1 2 0 4 5 −3 1 0 0 0
3 −7 2 0 1 4 0 1 0 0
2 −5 2 4 6 1 0 0 1 0
4 −9 2 −4 −4 7 0 0 0 1

⎤⎥⎥⎥
⎦

𝐴 𝐼
inwhich a 4× 4 identitymatrix has been adjoined to𝐴.UsingGaussian elimination to reduce
the left side to reduced row echelon form 𝑅 yields (verify)

⎡⎢⎢⎢⎢
⎣

1 0 −4 −28 −37 13 0 0 − 9
2

5
2

0 1 −2 −12 −16 5 0 0 −2 1
0 0 0 0 0 0 1 0 − 1

2
1
2

0 0 0 0 0 0 0 1 − 1
2 − 1

2

⎤⎥⎥⎥⎥
⎦

𝑅 𝐸
From 𝑅 we see that 𝐴 has rank r = 2 (two nonzero rows), has nullity n− r = 6− 2 = 4,
and from (7) has left nullitym− r = 2. The two pivot rows of 𝑅 (rows 1 and 2) form a basis
for the row space of 𝐴, the two pivot columns of 𝐴 (columns 1 and 2) form a basis for the
column space of 𝐴, and the bottom two rows of 𝐸 form a basis for the left null space of 𝐴.
Expressing these bases in column form we have:

row space basis:

⎧⎪⎪
⎨
⎪⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
0

−4
−28
−37
13

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1

−2
−12
−16

5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪
⎬
⎪⎪
⎭

, column space basis:
⎧⎪
⎨⎪
⎩

⎡⎢⎢⎢
⎣

−1
3
2
4

⎤⎥⎥⎥
⎦

,
⎡⎢⎢⎢
⎣

2
−7
−5
−9

⎤⎥⎥⎥
⎦

⎫⎪
⎬⎪
⎭

left null space basis:
⎧⎪
⎨⎪
⎩

⎡
⎢
⎢
⎢
⎣

1
0

− 1
2
1
2

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
1

− 1
2

− 1
2

⎤
⎥
⎥
⎥
⎦

⎫⎪
⎬⎪
⎭

A Geometric Link Between the Fundamental Spaces
The four formulas in (6) provide an algebraic relationship between the size of a matrix
and the dimensions of its fundamental spaces. Our next objective is to find a geometric
relationship between the fundamental spaces themselves. For this purpose recall from
Theorem 3.4.3 that if 𝐴 is an m × n matrix, then the null space of 𝐴 consists of those
vectors that are orthogonal to each of the row vectors of 𝐴. To develop that idea in more
detail, we make the following definition.

Definition 2

If 𝑊 is a subspace of 𝑅n, then the set of all vectors in 𝑅n that are orthogonal to
every vector in 𝑊 is called the orthogonal complement of 𝑊 and is denoted by
the symbol𝑊⟂.

The following theorem lists three basic properties of orthogonal complements. We
will omit the formal proof because a more general version of this theorem will be proved
later in the text.
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Theorem 4.9.6

If𝑊 is a subspace of 𝑅n, then:
(a) 𝑊⟂ is a subspace of 𝑅n.
(b) The only vector common to𝑊 and𝑊⟂ is 0.
(c) The orthogonal complement of𝑊⟂ is𝑊.

Part (b) of Theorem 4.9.6
can be expressed as

𝑊 ∩𝑊⟂ = {0}
and part (c) as

(𝑊⟂)⟂ =𝑊

EXAMPLE 6 | Orthogonal Complements

In 𝑅2 the orthogonal complement of a line 𝑊 through the origin is the line through the
origin that is perpendicular to𝑊 (Figure 4.9.1a); and in 𝑅3 the orthogonal complement of
a plane𝑊 through the origin is the line through the origin that is perpendicular to that plane
(Figure 4.9.1b).

z

y

x

W⊥

W

y

x

W

(a) (b)

W⊥

FIGURE 4.9.1

The next theorem will provide a geometric link between the fundamental spaces of a

Explain why {0} and 𝑅n are
orthogonal complements.

matrix. In the exercises we will ask you to prove that if a vector in 𝑅n is orthogonal to each
vector in a basis for a subspace of 𝑅n, then it is orthogonal to every vector in that subspace.
Thus, part (a) of the following theorem is essentially a restatement of Theorem 3.4.3 in
the language of orthogonal complements; it is illustrated in Example 6 of Section 3.4. The
proof of part (b), which is left as an exercise, follows from part (a). The essential idea of
the theorem is illustrated in Figure 4.9.2.

Row
 A

N
ull A Col A

Nu
ll A

T

FIGURE 4.9.2

Theorem 4.9.7

If 𝐴 is anm × nmatrix, then:
(a) The null space of𝐴 and the row space of 𝐴 are orthogonal complements in 𝑅n.
(b) The null space of 𝐴𝑇 and the column space of 𝐴 are orthogonal complements

in 𝑅m.
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The results in Theorem 4.9.7 are often illustrated as in Figure 4.9.3, which conveys
the orthogonality properties in the theorem as well as the dimensions of the fundamental
spaces.

Row Space of A

(dimension r)

Null Space of A

(dimension n – r)

Null Space of AT

(dimension m – r)

Column Space of A

(dimension r)

Rm

Rn

FIGURE 4.9.3

More on the Equivalence Theorem
In Theorem 2.3.8 we listed seven results that are equivalent to the invertibility of a square
matrix 𝐴. We are now in a position to add ten more statements to that list to produce a
single theorem that summarizes and links together all of the topics that we have covered
thus far. We will prove some of the equivalences and leave others as exercises.

Theorem 4.9.8

Equivalent Statements
If𝐴 is ann × nmatrix inwhich there are noduplicate rows andnoduplicate columns,
then the following statements are equivalent.
(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) A is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.
(g) det(𝐴) ≠ 0.
(h) The column vectors of 𝐴 are linearly independent.
(i) The row vectors of 𝐴 are linearly independent.
( j) The column vectors of 𝐴 span 𝑅n.
(k) The row vectors of 𝐴 span 𝑅n.
(l) The column vectors of 𝐴 form a basis for 𝑅n.
(m) The row vectors of 𝐴 form a basis for 𝑅n.
(n) 𝐴 has rank n.
(o) 𝐴 has nullity 0.
(p) The orthogonal complement of the null space of 𝐴 is 𝑅n.
(q) The orthogonal complement of the row space of 𝐴 is {0}.
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Proof The following proofs show that (b) implies (h) through (q). In the exercises we will
ask you to complete the proof by showing that (q) implies (b).

(b)⇒ (h) ByFormula (10) of Section 1.3,𝐴x is a linear combination of the columnvectors
of 𝐴. Since 𝐴x = 0 has only the trivial solution, the column vectors of 𝐴must be linearly
independent.

(h)⇒ ( j), (h)⇒ (l), (h)⇒ (n) Since we now know that the n column vectors of 𝐴 are
linearly independent vectors in the n-dimensional vector space 𝑅n, they must span 𝑅n by
Theorem 4.6.4 and hence form a basis for 𝑅n. This also means that rank(𝐴) = n.

(h) ⇒ (i), (h) ⇒ (k), (h) ⇒ (m) Since we have shown that the column vectors form a
basis for 𝑅n, and since the row space and column space of 𝐴 have the same dimension by
Theorem 4.9.1, the n row vectors of 𝐴must also form a basis for 𝑅n.

(n)⇒ (o) Since rank(𝐴) = n, it follows from Theorem 4.9.2 that nullity(𝐴) = 0.

(o)⇒ (p) nullity(𝐴) = 0 means that the null space of 𝐴 is {0}, and since every vector in
𝑅n is orthogonal to 0, it follows that the orthogonal complement of the null space of 𝐴 is
𝑅n.

(p)⇒ (q) It follows from Theorem 4.9.7 that orthogonal complement of the row space of
𝐴 is the null space of 𝐴, which is {0}.

Applications of Rank
The advent of the Internet has stimulated research on finding efficient methods for trans-
mitting large amounts of digital data over communications lineswith limited bandwidths.
Digital data are commonly stored in matrix form, and many techniques for improving
transmission speed use the rank of a matrix in some way. Rank plays a role because it
measures the “redundancy” in a matrix in the sense that if 𝐴 is an m × n matrix of rank
k, then n − k of the column vectors and m − k of the row vectors can be expressed in
terms of k linearly independent column or row vectors. The essential idea in many data
compression schemes is to approximate the original data set by a data set with smaller
rank that conveys nearly the same information, then eliminate redundant vectors in the
approximating set to speed up the transmission time.

OPTIONAL: Overdetermined and
Underdetermined Systems
In many applications the equations in a linear system correspond to physical constraints
or conditions that must be satisfied. In general, the most desirable systems are those
that have the same number of constraints as unknowns since such systems often have
a unique solution. Unfortunately, it is not always possible to match the number of con-
straints and unknowns, so researchers are often faced with linear systems that have more
constraints than unknowns, called overdetermined systems, or with fewer constraints
than unknowns, called underdetermined systems. The following theorem will help us
to analyze both overdetermined and underdetermined systems.
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Theorem 4.9.9

Let 𝐴 be anm × nmatrix.
(a) (Overdetermined Case). If m > n, then the linear system 𝐴x = b is inconsis-

tent for at least one vector b in 𝑅n.
(b) (Underdetermined Case). If m < n, then for each vector b in 𝑅m the linear

system 𝐴x = b is either inconsistent or has infinitely many solutions.

In engineering and physics,
the occurrence of an overde-
termined or underdeter-
mined linear system often
signals that one or more
variables were omitted in
formulating the problem
or that extraneous vari-
ables were included. This
often leads to some kind of
complication.

Proof (a) Assume that m > n, in which case the column vectors of 𝐴 cannot span 𝑅m
(fewer vectors than the dimension of 𝑅m). Thus, there is at least one vector b in 𝑅m that
is not in the column space of 𝐴, and for any such b the system 𝐴x = b is inconsistent by
Theorem 4.8.1.

Proof (b) Assume that m < n. For each vector b in 𝑅n there are two possibilities: either
the system 𝐴x = b is consistent or it is inconsistent. If it is inconsistent, then the proof is
complete. If it is consistent, then Theorem 4.9.4 implies that the general solution has n − r
parameters, where r = rank(𝐴). But we know from Example 2 that rank(𝐴) is at most the
smaller ofm and n (which ism), so

n − r ≥ n −m > 0

This means that the general solution has at least one parameter and hence there are
infinitely many solutions.

EXAMPLE 7 | Overdetermined and Underdetermined Systems

(a) What can you say about the solutions of an overdetermined system 𝐴x = b of 7 equa-
tions in 5 unknowns in which𝐴 has rank r = 4?

(b) What can you say about the solutions of an underdetermined system𝐴x = b of 5 equa-
tions in 7 unknowns in which𝐴 has rank r = 4?

Solution (a) The system is consistent for some vector b in 𝑅7, and for any such b the
number of parameters in the general solution is n− r = 5− 4 = 1.

Solution (b) The system may be consistent or inconsistent, but if it is consistent for the
vector b in 𝑅5, then the general solution has n− r = 7− 4 = 3 parameters.

EXAMPLE 8 | An Overdetermined System

The linear system
x1 − 2x2 = b1
x1 − x2 = b2
x1 + x2 = b3
x1 + 2x2 = b4
x1 + 3x2 = b5
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is overdetermined, so it cannot be consistent for all possible values of b1, b2, b3, b4, and b5.
Conditions underwhich the system is consistent can be obtained by solving the linear system
by Gauss–Jordan elimination. We leave it for you to show that the augmented matrix is row
equivalent to

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 2b2 − b1
0 1 b2 − b1
0 0 b3 − 3b2 + 2b1
0 0 b4 − 4b2 + 3b1
0 0 b5 − 5b2 + 4b1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(8)

Thus, the system is consistent if and only if b1, b2, b3, b4, and b5 satisfy the conditions

2b1 − 3b2 + b3 = 0
3b1 − 4b2 + b4 = 0
4b1 − 5b2 + b5 = 0

Solving this homogeneous linear system yields

b1 = 5r− 4s, b2 = 4r− 3s, b3 = 2r− s, b4 = r, b5 = s

where r and s are arbitrary.

Remark The coefficient matrix for the given linear system in the last example has n = 2
columns, and it has rank r = 2 because there are two nonzero rows in its reduced row ech-
elon form. This implies that when the system is consistent its general solutionwill contain
n − r = 0 parameters; that is, the solution will be unique. With a moment’s thought, you
should be able to see that this is so from (8).

OPTIONAL: Left Null Space Proof
Suppose that𝐴 is anm × nmatrix of rank r and its reduced row echelon form is 𝑅.Wewill
conclude this section by proving that if the augmented matrix [𝐴 | 𝐼] is reduced to [R |E]
by Gauss-Jordan elimination, then the bottom m − r rows of 𝐸 form a basis for the left
null space of 𝐴.

Proof The left null space of 𝐴 is the solution space of the system 𝐴𝑇x = 0, which, on
transposing both sides, we can rewrite as

x𝑇𝐴 = 0𝑇 (9)

Let [R | E] denote the augmented matrix that results from [A | I], when elementary row
operations are applied to put the left side in reduced row echelon form 𝑅. Thematrices𝐴,
𝑅, and 𝐸 are related by the equation

𝐸𝐴 = 𝑅

where𝐸 is a product of elementarymatrices. Since𝐴 has rank r and sizem × n, thematrix
𝑅 has r nonzero rows andm − r zero rows. By Formula (9) of Section 1.3 the ith row vector
of 𝑅 is the product

[ith row vector of 𝐸] 𝐴 = ith row vector of 𝑅

But the lastm − r row vectors of 𝑅 are zero, so the lastm − r row vectors of 𝐸 are solutions
of (9) and hence lie in the left null space of 𝐴.We leave it as an exercise to use Theorem
4.9.8 to show that these vectors form a basis for the left null space of 𝐴.
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Exercise Set 4.9

In Exercises 1–2, find the rank and nullity of the matrix𝐴 by reduc-
ing it to row echelon form.

1. a. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 2 −1 1
2 4 −2 2
3 6 −3 3
4 8 −4 4

⎤
⎥
⎥
⎥
⎦

b. 𝐴 = [
1 −2 2 3 −1

−3 6 −1 1 −7
2 −4 5 8 −4

]

2. a. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0 −2 1 0
0 −1 −3 1 3

−2 −1 1 −1 3
0 1 3 0 −4

⎤
⎥
⎥
⎥
⎦

b. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 3 1 3
0 1 1 0

−3 0 6 −1
3 4 −2 1
2 0 −4 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In Exercises 3–6, the matrix𝑅 is the reduced row echelon form of the
matrix A.

a. By inspection of the matrix 𝑅, find the rank and nullity of𝐴.
b. Confirm that the rank and nullity satisfy Formula (4).

c. Find the number of leading variables and the number of parame-
ters in the general solution of𝐴x = 0 without solving the system.

3. 𝐴 = [
2 −1 −3

−1 2 −3
1 1 4

]; 𝑅 = [
1 0 0
0 1 0
0 0 1

]

4. 𝐴 = [
2 −1 −3

−1 2 −3
1 1 −6

]; 𝑅 = [
1 0 −3
0 1 −3
0 0 0

]

5. 𝐴 = [
2 −1 −3

−2 1 3
−4 2 6

]; 𝑅 = [
1 − 1

2 − 3
2

0 0 0
0 0 0

]

6. 𝐴 =
⎡
⎢
⎢
⎢
⎣

0 2 2 4
1 0 −1 −3
2 3 1 1

−2 1 3 −2

⎤
⎥
⎥
⎥
⎦

; 𝑅 =
⎡
⎢
⎢
⎢
⎣

1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0

⎤
⎥
⎥
⎥
⎦

7. In each part, find the largest possible value for the rank of 𝐴
and the smallest possible value for the nullity of𝐴.

a. 𝐴 is 4 × 4 b. 𝐴 is 3 × 5 c. 𝐴 is 5 × 3

8. If 𝐴 is an m × n matrix, what is the largest possible value for
its rank and the smallest possible value for its nullity?

9. In each part, use the information in the table to:
i. find the dimensions of the row space of𝐴, column space

of𝐴, null space of𝐴, and null space of𝐴𝑇;
ii. determine whether the linear system 𝐴x = b is consis-

tent;

iii. find the number of parameters in the general solution of
each system in (ii) that is consistent.

(a) (b) (c) (d) (e) (f ) (g)

Size of𝐴 3 × 3 3 × 3 3 × 3 5 × 9 5 × 9 4 × 4 6 × 2
Rank(𝐴) 3 2 1 2 2 0 2
Rank[𝐴 ∣ b] 3 3 1 2 3 0 2

10. Verify that rank(𝐴) = rank(𝐴𝑇).

𝐴 = [
1 2 4 0

−3 1 5 2
−2 3 9 2

]

In Exercises 11–14 find the dimensions and bases for the four funda-
mental spaces of the matrix.

11. 𝐴 = [
1 4
0 3

−9 0
] 12. 𝐴 = [1 2 4

2 4 8]

13. 𝐴 = [
0 −1 −4

−1 0 −4
−2 3 4

] 14. 𝐴 =
⎡⎢⎢⎢
⎣

3 4 0 7
1 −5 2 −2

−1 4 0 −3
1 −1 2 2

⎤⎥⎥⎥
⎦

In Exercises 15–18 confirm the orthogonality statements in the two
parts of Theorem 4.9.7 for the given matrix.

15. The matrix in Exercise 11. 16. The matrix in Exercise 12.

17. The matrix in Exercise 13. 18. The matrix in Exercise 14.

In Exercises 19–20 use the method of Example 5 to find bases for the
four fundamental spaces of the matrix.

19. 𝐴 = [
0 2 8 −7
2 −2 4 0

−3 4 −2 5
] 20. 𝐴 =

⎡⎢⎢⎢
⎣

1 2 3 1 1
2 8 0 1 2
0 4 −6 0 1
1 0 0 0 0

⎤⎥⎥⎥
⎦

21. a. Find an equation relating nullity(𝐴) and nullity(𝐴𝑇) for
the matrix in Exercise 10.

b. Find an equation relating nullity(𝐴) and nullity(𝐴𝑇) for a
generalm × nmatrix.

22. Let 𝑇∶𝑅2→𝑅3 be the linear transformation defined by the
formula

𝑇(x1, x2) = (x1 + 3x2, x1 − x2, x1)
a. Find the rank of the standard matrix for 𝑇.
b. Find the nullity of the standard matrix for 𝑇.

23. Let 𝑇∶𝑅5→𝑅3 be the linear transformation defined by the
formula

𝑇(x1, x2, x3, x4, x5) = (x1 + x2, x2 + x3 + x4, x4 + x5)

a. Find the rank of the standard matrix for 𝑇.
b. Find the nullity of the standard matrix for 𝑇.

24. Discuss how the rank of𝐴 varies with t.

a. 𝐴 = [
1 1 t
1 t 1
t 1 1

] b. 𝐴 = [
t 3 −1
3 6 −2

−1 −3 t
]
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25. Are there values of r and s for which

⎡
⎢
⎢
⎢
⎣

1 0 0
0 r− 2 2
0 s− 1 r+ 2
0 0 3

⎤
⎥
⎥
⎥
⎦

has rank 1? Has rank 2? If so, find those values.

26. a. Give an example of a 3 × 3 matrix whose column space is a
plane through the origin in 3-space.

b. What kind of geometric object is the null space of your
matrix?

c. What kind of geometric object is the row space of your
matrix?

27. Suppose that 𝐴 is a 3 × 3 matrix whose null space is a line
through the origin in 3-space. Can the row or column space
of𝐴 also be a line through the origin? Explain.

28. a. If 𝐴 is a 3 × 5 matrix, then the rank of 𝐴 is at most
. Why?

b. If 𝐴 is a 3 × 5 matrix, then the nullity of 𝐴 is at most
. Why?

c. If 𝐴 is a 3 × 5 matrix, then the rank of 𝐴𝑇 is at most
. Why?

d. If 𝐴 is a 3 × 5 matrix, then the nullity of 𝐴𝑇 is at most
. Why?

29. a. If𝐴 is a 3 × 5 matrix, then the number of leading 1’s in the
reduced row echelon form of𝐴 is at most . Why?

b. If𝐴 is a 3 × 5 matrix, then the number of parameters in the
general solution of𝐴x = 0 is at most . Why?

c. If𝐴 is a 5 × 3 matrix, then the number of leading 1’s in the
reduced row echelon form of𝐴 is at most . Why?

d. If𝐴 is a 5 × 3 matrix, then the number of parameters in the
general solution of𝐴x = 0 is at most . Why?

30. Let 𝐴 be a 7 × 6 matrix such that 𝐴x = 0 has only the trivial
solution. Find the rank and nullity of𝐴.

31. Let𝐴 be a 5 × 7 matrix with rank 4.
a. What is the dimension of the solution space of𝐴x = 0?
b. Is𝐴x = b consistent for all vectors b in 𝑅5? Explain.

32. Let
𝐴 = [a11 a12 a13

a21 a22 a23
]

Show that 𝐴 has rank 2 if and only if one or more of the fol-
lowing determinants is nonzero.

|||
a11 a12
a21 a22

|||,
|||
a11 a13
a21 a23

|||,
|||
a12 a13
a22 a23

|||

33. Use the result in Exercise 22 to show that the set of points
(x, y, z) in 𝑅3 for which the matrix

[x y z
1 x y]

has rank 1 is the curvewith parametric equations x = t, y = t2,
z = t3.

34. Find matrices 𝐴 and 𝐵 for which rank(𝐴) = rank(𝐵), but
rank(𝐴2) ≠ rank(𝐵2).

35. In Example 6 of Section 4.7 we showed that the row space and
the null space of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥
⎥
⎥
⎦

are orthogonal complements in 𝑅6, as guaranteed by part (a)
of Theorem 4.9.7. Show that null space of𝐴𝑇 and the column
space of 𝐴 are orthogonal complements in 𝑅4, as guaranteed
by part (b) of Theorem 4.9.7. [Suggestion: Show that each col-
umn vector of𝐴 is orthogonal to each vector in a basis for the
null space of𝐴𝑇.]

36. Confirm the results stated in Theorem 4.9.7 for the matrix.

𝐴 =
⎡
⎢
⎢
⎢
⎣

−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

⎤
⎥
⎥
⎥
⎦

37. In each part, state whether the system is overdetermined or
underdetermined. If overdetermined, find all values of the b’s
for which it is inconsistent, and if underdetermined, find all
values of the b’s for which it is inconsistent and all values for
which it has infinitely many solutions.

a. [
1 −1

−3 1
0 1

] [xy] = [
b1
b2
b3
]

b. [
1 −3 4

−2 −6 8] [
x
y
z
] = [b1b2

]

c. [
1 −3 0

−1 1 1] [
x
y
z
] = [b1b2

]

38. What conditions must be satisfied by b1, b2, b3, b4, and b5 for
the overdetermined linear system

x1 − 3x2 = b1
x1 − 2x2 = b2
x1 + x2 = b3
x1 − 4x2 = b4
x1 + 5x2 = b5

to be consistent?

Working with Proofs

39. Prove: If k ≠ 0, then𝐴 and k𝐴 have the same rank.

40. Prove: If a matrix𝐴 is not square, then either the row vectors
or the column vectors of𝐴 are linearly dependent.

41. Use Theorem 4.9.3 to prove Theorem 4.9.4.

42. Prove Theorem 4.9.7(b).

43. Prove: If a vector v in𝑅n is orthogonal to each vector in a basis
for a subspace𝑊 of 𝑅n, then v is orthogonal to every vector
in𝑊.

44. Prove: (q) implies (b) in Theorem 4.9.8.
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True-False Exercises
TF. In parts (a)–( j) determine whether the statement is true or

false, and justify your answer.
a. Either the row vectors or the column vectors of a square

matrix are linearly independent.

b. A matrix with linearly independent row vectors and lin-
early independent column vectors is square.

c. The nullity of a nonzerom × nmatrix is at mostm.

d. Adding one additional column to a matrix increases its
rank by one.

e. The nullity of a square matrix with linearly dependent
rows is at least one.

f. If𝐴 is square and𝐴x = b is inconsistent for some vector
b, then the nullity of𝐴 is zero.

g. If a matrix 𝐴 has more rows than columns, then the
dimension of the row space is greater than the dimension
of the column space.

h. If rank(𝐴𝑇) = rank(𝐴), then𝐴 is square.

i. There is no 3 × 3 matrix whose row space and null space
are both lines in 3-space.

j. If 𝑉 is a subspace of 𝑅n and𝑊 is a subspace of 𝑉, then
𝑊⟂ is a subspace of𝑉⟂.

Working with Technology
T1. It can be proved that a nonzero matrix 𝐴 has rank k if and

only if some k × k submatrix has a nonzero determinant and
all square submatrices of larger size have determinant zero.
Use this fact to find the rank of

𝐴 =
⎡⎢⎢⎢⎢
⎣

3 −1 3 2 5
5 −3 2 3 4
1 −3 −5 0 −7
7 −5 1 4 1

⎤⎥⎥⎥⎥
⎦

Check your result by computing the rank of 𝐴 in a different
way.

T2. Sylvester’s inequality states that if𝐴 and 𝐵 are n × nmatri-
ces with rank r𝐴 and r𝐵, respectively, then the rank r𝐴𝐵 of𝐴𝐵
satisfies the inequality

r𝐴 + r𝐵 − n ≤ r𝐴𝐵 ≤ min(r𝐴, r𝐵)

where min(r𝐴, r𝐵) denotes the smaller of r𝐴 and r𝐵 or their
common value if the two ranks are the same. Use your tech-
nology utility to confirm this result for some matrices of your
choice.

Chapter 4 Supplementary Exercises
1. Let𝑉 be the set of all ordered triples of real numbers, and con-

sider the following addition and scalar multiplication opera-
tions on u = (u1,u2,u3) and v = (v1, v2, v3):

u+ v = (u1 + v1,u2 + v2,u3 + v3), ku = (ku1, 0, 0)

a. Compute u+ v and ku for u = (3,−2, 4), v = (1, 5,−2),
and k = −1.

b. In words, explainwhy𝑉 is closed under addition and scalar
multiplication.

c. Since the addition operation on 𝑉 is the standard addition
operation on 𝑅3, certain vector space axioms hold for 𝑉
because they are known to hold for 𝑅3. Which axioms in
Definition 1 of Section 4.1 are they?

d. Show that Axioms 7, 8, and 9 hold.

e. Show that Axiom 10 fails for the given operations.

2. In each part, the solution space of the system is a subspace of
𝑅3 and somust be a line through the origin, a plane through the
origin, all of 𝑅3, or the origin only. For each system, determine
which is the case. If the subspace is a plane, find an equation
for it, and if it is a line, find parametric equations.

a. 0x+ 0y+ 0z = 0 b. 2x − 3y + z = 0
6x − 9y + 3z = 0

−4x + 6y − 2z = 0

c. x − 2y + 7z = 0
−4x + 8y + 5z = 0
2x − 4y + 3z = 0

d. x + 4y + 8z = 0
2x + 5y + 6z = 0
3x + y − 4z = 0

3. For what values of s is the solution space of
x1 + x2 + sx3 = 0

x1 + sx2 + x3 = 0

sx1 + x2 + x3 = 0
the origin only, a line through the origin, a plane through the
origin, or all of 𝑅3?

4. a. Express (4a, a− b, a+ 2b) as a linear combination of
(4, 1, 1) and (0,−1, 2).

b. Express (3a+ b+ 3c,−a+ 4b− c, 2a+ b+ 2c) as a linear
combination of (3,−1, 2) and (1, 4, 1).

c. Express (2a− b+ 4c, 3a− c, 4b+ c) as a linear combina-
tion of three nonzero vectors.

5. Let𝑊 be the space spanned by f = sin x and g = cos x.

a. Show that for any value of 𝜃, f1 = sin(x+ 𝜃) and
g1 = cos(x+ 𝜃) are vectors in𝑊.

b. Show that f1 and g1 form a basis for𝑊.

6. a. Express v = (1, 1) as a linear combination of v1 = (1,−1),
v2 = (3, 0), and v3 = (2, 1) in two different ways.

b. Explain why this does not violate Theorem 4.5.1.
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7. Let𝐴 be an n × nmatrix, and let v1, v2, . . . , vn be linearly inde-
pendent vectors in 𝑅n expressed as n × 1 matrices. What must
be true about𝐴 for𝐴v1, 𝐴v2, . . . , 𝐴vn to be linearly indepen-
dent?

8. Must a basis for 𝑃n contain a polynomial of degree k for each
k = 0, 1, 2, . . . ,n? Justify your answer.

9. For the purpose of this exercise, let us define a “checkerboard
matrix” to be a square matrix𝐴 = [ai j] such that

ai j = {1 if i+ j is even
0 if i+ j is odd

Find the rank and nullity of the following checkerboard
matrices.

a. The 3 × 3 checkerboard matrix.
b. The 4 × 4 checkerboard matrix.
c. The n × n checkerboard matrix.

10. For the purpose of this exercise, let us define an “𝑋-matrix” to
be a square matrix with an odd number of rows and columns
that has 0’s everywhere except on the two diagonals where it
has 1’s. Find the rank and nullity of the following𝑋-matrices.

a. [
1 0 1
0 1 0
1 0 1

] b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

c. the𝑋-matrix of size (2n+ 1) × (2n+ 1)

11. In each part, show that the stated set of polynomials is a sub-
space of 𝑃n and find a basis for it.

a. All polynomials in 𝑃n such that p(−x) = p(x).
b. All polynomials in 𝑃n such that p(0) = p(1).

12. (Calculus required) Show that the set of all polynomials in
𝑃n that have a horizontal tangent at x = 0 is a subspace of 𝑃n.
Find a basis for this subspace.

13. a. Find a basis for the vector space of all 3 × 3 symmetric
matrices.

b. Find a basis for the vector space of all 3 × 3 skew-symmetric
matrices.

14. Various advanced texts in linear algebra prove the following
determinant criterion for rank: The rank of a matrix 𝐴 is r if
and only if𝐴 has some r × r submatrix with a nonzero determi-
nant, and all square submatrices of larger size have determinant
zero. [Note:Asubmatrix of𝐴 is anymatrix obtained by deleting
rows or columns of𝐴. The matrix𝐴 itself is also considered to
be a submatrix of𝐴.] In each part, use this criterion to find the
rank of the matrix.

a. [1 2 0
2 4 −1] b. [1 2 3

2 4 6]

c. [
1 0 1
2 −1 3
3 −1 4

] d. [
1 −1 2 0
3 1 0 0

−1 2 4 0
]

15. Use the result in Exercise 14 to find the possible ranks for
matrices of the form

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 a16
0 0 0 0 0 a26
0 0 0 0 0 a36
0 0 0 0 0 a46
a51 a52 a53 a54 a55 a56

⎤
⎥
⎥
⎥
⎥
⎥
⎦

16. Prove: If 𝑆 is a basis for a vector space𝑉, then for any vectors u
and v in𝑉 and any scalar k, the following relationships hold.

a. (u+ v)𝑆 = (u)𝑆 + (v)𝑆 b. (ku)𝑆 = k(u)𝑆
17. Let𝐷k, 𝑅𝜃, and 𝑆k be a dilation of 𝑅2 with factor k, a counter-

clockwise rotation about the origin of 𝑅2 through an angle 𝜃,
and a shear of 𝑅2 by a factor k, respectively.

a. Do𝐷k and 𝑅𝜃 commute?

b. Do 𝑅𝜃 and 𝑆k commute?
c. Do𝐷k and 𝑆k commute?

18. A vector space 𝑉 is said to be the direct sum of its subspaces
𝑈 and 𝑊, written 𝑉 = 𝑈⊕𝑊, if every vector in 𝑉 can be
expressed in exactly one way as v = u+w, where u is a vector
in𝑈 andw is a vector in𝑊.

a. Prove that 𝑉 = 𝑈⊕𝑊 if and only if every vector in 𝑉 is
the sum of some vector in 𝑈 and some vector in 𝑊 and
𝑈 ∩𝑊 = {0}.

b. Let𝑈 be the xy-plane and𝑊 the z-axis in 𝑅3. Is it true that
𝑅3 = 𝑈⊕𝑊? Explain.

c. Let𝑈 be the xy-plane and𝑊 the yz-plane in 𝑅3. Can every
vector in 𝑅3 be expressed as the sum of a vector in𝑈 and a
vector in𝑊? Is it true that 𝑅3 = 𝑈⊕𝑊? Explain.
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Introduction
In this chapter we will focus on classes of scalars and vectors known as “eigenvalues” and
“eigenvectors,” terms derived from the German word eigen, meaning “own,” “peculiar
to,” “characteristic,” or “individual.” The underlying idea first appeared in the study of
rotational motion but was later used to classify various kinds of surfaces and to describe
solutions of certain differential equations. In the early 1900s it was applied tomatrices and
matrix transformations, and today it has applications in such diverse fields as computer
graphics, mechanical vibrations, heat flow, population dynamics, quantum mechanics,
and economics, to name just a few.

5.1 Eigenvalues and Eigenvectors
In this section we will define the notions of “eigenvalue” and “eigenvector” and discuss
some of their basic properties.

Definition of Eigenvalue and Eigenvector
We begin with the main definition in this section.

The requirement that an
eigenvector be nonzero
is imposed to avoid the
unimportant case A0 = 𝜆0,
which holds for every A
and 𝜆.

Definition 1

If 𝐴 is an n × nmatrix, then a nonzero vector x in 𝑅n is called an eigenvector of 𝐴
(or of the matrix operator 𝑇𝐴) if 𝐴x is a scalar multiple of x; that is,

𝐴x = 𝜆x
for some scalar 𝜆. The scalar 𝜆 is called an eigenvalue of 𝐴 (or of 𝑇𝐴), and x is said
to be an eigenvector corresponding to 𝝀.
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In general, the image of a vector x under multiplication by a square matrix 𝐴 differs
from x in both magnitude and direction. However, in the special case where x is an eigen-
vector of 𝐴, multiplication by 𝐴 leaves the direction unchanged. For example, in 𝑅2 or 𝑅3
multiplication by 𝐴 maps each eigenvector x of 𝐴 (if any) along the same line through
the origin as x. Depending on the sign and magnitude of the eigenvalue 𝜆 corresponding
to x, the operation 𝐴x = 𝜆x compresses or stretches x by a factor of 𝜆, with a reversal of
direction in the case where 𝜆 is negative (Figure 5.1.1).
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FIGURE 5.1.1

EXAMPLE 1 | Eigenvector of a 2 × 2 Matrix

The vector x = [12] is an eigenvector of

𝐴 = [3 0
8 −1]

corresponding to the eigenvalue 𝜆 = 3, since

𝐴x = [3 0
8 −1] [

1
2] = [36] = 3x

Geometrically, multiplication by𝐴 has stretched the vector x by a factor of 3 (Figure 5.1.2).

Computing Eigenvalues and Eigenvectors
Our next objective is to obtain a general procedure for finding eigenvalues and eigenvec-

x

2

6

31

x

3x

y

FIGURE 5.1.2

tors of an n × nmatrix𝐴. We will begin with the problem of finding the eigenvalues of𝐴.
Note first that the equation 𝐴x = 𝜆x can be rewritten as 𝐴x = 𝜆𝐼x, or equivalently as

(𝜆𝐼 − 𝐴) x = 0
For 𝜆 to be an eigenvalue of 𝐴 this equation must have a nonzero solution for x. But it
follows from parts (b) and (g) of Theorem 4.10.2 that this is so if and only if the coefficient
matrix 𝜆𝐼 − 𝐴 has a zero determinant. Thus, we have the following result.

Note that if (A)i j = ai j, then
the left side of formula (1)
can be written in expanded
form as
|||||||

𝜆 − a11 a12 ⋅ ⋅ ⋅ −a1n
−a21 𝜆 − a22 ⋅ ⋅ ⋅ −a2n
...

...
...

−an1 −an2 ⋅ ⋅ ⋅ 𝜆 − ann

|||||||

Theorem 5.1.1

If 𝐴 is an n × n matrix, then 𝜆 is an eigenvalue of 𝐴 if and only if it satisfies the
equation

det(𝜆𝐼 − 𝐴) = 0 (1)
This is called the characteristic equation of 𝐴.
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EXAMPLE 2 | Finding Eigenvalues

In Example 1 we observed that 𝜆 = 3 is an eigenvalue of the matrix

𝐴 = [3 0
8 −1]

butwe did not explain howwe found it. Use the characteristic equation to find all eigenvalues
of this matrix.

Solution It follows from Formula (1) that the eigenvalues of 𝐴 are the solutions of the
equation det(𝜆𝐼 − 𝐴) = 0, which we can write as

|||
𝜆 − 3 0
−8 𝜆 + 1

||| = 0

from which we obtain
(𝜆 − 3)(𝜆 + 1) = 0 (2)

This shows that the eigenvalues of𝐴 are 𝜆 = 3 and 𝜆 = −1. Thus, in addition to the eigen-
value 𝜆 = 3 noted in Example 1, we have discovered a second eigenvalue 𝜆 = −1.

When the determinant det(𝜆𝐼 − 𝐴) in (1) is expanded, the characteristic equation of
𝐴 takes the form

𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn = 0 (3)

where the left side of this equation is a polynomial of degree n in which the coefficient of
𝜆n is 1 (Exercise 37). The polynomial

p(𝜆) = 𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn (4)

is called the characteristic polynomial of 𝐴. For example, it follows from (2) that the
characteristic polynomial of the 2 × 2 matrix in Example 2 is

p(𝜆) = (𝜆 − 3)(𝜆 + 1) = 𝜆2 − 2𝜆 − 3
which is a polynomial of degree 2.

Since a polynomial of degree n has at most n distinct roots, it follows from (3) that the
characteristic equation of an n × n matrix 𝐴 has at most n distinct solutions and conse-
quently the matrix has at most n distinct eigenvalues. Since some of these solutions may
be complex numbers, it is possible for a matrix to have complex eigenvalues, even if the
matrix itself has real entries. We will discuss this issue in more detail later, but for now
we will focus on examples in which the eigenvalues are real numbers.

EXAMPLE 3 | Eigenvalues of a 3 × 3 Matrix

Find the eigenvalues of

𝐴 = [
0 1 0
0 0 1
4 −17 8

]

Solution The characteristic polynomial of𝐴 is

det(𝜆𝐼 − 𝐴) = det[
𝜆 −1 0
0 𝜆 −1

−4 17 𝜆 − 8
] = 𝜆 3 − 8𝜆 2 + 17𝜆 − 4
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The eigenvalues of𝐴must therefore satisfy the cubic equation

𝜆 3 − 8𝜆 2 + 17𝜆 − 4 = 0 (5)

To solve this equation, we will begin by searching for integer solutions. This task can be
simplified by exploiting the fact that all integer solutions (if there are any) of a polynomial
equation with integer coefficients

𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn = 0

must be divisors of the constant term, cn. Thus, the only possible integer solutions of (5) are
the divisors of−4, that is,±1,±2,±4. Successively substituting these values in (5) shows that
𝜆 = 4 is an integer solution and hence that 𝜆 − 4 is a factor of the left side of (5). Dividing
𝜆 − 4 into 𝜆 3 − 8𝜆 2 + 17𝜆 − 4 shows that (5) can be rewritten as

(𝜆 − 4)(𝜆 2 − 4𝜆 + 1) = 0

Thus, the remaining solutions of (5) satisfy the quadratic equation

𝜆 2 − 4𝜆 + 1 = 0

which can be solved by the quadratic formula. Thus, the eigenvalues of𝐴 are

𝜆 = 4, 𝜆 = 2+√3, and 𝜆 = 2−√3

In applications involving
large matrices it is often
not feasible to compute
the characteristic equation
directly, so other methods
must be used to find eigen-
values. We will consider
such methods in Chapter 9.

EXAMPLE 4 | Eigenvalues of an Upper Triangular Matrix

Find the eigenvalues of the upper triangular matrix

𝐴 =
⎡⎢⎢⎢
⎣

a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

⎤⎥⎥⎥
⎦

Solution Recalling that the determinant of a triangular matrix is the product of the entries
on the main diagonal (Theorem 2.1.2), we obtain

det(𝜆𝐼 − 𝐴) = det
⎡⎢⎢⎢
⎣

𝜆 − a11 −a12 −a13 −a14
0 𝜆 − a22 −a23 −a24
0 0 𝜆 − a33 −a34
0 0 0 𝜆 − a44

⎤⎥⎥⎥
⎦

= (𝜆 − a11)(𝜆 − a22)(𝜆 − a33)(𝜆 − a44)

Thus, the characteristic equation is

(𝜆 − a11)(𝜆 − a22)(𝜆 − a33)(𝜆 − a44) = 0

and the eigenvalues are

𝜆 = a11, 𝜆 = a22, 𝜆 = a33, 𝜆 = a44
which are precisely the diagonal entries of𝐴.

The following general theorem should be evident from the computations in the pre-

Had Theorem 5.1.2 been
available earlier, we could
have anticipated the result
obtained in Example 2.

ceding example.

Theorem 5.1.2

If 𝐴 is an n × n triangular matrix (upper triangular, lower triangular, or diagonal),
then the eigenvalues of 𝐴 are the entries on the main diagonal of 𝐴.
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EXAMPLE 5 | Eigenvalues of a Lower Triangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1
2 0 0

−1 2
3 0

5 −8 − 1
4

⎤
⎥
⎥
⎥
⎦

are 𝜆 = 1
2 , 𝜆 =

2
3 , and 𝜆 = − 1

4 .

The following theorem gives some alternative ways of describing eigenvalues.

Theorem 5.1.3

If 𝐴 is an n × nmatrix, the following statements are equivalent.
(a) 𝜆 is an eigenvalue of 𝐴.
(b) 𝜆 is a solution of the characteristic equation det(𝜆𝐼 − 𝐴) = 0.
(c) The system of equations (𝜆𝐼 − 𝐴) x = 0 has nontrivial solutions.
(d) There is a nonzero vector x such that 𝐴x = 𝜆x.

Finding Eigenvectors and Bases for Eigenspaces
Now thatwe knowhow to find the eigenvalues of amatrix, wewill consider the problemof
finding the corresponding eigenvectors. By definition, the eigenvectors of 𝐴 correspond-
ing to an eigenvalue 𝜆 are the nonzero vectors that satisfy

(𝜆𝐼 − 𝐴) x = 0

Thus, we can find the eigenvectors of 𝐴 corresponding to 𝜆 by finding the nonzero vec-

Notice that x= 0 is in every
eigenspace but is not an
eigenvector (see Defini-
tion 1). In the exercises we
will ask you to show that
this is the only vector that
distinct eigenspaces have in
common.

tors in the solution space of this linear system. This solution space, which is called the
eigenspace of 𝐴 corresponding to 𝜆, can also be viewed as:

1. the null space of the matrix 𝜆𝐼 − 𝐴
2. the kernel of the matrix operator 𝑇𝜆𝐼−𝐴∶𝑅n → 𝑅n
3. the set of vectors for which 𝐴x = 𝜆x

EXAMPLE 6 | Bases for Eigenspaces

Find bases for the eigenspaces of the matrix

𝐴 = [−1 3
2 0]

Solution The characteristic equation of𝐴 is
|||
𝜆 + 1 −3
−2 𝜆

||| = 𝜆(𝜆 + 1) − 6 = (𝜆 − 2)(𝜆 + 3) = 0

so the eigenvalues of𝐴 are 𝜆 = 2 and 𝜆 = −3. Thus, there are two eigenspaces of𝐴, one for
each eigenvalue. By definition,

x = [x 1x 2
]
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is an eigenvector of𝐴 corresponding to an eigenvalue 𝜆 if and only if (𝜆𝐼 − 𝐴)x= 0, that is,

[𝜆 + 1 −3
−2 𝜆] [

x 1
x 2
] = [00]

In the case where 𝜆 = 2 this equation becomes

[ 3 −3
−2 2] [

x 1
x 2
] = [00]

whose general solution is
x 1 = t, x 2 = t

(verify). Since this can be written in matrix form as

[x 1x 2
] = [tt] = t [11]

it follows that
[11]

is a basis for the eigenspace corresponding to 𝜆 = 2. We leave it for you to follow the pattern
of these computations and show that

[−
3
2
1
]

is a basis for the eigenspace corresponding to 𝜆 = −3.

Figure 5.1.3 illustrates the geometric effect of multiplication by the matrix 𝐴 in
Example 6. The eigenspace corresponding to 𝜆 = 2 is the line 𝐿1 through the origin and
the point (1, 1), and the eigenspace corresponding to 𝜆 = 3 is the line 𝐿2 through the ori-
gin and the point (− 3

2 , 1). As indicated in the figure,multiplication by𝐴maps each vector
in 𝐿1 back into 𝐿1, scaling it by a factor of 2, and it maps each vector in 𝐿2 back into 𝐿2,
scaling it by a factor of −3.

L1
L2

Multiplication
by λ = –3

Multiplication
by λ = 2

(1, 1)

(2, 2)

2(   , –3)
9

2(–   , 1)3

x

y

FIGURE 5.1.3

Historical Note

Methods of linear algebra are used in the emerging field of
computerized face recognition. Researchers are working with
the idea that every human face in a racial group is a combina-
tion of a few dozen primary shapes. For example, by analyzing
three-dimensional scans ofmany faces, researchers at Rockefeller
University have produced both an average head shape in the Cau-
casian group—dubbed themeanhead (top row left in the figure
to the left)—and a set of standardized variations from that shape,
called eigenheads (15 of which are shown in the picture). These
are so named because they are eigenvectors of a certain matrix
that stores digitized facial information. Face shapes are repre-
sented mathematically as linear combinations of the eigenheads.

[Image: © Dr. Joseph J. Atick, adapted from Scientific American]
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EXAMPLE 7 | Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

𝐴 = [
0 0 −2
1 2 1
1 0 3

]

Solution The characteristic equation of 𝐴 is 𝜆 3 − 5𝜆 2 + 8𝜆 − 4 = 0, or in factored form,
(𝜆 − 1)(𝜆 − 2)2 = 0 (verify). Thus, the distinct eigenvalues of 𝐴 are 𝜆 = 1 and 𝜆 = 2, so
there are two eigenspaces of𝐴.

By definition,

x = [
x 1
x 2
x 3
]

is an eigenvector of 𝐴 corresponding to 𝜆 if and only if x is a nontrivial solution of
(𝜆𝐼 − 𝐴)x= 0, or in matrix form,

[
𝜆 0 2

−1 𝜆 − 2 −1
−1 0 𝜆 − 3

] [
x 1
x 2
x 3
] = [

0
0
0
] (6)

In the case where 𝜆 = 2, Formula (6) becomes

[
2 0 2

−1 0 −1
−1 0 −1

] [
x 1
x 2
x 3
] = [

0
0
0
]

Solving this system using Gaussian elimination yields (verify)
x 1 = −s, x 2 = t, x 3 = s

Thus, the eigenvectors of𝐴 corresponding to 𝜆 = 2 are the nonzero vectors of the form

x = [
−s
t
s
] = [

−s
0
s
] + [

0
t
0
] = s [

−1
0
1
] + t [

0
1
0
]

Since

[
−1
0
1
] and [

0
1
0
]

are linearly independent (why?), these vectors form a basis for the eigenspace corresponding
to 𝜆 = 2.

If 𝜆 = 1, then (6) becomes

[
1 0 2

−1 −1 −1
−1 0 −2

] [
x 1
x 2
x 3
] = [

0
0
0
]

Solving this system yields (verify)
x 1 = −2s, x 2 = s, x 3 = s

Thus, the eigenvectors corresponding to 𝜆 = 1 are the nonzero vectors of the form

[
−2s

s
s
] = s [

−2
1
1
] so that [

−2
1
1
]

is a basis for the eigenspace corresponding to 𝜆 = 1.

Eigenvalues and Invertibility
The next theorem establishes a relationship between the eigenvalues and the invertibility
of a matrix.

Theorem 5.1.4

A square matrix 𝐴 is invertible if and only if 𝜆 = 0 is not an eigenvalue of 𝐴.
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Proof Assume that 𝐴 is an n × n matrix and observe first that 𝜆 = 0 is a solution of the
characteristic equation

𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn = 0
if and only if the constant term cn is zero. Thus, it suffices to prove that 𝐴 is invertible if
and only if cn ≠ 0. But

det(𝜆𝐼 − 𝐴) = 𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn
or, on setting 𝜆 = 0,

det(−𝐴) = cn or (−1)ndet(𝐴) = cn
It follows from the last equation that det(𝐴) = 0 if and only if cn = 0, and this in turn
implies that 𝐴 is invertible if and only if cn ≠ 0.

EXAMPLE 8 | Eigenvalues and Invertibility

The matrix𝐴 in Example 7 is invertible since it has eigenvalues 𝜆 = 1 and 𝜆 = 2, neither of
which is zero. We leave it for you to check this conclusion by showing that det(𝐴) ≠ 0.

More on the Equivalence Theorem
As our final result in this section, we will use Theorem 5.1.4 to add one additional part to
Theorem 4.9.8.

Theorem 5.1.5

Equivalent Statements
If𝐴 is ann × nmatrix inwhich there are noduplicate rows andnoduplicate columns,
then the following statements are equivalent.

(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
( f ) 𝐴x = b has exactly one solution for every n × 1 matrix b.
(g) det(𝐴) ≠ 0.
(h) The column vectors of 𝐴 are linearly independent.
(i) The row vectors of 𝐴 are linearly independent.
( j) The column vectors of 𝐴 span 𝑅n.
(k) The row vectors of 𝐴 span 𝑅n.
(l) The column vectors of 𝐴 form a basis for 𝑅n.
(m) The row vectors of 𝐴 form a basis for 𝑅n.
(n) 𝐴 has rank n.
(o) 𝐴 has nullity 0.
(p) The orthogonal complement of the null space of 𝐴 is 𝑅n.
(q) The orthogonal complement of the row space of 𝐴 is {0}.
(r) 𝜆 = 0 is not an eigenvalue of 𝐴.
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Exercise Set 5.1

In Exercises 1–4, confirm by multiplication that x is an eigenvector
of𝐴, and find the corresponding eigenvalue.

1. 𝐴 = [1 2
3 2]; x = [ 1

−1] 2. 𝐴 = [5 −1
1 3]; x = [11]

3. 𝐴 = [
4 0 1
2 3 2
1 0 4

]; x = [
1
2
1
]

4. 𝐴 = [
2 −1 −1

−1 2 −1
−1 −1 2

]; x = [
1
1
1
]

In each part of Exercises 5–6, find the characteristic equation, the
eigenvalues, and bases for the eigenspaces of the matrix.

5. a. [1 4
2 3] b. [−2 −7

1 2]

c. [1 0
0 1] d. [1 −2

0 1]

6. a. [2 1
1 2] b. [2 −3

0 2]

c. [2 0
0 2] d. [ 1 2

−2 −1]

In Exercises 7–12, find the characteristic equation, the eigenvalues,
and bases for the eigenspaces of the matrix.

7. [
4 0 1

−2 1 0
−2 0 1

] 8. [
1 0 −2
0 0 0

−2 0 4
]

9. [
6 3 −8
0 −2 0
1 0 −3

] 10. [
0 1 1
1 0 1
1 1 0

]

11. [
4 0 −1
0 3 0
1 0 2

] 12. [
1 −3 3
3 −5 3
6 −6 4

]

In Exercises 13–14, find the characteristic equation of the matrix by
inspection.

13. [
3 0 0

−2 7 0
4 8 1

] 14.
⎡⎢⎢⎢
⎣

9 −8 6 3
0 −1 0 0
0 0 3 0
0 0 0 7

⎤⎥⎥⎥
⎦

In Exercises 15–16, find the eigenvalues and a basis for each
eigenspace of the linear operator defined by the stated formula.
[Suggestion:Work with the standard matrix for the operator.]
15. 𝑇(x , y) = (x+ 4y, 2x+ 3y)
16. 𝑇(x , y, z) = (2x− y− z, x− z, −x+ y+ 2z)
17. (Calculus required) Let 𝐷2∶ 𝐶∞(−∞,∞) → 𝐶∞(−∞,∞)

be the operator that maps a function into its second
derivative.
a. Show that𝐷2 is linear.
b. Show that if 𝜔 is a positive constant, then sin√𝜔x and

cos√𝜔x are eigenvectors of𝐷2, and find their correspond-
ing eigenvalues.

18. (Calculus required) Let𝐷2∶ 𝐶∞ → 𝐶∞ be the linear opera-
tor in Exercise 17. Show that if 𝜔 is a positive constant, then
sinh√𝜔x and cosh√𝜔x are eigenvectors of𝐷2, and find their
corresponding eigenvalues.

In each part of Exercises 19–20, find the eigenvalues and the corre-
sponding eigenspaces of the stated matrix operator on 𝑅2. Use geo-
metric reasoning to find the answers. No computations are needed.

19. a. Reflection about the line y = x.
b. Orthogonal projection onto the x-axis.
c. Rotation about the origin through a positive angle of 90∘.
d. Contraction with factor k (0 ≤ k < 1).
e. Shear in the x-direction by a factor k (k ≠ 0).

20. a. Reflection about the y-axis.
b. Rotation about the origin through a positive angle of 180∘.
c. Dilation with factor k (k > 1).
d. Expansion in the y-direction with factor k (k > 1).
e. Shear in the y-direction by a factor k (k ≠ 0).

In each part of Exercises 21–22, find the eigenvalues and the corre-
sponding eigenspaces of the stated matrix operator on 𝑅3. Use geo-
metric reasoning to find the answers. No computations are needed.

21. a. Reflection about the xy-plane.
b. Orthogonal projection onto the xz-plane.
c. Counterclockwise rotation about the positive x-axis
through an angle of 90∘.

d. Contraction with factor k (0 ≤ k < 1).
22. a. Reflection about the xz-plane.

b. Orthogonal projection onto the yz-plane.
c. Counterclockwise rotation about the positive y-axis
through an angle of 180∘.

d. Dilation with factor k (k > 1).
23. Let𝐴 be a 2 × 2matrix, and call a line through the origin of𝑅2

invariant under 𝐴 if 𝐴x lies on the line when x does. Find
equations for all lines in 𝑅2, if any, that are invariant under
the given matrix.

a. 𝐴 = [4 −1
2 1] b. 𝐴 = [ 0 1

−1 0]

24. Find det(𝐴) given that 𝐴 has p(𝜆) as its characteristic poly-
nomial.

a. p(𝜆) = 𝜆 3 − 2𝜆 2 + 𝜆 + 5

b. p(𝜆) = 𝜆 4 − 𝜆 3 + 7

[Hint: See the proof of Theorem 5.1.4.]

25. Suppose that the characteristic polynomial of some matrix 𝐴
is found to be p(𝜆) = (𝜆 − 1)(𝜆 − 3)2(𝜆 − 4)3. In each part,
answer the question and explain your reasoning.

a. What is the size of𝐴?
b. Is𝐴 invertible?

c. How many eigenspaces does𝐴 have?
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26. The eigenvectors that we have been studying are sometimes
called right eigenvectors to distinguish them from left eigen-
vectors, which are n × 1 column matrices x that satisfy the
equation x𝑇𝐴 = 𝜇x𝑇 for some scalar 𝜇. For a given matrix𝐴,
how are the right eigenvectors and their corresponding eigen-
values related to the left eigenvectors and their corresponding
eigenvalues?

27. Find a 3 × 3 matrix 𝐴 that has eigenvalues 1, −1, and 0, and
for which

[
1

−1
1
] , [

1
1
0
] , [

1
−1
0
]

are their corresponding eigenvectors.

Working with Proofs
28. Prove that the characteristic equation of a 2 × 2 matrix 𝐴 can

be expressed as 𝜆 2 − tr(𝐴)𝜆 + det(𝐴) = 0, where tr(𝐴) is
the trace of𝐴.

29. Use the result in Exercise 28 to show that if

𝐴 = [a b
c d]

then the solutions of the characteristic equation of𝐴 are

𝜆 = 1
2 [(a+ d) ± √(a− d)2 + 4bc ]

Use this result to show that𝐴 has

a. two distinct real eigenvalues if (a− d)2 + 4bc > 0.

b. two repeated real eigenvalues if (a− d)2 + 4bc = 0.

c. complex conjugate eigenvalues if (a− d)2 + 4bc < 0.

30. Let𝐴 be the matrix in Exercise 29. Show that if b ≠ 0, then

x1 = [ −b
a− 𝜆1

] and x2 = [ −b
a− 𝜆2

]

are eigenvectors of 𝐴 that correspond, respectively, to the
eigenvalues

𝜆1 = 1
2 [(a+ d) + √(a− d)2 + 4bc ]

and
𝜆2 = 1

2 [(a+ d) − √(a− d)2 + 4bc ]

31. Use the result of Exercise 28 to prove that if

p(𝜆) = 𝜆 2 + c1𝜆 + c2
is the characteristic polynomial of a 2 × 2 matrix, then

p(𝐴) = 𝐴2 + c1𝐴+ c2𝐼 = 0

(Stated informally,𝐴 satisfies its characteristic equation. This
result is true as well for n × nmatrices.)

32. Prove: If a, b, c, and d are integers such that a+ b = c+ d,
then

𝐴 = [a b
c d]

has integer eigenvalues.

33. Prove: If 𝜆 is an eigenvalue of an invertible matrix𝐴 and x is a
corresponding eigenvector, then 1/𝜆 is an eigenvalue of 𝐴−1

and x is a corresponding eigenvector.

34. Prove: If 𝜆 is an eigenvalue of 𝐴, x is a corresponding eigen-
vector, and s is a scalar, then 𝜆 − s is an eigenvalue of 𝐴− s𝐼
and x is a corresponding eigenvector.

35. Prove: If 𝜆 is an eigenvalue of 𝐴 and x is a corresponding
eigenvector, then s𝜆 is an eigenvalue of s𝐴 for every scalar
s and x is a corresponding eigenvector.

36. Find the eigenvalues and bases for the eigenspaces of

𝐴 = [
−2 2 3
−2 3 2
−4 2 5

]

and then use Exercises 33 and 34 to find the eigenvalues and
bases for the eigenspaces of

a. 𝐴−1 b. 𝐴− 3𝐼 c. 𝐴+ 2𝐼
37. Prove that the characteristic polynomial of an n × nmatrix𝐴

has degree n and that the coefficient of 𝜆n in that polynomial
is 1.

38. a. Prove that if𝐴 is a square matrix, then𝐴 and𝐴𝑇 have the
same eigenvalues. [Hint: Look at the characteristic equa-
tion det(𝜆𝐼 − 𝐴) = 0.]

b. Show that 𝐴 and 𝐴𝑇 need not have the same eigenspaces.
[Hint: Use the result in Exercise 30 to find a 2 × 2 matrix
for which𝐴 and𝐴𝑇 have different eigenspaces.]

39. Prove that the intersection of any two distinct eigenspaces of
a matrix𝐴 is {0}.

True-False Exercises
TF. In parts (a)–(f) determine whether the statement is true or

false, and justify your answer.
a. If 𝐴 is a square matrix and 𝐴x = 𝜆x for some nonzero

scalar 𝜆, then x is an eigenvector of𝐴.
b. If 𝜆 is an eigenvalue of a matrix 𝐴, then the linear system

(𝜆𝐼 − 𝐴)x = 0 has only the trivial solution.

c. If the characteristic polynomial of a matrix𝐴 is

p(𝜆) = 𝜆 2 + 1

then𝐴 is invertible.

d. If 𝜆 is an eigenvalue of a matrix𝐴, then the eigenspace of
𝐴 corresponding to 𝜆 is the set of eigenvectors of𝐴 corre-
sponding to 𝜆.

e. The eigenvalues of a matrix 𝐴 are the same as the eigen-
values of the reduced row echelon form of𝐴.

f . If 0 is an eigenvalue of a matrix𝐴, then the set of columns
of𝐴 is linearly independent.

Working with Technology
T1. For the givenmatrix𝐴, find the characteristic polynomial and

the eigenvalues, and then use themethod of Example 7 to find
bases for the eigenspaces.

𝐴 =
⎡
⎢
⎢
⎢
⎢
⎣

−8 33 38 173 −30
0 0 −1 −4 0
0 0 −5 −25 1
0 0 1 5 0
4 −16 −19 −86 15

⎤
⎥
⎥
⎥
⎥
⎦
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T2. The Cayley–Hamilton Theorem states that every square
matrix satisfies its characteristic equation; that is, if 𝐴 is an
n × nmatrix whose characteristic equation is

𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn = 0

then𝐴n + c1𝐴n−1 + ⋅ ⋅ ⋅ + cn = 0.

a. Verify the Cayley–Hamilton Theorem for the matrix

𝐴 = [
0 1 0
0 0 1
2 −5 4

]

b. Use the result in Exercise 28 to prove the Cayley–Hamilton
Theorem for 2 × 2 matrices.

5.2 Diagonalization
In this sectionwewill be concernedwith the problemof finding a basis forRn that consists
of eigenvectors of an n × nmatrixA. Such bases can be used to study geometric properties
of A and to simplify various numerical computations. These bases are also of physical
significance in a wide variety of applications, some of which will be considered later in
this text.

The Matrix Diagonalization Problem
Products of the form 𝑃−1𝐴𝑃 in which 𝐴 and 𝑃 are n × nmatrices and 𝑃 is invertible will
be our main topic of study in this section. There are various ways to think about such
products, one of which is to view them as transformations of the form

𝐴 → 𝑃−1𝐴𝑃
in which the matrix 𝐴 is mapped into the matrix 𝑃−1𝐴𝑃. These are called similarity
transformations. Such transformations are important because they preservemany prop-
erties of the matrix 𝐴. For example, if we let 𝐵 = 𝑃−1𝐴𝑃, then 𝐴 and 𝐵 have the same
determinant since

det(𝐵) = det(𝑃−1𝐴𝑃) = det(𝑃−1) det(𝐴) det(𝑃)

= 1
det(𝑃) det(𝐴) det(𝑃) = det(𝐴)

In general, any property that is preserved by a similarity transformation is called a
similarity invariant and is said to be invariant under similarity.Table 1 lists themost
important similarity invariants. The proofs of some of these are given as exercises.

TABLE 1 Similarity Invariants

Property Description

Determinant 𝐴 and 𝑃−1𝐴𝑃 have the same determinant.

Invertibility 𝐴 is invertible if and only if 𝑃−1𝐴𝑃 is invertible.

Rank 𝐴 and 𝑃−1𝐴𝑃 have the same rank.

Nullity 𝐴 and 𝑃−1𝐴𝑃 have the same nullity.

Trace 𝐴 and 𝑃−1𝐴𝑃 have the same trace.

Characteristic polynomial 𝐴 and 𝑃−1𝐴𝑃 have the same characteristic polynomial.

Eigenvalues 𝐴 and 𝑃−1𝐴𝑃 have the same eigenvalues.

Eigenspace dimension If 𝜆 is an eigenvalue of𝐴 (and hence of 𝑃−1𝐴𝑃) then the
eigenspace of𝐴 corresponding to 𝜆 and the eigenspace of
𝑃−1𝐴𝑃 corresponding to 𝜆 have the same dimension.

We will find the following terminology useful in our study of similarity transforma-
tions.
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Definition 1

If 𝐴 and 𝐵 are square matrices, then we say that B is similar to A if there is an
invertible matrix 𝑃 such that 𝐵 = 𝑃−1𝐴𝑃.

Note that if 𝐵 is similar to𝐴, then it is also true that𝐴 is similar to 𝐵 since we can express
𝐴 as 𝐴 = 𝑄−1𝐵𝑄 by taking 𝑄 = 𝑃−1. This being the case, we will usually say that 𝐴 and
𝐵 are similar matrices if either is similar to the other.

Because diagonal matrices have such a simple form, it is natural to inquire whether a
given n × nmatrix𝐴 is similar to a matrix of this type. Should this turn out to be the case,
and should we be able to actually find a diagonal matrix 𝐷 that is similar to 𝐴, then we
would be able to ascertain many of the similarity invariant properties of 𝐴 directly from
the diagonal entries of 𝐷. For example, the diagonal entries of 𝐷 will be the eigenvalues
of𝐴 (Theorem 5.1.2), and the product of the diagonal entries of𝐷 will be the determinant
of 𝐴 (Theorem 2.1.2). This leads us to introduce the following terminology.

Definition 2

A square matrix 𝐴 is said to be diagonalizable if it is similar to some diagonal
matrix; that is, if there exists an invertible matrix 𝑃 such that 𝑃−1𝐴𝑃 is diagonal. In
this case the matrix 𝑃 is said to diagonalize 𝐴.

The following theorem and the ideas used in its proof will provide us with a roadmap
for devising a technique for determining whether a matrix is diagonalizable and, if so, for
finding a matrix 𝑃 that will perform the diagonalization.

Theorem 5.2.1

If 𝐴 is an n × nmatrix, the following statements are equivalent.
(a) 𝐴 is diagonalizable.
(b) 𝐴 has n linearly independent eigenvectors.

Proof (a) ⇒ (b) Since 𝐴 is assumed to be diagonalizable, it follows that there exist an

Part (b) of Theorem 5.2.1
is equivalent to saying that
there is a basis for Rn con-
sisting of eigenvectors of A.
Why?

invertible matrix 𝑃 and a diagonal matrix 𝐷 such that 𝑃−1𝐴𝑃 = 𝐷 or, equivalently,
𝐴𝑃 = 𝑃𝐷 (1)

If we denote the column vectors of 𝑃 by p1,p2, . . . ,pn, and if we assume that the diagonal
entries of 𝐷 are 𝜆1, 𝜆2, . . . , 𝜆n, then by Formula (6) of Section 1.3 the left side of (1) can be
expressed as

𝐴𝑃 = 𝐴[p1 p2 ⋅ ⋅ ⋅ pn] = [𝐴p1 𝐴p2 ⋅ ⋅ ⋅ 𝐴pn]
and, as noted in the comment following Example 1 of Section 1.7, the right side of (1) can
be expressed as

𝑃𝐷 = [𝜆1p1 𝜆2p2 ⋅ ⋅ ⋅ 𝜆npn]
Thus, it follows from (1) that

𝐴p1 = 𝜆1p1, 𝐴p2 = 𝜆2p2, . . . , 𝐴pn = 𝜆npn (2)
Since 𝑃 is invertible, we know from Theorem 5.1.5 that its column vectors p1,p2, . . . ,pn
are linearly independent (and hence nonzero). Thus, it follows from (2) that these n col-
umn vectors are eigenvectors of 𝐴.

Proof (b)⇒ (a) Assume that 𝐴 has n linearly independent eigenvectors, p1,p2, . . . ,pn,
and that 𝜆1, 𝜆2, . . . , 𝜆n are the corresponding eigenvalues. If we let

𝑃 = [p1 p2 ⋅ ⋅ ⋅ pn]
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and if we let 𝐷 be the diagonal matrix that has 𝜆1, 𝜆2, . . . , 𝜆n as its successive diagonal
entries, then

𝐴𝑃 = 𝐴[p1 p2 ⋅ ⋅ ⋅ pn] = [𝐴p1 𝐴p2 ⋅ ⋅ ⋅ 𝐴pn]
= [𝜆1p1 𝜆2p2 ⋅ ⋅ ⋅ 𝜆npn] = 𝑃𝐷

Since the column vectors of 𝑃 are linearly independent, it follows fromTheorem 5.1.5 that
𝑃 is invertible, so that this last equation can be rewritten as 𝑃−1𝐴𝑃 = 𝐷, which shows that
𝐴 is diagonalizable.

Whereas Theorem 5.2.1 tells us that we need to find n linearly independent eigen-
vectors to diagonalize a matrix, the following theorem tells us where such vectors might
be found. Part (a) is proved at the end of this section, and part (b) is an immediate conse-
quence of part (a) and Theorem 5.2.1 (why?).

Theorem 5.2.2

(a) If 𝜆1, 𝜆2, . . . , 𝜆k are distinct eigenvalues of a matrix 𝐴, and if v1, v2, . . . , vk are
corresponding eigenvectors, then {v1, v2, . . . , vk} is a linearly independent set.

(b) An n × nmatrix with n distinct eigenvalues is diagonalizable.

Remark Part (a) of Theorem 5.2.2 is a special case of amore general result: Specifically, if
𝜆1, 𝜆2, . . . , 𝜆k are distinct eigenvalues, and if 𝑆1, 𝑆2, . . . , 𝑆k are corresponding sets of linearly
independent eigenvectors, then the union of these sets is linearly independent.

Procedure for Diagonalizing a Matrix
Theorem5.2.1 guarantees that ann × nmatrix𝐴withn linearly independent eigenvectors
is diagonalizable, and the proof of that theorem together with Theorem 5.2.2 suggests the
following procedure for diagonalizing 𝐴.

A Procedure for Diagonalizing an n × nMatrix
Step 1. Determine first whether the matrix is actually diagonalizable by searching for n lin-

early independent eigenvectors. One way to do this is to find a basis for each
eigenspace and count the total number of vectors obtained. If there is a total of n
vectors, then the matrix is diagonalizable, and if the total is less than n, then it is not.

Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix
𝑃 = [p1 p2 ⋅ ⋅ ⋅ pn] whose column vectors are the n basis vectors you obtained
in Step 1.

Step 3. 𝑃−1𝐴𝑃 will be a diagonal matrix whose successive diagonal entries are the eigen-
values 𝜆1, 𝜆2, . . . , 𝜆n that correspond to the successive columns of 𝑃.

EXAMPLE 1 | Finding aMatrix P That Diagonalizes aMatrix A

Find a matrix 𝑃 that diagonalizes

𝐴 = [
0 0 −2
1 2 1
1 0 3

]

Solution In Example 7 of the preceding section we found the characteristic equation of𝐴
to be

(𝜆 − 1)(𝜆 − 2)2 = 0
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and we found the following bases for the eigenspaces:

𝜆 = 2∶ p1 = [
−1
0
1
], p2 = [

0
1
0
]; 𝜆 = 1∶ p3 = [

−2
1
1
]

There are three basis vectors in total, so the matrix

𝑃 = [
−1 0 −2
0 1 1
1 0 1

]

diagonalizes𝐴. As a check, you should verify that

𝑃−1𝐴𝑃 = [
1 0 2
1 1 1

−1 0 −1
] [
0 0 −2
1 2 1
1 0 3

] [
−1 0 −2
0 1 1
1 0 1

] = [
2 0 0
0 2 0
0 0 1

]

In general, there is no preferred order for the columns of 𝑃. Since the ith diagonal
entry of 𝑃−1𝐴𝑃 is an eigenvalue for the ith column vector of 𝑃, changing the order of the
columns of 𝑃 just changes the order of the eigenvalues on the diagonal of 𝑃−1𝐴𝑃. Thus,
had we written

𝑃 = [
−1 −2 0
0 1 1
1 1 0

]

in the preceding example, we would have obtained

𝑃−1𝐴𝑃 = [
2 0 0
0 1 0
0 0 2

]

EXAMPLE 2 | AMatrix That Is Not Diagonalizable

Show that the following matrix is not diagonalizable:

𝐴 = [
1 0 0
1 2 0

−3 5 2
]

Solution The characteristic polynomial of𝐴 is

det(𝜆𝐼 − 𝐴) =
|
|
|
|

𝜆 − 1 0 0
−1 𝜆 − 2 0
3 −5 𝜆 − 2

|
|
|
|
= (𝜆 − 1)(𝜆 − 2)2

so the characteristic equation is
(𝜆 − 1)(𝜆 − 2)2 = 0

and the distinct eigenvalues of𝐴 are 𝜆 = 1 and 𝜆 = 2. We leave it for you to show that bases
for the eigenspaces are

𝜆 = 1∶ p1 =
⎡
⎢
⎢
⎢
⎣

1
8

− 1
8
1

⎤
⎥
⎥
⎥
⎦

; 𝜆 = 2∶ p2 = [
0
0
1
]

Since𝐴 is a 3 × 3matrix and there are only two basis vectors in total,𝐴 is not diagonalizable.

Alternative Solution If you are concerned only in determining whether a matrix is diag-
onalizable and not with actually finding a diagonalizing matrix 𝑃, then it is not necessary
to compute bases for the eigenspaces—it suffices to find the dimensions of the eigenspaces.
For this example, the eigenspace corresponding to 𝜆 = 1 is the solution space of the system

[
0 0 0

−1 −1 0
3 −5 −1

] [
x 1
x 2
x 3
] = [

0
0
0
]

Since the coefficient matrix has rank 2 (verify), the nullity of this matrix is 1 by Theorem
4.9.2, and hence the eigenspace corresponding to 𝜆 = 1 is one-dimensional.
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The eigenspace corresponding to 𝜆 = 2 is the solution space of the system

[
1 0 0

−1 0 0
3 −5 0

] [
x 1
x 2
x 3
] = [

0
0
0
]

This coefficientmatrix also has rank 2 and nullity 1 (verify), so the eigenspace corresponding
to 𝜆 = 2 is also one-dimensional. Since the eigenspaces produce a total of two basis vectors,
and since three are needed, the matrix𝐴 is not diagonalizable.

EXAMPLE 3 | Recognizing Diagonalizability

We saw in Example 3 of the preceding section that

𝐴 = [
0 1 0
0 0 1
4 −17 8

]

has three distinct eigenvalues: 𝜆 = 4, 𝜆 = 2+√3, and 𝜆 = 2−√3. Therefore, 𝐴 is diago-
nalizable and

𝑃−1𝐴𝑃 = [
4 0 0
0 2+√3 0
0 0 2−√3

]

for some invertible matrix 𝑃. If needed, the matrix 𝑃 can be found using the method shown
in Example 1 of this section.

EXAMPLE 4 | Diagonalizability of Triangular Matrices

From Theorem 5.1.2, the eigenvalues of a triangular matrix are the entries on its main diag-
onal. Thus, a triangular matrix with distinct entries on the main diagonal is diagonalizable.
For example,

𝐴 =
⎡⎢⎢⎢
⎣

−1 2 4 0
0 3 1 7
0 0 5 8
0 0 0 −2

⎤⎥⎥⎥
⎦

is a diagonalizable matrix with eigenvalues 𝜆1 = −1, 𝜆2 = 3, 𝜆3 = 5, 𝜆4 = −2.

Eigenvalues of Powers of a Matrix
Since there are many applications in which it is necessary to compute high powers of a
square matrix 𝐴, we will now turn our attention to that important problem. As we will
see, the most efficient way to compute 𝐴k, particularly for large values of k, is to first
diagonalize 𝐴. But because diagonalizing a matrix 𝐴 involves finding its eigenvalues and
eigenvectors, we will need to know how these quantities are related to those of 𝐴k. As an
illustration, suppose that 𝜆 is an eigenvalue of 𝐴 and x is a corresponding eigenvector.
Then

𝐴2x = 𝐴(𝐴x) = 𝐴(𝜆x) = 𝜆(𝐴x) = 𝜆(𝜆x) = 𝜆2x
which shows not only that 𝜆2 is a eigenvalue of 𝐴2 but that x is a corresponding
eigenvector. In general, we have the following result.

Note that diagonalizability
is not a requirement in
Theorem 5.2.3.

Theorem 5.2.3

If k is a positive integer, 𝜆 is an eigenvalue of a matrix 𝐴, and x is a corresponding
eigenvector, then 𝜆k is an eigenvalue of 𝐴k and x is a corresponding eigenvector.
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EXAMPLE 5 | Eigenvalues and Eigenvectors of Matrix Powers

In Example 2 we found the eigenvalues and corresponding eigenvectors of the matrix

𝐴 = [
1 0 0
1 2 0

−3 5 2
]

Do the same for𝐴7.

Solution We know from Example 2 that the eigenvalues of𝐴 are 𝜆 = 1 and 𝜆 = 2, so the
eigenvalues of𝐴7 are 𝜆 = 17 = 1 and 𝜆 = 27 = 128. The eigenvectors p1 and p2 obtained in
Example 1 corresponding to the eigenvalues 𝜆 = 1 and 𝜆 = 2 of𝐴 are also the eigenvectors
corresponding to the eigenvalues 𝜆 = 1 and 𝜆 = 128 of𝐴7.

Computing Powers of a Matrix
The problem of computing powers of a matrix is greatly simplified when the matrix is
diagonalizable. To see why this is so, suppose that𝐴 is a diagonalizable n × nmatrix, that
𝑃 diagonalizes 𝐴, and that

𝑃−1𝐴𝑃 =
⎡⎢⎢⎢⎢
⎣

𝜆1 0 ⋅ ⋅ ⋅ 0
0 𝜆2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜆n

⎤⎥⎥⎥⎥
⎦

= 𝐷

Squaring both sides of this equation yields

(𝑃−1𝐴𝑃)2 =
⎡⎢⎢⎢⎢
⎣

𝜆21 0 ⋅ ⋅ ⋅ 0
0 𝜆22 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜆2n

⎤⎥⎥⎥⎥
⎦

= 𝐷2

We can rewrite the left side of this equation as

(𝑃−1𝐴𝑃)2 = 𝑃−1𝐴𝑃𝑃−1𝐴𝑃 = 𝑃−1𝐴𝐼𝐴𝑃 = 𝑃−1𝐴2𝑃

from which we obtain the relationship 𝑃−1𝐴2𝑃 = 𝐷2. More generally, if k is a positive
integer, then a similar computation will show that

𝑃−1𝐴k𝑃 = 𝐷k =
⎡
⎢
⎢
⎢
⎢
⎣

𝜆k1 0 ⋅ ⋅ ⋅ 0
0 𝜆k2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜆kn

⎤
⎥
⎥
⎥
⎥
⎦

which we can rewrite asFormula (3) reveals that
raising a diagonalizable
matrix A to a positive inte-
ger power has the effect of
raising its eigenvalues to
that power.

𝐴k = 𝑃𝐷k𝑃−1 = 𝑃
⎡
⎢
⎢
⎢
⎢
⎣

𝜆k1 0 ⋅ ⋅ ⋅ 0
0 𝜆k2 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜆kn

⎤
⎥
⎥
⎥
⎥
⎦

𝑃−1 (3)
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EXAMPLE 6 | Powers of a Matrix

Use (3) to find𝐴13, where

𝐴 = [
0 0 −2
1 2 1
1 0 3

]

Solution We showed in Example 1 that the matrix𝐴 is diagonalized by

𝑃 = [
−1 0 −2
0 1 1
1 0 1

]

and that

𝐷 = 𝑃−1𝐴𝑃 = [
2 0 0
0 2 0
0 0 1

]

Thus, it follows from (3) that

𝐴13 = 𝑃𝐷13𝑃−1 = [
−1 0 −2
0 1 1
1 0 1

][
213 0 0
0 213 0
0 0 113

][
1 0 2
1 1 1

−1 0 −1
]

= [
−8190 0 −16382
8191 8192 8191
8191 0 16383

]

(4)

Remark With themethod in the preceding example, most of the work is in diagonalizing
𝐴. Once that work is done, it can be used to compute any power of 𝐴. Thus, to compute
𝐴1000 we need only change the exponents from 13 to 1000 in (4).

Geometric and Algebraic Multiplicity
Theorem 5.2.2(b) does not completely settle the diagonalizability question since it only
guarantees that a square matrix with n distinct eigenvalues is diagonalizable; it does not
preclude the possibility that there may exist diagonalizable matrices with fewer than n
distinct eigenvalues. The following example shows that this is indeed the case.

EXAMPLE 7 | The Converse of Theorem 5.2.2(b) Is False

Consider the matrices

𝐼 = [
1 0 0
0 1 0
0 0 1

] and 𝐽 = [
1 1 0
0 1 1
0 0 1

]
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It follows from Theorem 5.1.2 that both of these matrices have only one distinct eigenvalue,
namely 𝜆 = 1, and hence only one eigenspace. We leave it as an exercise for you to solve the
characteristic equations

(𝜆𝐼 − 𝐼)x = 0 and (𝜆𝐼 − 𝐽)x = 0

with 𝜆 = 1 and show that for 𝐼 the eigenspace is three-dimensional (all of 𝑅3) and for 𝐽 it is
one-dimensional, consisting of all scalar multiples of

x = [
1
0
0
]

This shows that the converse of Theorem 5.2.2(b) is false, since we have produced two 3 × 3
matrices with fewer than three distinct eigenvalues, one of which is diagonalizable and the
other of which is not.

A full excursion into the study of diagonalizability is left for more advanced courses,
but wewill touch on one theorem that is important for a fuller understanding of this topic.
It can be proved that if 𝜆0 is an eigenvalue of 𝐴, then the dimension of the eigenspace
corresponding to 𝜆0 cannot exceed the number of times that 𝜆 − 𝜆0 appears as a factor of
the characteristic polynomial of 𝐴. For example, in Examples 1 and 2 the characteristic
polynomial is

(𝜆 − 1)(𝜆 − 2)2

Thus, the eigenspace corresponding to 𝜆 = 1 is at most (hence exactly) one-dimensional,
and the eigenspace corresponding to 𝜆 = 2 is at most two-dimensional. In Example 1
the eigenspace corresponding to 𝜆 = 2 actually had dimension 2, resulting in diagonal-
izability, but in Example 2 the eigenspace corresponding to 𝜆 = 2 had only dimension 1,
resulting in nondiagonalizability.

There is some terminology that is related to these ideas. If 𝜆0 is an eigenvalue of an
n × n matrix 𝐴, then the dimension of the eigenspace corresponding to 𝜆0 is called the
geometric multiplicity of 𝜆0, and the number of times that 𝜆 − 𝜆0 appears as a factor in
the characteristic polynomial of𝐴 is called thealgebraicmultiplicity of 𝜆0. The following
theorem, which we state without proof, summarizes the preceding discussion.

Theorem 5.2.4

Geometric and Algebraic Multiplicity
If 𝐴 is a square matrix, then:

(a) For every eigenvalue of𝐴, the geometric multiplicity is less than or equal to the
algebraic multiplicity.

(b) A is diagonalizable if and only if its characteristic polynomial can be expressed
as a product of linear factors, and the geometricmultiplicity of every eigenvalue
is equal to the algebraic multiplicity.

We will complete this section with an optional proof of Theorem 5.2.2(a).

OPTIONAL: Proof of Theorem 5.2.2(a) Let v1, v2, . . . , vk be eigenvectors of𝐴
corresponding to distinct eigenvalues 𝜆1, 𝜆2, . . . , 𝜆k. We will assume that v1, v2, . . . , vk are
linearly dependent and obtain a contradiction. We can then conclude that v1, v2, . . . , vk
are linearly independent.

Since an eigenvector is nonzero by definition, {v1} is linearly independent. Let r be
the largest integer such that {v1, v2, . . . , vr} is linearly independent. Since we are assuming
that {v1, v2, . . . , vk} is linearly dependent, r satisfies 1 ≤ r < k. Moreover, by the definition
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of r, the set {v1, v2, . . . , vr+1} is linearly dependent. Thus, there are scalars c1, c2, . . . , cr+1,
not all zero, such that

c1v1 + c2v2 + ⋅ ⋅ ⋅ + cr+1vr+1 = 0 (5)
Multiplying both sides of (5) by 𝐴 and using the fact that

𝐴v1 = 𝜆1v1, 𝐴v2 = 𝜆2v2, . . . , 𝐴vr+1 = 𝜆r+1vr+1
we obtain

c1𝜆1v1 + c2𝜆2v2 + ⋅ ⋅ ⋅ + cr+1𝜆r+1vr+1 = 0 (6)
If we now multiply both sides of (5) by 𝜆r+1 and subtract the resulting equation from (6)
we obtain

c1(𝜆1 − 𝜆r+1)v1 + c2(𝜆2 − 𝜆r+1)v2 + ⋅ ⋅ ⋅ + cr(𝜆r − 𝜆r+1)vr = 0
Since {v1, v2, . . . , vr} is a linearly independent set, this equation implies that

c1(𝜆1 − 𝜆r+1) = c2(𝜆2 − 𝜆r+1) = ⋅ ⋅ ⋅ = cr(𝜆r − 𝜆r+1) = 0
and since 𝜆1, 𝜆2, . . . , 𝜆r+1 are assumed to be distinct, it follows that

c1 = c2 = ⋅ ⋅ ⋅ = cr = 0 (7)
Substituting these values in (5) yields

cr+1vr+1 = 0
Since the eigenvector vr+1 is nonzero, it follows that

cr+1 = 0 (8)
But equations (7) and (8) contradict the fact that c1, c2, . . . , cr+1 are not all zero, so the
proof is complete.

Exercise Set 5.2

In Exercises 1–4, show that𝐴 and 𝐵 are not similar matrices.

1. 𝐴 = [1 1
3 2], 𝐵 = [1 0

3 −2]

2. 𝐴 = [4 −1
2 4], 𝐵 = [4 1

2 4]

3. 𝐴 = [
1 2 3
0 1 2
0 0 1

], 𝐵 = [
1 2 0
1
2 1 0
0 0 1

]

4. 𝐴 = [
1 0 1
2 0 2
3 0 3

], 𝐵 = [
1 1 0
2 2 0
0 1 1

]

InExercises 5–8, findamatrix𝑃 that diagonalizes𝐴, and check your
work by computing 𝑃−1𝐴𝑃.

5. 𝐴 = [1 0
6 −1] 6. 𝐴 = [−14 12

−20 17]

7. 𝐴 = [
2 0 −2
0 3 0
0 0 3

] 8. 𝐴 = [
1 0 0
0 1 1
0 1 1

]

9. Let

𝐴 = [
4 0 1
2 3 2
1 0 4

]

a. Find the eigenvalues of𝐴.
b. For each eigenvalue 𝜆, find the rank of the matrix 𝜆𝐼 −𝐴.
c. Is𝐴 diagonalizable? Justify your conclusion.

10. Follow the directions in Exercise 9 for the matrix

[
3 0 0
0 2 0
0 1 2

]

In Exercises 11–14, find the geometric and algebraic multiplicity of
each eigenvalue of the matrix 𝐴, and determine whether 𝐴 is diag-
onalizable. If 𝐴 is diagonalizable, then find a matrix 𝑃 that diago-
nalizes𝐴, and find 𝑃−1𝐴𝑃.

11. 𝐴 = [
−1 4 −2
−3 4 0
−3 1 3

] 12. 𝐴 = [
19 −9 −6
25 −11 −9
17 −9 −4

]

13. 𝐴 = [
0 0 0
0 0 0
3 0 1

] 14. 𝐴 = [
5 0 0
1 5 0
0 1 5

]

In each part of Exercises 15–16, the characteristic equation of a
matrix𝐴 is given. Find the size of thematrix and the possible dimen-
sions of its eigenspaces.

15. a. (𝜆 − 1)(𝜆 + 3)(𝜆 − 5) = 0

b. 𝜆 2(𝜆 − 1)(𝜆 − 2)3 = 0

16. a. 𝜆 3(𝜆 2 − 5𝜆 − 6) = 0

b. 𝜆 3 − 3𝜆 2 + 3𝜆 − 1 = 0

In Exercises 17–18, use the method of Example 6 to compute the
matrix𝐴10.

17. 𝐴 = [0 3
2 −1] 18. 𝐴 = [ 1 0

−1 2]
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19. Let

𝐴 = [
−1 7 −1
0 1 0
0 15 −2

] and 𝑃 = [
1 1 1
0 0 1
1 0 5

]

Confirm that 𝑃 diagonalizes𝐴, and then compute𝐴11.
20. Let

𝐴 = [
1 −2 8
0 −1 0
0 0 −1

] and 𝑃 = [
1 −4 1
1 0 0
0 1 0

]

Confirm that 𝑃 diagonalizes𝐴, and then compute each of the
following powers of𝐴.
a. 𝐴1000 b. 𝐴−1000 c. 𝐴2301 d. 𝐴−2301

21. Find𝐴n if n is a positive integer and

𝐴 = [
3 −1 0

−1 2 −1
0 −1 3

]

22. Show that the matrices

𝐴 = [
1 1 1
1 1 1
1 1 1

] and 𝐵 = [
3 0 0
0 0 0
0 0 0

]

are similar.
23. We know from Table 1 that similar matrices have the same

rank. Show that the converse is false by showing that the
matrices

𝐴 = [1 0
0 0] and 𝐵 = [0 1

0 0]

have the same rank but are not similar. [Suggestion: If they
were similar, then there would be an invertible 2 × 2 matrix 𝑃
for which𝐴𝑃 = 𝑃𝐵. Show that there is no such matrix.]

24. We know from Table 1 that similar matrices have the same
eigenvalues. Use the method of Exercise 23 to show that the
converse is false by showing that the matrices

𝐴 = [1 1
0 1] and 𝐵 = [1 0

0 1]

have the same eigenvalues but are not similar.
25. If 𝐴, 𝐵, and 𝐶 are n × n matrices such that 𝐴 is similar to 𝐵

and 𝐵 is similar to 𝐶, do you think that 𝐴must be similar to
𝐶? Justify your answer.

26. a. Is it possible for an n × nmatrix to be similar to itself? Jus-
tify your answer.

b. What can you say about an n × n matrix that is similar to
0n×n? Justify your answer.

c. Is it possible for a nonsingular matrix to be similar to a sin-
gular matrix? Justify your answer.

27. Suppose that the characteristic polynomial of some matrix 𝐴
is found to be p(𝜆) = (𝜆 − 1)(𝜆 − 3)2(𝜆 − 4)3. In each part,
answer the question and explain your reasoning.
a. What can you say about the dimensions of the eigenspaces
of𝐴?

b. What can you say about the dimensions of the eigenspaces
if you know that𝐴 is diagonalizable?

c. If {v1, v2, v3} is a linearly independent set of eigenvectors
of𝐴, all of which correspond to the same eigenvalue of𝐴,
what can you say about that eigenvalue?

28. Let
𝐴 = [a b

c d]

Show that
a. 𝐴 is diagonalizable if (a− d)2 + 4bc > 0.
b. 𝐴 is not diagonalizable if (a− d)2 + 4bc < 0.
[Hint: See Exercise 29 of Section 5.1.]

29. In the case where the matrix 𝐴 in Exercise 28 is diagonal-
izable, find a matrix 𝑃 that diagonalizes 𝐴. [Hint: See Exer-
cise 30 of Section 5.1.]

In Exercises 30–33, find the standard matrix 𝐴 for the given linear
operator, and determine whether that matrix is diagonalizable. If
diagonalizable, find a matrix 𝑃 that diagonalizes𝐴.
30. 𝑇(x 1, x 2) = (2x 1 − x 2, x 1 + x 2)
31. 𝑇(x 1, x 2) = (−x 2,−x 1)
32. 𝑇(x 1, x 2, x 3) = (8x 1 + 3x 2 − 4x 3,−3x 1 + x 2 + 3x 3,

4x 1 + 3x 2)
33. 𝑇(x 1, x 2, x 3) = (3x 1, x 2, x 1 − x 2)

34. If 𝑃 is a fixed n × nmatrix, then the similarity transformation
𝐴 → 𝑃−1𝐴𝑃

can be viewed as an operator 𝑆𝑃(𝐴) = 𝑃−1𝐴𝑃 on the vector
space𝑀nn of n × nmatrices.
a. Show that 𝑆𝑃 is a linear operator.
b. Find the kernel of 𝑆𝑃.
c. Find the rank of 𝑆𝑃.

Working with Proofs

35. Prove that similar matrices have the same rank and nullity.
36. Prove that similar matrices have the same trace.
37. Prove that if 𝐴 is diagonalizable, then so is 𝐴k for every posi-

tive integer k.
38. We know from Table 1 that similar matrices, 𝐴 and 𝐵, have

the same eigenvalues. However, it is not true that those eigen-
values have the same corresponding eigenvectors for the two
matrices. Prove that if 𝐵 = 𝑃−1𝐴𝑃, and v is an eigenvector
of 𝐵 corresponding to the eigenvalue 𝜆, then 𝑃v is the eigen-
vector of𝐴 corresponding to 𝜆.

39. Let𝐴 be an n × nmatrix, and let q(𝐴) be the matrix
q(𝐴) = an𝐴n + an−1𝐴n−1 + ⋅ ⋅ ⋅ + a1𝐴+ a0 𝐼n

a. Prove that if 𝐵 = 𝑃−1𝐴𝑃, then q(𝐵) = 𝑃−1q(𝐴)𝑃.
b. Prove that if𝐴 is diagonalizable, then so is q(𝐴).

40. Prove that if 𝐴 is a diagonalizable matrix, then the rank of 𝐴
is the number of nonzero eigenvalues of𝐴.

41. This problem will lead you through a proof of the fact that the
algebraic multiplicity of an eigenvalue of an n × n matrix 𝐴
is greater than or equal to the geometric multiplicity. For this
purpose, assume that 𝜆0 is an eigenvalue with geometric mul-
tiplicity k.
a. Prove that there is a basis 𝐵 = {u1,u2, . . . ,un} for 𝑅n in
which the first k vectors of𝐵 form a basis for the eigenspace
corresponding to 𝜆0.

b. Let 𝑃 be the matrix having the vectors in 𝐵 as col-
umns. Prove that the product𝐴𝑃 can be expressed as

𝐴𝑃 = 𝑃 [𝜆0 𝐼k 𝑋
0 𝑌]

[Hint: Compare the first k column vectors on both sides.]
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c. Use the result in part (b) to prove that𝐴 is similar to

𝐶 = [𝜆0 𝐼k 𝑋
0 𝑌]

and hence that 𝐴 and 𝐶 have the same characteristic
polynomial.

d. By considering det(𝜆𝐼 − 𝐶), prove that the charac-
teristic polynomial of 𝐶 (and hence 𝐴) contains the factor
(𝜆 − 𝜆0) at least k times, thereby proving that the algebraic
multiplicity of 𝜆0 is greater than or equal to the geometric
multiplicity k.

True-False Exercises
TF. In parts (a)–(i) determine whether the statement is true or

false, and justify your answer.
a. An n × n matrix with fewer than n distinct eigenvalues is

not diagonalizable.

b. An n × n matrix with fewer than n linearly independent
eigenvectors is not diagonalizable.

c. If𝐴 and 𝐵 are similar n × nmatrices, then there exists an
invertible n × nmatrix 𝑃 such that 𝑃𝐴 = 𝐵𝑃.

d. If𝐴 is diagonalizable, then there is a uniquematrix𝑃 such
that 𝑃−1𝐴𝑃 is diagonal.

e. If𝐴 is diagonalizable and invertible, then𝐴−1 is diagonal-
izable.

f . If𝐴 is diagonalizable, then𝐴𝑇 is diagonalizable.

g. If there is a basis for 𝑅n consisting of eigenvectors of an
n × nmatrix𝐴, then𝐴 is diagonalizable.

h. If every eigenvalue of amatrix𝐴 has algebraicmultiplicity
1, then𝐴 is diagonalizable.

i. If 0 is an eigenvalue of a matrix𝐴, then𝐴2 is singular.

Working with Technology
T1. Generate a random 4 × 4 matrix 𝐴 and an invertible 4 × 4

matrix 𝑃 and then confirm, as stated in Table 1, that 𝑃−1𝐴𝑃
and𝐴 have the same
a. determinant.
b. rank.
c. nullity.
d. trace.
e. characteristic polynomial.
f . eigenvalues.

T2. a. Use Theorem 5.2.1 to show that the following matrix is
diagonalizable.

𝐴 = [
−13 −60 −60
10 42 40
−5 −20 −18

]

b. Find a matrix 𝑃 that diagonalizes𝐴.
c. Use the method of Example 6 to compute 𝐴10, and check
your result by computing𝐴10 directly.

T3. Use Theorem 5.2.1 to show that the following matrix is not
diagonalizable.

𝐴 = [
−10 11 −6
−15 16 −10
−3 3 −2

]

5.3 Complex Vector Spaces
Because the characteristic equation of a square matrix can have complex solutions, the
notions of complex eigenvalues and eigenvectors arise naturally, even within the context
of matrices with real entries. In this section we will discuss this idea and use our results to
study symmetric matrices in more detail. A review of the essentials of complex numbers
appears in the back of this text.

Review of Complex Numbers
Recall that if z = a + bi is a complex number, then:

• Re(z) = a and Im(z) = b are called the real part of z and the imaginary part of z,
respectively,

• |z| = √a2 + b2 is called themodulus (or absolute value) of z,
• z = a − bi is called the complex conjugate of z,
• zz = a2 + b2 = |z|2,
• the angle 𝜙 in Figure 5.3.1 is called an argument of z,

z = a + bi

z

Re(z) = a

Im(z) = b

ϕ

| |

FIGURE 5.3.1

• Re(z) = |z| cos𝜙,
• Im(z) = |z| sin𝜙,
• z = |z| (cos𝜙 + i sin𝜙) is called the polar form of z.
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Complex Eigenvalues
In Formula (3) of Section 5.1 we observed that the characteristic equation of a general
n × nmatrix 𝐴 has the form

𝜆n + c1𝜆n−1 + ⋅ ⋅ ⋅ + cn = 0 (1)

in which the highest power of 𝜆 has a coefficient of 1. Up to now we have limited our dis-
cussion to matrices in which the solutions of (1) are real numbers. However, it is possible
for the characteristic equation of a matrix𝐴with real entries to have imaginary solutions;
for example, the characteristic equation of the matrix

𝐴 = [−2 −1
5 2]

is |||
𝜆 + 2 1
−5 𝜆 − 2

||| = 𝜆2 + 1 = 0

which has the imaginary solutions 𝜆 = i and 𝜆 = −i. To deal with this case we will need
to explore the notion of a complex vector space and some related ideas.

Vectors in Cn
A vector space in which scalars are allowed to be complex numbers is called a complex
vector space. In this section we will be concerned only with the following complex gen-
eralization of the real vector space 𝑅n.

Definition 1

If n is a positive integer, then a complex n-tuple is a sequence of n complex num-
bers (𝑣1, 𝑣2, . . . , 𝑣n). The set of all complex n-tuples is called complex n-space and is
denoted by 𝐶n. Scalars are complex numbers, and the operations of addition, sub-
traction, and scalar multiplication are performed componentwise.

The terminology used for n-tuples of real numbers applies to complex n-tuples with-
out change. Thus, if 𝑣1, 𝑣2, . . . , 𝑣n are complex numbers, then we call v = (𝑣1, 𝑣2, . . . , 𝑣n) a
vector in 𝐶n and 𝑣1, 𝑣2, . . . , 𝑣n its components. Some examples of vectors in 𝐶3 are

u = (1 + i, −4i, 3 + 2i), v = (0, i, 5), w = (6 −√2 i, 9 + 1
2 i, 𝜋i)

Every vector

v = (𝑣1, 𝑣2, . . . , 𝑣n) = (a1 + b1i, a2 + b2i, . . . , an + bni)
in 𝐶n can be split into real and imaginary parts as

v = (a1, a2, . . . , an) + i (b1, b2, . . . , bn)
which we also denote as

v = Re(v) + i Im(v)
where

Re(v) = (a1, a2, . . . , an) and Im(v) = (b1, b2, . . . , bn)
The vector

v = (𝑣1, 𝑣2, . . . , 𝑣n) = (a1 − b1i, a2 − b2i, . . . , an − bni)
is called the complex conjugate of v and can be expressed in terms of Re(v) and Im(v) as

v = (a1, a2, . . . , an) − i (b1, b2, . . . , bn) = Re(v) − i Im(v) (2)

It follows that the vectors in 𝑅n can be viewed as those vectors in 𝐶n whose imaginary
part is zero; or stated another way, a vector v in 𝐶n is in 𝑅n if and only if v = v.
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In this section we will need to distinguish between matrices whose entries must be
real numbers, called real matrices, and matrices whose entries may be either real num-
bers or complex numbers, called complex matrices. When convenient, you can think of
a real matrix as a complex matrix each of whose entries has a zero imaginary part. The
standard operations on real matrices carry over without change to complex matrices, and
all of the familiar properties of matrices continue to hold.

If𝐴 is a complex matrix, then Re(𝐴) and Im(𝐴) are the matrices formed from the real
and imaginary parts of the entries of𝐴, and𝐴 is the matrix formed by taking the complex
conjugate of each entry in 𝐴.

EXAMPLE 1 | Real and Imaginary Parts of Vectors andMatrices

Let
v = (3+ i,−2i, 5) and 𝐴 = [1+ i −i

4 6− 2i]

Then
v = (3− i, 2i, 5), Re(v) = (3, 0, 5), Im(v) = (1,−2, 0)

𝐴 = [1− i i
4 6+ 2i], Re(𝐴) = [1 0

4 6], Im(𝐴) = [1 −1
0 −2]

det(𝐴) = |||
1+ i −i
4 6− 2i

||| = (1+ i)(6− 2i) − (−i)(4) = 8+ 8i

Algebraic Properties of the Complex Conjugate
The next two theorems list some properties of complex vectors and matrices that we will

As you might expect, if A
is a complex matrix, then
A and A can be expressed
in terms of Re(A) and
Im(A) as

A = Re(A)+ i Im(A)
A = Re(A)− i Im(A)

need in this section. Some of the proofs are given as exercises.

Theorem 5.3.1

If u and v are vectors in 𝐶n, and if k is a scalar, then:

(a) u = u
(b) ku = ku
(c) u + v = u + v
(d) u − v = u − v

Theorem 5.3.2

If 𝐴 is anm × k complex matrix and 𝐵 is a k × n complex matrix, then:

(a) 𝐴 = 𝐴
(b) (𝐴𝑇) = (𝐴)𝑇
(c) 𝐴𝐵 = 𝐴𝐵

The Complex Euclidean Inner Product
The following definition extends the notions of dot product and norm to 𝐶n.
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Definition 2

If u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are vectors in 𝐶n, then the complex
Euclidean inner product of u and v (also called the complex dot product) is
denoted by u · v and is defined as

u · v = u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn (3)

We also define the Euclidean norm on 𝐶n to be

‖v‖ = √v · v = √|v1|2 + |v2|2 + ⋅ ⋅ ⋅ + |vn|2 (4)

As in the real case, we call v a unit vector in 𝐶n if ‖v‖ = 1, and we say two vectors u and

The complex conjugates
in (3) ensure that ‖v‖ is a
real number, for without
them the quantity v · v in (4)
might be imaginary.

v are orthogonal if u · v = 0.

EXAMPLE 2 | Complex Euclidean Inner Product and Norm

Find u · v, v · u, ‖u‖, and ‖v‖ for the vectors
u = (1+ i, i, 3− i) and v = (1+ i, 2, 4i)

Solution
u · v = (1+ i)(1+ i) + i(2) + (3− i)(4i) = (1+ i)(1− i) + 2i+ (3− i)(−4i) = −2− 10i
v · u = (1+ i)(1+ i) + 2(i) + (4i)(3− i) = (1+ i)(1− i) − 2i+ 4i(3+ i) = −2+ 10i
‖u‖ = √|1+ i|2 + |i|2 + |3− i|2 = √2+ 1+ 10 = √13
‖v‖ = √|1+ i|2 + |2|2 + |4i|2 = √2+ 4+ 16 = √22

Example 2 reveals a major difference between the dot product on 𝑅n and the complex
dot product on 𝐶n. For the dot product on 𝑅n we always have v · u = u · v (the symme-
try property), but for the complex dot product the corresponding relationship is given by
u · v = v · u,which is called its antisymmetry property. The following theorem is an ana-
log of Theorem 3.2.2.

Theorem 5.3.3

If u, v, and w are vectors in 𝐶n, and if k is a scalar, then the complex Euclidean
inner product has the following properties:

(a) u · v = v · u [Antisymmetry property]
(b) u · (v +w) = u · v + u ·w [Distributive property]
(c) k(u · v) = (ku) · v [Homogeneity property]

(d) u · kv = k(u · v) [Antihomogeneity property]
(e) v · v ≥ 0 and v · v = 0 if and only if v = 0 [Positivity property]

Parts (c) and (d) of this theorem state that a scalar multiplying a complex Euclidean inner
product can be regrouped with the first vector, but to regroup it with the second vector
you must first take its complex conjugate. We will prove part (d), and leave the others as
exercises.
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Proof (d)
k(u · v) = k(v · u) = k (v · u) = k (v · u) = (kv) · u = u · (kv)

To complete the proof, substitute k for k and use the fact that k = k.

Recall from Table 1 of Section 3.2 that if u and v are column vectors in 𝑅n, then their
dot product can be expressed as

u · v = u𝑇v = v𝑇u
The analogous formulas in 𝐶n are (verify)

u · v = u𝑇v = v𝑇u (5)

Vector Concepts in Cn

Except for the use of complex scalars, the notions of linear combination, linear
independence, subspace, spanning, basis, and dimension carry overwithout change to𝐶n.

Is Rn a subspace of Cn?
Explain.

Eigenvalues and eigenvectors are defined for complex matrices exactly as for real
matrices: If𝐴 is an n × nmatrix with complex entries, then the complex roots of the char-
acteristic equation det(𝜆𝐼 − 𝐴) = 0 are called complex eigenvalues of 𝐴. As in the real
case, 𝜆 is a complex eigenvalue of 𝐴 if and only if there exists a nonzero vector x in 𝐶n

such that 𝐴x = 𝜆x. Each such x is called a complex eigenvector of 𝐴 corresponding to
𝜆. The complex eigenvectors of 𝐴 corresponding to 𝜆 are the nonzero solutions of the lin-
ear system (𝜆𝐼 − 𝐴)x = 0, and the set of all such solutions is a subspace of 𝐶n, called the
complex eigenspace of 𝐴 corresponding to 𝜆.

The following theorem states that if a realmatrix has complex eigenvalues, then those
eigenvalues and their corresponding eigenvectors occur in conjugate pairs.

Theorem 5.3.4

If 𝜆 is an eigenvalue of a real n × nmatrix𝐴, and if x is a corresponding eigenvector,
then 𝜆 is also an eigenvalue of 𝐴, and x is a corresponding eigenvector.

Proof Since 𝜆 is an eigenvalue of 𝐴 and x is a corresponding eigenvector, we have
𝐴x = 𝜆x = 𝜆x (6)

However,𝐴 = 𝐴, since𝐴 has real entries, so it follows from part (c) of Theorem 5.3.2 that
𝐴x = 𝐴x = 𝐴x (7)

Equations (6) and (7) together imply that
𝐴x = 𝐴x = 𝜆x

in which x ≠ 0 (why?). This tells us that 𝜆 is an eigenvalue of 𝐴 and x is a corresponding
eigenvector.

EXAMPLE 3 | Complex Eigenvalues and Eigenvectors

Find the eigenvalues and bases for the eigenspaces of

𝐴 = [−2 −1
5 2]

Solution The characteristic polynomial of𝐴 is
|||
𝜆 + 2 1
−5 𝜆 − 2

||| = 𝜆 2 + 1 = (𝜆 − i)(𝜆 + i)
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so the eigenvalues of𝐴 are 𝜆 = i and 𝜆 = −i. Note that these eigenvalues are complex con-
jugates, as guaranteed by Theorem 5.3.4. To find the eigenvectors we must solve the system

[𝜆 + 2 1
−5 𝜆 − 2] [

x 1
x 2
] = [00]

with 𝜆 = i and then with 𝜆 = −i.With 𝜆 = i, this system becomes

[i+ 2 1
−5 i− 2] [

x 1
x 2
] = [00] (8)

We could solve this system by reducing the augmented matrix

[i+ 2 1 0
−5 i− 2 0] (9)

to reduced row echelon formbyGauss–Jordan elimination, though the complex arithmetic is
somewhat tedious. A simpler procedure here is first to observe that the reduced row echelon
form of (9) must have a row of zeros because (8) has nontrivial solutions. This being the case,
each row of (9) must be a scalar multiple of the other, and hence the first row can be made
into a row of zeros by adding a suitable multiple of the second row to it. Accordingly, we can
simply set the entries in the first row to zero, then interchange the rows, and then multiply
the new first row by− 1

5 to obtain the reduced row echelon form

[1
2
5 −

1
5 i 0

0 0 0
]

Thus, a general solution of the system is
x 1 = (− 2

5 +
1
5 i)t, x 2 = t

This tells us that the eigenspace corresponding to 𝜆 = i is one-dimensional and consists of
all complex scalar multiples of the basis vector

x = [−
2
5 +

1
5 i

1
] (10)

As a check, let us confirm that𝐴x = ix.We obtain

𝐴x = [−2 −1
5 2] [

− 2
5 +

1
5 i

1
]

= [
−2 (− 2

5 +
1
5 i)− 1

5 (− 2
5 +

1
5 i)+ 2

] = [−
1
5 −

2
5 i

i
] = ix

We could find a basis for the eigenspace corresponding to 𝜆 = −i in a similar way, but the
work is unnecessary since Theorem 5.3.4 implies that

x = [−
2
5 −

1
5 i

1
] (11)

must be a basis for this eigenspace. The following computations confirm that x is an eigen-
vector of𝐴 corresponding to 𝜆 = −i:

𝐴x = [−2 −1
5 2] [

− 2
5 −

1
5 i

1
]

= [
−2 (− 2

5 −
1
5 i)− 1

5 (− 2
5 −

1
5 i)+ 2

] = [
− 1

5 +
2
5 i

−i
] = −ix

Since a number of our subsequent examples will involve 2 × 2 matrices with real
entries, it will be useful to discuss some general results about the eigenvalues of such
matrices. Observe first that the characteristic polynomial of the matrix

𝐴 = [a b
c d]
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is

det(𝜆𝐼 − 𝐴) = |||
𝜆 − a −b
−c 𝜆 − d

||| = (𝜆 − a)(𝜆 − d) − bc = 𝜆2 − (a + d)𝜆 + (ad − bc)

We can express this in terms of the trace and determinant of 𝐴 as

det(𝜆𝐼 − 𝐴) = 𝜆2 − tr(𝐴)𝜆 + det(𝐴) (12)

from which it follows that the characteristic equation of 𝐴 is

𝜆2 − tr(𝐴)𝜆 + det(𝐴) = 0 (13)

Now recall from algebra that if ax2 + bx + c = 0 is a quadratic equation with real coeffi-
cients, then the discriminant b2 − 4ac determines the nature of the roots:

b2 − 4ac > 0 [Two distinct real roots]
b2 − 4ac = 0 [One repeated real root]
b2 − 4ac < 0 [Two conjugate imaginary roots]

Applying this to (13) with a = 1, b = −tr(𝐴), and c = det(𝐴) yields the following
theorem.

Theorem 5.3.5

If 𝐴 is a 2 × 2 matrix with real entries, then the characteristic equation of 𝐴 is
𝜆2 − tr(𝐴)𝜆 + det(𝐴) = 0 and

(a) 𝐴 has two distinct real eigenvalues if tr(𝐴)2 − 4 det(𝐴) > 0;
(b) 𝐴 has one repeated real eigenvalue if tr(𝐴)2 − 4 det(𝐴) = 0;
(c) 𝐴 has two complex conjugate eigenvalues if tr(𝐴)2 − 4 det(𝐴) < 0.

EXAMPLE 4 | Eigenvalues of a 2 × 2 Matrix

In each part, use Formula (13) for the characteristic equation to find the eigenvalues of

(a) 𝐴 = [ 2 2
−1 5] (b) 𝐴 = [0 −1

1 2] (c) 𝐴 = [ 2 3
−3 2]

Solution (a) We have tr(𝐴) = 7 and det(𝐴) = 12, so the characteristic equation of𝐴 is
𝜆 2 − 7𝜆 + 12 = 0

Factoring yields (𝜆 − 4)(𝜆 − 3) = 0, so the eigenvalues of𝐴 are 𝜆 = 4 and 𝜆 = 3.

Solution (b) We have tr(𝐴) = 2 and det(𝐴) = 1, so the characteristic equation of𝐴 is
𝜆 2 − 2𝜆 + 1 = 0

Factoring this equation yields (𝜆 − 1)2 = 0, so 𝜆 = 1 is the only eigenvalue of𝐴; it has alge-
braic multiplicity 2.

Solution (c) We have tr(𝐴) = 4 and det(𝐴) = 13, so the characteristic equation of𝐴 is
𝜆 2 − 4𝜆 + 13 = 0

Solving this equation by the quadratic formula yields

𝜆 = 4 ±√(−4)2 − 4(13)
2

= 4 ±√−36
2

= 2 ± 3i

Thus, the eigenvalues of𝐴 are 𝜆 = 2+ 3i and 𝜆 = 2− 3i.
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Historical Note

Olga Taussky-Todd
(1906–1995)

Olga Taussky-Todd was one of the pioneering women in matrix
analysis and the first woman appointed to the faculty at the Cali-
fornia Institute of Technology. She worked at the National Phys-
ical Laboratory in London during World War II, where she was
assigned to study flutter in supersonic aircraft. While there, she
realized that some results about the eigenvalues of a certain 6 × 6
complex matrix could be used to answer key questions about the
flutter problem thatwould otherwise have required laborious cal-
culation. After World War II Olga Taussky-Todd continued her
work onmatrix-related subjects and helped to drawmany known
but disparate results aboutmatrices into the coherent subject that
we now call matrix theory.

[Image: Courtesy of the Archives, California Institute of Technology]

Symmetric Matrices Have Real Eigenvalues
Our next result, which is concerned with the eigenvalues of real symmetric matrices, is
important in a wide variety of applications. The key to its proof is to think of a real sym-
metric matrix as a complex matrix whose entries have an imaginary part of zero.

Theorem 5.3.6

If 𝐴 is a real symmetric matrix, then 𝐴 has real eigenvalues.

Proof Suppose that 𝜆 is an eigenvalue of 𝐴 and x is a corresponding eigenvector, where
we allow for the possibility that 𝜆 is complex and x is in 𝐶n. Thus,

𝐴x = 𝜆x

where x ≠ 0. If we multiply both sides of this equation by x𝑇 and use the fact that

x𝑇𝐴x = x𝑇(𝜆x) = 𝜆(x𝑇x) = 𝜆(x · x) = 𝜆‖x‖2

then we obtain

𝜆 = x𝑇𝐴x
‖x‖2

Since the denominator in this expression is real, we can prove that 𝜆 is real by showing
that

x𝑇𝐴x = x𝑇𝐴x (14)
But 𝐴 is symmetric and has real entries, so it follows from the second equality in (5) and
properties of the conjugate that

x𝑇𝐴x = x
𝑇
𝐴x = x𝑇𝐴x = (𝐴x)𝑇x = (𝐴x)𝑇x = (𝐴x)𝑇x = x𝑇𝐴𝑇x = x𝑇𝐴x

A Geometric Interpretation of Complex Eigenvalues
The following theorem is the key to understanding the geometric significance of complex
eigenvalues of real 2 × 2 matrices.



November 12, 2018 16:25 C05 Sheet number 29 Page number 319 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

5.3 Complex Vector Spaces 319

Theorem 5.3.7

The eigenvalues of the real matrix

𝐶 = [a −b
b a] (15)

are 𝜆 = a ± bi. If a and b are not both zero, then this matrix can be factored as

[a −b
b a] = [|𝜆| 0

0 |𝜆|] [
cos𝜙 − sin𝜙
sin𝜙 cos𝜙] (16)

where 𝜙 is the angle from the positive x-axis to the ray that joins the origin to the
point (a, b) (Figure 5.3.2).

Geometrically, this theorem states that multiplication by a matrix of form (15) can

ϕ

(a, b)

x

y

λ| |

FIGURE 5.3.2

be viewed as a rotation through the angle 𝜙 followed by a scaling with factor |𝜆|
(Figure 5.3.3).

Cx

x

Rotated

Scaled

x

y

ϕ

FIGURE 5.3.3

Proof The characteristic equation of𝐶 is (𝜆 − a)2 + b2 = 0 (verify), fromwhich it follows
that the eigenvalues of 𝐶 are 𝜆 = a ± bi. Assuming that a and b are not both zero, let 𝜙 be
the angle from the positive x-axis to the ray that joins the origin to the point (a, b). The
angle 𝜙 is an argument of the eigenvalue 𝜆 = a + bi, so we see from Figure 5.3.2 that

a = |𝜆| cos𝜙 and b = |𝜆| sin𝜙
It follows from this that the matrix in (15) can be written as

[a −b
b a] = [|𝜆| 0

0 |𝜆|]
⎡
⎢
⎢
⎣

a
|𝜆| − b

|𝜆|
b
|𝜆|

a
|𝜆|

⎤
⎥
⎥
⎦
= [|𝜆| 0

0 |𝜆|] [
cos𝜙 − sin𝜙
sin𝜙 cos𝜙]

The following theorem, whose proof is considered in the exercises, shows that every
real 2 × 2 matrix with complex eigenvalues is similar to a matrix of form (15).

Theorem 5.3.8

Let 𝐴 be a real 2 × 2 matrix with complex eigenvalues 𝜆 = a ± bi (where b ≠ 0).
If x is an eigenvector of 𝐴 corresponding to 𝜆 = a − bi, then the matrix
𝑃 = [Re(x) Im(x)] is invertible and

𝐴 = 𝑃 [a −b
b a] 𝑃

−1 (17)

EXAMPLE 5 | AMatrix Factorization Using Complex
Eigenvalues

Factor the matrix in Example 3 into form (17) using the eigenvalue 𝜆 = −i and the corre-
sponding eigenvector that was given in (11).

Solution For consistency with the notation in Theorem 5.3.8, let us denote the eigenvector
in (11) that corresponds to 𝜆 = −i by x (rather than x as before). For this 𝜆 and x we have

a = 0, b = 1, Re(x) = [
− 2

5

1
], Im(x) = [

− 1
5

0
]
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Thus,

𝑃 = [Re(x) Im(x)] = [
− 2

5 − 1
5

1 0
]

so𝐴 can be factored in form (17) as

[−2 −1
5 2] = [

− 2
5 − 1

5

1 0
] [0 −1
1 0] [

0 1
−5 −2]

You may want to confirm this by multiplying out the right side.

A Geometric Interpretation of Theorem 5.3.8
To interpret what Theorem 5.3.8 says geometrically, let us denote thematrices on the right
side of (16) by 𝑆 and 𝑅𝜙, respectively, and then use (16) to rewrite (17) as

𝐴 = 𝑃𝑆𝑅𝜙𝑃−1 = 𝑃 [
|𝜆| 0
0 |𝜆|] [

cos𝜙 − sin𝜙
sin𝜙 cos𝜙] 𝑃

−1 (18)

If we now view𝑃 as the transitionmatrix from the basis𝐵 = {Re(x), Im(x)} to the standard
basis, then (18) tells us that computing a product 𝐴x0 can be broken down into a three-
step process:

Interpreting Formula (18)
Step 1.Map x0 from standard coordinates into𝐵-coordinates by forming the product 𝑃−1x0.
Step 2. Rotate and scale the vector 𝑃−1x0 by forming the product 𝑆𝑅𝜙𝑃−1x0.
Step 3.Map the rotated and scaled vector back to standard coordinates to obtain

𝐴x0 = 𝑃𝑆𝑅𝜙𝑃−1x0.

Power Sequences
There are many problems in which one is interested in how successive applications of a
matrix transformation affect a specific vector. For example, if𝐴 is the standard matrix for
an operator on 𝑅n and x0 is some fixed vector in 𝑅n, then one might be interested in the
behavior of the power sequence

x0, 𝐴x0, 𝐴2x0, . . . , 𝐴kx0, . . .

For example, if

𝐴 = [
1
2

3
4

− 3
5

11
10
] and x0 = [11]

then with the help of a computer or calculator one can show that the first four terms in
the power sequence are

x0 = [11], 𝐴x0 = [1.250.5], 𝐴2x0 = [ 1.0
−0.2], 𝐴3x0 = [ 0.35

−0.82]
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With the help of MATLAB or a computer algebra system one can show that if the first 100
terms are plotted as ordered pairs (x, y), then the points move along the elliptical path
shown in Figure 5.3.4a.
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(3)x0 = (1, 1)
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FIGURE 5.3.4

To understand why the points move along an elliptical path, we will need to examine
the eigenvalues and eigenvectors of 𝐴. We leave it for you to show that the eigenvalues of
𝐴 are 𝜆 = 4

5 ±
3
5 i and that the corresponding eigenvectors are

𝜆1 = 4
5 −

3
5 i∶ v1 = ( 12 + i, 1) and 𝜆2 = 4

5 +
3
5 i∶ v2 = ( 12 − i, 1)

If we take 𝜆 = 𝜆1 = 4
5 −

3
5 i and x = v1 = ( 12 + i, 1) in (17) and use the fact that |𝜆| = 1,

then we obtain the factorization

[
1
2

3
4

− 3
5

11
10
] = [

1
2 1

1 0
] [

4
5 − 3

5
3
5

4
5
] [
0 1
1 − 1

2
]

𝐴 = 𝑃 𝑅𝜙 𝑃−1
(19)

where 𝑅𝜙 is a rotation about the origin through the angle 𝜙 whose tangent is

tan𝜙 = sin𝜙
cos𝜙 = 3/5

4/5 =
3
4 (𝜙 = tan−1 3

4 ≈ 36.9∘)

The matrix 𝑃 in (19) is the transition matrix from the basis

𝐵 = {Re(x), Im(x)} = {( 12 , 1) , (1, 0)}

to the standard basis, and 𝑃−1 is the transition matrix from the standard basis to the basis
𝐵 (Figure 5.3.5). Next, observe that if n is a positive integer, then (19) implies that

𝐴nx0 = (𝑃𝑅𝜙𝑃−1)nx0 = 𝑃𝑅 n
𝜙 𝑃−1x0

so the product 𝐴nx0 can be computed by first mapping x0 into the point 𝑃−1x0 in 𝐵-
coordinates, thenmultiplying by𝑅 n

𝜙 to rotate this point about the origin through the angle

Re(x)

Im(x) (1, 0)

(0, 1) (   , 1)1

2

x

y

FIGURE 5.3.5

n𝜙, and thenmultiplying 𝑅 n
𝜙 𝑃−1x0 by 𝑃 to map the resulting point back to standard coor-

dinates. We can now see what is happening geometrically: In 𝐵-coordinates each succes-
sive multiplication by 𝐴 causes the point 𝑃−1x0 to advance through an angle 𝜙, thereby
tracing a circular orbit about the origin. However, the basis 𝐵 is skewed (not orthogonal),
so when the points on the circular orbit are transformed back to standard coordinates, the
effect is to distort the circular orbit into the elliptical orbit traced by𝐴nx0 (Figure 5.3.4b).
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Here are the computations for the first step (successive steps are illustrated in Figure
5.3.4c):

[
1
2

3
4

− 3
5

11
10
] [11] = [

1
2 1

1 0
] [

4
5 − 3

5
3
5

4
5
] [
0 1
1 − 1

2
] [11]

= [
1
2 1

1 0
] [

4
5 − 3

5
3
5

4
5
] [

1
1
2
] [x𝟎 is mapped to 𝑩-coordinates.]

= [
1
2 1

1 0
] [

1
2

1
] [The point (𝟏, 𝟏𝟐 ) is rotated through the angle 𝝓.]

= [
5
4
1
2
] [The point ( 𝟏𝟐 , 𝟏) is mapped to standard coordinates.]

Exercise Set 5.3

In Exercises 1–2, find u, Re(u), Im(u), and ‖u‖.

1. u = (2− i, 4i, 1+ i) 2. u = (6, 1+ 4i, 6− 2i)

In Exercises 3–4, show that u, v, and k satisfy Theorem 5.3.1.

3. u = (3− 4i, 2+ i,−6i), v = (1+ i, 2− i, 4), k = i

4. u = (6, 1+ 4i, 6− 2i), v = (4, 3+ 2i, i− 3), k = −i
5. Solve the equation ix− 3v = u for x, where u and v are the

vectors in Exercise 3.

6. Solve the equation (1+ i)x+ 2u = v for x, where u and v are
the vectors in Exercise 4.

In Exercises 7–8, find𝐴, Re(𝐴), Im(𝐴), det (𝐴), and tr(𝐴).

7. 𝐴 = [ −5i 4
2− i 1+ 5i] 8. 𝐴 = [ 4i 2− 3i

2+ 3i 1 ]

9. Let𝐴 be the matrix given in Exercise 7, and let 𝐵 be the matrix

𝐵 = [1− i
2i ]

Confirm that thesematrices have the properties stated in The-
orem 5.3.2.

10. Let𝐴 be thematrix given in Exercise 8, and let𝐵 be thematrix

𝐵 = [ 5i
1− 4i]

Confirm that these matrices have the properties stated in
Theorem 5.3.2.

In Exercises 11–12, compute u · v, u ·w, and v ·w, and show that
the vectors satisfy Formula (5) and parts (a), (b), and (c) of The-
orem 5.3.3.
11. u = (i, 2i, 3), v = (4,−2i, 1+ i), w = (2− i, 2i, 5+ 3i),

k = 2i

12. u = (1+ i, 4, 3i), v = (3,−4i, 2+ 3i),
w = (1− i, 4i, 4− 5i), k = 1+ i

13. Compute (u · v) −w·u for the vectors u, v, and w in
Exercise 11.

14. Compute (iu ·w) + (‖u‖v) · u for the vectors u, v, andw in
Exercise 12.

In Exercises 15–18, find the eigenvalues and bases for the eigenspaces
of𝐴.

15. 𝐴 = [4 −5
1 0] 16. 𝐴 = [−1 −5

4 7]

17. 𝐴 = [5 −2
1 3] 18. 𝐴 = [ 8 6

−3 2]

In Exercises 19–22, each matrix 𝐶 has form (15). Theorem 5.3.7
implies that 𝐶 is the product of a scaling matrix with factor
|λ| and a rotation matrix with angle ϕ. Find |λ| and ϕ for which
−π < ϕ ≤ π.

19. 𝐶 = [1 −1
1 1] 20. 𝐶 = [ 0 5

−5 0]

21. 𝐶 = [ 1 √3
−√3 1

] 22. 𝐶 = [
√2 √2

−√2 √2
]

In Exercises 23–26, find an invertible matrix 𝑃 and a matrix 𝐶 of
form (15) such that𝐴 = 𝑃𝐶𝑃−1.

23. 𝐴 = [−1 −5
4 7] 24. 𝐴 = [4 −5

1 0]

25. 𝐴 = [ 8 6
−3 2] 26. 𝐴 = [5 −2

1 3]

27. Find all complex scalars k, if any, for whichu and v are orthog-
onal in 𝐶 3.
a. u = (2i, i, 3i), v = (i, 6i, k)
b. u = (k, k, 1+ i), v = (1,−1, 1− i)

28. Show that if 𝐴 is a real n × nmatrix and x is a column vector
in 𝐶n, then Re(𝐴x) = 𝐴(Re(x)) and Im(𝐴x) = 𝐴(Im(x)).
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29. The matrices
𝜍1 = [0 1

1 0], 𝜍2 = [0 −i
i 0], 𝜍3 = [1 0

0 −1]

called Pauli spin matrices, are used in quantum mechanics
to study particle spin. The Dirac matrices, which are also
used in quantum mechanics, are expressed in terms of the
Pauli spin matrices and the 2 × 2 identity matrix 𝐼2 as

𝛽 = [𝐼2 0
0 −𝐼2

], 𝛼x = [ 0 𝜍1
𝜍1 0 ],

𝛼y = [ 0 𝜍2
𝜍2 0 ], 𝛼z = [ 0 𝜍3

𝜍3 0 ]

a. Show that 𝛽2 = 𝛼2
x = 𝛼2

y = 𝛼2
z .

b. Matrices 𝐴 and 𝐵 for which 𝐴𝐵 = −𝐵𝐴 are said to be
anticommutative. Show that the Dirac matrices are anti-
commutative.

30. If k is a real scalar and v is a vector in 𝑅n, then Theorem 3.2.1
states that ‖kv‖ = |k|‖v‖. Is this relationship also true if k is
a complex scalar and v is a vector in 𝐶n? Justify your answer.

Working with Proofs

31. Prove part (c) of Theorem 5.3.1.
32. Prove Theorem 5.3.2.
33. Prove that if u and v are vectors in 𝐶n, then

u · v = 1
4
‖u+ v‖2 − 1

4
‖u− v‖2

+ i
4
‖u+ iv‖2 − i

4
‖u− iv‖2

34. It follows from Theorem 5.3.7 that the eigenvalues of the rota-
tion matrix

𝑅𝜙 = [cos𝜙 −sin𝜙
sin𝜙 cos𝜙]

are 𝜆 = cos𝜙 ± i sin𝜙. Prove that if x is an eigenvector cor-
responding to either eigenvalue, then Re(x) and Im(x) are
orthogonal and have the same length. [Note: This implies that
𝑃 = [Re(x) ∣ Im(x)] is a real scalar multiple of an orthogonal
matrix.]

35. The two parts of this exercise lead you through a proof of The-
orem 5.3.8.
a. For notational simplicity, let

𝑀 = [a −b
b a]

and let u = Re(x) and v = Im(x), so 𝑃 = [u ∣ v]. Show
that the relationship𝐴x = 𝜆x implies that

𝐴x = (au+ bv) + i(−bu+ av)

and then equate real and imaginary parts in this equation
to show that

𝐴𝑃 = [𝐴u ∣ 𝐴v] = [au+ bv ∣ −bu+ av] = 𝑃𝑀

b. Show that 𝑃 is invertible, thereby completing the proof,
since the result in part (a) implies that𝐴 = 𝑃𝑀𝑃−1. [Hint:
If 𝑃 is not invertible, then one of its column vectors is
a real scalar multiple of the other, say v = cu. Substitute
this into the equations𝐴u = au+ bv and𝐴v = −bu+ av
obtained in part (a), and show that (1+ c2)bu = 0. Finally,
show that this leads to a contradiction, thereby proving that
𝑃 is invertible.]

36. In this problem you will prove the complex analog of the
Cauchy–Schwarz inequality.

a. Prove: If k is a complex number, and u and v are vectors in
𝐶n, then

(u− kv) · (u− kv) = u · u− k(u · v) − k(u · v) + kk(v · v)

b. Use the result in part (a) to prove that

0 ≤ u · u− k(u · v) − k(u · v) + kk(v · v)

c. Take k = (u · v)/(v · v) in part (b) to prove that

|u · v| ≤ ‖u‖ ‖v‖

True-False Exercises
TF. In parts (a)–(f ) determine whether the statement is true or

false, and justify your answer.
a. There is a real 5 × 5 matrix with no real eigenvalues.

b. The eigenvalues of a 2 × 2 complexmatrix are the solutions
of the equation 𝜆 2 − tr(𝐴)𝜆 + det(𝐴) = 0.

c. A 2 × 2 matrix 𝐴 with real entries has two distinct eigen-
values if and only if tr(𝐴)2 ≠ 4 det(𝐴).

d. If 𝜆 is a complex eigenvalue of a real matrix 𝐴 with a cor-
responding complex eigenvector v, then 𝜆 is a complex
eigenvalue of𝐴 and v is a complex eigenvector of𝐴 corre-
sponding to 𝜆.

e. Every eigenvalue of a complex symmetric matrix is real.

f . If a 2 × 2 real matrix𝐴 has complex eigenvalues and x0 is a
vector in 𝑅2, then the vectors x0,𝐴x0,𝐴2x0, . . . , 𝐴nx0, . . .
lie on an ellipse.

5.4 Differential Equations
Many laws of physics, chemistry, biology, engineering, and economics are described in
terms of “differential equations”—that is, equations involving functions and their deriva-
tives. In this section we will illustrate one way in which matrix diagonalization can be
used to solve systems of differential equations. Calculus is a prerequisite for this section.
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Terminology
Recall from calculus that adifferential equation is an equation involving unknown func-
tions and their derivatives. The order of a differential equation is the order of the highest
derivative it contains. The simplest differential equations are the first-order equations of
the form

y′ = ay (1)
where y = 𝑓(x) is an unknown differentiable function to be determined, y′ = dy/dx is
its derivative, and a is a constant. As with most differential equations, this equation has
infinitely many solutions; they are the functions of the form

y = ceax (2)
where c is an arbitrary constant. That every function of this form is a solution of (1) follows
from the computation

y′ = caeax = ay
and that these are the only solutions is shown in the exercises. Accordingly, we call (2) the
general solution of (1). As an example, the general solution of the differential equation
y′ = 5y is

y = ce5x (3)
Often, a physical problem that leads to a differential equation imposes some conditions
that enable us to isolate one particular solution from the general solution. For example, if
we require that solution (3) of the equation y′ = 5y satisfy the added condition

y(0) = 6 (4)
(that is, y = 6 when x = 0), then on substituting these values in (3), we obtain
6 = ce0 = c, from which we conclude that

y = 6e5x
is the only solution y′ = 5y that satisfies (4).

A condition such as (4), which specifies the value of the general solution at a point,
is called an initial condition, and the problem of solving a differential equation subject
to an initial condition is called an initial-value problem.

First-Order Linear Systems
In this section we will be concerned with solving systems of differential equations of the
form

y′1 = a11 y1 + a12 y2 + ⋅ ⋅ ⋅ + a1n yn
y′2 = a21 y1 + a22 y2 + ⋅ ⋅ ⋅ + a2n yn
...

...
...

...
y′n = an1 y1 + an2 y2 + ⋅ ⋅ ⋅ + ann yn

(5)

where y1 = 𝑓1(x), y2 = 𝑓2(x), . . . , yn = 𝑓n(x) are functions to be determined, and the aij’s
are constants. In matrix notation, (5) can be written as

⎡
⎢
⎢
⎢
⎢
⎣

y′1
y′2...
y′n

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
...

an1 an2 ⋅ ⋅ ⋅ ann

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y1
y2
⋮
yn

⎤
⎥
⎥
⎥
⎦

or more briefly as

y′ = 𝐴y (6)

where the notation y′ denotes the vector obtained by differentiating each component of y.
We call (5) or itsmatrix form (6) a constant coefficientfirst-orderhomogeneous lin-

ear system. It is of first order because all derivatives are of that order, it is linear because
differentiation and matrix multiplication are linear transformations, and it is homoge-
neous because

y1 = y2 = ⋅ ⋅ ⋅ = yn = 0
is a solution regardless of the values of the coefficients. As expected, this is called the
trivial solution. In this section we will work primarily with the matrix form. Here is an
example.
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EXAMPLE 1 | Solution of a Linear System with
Initial Conditions

(a) Write the following system in matrix form:
y′1 = 3y1
y′2 = −2y2
y′3 = 5y3

(7)

(b) Solve the system.
(c) Find a solution of the system that satisfies the initial conditions y1(0) = 1, y2(0) = 4,

and y3(0) = −2.

Solution (a)

[
y′1
y′2
y′3
] = [

3 0 0
0 −2 0
0 0 5

][
y1
y2
y3
] (8)

or

y′ = [
3 0 0
0 −2 0
0 0 5

] y (9)

Solution (b) Because each equation in (7) involves only one unknown function, we can
solve the equations individually. It follows from (2) that these solutions are

y1 = c1e3x
y2 = c2e−2x
y3 = c3e5x

or, in matrix notation,

y = [
y1
y2
y3
] = [

c1e3x

c2e−2x

c3e5x
] (10)

Solution (c) From the given initial conditions, we obtain
1 = y1(0) = c1e0 = c1
4 = y2(0) = c2e0 = c2

−2 = y3(0) = c3e0 = c3
so the solution satisfying these conditions is

y1 = e3x, y2 = 4e−2x, y3 = −2e5x

or, in matrix notation,

y = [
y1
y2
y3
] = [

e3x

4e−2x

−2e5x
]

Solution by Diagonalization
Whatmade the system in Example 1 easy to solve was the fact that each equation involved
only one of the unknown functions, so its matrix formulation, y′ = 𝐴y, had a diagonal
coefficient matrix 𝐴 [Formula (9)]. A more complicated situation occurs when some or
all of the equations in the system involve more than one of the unknown functions, for in
this case the coefficient matrix is not diagonal. Let us now consider how we might solve
such a system.

The basic idea for solving a system y′ = 𝐴ywhose coefficientmatrix𝐴 is not diagonal
is to introduce a new unknown vector u that is related to the unknown vector y by an
equation of the form y = 𝑃u in which 𝑃 is an invertible matrix that diagonalizes 𝐴. Of
course, such amatrixmay ormay not exist, but if it does, thenwe can rewrite the equation
y′ = 𝐴y as

𝑃u′ = 𝐴(𝑃u)
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or alternatively as
u′ = (𝑃−1𝐴𝑃)u

Since 𝑃 is assumed to diagonalize 𝐴, this equation has the form

u′ = 𝐷u

where 𝐷 is diagonal. We can now solve this equation for u using the method of Example
1, and then obtain y by matrix multiplication using the relationship y = 𝑃u.

In summary, we have the following procedure for solving a system y′ = 𝐴y in the case
were 𝐴 is diagonalizable.

A Procedure for Solving y′=Ay If A Is Diagonalizable
Step 1. Find a matrix 𝑃 that diagonalizes𝐴.
Step 2.Make the substitutions y = 𝑃u and y′ = 𝑃u′ to obtain a new “diagonal system”

u′ = 𝐷u, where𝐷 = 𝑃−1𝐴𝑃.
Step 3. Solve u′ = 𝐷u.
Step 4. Determine y from the equation y = 𝑃u.

EXAMPLE 2 | Solution Using Diagonalization

(a) Solve the system
y′1 = y1 + y2
y′2 = 4y1 − 2y2

(b) Find the solution that satisfies the initial conditions y1(0) = 1, y2(0) = 6.

Solution (a) The coefficient matrix for the system is

𝐴 = [1 1
4 −2]

As discussed in Section 5.2, 𝐴 will be diagonalized by any matrix 𝑃 whose columns are
linearly independent eigenvectors of𝐴. Since

det(𝜆𝐼 − 𝐴) = |||
𝜆 − 1 −1
−4 𝜆 + 2

||| = 𝜆 2 + 𝜆 − 6 = (𝜆 + 3)(𝜆 − 2)

the eigenvalues of𝐴 are 𝜆 = 2 and 𝜆 = −3. By definition,

x = [x 1x 2
]

is an eigenvector of𝐴 corresponding to 𝜆 if and only if x is a nontrivial solution of

[𝜆 − 1 −1
−4 𝜆 + 2] [

x 1
x 2
] = [00]

If 𝜆 = 2, this system becomes

[ 1 −1
−4 4] [

x 1
x 2
] = [00]

Solving this system yields x 1 = t, x 2 = t, so

[x 1x 2
] = [tt] = t [11]

Thus,
p1 = [11]
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is a basis for the eigenspace corresponding to 𝜆 = 2. Similarly, you can show that

p2 = [−
1
4
1
]

is a basis for the eigenspace corresponding to 𝜆 = −3. Thus,

𝑃 = [1 − 1
4

1 1
]

diagonalizes𝐴, and
𝐷 = 𝑃−1𝐴𝑃 = [2 0

0 −3]

Thus, as noted in Step 2 of the procedure stated above, the substitution

y = 𝑃u and y′ = 𝑃u′

yields the “diagonal system”

u′ = 𝐷u = [2 0
0 −3]u or

u′1 = 2u1
u′2 = −3u2

From (2) the solution of this system is

u1 = c1e2x
u2 = c2e−3x

or u = [c1e
2x

c2e−3x
]

so the equation y = 𝑃u yields, as the solution for y,

y = [y1y2
] = [1 − 1

4
1 1

] [c1e
2x

c2e−3x
] = [c1e

2x − 1
4 c2e

−3x

c1e2x + c2e−3x
]

or
y1 = c1e2x − 1

4 c2e
−3x

y2 = c1e2x + c2e−3x
(11)

Solution (b) If we substitute the given initial conditions in (11), we obtain

c1 − 1
4 c2 = 1

c1 + c2 = 6

Solving this system, we obtain c1 = 2, c2 = 4, so it follows from (11) that the solution satis-
fying the initial conditions is

y1 = 2e2x − e−3x
y2 = 2e2x + 4e−3x

Remark Keep inmind that themethod of Example 2works because the coefficientmatrix
of the system is diagonalizable. In cases where this is not so, other methods are required.
These are typically discussed in books devoted to differential equations.

Exercise Set 5.4

1. a. Solve the system

y′1 = y1 + 4y2
y′2 = 2y1 + 3y2

b. Find the solution that satisfies the initial conditions
y1(0) = 0, y2(0) = 0.

2. a. Solve the system

y′1 = y1 + 3y2
y′2 = 4y1 + 5y2

b. Find the solution that satisfies the conditions y1(0) = 2,
y2(0) = 1.

3. a. Solve the system

y′1 = 4y1 + y3
y′2 = −2y1 + y2
y′3 = −2y1 + y3

b. Find the solution that satisfies the initial conditions
y1(0) = −1, y2(0) = 1, y3(0) = 0.
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4. Solve the system

y′1 = 4y1 + 2y2 + 2y3
y′2 = 2y1 + 4y2 + 2y3
y′3 = 2y1 + 2y2 + 4y3

5. Show that every solution of y′ = ay has the form y = ceax.
[Hint: Let y = 𝑓(x) be a solution of the equation, and show that
𝑓(x)e−ax is constant.]

6. Show that if𝐴 is diagonalizable and

y =
⎡⎢⎢⎢⎢
⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎥
⎦

is a solution of the system y′ = 𝐴y, then each yi is a linear
combination of e𝜆1x, e𝜆2x, . . . , e𝜆nx,where 𝜆1, 𝜆2, . . . , 𝜆n are the
eigenvalues of𝐴.

7. Sometimes it is possible to solve a single higher-order linear
differential equation with constant coefficients by expressing
it as a system and applying the methods of this section. For the
differential equation y″ − y′ − 6y = 0, show that the substitu-
tions y1 = y and y2 = y′ lead to the system

y′1 = y2
y′2 = 6y1 + y2

Solve this system, and use the result to solve the original differ-
ential equation.

8. Use the procedure in Exercise 7 to solve y″ + y′ − 12y = 0.

9. Explain how youmight use the procedure in Exercise 7 to solve
y‴ − 6y″ + 11y′ − 6y = 0. Use that procedure to solve the
equation.

10. Solve the nondiagonalizable system

y′1 = y1 + y2
y′2 = y2

[Hint: Solve the second equation for y2, substitute in the first
equation, and then multiply both sides of the resulting equa-
tion by e−x.]

11. Consider a system of differential equations y′ = 𝐴y, where
𝐴 is a 2 × 2 matrix. For what values of a11, a12, a21, a22 do the
component solutions y1(t), y2(t) tend to zero as t→∞? In
particular, what must be true about the determinant and the
trace of𝐴 for this to happen?

12. a. By rewriting (11) in matrix form, show that the solution of
the system in Example 2 can be expressed as

y = c1e2x [
1
1] + c2e−3x [

− 1
4
1
]

This is called the general solution of the system.
b. Note that in part (a), the vector in the first term is an eigen-

vector corresponding to the eigenvalue 𝜆1 = 2, and the vec-
tor in the second term is an eigenvector corresponding to
the eigenvalue 𝜆2 = −3. This is a special case of the fol-
lowing general result:

Theorem

If the coefficient matrix 𝐴 of the system y′ = 𝐴y is
diagonalizable, then the general solution of the system
can be expressed as

y = c1e𝜆1xx 1 + c2e𝜆2xx 2 + ⋅ ⋅ ⋅ + cne𝜆nxxn
where 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of𝐴, and xi is
an eigenvector of𝐴 corresponding to 𝜆i.

13. The electrical circuit in the accompanying figure is called a
parallel LRC circuit; it contains a resistor with resistance
𝑅 ohms (Ω), an inductor with inductance 𝐿 henries (H), and
a capacitor with capacitance 𝐶 farads (F). It is shown in elec-
trical circuit analysis that at time t the current i𝐿 through the
inductor and the voltage 𝑣𝐶 across the capacitor are solutions
of the system

[
i′𝐿(t)
𝑣′𝐶(t)

] = [
0 1/𝐿

−1/𝐶 −1/(𝑅𝐶)] [
i𝐿(t)
𝑣𝐶(t)

]

a. Find the general solution of this system in the case where
𝑅 = 1 ohm, 𝐿 = 1 henry, and 𝐶 = 0.5 farad.

b. Find i𝐿(t) and 𝑣𝐶(t) subject to the initial conditions
i𝐿(0) = 2 amperes and 𝑣𝐶(0) = 1 volt.

c. What can you say about the current and voltage in part (b)
over the “long term” (that is, as t→∞)?

C

R

L

FIGURE Ex-13

In Exercises 14–15, a mapping
𝐿∶ 𝐶∞(−∞,∞) → 𝐶∞(−∞,∞)

is given.
a. Show that 𝐿 is a linear operator.
b. Use the ideas in Exercises 7 and 9 to solve the differential

equation 𝐿(y) = 0.

14. 𝐿(y) = y″ + 2y′ − 3y

15. 𝐿(y) = y‴ − 2y″ − y′ + 2y

Working with Proofs

16. Prove the theorem in Exercise 12 by tracing through the four-
step procedure preceding Example 2 with

𝐷 =
⎡⎢⎢⎢⎢
⎣

𝜆1 0 ⋅ ⋅ ⋅ 0
0 𝜆2 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮
0 0 ⋅ ⋅ ⋅ 𝜆n

⎤⎥⎥⎥⎥
⎦

and 𝑃 = [x 1 ∣ x 2 ∣ ⋅ ⋅ ⋅ ∣ xn]

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
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a. Every system of differential equations y′ = 𝐴y has a
solution.

b. If x ′ = 𝐴x and y′ = 𝐴y, then x = y.
c. If x ′ = 𝐴x and y′ = 𝐴y, then (cx+ dy)′ = 𝐴(cx+ dy)

for all scalars c and d.
d. If𝐴 is a square matrix with distinct real eigenvalues, then

it is possible to solve x ′ = 𝐴x by diagonalization.
e. If 𝐴 and 𝑃 are similar matrices, then y′ = 𝐴y and u′ =

𝑃u have the same solutions.

Working with Technology
T1. a. Find the general solution of the following system by

computing appropriate eigenvalues and eigenvectors.
y′1 = 3y1 + 2y2 + 2y3
y′2 = y1 + 4y2 + y3
y′3 = −2y1 − 4y2 − y3

b. Find the solution that satisfies the initial conditions
y1(0) = 0, y2(0) = 1, y3(0) = −3. [Technology not
required.]

T2. It is shown in electrical circuit theory that for the 𝐿𝑅𝐶 cir-
cuit in Figure Ex-13 the current 𝐼 in amperes (A) through the
inductor and the voltage drop𝑉 in volts (V) across the capac-
itor satisfy the system of differential equations

d𝐼
dt

= 𝑉
𝐿

d𝑉
dt

= − 𝐼
𝐶 − 𝑉

𝑅𝐶

where the derivatives arewith respect to the time t. Find 𝐼 and
𝑉 as functions of t if 𝐿 = 0.5 H, 𝐶 = 0.2 F, 𝑅 = 2 Ω, and the
initial values of𝑉 and 𝐼 are𝑉(0) = 1 V and 𝐼(0) = 2 A.

5.5 Dynamical Systems andMarkov Chains
In this optional section we will show how matrix methods can be used to analyze the
behavior of physical systems that evolve over time. The methods that we will study here
have been applied to problems in business, ecology, demographics, sociology, andmost of
the physical sciences.

Dynamical Systems
A dynamical system is a finite set of variables whose values change with time. The value
of a variable at a point in time is called the state of the variable at that time, and the vector
formed from these states is called the state vector (or state) of the dynamical system at
that time. Our primary objective in this section is to analyze how the state vector of a
dynamical system changes with time. Let us begin with an example.

Channel 1 loses 20%

and holds 80%.

Channel 2 loses 10%

and holds 90%.

Channel

1

Channel

2

10%

20%

80% 90%

FIGURE 5.5.1

EXAMPLE 1 | Market Share as a Dynamical System

Suppose that two competing television channels, channel 1 and channel 2, each have 50%
of the viewer market at some initial point in time. Assume that over each one-year period
channel 1 captures 10% of channel 2’s share, and channel 2 captures 20% of channel 1’s share
(see Figure 5.5.1). What is each channel’s market share after one year?

Solution Let us begin by introducing the time-dependent variables
x 1(t) = fraction of the market held by channel 1 at time t
x 2(t) = fraction of the market held by channel 2 at time t

and the column vector

x(t) = [x 1(t)x 2(t)
] ← Channel 1’s fraction of the market at time 𝒕 in years

← Channel 2’s fraction of the market at time 𝒕 in years

The variables x 1(t) and x 2(t) form a dynamical systemwhose state at time t is the vector x(t).
If we take t = 0 to be the starting point at which the two channels had 50% of the market,
then the state of the system at that time is

x(0) = [x 1(0)x 2(0)
] = [0.50.5]

← Channel 1’s fraction of the market at time 𝒕 = 𝟎
← Channel 2’s fraction of the market at time 𝒕 = 𝟎 (1)
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Now let us try to find the state of the system at time t = 1 (one year later). Over the one-year
period, channel 1 retains 80% of its initial 50%, and it gains 10% of channel 2’s initial 50%.
Thus,

x 1(1) = 0.8(0.5) + 0.1(0.5) = 0.45 (2)
Similarly, channel 2 gains 20% of channel 1’s initial 50%, and retains 90% of its initial 50%.
Thus,

x 2(1) = 0.2(0.5) + 0.9(0.5) = 0.55 (3)
Therefore, the state of the system at time t = 1 is

x(1) = [x 1(1)x 2(1)
] = [0.450.55]

← Channel 1’s fraction of the market at time 𝒕 = 𝟏
← Channel 2’s fraction of the market at time 𝒕 = 𝟏

(4)

EXAMPLE 2 | Evolution of Market Share over Five Years

Track the market shares of channels 1 and 2 in Example 1 over a five-year period.

Solution To solve this problem suppose thatwehave already computed themarket share of
each channel at time t = k andwe are interested in using the knownvalues of x 1(k) and x 2(k)
to compute the market shares x 1(k+ 1) and x 2(k+ 1) one year later. The analysis is exactly
the same as that used to obtain Equations (2) and (3). Over the one-year period, channel 1
retains 80% of its starting fraction x 1(k) and gains 10% of channel 2’s starting fraction x 2(k).
Thus,

x 1(k+ 1) = (0.8)x 1(k) + (0.1)x 2(k) (5)
Similarly, channel 2 gains 20% of channel 1’s starting fraction x 1(k) and retains 90% of its
own starting fraction x 2(k). Thus,

x 2(k+ 1) = (0.2)x 1(k) + (0.9)x 2(k) (6)
Equations (5) and (6) can be expressed in matrix form as

[x 1(k+ 1)
x 2(k+ 1)] = [0.8 0.1

0.2 0.9] [
x 1(k)
x 2(k)

] (7)

which provides a way of using matrix multiplication to compute the state of the system at
time t = k+ 1 from the state at time t = k. For example, using (1) and (7) we obtain

x(1) = [0.8 0.1
0.2 0.9] x(0) = [0.8 0.1

0.2 0.9] [
0.5
0.5] = [0.450.55]

which agrees with (4). Similarly,

x(2) = [0.8 0.1
0.2 0.9] x(1) = [0.8 0.1

0.2 0.9] [
0.45
0.55] = [0.4150.585]

We can now continue this process, using Formula (7) to compute x(3) from x(2), then x(4)
from x(3), and so on. This yields (verify)

x(3) = [0.39050.6095] , x(4) = [0.373350.62665] , x(5) = [0.3613450.638655] (8)

Thus, after five years, channel 1 will hold about 36% of the market and channel 2 will hold
about 64% of the market.

If desired, we can continue the market analysis in the last example beyond the five-
year period and explore what happens to the market share over the long term. We did
so, using a computer, and obtained the following state vectors (rounded to six decimal
places):

x(10) ≈ [0.3380410.661959] , x(20) ≈ [0.3334660.666534] , x(40) ≈ [0.3333330.666667] (9)

All subsequent state vectors, when rounded to six decimal places, are the same as x(40),
so we see that the market shares eventually stabilize with channel 1 holding about one-
third of the market and channel 2 holding about two-thirds. Later in this section, we will
explain why this stabilization occurs.
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Markov Chains
In many dynamical systems the states of the variables are not known with certainty but
can be expressed as probabilities; such dynamical systems are called stochastic processes
(from the Greek word stochastikos, meaning “proceeding by guesswork”). A detailed
study of stochastic processes requires a precise definition of the term probability, which
is outside the scope of this course. However, the following interpretation will suffice for
our present purposes:

Stated informally, the probability that an experiment or observation will have a
certain outcome is the fraction of the time that the outcome would occur if the
experiment could be repeated indefinitely under constant conditions—the greater
the number of actual repetitions, the more accurately the probability describes the
fraction of time that the outcome occurs.

For example, when we say that the probability of tossing heads with a fair coin is 1
2 , we

mean that if the coin were tossed many times under constant conditions, then we would
expect about half of the outcomes to beheads. Probabilities are often expressed as decimals
or percentages. Thus, the probability of tossing headswith a fair coin can also be expressed
as 0.5 or 50%.

If an experiment or observation has n possible outcomes, then the probabilities of
those outcomes must be nonnegative fractions whose sum is 1. The probabilities are non-
negative because each describes the fraction of occurrences of an outcome over the long
term, and the sum is 1 because they account for all possible outcomes. For example, if a
box containing 10 balls has one red ball, three green balls, and six yellow balls, and if a
ball is drawn at random from the box, then the probabilities of the various outcomes are

p1 = prob(red) = 1/10 = 0.1
p2 = prob(green) = 3/10 = 0.3
p3 = prob(yellow) = 6/10 = 0.6

Each probability is a nonnegative fraction and
p1 + p2 + p3 = 0.1 + 0.3 + 0.6 = 1

In a stochastic process with n possible states, the state vector at each time t has the
form

x(t) =
⎡
⎢
⎢
⎢
⎣

x1(t)
x2(t)
⋮

xn(t)

⎤
⎥
⎥
⎥
⎦

Probability that the system is in state 1
Probability that the system is in state 2

⋮
Probability that the system is in state 𝒏

The entries in this vector must add up to 1 since they account for all n possibilities. In
general, a vector with nonnegative entries that add up to 1 is called a probability vector.

EXAMPLE 3 | Example 1 Revisited from the Probability
Viewpoint

Observe that the state vectors in Examples 1 and 2 are all probability vectors. This is to be
expected since the entries in each state vector are the fractional market shares of the chan-
nels, and together they account for the entire market. In practice, it is preferable to interpret
the entries in the state vectors as probabilities rather than exact market fractions, since mar-
ket information is usually obtained by statistical sampling procedures with intrinsic uncer-
tainties. Thus, for example, the state vector

x(1) = [x 1(1)x 2(1)
] = [0.450.55]

which we interpreted in Example 1 to mean that channel 1 has 45% of the market and chan-
nel 2 has 55%, can also be interpreted to mean that an individual picked at random from
the market will be a channel 1 viewer with probability 0.45 and a channel 2 viewer with
probability 0.55.
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A squarematrix whose columns are probability vectors is called a stochasticmatrix.
Such matrices commonly occur in formulas that relate successive states of a stochastic
process. For example, the state vectors x(k + 1) and x(k) in (7) are related by an equation
of the form x(k + 1) = 𝑃x(k) in which

𝑃 = [0.8 0.1
0.2 0.9] (10)

is a stochastic matrix. It should not be surprising that the column vectors of 𝑃 are prob-
ability vectors, since the entries in each column provide a breakdown of what happens
to each channel’s market share over the year—the entries in column 1 convey that each
year channel 1 retains 80% of its market share and loses 20%; and the entries in column 2
convey that each year channel 2 retains 90% of its market share and loses 10%. The entries
in (10) can also be viewed as probabilities:

p11 = 0.8 = probability that a channel 1 viewer remains a channel 1 viewer
p21 = 0.2 = probability that a channel 1 viewer becomes a channel 2 viewer
p12 = 0.1 = probability that a channel 2 viewer becomes a channel 1 viewer
p22 = 0.9 = probability that a channel 2 viewer remains a channel 2 viewer

Example 1 is a special case of a large class of stochastic processes calledMarkov chains.

Definition 1

AMarkov chain is a dynamical systemwhose state vectors at a succession of equally
spaced times are probability vectors and for which the state vectors at successive
times are related by an equation of the form

x(k + 1) = 𝑃x(k)

in which 𝑃 = [pi j] is a stochastic matrix and pi j is the probability that the system
will be in state i at time t = k + 1 if it is in state j at time t = k. Thematrix 𝑃 is called
the transition matrix for the system.

Warning Note that in this definition the row index i corresponds to the later
state and the column index j to the earlier state (Figure 5.5.2).

The entry pij is the probability
that the system is in state i at
time t = k + 1 if it is in state j
at time t = k.

pij

State at time t = k

State at time
t = k + 1

FIGURE 5.5.2

Historical Note

Andrei Andreyevich
Markov
(1856–1922)

Markov chains are named in honor of the Russian mathemati-
cian A. A. Markov, a lover of poetry, who used them to analyze
the alternation of vowels and consonants in the poem Eugene
Onegin by Pushkin. Markov believed that the only applications
of his chains were to the analysis of literary works, so he would
be astonished to learn that his discovery is used today in the
social sciences, quantum theory, and genetics!

[Image: https://en.wikipedia.org/wiki/Andrey_Markov#/media/
File:Andrei_Markov.jpg. Public domain.]

https://en.wikipedia.org/wiki/Andrey_Markov#/media/
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EXAMPLE 4 | Wildlife Migration as a Markov Chain

Suppose that a tagged lion can migrate over three adjacent game reserves in search of food:
Reserve 1, Reserve 2, and Reserve 3. Based on data about the food resources, researchers
conclude that the monthly migration pattern of the lion can be modeled by a Markov chain
with transition matrix

Reserve at time t=k
1 2 3

𝑃 =
⎡
⎢
⎢
⎣

0.5 0.4 0.6
0.2 0.2 0.3
0.3 0.4 0.1

⎤
⎥
⎥
⎦

1
2
3

Reserve at time t=k+ 1

(see Figure 5.5.3). That is,

p11 = 0.5 = probability that the lion will stay in Reserve 1 when it is in Reserve 1
p12 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 1
p13 = 0.6 = probability that the lion will move from Reserve 3 to Reserve 1
p21 = 0.2 = probability that the lion will move from Reserve 1 to Reserve 2
p22 = 0.2 = probability that the lion will stay in Reserve 2 when it is in Reserve 2
p23 = 0.3 = probability that the lion will move from Reserve 3 to Reserve 2
p31 = 0.3 = probability that the lion will move from Reserve 1 to Reserve 3
p32 = 0.4 = probability that the lion will move from Reserve 2 to Reserve 3
p33 = 0.1 = probability that the lion will stay in Reserve 3 when it is in Reserve 3

Assuming that t is in months and the lion is released in Reserve 2 at time t = 0, track its
probable locations over a six-month period, and find the reserve in which it is most likely to
be at the end of that period.

Solution Let x 1(k), x 2(k), and x 3(k) be the probabilities that the lion is in Reserve 1, 2, or
3, respectively, at time t = k, and let

x(k) =
⎡
⎢
⎢
⎣

x 1(k)
x 2(k)
x 3(k)

⎤
⎥
⎥
⎦

be the state vector at that time. Since we know with certainty that the lion is in Reserve 2 at
time t = 0, the initial state vector is

x(0) = [
0
1
0
]

We leave it for you to use a calculator or computer to show that the state vectors over a six-
month period are

x(1) = 𝑃x(0) = [
0.400
0.200
0.400

] , x(2) = 𝑃x(1) = [
0.520
0.240
0.240

] , x(3) = 𝑃x(2) = [
0.500
0.224
0.276

]

x(4) = 𝑃x(3) ≈ [
0.505
0.228
0.267

] , x(5) = 𝑃x(4) ≈ [
0.504
0.227
0.269

] , x(6) = 𝑃x(5) ≈ [
0.504
0.227
0.269

]

As in Example 2, the state vectors here seem to stabilize over time with a probability of
approximately 0.504 that the lion is in Reserve 1, a probability of approximately 0.227 that it
is in Reserve 2, and a probability of approximately 0.269 that it is in Reserve 3.

From x(6)we see that the lion is most likely to be in Reserve 1 at the end of six months.

Markov Chains in Terms of Powers of the TransitionMatrix
In a Markov chain with an initial state of x(0), the successive state vectors are

Reserve

2

Reserve

3

Reserve

1

0.3

0.5

0.3

0.4

0.4 0.6

0.10.2

0.2

FIGURE 5.5.3

x(1) = 𝑃x(0), x(2) = 𝑃x(1), x(3) = 𝑃x(2), x(4) = 𝑃x(3), . . .
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For brevity, it is common to denote x(k) by xk, which allows us to write the successive
state vectors more briefly as

x1 = 𝑃x0, x2 = 𝑃x1, x3 = 𝑃x2, x4 = 𝑃x3, . . . (11)

Alternatively, these state vectors can be expressed in terms of the initial state vector x0 asNote that Formula (12)
makes it possible to com-
pute any state vector with-
out first computing the
earlier state vectors as
required in Formula (11).

x1 = 𝑃x0, x2 = 𝑃(𝑃x0) = 𝑃2x0, x3 = 𝑃(𝑃2x0) = 𝑃3x0, x4 = 𝑃(𝑃3x0) = 𝑃4x0, . . .

from which it follows that

xk = 𝑃kx0 (12)

EXAMPLE 5 | Finding a State Vector Directly

Use Formula (12) to find the state vector x(3) in Example 2.
Solution From (1) and (7), the initial state vector and transition matrix are

x 0 = x(0) = [0.50.5] and 𝑃 = [0.8 0.1
0.2 0.9]

We leave it for you to calculate 𝑃3 and show that

x(3) = x 3 = 𝑃3x 0 = [0.562 0.219
0.438 0.781] [

0.5
0.5] = [0.39050.6095]

which agrees with the result in (8).

Long-Term Behavior of a Markov Chain
We have seen two examples of Markov chains in which the state vectors seem to stabilize
after a period of time. Thus, it is reasonable to ask whether all Markov chains have this
property. The following example shows that this is not the case.

EXAMPLE 6 | AMarkov Chain That Does Not Stabilize

The matrix

𝑃 = [0 1
1 0]

is stochastic and hence can be regarded as the transitionmatrix for aMarkov chain. A simple
calculation shows that 𝑃2 = 𝐼, from which it follows that

𝐼 = 𝑃2 = 𝑃4 = 𝑃6 = ⋅ ⋅ ⋅ and 𝑃 = 𝑃3 = 𝑃5 = 𝑃7 = ⋅ ⋅ ⋅

Thus, the successive states in the Markov chain with initial vector x 0 are

x 0, 𝑃x 0, x 0, 𝑃x 0, x 0, . . .

which oscillate between x 0 and 𝑃x 0. Thus, the Markov chain does not stabilize unless both
components of x 0 are 1

2 (verify).
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A precise definition of what it means for a sequence of numbers or vectors to stabi-
lize is given in calculus; however, that level of precision will not be needed here. Stated
informally, we will say that a sequence of vectors

x1, x2, . . . , xk, . . .
approaches a limit q or that it converges to q if all entries in xk can bemade as close as we
like to the corresponding entries in the vector q by taking k sufficiently large. We denote
this by writing xk → q as k→∞. Similarly, we say that a sequence of matrices

𝑃1, 𝑃2, 𝑃3, . . . , 𝑃k, . . .
converges to a matrix 𝑄, written 𝑃k → 𝑄 as k→∞, if each entry of 𝑃k can be made as
close as we like to the corresponding entry of 𝑄 by taking k sufficiently large.

We saw in Example 6 that the state vectors of a Markov chain need not approach a
limit in all cases. However, by imposing a mild condition on the transition matrix of a
Markov chain, we can guarantee that the state vectors will approach a limit.

Definition 2

A stochastic matrix 𝑃 is said to be regular if 𝑃 or some positive power of 𝑃 has all
positive entries, and a Markov chain whose transition matrix is regular is said to be
a regular Markov chain.

EXAMPLE 7 | Regular Stochastic Matrices

The transition matrices in Examples 2 and 4 are regular because their entries are positive.
The matrix

𝑃 = [0.5 1
0.5 0]

is regular because

𝑃2 = [0.75 0.5
0.25 0.5]

has positive entries. The matrix 𝑃 in Example 6 is not regular because 𝑃 and every positive
power of 𝑃 have some zero entries (verify).

The following theorem,whichwe statewithout proof, is the fundamental result about
the long-term behavior of Markov chains.

Theorem 5.5.1

If 𝑃 is the transition matrix for a regular Markov chain, then:
(a) There is a unique probability vector q with positive entries such that 𝑃q = q.
(b) For any initial probability vector x0, the sequence of state vectors

x0, 𝑃x0, . . . , 𝑃kx0, . . .

converges to q.
(c) The sequence𝑃, 𝑃2, . . . , 𝑃k, . . . converges to thematrix𝑄 each ofwhose column

vectors is q.
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The vector q in Theorem 5.5.1 is called the steady-state vector of the Markov chain.
Because it is a nonzero vector that satisfies the equation 𝑃q = q, it is an eigenvector cor-
responding to the eigenvalue 𝜆 = 1 of 𝑃. Thus, q can be found by solving the linear system

(𝐼 − 𝑃)q = 0 (13)

subject to the requirement that q be a probability vector. Here are some examples.

EXAMPLE 8 | Examples 1 and 2 Revisited

The transition matrix for the Markov chain in Example 2 is

𝑃 = [0.8 0.1
0.2 0.9]

Since the entries of𝑃 are positive, theMarkov chain is regular and hence has a unique steady-
state vector q. To find q we will solve the system (𝐼 − 𝑃)q = 0, which we can write as

[ 0.2 −0.1
−0.2 0.1] [

q1
q2
] = [00]

The general solution of this system is

q1 = 0.5 s, q2 = s

(verify), which we can write in vector form as

q = [q1q2
] = [0.5 ss ] = [

1
2 s
s
] (14)

For q to be a probability vector, we must have

1 = q1 + q2 = 3
2 s

which implies that s = 2
3 . Substituting this value in (14) yields the steady-state vector

q = [
1
3
2
3
]

which is consistent with the numerical results obtained in (9).

EXAMPLE 9 | Example 4 Revisited

The transition matrix for the Markov chain in Example 4 is

𝑃 = [
0.5 0.4 0.6
0.2 0.2 0.3
0.3 0.4 0.1

]

Since the entries of𝑃 are positive, theMarkov chain is regular and hence has a unique steady-
state vector q. To find q we will solve the system (𝐼 − 𝑃)q = 0, which we can write (using
fractions) as

⎡
⎢
⎢
⎢
⎣

1
2 − 2

5 − 3
5

− 1
5

4
5 − 3

10

− 3
10 − 2

5
9
10

⎤
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

q1
q2
q3

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

0

0

0

⎤⎥⎥⎥
⎦

(15)
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(We have converted to fractions to avoid roundoff error in this illustrative example.)We leave
it for you to confirm that the reduced row echelon form of the coefficient matrix is

⎡⎢⎢⎢
⎣

1 0 − 15
8

0 1 − 27
32

0 0 0

⎤⎥⎥⎥
⎦

and that the general solution of (15) is

q1 = 15
8 s, q2 = 27

32 s, q3 = s (16)

For q to be a probability vector we must have q1 + q2 + q3 = 1, from which it follows that
s = 32

119 (verify). Substituting this value in (16) yields the steady-state vector

q =
⎡
⎢
⎢
⎢
⎣

60
119
27
119
32
119

⎤
⎥
⎥
⎥
⎦

≈ [
0.5042
0.2269
0.2689

]

(verify), which is consistent with the results obtained in Example 4.

Exercise Set 5.5

In Exercises 1–2, determine whether𝐴 is a stochastic matrix. If𝐴 is
not stochastic, then explain why not.

1. a. 𝐴 = [0.4 0.3
0.6 0.7] b. 𝐴 = [0.4 0.6

0.3 0.7]

c. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 1
2

1
3

0 0 1
3

0 1
2

1
3

⎤
⎥
⎥
⎥
⎦

d. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1
3

1
3

1
2

1
6

1
3 − 1

2
1
2

1
3 1

⎤
⎥
⎥
⎥
⎦

2. a. 𝐴 = [0.2 0.9
0.8 0.1] b. 𝐴 = [0.2 0.8

0.9 0.1]

c. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1
12

1
9

1
6

1
2 0 5

6
5
12

8
9 0

⎤
⎥
⎥
⎥
⎦

d. 𝐴 =
⎡
⎢
⎢
⎢
⎣

−1 1
3

1
2

0 1
3

1
2

2 1
3 0

⎤
⎥
⎥
⎥
⎦

In Exercises 3–4, use Formulas (11) and (12) to compute the state
vector x4 in two different ways.

3. 𝑃 = [0.5 0.6
0.5 0.4] ; x 0 = [0.50.5]

4. 𝑃 = [0.8 0.5
0.2 0.5] ; x 0 = [10]

In Exercises 5–6, determine whether𝑃 is a regular stochastic matrix.

5. a. 𝑃 = [
1
5

1
7

4
5

6
7
] b. 𝑃 = [

1
5 0
4
5 1

] c. 𝑃 = [
1
5 1
4
5 0

]

6. a. 𝑃 = [
1
2 1
1
2 0

] b. 𝑃 = [
1 2

3

0 1
3
] c. 𝑃 = [

3
4

1
3

1
4

2
3
]

In Exercises 7–10, verify that 𝑃 is a regular stochastic matrix, and
find the steady-state vector for the associated Markov chain.

7. 𝑃 = [
1
4

2
3

3
4

1
3
] 8. 𝑃 = [

0.2 0.6
0.8 0.4

]

9. 𝑃 =
⎡
⎢
⎢
⎢
⎣

1
2

1
2 0

1
4

1
2

1
3

1
4 0 2

3

⎤
⎥
⎥
⎥
⎦

10. 𝑃 =
⎡
⎢
⎢
⎢
⎣

1
3

1
4

2
5

0 3
4

2
5

2
3 0 1

5

⎤
⎥
⎥
⎥
⎦

11. Consider a Markov process with transition matrix

State 1 State 2
State 1
State 2 [

0.2 0.1
0.8 0.9 ]

a. What does the entry 0.2 represent?

b. What does the entry 0.1 represent?

c. If the system is in state 1 initially, what is the probability
that it will be in state 2 at the next observation?

d. If the system has a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

12. Consider a Markov process with transition matrix

State 1 State 2

State 1
State 2 [

0 1
7

1 6
7
]

a. What does the entry 6
7 represent?

b. What does the entry 0 represent?
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c. If the system is in state 1 initially, what is the probability
that it will be in state 1 at the next observation?

d. If the system has a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

13. On a given day the air quality in a certain city is either good
or bad. Records show that when the air quality is good on one
day, then there is a 95% chance that it will be good the next
day, and when the air quality is bad on one day, then there is
a 45% chance that it will be bad the next day.

a. Find a transition matrix for this phenomenon.
b. If the air quality is good today, what is the probability that

it will be good two days from now?

c. If the air quality is bad today, what is the probability that it
will be bad three days from now?

d. If there is a 20% chance that the air quality will be
good today, what is the probability that it will be good
tomorrow?

14. In a laboratory experiment, a mouse can choose one of two
food types each day, type I or type II. Records show that if
the mouse chooses type I on a given day, then there is a 75%
chance that it will choose type I the next day, and if it chooses
type II on one day, then there is a 50% chance that it will
choose type II the next day.

a. Find a transition matrix for this phenomenon.
b. If the mouse chooses type I today, what is the probability

that it will choose type I two days from now?

c. If the mouse chooses type II today, what is the probability
that it will choose type II three days from now?

d. If there is a 10% chance that the mouse will choose type
I today, what is the probability that it will choose type I
tomorrow?

15. Suppose that at some initial point in time 100,000 people live
in a certain city and 25,000 people live in its suburbs. The
Regional Planning Commission determines that each year 5%
of the city populationmoves to the suburbs and 3% of the sub-
urban population moves to the city.

a. Assuming that the total population remains constant,
make a table that shows the populations of the city and
its suburbs over a five-year period (round to the nearest
integer).

b. Over the long term, how will the population be distributed
between the city and its suburbs?

16. Suppose that two competing television stations, station 1 and
station 2, each have 50% of the viewer market at some initial
point in time. Assume that over each one-year period station 1
captures 5% of station 2’s market share and station 2 captures
10% of station 1’s market share.

a. Make a table that shows the market share of each station
over a five-year period.

b. Over the long term, how will the market share be dis-
tributed between the two stations?

17. Fill in the missing entries of the stochastic matrix

𝑃 =
⎡⎢⎢⎢
⎣

7
10 ∗ 1

5
∗ 3

10 ∗
1
10

3
5

3
10

⎤⎥⎥⎥
⎦

and find its steady-state vector.

18. If 𝑃 is an n × n stochastic matrix, and if𝑀 is a 1 × n matrix
whose entries are all 1’s, then𝑀𝑃 = .

19. If 𝑃 is a regular stochastic matrix with steady-state vector q,
what can you say about the sequence of products

𝑃q, 𝑃2q, 𝑃3q, . . . , 𝑃kq, . . .

as k→∞?

20. a. If 𝑃 is a regular n × n stochastic matrix with steady-state
vector q, and if e1, e2, . . . , en are the standard unit vectors
in column form, what can you say about the behavior of the
sequence

𝑃e i, 𝑃2ei, 𝑃3ei, . . . , 𝑃ke i, . . .

as k→∞ for each i = 1, 2, . . . ,n?
b. What does this tell you about the behavior of the column

vectors of 𝑃k as k→∞?

Working with Proofs

21. Prove that the product of two stochastic matrices with the
same size is a stochastic matrix. [Hint:Write each column of
the product as a linear combination of the columns of the first
factor.]

22. Prove that if 𝑃 is a stochastic matrix whose entries are all
greater than or equal to 𝜌, then the entries of 𝑃2 are greater
than or equal to 𝜌.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.

a. The vector
⎡
⎢
⎢
⎣

1
3
0
2
3

⎤
⎥
⎥
⎦
is a probability vector.

b. The matrix [0.2 1
0.8 0] is a regular stochastic matrix.

c. The column vectors of a transition matrix are probability
vectors.

d. A steady-state vector for a Markov chain with transition
matrix𝑃 is any solution of the linear system (𝐼 − 𝑃)q = 0.

e. The square of every regular stochastic matrix is stochastic.

f . A vector with real entries that sum to 1 is a probability
vector.

g. Every regular stochasticmatrix has𝜆 = 1 as an eigenvalue.
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Working with Technology
T1. In Examples 4 and 9 we considered the Markov chain with

transition matrix 𝑃 and initial state vector x(0) where

𝑃 = [
0.5 0.4 0.6
0.2 0.2 0.3
0.3 0.4 0.1

] and x(0) = [
0
1
0
]

a. Confirm the numerical values of x(1), x(2), . . . , x(6)
obtained in Example 4 using the method given in that
example.

b. As guaranteed by part (c) of Theorem 5.5.1, confirm that
the sequence 𝑃, 𝑃2, . . . , 𝑃k, . . . converges to the matrix
𝑄 each of whose column vectors is the steady-state vector
q obtained in Example 9.

T2. Suppose that a car rental agency has three locations, num-
bered 1, 2, and 3. A customer may rent a car from any of
the three locations and return it to any of the three locations.
Records show that cars are rented and returned in accordance
with the following probabilities:

Rented from Location
1 2 3

1 1
10

1
5

3
5

Returned to 2 4
5

3
10

1
5Location

3 1
10

1
2

1
5

a. Assuming that a car is rented from location 1, what is the
probability that it will be at location 1 after two rentals?

b. Assuming that this dynamical system can be modeled as a
Markov chain, find the steady-state vector.

c. If the rental agency owns 120 cars, how many parking
spaces should it allocate at each location to be reasonably

certain that it will have enough spaces for the cars over the
long term? Explain your reasoning.

T3. Physical traits are determined by the genes that an offspring
receives from its parents. In the simplest case a trait in the off-
spring is determined by one pair of genes, one member of the
pair inherited from the male parent and the other from the
female parent. Typically, each gene in a pair can assume one
of two forms, called alleles, denoted by 𝐴 and a. This leads
to three possible pairings:

𝐴𝐴, 𝐴a, aa

called genotypes (the pairs 𝐴a and a𝐴 determine the same
trait and hence are not distinguished from one another). It is
shown in the study of heredity that if a parent of known geno-
type is crossed with a random parent of unknown genotype,
then the offspring will have the genotype probabilities given
in the following table, which can be viewed as a transition
matrix for a Markov process:

Genotype of Parent
AA Aa aa

AA 1
2

1
4 0

Genotype of Aa 1
2

1
2

1
2Offspring

aa 0 1
4

1
2

Thus, for example, the offspring of a parent of genotype 𝐴𝐴
that is crossed at randomwith a parent of unknown genotype
will have a 50% chance of being 𝐴𝐴, a 50% chance of being
𝐴a, and no chance of being aa.
a. Show that the transition matrix is regular.

b. Find the steady-state vector and discuss its physical
interpretation.

Chapter 5 Supplementary Exercises
1. a. Show that if 0 < 𝜃 < 𝜋, then

𝐴 = [cos𝜃 − sin𝜃
sin𝜃 cos𝜃]

has no real eigenvalues and consequently no real eigen-
vectors.

b. Give a geometric explanation of the result in part (a).

2. Find the eigenvalues of

𝐴 = [
0 1 0
0 0 1
k3 −3k2 3k

]

3. a. Show that if𝐷 is a diagonalmatrixwith nonnegative entries
on the main diagonal, then there is a matrix 𝑆 such that
𝑆 2 = 𝐷.

b. Show that if𝐴 is a diagonalizable matrix with nonnegative
eigenvalues, then there is a matrix 𝑆 such that 𝑆 2 = 𝐴.

c. Find a matrix 𝑆 such that 𝑆2 = 𝐴, given that

𝐴 = [
1 3 1
0 4 5
0 0 9

]

4. Given that𝐴 and𝐵 are similarmatrices, in each part determine
whether the given matrices are also similar.

a. 𝐴𝑇 and 𝐵𝑇

b. 𝐴k and 𝐵 k (k is a positive integer)

c. 𝐴−1 and 𝐵−1 (if𝐴 is invertible)

5. Prove: If 𝐴 is a square matrix and p(𝜆) = det(𝜆𝐼 − 𝐴) is the
characteristic polynomial of 𝐴, then the coefficient of 𝜆n−1 in
p(𝜆) is the negative of the trace of𝐴.
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6. Prove: If b ≠ 0, then
𝐴 = [a b

0 a]
is not diagonalizable.

7. In advanced linear algebra, one proves the Cayley–Hamilton
Theorem, which states that a square matrix𝐴 satisfies its char-
acteristic equation; that is, if

c0 + c1𝜆 + c2𝜆 2 + ⋅ ⋅ ⋅ + cn−1𝜆n−1 + 𝜆n = 0
is the characteristic equation of𝐴, then

c0 𝐼 + c1𝐴+ c2𝐴2 + ⋅ ⋅ ⋅ + cn−1𝐴n−1 +𝐴n = 0

Verify this result for

a. 𝐴 = [3 6
1 2] b. 𝐴 = [

0 1 0
0 0 1
1 −3 3

]

In Exercises 8–10, use the Cayley–Hamilton Theorem, stated in
Exercise 7.
8. a. Use Exercise 28 of Section 5.1 to establish the Cayley–

Hamilton Theorem for 2 × 2 matrices.
b. Prove the Cayley–Hamilton Theorem for n × n diagonaliz-

able matrices.

9. The Cayley–Hamilton Theorem provides a method for calculat-
ing powers of a matrix. For example, if𝐴 is a 2 × 2 matrix with
characteristic equation

c0 + c1𝜆 + 𝜆 2 = 0
then c0𝐼 + c1𝐴+𝐴2 = 0, so

𝐴2 = −c1𝐴− c0𝐼
Multiplying through by 𝐴 yields 𝐴3 = −c1𝐴2 − c0𝐴, which
expresses𝐴3 in terms of𝐴2 and𝐴, and multiplying through by
𝐴2 yields𝐴4 = −c1𝐴3 − c0𝐴2, which expresses𝐴4 in terms of
𝐴3 and𝐴2. Continuing in this way, we can calculate successive
powers of 𝐴 by expressing them in terms of lower powers. Use
this procedure to calculate𝐴2, 𝐴3, 𝐴4, and𝐴5 for

𝐴 = [3 6
1 2]

10. Use the method of the preceding exercise to calculate 𝐴3 and
𝐴4 for

𝐴 = [
0 1 0
0 0 1
1 −3 3

]

11. Find the eigenvalues of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎢
⎣

c1 c2 ⋅ ⋅ ⋅ cn
c1 c2 ⋅ ⋅ ⋅ cn
...

...
...

c1 c2 ⋅ ⋅ ⋅ cn

⎤
⎥
⎥
⎥
⎥
⎦

12. a. It was shown in Exercise 37 of Section 5.1 that if 𝐴 is an
n × nmatrix, then the coefficient of 𝜆n in the characteristic
polynomial of 𝐴 is 1. (A polynomial with this property is
calledmonic.) Show that the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ⋅ ⋅ ⋅ 0 −c0
1 0 0 ⋅ ⋅ ⋅ 0 −c1
0 1 0 ⋅ ⋅ ⋅ 0 −c2
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 1 −cn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

has characteristic polynomial

p(𝜆) = c0 + c1𝜆 + ⋅ ⋅ ⋅ + cn−1𝜆n−1 + 𝜆n

This shows that every monic polynomial is the characteris-
tic polynomial of some matrix. The matrix in this example
is called the companion matrix of p(𝜆). [Hint: Evaluate
all determinants in the problem by adding a multiple of the
second row to the first to introduce a zero at the top of the
first column, and then expanding by cofactors along thefirst
column.]

b. Find a matrix with characteristic polynomial

p(𝜆) = 1− 2𝜆 + 𝜆 2 + 3𝜆 3 + 𝜆 4

13. A square matrix𝐴 is called nilpotent if𝐴n = 0 for some pos-
itive integer n. What can you say about the eigenvalues of a
nilpotent matrix?

14. Prove: If 𝐴 is an n × n matrix with real entries and n is odd,
then𝐴 has at least one real eigenvalue.

15. Find a 3 × 3 matrix 𝐴 that has eigenvalues 𝜆 = 0, 1, and −1
with corresponding eigenvectors

[
0
1

−1
], [

1
−1
1
], [

0
1
1
]

respectively.

16. Suppose that a 4 × 4 matrix𝐴 has eigenvalues 𝜆1 = 1,
𝜆2 = −2, 𝜆3 = 3, and 𝜆4 = −3.
a. Use the method of Exercise 24 of Section 5.1 to find det(𝐴).
b. Use Exercise 5 above to find tr(𝐴).

17. Let𝐴 be a square matrix such that𝐴3 = 𝐴. What can you say
about the eigenvalues of𝐴?

18. a. Solve the system
y′1 = y1 + 3y2
y′2 = 2y1 + 4y2

b. Find the solution satisfying the initial conditions y1(0) = 5
and y2(0) = 6.

19. Let 𝐴 be a 3 × 3 matrix, one of whose eigenvalues is 1. Given
that both the sum and the product of all three eigenvalues
is 6, what are the possible values for the remaining two
eigenvalues?

20. Show that the matrices

𝐴 =
⎡
⎢
⎢
⎣

0 1 0
0 0 1
1 0 0

⎤
⎥
⎥
⎦

and 𝐷 =
⎡
⎢
⎢
⎣

d1 0 0
0 d2 0
0 0 d3

⎤
⎥
⎥
⎦

are similar if

dk = cos
2𝜋k
3

+ i sin
2𝜋k
3

(k = 1, 2, 3)



November 12, 2018 16:57 C06 Sheet number 1 Page number 341 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

341

CHAPTER 6

Inner Product Spaces
CHAPTER CONTENTS

6.1 Inner Products 341

6.2 Angle and Orthogonality in Inner Product Spaces 352

6.3 Gram–Schmidt Process; QR-Decomposition 361

6.4 Best Approximation; Least Squares 376

6.5 Mathematical Modeling Using Least Squares 385

6.6 Function Approximation; Fourier Series 392

Introduction
In Chapter 3 we defined the dot product of vectors in 𝑅n, and we used that concept to
define notions of length, angle, distance, and orthogonality. In this chapter we will gen-
eralize those ideas so they are applicable in any vector space, not just 𝑅n. We will also
discuss various applications of these ideas.

6.1 Inner Products
In this section we will use the most important properties of the dot product on Rn as
axioms, which, if satisfied by the vectors in a vector space V, will enable us to extend
the notions of length, distance, angle, and perpendicularity to general vector spaces.

General Inner Products
Most, but not all, of the concepts we will develop in this section apply to both real and
complex vector spaces. We will limit the text discussion to real vector spaces and leave the
comparable ideas for complex vector spaces for the exercises. Thus, it should be under-
stood that all vector spaces in this section are real, even if not stated explicitly.
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Definition 1

An inner product on a real vector space 𝑉 is a function that associates a real num-
ber ⟨u, v⟩with each pair of vectors in 𝑉 in such a way that the following axioms are
satisfied for all vectors u, v, andw in 𝑉 and all scalars k.
1. ⟨u, v⟩ = ⟨v,u⟩ [Symmetry axiom]

2. ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ [Additivity axiom]

3. ⟨ku, v⟩ = k⟨u, v⟩ [Homogeneity axiom]

4. ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0 [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

Because the axioms for a real inner product space are based on properties of the dot
product, these inner product space axioms will be satisfied automatically if we define the
inner product of two vectors u and v in 𝑅n to be

⟨u, v⟩ = u · v = u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn (1)

This inner product is commonly called the Euclidean inner product (or the standard
inner product) on 𝑅n to distinguish it from other possible inner products that might be
defined on 𝑅n. We call 𝑅n with the Euclidean inner product Euclidean n-space.

Inner products can be used to define notions of norm and distance in a general inner
product space just as we did with dot products in 𝑅n. Recall from Formulas (11) and (19)
of Section 3.2 that if u and v are vectors in Euclidean n-space, then norm and distance can
be expressed in terms of the dot product as

‖v‖ = √v · v and d(u, v) = ‖u − v‖ = √(u − v) · (u − v)

Motivated by these formulas, we make the following definition.

Definition 2

If 𝑉 is a real inner product space, then the norm (or length) of a vector v in 𝑉 is
denoted by ‖v‖ and is defined by

‖v‖ = √⟨v, v⟩
and the distance between two vectors is denoted by d(u, v) and is defined by

d(u, v) = ‖u − v‖ = √⟨u − v,u − v⟩
A vector of norm 1 is called a unit vector.

The following theorem, whose proof is left for the exercises, shows that norms and
distances in real inner product spaces have many of the properties that you might expect.

Theorem 6.1.1

If u and v are vectors in a real inner product space 𝑉, and if k is a scalar, then:
(a) ‖v‖ ≥ 0 with equality if and only if v = 0.
(b) ‖kv‖ = |k|‖v‖.
(c) d(u, v) = d(v,u).
(d) d(u, v) ≥ 0 with equality if and only if u = v.
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Although the Euclidean inner product is the most important inner product on 𝑅n,
there are various applications in which it is desirable to modify it by weighting each term
differently. More precisely, if

w1,w2, . . . ,wn
are positive real numbers, calledweights, and ifu = (u1,u2, . . . ,un) andv = (v1, v2, . . . , vn)
are vectors in 𝑅n, then it can be shown that the formula

⟨u, v⟩ = w1u1v1 +w2u2v2 + ⋅ ⋅ ⋅ +wnunvn (2)

defines an inner product on 𝑅n that we call theweighted Euclidean inner product with

Note that the standard
Euclidean inner product
in Formula (1) is the spe-
cial case of the weighted
Euclidean inner product in
which all the weights are 1.

weights𝒘𝟏, 𝒘𝟐, . . . , 𝒘𝒏.

EXAMPLE 1 | Weighted Euclidean Inner Product

Let u = (u1,u2) and v = (v1, v2) be vectors in 𝑅2. Verify that the weighted Euclidean inner
product

⟨u, v⟩ = 3u1v1 + 2u2v2 (3)
satisfies the four inner product axioms.

Solution
Axiom 1: Interchanging u and v in Formula (3) does not change the sum on the right side,
so ⟨u, v⟩ = ⟨v,u⟩.
Axiom 2: Ifw = (w1,w2), then

⟨u+ v,w⟩ = 3(u1 + v1)w1 + 2(u2 + v2)w2

= 3(u1w1 + v1w1) + 2(u2w2 + v2w2)
= (3u1w1 + 2u2w2) + (3v1w1 + 2v2w2)
= ⟨u,w⟩ + ⟨v,w⟩

Axiom 3: ⟨ku, v⟩ = 3(ku1)v1 + 2(ku2)v2
= k(3u1v1 + 2u2v2)
= k⟨u, v⟩

Axiom 4: Observe that ⟨v, v⟩ = 3(v1v1) + 2(v2v2) = 3v21 + 2v22 ≥ 0 with equality if and
only if v1 = v2 = 0, that is, if and only if v = 0.

In Example 1, we are using
subscripted w’s to denote
the components of the vec-
torw, not the weights. The
weights are the numbers 3
and 2 in Formula (3).

An Application of Weighted Euclidean Inner Products
To illustrate one way in which a weighted Euclidean inner product can arise, suppose that
some physical experiment has n possible numerical outcomes

x1, x2, . . . , xn
and that a series of m repetitions of the experiment yields these values with various fre-
quencies. Specifically, suppose that x1 occurs 𝑓1 times, x2 occurs 𝑓2 times, and so forth.
Since there is a total ofm repetitions of the experiment, it follows that

𝑓1 + 𝑓2 + ⋅ ⋅ ⋅ + 𝑓n = m
Thus, the arithmetic average of the observed numerical values (denoted by ̄x) is

̄x = 𝑓1x1 + 𝑓2x2 + ⋅ ⋅ ⋅ + 𝑓nxn
𝑓1 + 𝑓2 + ⋅ ⋅ ⋅ + 𝑓n

= 1
m (𝑓1x1 + 𝑓2x2 + ⋅ ⋅ ⋅ + 𝑓nxn) (4)

If we let
f = (𝑓1, 𝑓2, . . . , 𝑓n)
x = (x1, x2, . . . , xn)

w1 = w2 = ⋅ ⋅ ⋅ = wn = 1/m
then (4) can be expressed as the weighted Euclidean inner product

̄x = ⟨f, x⟩ = w1𝑓1x1 +w2𝑓2x2 + ⋅ ⋅ ⋅ +wn𝑓nxn



November 12, 2018 16:57 C06 Sheet number 4 Page number 344 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

344 CHAPTER 6 Inner Product Spaces

EXAMPLE 2 | Calculating with a Weighted Euclidean
Inner Product

It is important to keep in mind that norm and distance depend on the inner product being
used. If the inner product is changed, then the norms and distances between vectors also
change. For example, for the vectorsu = (1, 0) and v = (0, 1) in𝑅2 with the Euclidean inner
product we have

‖u‖ = √12 + 02 = 1
and

d(u, v) = ‖u− v‖ = ‖(1,−1)‖ = √12 + (−1)2 = √2
but if we change to the weighted Euclidean inner product

⟨u, v⟩ = 3u1v1 + 2u2v2
we have

‖u‖ = ⟨u,u⟩1/2 = [3(1)(1) + 2(0)(0)]1/2 = √3
and

d(u, v) = ‖u− v‖ = ⟨(1,−1), (1,−1)⟩1/2

= [3(1)(1) + 2(−1)(−1)]1/2 = √5

Unit Circles and Spheres in Inner Product Spaces

Definition 3

If 𝑉 is an inner product space, then the set of points in 𝑉 that satisfy

‖u‖ = 1

is called the unit sphere in 𝑉 (or the unit circle in the case where 𝑉 = 𝑅2).

EXAMPLE 3 | Unusual Unit Circles in R2

(a) Sketch the unit circle in an xy-coordinate system in 𝑅2 using the Euclidean inner prod-
uct ⟨u, v⟩ = u1v1 + u2v2.

(b) Sketch the unit circle in an xy-coordinate system in 𝑅2 using the weighted Euclidean
inner product ⟨u, v⟩ = 1

9u1v1 +
1
4u2v2.

Solution (a) If u = (x, y), then ‖u‖ = ⟨u,u⟩1/2 = √x2 + y2, so the equation of the unit
circle is√x2 + y2 = 1, or on squaring both sides,

x2 + y2 = 1

As expected, the graph of this equation is a circle of radius 1 centered at the origin
(Figure 6.1.1a).

Solution (b) Ifu = (x, y), then ‖u‖ = ⟨u,u⟩1/2 =√
1
9x

2 + 1
4y

2, so the equation of the unit

circle is√
1
9x

2 + 1
4y

2 = 1, or on squaring both sides,

x2

9
+ y2

4
= 1
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The graph of this equation is the ellipse shown in Figure 6.1.1b. Though this may seem
odd when viewed geometrically, it makes sense algebraically since all points on the ellipse
are 1 unit away from the origin relative to the given weighted Euclidean inner product. In
short, weighting has the effect of distorting the space that we are used to seeing through
“unweighted Euclidean eyes.”

y

x

1

‖u‖ = 1

(a)  The unit circle using
        the standard Euclidean
        inner product.

(b)  The unit circle using
        a weighted Euclidean
        inner product.

y

x

3

2
‖u‖ = 1

FIGURE 6.1.1

Inner Products Generated by Matrices
The Euclidean inner product and the weighted Euclidean inner products are special cases
of a general class of inner products on 𝑅n called matrix inner products. To define this
class of inner products, let u and v be vectors in 𝑅n that are expressed in column form,
and let 𝐴 be an invertible n × n matrix. It can be shown (Exercise 47) that if u · v is the
Euclidean inner product on 𝑅n, then the formula

⟨u, v⟩ = 𝐴u ·𝐴v (5)

also defines an inner product; it is called the inner product on 𝑹n generated by 𝑨.
Recall from Table 1 of Section 3.2 that if u and v are in column form, then u · v can

be written as v𝑇u from which it follows that (5) can be expressed as
⟨u, v⟩ = (𝐴v)𝑇𝐴u

or equivalently as

⟨u, v⟩ = v𝑇𝐴𝑇𝐴u (6)

EXAMPLE 4 | Matrices Generating Weighted Euclidean
Inner Products

The standard Euclidean and weighted Euclidean inner products are special cases of matrix
inner products. The standard Euclidean inner product on 𝑅n is generated by the n × n iden-
tity matrix, since setting𝐴 = 𝐼 in Formula (5) yields

⟨u, v⟩ = 𝐼u · 𝐼v = u · v

and the weighted Euclidean inner product

⟨u, v⟩ = w1u1v1 +w2u2v2 + ⋅ ⋅ ⋅ +wnunvn (7)

is generated by the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎢
⎣

√w1 0 0 ⋅ ⋅ ⋅ 0
0 √w2 0 ⋅ ⋅ ⋅ 0
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ √wn

⎤
⎥
⎥
⎥
⎥
⎦

This can be seen by observing that𝐴𝑇𝐴 is the n × n diagonal matrix whose diagonal entries
are the weights w1,w2, . . . ,wn.

Every diagonal matrix with
positive diagonal entries
generates a weighted inner
product. Why?

EXAMPLE 5 | Example 1 Revisited

The weighted Euclidean inner product ⟨u, v⟩ = 3u1v1 + 2u2v2 discussed in Example 1 is the
inner product on 𝑅2 generated by

𝐴 = [√3 0
0 √2

]
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Other Examples of Inner Products
So far, we have considered only examples of inner products on 𝑅n. We will now consider
examples of inner products on some of the other kinds of vector spaces that we discussed
earlier.

EXAMPLE 6 | The Standard Inner Product onMnn

If u = 𝑈 and v = 𝑉 are matrices in the vector space𝑀nn, then the formula

⟨u, v⟩ = tr(𝑈𝑇𝑉) (8)

defines an inner product on𝑀nn called the standard inner product on that space (see Def-
inition 8 of Section 1.3 for a definition of trace). This can be proved by confirming that the
four inner product space axioms are satisfied, but we can illustrate the idea by computing (8)
for the 2 × 2 matrices

𝑈 = [u1 u2
u3 u4

] and 𝑉 = [v1 v2
v3 v4

]

This yields
⟨u, v⟩ = tr(𝑈𝑇𝑉) = u1v1 + u2v2 + u3v3 + u4v4

which is just the dot product of the corresponding entries in the twomatrices. And it follows
from this that

‖u‖ = √⟨u,u⟩ = √tr⟨𝑈𝑇𝑈⟩ = √u21 + u22 + u23 + u24

For example, if

u = 𝑈 = [1 2
3 4] and v = 𝑉 = [−1 0

3 2]

then
⟨u, v⟩ = tr(𝑈𝑇𝑉) = 1(−1) + 2(0) + 3(3) + 4(2) = 16

and
‖u‖ = √⟨u,u⟩ = √tr(𝑈𝑇𝑈) = √12 + 22 + 32 + 42 = √30

‖v‖ = √⟨v, v⟩ = √tr(𝑉𝑇𝑉) = √(−1)2 + 02 + 32 + 22 = √14

EXAMPLE 7 | The Standard Inner Product on Pn

If
p = a0 + a1x+ ⋅ ⋅ ⋅ + anxn and q = b0 + b1x+ ⋅ ⋅ ⋅ + bnxn

are polynomials in 𝑃n, then the following formula defines an inner product on 𝑃n (verify)
that we will call the standard inner product on this space:

⟨p,q⟩ = a0b0 + a1b1 + ⋅ ⋅ ⋅ + anbn (9)

The norm of a polynomial p relative to this inner product is

‖p‖ = √⟨p,p⟩ = √a20 + a21 + ⋅ ⋅ ⋅ + a2n
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EXAMPLE 8 | The Evaluation Inner Product on Pn

If
p = p(x) = a0 + a1x+ ⋅ ⋅ ⋅ + anxn and q = q(x) = b0 + b1x+ ⋅ ⋅ ⋅ + bnxn

are polynomials in 𝑃n, and if x0, x1, . . . , xn are distinct real numbers (called sample points),
then the formula

⟨p,q⟩ = p(x0)q(x0) + p(x1)q(x1) + ⋅ ⋅ ⋅ + p(xn)q(xn) (10)

defines an inner product on 𝑃n called the evaluation inner product at x0, x1, . . . , xn. Alge-
braically, this can be viewed as the dot product in 𝑅n of the n-tuples

(p(x0), p(x1), . . . , p(xn)) and (q(x0), q(x1), . . . , q(xn))
and hence the first three inner product axioms follow from properties of the dot product. The
fourth inner product axiom follows from the fact that

⟨p,p⟩ = [p(x0)]2 + [p(x1)]2 + ⋅ ⋅ ⋅ + [p(xn)]2 ≥ 0

with equality holding if and only if

p(x0) = p(x1) = ⋅ ⋅ ⋅ = p(xn) = 0

But a nonzero polynomial of degree n or less can have at most n distinct roots, so it must be
that p = 0, which proves that the fourth inner product axiom holds.

The norm of a polynomial p relative to the evaluation inner product is

‖p‖ = √⟨p,p⟩ = √[p(x0)]2 + [p(x1)]2 + ⋅ ⋅ ⋅ + [p(xn)]2 (11)

EXAMPLE 9 | Working with the Evaluation Inner Product

Let 𝑃2 have the evaluation inner product at the points

x0 = −2, x1 = 0, and x2 = 2

Compute ⟨p,q⟩ and ‖p‖ for the polynomials p = p(x) = x2 and q = q(x) = 1+ x.

Solution It follows from (10) and (11) that

⟨p,q⟩ = p(−2)q(−2) + p(0)q(0) + p(2)q(2) = (4)(−1) + (0)(1) + (4)(3) = 8

‖p‖ = √[p(x0)]2 + [p(x1)]2 + [p(x2)]2 = √[p(−2)]2 + [p(0)]2 + [p(2)]2

= √42 + 02 + 42 = √32 = 4√2

CALCULUS REQUIREDEXAMPLE 10 | An Integral Inner Product on C[a, b]

Let f = 𝑓(x) and g = g(x) be two functions in 𝐶[a, b] and define

⟨f, g⟩ = ∫
b

a
𝑓(x)g(x) dx (12)

Wewill show that this formula defines an inner product on𝐶[a, b] by verifying the four inner
product axioms for functions f = 𝑓(x), g = g(x), and h = h(x) in 𝐶[a, b].
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Axiom 1: ⟨f, g⟩ = ∫
b

a
𝑓(x)g(x) dx =∫

b

a
g(x)𝑓(x) dx = ⟨g, f ⟩

Axiom 2: ⟨f+ g,h⟩ = ∫
b

a
(𝑓(x) + g(x))h(x) dx

= ∫
b

a
𝑓(x)h(x) dx+∫

b

a
g(x)h(x) dx

= ⟨f,h⟩ + ⟨g,h⟩

Axiom 3: ⟨kf, g⟩ = ∫
b

a
k𝑓(x)g(x) dx = k∫

b

a
𝑓(x)g(x) dx = k⟨f, g⟩

Axiom 4: If f = 𝑓(x) is any function in 𝐶[a, b], then

⟨f, f ⟩ = ∫
b

a
𝑓2(x) dx ≥ 0 (13)

since 𝑓2(x) ≥ 0 for all x in the interval [a, b]. Moreover, because 𝑓 is continuous on [a, b],
the equality in Formula (13) holds if and only if the function 𝑓 is identically zero on [a, b],
that is, if and only if f = 0; and this proves that Axiom 4 holds.

CALCULUS REQUIRED EXAMPLE 11 | Norm of a Vector in C[a, b]

If 𝐶[a, b] has the inner product that was defined in Example 10, then the norm of a func-
tion f = 𝑓(x) relative to this inner product is

‖f‖ = ⟨f, f⟩1/2 =
√√
√

∫
b

a
𝑓2(x) dx (14)

and the unit sphere in this space consists of all functions f in𝐶[a, b] that satisfy the equation

∫
b

a
𝑓2(x) dx = 1

Remark Note that the vector space 𝑃n is a subspace of 𝐶[a, b] because polynomials are
continuous functions. Thus, Formula (12) defines an inner product on 𝑃n that is different
from both the standard inner product and the evaluation inner product.

Warning Recall from calculus that the arc length of a curve y = f(x) over an interval
[a, b] is given by the formula

L =∫
b

a
√1+ [f ′(x)]2 dx (15)

Do not confuse this concept of arc length with ‖f‖, which is the length (norm) of f when
f is viewed as a vector in C[a, b]. Formulas (14) and (15) have different meanings.

Algebraic Properties of Inner Products
The following theorem lists some of the algebraic properties of inner products that follow
from the inner product axioms. This result is a generalization of Theorem 3.2.3, which
applied only to the dot product on 𝑅n.
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Theorem 6.1.2

If u, v, andw are vectors in a real inner product space 𝑉, and if k is a scalar, then:
(a) ⟨0, v⟩ = ⟨v, 0⟩ = 0
(b) ⟨u, v +w⟩ = ⟨u, v⟩ + ⟨u,w⟩
(c) ⟨u, v −w⟩ = ⟨u, v⟩ − ⟨u,w⟩
(d) ⟨u − v,w⟩ = ⟨u,w⟩ − ⟨v,w⟩
(e) k⟨u, v⟩ = ⟨u, kv⟩

Proof We will prove part (b) and leave the proofs of the remaining parts for the reader.
⟨u, v +w⟩ = ⟨v +w,u⟩ [By symmetry]

= ⟨v,u⟩ + ⟨w,u⟩ [By additivity]
= ⟨u, v⟩ + ⟨u,w⟩ [By symmetry]

The following example illustrates how Theorem 6.1.2 and the defining properties of
inner products can be used to perform algebraic computations with inner products. As
you read through the example, you will find it instructive to justify the steps.

EXAMPLE 12 | Calculating with Inner Products

⟨u− 2v, 3u+ 4v⟩ = ⟨u, 3u+ 4v⟩ − ⟨2v, 3u+ 4v⟩
= ⟨u, 3u⟩ + ⟨u, 4v⟩ − ⟨2v, 3u⟩ − ⟨2v, 4v⟩
= 3⟨u,u⟩ + 4⟨u, v⟩ − 6⟨v,u⟩ − 8⟨v, v⟩
= 3‖u‖2 + 4⟨u, v⟩ − 6⟨u, v⟩ − 8‖v‖2
= 3‖u‖2 − 2⟨u, v⟩ − 8‖v‖2

Exercise Set 6.1

1. Let 𝑅2 have the weighted Euclidean inner product
⟨u, v⟩ = 2u1v1 + 3u2v2

and let u = (1, 1), v = (3, 2), w = (0,−1), and k = 3. Com-
pute the stated quantities.

a. ⟨u, v⟩ b. ⟨kv,w⟩ c. ⟨u+ v,w⟩
d. ‖v‖ e. d(u, v) f. ‖u− kv‖

2. Follow the directions of Exercise 1 using the weighted
Euclidean inner product

⟨u, v⟩ = 1
2u1v1 + 5u2v2

In Exercises 3–4, compute the quantities in parts (a)–(f) of Exercise 1
using the inner product on 𝑅2 generated by𝐴.

3. 𝐴 = [
2 1
1 1

] 4. 𝐴 = [
1 0
2 −1]

In Exercises 5–6, find a matrix that generates the stated weighted
inner product on 𝑅2.

5. ⟨u, v⟩ = 2u1v1 + 3u2v2 6. ⟨u, v⟩ = 1
2u1v1 + 5u2v2

In Exercises 7–8, use the inner product on 𝑅2 generated by the
matrix𝐴 to find ⟨u, v⟩ for the vectors u = (0,−3) and v = (6, 2).

7. 𝐴 = [
4 1
2 −3]

8. 𝐴 = [
2 1

−1 3
]

In Exercises 9–10, compute the standard inner product on𝑀22 of the
given matrices.

9. 𝑈 = [3 −2
4 8] , 𝑉 = [−1 3

1 1]
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10. 𝑈 = [ 1 2
−3 5] , 𝑉 = [4 6

0 8]

InExercises 11–12, find the standard inner product on𝑃2 of the given
polynomials.
11. p = −2+ x+ 3x2, q = 4− 7x2

12. p = −5+ 2x+ x2, q = 3+ 2x− 4x2

In Exercises 13–14, a weighted Euclidean inner product on 𝑅2 is
given for the vectors u = (u1,u2) and v = (v1, v2). Find a matrix
that generates it.

13. ⟨u, v⟩ = 3u1v1 + 5u2v2 14. ⟨u, v⟩ = 4u1v1 + 6u2v2
In Exercises 15–16, a sequence of sample points is given. Use the eval-
uation inner product on 𝑃3 at those sample points to find ⟨p,q⟩ for
the polynomials

p = x+ x3 and q = 1+ x2

15. x0 = −2, x1 = −1, x2 = 0, x3 = 1

16. x0 = −1, x1 = 0, x2 = 1, x3 = 2

In Exercises 17–18, find ‖u‖ and d(u, v) relative to the weighted
Euclidean inner product ⟨u, v⟩ = 2u1v1 + 3u2v2 on 𝑅2.
17. u = (−3, 2) and v = (1, 7)

18. u = (−1, 2) and v = (2, 5)

In Exercises 19–20, find ‖p‖ and d(p,q) relative to the standard
inner product on 𝑃2.
19. p = −2+ x+ 3x2, q = 4− 7x2

20. p = −5+ 2x+ x2, q = 3+ 2x− 4x2

In Exercises 21–22, find ‖𝑈‖ and d(𝑈,𝑉) relative to the standard
inner product on𝑀22.

21. 𝑈 = [3 −2
4 8] , 𝑉 = [−1 3

1 1]

22. 𝑈 = [ 1 2
−3 5] , 𝑉 = [4 6

0 8]

In Exercises 23–24, let

p = x+ x3 and q = 1+ x2

Find ‖p‖ and d(p,q) relative to the evaluation inner product on 𝑃3
at the stated sample points.
23. x0 = −2, x1 = −1, x2 = 0, x3 = 1

24. x0 = −1, x1 = 0, x2 = 1, x3 = 2

In Exercises 25–26, find ‖u‖ and d(u, v) for the vectors u = (−1, 2)
and v = (2, 5) relative to the inner product on 𝑅2 generated by the
matrix𝐴.

25. 𝐴 = [
4 0
3 5

] 26. 𝐴 = [
1 2

−1 3
]

In Exercises 27–28, suppose that u, v, andw are vectors in an inner
product space such that

⟨u, v⟩ = 2, ⟨v,w⟩ = −6, ⟨u,w⟩ = −3
‖u‖ = 1, ‖v‖ = 2, ‖w‖ = 7

Evaluate the given expression.

27. a. ⟨2v−w, 3u+ 2w⟩ b. ‖u+ v‖

28. a. ⟨u− v− 2w, 4u+ v⟩ b. ‖2w− v‖

In Exercises 29–30, sketch the unit circle in 𝑅2 using the given inner
product.

29. ⟨u, v⟩ = 1
4u1v1 +

1
16u2v2 30. ⟨u, v⟩ = 2u1v1 + u2v2

In Exercises 31–32, find a weighted Euclidean inner product on 𝑅2

for which the “unit circle” is the ellipse shown in the accompanying
figure.

31.

x

y

1

3

FIGURE Ex-31

32.

x

y

1

3
4

FIGURE Ex-32

In Exercises 33–34, let u = (u1,u2,u3) and v = (v1, v2, v3). Show
that the expression does not define an inner product on 𝑅3, and list
all inner product axioms that fail to hold.
33. ⟨u, v⟩ = u21v21 + u22v22 + u23v23

34. ⟨u, v⟩ = u1v1 − u2v2 + u3v3

InExercises 35–36, suppose thatuandvare vectors in an inner prod-
uct space. Rewrite the given expression in terms of ⟨u, v⟩, ‖u‖2, and
‖v‖2.

35. ⟨2v− 4u,u− 3v⟩ 36. ⟨5u+ 6v, 4v− 3u⟩

37. (Calculus required) Let the vector space 𝑃2 have the inner
product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx

Find the following for p = 1 and q = x2.

a. ⟨p,q⟩ b. d(p,q)

c. ‖p‖ d. ‖q‖

38. (Calculus required) Let the vector space 𝑃3 have the inner
product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx

Find the following for p = 2x3 and q = 1− x3.

a. ⟨p,q⟩ b. d(p,q)

c. ‖p‖ d. ‖q‖

(Calculus required) In Exercises 39–40, use the inner product

⟨f, g⟩ = ∫
1

0
𝑓(x)g(x)dx

on𝐶[0, 1] to compute ⟨f, g⟩.

39. f = cos 2𝜋x, g = sin 2𝜋x 40. f = x, g = ex
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Working with Proofs

41. Prove parts (a) and (b) of Theorem 6.1.1.

42. Prove parts (c) and (d) of Theorem 6.1.1.

43. a. Letu = (u1,u2) and v = (v1, v2). Prove that the expression
⟨u, v⟩ = 3u1v1 + 5u2v2 defines an inner product on 𝑅2 by
showing that the inner product axioms hold.

b. What conditions must k1 and k2 satisfy for the expression
⟨u, v⟩ = k1u1v1 + k2u2v2 to define an inner product on𝑅2?
Justify your answer.

44. Prove that the following identity holds for vectors in any inner
product space.

⟨u, v⟩ = 1
4‖u+ v‖2 − 1

4‖u− v‖2

45. Prove that the following identity holds for vectors in any inner
product space.

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2

46. The definition of a complex vector space was given in the
first margin note in Section 4.1. The definition of a complex
inner product on a complex vector space 𝑉 is identical to
that in Definition 1 except that scalars are allowed to be com-
plex numbers, and Axiom 1 is replaced by ⟨u, v⟩ = ⟨v,u⟩. The
remaining axioms are unchanged. A complex vector space
with a complex inner product is called a complex inner prod-
uct space. Prove that if 𝑉 is a complex inner product space,
then ⟨u, kv⟩ = k⟨u, v⟩.

47. Prove that Formula (5) defines an inner product on 𝑅n.

48. a. Prove that if v is a fixed vector in a real inner product space
𝑉, then the mapping 𝑇∶ 𝑉→𝑅 defined by 𝑇(x) = ⟨x, v⟩
is a linear transformation.

b. Let𝑉 = 𝑅3 have the Euclidean inner product, and let v be
the vector (1, 0, 2). Compute 𝑇(1, 1, 1).

c. Let 𝑉 = 𝑃2 have the standard inner product, and let v be
the vector 1+ x. Compute 𝑇(x+ x2).

d. Let 𝑉 = 𝑃2 have the evaluation inner product at the
points x0 = 1, x1 = 0, x2 = −1, and let v = 1+ x. Com-
pute 𝑇(x+ x2).

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. The dot product on 𝑅2 is an example of a weighted inner

product.

b. The inner product of two vectors cannot be a negative real
number.

c. ⟨u, v+w⟩ = ⟨v,u⟩ + ⟨w,u⟩.

d. ⟨ku, kv⟩ = k2⟨u, v⟩.

e. If ⟨u, v⟩ = 0, then u = 0 or v = 0.

f. If ‖v‖2 = 0, then v = 0.

g. If 𝐴 is an n × nmatrix, then ⟨u, v⟩ = 𝐴u ·𝐴v defines an
inner product on 𝑅n.

Working with Technology
T1. a. Confirm that the following matrix generates an inner

product.

𝐴 =
⎡⎢⎢⎢⎢
⎣

5 8 6 −13
3 −1 0 −9
0 1 −1 0
2 4 3 −5

⎤⎥⎥⎥⎥
⎦

b. For the following vectors, use the inner product in part (a)
to compute ⟨u, v⟩, first by Formula (5) and then by For-
mula (6).

u =
⎡⎢⎢⎢⎢
⎣

1
−2
0
3

⎤⎥⎥⎥⎥
⎦

and v =
⎡⎢⎢⎢⎢
⎣

0
1

−1
2

⎤⎥⎥⎥⎥
⎦

T2. Let the vector space 𝑃4 have the evaluation inner product at
the points

−2, −1, 0, 1, 2
and let

p = p(x) = x+ x3 and q = q(x) = 1+ x2 + x4

a. Compute ⟨p,q⟩, ‖p‖, and ‖q‖.
b. Verify that the identities in Exercises 44 and 45 hold for the

vectors p and q.

T3. Let the vector space𝑀33 have the standard inner product and
let

u = 𝑈 =
⎡
⎢
⎢
⎣

1 −2 3
−2 4 1
3 1 0

⎤
⎥
⎥
⎦

and v = 𝑉 =
⎡
⎢
⎢
⎣

2 −1 0
1 4 3
1 0 2

⎤
⎥
⎥
⎦

a. Use Formula (8) to compute ⟨u, v⟩, ‖u‖, and ‖v‖.
b. Verify that the identities in Exercises 44 and 45 hold for the

vectors u and v.
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6.2 Angle and Orthogonality in Inner
Product Spaces

In Section 3.2 we defined the notion of “angle” between vectors in Rn. In this section we
will extend this idea to general vector spaces. This will enable us to extend the notion of
orthogonality as well, thereby setting the groundwork for a variety of new applications.

Cauchy–Schwarz Inequality
Recall from Formula (20) of Section 3.2 that the angle 𝜃 between two vectors u and v in
𝑅n is

𝜃 = cos−1 ( u · v
‖u‖‖v‖) (1)

Wewere assured that this formulawas valid because it followed from theCauchy–Schwarz
inequality (Theorem 3.2.4) that

−1 ≤ u · v
‖u‖‖v‖ ≤ 1 (2)

as required for the inverse cosine to be defined. The following generalization of the
Cauchy–Schwarz inequality will enable us to define the angle between two vectors in any
real inner product space.

Theorem 6.2.1

Cauchy–Schwarz Inequality
If u and v are vectors in a real inner product space 𝑉, then

|⟨u, v⟩| ≤ ‖u‖‖v‖ (3)

Proof We warn you in advance that the proof presented here depends on a clever trick
that is not easy to motivate.

In the case where u = 0 the two sides of (3) are equal since ⟨u, v⟩ and ‖u‖ are both
zero. Thus, we need consider only the case where u ≠ 0. Making this assumption, let

a = ⟨u,u⟩, b = 2⟨u, v⟩, c = ⟨v, v⟩
and let t be any real number. Since the positivity axiom states that the inner product of
any vector with itself is nonnegative, it follows that

0 ≤ ⟨tu + v, tu + v⟩ = ⟨u,u⟩t2 + 2⟨u, v⟩t + ⟨v, v⟩ = at2 + bt + c

This inequality implies that the quadratic polynomial at2 + bt + c has either no real roots
or a repeated real root. Therefore, its discriminantmust satisfy the inequality b2 − 4ac ≤ 0.
Expressing the coefficients a, b, and c in terms of the vectors u and v gives

4⟨u, v⟩2 − 4⟨u,u⟩ ⟨v, v⟩ ≤ 0

or, equivalently,
⟨u, v⟩2 ≤ ⟨u,u⟩⟨v, v⟩

Taking square roots of both sides and using the fact that ⟨u,u⟩ and ⟨v, v⟩ are nonnegative
yields

|⟨u, v⟩| ≤ ⟨u,u⟩1/2⟨v, v⟩1/2 or equivalently |⟨u, v⟩| ≤ ‖u‖‖v‖
which completes the proof.
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The following two alternative forms of the Cauchy–Schwarz inequality are useful to
know:

⟨u, v⟩2 ≤ ⟨u,u⟩⟨v, v⟩ (4)

⟨u, v⟩2 ≤ ‖u‖2‖v‖2 (5)

The first of these formulas was obtained in the proof of Theorem 6.2.1, and the second is
a variation of the first.

Angle Between Vectors
Our next goal is to define what is meant by the “angle” between vectors in a real inner
product space. As a first step, we leave it as an exercise for you to use the Cauchy–Schwarz
inequality to show that

−1 ≤ ⟨u, v⟩
‖u‖‖v‖ ≤ 1 (6)

This being the case, there is a unique angle 𝜃 in radian measure for which

cos 𝜃 = ⟨u, v⟩
‖u‖‖v‖ and 0 ≤ 𝜃 ≤ 𝜋 (7)

(Figure 6.2.1). This enables us to define the angle 𝜽 between u and v to be

𝜃 = cos−1 ( ⟨u, v⟩
‖u‖‖v‖) (8)

π

–1

1
y

–π
π
2

π
2

– π
2
5

π2 π3
π
2
3

θ

FIGURE 6.2.1

EXAMPLE 1 | Cosine of the Angle Between Vectors inM22

Let𝑀22 have the standard inner product. Find the cosine of the angle between the vectors

u = 𝑈 = [
1 2
3 4

] and v = 𝑉 = [
−1 0
3 2

]

Solution We showed in Example 6 of the previous section that

⟨u, v⟩ = 16, ‖u‖ = √30, ‖v‖ = √14
from which it follows that

cos𝜃 = ⟨u, v⟩
‖u‖‖v‖ =

16
√30√14

≈ 0.78
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Properties of Length and Distance in
General Inner Product Spaces
In Section 3.2 we used the dot product to extend the notions of length and distance to 𝑅n,
andwe showed that various basic geometry theorems remained valid (see Theorems 3.2.5,
3.2.6, and 3.2.7). By making only minor adjustments to the proofs of those theorems, one
can show that they remain valid in any real inner product space. For example, here is the
generalization of Theorem 3.2.5 (the triangle inequalities).

Theorem 6.2.2

If u, v, andw are vectors in a real inner product space𝑉, and if k is any scalar, then:
(a) ‖u + v‖ ≤ ‖u‖ + ‖v‖ [Triangle inequality for vectors]

(b) d(u, v) ≤ d(u,w) + d(w, v) [Triangle inequality for distances]

Proof (a)

‖u + v‖2 = ⟨u + v,u + v⟩
= ⟨u,u⟩ + 2⟨u, v⟩ + ⟨v, v⟩
≤ ⟨u,u⟩ + 2|⟨u, v⟩| + ⟨v, v⟩ [Property of absolute value]

≤ ⟨u,u⟩ + 2‖u‖‖v‖ + ⟨v, v⟩ [By (3)]

= ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2
= (‖u‖ + ‖v‖)2

Taking square roots gives ‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof (b) Identical to the proof of part (b) of Theorem 3.2.5.

Orthogonality
Although Example 1 is a useful mathematical exercise, there is only an occasional need to
compute angles in vector spaces other than 𝑅2 and 𝑅3. A problem of more importance in
general vector spaces is ascertainingwhether the angle between vectors is𝜋/2. You should
be able to see from Formula (8) that if u and v are nonzero vectors, then the angle between
them is 𝜃 = 𝜋/2 if and only if ⟨u, v⟩ = 0. Accordingly, we make the following definition,
which is a generalization of Definition 1 in Section 3.3 and is applicable even if one or
both of the vectors is zero.

Definition 1

Two vectorsu and v in an inner product space𝑉 are called orthogonal if ⟨u, v⟩ = 0.

As the following example shows, orthogonality depends on the inner product in the
sense that for different inner products two vectors can be orthogonal with respect to one
but not the other.
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EXAMPLE 2 | Orthogonality Depends on the Inner Product

The vectors u = (1, 1) and v = (1,−1) are orthogonal with respect to the Euclidean inner
product on 𝑅2 since

u · v = (1)(1) + (1)(−1) = 0
However, they are not orthogonal with respect to the weighted Euclidean inner product
⟨u, v⟩ = 3u1v1 + 2u2v2 since

⟨u, v⟩ = 3(1)(1) + 2(1)(−1) = 1 ≠ 0

EXAMPLE 3 | Orthogonal Vectors inM22

If𝑀22 has the inner product of Example 6 in the preceding section, then the matrices

𝑈 = [1 0
1 1] and 𝑉 = [0 2

0 0]

are orthogonal when viewed as vectors since

⟨𝑈,𝑉⟩ = 1(0) + 0(2) + 1(0) + 1(0) = 0

CALCULUS REQUIREDEXAMPLE 4 | Orthogonal Vectors in P2

Let 𝑃2 have the inner product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx

and let p = x and q = x2. Then

‖p‖ = ⟨p,p⟩1/2 = [∫
1

−1
xx dx]

1/2

= [∫
1

−1
x2 dx]

1/2

=√
2
3

‖q‖ = ⟨q,q⟩1/2 = [∫
1

−1
x2x2 dx]

1/2

= [∫
1

−1
x4 dx]

1/2

=√
2
5

⟨p,q⟩ = ∫
1

−1
xx2 dx =∫

1

−1
x3 dx = 0

Because ⟨p,q⟩ = 0, the vectors p = x and q = x2 are orthogonal relative to the given integral
inner product.

In Theorem 3.3.3 we proved the Theorem of Pythagoras for vectors in Euclidean
n-space. The following theorem extends this result to vectors in any real inner product
space.
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Theorem 6.2.3

Generalized Theorem of Pythagoras
If u and v are orthogonal vectors in a real inner product space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Proof The orthogonality of u and v implies that ⟨u, v⟩ = 0, so

‖u + v‖2 = ⟨u + v,u + v⟩ = ‖u‖2 + 2⟨u, v⟩ + ‖v‖2
= ‖u‖2 + ‖v‖2

CALCULUS REQUIRED EXAMPLE 5 | Theorem of Pythagoras in P2

In Example 4 we showed that p = x and q = x2 are orthogonal with respect to the inner
product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx

on 𝑃2. It follows from Theorem 6.2.3 that

‖p+ q‖2 = ‖p‖2 + ‖q‖2

Thus, from the computations in Example 4, we have

‖p+ q‖2 = (√
2
3 )

2

+ (√
2
5 )

2

= 2
3
+ 2
5
= 16

15

We can check this result by direct integration:

‖p+ q‖2 = ⟨p+ q,p+ q⟩ = ∫
1

−1
(x+ x2)(x+ x2) dx

=∫
1

−1
x2 dx+ 2∫

1

−1
x3 dx+∫

1

−1
x4 dx = 2

3
+ 0+ 2

5
= 16

15

Orthogonal Complements
In Section 4.9 we defined the notion of an orthogonal complement for subspaces of 𝑅n, and
we used that definition to establish a geometric link between the fundamental spaces of
a matrix. The following definition extends that idea to general inner product spaces.

Definition 2

If𝑊 is a subspace of a real inner product space 𝑉, then the set of all vectors in 𝑉
that are orthogonal to every vector in𝑊 is called the orthogonal complement of
𝑊 and is denoted by the symbol𝑊⟂.

In Theorem 4.9.6 we stated three properties of orthogonal complements in 𝑅n. The
following theorem generalizes parts (a) and (b) of that theorem to general real inner prod-
uct spaces.
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Theorem 6.2.4

If𝑊 is a subspace of a real inner product space 𝑉, then:
(a) 𝑊⟂ is a subspace of 𝑉.
(b) 𝑊 ∩𝑊⟂ = {0}.

Proof (a) The set𝑊⟂ contains at least the zero vector, since ⟨0,w⟩ = 0 for every vectorw
in𝑊. Thus, it remains to show that𝑊⟂ is closed under addition and scalarmultiplication.
To do this, suppose that u and v are vectors in 𝑊⟂, so that for every vector w in 𝑊 we
have ⟨u,w⟩ = 0 and ⟨v,w⟩ = 0. It follows from the additivity and homogeneity axioms of
inner products that

⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ = 0 + 0 = 0
⟨ku,w⟩ = k⟨u,w⟩ = k(0) = 0

which proves that u + v and ku are in𝑊⟂.

Proof (b) If v is any vector in both 𝑊 and 𝑊⟂, then v is orthogonal to itself; that is,
⟨v, v⟩ = 0. It follows from the positivity axiom for inner products that v = 0.

The next theorem,whichwe statewithout proof, generalizes part (c) of Theorem4.9.6.
Note, however, that this theorem applies only to finite-dimensional inner product spaces,
whereas Theorem 4.9.6 does not have this restriction.

Theorem 6.2.5 implies that
in a finite-dimensional
inner product space orthog-
onal complements occur in
pairs, each being orthogonal
to the other (Figure 6.2.2).

Theorem 6.2.5

If 𝑊 is a subspace of a real finite-dimensional inner product space 𝑉, then the
orthogonal complement of𝑊⟂ is𝑊; that is,

(𝑊⟂)⟂ = 𝑊

In our study of the fundamental spaces of a matrix in Section 4.9 we showed that

W

W ⊥

FIGURE 6.2.2 Each vector in𝑊
is orthogonal to each vector in
𝑊⟂ and conversely.

the row space and null space of a matrix are orthogonal complements with respect to the
Euclidean inner product on 𝑅n (Theorem 4.9.7). The following example takes advantage
of that fact.

EXAMPLE 6 | Basis for an Orthogonal Complement

Let𝑊 be the subspace of 𝑅6 spanned by the vectors

w1 = (1, 3,−2, 0, 2, 0), w2 = (2, 6,−5,−2, 4,−3),
w3 = (0, 0, 5, 10, 0, 15), w4 = (2, 6, 0, 8, 4, 18)

Find a basis for the orthogonal complement of𝑊.

Solution The subspace𝑊 is the same as the row space of the matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥
⎥
⎥
⎦
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Since the row space and null space of 𝐴 are orthogonal complements, our problem reduces
to finding a basis for the null space of this matrix. In Example 4 of Section 4.8 we showed
that

v1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−4
0

−2
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, v3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
0
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

form a basis for this null space. Expressing these vectors in comma-delimited form (tomatch
that ofw1,w2,w3, andw4), we obtain the basis vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0,−2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)
Youmaywant to check that these vectors are orthogonal tow1,w2,w3, andw4 by computing
the necessary dot products.

Exercise Set 6.2

In Exercises 1–2, find the cosine of the angle between the vectors with
respect to the Euclidean inner product.
1. a. u = (1,−3), v = (2, 4)

b. u = (−1, 5, 2), v = (2, 4,−9)
c. u = (1, 0, 1, 0), v = (−3,−3,−3,−3)

2. a. u = (−1, 0), v = (3, 8)
b. u = (4, 1, 8), v = (1, 0,−3)
c. u = (2, 1, 7,−1), v = (4, 0, 0, 0)

In Exercises 3–4, find the cosine of the angle between the vectors with
respect to the standard inner product on 𝑃2.
3. p = −1+ 5x+ 2x2, q = 2+ 4x− 9x2

4. p = x− x2, q = 7+ 3x+ 3x2

In Exercises 5–6, find the cosine of the angle between𝐴 and 𝐵 with
respect to the standard inner product on𝑀22.

5. 𝐴 = [2 6
1 −3] , 𝐵 = [3 2

1 0]

6. 𝐴 = [ 2 4
−1 3] , 𝐵 = [−3 1

4 2]

In Exercises 7–8, determine whether the vectors are orthogonal with
respect to the Euclidean inner product.
7. a. u = (−1, 3, 2), v = (4, 2,−1)

b. u = (−2,−2,−2), v = (1, 1, 1)
c. u = (a, b), v = (−b, a)

8. a. u = (u1,u2,u3), v = (0, 0, 0)
b. u = (−4, 6,−10, 1), v = (2, 1,−2, 9)
c. u = (a, b, c), v = (−c, 0, a)

In Exercises 9–10, show that the vectors are orthogonal with respect
to the standard inner product on 𝑃2.

9. p = −1− x+ 2x2, q = 2x+ x2

10. p = 2− 3x+ x2, q = 4+ 2x− 2x2

In Exercises 11–12, show that the matrices are orthogonal with
respect to the standard inner product on𝑀22.

11. 𝑈 = [ 2 1
−1 3], 𝑉 = [−3 0

0 2]

12. 𝑈 = [5 −1
2 −2], 𝑉 = [ 1 3

−1 0]

In Exercises 13–14, show that the vectors are not orthogonal with
respect to the Euclidean inner product on 𝑅2, and then find a value
of k for which the vectors are orthogonal with respect to the weighted
Euclidean inner product ⟨u, v⟩ = 2u1v1 + ku2v2.

13. u = (1, 3), v = (2,−1) 14. u = (2,−4), v = (0, 3)

15. If the vectors u = (1, 2) and v = (2,−4) are orthogonal
with respect to the weighted Euclidean inner product

⟨u, v⟩ = w1u1v1 +w2u2v2

what must be true of the weights w1 and w2?

16. Let𝑅4 have the Euclidean inner product. Find twounit vectors
that are orthogonal to all three of the vectorsu = (2, 1,−4, 0),
v = (−1,−1, 2, 2), andw = (3, 2, 5, 4).

17. Do there exist scalars k and l such that the vectors

p1 = 2+ kx+ 6x2, p2 = l+ 5x+ 3x2, p3 = 1+ 2x+ 3x2

are mutually orthogonal with respect to the standard inner
product on 𝑃2?
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18. Show that the vectors

u = [
3
3
] and v = [

5
−8]

are orthogonal with respect to the inner product on 𝑅2 that is
generated by the matrix

𝐴 = [
2 1
1 1

]

[See Formulas (5) and (6) of Section 6.1.]

19. Let 𝑃2 have the evaluation inner product at the points

x0 = −2, x1 = 0, x2 = 2

Show that the vectors p = x and q = x2 are orthogonal with
respect to this inner product.

20. Let𝑀22 have the standard inner product. Determine whether
the matrix 𝐴 is in the subspace spanned by the matrices 𝑈
and𝑉.

𝐴 = [
−1 1
0 2

] , 𝑈 = [
1 −1
3 0

] , 𝑉 = [
4 0
9 2

]

In Exercises 21–24, confirm that the Cauchy–Schwarz inequality
holds for the given vectors using the stated inner product.
21. u = (1, 0, 3), v = (2, 1,−1) using the weighted Euclidean

inner product ⟨u, v⟩ = 2u1v1 + 3u2v2 + u3v3 in 𝑅3.

22. 𝑈 = [−1 2
6 1] and 𝑉 = [1 0

3 3]

using the standard inner product on𝑀22.

23. p = −1+ 2x+ x2 and q = 2− 4x2 using the standard inner
product on 𝑃2.

24. The vectors
u = [11] and v = [ 1

−1]

with respect to the inner product in Exercise 18.

25. Let 𝑅4 have the Euclidean inner product, and suppose that
u = (−1, 1, 0, 2). Determine whether the vector u is orthogo-
nal to the subspace spanned by the vectorsw1 = (1,−1, 3, 0)
andw2 = (4, 0, 9, 2).

26. Let 𝑃3 have the standard inner product, and let

p = −1− x+ 2x2 + 4x3

Determine whether the polynomial p is orthogonal to the
subspace spanned by the polynomials w1 = 2− x2 + x3 and
w2 = 4x− 2x2 + 2x3.

In Exercises 27–28, find a basis for the orthogonal complement of the
subspace of 𝑅n spanned by the vectors.
27. v1 = (1, 4, 5, 2), v2 = (2, 1, 3, 0), v3 = (−1, 3, 2, 2)

28. v1 = (1, 4, 5, 6, 9), v2 = (3,−2, 1, 4,−1),
v3 = (−1, 0,−1,−2,−1), v4 = (2, 3, 5, 7, 8)

In Exercises 29–30, assume that𝑅n has the Euclidean inner product.
29. a. Let𝑊 be the line in𝑅2 with equation y = 2x. Find an equa-

tion for𝑊⟂.

b. Let 𝑊 be the plane in 𝑅3 with equation x− 2y− 3z = 0.
Find parametric equations for𝑊⟂.

30. a. Let 𝑊 be the y-axis in an xyz-coordinate system in 𝑅3.
Describe the subspace𝑊⟂.

b. Let 𝑊 be the yz-plane of an xyz-coordinate system in 𝑅3.
Describe the subspace𝑊⟂.

31. (Calculus required) Let 𝐶[0, 1] have the integral inner
product

⟨p,q⟩ = ∫
1

0
p(x)q(x) dx

and let p = p(x) = x and q = q(x) = x2.

a. Find ⟨p,q⟩.
b. Find ‖p‖ and ‖q‖.

32. a. Find the cosine of the angle between the vectors p and q in
Exercise 31.

b. Find the distance between the vectors p and q in Exer-
cise 31.

33. (Calculus required) Let 𝐶[−1, 1] have the integral inner
product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx

and let p = p(x) = x2 − x and q = q(x) = x+ 1.

a. Find ⟨p,q⟩.
b. Find ‖p‖ and ‖q‖.

34. a. Find the cosine of the angle between the vectors p and q in
Exercise 33.

b. Find the distance between the vectors p and q in Exer-
cise 33.

35. (Calculus required) Let 𝐶[0, 1] have the inner product in
Exercise 31.

a. Show that the vectors
p = p(x) = 1 and q = q(x) = 1

2 − x
are orthogonal.

b. Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

36. (Calculus required) Let 𝐶[−1, 1] have the inner product in
Exercise 33.

a. Show that the vectors
p = p(x) = x and q = q(x) = x2 − 1

are orthogonal.

b. Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

37. Let 𝑉 be an inner product space. Show that if u and v are
orthogonal unit vectors in𝑉, then ‖u− v‖ = √2.

38. Let𝑉 be an inner product space. Show that ifw is orthogonal
to both u1 and u2, then it is orthogonal to k1u1 + k2u2 for all
scalars k1 and k2. Interpret this result geometrically in the case
where𝑉 is 𝑅3 with the Euclidean inner product.

39. (Calculus required) Let 𝐶[0, 𝜋] have the inner product

⟨f, g⟩ = ∫
𝜋

0
𝑓(x)g(x) dx

and let fn = cosnx (n = 0, 1, 2, . . .). Show that if k ≠ l, then fk
and fl are orthogonal vectors.
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40. As shown in the figure below, the vectors u = (1, √3 ) and
v = (−1, √3 ) have norm 2 and an angle of 60∘ between
them relative to the Euclidean inner product. Find a weighted
Euclidean inner product with respect to which u and v are
orthogonal unit vectors.

y

x
uv

2

60°

(–1, 3) (1, 3)

FIGURE Ex-40

Working with Proofs
41. Let𝑉 be an inner product space. Prove that ifw is orthogonal

to each of the vectors u1,u2, . . . ,ur, then it is orthogonal to
every vector in span{u1,u2, . . . ,ur}.

42. Let {v1, v2, . . . , vr} be a basis for an inner product space 𝑉.
Prove that the zero vector is the only vector in𝑉 that is orthog-
onal to all of the basis vectors.

43. Let {w1,w2, . . . ,wk} be a basis for a subspace𝑊 of 𝑉. Prove
that 𝑊⟂ consists of all vectors in 𝑉 that are orthogonal to
every basis vector.

44. Prove the following generalization of Theorem 6.2.3: If
v1, v2, . . . , vr are pairwise orthogonal vectors in an inner
product space𝑉, then

‖v1 + v2 + ⋅ ⋅ ⋅ + vr‖2 = ‖v1‖2 + ‖v2‖2 + ⋅ ⋅ ⋅ + ‖vr‖2

45. Prove: If u and v are n × 1 matrices and 𝐴 is an n × nmatrix,
then

(v𝑇𝐴𝑇𝐴u)2 ≤ (u𝑇𝐴𝑇𝐴u)(v𝑇𝐴𝑇𝐴v)

46. Use the Cauchy–Schwarz inequality to prove that for all real
values of a, b, and 𝜃,

(a cos𝜃 + b sin𝜃)2 ≤ a2 + b2

47. Prove: If w1,w2, . . . ,wn are positive real numbers, and if
u = (u1,u2, . . . ,un) and v = (v1, v2, . . . , vn) are any two
vectors in 𝑅n, then

|w1u1v1 +w2u2v2 + ⋅ ⋅ ⋅ +wnunvn| ≤
(w1u21 +w2u22 + ⋅ ⋅ ⋅ +wnu2n)1/2(w1v21 +w2v22 + ⋅ ⋅ ⋅ +wnv2n)1/2

48. Prove that equality holds in the Cauchy–Schwarz inequality if
and only if u and v are linearly dependent.

49. (Calculus required) Let 𝑓(x) and g(x) be continuous func-
tions on [0, 1]. Prove:

a. [∫
1

0
𝑓(x)g(x) dx]

2

≤ [∫
1

0
𝑓2(x) dx] [∫

1

0
g2(x) dx]

b. [∫
1

0
[𝑓(x) + g(x)]2 dx]

1/2

≤ [∫
1

0
𝑓2(x) dx]

1/2

+ [∫
1

0
g2(x) dx]

1/2

[Hint: Use the Cauchy–Schwarz inequality.]

50. Prove that Formula (4) holds for all nonzero vectors u and v
in a real inner product space𝑉.

51. Let 𝑇𝐴∶ 𝑅2→𝑅2 be multiplication by

𝐴 = [
1 1

−1 1
]

and let x = (1, 1).
a. Assuming that 𝑅2 has the Euclidean inner product, find all

vectors v in 𝑅2 such that ⟨x, v⟩ = ⟨𝑇𝐴(x), 𝑇𝐴(v)⟩.
b. Assuming that 𝑅2 has the weighted Euclidean inner prod-

uct ⟨u, v⟩ = 2u1v1 + 3u2v2, find all vectors v in 𝑅2 such
that ⟨x, v⟩ = ⟨𝑇𝐴(x), 𝑇𝐴(v)⟩.

52. Let 𝑇∶ 𝑃2→𝑃2 be the linear transformation defined by

𝑇(a+ bx+ cx2) = 3a− cx2

and let p = 1+ x.

a. Assuming that 𝑃2 has the standard inner product, find all
vectors q in 𝑃2 such that ⟨p,q⟩ = ⟨𝑇(p), 𝑇(q)⟩.

b. Assuming that 𝑃2 has the evaluation inner product at the
points x0 = −1, x1 = 0, x2 = 1, find all vectors q in𝑃2 such
that ⟨p,q⟩ = ⟨𝑇(p), 𝑇(q)⟩.

True-False Exercises
TF. In parts (a)–(f) determine whether the statement is true or

false, and justify your answer.
a. If u is orthogonal to every vector of a subspace𝑊, then

u = 0.

b. If u is a vector in both𝑊 and𝑊⟂, then u = 0.

c. If u and v are vectors in𝑊⟂, then u+ v is in𝑊⟂.

d. If u is a vector in𝑊⟂ and k is a real number, then ku is
in𝑊⟂.

e. If u and v are orthogonal, then |⟨u, v⟩| = ‖u‖‖v‖.

f. If u and v are orthogonal, then ‖u+ v‖ = ‖u‖ + ‖v‖.

Working with Technology
T1. a. We know that the row space and null space of a matrix are

orthogonal complements relative to the Euclidean inner
product. Confirm this fact for the matrix

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 3 5
4 −3 1 3
3 −2 3 4
4 −1 15 17
7 −6 −7 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b. Find a basis for the orthogonal complement of the column
space of𝐴.

T2. In each part, confirm that the vectors u and v satisfy
the Cauchy–Schwarz inequality relative to the stated inner
product.
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a. 𝑀44 with the standard inner product.

u =
⎡⎢⎢⎢⎢
⎣

1 0 2 0
0 −1 0 1
3 0 0 2
0 4 −3 0

⎤⎥⎥⎥⎥
⎦

and v =
⎡⎢⎢⎢⎢
⎣

2 2 1 3
3 −1 0 1
1 0 0 −2

−3 1 2 0

⎤⎥⎥⎥⎥
⎦

b. 𝑅4 with the weighted Euclidean inner product with
weights𝑤1 = 1

2 ,𝑤2 = 1
4 ,𝑤3 = 1

8 ,𝑤4 = 1
8 .

u = (1,−2, 2, 1) and v = (0,−3, 3,−2)

6.3 Gram–Schmidt Process;
QR-Decomposition

In many problems involving vector spaces, the problem solver is free to choose any basis
for the vector space that seems appropriate. In inner product spaces, the solution of a
problem can often be simplified by choosing a basis in which the vectors are orthogonal
to one another. In this section we will show how such bases can be obtained.

Orthogonal and Orthonormal Sets
Recall from Section 6.2 that two vectors in an inner product space are said to be orthogonal
if their inner product is zero. The following definition extends the notion of orthogonality
to sets of vectors in an inner product space.

Definition 1

A set of two or more vectors in a real inner product space is said to be orthogonal
if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which
each vector has norm 1 is said to be orthonormal.

EXAMPLE 1 | An Orthogonal Set in R3

Let
v1 = (0, 1, 0), v2 = (1, 0, 1), v3 = (1, 0,−1)

and assume that 𝑅3 has the Euclidean inner product. It follows that 𝑆 = {v1, v2, v3} is an
orthogonal set since ⟨v1, v2⟩ = ⟨v1, v3⟩ = ⟨v2, v3⟩ = 0.

Note that Formula (1) is
identical to Formula (4) of
Section 3.2, but whereas
Formula (4) was valid only
for vectors in Rn with the
Euclidean inner product,
Formula (1) is valid in gen-
eral inner product spaces.

It frequently happens that one has found a set of orthogonal vectors in an inner prod-
uct space but what is actually needed is a set of orthonormal vectors. A simple way to
convert an orthogonal set of nonzero vectors into an orthonormal set is to multiply each
vector v in the orthogonal set by the reciprocal of its length to create a vector of norm 1
(called a unit vector). To see why this works, suppose that v is a nonzero vector in an
inner product space, and let

u = 1
‖v‖v (1)
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Then it follows from Theorem 6.1.1(b) with k = ‖v‖ that

‖u‖ = ‖
‖‖
1
‖v‖v

‖
‖‖ =

|||
1
‖v‖

||| ‖v‖ =
1
‖v‖‖v‖ = 1

This process of multiplying v by the reciprocal of its length is called normalizing v. We
leave it as an exercise to show that normalizing the vectors in an orthogonal set of nonzero
vectors preserves the orthogonality of the vectors and produces an orthonormal set.

EXAMPLE 2 | Constructing an Orthonormal Set

The Euclidean norms of the vectors in Example 1 are

‖v1‖ = 1, ‖v2‖ = √2, ‖v3‖ = √2
Consequently, normalizing u1, u2, and u3 yields

u1 =
v1
‖v1‖

= (0, 1, 0), u2 =
v2
‖v2‖

= ( 1
√2

, 0, 1
√2

),

u3 =
v3
‖v3‖

= ( 1
√2

, 0,− 1
√2

)

We leave it for you to verify that the set 𝑆 = {u1,u2,u3} is orthonormal by showing that
⟨u1,u2⟩ = ⟨u1,u3⟩ = ⟨u2,u3⟩ = 0 and ‖u1‖ = ‖u2‖ = ‖u3‖ = 1

In 𝑅2 any two nonzero perpendicular vectors are linearly independent because nei-
ther is a scalar multiple of the other; and in 𝑅3 any three nonzero mutually perpendicular
vectors are linearly independent because no one lies in the plane of the other two (and
hence is not expressible as a linear combination of the other two). The following theorem
generalizes these observations.

Theorem 6.3.1

If 𝑆 = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an inner product
space, then 𝑆 is linearly independent.

Proof Assume that
k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn = 0 (2)

To demonstrate that 𝑆 = {v1, v2, . . . , vn} is linearly independent, we must prove that
k1 = k2 = ⋅ ⋅ ⋅ = kn = 0

For each vi in 𝑆, it follows from (2) that
⟨k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn, vi⟩ = ⟨0, vi⟩ = 0

or, equivalently,
k1⟨v1, vi⟩ + k2⟨v2, vi⟩ + ⋅ ⋅ ⋅ + kn⟨vn, vi⟩ = 0

From the orthogonality of 𝑆 it follows that ⟨vj, vi⟩ = 0 when j ≠ i, so this equation reduces
to

ki⟨vi, vi⟩ = 0
Since the vectors in 𝑆 are assumed to be nonzero, it follows from the positivity axiom
for inner products that ⟨vi, vi⟩ ≠ 0. Thus, the preceding equation implies that each ki in
Equation (2) is zero, which is what we wanted to prove.
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In an inner product space, a basis consisting of orthonormal vectors is called an Since an orthonormal set
is orthogonal, and since its
vectors are nonzero (norm
1), it follows from Theorem
6.3.1 that every orthonormal
set is linearly independent.

orthonormal basis, and a basis of orthogonal vectors is called an orthogonal basis. A
familiar example of an orthonormal basis is the standard basis for 𝑅n with the Euclidean
inner product:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

EXAMPLE 3 | An Orthonormal Basis for Pn

Recall from Example 7 of Section 6.1 that the standard inner product of the polynomials

p = a0 + a1x+ ⋅ ⋅ ⋅ + anxn and q = b0 + b1x+ ⋅ ⋅ ⋅ + bnxn

is
⟨p,q⟩ = a0b0 + a1b1 + ⋅ ⋅ ⋅ + anbn

and the norm of p relative to this inner product is

‖p‖ = √⟨p,p⟩ = √a20 + a21 + ⋅ ⋅ ⋅ + a2n

Using these formulas you should be able to show that the standard basis

𝑆 = {1, x, x2, . . . , xn}
is orthonormal with respect to this inner product (verify).

EXAMPLE 4 | An Orthonormal Basis

In Example 2 we showed that the vectors

u1 = (0, 1, 0), u2 = ( 1
√2

, 0, 1
√2

), and u3 = ( 1
√2

, 0,− 1
√2

)

form an orthonormal set with respect to the Euclidean inner product on 𝑅3. By Theorem
6.3.1, these vectors form a linearly independent set, and since 𝑅3 is three-dimensional, it
follows from Theorem 4.6.4 that 𝑆 = {u1,u2,u3} is an orthonormal basis for 𝑅3.

Coordinates Relative to Orthonormal Bases
One way to express a vector u as a linear combination of basis vectors

𝑆 = {v1, v2, . . . , vn}

is to convert the vector equation

u = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn
to a linear system and solve for the coefficients c1, c2, . . . , cn. However, if the basis happens
to be orthogonal or orthonormal, then the following theorem shows that the coefficients
can be obtained more simply by computing appropriate inner products.
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Theorem 6.3.2

(a) If 𝑆 = {v1, v2, . . . , vn} is an orthogonal basis for an inner product space 𝑉, and
if u is any vector in 𝑉, then

u = ⟨u, v1⟩
‖v1‖2

v1 +
⟨u, v2⟩
‖v2‖2

v2 + ⋅ ⋅ ⋅ + ⟨u, vn⟩
‖vn‖2

vn (3)

(b) If 𝑆 = {v1, v2, . . . , vn} is an orthonormal basis for an inner product space 𝑉, and
if u is any vector in 𝑉, then

u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + ⋅ ⋅ ⋅ + ⟨u, vn⟩vn (4)

Proof (a) Since 𝑆 = {v1, v2, . . . , vn} is a basis for 𝑉, every vector u in 𝑉 can be expressed
in the form

u = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn
We will complete the proof by showing that

ci =
⟨u, vi⟩
‖vi‖2

(5)

for i = 1, 2, . . . ,n. To do this, observe first that
⟨u, vi⟩ = ⟨c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn, vi⟩

= c1⟨v1, vi⟩ + c2⟨v2, vi⟩ + ⋅ ⋅ ⋅ + cn⟨vn, vi⟩
Since 𝑆 is an orthogonal set, all of the inner products in the last equality are zero except
the ith, so we have

⟨u, vi⟩ = ci⟨vi, vi⟩ = ci‖vi‖2
Solving this equation for ci yields (5), which completes the proof.

Proof (b) In this case, ‖v1‖ = ‖v2‖ = ⋅ ⋅ ⋅ = ‖vn‖ = 1, so Formula (3) simplifies to For-
mula (4).

Using the terminology and notation from Definition 2 of Section 4.5, it follows from
Theorem 6.3.2 that the coordinate vector of a vector u in 𝑉 relative to an orthogonal basis
𝑆 = {v1, v2, . . . , vn} is

(u)𝑆 = (⟨u, v1⟩‖v1‖2
, ⟨u, v2⟩‖v2‖2

, . . . , ⟨u, vn⟩‖vn‖2
) (6)

and relative to an orthonormal basis 𝑆 = {v1, v2, . . . , vn} is

(u)𝑆 = (⟨u, v1⟩, ⟨u, v2⟩, . . . , ⟨u, vn⟩) (7)

EXAMPLE 5 | A Coordinate Vector Relative
to an Orthonormal Basis

Let
v1 = (0, 1, 0), v2 = (− 4

5 , 0,
3
5), v3 = ( 35 , 0,

4
5)

It is easy to check that 𝑆 = {v1, v2, v3} is an orthonormal basis for 𝑅3 with the Euclidean
inner product. Express the vector u = (1, 1, 1) as a linear combination of the vectors in 𝑆,
and find the coordinate vector (u)𝑆.
Solution We leave it for you to verify that

⟨u, v1⟩ = 1, ⟨u, v2⟩ = − 1
5 , and ⟨u, v3⟩ = 7

5
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Therefore, by Theorem 6.3.2 we have

u = v1 − 1
5v2 +

7
5v3

that is,
(1, 1, 1) = (0, 1, 0) − 1

5(− 4
5 , 0,

3
5)+ 7

5( 35 , 0,
4
5)

Thus, the coordinate vector of u relative to 𝑆 is
(u)𝑆 = (⟨u, v1⟩, ⟨u, v2⟩, ⟨u, v3⟩) = (1,− 1

5 ,
7
5)

EXAMPLE 6 | An Orthonormal Basis from an
Orthogonal Basis

(a) Show that the vectors

w1 = (0, 2, 0), w2 = (3, 0, 3), w3 = (−4, 0, 4)
form an orthogonal basis for 𝑅3 with the Euclidean inner product, and use that basis to
find an orthonormal basis by normalizing each vector.

(b) Express the vectoru = (1, 2, 4) as a linear combination of the orthonormal basis vectors
obtained in part (a).

Solution (a) The given vectors form an orthogonal set since

⟨w1,w2⟩ = 0, ⟨w1,w3⟩ = 0, ⟨w2,w3⟩ = 0

It follows from Theorem 6.3.1 that these vectors are linearly independent and hence form a
basis for 𝑅3 by Theorem 4.6.4. We leave it for you to calculate the norms of w1,w2, and w3
and then obtain the orthonormal basis

v1 =
w1
‖w1‖

= (0, 1, 0), v2 =
w2
‖w2‖

= ( 1
√2

, 0, 1
√2

),

v3 =
w3
‖w3‖

= (− 1
√2

, 0, 1
√2

)

Solution (b) It follows from Formula (4) that

u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + ⟨u, v3⟩v3
We leave it for you to confirm that

⟨u, v1⟩ = (1, 2, 4) · (0, 1, 0) = 2

⟨u, v2⟩ = (1, 2, 4) ·( 1
√2

, 0, 1
√2

) = 5
√2

⟨u, v3⟩ = (1, 2, 4) ·(− 1
√2

, 0, 1
√2

) = 3
√2

and hence that

(1, 2, 4) = 2(0, 1, 0) + 5
√2

( 1
√2

, 0, 1
√2

)+ 3
√2

(− 1
√2

, 0, 1
√2

)

Orthogonal Projections
Many applied problems are best solved by working with orthogonal or orthonormal basis
vectors. Such bases are typically found by starting with some simple basis (say a standard
basis) and then converting that basis into an orthogonal or orthonormal basis. To explain
exactly how that is donewill require somepreliminary ideas about orthogonal projections.
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In Section 3.3 we proved a result called the Projection Theorem (see Theorem 3.3.2)
that dealt with the problem of decomposing a vector u in 𝑅n into a sum of two terms,w1
andw2, in whichw1 is the orthogonal projection of u on some nonzero vector a andw2 is
orthogonal tow1 (Figure 3.3.2). That result is a special case of the following more general
theorem, which we will state without proof.

Theorem 6.3.3

Projection Theorem
If 𝑊 is a finite-dimensional subspace of an inner product space𝑉, then every vector
u in 𝑉 can be expressed in exactly one way as

u = w1 +w2 (8)

wherew1 is in𝑊 andw2 is in𝑊⟂.

The vectorsw1 andw2 in Formula (8) are commonly denoted by

w1 = proj𝑊 u and w2 = proj𝑊⟂ u (9)

These are called the orthogonal projection of u on W and the orthogonal projection
of u on W⟂, respectively. The vector w2 is also called the component of u orthogonal
to W . Using the notation in (9), Formula (8) can be expressed as

u = proj𝑊 u + proj𝑊⟂ u (10)

(Figure 6.3.1). Moreover, since proj𝑊⟂u = u − proj𝑊 u, we can also express Formula

W ⊥

W
0

u
projW ⊥ u

projW  u

FIGURE 6.3.1 (10) as

u = proj𝑊 u + (u − proj𝑊 u) (11)

The following theorem provides formulas for calculating orthogonal projections.

Although Formulas (12)
and (13) are expressed in
terms of orthogonal and
orthonormal basis vectors,
the resulting vector proj𝑊u
does not depend on the
basis vectors that are used.

Theorem 6.3.4

Let𝑊 be a finite-dimensional subspace of an inner product space 𝑉.
(a) If {v1, v2, . . . , vr} is an orthogonal basis for𝑊, and u is any vector in 𝑉, then

proj𝑊 u = ⟨u, v1⟩
‖v1‖2

v1 +
⟨u, v2⟩
‖v2‖2

v2 + ⋅ ⋅ ⋅ + ⟨u, vr⟩
‖vr‖2

vr (12)

(b) If {v1, v2, . . . , vr} is an orthonormal basis for𝑊, and u is any vector in 𝑉, then
proj𝑊 u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2 + ⋅ ⋅ ⋅ + ⟨u, vr⟩vr (13)

Proof (a) It follows from Theorem 6.3.3 that the vector u can be expressed in the form
u = w1 +w2, where w1 = proj𝑊 u is in 𝑊 and w2 is in 𝑊⟂; and it follows from Theo-
rem 6.3.2 that the component proj𝑊 u = w1 can be expressed in terms of the basis vectors
for𝑊 as

proj𝑊 u = w1 =
⟨w1, v1⟩
‖v1‖2

v1 +
⟨w1, v2⟩
‖v2‖2

v2 + ⋅ ⋅ ⋅ + ⟨w1, vr⟩
‖vr‖2

vr (14)

Sincew2 is orthogonal to𝑊, it follows that

⟨w2, v1⟩ = ⟨w2, v2⟩ = ⋅ ⋅ ⋅ = ⟨w2, vr⟩ = 0
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so we can rewrite (14) as

proj𝑊 u = w1 =
⟨w1 +w2, v1⟩

‖v1‖2
v1 +

⟨w1 +w2, v2⟩
‖v2‖2

v2 + ⋅ ⋅ ⋅ + ⟨w1 +w2, vr⟩
‖vr‖2

vr

or, equivalently, as

proj𝑊 u = w1 =
⟨u, v1⟩
‖v1‖2

v1 +
⟨u, v2⟩
‖v2‖2

v2 + ⋅ ⋅ ⋅ + ⟨u, vr⟩
‖vr‖2

vr

Proof (b) In this case, ‖v1‖ = ‖v2‖ = ⋅ ⋅ ⋅ = ‖vr‖ = 1, so Formula (14) simplifies to For-
mula (13).

EXAMPLE 7 | Calculating Projections

Let𝑅3 have theEuclidean inner product, and let𝑊 be the subspace spanned by the orthonor-
mal vectors v1 = (0, 1, 0) and v2 = (− 4

5 , 0,
3
5). FromFormula (13) the orthogonal projection

of u = (1, 1, 1) on𝑊 is

proj𝑊u = ⟨u, v1⟩v1 + ⟨u, v2⟩v2
= (1)(0, 1, 0) + (− 1

5)(−
4
5 , 0,

3
5)

= ( 4
25 , 1, −

3
25)

The component of u orthogonal to𝑊 is

proj𝑊⟂ u = u− proj𝑊u = (1, 1, 1) − ( 4
25 , 1, −

3
25) = ( 2125 , 0,

28
25)

Observe that proj𝑊⟂ u is orthogonal to both v1 and v2, so this vector is orthogonal to each
vector in the space𝑊 spanned by v1 and v2, as it should be.

A Geometric Interpretation of Orthogonal Projections
It follows fromFormula (10) of Section 3.3 that each term inFormula (12) can be viewed as
the orthogonal projection of u onto a 1-dimensional subspace. The first term is the orthog-
onal projection onto span{v1}, the second is the orthogonal projection onto span{v2}, and
so forth. This suggests that we can think of (12) as the sum of orthogonal projections onto
“axes” determined by the basis vectors for the subspace𝑊 (Figure 6.3.2).

W

u

v2

v1

projW u

projv2
u

projv1
u

0

FIGURE 6.3.2
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The Gram–Schmidt Process
We have seen that orthonormal bases exhibit a variety of useful properties. Our next theo-
rem, which is themain result in this section, shows that every nonzero finite-dimensional
vector space has an orthonormal basis. The proof of this result is extremely important
since it provides an algorithm, or method, for converting an arbitrary basis into an
orthonormal basis.

Theorem 6.3.5

Every nonzero finite-dimensional inner product space has an orthonormal basis.

Proof Let𝑊 be any nonzero finite-dimensional subspace of an inner product space, and
suppose that {u1,u2, . . . ,ur} is any basis for𝑊. It suffices to show that𝑊 has an orthogo-
nal basis since the vectors in that basis can be normalized to obtain an orthonormal basis.
The following sequence of steps will produce an orthogonal basis {v1, v2, . . . , vr} for𝑊:
Step 1. Let v1 = u1.
Step 2. As illustrated in Figure 6.3.3, we can obtain a vector v2 that is orthogonal to v1

W1

u2

v2 = u2 – projW1
 u2

v1 projW1
 u2

FIGURE 6.3.3

by computing the component of u2 that is orthogonal to the space𝑊1 spanned by
v1. Using Formula (12) to perform this computation, we obtain

v2 = u2 − proj𝑊1
u2 = u2 −

⟨u2, v1⟩
‖v1‖2

v1

Of course, if v2 = 0, then v2 is not a basis vector. But this cannot happen, since it
would then follow from the preceding formula for v2 that

u2 =
⟨u2, v1⟩
‖v1‖2

v1 =
⟨u2, v1⟩
‖u1‖2

u1

which implies that u2 is a multiple of u1, contradicting the linear independence
of the basis {u1,u2, . . . ,ur}.

Step 3. To construct a vector v3 that is orthogonal to both v1 and v2, we compute the
component of u3 orthogonal to the space𝑊2 spanned by v1 and v2 (Figure 6.3.4).
Using Formula (12) to perform this computation, we obtain

W2

u3

v3 = u3 – projW2
 u3

v2
v1

projW2
 u3

FIGURE 6.3.4

v3 = u3 − proj𝑊2
u3 = u3 −

⟨u3, v1⟩
‖v1‖2

v1 −
⟨u3, v2⟩
‖v2‖2

v2

As in Step 2, the linear independence of {u1,u2, . . . ,ur} ensures that v3 ≠ 0. We
leave the details for you.

Step 4. To determine a vector v4 that is orthogonal to v1, v2, and v3, we compute the com-
ponent of u4 orthogonal to the space𝑊3 spanned by v1, v2, and v3. From (12),

v4 = u4 − proj𝑊3
u4 = u4 −

⟨u4, v1⟩
‖v1‖2

v1 −
⟨u4, v2⟩
‖v2‖2

v2 −
⟨u4, v3⟩
‖v3‖2

v3

Continuing in this way we will produce after r steps an orthogonal set of nonzero
vectors {v1, v2, . . . , vr}. Since such sets are linearly independent, we will have produced
an orthogonal basis for the r-dimensional space𝑊. By normalizing these basis vectors we
can obtain an orthonormal basis.

The step-by-step construction of an orthogonal (or orthonormal) basis given in the
foregoing proof is called the Gram–Schmidt process. For reference, we provide the fol-
lowing summary of the steps.
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The Gram–Schmidt Process
To convert a basis {u1,u2, . . . ,ur} into an orthogonal basis {v1, v2, . . . , vr}, perform the fol-
lowing computations:
Step 1. v1 = u1

Step 2. v2 = u2 −
⟨u2, v1⟩
‖v1‖2

v1

Step 3. v3 = u3 −
⟨u3, v1⟩
‖v1‖2

v1 −
⟨u3, v2⟩
‖v2‖2

v2

Step 4. v4 = u4 −
⟨u4, v1⟩
‖v1‖2

v1 −
⟨u4, v2⟩
‖v2‖2

v2 −
⟨u4, v3⟩
‖v3‖2

v3
...
(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis {q1,q2, . . . ,qr},
normalize the orthogonal basis vectors.

Historical Note

Jorgen Pederson
Gram
(1850–1916)

Gram was a Danish actuary whose early education was at vil-
lage schools supplemented by private tutoring. He obtained a
doctorate degree inmathematics whileworking for theHafnia
Life Insurance Company, where he specialized in the mathe-
matics of accident insurance. It was in his dissertation that his
contributions to the Gram–Schmidt process were formulated.
He eventually became interested in abstract mathematics and
received a gold medal from the Royal Danish Society of Sci-
ences and Letters in recognition of his work. His lifelong inter-
est in applied mathematics never wavered, however, and he
produced a variety of treatises on Danish forest management.

Oswald Johannes
Erhardt Schmidt
(1875–1959)

Erhardt Schmidt was a German mathematician who studied
for his doctoral degree at Göttingen University under David
Hilbert, one of the giants of modern mathematics. For most
of his life he taught at Berlin University where, in addition to
making important contributions to many branches of mathe-
matics, he fashioned someofHilbert’s ideas into a general con-
cept, called a Hilbert space—a fundamental structure in the
study of infinite-dimensional vector spaces. He first described
the process that bears his name in a paper on integral equa-
tions that he published in 1907.

[Images: https://commons.wikimedia.
org/wiki/Category:J%C3%B8rgen_Pedersen_Gram#/
media/File:Jorgen_Gram.jpg. Public Domain. (Gram);

Archives of the Mathematisches Forschungsinstitut Oberwolfach
(Erhardt Schmidt)]

https://commons.wikimedia
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EXAMPLE 8 | Using the Gram–Schmidt Process

Assume that the vector space 𝑅3 has the Euclidean inner product. Apply the Gram–Schmidt
process to transform the basis vectors

u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (0, 0, 1)
into an orthogonal basis {v1, v2, v3}, and thennormalize the orthogonal basis vectors to obtain
an orthonormal basis {q1,q2,q3}.
Solution
Step 1. v1 = u1 = (1, 1, 1)

Step 2. v2 = u2 − proj𝑊1
u2 = u2 −

⟨u2, v1⟩
‖v1‖2

v1

= (0, 1, 1) − 2
3
(1, 1, 1) = (−2

3
, 1
3
, 1
3)

Step 3. v3 = u3 − proj𝑊2
u3 = u3 −

⟨u3, v1⟩
‖v1‖2

v1 −
⟨u3, v2⟩
‖v2‖2

v2

= (0, 0, 1) − 1
3
(1, 1, 1) − 1/3

2/3(−
2
3
, 1
3
, 1
3)

= (0,−1
2
, 1
2)

Thus,
v1 = (1, 1, 1), v2 = (−2

3
, 1
3
, 1
3), v3 = (0,−1

2
, 1
2)

form an orthogonal basis for 𝑅3. The norms of these vectors are

‖v1‖ = √3, ‖v2‖ =
√6
3
, ‖v3‖ =

1
√2

so an orthonormal basis for 𝑅3 is

q1 =
v1
‖v1‖

= ( 1
√3

, 1
√3

, 1
√3

), q2 =
v2
‖v2‖

= (− 2
√6

, 1
√6

, 1
√6

),

q3 =
v3
‖v3‖

= (0,− 1
√2

, 1
√2

)

Remark In the last example we normalized at the end to convert the orthogonal basis
into an orthonormal basis. Alternatively, we could have normalized each orthogonal basis
vector as soon as it was obtained, thereby producing an orthonormal basis step by step.
However, that procedure generally has the disadvantage in hand calculation of producing
more square roots tomanipulate. Amore useful variation is to “scale” the orthogonal basis
vectors at each step to eliminate some of the fractions. For example, after Step 2 above,
we could have multiplied by 3 to produce (−2, 1, 1) as the second orthogonal basis vector,
thereby simplifying the calculations in Step 3.

CALCULUS REQUIRED EXAMPLE 9 | Legendre Polynomials

Let the vector space 𝑃2 have the inner product

⟨p,q⟩ = ∫
1

−1
p(x)q(x) dx
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Apply the Gram–Schmidt process to transform the standard basis {1, x, x2} for 𝑃2 into an
orthogonal basis {𝜙1(x), 𝜙2(x), 𝜙3(x)}.
Solution Take u1 = 1, u2 = x, and u3 = x2.
Step 1. v1 = u1 = 1

Step 2.We have

⟨u2, v1⟩ = ∫
1

−1
x dx = 0

so
v2 = u2 −

⟨u2, v1⟩
‖v1‖2

v1 = u2 = x

Step 3.We have

⟨u3, v1⟩ = ∫
1

−1
x2 dx = x3

3
]
1

−1

= 2
3

⟨u3, v2⟩ = ∫
1

−1
x3 dx = x4

4
]
1

−1

= 0

‖v1‖2 = ⟨v1, v1⟩ = ∫
1

−1
1 dx = x]

1

−1

= 2

so
v3 = u3 −

⟨u3, v1⟩
‖v1‖2

v1 −
⟨u3, v2⟩
‖v2‖2

v2 = x2 − 1
3

Thus, we have obtained the orthogonal basis {𝜙1(x), 𝜙2(x), 𝜙3(x)} in which

𝜙1(x) = 1, 𝜙2(x) = x, 𝜙3(x) = x2 − 1
3

Remark The orthogonal basis vectors in the last example are often scaled so all three
functions have a value of 1 at x = 1. The resulting polynomials

1, x, 1
2 (3x

2 − 1)

which are known as the first three Legendre polynomials, play an important role in a
variety of applications. The scaling does not affect the orthogonality.

Extending Orthonormal Sets to Orthonormal Bases
Recall frompart (b) of Theorem4.6.5 that a linearly independent set in afinite-dimensional
vector space can be enlarged to a basis by adding appropriate vectors. The following theo-
rem is an analog of that result for orthogonal and orthonormal sets in finite-dimensional
inner product spaces.

Theorem 6.3.6

If𝑊 is a finite-dimensional inner product space, then:
(a) Every orthogonal set of nonzero vectors in𝑊 can be enlarged to an orthogonal

basis for𝑊.
(b) Every orthonormal set in𝑊 can be enlarged to an orthonormal basis for𝑊.

We will prove part (b) and leave part (a) as an exercise.
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Proof (b) Suppose that 𝑆 = {v1, v2, . . . , vs} is an orthonormal set of vectors in𝑊. Part (b)
of Theorem 4.6.5 tells us that we can enlarge 𝑆 to some basis

𝑆′ = {v1, v2, . . . , vs, vs+1, . . . , vk}
for𝑊. Ifwenowapply theGram–Schmidt process to the set𝑆′, then the vectorsv1, v2, . . . , vs
will not be affected since they are already orthonormal, and the resulting set

𝑆″ = {v1, v2, . . . , vs, v′s+1, . . . , v′k}

will be an orthonormal basis for𝑊.

OPTIONAL: QR-Decomposition
In recent years a numerical algorithm based on the Gram–Schmidt process, and known as
QR-decomposition, has assumed growing importance as the mathematical foundation
for a wide variety of numerical algorithms, including those for computing eigenvalues
of large matrices. The technical aspects of such algorithms are discussed in books that
specialize in the numerical aspects of linear algebra. However, we will discuss some of
the underlying ideas here. We begin by posing the following problem.

Problem If𝐴 is anm × nmatrixwith linearly independent column vectors, and if𝑄 is
the matrix that results by applying the Gram–Schmidt process to the column vectors
of 𝐴, what relationship, if any, exists between 𝐴 and 𝑄?

To solve this problem, suppose that the column vectors of 𝐴 are u1,u2, . . . ,un and
that 𝑄 has orthonormal column vectors q1,q2, . . . ,qn. Thus, 𝐴 and 𝑄 can be written in
partitioned form as

𝐴 = [u1 ∣ u2 | ⋅ ⋅ ⋅ | un] and 𝑄 = [q1 ∣ q2 | ⋅ ⋅ ⋅ | qn]
It follows from Theorem 6.3.2(b) that u1,u2, . . . ,un are expressible in terms of the vectors
q1,q2, . . . ,qn as

u1 = ⟨u1,q1⟩q1 + ⟨u1,q2⟩q2 + ⋅ ⋅ ⋅ + ⟨u1,qn⟩qn
u2 = ⟨u2,q1⟩q1 + ⟨u2,q2⟩q2 + ⋅ ⋅ ⋅ + ⟨u2,qn⟩qn...

...
...

...
un = ⟨un,q1⟩q1 + ⟨un,q2⟩q2 + ⋅ ⋅ ⋅ + ⟨un,qn⟩qn

Recalling from Section 1.3 (Example 9) that the jth column vector of a matrix product is a
linear combination of the column vectors of the first factor with coefficients coming from
the jth column of the second factor, it follows that these relationships can be expressed in
matrix form as

[u1 ∣ u2 | ⋅ ⋅ ⋅ | un] = [q1 ∣ q2 | ⋅ ⋅ ⋅ | qn]
⎡
⎢
⎢
⎢
⎢
⎣

⟨u1,q1⟩ ⟨u2,q1⟩ ⋅ ⋅ ⋅ ⟨un,q1⟩
⟨u1,q2⟩ ⟨u2,q2⟩ ⋅ ⋅ ⋅ ⟨un,q2⟩...

...
...

⟨u1,qn⟩ ⟨u2,qn⟩ ⋅ ⋅ ⋅ ⟨un,qn⟩

⎤
⎥
⎥
⎥
⎥
⎦

or more briefly as
𝐴 = 𝑄𝑅 (15)

where𝑅 is the second factor in the product. However, it is a property of theGram–Schmidt
process that for j ≥ 2, the vector qj is orthogonal tou1,u2, . . . ,uj−1. Thus, all entries below
the main diagonal of 𝑅 are zero, and 𝑅 has the form

𝑅 =
⎡
⎢
⎢
⎢
⎢
⎣

⟨u1,q1⟩ ⟨u2,q1⟩ ⋅ ⋅ ⋅ ⟨un,q1⟩
0 ⟨u2,q2⟩ ⋅ ⋅ ⋅ ⟨un,q2⟩...

...
...

0 0 ⋅ ⋅ ⋅ ⟨un,qn⟩

⎤
⎥
⎥
⎥
⎥
⎦

(16)
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We leave it for you to show that 𝑅 is invertible by showing that its diagonal entries are
nonzero. Thus, Equation (15) is a factorization of 𝐴 into the product of a matrix 𝑄 with
orthonormal column vectors and an invertible upper triangular matrix 𝑅. We call Equa-
tion (15) a 𝑸𝑹-decomposition of 𝑨. In summary, we have the following theorem.

Theorem 6.3.7

QR-Decomposition
If𝐴 is anm × nmatrixwith linearly independent column vectors, then𝐴 can be fac-
tored as

𝐴 = 𝑄𝑅
where 𝑄 is an m × n matrix with orthonormal column vectors, and 𝑅 is an n × n
invertible upper triangular matrix.

It is common in numerical
linear algebra to say that a
matrix with linearly inde-
pendent columns has full
column rank.

Recall from Theorem 5.1.5 (the Equivalence Theorem) that a square matrix has lin-
early independent column vectors if and only if it is invertible. Thus, it follows from The-
orem 6.3.7 that every invertible matrix has a 𝑄𝑅-decomposition.

EXAMPLE 10 | QR-Decomposition of a 3 × 3 Matrix

Find a𝑄𝑅-decomposition of

𝐴 = [
1 0 0
1 1 0
1 1 1

]

Solution The column vectors of𝐴 are

u1 = [
1
1
1
], u2 = [

0
1
1
], u3 = [

0
0
1
]

Applying the Gram–Schmidt process with normalization to these column vectors yields the
orthonormal vectors (see Example 8)

q1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√3
1
√3
1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, q2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 2
√6
1
√6
1
√6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, q3 =
⎡
⎢
⎢
⎢
⎢
⎣

0
− 1

√2
1
√2

⎤
⎥
⎥
⎥
⎥
⎦

Thus, it follows from Formula (16) that 𝑅 is

𝑅 = [
⟨u1,q1⟩ ⟨u2,q1⟩ ⟨u3,q1⟩

0 ⟨u2,q2⟩ ⟨u3,q2⟩
0 0 ⟨u3,q3⟩

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
√3

2
√3

1
√3

0 2
√6

1
√6

0 0 1
√2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

from which it follows that a𝑄𝑅-decomposition of𝐴 is

[
1 0 0
1 1 0
1 1 1

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√3

− 2
√6

0

1
√3

1
√6

− 1
√2

1
√3

1
√6

1
√2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
√3

2
√3

1
√3

0 2

√6
1
√6

0 0 1
√2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝐴 = 𝑄 𝑅
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Exercise Set 6.3

1. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the
Euclidean inner product on 𝑅2.

a. (0, 1), (2, 0)

b. (− 1
√2
, 1
√2
), ( 1

√2
, 1
√2
)

c. (− 1
√2
, − 1

√2
), ( 1

√2
, 1
√2
)

d. (0, 0), (0, 1)

2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the
Euclidean inner product on 𝑅3.

a. ( 1
√2
, 0, 1

√2
), ( 1

√3
, 1
√3
, − 1

√3
), (− 1

√2
, 0, 1

√2
)

b. ( 23 , −
2
3 ,

1
3), (

2
3 ,

1
3 , −

2
3), (

1
3 ,

2
3 ,

2
3)

c. (1, 0, 0), (0, 1
√2
, 1
√2
), (0, 0, 1)

d. ( 1
√6
, 1
√6
, − 2

√6
), ( 1

√2
, − 1

√2
, 0)

3. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on 𝑃2 (see
Example 7 of Section 6.1).

a. p1(x) = 2
3 −

2
3 x+

1
3 x

2, p2(x) = 2
3 +

1
3 x−

2
3 x

2,

p3(x) = 1
3 +

2
3 x+

2
3 x

2

b. p1(x) = 1, p2(x) =
1

√2
x+ 1

√2
x2, p3(x) = x2

4. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on 𝑀22 (see
Example 6 of Section 6.1).

a. [1 0
0 0] , [

0 2
3

1
3 − 2

3
] , [

0 2
3

− 2
3

1
3
] , [

0 1
3

2
3

2
3
]

b. [1 0
0 0] , [0 1

0 0] , [0 0
1 1] , [0 0

1 −1]

In Exercises 5–6, show that the column vectors of𝐴 form an orthog-
onal basis for the column space of 𝐴 with respect to the Euclidean
inner product, and then find an orthonormal basis for that column
space.

5. 𝐴 = [
1 2 0
0 0 5

−1 2 0
] 6. 𝐴 =

⎡
⎢
⎢
⎢
⎣

1
5 − 1

2
1
3

1
5

1
2

1
3

1
5 0 − 2

3

⎤
⎥
⎥
⎥
⎦

7. Verify that the vectors

v1 = (− 3
5 ,

4
5 , 0), v2 = ( 45 ,

3
5 , 0), v3 = (0, 0, 1)

formanorthonormal basis for𝑅3with respect to theEuclidean
inner product, and then use Theorem 6.3.2(b) to express the
vector u = (1,−2, 2) as a linear combination of v1, v2, and v3.

8. Use Theorem 6.3.2(b) to express the vector u = (3,−7, 4) as a
linear combination of the vectors v1, v2, and v3 in Exercise 7.

9. Verify that the vectors
v1 = (2,−2, 1), v2 = (2, 1,−2), v3 = (1, 2, 2)

form an orthogonal basis for 𝑅3 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (−1, 0, 2) as a linear combination of v1, v2, and v3.

10. Verify that the vectors
v1 = (1,−1, 2,−1), v2 = (−2, 2, 3, 2),
v3 = (1, 2, 0,−1), v4 = (1, 0, 0, 1)

form an orthogonal basis for 𝑅4 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (1, 1, 1, 1) as a linear combination of v1, v2, v3,
and v4.

In Exercises 11–14, find the coordinate vector (u)𝑆 for the vector u
and the basis 𝑆 that were given in the stated exercise.
11. Exercise 7 12. Exercise 8
13. Exercise 9 14. Exercise 10

In Exercises 15–18, let 𝑅2 have the Euclidean inner product.
a. Find the orthogonal projection of u onto the line spanned by

the vector v.
b. Find the component of u orthogonal to the line spanned by

the vector v, and confirm that this component is orthogonal
to the line.

15. u = (−1, 6); v = ( 35 ,
4
5) 16. u = (2, 3); v = ( 5

13 ,
12
13)

17. u = (2, 3); v = (1, 1) 18. u = (3,−1); v = (3, 4)

In Exercises 19–22, let 𝑅3 have the Euclidean inner product.
a. Find the orthogonal projection of u onto the plane spanned

by the vectors v1 and v2.
b. Find the component of u orthogonal to the plane spanned

by the vectors v1 and v2, and confirm that this component is
orthogonal to the plane.

19. u = (4, 2, 1); v1 = ( 13 ,
2
3 , −

2
3), v2 = ( 23 ,

1
3 ,

2
3)

20. u = (3,−1, 2); v1 = ( 1
√6
, 1
√6
, − 2

√6
), v2 = ( 1

√3
, 1
√3
, 1
√3
)

21. u = (1, 0, 3); v1 = (1,−2, 1), v2 = (2, 1, 0)

22. u = (1, 0, 2); v1 = (3, 1, 2), v2 = (−1, 1, 1)

In Exercises 23–24, the vectors v1 and v2 are orthogonal with respect
to the Euclidean inner product on𝑅4. Find the orthogonal projection
of b = (1, 2, 0,−2) on the subspace𝑊 spanned by these vectors.
23. v1 = (1, 1, 1, 1), v2 = (1, 1,−1,−1)

24. v1 = (0, 1,−4,−1), v2 = (3, 5, 1, 1)

In Exercises 25–26, the vectors v1, v2, and v3 are orthonormal with
respect to the Euclidean inner product on 𝑅4. Find the orthogonal
projection of b = (1, 2, 0,−1) onto the subspace 𝑊 spanned by
these vectors.
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25. v1 = (0, 1
√18

, − 4
√18

, − 1
√18

), v2 = ( 12 ,
5
6 ,

1
6 ,

1
6),

v3 = ( 1
√18

, 0, 1
√18

, − 4
√18

)

26. v1 = ( 12 ,
1
2 ,

1
2 ,

1
2), v2 = ( 12 ,

1
2 , −

1
2 , −

1
2), v3 = ( 12 , −

1
2 ,

1
2 , −

1
2)

In Exercises 27–28, let 𝑅2 have the Euclidean inner product and use
the Gram–Schmidt process to transform the basis {u1,u2} into an
orthonormal basis. Draw both sets of basis vectors in the xy-plane.

27. u1 = (1,−3), u2 = (2, 2) 28. u1 = (1, 0), u2 = (3,−5)

In Exercises 29–30, let 𝑅3 have the Euclidean inner product and use
the Gram–Schmidt process to transform the basis {u1,u2,u3} into
an orthonormal basis.

29. u1 = (1, 1, 1), u2 = (−1, 1, 0), u3 = (1, 2, 1)

30. u1 = (1, 0, 0), u2 = (3, 7,−2), u3 = (0, 4, 1)

31. Let 𝑅4 have the Euclidean inner product. Use the Gram–
Schmidt process to transform the basis {u1,u2,u3,u4} into an
orthonormal basis.

u1 = (0, 2, 1, 0), u2 = (1,−1, 0, 0),
u3 = (1, 2, 0,−1), u4 = (1, 0, 0, 1)

32. Let 𝑅3 have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0, 1, 2), (−1, 0, 1),
(−1, 1, 3).

33. Let b and𝑊 be as in Exercise 23. Find vectors w1 in𝑊 and
w2 in𝑊⟂ such that b = w1 +w2.

34. Let b and𝑊 be as in Exercise 25. Find vectors w1 in𝑊 and
w2 in𝑊⟂ such that b = w1 +w2.

35. Let 𝑅3 have the Euclidean inner product. The subspace of 𝑅3

spanned by the vectors u1 = (1, 1, 1) and u2 = (2, 0,−1) is a
plane passing through the origin. Expressw = (1, 2, 3) in the
formw = w1 +w2, wherew1 lies in the plane andw2 is per-
pendicular to the plane.

36. Let 𝑅4 have the Euclidean inner product. Express the vector
w = (−1, 2, 6, 0) in the form w = w1 +w2, where w1 is
in the space 𝑊 that is spanned by u1 = (−1, 0, 1, 2) and
u2 = (0, 1, 0, 1), andw2 is orthogonal to𝑊.

37. Let 𝑅3 have the inner product

⟨u, v⟩ = u1v1 + 2u2v2 + 3u3v3

Use the Gram–Schmidt process to transform u1 = (1, 1, 1),
u2 = (1, 1, 0), u3 = (1, 0, 0) into an orthonormal basis.

38. Verify that the set of vectors {(1, 0), (0, 1)} is orthogonal with
respect to the inner product ⟨u, v⟩ = 4u1v1 + u2v2 on𝑅2; then
convert it to an orthonormal set by normalizing the vectors.

39. Find vectors x and y in 𝑅2 that are orthonormal with
respect to the inner product ⟨u, v⟩ = 3u1v1 + 2u2v2 but are
not orthonormal with respect to the Euclidean inner product.

40. In Example 6 of Section 3.3 we found the orthogonal projec-
tion of the vector x = (1, 5) onto the line through the origin
making an angle of 𝜋/6 radians with the positive x-axis. Solve
that same problem using Theorem 6.3.4.

41. This exercise illustrates that the orthogonal projection result-
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

a. Let 𝑅3 have the Euclidean inner product, and let𝑊 be the
subspace of 𝑅3 spanned by the orthogonal vectors

v1 = (1, 0, 1) and v2 = (0, 1, 0)
Show that the orthogonal vectors

v′1 = (1, 1, 1) and v′2 = (1,−2, 1)
span the same subspace𝑊.

b. Let u = (−3, 1, 7) and show that the same vector proj𝑊u
results regardless of which of the bases in part (a) is used
for its computation.

42. (Calculus required) Use Theorem 6.3.2(a) to express the fol-
lowing polynomials as linear combinations of the first three
Legendre polynomials (see the Remark following Example 9).

a. 1+ x+ 4x2 b. 2− 7x2 c. 4+ 3x

43. (Calculus required) Let 𝑃2 have the inner product

⟨p,q⟩ = ∫
1

0
p(x)q(x) dx

Apply the Gram–Schmidt process to transform the standard
basis 𝑆 = {1, x, x2} into an orthonormal basis.

44. Find an orthogonal basis for the column space of the matrix

𝐴 =
⎡⎢⎢⎢⎢
⎣

6 1 −5
2 1 1

−2 −2 5
6 8 −7

⎤⎥⎥⎥⎥
⎦

In Exercises 45–48, we obtained the column vectors of 𝑄 by apply-
ing the Gram–Schmidt process to the column vectors of 𝐴. Find a
𝑄𝑅-decomposition of the matrix𝐴.

45. 𝐴 = [1 −1
2 3] , 𝑄 = [

1
√5

− 2
√5

2
√5

1
√5

]

46. 𝐴 = [
1 2
0 1
1 4

] , 𝑄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√2

− 1
√3

0 1
√3

1
√2

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

47. 𝐴 = [
1 0 2
0 1 1
1 2 0

] , 𝑄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√2

− 1
√3

1
√6

0 1
√3

2
√6

1
√2

1
√3

− 1
√6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

48. 𝐴 = [
1 2 1
1 1 1
0 3 1

] , 𝑄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√2

√2
2√19

− 3
√19

1
√2

− √2
2√19

3
√19

0 3√2
√19

1

√19

⎤
⎥
⎥
⎥
⎥
⎥
⎦

49. Find a𝑄𝑅-decomposition of the matrix

𝐴 =
⎡⎢⎢⎢
⎣

1 0 1
−1 1 1
1 0 1

−1 1 1

⎤⎥⎥⎥
⎦
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50. In the Remark following Example 8 we discussed two alter-
native ways to perform the calculations in the Gram–Schmidt
process: normalizing each orthogonal basis vector as soon as
it is calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in Example 8.

Working with Proofs
51. Prove part (a) of Theorem 6.3.6.

52. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the
linear independence of {u1,u2, . . . ,un} ensures that v3 ≠ 0.”
Prove this statement.

53. Prove that the diagonal entries of 𝑅 in Formula (16) are
nonzero.

54. Show that matrix 𝑄 given in Example 10 satisfies the equa-
tion 𝑄𝑄𝑇 = 𝐼3, and prove that every m × n matrix 𝑄 with
orthonormal column vectors has the property𝑄𝑄𝑇 = 𝐼m.

55. a. Prove that if𝑊 is a subspace of a finite-dimensional vector
space 𝑉, then the mapping 𝑇∶ 𝑉→𝑊 that is defined by
𝑇(v) = proj𝑊v is a linear transformation.

b. What are the range and kernel of the transformation in
part (a)?

True-False Exercises
TF. In parts (a)–(f ) determine whether the statement is true or

false, and justify your answer.
a. Every linearly independent set of vectors in an inner prod-

uct space is orthogonal.

b. Every orthogonal set of vectors in an inner product space
is linearly independent.

c. Every nontrivial subspace of 𝑅3 has an orthonormal basis
with respect to the Euclidean inner product.

d. Every nonzero finite-dimensional inner product space
has an orthonormal basis.

e. proj𝑊 x is orthogonal to every vector of𝑊.

f. If𝐴 is an n × nmatrix with a nonzero determinant, then
𝐴 has a QR-decomposition.

Working with Technology
T1. a. Use the Gram–Schmidt process to find an orthonormal

basis relative to the Euclidean inner product for the col-
umn space of

𝐴 =
⎡⎢⎢⎢⎢
⎣

1 1 1 1
1 0 0 1
0 1 0 2
2 −1 1 1

⎤⎥⎥⎥⎥
⎦

b. Use the method of Example 9 to find a𝑄𝑅-decomposition
of𝐴.

T2. Let 𝑃4 have the evaluation inner product at the points
−2,−1, 0, 1, 2. Find an orthogonal basis for𝑃4 relative to this
inner product by applying the Gram–Schmidt process to the
vectors

p0 = 1, p1 = x, p2 = x2, p3 = x3, p4 = x4

6.4 Best Approximation; Least Squares
There are many applications in which some linear system 𝐴x = b of m equations in n
unknowns should be consistent on physical grounds but fails to be so because of mea-
surement errors in the entries of 𝐴 or b. In such cases one looks for vectors that come as
close as possible to being solutions in the sense that they minimize ‖b − 𝐴x‖with respect
to the Euclidean inner product on Rm. In this section we will discuss methods for finding
such minimizing vectors.

Least Squares Solutions of Linear Systems
Suppose that 𝐴x = b is an inconsistent linear system of m equations in n unknowns in
which we suspect the inconsistency to be caused by errors in the entries of 𝐴 or b. Since
no exact solution is possible, we will look for a vector x that comes as “close as possible”
to being a solution in the sense that it minimizes ‖b − 𝐴x‖ with respect to the Euclidean
inner product on 𝑅m. You can think of 𝐴x as an approximation to b and ‖b − 𝐴x‖ as the
error in that approximation—the smaller the error, the better the approximation. This
leads to the following problem.
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Least Squares Problem Given a linear system𝐴x = b ofm equations in n unknowns,
find a vector x in 𝑅n that minimizes ‖b − 𝐴x‖ with respect to the Euclidean inner
product on 𝑅m. We call such a vector, if it exists, a least squares solution of the equa-
tion𝐴x = b, we call b − 𝐴x the least squares error vector, and we call ‖b − 𝐴x‖ the
least squares error.

To explain the terminology in this problem, suppose that the column form of b − 𝐴x is

If a linear system is consis-
tent, then its exact solutions
are the same as its least
squares solutions, in which
case the least squares error
is zero.

b − 𝐴x =
⎡
⎢
⎢
⎢
⎣

e1
e2...
em

⎤
⎥
⎥
⎥
⎦

The term “least squares solution” results from the fact that minimizing ‖b − 𝐴x‖ also has
the effect of minimizing

‖b − 𝐴x‖2 = e21 + e22 + ⋅ ⋅ ⋅ + e2m
What is important to keep in mind about the least squares problem is that for every

vectorx in𝑅n, the product𝐴x is in the column space of𝐴 because it is a linear combination
of the column vectors of𝐴. That being the case, to find a least squares solution of𝐴x = b is
equivalent to finding a vector𝐴x̂ in the column space of 𝐴 that is closest to b in the sense
that it minimizes the length of the vector b − 𝐴x. This is illustrated in Figure 6.4.1a,
which also suggests that 𝐴x̂ is the orthogonal projection of b on the column space of 𝐴,
that is, 𝐴x̂ = projcol(𝐴)b (Figure 6.4.1b). The next theorem will confirm this conjecture.

bb

col(A) col(A)

b – Ax

Ax

Ax̂ Ax = projcol(A)bˆ

(b)(a)

FIGURE 6.4.1

Theorem 6.4.1

Best Approximation Theorem
If 𝑊 is a finite-dimensional subspace of an inner product space 𝑉, and if b is a
vector in 𝑉, then proj𝑊 b is the best approximation to b from𝑊 in the sense that

‖b − proj𝑊 b‖ < ‖b −w‖
for every vectorw in𝑊 that is different from proj𝑊 b.

Proof For every vectorw in𝑊, we can write
b −w = (b − proj𝑊 b) + (proj𝑊 b −w) (1)

But proj𝑊 b −w, being a difference of vectors in𝑊, is itself in𝑊; and since b − proj𝑊 b
is orthogonal to𝑊, the two terms on the right side of (1) are orthogonal. Thus, it follows
from the Theorem of Pythagoras (Theorem 6.2.3) that

‖b −w‖2 = ‖b − proj𝑊 b‖2 + ‖proj𝑊 b −w‖2

Ifw ≠ proj𝑊 b, it follows that the second term in this sum is positive, and hence that
‖b − proj𝑊 b‖2 < ‖b −w‖2
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Taking square roots and using the fact that norms are nonnegative, it follows that

‖b − proj𝑊 b‖ < ‖b −w‖

It follows from Theorem 6.4.1 that if 𝑉 = 𝑅n and𝑊 = col(𝐴), then the best approxi-
mation to b from col(𝐴) is projcol(𝐴)b. But every vector in the column space of𝐴 is express-
ible in the form 𝐴x for some vector x, so there is at least one vector x̂ in col(𝐴) for which
𝐴x̂ = projcol(𝐴)b. Each such vector is a least squares solution of𝐴x = b, which shows that
least squares solutions are not unique. Note, however, that although there may be more
than one least squares solution of 𝐴x = b, each such solution x̂ has the same error vector
b − 𝐴x̂.

Finding Least Squares Solutions
Oneway to find a least squares solution of𝐴x = b is to calculate the orthogonal projection
proj𝑊 b on the column space𝑊 of 𝐴 and then solve the equation

𝐴x = proj𝑊 b (2)

However, we can avoid calculating the projection by rewriting (2) as

b − 𝐴x = b − proj𝑊 b

and then multiplying both sides of this equation by 𝐴𝑇 to obtain

𝐴𝑇(b − 𝐴x) = 𝐴𝑇(b − proj𝑊 b) (3)

Since b − proj𝑊 b is the component of b that is orthogonal to the column space of 𝐴, it
follows from Theorem 4.9.7(b) that this vector lies in the null space of𝐴𝑇 , and hence that

𝐴𝑇(b − proj𝑊 b) = 0

Thus, (3) simplifies to
𝐴𝑇(b − 𝐴x) = 0

which we can rewrite as
𝐴𝑇𝐴x = 𝐴𝑇b (4)

This is called the normal equation associated with 𝐴x = b. When viewed as a linear
system, the individual equations are called the normal equations associated with
𝐴x = b.

In summary, we have established the following result.

Theorem 6.4.2

For every linear system 𝐴x = b, the associated normal system
𝐴𝑇𝐴x = 𝐴𝑇b (5)

is consistent, and all solutions of (5) are least squares solutions of𝐴x = b.Moreover,
if x is any least squares solution, and𝑊 is the column space of 𝐴, then

𝐴x = proj𝑊 b (6)
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EXAMPLE 1 | Unique Least Squares Solution

Find a least squares solution, the least squares error vector, and the least squares error of the
linear system

x1 − x2 = 4
3x1 + 2x2 = 1

−2x1 + 4x2 = 3

Solution It will be convenient to express the system in the matrix form𝐴x = b, where

𝐴 = [
1 −1
3 2

−2 4
] and b = [

4
1
3
] (7)

It follows that

𝐴𝑇𝐴 = [
1 3 −2

−1 2 4
] [

1 −1
3 2

−2 4
] = [

14 −3
−3 21

] (8)

𝐴𝑇b = [
1 3 −2

−1 2 4
] [
4
1
3
] = [

1
10
]

so the normal system𝐴𝑇𝐴x = 𝐴𝑇b is

[
14 −3
−3 21

] [
x1
x2
] = [

1
10
]

Solving this system yields a unique least squares solution, namely,

x1 = 17
95 , x2 = 143

285

The least squares error vector is

b−𝐴x =
⎡
⎢
⎢
⎣

4
1
3

⎤
⎥
⎥
⎦
− [

1 −1
3 2

−2 4
] [

17
95
143
285

] =
⎡
⎢
⎢
⎣

4
1
3

⎤
⎥
⎥
⎦
−
⎡⎢⎢⎢⎢
⎣

− 92
285
439
285
94
57

⎤⎥⎥⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

1232
285

− 154
285
77
57

⎤
⎥
⎥
⎥
⎥
⎦

and the least squares error is
‖b−𝐴x‖ ≈ 4.556

The computations in the next example are a little tedious for hand computation, so
in absence of a calculating utility you may want to just read through it for its ideas and
logical flow.

EXAMPLE 2 | Infinitely Many Least Squares Solutions

Find a least squares solutions, the least squares error vector, and the least squares error of
the linear system

3x1 + 2x2 − x3 = 2
x1 − 4x2 + 3x3 = −2
x1 + 10x2 − 7x3 = 1

Solution The matrix form of the system is𝐴x = b, where

𝐴 =
⎡
⎢
⎢
⎣

3 2 −1
1 −4 3
1 10 −7

⎤
⎥
⎥
⎦

and b =
⎡
⎢
⎢
⎣

2
−2
1

⎤
⎥
⎥
⎦
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It follows that

𝐴𝑇𝐴 =
⎡
⎢
⎢
⎣

11 12 −7
12 120 −84
−7 −84 59

⎤
⎥
⎥
⎦

and 𝐴𝑇b =
⎡
⎢
⎢
⎣

5
22

−15

⎤
⎥
⎥
⎦

so the augmented matrix for the normal system𝐴𝑇𝐴x = 𝐴𝑇b is

⎡
⎢
⎢
⎣

11 12 −7 5
12 120 −84 22
−7 −84 59 −15

⎤
⎥
⎥
⎦

The reduced row echelon form of this matrix is

⎡
⎢
⎢
⎣

1 0 1
7

2
7

0 1 − 5
7

13
84

0 0 0 0

⎤
⎥
⎥
⎦

fromwhich it follows that there are infinitely many least squares solutions, and that they are
given by the parametric equations

x1 = 2
7 −

1
7 t

x2 = 13
84 +

5
7 t

x3 = t

As a check, let us verify that all least squares solutions produce the same least squares error
vector and the same least squares error. To see that this is so, we first compute

b−𝐴x =
⎡
⎢
⎢
⎣

2
−2
1

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

3 2 −1
1 −4 3
1 10 −7

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2
7 −

1
7 t

13
84 +

5
7 t

t

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

2
−2
1

⎤
⎥
⎥
⎦
−
⎡⎢⎢⎢
⎣

7
6

− 1
3
11
6

⎤⎥⎥⎥
⎦
=
⎡⎢⎢⎢
⎣

5
6

− 5
3

− 5
6

⎤⎥⎥⎥
⎦

Since b−𝐴x does not depend on t, all least squares solutions produce the same error vector,
namely

‖b−𝐴x‖ = √( 56)
2
+ (− 5

3)
2
+ (− 5

6)
2
= 5

6√6

Conditions for Uniqueness of Least Squares Solutions
We know from Theorem 6.4.2 that the system 𝐴𝑇𝐴x = 𝐴𝑇b of normal equations for
𝐴x = b is consistent. Thus, it follows from Theorem 1.6.1 that every linear system𝐴x = b
has either one least squares solution (as in Example 1) or infinitely many least squares
solutions (as in Example 2). Since 𝐴𝑇𝐴 is a square matrix, uniqueness occurs if 𝐴𝑇𝐴 is
invertible; otherwise there are infinitely many least squares solutions. The following the-
orem provides a test for invertibility of 𝐴𝑇𝐴 using column vectors of 𝐴.

Theorem 6.4.3

If 𝐴 is anm × nmatrix, then the following are equivalent.
(a) The column vectors of 𝐴 are linearly independent.
(b) 𝐴𝑇𝐴 is invertible.

Proof We will prove that (a) ⇒ (b) and leave the proof that (b) ⇒ (a) as an exercise.

(a)⇒ (b) Assume that the column vectors of𝐴 are linearly independent. Thematrix𝐴𝑇𝐴
has size n × n, so we can prove that this matrix is invertible by showing that the linear



November 12, 2018 16:57 C06 Sheet number 41 Page number 381 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

6.4 Best Approximation; Least Squares 381

system 𝐴𝑇𝐴x = 0 has only the trivial solution. But if x is any solution of this system, then
𝐴x is in the null space of𝐴𝑇 and also in the column space of𝐴. By Theorem 4.9.7(b) these
spaces are orthogonal complements, so part (b) of Theorem 6.2.4 implies that𝐴x = 0. But
𝐴 is assumed to have linearly independent column vectors, so it follows from parts (b) and
(h) of Theorem 5.1.5 that x = 0.

The next theorem, which follows directly from Theorems 6.4.2 and 6.4.3, gives an
explicit formula for the least squares solution of a linear system in which the coefficient
matrix has linearly independent column vectors.

Theorem 6.4.4

If 𝐴 is an m × n matrix with linearly independent column vectors, then for every
m × 1 matrix b, the linear system 𝐴x = b has a unique least squares solution. This
solution is given by

x = (𝐴𝑇𝐴)−1𝐴𝑇b (9)
Moreover, if𝑊 is the column space of 𝐴, then

𝐴x = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇b = proj𝑊 b (10)

EXAMPLE 3 | A Formula Solution to Example 1

Use Formula (9) and the matrices in Formulas (7) and (8) to find the least squares solution
of the linear system in Example 1.

Solution We leave it for you to verify that

x = (𝐴𝑇𝐴)−1𝐴𝑇b = [
14 −3
−3 21

]
−1

[
1 3 −2

−1 2 4
]
⎡
⎢
⎢
⎣

4
1
3

⎤
⎥
⎥
⎦

= 1
285

[
21 3
3 14

] [
1 3 −2

−1 2 4
]
⎡
⎢
⎢
⎣

4
1
3

⎤
⎥
⎥
⎦
= [

17
95
143
285

]

which agrees with the result obtained in Example 1.

It follows from Formula (10) that the standard matrix for the orthogonal projection
on the column space of a matrix 𝐴 is

𝑃 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 (11)

We will use this result in the next example.

EXAMPLE 4 | Orthogonal Projection on a Column Space

We showed in Formula (12) of Section 3.3 that the standardmatrix for the orthogonal projec-
tion onto the line𝑊 through the origin of 𝑅2 that makes an angle 𝜃 with the positive x-axis
is

𝑃𝜃 = [ cos2 𝜃 sin𝜃 cos𝜃
sin𝜃 cos𝜃 sin2 𝜃 ]

Derive this result using Formula (11).
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Solution To apply Formula (11) we must find a matrix 𝐴 for which the line𝑊 is the col-
umn space. Since the line is one-dimensional and consists of all scalar multiples of the vector
w = (cos𝜃, sin𝜃) (see Figure 6.4.2), we can take𝐴 to be

𝐴 = [cos𝜃sin𝜃]

Since𝐴𝑇𝐴 is the 1 × 1 identity matrix (verify), it follows that

𝐴(𝐴𝑇𝐴)−1𝐴𝑇 = 𝐴𝐴𝑇 = [cos𝜃sin𝜃] [cos𝜃 sin𝜃]

= [ cos2 𝜃 sin𝜃 cos𝜃
sin𝜃 cos𝜃 sin2 𝜃 ] = 𝑃𝜃

y

x

W

w

1

cos θ

sin θ
θ

FIGURE 6.4.2

More on the Equivalence Theorem
As our next result we will add one additional part to Theorem 5.1.5.

Theorem 6.4.5

Equivalent Statements
If𝐴 is ann × nmatrix inwhich there are noduplicate rows andnoduplicate columns,
then the following statements are equivalent.

(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.
(g) det(𝐴) ≠ 0.
(h) The column vectors of 𝐴 are linearly independent.
(i) The row vectors of 𝐴 are linearly independent.
( j) The column vectors of 𝐴 span 𝑅n.
(k) The row vectors of 𝐴 span 𝑅n.
(l) The column vectors of 𝐴 form a basis for 𝑅n.
(m) The row vectors of 𝐴 form a basis for 𝑅n.
(n) 𝐴 has rank n.
(o) 𝐴 has nullity 0.
(p) The orthogonal complement of the null space of 𝐴 is 𝑅n.
(q) The orthogonal complement of the row space of 𝐴 is {0}.
(r) 𝜆 = 0 is not an eigenvalue of 𝐴.
(s) 𝐴𝑇𝐴 is invertible.

The proof of part (s) follows from part (h) of this theorem and Theorem 6.4.3 applied
to square matrices.

OPTIONAL: Another View of Least Squares
Recall from Theorem 4.9.7 that the null space and row space of an m × n matrix 𝐴 are
orthogonal complements, as are the null space of 𝐴𝑇 and the column space of 𝐴. Thus,
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given a linear system 𝐴x = b in which 𝐴 is an m × n matrix, Projection Theorem 6.3.3
tells us that the vectors x and b can each be decomposed into sums of orthogonal terms as

x = xrow(𝐴) + xnull(𝐴) and b = bnull(𝐴𝑇) + bcol(𝐴)
where xrow(𝐴) and xnull(𝐴) are the orthogonal projections of x on the row space of 𝐴 and
the null space of 𝐴, and the vectors bnull(𝐴𝑇) and bcol(𝐴) are the orthogonal projections of
b on the null space of 𝐴𝑇 and the column space of 𝐴.

In Figure 6.4.3 we have represented the fundamental spaces of 𝐴 by perpendicular
lines in 𝑅n and 𝑅m on which we indicated the orthogonal projections of x and b. (This, of
course, is only pictorial since the fundamental spaces need not be one-dimensional.) The
figure shows 𝐴x as a point in the column space of 𝐴 and conveys that bcol(𝐴) is the point
in col(𝐴) that is closest to b. In the case where 𝐴x = b is consistent, the vector b is in the
column space of 𝐴, and the points 𝐴x, b, and bcol(𝐴) coincide. The diagram indicates that
multiplication by 𝐴maps xrow(𝐴) into 𝐴x. Explain why this is so.

x

Ax

Rn Rmxrow(A) bnull(AT)

xnull(A) bcol(A)
b

row(A)

null(A) col(A)

null(AT)

Multiplicatio
n by A

Multip
licat

ion 
by A

FIGURE 6.4.3

OPTIONAL: The Role of QR-Decomposition in
Least Squares Problems
Formulas (9) and (10) have theoretical use but are not well suited for numerical computa-
tion. In practice, least squares solutions of𝐴x = b are typically found by using some varia-
tion of Gaussian elimination to solve the normal equations or by usingQR-decomposition
and the following theorem.

Theorem 6.4.6

If 𝐴 is an m × n matrix with linearly independent column vectors, and if 𝐴 = 𝑄𝑅
is a 𝑄𝑅-decomposition of 𝐴 (see Theorem 6.3.7), then for each b in 𝑅m the system
𝐴x = b has a unique least squares solution given by

x = 𝑅−1𝑄𝑇b (12)

A proof of this theorem and a discussion of its use can be found inmany books on numer-
ical methods of linear algebra. However, you can obtain Formula (12) by making the sub-
stitution 𝐴 = 𝑄𝑅 in (9) and using the fact that 𝑄𝑇𝑄 = 𝐼 to obtain

x = ((𝑄𝑅)𝑇(𝑄𝑅))−1(𝑄𝑅)𝑇b
= (𝑅𝑇𝑄𝑇𝑄𝑅)−1(𝑄𝑅)𝑇b
= 𝑅−1(𝑅𝑇)−1𝑅𝑇𝑄𝑇b
= 𝑅−1𝑄𝑇b
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Exercise Set 6.4

In Exercises 1–2, find the associated normal equation.

1. [
1 −1
2 3
4 5

] [x1x2
] = [

2
−1
5
]

2.
⎡
⎢
⎢
⎢
⎣

2 −1 0
3 1 2

−1 4 5
1 2 4

⎤
⎥
⎥
⎥
⎦

[
x1
x2
x3
] =

⎡
⎢
⎢
⎢
⎣

−1
0
1
2

⎤
⎥
⎥
⎥
⎦

In Exercises 3–6, find the least squares solution of the equation
𝐴x = b.

3. 𝐴 = [
1 −1
2 3
4 5

]; b = [
2

−1
5
]

4. 𝐴 = [
2 −2
1 1
3 1

]; b = [
2

−1
1
]

5. 𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0 −1
2 1 −2
1 1 0
1 1 −1

⎤
⎥
⎥
⎥
⎦

; b =
⎡
⎢
⎢
⎢
⎣

6
0
9
3

⎤
⎥
⎥
⎥
⎦

6. 𝐴 =
⎡
⎢
⎢
⎢
⎣

2 0 −1
1 −2 2
2 −1 0
0 1 −1

⎤
⎥
⎥
⎥
⎦

; b =
⎡
⎢
⎢
⎢
⎣

0
6
0
6

⎤
⎥
⎥
⎥
⎦

In Exercises 7–10, find the least squares error vector and least
squares error of the stated equation. Verify that the least squares
error vector is orthogonal to the column space of𝐴.
7. The equation in Exercise 3.

8. The equation in Exercise 4.

9. The equation in Exercise 5.

10. The equation in Exercise 6.

In Exercises 11–14, find parametric equations for all least squares
solutions of 𝐴x = b, and confirm that all of the solutions have the
same error vector.

11. 𝐴 = [
2 1
4 2

−2 −1
]; b = [

3
2
1
]

12. 𝐴 = [
1 3

−2 −6
3 9

]; b = [
1
0
1
]

13. 𝐴 = [
−1 3 2
2 1 3
0 1 1

]; b = [
7
0

−7
]

14. 𝐴 = [
3 2 −1
1 −4 3
1 10 −7

]; b = [
2

−2
1
]

In Exercises 15–16, use Theorem 6.4.2 to find the orthogonal pro-
jection of b on the column space of 𝐴, and check your result using
Theorem 6.4.4.

15. 𝐴 = [
1 −1
3 2

−2 4
]; b = [

4
1
3
]

16. 𝐴 = [
5 1
1 3
4 −2

]; b = [
−4
2
3
]

17. Find the orthogonal projection of u on the subspace of 𝑅3

spanned by the vectors v1 and v2.

u = (1,−6, 1); v1 = (−1, 2, 1), v2 = (2, 2, 4)

18. Find the orthogonal projection of u on the subspace of 𝑅4

spanned by the vectors v1, v2, and v3.

u = (6, 3, 9, 6); v1 = (2, 1, 1, 1), v2 = (1, 0, 1, 1),
v3 = (−2,−1, 0,−1)

In Exercises 19–20, use the method of Example 3 to find the stan-
dard matrix for the orthogonal projection on the stated subspace of
𝑅2. Compare your result to that in Table 3 of Section 1.8.

19. the x-axis 20. the y-axis

In Exercises 21–22, use the method of Example 3 to find the stan-
dard matrix for the orthogonal projection on the stated subspace of
𝑅3. Compare your result to that in Table 4 of Section 1.8.

21. the xz-plane 22. the yz-plane

In Exercises 23–24, a 𝑄𝑅-factorization of 𝐴 is given. Use it to find
the least squares solution of𝐴x = b.

23. 𝐴 = [
3 1

−4 1
] = [

3
5

4
5

− 4
5

3
5
] [
5 − 1

5
0 7

5
] ; b = [

3
2
]

24. 𝐴 =
⎡
⎢
⎢
⎣

3 −6
4 −8
0 1

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

3
5 0
4
5 0
0 1

⎤
⎥
⎥
⎦
[
5 −10
0 1

] ; b =
⎡
⎢
⎢
⎣

−1
7
2

⎤
⎥
⎥
⎦

25. Let𝑊 be the plane with equation 5x− 3y+ z = 0.

a. Find a basis for𝑊.

b. Find the standard matrix for the orthogonal projection
onto𝑊.

26. Let𝑊 be the line with parametric equations

x = 2t, y = −t, z = 4t

a. Find a basis for𝑊.

b. Find the standard matrix for the orthogonal projection
on𝑊.

27. Find the orthogonal projection of u = (5, 6, 7, 2) on the solu-
tion space of the homogeneous linear system

x1 + x2 + x3 = 0
2x2 + x3 + x4 = 0
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28. Show that if w = (a, b, c) is a nonzero vector, then the stan-
dard matrix for the orthogonal projection of 𝑅3 onto the line
span{w} is

𝑃 = 1
a2 + b2 + c2

⎡
⎢
⎢
⎣

a2 ab ac
ab b2 bc
ac bc c2

⎤
⎥
⎥
⎦

29. Let 𝐴 be an m × nmatrix with linearly independent row vec-
tors. Find a standard matrix for the orthogonal projection of
𝑅n onto the row space of𝐴.

Working with Proofs

30. Prove: If 𝐴 has linearly independent column vectors, and if
𝐴x = b is consistent, then the least squares solution of the
equation 𝐴x = b and the exact solution of 𝐴x = b are the
same.

31. Prove: If 𝐴 has linearly independent column vectors, and if b
is orthogonal to the column space of𝐴, then the least squares
solution of𝐴x = b is x = 0.

32. Prove the implication (b)⇒ (a) of Theorem 6.4.3.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. If𝐴 is anm × nmatrix, then𝐴𝑇𝐴 is a square matrix.

b. If𝐴𝑇𝐴 is invertible, then𝐴 is invertible.

c. If𝐴 is invertible, then𝐴𝑇𝐴 is invertible.

d. If𝐴x = b is a consistent linear system, then𝐴𝑇𝐴x = 𝐴𝑇b
is also consistent.

e. If𝐴x = b is inconsistent, then𝐴𝑇𝐴x = 𝐴𝑇b is also incon-
sistent.

f. Every linear system has a least squares solution.

g. Every linear system has a unique least squares solution.

h. If 𝐴 is an m × n matrix with linearly independent
columns and b is in 𝑅m, then 𝐴x = b has a unique least
squares solution.

Working with Technology
T1. a. UseTheorem6.4.4 to show that the following linear system

has a unique least squares solution, and use the method of
Example 1 to find it.

x1 + x2 + x3 = 1
4x1 + 2x2 + x3 = 10
9x1 + 3x2 + x3 = 9
16x1 + 4x2 + x3 = 16

b. Check your result in part (a) using Formula (9).

T2. Use your technology utility to perform the computations and
confirm the results obtained in Example 2.

6.5 Mathematical Modeling Using
Least Squares

In this section we will use results about orthogonal projections in inner product spaces
to obtain a method for fitting a line or other polynomial curve to a set of experimentally
determined points in the plane.

Fitting a Curve to Data
A common problem in experimental work is to find a mathematical relationship y = 𝑓(x)
between two variables x and y by “fitting” a curve to points in the plane corresponding to
various experimentally determined values of x and y, say

(x1, y1), (x2, y2), . . . , (xn, yn)
On the basis of theoretical considerations or simply by observing the pattern of the

points, the experimenter decides on the general form of the curve y = 𝑓(x) to be fitted.
This curve is called amathematical model of the data. Although mathematical models
can be based on functions of other forms, we will focus on polynomial models. Some
examples are (Figure 6.5.1):
(a) A straight line: y = a + bx
(b) A quadratic polynomial: y = a + bx + cx2

(c) A cubic polynomial: y = a + bx + cx2 + dx3
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x

y

(b)  y = a + bx + cx2

x

y

(c)  y = a + bx + cx2 + dx3

x

y

(a)  y = a + bx

FIGURE 6.5.1

Least Squares Fit of a Straight Line
When data points are obtained experimentally, there is generally some measurement
“error,” making it impossible to find a curve of the desired form that passes through all
the points. Thus, the idea is to choose the curve (by determining its coefficients) that “best
fits” the data. We begin with the simplest case: fitting a straight line to data points.

Suppose we want to fit a straight line y = a + bx to the experimentally determined
points in which the x-coordinates are exact, but the y-coordinates may have errors, say

(x1, y1), (x2, y2), . . . , (xn, yn)

If the data points are collinear, the line will pass through all n points, and the unknown
coefficients a and b will satisfy the equations

y1 = a + bx1
y2 = a + bx2...
yn = a + bxn

(1)

We can write this system in matrix form as

⎡
⎢
⎢
⎢
⎣

1 x1
1 x2...

...
1 xn

⎤
⎥
⎥
⎥
⎦

[ab] =
⎡
⎢
⎢
⎢
⎣

y1
y2...
yn

⎤
⎥
⎥
⎥
⎦

or more compactly as
𝑀v = y (2)

where

y =
⎡
⎢
⎢
⎢
⎣

y1
y2...
yn

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

1 x1
1 x2...

...
1 xn

⎤
⎥
⎥
⎥
⎦

, v = [ab] (3)

If there are measurement errors in the data, then the data points will typically not lie
on a line, and (1) will be inconsistent. In this case we look for a least squares approxima-
tion to the values of a and b by solving the normal system

𝑀𝑇𝑀v = 𝑀𝑇y

For simplicity, let us assume that the x-coordinates of the data points are not all the same,
so 𝑀 has linearly independent column vectors (why?) and the normal system has the
unique solution

v∗ = [
a∗

b∗
] = (𝑀𝑇𝑀)−1𝑀𝑇y
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[see Formula (9) of Theorem 6.4.4]. The line y = a∗+ b∗x that results from this solution
is called the regression line. It follows from (2) and (3) that this line minimizes

‖y −𝑀v‖2 = [y1 − (a + bx1)]2 + [y2 − (a + bx2)]2 + ⋅ ⋅ ⋅ + [yn − (a + bxn)]2

The quantities

d1 = |y1 − (a + bx1)|, d2 = |y2 − (a + bx2)|, . . . , dn = |yn − (a + bxn)|

are called residuals. Since the residual di is the distance between the data point (xi, yi)
and the regression line (Figure 6.5.2), we can interpret its value as the “error” in yi at the
point xi.

y =
 a +

 bx 

(x1, y1)

(xn, yn)

(xi, yi)

d1

y

yi

di
dn

a + bxi

x

FIGURE 6.5.2 di measures the vertical
error.

Since the regression line minimizes the sum of the squares of the data errors, it is
commonly called the least squares line of best fit.

Theorem 6.5.1

Uniqueness of the Regression Line
Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of two or more data points, not all lying on
a vertical line, and let

𝑀 =
⎡
⎢
⎢
⎢
⎣

1 x1
1 x2...

...
1 xn

⎤
⎥
⎥
⎥
⎦

and y =
⎡
⎢
⎢
⎢
⎣

y1
y2...
yn

⎤
⎥
⎥
⎥
⎦

(4)

Then there is a unique least squares straight line fit

y = a∗+ b∗x (5)

to the data points. Moreover,

v∗ = [a
∗

b∗] (6)

is given by the formula
v∗ = (𝑀𝑇𝑀)−1𝑀𝑇y (7)

which expresses the fact that v = v∗ is the unique solution of the normal equation

𝑀𝑇𝑀v = 𝑀𝑇y (8)
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EXAMPLE 1 | Least Squares Straight Line Fit

Find the least squares straight line fit to the four points (0, 1), (1, 3), (2, 4), and (3, 4). (See
Figure 6.5.3.)

Solution We have

𝑀 =
⎡
⎢
⎢
⎢
⎣

1 0
1 1
1 2
1 3

⎤
⎥
⎥
⎥
⎦

, 𝑀𝑇𝑀 = [4 6
6 14] , and (𝑀𝑇𝑀)−1 = 1

10
[ 7 −3
−3 2]

v∗ = (𝑀𝑇𝑀)−1𝑀𝑇y = 1
10

[ 7 −3
−3 2] [

1 1 1 1
0 1 2 3]

⎡
⎢
⎢
⎢
⎣

1
3
4
4

⎤
⎥
⎥
⎥
⎦

= [1.51 ]

so the desired line is y = 1.5+ x.

0
0 1 2 3 4–1

1

2

3

4

5

x

y

FIGURE 6.5.3

EXAMPLE 2 | Spring Constant

Hooke’s law in physics states that the length x of a uniform spring is a linear function of the
force y applied to it. If we express this relationship as y = a+ bx, then the coefficient b is
called the spring constant. Suppose a particular unstretched spring has a measured length
of 6.1 inches (i.e., x = 6.1 when y = 0). Suppose further that, as illustrated in Figure 6.5.4,
various weights are attached to the end of the spring and that the following table of resulting
spring lengths is recorded. Find the least squares straight line fit to the data and use it to
approximate the spring constant.

Weight 𝒚 (lb) 0 2 4 6
Length 𝒙 (in.) 6.1 7.6 8.7 10.4

Solution The mathematical problem is to fit a line y = a+ bx to the four data points

(6.1, 0), (7.6, 2), (8.7, 4), (10.4, 6)
For these data the matrices𝑀 and y in (4) are

𝑀 =
⎡
⎢
⎢
⎢
⎣

1 6.1
1 7.6
1 8.7
1 10.4

⎤
⎥
⎥
⎥
⎦

, y =
⎡
⎢
⎢
⎢
⎣

0
2
4
6

⎤
⎥
⎥
⎥
⎦

so
v∗ = [a

∗

b∗] = (𝑀𝑇𝑀)−1𝑀𝑇y ≈ [−8.61.4]

where the numerical values have been rounded to one decimal place. Thus, the estimated
value of the spring constant is b∗ ≈ 1.4 pounds/inch.

y

x

6.1

FIGURE 6.5.4

Least Squares Fit of a Polynomial
The technique described for fitting a straight line to data points can be generalized to
fitting a polynomial of specified degree to data points. Let us attempt to fit a polynomial
of fixed degreem

y = a0 + a1x + ⋅ ⋅ ⋅ + amxm (9)
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to n points
(x1, y1), (x2, y2), . . . , (xn, yn)

Substituting these n values of x and y into (9) yields the n equations

y1 = a0 + a1x1 + ⋅ ⋅ ⋅ + amxm1
y2 = a0 + a1x2 + ⋅ ⋅ ⋅ + amxm2...

...
...

...
yn = a0 + a1xn + ⋅ ⋅ ⋅ + amxmn

or in matrix form,
y = 𝑀v (10)

where

y =
⎡
⎢
⎢
⎢
⎣

y1
y2...
yn

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡⎢⎢⎢⎢
⎣

1 x1 x21 ⋅ ⋅ ⋅ xm1
1 x2 x22 ⋅ ⋅ ⋅ xm2...

...
...

...
1 xn x2n ⋅ ⋅ ⋅ xmn

⎤⎥⎥⎥⎥
⎦

, v =
⎡
⎢
⎢
⎢
⎣

a0
a1...
am

⎤
⎥
⎥
⎥
⎦

(11)

As before, the solutions of the normal equations
𝑀𝑇𝑀v = 𝑀𝑇y

determine the coefficients of the polynomial, and the vector vminimizes
‖y −𝑀v‖

Conditions that guarantee the invertibility of𝑀𝑇𝑀 are discussed in the exercises. If𝑀𝑇𝑀
is invertible, then the normal equations have a unique solution v = v∗, which is given by

v∗ = (𝑀𝑇𝑀)−1𝑀𝑇y (12)

EXAMPLE 3 | Fitting a Quadratic Curve to Data

According toNewton’s second lawofmotion, a body near the Earth’s surface falls vertically in
accordance with the equation

s = s0 + 𝑣0t+ 1
2gt

2 (13)
where

s = vertical displacement downward relative to some reference point
s0 = displacement from the reference point at time t = 0
𝑣0 = velocity at time t = 0
g = acceleration of gravity at the Earth’s surface

Suppose that a laboratory experiment is performed to approximate g by measuring the dis-
placement s relative to a fixed reference point of a falling weight at various times. Use the
experimental results shown in the following table to approximate g.

Time 𝒕 (sec) .1 .2 .3 .4 .5
Displacement 𝒔 (ft) −0.18 0.31 1.03 2.48 3.73

Solution For notational simplicity, let a0 = s0, a1 = 𝑣0, and a2 = 1
2g in (13), so our math-

ematical problem is to fit a quadratic curve

s = a0 + a1t+ a2t2 (14)
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to the five data points:

(.1,−0.18), (.2, 0.31), (.3, 1.03), (.4, 2.48), (.5, 3.73)
With the appropriate adjustments in notation, the matrices𝑀 and y in (11) are

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24
1 t5 t25

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 .1 .01
1 .2 .04
1 .3 .09
1 .4 .16
1 .5 .25

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s1
s2
s3
s4
s5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.18
0.31
1.03
2.48
3.73

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, from (12),

v∗ =
⎡
⎢
⎢
⎣

a∗0
a∗1
a∗2

⎤
⎥
⎥
⎦
= (𝑀𝑇𝑀)−1𝑀𝑇y ≈

⎡
⎢
⎢
⎣

−0.40
0.35
16.1

⎤
⎥
⎥
⎦

so the least squares quadratic fit is

s = −0.40+ 0.35t+ 16.1t2

From this equation we estimate that 1
2g = 16.1 and hence that g = 32.2 ft/sec2. Note that

this equation also provides the following estimates of the initial displacement and velocity
of the weight:

s0 = a∗0 = −0.40 ft
𝑣0 = a∗1 = 0.35 ft/sec

In Figure 6.5.5 we have plotted the data points and the approximating polynomial.
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Magellan orbit 3213
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LTST: 22:05

On October 5, 1991 the Magellan spacecraft entered the
atmosphere of Venus and transmitted the temperature 𝑇
in kelvins (K) versus the altitude h in kilometers (km)
until its signal was lost at an altitude of about 34 km. Dis-
counting the initial erratic signal, the data strongly sug-
gested a linear relationship, so a least squares straight line
fit was used on the linear part of the data to obtain the
equation

𝑇 = 737.5− 8.125h
By setting h = 0 in this equation, the surface temperature
of Venus was estimated at 𝑇 ≈ 737.5 K. The accuracy of
this result has been confirmed by more recent flybys of
Venus.

Exercise Set 6.5

In Exercises 1–2, find the least squares straight line fit

y = ax+ b

to the data points, and show that the result is reasonable by graph-
ing the fitted line and plotting the data in the same coordinate
system.

1. (0, 0), (1, 2), (2, 7) 2. (0, 1), (2, 0), (3, 1), (3, 2)

In Exercises 3–4, find the least squares quadratic fit

y = a0 + a1x+ a2x2

to the data points, and show that the result is reasonable by graphing
the fitted curve and plotting the data in the same coordinate system.

3. (2, 0), (3,−10), (5,−48), (6,−76)
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4. (1,−2), (0,−1), (1, 0), (2, 4)

5. Find a curve of the form y = a+ (b/x) that best fits the data
points (1, 7), (3, 3), (6, 1) bymaking the substitution𝑋 = 1/x.

6. Find a curve of the form y = a+ b√x that best fits the data
points (3, 1.5), (7, 2.5), (10, 3) by making the substitution
𝑋 = √x. Show that the result is reasonable by graphing the
fitted curve and plotting the data in the same coordinate
system.

Working with Proofs

7. Prove that the matrix 𝑀 in Equation (3) has linearly inde-
pendent columns if and only if at least two of the numbers
x1, x2, . . . , xn are distinct.

8. Prove that the columns of the n × (m+ 1)matrix𝑀 in Equa-
tion (11) are linearly independent if n > m and at leastm+ 1
of the numbers x1, x2, . . . , xn are distinct. [Hint: A nonzero
polynomial of degreem has at mostm distinct roots.]

9. Let𝑀 be the matrix in Equation (11). Using Exercise 8, show
that a sufficient condition for the matrix𝑀𝑇𝑀 to be invert-
ible is that n > m and that at least m+ 1 of the numbers
x1, x2, . . . , xn are distinct.

True-False Exercises
TF. In parts (a)–(d) determine whether the statement is true or

false, and justify your answer.
a. Every set of data points has a unique least squares straight

line fit.

b. If the data points (x1, y1), (x2, y2), . . . , (xn, yn) are not col-
linear, then (2) is an inconsistent system.

c. If the data points (x1, y1), (x2, y2), . . . , (xn, yn) do not lie
on a vertical line, then the expression

|y1 − (a+ bx1)|2 + |y2 − (a+ bx2)2| + ⋅ ⋅ ⋅ + |yn − (a+ bxn)|2

is minimized by taking a and b to be the coefficients in the
least squares line y = a+ bx of best fit to the data.

d. If the data points (x1, y1), (x2, y2), . . . , (xn, yn) do not lie
on a vertical line, then the expression

|y1 − (a+ bx1)| + |y2 − (a+ bx2)| + ⋅ ⋅ ⋅ + |yn − (a+ bxn)|
is minimized by taking a and b to be the coefficients in the
least squares line y = a+ bx of best fit to the data.

Working with Technology
In Exercises T1–T7, find the normal system for the least squares
cubic fit y = a0 + a1x+ a2x2 + a3x3 to the data points. Solve the
system and show that the result is reasonable by graphing the fitted
curve and plotting the data in the same coordinate system.

T1. (−1,−14), (0,−5), (1,−4), (2, 1), (3, 22)
T2. (0,−10), (1,−1), (2, 0), (3, 5), (4, 26)
T3. The owner of a rapidly expanding business finds that for

the first five months of the year the sales (in thousands) are
$4.0, $4.4, $5.2, $6.4, and $8.0. The owner plots these figures
on a graph and conjectures that for the rest of the year, the
sales curve can be approximated by a quadratic polynomial.
Find the least squares quadratic polynomial fit to the sales

curve, and use it to project the sales for the twelfth month of
the year.

T4. Pathfinder is an experimental, lightweight, remotely piloted,
solar-powered aircraft that was used in a series of experi-
ments by NASA to determine the feasibility of applying solar
power for long-duration, high-altitude flights. In August 1997
Pathfinder recorded the data in the accompanying table relat-
ing altitude𝐻 and temperature 𝑇. Show that a linear model
is reasonable by plotting the data, and then find the least
squares line𝐻 = 𝐻0 + k𝑇 of best fit.

TABLE Ex-T4

Altitude𝑯
(thousands of feet) 15 20 25 30 35 40 45
Temperature 𝑻

(∘C) 4.5−5.9−16.1−27.6−39.8−50.2−62.9

Three important models in applications are

exponential models (y = aeb x)
power function models (y = axb)
logarithmic models (y = a+ b ln x)

where a and b are to be determined to fit experimental data as closely
as possible. Exercises T5–T7 are concerned with a procedure, called
linearization, bywhich the data are transformed to a form inwhich
a least squares straight line fit can be used to approximate the con-
stants. Calculus is required for these exercises.
T5. a. Show that making the substitution 𝑌 = ln y in the equa-

tion y = aebx produces the equation𝑌 = bx+ ln a whose
graph in the x𝑌-plane is a line of slope b and 𝑌-intercept
ln a.

b. Part (a) suggests that a curve of the form y = aebx can be
fitted to n data points (xi, yi) by letting𝑌i = ln yi, then fit-
ting a straight line to the transformed data points (xi, 𝑌i)
by least squares to find b and ln a, and then computing a
from ln a. Use this method to fit an exponential model to
the following data, and graph the curve and data in the
same coordinate system.

𝒙 0 1 2 3 4 5 6 7
𝒚 3.9 5.3 7.2 9.6 12 17 23 31

T6. a. Show that making the substitutions
𝑋 = ln x and 𝑌 = ln y

in the equation y = axb produces the equation
𝑌 = b𝑋 + ln a

whose graph in the 𝑋𝑌-plane is a line of slope b and 𝑌-
intercept ln a.

b. Part (a) suggests that a curve of the form y = axb can
be fitted to n data points (xi, yi) by letting 𝑋i = ln xi and
𝑌i = ln yi, then fitting a straight line to the transformed
data points (𝑋i, 𝑌i) by least squares to find b and ln a, and
then computing a from ln a. Use thismethod to fit a power
function model to the following data, and graph the curve
and data in the same coordinate system.

𝒙 2 3 4 5 6 7 8 9
𝒚 1.75 1.91 2.03 2.13 2.22 2.30 2.37 2.43
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T7. a. Show that making the substitution 𝑋 = ln x in the equa-
tion y = a+ b ln x produces the equation y = a+ b𝑋
whose graph in the 𝑋y-plane is a line of slope b and
y-intercept a.

b. Part (a) suggests that a curve of the form y = a+ b ln x can
be fitted to n data points (xi, yi) by letting 𝑋i = ln xi and
then fitting a straight line to the transformed data points

(𝑋i, yi) by least squares to find b and a. Use this method
to fit a logarithmic model to the following data, and graph
the curve and data in the same coordinate system.

𝒙 2 3 4 5 6 7 8 9

𝒚 4.07 5.30 6.21 6.79 7.32 7.91 8.23 8.51

6.6 FunctionApproximation; Fourier Series
In this section we will show how orthogonal projections can be used to approximate cer-
tain types of functions by simpler functions. The ideas explained here have important
applications in engineering and science. Calculus is required for this section.

Best Approximations
All of the problems that we will study in this section will be special cases of the following
general problem.

Approximation Problem Given a function 𝑓 that is continuous on an interval [a, b],
find the “best possible approximation” to 𝑓 using only functions from a specified sub-
space𝑊 of 𝐶[a, b].

Here are some examples of such problems:
(a) Find the best possible approximation to ex over the interval [0, 1] by a polynomial of

the form a0 + a1x + a2x2.
(b) Find the best possible approximation to sin𝜋x over the interval [−1, 1] by a function

of the form a0 + a1ex + a2e2x + a3e3x.
(c) Find the best possible approximation to x over the interval [0, 2𝜋] by a function of

the form a0 + a1 sin x + a2 sin 2x + b1 cos x + b2 cos 2x.

In the first example 𝑊 is the subspace of 𝐶[0, 1] spanned by 1, x, and x2; in the second
example 𝑊 is the subspace of 𝐶[−1, 1] spanned by 1, ex, e2x, and e3x; and in the third
example𝑊 is the subspace of 𝐶[0, 2𝜋] spanned by 1, sin x, sin 2x, cos x, and cos 2x.

Measurements of Error
To solve approximation problems of the preceding types, we first need to make the phrase
“best approximation over [a, b]” mathematically precise. To do this we will need some
way of quantifying the error that results when one continuous function is approximated
by another over an interval [a, b]. If we were to approximate 𝑓(x) by g(x), and if we were
concerned only with the error in that approximation at a single point x0, then it would be
natural to define the error to be

error = |𝑓(x0) − g(x0)|

sometimes called the deviation between 𝑓 and g at x0 (Figure 6.6.1). However, we are not
[ ]
a b

| f (x0) – g(x0)|
x0

g

f

FIGURE 6.6.1 The deviation
between 𝑓 and g at x0.

concerned simply with measuring the error at a single point but rather with measuring
it over the entire interval [a, b]. The difficulty is that an approximation may have small
deviations in one part of the interval and large deviations in another. One possible way
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of accounting for this is to integrate the deviation |𝑓(x) − g(x)| over the interval [a, b] and
define the error over the interval to be

error = ∫
b

a
|𝑓(x) − g(x)| dx (1)

Geometrically, (1) is the area between the graphs of 𝑓(x) and g(x) over the interval [a, b]
(Figure 6.6.2)— the greater the area, the greater the overall error. [ ]

a b

g

f

FIGURE 6.6.2 The area between
the graphs of f and g over
[a, b]measures the error in
approximating 𝑓 by g over
[a, b].

Although (1) is natural and appealing geometrically, most mathematicians and sci-
entists generally favor the following alternative measure of error, called themean square
error.

mean square error = ∫
b

a
[𝑓(x) − g(x)]2 dx

Although mean square error emphasizes larger deviations because of the squaring, it has
the advantage of allowing us to bring to bear the theory of inner product spaces. To see
how, suppose that f is a continuous function on [a, b] that we want to approximate by
a function g from a subspace 𝑊 of 𝐶[a, b], and suppose that 𝐶[a, b] is given the inner
product

⟨f, g⟩ = ∫
b

a
𝑓(x)g(x) dx

It follows that

‖f − g‖2 = ⟨f − g, f − g⟩ = ∫
b

a
[𝑓(x) − g(x)]2 dx = mean square error

sominimizing themean square error is the same asminimizing ‖f − g‖2. Thus, the approx-
imation problem posed informally at the beginning of this section can be restated more
precisely as follows.

Least Squares Approximation
Least Squares Approximation Problem Let f be a function that is continuous on an
interval [a, b], let 𝐶[a, b] have the inner product

⟨f, g⟩ = ∫
b

a
𝑓(x)g(x) dx

and let 𝑊 be a finite-dimensional subspace of 𝐶[a, b]. Find a function g in 𝑊 that
minimizes

‖f − g‖2 = ∫
b

a
[𝑓(x) − g(x)]2 dx

Since ‖f − g‖2 and ‖f − g‖ are minimized by the same function g, this problem is equiva-
lent to looking for a function g in𝑊 that is closest to f. But we know from Theorem 6.4.1
that g = proj𝑊 f is such a function (Figure 6.6.3).

f = function in C[a, b]
       to be approximated

g = projW  f = least squares
                     approximation
                     to f from Wsubspace of 

approximating
functions 

W

FIGURE 6.6.3

Thus, we have the following result.
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Theorem 6.6.1

If f is a continuous function on [a, b], and 𝑊 is a finite-dimensional subspace of
𝐶[a, b], then the function g in𝑊 that minimizes the mean square error

∫
b

a
[𝑓(x) − g(x)]2 dx

is g = proj𝑊 f, where the orthogonal projection is relative to the inner product

⟨f, g⟩ = ∫
b

a
𝑓(x)g(x) dx

The function g = proj𝑊 f is called the least squares approximation to f from𝑊.

Fourier Series
A function of the form

𝑇(x) = c0 + c1 cos x + c2 cos 2x + ⋅ ⋅ ⋅ + cn cosnx
+ d1 sin x + d2 sin 2x + ⋅ ⋅ ⋅ + dn sinnx

(2)

is called a trigonometric polynomial; if cn and dn are not both zero, then 𝑇(x) is said to
have order n. For example,

𝑇(x) = 2 + cos x − 3 cos 2x + 7 sin 4x
is a trigonometric polynomial of order 4 with

c0 = 2, c1 = 1, c2 = −3, c3 = 0, c4 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 7
It is evident from (2) that the trigonometric polynomials of order n or less are the

various possible linear combinations of
1, cos x, cos 2x, . . . , cosnx, sin x, sin 2x, . . . , sinnx (3)

It can be shown that these 2n + 1 functions are linearly independent and thus form a basis
for a (2n + 1)-dimensional subspace of 𝐶[a, b].

Let us now consider the problem of finding the least squares approximation of a con-
tinuous function 𝑓(x) over the interval [0, 2𝜋] by a trigonometric polynomial of order n or
less. As noted above, the least squares approximation to f from𝑊 is the orthogonal pro-
jection of f on𝑊. To find this orthogonal projection, we must find an orthonormal basis
g0, g1, . . . , g2n for𝑊, after which we can compute the orthogonal projection on𝑊 from
the formula

proj𝑊 f = ⟨f, g0⟩g0 + ⟨f, g1⟩g1 + ⋅ ⋅ ⋅ + ⟨f, g2n⟩g2n (4)
[see Theorem 6.3.4(b)]. An orthonormal basis for 𝑊 can be obtained by applying the
Gram–Schmidt process to the basis vectors in (3) using the inner product

⟨f, g⟩ = ∫
2𝜋

0
𝑓(x)g(x) dx

This yields the orthonormal basis

g0 =
1

√2𝜋
, g1 =

1
√𝜋

cos x, . . . , gn =
1
√𝜋

cosnx,

gn+1 =
1
√𝜋

sin x, . . . , g2n =
1
√𝜋

sinnx
(5)

(see Exercise 6). If we introduce the notation

a0 =
2

√2𝜋
⟨f, g0⟩, a1 =

1
√𝜋

⟨f, g1⟩, . . . , an =
1
√𝜋

⟨f, gn⟩

b1 =
1
√𝜋

⟨f, gn+1⟩, . . . , bn =
1
√𝜋

⟨f, g2n⟩
(6)
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then on substituting (5) in (4), we obtain

proj𝑊 f = a0
2 + [a1 cos x + ⋅ ⋅ ⋅ + an cosnx] + [b1 sin x + ⋅ ⋅ ⋅ + bn sinnx] (7)

where

a0 =
2

√2𝜋
⟨f, g0⟩ =

2
√2𝜋

∫
2𝜋

0
𝑓(x) 1

√2𝜋
dx = 1

𝜋 ∫
2𝜋

0
𝑓(x) dx

a1 =
1
√𝜋

⟨f, g1⟩ =
1
√𝜋

∫
2𝜋

0
𝑓(x) 1

√𝜋
cos x dx = 1

𝜋 ∫
2𝜋

0
𝑓(x) cos x dx

...

an =
1
√𝜋

⟨f, gn⟩ =
1
√𝜋

∫
2𝜋

0
𝑓(x) 1

√𝜋
cosnx dx = 1

𝜋 ∫
2𝜋

0
𝑓(x) cosnx dx

b1 =
1
√𝜋

⟨f, gn+1⟩ =
1
√𝜋

∫
2𝜋

0
𝑓(x) 1

√𝜋
sin x dx = 1

𝜋 ∫
2𝜋

0
𝑓(x) sin x dx

...

bn =
1
√𝜋

⟨f, g2n⟩ =
1
√𝜋

∫
2𝜋

0
𝑓(x) 1

√𝜋
sinnx dx = 1

𝜋 ∫
2𝜋

0
𝑓(x) sinnx dx

In short,

ak =
1
𝜋 ∫

2𝜋

0
𝑓(x) cos kx dx, bk =

1
𝜋 ∫

2𝜋

0
𝑓(x) sin kx dx (8)

The numbers a0, a1, . . . , an, b1, . . . , bn are called the Fourier coefficients of f.

EXAMPLE 1 | Least Squares Approximations

Find the least squares approximation of 𝑓(x) = x on [0, 2𝜋] by
(a) a trigonometric polynomial of order 2 or less.
(b) a trigonometric polynomial of order n or less.

Solution (a)

a0 =
1
𝜋 ∫

2𝜋

0
𝑓(x) dx = 1

𝜋 ∫
2𝜋

0
x dx = 2𝜋 (9a)

For k = 1, 2, . . . , integration by parts yields (verify)

ak =
1
𝜋 ∫

2𝜋

0
𝑓(x) cos kx dx = 1

𝜋 ∫
2𝜋

0
x cos kx dx = 0 (9b)

bk =
1
𝜋 ∫

2𝜋

0
𝑓(x) sin kx dx = 1

𝜋 ∫
2𝜋

0
x sin kx dx = −2

k
(9c)

Thus, the least squares approximation to x on [0, 2𝜋] by a trigonometric polynomial of order
2 or less is

x ≈
a0
2
+ a1 cos x+ a2 cos 2x+ b1 sin x+ b2 sin 2x

or, from (9a), (9b), and (9c),
x ≈ 𝜋 − 2 sin x− sin 2x
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Solution (b) The least squares approximation to x on [0, 2𝜋] by a trigonometric polyno-
mial of order n or less is

x ≈
a0
2
+ [a1 cos x+ ⋅ ⋅ ⋅ + an cosnx] + [b1 sin x+ ⋅ ⋅ ⋅ + bn sinnx]

or, from (9a), (9b), and (9c),

x ≈ 𝜋 − 2(sin x+ sin 2x
2

+ sin 3x
3

+ ⋅ ⋅ ⋅ + sinnx
n )

The graphs of y = x and some of these approximations are shown in Figure 6.6.4.
It is natural to expect that the mean square error will diminish as the number of terms

in the least squares approximation

𝑓(x) ≈
a0
2
+

n

∑
k=1

(ak cos kx+ bk sin kx)

increase. It can be proved that for functions𝑓 in𝐶[0, 2𝜋], themean square error approaches
zero as n→ +∞; this is denoted by writing

𝑓(x) =
a0
2
+

∞
∑
k=1

(ak cos kx+ bk sin kx)

The right side of this equation is called the Fourier series for 𝑓 over the interval [0, 2𝜋].
Such series are of major importance in engineering, science, and mathematics.

1 2 3 4 5 6 2π 7

1

2

3

4

5

6

x

y

y = π

y = π – 2 sin x

y = x

y = π – 2 (sin x +          )sin 2x

2

y = π – 2 (sin x +          +         )sin 2x

2

sin 3x

3

y = π – 2 (sin x +          +          +         )sin 2x

2

sin 3x

3

sin 4x

4

FIGURE 6.6.4

Historical Note

Jean Baptiste
Fourier (1768–1830)

Fourier was a French mathematician and physicist who dis-
covered the Fourier series and related ideas while working
on problems of heat diffusion. This discovery was one of
the most influential in the history of mathematics; it is the
cornerstone of many fields of mathematical research and a
basic tool in many branches of engineering. Fourier, a political
activist during the French revolution, spent time in jail for his
defense of many victims during the Reign of Terror. He later
became a favorite of Napoleon who made him a baron.

[Image: Hulton Archive/Getty Images]
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Exercise Set 6.6

1. Find the least squares approximation of 𝑓(x) = 1+ x over the
interval [0, 2𝜋] by
a. a trigonometric polynomial of order 2 or less.
b. a trigonometric polynomial of order n or less.

2. Find the least squares approximation of 𝑓(x) = x2 over the
interval [0, 2𝜋] by
a. a trigonometric polynomial of order 3 or less.
b. a trigonometric polynomial of order n or less.

3. a. Find the least squares approximation of x over the interval
[0, 1] by a function of the form a+ bex.

b. Find the mean square error of the approximation.

4. a. Find the least squares approximation of ex over the interval
[0, 1] by a polynomial of the form a0 + a1x.

b. Find the mean square error of the approximation.

5. a. Find the least squares approximation of sin𝜋x over the
interval [−1, 1] by a polynomial of the form
a0 + a1x+ a2x2.

b. Find the mean square error of the approximation.

6. Use the Gram–Schmidt process to obtain the orthonormal
basis (5) from the basis (3).

7. Carry out the integrations indicated in Formulas (9a), (9b),
and (9c).

8. Find the Fourier series of 𝑓(x) = 𝜋 − x over the interval
[0, 2𝜋].

9. Find the Fourier series of 𝑓(x) = 1, 0 < x < 𝜋 and 𝑓(x) = 0,
𝜋 ≤ x ≤ 2𝜋 over the interval [0, 2𝜋].

10. What is the Fourier series of sin(3x)?

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. If a function f in 𝐶[a, b] is approximated by the func-

tion g, then the mean square error is the same as the
area between the graphs of𝑓(x) and g(x) over the interval
[a, b].

b. Given a finite-dimensional subspace 𝑊 of 𝐶[a, b], the
function g = proj𝑊 fminimizes the mean square error.

c. {1, cos x, sin x, cos 2x, sin 2x} is an orthogonal subset of
the vector space 𝐶[0, 2𝜋] with respect to the inner prod-
uct ⟨f, g⟩ = ∫2𝜋

0 𝑓(x)g(x) dx.

d. {1, cos x, sin x, cos 2x, sin 2x} is an orthonormal subset of
the vector space 𝐶[0, 2𝜋] with respect to the inner prod-
uct ⟨f, g⟩ = ∫2𝜋

0 𝑓(x)g(x) dx.

e. {1, cos x, sin x, cos 2x, sin 2x} is a linearly independent
subset of 𝐶[0, 2𝜋].

Chapter 6 Supplementary Exercises
1. Let 𝑅4 have the Euclidean inner product.

a. Find a vector in𝑅4 that is orthogonal tou1 = (1, 0, 0, 0) and
u4 = (0, 0, 0, 1) and makes equal angles with the vectors
u2 = (0, 1, 0, 0) and u3 = (0, 0, 1, 0).

b. Find a vector x = (x1, x2, x3, x4) of length 1 that is orthogo-
nal to u1 and u4 above and such that the cosine of the angle
between x and u2 is twice the cosine of the angle between
x and u3.

2. Prove: If ⟨u, v⟩ is the Euclidean inner product on 𝑅n, and if 𝐴
is an n × nmatrix, then

⟨u,𝐴v⟩ = ⟨𝐴𝑇u, v⟩

[Hint: Use the fact that ⟨u, v⟩ = u · v = v𝑇u.]

3. Let𝑀22 have the inner product ⟨𝑈,𝑉⟩ = tr(𝑈𝑇𝑉) = tr(𝑉𝑇𝑈)
that was defined in Example 6 of Section 6.1. Describe the
orthogonal complement of

a. the subspace of all diagonal matrices.
b. the subspace of symmetric matrices.

4. Let 𝐴x = 0 be a system of m equations in n unknowns. Show
that

x =
⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

is a solution of this system if and only if x = (x1, x2, . . . , xn)
is orthogonal to every row vector of 𝐴 with respect to the
Euclidean inner product on 𝑅n.

5. Use the Cauchy–Schwarz inequality to show that if
a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + ⋅ ⋅ ⋅ + an)(
1
a1

+ 1
a2

+ ⋅ ⋅ ⋅ + 1
an
) ≥ n2

6. Show that if x and y are vectors in an inner product space and
c is any scalar, then

‖cx+ y‖2 = c2‖x‖2 + 2c⟨x, y⟩ + ‖y‖2

7. Let 𝑅3 have the Euclidean inner product. Find two vectors of
length 1 each of which is orthogonal to all three of the vectors
u1 = (1, 1,−1), u2 = (−2,−1, 2), and u3 = (−1, 0, 1).
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8. Find a weighted Euclidean inner product on 𝑅n such that the
vectors

v1 = (1, 0, 0, . . . , 0)
v2 = (0, √2, 0, . . . , 0)
v3 = (0, 0, √3, . . . , 0)
...
vn = (0, 0, 0, . . . , √n )

form an orthonormal set.

9. Is there a weighted Euclidean inner product on 𝑅2 for which
the vectors (1, 2) and (3,−1) form an orthonormal set? Justify
your answer.

10. If u and v are vectors in an inner product space 𝑉, then u, v,
and u− v can be regarded as sides of a “triangle” in𝑉 (see the
accompanying figure). Prove that the law of cosines holds for
any such triangle; that is,

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos𝜃
where 𝜃 is the angle between u and v.

u

u – vv

θ

FIGURE Ex-10

11. a. As shown in Figure 3.2.6, the vectors (k, 0, 0), (0, k, 0),
and (0, 0, k) form the edges of a cube in 𝑅3 with diagonal
(k, k, k). Similarly, the vectors
(k, 0, 0, . . . , 0), (0, k, 0, . . . , 0), . . . , (0, 0, 0, . . . , k)

can be regarded as edges of a “cube” in 𝑅n with diagonal
(k, k, k, . . . , k). Show that each of the above edges makes
an angle of 𝜃 with the diagonal, where cos𝜃 = 1/√n.

b. (Calculus required) What happens to the angle 𝜃 in
part (a) as the dimension of 𝑅n approaches∞?

12. Let u and v be vectors in an inner product space.
a. Prove that ‖u‖ = ‖v‖ if and only if u+ v and u− v are

orthogonal.

b. Give a geometric interpretation of this result in 𝑅2 with the
Euclidean inner product.

13. Let u be a vector in an inner product space 𝑉, and let
{v1, v2, . . . , vn} be an orthonormal basis for 𝑉. Show that if 𝛼i
is the angle between u and vi, then

cos2 𝛼1 + cos2 𝛼2 + ⋅ ⋅ ⋅ + cos2 𝛼n = 1

14. Prove: If ⟨u, v⟩1 and ⟨u, v⟩2 are two inner products on a vector
space 𝑉, then the quantity ⟨u, v⟩ = ⟨u, v⟩1 + ⟨u, v⟩2 is also an
inner product.

15. Prove Theorem 6.2.5.

16. Prove: If 𝐴 has linearly independent column vectors, and if b
is orthogonal to the column space of𝐴, then the least squares
solution of𝐴x = b is x = 0.

17. Is there any value of s for which x1 = 1 and x2 = 2 is the least
squares solution of the following linear system?

x1 − x2 = 1
2x1 + 3x2 = 1
4x1 + 5x2 = s

Explain your reasoning.

18. Show that if p and q are distinct positive integers, then the
functions 𝑓(x) = sin px and g(x) = sin qx are orthogonal with
respect to the inner product

⟨f, g⟩ = ∫
2𝜋

0
𝑓(x)g(x) dx

19. Show that if p and q are positive integers, then the functions
𝑓(x) = cos px and g(x) = sin qx are orthogonal with respect to
the inner product

⟨f, g⟩ = ∫
2𝜋

0
𝑓(x)g(x) dx

20. Let𝑊 be the intersection of the planes

x+ y+ z = 0 and x− y+ z = 0

in 𝑅3. Find an equation for𝑊⟂.

21. Prove that if ad− bc ≠ 0, then the matrix

𝐴 = [
a b
c d

]

has a unique𝑄𝑅-decomposition𝐴 = 𝑄𝑅, where

𝑄 = 1
√a2 + c2

[
a −c
c a

]

𝑅 = 1
√a2 + c2

[
a2 + c2 ab+ cd

0 ad− bc
]
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Introduction
In Section 5.2we found conditions that guaranteed the diagonalizability of ann × nmatrix,
but we did not consider which class or classes ofmatricesmight actually satisfy those con-
ditions. In this chapter wewill show that every symmetricmatrix is diagonalizable. This is
an extremely important result because many applications utilize it in some essential way.

7.1 Orthogonal Matrices
In this section we will discuss the class of matrices whose inverses can be obtained by
transposition. Such matrices occur in a variety of applications and arise as well as transi-
tion matrices when one orthonormal basis is changed to another.

Orthogonal Matrices
We begin with the following definition.

Recall from Theorem 1.6.3
and the related discussion
that if either product in
(1) holds, then so does the
other. Thus,𝐴 is orthog-
onal if either 𝐴𝐴𝑇 = 𝐼 or
𝐴𝑇𝐴 = 𝐼.

Definition 1

A square matrix𝐴 is said to be orthogonal if its transpose is the same as its inverse,
that is, if

𝐴−1 = 𝐴𝑇
or, equivalently, if

𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 (1)
A matrix transformation 𝑇𝐴∶𝑅n → 𝑅n is said to be an orthogonal transformation
or an orthogonal operator if 𝐴 is an orthogonal matrix.
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EXAMPLE 1 | A 3 × 3 Orthogonal Matrix

The matrix

𝐴 =
⎡
⎢
⎢
⎢
⎣

3
7

2
7

6
7

− 6
7

3
7

2
7

2
7

6
7 − 3

7

⎤
⎥
⎥
⎥
⎦

is orthogonal since

𝐴𝑇𝐴 =
⎡
⎢
⎢
⎢
⎣

3
7 − 6

7
2
7

2
7

3
7

6
7

6
7

2
7 − 3

7

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

3
7

2
7

6
7

− 6
7

3
7

2
7

2
7

6
7 − 3

7

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

EXAMPLE 2 | Rotation and Reflection Matrices
Are Orthogonal

Recall from Table 5 of Section 1.8 that the standard matrix for the counterclockwise rotation
about the origin of 𝑅2 through an angle 𝜃 is

𝐴 = [cos𝜃 − sin𝜃
sin𝜃 cos𝜃]

This matrix is orthogonal for all choices of 𝜃 since

𝐴𝑇𝐴 = [ cos𝜃 sin𝜃
− sin𝜃 cos𝜃] [

cos𝜃 − sin𝜃
sin𝜃 cos𝜃] = [1 0

0 1]

We leave it for you to verify that the reflection matrices in Tables 1 and 2 of Section 1.8 are
all orthogonal.

Observe that for the orthogonal matrices in Examples 1 and 2, both the row vectors
and the column vectors form orthonormal sets with respect to the Euclidean inner prod-
uct. This is a consequence of the following theorem.

Theorem 7.1.1

The following are equivalent for an n × nmatrix 𝐴.
(a) 𝐴 is orthogonal.
(b) The row vectors of 𝐴 form an orthonormal set in 𝑅n with the Euclidean inner

product.
(c) The column vectors of 𝐴 form an orthonormal set in 𝑅n with the Euclidean

inner product.

Proof We will prove the equivalence of (a) and (b) and leave the equivalence of (a) and
(c) as an exercise.

(a)⇔ (b) Let ri be the ith row vector and cj the jth column vector of𝐴. Since transposing
amatrix converts its columns to rows and rows to columns, it follows that c𝑇j = rj. Thus, it
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follows from the row-column rule [Formula (5) of Section 1.3] and the bottom form listed
in Table 1 of Section 3.2 that

𝐴𝐴𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

r1c𝑇1 r1c𝑇2 ⋅ ⋅ ⋅ r1c𝑇n
r2c𝑇1 r2c𝑇2 ⋅ ⋅ ⋅ r2c𝑇n
...

...
...

rnc𝑇1 rnc𝑇2 ⋅ ⋅ ⋅ rnc𝑇n

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

r1 · r1 r1 · r2 ⋅ ⋅ ⋅ r1 · rn
r2 · r1 r2 · r2 ⋅ ⋅ ⋅ r2 · rn
...

...
...

rn · r1 rn · r2 ⋅ ⋅ ⋅ rn · rn

⎤
⎥
⎥
⎥
⎥
⎦

It is evident from this formula that 𝐴𝐴𝑇 = 𝐼 if and only if
r1 · r1 = r2 · r2 = ⋅ ⋅ ⋅ = rn · rn = 1

and
ri · rj = 0 when i ≠ j

which are true if and only if {r1, r2, . . . , rn} is an orthonormal set in 𝑅n.

Warning Note that an
orthogonal matrix has
orthonormal rows and
columns—not simply
orthogonal rows and
columns.

The following theorem lists four more fundamental properties of orthogonal matri-
ces. The proofs are all straightforward and are left as exercises.

Theorem 7.1.2

(a) The transpose of an orthogonal matrix is orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c) A product of orthogonal matrices is orthogonal.
(d) If 𝐴 is orthogonal, then det(𝐴) = 1 or det(𝐴) = −1.

EXAMPLE 3 | det(A) = ±1 for an Orthogonal Matrix A

The matrix

𝐴 =
⎡
⎢
⎢
⎣

1
√2

1
√2

− 1
√2

1
√2

⎤
⎥
⎥
⎦

is orthogonal since its row (and column) vectors formorthonormal sets in𝑅2with theEuclidean
inner product. We leave it for you to verify that det(𝐴) = 1 and that interchanging the rows
produces an orthogonal matrix whose determinant is−1.

Properties of Orthogonal Transformations
We observed in Example 2 that the standard matrices for the basic reflection and rotation
operators on 𝑅2 and 𝑅3 are orthogonal. The next theorem will explain why this is so.

Theorem 7.1.3

If 𝐴 is an n × nmatrix, then the following are equivalent.
(a) 𝐴 is orthogonal.
(b) ‖𝐴x‖ = ‖x‖ for all x in 𝑅n.
(c) 𝐴x ·𝐴y = x · y for all x and y in 𝑅n.
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Proof We will prove the sequence of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a)⇒ (b) Assume that 𝐴 is orthogonal, so that 𝐴𝑇𝐴 = 𝐼. It follows from Formula (26) of
Section 3.2 that

‖𝐴x‖ = (𝐴x ·𝐴x)1/2 = (x ·𝐴𝑇𝐴x)1/2 = (x · x)1/2 = ‖x‖

(b)⇒ (c) Assume that ‖𝐴x‖ = ‖x‖ for all x in 𝑅n. From Theorem 3.2.7 we have

𝐴x ·𝐴y = 1
4‖𝐴x + 𝐴y‖2 − 1

4‖𝐴x − 𝐴y‖2 = 1
4‖𝐴(x + y)‖2 − 1

4‖𝐴(x − y)‖2

= 1
4‖x + y‖2 − 1

4‖x − y‖2 = x · y

(c)⇒ (a) Assume that 𝐴x ·𝐴y = x · y for all x and y in 𝑅n. It follows from Formula (26)
of Section 3.2 that

x · y = x ·𝐴𝑇𝐴y
which can be rewritten as x · (𝐴𝑇𝐴y − y) = 0 or as

x · (𝐴𝑇𝐴 − 𝐼)y = 0

Since this equation holds for all x in 𝑅n, it holds in particular if x = (𝐴𝑇𝐴 − 𝐼)y, so
(𝐴𝑇𝐴 − 𝐼)y· (𝐴𝑇𝐴 − 𝐼)y = 0

It follows from the positivity axiom for inner products that

(𝐴𝑇𝐴 − 𝐼)y = 0

Since this equation is satisfied by every vector y in 𝑅n, it must be that 𝐴𝑇𝐴 − 𝐼 is the zero

v

0

u

TA(u)

TA(v)

α

β

FIGURE 7.1.1

matrix (why?) and hence that 𝐴𝑇𝐴 = 𝐼. Thus, 𝐴 is orthogonal.

It follows from parts (a) and (b) of Theorem 7.1.3 that the orthogonal operators on
𝑅n are precisely those operators that leave dot products and norms of vectors unchanged.
However, as illustrated in Figure 7.1.1, this implies that orthogonal operators also leave
angles and distances between vectors in 𝑅n unchanged since these can be expressed in
terms of norms [see Definition 2 and Formula (20) of Section 3.2].

Change of Orthonormal Basis
Orthonormal bases for inner product spaces are convenient because, as the following the-
orem shows,many familiar formulas hold for such bases.We leave the proof as an exercise.

Theorem 7.1.4

If 𝑆 is an orthonormal basis for an n-dimensional inner product space 𝑉, and if
(u)𝑆 = (u1,u2, . . . ,un) and (v)𝑆 = (v1, v2, . . . , vn)

then:

(a) ‖u‖ = √u21 + u22 + ⋅ ⋅ ⋅ + u2n

(b) d(u, v) = √(u1 − v1)2 + (u2 − v2)2 + ⋅ ⋅ ⋅ + (un − vn)2

(c) ⟨u, v⟩ = u1v1 + u2v2 + ⋅ ⋅ ⋅ + unvn
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Remark Note that the three parts of Theorem 7.1.4 can be expressed as

‖u‖ = ‖(u)𝑆‖ d(u, v) = d((u)𝑆 , (v)𝑆) ⟨u, v⟩ = ⟨(u)𝑆 , (v)𝑆⟩
where the norm, distance, and inner product on the left sides are relative to the inner
product on 𝑉 and on the right sides are relative to the Euclidean inner product on 𝑅n. In
short, norms, distances, and inner products of vectors in 𝑉 can be computed from their
coordinate vectors relative to an orthonormal basis using the Euclidean inner product.

Transitions betweenorthonormal bases for an inner product space are of special impor-
tance in geometry and various applications. The following theorem,whose proof is deferred
to the end of this section, is concerned with transitions of this type.

Theorem 7.1.5

Let𝑉 be a finite-dimensional inner product space. If 𝑃 is the transitionmatrix from
one orthonormal basis for𝑉 to another orthonormal basis for𝑉, then𝑃 is an orthog-
onal matrix.

y′

x′

(x, y)

(x′, y′)
Q

x

y

θ

(a)

(b)

y′

x′

u2

sin θ

cos θ
θ

y

u′1

u′2

u1

–sin θ

cos θ

θ

FIGURE 7.1.2

EXAMPLE 4 | Rotation of Axes in 2-Space

Inmany problems a rectangular xy-coordinate system is given, and a new x′y′-coordinate sys-
tem is obtained by rotating the xy-system counterclockwise about the origin through an angle
𝜃. When this is done, each point 𝑄 in the plane has two sets of coordinates—coordinates
(x, y) relative to the xy-system and coordinates (x′, y′) relative to the x′y′-system
(Figure 7.1.2a).

By introducing unit vectors u1 and u2 along the positive x- and y-axes and unit vec-
tors u′1 and u′2 along the positive x′- and y′-axes, we can regard this rotation as a change from
an old basis 𝐵 = {u1,u2} to a new basis 𝐵′ = {u′1,u′2}. Thus, with an appropriate adjust-
ment in notation it follows from Formulas (7) and (8) of Section 4.7 that the new coordinates
(x′, y′) and the old coordinates (x, y) of a point𝑄 are related by the equation

[x
′

y′] = 𝑃[xy] (2)

where
𝑃 = [[u1]𝐵′ |[u2]𝐵′]

Thus, to find 𝑃 we must find the coordinates of the old basis vectors with respect to the new
basis. We leave it for you to deduce the following results Figure 7.1.2b.

[u1]𝐵′ = [ cos𝜃
− sin𝜃] and [u2]𝐵′ = [sin𝜃cos𝜃] (3)

Thus

[x
′

y′] = [ cos𝜃 sin𝜃
− sin𝜃 cos𝜃][

x
y] (4)

or equivalently

x′ = x cos𝜃 + y sin𝜃
y′ = −x sin𝜃 + y cos𝜃

(5)

These are sometimes called the rotation equations for 𝑅2.
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EXAMPLE 5 | Rotation of Axes in 2-Space

Use form (4) of the rotation equations for 𝑅2 to find the new coordinates of the point𝑄(2, 1)
if the coordinate axes of a rectangular coordinate system are rotated through an angle of
𝜃 = 𝜋/4.
Solution Since

sin
𝜋
4
= cos

𝜋
4
= 1

√2
the equation in (4) becomes

[x
′

y′] =
⎡
⎢
⎢
⎣

1
√2

1
√2

− 1
√2

1
√2

⎤
⎥
⎥
⎦
[xy]

Thus, if the old coordinates of a point𝑄 are (x, y) = (2,−1), then

[x
′

y′] =
⎡
⎢
⎢
⎣

1
√2

1
√2

− 1
√2

1
√2

⎤
⎥
⎥
⎦
[ 2
−1] =

⎡
⎢
⎢
⎣

1
√2

− 3
√2

⎤
⎥
⎥
⎦

so the new coordinates of𝑄 are (x′, y′) = ( 1
√2
, − 3

√2
).

Remark Observe that the coefficient matrix in (4) is the same as the standard matrix for
the linear operator that rotates the vectors of 𝑅2 through the angle−𝜃 (seemargin note for
Table 5 of Section 1.8). This is to be expected since rotating the coordinate axes through
the angle 𝜃 with the vectors of 𝑅2 kept fixed has the same effect as rotating the vectors in
𝑅2 through the angle −𝜃 with the axes kept fixed.

z′z

y

y′

x
x′

u3 u3

u1 u1

u2

u2

θ

′

′

′

FIGURE 7.1.3

EXAMPLE 6 | Rotation of Axes in 3-Space

Suppose that a rectangular xyz-coordinate system is rotated around its z-axis counterclock-
wise (looking down the positive z-axis) through an angle 𝜃 (Figure 7.1.3). If we introduce
unit vectors u1, u2, and u3 along the positive x-, y-, and z-axes and unit vectors u′1, u′2, and
u′3 along the positive x′-, y′-, and z′-axes, we can regard the rotation as a change from the old
basis 𝐵 = {u1,u2,u3} to the new basis 𝐵′ = {u′1,u′2,u′3}. In light of Example 4, it should be
evident that

[u′1]𝐵 = [
cos𝜃
sin𝜃
0

] and [u′2]𝐵 = [
− sin𝜃
cos𝜃
0

]

Moreover, since u′3 extends 1 unit up the positive z′-axis,

[u′3]𝐵 = [
0
0
1
]

It follows that the transition matrix from 𝐵′ to 𝐵 is

𝑃 = [
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

]
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and the transition matrix from 𝐵 to 𝐵′ is

𝑃−1 =
⎡
⎢
⎢
⎣

cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0

0 0 1

⎤
⎥
⎥
⎦

(verify). Thus, the new coordinates (x′, y′, z′) of a point 𝑄 can be computed from its old
coordinates (x, y, z) by

⎡
⎢
⎢
⎣

x′

y′

z′

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0

0 0 1

⎤
⎥
⎥
⎦
[
x
y
z
]

OPTIONAL: We conclude this section with an optional proof of Theorem 7.1.5.

Proof of Theorem7.1.5 Assume that𝑉 is an n-dimensional inner product space and that
𝑃 is the transitionmatrix from an orthonormal basis 𝐵′ to an orthonormal basis 𝐵. Wewill
denote the norm relative to the inner product on 𝑉 by the symbol ‖ ‖𝑉 to distinguish it
from the norm relative to the Euclidean inner product on 𝑅n, which we will denote by
‖ ‖.

To prove that 𝑃 is orthogonal, we will use Theorem 7.1.3 and show that ‖𝑃x‖ = ‖x‖
for every vector x in 𝑅n. As a first step in this direction, recall from Theorem 7.1.4(a) that
for any orthonormal basis for 𝑉 the norm of any vector u in 𝑉 is the same as the norm of
its coordinate vector with respect to the Euclidean inner product, that is,

‖u‖𝑉 = ‖[u]𝐵′‖ = ‖[u]𝐵‖

or

‖u‖𝑉 = ‖[u]𝐵′‖ = ‖𝑃[u]𝐵′‖ (6)

Now let x be any vector in 𝑅n, and let u be the vector in 𝑉 whose coordinate vector with
respect to the basis 𝐵′ is x, that is, [u]𝐵′ = x. Thus, from (6),

‖u‖ = ‖x‖ = ‖𝑃x‖

which proves that 𝑃 is orthogonal.

Exercise Set 7.1

In each part of Exercises 1–4, determine whether the matrix is
orthogonal, and if so find it inverse.

1. a. [
1 0

0 −1
] b.

⎡
⎢
⎢
⎣

1
√2

− 1
√2

1
√2

1
√2

⎤
⎥
⎥
⎦

2. a. [
1 0

0 1
] b.

⎡
⎢
⎢
⎣

1
√5

2
√5

2
√5

1
√5

⎤
⎥
⎥
⎦

3. a.
⎡
⎢
⎢
⎢
⎣

0 1 1
√2

1 0 0

0 0 1
√2

⎤
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√2

1
√6

1
√3

0 − 2
√6

1
√3

1
√2

1
√6

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4. a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2

1
2

1
2 − 5

6
1
6

1
6

1
2

1
6

1
6 − 5

6
1
2

1
6 − 5

6
1
6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1

√3
− 1

2 0

0 1
√3

0 1

0 1
√3

1
2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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In Exercises 5–6, show that the matrix is orthogonal three ways: first
by calculating𝐴𝑇𝐴, then by using part (b) of Theorem7.1.1, and then
by using part (c) of Theorem 7.1.1.

5. 𝐴 =
⎡⎢⎢⎢
⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25
12
25

3
5

16
25

⎤⎥⎥⎥
⎦

6. 𝐴 =
⎡⎢⎢⎢
⎣

1
3

2
3

2
3

2
3 − 2

3
1
3

− 2
3 − 1

3
2
3

⎤⎥⎥⎥
⎦

7. Let 𝑇𝐴∶ 𝑅3 → 𝑅3 be multiplication by the orthogonal matrix
in Exercise 5. Find 𝑇𝐴(x) for the vector x = (−2, 3, 5), and
confirm that ‖𝑇𝐴(x)‖ = ‖x‖ relative to the Euclidean inner
product on 𝑅3.

8. Let 𝑇𝐴∶ 𝑅3 → 𝑅3 be multiplication by the orthogonal matrix
in Exercise 6. Find 𝑇𝐴(x) for the vector x = (0, 1, 4), and con-
firm ‖𝑇𝐴(x)‖ = ‖x‖ relative to the Euclidean inner product
on 𝑅3.

9. Are the standard matrices for the reflections in Tables 1 and 2
of Section 1.8 orthogonal?

10. Are the standard matrices for the orthogonal projections in
Tables 3 and 4 of Section 1.8 orthogonal?

11. What conditions must a and b satisfy for the matrix

[a+ b b− a
a− b b+ a]

to be orthogonal?

12. Under what conditions will a diagonal matrix be orthogonal?

13. Consider the rectangular x′y′-coordinate system obtained by
rotating a rectangular xy-coordinate system counterclockwise
through the angle 𝜃 = 𝜋/3.
a. Find the x′y′-coordinates of the point whose xy-coordinates

are (−2, 6).
b. Find the xy-coordinates of the point whose x′y′-coordinates

are (5, 2).

14. Repeat Exercise 13 with 𝜃 = 3𝜋/4.

15. Consider the rectangular x′y′z′-coordinate system obtained
by rotating a rectangular xyz-coordinate system counterclock-
wise about the z-axis (looking down the z-axis) through the
angle 𝜃 = 𝜋/4.
a. Find the x′y′z′-coordinates of the point whose xyz-

coordinates are (−1, 2, 5).
b. Find the xyz-coordinates of the point whose x′y′z′-

coordinates are (1, 6,−3).

16. Repeat Exercise 15 for a rotation of 𝜃 = 3𝜋/4 counterclock-
wise about the x-axis (looking along the positive x-axis toward
the origin).

17. Repeat Exercise 15 for a rotation of 𝜃 = 𝜋/3 counterclockwise
about the y-axis (looking along the positive y-axis toward the
origin).

18. A rectangular x′y′z′-coordinate system is obtained by rotating
an xyz-coordinate system counterclockwise about the y-axis
through an angle 𝜃 (looking along the positive y-axis toward
the origin). Find a matrix𝐴 such that

[
x′

y′

z′
] = 𝐴[

x
y
z
]

where (x, y, z) and (x′, y′, z′) are the coordinates of the same
point in the xyz- and x′y′z′-systems, respectively.

19. Repeat Exercise 18 for a rotation about the x-axis.

20. A rectangular x″y″z″-coordinate system is obtained by first
rotating a rectangular xyz-coordinate system 60∘ counter-
clockwise about the z-axis (looking down the positive z-axis)
to obtain an x′y′z′-coordinate system, and then rotating the
x′y′z′-coordinate system 45∘ counterclockwise about the y′-axis
(looking along the positive y′-axis toward the origin). Find a
matrix𝐴 such that

[
x″

y″

z″
] = 𝐴[

x
y
z
]

where (x, y, z) and (x″, y″, z″) are the xyz- and x″y″z″-
coordinates of the same point.

21. A linear operator on𝑅2 is called rigid if it does not change the
lengths of vectors, and it is called angle preserving if it does
not change the angle between nonzero vectors.

a. Identify two different types of linear operators that are
rigid.

b. Identify two different types of linear operators that are
angle preserving.

c. Are there any linear operators on 𝑅2 that are rigid and not
angle preserving? Angle preserving and not rigid? Justify
your answer.

22. Can an orthogonal operator 𝑇𝐴∶ 𝑅n → 𝑅n map nonzero vec-
tors that are not orthogonal into orthogonal vectors? Justify
your answer.

23. The set 𝑆 = { 1
√3
, 1
√2
x,√

3
2x

2 −√
2
3 } is an orthonormal basis

for 𝑃2 with respect to the evaluation inner product at the
points x0 = −1, x1 = 0, x2 = 1. Let p = p(x) = 1+ x+ x2
and q = q(x) = 2x− x2.

a. Find (p)𝑆 and (q)𝑆.
b. Use Theorem 7.1.4 to compute ‖p‖, d(p,q) and ⟨p,q⟩.

24. The sets 𝑆 = {1, x} and 𝑆′ = { 1
√2
(1+ x), 1

√2
(1− x)} are

orthonormal bases for 𝑃1 with respect to the standard inner
product. Find the transition matrix 𝑃 from 𝑆 to 𝑆′, and verify
that the conclusion of Theorem 7.1.5 holds for 𝑃.

Working with Proofs

25. Prove that if x is an n × 1 matrix, then the matrix

𝐴 = 𝐼n −
2
x𝑇xxx

𝑇

is both orthogonal and symmetric.

26. Prove that a 2 × 2 orthogonal matrix 𝐴 has only one of two
possible forms:

𝐴 = [cos𝜃 − sin𝜃
sin𝜃 cos𝜃] or 𝐴 = [cos𝜃 sin𝜃

sin𝜃 − cos𝜃]

where 0 ≤ 𝜃 < 2𝜋. [Hint: Start with a general 2 × 2 matrix𝐴,
and use the fact that the column vectors form an orthonormal
set in 𝑅2.]
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27. a. Use the result in Exercise 26 to prove that multiplication by
a 2 × 2 orthogonal matrix is a rotation if det(𝐴) = 1 and a
reflection followed by a rotation if det(𝐴) = −1.

b. In the case where the transformation in part (a) is a reflec-
tion followed by a rotation, show that the same transfor-
mation can be accomplished by a single reflection about
an appropriate line through the origin. What is that line?
[Hint: See Formula (6) of Section 1.8.]

28. In each part, use the result in Exercise 27(a) to determine
whether multiplication by 𝐴 is a rotation or a reflection fol-
lowed by rotation. Find the angle of rotation in both cases, and
in the case where it is a reflection followed by a rotation find
an equation for the line through the origin referenced in Exer-
cise 27(b).

a. 𝐴 =
⎡
⎢
⎢
⎣

− 1
√2

1
√2

− 1
√2

− 1
√2

⎤
⎥
⎥
⎦

b. 𝐴 =
⎡⎢⎢⎢
⎣

− 1
2

√3
2

√3
2

1
2

⎤⎥⎥⎥
⎦

29. The result in Exercise 27(a) has an analog for 3 × 3 orthogo-
nal matrices. It can be proved that multiplication by a 3 × 3
orthogonal matrix𝐴 is a rotation about some line through the
origin of 𝑅3 if det(𝐴) = 1 and is a reflection about some coor-
dinate plane followed by a rotation about some line through
the origin if det(𝐴) = −1. Use the first of these facts and The-
orem 7.1.2 to prove that any composition of rotations about
lines through the origin in 𝑅3 can be accomplished by a single
rotation about an appropriate line through the origin.

30. Prove the equivalence of statements (a) and (c) that are given
in Theorem 7.1.1.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.

a. The matrix [
1 0
0 1
0 0

] is orthogonal.

b. The matrix [1 −2
2 1] is orthogonal.

c. Anm × nmatrix𝐴 is orthogonal if𝐴𝑇𝐴 = 𝐼.
d. A square matrix whose columns form an orthogonal set

is orthogonal.

e. Every orthogonal matrix is invertible.

f. If 𝐴 is an orthogonal matrix, then 𝐴2 is orthogonal and
(det𝐴)2 = 1.

g. Every eigenvalue of an orthogonal matrix has absolute
value 1.

h. If 𝐴 is a square matrix and ‖𝐴u‖ = 1 for all unit vectors
u, then𝐴 is orthogonal.

Working with Technology
T1. If a is a nonzero vector in 𝑅n, then aa𝑇 is called the outer

product of a with itself, the subspace a⟂ is called the hyper-
plane in 𝑅n orthogonal to a, and the n × n orthogonal matrix

𝐻a⟂ = 𝐼 − 2
a𝑇aaa

𝑇

is called theHouseholdermatrix or theHouseholder reflec-
tion about a⟂, named in honor of the American mathemati-
cian Alston S. Householder (1904–1993). In 𝑅2 the matrix
𝐻a⟂ represents a reflection about the line through the ori-
gin that is orthogonal to a, and in 𝑅3 it represents a reflec-
tion about the plane through the origin that is orthogonal to
a. In higher dimensions we can view 𝐻a⟂ as a “reflection”
about the hyperplane a⟂. Householder reflections are impor-
tant in large-scale implementations of numerical algorithms,
because they can be used to transform a given vector into a
vectorwith specified zero componentswhile leaving the other
components unchanged. This is a consequence of the follow-
ing theorem [see Contemporary Linear Algebra, by Howard
Anton andRobert C. Busby (Hoboken,NJ: JohnWiley&Sons,
2003, p. 422)].

Theorem

If v and w are distinct vectors in 𝑅n with the same
norm, then the Householder reflection about the
hyperplane (v−w)⟂ maps v intow and conversely.

a. Find a Householder reflection that maps v = (4, 2, 4)
into a vectorw that has zeros as its second and third com-
ponents. Findw.

b. Find a Householder reflection that maps v = (3, 4, 2, 4)
into the vector whose last two entries are zero, while leav-
ing the first entry unchanged. Findw.
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7.2 Orthogonal Diagonalization
In this sectionwewill be concernedwith the problemof diagonalizing a symmetricmatrix
𝐴. As wewill see, this problem is closely related to that of finding an orthonormal basis for
Rn that consists of eigenvectors of 𝐴. Problems of this type are important because many
of the matrices that arise in applications are symmetric.

The Orthogonal Diagonalization Problem
In Section 5.2we defined two squarematrices,𝐴 and𝐵, to be similar if there is an invertible
matrix 𝑃 such that 𝑃−1𝐴𝑃 = 𝐵. In this section we will be concerned with the special case
in which it is possible to find an orthogonalmatrix 𝑃 for which this relationship holds.

We begin with the following definition.

Definition 1

If 𝐴 and 𝐵 are square matrices, then we say that 𝐵 is orthogonally similar to 𝐴 if
there is an orthogonal matrix 𝑃 such that 𝐵 = 𝑃𝑇𝐴𝑃.

Note that if 𝐵 is orthogonally similar to𝐴, then it is also true that𝐴 is orthogonally similar
to 𝐵 since we can express𝐴 as𝐴 = 𝑃𝐵𝑃𝑇 = 𝑄𝑇𝐵𝑄, where𝑄 = 𝑃𝑇 . This being the case we
will say that 𝐴 and 𝐵 are orthogonally similar matrices if either is orthogonally similar
to the other.

If 𝐴 is orthogonally similar to some diagonal matrix, say

𝑃𝑇𝐴𝑃 = 𝐷

then we say 𝐴 is orthogonally diagonalizable and 𝑃 orthogonally diagonalizes 𝐴.
Our first goal in this section is to determine what conditions a matrix must satisfy to

be orthogonally diagonalizable. As an initial step, observe that there is no hope of orthog-
onally diagonalizing a matrix that is not symmetric. To see why this is so, suppose that

𝑃𝑇𝐴𝑃 = 𝐷 (1)

where 𝑃 is an orthogonal matrix and 𝐷 is a diagonal matrix. Multiplying the left side of
(1) by 𝑃, the right side by 𝑃𝑇, and then using the fact that 𝑃𝑃𝑇 = 𝑃𝑇𝑃 = 𝐼, we can rewrite
this equation as

𝐴 = 𝑃𝐷𝑃𝑇 (2)

Now transposing both sides of this equation and using the fact that a diagonal matrix is
the same as its transpose we obtain

𝐴𝑇 = (𝑃𝐷𝑃𝑇)𝑇 = (𝑃𝑇)𝑇𝐷𝑇𝑃𝑇 = 𝑃𝐷𝑃𝑇 = 𝐴

so 𝐴must be symmetric if it is orthogonally diagonalizable.

Conditions for Orthogonal Diagonalizability
We showed above that in order for a square matrix 𝐴 to be orthogonally diagonalizable
it must be symmetric. Our next theorem will show that the converse is true if 𝐴 has real
entries and the orthogonality is with respect to the Euclidean inner product on 𝑅n.
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Theorem 7.2.1

If 𝐴 is an n × nmatrix with real entries, then the following are equivalent.
(a) 𝐴 is orthogonally diagonalizable.
(b) 𝐴 has an orthonormal set of n eigenvectors.
(c) 𝐴 is symmetric.

Proof (a)⇒ (b) Since 𝐴 is orthogonally diagonalizable, there is an orthogonal matrix 𝑃
such that 𝑃−1𝐴𝑃 is diagonal. As shown in Formula (2) in the proof of Theorem 5.2.1, the
n column vectors of 𝑃 are eigenvectors of 𝐴. Since 𝑃 is orthogonal, these column vectors
are orthonormal, so 𝐴 has n orthonormal eigenvectors.

(b) ⇒ (a) Assume that 𝐴 has an orthonormal set of n eigenvectors {p1,p2, . . . ,pn}. As
shown in the proof of Theorem 5.2.1, the matrix 𝑃 with these eigenvectors as columns
diagonalizes 𝐴. Since these eigenvectors are orthonormal, the matrix 𝑃 is orthogonal and
thus orthogonally diagonalizes 𝐴.

(a) ⇒ (c) In the proof that (a) ⇒ (b) we showed that an orthogonally diagonalizable
n × n matrix 𝐴 is orthogonally diagonalized by an n × n matrix 𝑃 whose columns form
an orthonormal set of eigenvectors of 𝐴. Let 𝐷 be the diagonal matrix

𝐷 = 𝑃𝑇𝐴𝑃

from which it follows that
𝐴 = 𝑃𝐷𝑃𝑇

Thus,
𝐴𝑇 = (𝑃𝐷𝑃𝑇)𝑇 = 𝑃𝐷𝑇𝑃𝑇 = 𝑃𝐷𝑃𝑇 = 𝐴

which shows that 𝐴 is symmetric.

(c) ⇒ (a) The proof of this part is beyond the scope of this text. However, because it is
such an important result we have outlined the structure of its proof in the exercises.

Properties of Symmetric Matrices
Our next goal is to devise a procedure for orthogonally diagonalizing a symmetric matrix,
but before we can do so, we need the following critical theorem about eigenvalues and
eigenvectors of symmetric matrices.

Theorem 7.2.2

If 𝐴 is a symmetric matrix with real entries, then:
(a) The eigenvalues of 𝐴 are all real numbers.
(b) Eigenvectors from different eigenspaces are orthogonal.

Part (a), which requires results about complex vector spaces, will be discussed in
Section 7.5.
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Proof (b) Let v1 and v2 be eigenvectors corresponding to distinct eigenvalues 𝜆1 and 𝜆2
of the matrix 𝐴. We want to show that v1 · v2 = 0. Our proof of this involves the trick of
starting with the expression 𝐴v1 · v2. It follows from Formula (26) of Section 3.2 and the
symmetry of 𝐴 that

𝐴v1 · v2 = v1 ·𝐴𝑇v2 = v1 ·𝐴v2 (3)
But v1 is an eigenvector of 𝐴 corresponding to 𝜆1, and v2 is an eigenvector of 𝐴 corre-
sponding to 𝜆2, so (3) yields the relationship

𝜆1v1 · v2 = v1 · 𝜆2v2
which can be rewritten as

(𝜆1 − 𝜆2)(v1 · v2) = 0 (4)
But 𝜆1 − 𝜆2 ≠ 0, since 𝜆1 and 𝜆2 were assumed distinct, so it follows from (4) that

v1 · v2 = 0

Theorem 7.2.2 yields the following procedure for orthogonally diagonalizing a sym-
metric matrix.

Orthogonally Diagonalizing an n × n Symmetric Matrix
Step 1. Find a basis for each eigenspace of𝐴.
Step 2. Apply the Gram–Schmidt process to each of these bases to obtain an orthonormal

basis for each eigenspace.

Step 3. Form the matrix 𝑃 whose columns are the vectors constructed in Step 2. This matrix
will orthogonally diagonalize 𝐴, and the eigenvalues on the diagonal of 𝐷 = 𝑃𝑇𝐴𝑃
will be in the same order as their corresponding eigenvectors in 𝑃.

Remark The justification of this procedure should be clear: Theorem 7.2.2 ensures that
eigenvectors from different eigenspaces are orthogonal, and applying the Gram–Schmidt
process ensures that the eigenvectors within the same eigenspace are orthonormal. Thus
the entire set of eigenvectors obtained by this procedure will be orthonormal.

EXAMPLE 1 | Orthogonally Diagonalizing a Symmetric Matrix

Find an orthogonal matrix 𝑃 that diagonalizes

𝐴 = [
4 2 2
2 4 2
2 2 4

]

Solution We leave it for you to verify that the characteristic equation of𝐴 is

det(𝜆𝐼 − 𝐴) = det[
𝜆 − 4 −2 −2
−2 𝜆 − 4 −2
−2 −2 𝜆 − 4

] = (𝜆 − 2)2(𝜆 − 8) = 0

Thus, the distinct eigenvalues of 𝐴 are 𝜆 = 2 and 𝜆 = 8. By the method used in Example 7
of Section 5.1, it can be shown that

u1 = [
−1
1
0
] and u2 = [

−1
0
1
] (5)
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form a basis for the eigenspace corresponding to 𝜆 = 2. Applying the Gram–Schmidt process
to {u1,u2} yields the following orthonormal eigenvectors (verify):

v1 =
⎡
⎢
⎢
⎢
⎢
⎣

− 1
√2
1
√2
0

⎤
⎥
⎥
⎥
⎥
⎦

and v2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√6

− 1
√6
2
√6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6)

The eigenspace corresponding to 𝜆 = 8 has

u3 = [
1
1
1
]

as a basis. Applying the Gram–Schmidt process to {u3} (i.e., normalizing u3) yields

v3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√3
1
√3
1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Finally, using v1, v2, and v3 as column vectors, we obtain

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√2

− 1
√6

1
√3

1
√2

− 1
√6

1
√3

0 2
√6

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

which orthogonally diagonalizes𝐴. As a check, we leave it for you to confirm that

𝑃𝑇𝐴𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√2

1
√2

0

− 1
√6

− 1
√6

2
√6

1
√3

1
√3

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
4 2 2
2 4 2
2 2 4

]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√2

− 1
√6

1
√3

1
√2

− 1
√6

1
√3

0 2
√6

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
2 0 0
0 2 0
0 0 8

]

Spectral Decomposition
If 𝐴 is a symmetric matrix with real entries that is orthogonally diagonalized by

𝑃 = [u1 u2 ⋅ ⋅ ⋅ un]

and if 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴 corresponding to the unit eigenvectors
u1,u2, . . . ,un, then we know that𝐷 = 𝑃𝑇𝐴𝑃,where𝐷 is a diagonal matrix with the eigen-
values in the diagonal positions. It follows from this that the matrix𝐴 can be expressed as

𝐴 = 𝑃𝐷𝑃𝑇 = [u1 u2 ⋅ ⋅ ⋅ un]
⎡⎢⎢⎢⎢
⎣

𝜆1 0 ⋅ ⋅ ⋅ 0
0 𝜆2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝜆n

⎤⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢⎢
⎣

u𝑇1
u𝑇2...
u𝑇n

⎤⎥⎥⎥⎥⎥
⎦

= [𝜆1u1 𝜆2u2 ⋅ ⋅ ⋅ 𝜆nun]

⎡⎢⎢⎢⎢⎢
⎣

u𝑇1
u𝑇2...
u𝑇n

⎤⎥⎥⎥⎥⎥
⎦
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Multiplying out, we obtain the formula

𝐴 = 𝜆1u1u𝑇1 + 𝜆2u2u𝑇2 + ⋅ ⋅ ⋅ + 𝜆nunu𝑇n (7)

which is called a spectral decomposition of A.*
Note that each term of the spectral decomposition of 𝐴 has the form 𝜆uu𝑇 , where u

is a unit eigenvector of 𝐴 in column form, and 𝜆 is an eigenvalue of 𝐴 corresponding to
u. Since u has size n × 1, it follows that the product uu𝑇 has size n × n. It can be proved
(though we will not do it) that uu𝑇 is the standard matrix for the orthogonal projection of
𝑅n on the subspace spanned by the vectoru. Accepting this to be so, the spectral decompo-
sition of 𝐴 states that the image of a vector x under multiplication by a symmetric matrix
𝐴 can be obtained by projecting x orthogonally on the lines (one-dimensional subspaces)
determined by the eigenvectors of 𝐴, then scaling those projections by the eigenvalues,
and then adding the scaled projections. Here is an example.

EXAMPLE 2 | A Geometric Interpretation of a
Spectral Decomposition

The matrix
𝐴 = [1 2

2 −2]

has eigenvalues 𝜆1 = −3 and 𝜆2 = 2 with corresponding eigenvectors

x1 = [ 1
−2] and x2 = [21]

(verify). Normalizing these basis vectors yields

u1 =
x1
‖x1‖

=
⎡
⎢
⎢
⎣

1
√5

− 2
√5

⎤
⎥
⎥
⎦

and u2 =
x2
‖x2‖

=
⎡
⎢
⎢
⎣

2
√5
1
√5

⎤
⎥
⎥
⎦

so a spectral decomposition of𝐴 is

[1 2
2 −2] = 𝜆1u1u

𝑇
1 + 𝜆2u2u

𝑇
2 = (−3) [

1
√5

− 2
√5

] [ 1
√5

− 2
√5 ] + (2)

⎡
⎢
⎢
⎣

2
√5
1
√5

⎤
⎥
⎥
⎦
[ 2
√5

1
√5 ]

= (−3) [
1
5 − 2

5

− 2
5

4
5
] + (2) [

4
5

2
5

2
5

1
5
] (8)

where, as noted above, the 2 × 2matrices on the right side of (8) are the standardmatrices for
the orthogonal projections onto the eigenspaces corresponding to the eigenvalues 𝜆1 = −3
and 𝜆2 = 2, respectively.

Now let us see what this spectral decomposition tells us about the image of the vector
x = (1, 1) under multiplication by𝐴.Writing x in column form, it follows that

𝐴x = [1 2
2 −2] [

1
1] = [30] (9)

*The terminology spectral decomposition is derived from the fact that the set of all eigenvalues of amatrix𝐴 is sometimes
called the spectrum of𝐴. The terminology eigenvalue decomposition is due to Professor Dan Kalman, who introduced
it in an award-winning paper entitled “A Singularly Valuable Decomposition: The SVD of a Matrix,” The College Math-
ematics Journal, Vol. 27, No. 1, January 1996.
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and from (8) that

𝐴x = [1 2
2 −2] [

1
1] = (−3) [

1
5 − 2

5

− 2
5

4
5
] [11] + (2) [

4
5

2
5

2
5

1
5
] [11]

= (−3) [
− 1

5
2
5
] + (2) [

6
5
3
5
]

= [
3
5

− 6
5
] + [

12
5
6
5
] = [30] (10)

Formulas (9) and (10) provide two different ways of viewing the image of the vector (1, 1)
under multiplication by𝐴: Formula (9) tells us directly that the image of this vector is (3, 0),
whereas Formula (10) tells us that this image can also be obtained by projecting (1, 1) onto the
eigenspaces corresponding to 𝜆1 = −3 and 𝜆2 = 2 to obtain the vectors (− 1

5 ,
2
5) and (

6
5 ,

3
5),

then scaling by the eigenvalues to obtain ( 35 , −
6
5) and (

12
5 ,

6
5), and then adding these vectors

(see Figure 7.2.1).

5 5(  , – )3 6

5 5(   ,    )6 3

5 5(    ,    )12 6

5 5(–   ,   )1 2

λ2 = 2

λ1 = –3

Ax = (3, 0)

x = (1, 1)

FIGURE 7.2.1

The Nondiagonalizable Case
If 𝐴 is an n × n matrix that is not orthogonally diagonalizable, it may still be possible to
achieve considerable simplification in the formof𝑃𝑇𝐴𝑃 by choosing the orthogonalmatrix
𝑃 appropriately. We will consider two theorems (without proof) that illustrate this. The
first, due to the German mathematician Issai Schur, states that every square matrix 𝐴 is
orthogonally similar to an upper triangular matrix that has the eigenvalues of 𝐴 on the
main diagonal.

Theorem 7.2.3

Schur’s Theorem
If𝐴 is an n × nmatrixwith real entries and real eigenvalues, then there is an orthog-
onal matrix 𝑃 such that 𝑃𝑇𝐴𝑃 is an upper triangular matrix of the form

𝑃𝑇𝐴𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆1 × × ⋅ ⋅ ⋅ ×
0 𝜆2 × ⋅ ⋅ ⋅ ×
0 0 𝜆3 ⋅ ⋅ ⋅ ×
...

...
...

. . .
...

0 0 0 ⋅ ⋅ ⋅ 𝜆n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(11)

in which 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴 repeated according to multiplicity.
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Historical Note

Issai Schur
(1875–1941)

The life of the German mathematician Issai Schur is a sad
reminder of the effect that Nazi policies had on Jewish intellec-
tuals during the 1930s. Schur was a brilliant mathematician and
a popular lecturer who attracted many students and researchers
to the University of Berlin, where he worked and taught. His lec-
tures sometimes attracted so many students that opera glasses
were needed to see him from the back row. Schur’s life became
increasingly difficult under Nazi rule, and in April of 1933 he was
forced to “retire” from the university under a law that prohibited
non-Aryans from holding “civil service” positions. There was an
outcry from many of his students and colleagues who respected
and liked him, but it did not stave off his complete dismissal in
1935. Schur, who thought of himself as a loyal German, never
understood the persecution and humiliation he received at Nazi
hands.He left Germany for Palestine in 1939, a brokenman. Lack-
ing in financial resources, he had to sell his beloved mathematics
books and lived in poverty until his death in 1941.

[Image: Courtesy Electronic Publishing Services, Inc., New York City]

It is common to denote the upper triangular matrix in (11) by 𝑆 (for Schur), in which case
that equation would be rewritten as

𝐴 = 𝑃𝑆𝑃𝑇 (12)
which is called a Schur decomposition of 𝐴.

The next theorem, due to the German mathematician and electrical engineer Karl
Hessenberg (1904–1959), states that every square matrix with real entries is orthogonally
similar to amatrix in which each entry below the first subdiagonal is zero (Figure 7.2.2).
Such a matrix is said to be in upper Hessenberg form.

First subdiagonal

FIGURE 7.2.2

Theorem 7.2.4

Hessenberg’s Theorem
If 𝐴 is an n × nmatrix with real entries, then there is an orthogonal matrix 𝑃 such
that 𝑃𝑇𝐴𝑃 is a matrix of the form

𝑃𝑇𝐴𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × ⋅ ⋅ ⋅ × × ×
× × ⋅ ⋅ ⋅ × × ×
0 ×

. . . × × ×
...

...
. . .

...
...

...
0 0 ⋅ ⋅ ⋅ × × ×
0 0 ⋅ ⋅ ⋅ 0 × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)Note that unlike those in
(11), the diagonal entries
in (13) are usually not the
eigenvalues of𝐴.

It is common to denote the upper Hessenberg matrix in (13) by 𝐻 (for Hessenberg),
in which case that equation can be rewritten as

𝐴 = 𝑃𝐻𝑃𝑇 (14)
which is called an upper Hessenberg decomposition of 𝐴.

Remark In many numerical algorithms the initial matrix is first converted to upper
Hessenberg form to reduce the amount of computation in subsequent parts of the algo-
rithm. Many computer packages have built-in commands for finding Schur and Hessen-
berg decompositions.
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Exercise Set 7.2

In Exercises 1–6, find the characteristic equation of the given sym-
metric matrix, and then by inspection determine the dimensions of
the eigenspaces.

1. [1 2
2 4] 2. [

1 −4 2
−4 1 −2
2 −2 −2

]

3. [
1 1 1
1 1 1
1 1 1

] 4. [
4 2 2
2 4 2
2 2 4

]

5.
⎡
⎢
⎢
⎢
⎣

4 4 0 0
4 4 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

6.
⎡
⎢
⎢
⎢
⎣

2 −1 0 0
−1 2 0 0
0 0 2 −1
0 0 −1 2

⎤
⎥
⎥
⎥
⎦

In Exercises 7–14, find amatrix𝑃 that orthogonally diagonalizes𝐴,
and determine 𝑃−1𝐴𝑃.

7. 𝐴 = [ 6 2√3
2√3 7

] 8. 𝐴 = [3 1
1 3]

9. 𝐴 = [
−2 0 −36
0 −3 0

−36 0 −23
] 10. 𝐴 = [ 6 −2

−2 3]

11. 𝐴 = [
2 −1 −1

−1 2 −1
−1 −1 2

] 12. 𝐴 = [
1 1 0
1 1 0
0 0 0

]

13. 𝐴 =
⎡
⎢
⎢
⎢
⎣

−7 24 0 0
24 7 0 0
0 0 −7 24
0 0 24 7

⎤
⎥
⎥
⎥
⎦

14. 𝐴 =
⎡
⎢
⎢
⎢
⎣

3 1 0 0
1 3 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

In Exercises 15–18, find the spectral decomposition of the matrix.

15. [3 1
1 3] 16. [ 6 −2

−2 3]

17. [
−3 1 2
1 −3 2
2 2 0

] 18. [
−2 0 −36
0 −3 0

−36 0 −23
]

In Exercises 19–20, determine whether there exists a 3 × 3 symmet-
ric matrix whose eigenvalues are 𝜆1 = −1, 𝜆2 = 3, 𝜆3 = 7 and for
which the corresponding eigenvectors are as stated. If there is such a
matrix, find it, and if there is none, explain why not.

19. x1 = [
0
1

−1
], x2 = [

1
0
0
], x3 = [

0
1
1
]

20. x1 = [
0
1

−1
], x2 = [

1
0
0
], x3 = [

1
1
1
]

21. Let𝐴 be a diagonalizable matrix with the property that eigen-
vectors corresponding to distinct eigenvalues are orthogonal.
Must𝐴 be symmetric? Explain your reasoning.

22. Assuming that b ≠ 0, find a matrix that orthogonally diago-
nalizes

[a b
b a]

23. Let 𝑇𝐴∶ 𝑅2 → 𝑅2 be multiplication by 𝐴. Find two orthogo-
nal unit vectors u1 and u2 such that 𝑇𝐴(u1) and 𝑇𝐴(u2) are
orthogonal.

a. 𝐴 = [−1 1
1 1] b. 𝐴 = [1 2

2 1]

24. Let 𝑇𝐴∶ 𝑅3 → 𝑅3 be multiplication by 𝐴. Find two orthogo-
nal unit vectors u1 and u2 such that 𝑇𝐴(u1) and 𝑇𝐴(u2) are
orthogonal.

a. 𝐴 = [
4 2 2
2 4 2
2 2 4

] b. 𝐴 = [
1 0 0
0 1 1
0 1 1

]

Working with Proofs

25. Prove that if 𝐴 is any m × n matrix, then 𝐴𝑇𝐴 has an ortho-
normal set of n eigenvectors.

26. Prove: If {u1,u2, . . . ,un} is an orthonormal basis for 𝑅n, and
if𝐴 can be expressed as

𝐴 = c1u1u
𝑇
1 + c2u2u

𝑇
2 + ⋅ ⋅ ⋅ + cnunu

𝑇
n

then𝐴 is symmetric and has eigenvalues c1, c2, . . . , cn.

27. Use the result in Exercise 29 of Section 5.1 to prove Theo-
rem 7.2.2 (a) for 2 × 2 symmetric matrices.

28. a. Prove that if v is any n × 1 matrix and 𝐼 is the n × n identity
matrix, then 𝐼 − vv𝑇 is orthogonally diagonalizable.

b. Find a matrix 𝑃 that orthogonally diagonalizes 𝐼 − vv𝑇 if

v =
⎡
⎢
⎢
⎣

1
0
1

⎤
⎥
⎥
⎦

29. Prove that if 𝐴 is a symmetric orthogonal matrix, then 1 and
−1 are the only possible eigenvalues.

30. Is the converse of Theorem 7.2.2 (b) true? Justify your answer.

31. In this exercise we will show that a symmetric matrix 𝐴 is
orthogonally diagonalizable, thereby completing the missing
part of Theorem 7.2.1. We will proceed in two steps: first we
will show that 𝐴 is diagonalizable, and then we will build on
that result to show that𝐴 is orthogonally diagonalizable.

a. Assume that 𝐴 is a symmetric n × n matrix. One way to
prove that 𝐴 is diagonalizable is to show that for each
eigenvalue 𝜆0 the geometric multiplicity is equal to the
algebraic multiplicity. For this purpose, assume that the
geometric multiplicity of 𝜆0 is k, let 𝐵0 = {u1,u2, . . . ,uk}
be an orthonormal basis for the eigenspace correspond-
ing to the eigenvalue 𝜆0, extend this to an orthonormal
basis 𝐵0 = {u1,u2, . . . ,un} for 𝑅n, and let 𝑃 be the matrix
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having the vectors of 𝐵 as columns. As shown in Exer-
cise 41(b) of Section 5.2, the product𝐴𝑃 can be written as

𝐴𝑃 = 𝑃 [
𝜆0𝐼k 𝑋
0 𝑌]

Use the fact that 𝐵 is an orthonormal basis to prove that
𝑋 = 0 [a zero matrix of size n × (n− k)].

b. It follows from part (a) and Exercise 41(c) of Section 5.2
that𝐴 has the same characteristic polynomial as

𝐶 = 𝑃 [
𝜆0𝐼k 0
0 𝑌]

Use this fact and Exercise 41(d) of Section 5.2 to prove that
the algebraic multiplicity of 𝜆0 is the same as the geometric
multiplicity of 𝜆0. This establishes that𝐴 is diagonalizable.

c. Use Theorem 7.2.2(b) and the fact that𝐴 is diagonalizable
to prove that𝐴 is orthogonally diagonalizable.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If 𝐴 is a square matrix, then 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are orthogo-

nally diagonalizable.

b. If v1 and v2 are eigenvectors from distinct eigenspaces of
a symmetric matrix with real entries, then

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2

c. Every orthogonal matrix is orthogonally diagonalizable.

d. If 𝐴 is both invertible and orthogonally diagonalizable,
then𝐴−1 is orthogonally diagonalizable.

e. Every eigenvalue of an orthogonal matrix has absolute
value 1.

f. If 𝐴 is an n × n orthogonally diagonalizable matrix, then
there exists an orthonormal basis for 𝑅n consisting of
eigenvectors of𝐴.

g. If𝐴 is orthogonally diagonalizable, then𝐴 has real eigen-
values.

Working with Technology
T1. If your technology utility has an orthogonal diagonaliza-

tion capability, use it to confirm the final result obtained in
Example 1.

T2. For the given matrix 𝐴, find orthonormal bases for the
eigenspaces of 𝐴, and use those basis vectors to construct an
orthogonal matrix 𝑃 for which 𝑃𝑇𝐴𝑃 is diagonal.

𝐴 =
⎡
⎢
⎢
⎣

−4 2 −2
2 −7 4

−2 4 −7

⎤
⎥
⎥
⎦

T3. Find a spectral decomposition of the matrix𝐴 in Exercise T2.

7.3 Quadratic Forms
In this section we will use matrix methods to study real-valued functions of several
variables in which each term is either the square of a variable or the product of two
variables. Such functions arise in a variety of applications, including geometry, vibrations
of mechanical systems, statistics, and electrical engineering.

Definition of a Quadratic Form
Expressions of the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn
occurred in our study of linear equations and linear systems. If a1, a2, . . . , an are treated
as constants, then this expression is a real-valued function of the variables x1, x2, . . . , xn
and is called a linear form on 𝑅n. All variables in a linear form occur to the first power
and there are no products of variables. Here we will be concerned with quadratic forms
on 𝑅n, which are functions of the form

a1x
2
1 + a2x

2
2 + ⋅ ⋅ ⋅ + anx

2
n + (all possible terms akxixj in which i ≠ j)

The terms of the form akxixj in which i is ≠ j are called cross product terms. It is com-
mon to combine the cross product terms involving xixj with those involving xjxi to avoid
duplication. Thus, a general quadratic form on 𝑅2 would typically be expressed as

a1x
2
1 + a2x

2
2 + 2a3x1x2 (1)

and a general quadratic form on 𝑅3 as
a1x

2
1 + a2x

2
2 + a3x

2
3 + 2a4x1x2 + 2a5x1x3 + 2a6x2x3 (2)
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If, as usual, we do not distinguish between the number a and the 1 × 1 matrix [a], and
if we let x be the column vector of variables, then (1) and (2) can be expressed in matrix
form as

[x1 x2] [
a1 a3
a3 a2

] [x1x2
] = x𝑇𝐴x

[x1 x2 x3] [
a1 a4 a5
a4 a2 a6
a5 a6 a3

] [
x1
x2
x3
] = x𝑇𝐴x

(verify). Note that thematrix𝐴 in these formulas is symmetric, that its diagonal entries are
the coefficients of the squared terms, and its off-diagonal entries are half the coefficients
of the cross product terms. In general, if 𝐴 is a symmetric n × n matrix and x is an n × 1
column vector of variables, then we call the function

𝑄𝐴(x) = x𝑇𝐴x (3)

the quadratic form associated with A. When convenient, (3) can be expressed in dot
product notation as

x𝑇𝐴x = x·𝐴x = 𝐴x · x (4)

In the casewhere𝐴 is a diagonalmatrix, the quadratic form x𝑇𝐴xhas no cross product
terms; for example, if 𝐴 has diagonal entries 𝜆1, 𝜆2, . . . , 𝜆n, then

x𝑇𝐴x = [x1 x2 ⋅ ⋅ ⋅ xn]
⎡
⎢
⎢
⎢
⎢
⎣

𝜆1 0 ⋅ ⋅ ⋅ 0
0 𝜆2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝜆n

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2...
xn

⎤
⎥
⎥
⎥
⎦

= 𝜆1x21 + 𝜆2x22 + ⋅ ⋅ ⋅ + 𝜆nx2n

EXAMPLE 1 | Expressing Quadratic Forms in Matrix Notation

In each part, express the quadratic form in the matrix notation x𝑇𝐴x,where𝐴 is symmetric.

(a) 2x2 + 6xy− 5y2 (b) x21 + 7x22 − 3x23 + 4x1x2 − 2x1x3 + 8x2x2
Solution The diagonal entries of 𝐴 are the coefficients of the squared terms, and the off-
diagonal entries are half the coefficients of the cross product terms, so

2x2 + 6xy− 5y2 = [x y] [2 3
3 −5] [

x
y]

x21 + 7x22 − 3x23 + 4x1x2 − 2x1x3 + 8x2x3 = [x1 x2 x3] [
1 2 −1
2 7 4

−1 4 −3
][

x1
x2
x3
]

Change of Variable in a Quadratic Form
There are three important kinds of problems that occur in applications of quadratic
forms:

Problem 1 If x𝑇𝐴x is a quadratic form on 𝑅2 or 𝑅3, what kind of curve or surface is
represented by the equation x𝑇𝐴x = k?

Problem 2 If x𝑇𝐴x is a quadratic form on 𝑅n, what conditions must 𝐴 satisfy for
x𝑇𝐴x to have positive values for x ≠ 0?

Problem 3 If x𝑇𝐴x is a quadratic form on 𝑅n, what are its maximum and minimum
values if x is constrained to satisfy ‖x‖ = 1?
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We will consider the first two problems in this section and the third problem in the next.
Many of the techniques for solving these problems are based on simplifying the

quadratic form x𝑇𝐴x by making a substitution
x = 𝑃y (5)

that expresses the variables x1, x2, . . . , xn in terms of new variables y1, y2, . . . , yn. If 𝑃 is
invertible, then we call (5) a change of variable, and if 𝑃 is orthogonal, then we call (5)
an orthogonal change of variable.

The following result, called the Principal Axes Theorem, shows that by making an
appropriate orthogonal change of variable in a quadratic form it is possible to eliminate its
cross product terms, thereby producing a simpler quadratic form that is generally easier
to work with.

Theorem 7.3.1

The Principal Axes Theorem
If𝐴 is a symmetric n × nmatrix, then there is an orthogonal change of variable that
transforms the quadratic form x𝑇𝐴x into a quadratic form y𝑇𝐷ywith no cross prod-
uct terms. Specifically, if 𝑃 orthogonally diagonalizes 𝐴, then making the change
of variable x = 𝑃y in the quadratic form x𝑇𝐴x yields the quadratic form

x𝑇𝐴x = y𝑇𝐷y = 𝜆1 y21 + 𝜆2 y22 + ⋅ ⋅ ⋅ + 𝜆n y2n
in which 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴 corresponding to the eigenvectors
that form the successive columns of 𝑃.

Proof If we make the change of variable x = 𝑃y in the quadratic form x𝑇𝐴x, then we
obtain

x𝑇𝐴x = (𝑃y)𝑇𝐴(𝑃y) = y𝑇𝑃𝑇𝐴𝑃y = y𝑇(𝑃𝑇𝐴𝑃)y (6)
Since the matrix 𝐵 = 𝑃𝑇𝐴𝑃 is symmetric (verify), the effect of the change of variable is
to produce a new quadratic form y𝑇𝐵y in the variables y1, y2, . . . , yn. In particular, if we
choose 𝑃 to orthogonally diagonalize𝐴, then the new quadratic formwill be y𝑇𝐷y,where
𝐷 is a diagonal matrix with the eigenvalues of 𝐴 on the main diagonal; that is,

x𝑇𝐴x = y𝑇𝐷y = [y1 y2 ⋅ ⋅ ⋅ yn]
⎡
⎢
⎢
⎢
⎢
⎣

𝜆1 0 ⋅ ⋅ ⋅ 0
0 𝜆2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝜆n

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y1
y2...
yn

⎤
⎥
⎥
⎥
⎦

= 𝜆1 y21 + 𝜆2 y22 + ⋅ ⋅ ⋅ + 𝜆n y2n

EXAMPLE 2 | An Illustration of the Principal Axes Theorem

Find anorthogonal change of variable that eliminates the cross product terms in the quadratic
form𝑄 = x21 − x23 − 4x1x2 + 4x2x3, and express𝑄 in terms of the new variables.

Solution The quadratic form can be expressed in matrix notation as

𝑄 = x𝑇𝐴x = [x1 x2 x3] [
1 −2 0

−2 0 2
0 2 −1

][
x1
x2
x3
]



November 12, 2018 17:09 C07 Sheet number 21 Page number 419 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

7.3 Quadratic Forms 419

The characteristic equation of the matrix𝐴 is

|||||

𝜆 − 1 2 0
2 𝜆 −2
0 −2 𝜆 + 1

|||||
= 𝜆3 − 9𝜆 = 𝜆(𝜆 + 3)(𝜆 − 3) = 0

so the eigenvalues are 𝜆 = 0, −3, 3.We leave it for you to show that orthonormal bases for
the three eigenspaces are

𝜆 = 0∶
⎡
⎢
⎢
⎢
⎣

2
3
1
3
2
3

⎤
⎥
⎥
⎥
⎦

, 𝜆 = −3∶
⎡
⎢
⎢
⎢
⎣

− 1
3

− 2
3
2
3

⎤
⎥
⎥
⎥
⎦

, 𝜆 = 3∶
⎡
⎢
⎢
⎢
⎣

− 2
3
2
3
1
3

⎤
⎥
⎥
⎥
⎦

Thus, a substitution x = 𝑃y that eliminates the cross product terms is

[
x1
x2
x3
] =

⎡
⎢
⎢
⎢
⎣

2
3 − 1

3 − 2
3

1
3 − 2

3
2
3

2
3

2
3

1
3

⎤
⎥
⎥
⎥
⎦

[
y1
y2
y3
]

This produces the new quadratic form

𝑄 = y𝑇(𝑃𝑇𝐴𝑃)y = [y1 y2 y3] [
0 0 0
0 −3 0
0 0 3

][
y1
y2
y3
] = −3y22 + 3y23

in which there are no cross product terms.

Remark If 𝐴 is a symmetric n × nmatrix, then the quadratic form x𝑇𝐴x is a real-valued
function whose range is the set of all possible values for x𝑇𝐴x as x varies over 𝑅n. It can be
shown that an orthogonal change of variable x = 𝑃y does not alter the range of a quadratic
form; that is, the set of all values for x𝑇𝐴x as x varies over 𝑅n is the same as the set of all
values for y𝑇(𝑃𝑇𝐴𝑃)y as y varies over 𝑅n.

Quadratic Forms in Geometry
Recall that a conic section or conic is a curve that results by cutting a double-napped cone
with a plane (Figure 7.3.1). The most important conic sections are ellipses, parabolas,
and hyperbolas, which result when the cutting plane does not pass through the vertex.
Circles are special cases of ellipses that result when the cutting plane is perpendicular to
the axis of symmetry of the cone. If the cutting plane passes through the vertex, then the
resulting intersection is called a degenerate conic. The possibilities are a point, a pair of
intersecting lines, or a single line.

Circle Ellipse Parabola Hyperbola

FIGURE 7.3.1
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Quadratic forms in 𝑅2 arise naturally in the study of conic sections. For example, it is
shown in analytic geometry that an equation of the form

ax2 + 2bxy + cy2 + dx + ey + 𝑓 = 0 (7)

in which a, b, and c are not all zero, represents a conic section.* If d = e = 0 in (7), then
there are no linear terms, so the equation becomes

ax2 + 2bxy + cy2 + 𝑓 = 0 (8)

and is said to represent a central conic. These include circles, ellipses, and hyperbolas,
but not parabolas. Furthermore, if b = 0 in (8), then there is no cross product term (i.e.,
term involving xy), and the equation

ax2 + cy2 + 𝑓 = 0 (9)

is said to represent a central conic in standard position. The most important conics of
this type are shown in Table 1.

TABLE 1 Central Conics in Standard Position

x

y

β

–β

α–α

x2

α2
y2

β2
+       = 1

(α ≥ β > 0)

x

y
β

–β

α–α

x2

α2
y2

β2
+       = 1

(β ≥ α > 0)

x2

α2
y2

β2
–       = 1

(α > 0, β > 0)

β
β

–β

–α α

x

y

x2

β2
y2

α2
–       = 1

(α > 0, β > 0)

α–α

–β

x

y

If we take the constant 𝑓 in Equations (8) and (9) to the right side and let k = −𝑓,
then we can rewrite these equations in matrix form as

[x y] [a b
b c] [

x
y] = k and [x y] [a 0

0 c] [
x
y] = k (10)

The first of these corresponds to Equation (8) in which there is a cross product term 2bxy,
and the second corresponds to Equation (9) in which there is no cross product term. Geo-
metrically, the existence of a cross product term signals that the graph of the quadratic
form is rotated about the origin, as in Figure 7.3.2. The three-dimensional analogs of the
equations in (10) are

[x y z] [
a d e
d b 𝑓
e 𝑓 c

][
x
y
z
] = k and [x y z] [

a 0 0
0 b 0
0 0 c

][
x
y
z
] = k (11)

If a, b, and c are not all zero, then the graphs in 𝑅3 of the equations in (11) are called

x

y

A central conic
rotated out of
standard position

FIGURE 7.3.2

central quadrics; the graph of the second of these equations, which is a special case of
the first, is called a central quadric in standard position.

*We must also allow for the possibility that there are no real values of x and y that satisfy the equation, as with
x 2 + y2 + 1 = 0. In such cases we say that the equation has no graph or has an empty graph.
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Identifying Conic Sections
We are now ready to consider the first of the three problems posed earlier, identifying the
curve or surface represented by an equation x𝑇𝐴x = k in two or three variables. We will
focus on the two-variable case. We noted earlier that an equation of the form

ax2 + 2bxy + cy2 + 𝑓 = 0 (12)

represents a central conic. If b = 0, then the conic is in standard position, and if b ≠ 0, it
is rotated. It is an easy matter to identify central conics in standard position by matching
the equation with one of the standard forms. For example, the equation

9x2 + 16y2 − 144 = 0

can be rewritten as
x2
16 +

y2
9 = 1

which, by comparison with Table 1, is the ellipse shown in Figure 7.3.3. x

y

3

4–4

–3

x2

16

y2

9
+       = 1 

FIGURE 7.3.3

If a central conic is rotated out of standard position, then it can be identified by first
rotating the coordinate axes to put it in standard position and thenmatching the resulting
equation with one of the standard forms in Table 1. To find a rotation that eliminates the
cross product term in the equation

ax2 + 2bxy + cy2 = k (13)

it will be convenient to express the equation in the matrix form

x𝑇𝐴x = [x y] [a b
b c] [

x
y] = k (14)

and look for a change of variable
x = 𝑃x′

that diagonalizes 𝐴 and for which det(𝑃) = 1. Since we saw in Example 4 of Section 7.1
that the transition matrix

𝑃 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃] (15)

has the effect of rotating the xy-axes of a rectangular coordinate system through an angle
𝜃, our problem reduces to finding 𝜃 that diagonalizes 𝐴, thereby eliminating the cross
product term in (13). If wemake this change of variable, then in the x′y′-coordinate system,
Equation (14) will become

x′𝑇𝐷x′ = [x′ y′] [𝜆1 0
0 𝜆2

] [x
′

y′] = k (16)

where 𝜆1 and 𝜆2 are the eigenvalues of𝐴. The conic can now be identified by writing (16)
in the form

𝜆1x′2 + 𝜆2y′2 = k (17)

andperforming thenecessary algebra tomatch itwith one of the standard forms inTable 1.
For example, if 𝜆1, 𝜆2, and k are positive, then (17) represents an ellipse with an axis of
length 2√k/𝜆1 in the x′-direction and 2√k/𝜆2 in the y′-direction. The first column vector
of 𝑃, which is a unit eigenvector corresponding to 𝜆1, is along the positive x′-axis; and
the second column vector of 𝑃, which is a unit eigenvector corresponding to 𝜆2, is a unit
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vector along the y′-axis. These are called the principal axes of the ellipse, which explains
why Theorem 7.3.1 is called “the Principal Axes Theorem.” (See Figure 7.3.4.)

x

x′
y

y′

θ

Unit eigenvector for λ2

Unit eigenvector for λ1

(cos θ, sin θ)(–sin θ, cos θ)

k/λ2

k/λ1

FIGURE 7.3.4

Had it turned out that

det(𝑃) = −1

then we would have inter-
changed the columns of P to
reverse the sign.

EXAMPLE 3 | Identifying a Conic by Eliminating the
Cross Product Term

(a) Identify the conic whose equation is 5x2 − 4xy+ 8y2 − 36 = 0 by rotating the xy-axes
to put the conic in standard position.

(b) Find the angle 𝜃 through which you rotated the xy-axes in part (a).

Solution (a) The given equation can be written in the matrix form

x𝑇𝐴x = 36

where
𝐴 = [ 5 −2

−2 8]

The characteristic polynomial of𝐴 is

|||
𝜆 − 5 2
2 𝜆 − 8

||| = (𝜆 − 4)(𝜆 − 9)

so the eigenvalues are 𝜆 = 4 and 𝜆 = 9.We leave it for you to show that orthonormal bases
for the eigenspaces are

𝜆 = 4∶
⎡
⎢
⎢
⎣

2
√5
1
√5

⎤
⎥
⎥
⎦
, 𝜆 = 9∶

⎡
⎢
⎢
⎣

− 1
√5
2
√5

⎤
⎥
⎥
⎦

Thus,𝐴 is orthogonally diagonalized by

𝑃 =
⎡
⎢
⎢
⎣

2
√5

− 1
√5

1
√5

2
√5

⎤
⎥
⎥
⎦

(18)

Moreover, it happens by chance that det(𝑃) = 1, so we are assured that the substitution
x = 𝑃x′ performs a rotation of axes. It follows from (16) that the equation of the conic in the
x′y′-coordinate system is

[x′ y′] [4 0
0 9] [

x′

y′] = 36

which we can write as

4x′2 + 9y′2 = 36 or
x′2

9
+ y′2

4
= 1

We can now see from Table 1 that the conic is an ellipse whose axis has length 2𝛼 = 6 in the
x′-direction and length 2𝛽 = 4 in the y′-direction.
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Solution (b) It follows from (15) that

𝑃 =
⎡⎢⎢⎢
⎣

2
√5

− 1
√5

1
√5

2
√5

⎤⎥⎥⎥
⎦
= [cos𝜃 − sin𝜃

sin𝜃 cos𝜃]

which implies that

cos𝜃 = 2
√5

, sin𝜃 = 1
√5

, tan𝜃 = sin𝜃
cos𝜃 = 1

2

Thus, 𝜃 = tan−1 12 ≈ 26.6∘ (Figure 7.3.5).

x′

y′

(3, 0)

(0, 2)

x

y

2 1( )1 2( ),–

26.6˚

5 5

,
5 5

FIGURE 7.3.5

Remark In the exercises we will ask you to show that if b ≠ 0, then the cross product
term in the equation

ax2 + 2bxy + cy2 = k
can be eliminated by a rotation through an angle 𝜃 that satisfies

cot 2𝜃 = a − c
2b (19)

We leave it for you to confirm that this is consistent with part (b) of the last example.

Positive Definite Quadratic Forms
We will now consider the second of the two problems posed earlier, determining con-
ditions under which x𝑇𝐴x > 0 for all nonzero values of x. We will explain why this is
important shortly, but first let us introduce some terminology.

Definition 1

A quadratic form x𝑇𝐴x is said to be
positive definite if x𝑇𝐴x > 0 for x ≠ 0;
negative definite if x𝑇𝐴x < 0 for x ≠ 0;
indefinite if x𝑇𝐴x has both positive and negative values.

The terminology in Def-
inition 1 also applies to
the matrix𝐴; that is,𝐴 is
positive definite, negative
definite, or indefinite in
accordance with whether
the associated quadratic
form has that property.

The following theorem, whose proof is deferred to the end of the section, provides a
way of using eigenvalues to determine whether a matrix 𝐴 and its associated quadratic
form x𝑇𝐴x are positive definite, negative definite, or indefinite.

Theorem 7.3.2

If 𝐴 is a symmetric matrix, then:
(a) x𝑇𝐴x is positive definite if and only if all eigenvalues of 𝐴 are positive.
(b) x𝑇𝐴x is negative definite if and only if all eigenvalues of 𝐴 are negative.
(c) x𝑇𝐴x is indefinite if and only if 𝐴 has at least one positive eigenvalue and at

least one negative eigenvalue.
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Remark The three classifications in Definition 1 do not exhaust all possibilities. Specifi-
cally:

• x𝑇𝐴x is positive semidefinite if x𝑇𝐴x ≥ 0 if x ≠ 0
• x𝑇𝐴x is negative semidefinite if x𝑇𝐴x ≤ 0 if x ≠ 0

Observe that every positive definite form is positive semidefinite, but not conversely, and
every negative definite form is negative semidefinite, but not conversely. By adjusting the
proof of Theorem 7.3.2 (given at the end of this section) appropriately, one can show that
if all eigenvalues of 𝐴 are nonnegative, then x𝑇𝐴x is positive semidefinite, and if they are
all nonpositive then x𝑇𝐴x is negative semidefinite.

EXAMPLE 4 | Positive Definite Quadratic Forms

It is not usually possible to tell from the signs of the entries in a symmetric matrix𝐴whether
thatmatrix is positive definite, negative definite, or indefinite. For example, the entries of the
matrix

𝐴 = [
3 1 1
1 0 2
1 2 0

]

are nonnegative, but the matrix is indefinite since its eigenvalues are 𝜆 = 1, 4, −2 (verify).
To see this another way, write out the quadratic form as

x𝑇𝐴x = [x1 x2 x3] [
3 1 1
1 0 2
1 2 0

][
x1
x2
x3
] = 3x21 + 2x1x2 + 2x1x3 + 4x2x3

We can now see, for example, that

x𝑇𝐴x = 4 for x1 = 0, x2 = 1, x3 = 1

and
x𝑇𝐴x = −4 for x1 = 0, x2 = 1, x3 = −1

Positive definite and neg-
ative definite matrices are
invertible. Why?

Classifying Conic Sections Using Eigenvalues
If x𝑇𝐵x = k is the equation of a conic, and if k ≠ 0, then we can divide through by k and
rewrite the equation in the form

x𝑇𝐴x = 1 (20)
where 𝐴 = (1/k)𝐵. If we now rotate the coordinate axes to eliminate the cross product
term (if any) in this equation, then the equation of the conic in the new coordinate system
will be of the form

𝜆1x′2 + 𝜆2y′2 = 1 (21)
in which 𝜆1 and 𝜆2 are the eigenvalues of 𝐴. The particular type of conic represented by
this equation will depend on the signs of the eigenvalues 𝜆1 and 𝜆2. For example, you
should be able to see from (21) that:

• x𝑇𝐴x = 1 represents an ellipse if 𝜆1 > 0 and 𝜆2 > 0.
• x𝑇𝐴x = 1 has no graph if 𝜆1 < 0 and 𝜆2 < 0.
• x𝑇𝐴x = 1 represents a hyperbola if 𝜆1 and 𝜆2 have opposite signs.

In the case of the ellipse, Equation (21) can be rewritten as
x′2

(1/√𝜆1)2
+ y′2

(1/√𝜆2)2
= 1 (22)

so the axes of the ellipse have lengths 2/√𝜆1 and 2/√𝜆2 (Figure 7.3.6).

x′y′

x

y

1/ λ2
1/ λ1

FIGURE 7.3.6
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The following theorem is an immediate consequence of this discussion and Theo-
rem 7.3.2.

Theorem 7.3.3

If 𝐴 is a symmetric 2 × 2 matrix, then:
(a) x𝑇𝐴x = 1 represents an ellipse if 𝐴 is positive definite.
(b) x𝑇𝐴x = 1 has no graph if 𝐴 is negative definite.
(c) x𝑇𝐴x = 1 represents a hyperbola if 𝐴 is indefinite.

In Example 3 we performed a rotation to show that the equation

5x2 − 4xy + 8y2 − 36 = 0

represents an ellipse with a major axis of length 6 and a minor axis of length 4. This con-
clusion can also be obtained by rewriting the equation in the form

5
36x

2 − 1
9xy +

2
9y

2 = 1

and showing that the associated matrix

𝐴 = [
5
36 − 1

18

− 1
18

2
9
]

has eigenvalues 𝜆1 = 1
9 and 𝜆2 =

1
4 . These eigenvalues are positive, so the matrix𝐴 is pos-

itive definite and the equation represents an ellipse. Moreover, it follows from (21) that
the axes of the ellipse have lengths 2/√𝜆1 = 6 and 2/√𝜆2 = 4, which is consistent with
Example 3.

Identifying Positive Definite Matrices
As positive definite matrices arise in many applications, it will be useful to learn a little
more about them. We already know that a symmetric matrix is positive definite if and
only if its eigenvalues are all positive; now we will give a criterion that can be used to
determine whether a symmetric matrix is positive definite without the need for finding
the eigenvalues. For this purpose we define the kth principal submatrix of an n × n
matrix 𝐴 to be the k × k submatrix consisting of the first k rows and columns of 𝐴. For
example, here are the principal submatrices of a general 4 × 4 matrix:

⎡
⎢
⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥
⎥
⎥
⎦

First principal submatrix Second principal submatrix Third principal submatrix Fourth principal submatrix= 𝐴

The following theorem, which we state without proof, provides a determinant test for
ascertaining whether a symmetric matrix is positive definite.
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Theorem 7.3.4

If 𝐴 is a symmetric matrix, then:

(a) 𝐴 is positive definite if and only if the determinant of every principal submatrix
is positive.

(b) 𝐴 is negative definite if and only if the determinants of the principal subma-
trices alternate between negative and positive values starting with a negative
value for the determinant of the first principal submatrix.

(c) 𝐴 is indefinite if and only if it is neither positive definite nor negative definite
and at least one principal submatrix has a positive determinant and at least one
has a negative determinant.

EXAMPLE 5 | Working with Principal Submatrices

The matrix

𝐴 = [
2 −1 −3

−1 2 4
−3 4 9

]

is positive definite since the determinants

|2| = 2, |||
2 −1

−1 2
||| = 3,

|||||

2 −1 −3
−1 2 4
−3 4 9

|||||
= 1

are all positive. Thus, we are guaranteed that all eigenvalues of𝐴 are positive and x𝑇𝐴x > 0
for x ≠ 𝟎.

OPTIONAL: We conclude this section with an optional proof of Theorem 7.3.2.

Proofs of Theorem 7.3.2(a) and (b) It follows from the principal axes theorem (Theo-
rem 7.3.1) that there is an orthogonal change of variable x = 𝑃y for which

x𝑇𝐴x = y𝑇𝐷y = 𝜆1y21 + 𝜆2y22 + ⋅ ⋅ ⋅ + 𝜆ny2n (23)
where the 𝜆’s are the eigenvalues of𝐴. Moreover, it follows from the invertibility of 𝑃 that
y ≠ 0 if and only if x ≠ 0, so the values of x𝑇𝐴x for x ≠ 0 are the same as the values of
y𝑇𝐷y for y ≠ 0. Thus, it follows from (23) that x𝑇𝐴x > 0 for x ≠ 0 if and only if all of the
𝜆’s in that equation are positive, and that x𝑇𝐴x < 0 for x ≠ 0 if and only if all of the 𝜆’s are
negative. This proves parts (a) and (b).

Proof (c) Assume that 𝐴 has at least one positive eigenvalue and at least one negative
eigenvalue, and to be specific, suppose that 𝜆1 > 0 and 𝜆2 < 0 in (23). Then

x𝑇𝐴x > 0 if y1 = 1 and all other y’s are 0
and

x𝑇𝐴x < 0 if y2 = 1 and all other y’s are 0
which proves that x𝑇𝐴x is indefinite. Conversely, if x𝑇𝐴x > 0 for some x, then y𝑇𝐷y > 0 for
some y, so at least one of the 𝜆’s in (23) must be positive. Similarly, if x𝑇𝐴x < 0 for some
x, then y𝑇𝐷y < 0 for some y, so at least one of the 𝜆’s in (23) must be negative, which
completes the proof.



November 12, 2018 17:09 C07 Sheet number 29 Page number 427 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

7.3 Quadratic Forms 427

Exercise Set 7.3

In Exercises 1–2, express the quadratic form in the matrix notation
x𝑇𝐴x, where𝐴 is a symmetric matrix.

1. a. 3x21 + 7x22 b. 4x21 − 9x22 − 6x1x2
c. 9x21 − x22 + 4x23 + 6x1x2 − 8x1x3 + x2x3

2. a. 5x21 + 5x1x2 b. −7x1x2
c. x21 + x22 − 3x23 − 5x1x2 + 9x1x3

In Exercises 3–4, find a formula for the quadratic form that does not
use matrices.

3. [x y] [ 2 −3
−3 5] [

x
y]

4. [x1 x2 x3]
⎡
⎢
⎢
⎢
⎣

−2 7
2 1

7
2 0 6
1 6 3

⎤
⎥
⎥
⎥
⎦

[
x1
x2
x3
]

In Exercises 5–8, find an orthogonal change of variables that elimi-
nates the cross product terms in the quadratic form 𝑄, and express
𝑄 in terms of the new variables.

5. 𝑄 = 2x21 + 2x22 − 2x1x2

6. 𝑄 = 5x21 + 2x22 + 4x23 + 4x1x2

7. 𝑄 = 3x21 + 4x22 + 5x23 + 4x1x2 − 4x2x3

8. 𝑄 = 2x21 + 5x22 + 5x23 + 4x1x2 − 4x1x3 − 8x2x3

In Exercises 9–10, express the quadratic equation in the matrix form
x𝑇𝐴x+𝐾x+𝑓 = 0, where x𝑇𝐴x is the associated quadratic form
and𝐾 is an appropriate matrix.

9. a. 2x2 + xy+ x− 6y+ 2 = 0

b. y2 + 7x− 8y− 5 = 0

10. a. x2 − xy+ 5x+ 8y− 3 = 0

b. 5xy = 8

In Exercises 11–12, identify the conic section represented by the
equation.

11. a. 2x2 + 5y2 = 20 b. x2 − y2 − 8 = 0

c. 7y2 − 2x = 0 d. x2 + y2 − 25 = 0

12. a. 4x2 + 9y2 = 1 b. 4x2 − 5y2 = 20

c. −x2 = 2y d. x2 − 3 = −y2

In Exercises 13–16, identify the conic section represented by the equa-
tion by rotating axes to place the conic in standard position. Find an
equation of the conic in the rotated coordinates, and find the angle
of rotation.

13. 2x2 − 4xy− y2 + 8 = 0 14. 5x2 + 4xy+ 5y2 = 9

15. 11x2 + 24xy+ 4y2 − 15 = 0 16. x2 + xy+ y2 = 1
2

In Exercises 17–18, determine by inspection whether the matrix is
positive definite, negative definite, indefinite, positive semidefinite,
or negative semidefinite.

17. a. [1 0
0 2] b. [−1 0

0 −2] c. [−1 0
0 2]

d. [1 0
0 0] e. [0 0

0 −2]

18. a. [2 0
0 −5] b. [−2 0

0 −5] c. [2 0
0 5]

d. [0 0
0 −5] e. [2 0

0 0]

In Exercises 19–24, classify the quadratic form as positive defi-
nite, negative definite, indefinite, positive semidefinite, or negative
semidefinite.

19. x21 + x22 20. −x21 − 3x22 21. (x1 − x2)2

22. −(x1 − x2)2 23. x21 − x22 24. x1x2

In Exercises 25–26, show that thematrix𝐴 is positive definite first by
using Theorem 7.3.2 and then by using Theorem 7.3.4.

25. a. 𝐴 = [ 5 −2
−2 5] b. 𝐴 = [

2 −1 0
−1 2 0
0 0 5

]

26. a. 𝐴 = [2 1
1 2] b. 𝐴 = [

3 −1 0
−1 2 −1
0 −1 3

]

In Exercises 27–28, use Theorem 7.3.4 to classify the matrix as posi-
tive definite, negative definite, or indefinite.

27. a. 𝐴 = [
3 1 2
1 −1 3
2 3 2

] b. 𝐴 = [
−3 2 0
2 −3 0
0 0 −5

]

28. a. 𝐴 = [
4 1 −1
1 2 1

−1 1 2
] b. 𝐴 = [

−4 −1 1
−1 −2 −1
1 −1 −2

]

In Exercises 29–30, find all values of k for which the quadratic form
is positive definite.
29. 5x21 + x22 + kx23 + 4x1x2 − 2x1x3 − 2x2x3
30. 3x21 + x22 + 2x23 − 2x1x3 + 2kx2x3
31. Let x𝑇𝐴x be a quadratic form in the variables x1, x2, . . . , xn,

and define 𝑇∶ 𝑅n→𝑅 by 𝑇(x) = x𝑇𝐴x.
a. Show that 𝑇(x+ y) = 𝑇(x) + 2x𝑇𝐴y+𝑇(y).
b. Show that 𝑇(cx) = c2𝑇(x).

32. Express the quadratic form (c1x1 + c2x2 + ⋅ ⋅ ⋅ + cnxn)2 in the
matrix notation x𝑇𝐴x, where𝐴 is symmetric.

33. In statistics, the quantities

x = 1
n
(x1 + x2 + ⋅ ⋅ ⋅ + xn)

s2x =
1

n− 1 [(x1 − x)2 + (x2 − x)2 + ⋅ ⋅ ⋅ + (xn − x)2]
(cont.)
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are called, respectively, the sample mean and sample vari-
ance of x = (x1, x2, . . . , xn).
a. Express the quadratic form s2x in the matrix notation x𝑇𝐴x,

where𝐴 is symmetric.

b. Is s2x a positive definite quadratic form? Explain.

34. The graph in an xyz-coordinate system of an equation of
form ax2 + by2 + cz2 = 1 in which a, b, and c are positive
is a surface called a central ellipsoid in standard position
(see the accompanying figure). This is the three-dimensional
generalization of the ellipse ax2 + by2 = 1 in the xy-plane.
The intersections of the ellipsoid ax2 + by2 + cz2 = 1with the
coordinate axes determine three line segments called the axes
of the ellipsoid. If a central ellipsoid is rotated about the origin
so two or more of its axes do not coincide with any of the coor-
dinate axes, then the resulting equation will have one or more
cross product terms.

a. Show that the equation
4
3x

2 + 4
3y

2 + 4
3 z

2 + 4
3xy+

4
3xz+

4
3yz = 1

represents an ellipsoid, and find the lengths of its axes.
[Suggestion:Write the equation in the form x𝑇𝐴x = 1 and
make an orthogonal change of variable to eliminate the
cross product terms.]

b. What propertymust a symmetric 3 × 3matrix have in order
for the equation x𝑇𝐴x = 1 to represent an ellipsoid?

z

y

x

FIGURE Ex-34

35. What property must a symmetric 2 × 2 matrix 𝐴 have for
x𝑇𝐴x = 1 to represent a circle?

Working with Proofs

36. Prove: If b ≠ 0, then the cross product term can be eliminated
from the quadratic form ax2 + 2bxy+ cy2 by rotating the coor-
dinate axes through an angle 𝜃 that satisfies the equation

cot 2𝜃 = a− c
2b

37. Prove: If𝐴 is an n × n symmetric matrix all of whose eigenval-
ues are nonnegative, then x𝑇𝐴x ≥ 0 for all nonzero x in the
vector space 𝑅n.

True-False Exercises
TF. In parts (a)–(l) determine whether the statement is true or

false, and justify your answer.
a. If all eigenvalues of a symmetric matrix 𝐴 are positive,

then𝐴 is positive definite.

b. x21 − x22 + x23 + 4x1x2x3 is a quadratic form.

c. (x1 − 3x2)2 is a quadratic form.

d. A positive definite matrix is invertible.

e. A symmetric matrix is either positive definite, negative
definite, or indefinite.

f. If𝐴 is positive definite, then−𝐴 is negative definite.

g. x · x is a quadratic form for all x in 𝑅n.

h. If𝐴 is symmetric and invertible, and if x𝑇𝐴x is a positive
definite quadratic form, then x𝑇𝐴−1x is also a positive def-
inite quadratic form.

i. If𝐴 is symmetric and has only positive eigenvalues, then
x𝑇𝐴x is a positive definite quadratic form.

j. If𝐴 is a 2 × 2 symmetric matrix with positive entries and
det(𝐴) > 0, then𝐴 is positive definite.

k. If𝐴 is symmetric, and if the quadratic form x𝑇𝐴x has no
cross product terms, then𝐴must be a diagonal matrix.

l. If x𝑇𝐴x is a positive definite quadratic form in two vari-
ables and c ≠ 0, then the graph of the equation x𝑇𝐴x = c
is an ellipse.

Working with Technology
T1. Find an orthogonal matrix 𝑃 such that 𝑃𝑇𝐴𝑃 is diagonal.

𝐴 =
⎡⎢⎢⎢⎢
⎣

−2 1 1 1
1 −2 1 1
1 1 −2 1
1 1 1 −2

⎤⎥⎥⎥⎥
⎦

T2. Use the eigenvalues of the following matrix to determine
whether it is positive definite, negative definite, or indefinite,
and then confirm your conclusion using Theorem 7.3.4.

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−5 −3 0 3 0
−3 −2 0 2 0
0 0 −1 1 1
3 2 1 −8 2
0 0 1 2 −7

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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7.4 Optimization Using Quadratic Forms
Quadratic forms arise in various problems in which the maximum or minimum value of
some quantity is required. In this section we will discuss some problems of this type.

Constrained Extremum Problems
Our first goal in this section is to consider the problem of finding the maximum and min-
imum values of a quadratic form x𝑇𝐴x subject to the constraint ‖x‖ = 1. Problems of this
type arise in a wide variety of applications.

To visualize this problem geometrically in the case where x𝑇𝐴x is a quadratic form on
𝑅2, view z = x𝑇𝐴x as the equation of some surface in a rectangular xyz-coordinate system
and view ‖x‖ = 1 as the unit circle centered at the origin of the xy-plane. Geometrically,
the problem of finding themaximum andminimum values of x𝑇𝐴x subject to the require-
ment ‖x‖ = 1 amounts to finding the highest and lowest points on the intersection of the
surface with the right circular cylinder determined by the circle (Figure 7.4.1).

z

y

x

Constrained

maximum
Constrained

minimum

Unit circle

FIGURE 7.4.1

The following theorem, whose proof is deferred to the end of the section, is the key
result for solving problems of this type.

Theorem 7.4.1

Constrained Extremum Theorem
Let 𝐴 be a symmetric n × n matrix whose eigenvalues in order of decreasing size
are 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆n. Then:
(a) The quadratic form x𝑇𝐴x has a maximum value of 𝜆1 and a minimum value of

𝜆n, both of which are obtained on the set of vectors for which ‖x‖ = 1.
(b) The maximum value of x𝑇𝐴x occurs at an eigenvector corresponding to the

eigenvalue 𝜆1.
(c) The minimum value of x𝑇𝐴x occurs at an eigenvector corresponding to the

eigenvalue 𝜆n.

Remark The condition ‖x‖ = 1 in this theorem is called a constraint, and themaximum
or minimum value of x𝑇𝐴x subject to the constraint is called a constrained extremum.
This constraint can also be expressed as x𝑇x = 1 or as x21 + x22 + ⋅ ⋅ ⋅ + x2n = 1, when
convenient.

EXAMPLE 1 | Finding Constrained Extrema

Find the maximum and minimum values of the quadratic form

z = 5x2 + 5y2 + 4xy

subject to the constraint x2 + y2 = 1.
Solution The quadratic form can be expressed in matrix notation as

z = 5x2 + 5y2 + 4xy = x𝑇𝐴x = [x y] [5 2
2 5] [

x
y]

We leave it for you to show that the eigenvalues of 𝐴 are 𝜆1 = 7 and 𝜆2 = 3 and that corre-
sponding eigenvectors are

𝜆1 = 7∶ [11], 𝜆2 = 3∶ [−11]
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Normalizing these eigenvectors yields

𝜆1 = 7∶ [
1
√2
1
√2

], 𝜆2 = 3∶ [
− 1

√2
1
√2
] (1)

Thus, the constrained extrema are

constrained maximum: z = 7 at (x, y) = ( 1
√2
, 1
√2
)

constrained minimum: z = 3 at (x, y) = (− 1
√2
, 1
√2
)

Remark Since the negatives of the eigenvectors in (1) are also unit eigenvectors, they
too produce the maximum and minimum values of z; that is, the constrained maximum
z = 7 also occurs at the point (x, y) = (− 1

√2
, − 1

√2
) and the constrained minimum z = 3 at

(x, y) = ( 1
√2
, − 1

√2
).

x

2

–2

y

(x, y)

3–3

FIGURE 7.4.2 A rectangle
inscribed in the ellipse
4x2 + 9y2 = 36.

EXAMPLE 2 | A Constrained Extremum Problem

A rectangle is to be inscribed in the ellipse 4x2 + 9y2 = 36, as shown in Figure 7.4.2. Use
eigenvaluemethods to findnonnegative values of x and y that produce the inscribed rectangle
with maximum area.

Solution The area z of the inscribed rectangle is given by z = 4xy, so the problem is to
maximize the quadratic form z = 4xy subject to the constraint 4x2 + 9y2 = 36. In this prob-
lem, the graph of the constraint equation is an ellipse rather than the unit circle as required
in Theorem 7.4.1, but we can remedy this problem by rewriting the constraint as

( x3)
2
+ ( y2)

2
= 1

and defining new variables, x1 and y1, by the equations
x = 3x1 and y = 2y1

This enables us to reformulate the problem as follows:

maximize z = 4xy = 24x1y1
subject to the constraint

x21 + y21 = 1
To solve this problem, we will write the quadratic form z = 24x1y1 as

z = x𝑇𝐴x = [x1 y1] [
0 12
12 0] [

x1
y1
]

We now leave it for you to show that the largest eigenvalue of𝐴 is 𝜆 = 12 and that the only
corresponding unit eigenvector with nonnegative entries is

x = [x1y1
] =

⎡
⎢
⎢
⎣

1
√2
1
√2

⎤
⎥
⎥
⎦

Thus, the maximum area is z = 12, and this occurs when

x = 3x1 =
3
√2

and y = 2y1 =
2
√2
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Constrained Extrema and Level Curves
Auseful way of visualizing the behavior of a function 𝑓(x, y) of two variables is to consider
the curves in the xy-plane along which 𝑓(x, y) is constant. These curves have equations of
the form

𝑓(x, y) = k
and are called the level curves of 𝑓 (Figure 7.4.3). In particular, the level curves of a

y

x

z

Level curve f (x, y) = k

z = f (x, y)

Plane z = k
k

FIGURE 7.4.3

quadratic form x𝑇𝐴x on 𝑅2 have equations of the form
x𝑇𝐴x = k (2)

so the maximum and minimum values of x𝑇𝐴x subject to the constraint ‖x‖ = 1 are the
largest and smallest values of k for which the graph of (2) intersects the unit circle. Typi-
cally, such values of k produce level curves that just touch the unit circle (Figure 7.4.4),
and the coordinates of the points where the level curves just touch produce the vectors

x

y

‖x‖ = 1

x

xTAx = k

FIGURE 7.4.4

that maximize or minimize x𝑇𝐴x subject to the constraint ‖x‖ = 1.

EXAMPLE 3 | Example 1 Revisited Using Level Curves

In Example 1 (and its following remark) we found the maximum and minimum values of
the quadratic form

z = 5x2 + 5y2 + 4xy
subject to the constraint x2 + y2 = 1. We showed that the constrained maximum is z = 7,
which is attained at the points

(x, y) = ( 1
√2
, 1
√2
) and (x, y) = (− 1

√2
, − 1

√2
) (3)

and that the constrained minimum is z = 3, which is attained at the points

(x, y) = (− 1
√2
, 1
√2
) and (x, y) = ( 1

√2
, − 1

√2
) (4)

Geometrically, thismeans that the level curve 5x2 + 5y2 + 4xy = 7 should just touch the unit
circle at the points in (3), and the level curve 5x2 + 5y2 + 4xy = 3 should just touch it at the
points in (4). All of this is consistent with Figure 7.4.5.

x

y

1 1 )( ,

1 1 )( , –
1 1 )(– –

1 1 )( ,–

5x2 + 5y2 + 4xy = 7

5x2 + 5y2 + 4xy = 3

x2 + y2 = 1

π
4

,

FIGURE 7.4.5

Relative Extrema of Functions of
Two Variables

CALCULUS REQUIRED

Wewill conclude this section by showing how quadratic forms can be used to study char-
acteristics of real-valued functions of two variables.
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Recall that if a function 𝑓(x, y) has first-order partial derivatives, then its relativemax-
ima and minima, if any, occur at points where the conditions

𝑓x(x, y) = 0 and 𝑓y(x, y) = 0
are both true. These are called critical points of 𝑓. The specific behavior of 𝑓 at a critical
point (x0, y0) is determined by the sign of

𝐷(x, y) = 𝑓(x, y) − 𝑓(x0, y0) (5)
at points (x, y) that are close to, but different from, (x0, y0):

• If 𝐷(x, y) > 0 at points (x, y) that are sufficiently close to, but different from, (x0, y0),
then 𝑓(x0, y0) < 𝑓(x, y) at such points and 𝑓 is said to have a relative minimum at
(x0, y0) (Figure 7.4.6a).

• If 𝐷(x, y) < 0 at points (x, y) that are sufficiently close to, but different from, (x0, y0),

y

x

z

y

x

z

y
x

z

Relative minimum at (0, 0)

Relative maximum at (0, 0)

Saddle point at (0, 0)

(a)

(b)

(c)

FIGURE 7.4.6

then 𝑓(x0, y0) > 𝑓(x, y) at such points and 𝑓 is said to have a relative maximum at
(x0, y0) (Figure 7.4.6b).

• If 𝐷(x, y) has both positive and negative values inside every circle centered at (x0, y0),
then there are points (x, y) that are arbitrarily close to the point (x0, y0) at which
𝑓(x0, y0) < 𝑓(x, y) and points (x, y) that are arbitrarily close to (x0, y0) at which
𝑓(x0, y0) > 𝑓(x, y). In this case we say that 𝑓 has a saddle point at (x0, y0) (Figure
7.4.6c).

In general, it can be difficult to determine the sign of (5) directly. However, the fol-
lowing theorem, which is proved in calculus, makes it possible to analyze critical points
using derivatives.

Theorem 7.4.2

Second Derivative Test
Suppose that (x0, y0) is a critical point of 𝑓(x, y) and that 𝑓 has continuous second-
order partial derivatives in some circular region centered at (x0, y0). Then:
(a) 𝑓 has a relative minimum at (x0, y0) if

𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0) > 0 and 𝑓xx(x0, y0) > 0

(b) 𝑓 has a relative maximum at (x0, y0) if
𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0) > 0 and 𝑓xx(x0, y0) < 0

(c) 𝑓 has a saddle point at (x0, y0) if
𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0) < 0

(d) The test is inconclusive if

𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0) = 0

Our interest here is in showing how to reformulate this theorem using properties of sym-
metric matrices. For this purpose we consider the symmetric matrix

𝐻(x, y) = [𝑓xx(x, y) 𝑓xy(x, y)
𝑓xy(x, y) 𝑓yy(x, y)

]

which is called theHessian orHessianmatrix of 𝑓 in honor of the German mathemati-
cian and scientist Ludwig Otto Hesse (1811–1874). The notation 𝐻(x, y) emphasizes that
the entries in the matrix depend on x and y. The Hessian is of interest because

det[𝐻(x0, y0)] =
|||
𝑓xx(x0, y0) 𝑓xy(x0, y0)
𝑓xy(x0, y0) 𝑓yy(x0, y0)

||| = 𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0)

is the expression that appears in Theorem 7.4.2. We can now reformulate the second
derivative test as follows.
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Theorem 7.4.3

Hessian Form of the Second Derivative Test
Suppose that (x0, y0) is a critical point of 𝑓(x, y) and that 𝑓 has continuous second-
order partial derivatives in some circular region centered at (x0, y0). If 𝐻(x0, y0) is
the Hessian of 𝑓 at (x0, y0), then:
(a) 𝑓 has a relative minimum at (x0, y0) if𝐻(x0, y0) is positive definite.
(b) 𝑓 has a relative maximum at (x0, y0) if𝐻(x0, y0) is negative definite.
(c) 𝑓 has a saddle point at (x0, y0) if𝐻(x0, y0) is indefinite.
(d) The test is inconclusive otherwise.

We will prove part (a). The proofs of the remaining parts will be left as exercises.

Proof (a) If 𝐻(x0, y0) is positive definite, then Theorem 7.3.4 implies that the principal
submatrices of 𝐻(x0, y0) have positive determinants. Thus,

det[𝐻(x0, y0)] =
|||
𝑓xx(x0, y0) 𝑓xy(x0, y0)
𝑓xy(x0, y0) 𝑓yy(x0, y0)

||| = 𝑓xx(x0, y0)𝑓yy(x0, y0) − 𝑓2xy(x0, y0) > 0

and
det[𝑓xx(x0, y0)] = 𝑓xx(x0, y0) > 0

so 𝑓 has a relative minimum at (x0, y0) by part (a) of Theorem 7.4.2.

EXAMPLE 4 | Using the Hessian to Classify Relative Extrema

Find the critical points of the function

𝑓(x, y) = 1
3x

3 + xy2 − 8xy+ 3

and use the eigenvalues of the Hessian matrix at those points to determine which of them, if
any, are relative maxima, relative minima, or saddle points.

Solution To find both the critical points and the Hessian matrix we will need to calculate
the first and second partial derivatives of 𝑓. These derivatives are

𝑓x(x, y) = x2 + y2 − 8y, 𝑓y(x, y) = 2xy− 8x, 𝑓xy(x, y) = 2y− 8
𝑓xx(x, y) = 2x, 𝑓yy(x, y) = 2x

Thus, the Hessian matrix is

𝐻(x, y) = [𝑓xx(x, y) 𝑓xy(x, y)
𝑓xy(x, y) 𝑓yy(x, y)

] = [ 2x 2y− 8
2y− 8 2x ]

To find the critical points we set 𝑓x and 𝑓y equal to zero. This yields the equations

𝑓x(x, y) = x2 + y2 − 8y = 0 and 𝑓y(x, y) = 2xy− 8x = 2x(y− 4) = 0

Solving the second equation yields x = 0 or y = 4. Substituting x = 0 in the first equation
and solving for y yields y = 0 or y = 8; and substituting y = 4 into the first equation and
solving for x yields x = 4 or x = −4. Thus, we have four critical points:

(0, 0), (0, 8), (4, 4), (−4, 4)
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Evaluating the Hessian matrix at these points yields

𝐻(0, 0) = [ 0 −8
−8 0], 𝐻(0, 8) = [0 8

8 0]

𝐻(4, 4) = [8 0
0 8], 𝐻(−4, 4) = [−8 0

0 −8]

We leave it for you to find the eigenvalues of these matrices and deduce the following classi-
fications of the stationary points:

Critical Point
(𝒙𝟎, 𝒚𝟎) 𝝀𝟏 𝝀𝟐 Classification

(0, 0) 8 −8 Saddle point

(0, 8) 8 −8 Saddle point

(4, 4) 8 8 Relative minimum

(−4, 4) −8 −8 Relative maximum

OPTIONAL: We conclude this section with an optional proof of Theorem 7.4.1.

Proof of Theorem 7.4.1 The first step in the proof is to show that x𝑇𝐴x has constrained
maximum and minimum values for ‖x‖ = 1. Since 𝐴 is symmetric, the principal axes
theorem (Theorem 7.3.1) implies that there is an orthogonal change of variable x = 𝑃y
such that

x𝑇𝐴x = 𝜆1 y21 + 𝜆2 y22 + ⋅ ⋅ ⋅ + 𝜆n y2n (6)
in which 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴. Let us assume that ‖x‖ = 1 and that the
column vectors of 𝑃 (which are unit eigenvectors of 𝐴) have been ordered so that

𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆n (7)
Since the matrix 𝑃 is orthogonal, multiplication by 𝑃 is length preserving, from which it
follows that ‖y‖ = ‖x‖ = 1; that is,

y21 + y22 + ⋅ ⋅ ⋅ + y2n = 1

It follows from this equation and (7) that

𝜆n = 𝜆n(y21 + y22 + ⋅ ⋅ ⋅ + y2n) ≤ 𝜆1y21 + 𝜆2y22 + ⋅ ⋅ ⋅ + 𝜆ny2n
≤ 𝜆1(y21 + y22 + ⋅ ⋅ ⋅ + y2n) = 𝜆1

and hence from (6) that
𝜆n ≤ x𝑇𝐴x ≤ 𝜆1

This shows that all values of x𝑇𝐴x for which ‖x‖ = 1 lie between the largest and smallest
eigenvalues of 𝐴. Now let x be a unit eigenvector corresponding to 𝜆1. Then

x𝑇𝐴x = x𝑇(𝜆1x) = 𝜆1x𝑇x = 𝜆1‖x‖2 = 𝜆1
which shows that x𝑇𝐴x has 𝜆1 as a constrained maximum and that this maximum occurs
if x is a unit eigenvector of 𝐴 corresponding to 𝜆1. Similarly, if x is a unit eigenvector
corresponding to 𝜆n, then

x𝑇𝐴x = x𝑇(𝜆nx) = 𝜆nx𝑇x = 𝜆n‖x‖2 = 𝜆n
so x𝑇𝐴x has 𝜆n as a constrained minimum and this minimum occurs if x is a unit eigen-
vector of 𝐴 corresponding to 𝜆n. This completes the proof.
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Exercise Set 7.4

In Exercises 1–4, find the maximum and minimum values of the
given quadratic form subject to the constraint x2 + y2 = 1, and
determine the values of x and y at which the maximum and mini-
mum occur.
1. 5x2 − y2 2. xy 3. 3x2 + 7y2 4. 5x2 + 5xy

In Exercises 5–6, find the maximum and minimum values of the
given quadratic form subject to the constraint

x2 + y2 + z2 = 1

and determine the values of x, y, and z at which the maximum and
minimum occur.
5. 9x2 + 4y2 + 3z2 6. 2x2 + y2 + z2 + 2xy+ 2xz

7. Use the method of Example 2 to find the maximum and min-
imum values of xy subject to the constraint 4x2 + 8y2 = 16.

8. Use the method of Example 2 to find the maximum and min-
imum values of x2 + xy+ 2y2 subject to the constraint

x2 + 3y2 = 16

In Exercises 9–10, draw the unit circle and the level curves corre-
sponding to the given quadratic form. Show that the unit circle inter-
sects each of these curves in exactly two places, label the intersection
points, and verify that the constrained extrema occur at those points.
9. 5x2 − y2 10. xy

11. a. Show that the function 𝑓(x, y) = 4xy− x4 − y4 has critical
points at (0, 0), (1, 1), and (−1,−1).

b. Use the Hessian form of the second derivative test to show
that 𝑓 has relative maxima at (1, 1) and (−1,−1) and a
saddle point at (0, 0).

12. a. Show that the function 𝑓(x, y) = x3 − 6xy− y3 has critical
points at (0, 0) and (−2, 2).

b. Use the Hessian form of the second derivative test to show
that𝑓 has a relativemaximumat (−2, 2) and a saddle point
at (0, 0).

In Exercises 13–16, find the critical points of 𝑓, if any, and clas-
sify them as relative maxima, relative minima, or saddle points.

13. 𝑓(x, y) = x3 − 3xy− y3

14. 𝑓(x, y) = x3 − 3xy+ y3

15. 𝑓(x, y) = x2 + 2y2 − x2y

16. 𝑓(x, y) = x3 + y3 − 3x− 3y

17. A rectangle whose center is at the origin and whose sides are
parallel to the coordinate axes is to be inscribed in the ellipse
x2 + 25y2 = 25. Use the method of Example 2 to find non-
negative values of x and y that produce the inscribed rectangle
with maximum area.

18. Suppose that x is a unit eigenvector of a matrix𝐴 correspond-
ing to an eigenvalue 2. What is the value of x𝑇𝐴x?

19. a. Show that the functions

𝑓(x, y) = x4 + y4 and g(x, y) = x4 − y4

have a critical point at (0, 0) but the second derivative test
is inconclusive at that point.

b. Give a reasonable argument to show that 𝑓 has a relative
minimum at (0, 0) and g has a saddle point at (0, 0).

20. Suppose that the Hessian matrix of a certain quadratic form
𝑓(x, y) is

𝐻 = [2 4
4 2]

What can you say about the location and classification of the
critical points of 𝑓?

21. Suppose that𝐴 is an n × n symmetric matrix and
q(x) = x𝑇𝐴x

where x is a vector in 𝑅n that is expressed in column form.
What can you say about the value of q if x is a unit eigenvector
corresponding to an eigenvalue 𝜆 of𝐴?

Working with Proofs

22. Prove: If x𝑇𝐴x is a quadratic form whose minimum and max-
imum values subject to the constraint ‖x‖ = 1 are m and𝑀,
respectively, then for each number c in the interval

m ≤ c ≤ 𝑀
there is a unit vector xc such that x𝑇c𝐴xc = c. [Hint: In the case
where m < 𝑀, let um and u𝑀 be unit eigenvectors of 𝐴 such
that u𝑇m𝐴um = m and u𝑇𝑀𝐴u𝑀 =𝑀, and let

xc =√
𝑀 − c
𝑀 −m

um +√
c−m
𝑀 −m

u𝑀

Show that x𝑇c𝐴xc = c.]

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. A quadratic form must have either a maximum or mini-

mum value.

b. The maximum value of a quadratic form x𝑇𝐴x subject to
the constraint ‖x‖ = 1 occurs at a unit eigenvector corre-
sponding to the largest eigenvalue of𝐴.

c. The Hessian matrix of a function 𝑓 with continuous
second-order partial derivatives is a symmetric matrix.

d. If (x0, y0) is a critical point of a function𝑓 and theHessian
of𝑓 at (x0, y0) is 0, then𝑓 has neither a relativemaximum
nor a relative minimum at (x0, y0).

e. If 𝐴 is a symmetric matrix and det(𝐴) < 0, then the
minimum of x𝑇𝐴x subject to the constraint ‖x‖ = 1 is
negative.

Working with Technology
T1. Find the maximum and minimum values of the following

quadratic form subject to the stated constraint, and specify the
points at which those values are attained.

𝑤 = 2x2 + y2 + z2 + 2xy+ 2xz; x2 + y2 + z2 = 1
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T2. Suppose that the temperature at a point (x, y) on a metal
plate is 𝑇(x, y) = 4x2 − 4xy+ y2. An ant walking on the
plate traverses a circle of radius 5 centered at the origin.
What are the highest and lowest temperatures encountered by
the ant?

T3. The accompanying figure shows the intersection of the
surface z = x2 + 4y2 (called an elliptic paraboloid) and
the surface x2 + y2 = 1 (called a right circular cylinder).
Find the highest and lowest points on the curve of
intersection. x

z

y

FIGURE Ex-T3

7.5 Hermitian, Unitary, and
Normal Matrices

We showed in Section 7.2 that every symmetric matrix with real entries is orthogonally
diagonalizable, and conversely that every diagonalizable matrix with real entries is sym-
metric. In this sectionwewill be concernedwith the diagonalization problem formatrices
with complex entries.

Real Matrices Versus Complex Matrices
As discussed in Section 5.3, we distinguish between matrices whose entries must be real
numbers, called real matrices, and matrices whose entries may be either real numbers
or complex numbers, called complexmatrices. When convenient, you can think of a real
matrix as a complexmatrix each of whose entries has zero as its imaginary part. Similarly,
we distinguish between real vectors (those in 𝑅n) and complex vectors (those in 𝐶n).

Hermitian and Unitary Matrices
The transpose operation is less important for complex matrices than for real matrices. A
more useful operation for complex matrices is given in the following definition.

Definition 1

If 𝐴 is a complex matrix, then the conjugate transpose of 𝐴, denoted by 𝐴∗, is
defined by

𝐴∗ = 𝐴𝑇 (1)

Remark Note that the order in which the transpose and conjugation operations are per-
formed in Formula (1) does not matter (see Theorem 5.3.2b). Moreover, if 𝐴 is a real
matrix, then Formula (1) simplifies to 𝐴∗ = (𝐴)𝑇 = 𝐴𝑇 , so the conjugate transpose is the
same as the transpose in that case.
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EXAMPLE 1 | Conjugate Transpose

Find the conjugate transpose𝐴∗ of the matrix

𝐴 = [1+ i −i 0
2 3− 2i i]

Solution We have

𝐴 = [1− i i 0
2 3+ 2i −i] and hence 𝐴∗ = 𝐴𝑇 = [

1− i 2
i 3+ 2i
0 −i

]

The following theorem, parts of which are given as exercises, shows that the basic
algebraic properties of the conjugate transpose operation are similar to those of the trans-
pose (compare to Theorem 1.4.8).

Theorem 7.5.1

If k is a complex scalar, and if 𝐴 and 𝐵 are complex matrices whose sizes are such
that the stated operations can be performed, then:
(a) (𝐴∗)∗ = 𝐴
(b) (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗
(c) (𝐴 − 𝐵)∗ = 𝐴∗ − 𝐵∗

(d) (k𝐴)∗ = k𝐴∗
(e) (𝐴𝐵)∗ = 𝐵∗𝐴∗

We now define two new classes of matrices that will be important in our study of
diagonalization in 𝐶n.

Definition 2

A square matrix 𝐴 is said to be unitary if
𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼 (2)

or, equivalently, if
𝐴∗ = 𝐴−1 (3)

and it is said to beHermitian∗ if
𝐴∗ = 𝐴 (4)

If 𝐴 is a real matrix, then 𝐴∗ = 𝐴𝑇 , in which case (3) becomes 𝐴𝑇 = 𝐴−1 and (4)

To show that a matrix is uni-
tary it suffices to show that
either AA∗ = I or A∗A = I
since either equation
implies the other.

becomes 𝐴𝑇 = 𝐴. Thus, the unitary matrices are complex generalizations of the real
orthogonal matrices and the Hermitian matrices are complex generalizations of the real
symmetric matrices.

*In honor of the French mathematician Charles Hermite (1822–1901).
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EXAMPLE 2 | Recognizing Hermitian Matrices

Hermitian matrices are easy to recognize because their diagonal entries are real (why?) and
the entries that are symmetrically positioned across the main diagonal are complex conju-
gates. Thus, for example, we can tell by inspection that the following matrix is Hermitian:

𝐴 = [
1 i 1+ i
−i −5 2− i
1− i 2+ i 3

]

EXAMPLE 3 | Recognizing Unitary Matrices

Unlike Hermitian matrices, unitary matrices are not readily identifiable by inspection. The
most direct way to identify such matrices is to determine whether the matrix satisfies Equa-
tion (2) or Equation (3). We leave it for you to verify that the following matrix is unitary:

𝐴 = [
1
√2

− 1
√2

i

− 1
√2

i 1
√2

]

In Theorem 7.2.2 we established that real symmetric matrices have real eigenvalues
and that eigenvectors from different eigenvalues are orthogonal. That theorem is a special
case of our next theorem in which orthogonality is with respect to the complex Euclidean
inner product on 𝐶n. We will prove part (b) of the theorem and leave the proof of part (a)
for the exercises. In our proof wewill make use of the fact that the relationshipu · v = v𝑇u
given in Formula (5) of Section 5.3 can be expressed in terms of the conjugate transpose as

u · v = v∗u (5)

Theorem 7.5.2

If 𝐴 is a Hermitian matrix, then:

(a) The eigenvalues of 𝐴 are all real numbers.
(b) Eigenvectors from different eigenspaces are orthogonal.

Proof (b) Let v1 and v2 be eigenvectors of𝐴 corresponding to distinct eigenvalues 𝜆1 and
𝜆2. Using Formula (5) and the facts that 𝜆1 = 𝜆1, 𝜆2 = 𝜆2, and 𝐴 = 𝐴∗, we can write

𝜆1(v2 · v1) = (𝜆1v1)∗v2 = (𝐴v1)∗v2 = (v∗1𝐴∗)v2
= (v∗1𝐴)v2 = v∗1(𝐴v2)
= v∗1(𝜆2v2) = 𝜆2(v∗1v2) = 𝜆2(v2 · v1)

This implies that (𝜆1 − 𝜆2)(v2 · v1) = 0 and hence that v2 · v1 = 0 (since 𝜆1 ≠ 𝜆2).
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EXAMPLE 4 | Eigenvalues and Eigenvectors of a
Hermitian Matrix

Confirm that the Hermitian matrix

𝐴 = [ 2 1+ i
1− i 3 ]

has real eigenvalues and that eigenvectors from different eigenspaces are orthogonal.

Solution The characteristic polynomial of𝐴 is

det(𝜆𝐼 − 𝐴) = |||
𝜆 − 2 −1− i

−1+ i 𝜆 − 3
|||

= (𝜆 − 2)(𝜆 − 3) − (−1− i)(−1+ i)
= (𝜆2 − 5𝜆 + 6) − 2 = (𝜆 − 1)(𝜆 − 4)

so the eigenvalues of𝐴 are 𝜆 = 1 and 𝜆 = 4, which are real. Bases for the eigenspaces of 𝐴
can be obtained by solving the linear system

[ 𝜆 − 2 −1− i
−1+ i 𝜆 − 3] [

x1
x2
] = [00]

with 𝜆 = 1 and with 𝜆 = 4.We leave it for you to do this and to show that the general solu-
tions of these systems are

𝜆 = 1∶ [x1x2
] = t [−1− i

1 ] and 𝜆 = 4∶ [x1x2
] = t [

1
2 (1+ i)

1
]

Thus, bases for these eigenspaces are

𝜆 = 1∶ v1 = [−1− i
1 ] and 𝜆 = 4∶ v2 = [

1
2 (1+ i)

1
]

The vectors v1 and v2 are orthogonal since

v1 · v2 = (−1− i)( 1
2 (1 + i) )+ (1)(1) = 1

2 (−1− i)(1− i) + 1 = 0

and hence all scalar multiples of them are also orthogonal.

As noted in Example 3, unitarymatrices are not easy to recognize by inspection. How-
ever, the following analog of Theorems 7.1.1 and 7.1.3, part of which is proved in the exer-
cises, provides a way of ascertaining whether a matrix is unitary without computing its
inverse.

Theorem 7.5.3

If 𝐴 is an n × nmatrix with complex entries, then the following are equivalent.
(a) 𝐴 is unitary.
(b) ‖𝐴x‖ = ‖x‖ for all x in 𝐶n.
(c) 𝐴x ·𝐴y = x · y for all x and y in 𝐶n.
(d) The column vectors of 𝐴 form an orthonormal set in 𝐶n with respect to the

complex Euclidean inner product.
(e) The row vectors of𝐴 form an orthonormal set in𝐶nwith respect to the complex

Euclidean inner product.
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EXAMPLE 5 | A Unitary Matrix

Use Theorem 7.5.3 to show that

𝐴 = [
1
2 (1+ i) 1

2 (1+ i)
1
2 (1− i) 1

2 (−1+ i)
]

is unitary, and then find𝐴−1.
Solution We will show that the row vectors

r1 = [ 12 (1+ i) 1
2 (1+ i)] and r2 = [ 12 (1− i) 1

2 (−1+ i)]
are orthonormal. The relevant computations are

‖r1‖ = √
|| 12 (1+ i)||

2
+ || 12 (1+ i)||

2
=√

1
2 +

1
2 = 1

‖r2‖ = √
|| 12 (1− i)||

2
+ || 12 (−1+ i)||

2
=√

1
2 +

1
2 = 1

r1 · r2 = ( 12 (1 + i))( 12 (1 − i) )+ ( 12 (1 + i))( 12 (−1 + i) )

= ( 12 (1 + i)) ( 12 (1 + i))+ ( 12 (1 + i)) ( 12 (−1 − i)) = 1
2 i−

1
2 i = 0

Since we now know that𝐴 is unitary, it follows that

𝐴−1 = 𝐴∗ = [
1
2 (1− i) 1

2 (1+ i)
1
2 (1− i) 1

2 (−1− i)
]

You can confirm the validity of this result by showing that𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼.

Unitary Diagonalizability
Since unitarymatrices are the complex analogs of the real orthogonalmatrices, the follow-
ing definition is a natural generalization of orthogonal diagonalizability for real matrices.

Definition 3

A square complex matrix 𝐴 is said to be unitarily diagonalizable if there is a uni-
tary matrix 𝑃 such that 𝑃∗𝐴𝑃 = 𝐷 is a complex diagonal matrix. Any such matrix 𝑃
is said to unitarily diagonalize 𝐴.

Recall that a real symmetric n × n matrix 𝐴 has an orthonormal set of n eigenvec-
tors. and is orthogonally diagonalized by any n × n matrix whose column vectors are an
orthonormal set of eigenvectors of 𝐴. Here is the complex analog of that result.

Theorem 7.5.4

Every n × n Hermitian matrix 𝐴 has an orthonormal set of n eigenvectors. More-
over, 𝐴 is unitarily diagonalized by any n × nmatrix 𝑃 whose column vectors form
an orthonormal set of eigenvectors of 𝐴.
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The procedure for unitarily diagonalizing a Hermitian matrix 𝐴 is exactly the same
as that for orthogonally diagonalizing a symmetric matrix:

Unitarily Diagonalizing a Hermitian Matrix
Step 1. Find a basis for each eigenspace of𝐴.
Step 2. Apply the Gram–Schmidt process to each of these bases to obtain orthonormal bases

for the eigenspaces.

Step 3. Form the matrix 𝑃 whose column vectors are the basis vectors obtained in Step 2.
This will be a unitary matrix (Theorem 7.5.3) and will unitarily diagonalize𝐴.

EXAMPLE 6 | Unitary Diagonalization of a Hermitian Matrix

Find a matrix 𝑃 that unitarily diagonalizes the Hermitian matrix

𝐴 = [ 2 1+ i
1− i 3 ]

Solution We showed in Example 4 that the eigenvalues of𝐴 are 𝜆 = 1 and 𝜆 = 4 and that
bases for the corresponding eigenspaces are

𝜆 = 1∶ v1 = [−1− i
1 ] and 𝜆 = 4∶ v2 = [

1
2 (1+ i)

1
]

Since each eigenspace has only one basis vector, theGram–Schmidt process is simply amatter
of normalizing these basis vectors. We leave it for you to show that

p1 =
v1
‖v1‖

= [
−1−i
√3
1

√3

] and p2 =
v2
‖v2‖

= [
1+i
√6
2

√6

]

Thus,𝐴 is unitarily diagonalized by the matrix

𝑃 = [p1 p2] =
⎡
⎢
⎢
⎣

−1−i
√3

1+i
√6

1

√3

2

√6

⎤
⎥
⎥
⎦

Although it is a little tedious, you may want to check this result by showing that

𝑃∗𝐴𝑃 =
⎡⎢⎢⎢
⎣

−1+i
√3

1

√3
1−i
√6

2

√6

⎤⎥⎥⎥
⎦

[ 2 1+ i
1− i 3 ]

⎡⎢⎢⎢
⎣

−1−i
√3

1+i
√6

1

√3

2

√6

⎤⎥⎥⎥
⎦

= [1 0
0 4]

Skew-Symmetric and Skew-Hermitian Matrices
We will now consider two more classes of matrices that play a role in the analysis of
the diagonalization problem. A square real matrix 𝐴 is said to be skew-symmetric if
𝐴𝑇 = −𝐴, and a square complex matrix 𝐴 is said to be skew-Hermitian if 𝐴∗ = −𝐴. We
leave it as an exercise to show that a skew-symmetric matrix must have zeros on the main
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diagonal, and a skew-Hermitian matrix must have zeros or pure imaginary numbers on
the main diagonal. Here are two examples:

𝐴 = [
0 1 −2

−1 0 4
2 −4 0

] 𝐴 = [
i 1 − i 5

−1 − i 2i i
−5 i 0

]

[skew-symmetric] [skew-Hermitian]

Normal Matrices
Hermitian matrices enjoy many, but not all, of the properties of real symmetric matrices.
For example, we know that real symmetric matrices are orthogonally diagonalizable, and
Hermitian matrices are unitarily diagonalizable. However, whereas the real symmetric
matrices are the only orthogonally diagonalizable matrices, the Hermitian matrices do
not constitute the entire class of unitarily diagonalizable complex matrices. Specifically,
it can be proved that a square complex matrix 𝐴 is unitarily diagonalizable if and only if

𝐴𝐴∗ = 𝐴∗𝐴 (6)

Matrices with this property are said to be normal. Normal matrices include the Her-
mitian, skew-Hermitian, and unitary matrices in the complex case and the symmetric,
skew-symmetric, and orthogonal matrices in the real case. The nonzero skew-symmetric
matrices are particularly interesting because they are examples of real matrices that are
not orthogonally diagonalizable but are unitarily diagonalizable.

A Comparison of Eigenvalues
We have seen that Hermitian matrices have real eigenvalues. In the exercises we will ask
you to show that the eigenvalues of a skew-Hermitian matrix are either zero or purely
imaginary (have real part of zero) and that the eigenvalues of unitary matrices have mod-
ulus 1. These ideas are illustrated schematically in Figure 7.5.1.

x

y

Real eigenvalues
(Hermitian)

Pure imaginary
eigenvalues

(skew-Hermitian)

1

|λ| = 1 (unitary)

FIGURE 7.5.1

Exercise Set 7.5

In Exercises 1–2, find𝐴∗.

1. 𝐴 = [
2i 1− i
4 3+ i

5+ i 0
] 2. 𝐴 = [2i 1− i −1+ i

4 5− 7i −i ]

In Exercises 3–4, substitute numbers for the ×’s so that 𝐴 is
Hermitian.

3. 𝐴 = [
1 i 2− 3i
× −3 1
× × 2

] 4. 𝐴 = [
2 0 3+ 5i
× −4 −i
× × 6

]

In Exercises 5–6, show that 𝐴 is not Hermitian for any choice of
the ×’s.

5. a. 𝐴 = [
1 i 2− 3i

−i −3 ×
2− 3i × ×

]

b. 𝐴 = [
× × 3+ 5i
0 i −i

3− 5i i ×
]
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6. a. 𝐴 = [
1 1+ i ×

1+ i 7 ×
6− 2i × 0

]

b. 𝐴 = [
1 × 3+ 5i
× 3 1− i

3− 5i × 2+ i
]

In Exercises 7–8, verify that the eigenvalues of the Hermitian matrix
𝐴 are real and that eigenvectors from different eigenspaces are
orthogonal (see Theorem 7.5.2).

7. 𝐴 = [ 3 2− 3i
2+ 3i −1 ] 8. 𝐴 = [ 0 2i

−2i 2 ]

In Exercises 9–12, show that𝐴 is unitary, and find𝐴−1.

9. 𝐴 = [
3
5

4
5 i

− 4
5

3
5 i
] 10. 𝐴 = [

1
√2

1
√2

− 1
2 (1+ i) 1

2 (1+ i)
]

11. 𝐴 =
⎡
⎢
⎢
⎣

1
2√2

(√3+ i) 1
2√2

(1− i√3)
1

2√2
(1+ i√3) 1

2√2
(i−√3)

⎤
⎥
⎥
⎦

12. 𝐴 =
⎡
⎢
⎢
⎣

1
√3

(−1+ i) 1
√6

(1− i)
1
√3

2
√6

⎤
⎥
⎥
⎦

In Exercises 13–18, find a unitary matrix 𝑃 that diagonalizes the
Hermitian matrix𝐴, and determine 𝑃−1𝐴𝑃.

13. 𝐴 = [ 4 1− i
1+ i 5 ] 14. 𝐴 = [3 −i

i 3]

15. 𝐴 = [ 6 2+ 2i
2− 2i 4 ] 16. 𝐴 = [ 0 3+ i

3− i −3 ]

17. 𝐴 = [
5 0 0
0 −1 −1+ i
0 −1− i 0

]

18. 𝐴 =

⎡⎢⎢⎢⎢⎢
⎣

2 1
√2
i − 1

√2
i

− 1
√2
i 2 0

1
√2
i 0 2

⎤⎥⎥⎥⎥⎥
⎦

In Exercises 19–20, substitute numbers for the ×’s so that𝐴 is skew-
Hermitian.

19. 𝐴 = [
0 i 2− 3i
× 0 1
× × 4i

] 20. 𝐴 = [
0 0 3− 5i
× 0 −i
× × 0

]

InExercises 21–22, show that𝐴 is not skew-Hermitian for any choice
of the ×’s.

21. a. 𝐴 = [
0 i 2− 3i

−i 0 ×
2+ 3i × ×

]

b. 𝐴 = [
1 × 3− 5i
× 2i −i

−3+ 5i i 3i
]

22. a. 𝐴 = [
i × 2− 3i
× 0 1+ i

2+ 3i −1− i ×
]

b. 𝐴 = [
0 −i 4+ 7i
× 0 ×

−4− 7i × 1
]

In Exercises 23–24, verify that the eigenvalues of the skew-Hermitian
matrix𝐴 are pure imaginary numbers.

23. 𝐴 = [ 0 −1+ i
1+ i i ] 24. 𝐴 = [0 3i

3i 0 ]

In Exercises 25–26, show that𝐴 is normal.

25. 𝐴 = [
1+ 2i 2+ i −2− i
2+ i 1+ i −i

−2− i −i 1+ i
]

26. 𝐴 = [
2+ 2i i 1− i
i −2i 1− 3i

1− i 1− 3i −3+ 8i
]

27. Let𝐴 be any n × nmatrixwith complex entries, and define the
matrices 𝐵 and 𝐶 to be

𝐵 = 1
2 (𝐴 +𝐴∗) and 𝐶 = 1

2i (𝐴 −𝐴∗)

a. Show that 𝐵 and 𝐶 are Hermitian.

b. Show that𝐴 = 𝐵 + i𝐶 and𝐴∗ = 𝐵 − i𝐶.
c. What condition must 𝐵 and 𝐶 satisfy for𝐴 to be normal?

28. Show that if𝐴 is an n × nmatrix with complex entries, and if
u and v are vectors in 𝐶n that are expressed in column form,
then

𝐴u · v = u ·𝐴∗v and u·𝐴v = 𝐴∗u· v

29. Show that

𝐴 = 1
√2

[ e
i𝜃 e−i𝜃

iei𝜃 −ie−i𝜃]

is unitary for all real values of 𝜃. [Note: See Formula (17) in
Appendix B for the definition of ei𝜃.]

30. Show that
𝐴 = [𝛼 + i𝛾 −𝛽 + i𝛿

𝛽 + i𝛿 𝛼 − i𝛾]

is unitary if 𝛼2 + 𝛽2 + 𝜆2 + 𝛿2 = 1.

31. Let 𝐴 be the unitary matrix in Exercise 9, and verify that the
conclusions in parts (b) and (c) of Theorem 7.5.3 hold for the
vectors x = (1+ i, 2− i) and y = (1, 1− i).

32. Let 𝑇𝐴∶ 𝐶2 → 𝐶2 be multiplication by the Hermitian matrix
𝐴 in Exercise 14, and find two orthogonal unit vectors u1 and
u2 for which 𝑇𝐴(u1) and 𝑇𝐴(u2) are orthogonal.

33. Under what conditions is the following matrix normal?

𝐴 = [
a 0 0
0 0 c
0 b 0

]

34. What relationship must exist between a matrix and its inverse
if it is both Hermitian and unitary?
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35. Find a 2 × 2 matrix that is both Hermitian and unitary and
whose entries are not all real numbers.

Working with Proofs
36. Use properties of the transpose and complex conjugate to

prove parts (b) and (d) of Theorem 7.5.1.

37. Use properties of the transpose and complex conjugate to
prove parts (a) and (e) of Theorem 7.5.1.

38. Prove that each entry on the main diagonal of a skew-
Hermitian matrix is either zero or a pure imaginary number.

39. Prove that if𝐴 is a unitary matrix, then so is𝐴∗.
40. Prove that the eigenvalues of a skew-Hermitian matrix are

either zero or pure imaginary.

41. Prove that the eigenvalues of a unitarymatrix havemodulus 1.

42. Prove that if u is a nonzero vector in 𝐶n that is expressed in
column form, then 𝑃 = uu∗ is Hermitian.

43. Prove that ifu is a unit vector in𝐶n that is expressed in column
form, then𝐻 = 𝐼 − 2uu∗ is Hermitian and unitary.

44. Prove that if 𝐴 is an invertible matrix, then 𝐴∗ is invertible,
and (𝐴∗)−1 = (𝐴−1)∗.

45. a. Prove that det(𝐴) = det(𝐴).
b. Use the result in part (a) and the fact that a square matrix

and its transpose have the same determinant to prove that
det(𝐴∗) = det(𝐴).

46. Use part (b) of Exercise 45 to prove:
a. If𝐴 is Hermitian, then det(𝐴) is real.
b. If𝐴 is unitary, then | det(𝐴)| = 1.

47. Prove that an n × n matrix with complex entries is unitary if
and only if the columns of𝐴 form an orthonormal set in 𝐶n.

48. Prove that the eigenvalues of a Hermitian matrix are real.

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.

a. The matrix [
0 i
i 2] is Hermitian.

b. The matrix

⎡
⎢
⎢
⎢
⎢
⎣

− i
√2

i
√6

i
√3

0 − i
√6

i
√3

i
√2

i
√6

i
√3

⎤
⎥
⎥
⎥
⎥
⎦

is unitary.

c. The conjugate transpose of a unitary matrix is unitary.

d. Every unitarily diagonalizable matrix is Hermitian.

e. A positive integer power of a skew-Hermitian matrix is
skew-Hermitian.

Chapter 7 Supplementary Exercises
1. Verify that each matrix is orthogonal, and find its inverse.

a. [
3
5 − 4

5
4
5

3
5
] b.

⎡⎢⎢⎢
⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25
12
25

3
5

16
25

⎤⎥⎥⎥
⎦

2. Prove: If 𝑄 is an orthogonal matrix, then each entry of 𝑄 is
the same as its cofactor if det(𝑄) = 1 and is the negative of its
cofactor if det(𝑄) = −1.

3. Prove that if𝐴 is a positive definite symmetric matrix, and if u
and v are vectors in 𝑅n in column form, then

⟨u, v⟩ = u𝑇𝐴v
is an inner product on 𝑅n.

4. Find the characteristic polynomial and the dimensions of the
eigenspaces of the symmetric matrix

[
3 2 2
2 3 2
2 2 3

]

5. Find a matrix 𝑃 that orthogonally diagonalizes

𝐴 = [
1 0 1
0 1 0
1 0 1

]

and determine the diagonal matrix𝐷 = 𝑃𝑇𝐴𝑃.

6. Express each quadratic form in the matrix notation x𝑇𝐴x.
a. −4x21 + 16x22 − 15x1x2
b. 9x21 − x22 + 4x23 + 6x1x2 − 8x1x3 + x2x3

7. Classify the quadratic form

x21 − 3x1x2 + 4x22
as positive definite, negative definite, indefinite, positive semi-
definite, or negative semidefinite.

8. Find an orthogonal change of variable that eliminates the
cross product terms in each quadratic form, and express the
quadratic form in terms of the new variables.

a. −3x21 + 5x22 + 2x1x2
b. −5x21 + x22 − x23 + 6x1x3 + 4x1x2

9. Identify the type of conic section represented by each equa-
tion.

a. y− x2 = 0 b. 3x− 11y2 = 0

10. Find a unitary matrix𝑈 that diagonalizes

𝐴 = [
1 1 0
0 1 1
1 0 1

]

and determine the diagonal matrix𝐷 = 𝑈−1𝐴𝑈.
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11. Show that if𝑈 is an n × n unitary matrix and
|z1| = |z2| = ⋅ ⋅ ⋅ = |zn| = 1

then the product

𝑈
⎡
⎢
⎢
⎢
⎣

z1 0 0 ⋅ ⋅ ⋅ 0
0 z2 0 ⋅ ⋅ ⋅ 0
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ zn

⎤
⎥
⎥
⎥
⎦

is also unitary.

12. Show that:

a. The matrix iA is skew-Hermitian if and only if 𝐴 is
Hermitian.

b. If 𝐴 is skew-Hermitian, then 𝐴 is unitarily diagonalizable
and has pure imaginary eigenvalues.

13. Find a, b, and c for which the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a 1
√2

− 1
√2

b 1
√6

1
√6

c 1
√3

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is orthogonal. Are the values of a, b, and c unique? Explain.

14. In each part, suppose that𝐴 is a 4 × 4matrix in which det(𝑀j)
is the determinant of the jth principal submatrix of 𝐴. Deter-
mine whether 𝐴 is positive definite, negative definite, or
indefinite.

a. det(𝑀1) < 0, det(𝑀2) > 0, det(𝑀3) < 0, det(𝑀4) > 0

b. det(𝑀1) > 0, det(𝑀2) > 0, det(𝑀3) > 0, det(𝑀4) > 0

c. det(𝑀1) < 0, det(𝑀2) < 0, det(𝑀3) < 0, det(𝑀4) < 0

d. det(𝑀1) > 0, det(𝑀2) < 0, det(𝑀3) > 0, det(𝑀4) < 0

e. det(𝑀1) = 0, det(𝑀2) < 0, det(𝑀3) = 0, det(𝑀4) > 0

f. det(𝑀1) = 0, det(𝑀2) > 0, det(𝑀3) = 0, det(𝑀4) = 0

15. Prove:
a. If 𝑄 is an m × n matrix, then 𝐶 = 𝑄𝑄𝑇 is symmetric and

positive semidefinite.

b. The eigenvalues of 𝐶 are nonnegative. [Suggestion: Look at
the proof of Theorem 7.3.2 (a)].
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Introduction
In earlier sections we studied linear transformations from 𝑅n to 𝑅m. In this chapter we
will define and study linear transformations from a general vector space 𝑉 to a general
vector space𝑊. The results we will obtain here have important applications in physics,
engineering, and various branches of mathematics.

8.1 General Linear Transformations
Up to now our study of linear transformations has focused on transformations from 𝑅n
to 𝑅m. In this section we will turn our attention to linear transformations involving gen-
eral vector spaces. We will illustrate ways in which such transformations arise, and we
will establish a fundamental relationship between general n-dimensional vector spaces
and 𝑅n.

Definitions and Terminology
In Section 1.8 we defined a matrix transformation 𝑇𝐴 ∶𝑅n → 𝑅m to be a mapping of the
form

𝑇𝐴(x) = 𝐴x
in which 𝐴 is an m × n matrix. We subsequently established in Theorem 1.8.3 that the
matrix transformations are precisely the linear transformations from 𝑅n to 𝑅m; that is, the
transformations with the linearity properties

𝑇(u + v) = 𝑇(u) + 𝑇(v) and 𝑇(ku) = k𝑇(u)
We will use these two properties as the starting point for defining more general linear
transformations.
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Definition 1

If 𝑇∶ 𝑉 → 𝑊 is a mapping from a vector space 𝑉 to a vector space 𝑊, then 𝑇 is
called a linear transformation from 𝑉 to𝑊 if the following two properties hold
for all vectors u and v in 𝑉 and for all scalars k:
(i) 𝑇(ku) = k𝑇(u) [Homogeneity property]

(ii) 𝑇(u + v) = 𝑇(u) + 𝑇(v) [Additivity property]

In the special case where 𝑉 = 𝑊, the linear transformation 𝑇 is called a linear
operator on the vector space 𝑉.

The homogeneity and additivity properties of a linear transformation 𝑇∶ 𝑉 → 𝑊 can
be used in combination to show that if v1 and v2 are vectors in 𝑉 and k1 and k2 are any
scalars, then

𝑇(k1v1 + k2v2) = k1𝑇(v1) + k2𝑇(v2)
More generally, if v1, v2, . . . , vn are vectors in 𝑉 and k1, k2, . . . , kn are any scalars, then

𝑇(k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn) = k1𝑇(v1) + k2𝑇(v2) + ⋅ ⋅ ⋅ + kn𝑇(vn) (1)

The following theorem is an analog of parts (a) and (d) of Theorem 1.8.1.

Theorem 8.1.1

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation, then:
(a) 𝑇(0) = 0.
(b) 𝑇(u − v) = 𝑇(u) − 𝑇(v) for all u and v in 𝑉.
(c) 𝑇(−v) = −𝑇(v) for all v in 𝑉.

Proof Let u be any vector in 𝑉. Since 0u = 0, it follows from the homogeneity property
in Definition 1 that

𝑇(0) = 𝑇(0u) = 0𝑇(u) = 0

which proves (a). We can prove part (b) by rewriting 𝑇(u − v) as

𝑇(u − v) = 𝑇(u + (−1)v)
= 𝑇(u) + (−1)𝑇(v)
= 𝑇(u) − 𝑇(v)

We leave it for you to justify each step. To prove part (c) set u = 0 in part (b) and apply
part (a).

EXAMPLE 1 | Matrix Transformations

Because we have based the definition of a general linear transformation on the homogeneity
and additivity properties of matrix transformations, it follows that every matrix transforma-
tion 𝑇𝐴 ∶𝑅n → 𝑅m is a linear transformation in the sense of Definition 1.
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EXAMPLE 2 | The Zero Transformation

Let 𝑉 and𝑊 be any two vector spaces. The mapping 𝑇∶ 𝑉 →𝑊 defined by 𝑇(v) = 0 for
every v in 𝑉 is a linear transformation called the zero transformation. To see that 𝑇 is
linear, observe that

𝑇(u+ v) = 0, 𝑇(u) = 0, 𝑇(v) = 0, and 𝑇(ku) = 0

Therefore,
𝑇(u+ v) = 𝑇(u) + 𝑇(v) and 𝑇(ku) = k𝑇(u)

EXAMPLE 3 | The Identity Operator

Let𝑉 be any vector space. Themapping 𝐼 ∶ 𝑉 → 𝑉 defined by 𝐼(v) = v is called the identity
operator on𝑉.We will leave it for you to verify that 𝐼 is linear.

EXAMPLE 4 | Dilation and Contraction Operators

If𝑉 is a vector space and c is any scalar, then the linear operator 𝑇∶ 𝑉 → 𝑉 that is defined
by 𝑇(x) = cx is a linear operator on𝑉, for if c is any scalar and if u and v are any vectors in
𝑉, then

𝑇(ku) = c(ku) = k(cu) = k𝑇(u)
𝑇(u+ v) = c(u+ v) = cu+ cv = 𝑇(u) + 𝑇(v)

If 0 < c < 1, then 𝑇 is called the contraction of 𝑉 with factor c, and if c > 1, it is called the
dilation of𝑉 with factor c.

EXAMPLE 5 | A Linear Transformation from Pn to Pn+1

Let p = p(x) = c0 + c1x+ ⋅ ⋅ ⋅ + cnxn be a polynomial in 𝑃n, and define the transformation
𝑇∶ 𝑃n → 𝑃n+1 by

𝑇(p) = 𝑇(p(x)) = xp(x) = c0x+ c1x2 + ⋅ ⋅ ⋅ + cnxn+1

This transformation is linear because for any scalar k and any polynomials p1 and p2 in 𝑃n
we have

𝑇(kp) = 𝑇(kp(x)) = x(kp(x)) = k(xp(x)) = k𝑇(p)
and

𝑇(p1 + p2) = 𝑇(p1(x) + p2(x)) = x(p1(x) + p2(x))
= xp1(x) + xp2(x) = 𝑇(p1) + 𝑇(p2)
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EXAMPLE 6 | A Linear Transformation Using an Inner Product

Let v0 be any fixed vector in a real inner product space𝑉, and let 𝑇∶𝑉 → 𝑅 be the transfor-
mation

𝑇(x) = ⟨x, v0⟩

that maps a vector x to its inner product with v0. This transformation is linear, for if k is
any scalar, and if u and v are any vectors in 𝑅n, then it follows from properties of real inner
products that

𝑇(ku) = ⟨ku, v0⟩ = k⟨u, v0⟩ = k𝑇(u)
𝑇(u+ v) = ⟨u+ v, v0⟩ = ⟨u, v0⟩ + ⟨v, v0⟩ = 𝑇(u) + 𝑇(v)

EXAMPLE 7 | Transformations on Matrix Spaces

Let𝑀nn be the vector space of n × nmatrices. In each part determine whether the transfor-
mation is linear.

(a) 𝑇1(𝐴) = 𝐴𝑇 (b) 𝑇2(𝐴) = det(𝐴)
Solution (a) It follows from parts (b) and (d) of Theorem 1.4.8 that

𝑇1(k𝐴) = (k𝐴)𝑇 = k𝐴𝑇 = k𝑇1(𝐴)
𝑇1(𝐴 + 𝐵) = (𝐴+ 𝐵)𝑇 = 𝐴𝑇 +𝐵𝑇 = 𝑇1(𝐴) + 𝑇1(𝐵)

so 𝑇1 is linear.

Solution (b) It follows from Formula (1) of Section 2.3 that

𝑇2(k𝐴) = det(k𝐴) = kn det(𝐴) = kn𝑇2(𝐴)

Thus, 𝑇2 is not homogeneous and hence not linear if n > 1. Note that additivity also fails
because we showed in Example 1 of Section 2.3 that det(𝐴 + 𝐵) and det(𝐴) + det(𝐵) are
not generally equal.

x

x0

x + x0

0

FIGURE 8.1.1 𝑇(x) = x+ x0
translates each point x along a
line parallel to x0 through a
distance ‖x0‖.

EXAMPLE 8 | Translation Is Not Linear

Part (a) of Theorem 8.1.1 states that a linear transformation maps 0 to 0. This property is
useful for identifying transformations that are not linear. For example, if x0 is a fixed nonzero
vector in a real inner product space𝑉, then the transformation

𝑇(x) = x+ x0

has the geometric effect of translating each point x in a direction parallel to x0 through a
distance of ‖x0‖ (Figure 8.1.1). This cannot be a linear transformation since 𝑇(0) = x0, so
𝑇 does not map 0 to 0.
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EXAMPLE 9 | The Evaluation Transformation

Let𝑉 be a subspace of 𝐹(−∞,∞), let
x1, x2, . . . , xn

be a sequence of distinct real numbers, and let 𝑇∶𝑉 → 𝑅n be the transformation

𝑇(𝑓) = (𝑓(x1), 𝑓(x2), . . . , 𝑓(xn)) (2)

that associates with the function 𝑓 the n-tuple of function values at x1, x2, . . . , xn. We call
this the evaluation transformation on𝑉 at x1, x2, . . . , xn. Thus, for example, if

x1 = −1, x2 = 2, x3 = 4

and if 𝑓(x) = x2 − 1, then

𝑇(𝑓) = (𝑓(x1), 𝑓(x2), 𝑓(x3)) = (0, 3, 15)

The evaluation transformation in (2) is linear, for if k is any scalar, and if 𝑓 and g are
any functions in𝑉, then

𝑇(k𝑓) = ((k𝑓)(x1), (k𝑓)(x2), . . . , (k𝑓)(xn))
= (k𝑓(x1), k𝑓(x2), . . . , k𝑓(xn))
= k(𝑓(x1), 𝑓(x2), . . . , 𝑓(xn)) = k𝑇(𝑓)

and
𝑇(𝑓 + g) = ((𝑓 + g)(x1), (𝑓 + g)(x2), . . . , (𝑓 + g)(xn))

= (𝑓(x1) + g(x1), 𝑓(x2) + g(x2), . . . , 𝑓(xn) + g(xn))
= (𝑓(x1), 𝑓(x2), . . . , 𝑓(xn))+ (g(x1), g(x2), . . . , g(xn))
= 𝑇(𝑓) + 𝑇(g)

Finding Linear Transformations from
Images of Basis Vectors
We saw in Formula (15) of Section 1.8 that if 𝑇∶𝑅n → 𝑅m is a linear transformation,
and if e1, e2, . . . , en are the standard basis vectors for 𝑅n, then the matrix 𝐴 for 𝑇 can be
expressed as

𝐴 = [𝑇(e1) ∣ 𝑇(e2) ∣ ⋅ ⋅ ⋅ ∣ 𝑇(en)]
It follows from this that the image of any vector v = (c1, c2, . . . , cn) in 𝑅n under multipli-
cation by 𝐴 can be expressed as

𝑇(v) = c1𝑇(e1) + c2𝑇(e2) + ⋅ ⋅ ⋅ + cn𝑇(en)
This formula tells us that for amatrix transformation the image of any vector is expressible
as a linear combination of the images of the standard basis vectors. This is a special case
of the following more general result.

Theorem 8.1.2

Let 𝑇∶𝑉 → 𝑊 be a linear transformation, for which the vector space 𝑉 is finite-
dimensional. If 𝑆 = {v1, v2, . . . , vn} is a basis for 𝑉, then the image of any vector v in
𝑉 can be expressed as

𝑇(v) = c1𝑇(v1) + c2𝑇(v2) + ⋅ ⋅ ⋅ + cn𝑇(vn) (3)

where c1, c2, . . . , cn are the coefficients required to express v as a linear combination
of the vectors in the basis 𝑆.

Proof Express v as v = c1v1 + c2v2 + ⋅ ⋅ ⋅ + cnvn and use the linearity of 𝑇.
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EXAMPLE 10 | Computing with Images of Basis Vectors

Consider the basis 𝑆 = {v1, v2, v3} for 𝑅3, where

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

Let 𝑇∶𝑅3 → 𝑅2 be the linear transformation for which

𝑇(v1) = (1, 0), 𝑇(v2) = (2,−1), 𝑇(v3) = (4, 3)

Find a formula for 𝑇(x1, x2, x3), and then use that formula to compute 𝑇(2,−3, 5).
Solution We first need to express x = (x1, x2, x3) as a linear combination of v1, v2, and v3.
If we write

(x1, x2, x3) = c1(1, 1, 1) + c2(1, 1, 0) + c3(1, 0, 0)
then on equating corresponding components, we obtain

c1 + c2 + c3 = x1
c1 + c2 = x2
c1 = x3

which yields c1 = x3, c2 = x2 − x3, c3 = x1 − x2, so

(x1, x2, x3) = x3(1, 1, 1) + (x2 − x3)(1, 1, 0) + (x1 − x2)(1, 0, 0)
= x3v1 + (x2 − x3)v2 + (x1 − x2)v3

Thus
𝑇(x1, x2, x3) = x3𝑇(v1) + (x2 − x3)𝑇(v2) + (x1 − x2)𝑇(v3)

= x3(1, 0) + (x2 − x3)(2,−1) + (x1 − x2)(4, 3)
= (4x1 − 2x2 − x3, 3x1 − 4x2 + x3)

From this formula we obtain
𝑇(2,−3, 5) = (9, 23)

CALCULUS REQUIREDEXAMPLE 11 | A Linear Transformation from
C1(−∞,∞) to F(−∞,∞)

Let 𝑉 = 𝐶1(−∞,∞) be the vector space of functions with continuous first derivatives on
(−∞,∞), and let𝑊 = 𝐹(−∞,∞) be the vector space of all real-valued functions defined
on (−∞,∞). Let 𝐷∶ 𝑉 →𝑊 be the transformation that maps a function f = 𝑓(x) into its
derivative—that is,

𝐷( f ) = 𝑓′(x)
From the properties of differentiation, we have

𝐷(f+ g) = 𝐷(f ) + 𝐷(g) and 𝐷(k f ) = k𝐷(f )

Thus,𝐷 is a linear transformation.
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CALCULUS REQUIRED EXAMPLE 12 | An Integral Transformation

Let 𝑉 = 𝐶(−∞,∞) be the vector space of continuous functions on the interval (−∞,∞),
let𝑊 = 𝐶1(−∞,∞) be the vector space of functions with continuous first derivatives on
(−∞,∞), and let 𝐽 ∶ 𝑉 →𝑊 be the transformation that maps a function 𝑓 in𝑉 into

𝐽(𝑓) = ∫
x

0
𝑓(t) dt

For example, if 𝑓(x) = x2, then

𝐽(𝑓) = ∫
x

0
t2 dt = t3

3
]
x

0
= x3

3

The transformation 𝐽 ∶ 𝑉 →𝑊 is linear, for if k is any constant, and if 𝑓 and g are any func-
tions in𝑉, then properties of the integral imply that

𝐽(k𝑓) = ∫
x

0
k𝑓(t) dt = k∫

x

0
𝑓(t) dt = k𝐽(𝑓)

𝐽(𝑓 + g) = ∫
x

0
(𝑓(t) + g(t)) dt =∫

x

0
𝑓(t) dt+∫

x

0
g(t) dt = 𝐽(𝑓) + 𝐽(g)

Kernel and Range
Recall that if 𝐴 is anm × nmatrix, then the null space of 𝐴 consists of all vectors x in 𝑅n
such that 𝐴x = 0, and by Theorem 4.8.1 the column space of 𝐴 consists of all vectors b in
𝑅m for which there is at least one vector x in 𝑅n such that 𝐴x = b. From the viewpoint of
matrix transformations, the null space of𝐴 consists of all vectors in 𝑅n that multiplication
by 𝐴maps into 0, and the column space of 𝐴 consists of all vectors in 𝑅m that are images
of at least one vector in 𝑅n under multiplication by 𝐴. The following definition extends
these ideas to general linear transformations, which is illustrated in (Figure 8.1.2).

Definition 2

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation, then the set of vectors in 𝑉 that 𝑇 maps
into 0 is called the kernel of 𝑇 and is denoted by ker(𝑇). The set of all vectors in𝑊
that are images under 𝑇 of at least one vector in 𝑉 is called the range of 𝑇 and is
denoted by 𝑅(𝑇).

V

ke
r(T
)

R(T)

0

W

FIGURE 8.1.2
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EXAMPLE 13 | Kernel and Range of a Matrix Transformation

If 𝑇𝐴 ∶𝑅n → 𝑅m is multiplication by the m × n matrix 𝐴, then the kernel of 𝑇𝐴 is the null
space of𝐴, and the range of 𝑇𝐴 is the column space of𝐴.

EXAMPLE 14 | Kernel and Range of the Zero Transformation

Let 𝑇∶ 𝑉 →𝑊 be the zero transformation. Since 𝑇 maps every vector in𝑉 into 0, it follows
that ker(𝑇) = 𝑉.Moreover, since 0 is the only image under 𝑇 of vectors in𝑉, it follows that
𝑅(𝑇) = {0}.

EXAMPLE 15 | Kernel and Range of the Identity Operator

Let 𝐼 ∶ 𝑉 → 𝑉 be the identity operator. Since 𝐼(v) = v for all vectors in𝑉, every vector in𝑉
is the image of some vector (namely, itself); thus𝑅(𝐼) = 𝑉. Since the only vector that 𝐼 maps
into 0 is 0, it follows that ker(𝐼) = {0}.

EXAMPLE 16 | Kernel and Range of an Orthogonal Projection

Let𝑇∶𝑅3→𝑅3 be the orthogonal projection onto the xy-plane.As illustrated inFigure 8.1.3a,
the points that𝑇 maps into 0 = (0, 0, 0) are precisely those on the z-axis, so ker(𝑇) is the set
of points of the form (0, 0, z). As illustrated in Figure 8.1.3b, 𝑇 maps the points in 𝑅3 to the
xy-plane, where each point in that plane is the image of each point on the vertical line above
it. Thus, 𝑅(𝑇) is the set of points of the form (x, y, 0).

z

x

T y

(0, 0, 0)

(0, 0, z)

(a)  ker(T) is the z-axis.

T

z

x

y

(b)  R(T) is the entire xy-plane.

(x, y, 0)

(x, y, z)

FIGURE 8.1.3

y

x

v

T(v)

θ

FIGURE 8.1.4

EXAMPLE 17 | Kernel and Range of a Rotation

Let 𝑇∶𝑅2 → 𝑅2 be the linear operator that rotates each vector in the xy-plane through the
angle 𝜃 (Figure 8.1.4). Since every vector in the xy-plane can be obtained by rotating some
vector through the angle 𝜃, it follows that 𝑅(𝑇) = 𝑅2. Moreover, the only vector that rotates
into 0 is 0, so ker(𝑇) = {0}.
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CALCULUS REQUIRED EXAMPLE 18 | Kernel of a Differentiation Transformation

Let 𝑉 = 𝐶1(−∞,∞) be the vector space of functions with continuous first derivatives on
(−∞,∞), let 𝑊 = 𝐹(−∞,∞) be the vector space of all real-valued functions defined on
(−∞, ∞), and let 𝐷∶ 𝑉 →𝑊 be the differentiation transformation 𝐷( f ) = 𝑓′(x). The
kernel of𝐷 is the set of functions in𝑉 with derivative zero. As shown in calculus, this is the
set of constant functions on (−∞,∞).

Properties of Kernel and Range
In all of the preceding examples, ker(𝑇) and 𝑅(𝑇) turned out to be subspaces. In Exam-
ples 14, 15, and 17 they were either the zero subspace or the entire vector space. In Exam-
ple 16 the kernel was a line through the origin, and the range was a plane through the
origin, both of which are subspaces of 𝑅3. All of this is a consequence of the following
general theorem.

Theorem 8.1.3

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation, then:
(a) The kernel of 𝑇 is a subspace of 𝑉.
(b) The range of 𝑇 is a subspace of𝑊.

Proof (a) To show that ker(𝑇) is a subspace, we must show that it contains at least one
vector and is closed under addition and scalarmultiplication. By part (a) of Theorem8.1.1,
the vector 0 is in ker(𝑇), so the kernel contains at least one vector. If 0 is the only vector
in the kernel of 𝑇, then ker(𝑇) is the zero subspace of 𝑉. If there are at least two vectors
in the kernel, then let v1 and v2 be any two such vectors, and let k be any scalar. Then

𝑇(v1 + v2) = 𝑇(v1) + 𝑇(v2) = 0 + 0 = 0
so v1 + v2 is in ker(𝑇). Also,

𝑇(kv1) = k𝑇(v1) = k0 = 0
so kv1 is in ker(𝑇).

Proof (b) To show that 𝑅(𝑇) is a subspace of𝑊, we must show that it contains at least
one vector and is closed under addition and scalar multiplication. However, it contains
at least the zero vector of𝑊 since 𝑇(0) = 0 by part (a) of Theorem 8.1.1. To prove that it
is closed under addition and scalar multiplication, we must show that if w1 and w2 are
vectors in 𝑅(𝑇), and if k is any scalar, then there exist vectors a and b in 𝑉 for which

𝑇(a) = w1 +w2 and 𝑇(b) = kw1 (4)
But the fact thatw1 andw2 are in 𝑅(𝑇) tells us there exist vectors v1 and v2 in𝑉 such that

𝑇(v1) = w1 and 𝑇(v2) = w2

The following computations complete the proof by showing that the vectors a = v1 + v2
and b = kv1 satisfy the equations in (4):

𝑇(a) = 𝑇(v1 + v2) = 𝑇(v1) + 𝑇(v2) = w1 +w2

𝑇(b) = 𝑇(kv1) = k𝑇(v1) = kw1
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CALCULUS REQUIREDEXAMPLE 19 | Application to Differential Equations

Differential equations of the form

y″ +𝜔2y = 0 (𝜔 a positive constant) (5)

arise in the study of vibrations. The set of all solutions of this equation on the interval (−∞,∞)
is the kernel of the linear transformation𝐷∶ 𝐶2(−∞,∞) → 𝐶(−∞,∞), given by

𝐷(y) = y″ +𝜔2y

It is proved in standard textbooks on differential equations that the kernel is a two-
dimensional subspace of 𝐶2(−∞,∞), so that if we can find two linearly independent
solutions of (5), then all other solutions can be expressed as linear combinations of those
two. We leave it for you to confirm by differentiating that

y1 = cos𝜔x and y2 = sin𝜔x
are solutions of (5). These functions are linearly independent since neither is a scalarmultiple
of the other, and thus

y = c1 cos𝜔x+ c2 sin𝜔x (6)
is a “general solution” of (5) in the sense that every choice of c1 and c2 produces a solution,
and every solution is of this form.

Rank and Nullity of Linear Transformations
In Definition 1 of Section 4.9 we defined the notions of rank and nullity for an m × n
matrix, and in Theorem 4.9.2, which we called the Dimension Theorem for Matrices, we
proved that the sum of the rank and nullity is n. We will show next that this result is
a special case of a more general result about linear transformations. We start with the
following definition.

Definition 3

Let 𝑇∶ 𝑉 → 𝑊 be a linear transformation. In the case that the range of 𝑇 is finite-
dimensional its dimension is called the rank of T; and if the kernel of 𝑇 is finite-
dimensional, then its dimension is called the nullity of T. These dimensions are
denoted, respectively, by

rank(𝑇) and nullity(𝑇)

The following theorem, whose proof is optional, generalizes Theorem 4.9.2.

Theorem 8.1.4

Dimension Theorem for Linear Transformations
If 𝑇∶ 𝑉 → 𝑊 is a linear transformation from a finite-dimensional vector space𝑉 to
a vector space𝑊, then the range of 𝑇 is finite-dimensional, and

rank(𝑇) + nullity(𝑇) = dim(𝑉) (7)

In the special case where𝐴 is anm × nmatrix and 𝑇𝐴 ∶𝑅n → 𝑅m is multiplication by
𝐴, the kernel of 𝑇𝐴 is the null space of 𝐴, and the range of 𝑇𝐴 is the column space of 𝐴.
Thus, it follows from Theorem 8.1.4 that

rank(𝑇𝐴) + nullity(𝑇𝐴) = n
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OPTIONAL: Proof of Theorem 8.1.4 Assume that 𝑉 is n-dimensional. We
must show that

dim(𝑅(𝑇)) + dim(ker(𝑇)) = n
We will give the proof for the case where 1 ≤ dim(ker(𝑇)) < n. The cases where
dim(ker(𝑇)) = 0 and dim(ker(𝑇)) = n are left as exercises. Assume dim(ker(𝑇)) = r, and
let v1, . . . , vr be a basis for the kernel. Since {v1, . . . , vr} is linearly independent, Theo-
rem 4.6.5(b) states that there are n − r vectors, vr+1, . . . , vn, such that the extended set
{v1, . . . , vr, vr+1, . . . , vn} is a basis for 𝑉. To complete the proof, we will show that the n − r
vectors in the set 𝑆 = {𝑇(vr+1), . . . , 𝑇(vn)} form a basis for the range of𝑇. It will then follow
that

dim(𝑅(𝑇)) + dim(ker(𝑇)) = (n − r) + r = n
First we show that 𝑆 spans the range of 𝑇. If b is any vector in the range of 𝑇, then

b = 𝑇(v) for some vector v in 𝑉. Since {v1, . . . , vr, vr+1, . . . , vn} is a basis for 𝑉, the vector v
can be written in the form

v = c1v1 + ⋅ ⋅ ⋅ + crvr + cr+1vr+1 + ⋅ ⋅ ⋅ + cnvn
Since v1, . . . , vr lie in the kernel of 𝑇, we have 𝑇(v1) = ⋅ ⋅ ⋅ = 𝑇(vr) = 0, so

b = 𝑇(v) = cr+1𝑇(vr+1) + ⋅ ⋅ ⋅ + cn𝑇(vn)
Thus 𝑆 spans the range of 𝑇.

Finally, we show that 𝑆 is a linearly independent set and consequently forms a basis
for the range of 𝑇. Suppose that some linear combination of the vectors in 𝑆 is zero;
that is,

kr+1𝑇(vr+1) + ⋅ ⋅ ⋅ + kn𝑇(vn) = 0 (8)
We must show that kr+1 = ⋅ ⋅ ⋅ = kn = 0. Since 𝑇 is linear, (8) can be rewritten as

𝑇(kr+1vr+1 + ⋅ ⋅ ⋅ + knvn) = 0
which says that kr+1vr+1 + ⋅ ⋅ ⋅ + knvn is in the kernel of 𝑇. This vector can therefore be
written as a linear combination of the basis vectors {v1, . . . , vr}, say

kr+1vr+1 + ⋅ ⋅ ⋅ + knvn = k1v1 + ⋅ ⋅ ⋅ + krvr
Thus,

k1v1 + ⋅ ⋅ ⋅ + krvr − kr+1vr+1 − ⋅ ⋅ ⋅ − knvn = 0
Since {v1, . . . , vn} is linearly independent, all of the k’s are zero; in particular,
kr+1 = ⋅ ⋅ ⋅ = kn = 0, which completes the proof.

Exercise Set 8.1

In Exercises 1–2, suppose that 𝑇 is a mapping whose domain is the
vector space𝑀22. In eachpart, determinewhether𝑇 is a linear trans-
formation, and if so, find its kernel.

1. a. 𝑇(𝐴) = 𝐴2 b. 𝑇(𝐴) = tr(𝐴)
c. 𝑇(𝐴) = 𝐴+𝐴𝑇

2. a. 𝑇(𝐴) = (𝐴)11 b. 𝑇(𝐴) = 02×2
c. 𝑇(𝐴) = c𝐴

In Exercises 3–9, determine whether themapping𝑇 is a linear trans-
formation, and if so, find its kernel.
3. 𝑇∶𝑅3 → 𝑅, where 𝑇(u) = ‖u‖.

4. 𝑇∶𝑅3 → 𝑅3, where v0 is a fixed vector in 𝑅3 and

𝑇(u) = u × v0

5. 𝑇∶𝑀22 →𝑀23, where 𝐵 is a fixed 2 × 3 matrix and
𝑇(𝐴) = 𝐴𝐵

6. 𝑇∶𝑀22 → 𝑅, where

a. 𝑇([a b
c d]) = 3a− 4b+ c− d

b. 𝑇([a b
c d]) = a2 + b2

7. 𝑇∶ 𝑃2 → 𝑃2, where

a. 𝑇(a0 + a1x+ a2x2) = a0 + a1(x+ 1) + a2(x+ 1)2

b. 𝑇(a0 + a1x+ a2x2) = (a0 + 1) + (a1 + 1)x+ (a2 + 1)x2

8. 𝑇∶ 𝐹(−∞, ∞) → 𝐹(−∞, ∞), where

a. 𝑇(𝑓(x)) = 1+𝑓(x) b. 𝑇(𝑓(x)) = 𝑓(x+ 1)
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9. 𝑇∶𝑅∞→𝑅∞, where

𝑇(a0, a1, a2, . . . , an, . . . ) = (0, a0, a1, a2, . . . , an, . . . )

10. Let 𝑇∶ 𝑃2 → 𝑃3 be the linear transformation defined by
𝑇(p(x)) = xp(x). Which of the following are in ker(𝑇)?
a. x2 b. 0 c. 1+ x d. −x

11. Let 𝑇∶ 𝑃2 → 𝑃3 be the linear transformation in Exercise 10.
Which of the following are in 𝑅(𝑇)?

a. x+ x2 b. 1+ x c. 3− x2 d. −x

12. Let 𝑉 be any vector space, and let 𝑇∶ 𝑉 → 𝑉 be defined by
𝑇(v) = 3v.
a. What is the kernel of 𝑇?
b. What is the range of 𝑇?

13. In each part, use the given information to find the nullity of
the linear transformation 𝑇.
a. 𝑇∶𝑅5 → 𝑃5 has rank 3.

b. 𝑇∶ 𝑃4 → 𝑃3 has rank 1.

c. The range of 𝑇∶𝑀mn → 𝑅3 is 𝑅3.

d. 𝑇∶𝑀22 →𝑀22 has rank 3.

14. In each part, use the given information to find the rank of the
linear transformation 𝑇.
a. 𝑇∶𝑅7→𝑀32 has nullity 2.

b. 𝑇∶ 𝑃3→𝑅 has nullity 1.

c. The null space of 𝑇∶ 𝑃5→𝑃5 is 𝑃5.

d. 𝑇∶ 𝑃n→𝑀mn has nullity 3.

15. Let 𝑇∶𝑀22→𝑀22 be the dilation operator with factor k = 3.

a. Find 𝑇([
1 2

−4 3
]).

b. Find the rank and nullity of 𝑇.

16. Let 𝑇∶ 𝑃2→𝑃2 be the contraction operator with factor
k = 1/4.
a. Find 𝑇(1+ 4x+ 8x2).
b. Find the rank and nullity of 𝑇.

17. Let 𝑇∶ 𝑃2→𝑅3 be the evaluation transformation at the
sequence of points−1, 0, 1. Find

a. 𝑇(x2) b. ker(𝑇) c. 𝑅(𝑇)

18. Let 𝑉 be the subspace of 𝐶[0, 2𝜋] spanned by the vectors 1,
sin x, and cos x, and let 𝑇∶ 𝑉→𝑅3 be the evaluation transfor-
mation at the sequence of points 0, 𝜋, 2𝜋. Find

a. 𝑇(1+ sin x+ cos x) b. ker(𝑇)
c. 𝑅(𝑇)

19. Consider the basis 𝑆 = {v1, v2} for 𝑅2, where v1 = (1, 1) and
v2 = (1, 0), and let 𝑇∶𝑅2 → 𝑅2 be the linear operator for
which

𝑇(v1) = (1,−2) and 𝑇(v2) = (−4, 1)

Find a formula for 𝑇(x1, x2), and use that formula to find
𝑇(5,−3).

20. Consider the basis𝑆 = {v1, v2} for𝑅2, where v1 = (−2, 1) and
v2 = (1, 3), and let 𝑇∶𝑅2 → 𝑅3 be the linear transformation
such that

𝑇(v1) = (−1, 2, 0) and 𝑇(v2) = (0,−3, 5)

Find a formula for 𝑇(x1, x2), and use that formula to find
𝑇(2,−3).

21. Consider the basis 𝑆 = {v1, v2, v3} for𝑅3, where v1 = (1, 1, 1),
v2 = (1, 1, 0), and v3 = (1, 0, 0), and let 𝑇∶𝑅3 → 𝑅3 be the
linear operator for which

𝑇(v1) = (2,−1, 4), 𝑇(v2) = (3, 0, 1),
𝑇(v3) = (−1, 5, 1)

Find a formula for 𝑇(x1, x2, x3), and use that formula to find
𝑇(2, 4,−1).

22. Consider the basis 𝑆 = {v1, v2, v3} for𝑅3, where v1 = (1, 2, 1),
v2 = (2, 9, 0), and v3 = (3, 3, 4), and let 𝑇∶𝑅3 → 𝑅2 be the
linear transformation for which

𝑇(v1) = (1, 0), 𝑇(v2) = (−1, 1), 𝑇(v3) = (0, 1)

Find a formula for 𝑇(x1, x2, x3), and use that formula to find
𝑇(7, 13, 7).

In Exercises 23–24, let 𝑇 be multiplication by the matrix𝐴. Find

a. a basis for the range of 𝑇.
b. a basis for the kernel of 𝑇.
c. the rank and nullity of 𝑇.
d. the rank and nullity of𝐴.

23. 𝐴 = [
1 −1 3
5 6 −4
7 4 2

] 24. 𝐴 = [
2 0 −1
4 0 −2
20 0 0

]

In Exercises 25–26, let 𝑇𝐴 ∶𝑅4→𝑅3 be multiplication by 𝐴. Find a
basis for the kernel of 𝑇𝐴, and then find a basis for the range of 𝑇𝐴
that consists of column vectors of𝐴.

25. 𝐴 = [
1 2 −1 −2

−3 1 3 4
−3 8 4 2

]

26. 𝐴 = [
1 1 0 1

−2 4 2 2
−1 8 3 5

]

27. Let 𝑇∶ 𝑃3→𝑃2 be the mapping defined by

𝑇(a0 + a1x+ a2x2 + a3x3) = 5a0 + a3x2

a. Show that 𝑇 is linear.

b. Find a basis for the kernel of 𝑇.
c. Find a basis for the range of 𝑇.

28. Let 𝑇∶ 𝑃2→𝑃2 be the mapping defined by

𝑇(a0 + a1x+ a2x2) = 3a0 + a1x+ (a0 + a1)x2

a. Show that 𝑇 is linear.

b. Find a basis for the kernel of 𝑇.
c. Find a basis for the range of 𝑇.
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29. a. (Calculus required) Let 𝐷∶ 𝑃3 → 𝑃2 be the differentia-
tion transformation𝐷(p) = p′(x).What is the kernel of𝐷?

b. (Calculus required) Let 𝐽 ∶ 𝑃1 → 𝑅 be the integration
transformation 𝐽(p) = ∫1

−1 p(x) dx.What is the kernel of 𝐽?
30. (Calculus required) Let 𝑉 = 𝐶[a, b] be the vector space of

continuous functions on [a, b], and let 𝑇∶ 𝑉 → 𝑉 be the
transformation defined by

𝑇( f ) = 5𝑓(x) + 3∫
x

a
𝑓(t) dt

Is 𝑇 a linear operator?

31. (Calculus required) Let 𝑉 be the vector space of real-valued
functions with continuous derivatives of all orders on the
interval (−∞,∞), and let 𝑊 = 𝐹(−∞,∞) be the vector
space of real-valued functions defined on (−∞,∞).
a. Find a linear transformation 𝑇∶ 𝑉→𝑊 whose kernel

is 𝑃3.

b. Find a linear transformation 𝑇∶ 𝑉 →𝑊 whose kernel
is 𝑃n.

32. For a positive integer n > 1, let 𝑇∶𝑀nn → 𝑅 be the linear
transformation defined by𝑇(𝐴) = tr(𝐴), where𝐴 is an n × n
matrix with real entries. Determine the dimension of ker(𝑇).

33. a. Let 𝑇∶ 𝑉→𝑅3 be a linear transformation from a vector
space𝑉 to 𝑅3. Geometrically, what are the possibilities for
the range of 𝑇?

b. Let𝑇∶𝑅3→𝑊 be a linear transformation from𝑅3 to a vec-
tor space 𝑊. Geometrically, what are the possibilities for
the kernel of 𝑇?

34. In each part, determine whether the mapping 𝑇∶ 𝑃n→𝑃n is
linear.

a. 𝑇(p(x)) = p(x+ 1)
b. 𝑇(p(x)) = p(x) + 1

35. Let v1, v2, and v3 be vectors in a vector space 𝑉, and let
𝑇∶ 𝑉 → 𝑅3 be a linear transformation for which

𝑇(v1) = (1,−1, 2), 𝑇(v2) = (0, 3, 2),
𝑇(v3) = (−3, 1, 2)

Find 𝑇(2v1 − 3v2 + 4v3).

Working with Proofs
36. Let {v1, v2, . . . , vn} be a basis for a vector space 𝑉, and let

𝑇∶ 𝑉 →𝑊 be a linear transformation. Prove that if
𝑇(v1) = 𝑇(v2) = ⋅ ⋅ ⋅ = 𝑇(vn) = 0

then 𝑇 is the zero transformation.

37. Let {v1, v2, . . . , vn} be a basis for a vector space 𝑉, and let
𝑇∶ 𝑉 → 𝑉 be a linear operator. Prove that if

𝑇(v1) = v1, 𝑇(v2) = v2, . . . , 𝑇(vn) = vn

then 𝑇 is the identity transformation on𝑉.

38. Prove: If {v1, v2, . . . , vn} is a basis for a vector space 𝑉 and
w1,w2, . . . ,wn are vectors in a vector space 𝑊, not neces-
sarily distinct, then there exists a linear transformation 𝑇 that
maps𝑉 into𝑊 such that

𝑇(v1) = w1, 𝑇(v2) = w2, . . . , 𝑇(vn) = wn

39. Let q0(x) be a fixed polynomial of degreem, and define a func-
tion 𝑇 with domain 𝑃n by the formula 𝑇(p(x)) = p(q0(x)).
Prove that 𝑇 is a linear transformation.

True-False Exercises
TF. In parts (a)–(i) determine whether the statement is true or

false, and justify your answer.
a. If 𝑇(c1v1 + c2v2) = c1𝑇(v1) + c2𝑇(v2) for all vectors v1

and v2 in 𝑉 and all scalars c1 and c2, then 𝑇 is a linear
transformation.

b. If v is a nonzero vector in𝑉, then there is exactly one lin-
ear transformation 𝑇∶ 𝑉 →𝑊 such that

𝑇(−v) = −𝑇(v)

c. There is exactly one linear transformation𝑇∶ 𝑉 →𝑊 for
which 𝑇(u+ v) = 𝑇(u− v) for all vectors u and v in𝑉.

d. If v0 is a nonzero vector in𝑉, then 𝑇(v) = v0 + v defines
a linear operator on𝑉.

e. The kernel of a linear transformation is a vector space.

f. The range of a linear transformation is a vector space.

g. If 𝑇∶ 𝑃6 →𝑀22 is a linear transformation, then the nul-
lity of 𝑇 is 3.

h. The function 𝑇∶𝑀22 → 𝑅 defined by 𝑇(𝐴) = det𝐴 is a
linear transformation.

i. The linear transformation 𝑇∶𝑀22 →𝑀22 defined by

𝑇(𝐴) = [1 3
2 6]𝐴

has rank 1.
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8.2 Compositions and Inverse
Transformations

In Section 1.9 we discussed compositions and inverses of matrix transformations. In this
section we will extend some of those ideas to general linear transformations.

One-to-One and Onto
To set the groundwork for our discussion in this section we will need the following defi-
nitions that are illustrated in Figure 8.2.1.

Definition 1

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation from a vector space 𝑉 to a vector space𝑊,
then 𝑇 is said to be one-to-one if 𝑇 maps distinct vectors in 𝑉 into distinct vectors
in𝑊.

Definition 2

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation from a vector space 𝑉 to a vector space𝑊,
then 𝑇 is said to be onto (or onto W) if every vector in𝑊 is the image of at least
one vector in 𝑉.

V W

Range
of T

V W

Range
of T

V WV W

One-to-one. Distinct
vectors in V have
distinct images in W.

Not one-to-one. There
exist distinct vectors in
V with the same image.

Onto W. Every vector in
W is the image of some
vector in V.

Not onto W. Not every
vector in W is the image
of some vector in V.

Not in Range of T

FIGURE 8.2.1

The idea of a one-to-one linear transformation can be expressed in other ways as well:

1. 𝑇∶ 𝑉→𝑊 is one-to-one if and only if for each vector w in the range of 𝑇, there is
exactly one vector v in 𝑉 such that 𝑇(v) =w.

2. 𝑇∶ 𝑉→𝑊 is one-to-one if and only if 𝑇(u) = 𝑇(v) implies that u = v.
Recall from Definition 2 of Section 8.1 that the kernel of a linear transformation con-

sists of all vectors that the transformation maps into 0. The following theorem links that
definition with the concept of a one-to-one linear transformation.
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Theorem 8.2.1

If 𝑇∶ 𝑉 → 𝑊 is a linear transformation, then the following two statements are
equivalent.

(a) 𝑇 is one-to-one.
(b) ker(𝑇) = {0}.

Proof (a)⇒ (b) Since 𝑇 is linear, we know that 𝑇(0) = 0 by Theorem 8.1.1(a). Since 𝑇 is
one-to-one, there can be no other vectors in 𝑉 that map into 0, so ker(𝑇) = {0}.

(b) ⇒ (a) Assume that ker(𝑇) = {0}. If u and v are distinct vectors in 𝑉, then
u − v ≠ 0. This implies that 𝑇(u − v) ≠ 0, for otherwise ker(𝑇) would contain a
nonzero vector. Since 𝑇 is linear, it follows that

𝑇(u) − 𝑇(v) = 𝑇(u − v) ≠ 0
so 𝑇 maps distinct vectors in 𝑉 into distinct vectors in𝑊 and hence is one-to-one.

EXAMPLE 1 | Rotation Operators on R2 Are
One-to-One and Onto

The linear operator𝑇∶𝑅2 → 𝑅2 that rotates each vector in the plane about the origin through
an angle 𝜃 is one-to-one because it maps distinct vectors into distinct vectors (Figure 8.2.2).
It is also onto because every vector in 𝑅2 is the image under this rotation of another vector
in 𝑅2 (which vector?).

y

x

v

u

T(u)

T(v)

θ

θ

FIGURE 8.2.2 Distinct vectors u
and v are rotated into distinct
vectors 𝑇(u) and 𝑇(v).

EXAMPLE 2 | Orthogonal Projections in R2 Are
Not One-to-One

The linear operator 𝑇∶𝑅2 → 𝑅2 that maps points orthogonally on to the x-axis in 𝑅2 maps
distinct points on a vertical line to the same point on the x-axis and hence is not one-to-one
(Figure 8.2.3). It is also not onto 𝑅2 because points off the x-axis are not images of any point
in 𝑅2 under such a projection. Similarly, orthogonal projections onto the y-axis are neither
one-to-one nor onto.

x

P

Q

M

y

FIGURE 8.2.3 The distinct
points 𝑃 and𝑄 are mapped into
the same point𝑀.

EXAMPLE 3 | Two Transformations That Are
One-to-One and Onto

The linear transformations 𝑇1 ∶ 𝑃3 → 𝑅4 and 𝑇2 ∶𝑀22 → 𝑅4 defined by

𝑇1(a+ bx+ cx2 + dx3) = (a, b, c, d)

𝑇2([
a b
c d]) = (a, b, c, d)

are both onto 𝑅4 because every vector in 𝑅4 can be obtained by choosing a, b, c, and d appro-
priately. Both transformations are one-to-one because their kernels contain only the zero
vector in their respective domains (verify).
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EXAMPLE 4 | A One-to-One Linear Transformation
That Is Not Onto

Let 𝑇∶ 𝑃n → 𝑃n+1 be the linear transformation

𝑇(p) = 𝑇(p(x)) = xp(x)
discussed in Example 5 of Section 8.1. If

p = p(x) = c0 + c1x+ ⋅ ⋅ ⋅ + cnxn and q = q(x) = d0 + d1x+ ⋅ ⋅ ⋅ + dnxn

are distinct polynomials, then they differ in at least one coefficient, and hence

𝑇(p) = c0x+ c1x2 + ⋅ ⋅ ⋅ + cnxn+1 and 𝑇(q) = d0x+ d1x2 + ⋅ ⋅ ⋅ + dnxn+1

also differ in at least one coefficient. Thus, 𝑇 is one-to-one, since it maps distinct polyno-
mials into distinct polynomials. However, it is not onto because all images under 𝑇 have
a zero constant term, and hence there is no polynomial in 𝑃n that maps into the constant
polynomial 1.

EXAMPLE 5 | Shifting Operators

Let 𝑉 = 𝑅∞ be the sequence space discussed in Example 3 of Section 4.1, and consider the
linear “shifting operators” on𝑉 defined by

𝑇1(u1,u2, . . . ,un, . . . ) = (0,u1,u2, . . . ,un, . . . )
𝑇2(u1,u2, . . . ,un, . . . ) = (u2,u3, . . . , un, . . . )

(a) Show that 𝑇1 is one-to-one but not onto.
(b) Show that 𝑇2 is onto but not one-to-one.

Solution (a) The operator 𝑇1 is one-to-one because distinct sequences in 𝑅∞ obviously
have distinct images. This operator is not onto because no vector in𝑅∞maps into the sequence
(1, 0, 0, . . . , 0, . . . ), for example.
Solution (b) The operator 𝑇2 is not one-to-one because, for example, the distinct vectors
(1, 0, 0, . . . , 0, . . . ) and (2, 0, 0, . . . , 0, . . . ) both map into (0, 0, 0, . . . , 0, . . . ). This operator
is onto because every possible sequence of real numbers can be obtained with an appropriate
choice of the numbers u2,u3, . . . , un, . . . .

CALCULUS REQUIREDEXAMPLE 6 | Differentiation Is Not One-to-One

Let
𝐷∶ 𝐶1(−∞, ∞) → 𝐹(−∞, ∞)

be the differentiation transformation discussed in Example 11 of Section 8.1. This linear
transformation is not one-to-one because it maps functions that differ by a constant into
the same function. For example,

𝐷(x2) = 𝐷(x2 + 1) = 2x
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In the special case where 𝑉 and𝑊 are finite-dimensional and have the same dimen-
sion, we can add a third statement to those in Theorem 8.2.1.

Theorem 8.2.2

If 𝑉 and𝑊 are finite-dimensional vector spaces with the same dimension, and if
𝑇∶ 𝑉→𝑊 is a linear transformation, then the following statements are equivalent.

(a) 𝑇 is one-to-one.
(b) ker(𝑇) = {0}.
(c) 𝑇 is onto [i.e., 𝑅(𝑇) = 𝑊].Why does Example 5 not

violate Theorem 8.2.2?

Proof We already know that (a) and (b) are equivalent by Theorem 8.2.1, so it suffices
to show that (b) and (c) are equivalent. We leave it for you to do this by assuming that
dim(𝑉) = n and applying Theorem 8.1.4.

The requirement in Theorem 8.2.2 that𝑉 and𝑊 have the same dimension is essential
for the validity of the theorem. In the exercises wewill ask you to prove the following facts
for the case where they do not have the same dimension.

• If dim(𝑊) < dim(𝑉), then 𝑇 cannot be one-to-one.
• If dim(𝑉) < dim(𝑊), then 𝑇 cannot be onto.

Stated informally, if a linear transformation maps a “bigger” space to a “smaller” space,
then some points in the “bigger” space must have the same image; and if a linear trans-
formation maps a “smaller” space to a “bigger” space, then there must be points in the
“bigger” space that are not images of any points in the “smaller” space.

In retrospect, had Theorem 8.2.2 been available prior to Example 3, it would have
sufficed to show that the transformations were either one-to-one or onto since 𝑃3 and𝑀22
have the same dimension as 𝑅4 (dimension 4).

Matrix Transformations Revisited
Let us return for the moment to matrix transformations and consider an example that
illustrates the two results about dimension that followed Theorem 8.2.2.

EXAMPLE 7 | Matrix Transformations from Rn to Rm

If 𝑇𝐴 ∶𝑅n → 𝑅m is multiplication by anm × nmatrix𝐴, then it follows from the discussion
immediately following the proof of Theorem 8.2.2 that 𝑇𝐴 is not one-to-one if m < n and
not onto if n < m. In the case wherem = n, whether or not𝑇𝐴 is one-to-one or onto depends
on the rank of the matrix 𝐴. However, in the exercises we will ask you to show that if 𝐴 is
invertible, then 𝑇𝐴 will be both one-to-one and onto.

The following theorem illustrates that it is the column vectors of amatrix𝐴 that deter-
mine whether the matrix transformation 𝑇𝐴 ∶𝑅n→𝑅m is one-to-one or onto.
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Theorem 8.2.3

If 𝑇𝐴 ∶𝑅n → 𝑅m is a matrix transformation, then

(a) 𝑇𝐴 is one-to-one if and only if the columns of 𝐴 are linearly independent.
(b) 𝑇𝐴 is onto if and only if the columns of 𝐴 span 𝑅m.

Proof (a) It follows from Theorem 8.2.1 that 𝑇𝐴 is one-to-one if and only if𝐴 has nullity
0, which is equivalent to saying that 𝐴 has rank m (Theorem 4.9.2), which is equivalent
to saying that them column vectors of 𝐴 are linearly independent.

Proof (b) To say that 𝑇𝐴 is onto is equivalent to saying that the system 𝐴x = b has a
solution for every vector b in 𝑅m. But this is so if and only if every vector b in 𝑅m is in
the column space of 𝐴 (Theorem 4.8.1), which is so if and only if the columns of 𝐴 span
𝑅m.

We leave it as an exercise to show that parts (t), (u), and (𝑣) below can be added to
Equivalence Theorem 8.2.4 in the case where 𝑇𝐴 ∶𝑅n → 𝑅n is a linear operator.

Theorem 8.2.4

Equivalent Statements
If𝐴 is ann × nmatrix inwhich there are noduplicate rows andnoduplicate columns,
then the following statements are equivalent.

(a) 𝐴 is invertible.
(b) 𝐴x = 0 has only the trivial solution.
(c) The reduced row echelon form of 𝐴 is 𝐼n.
(d) 𝐴 is expressible as a product of elementary matrices.
(e) 𝐴x = b is consistent for every n × 1 matrix b.
(𝑓) 𝐴x = b has exactly one solution for every n × 1 matrix b.
(g) det(𝐴) ≠ 0.
(h) The column vectors of 𝐴 are linearly independent.
(i) The row vectors of 𝐴 are linearly independent.
( j) The column vectors of 𝐴 span 𝑅n.
(k) The row vectors of 𝐴 span 𝑅n.
(l) The column vectors of 𝐴 form a basis for 𝑅n.
(m) The row vectors of 𝐴 form a basis for 𝑅n.
(n) 𝐴 has rank n.
(o) 𝐴 has nullity 0.
(p) The orthogonal complement of the null space of 𝐴 is 𝑅n.
(q) The orthogonal complement of the row space of 𝐴 is {0}.
(r) 𝜆 = 0 is not an eigenvalue of 𝐴.
(s) 𝐴𝑇𝐴 is invertible.
(t) The kernel of 𝑇𝐴 is {0}.
(u) The range of 𝑇𝐴 is 𝑅n.
(𝑣) 𝑇𝐴 is one-to-one.
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The key to solving a mathematical problem is often adopting the right point of view;
and this is why, in linear algebra, we develop different ways of thinking about the same
vector space. For example, if𝐴 is anm × nmatrix, here are threeways of viewing the same
subspace of 𝑅n:

• Matrix view: the null space of 𝐴
• System view: the solution space of 𝐴x = 0
• Transformation view: the kernel of 𝑇𝐴

and here are three ways of viewing the same subspace of 𝑅m:

• Matrix view: the column space of 𝐴
• System view: all b in 𝑅m for which 𝐴x = b is consistent
• Transformation view: the range of 𝑇𝐴

Inverse Linear Transformations
In Section 1.9 we introduced the concept of an invertible matrix operator, and in this sub-
section we will extend that idea to general linear transformations. By way of review, recall
that a matrix operator 𝑇𝐴 ∶𝑅n → 𝑅n is invertible if and only if the matrix 𝐴 is invertible,
in which case the inverse of that operator is 𝑇𝐴−1 ∶𝑅n → 𝑅n. In words, the inverse of mul-
tiplication by A is multiplication by A−1.

EXAMPLE 8 | A One-to-One Matrix Transformation

Let 𝑇∶𝑅3 → 𝑅3 be the linear operator defined by the formula

𝑇(x1, x2, x3) = (3x1 + x2,−2x1 − 4x2 + 3x3, 5x1 + 4x2 − 2x3)
Determine whether 𝑇 is one-to-one; if so, find 𝑇−1(x1, x2, x3).
Solution The stated formula defines a matrix transformation whose standard matrix by
Formula (15) of Section 1.8 is

𝐴 = [
3 1 0

−2 −4 3
5 4 −2

]

(verify). This matrix is invertible and its inverse is

𝐴−1 = [
4 −2 −3

−11 6 9
−12 7 10

]

Thus, the transformation 𝑇 is invertible and

𝑇−1([
x1
x2
x3
]) = 𝐴−1 [

x1
x2
x3
] = [

4 −2 −3
−11 6 9
−12 7 10

][
x1
x2
x3
] =

⎡
⎢
⎢
⎣

4x1 − 2x2 − 3x3
−11x1 + 6x2 + 9x3
−12x1 + 7x2 + 10x3

⎤
⎥
⎥
⎦

Expressing this result in comma delimited notation yields

𝑇−1(x1, x2, x3) = (4x1 − 2x2 − 3x3,−11x1 + 6x2 + 9x3,−12x1 + 7x2 + 10x3)
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Now let us turn our attention to the invertibility of general linear transformations. If
𝑇∶ 𝑉→𝑊 is a one-to-one linear transformation with range 𝑅(𝑇), and if w is any vector
in 𝑅(𝑇), then the fact that 𝑇 is one-to-one means that there is exactly one vector v in 𝑉
for which 𝑇(v) = w. This fact allows us to define a new function, called the inverse of
𝑻 (and denoted by 𝑇−1), that is defined on the range of 𝑇 and that maps w back into v
(Figure 8.2.4).

V R(T)

v w = T(v)

T

T –1

FIGURE 8.2.4 The inverse of 𝑇 maps 𝑇(v)
back into v.

In the exercises we will ask you to prove that 𝑇−1 ∶ 𝑅(𝑇) → 𝑉 is a linear transforma-
tion. Moreover, it follows from the definition of 𝑇−1 that

𝑇−1(𝑇(v)) = 𝑇−1(w) = v (1)

𝑇(𝑇−1(w)) = 𝑇(v) = w (2)

so that 𝑇 and 𝑇−1, when applied in succession in either order, cancel the effect of each
other.

EXAMPLE 9 | An Inverse Transformation

We showed in Example 4 of this section that the linear transformation𝑇∶ 𝑃n→𝑃n+1 given by

𝑇(p) = 𝑇(p(x)) = xp(x)
is one-to-one but not onto. The fact that it is not onto can be seen explicitly from the formula

𝑇(c0 + c1x+ ⋅ ⋅ ⋅ + cnxn) = c0x+ c1x2 + ⋅ ⋅ ⋅ + cnxn+1 (3)

The fact that 𝑇 is not onto does not preclude the existence of an inverse, since the inverse is
defined on the range of 𝑇. It is evident from (3) the range in this case consists of all polyno-
mials of degree n+ 1 or less that have a zero constant term and that the inverse is given by
the formula

𝑇−1(c0x+ c1x2 + ⋅ ⋅ ⋅ + cnxn+1) = c0 + c1x+ ⋅ ⋅ ⋅ + cnxn

For example, in the case where n ≥ 3,

𝑇−1(2x− x2 + 5x3 + 3x4) = 2− x+ 5x2 + 3x3

Composition of Linear Transformations
The following definition extends Formula (1) of Section 1.9 to general linear transfor-

Note that the word “with”
establishes the order of the
operations in a composition.
The composition of 𝑇2 with
𝑇1 is

(𝑇2 ∘ 𝑇1)(u) = 𝑇2(𝑇1(u))
whereas the composition of
𝑇1 with 𝑇2 is

(𝑇1 ∘ 𝑇2)(u) = 𝑇1(𝑇2(u))

It is not true, in general, that
𝑇1 ∘ 𝑇2 = 𝑇2 ∘ 𝑇1.

mations.

Definition 3

If 𝑇1 ∶ 𝑈 → 𝑉 and 𝑇2 ∶ 𝑉 → 𝑊 are linear transformations, then the composition
of 𝑇2 with 𝑇1, denoted by 𝑇2 ∘ 𝑇1 (and which is read “𝑇2 circle 𝑇1”), is the
function defined by the formula

(𝑇2 ∘ 𝑇1)(u) = 𝑇 2(𝑇1(u)) (4)

where u is a vector in 𝑈.
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Remark Observe that this definition requires that the domain of 𝑇2 (which is 𝑉)
contain the range of 𝑇1. This is essential for the formula 𝑇2(𝑇1(u)) to make sense
(Figure 8.2.5).

U V W

u T2(T1(u))T1(u)

T1 T2

T2 ° T1

FIGURE 8.2.5 The composition of 𝑇2 with 𝑇1.

Our next theorem shows that the composition of two linear transformations is itself
a linear transformation.

Theorem 8.2.5

If 𝑇1 ∶ 𝑈 → 𝑉 and 𝑇2 ∶ 𝑉 → 𝑊 are linear transformations, then (𝑇2 ∘ 𝑇1)∶ 𝑈 → 𝑊
is also a linear transformation.

Proof Ifu and v are vectors in𝑈 and c is a scalar, then it follows from (4) and the linearity
of 𝑇 1 and 𝑇 2 that

(𝑇2 ∘ 𝑇1)(u + v) = 𝑇2(𝑇1(u + v)) = 𝑇2(𝑇1(u) + 𝑇1(v))
= 𝑇2(𝑇1(u)) + 𝑇2(𝑇1(v))
= (𝑇2 ∘ 𝑇 1)(u) + (𝑇2 ∘ 𝑇1)(v)

and
(𝑇2 ∘ 𝑇1)(cu) = 𝑇2(𝑇1(cu)) = 𝑇2(c𝑇1(u))

= c𝑇2(𝑇1(u)) = c(𝑇2 ∘ 𝑇1)(u)
Thus, 𝑇2 ∘ 𝑇1 satisfies the two requirements of a linear transformation.

EXAMPLE 10 | Composition of Linear Transformations

Let 𝑇1 ∶ 𝑃1 → 𝑃2 and 𝑇2 ∶ 𝑃2 → 𝑃2 be the linear transformations given by the formulas

𝑇1(p(x)) = xp(x) and 𝑇2(p(x)) = p(2x+ 4)
Then the composition (𝑇2 ∘ 𝑇1)∶ 𝑃1 → 𝑃2 is given by the formula

(𝑇2 ∘ 𝑇1)(p(x)) = 𝑇2(𝑇1(p(x))) = 𝑇2(xp(x)) = (2x+ 4)p(2x+ 4)
In particular, if p(x) = c0 + c1x, then

(𝑇2 ∘ 𝑇1)(p(x)) = (𝑇2 ∘ 𝑇1)(c0 + c1x) = (2x+ 4)(c0 + c1(2x+ 4))
= c0(2x+ 4) + c1(2x+ 4)2
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EXAMPLE 11 | Composition with the Identity Operator

If 𝑇∶ 𝑉 → 𝑉 is any linear operator, and if 𝐼 ∶ 𝑉 → 𝑉 is the identity operator (Example 3 of
Section 8.1), then for all vectors v in𝑉, we have

(𝑇 ∘ 𝐼)(v) = 𝑇(𝐼(v)) = 𝑇(v)
(𝐼 ∘ 𝑇)(v) = 𝐼(𝑇(v)) = 𝑇(v)

It follows that 𝑇 ∘ 𝐼 and 𝐼 ∘ 𝑇 are the same as 𝑇; that is,

𝑇 ∘ 𝐼 = 𝑇 and 𝐼 ∘ 𝑇 = 𝑇 (5)

As illustrated in Figure 8.2.6, compositions can be defined for more than two linear
transformations. For example, if

𝑇 1 ∶ 𝑈 → 𝑉, 𝑇 2 ∶ 𝑉 → 𝑊, and 𝑇 3 ∶ 𝑊 → 𝑌
are linear transformations, then the composition 𝑇 3 ∘ 𝑇 2 ∘ 𝑇 1 is defined by

(𝑇 3 ∘ 𝑇 2 ∘ 𝑇 1)(u) = 𝑇 3(𝑇 2(𝑇 1(u))) (6)

U V W

u T2(T1(u))T1(u)

T1

Y

T3T2

(T3 ° T2 ° T1)(u)

T3(T2(T1(u)))

FIGURE 8.2.6 The composition of three linear transformations.

Composition of One-to-One Linear Transformations
Our next theorem shows that the composition of one-to-one linear transformations is one-
to-one and that the inverse of a composition is the composition of the inverses in the
reverse order.

Theorem 8.2.6

If 𝑇 1 ∶ 𝑈 → 𝑉 and 𝑇 2 ∶ 𝑉 → 𝑊 are one-to-one linear transformations, then:
(a) 𝑇 2 ∘ 𝑇 1 is one-to-one.
(b) (𝑇 2 ∘ 𝑇 1)−1 = 𝑇−11 ∘ 𝑇−12 .

Note the order of the sub-
scripts on the two sides of
the formula in part (b) of
Theorem 8.2.5.

Proof (a) We want to show that 𝑇 2 ∘ 𝑇 1 maps distinct vectors in 𝑈 into distinct vectors
in𝑊. But if u and v are distinct vectors in𝑈, then 𝑇 1(u) and 𝑇 1(v) are distinct vectors in
𝑉 since 𝑇 1 is one-to-one. This and the fact that 𝑇 2 is one-to-one imply that

𝑇 2(𝑇 1(u)) and 𝑇 2(𝑇 1(v))
are also distinct vectors. But these expressions can also be written as

(𝑇 2 ∘ 𝑇 1)(u) and (𝑇 2 ∘ 𝑇 1)(v)
so 𝑇 2 ∘ 𝑇 1 maps u and v into distinct vectors in𝑊.
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Proof (b) We want to show that

(𝑇 2 ∘ 𝑇 1)−1(w) = (𝑇−11 ∘ 𝑇−12 )(w)
for every vectorw in the range of 𝑇 2 ∘ 𝑇 1. For this purpose, let

u = (𝑇 2 ∘ 𝑇 1)−1(w) (7)

so our goal is to show that
u = (𝑇−11 ∘ 𝑇−12 )(w)

But it follows from (7) that
(𝑇 2 ∘ 𝑇 1)(u) = w

or, equivalently,
𝑇 2(𝑇 1(u)) = w

Now, taking 𝑇−12 of each side of this equation, then taking 𝑇−11 of each side of the result,
and then using (1) yields (verify)

u = 𝑇−11 (𝑇−12 (w))
or, equivalently,

u = (𝑇−11 ∘ 𝑇−12 )(w)

In words, part (b) of Theorem 8.2.5 states that the inverse of a composition is the com-
position of the inverses in the reverse order. This result can be extended to compositions of
three or more linear transformations; for example,

(𝑇 3 ∘ 𝑇 2 ∘ 𝑇 1)−1 = 𝑇−11 ∘ 𝑇−12 ∘ 𝑇−13 (8)

Part (b) of Theorem 8.2.5 and Formula (8) apply to general linear transformations. In
the special case where they are matrix transformations they can be written as

(𝑇𝐵 ∘ 𝑇𝐴)−1 = 𝑇−1
𝐴 ∘ 𝑇−1

𝐵 and (𝑇𝐶 ∘ 𝑇𝐵 ∘ 𝑇𝐴)−1 = 𝑇−1
𝐴 ∘ 𝑇−1

𝐵 ∘ 𝑇−1𝐶

or equivalently as

(𝑇𝐵𝐴)−1 = 𝑇𝐴−1𝐵−1 and (𝑇𝐶𝐵𝐴)−1 = 𝑇𝐴−1𝐵−1𝐶−1 (9)

Exercise Set 8.2

In Exercises 1–2, determine whether the stated matrix operator is
one-to-one.

1. a. The orthogonal projection onto the x-axis in 𝑅2.

b. The reflection about the y-axis in 𝑅2.

c. The reflection about the line y = x in 𝑅2.

2. a. A rotation about the z-axis in 𝑅3.

b. A reflection about the xy-plane in 𝑅3.

c. An orthogonal projection onto the xz-plane in 𝑅3.

In Exercises 3–4, determine whether the linear transformation
is one-to-one by finding its kernel and then applying Theorem
8.2.1.

3. a. 𝑇∶𝑅2 → 𝑅2, where 𝑇(x, y) = (y, x)
b. 𝑇∶𝑅2 → 𝑅3, where 𝑇(x, y) = (x, y, x+ y)
c. 𝑇∶𝑅3 → 𝑅2, where 𝑇(x, y, z) = (x+ y+ z, x− y− z)

4. a. 𝑇∶𝑅2 → 𝑅3, where 𝑇(x, y) = (x− y, y− x, 2x− 2y)
b. 𝑇∶𝑅2 → 𝑅2, where 𝑇(x, y) = (0, 2x+ 3y)
c. 𝑇∶𝑅2 → 𝑅2, where 𝑇(x, y) = (x+ y, x− y)

In Exercises 5–6, determine whether multiplication by 𝐴 is one-to-
one by computing the nullity of𝐴 and then applying Theorem 8.2.1.

5. a. 𝐴 = [
1 −2
2 −4

−3 6
]

b. 𝐴 = [
1 3 1 7
2 7 2 4

−1 −3 0 0
]

6. a. 𝐴 =
⎡
⎢
⎢
⎣

1 2
2 7
3 9

⎤
⎥
⎥
⎦

b. 𝐴 =
⎡
⎢
⎢
⎣

1 −3 6 1
0 1 2 4
0 0 0 1

⎤
⎥
⎥
⎦
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7. Use the given information to determine whether the linear
transformation is one-to-one.

a. 𝑇∶ 𝑉→𝑊; nullity(𝑇) = 0

b. 𝑇∶ 𝑉→𝑊; rank(𝑇) = dim(𝑉)
c. 𝑇∶ 𝑉→𝑊; dim(𝑊) < dim(𝑉)

8. Use the given information to determine whether the linear
operator is one-to-one, onto, both, or neither.

a. 𝑇∶ 𝑉→𝑉; nullity(𝑇) = 0

b. 𝑇∶ 𝑉→𝑉; rank(𝑇) < dim(𝑉)
c. 𝑇∶ 𝑉→𝑉; 𝑅(𝑇) = 𝑉

9. Show that the linear transformation 𝑇∶ 𝑃2→𝑅2 defined
by 𝑇(p(x)) = (p(−1), p(1)) is not one-to-one by finding a
nonzero polynomial that maps into 𝟎 = (0, 0). Do you think
that this transformation is onto?

10. Show that the linear transformation 𝑇∶ 𝑃2→𝑃2 defined by
𝑇(p(x)) = p(x+ 1) is one-to-one. Do you think that this
transformation is onto?

11. Let a be a fixed vector in 𝑅3. Does the formula 𝑇(v) = a × v
define a one-to-one linear operator on 𝑅3? Explain your rea-
soning.

12. Let 𝐸 be a fixed 2 × 2 elementary matrix. Does the formula
𝑇(𝐴) = 𝐸𝐴 define a one-to-one linear operator on 𝑀22?
Explain your reasoning.

InExercises 13–14, use Theorem8.2.3 to determinewhethermultipli-
cation by𝐴 is one-to-one, onto, both, or neither. Justify your answer.

13. a. 𝐴 = [
1 2
2 4
3 5

] b. 𝐴 = [
1 3 1 1
1 3 1 0
1 4 0 0

]

c. 𝐴 = [5 4
1 1] d. 𝐴 = [

−2 1 0
6 −3 1
8 −4 3

]

14. a. 𝐴 = [
9 −3

−4 2
1 1

] b. 𝐴 = [
3 −3 1 1
6 −6 0 2
9 −9 1 3

]

c. 𝐴 = [ 3 −9
−1 3] d. 𝐴 = [

2 3 8
0 1 4
0 0 1

]

In Exercises 15–16, describe in words the inverse of the given one-to-
one operator.
15. a. The reflection about the x-axis on 𝑅2.

b. The rotation about the origin through an angle of 𝜋/4
on 𝑅2.

16. a. The reflection about the yz-plane in 𝑅3.

b. The rotation through an angle of −18∘ about the z-axis in
𝑅3.

In Exercises 17–18, use matrix inversion to confirm the stated result
in 𝑅2.
17. a. The inverse transformation for a reflection about y = x is a

reflection about y = x.

b. The inverse transformation for a rotation about the origin
is a rotation about the origin.

18. a. The inverse transformation for a reflections about a coordi-
nate axis is a reflection about that axis.

b. The inverse transformation for a reflection about the origin
is a reflection about the origin.

19. Let 𝑇∶𝑃1 → 𝑅2 be the function defined by the formula

𝑇(p(x)) = (p(0), p(1))
a. Find 𝑇(1− 2x).
b. Show that 𝑇 is a linear transformation.

c. Show that 𝑇 is one-to-one.

d. Find 𝑇−1(2, 3), and sketch its graph.

20. In each part, determine whether 𝑇∶𝑅n → 𝑅n is one-to-one; if
so, find 𝑇−1(x1, x2, . . . , xn).
a. 𝑇(x1, x2, . . . , xn) = (0, x1, x2, . . . , xn−1)
b. 𝑇(x1, x2, . . . , xn) = (xn, xn−1, . . . , x2, x1)
c. 𝑇(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1)

21. Let𝑇∶𝑅n → 𝑅n be the linear operator defined by the formula

𝑇(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn)
where a1, . . . , an are constants.
a. Under what conditions will 𝑇 have an inverse?

b. Assuming that the conditions determined in part (a) are
satisfied, find a formula for 𝑇−1(x1, x2, . . . , xn).

22. Let 𝑇𝐴 ∶𝑅4 → 𝑅2 be multiplication by the matrix

𝐴 = [1 0 2 5
3 4 1 3]

Find parametric equations for the set of vectors that map into
the vector (1, 1), if any.

In Exercises 23–24, compute (𝑇2 ∘ 𝑇1)(x, y).
23. 𝑇1(x, y) = (2x, 3y), 𝑇2(x, y) = (x− y, x+ y)

24. 𝑇1(x, y) = (2x,−3y, x+ y), 𝑇2(x, y, z) = (x− y, y+ z)

25. Suppose that the linear transformations 𝑇1 ∶ 𝑃2 → 𝑃2 and
𝑇2 ∶ 𝑃2 → 𝑃3 are given by the formulas 𝑇1(p(x)) = p(x+ 1)
and 𝑇2(p(x)) = xp(x). Find (𝑇2 ∘ 𝑇1)(a0 + a1x+ a2x2).

26. Let 𝑇1 ∶ 𝑃n → 𝑃n and 𝑇2 ∶ 𝑃n → 𝑃n be the linear operators
given by 𝑇1(p(x)) = p(x− 1) and 𝑇2(p(x)) = p(x+ 1). Find
(𝑇1 ∘ 𝑇2)(p(x)) and (𝑇2 ∘ 𝑇1)(p(x)).

27. Let 𝑇1 ∶𝑀22 → 𝑅 and 𝑇2 ∶ 𝑀22 →𝑀22 be the linear transfor-
mations given by 𝑇1(𝐴) = tr(𝐴) and 𝑇2(𝐴) = 𝐴𝑇.

a. Find (𝑇1 ∘ 𝑇2)(𝐴), where𝐴 = [a b
c d].

b. Can you find (𝑇2 ∘ 𝑇1)(𝐴)? Explain.

28. Rework Exercise 27 if 𝑇1 ∶ 𝑀22→𝑀22 and 𝑇2 ∶ 𝑀22→𝑀22
are the linear transformations,𝑇1(𝐴) = k𝐴 and𝑇2(𝐴) = 𝐴𝑇,
where k is a scalar.

In Exercises 29–30, compute (𝑇3 ∘ 𝑇2 ∘ 𝑇1)(x, y).
29. 𝑇1(x, y) = (−2y, 3x, x− 2y), 𝑇2(x, y, z) = (y, z, x),

𝑇3(x, y, z) = (x+ z, y− z)



November 13, 2018 09:20 C08 Sheet number 25 Page number 470 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

470 CHAPTER 8 General Linear Transformations

30. 𝑇1(x, y) = (x+ y, y,−x), 𝑇2(x, y, z) = (0, x+ y+ z, 3y),
𝑇3(x, y, z) = (3x+ 2y, 4z− x− 3y)

31. Let 𝑇1 ∶ 𝑃2 → 𝑃3 and 𝑇2 ∶ 𝑃3 → 𝑃3 be the linear transforma-
tions given by the formulas

𝑇1 (p(x)) = xp(x) and 𝑇2 (p(x)) = p(x+ 1)
a. Find formulas for

𝑇−1
1 (p(x)) , 𝑇−1

2 (p(x))
and

(𝑇−1
1 ∘ 𝑇−1

2 ) (p(x))
b. Verify that (𝑇2 ∘ 𝑇1)−1 = 𝑇−1

1 ∘ 𝑇−1
2 .

32. Let 𝑇1 ∶𝑅2 → 𝑅2 and 𝑇2 ∶𝑅2 → 𝑅2 be the linear operators
given by the formulas

𝑇1(x, y) = (x+ y, x− y) and 𝑇2(x, y) = (2x+ y, x− 2y)
a. Show that 𝑇1 and 𝑇2 are one-to-one.

b. Find formulas for
𝑇−1
1 (x, y), 𝑇−1

2 (x, y), (𝑇2 ∘ 𝑇1)−1(x, y)
c. Verify that (𝑇2 ∘ 𝑇1)−1 = 𝑇−1

1 ∘ 𝑇−1
2 .

33. Let 𝑇1 ∶ 𝑉 → 𝑉 be the linear operator given by 𝑇1(v) = 4v.
Find a linear operator 𝑇2 ∶ 𝑉 → 𝑉 such that 𝑇1 ∘ 𝑇2 = 𝐼 and
𝑇2 ∘ 𝑇1 = 𝐼.

34. Let 𝑇1 ∶ 𝑀22→𝑃1 and 𝑇2 ∶ 𝑃1→𝑅3 be the linear transforma-
tions given by

𝑇1([
a b
c d]) = (a+ b) + (c+ d)x

and 𝑇2(a+ bx) = (a, b, a).

a. Find the formula for 𝑇2 ∘ 𝑇1.

b. Show that𝑇2 ∘ 𝑇1 is not one-to-one by finding distinct 2 × 2
matrices𝐴 and 𝐵 such that

(𝑇2 ∘ 𝑇1)(𝐴) = (𝑇2 ∘ 𝑇1)(𝐵)
c. Show that 𝑇2 ∘ 𝑇1 is not onto by finding a vector (a, b, c) in

𝑅3 that is not in the range of 𝑇2 ∘ 𝑇1.

35. Let 𝑇∶𝑅3 → 𝑅3 be the orthogonal projection of 𝑅3 onto the
xy-plane. Show that 𝑇 ∘ 𝑇 = 𝑇.

36. (Calculus required) Let 𝑉 be the vector space 𝐶1[0, 1] and
let 𝑇∶𝑉 → 𝑅 be defined by

𝑇(f) = 𝑓(0) + 2𝑓′(0) + 3𝑓′(1)
Verify that𝑇 is a linear transformation. Determine whether𝑇
is one-to-one, and justify your conclusion.

37. (Calculus required) The Fundamental Theorem of Calcu-
lus implies that integration and differentiation reverse the
actions of each other. Define a transformation𝐷∶ 𝑃n → 𝑃n−1
by𝐷(p(x)) = p′(x), and define 𝐽 ∶ 𝑃n−1 → 𝑃n by

𝐽(p(x)) = ∫
x

0
p(t) dt

a. Show that𝐷 and 𝐽 are linear transformations.
b. Explain why 𝐽 is not the inverse transformation of𝐷.
c. Can the domains and/or codomains of𝐷 and 𝐽 be restricted

so they are inverse linear transformations?

38. (Calculus required) Let

𝐷( f ) = 𝑓′(x) and 𝐽( f) = ∫
x

0
𝑓(t) dt

be the linear transformations in Examples 11 and 12 of Sec-
tion 8.1. Find (𝐽 ∘ 𝐷)( f ) for

a. f(x) = x2 + 3x+ 2. b. f(x) = sin x.

39. (Calculus required) Let 𝐽 ∶ 𝑃1→𝑅 be the integration trans-
formation 𝐽(p) = ∫1

−1 p(x)dx. Determine whether 𝐽 is one-to-
one. Justify your answer.

40. (Calculus required) Let 𝐷∶ 𝑃n→𝑃n−1 be the differentia-
tion transformation 𝐷(p(x)) = p′(x). Determine whether 𝐷
is onto, and justify your answer.

41. Let 𝐴 be an n × n matrix such that det(𝐴) = 0, and let
𝑇∶𝑅n → 𝑅n be multiplication by𝐴.
a. What can you say about the range of thematrix operator𝑇?

Give an example that illustrates your conclusion.

b. What can you say about the number of vectors that𝑇 maps
into 0?

42. Answer the questions in Exercise 41 in the case where
det(𝐴) ≠ 0.

43. a. Is a composition of one-to-onematrix transformations one-
to-one? Justify your conclusion.

b. Can the composition of a one-to-onematrix transformation
and a matrix transformation that is not one-to-one be one-
to-one? Account for both possible orders of composition
and justify your conclusion.

Working with Proofs
44. Prove: If there exists an onto linear transformation𝑇 ∶ 𝑉→𝑊

then dim(𝑉) ≥ dim(𝑊).

45. Prove: If 𝑇∶𝑉 →𝑊 is a one-to-one linear transformation,
then 𝑇−1 ∶𝑅(𝑇) → 𝑉 is a one-to-one linear transformation.

46. Use the definition of 𝑇3 ∘ 𝑇2 ∘ 𝑇1 given by Formula (6) to
prove that

a. 𝑇3 ∘ 𝑇2 ∘ 𝑇1 is a linear transformation.

b. 𝑇3 ∘ 𝑇2 ∘ 𝑇1 = (𝑇3 ∘ 𝑇2) ∘ 𝑇1.

c. 𝑇3 ∘ 𝑇2 ∘ 𝑇1 = 𝑇3 ∘ (𝑇2 ∘ 𝑇1).

47. Let𝑉 and𝑊 be finite-dimensional vector space and let
𝑇 :𝑉→𝑊 be a linear transformation. Prove:

a. If dim(𝑉) > dim(𝑊), then 𝑇 cannot be one-to-one.

b. If dim(𝑉) < dim(𝑊), then 𝑇 cannot be onto.

48. Add parts (t), (u), and (𝑣) to Equivalence Theorem 8.2.4 by
proving that each of those statements is equivalent to the
invertibility of𝐴.

True-False Exercises
TF. In parts (a)–(j) determine whether the statement is true or

false, and justify your answer.
a. 𝑇∶ 𝑉→𝑊 is one-to-one if and only if 𝑇(u) ≠ 𝑇(v)

whenever u ≠ v.
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b. 𝑇∶ 𝑉→𝑊 is one-to-one if and only if for each vector w
in the range of 𝑇 there is exactly one vector v in 𝑉 such
that 𝑇(v) = w.

c. The inverse of a one-to-one linear transformation is a lin-
ear transformation.

d. If a linear transformation 𝑇 has an inverse, then the ker-
nel of 𝑇 is the zero subspace.

e. If 𝑇∶𝑅2 → 𝑅2 is the orthogonal projection onto the x-
axis, then 𝑇−1 ∶𝑅2 → 𝑅2 maps each point on the x-axis
onto a line that is perpendicular to the x-axis.

f. If 𝑇1 ∶ 𝑈 → 𝑉 and 𝑇2 ∶ 𝑉 →𝑊 are linear transforma-
tions, and if 𝑇1 is not one-to-one, then neither is 𝑇2 ∘ 𝑇1.

g. If𝐴 is an n × nmatrix and if the linear system𝐴x = 0 has
a nontrivial solution, then the range of the matrix opera-
tor is not 𝑅n.

h. If 𝑇𝐴 and 𝑇𝐵 are matrix operators on 𝑅n, then
𝑇𝐴(𝑇𝐵(x)) = 𝑇𝐵(𝑇𝐴(x)) for every vector x in 𝑅n.

i. The kernel of a matrix transformation𝑇𝐴 ∶𝑅n→𝑅m is the
same as the null space of𝐴.

j. If there is a nonzero vector in the kernel of the matrix
operator 𝑇𝐴 ∶𝑅n→𝑅n, then this operator is not one-to-
one.

Working with Technology
T1. Consider the matrix transformation 𝑇𝐴 ∶𝑅3 → 𝑅4, where

𝐴 =
⎡⎢⎢⎢⎢
⎣

.23 −.02 .67
1.12 .10 .44
−.03 .11 .12
.09 −.68 .83

⎤⎥⎥⎥⎥
⎦

Use Theorem 8.2.3 to determine whether 𝑇𝐴 is one-to-one.

T2. Consider the matrix transformation 𝑇𝐵 ∶𝑅4→𝑅3, where

𝐵 =
⎡
⎢
⎢
⎣

.52 .42 .91 −.05
−.01 1.11 .37 .78
.21 .73 −.32 .24

⎤
⎥
⎥
⎦

Use Theorem 8.2.3 to determine whether 𝑇𝐵 is onto.

8.3 Isomorphism
In this sectionwewill establish a fundamental connection between real finite-dimensional
vector spaces and the Euclidean space 𝑅n. This connection is not only important theoret-
ically, but it has practical applications in that is allows us to perform vector computations
in certain general vector spaces by working with the vectors in 𝑅n.

Isomorphism
Although many of the theorems in this text have been concerned exclusively with the
vector space 𝑅n, this is not as limiting as it might seem. We will show that the vector
space 𝑅n is the “mother” of all real n-dimensional vector spaces in the sense that every
n-dimensional vector space must have the same algebraic structure as 𝑅n even though its
vectors may not be expressed as n-tuples. To explain what we mean by this, we will need
the following definition.

Definition 1

A linear transformation 𝑇∶𝑉→𝑊 that is both one-to-one and onto is said to be an
isomorphism, and𝑊 is said to be isomorphic to 𝑉.

In the exercises we will ask you to show that if 𝑇∶𝑉→𝑊 is an isomorphism, then
𝑇−1 ∶𝑊→𝑉 is also an isomorphism. Accordingly, we will usually say simply that V and
W are isomorphic and that T is an isomorphism between V andW.

The word isomorphic is derived from the Greek words iso, meaning “identical,” and
morphe,meaning “form.”This terminology is appropriate because, aswewill nowexplain,
isomorphic vector spaces have the same “algebraic form,” even though theymay consist of
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different kinds of objects. For example, the following diagram illustrates an isomorphism
between 𝑃2 and 𝑅3

c0 + c1x + c2x2
𝑇−−−−−−−−→←−−−−−−−−
𝑇−1 (c0, c1, c2)

Although the vectors on the two sides of the arrows are different kinds of objects, the
vector operations on each side mirror those on the other side. For example, for scalar
multiplication we have

k(c0 + c1x + c2x2)
𝑇−−−−−−−−→←−−−−−−−−
𝑇−1 k(c0, c1, c2)

kc0 + kc1x + kc2x2
𝑇−−−−−−−−→←−−−−−−−−
𝑇−1

(kc0, kc1, kc2)

and for vector addition we have

(c0 + c1x + c2x2) + (d0 + d1x + d2x2)
𝑇−−−−−−−−→←−−−−−−−−
𝑇−1 (c0, c1, c2) + (d0, d1, d2)

(c0 + d0) + (c1 + d1)x + (c2 + d2)x2
𝑇−−−−−−−−→←−−−−−−−−
𝑇−1

(c0 + d0, c1 + d1, c2 + d2)

The following theorem,which is one of themost basic results in linear algebra, reveals
the fundamental importance of the vector space 𝑅n.

Theorem 8.3.1

Every real n-dimensional vector space is isomorphic to 𝑅n.

Proof Let 𝑉 be a real n-dimensional vector space. To prove that 𝑉 is isomorphic to 𝑅n
Theorem 8.3.1 tells us that
every real n-dimensional
vector space differs from
𝑅n only in notation; the
algebraic structures of the
two spaces are the same.

we must find a linear transformation 𝑇∶𝑉 → 𝑅n that is one-to-one and onto. For this
purpose, let

𝑆 = {v1, v2, . . . , vn}
be any basis for 𝑉, let

u = k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn (1)
be the representation of a vector u in 𝑉 as a linear combination of the basis vectors, and
let 𝑇∶𝑉 → 𝑅n be the coordinate map

𝑇(u) = (u)𝑆 = (k1, k2, . . . , kn) (2)

We will show that 𝑇 is linear, one-to-one, and onto and hence is an isomorphism. To
prove the linearity, let u and v be vectors in 𝑉, let c be a scalar, and let

u = k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn and v = d1v1 + d2v2 + ⋅ ⋅ ⋅ + dnvn (3)

be the representations of u and v as linear combinations of the basis vectors. Then it fol-
lows from (3) that

𝑇(cu) = 𝑇(ck1v1 + ck2v2 + ⋅ ⋅ ⋅ + cknvn)
= (ck1, ck2, . . . , ckn)
= c(k1, k2, . . . , kn) = c𝑇(u)

and that
𝑇(u + v) = 𝑇((k1 + d1)v1 + (k2 + d2)v2 + ⋅ ⋅ ⋅ + (kn + dn)vn)

= (k1 + d1, k2 + d2, . . . , kn + dn)
= (k1, k2, . . . , kn) + (d1, d2, . . . , dn)
= 𝑇(u) + 𝑇(v)
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which shows that 𝑇 is linear. To show that 𝑇 is one-to-one, we must show that if u and v
are distinct vectors in𝑉, then so are their images in 𝑅n. But if u ≠ v, and if the representa-
tions of these vectors in terms of the basis vectors are as in (3), then we must have ki ≠ di
for at least one i. Thus,

𝑇(u) = (k1, k2, . . . , kn) ≠ (d1, d2, . . . , dn) = 𝑇(v)
which shows that u and v have distinct images under 𝑇. Finally, the transformation 𝑇 is
onto, for if

w = (k1, k2, . . . , kn)
is any vector in 𝑅n, then it follows from (2) thatw is the image under 𝑇 of the vector

u = k1v1 + k2v2 + ⋅ ⋅ ⋅ + knvn

Whereas Theorem 8.3.1 tells us, in general, that every real n-dimensional vector space
is isomorphic to 𝑅n, it is Formula (2) in its proof that tells us how to find isomorphisms.

Theorem 8.3.2

If 𝑆 is an ordered basis for a vector space 𝑉, then the coordinate map

u
𝑇⟶(u)𝑆

is an isomorphism between 𝑉 and 𝑅n.

Remark Recall that coordinate maps depend on the order in which the basis vectors are
listed. Thus, Theorem 8.3.2 actually describes many possible isomorphisms, one for each
of the n! possible orders in which the basis vectors can be listed.

EXAMPLE 1 | The Natural Isomorphism Between Pn−1 and R
n

It follows from Theorem 8.3.2 that the coordinate map

a0 + a1x+ ⋅ ⋅ ⋅ + an−1xn−1
𝑇
⟶(a0, a1, . . . , an−1)

defines an isomorphism between 𝑃n−1 and 𝑅n. This is called the natural isomorphism
between those vector spaces.

EXAMPLE 2 | The Natural Isomorphism BetweenM22 and R4

It follows from Theorem 8.3.2 that the coordinate map

[
a b
c d

]
𝑇
⟶(a, b, c, d)

defines an isomorphism between𝑀22 and 𝑅4. This is a special case of the isomorphism that
maps an m × n matrix into its coordinate vector. We call this the natural isomorphism
between𝑀mn and 𝑅mn.
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CALCULUS REQUIRED EXAMPLE 3 | Differentiation by Matrix Multiplication

Consider the differentiation transformation𝐷∶𝑃3 → 𝑃2 on the vector space of polynomials
of degree 3 or less. If we map 𝑃3 and 𝑃2 into 𝑅4 and 𝑅3, respectively, by the natural isomor-
phisms, then the transformation 𝐷 produces a corresponding matrix transformation from
𝑅4 to 𝑅3. Specifically, the derivative transformation

a0 + a1x+ a2x2 + a3x3
𝐷
⟶ a1 + 2a2x+ 3a3x2

produces the matrix transformation

[
0 1 0 0
0 0 2 0
0 0 0 3

]
⎡
⎢
⎢
⎢
⎣

a0
a1
a2
a3

⎤
⎥
⎥
⎥
⎦

= [
a1
2a2
3a3

]

Thus, for example, the derivative
d
dx
(2+ x+ 4x2 − x3) = 1+ 8x− 3x2

can be calculated as the matrix product

[
0 1 0 0
0 0 2 0
0 0 0 3

]
⎡
⎢
⎢
⎢
⎣

2
1
4

−1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1
8

−3

⎤
⎥
⎥
⎦

This idea is useful for constructing numerical algorithms to calculate derivatives.

EXAMPLE 4 | Working with Isomorphisms

Use the natural isomorphism between 𝑃5 and 𝑅6 to determine whether the following poly-
nomials are linearly independent.

p1 = 1+ 2x− 3x2 + 4x3 + x5

p2 = 1+ 3x− 4x2 + 6x3 + 5x4 + 4x5

p3 = 3+ 8x− 11x2 − 16x3 + 10x4 + 9x5

Solution Wewill convert this to a matrix problem by creating a matrix whose rows are the
coordinate vectors of the polynomials under the natural isomorphism and then determine
whether those rows are linearly independent using elementary row operations.

The matrix whose rows are the coordinate vectors of the polynomials under the natural
isomorphism is

𝐴 =
⎡
⎢
⎢
⎣

1 2 −3 4 0 1
1 3 −4 6 5 4
3 8 −11 16 10 9

⎤
⎥
⎥
⎦

We leave it for you to use elementary row operations to reduce this matrix to the row echelon
form

𝑅 =
⎡
⎢
⎢
⎣

1 2 −3 4 0 1
0 1 −1 2 5 3
0 0 0 0 0 0

⎤
⎥
⎥
⎦

Thismatrix has only twononzero rows, so the row space of𝐴 is two-dimensional. Thismeans
that its row vectors are linearly dependent and hence so are the polynomials.
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Inner Product Space Isomorphisms
In the case where 𝑉 is a real n-dimensional inner product space, both 𝑉 and 𝑅n have, in
addition to their algebraic structure, a geometric structure arising from their respective
inner products. Thus, it is reasonable to inquire if there exists an isomorphism from 𝑉 to
𝑅n that preserves the geometric structure as well as the algebraic structure. For example,
we would want orthogonal vectors in 𝑉 to have orthogonal counterparts in 𝑅n, and we
would want orthonormal sets in 𝑉 to correspond to orthonormal sets in 𝑅n.

In order for an isomorphism to preserve geometric structure, it obviously has to pre-
serve inner products, since notions of length, angle, and orthogonality are all based
on the inner product. Thus, if 𝑉 and 𝑊 are inner product spaces, then we call an iso-
morphism 𝑇∶𝑉 → 𝑊 an inner product space isomorphism if

⟨𝑇(u), 𝑇(v)⟩ = ⟨u, v⟩ for all u and v in 𝑉

Remark Keep in mind that the inner product on the left side of this equation is for 𝑊
and that on the right is for 𝑉.

The following analog of Theorem 8.3.2 provides an important method for obtaining
inner product space isomorphisms between real inner product spaces and Euclidean vec-
tor spaces.

Theorem 8.3.3

If 𝑆 = {v1, v2, . . . , vn} is an ordered orthonormal basis for a real n-dimensional inner
product space 𝑉, then the coordinate map

u
𝑇⟶(u)𝑆

is an inner product space isomorphism between𝑉 and the vector space 𝑅n with the
Euclidean inner product.

EXAMPLE 5 | An Inner Product Space Isomorphism

We saw in Example 1 that the coordinate map

a0 + a1x+ ⋅ ⋅ ⋅ + an−1xn−1
𝑇
⟶(a0, a1, . . . , an−1)

with respect to the standard basis for𝑃n−1 is an isomorphism between𝑃n−1 and𝑅n. However,
the standard basis is orthonormal with respect to the standard inner product on 𝑃n−1 (see
Example 3 of Section 6.3), so it follows that 𝑇 is actually an inner product space isomorphism
with respect to the standard inner product on 𝑃n−1 and the Euclidean inner product on 𝑅n.
To verify that this is so, recall from Example 7 of Section 6.1 that the standard inner product
on 𝑃n−1 of two vectors

p = a0 + a1x+ ⋅ ⋅ ⋅ + an−1xn−1 and q = b0 + b1x+ ⋅ ⋅ ⋅ + bn−1xn−1

is
⟨p,q⟩ = a0b0 + a1b1 + ⋅ ⋅ ⋅ + an−1bn−1

But this is exactly the Euclidean inner product on 𝑅n of the n-tuples

(a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1)
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EXAMPLE 6 | A Notational Matter

Let 𝑅n be the vector space of real n-tuples in comma-delimited form, let𝑀n be the vector
space of real n × 1 matrices, let 𝑅n have the Euclidean inner product ⟨u, v⟩ = u · v, and let
𝑀n have the inner product ⟨u, v⟩ = u𝑇v in which u and v are expressed in column form. The
mapping 𝑇∶𝑅n →𝑀n defined by

(v1, v2, . . . , vn)
𝑇⟶

⎡
⎢
⎢
⎢
⎣

v1
v2...
vn

⎤
⎥
⎥
⎥
⎦

is an inner product space isomorphism, so the distinction between the inner product space
𝑅n and the inner product space𝑀n is essentially notational, a fact that we have used many
times in this text.

Exercise Set 8.3

In Exercises 1–8, state whether the transformation is an isomor-
phism. No proof required.
1. c0 + c1x→ (c0 − c1, c1) from 𝑃1 to 𝑅2.

2. (x, y) → (x, y, 0) from 𝑅2 to 𝑅3.

3. a+ bx+ cx2 + dx3→[
a b
c d

] from 𝑃3 to𝑀22.

4. [
a b
c d

] → ad− bc from𝑀22 to 𝑅.

5. (a, b, c, d) → a+ bx+ cx2 + (d+ 1)x3 from 𝑅4 to 𝑃3.

6. 𝐴 → 𝐴𝑇 from𝑀nn to𝑀nn.

7. c1 sin x+ c2 cos x→ (c1, c2) from the subspace of 𝐶(−∞,∞)
spanned by 𝑆 = {sin x, cos x} to 𝑅2.

8. The map (u1,u2, . . . ,un, . . . )→(0,u1,u2, . . . ,un, . . . ) from
𝑅∞ to 𝑅∞.

9. a. Find an isomorphism between the vector space of all 3 × 3
symmetric matrices and 𝑅6.

b. Find two different isomorphisms between the vector space
of all 2 × 2 matrices and 𝑅4.

10. a. Find an isomorphism between the vector space of all poly-
nomials of degree at most 3 such that p(0) = 0 and 𝑅3.

b. Find an isomorphism between the vector spaces
span{1, sin(x), cos(x)} and 𝑅3.

In Exercises 11–12, determine whether the matrix transformation
𝑇𝐴∶ 𝑅3→𝑅3 is an isomorphism.

11. 𝐴 =
⎡
⎢
⎢
⎣

0 1 −1
1 0 2

−1 1 0

⎤
⎥
⎥
⎦

12. 𝐴 =
⎡
⎢
⎢
⎣

1 −1 0
0 0 2

−1 1 0

⎤
⎥
⎥
⎦

In Exercises 13–14, find the dimension n of the solution space𝑊 of
𝐴x = 𝟎, and then construct an isomorphism between𝑊 and 𝑅n.

13. 𝐴 =
⎡
⎢
⎢
⎣

1 1 1 1
2 2 2 2
3 3 3 3

⎤
⎥
⎥
⎦

14. 𝐴 =
⎡⎢⎢⎢⎢
⎣

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1

⎤⎥⎥⎥⎥
⎦

In Exercises 15–16, determine whether the transformation is an iso-
morphism from𝑀22 to 𝑅4.

15. [
a b
c d

]→
⎡⎢⎢⎢⎢
⎣

a
a+ b

a+ b+ c
a+ b+ c+ d

⎤⎥⎥⎥⎥
⎦

16. [
a b
c d

]→
⎡⎢⎢⎢⎢
⎣

a+ b
a+ b

a+ b+ c
a+ b+ c+ d

⎤⎥⎥⎥⎥
⎦

17. Do you think that 𝑅2 is isomorphic to the xy-plane in 𝑅3? Jus-
tify your answer.

18. a. For what value or values of k, if any, is 𝑀mn isomorphic
to 𝑅k?

b. For what value or values of k, if any, is 𝑀mn isomorphic
to 𝑃k?

19. Let 𝑇∶ 𝑃2→𝑀22 be the mapping

𝑇(p) = 𝑇(p(x)) = [
p(0) p(1)
p(1) p(0)]

Is this an isomorphism? Justify your answer.
20. Show that if 𝑀22 and 𝑃3 have the standard inner products

given in Examples 6 and 7 of Section 6.1, then the mapping

[
a0 a1
a2 a3

]→a0 + a1x+ a2x2 + a3x3

is an inner product space isomorphism between those spaces.
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21. (Calculus required) Devise a method for using matrix
multiplication to differentiate functions in the vector space
span{1, sin(x), cos(x), sin(2x), cos(2x)}. Use your method to
find the derivative of 3− 4 sin(x) + sin(2x) + 5 cos(2x).

Working with Proofs
22. Prove that if 𝑇∶ 𝑉→𝑊 is an isomorphism, then so is

𝑇−1 ∶ 𝑊→𝑉.
23. Prove that if𝑈,𝑉, and𝑊 are vector spaces such that𝑈 is iso-

morphic to𝑉 and𝑉 is isomorphic to𝑊, then𝑈 is isomorphic
to𝑊.

24. Use the result in Exercise 22 to prove that any two real finite-
dimensional vector spaces with the same dimension are iso-
morphic to one another.

25. Prove that an inner product space isomorphism preserves
angles and distances—that is, the angle between u and v in
𝑉 is equal to the angle between 𝑇(u) and 𝑇(v) in 𝑊, and
‖u− v‖𝑉 = ‖𝑇(u) − 𝑇(v)‖𝑊.

26. Prove that an inner product space isomorphism maps ortho-
normal sets into orthonormal sets.

True-False Exercises
TF. In parts (a)–(f) determine whether the statement is true or

false, and justify your answer.
a. The vector spaces 𝑅2 and 𝑃2 are isomorphic.

b. If the kernel of a linear transformation 𝑇∶ 𝑃3→𝑃3 is {𝟎},
then 𝑇 is an isomorphism.

c. Every linear transformation from 𝑀33 to 𝑃9 is an
isomorphism.

d. There is a subspace of𝑀23 that is isomorphic to 𝑅4.

e. Isomorphic finite-dimensional vector spaces must have
the same number of basis vectors.

f. 𝑅n is isomorphic to a subspace of 𝑅n+1.

8.4 Matrices for General Linear
Transformations

In this section we will show that a general linear transformation from any n-dimensional
vector space 𝑉 to any m-dimensional vector space𝑊 can be performed using an appro-
priate matrix transformation from 𝑅n to 𝑅m. This idea is used in computer computations
since computers are well suited for performing matrix computations.

Matrices of Linear Transformations
Suppose that𝑉 is ann-dimensional vector space, that𝑊 is anm-dimensional vector space,
and that 𝑇∶ 𝑉 → 𝑊 is a linear transformation. Suppose further that 𝐵 is a basis for𝑉, that
𝐵′ is a basis for𝑊, and that for each vector x in 𝑉, the coordinate vectors for x and 𝑇(x)
are [x]𝐵 and [𝑇(x)]𝐵′ , respectively (Figure 8.4.1).

x

[x]B [T(x)]B′

T(x)
T

A vector
in V

(n-dimensional)

A vector
in Rn

A vector
in W

(m-dimensional)

A vector
in Rm

FIGURE 8.4.1

It will be our goal to find an m × nmatrix 𝐴 such that multiplication by 𝐴 maps the
vector [x]𝐵 into the vector [𝑇(x)]𝐵′ for each x in 𝑉 (Figure 8.4.2a). If we can do so, then,
as illustrated in Figure 8.4.2b, we will be able to execute the linear transformation 𝑇 by
using matrix multiplication and the following indirect procedure:
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Finding T(x) Indirectly
Step 1. Compute the coordinate vector [x]𝐵.
Step 2.Multiply [x]𝐵 on the left by𝐴 to produce [𝑇(x)]𝐵′ .
Step 3. Reconstruct 𝑇(x) from its coordinate vector [𝑇(x)]𝐵′ .

x

[x]B [T(x)]B′

T(x)
T

A

Multiplication by A maps Rn into Rm

T maps
V into W

x

[x]B [T(x)]B′

T(x)
Direct

computation

Multiply by A

(1)

(2)

(3)

(a) (b)

FIGURE 8.4.2

The key to executing this plan is to find anm × nmatrix 𝐴 with the property that

𝐴[x]𝐵 = [𝑇(x)]𝐵′ (1)

For this purpose, let 𝐵 = {u1,u2, . . . ,un} be a basis for the n-dimensional space 𝑉 and
𝐵′ = {v1, v2, . . . , vm} a basis for them-dimensional space𝑊. Since Equation (1) must hold
for all vectors in 𝑉, it must hold, in particular, for the basis vectors in 𝐵; that is,

𝐴[u1]𝐵 = [𝑇(u1)]𝐵′ , 𝐴[u2]𝐵 = [𝑇(u2)]𝐵′ , . . . , 𝐴[un]𝐵 = [𝑇(un)]𝐵′ (2)

But

[u1]𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, [u2]𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , [un]𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

so

𝐴[u1]𝐵 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a11
a21...
am1

⎤
⎥
⎥
⎥
⎦

𝐴[u2]𝐵 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
...
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a12
a22...
am2

⎤
⎥
⎥
⎥
⎦

...
...

...

𝐴[un]𝐵 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

a1n
a2n...
amn

⎤
⎥
⎥
⎥
⎦
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Substituting these results into (2) yields

⎡
⎢
⎢
⎢
⎢
⎣

a11
a21...
am1

⎤
⎥
⎥
⎥
⎥
⎦

= [𝑇(u1)]𝐵′ ,
⎡
⎢
⎢
⎢
⎢
⎣

a12
a22...
am2

⎤
⎥
⎥
⎥
⎥
⎦

= [𝑇(u2)]𝐵′ , . . . ,
⎡
⎢
⎢
⎢
⎢
⎣

a1n
a2n...
amn

⎤
⎥
⎥
⎥
⎥
⎦

= [𝑇(un)]𝐵′

which shows that the successive columns of 𝐴 are the coordinate vectors of
𝑇(u1), 𝑇(u2), . . . , 𝑇(un)

with respect to the basis 𝐵′. Thus, the matrix 𝐴 that completes the link in Figure 8.4.2a is
𝐴 = [[𝑇(u1)]𝐵′ ∣ [𝑇(u2)]𝐵′ ∣ ⋅ ⋅ ⋅ ∣ [𝑇(un)]𝐵′] (3)

We will call this thematrix for T relative to the bases B and B′ and will denote it by the
symbol [𝑇]𝐵 ′,𝐵 . Using this notation, Formula (3) can be written as

[𝑇]𝐵′,𝐵 = [[𝑇(u1)]𝐵′ ∣ [𝑇(u2)]𝐵′ ∣ ⋅ ⋅ ⋅ ∣ [𝑇(un)]𝐵′] (4)

and from (1), this matrix has the property

[𝑇]𝐵′,𝐵[x]𝐵 = [𝑇(x)]𝐵′ (5)

Remark Observe that in the notation [𝑇]𝐵′,𝐵 the right subscript is a basis for the domain
of 𝑇, and the left subscript is a basis for the image space of 𝑇 (Figure 8.4.3). Moreover,
observe how the subscript 𝐵 seems to “cancel out” in Formula (5) (Figure 8.4.4).

[T]
B′,B

Basis for the
image space

Basis for the
domain

FIGURE 8.4.3

[T]
B′,B

[x]
B
 = [T(x)]

B′

Cancellation

FIGURE 8.4.4

We leave it as an exercise to show that in the special case where 𝑇𝐶 ∶𝑅n → 𝑅m is mul-
tiplication by 𝐶, and where 𝑆 and 𝑆′ are the standard bases for 𝑅n and 𝑅m, respectively,
then

[𝑇𝐶]𝑆′, 𝑆 = 𝐶 (6)

EXAMPLE 1 | Matrix for a Linear Transformation

Let 𝑇∶𝑃1 → 𝑃2 be the linear transformation defined by

𝑇(p(x)) = xp(x)
Find the matrix for 𝑇 with respect to the standard bases

𝐵 = {u1,u2} and 𝐵′ = {v1, v2, v3}
That is,

u1 = 1, u2 = x; v1 = 1, v2 = x, v3 = x2

Solution From the given formula for 𝑇 we obtain

𝑇(u1) = 𝑇(1) = (x)(1) = x
𝑇(u2) = 𝑇(x) = (x)(x) = x2

By inspection, the coordinate vectors for 𝑇(u1) and 𝑇(u2) relative to 𝐵′ are

[𝑇(u1)]𝐵′ = [
0
1
0
], [𝑇(u2)]𝐵′ = [

0
0
1
]

Thus, the matrix for 𝑇 with respect to 𝐵 and 𝐵′ is

[𝑇]𝐵′,𝐵 = [[𝑇(u1)]𝐵′ ∣ [𝑇(u2)]𝐵′ ] = [
0 0
1 0
0 1

]
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EXAMPLE 2 | The Three-Step Procedure

Let𝑇∶ 𝑃1 → 𝑃2 be the linear transformation in Example 1, and use the three-step procedure
illustrated in the following figure to perform the computation

𝑇(a+ bx) = x(a+ bx) = ax+ bx2

x

[x]B [T(x)]B′

T(x)
Direct

computation

Multiply by [T]
B′,B

(1)

(2)

(3)

Solution
Step 1. The coordinate vector for x = a+ bx relative to the basis 𝐵 = {1, x } is

[x]𝐵 = [ab]

Step 2.Multiplying [x]𝐵 by the matrix [𝑇]𝐵′,𝐵 found in Example 1 we obtain

[𝑇]𝐵′, 𝐵[x]𝐵 = [
0 0
1 0
0 1

] [ab] = [
0
a
b
] = [𝑇(x)]𝐵′

Step 3. Reconstructing 𝑇(x) = 𝑇(a+ bx) from [𝑇(x)]𝐵′ we obtain
𝑇(a+ bx) = 0+ ax+ bx2 = ax+ bx2

EXAMPLE 3 | Matrix for a Linear Transformation

Let 𝑇∶𝑅2 → 𝑅3 be the linear transformation defined by

𝑇([x1x2
]) = [

x2
−5x1 + 13x2
−7x1 + 16x2

] = [
0 1

−5 13
−7 16

] [x1x2
]

Find the matrix for the transformation 𝑇 with respect to the bases 𝐵 = {u1,u2} for 𝑅2 and
𝐵′ = {v1, v2, v3} for 𝑅3, where

u1 = [31], u2 = [52]; v1 = [
1
0

−1
], v2 = [

−1
2
2
], v3 = [

0
1
2
]

Solution From the formula for 𝑇,

𝑇(u1) = [
1

−2
−5

], 𝑇(u2) = [
2
1

−3
]

Expressing these vectors as linear combinations of v1, v2, and v3, we obtain (verify)
𝑇(u1) = v1 − 2v3, 𝑇(u2) = 3v1 + v2 − v3

Thus,

[𝑇(u1)]𝐵′ = [
1
0

−2
], [𝑇(u2)]𝐵′ = [

3
1

−1
]

so

[𝑇]𝐵′,𝐵 = [[𝑇(u1)]𝐵′ ∣ [𝑇(u2)]𝐵′ ] = [
1 3
0 1

−2 −1
]
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Remark Example 3 illustrates that a fixed linear transformation generally has multiple
representations, each depending on the bases chosen. In this case the matrices

[𝑇]𝑆′, 𝑆 = [
0 1

−5 13
−7 16

] and [𝑇]𝐵′,𝐵 = [
1 3
0 1

−2 −1
]

both represent the transformation 𝑇, the first relative to the standard bases, 𝑆 and 𝑆′, for
𝑅2 and 𝑅3, and the second relative to the bases 𝐵 and 𝐵′ stated in the example.

Matrices of Linear Operators
In the special case where 𝑉 = 𝑊 (so that 𝑇∶𝑉 → 𝑉 is a linear operator), it is usual to
take 𝐵 = 𝐵′ when constructing a matrix for 𝑇. In this case the resulting matrix is called
thematrix for𝑻 relative to the basis𝑩 and is usually denoted by [𝑇]𝐵 rather than [𝑇]𝐵,𝐵 .
If 𝐵 = {u1,u2, . . . ,un}, then Formulas (4) and (5) become

Phrased informally, For-
mulas (7) and (8) state
that the matrix for 𝑇, when
multiplied by the coordinate
vector for x, produces the
coordinate vector for 𝑇(x).

[𝑇]𝐵 = [[𝑇(u1)]𝐵 ∣ [𝑇(u2)]𝐵 ∣ ⋅ ⋅ ⋅ ∣ [𝑇(un)]𝐵] (7)

[𝑇]𝐵[x]𝐵 = [𝑇(x)]𝐵 (8)

We leave it for you to verify that if 𝑇∶𝑅n → 𝑅n is a matrix operator, say multiplication by
𝐴, and 𝐵 is the standard basis for 𝑅n, then Formula (7) simplifies to

[𝑇𝐴]𝐵 = 𝐴 (9)

Matrices of Identity Operators
Recall that the identity operator 𝐼 ∶𝑉 → 𝑉 maps each vector in a vector space 𝑉 into
itself, that is, 𝐼(x) = x for every vector x in 𝑉. The following example shows that if 𝑉 is
n-dimensional, then the matrix for 𝐼 relative to any basis 𝐵 for 𝑉 is the n × n identity
matrix.

EXAMPLE 4 | Matrices of Identity Operators

If𝐵 = {u1,u2, . . . ,un} is a basis for an n-dimensional vector space𝑉, and if 𝐼 ∶𝑉 → 𝑉 is the
identity operator on𝑉, then

𝐼(u1) = u1, 𝐼(u2) = u2, . . . , 𝐼(un) = un
Therefore,

[𝐼]𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐼

�

[𝐼(u1)]𝐵

�

[𝐼(u2)]𝐵

�

[𝐼(un)]𝐵
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EXAMPLE 5 | Linear Operator on P2

Let 𝑇∶𝑃2 → 𝑃2 be the linear operator defined by

𝑇(p(x)) = p(3x− 5)
that is, 𝑇(c0 + c1x+ c2x2) = c0 + c1(3x− 5) + c2(3x− 5)2.
(a) Find [𝑇]𝐵 relative to the basis 𝐵 = {1, x, x2}.
(b) Use the indirect procedure to compute 𝑇(1+ 2x+ 3x2).
(c) Check the result in (b) by computing 𝑇(1+ 2x+ 3x2) directly.

Solution (a) From the formula for 𝑇,
𝑇(1) = 1, 𝑇(x) = 3x− 5, 𝑇(x2) = (3x− 5)2 = 9x2 − 30x+ 25

so

[𝑇(1)]𝐵 = [
1
0
0
], [𝑇(x)]𝐵 = [

−5
3
0
], [𝑇(x2)]𝐵 = [

25
−30

9
]

Thus,

[𝑇]𝐵 = [
1 −5 25
0 3 −30
0 0 9

]

Solution (b)
Step 1. The coordinate vector for p = 1+ 2x+ 3x2 relative to the basis 𝐵 = {1, x, x2} is

[p]𝐵 = [
1
2
3
]

Step 2.Multiplying [p]𝐵 by the matrix [𝑇]𝐵 found in part (a) we obtain

[𝑇]𝐵[p]𝐵 = [
1 −5 25
0 3 −30
0 0 9

][
1
2
3
] = [

66
−84
27
] = [𝑇(p)]𝐵

Step 3. Reconstructing 𝑇(p) = 𝑇(1+ 2x+ 3x2) from [𝑇(p)]𝐵 we obtain
𝑇(1+ 2x+ 3x2) = 66− 84x+ 27x2

Solution (c) By direct computation,

𝑇(1+ 2x+ 3x2) = 1+ 2(3x− 5) + 3(3x− 5)2

= 1+ 6x− 10+ 27x2 − 90x+ 75
= 66− 84x+ 27x2

which agrees with the result in (b).

Matrices of Compositions and Inverse Transformations
We will conclude this section by mentioning two theorems without proof that are gener-
alizations of earlier results.

Theorem 8.4.1

If 𝑇 1 ∶ 𝑈 → 𝑉 and 𝑇 2 ∶ 𝑉 → 𝑊 are linear transformations, and if 𝐵, 𝐵″, and 𝐵′ are
bases for 𝑈, 𝑉, and𝑊, respectively, then

[𝑇 2 ∘ 𝑇 1]𝐵′,𝐵 = [𝑇 2]𝐵′,𝐵″[𝑇 1]𝐵″,𝐵 (10)
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Theorem 8.4.2

If 𝑇∶𝑉 → 𝑉 is a linear operator, and if 𝐵 is a basis for 𝑉, then the following are
equivalent.

(a) 𝑇 is one-to-one.
(b) [𝑇]𝐵 is invertible.
Moreover, when these equivalent conditions hold,

[𝑇−1]𝐵 = [𝑇]−1𝐵 (11)

Remark In (10), observe how the interior subscript 𝐵″ (the basis for the intermediate
space 𝑉) seems to “cancel out,” leaving only the bases for the domain and image space
of the composition as subscripts (Figure 8.4.5). This “cancellation” of interior subscripts
suggests the following extension of Formula (10) to compositions of three linear transfor-
mations (Figure 8.4.6):

[T
2
 ° T1

]
B′,B = [T

2
]
B′,B″ 

[T
1
]
B″,B

Cancellation

FIGURE 8.4.5

[𝑇3 ∘ 𝑇2 ∘ 𝑇1]𝐵′,𝐵 = [𝑇3]𝐵′,𝐵‴[𝑇2]𝐵‴,𝐵″[𝑇1]𝐵″,𝐵 (12)

Basis B Basis B″ Basis B‴ Basis B′

T1 T3T2

FIGURE 8.4.6

The following example illustrates Theorem 8.4.1.

EXAMPLE 6 | Composition

Let 𝑇1 ∶ 𝑃1 → 𝑃2 be the linear transformation defined by

𝑇1(p(x)) = xp(x)
and let 𝑇2 ∶ 𝑃2 → 𝑃2 be the linear operator defined by

𝑇2(p(x)) = p(3x− 5)
Then the composition (𝑇2 ∘ 𝑇1)∶ 𝑃1 → 𝑃2 is given by

(𝑇2 ∘ 𝑇1)(p(x)) = 𝑇2(𝑇1(p(x))) = 𝑇2(xp(x)) = (3x− 5)p(3x− 5)
Thus, if p(x) = c0 + c1x, then

(𝑇2 ∘ 𝑇1)(c0 + c1x) = (3x− 5)(c0 + c1(3x− 5))
= c0(3x− 5) + c1(3x− 5)2 (13)

In this example, 𝑃1 plays the role of 𝑈 in Theorem 8.4.1, and 𝑃2 plays the roles of both 𝑉
and𝑊; thus we can take 𝐵′ = 𝐵″ in (10) so that the formula simplifies to

[𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [𝑇2]𝐵′ [𝑇1]𝐵′, 𝐵 (14)

Let us choose 𝐵 = {1, x} to be the basis for 𝑃1 and choose 𝐵′ = {1, x, x2} to be the basis for
𝑃2. We showed in Examples 1 and 5 that

[𝑇1]𝐵′, 𝐵 = [
0 0
1 0
0 1

] and [𝑇2]𝐵′ = [
1 −5 25
0 3 −30
0 0 9

]
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Thus, it follows from (14) that

[𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [
1 −5 25
0 3 −30
0 0 9

][
0 0
1 0
0 1

] = [
−5 25
3 −30
0 9

] (15)

As a check, we will calculate [𝑇2 ∘ 𝑇1]𝐵′, 𝐵 directly from Formula (4). Since 𝐵 = {1, x}, it
follows from Formula (4) with u1 = 1 and u2 = x that

[𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [[(𝑇2 ∘ 𝑇1)(1)]𝐵′ ∣ [(𝑇2 ∘ 𝑇1)(x)]𝐵′ ] (16)

Using (13) yields

(𝑇2 ∘ 𝑇1)(1) = 3x− 5 and (𝑇2 ∘ 𝑇1)(x) = (3x− 5)2 = 9x2 − 30x+ 25

From this and the fact that 𝐵′ = {1, x, x2}, it follows that

[(𝑇2 ∘ 𝑇1)(1)]𝐵′ = [
−5
3
0
] and [(𝑇2 ∘ 𝑇1)(x)]𝐵′ = [

25
−30

9
]

Substituting in (16) yields

[𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [
−5 25
3 −30
0 9

]

which agrees with (15).

Exercise Set 8.4

1. Let 𝑇∶𝑃2 → 𝑃3 be the linear transformation defined by
𝑇(p(x)) = xp(x).
a. Find the matrix for 𝑇 relative to the standard bases

𝐵 = {u1,u2,u3} and 𝐵′ = {v1, v2, v3, v4}
where

u1 = 1, u2 = x, u3 = x2
v1 = 1, v2 = x, v3 = x2, v4 = x3

b. Verify that the matrix [𝑇]𝐵′,𝐵 obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x+ c2x2 in 𝑃2.

2. Let 𝑇∶𝑃2 → 𝑃1 be the linear transformation defined by
𝑇(a0 + a1x+ a2x2) = (a0 + a1) − (2a1 + 3a2)x

a. Find the matrix for the linear transformation 𝑇 relative
to the standard bases 𝐵 = {1, x, x2} and 𝐵′ = {1, x} for 𝑃2
and 𝑃1.

b. Verify that the matrix [𝑇]𝐵′,𝐵 obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x+ c2x2 in 𝑃2.

3. Let 𝑇∶𝑃2 → 𝑃2 be the linear operator defined by
𝑇(a0 + a1x+ a2x2) = a0 + a1(x− 1) + a2(x− 1)2

a. Find the matrix for the linear transformation 𝑇 relative to
the standard basis 𝐵 = {1, x, x2} for 𝑃2.

b. Verify that thematrix [𝑇]𝐵 obtained in part (a) satisfies For-
mula (8) for every vector x = a0 + a1x+ a2x2 in 𝑃2.

4. Let 𝑇∶𝑅2 → 𝑅2 be the linear operator defined by

𝑇([x1x2
]) = [x1 − x2

x1 + x2
]

and let 𝐵 = {u1,u2} be the basis for which

u1 = [11] and u2 = [−10]

a. Find [𝑇]𝐵.
b. Verify that Formula (8) holds for every vector x in 𝑅2.

5. Let 𝑇∶𝑅2 → 𝑅3 be defined by

𝑇([x1x2
]) = [

x1 + 2x2
−x1
0

]

a. Find the matrix [𝑇]𝐵′, 𝐵 relative to the bases 𝐵 = {u1,u2}
and 𝐵′ = {v1, v2, v3}, where

u1 = [13], u2 = [−24]

v1 = [
1
1
1
], v2 = [

2
2
0
], v3 = [

3
0
0
]

b. Verify that Formula (5) holds for every vector in 𝑅2.

6. Let 𝑇∶𝑅3 → 𝑅3 be the linear operator defined by

𝑇(x1, x2, x3) = (x1 − x2, x2 − x1, x1 − x3)

a. Find the matrix for the linear transformation 𝑇 with
respect to the basis 𝐵 = {v1, v2, v3}, where

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (1, 1, 0)
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b. Verify that Formula (8) holds for every vector in 𝑅3.

c. Is 𝑇 one-to-one? If so, find the matrix of 𝑇−1 with respect
to the basis 𝐵.

7. Let 𝑇∶𝑃2 → 𝑃2 be the linear operator 𝑇(p(x)) = p(2x+ 1),
that is,

𝑇(c0 + c1x+ c2x2) = c0 + c1(2x+ 1) + c2(2x+ 1)2

a. Find [𝑇]𝐵 with respect to the basis 𝐵 = {1, x, x2}.
b. Use the three-step procedure illustrated in Example 2 to

compute 𝑇(2− 3x+ 4x2).
c. Check the result obtained in part (b) by computing

𝑇(2− 3x+ 4x2) directly.

8. Let 𝑇∶𝑃2 → 𝑃3 be the linear transformation defined by
𝑇(p(x)) = xp(x− 3), that is,

𝑇(c0 + c1x+ c2x2) = x(c0 + c1(x− 3) + c2(x− 3)2)

a. Find [𝑇]𝐵′,𝐵 relative to the bases 𝐵 = {1, x, x2} and
𝐵′ = {1, x, x2, x3}.

b. Use the three-step procedure illustrated in Example 2 to
compute 𝑇(1+ x− x2).

c. Check the result obtained in part (b) by computing
𝑇(1+ x− x2) directly.

9. Let v1 = [13] and v2 = [−14], and let 𝐴 = [ 1 3
−2 5] be the

matrix for 𝑇∶𝑅2 → 𝑅2 relative to the basis 𝐵 = {v1, v2}.
a. Find [𝑇(v1)]𝐵 and [𝑇(v2)]𝐵.
b. Find 𝑇(v1) and 𝑇(v2).

c. Find a formula for 𝑇([x1x2
]).

d. Use the formula obtained in (c) to compute 𝑇([11]).

10. Let 𝐴 = [
3 −2 1 0
1 6 2 1

−3 0 7 1
] be the matrix for 𝑇∶𝑅4 → 𝑅3 rel-

ative to the bases 𝐵 = {v1, v2, v3, v4} and 𝐵′ = {w1,w2,w3},
where

v1 =
⎡
⎢
⎢
⎢
⎣

0
1
1
1

⎤
⎥
⎥
⎥
⎦

, v2 =
⎡
⎢
⎢
⎢
⎣

2
1

−1
−1

⎤
⎥
⎥
⎥
⎦

, v3 =
⎡
⎢
⎢
⎢
⎣

1
4

−1
2

⎤
⎥
⎥
⎥
⎦

, v4 =
⎡
⎢
⎢
⎢
⎣

6
9
4
2

⎤
⎥
⎥
⎥
⎦

w1 = [
0
8
8
], w2 = [

−7
8
1
], w3 = [

−6
9
1
]

a. Find [𝑇(v1)]𝐵′ , [𝑇(v2)]𝐵′ , [𝑇(v3)]𝐵′ , and [𝑇(v4)]𝐵′ .
b. Find 𝑇(v1), 𝑇(v2), 𝑇(v3), and 𝑇(v4).

c. Find a formula for 𝑇
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

.

d. Use the formula obtained in (c) to compute 𝑇
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

2
2
0
0

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

.

11. Let 𝐴 = [
1 3 −1
2 0 5
6 −2 4

] be the matrix for 𝑇∶𝑃2 → 𝑃2 with

respect to the basis 𝐵 = {v1, v2, v3}, where v1 = 3x+ 3x2,
v2 = −1+ 3x+ 2x2, v3 = 3+ 7x+ 2x2.

a. Find [𝑇(v1)]𝐵, [𝑇(v2)]𝐵, and [𝑇(v3)]𝐵.
b. Find 𝑇(v1), 𝑇(v2), and 𝑇(v3).
c. Find a formula for 𝑇(a0 + a1x+ a2x2).
d. Use the formula obtained in (c) to compute 𝑇(1+ x2).

12. Let 𝑇1 ∶ 𝑃1 → 𝑃2 be the linear transformation defined by
𝑇1(p(x)) = xp(x)

and let 𝑇2 ∶ 𝑃2 → 𝑃2 be the linear operator defined by
𝑇2(p(x)) = p(2x+ 1)

Let 𝐵 = {1, x} and 𝐵′ = {1, x, x2} be the standard bases for 𝑃1
and 𝑃2.

a. Find [𝑇2 ∘ 𝑇1]𝐵′, 𝐵, [𝑇2]𝐵′ , and [𝑇1]𝐵′,𝐵.
b. State a formula relating the matrices in part (a).
c. Verify that the matrices in part (a) satisfy the formula you

stated in part (b).

13. Let 𝑇1 ∶ 𝑃1 → 𝑃2 be the linear transformation defined by
𝑇1(c0 + c1x) = 2c0 − 3c1x

and let 𝑇2 ∶ 𝑃2 → 𝑃3 be the linear transformation defined by
𝑇2(c0 + c1x+ c2x2) = 3c0x+ 3c1x2 + 3c2x3

Let 𝐵 = {1, x}, 𝐵″ = {1, x, x2}, and 𝐵′ = {1, x, x2, x3}.
a. Find [𝑇2 ∘ 𝑇1]𝐵′, 𝐵, [𝑇2]𝐵′, 𝐵″ , and [𝑇1]𝐵″, 𝐵.
b. State a formula relating the matrices in part (a).
c. Verify that the matrices in part (a) satisfy the formula you

stated in part (b).

14. Let𝐵 = {v1, v2, v3, v4} be a basis for a vector space𝑉. Find the
matrix with respect to 𝐵 for the linear operator 𝑇∶𝑉 → 𝑉
defined by 𝑇(v1) = v2, 𝑇(v2) = v3, 𝑇(v3) = v4, 𝑇(v4) = v1.

15. Let 𝑇∶ 𝑃2→𝑀22 be the linear transformation defined by

𝑇(p) = [
p(0) p(1)
p(−1) p(0)]

let 𝐵 be the standard basis for 𝑀22, and let 𝐵′ = {1, x, x2},
𝐵′′ = {1, 1+ x, 1+ x2} be bases for 𝑃2.

a. Find [𝑇]𝐵,𝐵′ and [𝑇]𝐵,𝐵′′ .
b. For the matrices obtained in part (a), find

𝑇(2+ 2x+ x2)
using the three-step procedure illustrated in Example 2.

c. Check the results obtained in part (b) by computing
𝑇(2+ 2x+ x2) directly.



November 13, 2018 09:20 C08 Sheet number 41 Page number 486 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

486 CHAPTER 8 General Linear Transformations

16. Let 𝑇∶𝑀22→𝑅2 be the linear transformation given by

𝑇([
a b
c d

]) = [
a+ b+ c

d
]

and let 𝐵 be the standard basis for𝑀22, 𝐵′ the standard basis
for 𝑅2, and

𝐵′′ = {[
1
1
] , [

−1
0
]}

a. Find [𝑇]𝐵′, 𝐵 and [𝑇]𝐵′′, 𝐵.

b. Compute 𝑇([
1 2
3 4

]) using the three-step procedure that
was illustrated in Example 2 for both matrices found in
part (a).

c. Check the results obtained in part (b) by computing

𝑇([
1 2
3 4

]) directly.

17. (Calculus required) Let 𝐷∶ 𝑃2 → 𝑃2 be the differentiation
operator𝐷(p) = p′(x).
a. Find the matrix for 𝐷 relative to the basis 𝐵 = {p1,p2,p3}

for 𝑃2 in which p1 = 1, p2 = x, p3 = x2.

b. Use the matrix in part (a) to compute𝐷(6− 6x+ 24x2).

18. (Calculus required) Let 𝐷∶ 𝑃2 → 𝑃2 be the differentiation
operator𝐷(p) = p′(x).
a. Find the matrix for 𝐷 relative to the basis 𝐵 = {p1,p2,p3}

for 𝑃2 in which p1 = 2, p2 = 2− 3x, p3 = 2− 3x+ 8x2.

b. Use the matrix in part (a) to compute𝐷(6− 6x+ 24x2).

19. (Calculus required) Let 𝑉 be the vector space of real-valued
functions defined on the interval (−∞,∞), and let
𝐷∶ 𝑉 → 𝑉 be the differentiation operator.

a. Find thematrix for𝐷 relative to the basis𝐵 = {f1, f2, f3} for
𝑉 in which f1 = 1, f2 = sin x, f3 = cos x.

b. Use the matrix in part (a) to compute

𝐷(2+ 3 sin x− 4 cos x)

20. Let 𝑉 be a four-dimensional vector space with basis 𝐵, let
𝑊 be a seven-dimensional vector space with basis 𝐵′, and let
𝑇∶𝑉 →𝑊 be a linear transformation. Identify the four vec-
tor spaces that contain the vectors at the corners of the accom-
panying diagram.

x

[x]B [T(x)]B′

T(x)
Direct

computation

Multiply by [T]B′,B

(1) (3)

(2)

FIGURE Ex-20

21. In each part, fill in the missing part of the equation.
a. [𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [𝑇2] ? [𝑇1]𝐵″, 𝐵
b. [𝑇3 ∘ 𝑇2 ∘ 𝑇1]𝐵′, 𝐵 = [𝑇3] ? [𝑇2]𝐵‴, 𝐵″ [𝑇1]𝐵″, 𝐵

Working with Proofs
22. Prove: If 𝑇∶𝑉 →𝑊 is the zero transformation, then the

matrix for 𝑇 with respect to any bases for 𝑉 and𝑊 is a zero
matrix.

23. Prove: If 𝐵 and 𝐵′ are the standard bases for 𝑅n and 𝑅m,
respectively, then the matrix for a linear transformation
𝑇∶𝑅n → 𝑅m relative to the bases 𝐵 and 𝐵′ is the standard
matrix for 𝑇.

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. If the matrix of a linear transformation 𝑇∶𝑉 →𝑊 rel-

ative to some bases of𝑉 and𝑊 is [2 4
0 3], then there is a

nonzero vector x in𝑉 such that 𝑇(x) = 2x.

b. If the matrix of a linear transformation 𝑇∶𝑉 →𝑊 rel-
ative to bases for 𝑉 and 𝑊 is [2 4

0 3], then there is a

nonzero vector x in𝑉 such that 𝑇(x) = 4x.

c. If the matrix of a linear transformation 𝑇∶𝑉 →𝑊 rel-
ative to certain bases for 𝑉 and 𝑊 is [1 4

2 3], then 𝑇 is
one-to-one.

d. If 𝑆 ∶ 𝑉 → 𝑉 and 𝑇∶𝑉 → 𝑉 are linear operators and 𝐵
is a basis for 𝑉, then the matrix of 𝑆 ∘ 𝑇 relative to 𝐵 is
[𝑇]𝐵[𝑆]𝐵.

e. If 𝑇∶𝑉 → 𝑉 is an invertible linear operator and 𝐵 is
a basis for 𝑉, then the matrix for 𝑇−1 relative to 𝐵 is
[𝑇]−1𝐵 .
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8.5 Similarity
The matrix for a linear operator 𝑇∶ 𝑉→𝑉 depends on the basis selected for V. One of the
fundamental problems of linear algebra is to choose a basis for V that makes the matrix
for T as simple as possible—a diagonal or a triangular matrix, for example. In this section
we will study this problem.

Simple Matrices for Linear Operators
Standard bases do not necessarily produce the simplest matrices for linear operators. For
example, consider the matrix operator 𝑇∶𝑅2 → 𝑅2 whose matrix relative to the standard
basis 𝐵 = {e1, e2} for 𝑅2 is

[𝑇]𝐵 = [ 1 1
−2 4] (1)

Let us compare this matrix to the matrix [𝑇]𝐵′ for the same operator 𝑇 but relative to the
basis 𝐵′ = {u′1,u′2} for 𝑅2 in which

u′1 = [11], u′2 = [12] (2)

Since

𝑇(u′1) = [ 1 1
−2 4] [

1
1] = [22] = 2u′1 and 𝑇(u′2) = [ 1 1

−2 4] [
1
2] = [36] = 3u′2

it follows that
[𝑇(u′1)]𝐵′ = [20] and [𝑇(u′2)]𝐵′ = [03]

so the matrix for 𝑇 relative to the basis 𝐵′ is

[𝑇]𝐵′ = [𝑇(u′1)𝐵′ ∣ 𝑇(u′2)𝐵′] = [2 0
0 3]

This matrix, being diagonal, has a simpler form than [𝑇]𝐵 and conveys clearly that the
operator 𝑇 scales u′1 by a factor of 2 and u′2 by a factor of 3, information that is not imme-
diately evident from [𝑇]𝐵 .

One of the major themes in more advanced linear algebra courses is to determine
the “simplest possible form” that can be obtained for the matrix of a linear operator by
choosing the basis appropriately. Sometimes it is possible to obtain a diagonal matrix (as
above, for example), whereas other times one must settle for a triangular matrix or some
other form. We will only be able to touch on this important topic in this text.

The problem of finding a basis that produces the simplest possible matrix for a linear
operator 𝑇∶ 𝑉 → 𝑉 can be attacked by first finding a matrix for 𝑇 relative to any basis,
typically a standard basis, where applicable, and then changing the basis in a way that
simplifies the matrix. Before pursuing this idea, it will be helpful to revisit some concepts
about changing bases.

A New View of Transition Matrices
Recall from Formulas (9) and (10) of Section 4.7 that if 𝐵 = {u1,u2, . . . ,un} and
𝐵′ = {u′1,u′2, . . . ,u′n} are bases for a vector space 𝑉, then the transition matrices from 𝐵
to 𝐵′ and from 𝐵′ to 𝐵 are

𝑃𝐵→𝐵′ = [[u1]𝐵′ ∣ [u2]𝐵′ ∣ ⋅ ⋅ ⋅ ∣ [un]𝐵′] (3)

𝑃𝐵′→𝐵 = [[u′1]𝐵 ∣ [u′2]𝐵 ∣ ⋅ ⋅ ⋅ ∣ [u′n]𝐵] (4)
where the matrices 𝑃𝐵→𝐵′ and 𝑃𝐵′→𝐵 are inverses of each other. We also showed in For-
mulas (11) and (12) of that section that if v is any vector in 𝑉, then

𝑃𝐵→𝐵′[v]𝐵 = [v]𝐵′ (5)

𝑃𝐵′→𝐵[v]𝐵′ = [v]𝐵 (6)
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The following theorem shows that transition matrices in Formulas (3) and (4) can be
viewed as matrices for identity operators.

Theorem 8.5.1

If 𝐵 and 𝐵′ are bases for a finite-dimensional vector space 𝑉, and if 𝐼 ∶ 𝑉 → 𝑉 is the
identity operator on 𝑉, then

𝑃𝐵→𝐵′ = [𝐼]𝐵′,𝐵 and 𝑃𝐵′→𝐵 = [𝐼]𝐵,𝐵′

Proof Suppose that 𝐵 = {u1,u2, . . . ,un} and 𝐵′ = {u′1,u′2, . . . ,u′n} are bases for 𝑉. Using
the fact that 𝐼(v) = v for all v in 𝑉, it follows from Formula (4) of Section 8.4 that

[𝐼]𝐵′,𝐵 = [[𝐼(u1)]𝐵′ ∣ [𝐼(u2)]𝐵′ ∣ ⋅ ⋅ ⋅ ∣ [𝐼(un)]𝐵′]
= [[u1]𝐵′ ∣ [u2]𝐵′ ∣ ⋅ ⋅ ⋅ ∣ [un]𝐵′]
= 𝑃𝐵→𝐵′ [Formula (3)]

The proof that [𝐼]𝐵,𝐵′ = 𝑃𝐵′→𝐵 is similar.

Effect of Changing Bases on Matrices of Linear Operators
We are now ready to consider the main problem in this section.

Problem
If 𝐵 and 𝐵′ are two bases for a finite-dimensional vector space𝑉, and if 𝑇∶𝑉 → 𝑉 is a
linear operator, what relationship, if any, exists between the matrices [𝑇]𝐵 and [𝑇]𝐵′?

The answer to this question can be obtained by considering the composition of the three
linear operators on 𝑉 pictured in Figure 8.5.1.

Basis = B
V V V V

Basis = B′Basis = BBasis = B′

I IT

T(v)T(v)vv

FIGURE 8.5.1

In this figure, v is first mapped into itself by the identity operator, then v is mapped into
𝑇(v) by 𝑇, and then 𝑇(v) is mapped into itself by the identity operator. All four vector
spaces involved in the composition are the same (namely, 𝑉), but the bases for the spaces
vary. Since the starting vector is v and the final vector is 𝑇(v), the composition produces
the same result as applying 𝑇 directly; that is,

𝑇 = 𝐼 ∘ 𝑇 ∘ 𝐼 (7)

If, as illustrated in Figure 8.5.1, the first and last vector spaces are assigned the basis
𝐵′ and the middle two spaces are assigned the basis 𝐵, then it follows from (7) and For-
mula (12) of Section 8.4 (with an appropriate adjustment to the names of the bases) that

[𝑇]𝐵′,𝐵′ = [𝐼 ∘ 𝑇 ∘ 𝐼]𝐵′,𝐵′ = [𝐼]𝐵′,𝐵[𝑇]𝐵,𝐵[𝐼]𝐵,𝐵′ (8)

or, in simpler notation,
[𝑇]𝐵′ = [𝐼]𝐵′,𝐵[𝑇]𝐵[𝐼]𝐵,𝐵′ (9)
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We can simplify this formula even further by using Theorem 8.5.1 to rewrite it as

[𝑇]𝐵′ = 𝑃𝐵→𝐵′[𝑇]𝐵𝑃𝐵′→𝐵 (10)

In summary, we have the following theorem.

Theorem 8.5.2

Let 𝑇∶ 𝑉 → 𝑉 be a linear operator on a finite-dimensional vector space 𝑉, and let
𝐵 and 𝐵′ be bases for 𝑉. Then

[𝑇]𝐵′ = 𝑃−1[𝑇]𝐵𝑃 (11)

where 𝑃 = 𝑃𝐵′→𝐵 and 𝑃−1 = 𝑃𝐵→𝐵′ .

Warning When applying Theorem 8.5.2, it is easy to forget whether 𝑃 = 𝑃𝐵′→𝐵
(correct) or 𝑃 = 𝑃𝐵→𝐵′ (incorrect). It may help to use the diagram in Figure 8.5.2 and
observe that the exterior subscripts of the transition matrices match the subscript of the
matrix they enclose.

[T]
B′
 = P

B→B′ [T]
B PB′→B

Exterior subscripts

FIGURE 8.5.2In the terminology of Definition 1 of Section 5.2, Theorem 8.5.2 tells us that matrices
representing the same linear operator relative to different bases must be similar. The fol-
lowing theorem, which we state without proof, shows that the converse of Theorem 8.5.2
is also true.

Theorem 8.5.3

If 𝑉 is a finite-dimensional vector space, then two matrices 𝐴 and 𝐵 represent the
same linear operator (but possibly with respect to different bases) if and only if they
are similar. Moreover, if 𝐵 = 𝑃−1𝐴𝑃, then 𝑃 is the transition matrix from the basis
used for 𝐵 to the basis used for 𝐴.

EXAMPLE 1 | Similar Matrices Represent the
Same Linear Operator

We showed at the beginning of this section that the matrices

𝐶 = [ 1 1
−2 4] and 𝐷 = [2 0

0 3]

represent the same linear operator 𝑇∶𝑅2 → 𝑅2 with respect to the appropriate bases. Verify
that these matrices are similar by finding a matrix 𝑃 for which𝐷 = 𝑃−1𝐶𝑃.
Solution We need to find the transition matrix

𝑃 = 𝑃𝐵′→𝐵 = [[u′1]𝐵 ∣ [u′2]𝐵]
where 𝐵′ = {u′1,u′2} is the basis for 𝑅2 given by (2) and 𝐵 = {e1, e2} is the standard basis for
𝑅2. We see by inspection that

u′1 = e1 + e2
u′2 = e1 + 2e2
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from which it follows that

[u′1]𝐵 = [11] and [u′2]𝐵 = [12]

Thus,

𝑃 = 𝑃𝐵′→𝐵 = [[u′1]𝐵 ∣ [u′2]𝐵] = [1 1
1 2]

We leave it for you to verify that

𝑃−1 = [ 2 −1
−1 1]

and hence that
[2 0
0 3] = [ 2 −1

−1 1] [
1 1

−2 4] [
1 1
1 2]

𝐷 𝑃−1 𝐶 𝑃

Similarity Invariants
Recall from Section 5.2 that a property of a square matrix is called a similarity invariant if
that property is shared by all similarmatrices. InTable 1 of that sectionwe listed themost
important similarity invariants. Since we know from Theorem 8.5.3 that two matrices are
similar if and only if they represent the same linear operator 𝑇∶ 𝑉 → 𝑉, it follows that if 𝐵
and 𝐵′ are bases for 𝑉, then every similarity invariant property of [𝑇]𝐵 is also a similarity
invariant property of [𝑇]𝐵′ . For example, for any two bases 𝐵 and 𝐵′ we must have

det[𝑇]𝐵 = det[𝑇]𝐵′

It follows from this equation that the value of the determinant depends on 𝑇, but not on
the particular basis that is used to represent 𝑇 in matrix form. Thus, the determinant can
be regarded as a property of the linear operator 𝑇, and we can define the determinant of
the linear operator 𝑻 to be

det(𝑇) = det[𝑇]𝐵 (12)
where 𝐵 is any basis for 𝑉. Table 1 lists the basic similarity invariants of a linear operator
𝑇∶ 𝑉 → 𝑉.

TABLE 1 Similarity Invariants

Property Similarity

Determinant [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same determinant.

Invertibility [𝑇]𝐵 is invertible if and only if 𝑃−1[𝑇]𝐵𝑃 is invertible.

Rank [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same rank.

Nullity [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same nullity.

Trace [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same trace.

Characteristic polynomial [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same characteristic polynomial.

Eigenvalues [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃 have the same eigenvalues.

Eigenspace dimension If 𝜆 is an eigenvalue of [𝑇]𝐵 and 𝑃−1[𝑇]𝐵𝑃, then the eigenspace of
[𝑇]𝐵 corresponding to 𝜆 and the eigenspace of 𝑃−1[𝑇]𝐵𝑃
corresponding to 𝜆 have the same dimension.
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EXAMPLE 2 | Determinant of a Linear Operator

At the beginning of this section we showed that the matrices

[𝑇] = [ 1 1
−2 4] and [𝑇]𝐵′ = [2 0

0 3]

represent the same linear operator relative to different bases, the first relative to the standard
basis 𝐵 = {e1, e2} for 𝑅2 and the second relative to the basis 𝐵′ = {u′1,u′2} for which

u′1 = [11] , u′2 = [12]

This means that [𝑇] and [𝑇]𝐵′ must be similar matrices and hencemust have the same simi-
larity invariant properties. In particular, theymust have the same determinant. The following
computations confirm this.

det [𝑇] = |||
1 1

−2 4
||| = 6 and det [𝑇]𝐵′ =

|||
2 0
0 3

||| = 6

EXAMPLE 3 | Eigenvalues of a Linear Operator

Find the eigenvalues of the linear operator 𝑇∶𝑃2 → 𝑃2 defined by

𝑇(a+ bx+ cx2) = −2c+ (a+ 2b+ c)x+ (a+ 3c)x2

Solution Because eigenvalues are similarity invariants, we can find the eigenvalues of 𝑇
by choosing any basis 𝐵 for 𝑃2 and computing the eigenvalues of the matrix [𝑇]𝐵. We leave
it for you to show that the matrix for 𝑇 relative to the standard basis 𝐵 = {1, x, x2} is

[𝑇]𝐵 = [
0 0 −2
1 2 1
1 0 3

]

Thus, the eigenvalues of 𝑇 are 𝜆 = 1 and 𝜆 = 2 (see Example 7 of Section 5.1).

Exercise Set 8.5

In Exercises 1–2, use a property from Table 1 to show that the matri-
ces𝐴 and 𝐵 are not similar.

1. a. 𝐴 = [
1 3
1 1

], 𝐵 = [
1 2
1 1

]

b. 𝐴 = [
1 1
1 2

], 𝐵 = [
−1 0
0 −1]

2. a. 𝐴 =
⎡
⎢
⎢
⎣

1 1 1
1 1 0
1 0 0

⎤
⎥
⎥
⎦
, 𝐵 =

⎡
⎢
⎢
⎣

1 1 1
1 1 0
1 1 0

⎤
⎥
⎥
⎦

b. 𝐴 =
⎡
⎢
⎢
⎣

1 0 1
0 1 0
0 1 0

⎤
⎥
⎥
⎦
, 𝐵 =

⎡
⎢
⎢
⎣

0 0 1
0 0 1
1 0 0

⎤
⎥
⎥
⎦

3. Let𝑇∶𝑅2 → 𝑅2 be a linear operator, and let𝐵 and𝐵′ be bases
for 𝑅2 for which

[𝑇]𝐵 = [
2 0
1 1

] and 𝑃𝐵→𝐵′ = [
3 2
1 1

]

Find the matrix for 𝑇 relative to the basis 𝐵′.

4. Let𝑇∶𝑅2 → 𝑅2 be a linear operator, and let𝐵 and𝐵′ be bases
for 𝑅2 for which

[𝑇]𝐵 = [
3 2

−1 1
] and 𝑃𝐵′→𝐵 = [

4 5
1 −1]

Find the matrix for 𝑇 relative to the basis 𝐵′.
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5. Let𝑇∶𝑅2 → 𝑅2 be a linear operator, and let𝐵 and𝐵′ be bases
for 𝑅2 for which

[𝑇]𝐵′ = [
2 0
1 1

] and 𝑃𝐵→𝐵′ = [
3 2
1 1

]

Find the matrix for 𝑇 relative to the basis 𝐵.

6. Let𝑇∶𝑅2 → 𝑅2 be a linear operator, and let𝐵 and𝐵′ be bases
for 𝑅2 for which

[𝑇]𝐵′ = [
3 2

−1 1
] and 𝑃𝐵′→𝐵 = [

4 5
1 −1]

Find the matrix for 𝑇 relative to the basis 𝐵.
In Exercises 7–14, find the matrix for 𝑇 relative to the basis 𝐵,
and use Theorem 8.5.2 to compute the matrix for 𝑇 relative to the
basis 𝐵′.
7. 𝑇∶𝑅2 → 𝑅2 is defined by

𝑇([x1x2
]) = [x1 − 2x2

−x2
]

and 𝐵 = {u1,u2} and 𝐵′ = {v1, v2}, where

u1 = [10], u2 = [01]; v1 = [41], v2 = [72]

8. 𝑇∶𝑅2 → 𝑅2 is defined by

𝑇([x1x2
]) = [ x1 + 7x2

3x1 − 4x2
]

and 𝐵 = {u1,u2} and 𝐵′ = {v1, v2}, where

u1 = [22], u2 = [ 4
−1]; v1 = [188], v2 = [105]

9. 𝑇∶𝑅3 → 𝑅3 is defined by
𝑇(x1, x2, x3) = (−2x1 − x2, x1 + x3, x2)

𝐵 is the standard basis, and 𝐵′ = {v1, v2, v3}, where
v1 = (−2, 1, 0), v2 = (−1, 0, 1), v3 = (0, 1, 0)

10. 𝑇∶𝑅3 → 𝑅3 is defined by
𝑇(x1, x2, x3) = (x1 + 2x2 − x3,−x2, x1 + 7x3)

𝐵 is the standard basis, and 𝐵′ = {v1, v2, v3}, where
v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 1, 1)

11. 𝑇∶𝑅2 → 𝑅2 is the rotation about the origin through an angle
of 45∘, 𝐵 is the standard basis, and 𝐵′ = {v1, v2}, where

v1 = ( 1
√2
, 1
√2
), v2 = (− 1

√2
, 1
√2
)

12. 𝑇∶𝑅2 → 𝑅2 is the shear in the x-direction by a positive factor
k, 𝐵 is the standard basis, and 𝐵′ = {v1, v2}, where

v1 = (k, 1), v2 = (1, 0)

13. 𝑇∶ 𝑃1 → 𝑃1 is defined by
𝑇(a0 + a1x) = −a0 + (a0 + a1)x

𝐵 is the standard basis for 𝑃1, and 𝐵′ = {q1,q2}, where
q1 = x+ 1, q2 = x− 1

14. 𝑇∶ 𝑃1 → 𝑃1 is defined by 𝑇(a0 + a1x) = a0 + a1(x+ 1), and
𝐵 = {p1,p2} and 𝐵′ = {q1,q2}, where
p1 = 6+ 3x, p2 = 10+ 2x; q1 = 2, q2 = 3+ 2x

15. Let 𝑇∶ 𝑃2 → 𝑃2 be defined by

𝑇(a0 + a1x+ a2x2) = (5a0 + 6a1 + 2a2)
− (a1 + 8a2)x+ (a0 − 2a2)x2

a. Find the eigenvalues of 𝑇.
b. Find bases for the eigenspaces of 𝑇.

16. Let 𝑇∶𝑀22 →𝑀22 be defined by

𝑇([a b
c d]) = [ 2c a+ c

b− 2c d ]

a. Find the eigenvalues of 𝑇.
b. Find bases for the eigenspaces of 𝑇.

17. Since the standard basis for 𝑅n is so simple, why would one
want to represent a linear operator on 𝑅n in another basis?

18. Find two nonzero 2 × 2 matrices (different from those in
Exercise 1) that are not similar, and explain why they are not.

In Exercises 19–21, find the determinant and the eigenvalues of the
linear operator 𝑇.
19. 𝑇∶𝑅2 → 𝑅2, where 𝑇(x1, x2) = (3x1 − 4x2,−x1 + 7x2)

20. 𝑇∶𝑅3 → 𝑅3, where𝑇(x1, x2, x3) = (x1 − x2, x2 − x3, x3 − x1)

21. 𝑇∶ 𝑃2 → 𝑃2, where 𝑇(p(x)) = p(x− 1)

22. Let 𝑇∶ 𝑃4 → 𝑃4 be the linear operator given by the formula
𝑇(p(x)) = p(2x+ 1).
a. Find a matrix for 𝑇 relative to some convenient basis, and

then use it to find the rank and nullity of 𝑇.
b. Use the result in part (a) to determine whether 𝑇 is one-to-

one.

Working with Proofs

23. Complete the proof below by justifying each step.

Hypothesis:𝐴 and 𝐵 are similar matrices.

Conclusion:𝐴 and 𝐵 have the same characteristic polynomial.

Proof: (1) det(𝜆𝐼 − 𝐵) = det(𝜆𝐼 − 𝑃−1𝐴𝑃)
(2) = det(𝜆𝑃−1𝑃 − 𝑃−1𝐴𝑃)
(3) = det(𝑃−1(𝜆𝐼 − 𝐴)𝑃)
(4) = det(𝑃−1) det(𝜆𝐼 − 𝐴) det(𝑃)
(5) = det(𝑃−1) det(𝑃) det(𝜆𝐼 − 𝐴)
(6) = det(𝜆𝐼 − 𝐴)

24. If 𝐴 and 𝐵 are similar matrices, say 𝐵 = 𝑃−1𝐴𝑃, then it fol-
lows from Exercise 23 that 𝐴 and 𝐵 have the same eigenval-
ues. Suppose that 𝜆 is one of the common eigenvalues and x is
a corresponding eigenvector of𝐴. See if you can find an eigen-
vector of 𝐵 corresponding to 𝜆 (expressed in terms of 𝜆, x,
and 𝑃).

In Exercises 25–28, prove that the stated property is a similarity
invariant.

25. Trace 26. Rank

27. Nullity 28. Invertibility
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29. Let 𝜆 be an eigenvalue of a linear operator 𝑇∶ 𝑉 → 𝑉. Prove
that the eigenvectors of 𝑇 corresponding to 𝜆 are the nonzero
vectors in the kernel of 𝜆𝐼 − 𝑇.

30. a. Prove that if𝐴 and 𝐵 are similar matrices, then𝐴2 and 𝐵2

are also similar.

b. If𝐴2 and𝐵2 are similar, must𝐴 and𝐵 be similar? Explain.

31. Let𝐶 and𝐷 bem × nmatrices, and let𝐵 = {v1, v2, . . . , vn} be
a basis for a vector space𝑉. Prove that if𝐶[x]𝐵 = 𝐷[x]𝐵 for all
x in𝑉, then 𝐶 = 𝐷.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. Amatrix cannot be similar to itself.

b. If𝐴 is similar to𝐵, and𝐵 is similar to𝐶, then𝐴 is similar
to 𝐶.

c. If 𝐴 and 𝐵 are similar and 𝐵 is singular, then 𝐴 is
singular.

d. If 𝐴 and 𝐵 are invertible and similar, then 𝐴−1 and 𝐵−1

are similar.

e. If 𝑇1 ∶ 𝑅n → 𝑅n and 𝑇2 ∶ 𝑅n → 𝑅n are linear operators,
and if [𝑇1]𝐵′, 𝐵 = [𝑇2]𝐵′,𝐵 with respect to two bases 𝐵

and 𝐵′ for 𝑅n, then 𝑇1(x) = 𝑇2(x) for every vector x
in 𝑅n.

f. If𝑇1 ∶ 𝑅n → 𝑅n is a linear operator, and if [𝑇1]𝐵 = [𝑇1]𝐵′
with respect to two bases 𝐵 and 𝐵′ for 𝑅n, then 𝐵 = 𝐵′.

g. If 𝑇∶𝑅n → 𝑅n is a linear operator, and if [𝑇]𝐵 = 𝐼n with
respect to some basis𝐵 for𝑅n, then𝑇 is the identity oper-
ator on 𝑅n.

h. If 𝑇∶𝑅n → 𝑅n is a linear operator, and if [𝑇]𝐵′,𝐵 = 𝐼n
with respect to two bases 𝐵 and 𝐵′ for 𝑅n, then 𝑇 is the
identity operator on 𝑅n.

Working with Technology
T1. Use the matrices 𝐴 and 𝑃 given below to construct a matrix

𝐵 = 𝑃−1𝐴𝑃 that is similar to 𝐴, and confirm, in accordance
with Table 1, that𝐴 and 𝐵 have the same determinant, trace,
rank, characteristic equation, and eigenvalues.

𝐴 =
⎡
⎢
⎢
⎣

−13 −60 −60
10 42 40
−5 −20 −18

⎤
⎥
⎥
⎦

and 𝑃 =
⎡
⎢
⎢
⎣

1 −1 1
2 −1 −1

−1 −1 0

⎤
⎥
⎥
⎦

T2. Let𝑇∶𝑅3 → 𝑅3 be the linear transformation whose standard
matrix is thematrix𝐴 in Exercise T1. Find a basis 𝑆 for𝑅3 for
which [𝑇]𝑆 is diagonal.

8.6 Geometry of Matrix Operators
In applications such as computer graphics it is important to understand not only how
linear operators on 𝑅2 and 𝑅3 affect individual vectors but also how they transform entire
regions in two and three dimensions. In 𝑅2, for example, one can get a sense of the effect
of a linear operator on all regions in the plane by examining its effect on a unit square in
the first quadrant. This will be our primary focus in this section. We will also continue
our study of rotations by extending our work in Section 1.8 to three dimensions.

Computerized Transformations
Figure 8.6.1 shows a famous picture of Albert Einstein that has been transformed in vari-
ousways usingmatrix operators on𝑅2. The original imagewas scanned and then digitized
to decompose it into a rectangular array of pixels. Those pixels were then transformed as
follows:

• The program MATLAB was used to assign coordinates and a gray level to each pixel.
• The coordinates of the pixels were transformed by matrix multiplication.
• The pixels were then assigned their original gray levels to produce the transformed
picture.

In computer games a perception of motion is created by usingmatrices to rapidly and
repeatedly transform the arrays of pixels that form the visual images.
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FIGURE 8.6.1

Images of Lines Under Matrix Operators
The effect of a matrix operator on 𝑅2 can often be deduced by studying how it transforms
the points that form the unit square. The following theorem,whichwe statewithout proof,
shows that if an operator is invertible, then it maps each line segment in the unit square
into the line segment connecting the images of its endpoints. In particular, the edges of
the unit square get mapped into edges of the image (see Figure 8.6.2 in which the edges
of the unit square and the corresponding edges of its image have been numbered).

Theorem 8.6.1

If 𝑇∶𝑅2 → 𝑅2 is multiplication by an invertible matrix, then:
(a) The image of a straight line is a straight line.
(b) The image of a line through the origin is a line through the origin.
(c) The images of parallel lines are parallel lines.
(d) The image of the line segment joining points𝑃 and𝑄 is the line segment joining

the images of 𝑃 and 𝑄.
(e) The images of three points lie on a line if and only if the points themselves lie

on a line.
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EXAMPLE 1 | Image of a Line

According to Theorem 8.6.1, the invertible matrix

𝐴 = [3 1
2 1]

maps the line y = 2x+ 1 into another line. Find its equation.

Solution Let (x, y) be a point on the line y = 2x+ 1, and let (x′, y′) be its image under
multiplication by𝐴. Then

[x
′

y′] = [3 1
2 1] [

x
y] and [xy] = [3 1

2 1]
−1

[x
′

y′] = [ 1 −1
−2 3] [

x′

y′]

so
x = x′ − y′

y = −2x′ + 3y′

Substituting these expressions in y = 2x+ 1 yields

−2x′ + 3y′ = 2(x′ − y′) + 1

or, equivalently,
y′ = 4

5x
′ + 1

5

EXAMPLE 2 | Transformation of the Unit Square

Sketch the image of the unit square under multiplication by the invertible matrix

𝐴 = [
0 1
2 1

]

Label the vertices of the image with their coordinates, and number the edges of the unit
square and their corresponding images (as in Figure 8.6.2).

Solution Since

[
0 1
2 1

] [
0
0
] = [

0
0
] , [

0 1
2 1

] [
1
0
] = [

0
2
] ,

[
0 1
2 1

] [
0
1
] = [

1
1
] , [

0 1
2 1

] [
1
1
] = [

1
3
]

the image of the unit square is a parallelogram with vertices (0, 0), (0, 2), (1, 1), and (1, 3)
(Figure 8.6.3).

(1, 1)3

1

2

4

3

1

4 2

(1, 0)(0, 0)

(0, 1)

(0, 2)

(0, 0)

(1, 1)

(1, 3)

y

x

y

x

FIGURE 8.6.3

Reflections, Rotations, and Projections
In Table 1 of Section 1.8 we obtained the standard matrices for the reflections about the
x-axis, the y-axis, and the line y = x in 𝑅2. Table 1 illustrates the effect of those transfor-
mations on the unit square.



November 13, 2018 09:20 C08 Sheet number 51 Page number 496 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

496 CHAPTER 8 General Linear Transformations

TABLE 1

Operator Standard Matrix Effect on the Unit Square

Reflection about
the x-axis [1 0

0 −1]
y

x

(1, 1)

y

x

(1, –1)

1

3

4 2

3

1

24

Reflection about
the y-axis [−1 0

0 1]
y

xx

y

(1, 1) (–1, 1)

1

3

4 2 42

3

1

Reflection about
the line y = x [0 1

1 0]
y

x

(1, 1)

y

x

(1, 1)

y = x y = x

1

3

4 2 31

2

4

In Table 3 of Section 1.8 we obtained the standard matrices for the orthogonal pro-
jections onto the x-axis and the y-axis. Table 2 illustrates how those projections totally
flatten the unit square.

TABLE 2

Operator Standard Matrix Effect on the Unit Square

Orthogonal
projection
onto the x-axis

[1 0
0 0]

y

x

(1, 1)

y

x(1, 0)

Orthogonal
projection
onto the y-axis

[0 0
0 1]

y

x

(1, 1)

y

x

(0, 1)

In Table 5 of Section 1.8 we obtained the standard matrix for a rotation about the
origin through a positive angle 𝜃. Table 3 illustrates how such a rotation transforms the
unit square.

TABLE 3

Operator Standard Matrix Effect on the Unit Square

Rotation about the
origin through a
positive angle 𝜃

[cos𝜃 − sin𝜃
sin𝜃 cos𝜃]

(cos θ – sin θ, sin θ + cos θ)
y

xθ

y

x

(1, 1)
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Expansions and Compressions
If the x-coordinate of each point in the plane ismultiplied by a constant kwhere k > 1, the
effect is to expand the unit square in the x-direction, and if the y-coordinate is multiplied
by such k, then the effect is to expand the unit square in the y-direction. Operators of this
type are called expansions. In contrast, if 0 < k < 1 then the effect is to compress the
unit square, so such operators are called compressions. Table 4 illustrates the effect on
the unit square of expansions and compressions.

TABLE 4

Operator Standard Matrix Effect on the Unit Square

Expansion in the
x-direction with
factor k

(k > 1)

[k 0
0 1]

y

x

(k, 1)

y

x

(1, 1)

Expansion in the
y-direction with
factor k

(k > 1)

[1 0
0 k]

y

x

(1, k)

y

x

(1, 1)

Compression in the
x-direction with
factor k

(0 < k < 1)

[k 0
0 1] (k, 1)

y

x

y

x

(1, 1)

Compression in the
y-direction with
factor k

(0 < k < 1)

[1 0
0 k]

(1, k)

y

x

y

x

(1, 1)

Shears
A matrix operator of the form 𝑇(x, y) = (x + ky, y) translates a point (x, y) in the xy-plane
parallel to the x-axis by an amount ky that is proportional to the y-coordinate of the point.
This operator leaves the points on the x-axis fixed (since y = 0), but as we progress away
from the x-axis, the translation distance increases. We call this operator the shear in the
x-direction by a factor k. Similarly, a matrix operator of the form 𝑇(x, y) = (x, y + kx) is
called the shear in the y-direction by a factor k. Table 5, which illustrates the basic
information about shears in 𝑅2, shows that a shear is in the positive direction if k > 0 and
the negative direction if k < 0.
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TABLE 5

Operator Standard Matrix Effect on the Unit Square

Shear in the
positive x-direction
by a factor k

(k > 0)

[1 k
0 1]

y

x

(1 +  k, 1)(k, 1)

y

x

(1, 1)

Shear in the
negative x-direction
by a factor k

(k < 0)

[1 k
0 1]

y

x

(k + 1, 1)(k, 1)

y

x

(1, 1)

Shear in the
positive y-direction
by a factor k
(k > 0)

[1 0
k 1]

y

x

(1, 1 + k) 

(1, k)

y

x

(1, 1)

Shear in the
negative y-direction
by a factor k
(k < 0)

[1 0
k 1]

y

x

(1, 1 + k)

(1, k)

y

x

(1, 1)

EXAMPLE 3 | Transformation of the Unit Square

(a) Find the standard matrix for the operator on 𝑅2 that first shears by a factor of 2 in the
x-direction and then reflects the result about the line y = x. Sketch the image of the
unit square under this operator.

(b) Find the standard matrix for the operator on 𝑅2 that first reflects about y = x and then
shears by a factor of 2 in the x-direction. Sketch the image of the unit square under this
operator.

(c) Confirm algebraically and visually that the shear and the reflection in parts (a) and (b)
do not commute.

Solution (a) The standard matrix for the shear is

𝐴1 = [1 2
0 1]

and for the reflection is
𝐴2 = [0 1

1 0]

Thus, the standard matrix for the shear followed by the reflection is

𝐴2𝐴1 = [0 1
1 0] [

1 2
0 1] = [0 1

1 2]
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Solution (b) The standard matrix for the reflection followed by the shear is

𝐴1𝐴2 = [1 2
0 1] [

0 1
1 0] = [2 1

1 0]

Solution (c) The computations in Solutions (a) and (b) show that 𝐴1𝐴2 ≠ 𝐴2𝐴1, so the
standard matrices, and hence the operators, do not commute. The same conclusion follows
from Figures 8.6.4 and 8.6.5 since the two operators produce different images of the unit
square.

y y

x

y

(1, 1)
(3, 1)

(1, 1)

y = x

xx

Shear in the 
x -direction by a
factor k = 2

about y = x
Re9ection

FIGURE 8.6.4

y

x

y

x

y

x

(1, 1)
(3, 1)

(1, 3)y = x y = x

Shear in the 
x -direction by a
factor k = 2

about y = x
Re9ection

FIGURE 8.6.5

Dilations and Contractions
If k is a nonnegative scalar, then the operator 𝑇(x) = kx on 𝑅2 or 𝑅3 has the effect of
increasing or decreasing the length of each vector by a factor of k. If 0 ≤ k < 1 the oper-
ator is called a contraction with factor k, and if k > 1 it is called a dilation with factor
k (Figure 8.6.6). If k = 1, then 𝑇 is the identity operator. Table 6 illustrates the effect of
contractions and dilations on the unit square in 𝑅2— contractions shrink the square and
dilations enlarge it.

x

T(x) = kx

0 < k < 1

x

T(x) = kx

k > 1

FIGURE 8.6.6
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TABLE 6

Operator Effect on the Unit Square Standard Matrix

Contraction with
factor k in 𝑅2

(0 ≤ k < 1)

(0, 1)

(1, 0)

(0, k)

(k, 0)

[k 0
0 k]

Dilation with
factor k in 𝑅2

(k > 1)

(0, 1)

(1, 0)

(0, k)

(k, 0)

Remark Note that the standard matrix for both contractions and dilations is a diagonal
matrix all of whose diagonal entries are nonnegative and the same. Amatrix operatorwith
this property is called a uniform scaling.

EXAMPLE 4 | Transformations with Diagonal Matrices

Discuss the geometric effect on the unit square of multiplication by a diagonal matrix

𝐴 = [k1 0
0 k2

]

in which the entries k1 and k2 are positive real numbers (≠ 1).

Solution In the special case where k1 = k2, multiplication by 𝐴 is either a contraction or
dilation. More generally, the effect of multiplication by𝐴 can be seen by observing that this
matrix can be factored as

𝐴 = [k1 0
0 k2

] = [1 0
0 k2

] [k1 0
0 1]

which shows that multiplication by𝐴 causes a compression or expansion of the unit square
by a factor of k1 in the x-direction followed by an expansion or compression of the unit square
by a factor of k2 in the y-direction.

(1, 1)

(–1, –1)

y

x

FIGURE 8.6.7

EXAMPLE 5 | Reflection About the Origin

As illustrated in Figure 8.6.7, multiplication by the matrix

𝐴 = [−1 0
0 −1]

has the geometric effect of reflecting the unit square about the origin. Note, however, that
the matrix equation

𝐴 = [−1 0
0 −1] = [−1 0

0 1] [
1 0
0 −1]

together with Table 1 shows that the same result can be obtained by first reflecting the unit
square about the x-axis and then reflecting that result about the y-axis. You should be able to
see this as well from Figure 8.6.7.
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EXAMPLE 6 | Reflection About the Line y = –x

We leave it for you to verify that multiplication by the matrix

𝐴 = [ 0 −1
−1 0]

reflects the unit square about the line y = −x (Figure 8.6.8).

(1, 1)

(–1, –1)

y

x

FIGURE 8.6.8

Decomposing Invertible Matrix Transformations
Our next objective is to show that all invertible matrix transformations of 𝑅2 are express-
ible as compositions of compressions, expansions, reflections, and shears, so in this sense
these four simple transformations are the building blocks of even the most complicated
invertible matrix transformations of 𝑅2. We begin with the following theorem.

Theorem 8.6.2

If 𝐸 is an elementary matrtix, then 𝑇𝐸 ∶𝑅2 → 𝑅2 is one of the following:
(a) A shear along a coordinate axis.
(b) A reflection about y = x.
(c) A compression along a coordinate axis.
(d) An expansion along a coordinate axis.
(e) A reflection about a coordinate axis.
(𝑓) A compression or expansion along a coordinate axis followed by a reflection

about a coordinate axis.

Proof Because a 2 × 2 elementary matrix results from performing a single elementary
row operation on the 2 × 2 identity matrix, such a matrix must have one of the following
forms (verify):

[1 0
k 1], [1 k

0 1], [0 1
1 0], [k 0

0 1], [1 0
0 k]

The first two matrices represent shears along coordinate axes, and the third represents a
reflection about y = x. If k > 0, the last two matrices represent compressions or expan-
sions along coordinate axes, depending on whether 0 ≤ k < 1 or k > 1. If k < 0, and if we
express k in the form k = −k1, where k1 > 0, then the last two matrices can be written as

[k 0
0 1] = [−k1 0

0 1] = [−1 0
0 1] [

k1 0
0 1] (1)

[1 0
0 k] = [1 0

0 −k1
] = [1 0

0 −1] [
1 0
0 k1

] (2)

Since k1 > 0, the product in (1) represents a compression or expansion along the
x-axis followed by a reflection about the y-axis, and (2) represents a compression or expan-
sion along the y-axis followed by a reflection about the x-axis. In the case where k = −1,
transformations (1) and (2) are simply reflections about the y-axis and x-axis,
respectively.
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We know from Theorem 1.5.3(d) that an invertible matrix can be expressed as a prod-
uct of elementary matrices, so Theorem 8.6.2 implies the following result.

Theorem 8.6.3

If 𝑇𝐴 ∶𝑅2 → 𝑅2 is multiplication by an invertible matrix 𝐴, then the geometric
effect of 𝑇𝐴 is the same as an appropriate succession of shears, compressions, expan-
sions, and reflections.

The next example will illustrate how Theorems 8.6.2 and 8.6.3 together with
Tables 1 through 5 can be used to analyze the geometric effect of multiplication by a 2 × 2
invertible matrix.

EXAMPLE 7 | Decomposing a Matrix Operator

In Example 2 we illustrated the effect on the unit square of multiplication by

𝐴 = [0 1
2 1]

(seeFigure 8.6.3). Express thismatrix as a product of elementarymatrices, and then describe
the effect ofmultiplication by thematrix𝐴 in terms of shears, compressions, expansions, and
reflections.

Solution The matrix𝐴 can be reduced to the identity matrix as follows:

[0 1
2 1]⟶ [2 1

0 1]⟶ [1
1
2

0 1
]⟶ [1 0

0 1]

�

Interchange
the first and
second rows.

�

Multiply the
first row by 12 .

�

Add− 1
2 times

the second row
to the first.

These three successive row operations can be performed bymultiplying𝐴 on the left succes-
sively by

𝐸1 = [
0 1
1 0

] , 𝐸2 = [
1
2 0
0 1

] , 𝐸3 = [
1 − 1

2
0 1

]

Inverting these matrices and using Formula (4) of Section 1.5 yields

𝐴 = [
0 1
2 1

] = 𝐸−1
1 𝐸−1

2 𝐸−1
3 = [

0 1
1 0

] [
2 0
0 1

] [
1 1

2
0 1

]

Reading from right to left we can now see that the geometric effect of multiplying by 𝐴 is
equivalent to successively

1. shearing by a factor of 12 in the x-direction;
2. expanding by a factor of 2 in the x-direction;
3. reflecting about the line y = x.

This is illustrated in Figure 8.6.9, whose end result agrees with that in Example 2.
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y

x

y

x

y

x

(1, 1)

(1, 3)

(1, 1)

(0, 0)

(0, 2)

y = xy

x

(3, 1)

y = x

(   , 1)3
2

FIGURE 8.6.9

Remark Translations in 𝑅2 are important operations in computer graphics, but they are
not linear transformations (Example 8 of Section 8.1) and hence cannot be accomplished
using 2 × 2 matrices as multipliers. A method for performing translations using 3 × 3
matrices is discussed in Supplementary Exercise 26.

Rotations in R3
A rotation of vectors in 𝑅3 is commonly described in relation to a line through the origin
called the axis of rotation and a unit vector u along that line (Figure 8.6.10a). The unit
vector and what is called the right-hand rule can be used to establish a sign for the angle
of rotation by cupping thefingers of your right hand so they curl in the direction of rotation
and observing the direction of your thumb. If your thumb points in the direction ofu, then
the angle of rotation is regarded to be positive relative to u, and if it points in the direction
opposite to u, then it is regarded to be negative relative to u (Figure 8.6.10b).

z

y

x

lx

Axis of rotation

(a)  Angle of rotation

z

y

x

u

Positive
rotation

(b)  Right-hand rule

z

y

x

u

Negative
rotation

w

θ

FIGURE 8.6.10

For rotations about the coordinate axes in 𝑅3, we will take the unit vectors to be i, j,
and k, in which case an angle of rotation will be positive if it is counterclockwise looking
toward the origin along the positive coordinate axis and will be negative if it is clockwise.
Table 7 shows the standard matrices for the rotation operators on 𝑅3 that rotate each
vector about one of the coordinate axes through an angle 𝜃. You will find it instructive to
compare these matrices to those in Table 5 of Section 1.8.

Yaw, Pitch, and Roll
In aeronautics and astronautics, the orientation of an aircraft
or space shuttle relative to an xyz-coordinate system is often
described in terms of angles called yaw, pitch, and roll. If, for
example, an aircraft is flying along the y-axis and the xy-plane
defines the horizontal, then the aircraft’s angle of rotation about
the z-axis is called the yaw, its angle of rotation about the x-
axis is called the pitch, and its angle of rotation about the y-
axis is called the roll. A combination of yaw, pitch, and roll
can be achieved by a single rotation about some axis through
the origin. This is, in fact, how a space shuttle makes attitude
adjustments—it doesn’t perform each rotation separately; it cal-
culates one axis, and rotates about that axis to get the correct ori-

entation. Such rotation maneuvers are used to align an antenna,
point the nose toward a celestial object, or position a payload bay
for docking.

Roll

Yaw

Pitch

z

x
y
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TABLE 7

Operator Illustration Rotation Equations Standard Matrix

Counterclockwise
rotation about the
positive x-axis
through an
angle 𝜃

z

y

x

w

x
θ

w1 = x
w2 = y cos𝜃 − z sin𝜃
w3 = y sin𝜃 + z cos𝜃 [

1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos𝜃

]

Counterclockwise
rotation about the
positive y-axis
through an
angle 𝜃

z

y

x w

x

θ

w1 = x cos𝜃 + z sin𝜃
w2 = y
w3 = −x sin𝜃 + z cos𝜃

[
cos𝜃 0 sin𝜃
0 1 0

− sin𝜃 0 cos𝜃
]

Counterclockwise
rotation about the
positive z-axis
through an
angle 𝜃

z

y

x

wx

θ

w1 = x cos𝜃 − y sin𝜃
w2 = x sin𝜃 + y cos𝜃
w3 = z

[
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

]

For completeness, we note that the standard matrix for a counterclockwise rotation
through an angle 𝜃 about an axis in 𝑅3, which is determined by an arbitrary unit vector
u = (a, b, c) that has its initial point at the origin, is

[
a2(1 − cos 𝜃) + cos 𝜃 ab(1 − cos 𝜃) − c sin 𝜃 ac(1 − cos 𝜃) + b sin 𝜃
ab(1 − cos 𝜃) + c sin 𝜃 b2(1 − cos 𝜃) + cos 𝜃 bc(1 − cos 𝜃) − a sin 𝜃
ac(1 − cos 𝜃) − b sin 𝜃 bc(1 − cos 𝜃) + a sin 𝜃 c2(1 − cos 𝜃) + cos 𝜃

] (3)

The derivation can be found in the book Principles of Interactive Computer Graphics, by
W.M. Newman and R. F. Sproull (NewYork:McGraw-Hill, 1979). Youmay find it instruc-
tive to derive the results in Table 7 as special cases of this more general result.

Exercise Set 8.6

1. Use themethod of Example 1 to find an equation for the image
of the line y = 4x under multiplication by the matrix

𝐴 = [5 2
2 1]

2. Use themethod of Example 1 to find an equation for the image
of the line y = −4x+ 3 under multiplication by the matrix

𝐴 = [4 −3
3 −2]

In Exercises 3–4, find an equation for the image of the line y = 2x
that results from the stated transformation.
3. A shear by a factor 3 in the x-direction.

4. A compression with factor 1
2 in the y-direction.

In Exercises 5–6, sketch the image of the unit square under multipli-
cation by the given invertible matrix. As in Example 2, number the
edges of the unit square and its image so it is clear how those edges
correspond.

5. [3 −1
1 −2] 6. [ 2 1

−1 2]
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In each part of Exercises 7–8, find the standard matrix for a single
operator that performs the stated succession of operations.

7. a. Compresses by a factor of 12 in the x-direction, then expands
by a factor of 5 in the y-direction.

b. Expands by a factor of 5 in the y-direction, then shears by a
factor of 2 in the y-direction.

c. Reflects about y = x, then rotates through an angle of 180∘
about the origin.

8. a. Reflects about the y-axis, then expands by a factor of 5 in
the x-direction, and then reflects about y = x.

b. Rotates through 30∘ about the origin, then shears by a fac-
tor of−2 in the y-direction, and then expands by a factor of
3 in the y-direction.

In each part of Exercises 9–10, determine whether the stated opera-
tors commute.
9. a. A reflection about the x-axis and a compression in the

x-direction with factor 1
3 .

b. A reflection about the line y = x and an expansion in the
x-direction with factor 2.

10. a. A shear in the y-direction by a factor 1
4 and a shear in the

y-direction by a factor 3
5 .

b. A shear in the y-direction by a factor 1
4 and a shear in the

x-direction by a factor 3
5 .

In Exercises 11–14, express the matrix as a product of elementary
matrices, and then describe the effect of multiplication by𝐴 in terms
of shears, compressions, expansions, and reflections.

11. 𝐴 = [4 4
0 −2] 12. 𝐴 = [1 4

2 9]

13. 𝐴 = [0 −2
4 0] 14. 𝐴 = [1 −3

4 6]

In each part of Exercises 15–16, describe, in words, the effect on the
unit square of multiplication by the given diagonal matrix.

15. a. 𝐴 = [3 0
0 1] b. 𝐴 = [1 0

0 −5]

16. a. 𝐴 = [−2 0
0 1] b. 𝐴 = [−3 0

0 −1]

17. a. Show that multiplication by

𝐴 = [3 1
6 2]

maps each point in the plane onto the line y = 2x.

b. It follows from part (a) that the noncollinear points (1, 0),
(0, 1), (−1, 0) are mapped onto a line. Does this violate
part (e) of Theorem 8.6.1?

18. Find the matrix for a shear in the x-direction that transforms
the triangle with vertices (0, 0), (2, 1), and (3, 0) into a right
triangle with the right angle at the origin.

19. In accordance with part (c) of Theorem 8.6.1, show that
multiplication by the invertible matrix

𝐴 = [3 2
1 1]

maps the parallel lines y = 3x+ 1 and y = 3x− 2 into parallel
lines.

20. Draw a figure that shows the image of the triangle with ver-
tices (0, 0), (1, 0), and (0.5, 1) under a shear by a factor of 2 in
the x-direction.

21. a. Draw a figure that shows the image of the triangle with ver-
tices (0, 0), (1, 0), and (0.5, 1) under multiplication by

𝐴 = [1 −1
1 1]

b. Find a succession of shears, compressions, expansions, and
reflections that produces the same image.

22. Find the endpoints of the line segment that results when the
line segment from 𝑃(1, 2) to𝑄(3, 4) is transformed by
a. a compression with factor 1

2 in the y-direction.

b. a rotation of 30∘ about the origin.

23. Draw a figure showing the italicized letter “T” that results
when the letter in the accompanying figure is sheared by a fac-
tor 1

4 in the x-direction.

x

y

(0, .90)

1

1

(.45, 0) (.55, 0)

FIGURE Ex-23

24. Can an invertible matrix operator on 𝑅2 map a square region
into a triangular region? Justify your answer.

25. Find the image of the triangle with vertices (0, 0), (1, 1), (2, 0)
under multiplication by

𝐴 = [2 −1
0 0]

Does your answer violate part (e) of Theorem 8.6.1? Explain.

26. In 𝑅3 the shear in the xy-direction by a factor 𝒌 is the
matrix transformation that moves each point (x, y, z) parallel
to the xy-plane to the new position (x+ kz, y+ kz, z). (See the
accompanying figure.)

a. Find the standard matrix for the shear in the xy-direction
by a factor k.

b. How would you define the shear in the xz-direction by
a factor k and the shear in the yz-direction by a fac-
tor k? What are the standard matrices for these matrix
transformations?
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z

y

x

(x, y, z)

z

y

x

(x + kz, y + kz , z)

FIGURE Ex-26

In Exercises 27–28, find the standard matrix for the operator
𝑇∶𝑅3→𝑅3 that performs the stated rotation.
27. a. rotates each vector 30∘ counterclockwise about the z-axis

(looking along the positive z-axis toward the origin).

b. rotates each vector 45∘ clockwise about the x-axis (looking
along the positive x-axis toward the origin).

28. a. rotates each vector 90∘ counterclockwise about the y-axis
(looking along the positive y-axis toward the origin).

b. rotates each vector 90∘ clockwise about the positive z-axis
looking toward the origin.

29. Use Formula (3) to find the standard matrix for a rotation
of 180∘ about the axis determined by the vector v = (2, 2, 1).
[Note: Formula (3) requires that the vector defining the axis of
rotation have length 1.]

30. Use Formula (3) to find the standard matrix for a rotation
of 𝜋/2 radians about the axis determined by v = (1, 1, 1).
[Note: Formula (3) requires that the vector defining the axis
of rotation have length 1.]

31. Use Formula (3) to derive the standard matrices for the rota-
tions about the x-axis, the y-axis, and the z-axis through an
angle of 90∘ in 𝑅3.

32. Euler’s Axis of Rotation Theorem states: If 𝐴 is an orthogo-
nal 3 × 3 matrix for which det(𝐴) = 1, then multiplication by
𝐴 is a rotation about a line through the origin in 𝑅3. Moreover,
if u is a unit vector along this line, then𝐴u = u.
a. Confirm that the following matrix 𝐴 is orthogonal, that

det(𝐴) = 1, and that there is a unit vector u for which
𝐴u = u.

𝐴 =
⎡
⎢
⎢
⎢
⎣

2
7

3
7

6
7

3
7 − 6

7
2
7

6
7

2
7 − 3

7

⎤
⎥
⎥
⎥
⎦

b. Use Formula (3) to prove that if 𝐴 is a 3 × 3 orthogonal
matrix for which det(𝐴) = 1, then the angle of rotation
resulting from multiplication by 𝐴 satisfies the equation
cos𝜃 = 1

2 [tr(𝐴) − 1]. Use this result to find the angle of
rotation for the rotation matrix in part (a).

Working with Proofs

33. Prove part (a) of Theorem 8.6.1. [Hint: A line in the plane has
an equation of the form𝐴x+𝐵y+𝐶 = 0, where𝐴 and𝐵 are
not both zero. Use the method of Example 1 to show that the
image of this line undermultiplication by the invertiblematrix

[a b
c d]

has the equation𝐴′x+𝐵′y+𝐶 = 0, where

𝐴′ = (d𝐴− c𝐵)/(ad− bc)
and

𝐵′ = (−b𝐴+ a𝐵)/(ad− bc)
Then show that 𝐴′ and 𝐵′ are not both zero to conclude that
the image is a line.

34. Use the hint in Exercise 33 to prove parts (b) and (c) of Theo-
rem 8.6.1.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. The image of the unit square under a one-to-one matrix

operator is a square.

b. A2 × 2 invertiblematrix operator has the geometric effect
of a succession of shears, compressions, expansions, and
reflections.

c. The image of a line under an invertible matrix operator is
a line.

d. Every reflection operator on 𝑅2 is its own inverse.

e. The matrix [1 1
1 −1] represents reflection about a line.

f. The matrix [1 −2
2 1] represents a shear.

g. The matrix [1 0
0 3] represents an expansion.

Working with Technology
T1. a. Find the standard matrix for the linear operator on 𝑅3

that performs a counterclockwise rotation of 47∘ about the
x-axis, followed by a counterclockwise rotation of 68∘
about the y-axis, followed by a counterclockwise rotation
of 33∘ about the z-axis.

b. Find the image of the point (1, 1, 1) under the operator in
part (a).

T2. Find the standard matrix for the linear operator on 𝑅2 that
first reflects each point in the plane about the line through
the origin that makes an angle of 27∘ with the positive x-axis
and then projects the resulting point orthogonally onto the
line through the origin that makes an angle of 51∘ with the
positive x-axis.
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Chapter 8 Supplementary Exercises
1. Let 𝐴 be an n × n matrix, 𝐵 a nonzero n × 1 matrix, and x a

vector in𝑅n expressed in matrix notation. Is𝑇(x) = 𝐴x+𝐵 a
linear operator on 𝑅n? Justify your answer.

2. Let
𝐴 = [cos𝜃 − sin𝜃

sin𝜃 cos𝜃]

a. Show that

𝐴2 = [cos 2𝜃 − sin 2𝜃
sin 2𝜃 cos 2𝜃] and 𝐴3 = [cos 3𝜃 − sin 3𝜃

sin 3𝜃 cos 3𝜃]

b. Based on your answer to part (a), make a guess at the form
of the matrix𝐴n for any positive integer n.

c. By considering the geometric effect of multiplication by 𝐴,
obtain the result in part (b) geometrically.

3. Devise a method for finding two n × n matrices that are not
similar. Use your method to find two 3 × 3 matrices that are
not similar.

4. Let v1, v2, . . . , vm be fixed vectors in 𝑅n, and let 𝑇∶𝑅n → 𝑅m

be the function defined by 𝑇(x) = (x · v1, x · v2, . . . , x · vm),
where x · vi is the Euclidean inner product on 𝑅n.

a. Show that 𝑇 is a linear transformation.

b. Show that the matrix with row vectors v1, v2, . . . , vm is the
standard matrix for 𝑇.

5. Let {e1, e2, e3, e4} be the standard basis for the vector space 𝑅4,
and let 𝑇∶𝑅4 → 𝑅3 be the linear transformation for which

𝑇(e1) = (1, 2, 1), 𝑇(e2) = (0, 1, 0),
𝑇(e3) = (1, 3, 0), 𝑇(e4) = (1, 1, 1)

a. Find bases for the range and kernel of 𝑇.
b. Find the rank and nullity of 𝑇.

6. Suppose that vectors in 𝑅3 are denoted by 1 × 3 matrices, and
define 𝑇∶𝑅3 → 𝑅3 by

𝑇([x1 x2 x3]) = [x1 x2 x3] [
−1 2 4
3 0 1
2 2 5

]

a. Find a basis for the kernel of 𝑇.
b. Find a basis for the range of 𝑇.

7. Let 𝐵 = {v1, v2, v3, v4} be a basis for a vector space 𝑉, and let
𝑇∶𝑉 → 𝑉 be the linear operator for which

𝑇(v1) = v1 + v2 + v3 + 3v4
𝑇(v2) = v1 − v2 + 2v3 + 2v4
𝑇(v3) = 2v1 − 4v2 + 5v3 + 3v4
𝑇(v4) = −2v1 + 6v2 − 6v3 − 2v4

a. Find the rank and nullity of 𝑇.
b. Determine whether 𝑇 is one-to-one.

8. Let𝑉 and𝑊 be vector spaces, let𝑇,𝑇1, and𝑇2 be linear trans-
formations from 𝑉 to 𝑊, and let k be a scalar. Define new
transformations, 𝑇1 +𝑇2 and k𝑇, by the formulas

(𝑇1 +𝑇2)(x) = 𝑇1(x) + 𝑇2(x)
(k𝑇)(x) = k(𝑇(x))

a. Show that (𝑇1 +𝑇2)∶ 𝑉 →𝑊 and k𝑇∶𝑉 →𝑊 are both
linear transformations.

b. Show that the set of all linear transformations from𝑉 to𝑊
with the operations in part (a) is a vector space.

9. Let𝐴 and 𝐵 be similar matrices. Prove:

a. 𝐴𝑇 and 𝐵𝑇 are similar.

b. If𝐴 and 𝐵 are invertible, then𝐴−1 and 𝐵−1 are similar.

10. (Fredholm Alternative Theorem) Let 𝑇∶𝑉 → 𝑉 be a linear
operator on an n-dimensional vector space. Prove that exactly
one of the following statements holds:
i. The equation 𝑇(x) = b has a solution for all vectors

b in𝑉.
ii. Nullity of 𝑇 > 0.

11. Let 𝑇∶𝑀22 →𝑀22 be the linear operator defined by

𝑇(𝑋) = [1 1
0 0]𝑋 +𝑋 [0 0

1 1]

Find the rank and nullity of 𝑇.

12. Prove: If𝐴 and 𝐵 are similar matrices, and if 𝐵 and𝐶 are also
similar matrices, then𝐴 and 𝐶 are similar matrices.

13. Let 𝐿∶𝑀22 →𝑀22 be the linear operator that is defined by
𝐿(𝑀) = 𝑀𝑇. Find the matrix for 𝐿 with respect to the stan-
dard basis for𝑀22.

14. Let 𝐵 = {u1,u2,u3} and 𝐵′ = {v1, v2, v3} be bases for a vector
space𝑉, and let

𝑃 = [
2 −1 3
1 1 4
0 1 2

]

be the transition matrix from 𝐵′ to 𝐵.
a. Express v1, v2, v3 as linear combinations of u1, u2, u3.
b. Express u1, u2, u3 as linear combinations of v1, v2, v3.

15. Let 𝐵 = {u1,u2,u3} be a basis for a vector space 𝑉, and let
𝑇∶𝑉 → 𝑉 be a linear operator for which

[𝑇]𝐵 = [
−3 4 7
1 0 −2
0 1 0

]

Find [𝑇]𝐵′ , where 𝐵′ = {v1, v2, v3} is the basis for 𝑉 defined
by

v1 = u1, v2 = u1 + u2, v3 = u1 + u2 + u3

16. Show that the matrices

[ 1 1
−1 4] and [2 1

1 3]

are similar but that

[ 3 1
−6 −2] and [−1 2

1 0]

are not.
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17. Suppose that 𝑇∶ 𝑉 → 𝑉 is a linear operator, and 𝐵 is a basis
for𝑉 for which

[𝑇(x)]𝐵 = [
x1 − x2 + x3

x2
x1 − x3

] if [x]𝐵 = [
x1
x2
x3
]

Find [𝑇]𝐵.

18. Let𝑇∶ 𝑉 → 𝑉 be a linear operator. Prove that𝑇 is one-to-one
if and only if det(𝑇) ≠ 0.

19. (Calculus required)
a. Show that if f = 𝑓(x) is twice differentiable, then the func-

tion𝐷∶ 𝐶2(−∞,∞) → 𝐹(−∞,∞) defined by the formula
𝐷(f ) = 𝑓″(x) is a linear transformation.

b. Find a basis for the kernel of𝐷.
c. Show that the set of functions satisfying the equa-

tion 𝐷(f ) = 𝑓(x) is a two-dimensional subspace of
𝐶2(−∞,∞), and find a basis for this subspace.

20. Let 𝑇∶ 𝑃2 → 𝑅3 be the function defined by the formula

𝑇(p(x)) = [
p(−1)
p(0)
p(1)

]

a. Find 𝑇(x2 + 5x+ 6).
b. Show that 𝑇 is a linear transformation.

c. Show that 𝑇 is one-to-one.

d. Find 𝑇−1(0, 3, 0).
e. Sketch the graph of the polynomial in part (d).

21. Let x1, x2, and x3 be distinct real numbers such that

x1 < x2 < x3
and let 𝑇∶ 𝑃2 → 𝑅3 be the function defined by the formula

𝑇(p(x)) = [
p(x1)
p(x2)
p(x3)

]

a. Show that 𝑇 is a linear transformation.

b. Show that 𝑇 is one-to-one.

c. Verify that if a1, a2, and a3 are any real numbers, then

𝑇−1([
a1
a2
a3
]) = a1𝑃1(x) + a2𝑃2(x) + a3𝑃3(x)

where
𝑃1(x) =

(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

𝑃2(x) =
(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

𝑃3(x) =
(x− x1)(x− x2)
(x3 − x1)(x3 − x2)

d. What relationship exists between the graph of the function

a1𝑃1(x) + a2𝑃2(x) + a3𝑃3(x)

and the points (x1, a1), (x2, a2), and (x3, a3)?

22. (Calculus required) Let p(x) and q(x) be continuous func-
tions, and let 𝑉 be the subspace of 𝐶(−∞,∞) consisting of
all twice differentiable functions. Define 𝐿∶ 𝑉 → 𝑉 by

𝐿(y(x)) = y″(x) + p(x)y′(x) + q(x)y(x)

a. Show that 𝐿 is a linear transformation.
b. Consider the special case where p(x) = 0 and q(x) = 1.

Show that the function

𝜙(x) = c1 sin x+ c2 cos x

is in the kernel of 𝐿 for all real values of c1 and c2.

23. (Calculus required) Let 𝐷∶ 𝑃n → 𝑃n be the differentiation
operator𝐷(p) = p′. Show that the matrix for𝐷 relative to the
basis 𝐵 = {1, x, x2, . . . , xn} is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 ⋅ ⋅ ⋅ 0
0 0 2 0 ⋅ ⋅ ⋅ 0
0 0 0 3 ⋅ ⋅ ⋅ 0
...

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ n
0 0 0 0 ⋅ ⋅ ⋅ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

24. (Calculus required) It can be shown that for any real number
c, the vectors

1, x− c, (x− c)2
2! , . . . , (x− c)n

n!
form a basis for𝑃n. Find thematrix for the differentiation oper-
ator of Exercise 23 with respect to this basis.

25. (Calculus required) Let 𝐽 ∶ 𝑃n → 𝑃n+1 be the integration
transformation defined by

𝐽(p) = ∫
x

0
(a0 + a1t+ ⋅ ⋅ ⋅ + antn) dt

= a0x+
a1
2
x2 + ⋅ ⋅ ⋅ +

an
n+ 1

xn+1

where p = a0 + a1x+ ⋅ ⋅ ⋅ + anxn. Find the matrix for 𝐽 with
respect to the standard bases for 𝑃n and 𝑃n+1.

26. This exercise illustrates a method for using a matrix trans-
formation in 𝑅3 to translate a point (x, y) in 𝑅2 to a point
(x+ x0, y+ y0) .
a. Let

v = [
x
y
1
] and w = [

x+ x0
y+ y0
1

]

Find a 3 × 3 matrix 𝑀 for which 𝑀v = w. The first top
two entries inw are the coordinates of the translated point.

b. Use the result in part (a) to find a 3 × 3matrix𝑀 that trans-
lates the point (2, 1) to the point (3, 4).
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Introduction
This chapter is concerned with “numerical methods” of linear algebra, an area of study
that encompasses techniques for solving large-scale linear systems and for finding numer-
ical approximations of various kinds. It is not our objective to discuss algorithms and tech-
nical issues in fine detail since there are many excellent books on the subject. Rather, we
will be concerned with introducing some of the basic ideas and exploring two important
contemporary applications that rely heavily on numerical ideas—singular value decom-
position and data compression. A computing utility such as MATLAB, Mathematica, or
Maple is recommended for Sections 9.2 to 9.5.

9.1 LU-Decompositions
Up to now, we have focused on twomethods for solving linear systems, Gaussian elimina-
tion (reduction to row echelon form) andGauss–Jordan elimination (reduction to reduced
row echelon form). While these methods are fine for the small-scale problems in this text,
they are not suitable for large-scale problems in which computer roundoff error, memory
usage, and speed are concerns. In this sectionwewill discuss amethod for solving a linear
system of n equations in n unknowns that is based on factoring its coefficientmatrix into a
product of lower andupper triangularmatrices. Thismethod, called “LU-decomposition,”
is the basis for many computer algorithms in common use.

Solving Linear Systems by Factoring
Our first goal in this section is to show how to solve a linear system 𝐴x = b of n
equations in n unknowns by factoring the coefficient matrix 𝐴. We begin with some
terminology.
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Definition 1

A factorization of a square matrix 𝐴 as

𝐴 = 𝐿𝑈 (1)

where thematrix 𝐿 is lower triangular and thematrix𝑈 is upper triangular, is called
an LU-decomposition (or LU-factorization) of 𝐴.

Before we consider the problem of obtaining an 𝐿𝑈-decomposition, we will explain
how such decompositions can be used to solve linear systems, and we will give an illus-
trative example.

The Method of LU-Decomposition
Step 1. Rewrite the system𝐴x = b as

𝐿𝑈x = b (2)

Step 2.Make the substitution
y = 𝑈x (3)

then rewrite (2) as 𝐿y = b and solve this system for y.

Step 3. Substitute y in (3) and solve for x.

This procedure, which is illustrated in Figure 9.1.1, replaces the single linear system
𝐴x = b by a pair of linear systems

𝑈x = y
𝐿y = b

that must be solved in succession. However, since each of these systems has a triangular
coefficient matrix, it generally turns out to involve no more computation to solve the two
systems than to solve the original system directly.

Solve Ax = b

Solve L
y = b

Solve Ux = y

x b

y

FIGURE 9.1.1

Historical Note

In 1979 an important library of machine-independent linear algebra programs called
LINPACK was developed at Argonne National Laboratories. Many of the programs in that
library use the decomposition methods that we will study in this section. Variations of the
LINPACK routines are used in many computer programs, including MATLAB, Mathematica,
and Maple.
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EXAMPLE 1 | Solving Ax = b by LU-Decomposition

Later in this section we will derive the factorization

[
2 6 2

−3 −8 0
4 9 2

] = [
2 0 0

−3 1 0
4 −3 7

] [
1 3 1
0 1 3
0 0 1

]

𝐴 = 𝐿 𝑈

(4)

Use this result to solve the linear system

[
2 6 2

−3 −8 0
4 9 2

] [
x1
x2
x3
] = [

2
2
3
]

𝐴 x = b

From (4) we can rewrite this system as

[
2 0 0

−3 1 0
4 −3 7

] [
1 3 1
0 1 3
0 0 1

] [
x1
x2
x3
] = [

2
2
3
]

𝐿 𝑈 x = b

(5)

As specified in Step 2 above, let us define y1, y2, and y3 by the equation

[
1 3 1
0 1 3
0 0 1

] [
x1
x2
x3
] = [

y1
y2
y3
]

𝑈 x = y

(6)

which allows us to rewrite (5) as

[
2 0 0

−3 1 0
4 −3 7

] [
y1
y2
y3
] = [

2
2
3
]

𝐿 y = b

(7)

or equivalently as
2y1 = 2

−3y1 + y2 = 2
4y1 − 3y2 + 7y3 = 3

This system can be solved by a procedure that is similar to back substitution, except that we
solve the equations from the top down instead of from the bottom up. This procedure, called
forward substitution, yields

y1 = 1, y2 = 5, y3 = 2

(verify). As indicated in Step 3 above, we substitute these values into (6), which yields the
linear system

[
1 3 1
0 1 3
0 0 1

] [
x1
x2
x3
] = [

1
5
2
]
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or, equivalently,
x1 + 3x2 + x3 = 1

x2 + 3x3 = 5
x3 = 2

Solving this system by back substitution yields

x1 = 2, x2 = −1, x3 = 2

(verify).

Finding LU-Decompositions
Thepreceding example illustrates that once an𝐿𝑈-decomposition of𝐴 is obtained, a linear
system𝐴x = b can be solved by one forward substitution and one backward substitution.
The main advantage of this method over Gaussian and Gauss–Jordan elimination is that
it “decouples” 𝐴 from b so that for solving a sequence of linear systems with the same
coefficient matrix 𝐴, say

𝐴x = b1, 𝐴x = b2, . . . , 𝐴x = bk

the work in factoring 𝐴 need only be performed once, after which it can be reused for
each system in the sequence. Such sequences occur in problems in which the matrix 𝐴
remains fixed but the vector b varies with time.

Historical Note

AlanMathison
Turing
(1912–1954)

Although the ideas were known earlier, credit for popularizing
the matrix formulation of the LU-decomposition is often given to
the British mathematician Alan Turing for his work on the sub-
ject in 1948. Turing, one of the great geniuses of the twentieth
century, is the founder of the field of artificial intelligence. Among
hismany accomplishments in that field, he developed the concept
of an internally programmed computer before the practical tech-
nology had reached the point where the construction of such a
machine was possible. During World War II Turing was secretly
recruited by the British government’s Code and Cypher School
at Bletchley Park to help break the Nazi Enigma codes; it was
Turing’s statistical approach that provided the breakthrough. In
addition to being a brilliant mathematician, Turing was a world-
class runner who competed successfully with Olympic-level com-
petition. Sadly, Turing, a homosexual, was tried and convicted of
“gross indecency” in 1952, in violation of the then-existing British
statutes. Depressed, he committed suicide at age 41 by eating an
apple laced with cyanide.

[Image: Science Source/Science Source]
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Not every squarematrix has an 𝐿𝑈-decomposition. However, if it is possible to reduce
a square matrix 𝐴 to row echelon form by Gaussian elimination without performing any
row interchanges, then 𝐴 will have an 𝐿𝑈-decomposition, though it may not be unique.
To see why this is so, assume that 𝐴 has been reduced to a row echelon form 𝑈 using a
sequence of row operations that does not include row interchanges. We know from The-
orem 1.5.1 that these operations can be accomplished by multiplying 𝐴 on the left by
an appropriate sequence of elementary matrices; that is, there exist elementary matrices
𝐸1, 𝐸2, . . . , 𝐸k such that

𝐸k ⋅ ⋅ ⋅ 𝐸2𝐸1𝐴 = 𝑈 (8)

Since elementary matrices are invertible, we can solve (8) for 𝐴 as

𝐴 = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k 𝑈

or more briefly as
𝐴 = 𝐿𝑈 (9)

where
𝐿 = 𝐸−11 𝐸−12 ⋅ ⋅ ⋅ 𝐸−1k (10)

We now have all of the ingredients to prove the following result.

Theorem 9.1.1

If 𝐴 is a square matrix that can be reduced to a row echelon form 𝑈 by Gaussian
elimination without row interchanges, then 𝐴 can be factored as 𝐴 = 𝐿𝑈, where 𝐿
is a lower triangular matrix.

Proof Let 𝐿 and𝑈 be the matrices in Formulas (10) and (8), respectively. The matrix𝑈 is
upper triangular because it is a row echelon form of a square matrix (so all entries below
its main diagonal are zero). To prove that 𝐿 is lower triangular, it suffices to prove that
each factor on the right side of (10) is lower triangular, since Theorem 1.7.1(b) will then
imply that 𝐿 itself is lower triangular. Since row interchanges are excluded, each 𝐸j results
either by adding a scalar multiple of one row of an identity matrix to a row below or by
multiplying one row of an identity matrix by a nonzero scalar. In either case, the resulting
matrix 𝐸j is lower triangular and hence so is 𝐸−1j by Theorem 1.7.1(d). This completes the
proof.

EXAMPLE 2 | An LU-Decomposition

Find an 𝐿𝑈-decomposition of

𝐴 = [
2 6 2

−3 −8 0
4 9 2

]

Solution To obtain an 𝐿𝑈-decomposition, 𝐴 = 𝐿𝑈, we will reduce 𝐴 to a row echelon
form𝑈 using Gaussian elimination and then calculate 𝐿 from (10). The steps are as follows:
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Reduction to
Row Echelon Form

Inverse of the 
Elementary Matrix

Elementary Matrix
Corresponding to
the Row Operation

Step 1.

1     0     0  

0     1     0

0   – 3    1

Step 2.

  1        3        1 

  0        1        3

  4        9        2

        0    0 

  0    1    0

  0    0    1

Step 3.

  1        3        1 

  0        1        3

  0      –3      –2

Step 4.

  1        3        1 

  0        1        3

  0        0        7

Step 5.

  1        3        1 

  0        1        3

  0        0        1

E1 = 

1
2   2    0    0 

  0    1    0

  0    0    1

E1   = –1

E2 = 

    1    0    0 

  –3    1    0

    0    0    1

    1    0    0 

    0    1    0

  –4    0    1

  1    0    0 

  3    1    0

  0    0    1

E2   = –1

E3 = 

    1    0    0 

    0    1    0

    4    0    1

E3   = –1

    1    0    0 

    0    1    0

    0    3    1

E4 = E4   =–1

E5 = 

= U

    1    0    0 

    0    1    0

    0    0    7

E5   = 

    1    0    0 

    0    1    0

    0    0

–1

1
7

(3 × row 1) + row 2

 × row 1

(−4 × row 1) + row 3

(3 × row 2) + row 3

1
2

 × row 31
7

Row Operation

4 9 2

–8–3 0

2 6 2

1 3 1

–3 –8 0

4 9 2

and, from (10),

𝐿 = [
2 0 0
0 1 0
0 0 1

][
1 0 0

−3 1 0
0 0 1

][
1 0 0
0 1 0
4 0 1

][
1 0 0
0 1 0
0 −3 1

][
1 0 0
0 1 0
0 0 7

]

= [
2 0 0

−3 1 0
4 −3 7

] (11)

so

[
2 6 2

−3 −8 0
4 9 2

] = [
2 0 0

−3 1 0
4 −3 7

][
1 3 1
0 1 3
0 0 1

]

is an 𝐿𝑈-decomposition of𝐴.
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Bookkeeping
As Example 2 shows, most of the work in constructing an 𝐿𝑈-decomposition is expended
in calculating 𝐿. However, all this work can be eliminated by some careful bookkeeping
of the operations used to reduce 𝐴 to 𝑈.

Because we are assuming that no row interchanges are required to reduce 𝐴 to 𝑈,
there are only two types of operations involved—multiplying a row by a nonzero constant,
and adding a scalarmultiple of one row to another. The first operation is used to introduce
the leading 1’s and the second to introduce zeros below the leading 1’s.

In Example 2, a multiplier of 1
2 was needed in Step 1 to introduce a leading 1 in the

first row, and a multiplier of 1
7 was needed in Step 5 to introduce a leading 1 in the third

row. No actual multiplier was required to introduce a leading 1 in the second row because
it was already a 1 at the end of Step 2, but for convenience let us say that the multiplier
was 1. Comparing these multipliers with the successive diagonal entries of 𝐿, we see that
these diagonal entries are precisely the reciprocals of the multipliers used to construct𝑈:

𝐿 = [
2⃝

−3
4

0
1⃝

−3

0
0
7⃝
] (12)

Also observe in Example 2 that to introduce zeros below the leading 1 in the first row, we
used the operations

add 3 times the first row to the second
add −4 times the first row to the third

and to introduce the zero below the leading 1 in the second row, we used the operation
add 3 times the second row to the third

Now note in (11) that in each position below the main diagonal of 𝐿, the entry is the
negative of the multiplier in the operation that introduced the zero in that position in 𝑈.
This suggests the following procedure for constructing an LU-decomposition of a square
matrix 𝐴, assuming that this matrix can be reduced to row echelon form without row
interchanges.

Procedure for Constructing an LU-Decomposition
Step 1. Reduce 𝐴 to a row echelon form 𝑈 by Gaussian elimination without row inter-

changes, keeping track of the multipliers used to introduce the leading 1’s and the
multipliers used to introduce the zeros below the leading 1’s.

Step 2. In each position along the main diagonal of 𝐿, place the reciprocal of the multiplier
that introduced the leading 1 in that position in𝑈.

Step 3. In each position below the main diagonal of 𝐿, place the negative of the multiplier
used to introduce the zero in that position in𝑈.

Step 4. Form the decomposition𝐴 = 𝐿𝑈.

EXAMPLE 3 | Constructing an LU-Decomposition

Find an 𝐿𝑈-decomposition of

𝐴 = [
6 −2 0
9 −1 1
3 7 5

]
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Solution We will reduce 𝐴 to a row echelon form 𝑈 and at each step we will fill in an
entry of 𝐿 in accordance with the four-step procedure above.

𝐴 = [
6
9
3

−2
−1
7

0
1
5
] [

• 0 0
• • 0
• • •

] • denotes an unknown
entry of 𝐿.

⎡
⎢
⎢
⎢
⎣

⃝1 − 1
3 0

9 −1 1
3 7 5

⎤
⎥
⎥
⎥
⎦

⟵multiplier= 1
6

[
6 0 0
• • 0
• • •

]

⎡
⎢
⎢
⎣

1 − 1
3 0

⃝0 2 1
⃝0 8 5

⎤
⎥
⎥
⎦
⟵multiplier= −9
⟵multiplier= −3

[
6 0 0
9 • 0
3 • •

]

⎡⎢⎢⎢
⎣

1 − 1
3 0

0 ⃝1 1
2

0 8 5

⎤⎥⎥⎥
⎦

⟵multiplier= 1
2 [

6 0 0
9 2 0
3 • •

]

⎡⎢⎢⎢
⎣

1 − 1
3 0

0 1 1
2

0 ⃝0 1

⎤⎥⎥⎥
⎦⟵multiplier= −8

[
6 0 0
9 2 0
3 8 •

]

𝑈 =
⎡⎢⎢⎢
⎣

1 − 1
3 0

0 1 1
2

0 0 ⃝1

⎤⎥⎥⎥
⎦⟵multiplier= 1

𝐿 = [
6 0 0
9 2 0
3 8 1

]
No actual operation is
performed here since
there is already a leading
1 in the third row.

Thus, we have constructed the 𝐿𝑈-decomposition

𝐴 = 𝐿𝑈 = [
6 0 0
9 2 0
3 8 1

]
⎡⎢⎢⎢
⎣

1 − 1
3 0

0 1 1
2

0 0 1

⎤⎥⎥⎥
⎦

We leave it for you to confirm this end result by multiplying the factors.

LU-Decompositions Are Not Unique
In general, 𝐿𝑈-decompositions are not unique. For example, if

𝐴 = 𝐿𝑈 = [
l11 0 0
l21 l22 0
l31 l32 l33

][
1 u12 u13
0 1 u23
0 0 1

]

and 𝐿 has nonzero diagonal entries (whichwill be true if𝐴 is invertible), thenwe can shift
the diagonal entries from the left factor to the right factor by writing

𝐴 =
⎡
⎢
⎢
⎣

1 0 0
l21/l11 1 0
l31/l11 l32/l22 1

⎤
⎥
⎥
⎦
[
l11 0 0
0 l22 0
0 0 l33

][
1 u12 u13
0 1 u23
0 0 1

]

=
⎡
⎢
⎢
⎣

1 0 0
l21/l11 1 0
l31/l11 l32/l22 1

⎤
⎥
⎥
⎦
[
l11 l11u12 l11u13
0 l22 l22u23
0 0 l33

]

which is another 𝐿𝑈-decomposition of 𝐴.
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LDU-Decompositions
The method we have given for computing 𝐿𝑈-decompositions may result in an “asym-
metry” in that the matrix 𝑈 has 1’s on the main diagonal but 𝐿 need not. However, if it
is preferred to have 1’s on the main diagonal of both the lower triangular factor and the
upper triangular factor, then we can “shift” the diagonal entries of 𝐿 to a diagonal matrix
𝐷 and write 𝐿 as

𝐿 = 𝐿′𝐷
where 𝐿′ is a lower triangularmatrix with 1’s on themain diagonal. For example, a general
3 × 3 lower triangularmatrixwith nonzero entries on themain diagonal can be factored as

[
a11 0 0
a21 a22 0
a31 a32 a33

] = [
1 0 0

a21/a11 1 0
a31/a11 a32/a22 1

] [
a11 0 0
0 a22 0
0 0 a33

]

𝐿 𝐿′ 𝐷

Note that the columns of 𝐿′ are obtained by dividing each entry in the corresponding col-

If desired, the diagonal
matrix and the upper
triangular matrix in (13)
can be multiplied to produce
an 𝐿𝑈-decomposition in
which the 1’s are on the
main diagonal of 𝐿 rather
than𝑈.

umn of 𝐿 by the diagonal entry in the column. Thus, for example, we can rewrite (4) as

[
2 6 2

−3 −8 0
4 9 2

] = [
2 0 0

−3 1 0
4 −3 7

] [
1 3 1
0 1 3
0 0 1

]

=
⎡
⎢
⎢
⎣

1 0 0
− 3
2 1 0
2 −3 1

⎤
⎥
⎥
⎦
[
2 0 0
0 1 0
0 0 7

] [
1 3 1
0 1 3
0 0 1

] (13)

One can prove that if 𝐴 is an invertible matrix that can be reduced to row echelon
form without row interchanges, then 𝐴 can be factored uniquely as

𝐴 = 𝐿𝐷𝑈

where 𝐿 is a lower triangular matrix with 1’s on themain diagonal,𝐷 is a diagonal matrix,
and𝑈 is an upper triangularmatrix with 1’s on themain diagonal. This is called theLDU-
decomposition (or LDU-factorization) of 𝐴.

PLU-Decompositions
Many computer algorithms for solving linear systems perform row interchanges to reduce
roundoff error, in which case the existence of an LU-decomposition is not guaranteed.
However, it is possible to work around this problem by “preprocessing” the coefficient
matrix 𝐴 so that the row interchanges are performed prior to computing the LU-
decomposition itself. The idea is to create a matrix 𝑄 (called a permutation matrix) by
multiplying, in sequence, those elementary matrices that produce the row interchanges
and then execute them by computing the product𝑄𝐴. This product can then be reduced to
row echelon formwithout row interchanges, so it is assured to have an LU-decomposition

𝑄𝐴 = 𝐿𝑈 (14)

Because the matrix 𝑄 is invertible (being a product of elementary matrices), the systems
𝐴x = b and𝑄𝐴x = 𝑄bwill have the same solutions. But it follows from (14) that the latter
system can be rewritten as 𝐿𝑈x = 𝑄b and hence can be solved using 𝐿𝑈-decomposition.

It is common to see Equation (14) expressed as

𝐴 = 𝑃𝐿𝑈 (15)

in which 𝑃 = 𝑄−1. This is called a PLU-decomposition or (PLU-factorization) of 𝐴.
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Exercise Set 9.1

1. Use the method of Example 1 and the 𝐿𝑈-decomposition

[ 3 −6
−2 5] = [ 3 0

−2 1] [
1 −2
0 1]

to solve the system

3x1 − 6x2 = 0
−2x1 + 5x2 = 1

2. Use the method of Example 1 and the 𝐿𝑈-decomposition

[
3 −6 −3
2 0 6

−4 7 4
] = [

3 0 0
2 4 0

−4 −1 2
][

1 −2 −1
0 1 2
0 0 1

]

to solve the system

3x1 − 6x2 − 3x3 = −3
2x1 + 6x3 = −22

−4x1 + 7x2 + 4x3 = 3

InExercises 3–6, findan𝐿𝑈-decomposition of the coefficientmatrix,
and then use the method of Example 1 to solve the system.

3. [ 2 8
−1 −1] [

x1
x2
] = [−2−2]

4. [−5 −10
6 5] [

x1
x2
] = [−1019]

5. [
2 −2 −2
0 −2 2

−1 5 2
][

x1
x2
x3
] = [

−4
−2
6
]

6. [
−3 12 −6
1 −2 2
0 1 1

][
x1
x2
x3
] = [

−33
7

−1
]

In Exercises 7–8, an 𝐿𝑈-decomposition of a matrix𝐴 is given.

a. Compute 𝐿−1 and𝑈−1.

b. Use the result in part (a) to find the inverse of𝐴.

7. 𝐴 =
⎡
⎢
⎢
⎣

2 −1 3
4 2 1

−6 −1 2

⎤
⎥
⎥
⎦
;

𝐴 = 𝐿𝑈 =
⎡
⎢
⎢
⎣

1 0 0
2 1 0

−3 −1 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 −1 3
0 4 −5
0 0 6

⎤
⎥
⎥
⎦

8. The 𝐿𝑈-decomposition obtained in Example 2.

9. Let

𝐴 = [
2 1 −1

−2 −1 2
2 1 0

]

a. Find an 𝐿𝑈-decomposition of𝐴.
b. Express 𝐴 in the form 𝐴 = 𝐿1𝐷𝑈1, where 𝐿1 is lower tri-

angular with 1’s along the main diagonal,𝑈1 is upper tri-
angular, and𝐷 is a diagonal matrix.

c. Express 𝐴 in the form 𝐴 = 𝐿2𝑈2, where 𝐿2 is lower tri-
angular with 1’s along the main diagonal and𝑈2 is upper
triangular.

10. a. Show that the matrix

[0 1
1 0]

has no 𝐿𝑈-decomposition.
b. Find a 𝑃𝐿𝑈-decomposition of this matrix.

In Exercises 11–12, use the given 𝑃𝐿𝑈-decomposition of 𝐴 to solve
the linear system𝐴x = b by rewriting it as𝑃−1𝐴x = 𝑃−1b and solv-
ing this system by 𝐿𝑈-decomposition.

11. b = [
2
1
5
]; 𝐴 = [

0 1 4
1 2 2
3 1 3

];

𝐴 = [
0 1 0
1 0 0
0 0 1

][
1 0 0
0 1 0
3 −5 17

][
1 2 2
0 1 4
0 0 1

] = 𝑃𝐿𝑈

12. b = [
3
0
6
]; 𝐴 = [

4 1 2
0 2 1
8 1 8

];

𝐴 = [
1 0 0
0 0 1
0 1 0

][
4 1 2
0 −1 4
0 0 9

][
1 1

4
1
2

0 1 −4
0 0 1

] = 𝑃𝐿𝑈

In Exercises 13–14, find the 𝐿𝐷𝑈-decomposition of𝐴.

13. 𝐴 = [2 2
4 1] 14. 𝐴 = [

3 −12 6
0 2 0
6 −28 13

]

In Exercises 15–16, find a 𝑃𝐿𝑈-decomposition of 𝐴, and use it to
solve the linear system𝐴x = b by themethod of Exercises 11 and 12.

15. 𝐴 = [
3 −1 0
3 −1 1
0 2 1

]; b = [
−2
1
4
]

16. 𝐴 = [
0 3 −2
1 1 4
2 2 5

]; b = [
7
5

−2
]

17. Let𝐴x = b be a linear system of n equations in n unknowns,
and assume that𝐴 is an invertible matrix that can be reduced
to row echelon form without row interchanges. How many
additions and multiplications are required to solve the system
by the method of Example 1?

Working with Proofs

18. Let
𝐴 = [a b

c d]

a. Prove: If a ≠ 0, then the matrix 𝐴 has a unique 𝐿𝑈-
decomposition with 1’s along the main diagonal of 𝐿.

b. Find the 𝐿𝑈-decomposition described in part (a).



November 13, 2018 09:45 C09 Sheet number 11 Page number 519 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

9.2 The Power Method 519

19. Prove: If 𝐴 is any n × n matrix, then 𝐴 can be factored as
𝐴 = 𝑃𝐿𝑈, where 𝐿 is lower triangular,𝑈 is upper triangular,
and 𝑃 can be obtained by interchanging the rows of 𝐼n appro-
priately. [Hint: Let𝑈 be a row echelon form of 𝐴, and let all
row interchanges required in the reduction of 𝐴 to𝑈 be per-
formed first.]

True-False Exercises
TF. In parts (a)–(e) determine whether the statement is true or

false, and justify your answer.
a. Every square matrix has an 𝐿𝑈-decomposition.
b. If a square matrix 𝐴 is row equivalent to an upper trian-

gular matrix𝑈, then𝐴 has an 𝐿𝑈-decomposition.
c. If 𝐿1, 𝐿2, . . . , 𝐿k are n × n lower triangular matrices, then

the product 𝐿1𝐿2 ⋅ ⋅ ⋅ 𝐿k is lower triangular.
d. If an invertible matrix𝐴 has an 𝐿𝑈-decomposition, then

𝐴 has a unique 𝐿𝐷𝑈-decomposition.
e. Every square matrix has a 𝑃𝐿𝑈-decomposition.

Working with Technology
T1. Technology utilities vary in how they handle 𝐿𝑈-

decompositions. For example, many utilities perform row
interchanges to reduce roundoff error and hence pro-
duce 𝑃𝐿𝑈-decompositions, even when asked for 𝐿𝑈-
decompositions. See what happens when you use your utility
to find an 𝐿𝑈-decomposition of the matrix𝐴 in Example 2.

T2. The accompanying figure shows a metal plate whose edges
are held at the temperatures shown. It follows from ther-
modynamic principles that the temperature at each of the
six interior nodes will eventually stabilize at a value that is
approximately the average of the temperatures at the four
neighboring nodes. These are called the steady-state tem-
peratures at the nodes. Thus, for example, if we denote the
steady-state temperatures at the interior nodes in the accom-
panying figure as 𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, and 𝑇6, then at the node
labeled𝑇1 that temperaturewill be𝑇1 = 1

4 (0+ 5+𝑇2 +𝑇3)
or, equivalently,

4𝑇1 −𝑇2 −𝑇3 = 5

Find a linear system whose solution gives the steady-state
temperatures at the nodes, and use your technology utility to
solve that system by 𝐿𝑈-decomposition.

T1 T3 T5

T2 T4 T6

5°

0° 10°

0° 10°

5° 5°

20° 20° 20°

FIGURE Ex-T2

9.2 The Power Method
The eigenvalues of a square matrix can, in theory, be found by solving the characteristic
equation. However, this procedure has somany computational difficulties that it is almost
never used in applications. In this section wewill discuss an algorithm that can be used to
approximate the eigenvalue with greatest absolute value and a corresponding eigenvector.
This particular eigenvalue and its corresponding eigenvectors are important because they
arise naturally inmany iterative processes. Themethods wewill study in this section have
recently been used to create Internet search engines such as Google.

The Power Method
There are many applications in which some vector x0 in 𝑅n is multiplied repeatedly by an
n × nmatrix 𝐴 to produce a sequence

x0, 𝐴x0, 𝐴2x0, . . . , 𝐴kx0, . . .

We call a sequence of this form a power sequence generated by A. In this section we
will be concerned with the convergence of power sequences and how such sequences
can be used to approximate eigenvalues and eigenvectors. For this purpose, we make
the following definition.
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Definition 1

If the distinct eigenvalues of a matrix 𝐴 are 𝜆1, 𝜆2, . . . , 𝜆k, and if |𝜆1| is larger than
|𝜆2|, . . . , |𝜆k|, then 𝜆1 is called a dominant eigenvalue of 𝐴. Any eigenvector corre-
sponding to a dominant eigenvalue is called a dominant eigenvector of 𝐴.

EXAMPLE 1 | Dominant Eigenvalues

Some matrices have dominant eigenvalues and some do not. For example, if the distinct
eigenvalues of a matrix are

𝜆1 = −4, 𝜆2 = −2, 𝜆3 = 1, 𝜆4 = 3

then 𝜆1 = −4 is dominant since |𝜆1| = 4 is greater than the absolute values of all the other
eigenvalues; but if the distinct eigenvalues of a matrix are

𝜆1 = 7, 𝜆2 = −7, 𝜆3 = −2, 𝜆4 = 5

then |𝜆1| = |𝜆2| = 7, so there is no single eigenvalue whose absolute value is greater than the
absolute value of all the other eigenvalues.

The most important theorems about convergence of power sequences apply to n × n
matrices with n linearly independent eigenvectors (symmetric matrices, for example), so
we will limit our discussion to this case in this section.

Theorem 9.2.1

Let𝐴 be a symmetric n × nmatrix that has a positive* dominant eigenvalue 𝜆. If x0
is a unit vector in 𝑅n that is not orthogonal to the eigenspace corresponding to 𝜆,
then the normalized power sequence

x0, x1 =
𝐴x0
‖𝐴x0‖

, x2 =
𝐴x1
‖𝐴x1‖

, . . . , xk =
𝐴xk−1
‖𝐴xk−1‖

, . . . (1)

converges to a unit dominant eigenvector, and the sequence
𝐴x0 · x0, 𝐴x1 · x1, . . . , 𝐴xk · xk, . . . (2)

converges to the dominant eigenvalue 𝜆.

Remark In the exercises we will ask you to show that (1) can also be expressed as

x0, x1 =
𝐴x0
‖𝐴x0‖

, x2 =
𝐴2x0
‖𝐴2x0‖

, . . . , xk =
𝐴kx0
‖𝐴kx0‖

, . . . (3)

This form of the power sequence expresses each iterate in terms of the starting vector x0,
rather than in terms of its predecessor.

We will not prove Theorem 9.2.1, but we can make it plausible geometrically in the
2 × 2 case where𝐴 is a symmetricmatrix with distinct positive eigenvalues, 𝜆1 and 𝜆2, one
of which is dominant. To be specific, assume that 𝜆1 is dominant and

𝜆1 > 𝜆2 > 0

*If the dominant eigenvalue is not positive, sequence (2) will still converge to the dominant eigenvalue, but sequence
(1) may not converge to a specific dominant eigenvector because of alternation (see Exercise 11). Nevertheless, each
term of (1) will closely approximate some dominant eigenvector for sufficiently large values of k.
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Since we are assuming that 𝐴 is symmetric and has distinct eigenvalues, it follows from
Theorem 7.2.2 that the eigenspaces corresponding to 𝜆1 and 𝜆2 are perpendicular lines
through the origin. Thus, the assumption that x0 is a unit vector that is not orthogonal to
the eigenspace corresponding to 𝜆1 implies that x0 does not lie in the eigenspace corre-
sponding to 𝜆2. To see the geometric effect of multiplying x0 by 𝐴, it will be useful to split
x0 into the sum

x0 = v0 +w0 (4)
where v0 and w0 are the orthogonal projections of x0 on the eigenspaces of 𝜆1 and 𝜆2,
respectively (Figure 9.2.1a).

w0

x0

v0

Eigenspace λ1Eigenspace λ2

(a)

w0

λ2w0 λ1v0

λ1v0 + λ2w0

x0
x1

v0

(b)

x0 x1

x

(c)

Eigenspace λ1Eigenspace λ2

FIGURE 9.2.1

This enables us to express 𝐴x0 as
𝐴x0 = 𝐴v0 + 𝐴w0 = 𝜆1v0 + 𝜆2w0 (5)

which tells us that multiplying x0 by 𝐴 “scales” the terms v0 and w0 in (4) by 𝜆1 and 𝜆2,
respectively. However, 𝜆1 is larger than 𝜆2, so the scaling is greater in the direction of v0
than in the direction ofw0. Thus, multiplying x0 by𝐴 “pulls” x0 toward the eigenspace of
𝜆1, and normalizing produces a vector x1 = 𝐴x0/‖𝐴x0‖, which is on the unit circle and
is closer to the eigenspace of 𝜆1 than x0 (Figure 9.2.1b). Similarly, multiplying x1 by 𝐴
and normalizing produces a unit vector x2 that is closer to the eigenspace of 𝜆1 than x1.
Thus, it seems reasonable that by repeatedly multiplying by 𝐴 and normalizing we will
produce a sequence of vectors xk that lie on the unit circle and converge to a unit vector x
in the eigenspace of 𝜆1 (Figure 9.2.1c). Moreover, if xk converges to x, then it also seems
reasonable that 𝐴xk · xk will converge to

𝐴x · x = 𝜆1x · x = 𝜆1‖x‖2 = 𝜆1
which is the dominant eigenvalue of 𝐴.

The Power Method with Euclidean Scaling
Theorem 9.2.1 provides us with an algorithm for approximating the dominant eigenvalue
and a corresponding unit eigenvector of a symmetric matrix 𝐴, provided the dominant
eigenvalue is positive. This algorithm, called the powermethodwith Euclidean scaling,
is as follows:

The Power Method with Euclidean Scaling
Step 0. Choose an arbitrary nonzero vector and normalize it, if need be, to obtain a unit vec-

tor x0.
Step 1. Compute 𝐴x0 and normalize it to obtain the first approximation x1 to a dominant

unit eigenvector. Compute𝐴x1 · x1 to obtain the first approximation to the dominant
eigenvalue.
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Step 2. Compute 𝐴x1 and normalize it to obtain the second approximation x2 to a domi-
nant unit eigenvector. Compute 𝐴x2 · x2 to obtain the second approximation to the
dominant eigenvalue.

Step 3. Compute 𝐴x2 and normalize it to obtain the third approximation x3 to a dominant
unit eigenvector. Compute 𝐴x3 · x3 to obtain the third approximation to the domi-
nant eigenvalue.

Continuing in this way will usually generate a sequence of better and better approximations
to the dominant eigenvalue and a corresponding unit eigenvector.*

EXAMPLE 2 | The Power Method with Euclidean Scaling

Apply the power method with Euclidean scaling to

𝐴 = [3 2
2 3] with x0 = [10]

Stop at x5 and compare the resulting approximations to the exact values of the dominant
eigenvalue and eigenvector.

Solution Wewill leave it for you to show that the eigenvalues of𝐴 are𝜆 = 1 and𝜆 = 5 and
that the eigenspace corresponding to the dominant eigenvalue 𝜆 = 5 is the line represented
by the parametric equations x1 = t, x2 = t, which we can write in vector form as

x = t [
1
1] (6)

Setting t = 1/√2 yields the normalized dominant eigenvector

v1 = [
1
√2
1
√2
] ≈ [

0.707106781187. . .
0.707106781187. . .] (7)

Now let us seewhat happenswhenweuse the powermethod, startingwith the unit vector x0.

𝐴x0 = [
3 2
2 3

] [
1
0
] = [

3
2
] x1 =

𝐴x0
‖𝐴x0‖

= 1
√13

[
3
2
] ≈ 1

3.60555 [
3
2
] ≈ [

0.83205
0.55470]

𝐴x1 ≈ [
3 2
2 3

] [
0.83205
0.55470] ≈ [

3.60555
3.32820] x2 =

𝐴x1
‖𝐴x1‖

≈ 1
4.90682 [

3.60555
3.32820] ≈ [

0.73480
0.67828]

𝐴x2 ≈ [
3 2
2 3

] [
0.73480
0.67828] ≈ [

3.56097
3.50445] x3 =

𝐴x2
‖𝐴x2‖

≈ 1
4.99616 [

3.56097
3.50445] ≈ [

0.71274
0.70143]

𝐴x3 ≈ [
3 2
2 3

] [
0.71274
0.70143] ≈ [

3.54108
3.52976] x4 =

𝐴x3
‖𝐴x3‖

≈ 1
4.99985 [

3.54108
3.52976] ≈ [

0.70824
0.70597]

𝐴x4 ≈ [
3 2
2 3

] [
0.70824
0.70597] ≈ [

3.53666
3.53440] x5 =

𝐴x4
‖𝐴x4‖

≈ 1
4.99999 [

3.53666
3.53440] ≈ [

0.70733
0.70688]

*If the vector x0 happens to be orthogonal to the eigenspace of the dominant eigenvalue, then the hypotheses of Theorem
9.2.1 will be violated and the method may fail. However, the reality is that computer roundoff errors usually perturb x0
enough to destroy any orthogonality and make the algorithm work. This is one instance in which errors help to obtain
correct results!
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𝜆(1) = (𝐴x1) · x1 = (𝐴x1)𝑇x1 ≈ [3.60555 3.32820] [
0.83205
0.55470] ≈ 4.84615

𝜆(2) = (𝐴x2) · x2 = (𝐴x2)𝑇x2 ≈ [3.56097 3.50445] [
0.73480
0.67828] ≈ 4.99361

𝜆(3) = (𝐴x3) · x3 = (𝐴x3)𝑇x3 ≈ [3.54108 3.52976] [
0.71274
0.70143] ≈ 4.99974

𝜆(4) = (𝐴x4) · x4 = (𝐴x4)𝑇x4 ≈ [3.53666 3.53440] [
0.70824
0.70597] ≈ 4.99999

𝜆(5) = (𝐴x5) · x5 = (𝐴x5)𝑇x5 ≈ [3.53576 3.53531] [
0.70733
0.70688] ≈ 5.00000

Thus, 𝜆(5) approximates the dominant eigenvalue to five decimal place accuracy and x5
approximates the dominant eigenvector in (7) to three decimal place accuracy.

It is accidental that 𝜆(5)
(the fifth approximation)
produced five decimal place
accuracy. In general, n iter-
ations need not produce n
decimal place accuracy.

The Power Method with Maximum Entry Scaling
There is a variation of the power method in which the iterates, rather than being normal-
ized at each stage, are scaled to make the maximum entry 1. To describe this method, it
will be convenient to denote the maximum absolute value of the entries in a vector x by
max(x). Thus, for example, if

x =
⎡
⎢
⎢
⎢
⎣

5
3

−7
2

⎤
⎥
⎥
⎥
⎦

then max(x) = 7. We will need the following variation of Theorem 9.2.1.

Theorem 9.2.2

Let𝐴 be a symmetric n × nmatrix that has a positive dominant* eigenvalue 𝜆. If x0
is a nonzero vector in 𝑅n that is not orthogonal to the eigenspace corresponding to
𝜆, then the sequence

x0, x1 =
𝐴x0

max(𝐴x0)
, x2 =

𝐴x1
max(𝐴x1)

, . . . , xk =
𝐴xk−1

max(𝐴xk−1)
, . . . (8)

converges to an eigenvector corresponding to 𝜆, and the sequence
𝐴x0 · x0
x0 · x0

, 𝐴x1 · x1
x1 · x1

, . . . , 𝐴xk · xk
xk · xk

, . . . (9)

converges to 𝜆.

Remark In the exercises wewill ask you to show that (8) can be written in the alternative
form

x0, x1 =
𝐴x0

max(𝐴x0)
, x2 =

𝐴2x0
max(𝐴2x0)

, . . . , xk =
𝐴kx0

max(𝐴kx0)
, . . . (10)

which expresses the iterates in terms of the initial vector x0.

*As in Theorem 9.2.1, if the dominant eigenvalue is not positive, sequence (9) will still converge to the dominant eigen-
value, but sequence (8) may not converge to a specific dominant eigenvector. Nevertheless, each term of (8) will closely
approximate some dominant eigenvector for sufficiently large values of k (see Exercise 11).



November 13, 2018 09:45 C09 Sheet number 16 Page number 524 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

524 CHAPTER 9 Numerical Methods

Wewill omit the proof of this theorem, but if we accept that (8) converges to an eigen-
vector of 𝐴, then it is not hard to see why (9) converges to the dominant eigenvalue. To
see this, note that each term in (9) is of the form

𝐴x · x
x · x (11)

which is called a Rayleigh quotient of 𝐴. In the case where 𝜆 is an eigenvalue of 𝐴 and x
is a corresponding eigenvector, the Rayleigh quotient is

𝐴x · x
x · x = 𝜆x · x

x · x = 𝜆(x · x)
x · x = 𝜆

Thus, if xk converges to a dominant eigenvector x, then it seems reasonable that

𝐴xk · xk
xk · xk

converges to 𝐴x · x
x · x = 𝜆

which is the dominant eigenvalue.
Theorem 9.2.2 produces the following algorithm, which is called the power method

with maximum entry scaling.

The Power Method with Maximum Entry Scaling
Step 0. Choose an arbitrary nonzero vector x0.
Step 1. Compute 𝐴x0 and multiply it by the factor 1/max(𝐴x0) to obtain the first approxi-

mation x1 to a dominant eigenvector. Compute the Rayleigh quotient of x1 to obtain
the first approximation to the dominant eigenvalue.

Step 2. Compute𝐴x1 and scale it by the factor 1/max(𝐴x1) to obtain the second approxima-
tion x2 to a dominant eigenvector. Compute the Rayleigh quotient of x2 to obtain the
second approximation to the dominant eigenvalue.

Step 3. Compute𝐴x2 and scale it by the factor 1/max(𝐴x2) to obtain the third approximation
x3 to a dominant eigenvector. Compute the Rayleigh quotient of x3 to obtain the third
approximation to the dominant eigenvalue.

Continuing in this way will generate a sequence of better and better approximations to the
dominant eigenvalue and a corresponding eigenvector.

Historical Note

The British mathematical physicist John Rayleigh won the Nobel
prize in physics in 1904 for his discovery of the inert gas argon.
Rayleigh also made fundamental discoveries in acoustics and
optics, and his work in wave phenomena enabled him to give the
first accurate explanation of why the sky is blue.

[Image: The Granger Collection, New York]

JohnWilliam
Strutt Rayleigh
(1842–1919)
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EXAMPLE 3 | Example 2 Revisited Using
Maximum Entry Scaling

Apply the power method with maximum entry scaling to

𝐴 = [3 2
2 3] with x0 = [10]

Stop at x5 and compare the resulting approximations to the exact values and to the approxi-
mations obtained in Example 2.

Solution We leave it for you to confirm that

𝐴x0 = [3 2
2 3] [

1
0] = [32] x1 =

𝐴x0
max(𝐴x0)

= 1
3
[32] ≈ [1.000000.66667]

𝐴x1 ≈ [3 2
2 3] [

1.00000
0.66667] ≈ [4.333334.00000] x2 =

𝐴x1
max(𝐴x1)

≈ 1
4.33333 [

4.33333
4.00000] ≈ [1.000000.92308]

𝐴x2 ≈ [3 2
2 3] [

1.00000
0.92308] ≈ [4.846154.76923] x3 =

𝐴x2
max(𝐴x2)

≈ 1
4.84615 [

4.84615
4.76923] ≈ [1.000000.98413]

𝐴x3 ≈ [3 2
2 3] [

1.00000
0.98413] ≈ [4.968254.95238] x4 =

𝐴x3
max(𝐴x3)

≈ 1
4.96825 [

4.96825
4.95238] ≈ [1.000000.99681]

𝐴x4 ≈ [3 2
2 3] [

1.00000
0.99681] ≈ [4.993614.99042] x5 =

𝐴x4
max(𝐴x4)

≈ 1
4.99361 [

4.99361
4.99042] ≈ [1.000000.99936]

𝜆(1) = 𝐴x1 · x1
x1 · x1

= (𝐴x1)𝑇x1
x𝑇1 x1

≈ 7.00000
1.44444 ≈ 4.84615

𝜆(2) = 𝐴x2 · x2
x2 · x2

= (𝐴x2)𝑇x2
x𝑇2 x2

≈ 9.24852
1.85207 ≈ 4.99361

𝜆(3) =
𝐴x3 · x3
x3 · x3

=
(𝐴x3)𝑇x3
x𝑇3 x3

≈ 9.84203
1.96851 ≈ 4.99974

𝜆(4) = 𝐴x4 · x4
x4 · x4

= (𝐴x4)𝑇x4
x𝑇4 x4

≈ 9.96808
1.99362 ≈ 4.99999

𝜆(5) =
𝐴x5 · x5
x5 · x5

=
(𝐴x5)𝑇x5
x𝑇5 x5

≈ 9.99360
1.99872 ≈ 5.00000

Thus, 𝜆(5) approximates the dominant eigenvalue correctly to five decimal places and x5
closely approximates the dominant eigenvector

x = [11]

that results by taking t = 1 in (6).

Whereas the power method
with Euclidean scaling
produces a sequence that
approaches a unit dominant
eigenvector, maximum
entry scaling produces a
sequence that approaches
an eigenvector whose
largest component is 1.

Rate of Convergence
If 𝐴 is a symmetric matrix whose distinct eigenvalues can be arranged so that

|𝜆1| > |𝜆2| ≥ |𝜆3| ≥ ⋅ ⋅ ⋅ ≥ |𝜆k|
then the “rate” at which the Rayleigh quotients converge to the dominant eigenvalue 𝜆1
depends on the ratio |𝜆1|/|𝜆2|; that is, the convergence is slowwhen this ratio is near 1 and
rapidwhen it is large—the greater the ratio, themore rapid the convergence. For example,
if𝐴 is a 2 × 2 symmetric matrix, then the greater the ratio |𝜆1|/|𝜆2|, the greater the dispar-
ity between the scaling effects of 𝜆1 and 𝜆2 in Figure 9.2.1, and hence the greater the effect
that multiplication by 𝐴 has on pulling the iterates toward the eigenspace of 𝜆1. Indeed,
the rapid convergence in Example 3 is due to the fact that |𝜆1|/|𝜆2| = 5/1 = 5, which is
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considered to be a large ratio. In cases where the ratio is close to 1, the convergence of the
power method may be so slow that other methods must be used.

Stopping Procedures
If 𝜆 is the exact value of the dominant eigenvalue, and if a power method produces the
approximation 𝜆(k) at the kth iteration, then we call

|||
𝜆 − 𝜆(k)

𝜆
||| (12)

the relative error in 𝜆(k). Expressed as a percentage it is called the percentage error in
𝜆(k). For example, if 𝜆 = 5 and the approximation after three iterations is 𝜆(3) = 5.1, then

relative error in 𝜆(3) = |||
𝜆 − 𝜆(3)

𝜆
||| =

|||
5 − 5.1
5

||| = |−0.02| = 0.02

percentage error in 𝜆(3) = 0.02 × 100% = 2%
In applications one usually knows the relative error 𝐸 that can be tolerated in the

dominant eigenvalue, so the goal is to stop computing iterates once the relative error in
the approximation to that eigenvalue is less than 𝐸. However, there is a problem in com-
puting the relative error from (12) in that the eigenvalue 𝜆 is unknown. To circumvent
this problem, it is usual to estimate 𝜆 by 𝜆(k) and stop the computations when

|||
𝜆(k) − 𝜆(k−1)

𝜆(k)
||| < 𝐸 (13)

The quantity on the left side of (13) is called the estimated relative error in 𝜆(k) and its
percentage form is called the estimated percentage error in 𝜆(k).

EXAMPLE 4 | Estimated Relative Error

For the computations in Example 3, find the smallest value of k for which the estimated
percentage error in 𝜆(k) is less than 0.1%.
Solution The estimated percentage errors in the approximations in Example 3 are as
follows:

Approximation Relative Percentage
Error Error

𝜆(2)∶ |||
𝜆(2) − 𝜆(1)

𝜆(2)
||| ≈

|||
4.99361− 4.84615

4.99361
||| ≈ 0.02953 = 2.953%

𝜆(3)∶ |||
𝜆(3) − 𝜆(2)

𝜆(3)
||| ≈

|||
4.99974− 4.99361

4.99974
||| ≈ 0.00123 = 0.123%

𝜆(4)∶ |||
𝜆(4) − 𝜆(3)

𝜆(4)
||| ≈

|||
4.99999− 4.99974

4.99999
||| ≈ 0.00005 = 0.005%

𝜆(5)∶ |||
𝜆(5) − 𝜆(4)

𝜆(5)
||| ≈

|||
5.00000− 4.99999

5.00000
||| ≈ 0.00000 = 0%

Thus, 𝜆(4) = 4.99999 is the first approximation whose estimated percentage error is less
than 0.1%.

Remark A rule for terminating an iterative process is called a stopping procedure. In
the exercises, we will discuss stopping procedures for the powermethod that are based on
the dominant eigenvector rather than the dominant eigenvalue.
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Exercise Set 9.2

In Exercises 1–2, the distinct eigenvalues of amatrix are given. Deter-
mine whether𝐴 has a dominant eigenvalue, and if so, find it.

1. a. 𝜆1 = 7, 𝜆2 = 3, 𝜆3 = −8, 𝜆4 = 1

b. 𝜆1 = −5, 𝜆2 = 3, 𝜆3 = 2, 𝜆4 = 5

2. a. 𝜆1 = 1, 𝜆2 = 0, 𝜆3 = −3, 𝜆4 = 2

b. 𝜆1 = −3, 𝜆2 = −2, 𝜆3 = −1, 𝜆4 = 3

In Exercises 3–4, apply the power method with Euclidean scaling
to the matrix 𝐴, starting with x0 and stopping at x4. Compare the
resulting approximations to the exact values of the dominant eigen-
value and the corresponding unit eigenvector.

3. 𝐴 = [
5 −1

−1 −1]; x0 = [
1
0
]

4. 𝐴 = [
7 −2 0

−2 6 −2
0 −2 5

]; x0 = [
1
0
0
]

In Exercises 5–6, apply the power method withmaximum entry scal-
ing to thematrix𝐴, starting with x0 and stopping at x4. Compare the
resulting approximations to the exact values of the dominant eigen-
value and the corresponding scaled eigenvector.

5. 𝐴 = [
1 −3

−3 5
]; x0 = [

1
1
]

6. 𝐴 = [
3 2 2
2 2 0
2 0 4

]; x0 = [
1
1
1
]

7. Let

𝐴 = [
2 −1

−1 2
]; x0 = [

1
0
]

a. Use the power method with maximum entry scaling to
approximate a dominant eigenvector of 𝐴. Start with x0,
round off all computations to three decimal places, and
stop after three iterations.

b. Use the result in part (a) and the Rayleigh quotient to
approximate the dominant eigenvalue of𝐴.

c. Find the exact values of the eigenvector and eigenvalue
approximated in parts (a) and (b).

d. Find the percentage error in the approximation of the dom-
inant eigenvalue.

8. Repeat the directions of Exercise 7 with

𝐴 = [
2 1 0
1 2 0
0 0 10

]; x0 = [
1
1
1
]

In Exercises 9–10, a matrix 𝐴 with a dominant eigenvalue and
a sequence x0,𝐴x0, . . . , 𝐴5x0 are given. Use Formulas (9) and
(10) to approximate the dominant eigenvalue and a corresponding
eigenvector.

9. 𝐴 = [
1 2
2 1]; x0 = [

1
0], 𝐴x0 = [

1
2], 𝐴

2x0 = [
5
4],

𝐴3x0 = [
13
14], 𝐴

4x0 = [4140], 𝐴
5x0 = [

121
122]

10. 𝐴 = [1 2
2 1]; x0 = [01], 𝐴x0 = [21], 𝐴

2x0 = [45],

𝐴3x0 = [1413], 𝐴
4x0 = [4041], 𝐴

5x0 = [122121]

11. Consider matrices

𝐴 = [−1 0
0 0] and x0 = [ab]

where x0 is a unit vector and a ≠ 0. Show that even though
thematrix𝐴 is symmetric and has a dominant eigenvalue, the
power sequence (1) in Theorem 9.2.1 does not converge. This
shows that the requirement in that theorem that the dominant
eigenvalue be positive is essential.

12. Use the power method with Euclidean scaling to approximate
the dominant eigenvalue and a corresponding eigenvector of
𝐴. Choose your own starting vector, and stop when the esti-
mated percentage error in the eigenvalue approximation is
less than 0.1%.

a. [
1 3 3
3 4 −1
3 −1 10

] b.
⎡
⎢
⎢
⎢
⎣

1 0 1 1
0 2 −1 1
1 −1 4 1
1 1 1 8

⎤
⎥
⎥
⎥
⎦

13. Repeat Exercise 12, but this time stop when all corresponding
entries in two successive eigenvector approximations differ by
less than 0.01 in absolute value.

14. Repeat Exercise 12 using maximum entry scaling.

Working with Proofs

15. Prove: If𝐴 is a nonzero n × nmatrix, then𝐴𝑇𝐴 and𝐴𝐴𝑇 have
positive dominant eigenvalues.

16. (For readers familiar with proof by induction) Let 𝐴 be
an n × n matrix, let x0 be a unit vector in 𝑅n, and define the
sequence x1, x2, . . . , xk, . . . by

x1 =
𝐴x0
‖𝐴x0‖

, x2 =
𝐴x1
‖𝐴x1‖

, . . . , xk =
𝐴xk−1
‖𝐴xk−1‖

, . . .

Prove by induction that xk = 𝐴kx0/‖𝐴kx0‖.
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17. (For readers familiar with proof by induction) Let𝐴 be an
n × n matrix, let x0 be a nonzero vector in 𝑅n, and define the
sequence x1, x2, . . . , xk, . . . by

x1 =
𝐴x0

max(𝐴x0)
, x2 =

𝐴x1
max(𝐴x1)

, . . . ,

xk =
𝐴xk−1

max(𝐴xk−1)
, . . .

Prove by induction that

xk =
𝐴kx0

max(𝐴kx0)

Working with Technology
T1. Use your technology utility to duplicate the computations in

Example 2.

T2. Use your technology utility to duplicate the computations in
Example 3.

9.3 Comparison of Procedures for Solving
Linear Systems

There is an old saying that “time is money.” This is especially true in industry where the
cost of solving a linear system is generally determined by the time it takes for a com-
puter to perform the required computations. This typically depends both on the speed
of the computer processor and on the number of operations required by the algorithm.
Thus, choosing the right algorithm has important financial implication in an industrial
or research setting. In this section wewill discuss some of the factors that affect the choice
of algorithms for solving large-scale linear systems.

Flops and the Cost of Solving a Linear System
In computer jargon, an arithmetic operation (+, −, ∗, ÷) on two real numbers is called
a flop, which is an acronym for “floating-point operation.”* The total number of flops
required to solve a problem, which is called the cost of the solution, provides a convenient
way of choosing between various algorithms for solving the problem. When needed, the
cost in flops can be converted to units of time ormoney if the speed of the computer proces-
sor and the financial aspects of its operation are known. For example, today’s fastest com-
puters are capable of performing in excess of 17 petaflops/s (1 petaflop = 1015 flops). Thus,
an algorithm that costs 1,000,000 flops would be performed in 0.000000001 second. By
contrast, today’s personal computers can perform in excess of 80 gigaflops/s (1 gigaflop =
109 flops). Thus, an algorithm that costs 1,000,000 flopswould be performed on a personal
computer in 0.0000125 second.

To illustrate how costs (in flops) can be computed, let us count the number of flops

It is now common in
computer jargon to write
“FLOPs” to mean the num-
ber of “flops per second.”
However, we will write
“flops” simply as the plural
of “flop.” When needed, we
will write flops per second
as flops/s. required to solve a linear system of n equations in n unknowns by Gauss–Jordan elim-

ination. For this purpose we will need the following formulas for the sum of the first n
positive integers and the sum of the squares of the first n positive integers:

1 + 2 + 3 + ⋅ ⋅ ⋅ + n = n(n + 1)
2 (1)

12 + 22 + 32 + ⋅ ⋅ ⋅ + n2 = n(n + 1)(2n + 1)
6 (2)

*Real numbers are stored in computers as numerical approximations called floating-point numbers. In base 10, a
floating-point number has the form ±.d1d2 ⋅ ⋅ ⋅ dn × 10m,wherem is an integer, called themantissa, and n is the num-
ber of digits to the right of the decimal point. The value of n varies with the computer. In some literature the term
flop is used as a measure of processing speed and stands for “floating-point operations per second.” In our usage it is
interpreted as a counting unit.
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Let 𝐴x = b be a linear system of n equations in n unknowns to be solved by Gauss–
Jordan elimination (or, equivalently, by Gaussian eliminationwith back substitution). For
simplicity, let us assume that 𝐴 is invertible and that no row interchanges are required to
reduce the augmented matrix [𝐴 ∣ b] to row echelon form. The diagrams that accompany
the following analysis provide a convenient way of counting the operations required to
introduce a leading 1 in the first row and then zeros below it. In our operation counts, we
will lump divisions and multiplications together as “multiplications,” and we will lump
additions and subtractions together as “additions.”

Step 1. It requires n flops (multiplications) to introduce the leading 1 in the first row.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 × × ⋅ ⋅ ⋅ × × ×
• • • ⋅ ⋅ ⋅ • • •
• • • ⋅ ⋅ ⋅ • • •
...

...
...

...
...

...
• • • ⋅ ⋅ ⋅ • • •
• • • ⋅ ⋅ ⋅ • • •

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
× denotes a quantity that is being computed.
• denotes a quantity that is not being computed.
The augmented matrix size is n × (n + 1).

]

Step 2. It requires nmultiplications and n additions to introduce a zero below the leading
1, and there are n − 1 rows below the leading 1, so the number of flops required
to introduce zeros below the leading 1 is 2n(n − 1).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 • • ⋅ ⋅ ⋅ • • •
0 × × ⋅ ⋅ ⋅ × × ×
0 × × ⋅ ⋅ ⋅ × × ×
...

...
...

...
...

...
0 × × ⋅ ⋅ ⋅ × × ×
0 × × ⋅ ⋅ ⋅ × × ×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Column 1. Combining Steps 1 and 2, the number of flops required for column 1
is

n + 2n(n − 1) = 2n2 − n
Column 2. The procedure for column 2 is the same as for column 1, except that
now we are dealing with one less row and one less column. Thus, the number of
flops required to introduce the leading 1 in row 2 and the zeros below it can be
obtained by replacing n by n − 1 in the flop count for the first column. Thus, the
number of flops required for column 2 is

2(n − 1)2 − (n − 1)

Column 3. By the argument for column 2, the number of flops required for col-
umn 3 is

2(n − 2)2 − (n − 2)
Total. The pattern should now be clear. The total number of flops required to
create the n leading 1’s and the associated zeros is

(2n2 − n) + [2(n − 1)2 − (n − 1)] + [2(n − 2)2 − (n − 2)] + ⋅ ⋅ ⋅ + (2 − 1)

which we can rewrite as

2[n2 + (n − 1)2 + ⋅ ⋅ ⋅ + 1] − [n + (n − 1) + ⋅ ⋅ ⋅ + 1]

or on applying Formulas (1) and (2) as

2 [n(n + 1)(2n + 1)
6 − n(n + 1)

2 ] = 2
3n

3 + 1
2n

2 − 1
6 n

Next, let us count the number of operations required to complete the back-
ward phase (the back substitution).
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Column n. It requires n − 1 multiplications and n − 1 additions to introduce
zeros above the leading 1 in the nth column, so the total number of flops required
for the column is 2(n − 1).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 • • ⋅ ⋅ ⋅ • 0 ×
0 1 • ⋅ ⋅ ⋅ • 0 ×
0 0 1 ⋅ ⋅ ⋅ • 0 ×
...

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1 0 ×
0 0 0 ⋅ ⋅ ⋅ 0 1 •

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Column (𝒏 − 𝟏). The procedure is the same as for Step 1, except that now we
are dealing with one less row. Thus, the number of flops required for the (n − 1)st
column is 2(n − 2).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 • • ⋅ ⋅ ⋅ 0 0 ×
0 1 • ⋅ ⋅ ⋅ 0 0 ×
0 0 1 ⋅ ⋅ ⋅ 0 0 ×
...

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1 0 •
0 0 0 ⋅ ⋅ ⋅ 0 1 •

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Column (𝒏 − 𝟐). By the argument for column (n − 1), the number of flops required
for column (n − 2) is 2(n − 3).
Total. The pattern should now be clear. The total number of flops to complete
the backward phase is

2(n − 1) + 2(n − 2) + 2(n − 3) + ⋅ ⋅ ⋅ + 2(n − n) = 2[n2 − (1 + 2 + ⋅ ⋅ ⋅ + n)]
which we can rewrite using Formula (1) as

2 (n2 − n(n + 1)
2 ) = n2 − n

In summary, we have shown that for Gauss–Jordan elimination the number of flops
required for the forward and backward phases is

flops for forward phase = 2
3 n

3 + 1
2 n

2 − 1
6 n (3)

flops for backward phase = n2 − n (4)

Thus, the total cost of solving a linear system by Gauss–Jordan elimination is

flops for both phases = 2
3 n

3 + 3
2 n

2 − 7
6 n (5)

Cost Estimates for Solving Large Linear Systems
It is a property of polynomials that for large values of the independent variable the term
of highest power makes the major contribution to the value of the polynomial. Thus, for
large linear systems we can use (3) and (4) to approximate the number of flops in the
forward and backward phases as

flops for forward phase ≈ 2
3 n

3 (6)

flops for backward phase ≈ n2 (7)

This shows that it is more costly to execute the forward phase than the backward phase
for large linear systems. Indeed, the cost difference between the forward and backward
phases can be enormous, as the next example shows.

We leave it as an exercise for you to confirm the results in Table 1.
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TABLE 1

Approximate Cost for an 𝒏 × 𝒏Matrix 𝑨with Large 𝒏
Algorithm Cost in Flops

Gauss–Jordan elimination (forward phase) ≈ 2
3 n

3

Gauss–Jordan elimination (backward phase) ≈ n2

𝐿𝑈-decomposition of𝐴 ≈ 2
3 n

3

Forward substitution to solve 𝐿y = b ≈ n2

Backward substitution to solve𝑈x = y ≈ n2

𝐴−1 by reducing [𝐴 ∣ 𝐼] to [𝐼 ∣ 𝐴−1] ≈ 2n3

Compute𝐴−1b ≈ 2n3

The cost in flops for Gaus-
sian elimination is the
same as that for the forward
phase of Gauss–Jordan
elimination.

EXAMPLE 1 | Cost of Solving a Large Linear System

Approximate the time required to execute the forward and backward phases of Gauss–Jordan
elimination for a system of one million (= 106) equations in one million unknowns using a
computer that can execute 10 petaflops per second (1 petaflop = 1015 flops).

Solution Wehave n = 106 for the given system, so from (6) and (7) the number of petaflops
required for the forward and backward phases is

petaflops for forward phase ≈ 2
3 n

3 × 10−15 = 2
3 (106)3 × 10−15 =

2
3 × 103

petaflops for backward phase ≈ n2 × 10−15 = (106)2 × 10−15 = 10−3

Thus, at 10 petaflops/s the execution times for the forward and backward phases are

time for forward phase ≈ ( 23 × 103) × 10−1 s ≈ 66.67 s
time for backward phase ≈ (10−3) × 10−1 s ≈ 0.0001 s

Considerations in Choosing an Algorithm for
Solving a Linear System
For a single linear system 𝐴x = b of n equations in n unknowns, the methods of 𝐿𝑈-
decomposition andGauss–Jordan elimination differ in bookkeeping but otherwise involve
the same number of flops. Thus, neithermethod has a cost advantage over the other. How-
ever, 𝐿𝑈-decomposition has the following advantages that make it the method of choice:

• Gauss–Jordan elimination and Gaussian elimination both use the augmentedmatrix
[𝐴 ∣ b], so bmust be known. In contrast, 𝐿𝑈-decomposition uses only the matrix 𝐴,
so once that decomposition is known it can be used with as many right-hand sides as
are required.

• The 𝐿𝑈-decomposition that is computed to solve𝐴x = b can be used to compute𝐴−1,
if needed, with little additional work.

• For large linear systems in which computer memory is at a premium, one can dis-
pense with the storage of the 1’s and zeros that appear on or below themain diagonal
of𝑈, since those entries are known from the form of𝑈. The space that this opens up
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can then be used to store the entries of 𝐿, thereby reducing the amount of memory
required to solve the system.

• If 𝐴 is a large matrix consisting mostly of zeros, and if the nonzero entries are con-
centrated in a “band” around the main diagonal, then there are techniques that can
be used to reduce the cost of 𝐿𝑈-decomposition, giving it an advantage over Gauss–
Jordan elimination.

Exercise Set 9.3

1. A certain computer can execute 10 gigaflops per second. Use
Formula (5) to find the time required to solve the system using
Gauss–Jordan elimination.

a. A system of 1000 equations in 1000 unknowns.

b. A system of 10,000 equations in 10,000 unknowns.

c. A system of 100,000 equations in 100,000 unknowns.

2. A certain computer can execute 100 gigaflops per second. Use
Formula (5) to find the time required to solve the system using
Gauss–Jordan elimination.

a. A system of 10,000 equations in 10,000 unknowns.

b. A system of 100,000 equations in 100,000 unknowns.

c. A system of 1,000,000 equations in 1,000,000 unknowns.

3. A certain computer can execute 70 gigaflops per second. Use
Table 1 to estimate the time required to perform the following
operations on the invertible 10,000 × 10,000 matrix𝐴.
a. Execute the forward phase of Gauss–Jordan elimination.
b. Execute the backward phase of Gauss–Jordan elimination.
c. 𝐿𝑈-decomposition of𝐴.
d. Find𝐴−1 by reducing [𝐴 ∣ 𝐼] to [𝐼 ∣ 𝐴−1].

4. The IBM Sequoia computer can operate at speeds in excess of
16 petaflops per second (1 petaflop = 1015 flops). Use Table 1

to estimate the time required to perform the following opera-
tions on an invertible 100,000 × 100,000 matrix𝐴.
a. Execute the forward phase of Gauss–Jordan elimination.
b. Execute the backward phase of Gauss–Jordan elimination.
c. 𝐿𝑈-decomposition of𝐴.
d. Find𝐴−1 by reducing [𝐴 ∣ 𝐼] to [𝐼 ∣ 𝐴−1].

5. a. Approximate the time required to execute the forward
phase of Gauss–Jordan elimination for a system of 100,000
equations in 100,000 unknowns using a computer that can
execute 1 gigaflop per second. Do the same for the back-
ward phase. (See Table 1.)

b. How many gigaflops per second must a computer be able
to execute to find the 𝐿𝑈-decomposition of amatrix of size
10,000 × 10,000 in less than 0.5 s? (See Table 1.)

6. About how many teraflops per second must a computer be
able to execute to find the inverse 100,000 × 100,000 matrix
in less than 0.5 s? (1 teraflop= 1012 flops.)

In Exercises 7–10, suppose𝐴 and𝐵 are n × nmatrices and c is a real
number.
7. How many flops are required to compute c𝐴?

8. How many flops are required to compute𝐴+𝐵?

9. How many flops are required to compute𝐴𝐵?

10. If𝐴 is a diagonal matrix and k is a positive integer, howmany
flops are required to compute𝐴k?

9.4 Singular Value Decomposition
In this section we will discuss an extension of the diagonalization theory for n × n sym-
metric matrices to generalm × nmatrices. The results that we will develop in this section
have applications to compression, storage, and transmission of digitized information and
form the basis for many of the best computational algorithms that are currently available
for solving linear systems.

Decompositions of Square Matrices
We saw in Formula (2) of Section 7.2 that every symmetric matrix 𝐴 with real entries can
be expressed as

𝐴 = 𝑃𝐷𝑃𝑇 (1)
where 𝑃 is an orthogonal matrix whose columns are eigenvectors of 𝐴, and 𝐷 is the
diagonal matrix whose diagonal entries are the eigenvalues corresponding to the column
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vectors of 𝑃. In this section we will call (1) an eigenvalue decomposition of 𝐴 (abbrevi-
ated EVD of 𝐴).

If an n × nmatrix 𝐴 is not symmetric, then it does not have an eigenvalue decompo-
sition, but it does have aHessenberg decomposition

𝐴 = 𝑃𝐻𝑃𝑇

in which 𝑃 is an orthogonal matrix and 𝐻 is in upper Hessenberg form (Theorem 7.2.4).
Moreover, if 𝐴 has real eigenvalues, then it has a Schur decomposition

𝐴 = 𝑃𝑆𝑃𝑇

in which 𝑃 is an orthogonal matrix and 𝑆 is upper triangular (Theorem 7.2.3).
The eigenvalue, Hessenberg, and Schur decompositions are important in numerical

algorithms not only because the matrices 𝐷, 𝐻, and 𝑆 have simpler forms than 𝐴, but
also because the orthogonal matrices that appear in these factorizations do not magnify
roundoff error. To see why this is so, suppose that x̂ is a column vector whose entries are
known exactly and that

x = x̂ + e
is the vector that results when roundoff error is present in the entries of x̂. If 𝑃 is an orthog-
onal matrix, then the length-preserving property of orthogonal transformations implies
that

‖𝑃x − 𝑃x̂‖ = ‖x − x̂‖ = ‖e‖
which tells us that the error in approximating 𝑃x̂ by 𝑃x has the same magnitude as the
error in approximating x̂ by x.

There are two main paths that one might follow in looking for other kinds of decom-
positions of a general square matrix 𝐴: One might look for decompositions of the form

𝐴 = 𝑃𝐽𝑃−1

in which 𝑃 is invertible but not necessarily orthogonal, or one might look for decomposi-
tions of the form

𝐴 = 𝑈Σ𝑉𝑇

in which 𝑈 and 𝑉 are orthogonal but not necessarily the same. The first path leads to
decompositions in which 𝐽 is either diagonal or a certain kind of block diagonal matrix,
called a Jordan canonical form in honor of the French mathematician Camille Jordan
(see p. 538). Jordan canonical forms, whichwewill not consider in this text, are important
theoretically and in certain applications, but they are of lesser importance numerically
because of the roundoff difficulties that result from the lack of orthogonality in 𝑃. In this
section we will focus on the second path.

Singular Values
Since matrix products of the form 𝐴𝑇𝐴 will play an important role in our work, we will
begin with two basic theorems about them.

Theorem 9.4.1

If 𝐴 is anm × nmatrix, then:
(a) 𝐴 and 𝐴𝑇𝐴 have the same null space.
(b) 𝐴 and 𝐴𝑇𝐴 have the same row space.
(c) 𝐴𝑇 and 𝐴𝑇𝐴 have the same column space.
(d) 𝐴 and 𝐴𝑇𝐴 have the same rank.

We will prove part (a) and leave the remaining proofs for the exercises.
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Proof (a) We must show that every solution of 𝐴x = 0 is a solution of 𝐴𝑇𝐴x = 0, and
conversely. If x0 is any solution of 𝐴x = 0, then x0 is also a solution of 𝐴𝑇𝐴x = 0 since

𝐴𝑇𝐴x0 = 𝐴𝑇(𝐴x0) = 𝐴𝑇0 = 0
Conversely, if x0 is any solution of𝐴𝑇𝐴x = 0, then x0 is in the null space of𝐴𝑇𝐴 and hence
is orthogonal to all vectors in the row space of𝐴𝑇𝐴 by part (s) of Theorem 8.2.4. However,
𝐴𝑇𝐴 is symmetric, so x0 is also orthogonal to every vector in the column space of 𝐴𝑇𝐴. In
particular, x0 must be orthogonal to the vector (𝐴𝑇𝐴)x0; that is,

x0 · (𝐴𝑇𝐴)x0 = 0
Using the first row in Table 1 of Section 3.2 and properties of the transpose operation we
can rewrite this as

x𝑇0 (𝐴𝑇𝐴)x0 = (𝐴x0)𝑇(𝐴x0) = (𝐴x0) · (𝐴x0) = ‖𝐴x0‖2 = 0
which implies that 𝐴x0 = 0, thereby proving that x0 is a solution of 𝐴x0 = 0.

Theorem 9.4.2

If 𝐴 is anm × nmatrix, then:
(a) 𝐴𝑇𝐴 is orthogonally diagonalizable.
(b) The eigenvalues of 𝐴𝑇𝐴 are nonnegative real numbers.

Proof (a) The matrix 𝐴𝑇𝐴, being symmetric, is orthogonally diagonalizable by Theorem
7.2.1.

Proof (b) Since 𝐴𝑇𝐴 is orthogonally diagonalizable, there is an orthonormal basis for 𝑅n
consisting of eigenvectors of 𝐴𝑇𝐴, say {v1, v2, . . . , vn}. If we let 𝜆1, 𝜆2, . . . , 𝜆n be the corre-
sponding eigenvalues, then for 1 ≤ i ≤ n we have

‖𝐴vi‖2 = 𝐴vi ·𝐴vi = vi ·𝐴𝑇𝐴vi [Formula (26) of Section 3.2 ]
= vi · 𝜆ivi = 𝜆i(vi · vi) = 𝜆i‖vi‖2 = 𝜆i

It follows from this relationship that 𝜆i ≥ 0.

We will assume throughout
this section that the
eigenvalues of𝐴𝑇𝐴 are
named so that

𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆n ≥ 0

and hence that

𝜍1 ≥ 𝜍2 ≥ ⋅ ⋅ ⋅ ≥ 𝜍n ≥ 0

Definition 1

If 𝐴 is an m × n matrix, and if 𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴𝑇𝐴, then the
numbers

𝜎1 = √𝜆1, 𝜎2 = √𝜆2, . . . , 𝜎n = √𝜆n
are called the singular values of 𝐴.

EXAMPLE 1 | Singular Values

Find the singular values of the matrix

[
1 1
0 1
1 0

]
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Solution The first step is to find the eigenvalues of the matrix

𝐴𝑇𝐴 = [1 0 1
1 1 0] [

1 1
0 1
1 0

] = [2 1
1 2]

The characteristic polynomial of𝐴𝑇𝐴 is

𝜆2 − 4𝜆 + 3 = (𝜆 − 3)(𝜆 − 1)
so the eigenvalues of 𝐴𝑇𝐴 are 𝜆1 = 3 and 𝜆2 = 1 and the singular values of 𝐴 in order of
decreasing size are

𝜍1 =√𝜆1 = √3, 𝜍2 =√𝜆2 = 1

Singular Value Decomposition
Before turning to themain result in this section, we will find it useful to extend the notion
of a “main diagonal” to matrices that are not square. We define themain diagonal of an
m × n matrix to be the line of entries shown in Figure 9.4.1—it starts at the upper left
corner and extends diagonally as far as it can go. We will refer to the entries on the main
diagonal as the diagonal entries.

We are now ready to consider themain result in this section, which is concerned with
a specific way of factoring a general m × n matrix 𝐴. This factorization, called singular
value decomposition (abbreviated SVD) will be given in two forms, a brief form that
captures the main idea, and an expanded form that spells out the details. The proof is
given at the end of this section.

Main diagonals

FIGURE 9.4.1

Theorem 9.4.3

Singular Value Decomposition (Brief Form)
If 𝐴 is an m × nmatrix of rank k, then 𝐴 can be expressed in the form 𝐴 = 𝑈Σ𝑉𝑇,
where Σ has sizem × n and can be expressed in partitioned form as

Σ = [
𝐷 0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)
]

inwhich𝐷 is a diagonal k × kmatrixwhose successive entries are the first k singular
values of 𝐴 in nonincreasing order, 𝑈 is an m × n orthogonal matrix, and 𝑉 is an
n × n orthogonal matrix.

Historical Note

Harry Bateman
(1882–1946)

The term singular value is apparently due to the British-born
mathematician Harry Bateman, who used it in a research paper
published in 1908. Bateman emigrated to the United States in
1910, teaching at Bryn Mawr College, Johns Hopkins University,
and finally at the California Institute of Technology. Interestingly,
he was awarded his Ph.D. in 1913 by Johns Hopkins at which
point in time he was already an eminent mathematician with 60
publications to his name.

[Image: Courtesy of the Archives, California Institute of Technology]
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Theorem 9.4.4

Singular Value Decomposition (Expanded Form)
If 𝐴 is anm × nmatrix of rank k, then 𝐴 can be factored as

𝐴 = 𝑈Σ𝑉𝑇 = [u1 u2 ⋅ ⋅ ⋅ uk ∣ uk+1 ⋅ ⋅ ⋅ um]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜍1 0 ⋅ ⋅ ⋅ 0
0 𝜍2 ⋅ ⋅ ⋅ 0

0k×(n−k)...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 𝜍k

0(m−k)×k 0(m−k)×(n−k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v𝑇1
v𝑇2...
v𝑇k
v𝑇k+1...
v𝑇n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

inwhich𝑈,Σ, and𝑉 have sizesm ×m,m × n, andn × n, respectively, and inwhich:
(a) 𝑉 = [v1 v2 ⋅ ⋅ ⋅ vn] orthogonally diagonalizes 𝐴𝑇𝐴.
(b) Thenonzero diagonal entries of Σ are𝜎1 = √𝜆1, 𝜎2 = √𝜆2, . . . , 𝜎k = √𝜆k,where

𝜆1, 𝜆2, . . . , 𝜆k are the nonzero eigenvalues of𝐴𝑇𝐴 corresponding to the column
vectors of 𝑉.

(c) The column vectors of 𝑉 are ordered so that 𝜎1 ≥ 𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎k > 0.

(d) ui =
𝐴vi
‖𝐴vi‖

= 1
𝜎i
𝐴vi (i = 1, 2, . . . , k)

(e) {u1,u2, . . . ,uk} is an orthonormal basis for col(𝐴).
(𝑓) {u1,u2, . . . ,uk,uk+1, . . . ,um} is an extension of {u1,u2, . . . ,uk} to an ortho-

normal basis for 𝑅m.

The vectors u1,u2, . . . ,uk
are called the left singular
vectors of𝐴, and the vec-
tors v1, v2, . . . , vk are called
the right singular vectors
of𝐴.

EXAMPLE 2 | Singular Value Decomposition if A Is Not Square

Find a singular value decomposition of the matrix

𝐴 = [
1 1
0 1
1 0

]

Solution We showed in Example 1 that the eigenvalues of𝐴𝑇𝐴 are 𝜆1 = 3 and 𝜆2 = 1 and
that the corresponding singular values of 𝐴 are 𝜍1 = √3 and 𝜍2 = 1. We leave it for you to
verify that

v1 =
⎡
⎢
⎢
⎣

√2
2

√2
2

⎤
⎥
⎥
⎦

and v2 =
⎡
⎢
⎢
⎣

√2
2

−√2
2

⎤
⎥
⎥
⎦

are eigenvectors corresponding to𝜆1 and𝜆2, respectively, and that𝑉 = [v1 ∣ v2] orthogonally
diagonalizes𝐴𝑇𝐴. From part (d) of Theorem 9.4.4, the vectors

u1 =
1
𝜍1
𝐴v1 =

√3
3
[
1 1
0 1
1 0

]
⎡
⎢
⎢
⎣

√2
2

√2
2

⎤
⎥
⎥
⎦
=

⎡⎢⎢⎢⎢⎢
⎣

√6
3

√6
6

√6
6

⎤⎥⎥⎥⎥⎥
⎦

u2 =
1
𝜍2
𝐴v2 = (1) [

1 1
0 1
1 0

]
⎡
⎢
⎢
⎣

√2
2

−√2
2

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎢
⎣

0

−√2
2

√2
2

⎤
⎥
⎥
⎥
⎥
⎦
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are two of the three column vectors of𝑈. Note that u1 and u2 are orthonormal, as expected.
We could extend the set {u1,u2} to an orthonormal basis for 𝑅3. However, the computations
will be easier if we first remove the messy radicals by multiplying u1 and u2 by appropriate
scalars. Thus, we will look for a unit vector u3 that is orthogonal to

√6u1 = [
2
1
1
] and √2u2 = [

0
−1
1
]

To satisfy these two orthogonality conditions, the vector u3 must be a solution of the homo-
geneous linear system

[2 1 1
0 −1 1] [

x1
x2
x3
] = [00]

We leave it for you to show that a general solution of this system is

[
x1
x2
x3
] = t[

−1
1
1
]

Normalizing the vector on the right yields

u3 =
⎡
⎢
⎢
⎢
⎢
⎣

− 1
√3
1
√3
1
√3

⎤
⎥
⎥
⎥
⎥
⎦

Thus, the singular value decomposition of𝐴 is

[
1 1
0 1
1 0

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√6
3 0 − 1

√3
√6
6 −√2

2
1
√3

√6
6

√2
2

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢
⎣

√3 0
0 1
0 0

⎤⎥⎥
⎦

⎡
⎢
⎢
⎣

√2
2

√2
2

√2
2 −√2

2

⎤
⎥
⎥
⎦

𝐴 = 𝑈 Σ 𝑉𝑇

Youmay want to confirm the validity of this equation by multiplying out the matrices on the
right side.

OPTIONAL: We conclude this section with an optional proof of Theorem 9.4.4.

Proof of Theorem 9.4.4 For notational simplicity we will prove this theorem in the case
where 𝐴 is an n × n matrix. To modify the argument for an m × n matrix you need only
make the notational adjustments required to account for the possibility that m > n or
n > m.

The matrix 𝐴𝑇𝐴 is symmetric, so it has an eigenvalue decomposition

𝐴𝑇𝐴 = 𝑉𝐷𝑉𝑇

in which the column vectors of

𝑉 = [v1 ∣ v2 ∣ ⋅ ⋅ ⋅ ∣ vn]
are unit eigenvectors of𝐴𝑇𝐴, and𝐷 is a diagonalmatrix whose successive diagonal entries
𝜆1, 𝜆2, . . . , 𝜆n are the eigenvalues of 𝐴𝑇𝐴 corresponding in succession to the column vec-
tors of 𝑉. Since 𝐴 is assumed to have rank k, it follows from Theorem 9.4.1 that 𝐴𝑇𝐴 also
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has rank k. It follows as well that 𝐷 has rank k, since it is similar to 𝐴𝑇𝐴 and rank is a
similarity invariant. Thus, the diagonal matrix 𝐷 can be expressed in the form

𝐷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜆1 0
𝜆2 . . .

𝜆k
0 . . .

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

where 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆k > 0. Now let us consider the set of image vectors

{𝐴v1, 𝐴v2, . . . , 𝐴vn} (3)

This is an orthogonal set, for if i ≠ j, then the orthogonality of vi and vj implies that

𝐴vi ·𝐴vj = vi ·𝐴𝑇𝐴vj = vi · 𝜆jvj = 𝜆j(vi · vj) = 0

Moreover, the first k vectors in (3) are nonzero since we showed in the proof of Theo-
rem 9.4.2(b) that ‖𝐴vi‖2 = 𝜆i for i = 1, 2, . . . ,n, and we have assumed that the first k diag-
onal entries in (2) are positive. Thus,

𝑆 = {𝐴v1, 𝐴v2, . . . , 𝐴vk}
is an orthogonal set of nonzero vectors in the column space of 𝐴. But the column space of
𝐴 has dimension k since

rank(𝐴) = rank(𝐴𝑇𝐴) = k
and hence 𝑆, being a linearly independent set of k vectors, must be an orthogonal basis
for col(𝐴). If we now normalize the vectors in 𝑆, we will obtain an orthonormal basis
{u1,u2, . . . ,uk} for col(𝐴) in which

ui =
𝐴vi
‖𝐴vi‖

= 1
√𝜆i

𝐴vi (1 ≤ i ≤ k)

or, equivalently, in which

𝐴v1 = √𝜆1u1 = 𝜎1u1, 𝐴v2 = √𝜆2u2 = 𝜎2u2, . . . , 𝐴vk = √𝜆kuk = 𝜎kuk (4)

It follows from Theorem 6.3.6 that we can extend this to an orthonormal basis

{u1,u2, . . . ,uk,uk+1, . . . ,un}
for 𝑅n. Now let 𝑈 be the orthogonal matrix

𝑈 = [u1 u2 ⋅ ⋅ ⋅ uk uk+1 ⋅ ⋅ ⋅ un]
and let Σ be the diagonal matrix

Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎1 0
𝜎2 . . .

𝜎k
0 . . .

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It follows from (4), and the fact that 𝐴vi = 0 for i > k, that
𝑈Σ = [𝜎1u1 𝜎2u2 ⋅ ⋅ ⋅ 𝜎kuk 0 ⋅ ⋅ ⋅ 0]

= [𝐴v1 𝐴v2 ⋅ ⋅ ⋅ 𝐴vk 𝐴vk+1 ⋅ ⋅ ⋅ 𝐴vn]
= 𝐴𝑉

which we can rewrite using the orthogonality of 𝑉 as 𝐴 = 𝑈Σ𝑉𝑇 .
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Historical Note

Eugenio Beltrami
(1835–1900)

Camille Jordan
(1838–1922)

Herman Klaus Weyl
(1885–1955)

Gene H. Golub
(1932–2007)

The theory of singular value decompositions can be traced back to the work of five people:
the Italian mathematician Eugenio Beltrami, the French mathematician Camille Jordan, the
English mathematician James Sylvester (see p. 36), and the German mathematicians Erhard
Schmidt (see p. 369) and the mathematician Herman Weyl. More recently, the pioneering
efforts of the Americanmathematician Gene Golub produced a stable and efficient algorithm
for computing it. Beltrami and Jordan were the progenitors of the decomposition—Beltrami
gave a proof of the result for real, invertiblematriceswith distinct singular values in 1873. Sub-
sequently, Jordan refined the theory and eliminated the unnecessary restrictions imposed by
Beltrami. Sylvester, apparently unfamiliarwith thework of Beltrami and Jordan, rediscovered
the result in 1889 and suggested its importance. Schmidt was the first person to show that the
singular value decomposition could be used to approximate a matrix by another matrix with
lower rank, and, in so doing, he transformed it from a mathematical curiosity to an impor-
tant practical tool. Weyl showed how to find the lower rank approximations in the presence
of error.

[Images: http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Beltrami.html (Beltrami);
The Granger Collection, New York (Jordan); Courtesy Electronic Publishing Services, Inc.,

New York City (Weyl); Courtesy of Hector Garcia-Molina (Golub)]

Exercise Set 9.4

In Exercises 1–4, find the distinct singular values of𝐴.

1. 𝐴 = [1 2 0] 2. 𝐴 = [3 0
0 4]

3. 𝐴 = [1 −2
2 1] 4. 𝐴 = [

√2 0
1 √2

]

In Exercises 5–12, find a singular value decomposition of𝐴.

5. 𝐴 = [1 −1
1 1] 6. 𝐴 = [−3 0

0 −4]

7. 𝐴 = [4 6
0 4] 8. 𝐴 = [3 3

3 3]

http://www-history.mcs.st-andrews.ac.uk/history/PictDisplay/Beltrami.html
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9. 𝐴 = [
−2 2
−1 1
2 −2

] 10. 𝐴 = [−2 −1 2
2 1 −2]

11. 𝐴 = [
1 0
1 1

−1 1
] 12. 𝐴 = [

6 4
0 0
4 0

]

Working with Proofs

13. Prove: If 𝐴 is an m × n matrix, then 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the
same rank.

14. Prove part (d ) of Theorem 9.4.1 by using part (a) of the theo-
rem and the fact that𝐴 and𝐴𝑇𝐴 have n columns.

15. a. Prove part (b) of Theorem 9.4.1 by first showing that
row(𝐴𝑇𝐴) is a subspace of row(𝐴).

b. Prove part (c) of Theorem 9.4.1 by using part (b).

16. Let 𝑇∶𝑅n→𝑅m be a linear transformation whose standard
matrix 𝐴 has the singular value decomposition 𝐴 = 𝑈Σ𝑉𝑇,
and let 𝐵 = {v1, v2, . . . , vn} and 𝐵′ = {u1,u2, . . . ,um} be the
column vectors of𝑉 and𝑈, respectively. Prove that

Σ = [𝑇]𝐵′,𝐵

17. Prove that the singular values of 𝐴𝑇𝐴 are the squares of the
singular values of𝐴.

18. Prove that if𝐴 = 𝑈Σ𝑉𝑇 is a singular value decomposition of
𝐴, then𝑈 orthogonally diagonalizes𝐴𝐴𝑇.

19. A polar decomposition of an n × nmatrix𝐴 is a factorization
𝐴 = 𝑃𝑄 in which 𝑃 is a positive semidefinite n × n matrix
with the same rank as𝐴, and𝑄 is an orthogonal n × nmatrix.

a. Prove that if 𝐴 = 𝑈Σ𝑉𝑇 is the singular value decomposi-
tion of 𝐴, then 𝐴 = (𝑈Σ𝑈𝑇)(𝑈𝑉𝑇) is a polar decompo-
sition of𝐴.

b. Find a polar decomposition of the matrix in Exercise 5.

True-False Exercises
TF. In parts (a)–(g) determine whether the statement is true or

false, and justify your answer.
a. If𝐴 is anm × nmatrix, then𝐴𝑇𝐴 is anm ×mmatrix.

b. If𝐴 is anm × nmatrix, then𝐴𝑇𝐴 is a symmetric matrix.

c. If 𝐴 is an m × n matrix, then the eigenvalues of 𝐴𝑇𝐴 are
positive real numbers.

d. If 𝐴 is an n × n matrix, then 𝐴 is orthogonally diagonal-
izable.

e. If 𝐴 is an m × n matrix, then 𝐴𝑇𝐴 is orthogonally diago-
nalizable.

f. The eigenvalues of𝐴𝑇𝐴 are the singular values of𝐴.

g. Everym × nmatrix has a singular value decomposition.

Working with Technology
T1. Use your technology utility to duplicate the computations in

Example 2.

T2. For the given matrix 𝐴, use the steps in Example 2 to find
matrices 𝑈, Σ, and 𝑉𝑇 in a singular value decomposition
𝐴 = 𝑈Σ𝑉𝑇.

a. 𝐴 = [
−2 −1 2
2 1 −2]

b. 𝐴 =
⎡
⎢
⎢
⎣

1 0
1 1

−1 1

⎤
⎥
⎥
⎦

9.5 Data Compression Using Singular
Value Decomposition

Efficient transmission and storage of large quantities of digital data has become a major
problem in our technological world. In this section we will discuss the role that singular
value decomposition plays in compressing digital data so that it can be transmitted more
rapidly and stored in less space. We assume here that you have read Section 9.4.

Reduced Singular Value Decomposition
Algebraically, the zero rows and columns of thematrix Σ in Theorem 9.4.4 are superfluous
and can be eliminated bymultiplying out the expression𝑈Σ𝑉𝑇 using blockmultiplication



November 13, 2018 09:45 C09 Sheet number 33 Page number 541 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

9.5 Data Compression Using Singular Value Decomposition 541

and the partitioning shown in that formula. The products that involve zero blocks as fac-
tors drop out, leaving

𝐴 = [u1 u2 ⋅ ⋅ ⋅ uk]
⎡⎢⎢⎢⎢
⎣

𝜎1 0 . . . 0
0 𝜎2 . . . 0
...

...
. . .

...
0 0 . . . 𝜎k

⎤⎥⎥⎥⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

v𝑇1
v𝑇2...
v𝑇k

⎤
⎥
⎥
⎥
⎥
⎦

(1)

which is called a reduced singular value decomposition of𝐴. In this text we will denote
the matrices on the right side of (1) by𝑈1,Σ1, and 𝑉𝑇

1 , respectively, and we will write this
equation as

𝐴 = 𝑈1Σ1𝑉𝑇
1 (2)

Note that the sizes of𝑈1,Σ1, and 𝑉𝑇
1 arem × k, k × k, and k × n, respectively, and that the

matrix Σ1 is invertible since its diagonal entries are positive.
If we multiply out on the right side of (1) using the column-row rule, then we obtain

𝐴 = 𝜎1u1v𝑇1 + 𝜎2u2v𝑇2 + ⋅ ⋅ ⋅ + 𝜎kukv𝑇k (3)

which is called a reduced singular value expansion of𝐴. This result applies to allmatri-
ces, whereas the spectral decomposition [Formula (7) of Section 7.2] applies only to sym-
metric matrices.

Remark It can be proved that an m × n matrix𝑀 has rank 1 if and only if it can be fac-
tored as 𝑀 = uv𝑇 , where u is a column vector in 𝑅m and 𝑉 is a column vector in 𝑅n.
Thus, a reduced singular value decomposition expresses a matrix 𝐴 of rank k as a linear
combination of k rank 1 matrices.

EXAMPLE 1 | Reduced Singular Value Decomposition

Find a reduced singular value decomposition and a reduced singular value expansion of the
matrix

𝐴 = [
1 1
0 1
1 0

]

Solution In Example 2 of Section 9.4 we found the singular value decomposition

[
1 1
0 1
1 0

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√6
3 0 − 1

√3
√6
6 −√2

2
1
√3

√6
6

√2
2

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢
⎣

√3 0
0 1
0 0

⎤⎥⎥
⎦

⎡
⎢
⎢
⎣

√2
2

√2
2

√2
2 −√2

2

⎤
⎥
⎥
⎦

𝐴 = 𝑈 Σ 𝑉𝑇

(4)

Since 𝐴 has rank 2 (verify), it follows from (1) with k = 2 that the reduced singular value
decomposition of𝐴 corresponding to (4) is

[
1 1
0 1
1 0

] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√6
3 0

√6
6 −√2

2

√6
6

√2
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[√3 0
0 1

]
⎡
⎢
⎢
⎣

√2
2

√2
2

√2
2 −√2

2

⎤
⎥
⎥
⎦
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This yields the reduced singular value expansion

[
1 1
0 1
1 0

] = 𝜍1u1v𝑇1 +𝜍2u2v𝑇2 = √3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√6
3

√6
6

√6
6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[√22
√2
2 ] + (1)

⎡
⎢
⎢
⎢
⎣

0

−√2
2

√2
2

⎤
⎥
⎥
⎥
⎦

[√22 −√2
2 ]

= √3

⎡⎢⎢⎢⎢⎢
⎣

√3
3

√3
3

√3
6

√3
6

√3
6

√3
6

⎤⎥⎥⎥⎥⎥
⎦

+ (1)
⎡
⎢
⎢
⎢
⎣

0 0
− 1

2
1
2

1
2 − 1

2

⎤
⎥
⎥
⎥
⎦

Note that the matrices in the expansion have rank 1, as expected.

Data Compression and Image Processing
Singular value decompositions can be used to “compress” visual information for the pur-
pose of reducing its required storage space and speeding up its electronic transmission.
The first step in compressing a visual image is to represent it as a numerical matrix from
which the visual image can be recovered when needed.

For example, a black and white photograph might be scanned as a rectangular array
of pixels (points) and then stored as amatrix𝐴 by assigning each pixel a numerical value in
accordance with its gray level. If 256 different gray levels are used (0 = white to
255 = black), then the entries in the matrix would be integers between 0 and 255. The
image can be recovered from the matrix 𝐴 by printing or displaying the pixels with their
assigned gray levels.

If thematrix𝐴 has sizem × n, then onemight store each of itsmn entries individually.
An alternative procedure is to compute the reduced singular value decomposition

𝐴 = 𝜎1u1v𝑇1 + 𝜎2u2v𝑇2 + ⋅ ⋅ ⋅ + 𝜎kukv𝑇k (5)
in which 𝜎1 ≥ 𝜎2 ≥ ⋅ ⋅ ⋅ ≥ 𝜎k, and store the 𝜎’s, the u’s, and the v’s. When needed, the
matrix𝐴 (and hence the image it represents) can be reconstructed from (5). Since each uj
hasm entries and each vj has n entries, this method requires storage space for

km + kn + k = k(m + n + 1)

numbers. Suppose, however, that the singular values𝜎r+1, . . . , 𝜎k are sufficiently small that
dropping the corresponding terms in (5) produces an acceptable approximation

𝐴r = 𝜎1u1v𝑇1 + 𝜎2u2v𝑇2 + ⋅ ⋅ ⋅ + 𝜎rurv𝑇r (6)

Historical Note

Original Reconstruction

In 1924 the U.S. Federal Bureau of Investigation (FBI)
began collecting fingerprints and handprints and now
has more than 100 million such prints in its files.
To reduce the storage cost, the FBI began working
with the Los AlamosNational Laboratory, the National
Bureau of Standards, and other groups in 1993 to devise
rank-based compression methods for storing prints in
digital form. The adjacent figure shows an original fin-
gerprint and a reconstruction fromdigital data thatwas
compressed at a ratio of 26:1.
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to 𝐴 and the image that it represents. We call (6) the rank r approximation of A. This
matrix requires storage space for only

rm + rn + r = r(m + n + 1)
numbers, compared tomn numbers required for entry-by-entry storage of𝐴. For example,
the rank 100 approximation of a 1000 × 1000 matrix 𝐴 requires storage for only

100(1000 + 1000 + 1) = 200,100
numbers, compared to the 1,000,000 numbers required for entry-by-entry storage of𝐴—a
compression of almost 80%.

Figure 9.5.1 shows some approximations of a digitized mandrill image obtained
using (6).
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FIGURE 9.5.1

Exercise Set 9.5

In Exercises 1–4, find a reduced singular value decomposition of𝐴.
[Note:Eachmatrix appears inExercise Set 9.4, where youwere asked
to find its (unreduced) singular value decomposition.]

1. 𝐴 = [
−2 2
−1 1
2 −2

] 2. 𝐴 = [−2 −1 2
2 1 −2]

3. 𝐴 = [
1 0
1 1

−1 1
] 4. 𝐴 = [

6 4
0 0
4 0

]

In Exercises 5–8, find a reduced singular value expansion of𝐴.
5. The matrix𝐴 in Exercise 1.

6. The matrix𝐴 in Exercise 2.

7. The matrix𝐴 in Exercise 3.

8. The matrix𝐴 in Exercise 4.

9. Suppose𝐴 is a 200 × 500matrix. Howmany numbers must be
stored in the rank 100 approximation of𝐴? Compare this with
the number of entries of𝐴.

True-False Exercises
TF. In parts (a)–(c) determine whether the statement is true or

false, and justify your answer. Assume that 𝑈1Σ1𝑉𝑇
1 is a

reduced singular value decomposition of an m × n matrix
of rank k.
a. 𝑈1 has sizem × k.

b. Σ1 has size k × k.

c. 𝑉1 has size k × n.

Chapter 9 Supplementary Exercises
1. Find an LU-decomposition of𝐴 = [−6 2

6 0].

2. Find the LDU-decomposition of the matrix𝐴 in Exercise 1.

3. Find an 𝐿𝑈-decomposition of𝐴 = [
2 4 6
1 4 7
1 3 7

].

4. Find the LDU-decomposition of the matrix𝐴 in Exercise 3.

5. Let𝐴 = [2 1
1 2] and x0 = [10].

a. Identify the dominant eigenvalue of 𝐴 and then find the
corresponding dominant unit eigenvector v with positive
entries.
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b. Apply the power method with Euclidean scaling to 𝐴 and
x0, stopping at x5. Compare your value of x5 to the eigen-
vector v found in part (a).

c. Apply the power method with maximum entry scaling to𝐴
and x0, stopping at x5. Compare your result with the eigen-

vector [11].

6. Consider the symmetric matrix

𝐴 = [0 1
1 0]

Discuss the behavior of the power sequence
x0, x1, . . . , xk, . . .

with Euclidean scaling for a general nonzero vector x0.What is
it about the matrix that causes the observed behavior?

7. Suppose that a symmetric matrix 𝐴 has distinct eigenvalues
𝜆1 = 8, 𝜆2 = 1.4, 𝜆3 = 2.3, and 𝜆4 = −8.1.What can you say
about the convergence of the Rayleigh quotients?

8. Find a singular value decomposition of𝐴 = [1 1
1 1].

9. Find a singular value decomposition of𝐴 = [
1 1
0 0
1 1

].

10. Find a reduced singular value decomposition and a reduced
singular value expansion of the matrix𝐴 in Exercise 9.

11. Find the reduced singular value decomposition of the matrix
whose singular value decomposition is

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

24 0 0
0 12 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3

⎤
⎥
⎥
⎥
⎥
⎦

12. Do orthogonally similar matrices have the same singular val-
ues? Justify your answer.

13. If 𝑃 is the standard matrix for the orthogonal projection of 𝑅n

onto a subspace𝑊,what can you say about the singular values
of 𝑃?

14. Prove: If 𝐴 has rank 1, then there exists a scalar k such that
𝐴2 = k𝐴.
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Appendix A

Working with Proofs

Linear algebra is different from other mathematics courses that you may encounter in
that it is more than a collection of problem-solving techniques. Even if you learn to solve
all of the computational problems in this text, you will have fallen short in your mas-
tery of the subject. This is because innovative uses of linear algebra typically require new
techniques based on an understanding of its theorems, their interrelationships, and their
proofs. While it is impossible to teach you everything you will need to do proofs, this
appendix will provide some guidelines that may help.

What Is a Proof?
In essence, a proof is a “convincing argument” that justifies the truth of a mathematical
statement. Although what may be convincing to one person may not be convincing to
another, experience has led mathematicians to establish clear standards on what is to be
considered an acceptable proof and what is not. We will try to explain here some of the
logical steps required of an acceptable proof.

Formality
In high-school geometry you may have been asked to prove theorems by formally list-
ing statements on the left and justifications on the right. That level of formality is not
required in linear algebra. Rather, a proof need only be an argument, written in complete
sentences, that leads step by step to a logical conclusion, and inwhich each step is justified
by referencing some statement whose validity is either self-evident or has been previously
proved.

How to Read Theorems
Most theorems are of the form

If𝐻 is true, then 𝐶 is true. (1)
where𝐻 is a statement called the hypothesis and 𝐶 is a statement called the conclusion.
In formal logic one denotes a theorem of this form as

𝐻 ⇒ 𝐶 (2)
which is read, “𝐻 implies 𝐶.” A statement of this type is considered to be true if the con-
clusion 𝐶 is true in all cases where the hypothesis𝐻 is true, and it is considered to be false
if there is at least one case where 𝐻 is true and 𝐶 is false. As an example, consider the
statement

If a and b are both positive numbers, then ab is a positive number. (3)
In this statement,

𝐻 = a and b are both positive numbers (4)
𝐶 = ab is a positive number (5)

Statement (3) is true because 𝐶 is true in all cases where𝐻 is true. On the other hand, the
statement

If a and b are positive integers, then√ab is a positive integer. (6)



November 13, 2018 10:04 Appendix-A Sheet number 2 Page number 2 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

A2 APPENDIX A Working with Proofs

is not true because there exist cases where the hypothesis is true and the conclusion is
false—for example, if a = 2 and b = 3.

Sometimes it is desirable to phrase statements in a negative way. For example, state-
ment (3) can be rephrased equivalently as

If ab is not a positive number, then a and b are not both positive numbers. (7)
If we write ∼𝐻 to mean that 𝐻 is false and ∼𝐶 to mean that 𝐶 is false, then the structure
of statement (7) is

∼𝐶 ⇒ ∼𝐻 (8)
This is called the contrapositive form of (2). It can be shown that a statement and its
contrapositive are logically equivalent; that is, if the statement is true, then so is its con-
trapositive and vice versa.

The converse of a theorem is the statement that results when the hypothesis and
conclusion are interchanged. Thus, the converse of the statement𝐻 ⇒ 𝐶 is the statement
𝐶 ⇒ 𝐻. Whereas the contrapositive of a true statement must itself be true, the converse
of a true statement may or may not be true. For example, the converse of the true state-
ment (3) is the false statement

If ab is a positive number, then a and b are both positive numbers.
whereas the converse of the true statement

If the numbers a and b are both positive or both negative, then
ab is a positive number.

is a true statement.

Warning Do not confuse the terms “contrapositive” and “converse.”

In those special caseswhere a statement𝐻 ⇒ 𝐶 and its converse𝐶 ⇒ 𝐻 are both true,
we say that𝐻 and 𝐶 are equivalent statements. We denote this by writing

𝐻 ⇔ 𝐶 (9)
which is read, “𝐻 is equivalent to 𝐶” or, more commonly, “𝐻 is true if and only if 𝐶 is
true.” For example, if a and b are real numbers, then

a > b if and only if (a − b) > 0 (10)
To prove an “if and only if” statement of form (9), youmust prove both𝐻 ⇒ 𝐶 and𝐶 ⇒ 𝐻.

Equivalent statements are often phrased in other ways. For example, statement (10)
might also be expressed as

If a > b, then (a − b) > 0 and conversely.
Sometimes two true statements will give you a third true statement for free. Specif-

ically, if it is true that 𝐻 ⇒ 𝐶 and 𝐶 ⇒ 𝐷, then it follows that 𝐻 ⇒ 𝐷 must also be true.
For example, consider the following two theorems from geometry.

Theorem 1A

If opposite sides of a quadrilateral are parallel, then the quadrilateral is a parall-
elogram.

Theorem 2A

Opposite sides of a parallelogram have equal lengths.

Because the conclusion of the first theorem is essentially the hypothesis of the second, the
two theorems together yield the following third theorem.
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Theorem 3A

If opposite sides of a quadrilateral are parallel, then they have equal lengths.

To take this idea a step further, three true statements can sometimes yield three other

H

CD

FIGURE A.1

true statements for free. Specifically, if
𝐻 ⇒ 𝐶, 𝐶 ⇒ 𝐷, 𝐷 ⇒ 𝐻 (11)

then we have the implication loop in Figure A.1, from which we see that
𝐶 ⇒ 𝐻, 𝐷 ⇒ 𝐶, 𝐻 ⇒ 𝐷

By combining this result with (11) we obtain
𝐻 ⇔ 𝐶, 𝐶 ⇔ 𝐷, 𝐷 ⇔ 𝐻 (12)

In summary, if you want to prove the three equivalences in (12) you need only prove the
three implications in (11).

Reductio ad Absurdum
It is a matter of logic that a statement cannot be both true and false. This fact is the basis
for a method of proof called “reductio ad absurdum” or, more commonly, “proof by con-
tradiction.” The idea is to make the assumption that the conclusion of a statement is false
and show that this leads to a contradiction of some sort. The underlying logic is that if
𝐻 ⇒ 𝐶 is a true statement, then the statement

(𝐻 and ∼𝐶) ⇒ 𝐶
must be false, for otherwise 𝐶 would be both true and false.

Sets
Many of the proofs in this text are concerned with sets (or collections) of objects, the
objects being called the elements of the set. Although a set can generally include any kinds
of objects, in linear algebra the objects are typically “scalars,” “matrices,” or “vectors”
(terms that are all defined in the text). We assume that you are already familiar with the
basic terminology and notation of sets, but we will review it quickly here.

Sets are generally denoted by capital letters and their elements by lowercase letters.
One way to describe a set is to simply list its elements enclosed by braces; for example,

𝑆 = {1, 3, 5} (13)
By agreement, the elements of a set must all be different, and the order in which the elements
are listed does not matter. Thus, for example, the above set might also be written as

𝑆 = {3, 5, 1} or 𝑆 = {5, 1, 3}
To indicate that an element a is a member of a set 𝑆 we write a ∈ 𝑆 (read, “a belongs to
𝑆”), and to indicate that a is not a member of 𝑆 we write a ∉ 𝑆 (read, “a does not belong
to 𝑆”). Thus, for the set in (13) we have

3 ∈ 𝑆 and 4 ∉ 𝑆
There are two common ways of denoting sets with infinitely many elements: If the

elements have some obvious notational pattern, then the set can be denoted by explicitly
specifying some initial elements and using dots to indicate that the remaining elements
follow the same pattern. For example, the set of positive integers might be denoted as

𝑆 = {1, 2, 3, . . . } (14)
An alternative method for denoting the set 𝑆 in (14) is to write

𝑆 = {x∶x is a positive integer}
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where the right side is read, “the set of all x such that x is a positive integer.” This is called
set-builder notation. In general, set-builder notation has the form

𝑆 = {x∶ } (15)
where the blank line is replaced by a description that defines those and only those ele-
ments in the set 𝑆. Of particular interest in this text are the set of real numbers, denoted by
𝑅; the set of points in the plane, denoted by 𝑅2; and the set of points in three-dimensional
space, denoted by 𝑅3. The latter two can be described in set-builder notation as

𝑅2 = {(x, y)∶x, y ∈ 𝑅} and 𝑅3 = {(x, y, z)∶x, y, z ∈ 𝑅}

Operations on Sets
If 𝐴 and 𝐵 are arbitrary sets, then the union of 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is the set
of elements that belong to 𝐴 or 𝐵 or both; and the intersection of 𝐴 and 𝐵, denoted by
𝐴 ∩ 𝐵, is the set of elements that belong to both 𝐴 and 𝐵. These operations are illustrated
in Figure A.2 usingVenn diagrams, named for the British logician John A. Venn (1834–
1923). In those diagrams the sets 𝐴 and 𝐵 are the regions enclosed by the circles, and
the sets 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 are shaded. In the event that the sets 𝐴 and 𝐵 have no common
elements, thenwe say that the sets aredisjoint andwewrite𝐴 ∩ 𝐵 = ∅, where the symbol
∅ denotes a set with no elements called the empty set.

BA BA

A     B is shaded. A     B is shaded.

FIGURE A.2

If every element of a set𝐴 belongs as well to a set 𝐵, then we say that A is a subset of
B and we write𝐴 ⊂ 𝐵. If𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, then𝐴 and 𝐵 have exactly the same elements,
so we say that 𝐴 and 𝐵 are equal and we write 𝐴 = 𝐵.

Ordered Sets
In certain linear algebra problems the order in which elements are listed is important, so
we will want to consider ordered sets, that is, sets in which duplicate elements are not
allowed but order matters. Thus, for example,

𝑆1 = {3, 5, 1} and 𝑆2 = {5, 1, 3}
are the same sets, but not the same ordered sets.

How to Do Proofs
• A good first step in a proof is to write down in complete sentences what is given (i.e.,
the hypothesis𝐻) and what is to be proved (i.e., the conclusion 𝐶).

• Once you clearly understand what is given and what is to be proved, youmust decide
whether you want to prove the theorem directly, or in contrapositive form, or by
reductio ad absurdum.Youmight restate the theorem in the threeways and seewhich
form seems most promising.

• Next, youmight want to review earlier theorems that could be relevant to your proof.
• From this point on it is a matter of experience and intuition, but keep in mind that
proving theorems is not an easy task, so don’t be discouraged. As you read through
the proofs in the text, observe the techniques and try to make them part of your own
repertoire.

• Additional ideas on proving theorems can be found in the supplement to this text
entitled “How to Read and Do Proofs” by Daniel Solow (see Preface for details).
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Complex Numbers

Complexnumbers arise naturally in the course of solving polynomial equations. For exam-
ple, the solutions of the quadratic equation ax2 + bx + c = 0, which are given by the
quadratic formula

x = −b ±√b2 − 4ac
2a

are complex numbers if the expression inside the radical is negative. In this appendix we
will review some of the basic ideas about complex numbers that are used in this text.

Complex Numbers
To deal with the problem that the equation x2 = −1 has no real solutions,mathematicians
of the eighteenth century invented the “imaginary” number

i = √−1
which is assumed to have the property

i2 = (√−1)2 = −1
but which otherwise has the algebraic properties of a real number. An expression of the
form

a + bi or a + ib
in which a and b are real numbers is called a complex number. Sometimes it will be
convenient to use a single letter, typically z , to denote a complex number, in which case
we write

z = a + bi or z = a + ib
The number a is called the real part of z and is denoted by Re(z), and the number b is
called the imaginary part of z and is denoted by Im(z). Thus,

Re(3 + 2i) = 3, Im(3 + 2i) = 2
Re(1 − 5i) = 1, Im(1 − 5i) = Im(1 + (−5)i) = −5
Re(7i) = Re(0 + 7i) = 0, Im(7i) = Im(0 + 7i) = 7
Re(4) = Re(4 + 0i) = 4, Im(4) = Im(4 + 0i) = 0

Two complex numbers are considered equal if and only if their real parts are equal and
their imaginary parts are equal; that is,

a + bi = c + di if and only if a = c and b = d

A complex number z = biwhose real part is zero is said to be pure imaginary. A complex
number z = a whose imaginary part is zero is a real number, so the real numbers can be
viewed as a subset of the complex numbers.

Complex numbers are added, subtracted, andmultiplied in accordance with the stan-
dard rules of algebra but with i2 = −1:

(a + bi) + (c + di) = (a + c) + (b + d)i (1)

(a + bi) − (c + di) = (a − c) + (b − d)i (2)

(a + bi)(c + di) = (ac − bd) + (ad + bc)i (3)
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Multiplication formula (3) is obtained by expanding the left side and using the fact that
i2 = −1. Also note that if b = 0, then the multiplication formula simplifies to

a(c + di) = ac + adi (4)

The set of complex numbers with these operations is commonly denoted by the symbol 𝐶
and is called the complex number system.

EXAMPLE 1 | Multiplying Complex Numbers

As a practical matter, it is usually more convenient to compute products of complex numbers
by expansion, rather than substituting in (3). For example,

(3− 2i)(4+ 5i) = 12+ 15i− 8i− 10i2 = (12+ 10) + 7i = 22+ 7i

The Complex Plane
A complex number z = a + bi can be associated with the ordered pair (a, b) of real num-
bers and represented geometrically by a point or a vector in the xy-plane (Figure B.1).
We call this the complex plane. Points on the x-axis have an imaginary part of zero and
hence correspond to real numbers, whereas points on the y-axis have a real part of zero
and correspond to pure imaginary numbers. Accordingly, we call the x-axis the real axis
and the y-axis the imaginary axis (Figure B.2).

a + bi
b

a

y

x

a + bi
b

a

y

x

Theorem 1A

FIGURE B.1

z = a + bi

(Real part of z)

(Imaginary
part of z)

Real axis

b

Imaginary axis

a

Theorem 1A

FIGURE B.2

Complex numbers can be added, subtracted, or multiplied by real numbers
geometrically by performing these operations on their associated vectors (Figure B.3, for
example). In this sense the complex number system 𝐶 is closely related to 𝑅2, the main
difference being that complex numbers can bemultiplied to produce other complex num-
bers, whereas there is no multiplication operation on 𝑅2 that produces other vectors in 𝑅2
(the dot product defined in Section 3.2 produces a scalar, not a vector in 𝑅2).

y

x

z1 z1 + z2

z2

The sum of two
complex numbers

y

x

z1
z1 – z2

z2

The di8erence of two
complex numbers

FIGURE B.3

If z = a + bi is a complex number, then the complex conjugate of z, or more simply,
the conjugate of z, is denoted by ̄z (read, “z bar”) and is defined by

̄z = a − bi (5)
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Numerically, ̄z is obtained from z by reversing the sign of the imaginary part, and geo-
metrically it is obtained by reflecting the vector for z about the real axis (Figure B.4).

z = a + bi

x

y

z = a – bi

(a, b)

(a, –b)

FIGURE B.4

EXAMPLE 2 | Some Complex Conjugates

z = 3+ 4i ̄z = 3− 4i
z = −2− 5i ̄z = −2+ 5i
z = i ̄z = −i
z = 7 ̄z = 7

Remark The last computation in this example illustrates the fact that a real number is
equal to its complex conjugate. More generally, z = ̄z if and only if z is a real number.

The following computation shows that the product of a complex number z = a + bi
and its conjugate z = a − bi is a nonnegative real number:

z ̄z = (a + bi)(a − bi) = a2 − abi + bai − b2i2 = a2 + b2 (6)
You will recognize that

√z ̄z = √a2 + b2
is the length of the vector corresponding to z (FigureB.5); we call this length themodulus

z = a + bi

b

a

|z|

z  =    a2 + b2

FIGURE B.5

(or absolute value of z) and denote it by |z|. Thus,

|z| = √z ̄z = √a2 + b2 (7)

Note that if b = 0, then z = a is a real number and |z| = √a2 = |a|, which tells us that the
modulus of a real number is the same as its absolute value.

EXAMPLE 3 | Some Modulus Computations

z = 3+ 4i |z| = √32 + 42 = 5
z = −4− 5i |z| = √(−4)2 + (−5)2 = √41
z = i |z| = √02 + 12 = 1

Reciprocals and Division
If z ≠ 0, then the reciprocal (or multiplicative inverse) of z is denoted by 1/z (or z−1)
and is defined by the property

(1z ) z = 1

This equation has a unique solution for 1/z, which we can obtain by multiplying both
sides by ̄z and using the fact that z ̄z = |z|2 [see (7)]. This yields

1
z =

̄z
|z|2 (8)
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If z2 ≠ 0, then the quotient z1/z2 is defined to be the product of z1 and 1/z2. This
yields the formula

z1
z2

= ̄z2
|z2|2

z1 =
z1 ̄z2
|z2|2

(9)

Observe that the expression on the right side of (9) results if the numerator anddenom-
inator of z1/z2 are multiplied by ̄z2. As a practical matter, this is often the best way to
perform divisions of complex numbers.

EXAMPLE 4 | Division of Complex Numbers

Let z1 = 3+ 4i and z2 = 1− 2i. Express z1/z2 in the form a+ bi.

Solution We will multiply the numerator and denominator of z1/z2 by ̄z2 = 1+ 2i. This
yields

z1
z2

= z1 ̄z2
z2 ̄z2

= 3+ 4i
1− 2i

⋅ 1+ 2i
1+ 2i

= 3+ 6i+ 4i+ 8i2

1− 4i2

= −5+ 10i
5

= −1+ 2i

The following theorems list some useful properties of the modulus and conjugate
operations.

Theorem B1

The following results hold for any complex numbers z, z1, and z2.
(a) z1 + z2 = ̄z1 + ̄z2
(b) z1 − z2 = ̄z1 − ̄z2
(c) z1z2 = ̄z1 ̄z2
(d) z1/z2 = ̄z1/ ̄z2
(e) ̄̄z = z

Theorem B2

The following results hold for any complex numbers z, z1, and z2.
(a) | ̄z| = |z|
(b) |z1z2| = |z1||z2|
(c) |z1/z2| = |z1|/|z2|
(d) |z1 + z2| ≤ |z1| + |z2|
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Polar Form of a Complex Number
If z = a + bi is a nonzero complex number, and if𝜙 is an angle from the real axis to the vec-
tor z, then, as suggested inFigureB.6, the real and imaginary parts of z can be expressed as

b = |z| sin ϕ
|z|

(a, b)

ϕ

a =  z  cos ϕ

FIGURE B.6

a = |z| cos𝜙 and b = |z| sin𝜙 (10)
Thus, the complex number z = a + bi can be expressed as

z = |z|(cos𝜙 + i sin𝜙) (11)

which is called a polar form of z. The angle 𝜙 in this formula is called an argument of
z. The argument of z is not unique because we can add or subtract any multiple of 2𝜋 to
it to obtain a different argument of z. However, there is only one argument whose radian
measure satisfies

−𝜋 < 𝜙 ≤ 𝜋 (12)
This is called the principal argument of z.

EXAMPLE 5 | Polar Form of a Complex Number

Express z = 1−√3 i in polar form using the principal argument.

Solution The modulus of z is

|z| = √12 + (−√3)2 = √4 = 2

Thus, it follows from (10) with a = 1 and b = −√3 that

1 = 2 cos𝜙 and −√3 = 2 sin𝜙
and this implies that

cos𝜙 = 1
2

and sin𝜙 = −
√3
2

The unique angle 𝜙 that satisfies these equations and whose radian measure satisfies (12) is
𝜙 = −𝜋/3 (Figure B.7). Thus, a polar form of z is

z = 2(cos (−𝜋
3 ) + i sin (−𝜋

3 )) = 2(cos 𝜋
3 − i sin 𝜋

3 )

1

2 √3

3
π

(1, –      )3

FIGURE B.7

Geometric Interpretation of Multiplication and
Division of Complex Numbers
Wewill now showhowpolar forms of complexnumbers provide geometric interpretations
of multiplication and division. Let

z1 = |z1|(cos𝜙1 + i sin𝜙1) and z2 = |z2|(cos𝜙2 + i sin𝜙2)
be polar forms of the nonzero complex numbers z1 and z2. Multiplying, we obtain

z1z2 = |z1||z2|[(cos𝜙1 cos𝜙2 − sin𝜙1 sin𝜙2) + i(sin𝜙1 cos𝜙2 + cos𝜙1 sin𝜙2)]
Now applying the trigonometric identities

cos(𝜙1 + 𝜙2) = cos𝜙1 cos𝜙2 − sin𝜙1 sin𝜙2
sin(𝜙1 + 𝜙2) = sin𝜙1 cos𝜙2 + cos𝜙1 sin𝜙2

yields
z1z2 = |z1||z2|[cos(𝜙1 + 𝜙2) + i sin(𝜙1 + 𝜙2)] (13)
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which is a polar form of the complex number that has modulus |z1||z2| and argument
𝜙1 + 𝜙2. Thus, we have shown that multiplying two complex numbers has the geometric
effect of multiplying their moduli and adding their arguments (Figure B.8).

x

y

ϕ1

ϕ1 + ϕ2

ϕ2 |z1|

z1

z1z2
z2

|z1‖z2|

|z2|

FIGURE B.8

Similar kinds of computations show that

z1
z2

= |z1|
|z2|

[cos(𝜙1 − 𝜙2) + i sin(𝜙1 − 𝜙2)] (14)

which tells us that dividing complex numbers has the geometric effect of dividing their mod-
uli and subtracting their arguments (each in the appropriate order).

EXAMPLE 6 | Multiplying and Dividing in Polar Form

Use polar forms of the complex numbers z1 = 1+√3 i and z2 = √3+ i to compute z1z2 and
z1/z2.
Solution Polar forms of these complex numbers are

z1 = 2(cos 𝜋
3 + i sin 𝜋

3 ) and z2 = 2(cos 𝜋
6 + i sin 𝜋

6
)

(verify). Thus, it follows from (13) that

z1z2 = 4 [cos (𝜋3 +
𝜋
6 )+ i sin (𝜋3 +

𝜋
6 )] = 4 [cos (𝜋2 )+ i sin (𝜋2 )] = 4i

and from (14) that

z1
z2

= 1 ⋅ [cos (𝜋3 −
𝜋
6 )+ i sin (𝜋3 −

𝜋
6 )] = cos (𝜋6 )+ i sin (𝜋6 ) =

√3
2

+ 1
2
i

As a check, let us calculate z1z2 and z1/z2 directly:

z1z2 = (1+√3 i)(√3+ i) = √3+ i+ 3 i+√3 i 2 = 4i

z1
z2

= 1+√3 i
√3+ i

= 1+√3 i
√3+ i

⋅
√3− i
√3− i

=
√3− i+ 3 i−√3 i 2

3− i 2
= 2√3+ 2 i

4
=

√3
2

+ 1
2
i

which agrees with the results obtained using polar forms.

Remark The complex number i has a modulus of 1 and a principal argument of 𝜋/2.
Thus, if z is a complex number, then iz has the same modulus as z but its argument is
greater by 𝜋/2 (= 90∘); that is, multiplication by i has the geometric effect of rotating the
vector z counterclockwise by 90∘ (Figure B.9).

x

y

z

iz

90°

FIGURE B.9

DeMoivre’s Formula
If n is a positive integer, and if z is a nonzero complex number with polar form

z = |z|(cos𝜙 + i sin𝜙)
then raising z to the nth power yields

zn = z ⋅ z ⋅ ⋅ ⋅ ⋅ ⋅ z
n factors

= |z|n[cos(𝜙 + 𝜙 + ⋅ ⋅ ⋅ + 𝜙
n terms

)] + i[sin(𝜙 + 𝜙 + ⋅ ⋅ ⋅ + 𝜙
n terms

)]

which we can write more succinctly as

zn = |z|n(cosn𝜙 + i sinn𝜙) (15)
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In the special case where |z| = 1 this formula simplifies to

zn = cosn𝜙 + i sinn𝜙
which, using the polar form for z, becomes

(cos𝜙 + i sin𝜙)n = cosn𝜙 + i sinn𝜙 (16)

This result is calledDeMoivre’s formula, named for the FrenchmathematicianAbraham
de Moivre (1667–1754).

Euler’s Formula
If 𝜃 is a real number, say the radianmeasure of some angle, then the complex exponential
function e i𝜃 is defined to be

e i𝜃 = cos 𝜃 + i sin 𝜃 (17)

which is sometimes called Euler’s formula, named for the Swiss mathematician Leon-
hard Euler (1707–1783). Onemotivation for this formula comes from theMaclaurin series
in calculus. Readers who have studied infinite series in calculus can deduce (17) by for-
mally substituting i𝜃 for x in the Maclaurin series for ex and writing

e i𝜃 = 1 + i𝜃 + (i𝜃)2
2! + (i𝜃)3

3! + (i𝜃)4
4! + (i𝜃)5

5! + (i𝜃)6
6! + ⋅ ⋅ ⋅

= 1 + i𝜃 − 𝜃2
2! − i𝜃

3

3! +
𝜃4
4! + i𝜃

5

5! −
𝜃6
6! + ⋅ ⋅ ⋅

= (1 − 𝜃2
2! +

𝜃4
4! −

𝜃6
6! + ⋅ ⋅ ⋅) + i (𝜃 − 𝜃3

3! +
𝜃5
5! − ⋅ ⋅ ⋅)

= cos 𝜃 + i sin 𝜃
where the last step follows from the Maclaurin series for cos 𝜃 and sin 𝜃.

If z = a + bi is any complex number, then the complex exponential e z is defined to
be

e z = ea+bi = eae ib = ea(cos b + i sin b) (18)
It can be proved that complex exponentials satisfy the standard laws of exponents. Thus,
for example,

e z1e z2 = e z1+z2 , e z1
e z2 = e z1−z2 , 1

e z = e−z
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Answers to Exercises

Chapter 1

Exercise Set 1.1 (page 8)
1. (a), (c), and (f ) are linear equations; (b), (d), and (e) are not linear equations.
3. a. a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
b. a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

c. a11x1 + a12x2 + a13x3 + a14x4 = b1
a21x1 + a22x2 + a23x3 + a24x4 = b2

5. a. 2x1 = 0
3x1 − 4x2 = 0

x2 = 1

b. 3x1 − 2x3 = 5
7x1 + x2 + 4x3 =−3

− 2x2 + x3 = 7

7. a. [
−2 6
3 8
9 −3

] b. [6 −1 3 4
0 5 −1 1] b. [

0 2 0 −3 1 0
−3 −1 1 0 0 −1
6 2 −1 2 −3 6

]

9. (a), (d), and (e) are solutions; (b) and (c) are not solutions.
11. a. No points of intersection

b. Infinitely many points of intersection: x = 1
2 + 2t, y = t

c. One point of intersection: (−8,−4)
13. a. x = 3

7 +
5
7 t, y = t

b. x1 = 7
3 +

5
3 r−

4
3 s, x2 = r, x3 = s

c. x1 = − 1
8 +

1
4 r−

5
8 s+

3
4 t, x2 = r, x3 = s, x4 = t

d. 𝑣 = 8
3 t1 −

2
3 t2 +

1
3 t3 −

4
3 t4,𝑤 = t1, x = t2, y = t3, z = t4

15. a. x = 1
2 +

3
2 t, y = t

b. x1 = −4− 3r+ s, x2 = r, x3 = s
17. a. Add 2 times the second row to the first row.

b. Add the third row to the first row, or interchange the first row and the third row.
19. a. All values of k ≠ 2

b. All values of k
25. 2x + 3y + z = 7

2x + y + 3z = 9
4x + 2y + 5z = 16

27. x + y + z = 12
2x + y + 2z = 5
−x + z = 1

True/False 1.1
a. True b. False c. True d. True e. False f. False g. True h. False

Exercise Set 1.2 (page 22)
1. a. Both b. Both c. Both d. Both e. Both f. Both g. Row echelon form
3. a. Rows 1, 2, and 3 are the pivot rows; columns 1, 2, and 3 are the pivot columns.

x = −37, y = −8, z = 5
b. Rows 1, 2, and 3 are the pivot rows; columns 1, 2, and 3 are the pivot columns.

𝑤 = −10+ 13t, x = −5+ 13t, y = 2− t, z = t
c. Rows 1, 2, and 3 are the pivot rows; columns 1, 3, and 4 are the pivot columns.

x1 = −11− 7s+ 2t, x2 = s, x3 = −4− 3t, x4 = 9− 3t, x5 = t
d. Rows 1 and 2 are the pivot rows; columns 1 and 2 are the pivot columns.

No solution
5. x1 = 3, x2 = 1, x3 = 2 7. x = −1+ t, y = 2s, z = s, 𝑤 = t 9. x1 = 3, x2 = 1, x3 = 2
11. x = −1+ t, y = 2s, z = s, 𝑤 = t 13. Has nontrivial solutions 15. x1 = 0, x2 = 0, x3 = 0
17. x1 = − 1

4 s, x2 = − 1
4 s− t, x3 = s, x4 = t 19. 𝑤 = t, x = −t, y = t, z = 0 21. 𝐼1 = −1, 𝐼2 = 0, 𝐼3 = 1, 𝐼4 = 2

23. a. Consistent; unique solution
b. Consistent; infinitely many solutions
c. Inconsistent
d. Insufficient information provided
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25. No solutions when a = −4;
infinitely many solutions when a = 4;
one solution for all values a ≠ −4 and a ≠ 4

27. −a+ b+ c = 0 29. x = 2
3a−

1
9b, y = − 1

3a+
2
9b

31. E.g., [1 3
0 1] and [

1 0
0 1] (other answers are possible) 35. x = ±1, y = ±√3, z = ±√2

37. a = 1, b = −6, c = 2, d = 10 39. The nonhomogeneous system has only one solution.

True/False 1.2

a. True b. False c. False d. True e. True f. False g. True h. False i. False

Exercise Set 1.3 (page 37)

1. a. Undefined b. Defined; 4 × 4 matrix c. Defined; 4 × 2 matrix

d. Defined; 5 × 2 matrix e. Defined; 4 × 5 matrix f. Defined; 5 × 5 matrix

3. a.
⎡
⎢
⎢
⎣

7 6 5
−2 1 3
7 3 7

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

−5 4 −1
0 −1 −1

−1 1 1

⎤
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

15 0
−5 10
5 5

⎤
⎥
⎥
⎦

d. [
−7 −28 −14
−21 −7 −35]

e. Undefined f.
⎡
⎢
⎢
⎣

22 −6 8
−2 4 6
10 0 4

⎤
⎥
⎥
⎦

g.
⎡
⎢
⎢
⎣

−39 −21 −24
9 −6 −15

−33 −12 −30

⎤
⎥
⎥
⎦

h.
⎡
⎢
⎢
⎣

0 0
0 0
0 0

⎤
⎥
⎥
⎦

i. 5 j. −25 k. 168 l. Undefined

5. a. [
12 −3
−4 5
4 1

] b. Undefined c.
⎡
⎢
⎢
⎣

42 108 75
12 −3 21
36 78 63

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

3 45 9
11 −11 17
7 17 13

⎤
⎥
⎥
⎦

e.
⎡
⎢
⎢
⎣

3 45 9
11 −11 17
7 17 13

⎤
⎥
⎥
⎦

f. [
21 17
17 35

] g. [ 0 −2 11
12 1 8] h.

⎡
⎢
⎢
⎣

12 6 9
48 −20 14
24 8 16

⎤
⎥
⎥
⎦

i. 61 j. 35 k. 28 l. 99

7. a. [67 41 41] b. [63 67 57] c.
⎡
⎢
⎢
⎣

41
21
67

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

6
6
63

⎤
⎥
⎥
⎦

e. [24 56 97] f.
⎡
⎢
⎢
⎣

76
98
97

⎤
⎥
⎥
⎦

9. a. first column of𝐴𝐴 = 3
⎡
⎢
⎢
⎣

3
6
0

⎤
⎥
⎥
⎦
+ 6

⎡
⎢
⎢
⎣

−2
5
4

⎤
⎥
⎥
⎦
+ 0

⎡
⎢
⎢
⎣

7
4
9

⎤
⎥
⎥
⎦

second column of𝐴𝐴 = −2
⎡
⎢
⎢
⎣

3
6
0

⎤
⎥
⎥
⎦
+ 5

⎡
⎢
⎢
⎣

−2
5
4

⎤
⎥
⎥
⎦
+ 4

⎡
⎢
⎢
⎣

7
4
9

⎤
⎥
⎥
⎦

third column of𝐴𝐴 = 7
⎡
⎢
⎢
⎣

3
6
0

⎤
⎥
⎥
⎦
+ 4

⎡
⎢
⎢
⎣

−2
5
4

⎤
⎥
⎥
⎦
+ 9

⎡
⎢
⎢
⎣

7
4
9

⎤
⎥
⎥
⎦

b. first column of 𝐵𝐵 = 6
⎡
⎢
⎢
⎣

6
0
7

⎤
⎥
⎥
⎦
+ 0

⎡
⎢
⎢
⎣

−2
1
7

⎤
⎥
⎥
⎦
+ 7

⎡
⎢
⎢
⎣

4
3
5

⎤
⎥
⎥
⎦

second column of 𝐵𝐵 = −2
⎡
⎢
⎢
⎣

6
0
7

⎤
⎥
⎥
⎦
+ 1

⎡
⎢
⎢
⎣

−2
1
7

⎤
⎥
⎥
⎦
+ 7

⎡
⎢
⎢
⎣

4
3
5

⎤
⎥
⎥
⎦

third column of 𝐵𝐵 = 4
⎡
⎢
⎢
⎣

6
0
7

⎤
⎥
⎥
⎦
+ 3

⎡
⎢
⎢
⎣

−2
1
7

⎤
⎥
⎥
⎦
+ 5

⎡
⎢
⎢
⎣

4
3
5

⎤
⎥
⎥
⎦

11. a. 𝐴 =
⎡
⎢
⎢
⎣

2 −3 5
9 −1 1
1 5 4

⎤
⎥
⎥
⎦
, x =

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦
, b =

⎡
⎢
⎢
⎣

7
−1
0

⎤
⎥
⎥
⎦
;
⎡
⎢
⎢
⎣

2 −3 5
9 −1 1
1 5 4

⎤
⎥
⎥
⎦
[
x1
x2
x3
] =

⎡
⎢
⎢
⎣

7
−1
0

⎤
⎥
⎥
⎦

b. 𝐴 =
⎡⎢⎢⎢⎢
⎣

4 0 −3 1
5 1 0 −8
2 −5 9 −1
0 3 −1 7

⎤⎥⎥⎥⎥
⎦

, x =
⎡⎢⎢⎢⎢
⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥
⎦

,b =
⎡⎢⎢⎢⎢
⎣

1
3
0
2

⎤⎥⎥⎥⎥
⎦

;
⎡⎢⎢⎢⎢
⎣

4 0 −3 1
5 1 0 −8
2 −5 9 −1
0 3 −1 7

⎤⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢
⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥
⎦

=
⎡⎢⎢⎢⎢
⎣

1
3
0
2

⎤⎥⎥⎥⎥
⎦

13. a. 5x1 + 6x2 − 7x3 = 2
−x1 − 2x2 + 3x3 = 0

4x2 − x3 = 3

b. x + y + z = 2
2x + 3y = 2
5x − 3y − 6z = −9

15. k = −1
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17. [
4
2
] [0 1 2] + [

−3
−1] [

−2 3 1] = [
0 4 8
0 2 4

] + [
6 −9 −3
2 −3 −1]

= [
6 −5 5
2 −1 3

]

19. [
1
4
] [1 2] + [

2
5
] [3 4] + [

3
6
] [5 6] = [

1 2
4 8

] + [
6 8
15 20

] + [
15 18
30 36

] = [
22 28
49 64

]

21.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
x3
x4
x5
x6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ r

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3
1
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−4
0

−2
1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
0
0
0
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

23. a = 4, b = −6, c = −1, d = 1

27. The only matrix satisfying the given condition is𝐴 =
⎡
⎢
⎢
⎣

1 1 0
1 −1 0
0 0 0

⎤
⎥
⎥
⎦
.

29. a. [
1 1
1 1

] and [
−1 −1
−1 −1]

b. Four square roots can be found: [
√5 0
0 3

], [−
√5 0
0 3

], [
√5 0
0 −3

], and [−
√5 0
0 −3

].

33. The matrix product represents
⎡
⎢
⎢
⎢
⎣

the total cost of items purchased in January
the total cost of items purchased in February
the total cost of items purchased in March
the total cost of items purchased in April

⎤
⎥
⎥
⎥
⎦

.

True/False 1.3
a. True b. False c. False d. False e. True f. False g. False h. True i. True j. True
k. True l. False m.True n. True o. False

Exercise Set 1.4 (page 51)

5. [
1
5

3
20

− 1
5

1
10
] 7. [

1
2 0
0 1

3
] 9. [

1
2 (e

x + e−x) − 1
2 (e

x − e−x)

− 1
2 (e

x − e−x) 1
2 (e

x + e−x)
] 15. [

2
7 1
1
7

3
7
] 17. [

− 9
13

1
13

2
13 − 6

13
]

19. a. [
41 15
30 11

] b. [
11 −15

−30 41
] c. [

6 2
4 2

] 21. a. [
1 1
2 −1

] b. [
20 7
14 6

] c. [
36 13
26 10

]

23. The matrices commute if c = 0 and a = d. 25. x1 = 1
23 , x2 =

13
23 27. x1 = − 1

11 , x2 =
6
11

31. a. E.g.,𝐴 = [1 0
0 0] and 𝐵 = [0 1

0 0]

b. (𝐴 + 𝐵) (𝐴 − 𝐵) = 𝐴(𝐴− 𝐵) + 𝐵 (𝐴− 𝐵) = 𝐴2 −𝐴𝐵 +𝐵𝐴−𝐵2

c. 𝐴𝐵 = 𝐵𝐴

35. No 37. Invertible;𝐴−1 =
⎡
⎢
⎢
⎢
⎣

1
2

1
2 − 1

2

− 1
2

1
2

1
2

1
2 − 1

2
1
2

⎤
⎥
⎥
⎥
⎦

39. 𝐵−1

True/False 1.4
a. False b. False c. False d. False e. False f. True g. True h. True i. False j. True k. False

Exercise Set 1.5 (page 60)
1. a. Elementary b. Not elementary c. Not elementary d. Not elementary

3. a. Add 3 times the second row to the first row: [
1 3
0 1

] b. Multiply the first row by− 1
7 :
⎡
⎢
⎢
⎣

− 1
7 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦
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c. Add 5 times the first row to the third row:
⎡
⎢
⎢
⎣

1 0 0
0 1 0
5 0 1

⎤
⎥
⎥
⎦

d. Interchange the first and third rows:
⎡⎢⎢⎢⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥
⎦

5. a. Interchange the first and second rows: 𝐸𝐴 = [
3 −6 −6 −6

−1 −2 5 −1]

b. Add−3 times the second row to the third row: 𝐸𝐴 =
⎡
⎢
⎢
⎣

2 −1 0 −4 −4
1 −3 −1 5 3

−1 9 4 −12 −10

⎤
⎥
⎥
⎦

c. Add 4 times the third row to the first row: 𝐸𝐴 =
⎡
⎢
⎢
⎣

13 28
2 5
3 6

⎤
⎥
⎥
⎦

7. a.
⎡
⎢
⎢
⎣

0 0 1
0 1 0
1 0 0

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

0 0 1
0 1 0
1 0 0

⎤
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

1 0 0
0 1 0

−2 0 1

⎤
⎥
⎥
⎦

d.
⎡
⎢
⎢
⎣

1 0 0
0 1 0
2 0 1

⎤
⎥
⎥
⎦

9. a. [
−7 4
2 −1] b. Not invertible

11. a. The inverse is
⎡
⎢
⎢
⎣

−40 16 9
13 −5 −3
5 −2 −1

⎤
⎥
⎥
⎦
. b. Not invertible 13.

⎡
⎢
⎢
⎢
⎣

1
2 − 1

2
1
2

− 1
2

1
2

1
2

1
2

1
2 − 1

2

⎤
⎥
⎥
⎥
⎦

15.
⎡
⎢
⎢
⎣

7
2 0 −3

−1 1 0
0 −1 1

⎤
⎥
⎥
⎦

17.

⎡⎢⎢⎢⎢⎢
⎣

1
4

1
2 −3 0

− 1
8

1
4 − 3

2 0
0 0 1

2 0
1
40 − 1

20 − 1
10 − 1

5

⎤⎥⎥⎥⎥⎥
⎦

19. a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
k1

0 0 0
0 1

k2
0 0

0 0 1
k3

0
0 0 0 1

k4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b.
⎡⎢⎢⎢⎢
⎣

1
k − 1

k 0 0
0 1 0 0
0 0 1

k − 1
k

0 0 0 1

⎤⎥⎥⎥⎥
⎦

21. Any value of c other than 0 and 1

23. 𝐴 = [
1 −2
0 1

] [
1 0
2 1

] [
1 0
0 −8

] [
1 5
0 1

];𝐴−1 = [
1 −5
0 1

] [
1 0
0 − 1

8
] [

1 0
−2 1

] [
1 2
0 1

]

(Answer is not unique.)

25. 𝐴 =
⎡
⎢
⎢
⎣

1 0 0
0 4 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 1 3

4
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 −2
0 1 0
0 0 1

⎤
⎥
⎥
⎦
;𝐴−1 =

⎡
⎢
⎢
⎣

1 0 2
0 1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 1 − 3

4
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 1

4 0
0 0 1

⎤
⎥
⎥
⎦

(Answer is not unique.)
27. Add −1 times the first row to the second row; add −1 times the second row to the first row; add −1 times the first row to the third row.

(Answer is not unique.)

True/False 1.5
a. False b. True c. True d. True e. True f. True g. False

Exercise Set 1.6 (page 67)
1. x1 = 3, x2 = −1 3. x1 = −1, x2 = 4, x3 = −7 5. x = 1, y = 5, and z = −1 7. x1 = 2b1 − 5b2, x2 = −b1 + 3b2
9. i. x1 = 22

17 , x2 =
1
17 ii. x1 = 21

17 , x2 =
11
17

11. i. x1 = 7
15 , x2 =

4
15 ii. x1 = 34

15 , x2 =
28
15 iii. x1 = 19

15 , x2 =
13
15 iv. x1 = − 1

5 , x2 =
3
5

13. The system is consistent for all values of b1 and b2. 15. b1 = b2 + b3 17. b1 = b3 + b4 and b2 = 2b3 + b4

19. 𝑋 =
⎡
⎢
⎢
⎣

11 12 −3 27 26
−6 −8 1 −18 −17
−15 −21 9 −38 −35

⎤
⎥
⎥
⎦

True/False 1.6
a. True b. True c. True d. True e. True f. True g. True
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Exercise Set 1.7 (page 74)
1. a. Upper triangular and invertible

b. Lower triangular and not invertible
c. Diagonal, upper triangular, lower triangular, and invertible
d. Upper triangular and not invertible

3.
⎡
⎢
⎢
⎣

6 3
4 −1
4 10

⎤
⎥
⎥
⎦

5.
⎡
⎢
⎢
⎣

−15 10 0 20 −20
2 −10 6 0 6
18 −6 −6 −6 −6

⎤
⎥
⎥
⎦

7. 𝐴2 = [
1 0
0 4

],𝐴−2 = [
1 0
0 1

4
],𝐴−k = [

1 0
0 1

(−2)k
]

9. 𝐴2 =
⎡⎢⎢⎢
⎣

1
4 0 0
0 1

9 0
0 0 1

16

⎤⎥⎥⎥
⎦

,𝐴−2 =
⎡
⎢
⎢
⎣

4 0 0
0 9 0
0 0 16

⎤
⎥
⎥
⎦
,𝐴−k =

⎡
⎢
⎢
⎣

2k 0 0
0 3k 0
0 0 4k

⎤
⎥
⎥
⎦

11.
⎡
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎦

13. [
1 0
0 −1

]

15. a.
⎡
⎢
⎢
⎣

au a𝑣
b𝑤 bx
cy cz

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

ra sb tc
ua 𝑣b 𝑤c
xa yb zc

⎤
⎥
⎥
⎦

17. a. [
2 −1

−1 3
] b.

⎡
⎢
⎢
⎢
⎢
⎣

1 3 7 2
3 1 −8 −3
7 −8 0 9
2 −3 9 0

⎤
⎥
⎥
⎥
⎥
⎦

19. Not invertible 21. Invertible 23. −3, 5,−6 25. a = −8 27. All x such that x ≠ 1, x ≠ −2, and x ≠ 4

29. They are reciprocals of the corresponding diagonal entries of the matrix𝐴. 31.
⎡
⎢
⎢
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎥
⎥
⎦

37. a. Symmetric b. Not symmetric (unless n = 1) c. Symmetric d. Not symmetric (unless n = 1)

39. [
1 10
0 −2

] 41. a.
⎡
⎢
⎢
⎣

0 0 4
0 0 1

−4 −1 0

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

0 0 −8
0 0 −4
8 4 0

⎤
⎥
⎥
⎦

43. No

True/False 1.7
a. True b. False c. False d. True e. True f. False g. False h. True i. True j. False k. False
l. False m.True

Exercise Set 1.8 (page 88)
1. a. Domain: 𝑅2; codomain: 𝑅3

b. Domain: 𝑅3; codomain: 𝑅2

c. Domain: 𝑅3; codomain: 𝑅3

d. Domain: 𝑅6; codomain: 𝑅

3. a. Domain: 𝑅2; codomain: 𝑅2

b. Domain: 𝑅2; codomain: 𝑅3
5. a. Domain: 𝑅3; codomain: 𝑅2

b. Domain: 𝑅2; codomain: 𝑅3

7. a. Domain: 𝑅2; codomain: 𝑅2

b. Domain: 𝑅3; codomain: 𝑅2
9. Domain: 𝑅2; codomain: 𝑅3 11. a. [

2 −3 1
3 5 −1

] b.
⎡
⎢
⎢
⎣

7 2 −8
0 −1 5
4 7 −1

⎤
⎥
⎥
⎦

13. a.

⎡
⎢
⎢
⎢
⎢
⎣

0 1
−1 0
1 3
1 −1

⎤
⎥
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

7 2 −1 1
0 1 1 0

−1 0 0 0

⎤
⎥
⎥
⎦

c.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
1 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

15.
⎡
⎢
⎢
⎣

3 5 −1
4 −1 1
3 2 −1

⎤
⎥
⎥
⎦
; 𝑇 (−1, 2, 4) = (3,−2,−3)

17. a. [
−1 1
0 1

]; 𝑇 (−1, 4)= (5, 4) b. [
2 −1 1
0 1 1
0 0 0

]; 𝑇 (2, 1,−3)= (0,−2, 0)

19. a. 𝑇𝐴 (x) = [
1 2
3 4

] [
3

−2
] = [

−1
1
] b. 𝑇𝐴(x) = [

−1 2 0
3 1 5

]
⎡
⎢
⎢
⎣

−1
1
3

⎤
⎥
⎥
⎦
= [

3
13
] 25. No, unless b = 0
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27.
⎡
⎢
⎢
⎣

1 0 4
3 0 −3
0 1 −1

⎤
⎥
⎥
⎦
; 𝑇(x) =

⎡
⎢
⎢
⎣

2
6
1

⎤
⎥
⎥
⎦

29. a. [
1 0
0 −1

] [
−1
2
] = [

−1
−2

] b. [
−1 0
0 1

] [
−1
2
] = [

1
2
] c. [

0 1
1 0

] [
−1
2
] = [

2
−1

]

31. a.
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2
−5
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

2
−5
−3

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2
−5
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

2
5
3

⎤
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

−1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2
−5
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−2
−5
3

⎤
⎥
⎥
⎦

33. a. [
1 0
0 0

] [
2

−5
] = [

2
0
] b. [

0 0
0 1

] [
2

−5
] = [

0
−5

]

35. a.
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−2
1
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−2
1
0

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−2
1
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−2
0
3

⎤
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

0 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−2
1
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0
1
3

⎤
⎥
⎥
⎦

37. a. [
√3
2 − 1

2
1
2

√3
2

] [
3

−4
] = [

3√3
2 + 2

3
2 − 2√3

]≈ [
4.60

−1.96
] b. [

1
2

√3
2

−√3
2

1
2

] [
3

−4
] = [

3
2−2√3

− 3√3
2 −2

]≈ [
−1.96
−4.60

]

c. [
√2
2 −√2

2
√2
2

√2
2

] [
3

−4
] = [

7√2
2

−√2
2

]≈ [
4.95

−0.71
] d. [

0 −1
1 0

] [
3

−4
] = [

4
3
]

39. (a+ c, b+ d)

41. a. 𝑇𝐴(e1) =
⎡
⎢
⎢
⎣

−1
2
4

⎤
⎥
⎥
⎦
, 𝑇𝐴(e2) =

⎡
⎢
⎢
⎣

3
1
5

⎤
⎥
⎥
⎦
, 𝑇𝐴(e3) =

⎡
⎢
⎢
⎣

0
2

−3

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

2
5
6

⎤
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

0
14

−21

⎤
⎥
⎥
⎦

43. Reflection about the xy-plane: 𝑇 (1, 2, 3) =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
2
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
2

−3

⎤
⎥
⎥
⎦
;

Reflection about the xz-plane: 𝑇 (1, 2, 3) =
⎡
⎢
⎢
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
2
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1
−2
3

⎤
⎥
⎥
⎦
;

Reflection about the yz-plane: 𝑇 (1, 2, 3) =
⎡
⎢
⎢
⎣

−1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
2
3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−1
2
3

⎤
⎥
⎥
⎦

45. 𝐴 = [ 5 −4
−11 9 ]

49. Rotation through the angle 2𝜃

True/False 1.8
a. False b. False c. True d. False e. True f. False g. False

Exercise Set 1.9 (page 96)
1. a. Operators do not commute. b. Operators do not commute.
3. The operators commute.

5. The standard matrices for 𝑇𝐵 ∘ 𝑇𝐴 and 𝑇𝐴 ∘ 𝑇𝐵 are [
−10 −7

5 −10 ] and [
−8 −3
13 −12 ], respectively.

7. a. [ 1 0
0 −1 ] b. [

0 −√2
2

0 √2
2

] c. [
√3
2

1
2

1
2 −√3

2

]

9. a. [
−1 0 0
0 0 0
0 0 1

] b. [
1 0 0
0 1 0
0 0 0

] c. [
−1 0 0
0 1 0
0 0 0

]
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11. a. The standard matrices for 𝑇1 and 𝑇2 are [
1 1
1 −1 ] and [

3 0
2 4 ], respectively.

b. The standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2 are [
3 3
6 −2 ] and [

5 4
1 −4 ], respectively.

c. 𝑇1(𝑇2(x1, x2)) = (5x1 + 4x2, x1 − 4x2); 𝑇2(𝑇1(x1, x2)) = (3x1 + 3x2, 6x1 − 2x2)

13. a. The standard matrices for 𝑇1 and 𝑇2 are

[
1 −1

−1 2
3 0

] and [ 0 4 0
1 2 0 ], respectively.

b. The standard matrices for 𝑇2 ∘ 𝑇1 and 𝑇1 ∘ 𝑇2 are

[−4 8
−1 3 ] and [

−1 2 0
2 0 0
0 12 0

], respectively.

c. 𝑇1(𝑇2(x1, x2, x3)) = (−x1 − 2x2, 2x1, 12x2);

𝑇2 (𝑇1 (x1, x2)) = (−4x1 + 8x2,−x1 + 3x2)

15. a. The standard matrices for 𝑇1 and 𝑇2 are

⎡
⎢
⎢
⎢
⎣

0 1
1 0
1 1
1 −1

⎤
⎥
⎥
⎥
⎦

and [
1 0 0 1
0 1 0 1
0 0 1 1

], respectively.

b. The standard matrix for 𝑇2 ∘ 𝑇1 is [
1 0
2 −1
2 0

].

c. The domain of 𝑇1 does not equal the codomain of 𝑇2.

d. (𝑇2 ∘ 𝑇1) (x, y) = (x, 2x− y, 2x)

17. a. [𝑤1
𝑤2

] = [8 4
2 1][

x1
x2
]; the operator is not invertible.

b. [
𝑤1
𝑤2
𝑤3

] = [
−1 3 2
2 0 4
1 3 6

][
x1
x2
x3
]; the operator is not invertible.

19. a. Invertible; standard matrix of 𝑇−1 ∶ [
1
3 − 2

3
1
3

1
3
]; 𝑇−1 (𝑤1,𝑤2) = ( 13𝑤1 − 2

3𝑤2, 13𝑤1 + 1
3𝑤2)

b. Not invertible

21. a. Invertible; reflection about the x-axis in 𝑅2

b. Invertible; 300∘ rotation about the origin in 𝑅2

c. Not invertible

23. a. Invertible; [ 3
−1]

b. Not invertible

25. a. Reflection about the line y = x followed by reflection about the origin

b. 𝑇𝐴 = 𝑇𝐵 ∘ 𝑇𝐶, where 𝐵 = [−1 0
0 −1 ] and 𝐶 = [ 0 1

1 0 ]
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True/False 1.9
a. False b. True c. True d. False e. True f. False g. True

Exercise Set 1.10 (page 108)
1.

40

40

10

10

50

50

6030

3. a. x2 − x3 = 100
x3 − x4 = −500

x1 − x2 = 300
−x1 + x4 = 100

b. x1 = −100+ s, x2 = −400+ s, x3 = −500+ s, x4 = s
c. To keep the traffic flowing on all roads, the flow from 𝐴 to 𝐵 must

exceed 500 vehicles per hour.

5. 𝐼1 = 2.6A, 𝐼2 = −0.4A, 𝐼3 = 2.2A 7. 𝐼1 = 𝐼4 = 𝐼5 = 𝐼6 = 0.5A, 𝐼2 = 𝐼3 = 0A 9. C3H8 + 5O2 → 3CO2 + 4H2O
11. CH3COF+H2O→ CH3COOH+HF 13. 2− 2x+ x2 15. 1+ 13

6 x−
1
6 x

3

17. a. p (x) = 1+ (1− t) x+ tx2

b.

x

y

4

3

2

–1 1–2

t 
=
 2

t =
 –
2

t =
 –1

t 
=
 1

True/False 1.10
a. False b. False c. True d. False e. False

Exercise Set 1.11 (page 114)

1. a. [0.50 0.25
0.25 0.10]

b. 𝑀 must produce approximately $25,290.32 worth of mechanical work and 𝐵 must produce approximately $22,580.65 worth of body
work.

3. a. [
0.10 0.60 0.40
0.30 0.20 0.30
0.40 0.10 0.20

] b. [
$31,500
$26,500
$26,300

] 5. x ≈[123.08202.56]

True/False 1.11
a. False b. True c. False d. True e. True

Chapter 1 Supplementary Exercises (page 115)
1. 3x1 − x2 + 4x4 = 1

2x1 + 3x3 + 3x4 = −1

x1 = − 3
2 s−

3
2 t−

1
2 , x2 = − 9

2 s−
1
2 t−

5
2 , x3 = s, x4 = t

3. 2x1 − 4x2 + x3 = 6
−4x1 + 3x3 = −1

x2 − x3 = 3

x1 = − 17
2 , x2 = − 26

3 , x3 = − 35
3

5. x′ = 3
5 x+

4
5 y, y

′ = − 4
5 x+

3
5 y 7. x = 4, y = 2, z = 3

9. a. a ≠ 0 and b ≠ 2 b. a ≠ 0 and b = 2 c. a = 0 and b = 2 d. a = 0 and b ≠ 2

11. [0 2
1 1] 13. a. [−1 3 −1

6 0 1] b. [1 −2
3 1] c. [

− 113
37 − 160

37

− 20
37 − 46

37
] 15. a = 1, b = −2, c = 3
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Chapter 2

Exercise Set 2.1 (page 124)

1. 𝑀11 = 29, 𝐶11 = 29
𝑀12 = 21, 𝐶12 = −21
𝑀13 = 27, 𝐶13 = 27
𝑀21 = −11, 𝐶21 = 11
𝑀22 = 13, 𝐶22 = 13
𝑀23 = −5, 𝐶23 = 5
𝑀31 = −19, 𝐶31 = −19
𝑀32 = −19, 𝐶32 = 19
𝑀33 = 19, 𝐶33 = 19

3. a. 𝑀13 = 0, 𝐶13 = 0
b. 𝑀23 = −96, 𝐶23 = 96
c. 𝑀22 = −48, 𝐶22 = −48
d. 𝑀21 = 72, 𝐶21 = −72

5. 22; [
2
11

−5
22

1
11

3
22
] 7. 59; [

−2
59

−7
59

7
59

−5
59
]

9. a2− 5a+ 21 11. −65 13. −123 15. 𝜆 = −3 or 𝜆 = 1 17. 𝜆 = 1 or 𝜆 = −1 19. (all parts)−123 21. −40

23. 0 25. −240 27. −1 29. 0 31. 6 33. a. The determinant is 1. b. The determinant is 1.

35. d1 + 𝜆 = d2 37. If n = 1 then the determinant is 1. If n ≥ 2 then the determinant is 0.

True/False 2.1

a. False b. False c. True d. True e. True f. True g. False h. False i. False j. True

Exercise Set 2.2 (page 131)

5. −5 7. −1 9. 33 11. 6 13. −2 15. −6 17. 72 19. −6

21. 18 31. −24 33. det(𝐵) = (−1)⌊n/2⌋ det(𝐴)

True/False 2.2

a. True b. True c. False d. False e. True f. True

Exercise Set 2.3 (page 142)

5. det(𝐴 + 𝐵) ≠ det(𝐴) + det(𝐵) 7. Invertible 9. Invertible 11. Not invertible 13. Invertible

15. k ≠ 5−√17
2 and k ≠ 5+√17

2 17. k ≠ −1 19. Invertible;𝐴−1 = [
3 −5 −5

−3 4 5
2 −2 −3

] 21. Invertible;𝐴−1 =
⎡
⎢
⎢
⎢
⎣

1
2

3
2 1

0 1 3
2

0 0 1
2

⎤
⎥
⎥
⎥
⎦

23. Invertible;𝐴−1 =
⎡
⎢
⎢
⎢
⎢
⎣

−4 3 0 −1
2 −1 0 0

−7 0 −1 8
6 0 1 −7

⎤
⎥
⎥
⎥
⎥
⎦

25. x = 3
11 , y =

2
11 , z = − 1

11 27. x1 = − 30
11 , x2 = − 38

11 , x3 = − 40
11

29. Cramer’s rule does not apply. 31. y = 0 33. a. −189 b. − 1
7 c. − 8

7 d. − 1
56 e. 7

35. a. 189 b. 1
7 c. 8

7 d. 1
56

True/False 2.3

a. False b. False c. True d. False e. True f. True g. True h. True i. True j. True k. True
l. False
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Chapter 2 Supplementary Exercises (page 144)
1. −18 3. 24 5. −10 7. 329 9. Exercise 3: 24; Exercise 4: 0; Exercise 5:−10; Exercise 6:−48
11. The matrices in Exercises 1–3 are invertible; the matrix in Exercise 4 is not. 13. −b2 + 5b− 21 15. −120

17. [
− 1
6

1
9

1
6

2
9
] 19.

⎡
⎢
⎢
⎢
⎣

1
8 − 1

8 − 3
8

1
8

5
24 − 1

24
1
4 − 7

12 − 1
12

⎤
⎥
⎥
⎥
⎦

21.
⎡
⎢
⎢
⎢
⎣

1
5

2
5 − 1

10
1
5 − 3

5
2
5

− 2
5

6
5 − 3

10

⎤
⎥
⎥
⎥
⎦

23.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10
329 − 2

329
52
329 − 27

329
55
329 − 11

329 − 43
329

16
329

− 3
47

10
47 − 25

47 − 6
47

− 31
329

72
329

102
329 − 15

329

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

25. x′ = 3
5 x+

4
5 y, y

′ = 3
5 y−

4
5 x 29. b. cos𝛽 = a2+ c2− b2

2ac , cos𝛾 = a2+ b2− c2
2ab

Chapter 3

Exercise Set 3.1 (page 156)
1. a. (3,−4) b. (2,−3, 4) 3. a. (−1, 3) b. (−3, 6, 1) 5. a. (2, 3) b. (−2,−2,−1)
7. a. (−1, 2,−4) is one possible answer. b. (7,−2,−6) is one possible answer.
9. a. (1,−4) b. (−12, 8) c. (38, 28) d. (4, 29)
11. a. (−1, 9,−11, 1) b. (−13, 13,−36,−2) c. (−90,−114, 60,−36) d. (27, 29,−27, 9)
13. (− 25

3 , 7, −
32
3 , −

2
3) 15. a. Not parallel to u b. Parallel to u c. Parallel to u 17. a = 3, b = −1

19. c1 = 2, c2 = −1, c3 = 5 23. a. ( 92 , −
1
2 , −

1
2) b. ( 234 , −

9
4 ,

1
4) 25. a. (−2, 5) b. (3,−8) 27. (7,−3,−19)

29. a. 0 b. 0 c. −a 31. Magnitude of F is√84 lb ≈ 9.17 lb; the angle with the positive x-axis ≈ −70.9∘

33. 500
1+√3

lb ≈ 183.01 lb and 750√2
3+√3

lb ≈ 224.14 lb

True/False 3.1
a. False b. False c. False d. True e. True f. False g. False h. True i. False j. True k. False

Exercise Set 3.2 (page 170)

1. a. ‖v‖= 2√3; 1
‖v‖v = ( 1

√3
, 1
√3
, 1
√3
);− 1

‖v‖v = (− 1
√3
, − 1

√3
, − 1

√3
)

b. ‖v‖ = √15; 1
‖v‖v = ( 1

√15
, 0, 2

√15
, 1
√15

, 3
√15

);− 1
‖v‖v = (− 1

√15
, 0, − 2

√15
, − 1

√15
, − 3

√15
)

3. a. √83 b. √17+√26 c. 2√3 d. √466 5. a. √2570 b. 3√46− 10√21+√42 c. 2√966
7. k = 5

7 or k=− 5
7 9. a. u · v = −8; u · u = 26; v · v = 24 b. u · v = 0; u · u = 54; v · v = 21

11. a. d (u, v) = √14; cos𝜃= 5
√51

; the angle is acute. 13. 45√3
2

b. d (u, v) = √59; cos𝜃 = −4
√6√45

; the angle is obtuse.

15. a. Does not make sense; v ·w is a scalar, whereas the dot product is only defined for vectors.
b. Makes sense
c. Does not make sense; u · v is a scalar, whereas the norm is only defined for vectors.
d. Makes sense

25. 71∘, 61∘, 36∘

True/False 3.2
a. True b. True c. False d. True e. True f. False g. False h. False i. True j. True

Exercise Set 3.3 (page 181)
1. a. Orthogonal b. Not orthogonal c. Not orthogonal d. Not orthogonal
3. −2 (x+ 1)+ (y− 3)− (z+ 2)= 0 5. 2z = 0 7. Not parallel 9. Parallel 11. Not perpendicular

13. a. 2
5 b. 18

√22
15. (0, 0), (6, 2) 17. (− 16

13 , 0, −
80
13), (

55
13 , 1, −

11
13) 19. ( 15 , −

1
5 ,

1
10 , −

1
10) , (

9
5 ,
6
5 ,

9
10 ,

21
10)

21. 1 23. 1
√17

25. 5
3 27. 11

√6
29. ( 1

√3
, 1
√3
, − 1

√3
) is one possible answer. 31. Yes
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35. The standard matrix: [
− 1
2

√3
2

√3
2

1
2

];𝐻𝜋/3 (3, 4) = (− 3
2 + 2√3, 3√32 + 2) ≈ (1.96, 4.60)

37. The standard matrix: [
1
4

√3
4

√3
4

3
4

]; 𝑃𝜋/3 (3, 4) = ( 34 + √3, 3√34 + 3) ≈ (2.48, 4.30)

41. 50,000
√2

Nm ≈ 35,355 Nm

True/False 3.3
a. True b. True c. True d. True e. True f. False g. False

Exercise Set 3.4 (page 189)
1. Vector equation: (x, y) = (−4, 1) + t(0,−8);

parametric equations: x = −4, y = 1− 8t
3. Vector equation: (x, y, z) = t(−3, 0, 1);

parametric equations: x = −3t, y = 0, z = t
5. Point: (3,−6); vector: (−5,−1)
7. Point: (4, 6); vector: (−6,−6)
9. Vector equation: (x, y, z) = (−3, 1, 0) + t1(0,−3, 6) + t2(−5, 1, 2);

parametric equations: x = −3− 5t2, y = 1− 3t1 + t2, z = 6t1 + 2t2
11. Vector equation: (x, y, z) = (−1, 1, 4) + t1(6,−1, 0) + t2(−1, 3, 1);

parametric equations: x = −1+ 6t1 − t2, y = 1− t1 + 3t2, z = 4+ t2
13. Vector equation: (x, y) = t(3, 2);

parametric equations: x = 3t and y = 2t
15. Vector equation: (x, y, z) = t1(5, 0, 4) + t2(0, 1, 0);

parametric equations: x = 5t1, y = t2, and z = 4t1
17. x1 = −s− t, x2 = s, x3 = t
19. x1 = 3

7 r−
19
7 s−

8
7 t, x2 = − 2

7 r+
1
7 s+

3
7 t, x3 = r, x4 = s, x5 = t

21. a. x + y + z = 0
−2x + 3y = 0

b. A straight line passing through the origin c. x = − 3
5 t, y = − 2

5 t, z = t

23. b. x = (5,−9) + t(3, 10); x = 5+ 3t, y = −9+ 10t

True/False 3.4
a. True b. False c. True d. True e. True

Exercise Set 3.5 (page 198)
1. a. (32,−6,−4) b. (−32, 6, 4) c. (52,−29, 10) d. 0 e. (0, 0, 0) f. (0, 0, 0)
3. ‖u ×w‖2= 1125 5. u × (v ×w) = (−14,−20,−82) 7. u × v = (18, 36,−18) 9. √59 11. 3

13. 7 15. √374
2 17. 16 19. The vectors do not lie in the same plane. 21. −92 23. abc 25. a. −3 b. 3 c. 3

27. a. √26
2 b. √26

3 29. 2(v × u) 31. a. 1500√2 Nm ≈ 2121.32 Nm b. 132∘, 109∘, 132∘ 39. a. 17
6 b. 1

2

True/False 3.5
a. True b. True c. False d. True e. False f. False

Chapter 3 Supplementary Exercises (page 200)

1. a. (13,−3, 10) b. √70 c. 3√86 d. (− 8
9 ,

20
9 ,

20
9 ) e. −122 f. (−3150,−2430, 1170)

3. a. (−5,−12, 20,−2) b. √106 c. √2810 d. (− 135
77 , −

15
77 ,

90
77 ,

90
77)

5. The plane containing𝐴, 𝐵, and 𝐶 7. (−1,−1, 5) 9. √
14
17 11. 11

√35
13. Vector equation: (x, y, z) = (−2, 1, 3) + t1(1,−2,−2) + t2(5,−1,−5);

parametric equations: x = −2+ t1 + 5t2, y = 1− 2t1 − t2, z = 3− 2t1 − 5t2
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15. Vector equation: (x, y) = (0,−3) + t(8,−1);
parametric equations: x = 8t, y = −3− t

17. Vector equation: (x, y) = (0,−5) + t(1, 3);
parametric equations: x = t, y = −5+ 3t

19. 3 (x+ 1) + 6 (y− 5) + 2 (z− 6) = 0 21. −18 (x− 9) − 51y− 24 (z− 4) = 0 25. A plane through the origin

Chapter 4

Exercise Set 4.1 (page 209)
1. a. u+ v = (2, 6); ku = (0, 6) c. Axioms 1–5 3. Vector space 5. Not a vector space; Axioms 5 and 6 fail.
7. Not a vector space; Axiom 8 fails. 9. Vector space 11. Vector space 19. 1

u = u−1

True/False 4.1
a. True b. False c. False d. False e. True f. False

Exercise Set 4.2 (page 218)
1. (a), (c) 3. (a), (c), (d) 5. (a), (b) 7. (a) 9. (a) 11. (a) 13. (b) 15. (a) 17. (a), (b), (c), (d)
19. a. Line; x = − 1

2 t, y = − 3
2 t, z = t b. Origin c. Plane; x− 3y+ z = 0 d. Line; x = −3t, y = −2t, z = t

True/False 4.2
a. True b. True c. False d. False e. False f. True g. False h. True

Exercise Set 4.3 (page 226)
1. (a), (c) 3. (a), (b)

5. a. [1 2
2 4] = −3𝐴+ 12𝐵 − 13𝐶 + 2𝐷 b. [3 1

1 2] = 𝐴+𝐵 +𝐶 +𝐷

7. a. The vectors span 𝑅3. b. The vectors do not span 𝑅3. 9. The polynomials do not span 𝑃2.
11. a. The matrices do not span𝑀22. b. The matrices do not span𝑀22. c. The matrices span𝑀22.
13. a. u is not in the span. b. u is in the span.
15. a. The set spans𝑊. b. The set spans𝑊.
17. a. The set spans 𝑅2. b. The set does not span 𝑅2.
19. p1 = 0q1 + q2, p2 = 1

2q1 + q2; q1 = −2p1 + 2p2, q2 = p1 + 0p2
21. v = (−21,−7), w = (24, 12)

True/False 4.3
a. True b. False c. False d. True e. True f. False g. False

Exercise Set 4.4 (page 236)
1. a. u2 = −5u1 b. A set of 3 vectors in 𝑅2 must be linearly dependent by Theorem 4.3.3.

c. p2 = 2p1 d. 𝐴 = (−1)𝐵 3. a. Linearly dependent b. Linearly independent
5. a. Linearly independent b. Linearly independent
7. a. The vectors do not lie in a plane. b. The vectors lie in a plane.
9. b. v1 = 2

7v2 −
3
7v3; v2 =

7
2v1 +

3
2v3; v3 = − 7

3v1 +
2
3v2 11. 𝜆 = − 1

2 , 𝜆 = 1

13. a. Linearly independent b. Linearly dependent 15. a. Linearly independent b. Linearly dependent

True/False 4.4
a. False b. True c. False d. True e. True f. False g. True h. False
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Exercise Set 4.5 (page 245)

11. a. ( 5
28 ,

3
14) b. (a, b− a

2 ) 13. a. (3,−2, 1) b. (−2, 0, 1) 15. 𝐴 = 1𝐴1 − 1𝐴2 + 1𝐴3 − 1𝐴4;
(𝐴)𝑆 = (1,−1, 1,−1)

17. p = 7p1 − 8p2 + 3p3;
(p)𝑆 = (7,−8, 3)

21. a. Linearly independent b. Linearly dependent

23. a. (2, 0) b. ( 2
√3
, − 1

√3
) c. (0, 1) d. ( 2a

√3
, b − a

√3
) 25. b. (3, 4, 2, 1)

27. a. (20, 17, 2) b. 3x2 + 8x− 1 c. [ −21 −103
−106 30]

True/False 4.5
a. False b. False c. True d. True e. False

Exercise Set 4.6 (page 254)
1. Basis: {(1, 0, 1)}; dimension: 1 3. No basis; dimension: 0 5. Basis: {(3, 1, 0) , (−1, 0, 1)}; dimension: 2
7. a. Basis: {( 23 , 1, 0) , (−

5
3 , 0, 1)}; dimension: 2 b. Basis: {(1, 1, 0) , (0, 0, 1)}; dimension: 2

c. Basis: {(2,−1, 4)}; dimension: 1 d. Basis: 𝑆 = {(1, 1, 0) , (0, 1, 1)}; dimension: 2
9. a. n b. n (n+ 1)

2 c. n (n+ 1)
2

11. b. Dimension: 2 c. Basis: {−1+ x,−1+ x2} 13. e2 and e3 (The answer is not unique.)
15. v1, v2, and e1 form a basis for 𝑅3 (The answer is not unique.) 17. {v1, v2} (The answer is not unique.)
19. a. 1 b. 2 c. 1
27. a. {−1+ x− 2x2, 3+ 3x+ 6x2, 9} (The answer is not unique.) b. {1+ x, x2} (The answer is not unique.)

c. {1+ x− 3x2} (The answer is not unique.)

True/False 4.6
a. True b. True c. False d. True e. True f. True g. True h. True i. True j. False k. False

Exercise Set 4.7 (page 261)

1. a. [
13
10 − 1

2
− 2
5 0

] b. [
0 − 5

2
−2 − 13

2
] c. [w]𝐵 = [

− 17
10
8
5
]; [w]𝐵′ = [

−4
−7

]

3. a.
⎡
⎢
⎢
⎣

3 2 5
2

−2 −3 − 1
2

5 1 6

⎤
⎥
⎥
⎦

b. [w]𝐵 =
⎡
⎢
⎢
⎣

9
−9
−5

⎤
⎥
⎥
⎦
; [w]𝐵′ =

⎡
⎢
⎢
⎣

− 7
2
23
2
6

⎤
⎥
⎥
⎦

5. b. [2 0
1 3] c. [

1
2 0

− 1
6

1
3
] d. [h]𝐵 = [ 2

−5]; [h]𝐵′ = [ 1
−2]

7. a. [ 3 5
−1 −2] b. [ 2 5

−1 −3] d. [w]𝐵1
= [

2
−1

]; [w]𝐵2
= [

−1
1
] e. [w]𝐵2

= [
3

−1
]; [w]𝐵1

= [
4

−1
]

9. a.
⎡
⎢
⎢
⎣

1 2 3
2 5 3
1 0 8

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

−40 16 9
13 −5 −3
5 −2 −1

⎤
⎥
⎥
⎦

d. [w]𝐵 =
⎡
⎢
⎢
⎣

−239
77
30

⎤
⎥
⎥
⎦
; [w]𝑆 =

⎡
⎢
⎢
⎣

5
−3
1

⎤
⎥
⎥
⎦

e. [w]𝑆 =
⎡
⎢
⎢
⎣

3
−5
0

⎤
⎥
⎥
⎦
; [w]𝐵 =

⎡
⎢
⎢
⎣

−200
64
25

⎤
⎥
⎥
⎦

11. a. [
cos (2𝜃) sin (2𝜃)
sin (2𝜃) − cos (2𝜃)

] 13. 𝑃−1𝑄−1

15. a. 𝐵 = {(1, 1, 0) , (1, 0, 2) , (0, 2, 1)} b. 𝐵 = {( 45 ,
1
5 , −

2
5) , (

1
5 , −

1
5 ,

2
5) , (−

2
5 ,

2
5 ,

1
5)}

17. [
2 3
5 −1

] 19. 𝐵 must be the standard basis.

True/False 4.7
a. True b. True c. True d. True e. False f. False
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Exercise Set 4.8 (page 273)

1. a. 1 [
2

−1
] + 2 [

3
4
] b. −2

⎡
⎢
⎢
⎣

4
3
0

⎤
⎥
⎥
⎦
+ 3

⎡
⎢
⎢
⎣

0
6

−1

⎤
⎥
⎥
⎦
+ 5

⎡
⎢
⎢
⎣

−1
2
4

⎤
⎥
⎥
⎦

3. a. b is not in the column space of𝐴. b. b is in the column space of𝐴;
⎡
⎢
⎢
⎣

1
9
1

⎤
⎥
⎥
⎦
− 3

⎡
⎢
⎢
⎣

−1
3
1

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

5
1

−1

⎤
⎥
⎥
⎦

5. a. r

⎡
⎢
⎢
⎢
⎢
⎣

5
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎣

−2
1
1
0

⎤
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎣

0
0
1
1

⎤
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎣

3
0

−1
5

⎤
⎥
⎥
⎥
⎥
⎦

+ r

⎡
⎢
⎢
⎢
⎢
⎣

5
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

+ s

⎡
⎢
⎢
⎢
⎢
⎣

−2
1
1
0

⎤
⎥
⎥
⎥
⎥
⎦

+ t

⎡
⎢
⎢
⎢
⎢
⎣

0
0
1
1

⎤
⎥
⎥
⎥
⎥
⎦

7. a. (1, 0) + t(3, 1); t(3, 1) b. (−2, 7, 0) + t(−1,−1, 1); t(−1,−1, 1)

9. a. Basis for the null space:
⎧
⎨
⎩

⎡
⎢
⎢
⎣

16
19
1

⎤
⎥
⎥
⎦

⎫
⎬
⎭
; basis for the row space: {[1 0 −16] , [0 1 −19]}

b. Basis for the null space:
⎧
⎨
⎩

⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

1
2
0
1

⎤
⎥
⎥
⎦

⎫
⎬
⎭
; basis for the row space: {[1 0 − 1

2 ]}

11. a. Basis for the column space:
⎧
⎨
⎩

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

2
1
0

⎤
⎥
⎥
⎦

⎫
⎬
⎭
; basis for the row space: {[1 0 2] , [0 0 1]}

b. Basis for the column space:

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

−3
1
0
0

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

; basis for the row space: {[1 −3 0 0] , [0 1 0 0]}

13. a. Basis for the row space: {[1 0 11 0 3] , [0 1 3 0 0] , [0 0 0 1 0]};

basis for the column space:

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

1
−2
−1
−3

⎤
⎥
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

−2
5
3
8

⎤
⎥
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

0
0
1
1

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

b. {[1 −2 5 0 3] , [−2 5 −7 0 −6] , [−1 3 −2 1 −3]}
15. {(1, 1, 0, 0) , (0, 0, 1, 1) , (−2, 0, 2, 2) , (0,−3, 0, 3)} 17. Basis: {v1, v2, v4}; v3 = 2v1 − v2; v5 = −v1 + 3v2 + 2v4
19. {[1 4 5 6 9] , [3 −2 1 4 −1]}
21. Since 𝑇𝐴(x) = 𝐴x, we are seeking the general solution of the linear system𝐴x = b.

a. x = t(− 8
3 ,

4
3 , 1)

b. x = ( 73 , −
2
3 , 0)+ t(− 8

3 ,
4
3 , 1)

c. x = ( 13 , −
2
3 , 0)+ t(− 8

3 ,
4
3 , 1)

23. a. (x, y, z) = (1, 0, 0) + (−s− t, s, t)
b. A plane passing through the point (1, 0, 0) and parallel to the vectors (−1, 1, 0) and (−1, 0, 1)

25. a. x1 = − 2
3 s+

1
3 t, x2 = s, x3 = t c. (x1, x2, x3) = (1, 0, 1) + (− 2

3 s +
1
3 t, s, t)

27. x1 = 1
3 −

4
3 r−

1
3 s, x2 = r, x3 = s, x4 = 1;

general solution of the associated homogeneous system: (− 4
3 r −

1
3 s, r, s, 0);

particular solution of the nonhomogeneous system: ( 13 , 0, 0, 1)

29. b.
⎡
⎢
⎢
⎣

0 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦
is an example of such a matrix.
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31. a. [3a −5a
3b −5b] where a and b are not both zero.

b. Only the zero vector forms the null space for both𝐴 and 𝐵.
The line 3x+ y = 0 forms the null space for 𝐶.
The entire plane forms the null space for𝐷.

True/False 4.8
a. True b. False c. False d. False e. False f. True g. True h. False i. True j. False

Exercise Set 4.9 (page 286)
1. a. rank(𝐴) = 1; nullity(𝐴) = 3 b. rank(𝐴) = 2; nullity(𝐴) = 3
3. a. rank(𝐴) = 3; nullity(𝐴) = 0 c. 3 leading variables; 0 parameters in the general solution (The solution is unique.)
5. a. rank(𝐴) = 1; nullity(𝐴) = 2 c. 1 leading variable; 2 parameters in the general solution
7. a. largest possible value for the rank: 4; smallest possible value for the nullity: 0

b. largest possible value for the rank: 3; smallest possible value for the nullity: 2
c. largest possible value for the rank: 3; smallest possible value for the nullity: 0

9. (a) (b) (c) (d) (e) (f) (g)

(i) dimension of the row space of𝐴 3 2 1 2 2 0 2

dimension of the column space of𝐴 3 2 1 2 2 0 2

dimension of the null space of𝐴 0 1 2 7 7 4 0

dimension of the null space of𝐴𝑇 0 1 2 3 3 4 4

(ii) Is the system𝐴x = b consistent? Yes No Yes Yes No Yes Yes

(iii) number of parameters in the
general solution of𝐴x = b

0 — 2 7 — 4 0

11. dim[row(𝐴)] = dim[col(𝐴)] = 2, dim[null(𝐴)] = 0, dim[null(𝐴𝑇)] = 1
Basis for row(𝐴)∶ {[1 0], [0 1]}

Basis for col(𝐴)∶ {[
1
0

−9
], [

4
3
0
]}

Basis for null(𝐴)∶ ∅

Basis for null[𝐴𝑇]∶ {[
9

−12
1
]}

13. dim[row(𝐴)] = dim[col(𝐴)] = 2, dim[null(𝐴)] = 1, dim[null(𝐴𝑇)] = 1
Basis for row(𝐴)∶ {[1 0 4], [0 1 4]}

Basis for col(𝐴)∶ {[
0

−1
−2

], [
−1
0
3
]}

Basis for null(𝐴)∶ {[
−4
−4
1
]}

Basis for null(𝐴𝑇)∶ {[
3

−2
1
]}

19. Basis for row(𝐴)∶ {[1 0 6 0], [0 1 4 0], [0 0 0 1]}

Basis for col(𝐴)∶ {[
0
2

−3
], [

2
−2
4
], [

−7
0
5
]}

Basis for null(𝐴)∶
⎧⎪
⎨⎪
⎩

⎡
⎢
⎢
⎢
⎣

−6
−4
1
0

⎤
⎥
⎥
⎥
⎦

⎫⎪
⎬⎪
⎭

Basis for null(𝐴𝑇)∶ ∅
21. a. nullity(𝐴) − nullity(𝐴𝑇) = 1 b. nullity(𝐴) − nullity(𝐴𝑇) = n−m 23. a. 3 b. 2
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25. The matrix cannot have rank 1. It has rank 2 if r = 2 and s = 1.
27. No, both row and column spaces of𝐴must be planes.
29. a. 3 b. 5 c. 3 d. 3 31. a. 3 b. No
37. a. Overdetermined; inconsistent if 3b1 + b2 + 2b3 ≠ 0

b. Underdetermined; infinitely many solutions for all b’s; (cannot be inconsistent)
c. Underdetermined; infinitely many solutions for all b’s; (cannot be inconsistent)

True/False 4.9
a. False b. True c. False d. False e. True f. False g. False h. False i. True j. False

Chapter 4 Supplementary Exercises (page 289)
1. a. u+ v = (4, 3, 2); ku = (−3, 0, 0) c. Axioms 1–5 3. a plane if s= 1; a line if s = −2; the origin if s ≠ −2 and s ≠ 1
7. 𝐴must be invertible.
9. a. Rank is 2; nullity is 1. b. Rank is 2; nullity is 2.

c. For n = 1, rank is 1 and nullity is 0; for n ≥ 2, rank is 2 and nullity is n− 2.
11. a. {1, x2, x4, . . . , x2⌊n/2⌋} b. {1, x− xn, x2 − xn, . . . , xn−1 − xn}

13. a.
⎧
⎨
⎩

⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 1 0
1 0 0
0 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 1
0 0 0
1 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 0
0 1 0
0 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 0
0 0 1
0 1 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎦

⎫
⎬
⎭

b.
⎧
⎨
⎩

⎡
⎢
⎢
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

0 0 0
0 0 1
0 −1 0

⎤
⎥
⎥
⎦

⎫
⎬
⎭

15. Possible ranks are 0, 1, and 2. 17. a. Yes b. No c. Yes

Chapter 5

Exercise Set 5.1 (page 299)
1. eigenvalue:−1 3. eigenvalue: 5
5. a. Characteristic equation: (𝜆− 5) (𝜆+ 1) = 0;

eigenvalue: 5, basis for eigenspace: {(1, 1)};
eigenvalue:−1, basis for eigenspace: {(−2, 1)}

b. Characteristic equation: 𝜆2 + 3 = 0; no real eigenvalues
c. Characteristic equation: (𝜆 − 1)2 = 0;

eigenvalue: 1, basis for eigenspace: {(1, 0), (0, 1)}
d. Characteristic equation: (𝜆 − 1)2 = 0;

eigenvalue: 𝜆 = 1, basis for eigenspace: {(1, 0)}
7. Characteristic equation: (𝜆− 1) (𝜆− 2) (𝜆− 3)= 0;

eigenvalue: 1, basis for eigenspace: {(0, 1, 0)};
eigenvalue: 2, basis for eigenspace: {(−1, 2, 2)};
eigenvalue: 3, basis for eigenspace: {(−1, 1, 1)}

9. Characteristic equation: (𝜆 + 2)2 (𝜆 − 5)= 0;
eigenvalue:−2, basis for eigenspace: {(1, 0, 1)} ;
eigenvalue: 5, basis for eigenspace: {(8, 0, 1)}

11. Characteristic equation: (𝜆 − 3)3= 0;
eigenvalue: 3, basis for eigenspace: {(0, 1, 0), (1, 0, 1)}

13. (𝜆 − 3) (𝜆 − 7) (𝜆 − 1) = 0
15. Eigenvalue: 5, basis for eigenspace: {(1, 1)};

eigenvalue:−1, basis for eigenspace: {(−2, 1)}
17. b. 𝜆 = −𝜔 is the eigenvalue associated with given eigenvectors.
19. a. Eigenvalue: 1, eigenspace: span{(1, 1)};

eigenvalue:−1, eigenspace: span{(−1, 1)}
b. Eigenvalue: 1, eigenspace: span{(1, 0)};

eigenvalue: 0, eigenspace: span{(0, 1)}
c. No real eigenvalues
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d. Eigenvalue: k, eigenspace: 𝑅2

e. Eigenvalue: 1, eigenspace: span{(1, 0)}
21. a. Eigenvalue: 1, eigenspace: span{(1, 0, 0), (0, 1, 0)};

eigenvalue:−1, eigenspace: span{(0, 0, 1)}
b. Eigenvalue: 1, eigenspace: span{(1, 0, 0), (0, 0, 1)};

eigenvalue: 0, eigenspace: span{(0, 1, 0)}
c. Eigenvalue: 1, eigenspace: span{(1, 0, 0)}
d. Eigenvalue: k, eigenspace: 𝑅3

23. a. y = 2x and y = x b. No invariant lines 25. a. 6 × 6 b. Yes c. Three

27.
⎡
⎢
⎢
⎢
⎣

− 1
2 − 1

2 1
− 1

2 − 1
2 −1

0 0 1

⎤
⎥
⎥
⎥
⎦

True/False 5.1
a. False b. False c. True d. False e. False f. False

Exercise Set 5.2 (page 309)

5. 𝑃 = [
1 0
3 1

] (answer is not unique) 7. 𝑃 =
⎡
⎢
⎢
⎣

1 0 −2
0 1 0
0 0 1

⎤
⎥
⎥
⎦
(answer is not unique)

9. a. 3 and 5 b. rank (3𝐼 − 𝐴) = 1; rank (5𝐼 − 𝐴) = 2 c. Yes
11. eigenvalues: 1, 2 and 3; each has algebraic multiplicity 1 and geometric multiplicity 1;

𝐴 is diagonalizable; 𝑃 =
⎡
⎢
⎢
⎣

1 2 1
1 3 3
1 3 4

⎤
⎥
⎥
⎦
(answer is not unique); 𝑃−1𝐴𝑃 =

⎡
⎢
⎢
⎣

1 0 0
0 2 0
0 0 3

⎤
⎥
⎥
⎦

13. eigenvalue 𝜆 = 0 has both algebraic and geometric multiplicity 2;
eigenvalue 𝜆 = 1 has both algebraic and geometric multiplicity 1;

𝐴 is diagonalizable; 𝑃 =
⎡
⎢
⎢
⎣

0 −1 0
1 0 0
0 3 1

⎤
⎥
⎥
⎦
(answer is not unique); 𝑃−1𝐴𝑃 =

⎡
⎢
⎢
⎣

0 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎦

15. a. 𝐴 is a 3 × 3 matrix;
all three eigenspaces (for 𝜆 = 1, 𝜆 = −3, and 𝜆 = 5)must have dimension 1.

b. 𝐴 is a 6 × 6 matrix;
the possible dimensions of the eigenspace corresponding to 𝜆 = 0 are 1 or 2;
the dimension of the eigenspace corresponding to 𝜆 = 1 must be 1;
the possible dimensions of the eigenspace corresponding to 𝜆 = 2 are 1, 2, or 3.

17. [ 24,234 −34,815
−23,210 35,839] 19. 𝐴11 =

⎡
⎢
⎢
⎣

−1 10,237 −2,047
0 1 0
0 10,245 −2,048

⎤
⎥
⎥
⎦

21.
⎡
⎢
⎢
⎣

1 −1 1
2 0 −1
1 1 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 3n 0
0 0 4n

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1
6

1
3

1
6

− 1
2 0 1

2
1
3 − 1

3
1
3

⎤
⎥
⎥
⎥
⎥
⎦

25. Yes
27. a. The dimension of the eigenspace corresponding to 𝜆 = 1 must be 1; the possible dimensions of the eigenspace corresponding to 𝜆 = 3

are 1 or 2; the possible dimensions of the eigenspace corresponding to 𝜆 = 4 are 1, 2, or 3.
b. The dimension of the eigenspace corresponding to 𝜆 = 1 must be 1; the dimension of the eigenspace corresponding to 𝜆 = 3 must be 2;

the dimension of the eigenspace corresponding to 𝜆 = 4 must be 3.
c. This eigenvalue must be 𝜆 = 4.

31. Standard matrix: [
0 −1

−1 0
]; diagonalizable; 𝑃 = [

−1 1
1 1

] (answer is not unique)

33. Standard matrix:
⎡
⎢
⎢
⎣

3 0 0
0 1 0
1 −1 0

⎤
⎥
⎥
⎦
; diagonalizable; 𝑃 =

⎡
⎢
⎢
⎣

0 0 3
0 −1 0
1 1 1

⎤
⎥
⎥
⎦
(answer is not unique)

True/False 5.2
a. False b. True c. True d. False e. True f. True g. True h. True i. True
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Exercise Set 5.3 (page 322)
1. u = (2+ i,−4i, 1− i); Re (u)= (2, 0, 1); Im (u)= (−1, 4, 1); ‖u‖ = √23 5. x = (7− 6i,−4− 8i, 6− 12i)

7. 𝐴 = [
5i 4

2+ i 1− 5i
]; Re (𝐴) = [

0 4
2 1

]; Im (𝐴) = [
−5 0
−1 5

]; det (𝐴)= 17−i; tr (𝐴)= 1

11. u · v = −1+ i; u ·w = 18− 7i; v ·w = 12+ 6i 13. −11− 14i

15. Eigenvalue: 2+ i, basis for eigenspace: {[
2+ i
1

]}; eigenvalue: 2− i, basis for eigenspace: {[
2− i
1

]}

17. Eigenvalue: 4+ i, basis for eigenspace: {[
1+ i
1

]}; eigenvalue: 4− i, basis for eigenspace: {[
1− i
1

]}

19. |𝜆| = √2; 𝜙 = 𝜋
4 21. |𝜆| = 2; 𝜙 = −𝜋

3 23. 𝑃 = [
−2 −1
2 0

]; 𝐶 = [
3 −2
2 3

] 25. 𝑃 = [
−1 1
1 0

]; 𝐶 = [
5 −3
3 5

]

27. a. k = − 8
3 i b. None

True/False 5.3
a. False b. True c. False d. True e. False f. False

Exercise Set 5.4 (page 327)
1. a. y1 = c1e5x − 2c2e−x , y2 = c1e5x + c2e−x

b. y1 = 0, y2 = 0
3. a. y1 = −c2e2x − c3e3x, y2 = c1ex + 2c2e2x + c3e3x, y3 = 2c2e2x + c3e3x

b. y1 = e2x − 2e3x, y2 = ex − 2e2x + 2e3x, y3 = −2e2x + 2e3x

7. y = c1e3x − c2e−2x 9. y = c1ex + c2e2x + c3e3x

15. b. y′ = 𝐴y where y =
⎡⎢⎢⎢
⎣

y1
y2
y3

⎤⎥⎥⎥
⎦

and𝐴 =
⎡
⎢
⎢
⎣

0 1 0
0 0 1

−2 1 2

⎤
⎥
⎥
⎦

c. The solution of the system: y1 = c1e2x + c2ex + c3e−x, y2 = 2c1e2x + c2ex − c3e−x, and y3 = 4c1e2x + c2ex + c3e−x;
The solution of the differential equation: y = c1e2x + c2ex + c3e−x

True/False 5.4
a. True b. False c. True d. True e. False

Exercise Set 5.5 (page 337)
1. a. Stochastic b. Not stochastic c. Stochastic d. Not stochastic

3. x4 = [
0.54545
0.45455

] 5. a. Regular b. Not regular c. Regular 7.
⎡
⎢
⎢
⎣

8
17
9
17

⎤
⎥
⎥
⎦

9.
⎡
⎢
⎢
⎢
⎢
⎣

4
11
4
11
3
11

⎤
⎥
⎥
⎥
⎥
⎦

11. a. Probability that the system will stay in state 1 when it is in state 1
b. Probability that the system will move to state 1 when it is in state 2
c. 0.8
d. 0.85

13. a. [
0.95 0.55
0.05 0.45

] b. 0.93 c. 0.142 d. 0.63

15. a. initial after after after after after
state 1 year 2 years 3 years 4 years 5 years

city population 100,000 95,750 91,840 88,243 84,933 81,889
suburb population 25,000 29,250 33,160 36,757 40,067 43,111

b. City population will approach 46,875 and the suburbs population will approach 78,125.

17. 𝑃 =
⎡
⎢
⎢
⎢
⎢
⎣

7
10

1
10

1
5

1
5

3
10

1
2

1
10

3
5

3
10

⎤
⎥
⎥
⎥
⎥
⎦

; steady-state vector:

⎡
⎢
⎢
⎢
⎢
⎣

1
3
1
3
1
3

⎤
⎥
⎥
⎥
⎥
⎦

19. For any positive integer k, 𝑃kq = q.
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True/False 5.5
a. True b. True c. True d. False e. True f. False g. True

Chapter 5 Supplementary Exercises (page 339)
1. b. 𝐴 is the standard matrix of the rotation in the plane about the origin through a positive angle 𝜃. Unless the angle is an integer multiple

of 𝜋, no vector resulting from such a rotation is a scalar multiple of the original nonzero vector.

3. c.
⎡
⎢
⎢
⎣

1 1 0
0 2 1
0 0 3

⎤
⎥
⎥
⎦

9. 𝐴2 = [
15 30
5 10

],𝐴3 = [
75 150
25 50

],𝐴4 = [
375 750
125 250

],𝐴5 = [
1875 3750
625 1250

]

11. 0, tr(𝐴) 13. All eigenvalues must be 0 15.
⎡
⎢
⎢
⎢
⎣

1 0 0
−1 − 1

2 − 1
2

1 − 1
2 − 1

2

⎤
⎥
⎥
⎥
⎦

17. The only possible eigenvalues are−1, 0, and 1.
19. The remaining eigenvalues are 2 and 3.

Chapter 6

Exercise Set 6.1 (page 349)
1. a. 12 b. −18 c. −9 d. √30 e. √11 f. √203
3. a. 34 b. −39 c. −18 d. √89 e. √34 f. √610

5. [√2 0
0 √3

] 7. −24 9. 3 11. −29 13. [√3 0
0 √5

] 15. −50 17. ‖u‖ = √30, d(u, v) = √107

19. ‖p‖ = √14 , d(p,q) = √137 21. ‖𝑈‖ = √93, d(𝑈,𝑉) = √99 = 3√11 23. ‖p‖ = 6√3 , d(p,q) = 11√2
25. ‖u‖ = √65, d(u, v) = 12√5 27. a. −101 b. 3
29.

x

y

2

–4

4

–2

31. ⟨u, v⟩ = 1
9u1𝑣1 + u2𝑣2 33. Axioms 2 and 3 do not hold. 35. 14⟨u, v⟩ − 4 ‖u‖2 − 6 ‖v‖2

37. a. 2
3 b. 4

√15
c. √2 d. √

2
5 39. 0 43. b. k1 and k2 must both be positive.

True/False 6.1
a. True b. False c. True d. True e. False f. True g. False

Exercise Set 6.2 (page 358)
1. a. − 1

√2
b. 0 c. − 1

√2
3. 0 5. 19

10√7
7. a. Orthogonal b. Not orthogonal c. Orthogonal

13. Orthogonal if k = 4
3 15. The weights must be positive numbers such that𝑤1 = 4𝑤2. 17. No 25. No

27. {(−1,−1, 1, 0), ( 27 , −
4
7 , 0, 1)} 29. a. y = − 1

2 x b. x = t, y = −2t, z = −3t

31. a. 1
4 b. ‖p‖ = 1

√3

‖q‖ = 1
√5

33. a. 0 b. ‖p‖ = 4
√15

‖q‖ = 2√
2
3

51. a. v = a (1,−1) b. v = a(1,−2)

True/False 6.2
a. False b. True c. True d. True e. False f. False

Exercise Set 6.3 (page 374)
1. a. Orthogonal but not orthonormal b. Orthogonal and orthonormal

c. Not orthogonal and not orthonormal d. Orthogonal but not orthonormal
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3. a. Orthogonal b. Not orthogonal

5. An orthonormal basis: {( 1
√2
, 0, − 1

√2
),( 1

√2
, 0, 1

√2
), (0, 1, 0)}

7. u = − 11
5 v1 −

2
5v2 + 2v3 9. u = 0v1 − 2

3v2 +
1
3v3 11. (− 11

5 , −
2
5 , 2) 13. (0, − 2

3 ,
1
3)

15. a. ( 6325 ,
84
25) b. (− 88

25 ,
66
25) 17. a. ( 52 ,

5
2) b. (− 1

2 ,
1
2) 19. a. ( 103 ,

8
3 ,

4
3) b. ( 23 , −

2
3 , −

1
3)

21. a. ( 2215 , −
14
15 ,

2
3) b. (− 7

15 ,
14
15 ,

7
3) 23. ( 32 ,

3
2 , −1, −1) 25. ( 2318 ,

11
6 , −

1
18 , −

17
18)

27. q1 = ( 1
√10

, − 3
√10

), q2 = ( 3
√10

, 1
√10

)

x

y

q1

u1

q2

u2

29. {( 1
√3
, 1
√3
, 1
√3
),(− 1

√2
, 1
√2
, 0),( 1

√6
, 1
√6
, − 2

√6
)}

31. {(0, 2
√5
, 1
√5
, 0),( 5

√30
, − 1

√30
, 2
√30

, 0),( 1
√10

, 1
√10

, − 2
√10

, − 2
√10

),( 1
√15

, 1
√15

, − 2
√15

, 3
√15

)}

33. From Exercise 23,w1 = proj𝑊b = ( 32 ,
3
2 , −1, −1), sow2 = b− proj𝑊b = (− 1

2 ,
1
2 , 1, −1).

35. w1 = ( 1314 ,
31
14 ,

20
7 ) ,w2 = ( 1

14 , −
3
14 ,

1
7) 37. An orthonormal basis: {( 1

√6
, 1
√6
, 1
√6
),( 1

√6
, 1
√6
, − 1

√6
),( 2

√6
, − 1

√6
, 0)}

39. For example, x =( 1
√3
, 0) and y = (0, 1√2) 41. b. proj𝑊u = (2, 1, 2) (using both methods)

43. An orthonormal basis: {1, √3 (−1+ 2x) ,√5 (1− 6x+ 6x2)}

45. 𝑅 = [
√5 √5
0 √5

] (𝑄 is given.) 47. 𝑅 =
⎡
⎢
⎢
⎢
⎣

√2 √2 √2
0 √3 − 1

√3
0 0 4

√6

⎤
⎥
⎥
⎥
⎦

(𝑄 is given.)

49. 𝐴 does not have a𝑄𝑅-decomposition. 55. b. The range of 𝑇 is𝑊; the kernel of 𝑇 is𝑊⊥.

True/False 6.3
a. False b. False c. True d. True e. False f. True

Exercise Set 6.4 (page 384)

1. [
21 25
25 35

] [
x1
x2
] = [

20
20
] 3. x1 = 20

11 , x2 = − 8
11 5. x1 = 12, x2 = −3, x3 = 9

7. Least squares error vector:
⎡⎢⎢⎢
⎣

− 6
11

− 27
11
15
11

⎤⎥⎥⎥
⎦

; least squares error: 3
11√110 ≈ 2.86

9. Least squares error vector:

⎡
⎢
⎢
⎢
⎢
⎣

3
−3
0
3

⎤
⎥
⎥
⎥
⎥
⎦

; least squares error: 3√3 ≈ 5.196

11. Least squares solutions: x1 = 1
2 −

1
2 t, x2 = t; error vector:

⎡
⎢
⎢
⎣

2
0
2

⎤
⎥
⎥
⎦
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13. Least squares solutions: x1 = − 7
6 − t, x2 = 7

6 − t, x3 = t; error vector:
⎡
⎢
⎢
⎢
⎣

7
3
7
6

− 49
6

⎤
⎥
⎥
⎥
⎦

15.
⎡
⎢
⎢
⎢
⎣

− 92
285
439
285
94
57

⎤
⎥
⎥
⎥
⎦

17.
⎡
⎢
⎢
⎣

3
−4
−1

⎤
⎥
⎥
⎦

19. [
1 0
0 0

] 21.
⎡
⎢
⎢
⎣

1 0 0
0 0 0
0 0 1

⎤
⎥
⎥
⎦

23. [
1
7
18
7
]

25. a. {(1, 0,−5) , (0, 1, 3)} b. 1
35

⎡
⎢
⎢
⎣

10 15 −5
15 26 3
−5 3 34

⎤
⎥
⎥
⎦

27.

⎡
⎢
⎢
⎢
⎢
⎣

0
−1
1
1

⎤
⎥
⎥
⎥
⎥
⎦

29. 𝐴𝑇 (𝐴𝐴𝑇)−1𝐴

True/False 6.4
a. True b. False c. True d. True e. False f. True g. False h. True

Exercise Set 6.5 (page 390)
1. y = − 1

2 +
7
2 x

x

y

21

7

3. y = 2+ 5x− 3x2

x

y

8765421

–50

5. y = 5
21 +

48
7x

True/False 6.5
a. False b. True c. True d. False

Exercise Set 6.6 (page 397)

1. a. 1+𝜋 − 2 sin x− sin 2x b. 1+𝜋 − 2
1
sin x− 2

2
sin (2x) − ⋅ ⋅ ⋅ − 2

n
sin(nx)

3. a.
ex

e− 1
− 1
2

b.
7e− 19
12e− 12

≈ 0.00136

5. a. 3x
𝜋 b. 1− 6

𝜋2 ≈ 0.392 9.
1
2
+

∞
∑
k=1

1
k𝜋 (1− (−1)k) sin kx

True/False 6.6
a. False b. True c. True d. False e. True

Chapter 6 Supplementary Exercises (page 397)

1. a. (0, a, a, 0) with a ≠ 0 b. ±(0, 2√5 ,
1
√5
, 0)

3. a. The subspace of all matrices in𝑀22 with zeros on the main diagonal.
b. The subspace of all 2 × 2 skew-symmetric matrices.

7. ±( 1
√2
, 0, 1

√2
) 9. No 11. b. 𝜃 approaches 𝜋2 17. No

Chapter 7

Exercise Set 7.1 (page 405)

1. a. Orthogonal;𝐴−1 = [1 0
0 −1] b. Orthogonal;𝐴−1 =

⎡⎢⎢⎢
⎣

1
√2

1
√2

− 1
√2

1
√2

⎤⎥⎥⎥
⎦
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3. a. Not orthogonal b. Orthogonal;𝐴−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
√2

0 1
√2

1
√6

− 2
√6

1
√6

1
√3

1
√3

1
√3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

7. 𝑇𝐴 (x) =
⎡
⎢
⎢
⎢
⎣

− 23
5
18
25
101
25

⎤
⎥
⎥
⎥
⎦

; ‖𝑇𝐴 (x)‖ = ‖x‖ = √38

9. Yes 11. a2 + b2 = 1
2 13. a. [

−1+ 3√3
3+√3

] b. [
5
2 −√3
1+ 5

2√3
] 15. a.

⎡
⎢
⎢
⎢
⎢
⎣

1
√2
3
√2
5

⎤
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎣

− 5
√2
7
√2
−3

⎤
⎥
⎥
⎥
⎥
⎦

17. a.
⎡
⎢
⎢
⎢
⎢
⎣

− 1
2 −

5√3
2

2

−√3
2 + 5

2

⎤
⎥
⎥
⎥
⎥
⎦

b.
⎡⎢⎢⎢⎢
⎣

1
2 −

3√3
2

6

−√3
2 − 3

2

⎤⎥⎥⎥⎥
⎦

19. [
1 0 0
0 cos𝜃 sin𝜃
0 − sin𝜃 cos𝜃

]

21. a. Rotations about the origin, reflections about any line through the origin, and any combination of these
b. Rotations about the origin, dilations, contractions, reflections about lines through the origin, and combinations of these
c. No; dilations and contractions

23. a. (p)𝑆 = ( 5
√3
, √2, √2

√3
), (q)𝑆 = (− 2

√3
, 2√2, −√2

√3
)

b. ‖p‖ = √11, d(p,q) = √21, ⟨p,q⟩ = 0

True/False 7.1
a. False b. False c. False d. False e. True f. True g. True h. True

Exercise Set 7.2 (page 415)
1. 𝜆2 − 5𝜆 = 0; 𝜆 = 0: one-dimensional; 𝜆 = 5: one-dimensional
3. 𝜆3 − 3𝜆2 = 0; 𝜆 = 3: one-dimensional; 𝜆 = 0: two-dimensional
5. 𝜆4 − 8𝜆3 = 0; 𝜆 = 0: three-dimensional; 𝜆 = 8: one-dimensional

7. 𝑃 =
⎡
⎢
⎢
⎢
⎣

− 2
√7

√3
√7

√3
√7

2
√7

⎤
⎥
⎥
⎥
⎦

; 𝑃−1𝐴𝑃 = [
3 0
0 10

] 9. 𝑃 =
⎡⎢⎢⎢
⎣

− 4
5 0 3

5
0 1 0
3
5 0 4

5

⎤⎥⎥⎥
⎦

; 𝑃−1𝐴𝑃 =
⎡
⎢
⎢
⎣

25 0 0
0 −3 0
0 0 −50

⎤
⎥
⎥
⎦

11. 𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

− 1
√2

− 1
√6

1
√3

1
√2

− 1
√6

1
√3

0 2
√6

1
√3

⎤
⎥
⎥
⎥
⎥
⎦

; 𝑃−1𝐴𝑃 =
⎡
⎢
⎢
⎣

3 0 0
0 3 0
0 0 0

⎤
⎥
⎥
⎦

13. 𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 4
5 0 3

5 0
3
5 0 4

5 0
0 − 4

5 0 3
5

0 3
5 0 4

5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; 𝑃−1𝐴𝑃 =
⎡
⎢
⎢
⎢
⎢
⎣

−25 0 0 0
0 −25 0 0
0 0 25 0
0 0 0 25

⎤
⎥
⎥
⎥
⎥
⎦

15. (2) [
− 1
√2
1
√2

] [− 1
√2

1
√2 ] + (4)

⎡
⎢
⎢
⎣

1
√2
1
√2

⎤
⎥
⎥
⎦
[ 1
√2

1
√2 ] = (2) [

1
2 − 1

2

− 1
2

1
2
] + (4) [

1
2

1
2

1
2

1
2
]

17. (−4)
⎡⎢⎢⎢⎢
⎣

− 1
√2
1
√2
0

⎤⎥⎥⎥⎥
⎦

[− 1
√2

1
√2

0] + (−4)

⎡
⎢
⎢
⎢
⎢
⎣

− 1
√3

− 1
√3
1
√3

⎤
⎥
⎥
⎥
⎥
⎦

[− 1
√3

− 1
√3

1
√3 ] + (2)

⎡
⎢
⎢
⎢
⎢
⎣

1
√6
1
√6
2
√6

⎤
⎥
⎥
⎥
⎥
⎦

[ 1
√6

1
√6

2
√6 ]

= (−4)
⎡
⎢
⎢
⎣

1
2 − 1

2 0
− 1
2

1
2 0

0 0 0

⎤
⎥
⎥
⎦
+ (−4)

⎡⎢⎢⎢
⎣

1
3

1
3 − 1

3
1
3

1
3 − 1

3
− 1
3 − 1

3
1
3

⎤⎥⎥⎥
⎦

+ (2)
⎡⎢⎢⎢
⎣

1
6

1
6

1
3

1
6

1
6

1
3

1
3

1
3

2
3

⎤⎥⎥⎥
⎦

19.
⎡
⎢
⎢
⎣

3 0 0
0 3 4
0 4 3

⎤
⎥
⎥
⎦

21. Yes 23. a.
⎡⎢⎢⎢
⎣

√2−1
4−2√2

1
4−2√2

⎤⎥⎥⎥
⎦

,
⎡⎢⎢⎢
⎣

−√2−1
4+2√2

1
4+2√2

⎤⎥⎥⎥
⎦

b. [
−1
√2
1
√2

], [
1
√2
1
√2

]
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True/False 7.2
a. True b. True c. False d. True e. True f. True g. True

Exercise Set 7.3 (page 427)

1. a. [x1 x2] [
3 0
0 7

] [
x1
x2
] b. [x1 x2] [

4 −3
−3 −9

] [x1x2
] c. [x1 x2 x3]

⎡⎢⎢⎢
⎣

9 3 −4
3 −1 1

2
−4 1

2 4

⎤⎥⎥⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

3. 2x2 + 5y2 − 6xy 5. [
x1
x2
] = [

− 1
√2

1
√2

1
√2

1
√2
] [
y1
y2
];𝑄 = 3y21 + y22

7.
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎣

− 2
3

2
3 − 1

3
2
3

1
3 − 2

3
1
3

2
3

2
3

⎤
⎥
⎥
⎥
⎦

[
y1
y2
y3
];𝑄 = y21 + 4y22 + 7y23

9. a. [x y] [
2 1

2
1
2 0

] [
x
y
] + [1 −6] [

x
y
] + (2) = 0 b. [x y] [

0 0
0 1

] [
x
y
] + [7 −8] [

x
y
] + (−5) = 0

11. a. Ellipse b. Hyperbola c. Parabola d. Circle 13. Hyperbola: 3y′2 − 2x′2 = 8; 𝜃 = sin−1 ( 2
√5
) ≈ 63.4∘

15. Hyperbola: 4x′2 − y′2 = 3; 𝜃 = sin−1 ( 35) ≈ 36.9∘

17. a. Positive definite b. Negative definite c. Indefinite d. Positive semidefinite e. Negative semidefinite
19. Positive definite 21. Positive semidefinite 23. Indefinite 27. a. Indefinite b. Negative definite 29. k > 2

33. a. s2x = x𝑇

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
n − 1

n(n−1) ⋅ ⋅ ⋅ − 1
n(n−1)

− 1
n(n−1)

1
n ⋅ ⋅ ⋅ − 1

n(n−1)
...

...
. . .

...

− 1
n(n−1) − 1

n(n−1) ⋅ ⋅ ⋅ 1
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x 35. 𝐴must have a positive eigenvalue of multiplicity 2.

True/False 7.3
a. True b. False c. True d. True e. False f. True g. True h. True i. True j. True k. True
l. False

Exercise Set 7.4 (page 435)
1. Maximum: 5 at (x, y) = (±1, 0); minimum:−1 at (x, y) = (0, ±1)
3. Maximum: 7 at (x, y) = (0, ±1); minimum: 3 at (x, y) = (±1, 0)
5. Maximum: 9 at (x, y, z) = (±1, 0, 0); minimum: 3 at (x, y, z) = (0, 0, ±1)
7. Maximum:√2 at (x, y) = (√2, 1) and (x, y) = (−√2,−1); minimum:−√2 at (x, y) = (−√2, 1) and (x, y) = (√2,−1)
9.

x

y

(–1, 0) (1, 0)

5x2 – y2 = 5

x

y

(0, 1)

(0, –1)

5x2 – y2 = –1

13. Saddle point at (0, 0); relative maximum at (−1, 1)
15. Relative minimum at (0, 0); saddle point at (2, 1); saddle point at (−2, 1) 17. x = 5

√2
, y = 1

√2
21. q(x) = 𝜆

True/False 7.4
a. False b. True c. True d. False e. True

Exercise Set 7.5 (page 442)

1. [
−2i 4 5− i
1+ i 3− i 0

] 3.
⎡
⎢
⎢
⎣

1 i 2− 3i
−i −3 1

2+ 3i 1 2

⎤
⎥
⎥
⎦

5. a. (𝐴)13 ≠ (𝐴∗)13 b. (𝐴)22 ≠ (𝐴∗)22
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9. 𝐴−1 = [
3
5 − 4

5

− 4
5 i − 3

5 i
] 11. 𝐴−1 =

⎡
⎢
⎢
⎣

1
2√2

(√3− i ) 1
2√2

(1− i√3 )
1

2√2
(1+ i√3 ) 1

2√2
(−i−√3 )

⎤
⎥
⎥
⎦

13. 𝑃 = [
−1+i
√3

1−i
√6

1
√3

2
√6

]; 𝑃−1𝐴𝑃 = [
3 0
0 6

]

15. 𝑃 = [
−1−i
√6

1+i
√3

2
√6

1
√3

]; 𝑃−1𝐴𝑃 = [
2 0
0 8

] 17. 𝑃 =
⎡⎢⎢⎢⎢
⎣

0 0 1
1−i
√3

−1+i
√6

0

1
√3

2
√6

0

⎤⎥⎥⎥⎥
⎦

; 𝑃−1𝐴𝑃 =
⎡
⎢
⎢
⎣

−2 0 0
0 1 0
0 0 5

⎤
⎥
⎥
⎦

19.
⎡
⎢
⎢
⎣

0 i 2− 3i
i 0 1

−2− 3i −1 4i

⎤
⎥
⎥
⎦

27. c. 𝐵 and 𝐶 must commute. 35. [
1
√2

− i
√2

i
√2

− 1
√2

]

True/False 7.5
a. False b. False c. True d. False e. False

Chapter 7 Supplementary Exercises (page 444)

1. a. [
3
5 − 4

5
4
5

3
5
]
−1

= [
3
5

4
5

− 4
5

3
5
] b.

⎡
⎢
⎢
⎢
⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25
12
25

3
5

16
25

⎤
⎥
⎥
⎥
⎦

−1

=
⎡
⎢
⎢
⎢
⎣

4
5 − 9

25
12
25

0 4
5

3
5

− 3
5 − 12

25 − 16
25

⎤
⎥
⎥
⎥
⎦

5. 𝑃 =
⎡
⎢
⎢
⎢
⎣

− 1
√2

1
√2

0

0 0 1
1
√2

1
√2

0

⎤
⎥
⎥
⎥
⎦

; 𝑃𝑇𝐴𝑃 =
⎡
⎢
⎢
⎣

0 0 0
0 2 0
0 0 1

⎤
⎥
⎥
⎦

7. Positive definite 9. a. Parabola b. Parabola
13. Two possible solutions: a = 0, b =√

2
3 , c = − 1

√3
and a = 0, b = −√

2
3 , c =

1
√3

Chapter 8

Exercise Set 8.1 (page 456)
1. a. Nonlinear

b. Linear; kernel consists of all matrices of the form [
a b
c −a

]

c. Linear; kernel consists of all matrices of the form [
0 b

−b 0
]

3. Nonlinear 5. Linear; kernel consists of all 2 × 2 matrices whose rows are orthogonal to all columns of 𝐵
7. a. Linear; ker(𝑇) = {0} b. Nonlinear 9. Linear; ker(𝑇) = {(0, 0, 0, . . . )} 11. (a) and (d)

13. a. 2 b. 4 c. mn− 3 d. 1 15. a. [
3 6

−12 9
] b. rank(𝑇) = 4; nullity(𝑇) = 0

17. a. (1, 0, 1) b. ker(𝑇) = {0} c. 𝑅(𝑇) = 𝑅3 19. 𝑇(x1, x2) = (−4x1 + 5x2, x1 − 3x2); 𝑇(5,−3) = (−35, 14)
21. 𝑇(x1, x2, x3) = (−x1 + 4x2 − x3, 5x1 − 5x2 − x3, x1 + 3x3); 𝑇(2, 4,−1) = (15,−9,−1)

23. a.
⎧
⎨
⎩
[
1
5
7
] ,
⎡
⎢
⎢
⎣

−1
6
4

⎤
⎥
⎥
⎦

⎫
⎬
⎭

b. {(−14, 19, 11)} c. rank(𝑇) = 2; nullity(𝑇) = 1 d. rank(𝐴) = 2; nullity(𝐴) = 1

25. Basis for ker(𝑇𝐴): {(10, 2, 0, 7)}; basis for 𝑅(𝑇𝐴):
⎧
⎨
⎩

⎡
⎢
⎢
⎣

1
−3
−3

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

2
1
8

⎤
⎥
⎥
⎦
,
⎡
⎢
⎢
⎣

−1
3
4

⎤
⎥
⎥
⎦

⎫
⎬
⎭

27. b. {x, x2} c. {5, x2}
29. a. ker(𝐷) consists of all constant polynomials

b. ker(𝐽) consists of all polynomials of the form a1x
31. a. 𝑇(𝑓(x)) = 𝑓(4)(x)

b. 𝑇(𝑓(x)) = 𝑓(n+1)(x)
33. a. The origin, a line through the origin, a plane through the origin, or the entire space 𝑅3

b. The origin, a line through the origin, a plane through the origin, or the entire space 𝑅3
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35. (−10,−7, 6)

True/False 8.1
a. True b. False c. True d. False e. True f. True g. False h. False i. False

Exercise Set 8.2 (page 468)
1. a. Not one-to-one b. One-to-one c. One-to-one 3. a. ker(𝑇) = {𝟎};𝑇 is one-to-one b. ker(𝑇) = {𝟎};𝑇 is one-to-one

c. ker(𝑇) = {span(0, 1, 1)}; 𝑇 is not one-to-one
5. a. nullity(𝐴) = 1; not one-to-one b. nullity(𝐴) = 1; not one-to-one
7. a. One-to-one b. One-to-one c. Not one-to-one
9. For example, 𝑇(1− x2) = (0, 0); 𝑇 is onto
11. No; 𝑇 is not one-to-one because ker(𝑇) ≠ {𝟎}; for example, 𝑇(a) = a × a = 𝟎
13. a. One-to-one, not onto b. Not one-to-one, onto c. One-to-one, onto d. Not one-to-one, not onto
15. a. Reflection about the x-axis b. Rotation through an angle of−𝜋/4
19. a. (1,−1) d. 𝑇−1(2, 3) = 2+ x

x

y

2
p(x) = 2 + x

21. a. all the ai’s must be nonzero b. 𝑇−1(x1, x2, . . . , xn) = ( 1
a1
x1, 1

a2
x2, . . . , 1

an
xn)

23. (𝑇2 ∘ 𝑇1)(x, y) = (2x− 3y, 2x+ 3y)
25. a0x+ a1x (x+ 1) + a2x (x+ 1)2

27. a. a+ d b. (𝑇2 ∘ 𝑇1)(𝐴) does not exist because 𝑇1(𝐴) is not a 2 × 2 matrix
29. (𝑇3 ∘ 𝑇2 ∘ 𝑇1) (x, y) = (3x− 2y, x)
31. a. 𝑇−1

1 (p (x)) = 1
x p (x); 𝑇−1

2 (p(x)) = p(x− 1); (𝑇−1
1 ∘ 𝑇−1

2 )(p(x)) = 1
x p(x− 1)

33. 𝑇2(v) = 1
4v 39. Since ker(𝐽) ≠ {0}, 𝐽 is not one-to-one.

41. a. Range of 𝑇 must be a proper subset of 𝑅n b. 𝑇 maps infinitely many vectors into 0
43. a. Yes b. Yes

True/False 8.2
a. True b. True c. True d. True e. False f. True g. True h. False i. True j. True

Exercise Set 8.3 (page 476)
1. Isomorphism 3. Isomorphism 5. Not an isomorphism 7. Isomorphism

9. a. 𝑇([
a b c
b d e
c e 𝑓

]) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a
b
c
d
e
𝑓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b. 𝑇1([
a b
c d

]) =
⎡
⎢
⎢
⎢
⎢
⎣

a
b
c
d

⎤
⎥
⎥
⎥
⎥
⎦

; 𝑇2([
a b
c d

]) =
⎡
⎢
⎢
⎢
⎢
⎣

a
c
b
d

⎤
⎥
⎥
⎥
⎥
⎦

11. Isomorphism 13. dim (𝑊) = 3; (−r− s− t, r, s, t) → (r, s, t) is an isomorphism between𝑊 and 𝑅3

15. Isomorphism 17. Yes 19. No

True/False 8.3
a. False b. True c. False d. True e. True f. True

Exercise Set 8.4 (page 484)

1. a.

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

3. a.
⎡
⎢
⎢
⎣

1 −1 1
0 1 −2
0 0 1

⎤
⎥
⎥
⎦

5. a.
⎡
⎢
⎢
⎢
⎣

0 0
− 1
2 1
8
3

4
3

⎤
⎥
⎥
⎥
⎦

7. a.
⎡
⎢
⎢
⎣

1 1 1
0 2 4
0 0 4

⎤
⎥
⎥
⎦

b, c. 3+ 10x+ 16x2
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9. a. [𝑇(v1)]𝐵 = [
1

−2
]; [𝑇(v2)]𝐵 = [

3
5
] b. 𝑇(v1) = [

3
−5

]; 𝑇(v2) = [
−2
29
]

c. 𝑇([
x1
x2
]) = [

18
7

1
7

− 107
7

24
7
] [
x1
x2
] d. 𝑇([

1
1
]) = [

19
7

− 83
7
]

11. a. [𝑇(v1)]𝐵 =
⎡
⎢
⎢
⎣

1
2
6

⎤
⎥
⎥
⎦
; [𝑇(v2)]𝐵 =

⎡
⎢
⎢
⎣

3
0

−2

⎤
⎥
⎥
⎦
; [𝑇(v3)]𝐵 =

⎡
⎢
⎢
⎣

−1
5
4

⎤
⎥
⎥
⎦

b. 𝑇(v1) = 16+ 51x+ 19x2; 𝑇(v2) = −6− 5x+ 5x2; 𝑇(v3) = 7+ 40x+ 15x2

c. 𝑇(a0 + a1x+ a2x2) =
239a0 − 161a1 + 289a2

24 + 201a0 − 111a1 + 247a2
8 x+ 61a0 − 31a1 + 107a2

12 x2

d. 𝑇(1+ x2) = 22+ 56x+ 14x2

13. a. [𝑇2 ∘ 𝑇1]𝐵′ , 𝐵 =
⎡
⎢
⎢
⎢
⎢
⎣

0 0
6 0
0 −9
0 0

⎤
⎥
⎥
⎥
⎥
⎦

; [𝑇1]𝐵″ , 𝐵 =
⎡
⎢
⎢
⎣

2 0
0 −3
0 0

⎤
⎥
⎥
⎦
; [𝑇2]𝐵′ , 𝐵″ =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
3 0 0
0 3 0
0 0 3

⎤
⎥
⎥
⎥
⎥
⎦

b. [𝑇2 ∘ 𝑇1]𝐵′ , 𝐵 = [𝑇2]𝐵′ , 𝐵″ [𝑇1]𝐵″ , 𝐵

15. a. [𝑇]𝐵,𝐵′ =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 1
1 −1 1
1 0 0

⎤
⎥
⎥
⎥
⎥
⎦

; [𝑇]𝐵,𝐵″ =
⎡
⎢
⎢
⎢
⎢
⎣

1 1 1
1 2 2
1 0 2
1 1 1

⎤
⎥
⎥
⎥
⎥
⎦

b, c. [
2 5
1 2

]

17. a.
⎡
⎢
⎢
⎣

0 1 0
0 0 2
0 0 0

⎤
⎥
⎥
⎦

b. −6+ 48x 19. a.
⎡
⎢
⎢
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎥
⎥
⎦

b. 4 sin x+ 3 cos x

21. a. [𝑇2 ∘ 𝑇1]𝐵′ ,𝐵 = [𝑇2]𝐵′ ,𝐵″ [𝑇1]𝐵″ ,𝐵 b. [𝑇3 ∘ 𝑇2 ∘ 𝑇1]𝐵′ ,𝐵 = [𝑇3]𝐵′ ,𝐵‴ [𝑇2]𝐵‴ ,𝐵″ [𝑇1]𝐵″ ,𝐵

23. Thematrix for𝑇 relative to𝐵 is the matrix whose columns are the transforms of the basis vectors in𝐵 in terms of the standard basis. Since𝐵
is the standard basis for 𝑅n, this matrix is the standard matrix for 𝑇. Also, since 𝐵′ is the standard basis for 𝑅m, the resulting transformation
will give vector components relative to the standard basis.

True/False 8.4
a. False b. False c. True d. False e. True

Exercise Set 8.5 (page 491)
1. a. det(𝐴) = −2 does not equal det(𝐵) = −1 b. tr(𝐴) = 3 does not equal tr(𝐵) = −2

3. [
6 −10
2 −3

] 5. [
−2 −2
6 5

] 7. [𝑇]𝐵 = [
1 −2
0 −1

]; [𝑇]𝐵′ = [
11 20
−6 −11

]

9. [𝑇]𝐵 =
⎡
⎢
⎢
⎣

−2 −1 0
1 0 1
0 1 0

⎤
⎥
⎥
⎦
; [𝑇]𝐵′ =

⎡
⎢
⎢
⎣

−2 −1 0
1 0 1
0 1 0

⎤
⎥
⎥
⎦

11. [𝑇]𝐵 = [
1
√2

− 1
√2

1
√2

1
√2
]; [𝑇]𝐵′ = [

1
√2

− 1
√2

1
√2

1
√2
]

13. [𝑇]𝐵 = [
−1 0
1 1

]; [𝑇]𝐵′ = [
1
2

1
2

3
2 − 1

2
]

15. a. −4, 3
b. A basis for the eigenspace corresponding to 𝜆 = −4 is {−2+ 8

3 x+ x2};
A basis for the eigenspace corresponding to 𝜆 = 3 is {5− 2x+ x2}

19. det(𝑇) = 17; eigenvalues: 5 ± 2√2 21. det(𝑇) = 1; eigenvalue: 1

True/False 8.5
a. False b. True c. True d. True e. True f. False g. True h. False

Exercise Set 8.6 (page 504)
1. y′ = 6

13 x
′ 3. y′ = 2

7 x
′
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5.

x

y

x

y

(1, 1)

(2, –1)

(3, 1)

(1, 0)(0, 0)

(0, 0)

(–1, –2)

(0, 1) 3

3

1

1
4

4

2

2

7. a. [
1
2 0
0 5

] b. [
1 0
2 5

] c. [
0 −1

−1 0
] 9. a. Operators commute b. Operators do not commute

11. Shearing by a factor of 1 in the x-direction, then reflection about the x-axis, then expanding by a factor of 2 in the y-direction, then expanding
by a factor of 4 in the x-direction.

13. Reflection about the x-axis, then expanding by a factor of 2 in the y-direction, then expanding by a factor of 4 in the x-direction, then reflection
about the line y = x.

15. a. The unit square is expanded in the x-direction by a factor of 3.
b. The unit square is reflected about the x-axis and expanded in the y-direction by a factor of 5.

17. b. No, Theorem 8.6.1 applies only to invertible matrices.
21. a.

x

y

x

y

(1, 1)

(0, 0)(0, 0) (1, 0)

(   , 1)1
2

(–   ,    )1
2

3
2

b. Shearing by a factor of −1 in the x-direction, then expanding by a factor of 2 in the y-direction, then shearing by a factor of 1 in the
y-direction.

23.
(   , 1)5

4(0, 1) (1, 1)

11

11

(   , 1)1
4

x

y

x

y

25. The line segment from (0,0) to (2,0). Theorem 8.6.1 does not apply here because𝐴 is singular.

27. a.
⎡
⎢
⎢
⎢
⎣

√3
2 − 1

2 0
1
2

√3
2 0

0 0 1

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

1 0 0
0 1

2
1
√2

0 − 1
√2

1
√2

⎤
⎥
⎥
⎥
⎦

29.
⎡⎢⎢⎢
⎣

− 1
9

8
9

4
9

8
9 − 1

9
4
9

4
9

4
9 − 7

9

⎤⎥⎥⎥
⎦

True/False 8.6
a. False b. True c. True d. True e. False f. False g. True

Chapter 8 Supplementary Exercises (page 506)
1. No

5. a. 𝑇(e3) and any two of 𝑇(e1), 𝑇(e2), 𝑇(e4) form a basis for the range; a basis for ker(𝑇) is
⎡
⎢
⎢
⎢
⎢
⎣

−1
1
0
1

⎤
⎥
⎥
⎥
⎥
⎦

b. rank(𝑇) = 3; nullity(𝑇) = 1

7. a. rank(𝑇) = 2; nullity(𝑇) = 2 b. 𝑇 is not one-to-one
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11. rank(𝑇) = 3; nullity(𝑇) = 1 13.

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

15.
⎡
⎢
⎢
⎣

−4 0 9
1 0 −2
0 1 1

⎤
⎥
⎥
⎦

17.
⎡
⎢
⎢
⎣

1 −1 1
0 1 0
1 0 −1

⎤
⎥
⎥
⎦

19. b. {1, x}

25.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ⋅ ⋅ ⋅ 0 0

1 0 0 ⋅ ⋅ ⋅ 0 0

0 1
2 0 ⋅ ⋅ ⋅ 0 0

0 0 1
3 ⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

0 0 ⋅ ⋅ ⋅ 1
n 0

0 0 0 ⋅ ⋅ ⋅ 0 1
n+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Chapter 9

Exercise Set 9.1 (page 518)
1. x1 = 2, x2 = 1 3. x1 = 3, x2 = −1 5. x1 = −1, x2 = 1, x3 = 0

7. a. 𝐿−1 =
⎡
⎢
⎢
⎣

1 0 0
−2 1 0
1 1 1

⎤
⎥
⎥
⎦
;𝑈−1 =

⎡
⎢
⎢
⎢
⎣

1
2

1
8 − 7

48

0 1
4

5
24

0 0 1
6

⎤
⎥
⎥
⎥
⎦

b. 𝐴−1 =
⎡
⎢
⎢
⎢
⎣

5
48 − 1

48 − 7
48

− 7
24

11
24

5
24

1
6

1
6

1
6

⎤
⎥
⎥
⎥
⎦

9. a. 𝐴 = 𝐿𝑈 =
⎡
⎢
⎢
⎣

2 0 0
−2 1 0
2 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1 1
2 − 1

2

0 0 1

0 0 1

⎤
⎥
⎥
⎥
⎦

b. 𝐴 = 𝐿1𝐷𝑈1 =
⎡
⎢
⎢
⎣

1 0 0
−1 1 0
1 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1 1
2 − 1

2

0 0 1

0 0 1

⎤
⎥
⎥
⎥
⎦

c. 𝐴 = 𝐿2𝑈2 =
⎡
⎢
⎢
⎣

1 0 0
−1 1 0
1 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 1 −1
0 0 1
0 0 1

⎤
⎥
⎥
⎦

11. x1 = 21
17 , x2 = − 14

17 , x3 = 12
17 13. 𝐴 = 𝐿𝐷𝑈 = [

1 0
2 1

] [
2 0
0 −3

] [
1 1
0 1

]

15. 𝐴 = 𝑃𝐿𝑈 =
⎡
⎢
⎢
⎣

1 0 0
0 0 1
0 1 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

3 0 0
0 2 0
3 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1 − 1
3 0

0 1 1
2

0 0 1

⎤
⎥
⎥
⎥
⎦

; x1 = − 1
2 , x2 = 1

2 x3= 3

17. Approximately 2
3n

3 additions and multiplications are required.

True/False 9.1
a. False b. False c. True d. True e. True

Exercise Set 9.2 (page 527)
1. a. 𝜆3 = −8 is the dominant eigenvalue. b. no dominant eigenvalue

3. x1 ≈ [
0.98058

−0.19612
], 𝜆(1) ≈ 5.15385; x2 ≈ [

0.98837
−0.15206

], 𝜆(2) ≈ 5.16185;

x3 ≈ [
0.98679

−0.16201
], 𝜆(3) ≈ 5.16226; x4 ≈ [

0.98715
−0.15977

], 𝜆(4) ≈ 5.16228;

dominant eigenvalue: 2+√10 ≈ 5.16228;
corresponding unit eigenvector: 1

√20+ 6√10
(3√10,−1) ≈ (0.98709,−0.16018)

5. x1 = [
−1
1
], 𝜆(1) = 6; x2 = [

−0.5
1
], 𝜆(2)= 6.6; x3 ≈ [

−0.53846
1
], 𝜆(3) ≈ 6.60550;

x4 ≈ [
−0.53488

1
], 𝜆(4) ≈ 6.60555;



November 19, 2018 11:49 Answers Sheet number 29 Page number 41 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

Answers to Exercises A41

dominant eigenvalue: 3+√13 ≈ 6.60555;
corresponding scaled eigenvector: ( 2−√133 , 1) ≈ (−0.53518, 1)

7. a. x1 = [
1

−0.5
]; x2 = [

1
−0.8

]; x3 ≈ [
1

−0.929
]

b. 𝜆(1)= 2.8; 𝜆(2) ≈ 2.976; 𝜆(3) ≈ 2.997
c. eigenvector: (1,−1); eigenvalue: 3
d. 0.1%

9. 2.99993; [
0.99180
1.00000

]

13. a. Starting with x0 =
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦
it takes 8 iterations. b. Starting with x0 =

⎡
⎢
⎢
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

it takes 8 iterations.

Exercise Set 9.3 (page 532)
1. a. ≈ 0.067 second b. ≈ 66.68 seconds c. ≈ 66,668 seconds, or about 18.5 hours
3. a. ≈ 9.52 seconds b. ≈ 0.0014 second c. ≈ 9.52 seconds d. ≈ 28.57 seconds
5. a. about 6.67 × 105 seconds for forward phase; about 10 seconds for backward phase

b. 1334 gigaflops per second
7. n2 flops 9. 2n3 − n2 flops

Exercise Set 9.4 (page 539)

1. √5, 0 3. √5 5. 𝐴 =
⎡
⎢
⎢
⎣

1
√2

− 1
√2

1
√2

1
√2

⎤
⎥
⎥
⎦
[
√2 0

0 √2
] [
1 0
0 1

] 7. 𝐴 =
⎡
⎢
⎢
⎣

2
√5

− 1
√5

1
√5

2
√5

⎤
⎥
⎥
⎦
[
8 0
0 2

]
⎡
⎢
⎢
⎣

1
√5

2
√5

− 2
√5

1
√5

⎤
⎥
⎥
⎦

9. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
3

1
√2

√2
6

1
3 0 − 2√2

3

− 2
3

1
√2

−√2
6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

3√2 0
0 0
0 0

⎤⎥⎥⎥
⎦

⎡
⎢
⎢
⎣

− 1
√2

1
√2

1
√2

1
√2

⎤
⎥
⎥
⎦

11. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√3

0 2
√6

1
√3

1
√2

− 1
√6

− 1
√3

1
√2

1
√6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

√3 0

0 √2
0 0

⎤⎥⎥⎥
⎦

[
1 0
0 1

]

19. b. 𝐴 = [
√2 0

0 √2
]
⎡
⎢
⎢
⎣

1
√2

− 1
√2

1
√2

1
√2

⎤
⎥
⎥
⎦

True/False 9.4
a. False b. True c. False d. False e. True f. False g. True

Exercise Set 9.5 (page 543)

1. 𝐴 =
⎡
⎢
⎢
⎢
⎣

2
3
1
3

− 2
3

⎤
⎥
⎥
⎥
⎦

[3√2] [− 1
√2

1
√2 ] 3. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
√3

0

1
√3

1
√2

− 1
√3

1
√2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
√3 0

0 √2
] [
1 0
0 1

] 5. 𝐴 = 3√2
⎡
⎢
⎢
⎢
⎣

2
3
1
3

− 2
3

⎤
⎥
⎥
⎥
⎦

[− 1
√2

1
√2 ]

7. 𝐴 = √3

⎡
⎢
⎢
⎢
⎢
⎣

1
√3
1
√3

− 1
√3

⎤
⎥
⎥
⎥
⎥
⎦

[1 0] + √2
⎡
⎢
⎢
⎢
⎢
⎣

0
1
√2
1
√2

⎤
⎥
⎥
⎥
⎥
⎦

[0 1] 9. 70,100 numbers must be stored;𝐴 has 100,000 entries.

True/False 9.5
a. True b. True c. False

Chapter 9 Supplementary Exercises (page 543)

1. 𝐴 = [
2 0

−2 1
] [
−3 1
0 2

] 3. 𝐴 =
⎡
⎢
⎢
⎣

2 0 0
1 2 0
1 1 2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 2 3
0 1 2
0 0 1

⎤
⎥
⎥
⎦
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5. a. dominant eigenvalue: 3, corresponding positive unit eigenvector:
⎡
⎢
⎢
⎣

1
√2
1
√2

⎤
⎥
⎥
⎦

b. x5 ≈ [
0.7100
0.7042

]; v ≈ [
0.7071
0.7071

]

c. x5 ≈ [
1
0.9918

]

7. The Rayleigh quotients will slowly converge to the dominant eigenvalue 𝜆4 = −8.1.

9. 𝐴 =
⎡
⎢
⎢
⎢
⎢
⎣

− 1
√2

0 1
√2

0 1 0

− 1
√2

0 − 1
√2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

2 0
0 0
0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

− 1
√2

− 1
√2

− 1
√2

1
√2

⎤
⎥
⎥
⎦

11. 𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
24 0
0 12

] [
2
3 − 1

3
2
3

2
3

2
3 − 1

3
]
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A
Absolute value:
of complex number, 311, A7
of determinant, 196

Addition:
associative law for, 40, 149
by scalars, 203
of vectors in 𝑅2 and 𝑅3, 147, 150
of vectors in 𝑅n, 154

Additivity property, of linear transformation,
447

Adjoint, of a matrix, 137–139
Aeronautics, yaw, pitch, and roll, 504
Algebraic multiplicity, 307–308
Algebraic operations, using vector components,

154–156
Algebraic properties of matrices, 40–51
Algebraic properties of vectors, dot product,

164–165
Alleles, 339
Amps (unit), 101
Angle:
in 𝑅n, 165–167, 172
between vectors, 162–164, 353

Anticommutativity, 323
Antihomogeneity property, of complex
Euclidean inner product, 314

Antisymmetry property:
of complex Euclidean inner product, 314
of dot product, 314

Approximate integration, 107–108
Approximation problems, 392–393
Approximations, best, 377–378
Area:
of parallelogram, 195
of triangle, 195

Argument, of complex number, 312, A9
Arithmetic average, 343
Arithmetic operations:
matrices, 27–36, 40–44
vectors in 𝑅2 and 𝑅3, 147–148
vectors in 𝑅n, 153–155

Artificial intelligence, 512
Associative law for addition, 40, 149
Associative law for matrix multiplication, 40–41
Astronautics, yaw, pitch, and roll, 504
Augmented matrices, 6–7, 11, 12, 18, 25, 35
Axes:
rotation of, in 2-space, 403–404
rotation of, in 3-space, 404–405

Axis of rotation, 503

B
Back-substitution, 20–21
Backward phase, 15
Balancing (of chemical equation), 103
Basis, 246–247
change of, 256–260, 488–490

coordinates relative to, 243–244
coordinate system for vector space, 240–242
for eigenvectors and eigenspaces, 295–297
finite basis, 240
by inspection, 251
linear combinations and, 272
number of vectors in, 248
ordered basis, 244
orthogonal basis, 363
for orthogonal complement, 357–358
orthonormal basis, 363–365
for row and column spaces, 268
by row reduction, 268–269
for row space of a matrix, 269
standard basis, 241–242, 244
transition matrix, 258–260
uniqueness of basis representation, 243

Basis vectors, 240, 450–451
Bateman, Harry, 535
Battery, 100
Beltrami, Eugenio, 538
Best approximation theorem, 377–378
Block triangular form, 132
Block upper triangular form, 117
Bôcher, Maxime, 7
Books, ISBN number of, 168
Branches (network), 98
Brightness, graphical images, 152
Bunyakovsky, Viktor Yakovlevich, 166

C
Calculus of variations, 192
Cancellation law, 43
Carroll, Lewis, 122
Cauchy, Augustin, 136, 166, 204
Cauchy-Schwarz inequality, 165–167, 352–353
Cayley, Arthur, 31, 36, 46
Central conic, 420–421
Central conic in standard position, 420
Central ellipsoid in standard position, 428
Central quadrics in standard position, 420
Change-of-basis problem, 256, 488
Change of variable, 417
Characteristic equation, 292, 304
Characteristic polynomial, 293, 304
Chemical equations, balancing with linear

systems, 103–105
Chemical formulas, 103
Clockwise closed-loop convention, 101
Closed economies, 110
Closure under addition, 203
Closure under scalar, 203
𝐶n, 315–318
Coefficient matrices, 35, 36, 304
Coefficients:
of linear combination of matrices, 32
of linear combination of vectors, 155, 221
literal, 47

Cofactor, 119–120
Cofactor expansion:
determinants by, 118–126
elementary row operations and, 130–131
of 2 × 2 matrices, 120–121

Collinear vectors, 149
Column matrices, 26–27
Column-matrix form of vectors, 263
Columns, cofactor expansion and choice of, 122
Column space, 263, 264, 265, 267, 279
basis for, 268, 271
equal dimensions of row and column space,
276

orthogonal project on a, 381–382
Column-vector form of vectors, 156
Column vectors, 26, 27, 41
Combustion, linear systems to analyze

combustion equation for methane, 103–105
Comma-delimited form of vectors, 155, 244, 263
Common initial point, 149
Commutative law for addition, 40
Commutative law for multiplication, 42, 49
Complete reaction (chemical), 103
Complex conjugates:
of complex numbers, 311, A6
of vectors, 313

Complex dot product, 314
Complex eigenvalues, 315–317, 318–320
Complex eigenvectors, 315–316
Complex Euclidean inner product, 314–315
Complex exponential functions, A11
Complex inner products, 351
Complex inner product space, 351
Complex matrices, 313
Complex n-space, 312
Complex n-tuple, 312
Complex numbers, 311, A5–A11
division of, A8, A9–A11
multiplication of, A6, A9–A11
polar form of, 311, A9–A11

Complex number system, A5
Complex plane, A6
Complex vector spaces, 203, 311–323
Component form, 173
Components (of a vector):
algebraic operations using, 154–155
calculating dot products using, 164
complex n-tuples, 312
finding, 151
in 𝑅2 and 𝑅3, 153
vector components of u along a, 176

Composition:
with identity operator, 467
of linear transformations, 465–467, 467–468
matrices of, 482–483
of matrix transformations, 90–94
non-commutative nature of, 92
of one-to-one linear transformations, 467–468
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of reflections, 93, 496
of rotations, 93, 496
standard matrix for, 91–92
of three transformations, 94

Compression operator, 497
Computer programs, LU-decomposition and,

510
Computerized transformations, 493
Computers, LINPACK, 510
Conclusion, A1
Condensation, 122
Conic sections (conics), 419–423
classifying, with eigenvalues, 424–425
quadratic forms of, 419–420

Conjugate transpose, 437
Consistency, determining by elimination, 66–67
Consistent linear system, 4, 267
Constrained extremum, 429–431
Constrained extremum theorem, 429
Constraint, 429
Consumption matrix, 111
Consumption vectors, 111
Continuous derivatives, functions with, 214
Contraction, 448, 499–500
Contraction operators, 448
Contrapositive, A2
Convergence:
of power sequences, 519
rate of, 525

Converse, A2
Coordinates, 243
of generalized point, 151
in 𝑅3, 245
relative to basis, 243–245
relative to standard basis for 𝑅n, 244

Coordinate map, 256
Coordinate systems, 238–240
“basis vectors” for, 240
units of measurement, 239

Coordinate vectors:
computing, 258
matrix form of, 244
relative to orthonormal basis, 364–365
relative to standard bases, 245

Corresponding linear systems, 265
Cramer, Gabriel, 141
Cramer’s rule, 141
Critical points, 432
Cross product, 190–198
calculating, 191
determinant form of, 194
geometric interpretation of, 194–195
notation, 191
properties of, 193
of standard unit vectors, 193

Cross product terms, 416, 422–423
Current (electrical), 100

D
Data compression, singular value
decomposition, 540–543

Decomposition:
eigenvalue decomposition, 533

Hessenberg decomposition, 533
LDU-decomposition, 517
LU-decomposition, 509–519, 531
PLU-decomposition, 517
Schur decomposition, 533
singular value decomposition, 535–539,
540–543

of square matrices, 532–533
Degenerate conic, 419
Degrees of freedom, 248
DeMoivre’s formula, A10
Dependency equations, 272
Determinants, 46, 118–142
by cofactor expansion, 118–126
defined, 118
of elementary matrices, 128
equivalence theorem, 141–142
evaluating by row reduction, 126–132
general determinant, 121
geometric interpretation of, 196–198
of linear operator, 491
of lower triangular matrix, 123
of matrix product, 134–135
properties of, 133–139
sums of, 134
of 3 × 3 matrices, 123–124
of 2 × 2 matrices, 123–124

Deviation, 392
Diagonal coefficient matrices, 325
Diagonal entries, 535
Diagonalizability:
defined, 302
nondiagonalizability of n × nmatrix, 413–414
orthogonal diagonalizability, 440
recognizing, 305
of triangular matrices, 305

Diagonalization:
matrices, 301–309
orthogonal diagonalization, 408–414
solution of linear system by, 325–327

Diagonal matrices, 69–70, 500
Dickson, Leonard Eugene, 122
Difference:
matrices, 28
vectors, 148, 154

Differential equations, 323–327, 455
Differentiation, by matrix multiplication, 474
Differentiation transformation, 451
Digital communications, matrix form and, 284
Dilation, 448, 499–500
Dilation operators, 448
Dimensions:
of spans, 249
of vector spaces, 248

Dimension theorem, for linear transformations,
455–456

Dirac matrices, 323
Direct product, 163
Direct sum, 290
Discriminant, 317
Disjoint sets, A4
Displacement, 182
Distance, 342

general inner product spaces, 354
orthogonal projections for, 179–181
between parallel planes, 181
between a point and a plane, 180–181
real inner product spaces, 342
in 𝑅n, 160–161
triangle inequality for, 167

Distinct eigenvalues, 520
Distributive property:
of complex Euclidean inner product, 314
of dot product, 164

Dodgson, Charles Lutwidge, 122
Dominant eigenvalue, 520–521
Dot product, 161–165
algebraic properties of, 164–165
antisymmetry property of, 314
application of, 168
calculating with, 165
complex dot product, 314
cross product and, 191
dot product form of linear systems, 188–189
as matrix multiplication, 168–170
relationships involving, 191
symmetry property of, 164, 314
of vectors, 168–170

Dynamical system, 329–330

E
Echelon forms, 11–12, 21–22
Economic modeling, Leontief economic

analysis with, 110–114
Economics, n-tuples and, 152
Economic sectors, 110
Eigenspaces, 295–296, 304, 315
bases for, 295–296
of real symmetric matrix, 440

Eigenvalue decomposition (EVD), 532
Eigenvalues, 291–298, 304, 315–317
complex eigenvalues, 315–317
conic sections classified by using, 424–425
dominant eigenvalues, 520–521
of Hermitian, 439
of Hermitian matrices, 442
invertibility and, 297
of linear operators, 491
of square matrix, 305
of symmetric matrices, 409–410
of 3 × 3 matrix, 293–294
of triangular matrices, 294–295
of 2 × 2 matrix, 317

Eigenvectors, 291–298
bases for eigenspaces and, 295–298
complex eigenvectors, 315–317
left/right eigenvectors, 300
of real symmetric matrix, 438
of square matrix, 305
of symmetric matrices, 409–410
of 2 × 2 vector, 292

Einstein, Albert, 151–152
Eisenstein, Gotthold, 31
Electrical circuits:
network analysis with linear systems, 100–101
n-tuples and, 151
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Electrical current, 100–101
Electrical potential, 101
Electrical resistance, 101
Elementary matrices, 53
determinants, 128
and homogeneous linear systems, 59
invertibility, 56
matrix operators corresponding to, 501

Elementary row operations, 7–8, 55, 267
cofactor expansion and, 130–131
determinants and, 129–131
and inverse operations, 53–57
and inverse row operations, 53–57
for inverting matrices, 56
matrix multiplication, 54
row reduction and determinants, 126–131

Elements (of a set), A3
Elimination methods, 14–17,66–67
Ellipse, principal axes of, 422
Elliptic paraboloid, 436
Empty set, A4
Entries, 26, 27
Equality, of complex numbers, A5
Equal matrices, 27–28, 41
Equal sets, A4
Equal vectors, 147, 153–155
Equivalence theorem, 283
determinants, 142
invertibility, 56–57, 297–298
n × nmatrix, 282, 298

Equivalent statements, A2
Equivalent vectors, 147, 153–155
Errors:
approximation problems, 392
least squares error, 377
mean square error, 393
measurements of, 392–393
percentage error, 526
relative error, 526
roundoff errors, 22

Error vector, 379
Estimated percentage error, 526
Estimated relative error, 526
Euclidean inner product, 342–345
complex Euclidean inner product, 314–315
of vectors in 𝑅2 or 𝑅3, 162

Euclidean norm, 314
Euclidean n-space, 342
Euclidean scaling, power method with,

521–523
Euler’s formula, A10
Evaluation inner product, 347
Evaluation transformation, 450
EVD (eigenvalue decomposition), 533
Expansion operator, 497
Exponents, matrix laws, 49
Exponential models, 391

F
Factorization, 510, 513
Fibonacci, Leonardo, 53
Fibonacci sequence, 53
Fingerprint storage, 542

Finite basis, 240
Finite-dimensional inner product space, 357,

371
Finite-dimensional vector space, 240, 251, 256
First-order linear system, 324–327
Floating-point numbers, 528
Floating-point operation, 528
Flops, 528–530
Flow conservation, in networks, 98
Forward phase, 15
Forward substitution, 511
4 × 6 matrix, rank and nullity of, 277
Fourier, Jean Baptiste, 396
Fourier coefficients, 395
Fourier series, 394–396
Free variables, 13, 278
Free variable theorem for homogeneous

systems, 18–19
Full column rank, 373
Functions:
with continuous derivatives, 214
linear dependence of, 232–233

Function spaces, 214–215
Fundamental spaces, 279–281

G
Gauss, Carl Friedrich, 16, 119
Gaussian elimination, 11–17, 530, 531
defined, 15
roundoff errors, 22

Gauss-Jordan elimination:
of augmented matrix, 316, 531
described, 15
for homogeneous system, 18
polynomial interpolation by, 105–107
roundoff errors, 22
using, 47, 530–531

General determinant, 121
Generalized Theorem of Pythagoras, 356
General solution, 13, 267, 324
Genotypes, 339
Geometric multiplicity, 307–309
Geometric vectors, 147
Geometry:
of linear systems, 183–189
quadratic forms in, 419–420
in 𝑅n, 167–168

Gibbs, Josiah Willard, 163, 191
Golub, Gene H., 538
Gram, Jorgen Pederson, 369
Gram-Schmidt process, 368–371, 373, 394
Graphic images:
images of lines under matrix operators,
493–494

n-tuples and, 151
RGB color model, 156

Grassmann, Hermann Günther, 204

H
Hadamard’s inequality, 144
Hermite, Charles, 437
Hermite polynomials, 247
Hermitian matrices, 436–442
Hesse, Ludwig Otto, 432

Hessenberg decomposition, 533
Hessenberg’s theorem, 414
Hessian matrices, 432–433
Hilbert, David, 369
Hilbert space, 369
Hill, George William, 221
Homogeneity property:
of complex Euclidean inner product, 313
of dot product, 164–165
of linear transformation, 447

Homogeneous equations, 175, 188
Homogeneous linear equations, 2
Homogeneous linear systems, 17–19, 267
constant coefficient first-order, 324
dimensions of solution space, 249
and elementary matrices, 60
free variable theorem for, 19
solutions of, 217–218

Homogeneous systems, solutions spaces of,
217–218

Hooke’s law, 388
Householder matrix, 407
Householder reflection, 407
Hue, graphical images, 152
Hypothesis, A1

I
Idempotency, 52
Identity matrices, 43–44
Identity operators:
about, 79
composition with, 467
kernel and range of, 452–453
matrices of, 481

Images:
of basis vectors, 450–451
of lines under matrix operators, 493–494
n-tuples and, 151
RGB color model, 156

Image processing, data compression and,
542–543

Imaginary axis, A6
Imaginary numbers, See Complex numbers
Imaginary part:
of complex numbers, 311, A5
of vectors and matrices, 312–313

Inconsistent linear system, 4
Indefinite quadratic forms, 423
Infinite-dimensional vector space, 240, 242
Initial condition, 324
Initial point, 147
Initial-value problem, 324
Inner product:
algebraic properties of, 348
calculating, 349
complex inner products, 351
Euclidean inner product, 162, 314, 343–345
evaluation inner product, 347
examples of, 343–348
linear transformation using, 449
matrix inner products, 345
on𝑀nn, 346
on real vector space, 342



November 14, 2018 09:25 Index1-9 Sheet number 4 Page number 4 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

I4 INDEX

on 𝑅n, 342–343
standard inner products, 342, 346

Inner product space, 475
complex inner product space, 351
isomorphisms in, 475–476
unit circle, 344
unit sphere, 344

Inputs, in economics, 110
Input-output analysis, 110
Instability, 22
Integer coefficients, 294
Integral transformation, 452
Integration, approximate, 107–108
Intermediate demand vector, 112
Interpolating polynomial, 105
Intersection, A4
Invariant under similarity, 301, 490–491
Inverse:
of diagonal matrices, 69–70
of matrix using its adjoint, 139
of a product, 47–48
of 2 × 2 matrices, 46

Inverse linear transformations, 464–465
Inverse matrices, 44–47
Inverse operations, 55–59
Inverse row operations, 55–56
Inverse transformations, 482–483
Inversion, solving linear systems by, 46–47,

62–63
Inversion algorithm, 58
Invertibility:
determinant test for, 135–136
eigenvalues and, 297–298
of elementary matrices, 56
equivalence theorem, 56–57
matrix transformation and, 94
test for determinant, 135–136
of transition matrices, 259
of triangular matrices, 70–71

Invertible matrices:
algebraic properties of, 44–47
defined, 44
and linear systems, 62–67

Invertible matrix transformations,
decomposing, 501–502

ISBN (books), 168
Isomorphism, 471–476

J
Jordan, Camille, 533, 538
Jordan, Wilhelm, 16
Jordan canonical form, 533
Junctions (network), 98, 101

K
Kalman, Dan, 412
Kernel, 218, 452–455
Kirchhoff, Gustav, 102
Kirchhoff’s current law, 101
Kirchhoff’s voltage law, 101
kth principal submatrix, 425

L
Lagrange, Joseph Louis, 192

Laguerre polynomials, 247
LDU-decomposition, 516–517
LDU-factorization, 517
Leading 1!, 11
Leading variables, 13, 278
Least squares:
curve fitting, 385–386
mathematical modeling using, 385–390

Least squares approximation, 393–396
Least squares error, 377
Least squares error vector, 377
Least squares fit:
of polynomial, 388–389
of quadratic curve to data, 389–390
straight line fit, 386–388

Least squares polynomial fit, 388–389
Least squares solutions, 387
infinitely many, 380
of linear systems, 376–377, 383
QR-decomposition and, 383
straight line fit, 386–388
unique, 389

Least squares straight line fit, 386–388
Left distributive law, 40
Left eigenvectors, 300
Left null space, 286
Legendre polynomials, 370–371
Length, 158, 342, 354
Leontief, Wassily, 110
Leontief economic models:
input-output models, 110–114
open model, 110–114

Leontief equation, 113
Leontief matrices, 112
Level curves, 431
Lines:
image of, 495
line segment from one point to another in 𝑅2,
187

orthogonal projection on, 177
orthogonal projection on lines through the
origin, 177–178

point-normal equations, 174
through origin as subspaces, 212
through two points in 𝑅2, 186–187
vector and parametric equations in 𝑅2 and
𝑅3, 183–186

vector and parametric equations of in 𝑅4, 186
vector form of, 176, 185
vectors orthogonal to, 174–175

Linear algebra, 1. See also Linear equations;
Linear systems

coordinate systems in, 238–240
Linear combinations:
basis and, 272
history of term, 221
of matrices, 32–33
of vectors, 156, 161, 221, 223

Linear dependence, 230
Linear equations, 2–3, 188. See also Linear

systems
inverse transformations from, 95–96

Linear form, 416

Linear independence, 221, 228–236, 253
of polynomials, 231
of sets, 228–231
of standard unit vectors in 𝑅3, 229–230
of standard unit vectors in 𝑅4, 230
of standard unit vectors in 𝑅n, 229
of two functions, 232
using the Wronskian, 235

Linearly dependent set, 228
Linearly independent set, 228, 230
Linear operators:
determinants of, 491
matrices of, 481, 487
orthogonal matrices as, 401–402
on 𝑃2, 482

Linear systems, 2–3. See also Homogeneous
linear systems

applications, 98–108
augmented matrices, 6–7, 11, 12, 18, 25, 35
for balancing chemical equations, 103–105
coefficient matrix, 35
with a common coefficient matrix, 63–64
comparison of procedures for solving,
528–532

computer solution, 1–2
corresponding linear systems, 265
cost estimate for solving, 512–513
dot product form of, 188–189
first-order linear system, 324–325
general solution, 13
geometry of, 183–189
with infinitely many solutions, 5–7
least squares solutions of, 376–378, 383
network analysis with, 98–103
nonhomogeneous, 19
with no solutions, 5
number of solutions, 62
overdetermined/underdetermined, 284–286
polynomial interpolation, 105–108
solution methods, 3, 4–7
solutions, 3, 11
solving by elimination row operations, 7–8
solving by Gaussian elimination, 11–17, 21,
22, 530, 531

solving by matrix inversion, 46–47, 62–63
solving with Cramer’s rule, 141
in three unknowns, 13–14

Linear transformations, 76–87
composition of, 465–467, 467–468
defined, 446
dimension theorem for, 455–456
examples of, 449, 451
inverse linear transformations, 464–465
matrices of, 477–481
one-to-one, 459–462
onto, 459–462
from 𝑃n to 𝑃n+1, 448
rank and nullity in, 455–456
using inner product, 449

Line segment, from one point to another in 𝑅2,
187

LINPACK, 510
Literal coefficients, 47
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Logarithmic models, 391
Lower triangular matrices, 70, 295
LU-decompositions, 509–517, 531
constructing, 515–516
examples of, 513–516
finding, 512
method, 510

LU-factorization, 510, 512

M
Magnitude (norm), 159
Main diagonal, 27, 535
Mantissa, 528
Markov, Andrei Andreyevich, 333
Markov chain, 331–337
steady-state vector of, 336
transition matrix for, 336–337

Mathematical models, 385–386
MATLAB, 510
Matrices. See also matrices of specific size, e.g.:

2 × 2 matrices
adjoint of, 137–139
algebraic properties of, 40–51
arithmetic operations with, 27–35
coefficient matrices, 35, 304, 509
column matrices, 26–27
complex matrices, 313
compositions of, 482–483
defined, 1, 6, 26
determinants, 118–142
diagonal coefficient matrices, 325
diagonalization, 301–309
diagonal matrices, 69–70, 500
dimension theorem for matrices, 455
elementary matrices, 53, 56, 60, 128, 501
entries, 26, 27
equality of, 28, 40
examples of, 26–27
fundamental spaces, 279–282
Hermitian matrices, 436–440, 442
Hessian matrices, 432–433
identity matrices, 43–44
of identity operators, 481
inner products generated by, 345
inverse matrices, 44–47
of inverse transformations, 482–483
invertibility, 56, 71, 135, 259
invertible matrices, 44–47, 62–67
inverting, 58–59
Leontief economic analysis with, 110–114
linear combination, 32–33
of linear operators, 482, 487
of linear transformations, 477–481
lower triangular matrices, 123
normal matrices, 442
notation and terminology, 25–27
orthogonally diagonalizable matrices, 408
orthogonal matrices, 399–405
partitioned, 30–32
permutation matrices, 517
positive definite matrices, 425–426
powers of, 48–49, 306–307
with proportional rows or columns, 129

rank of, 277
real and imaginary parts of, 312
real matrices, 313, 318
redundancy in, 284
reflection matrices, 400
rotation matrices, 87, 400
row equivalents, 54
row matrices, 26
scalar multiples, 29
similar matrices, 302
singular/nonsingular matrices, 44, 45
size of, 26, 27, 40
skew-Hermitian matrices, 441
skew-symmetric matrices, 441
square matrices, 27, 36, 43, 65, 70, 126–131,
305, 399, 532–533

standard matrices, 95, 381, 504
stochastic matrices, 335
submatrices, 31, 426
symmetric matrices, 72, 318, 409, 432
trace, 36
transition matrices, 257–261, 487
transpose, 35–36
triangular matrices, 70–71, 294–295,
305

unitary matrices, 436–437, 440–441
upper triangular matrices, 70, 294
zero matrices, 42–43

Matrix factorization, 319–320
Matrix form of coordinate vector, 244
Matrix inner products, 345
Matrix multiplication, SeeMultiplication

(matrices)
Matrix notation, 25–27, 34, 417
Matrix operators:
decomposition, 502
effect of, on unit square, 495
graphics images of lines under matrix
operators, 494–495

invertibility of, 95–96
on 𝑅2, 494–504

Matrix polynomials, 49–50
Matrix spaces, transformations on, 449
Matrix transformations, 447, 462–463
composition of, 90–96
defined, 446
kernel and range of, 452–453
properties of, 80–82

in 𝑅2 and 𝑅3, 259
from 𝑅n to 𝑅m, 462
zero transformations, 448, 453

Maximum entry scaling, power method with,
523–525

Mean square error, 393
Mechanical systems, n-tuples and, 152
Methane, linear systems to analyze combustion

equation, 103–105
Minor, 119–120
m × nmatrices (𝑀mn):
real vector spaces, 206–207
standard basis for, 241–242

𝑀nn, See n × nmatrices
Modulus, of complex numbers, 311, A7

Multiplication (matrices), 29–30. See also
Product (of matrices)

associative law for, 40, 41
column-row expansion, 33–34
by columns and by rows, 31–32
differentiation by, 474
dot products as, 168–170
elementary row operations, 53–54
by invertible matrix, 502
order and, 42

Multiplication (vectors). See also Cross product;
Euclidean inner product; Inner product;
Product (of vectors)

in 𝑅2 and 𝑅3, 149
by scalars, 203

Multiplicative inverse, of complex number, A7

N
Natural isomorphism, 473
n-dimensional vector space, 250
Negative, of vector, 148
Negative definite quadratic forms, 423
Negative pole, 100–101
Negative semidefinite quadratic forms, 424
Network analysis, with linear systems, 98–103
Networks, defined, 98
n × nmatrices (𝑀nn):
equivalent statements, 283, 298
Hessenberg’s theorem, 414
nondiagonalizability of, 413–414
standard inner products on, 349
subspaces of, 213

Nodes (network), 98, 101
Nonhomogeneous linear systems, 19
Nonsingular matrices, 44
Nontrivial solution, 17
Nonzero vectors, 181
Norm (length), 158, 178, 342
calculating, 159
complex Euclidean inner product and,
313–315

Euclidean norm, 314
real inner product spaces, 342
of vector in 𝐶[a, b], 347–348

Normal, 173
Normal equations, 378
Normalization, 160
Normal matrices, 442
Normal system, 378–380
n-space, 151. See also Rn

Nullity, 455–456
of 4 × 6 matrix, 277
sum of, 278

Null space, 263, 267
Numerical analysis, 11
Numerical coefficients, 47

O
Ohms (unit), 101
Ohm’s law, 101
One-to-one linear transformations, 459–461,

467–468
One-to-one matrix transformations, 464
Onto linear transformations, 459–461



November 14, 2018 09:25 Index1-9 Sheet number 6 Page number 6 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

I6 INDEX

Open economies, Leontief analysis of, 110–114
Open sectors, 110
Operators, 448, 461. See also Linear operators
Optimization, using quadratic forms, 429–434
Order:
of differential equation, 323
matrix multiplication and, 42
of trigonometric polynomial, 394

Ordered basis, 244
Ordered n-tuple, 3, 151
Ordered pair, 3
Ordered sets, A4
Ordered triple, 3
Order n, 394
Orthogonal basis, 363, 365, 371
Orthogonal change of variable, 418
Orthogonal complement, 281–282, 356–358
Orthogonal diagonalization, 408–414, 440
Orthogonality:
defined, 361
inner product and, 355
of row vectors and solution vectors, 188

Orthogonally diagonalizable matrices, 408
Orthogonal matrices, 399–405
Orthogonal operators, 402
Orthogonal projection operators, 84–86
Orthogonal projections, 175–179, 365–367
on a column space, 381–382
geometric interpretation of, 367
kernel and range of, 452–454
in 𝑅2, 460

Orthogonal sets, 173, 361–362
Orthogonal vectors, 172–175, 314
in𝑀22, 355
in 𝑃2, 355

Orthonormal basis, 363–365, 368, 394
change of, 402–403
coordinate vectors relative to, 364–365
from orthogonal basis, 365
orthonormal sets extended to, 371–372

Orthonormality, 361
Orthonormal sets, 362
constructing, 362–363
extended to orthonormal bases, 371–372

Outputs, in economics, 110
Outside demand vector, 111, 112
Overdetermined linear system, 284–286

P
𝑃2:
linear operators on, 482
orthogonal vectors in, 355
Theorem of Pythagoras in, 356

Parallelogram, area of, 195
Parallelogram equation for vectors, 167–168
Parallelogram rule for vector addition, 147
Parallel planes, distance between, 181
Parallel vectors, 149
Parameters, 6, 13, 183
Parametric equations, 6
of lines and planes in 𝑅4, 186
of lines in 𝑅2 and 𝑅3, 185
of planes in 𝑅3, 184–185

Particular solution, 267
Partitioned matrices, 30–31
Pauli spin matrices, 323
Percentage error, 526
Permutation matrices, 517
Perpendicular vectors, 172
Photographs, data compression and image

processing, 542–543
Piazzi, Giuseppe, 16
Pitch (aircraft), 504
Pivot column, 22
Pivot position, 22
Pixels, 542
Planes:
distance between a point and a plane, 180–181
distance between parallel planes, 181
point-normal equations, 174
through origin as subspaces, 212–213
vector and parametric equations in 𝑅3,
184–185

vector and parametric equations of in 𝑅4, 186
vector form of, 175, 185
vectors orthogonal to, 174–175

PLU-decomposition, 517
PLU-factorization, 517
Plus-minus theorem, 250
𝑃n, See Polynomials
Point, distance between a plane and, 180–181
Point-normal equations, 173–174
Polar form, of complex numbers, 311, A8–A9
Poles (battery), 100
Polynomial interpolation, 105–108
Polynomials (𝑃n), 49
characteristic polynomial, 293, 304
least squares fit of, 388–389
Legendre polynomials, 370–371
linear independence of, 231–232
linearly independent set in, 230–231
linear transformation, 448
spanning set for, 223
standard basis for, 240
standard inner product on, 246
subspaces of, 214
trigonometric polynomial, 394

Positive definite matrices, 425–426
Positive definite quadratic forms, 423–424
Positive pole, 100
Positive semidefinite quadratic forms, 424
Positivity property:
of complex Euclidean inner product, 314
of dot product, 164–165

Power function models, 391
Power method, 519–526
with Euclidean scaling, 521–522
with maximum entry scaling, 523–526
stopping procedures, 526

Power sequence generated by𝐴, 519
Powers of a matrix, 48–49, 69, 306–307
Principal argument, A8
Principal axes, 422
Principal axes theorem, 418–419, 422
Principal submatrices, 426
Probability, 331

Probability vector, 331
Product (of matrices), 28–30
determinants of, 135
inverse of, 47–48
as linear combination, 32–33
of lower triangular matrices, 70–71
of symmetric matrices, 73
transpose of, 51

Product (of vectors):
cross product, 190–198
scalar multiple in 𝑅2 and 𝑅3, 148–149

Products (in chemical equation), 103
Production vector, 112
Productive open economies, 113–114
Profitable sectors, 114
Projection, 495–496
norm of, 178–179

Projection operators, 85–86
Projection theorem, 175, 366
Proofs, A1–A4
Pure imaginary complex numbers, A5

Q
QR-decomposition, 372, 383
Quadratic curve, of least squares fit, 389–390
Quadratic form associated with𝐴, 417
Quadratic forms, 416–421
applications of, 417
change of variable, 417–419
conic sections, 419–422
expressing in matrix notation, 417
indefinite quadratic forms, 423
negative definite quadratic forms, 423
negative semidefinite quadratic forms, 424
optimization using, 429–434
positive definite quadratic forms, 424
positive semidefinite quadratic forms, 424
principal axes theorem, 418–419

R
𝑅2:
dot product of vectors in, 161–162
line segment from one point to another in, 187
lines through origin are subspaces of, 212
lines through two points in, 187
matrix operators on, 493–504
matrix transformations in, 84
norm of a vector, 158–159
orthogonal projections in, 460
parametric equations, of lines in, 184–186
rotation operators on 460
shears in, 497–498
spanning in, 222–223
unit circles in, 344
vector addition in, 147, 149
vectors in, 146–156

𝑅3:
coordinates in, 245
dot product of vectors in, 161–162
linear independence of standard unit vectors
in, 229–230

lines through origin are subspaces of, 212
matrix transformations in, 84
norm of a vector, 158–159
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orthogonal set in, 361–362
rotations in, 503–504
spanning in, 222
standard basis for, 241
vector addition in, 147, 149
vector and parametric equations of lines in,
183–184

vector and parametric equations of planes in,
184–185

vectors in, 146–156
𝑅4:
cosine of angle between two vectors in, 353
linear independence of standard unit vectors
in, 230

Theorem of Pythagoras in, 179
vector and parametric equations of lines and
planes in, 186

Range, 452–455
Rank, 455–456
of an approximation, 543
dimension theorem for matrices, 278
of 4 × 6 matrix, 277
maximum value for, 277–278
redundancy in a matrix and, 284
sum of, 278

Rate of convergence, 525–526
Rayleigh, John William Strutt, 524
Rayleigh quotient, 524
Reactants (in chemical equation), 103
Real axis, A6
Real inner product space, 342, 352
Real line, 151
Real matrices, 313, 318
Real part:
of complex numbers, 311, A5
of vectors and matrices, 313

Real-valued functions, vector space of, 206–207
Real vector space, 202, 203, 341
Reciprocals, of complex numbers, A7–A8
Rectangular coordinate systems, 238–239
Reduced row echelon forms, 11–12, 21, 316
Reduced singular value decomposition, 540–542
Reduced singular value expansion, 541
Redundancy, in matrices, 284
Reflections, composition of, 93, 501
Reflection matrices, 400
Reflection operators, 84–85, 178, 495–496
Regression line, 387
Regular Markov chain, 335
Regular stochastic matrices, 335–336
Relative error, 526
Relative maximum, 432, 433
Relative minimum, 432, 433
Residuals, 387
Resistance (electrical), 101
Resistor, 100
Resultant, 171
RGB color cube, 156
RGB color model, 156
RGB space, 156
Right circular cylinder, 436
Right distributive law, 40
Right eigenvectors, 300

Right-hand rule, 194, 504
𝑅n:
coordinates relative to standard basis for, 245
distance in, 161
Euclidean inner product, 343–344
geometry in, 167–168
linear independence of standard unit vectors
in, 229

norm of a vector, 158–159
span in standard unit vector, 222
spanning in, 222
standard basis for, 240
standard unit vectors in, 160–161
Theorem of Pythagoras in, 179
transition matrices for, 259–260
two-point vector equations in, 187
vector forms of lines and planes in, 186
vectors in, 150–155
as vector space, 204

Roll (aircraft), 504
Rotations, 495–496
composition of, 93
kernel and range of, 453
in 𝑅3, 503–504

Rotation equations, 403, 503
Rotation matrices, 87, 400
Rotation of axes:
in 2-space, 403–404
in 3-space, 404–405

Rotation operator, 86–87
inverse of, 95
on 𝑅2, 460
on 𝑅3, 503–504

Roundoff errors, 22
Rows, cofactor expansion and choice of row, 122
Row-column method, 31–32
Row echelon form, 11–12, 14–15, 21–22, 268
Row equivalents, 54
Row matrices, 26
Row-matrix form of vectors, 264
Row operations, See Elementary row operations
Row reduction:
basis by, 268–269
evaluating determinants by, 126–131

Row space, 263, 267, 268, 279–280
basis by row reduction, 268–269
basis for, 268, 269
equal dimensions of row and column space,
276

Row vectors, 26, 27, 41, 188–189, 263
Row-vector form of vectors, 156

S
Saddle points, 432, 433
Sample points, 347
Saturation, graphical images, 152
Scalar moment, 199
Scalar multiples, 28–29, 203
Scalar multiplication, 148–149, 203
Scalars, 26, 146, 148–149
from vector multiples, 190
vector space scalars, 203

Scalar triple product, 195

Scaling:
Euclidean scaling, 521–523
maximum entry scaling, 523–525

Schmidt, Erhardt, 369, 538
Schur, Issai, 413, 414
Schur decomposition, 414, 533
Schur’s theorem, 413
Schwarz, Hermann Amandus, 166
Second derivative test, 432, 433
Sectors (economic), 110
Sets, A3–A4
linear independence of, 228–232

Set-builder notation, A4
Shear operators, 497–499, 498, 501
Shifting operators, 461
Similarity invariants, 301, 490
Similarity transformations, 301
Similar matrices, 302
Singular matrices, 44, 45
Singular values, 533–535
Singular value decomposition (SVD), 535–537,

540–543
Skew-Hermitian matrices, 441–442
Skew product, 191
Skew-symmetric matrices, 441–442
Solutions:
best approximations, 377–378
comparison of procedures for solving linear
systems, 528–532

cost of, 528–530
factoring, 509
flops and, 528–530
Gaussian elimination, 11–15, 23, 531
Gauss–Jordan elimination, 15, 18, 21, 22, 47,
107, 316, 561

general solution, 14, 267, 324
of homogeneous linear systems, 217–218
least squares solutions, 376–378, 383
of linear systems, 3, 11
of linear systems by diagonalization, 325–327
of linear systems by factoring, 509
of linear systems with initial conditions, 325
particular solution, 267
power method, 519–526
trivial/nontrivial solutions, 17, 324

Solutions spaces, of homogeneous systems, 217
Solution vectors, 188–189
Spacecraft, yaw, pitch, and roll, 504
Spanning:
in 𝑅2 and 𝑅3, 222
in 𝑅n, 222
testing for, 223–224

Spanning sets, 220, 223, 226, 243
Spans, 222, 249
Spectral decomposition of𝐴, 412–413
Spring constant, 388
Square matrices, 44, 69, 70, 399
decompositions of, 532–533
determinants of, 126–131
eigenvalues of, 305
of order n, 27
trace, 36–37
transpose, 35–36
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Standard basis:
coordinates relative to standard basis for 𝑅n,
244

coordinate vectors relative to, 245
for𝑀mn, 241–242
for polynomials, 241
for 𝑅3, 241
for 𝑅n, 240

Standard inner product:
defined, 342
on polynomials, 346
on vector space, 346

Standard matrices:
for matrix transformation, 500
procedure for finding, 82
for 𝑇–1, 95

Standard unit vectors, 160–161, 193
linear independence in 𝑅3, 229–230
linear independence in 𝑅4, 230
linear independence in 𝑅n, 229
in span 𝑅n, 229

State of a particle system, 152
State of the variable, 329
State vector, 329
Static equilibrium, 172
Steady-state vector, of Markov chain, 336
Stochastic matrices, 335–336
Stochastic processes, 331
Stopping procedures, 526
String theory, 151, 152
Subdiagonal, 414
Submatrices, 31, 426
Subsets, A4
Subspaces, 211–218, 454
creating, 216
defined, 211
examples of, 212–218
of𝑀nn, 213
orthogonal projections on, 365–367

of polynomials (𝑃n), 214
of 𝑅2 and 𝑅3, 212
zero subspace, 212

Subtraction:
of vectors in 𝑅2 and 𝑅3, 148
of vectors in 𝑅n, 154

Sum:
direct, 290
matrices, 28, 47
of rank and nullity, 278
of vectors in 𝑅2 and 𝑅3, 147, 149
of vectors in 𝑅n, 154

SVD (singular value decomposition), 535–537,
540–543

Sylvester, James, 36, 121, 538
Sylvester’s inequality, 289
Symmetric matrices, 72, 318
eigenvalues of, 410
Hessian matrices, 432–433

Symmetry property, of dot product, 164–165, 314

T
Taussky-Todd, Olga, 318
Technology Matrix, 111

Television, market share as dynamical system,
329–330

Terminal point, 147
Theorem of Pythagoras:
generalized Theorem of Pythagoras, 356
in 𝑅4, 179
in 𝑅n, 179

3 × 3 matrices:
adjoint, 138
determinants, 124
eigenvalues, 293–294
orthogonal matrix, 400
QR-decomposition of, 373

3-space, 146
cross product, 190–198
scalar triple product, 195

Time, as fourth dimension, 151
Torque, 199
Trace, square matrices, 36–37
Traffic flow, network analysis with linear

systems, 99–100
Transformations. See also Linear

transformations; Matrix transformations
with diagonal matrices, 500
differentiation transformation, 454
evaluation transformation, 450
integral transformation, 452
inverse transformations, 482–484
on matrix spaces, 449
one-to-one linear transformation, 461

Transition matrices, 257–258, 487–488
invertibility of, 259
for 𝑅n, 259–260

Translation, 148, 449
Transpose, 35
determinant of, 127
of lower triangular matrix, 70
properties, 50–51

Triangle, area of, 195
Triangle inequalities:
for distances, 167, 354
for vectors, 167, 354

Triangle rule for vector addition, 147
Triangular matrices, 70
diagonalizability of, 305
eigenvalues of, 294

Trigonometric polynomial, 394
Trivial solution, 17, 324
Turing, Alan Mathison, 512
2 × 2 matrices:
cofactor expansions of, 120–121
determinants, 123–124
eigenvalues of, 317
inverse of, 46
vector space, 205

2 × 2 vector, eigenvectors, 292
Two-point vector equations, in 𝑅n, 186
2-space, 146
2-tuples, 151

U
Underdetermined linear system, 285
Unified field theory, 152

Uniform scaling, 500
Union, A4
Unitary diagonalization, of Hermitian matrices,

441
Unitary matrices, 436–440
Unit circle, 344–345
Units of measurement, 239
Unit sphere, 344
Unit square, transformation of, 495, 498–499
Unit vectors, 160, 314, 342
Unknowns, 3
Unstable algorithms, 22
Upper Hessenberg decomposition, 414
Upper Hessenberg form, 414
Upper triangular matrices, 71, 123, 294

V
Vandermonde matrix, 126
Vector addition:
parallelogram rule for, 147
in 𝑅2 and 𝑅3, 147, 149
triangle rule for, 147

Vector equations:
of lines and planes in 𝑅4, 186
of lines in 𝑅2 and 𝑅3, 185
of planes in 𝑅3, 186
two-point vector equations in 𝑅n, 186–187

Vector forms, 185
Vectors, 146
angle between, 162–166, 353
arithmetic operations, 147–149, 153–154
“basis vectors,” 240
collinear vectors, 149
column-matrix form of, 263
column-vector form of, 156
comma-delimited form of, 77, 155, 263
components of, 150
in coordinate systems, 150
coordinate vectors, 245
dot product, 161–162, 168–170
equality of, 147, 153
equivalence of, 147, 153
geometric vectors, 146–147
linear combinations of, 156, 161, 221, 223
linear independence of, 221, 228–236
nonzero vectors, 226
normalizing, 160
norm of, 178
notation for, 147, 155–156
orthogonal vectors, 172–173, 314
parallelogram equation for, 167–168
parallel vectors, 149
perpendicular vectors, 172
probability vector, 331
in 𝑅2 and 𝑅3, 146–156
real and imaginary parts of, 312
in 𝑅n, 151–155
row-matrix form of, 263
row-vector form of, 156
row vectors, 26, 27, 41, 188, 263
solution vectors, 188
standard unit vectors, 160–161, 193, 222, 229
state vector, 330
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triangle inequality for, 167
unit vectors, 160, 314, 342
zero vector, 147, 153

Vector space, 202
axioms, 202–204
complex vector spaces, 203, 311–322
dimensions of, 248
examples of, 204–208, 242
finite-dimensional vector spaces, 240, 242,
251–252

infinite-dimensional vector spaces, 240, 242
of infinite real number sequences, 205
isomorphic, 471
ofm × nmatrices, 206
n-dimensional, 251
of real-valued functions, 206–207

real vector space, 202–209
subspaces, 211–226, 454
for transposes of matrices, 279
of 2 × 2 matrices, 205–206
zero vector space, 204, 248

Vector space scalars, 203
Vector subtraction, in 𝑅2 and 𝑅3, 148
Venn Diagrams, A4
Volts (units), 101
Voltage rises/drops, 101
von Neumann, John, 650

W
Weight, 343
Weighted Euclidean inner products, 343–345
Weyl, Herman Klaus, 538

Wildlife migration, as Markov chain, 333
Wilson, Edwin, 191
Work, 182
Wrónski, Józef Hoëné de, 235
Wronskian, 235, 236

Y
Yaw, 504
Yorke, James, 645

Z
Zero matrices, 42
Zero subspace, 212
Zero transformations, 448, 453
Zero vectors, 147, 153
Zero vector space, 204, 248
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