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Preface

Welcome to the Encyclopedia of Metagenomics. It is anticipated that the

Encyclopedia will become a resource for tools, tool development and

all things metagenomic. Volume 1 encompasses Genes, Genomes and

Metagenomes. It covers a range of approaches to conduct metagenomics

surveys including descriptions of analysis tools. Several of these approaches,

including databases, have been under development from the beginning of the

metagenome era and are enabling the analysis and interpretation of large

microbial data sets from various environments.

“Genes, Genomes and Metagenomes” also covers DNA extraction, various

cloning and sequencing approaches, quality control and experimental

designs: all essential components of the microbiome and metagenomic

sequencing process. These approaches have continued to evolve and be

refined, and several improvements have been incorporated over the past few

years. This has also been driven by a switch to next-generation sequencing

(NGS) platforms including Ion Torrent, 454 and various Illumina

technologies.

Post-sequencing genome assembly, alignment tools, gene prediction and

annotation are also critical to successful data interpretation. Deeper dives in

Vol. 1 discuss codon usage, clustering programs and functional gene

characterization.

MD, USA Karen E. Nelson

September 2014
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Diego Javier Jiménez Department of Microbial Ecology, University of

Groningen, Center for Ecological and Evolutionary Studies (CEES),

Groningen, The Netherlands

Brian V. Jones Center for Biomedical and Health Science Research,

University of Brighton, School of Pharmacy and Biomolecular Sciences,

Brighton, East Sussex, UK

I. King Jordan School of Biology, Georgia Institute of Technology,

Atlanta, GA, USA

Amit Joshi Department of Biotechnology & Bioinformatics, SGGS

College, Chandigarh, India

Olivier Jousson Laboratory of Microbial Genomics, Centre for Integrative

Biology (CIBIO), University of Trento, Trento, Italy

Minoru Kanehisa Bioinformatics Center, Institute for Chemical Research,

Kyoto University, Uji, Kyoto, Japan

Geun-Joong Kim Department of Biological Sciences, College of Natural

Sciences, Chonnam National University, Gwangju, Republic of Korea

Joel Kostka School of Biology and Earth & Atmospheric Sciences, Georgia

Institute of Technology, Atlanta, GA, USA

Masaaki Kotera Bioinformatics Center, Institute for Chemical Research,

Kyoto University, Uji, Kyoto, Japan

Renzo Kottmann Max Plank Institute for Marine Microbiology, Bremen,

Germany

Marcio R. Lambais Luiz de Queiroz College of Agriculture (ESALQ),

University of São Paulo (USP), Piracicaba, SP, Brazil

Ronald F. Lamont Department of Gynecology and Obstetrics, Clinical

Institute, University of Southern Denmark, Odense University Hospital,

Odense, Denmark

Division of Surgery, University College London, Northwick Park Institute of

Medical Research Campus, London, UK

Yemin Lan School of Biomedical Engineering, Science and Health, Drexel

University, Philadelphia, PA, USA

Nicolas Lapaque INRA, AgroParisTech, Jouy en Josas, France

xiv Contributors



Henry C. M. Leung Department of Computer Science, The University of

Hong Kong, Hong Kong, China

Weizhong Li J. Craig Venter Institute, La Jolla, CA, USA

Mark Liles Department of Biological Sciences, Auburn University,

Auburn, AL, USA

Ho-Dong Lim Department of Biological Sciences, College of Natural

Sciences, Chonnam National University, Gwangju, Republic of Korea

Chien-Chi Lo Genome Science Group, Los Alamos National Laboratory,

Los Alamos, NM, USA

HernanLorenzi Informatics, J. Craig Venter Institute, Rockville, MD, USA

Petra Louis Rowett Institute of Nutrition and Health, Microbiology

Group, Gut Health Programme, University of Aberdeen, Aberdeen, UK

Connie Lovejoy Department of Biology, Laval University, Québec, QC,
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Ramon Rosselló-Móra Marine Microbiology Group, Department of

Ecology and Marine Resources, Institut Mediterrani d’Estudis Avançats
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Génotypage, CEA-Institut de Génomique, Evry, France

Zlatko Trajanoski Division of Bioinformatics, Biocenter, Innsbruck

Medical University, Innsbruck, Austria

Susannah Tringe USDepartment of Energy Joint Genome Institute,Walnut

Creek, CA, USA

Huai-Kuang Tsai Institute of Information Science, Academia Sinica,

Taipei, Taiwan

Ching-Hung Tseng Bioinformatics Program, Taiwan International Gradu-

ate Program, Biodiversity Research Center, Institute of Information Science,

Academia Sinica, Taipei, Taiwan

David Wayne Ussery Bioscience Division of Oak Ridge National Labora-

tory, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Contributors xix



Joy D. Van Nostrand Department of Microbiology and Plant Biology,

Institute for Environmental Genomics, University of Oklahoma, Norman,

OK, USA

Digvijay Verma Department of Microbiology, University of Delhi,

New Delhi, India
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Introduction

Microbial ecology aims to comprehensively

describe the diversity and function of microor-

ganisms in the environment. Culturing, micros-

copy, and chemical or biological assays were not

too long ago the main tools in this field. Molecu-

lar methods, such as 16S rRNA gene sequencing,

were applied to environmental systems in the

1990s and started to uncover a remarkable diver-

sity of organisms (Barns et al. 1994). Soon, the

thirst for describing microbial systems was no

longer satisfied by the knowledge of the diversity

of just one or a few genes. Thus, approaches were

developed to describe the total genetic diversity

of a given environment (Riesenfeld et al. 2004).

One such approach is metagenomics, which

involves sequencing the total DNA extracted

from environmental samples. Arguably,

metagenomics has been the fastest growing field

of microbiology in the last few years and has

almost become a routine practice. The learning

curve in the field has been steep, and many

obstacles still need to be overcome to make

metagenomics a reliable and standard process. It

is timely to reflect on what has been learned over

the past few years from metagenome projects and

to predict future needs and developments.

This brief primer gives an overview for the

current status and practices as well as limitations

of metagenomics. We present an introduction to

sampling design, DNA extraction, sequencing

technology, assembly, annotation, data sharing,

and storage.

Sampling Design and DNA Processing

Metagenomic studies of single habitats, for exam-

ple, acidmine drainage (Tyson et al. 2004), termite

hindgut (Warnecke et al. 2007), cow rumen (Hess

et al. 2011), and the human gastrointestinal tract

(Gill et al. 2006), have provided an insight into the

basic diversity and ecology of these environments.

Moreover, comparative studies have explored the

ecological distribution of genes and the functional

adaptations of different microbial communities to

specific ecosystems (Tringe et al. 2005; Dinsdale

et al. 2008; Delmont et al. 2011). These pioneering

studies were predominately designed to develop

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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and prove the general metagenomic approach and

were often limited by the high cost of sequencing.

Hence, desirable scientific methodology, includ-

ing biological replication, could not be adopted,

a situation that precluded appropriate statistical

analyses and comparison (Prosser 2010).

The significant reduction, and indeed continu-

ing fall, in sequencing costs (see below) now

means that the central tenants of scientific inves-

tigation can be adhered to. Rigorous experimen-

tal design will help researchers explore the

complexity of microbial interactions and will

lead to improved catalogs of proteins and genetic

elements. Individual ecosystems can now be

studied with appropriate cross-sectional and

temporal approaches designed to identify the

frequency and distribution of variance in commu-

nity interaction and development (Knight

et al. 2012). Such studies should also pay close

attention to the collection of comprehensive

physical, chemical, and biological data (see

below). This will enable scientists to elucidate

the emergent properties of even the most com-

plex biological system. This capability will pro-

vide the potential to identify drivers at multiple

spatial, temporal, taxonomic, phylogenetic, func-

tional, and evolutionary levels and to define the

feedback mechanisms that mediate equilibrium.

The frequency and distribution of variance

within a microbial ecosystem are basic factors

that must be ascertained by rigorous experimental

design and analysis. For example, to analyze the

microbial community structure from 1 l of sea-

water in a coastal pelagic ecosystem, one must

also ideally define how representative this will

be for the ecosystem as a whole and what the

bounds of that ecosystem are. Numerous studies

of marine systems have shown how community

structure can vary between water masses and over

time (e.g., Gilbert et al. 2012; Fuhrman 2009;

Fuhrman et al. 2006, 2008; Martiny et al. 2006),

and metagenomics currently helps further

define how community structure varies in these

environments (Ottesen et al. 2011; DeLong

et al. 2006; Rusch et al. 2007; Gilbert et al.

2010a). In contrast, in soil systems variance in

space appears to be far larger than in time

(Mackelprang et al. 2011; Barberan et al. 2012;

Bergmann et al. 2011; Nemergut et al. 2011;

Bates et al. 2011). Considerable work still is

needed in order to determine spatial heterogene-

ity, for example, how representative a 0.1 mg

sample of soil is with respect to the larger envi-

ronment from which it was taken.

The design of a sampling strategy is implicit in

the scientific questions asked and the hypotheses

tested, and standard rules outside of replication

and frequency of observation are hard to define.

However, the question of “depth of observation”

is prudent to address because researchers now can

sequencemicrobiomes of individual environments

with exceptional depth or breadth. By enabling

either deep characterization of the taxonomic,

phylogenetic, and functional potential of a given

ecosystem or a shallow investigation of these

elements across hundreds or thousands of samples,

current sequencing technology (see below) is

changing the way microbial surveys are being

performed (Knight et al. 2012).

DNA handling and processing play a major

role in exploring microbial communities through

metagenomics (see also DNA extraction methods

for human studies, “Extraction Methods, DNA”

and “Extraction Methods, Variability Encoun-

tered in”). Specifically, it is well known that the

type of DNA extraction used for a sample will

affect the community profile obtained (e.g.,

Delmont et al. 2012). Therefore, with projects

like the Earth Microbiome Project that aim to

compare a large number of samples, efforts

have been made to standardize DNA extraction

protocols for every physical sample. Clearly, no

single protocol will be suitable for every sample

type (Gilbert 2011, 2010b). For example,

a particular extraction protocol might yield only

very low DNA concentrations for a particular

sample type, making it necessary to explore

other protocols in order to improve efficiency.

However, differences among DNA extraction

protocols may limit comparability of data.

Therefore, researchers need to further define in

qualitative and quantitative terms how different

DNA extraction methodologies affect microbial

community structure.
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Sequencing Technology and Quality
Control

The rapid development of sequencing technolo-

gies over the past few years has arguably been

one of the driving forces in the field of

metagenomics. While shotgun metagenomic

studies initially relied on hardware-intensive

and costly Sanger sequencing technology

(Tyson et al. 2004; Venter et al. 2004) available

only to large research institutes, the advent and

continuous release of several next-generation

sequencing (NGS) platforms has democratized

the sequencing market and has given individual

laboratories or research teams access to afford-

able sequencing data. Among the available NGS

options, the Roche (Margulies et al. 2005),

Illumina (Bentley et al. 2008), Ion Torrent

(Rothberg et al. 2011), and SOLiD (Life Tech-

nologies) platforms have been applied to

metagenomic samples, with the former two

being more intensively used than the latter. The

features of these sequencing technologies have

been extensively reviewed – see, for example,

Metzker (2010) and Quail et al. (2012) – and are

therefore only briefly summarized here (Table 1).

Roche’s platform utilizes pyrosequencing

(also often referred to as 454 sequencing because

of the name of the company that initially devel-

oped the platform) as its underlying molecular

principle. Pyrosequencing involves the binding

of a primer to a template and the sequential addi-

tion of all four nucleoside triphosphates in the

presence of a DNA polymerase. If the offered

nucleoside triphosphate matches the next posi-

tion after the primer, then its incorporation results

in the release of diphosphate (pyrophosphate, or

PPi). PPi production is coupled by an enzymatic

reaction involving an ATP sulfurylase and

a luciferase to the production of a light signal

that is detected through a charge-coupled device.

The Ion Torrent sequencing platform uses

a related approach; however, here, protons that

are released during nucleoside incorporation are

detected through semiconductor technology. In

both cases, the production of light or charge sig-

nals relates to the incorporation of the sequen-

tially offered nucleoside, which can be used to

deduce the sequence downstream of the primer.

Homopolymer sequences create signals propor-

tional to the number of positions; however,

the linearity of this relationship is limited by

enzymatic and engineering factors leading to

well-investigated insertion and deletion (Indel)

sequencing errors (Prabakaran et al. 2011;

McElroy et al. 2012).

Illumina sequencing is based on the incorpo-

ration and detection of fluorescently labeled

nucleoside triphosphates to extend a primer

bound to a template. The key feature of the nucle-

oside triphosphates is a chemically modified 30

position that does not allow for further chain

extension (“terminator”). Thus, the primer gets

extended by only one position, whose identity is

detected by different fluorescent colors for each

of the four nucleosides. Through a chemical reac-

tion, the fluorescent label is then removed, and

the 30 position is converted into a hydroxyl group

A 123 of Metagenomics, Table 1 Next-generation sequencing technologies and their throughput, errors, and

application to metagenomics

Machine (manufacturer)

Throughput (per

machine run) Reported errors

Error/metagenomic example

references

GLX Titanium

(454/Roche)

~1 M reads @

~500 nt

0.56 % indels; up to 0.12 %

substitution

(McElroy et al. 2012; Fan et al. 2012)

HiSeq 2000 (Illumina) ~3 G reads @ 100 nt ~0.001 % indels; up to

0.34 % substitution

(McElroy et al. 2012; Quail et al. 2012;

Hess et al. 2011)

Ion Torrent PGM (Life

Technologies)

~0.1–5 M reads @

~200 nt

1.5 % indels (Loman et al. 2012; Whiteley

et al. 2012)

SOLiD (Life

Technologies)

~120 M reads @

~50 nt

Up to 3 % (Salmela 2010; Zhou et al. 2011;

Iverson et al. 2012)
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allowing for another round of nucleoside incor-

poration. The use of a reversible terminator thus

allows for a stepwise and detectable extension of

the primer that results in the determination of the

template sequence. In theory, this process could

be repeated to generate very long sequences; in

practice, however, misincorporation of nucleo-

sides in the many clonal template strands results

in the fluorescent signal getting out of phase, and

thus reliable sequencing information is only

obtained for about 200 positions (Quail

et al. 2012).

SOLiD sequencing utilizes ligation, rather

than polymerase-mediated chain extension, to

determine the sequence of a template. Primers

are extended through the ligation with fluores-

cently labeled oligonucleotides. The high specific-

ity of the ligase ensures that only oligonucleotides

matching the downstream sequence will be incor-

porated; and by encoding different oligonucleo-

tides with different fluorophores, the sequence

can be determined.

It is important to understand the features of the

sequencing technology in terms of throughput,

read length, and errors (see Table 1), because

these will have a significant impact on down-

stream processing. For example, the relative

high frequency of homopolymer errors for the

pyrosequencing technology can impact ORF iden-

tification (Rho et al. 2010) but might still allow for

reliable gene annotation, because of its compara-

tively long read length (Wommack et al. 2008).

Conversely, the short read length of Illumina

sequencing might reduce the rate of annotation of

unassembled data, but the substantial throughput

and data volume generated can facilitate assembly

of entire draft genomes from metagenomic data

(Hess et al. 2011). These considerations are also

particularly relevantwith new sequencing technol-

ogies coming online. These include single-

molecule sequencing using zero-mode waveguide

nanostructure arrays (Eid et al. 2009), which

promises read lengths beyond 1,000 bp and has

been shown to improve the hybrid assemblies of

genomes (Koren et al. 2012), as well as nanopore

sequencing (Schneider and Dekker 2012), which

also promises long read lengths.

One important practical aspect to consider

when analyzing raw sequencing data is the qual-

ity value assigned to reads. For a long time, the

quality assessment provided by the technology

vendor was the only available option for

data consumers. Recently, however, a vendor-

independent error detection and characterization

has been described that relies on error estimate-

based reads that are accidentally duplicated

during the PCR stages (a fact described for

Ion Torrent, 454, and Illumina sequencing

technologies) (Trimble et al. 2012). Moreover, a

significant number of publicly available

metagenomic datasets contain sequence adaptors

(apparently because quality control is often

performed on the level of assembled sequences,

not raw reads). Simple statistical analyses with

tools such as FastQC (http://www.bioinformat-

ics.babraham.ac.uk/projects/fastqc/) will rapidly

detect most of these adapter contaminations. An

important aspect of quality control is therefore

that each individual dataset requires error profil-

ing and that relying on general properties of the

platform used is not sufficient.

Assembly

Assembly of shotgun sequencing data can in gen-

eral follow two strategies: the overlap-layout-

consensus (OLC) and the de Bruijn graph

approach (see also “▶A De Novo Metagenomic

Assembly Program for Shotgun DNA Reads”).

These two strategies are employed by a number

of different genome assemblers, and this topic

has been reviewed recently (Miller et al. 2010).

Basically, the OLC assembly involves the

pairwise comparison of sequence reads and the

ordering of matching pairs into an overlap graph.

These overlapping sequences are then merged

into a consensus sequence. Assembly with the

de Bruijn strategy involves representing each

sequence’s reads in a graph of all possible

k-mers. Two k-mers are connected when the

sequence reads have them in sequential,

overlapping positions. Thus, all reads of

a dataset are represented by the connection within
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the de Bruijn graph, and assembled contigs are

generated by traversing these connections to

yield a sequence of k-mers.

The OLC assembly has the advantage that

pairwise comparison can be performed to allow

for a defined degree of dissimilarity between

reads. This can compensate for sequencing

errors and allows for the assembly of reads from

heterogeneous populations (Tyson et al. 2004).

However, memory requirement for pairwise

comparisons increases exponentially with the

numbers of reads in the dataset; hence, the

OLC assembler often cannot deal with large

datasets (e.g., Illumina data). Nevertheless, sev-

eral OLCs, including the Celera Assembler

(Miller et al. 2008), Phrap (de la Bastide and

McCombie 2007), and Newbler (Roche), have

been used to assemble partial or complete draft

genomes from metagenomic data; see, for exam-

ple, Tyson et al. (2004), Liu et al. (2011), and

Brown et al. (2012).

In contrast, memory requirements of de Bruijn

assemblers are largely determined by the k-mer

size chosen to define the graph. Thus, these

assemblers have been used successfully with

large numbers of short reads. Initially, de

Bruijn assemblers designed for clonal genomes,

such as Velvet (Zerbino and Birney 2008),

SOAP (Li et al. 2008), and ABySS (Simpson

et al. 2009), were used to assemble metagenomic

data. Because of the heterogeneous nature of

microbial populations, however, assemblies

often ended up fragmented. One reason is that

every positional difference between two reads

from the same region of two closely related

genomes will create a “bubble” in the graph.

Another reason is that sequence errors in low-

abundance reads cause terminating branches.

Traversing such a highly branched graph leads

to large number of contigs. These problems have

been partially overcome by modification of

existing de Bruijn assemblers such asMetaVelvet

(Namiki et al. 2012) or by newly designed de

Bruijn-based algorithms such as Meta-IDBA

(Peng et al. 2011; see also “Meta-IDBA,

overview”). Conceptually, these solutions often

include the identification of subgraphs that

correspond to individual genomes or the abun-

dance information of k-mers to find an optimal

solution path through the graph.

These subdividing approaches are analogous to

binning metagenomic reads or contigs, in order to

identify groups of sequences that define a specific

genome. These bins or even individual sequence

reads can also be taxonomically classified by

comparison with known reference sequences.

Binning and classifying of sequences can be

based on phylogeny, similarity, or composition

(or combinations thereof), and a large number of

algorithms and software is available. For recent

comparisons and benchmarking of binning and

classification software, please see Bazinet and

Cummings (2012) and Droge and McHardy

(2012). Obviously, care has to be taken with any

automated process, since nonrelated sequences

can be combined to produce genomic chimera

bins or classes. It is thus advisable that any binning

or classification strategy is thoroughly tested

through appropriate in vitro and in silico simula-

tions (Mavromatis et al. 2007; Morgan et al. 2010;

McElroy et al. 2012). Also, manual curation of

contigs and iterative assembly and mapping can

produce improved genomes from metagenomic

data (Dutilh et al. 2009). Through such carefully

designed strategies and refined processes, nearly

complete genomes can be assembled, even for

low-abundance organisms from large numbers of

short reads (Iverson et al. 2012).

Annotation

Initially, techniques developed for annotating

clonal genomes were applied to metagenomic

data, and several tools for metagenomic analysis,

such as MG-RAST (Meyer et al. 2008) and

IMG/M (Markowitz et al. 2008), were derived

from existing software suites. For metagenomic

projects, the principal challenges lie in the size of

the dataset, the heterogeneity of the data, and the

fact that sequences are frequently short, even if

assembled prior to analysis.

The first step of the analysis (after extensive

quality control; see above) involves identification
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of genes from a DNA sequence. Fundamentally,

two approaches exist: the extrinsic approach,

which relies on similarity comparison of an

unknown sequence to existing databases, and

the intrinsic (or de novo) approach, which

applies statistical analysis of sequence proper-

ties, such as frequently used codon usage, to

define likely open reading frames (ORFs). For

metagenomic data, the extrinsic approach (e.g.,

running a similarity search with BLASTX)

comes at a significant computational cost

(Wilkening et al. 2009), rendering it less attrac-

tive. De novo approaches based on codon or

nucleotide k-mer usage are thus more promising

for large datasets. De novo gene-calling software
for microbial genomes are trained on long

contigs and assume clonal genomes. For

metagenomic datasets this approach is often

however unsuitable, because training data is

lacking and multiple different codon usage

(or k-mer) profiles are present due to the multi-

ple, different genomes present.

However, several software packages have

been designed to predict genes for short frag-

ments or even reads (see Trimble et al. 2012

for a review). The most important finding of

that review is the effect of errors on gene predic-

tion performance, reducing the reading frame

accuracy of most tools to well below 20 % at

3 % sequencing error. Only the software

FragGeneScan (Rho et al. 2010; see also

FragGeneScan, overview) accounted for the pos-

sibility that metagenomic sequences may contain

errors, thus allowing it to clearly outperform its

competitors.

Once identified, protein-coding genes require

functional assignment. Here again, numerous

tools and databases exist. Many researchers

have found that performing BLAST analysis

against the NCBI nonredundant database

adds little value to their metagenomic datasets.

Preferable are databases that contain high-

level groupings of functions, for example, into

metabolic pathways as in KEGG (Kanehisa

2002) or into subsystems as in SEED

(Overbeek et al. 2005). Using such higher-level

groupings allows for the generation of

overviews and comparison between samples

after statistical normalization.

The time and resources required to perform

functional annotations are substantial, but

approaches that project multiple results derived

from a single sequence analysis into multiple

namespaces can minimize these computational

costs (Wilke et al. 2012). Numerous tools are

also available to predict, for example, short

RNAs and/or other genomic features, but these

tools are frequently less useful for large

metagenomic datasets that exhibit both low

sequence quality and short reads.

Several integrations package annotation func-

tionality into a single website. The CAMERA

(Seshadri et al. 2007) website, for example,

provides users with the ability to run a number

of pipelines on metagenomic data. The Joint

Genome Institute’s IMG/M web service also pro-

vides an analysis for assembled metagenomic

data, which has been used so far for over

300 metagenomic datasets. The European Bioin-

formatics Institute provides a service aimed at

smaller, typically 454/pyrosequencing-derived

metagenomes. The most popular service is the

MG-RAST system (Meyer et al. 2008), used for

over 50,000 metagenomes with over 140 billion

base pairs of data. The system offers comprehen-

sive quality control, tools for comparison of

datasets, and data import and export tools to, for

example, QIIME (Caporaso et al. 2010) using

standard formats such as BIOM (McDonald

et al. 2012).

Metadata, Standards, Sharing, and
Storage

With over 50,000 metagenomes available, the

scientific community has realized that standard-

ized metadata (“data about data”) and higher-

level classification (e.g., a controlled vocabulary)

will increase the usefulness of datasets for novel

discoveries (see also▶Metagenomics, Metadata,

and Meta-analysis). Through the efforts of the

Genomic Standards Consortium (GSC) (Field

et al. 2011), a set of minimal questionnaires has
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been developed and accepted by the community

(Yilmaz et al. 2010) that allows effective

communication of metadata for metagenomic

samples of diverse types. While the “required”

GSC metadata is purposefully minimal and

thus provides only a rough description, several

domain-specific environmental packages exist

that contain more detailed information.

As the standards evolve to match the needs of

the scientific community, the groups developing

software and analysis services have begun to

rely on the presence of GSC-compliant meta-

data, effectively turning them into essential

data for any metagenome project. Furthermore,

comparative analysis of metagenomic datasets is

becoming a routine practice, and acquiring

metadata for these comparisons has become

a requirement for publication in several scien-

tific journals. Since reanalysis of raw sequence

reads is often computationally too costly,

the sharing of analysis results is also advisable.

Currently only the IMG/M and MG-RAST plat-

forms are designed to provide cross-sample

comparisons without the need to recompute

analysis results. In the MG-RAST system,

moreover, users can share data (after providing

metadata) with other users or make data publicly

available.

Metagenomic datasets continue to grow in

size. Indeed the first multi-hundred gigabase

pair of metagenomes already exists. Therefore,

storage and curation of metagenomic data

have become a central theme. The on-disk

representation of raw data and analyses has

led to massive storage issues for groups

attempting meta-analyses. Currently there is

no solution for accessing relevant subsets of

data (e.g., only reads and analyses pertaining

to a specific phylum or a specific species)

without downloading the entire dataset. Cloud

technologies may in the future provide attrac-

tive computational solutions for storage and

computing problems. However, specific and

metadata-enabled solutions are required for

cloud systems to power the community-wide

(re-)analysis efforts of the first 50,000

metagenomes.

Conclusion

Metagenomics has truly proven a valuable tool for

analyzing microbial communities. Technological

advances will continue to drive down the sequenc-

ing cost for metagenomic projects and, in fact, the

flood of current datasets indicates that funding to

obtain sequences is not a major limitation. Major

bottlenecks are encountered, however, in terms of

storage and computational processing of sequenc-

ing data. With community-wide efforts and stan-

dardized tools, the impact of these current

limitations might be managed in the short term.

In the long term, however, large standardized data-

bases will be required (e.g., a MetaGeneBank) to

give information access to the entire scientific

community. Every metagenomic dataset contains

many new and unexpected discoveries, and the

efforts of microbiologists worldwide will be

needed to ensure that nothing is being missed. As

for the data, whether raw or processed, it is just

data. Only its biological and ecological interpreta-

tion will further our understanding of the complex

and wonderful diversity of the microbial world

around us.
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Synonyms

MAP: metagenomic assembly program

Definition

Contig: a set of overlapping DNA segments that

together represent a consensus region of

DNA. Assembly (also genome assembly): the

process of taking a large number of short DNA

sequencing reads and putting them back together

to create contigs from which the DNA originated.

Introduction

MAP (metagenomic assembly program) is a de

novo assembler designed to be applicable to shot-

gun DNA reads (recommended as >200 bp) for

metagenome sequencing project (Lai et al. 2012).

The program focuses on the metagenomic assem-

bly problem of longer reads produced by, for

example, Sanger (typically 700–1,000 bp) and

454 sequencing (typically 200–500 bp). Mean-

while, mate-pair information from both ends of

a DNA fragment for a given size (e.g., an insert in

a vector plasmid in Sanger sequencing or a mate-

pair template in 454 sequencing) in sequencing is

introduced, which is commonly available in

Sanger sequencing and most of the new sequenc-

ing technologies including 454 sequencing.

Although processing of shotgun metagenomic

sequence data usually does not have a fixed end

point to recover one or more complete genomes

as for isolated microbial genomes, the assembly

tools, which aim to combine sequence reads into

contigs, are still expected to play an important

role in sequence processing, due to more valuable

genomic content they can provide (Tyson

et al. 2004; Venter et al. 2004). In the past decade,

a good many assembly algorithms have been

proposed to deal with the sequence assembly

problem, among of which are the early algo-

rithms targeted to the Sanger sequencing technol-

ogy, such as Phrap (http://www.phrap.org),

Celera (Myers et al. 2000; Miller et al. 2008),

and PCAP (Huang et al. 2003), and the up-to-

date algorithms targeted to the next-generation

technology, such as Velvet (Zerbinor and Birney

2008) and SOAPdenovo (Li et al. 2010). How-

ever, these methods are not targeting the

metagenome sequencing in spite of the situation

that they are still usually employed to undertake

assembling of the metagenomic sequencing

reads.

Compared to isolated genome assembly prob-

lem, the metagenomic assembly problem is more

complicated due to two challenges (Kunin

et al. 2008): (1) the genomic repeats may origi-

nate from either the same genome or the different

genomes; therefore, large numbers of mixed

short DNA reads belong to many different spe-

cies (we even know little about the population

structure for some environmental samples); and

(2) the inhomogeneous coverage distribution and

the low abundance of organisms provide limited

information to handle repeats. Due to the specific

challenges of the metagenomic assembly prob-

lem, traditional assembly methods developed for

single genome assembly problem usually gener-

ate poor quality draft assembly on metagenomic

data (Mavromatis et al. 2007). Thus, it is in need

to develop highly efficient assembly method

specifically for metagenomic data.

Moreover, compared with Sanger and

454 sequencing, the current limitation of shorter

reads (<200 bp, typically 25–100 bp) and higher

errors by the new sequencing platforms does not

allow a significant utility for metagenomic ana-

lyses for the difficulty in phylogenetic study or

gene function inference. In fact, shorter reads

technologies have not been widely used in

metagenome sequencing, and meanwhile the

sequencing technologies producing longer

reads, such as Sanger (usually 700–1,000 bp)
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and 454 sequencing (usually 200–500 bp), are

still the overwhelming recommendation and

thus remain the major source of metagenomic

sequence data. Therefore, it is never trivial to

continue to emphasize the importance of longer

reads to metagenomic analyses, clearly including

the reads assembly tool designed specifically.

Algorithm of MAP

MAP designs an improved approach of the clas-

sical overlap/layout/consensus (OLC) strategy, in

which several special algorithms are incorporated

into its stages, to calculate correct contigs by

connecting the fragments linked by mate pairs

to prevent the false merge of unrelated reads.

For the improved OLC strategy, MAP deploys

a series of algorithms in three stages as shown in

Fig. 1. In the overlap stage, the filter algorithm

based on q-gram (Mullikin et al. 2003) is used to

obtain the read pairs that are supposed to have the

overlaps, and the seed and extend alignment

approach, similar to that used by BLAST

(Altschul et al. 1990), is employed in the pairwise

alignment calculation. While in the consensus

stage, a consistency-based consensus algorithm

is used (Rausch et al. 2009), which is based on

a multi-read alignment algorithm aligning the

reads with a consistency-enhanced alignment

graph of shared sequence segments identified in

advance. The most important innovation of MAP

is the layout stage which applies mate-paired

information to deal with repeat problem, which

is described below.

In the OLC approach of MAP, the overlap

graph is used to facilitate the assembly process.

Conceptually, reads and overlaps are represented

in the graph G by nodes and bidirected edges,

respectively. The arrows of both ends of the edge

are determined by the way how two reads over-

lap. Herein, a dovetail path is defined as an acy-

clic path with each node has only one arrow

outward it and one arrow inward it. Thus,

a dovetail path can determine a certain contig

by means of threading the reads corresponding

to the nodes in this path. Thus, the goal of the

layout stage is to separate the graph into discon-

nected dovetail paths. However, since there may

be quite many misleading edges in the graph that

represent the false overlaps mainly originated

from two repetitive DNA regions or similar

A De Novo Metagenomic Assembly Program for Shotgun DNA Reads, Fig. 1 The flowchart of MAP algorithm
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fragments of different genomes, this goal seems

to be a formidable task. To this end, MAP

is designed to determine the optimal dovetail

paths with the aids of the clues given by mate

pairs (Lai et al. 2012).

Compared with other assemblers, several dis-

tinct features of MAP algorithm should be pointed

out. First, MAP does not refer to any other infor-

mation such as genome length or sequencing cov-

erage that is often used in the assemblers targeting

the isolated genomes, because such information is

clearly not applicable to the situation of

metagenomic assembly. What is more important

is that MAP employs mate-paired information dif-

ferent from other assemblers do. For example, the

Celera Assembler (Myers et al. 2000) used mate-

paired information in the scaffold construction.

The Celera Assembler later developed a new pipe-

line CABOG, which finds the best overlap graph

in the unitigger module (Miller et al. 2008). In this

algorithm, mate pairs are used to correct the

misassemblies by breaking the unitigs which are

found violated with the mate-pair constrains.

PCAP (Huang et al. 2003) used mate-paired infor-

mation to correct contigs and to link contigs into

scaffolds. Different from these assemblers, MAP

uses mate pairs as a core measure to construct

contigs when repeats hamper the assembly.

Based on mate-paired information, MAP designs

a series of procedures to implement the layout

stage.

Performance of MAP

MAP is designed for metagenomic assembly on

long reads data with mate pairs, such as Sanger

reads (700–1,000 bp) and 454 reads

(200–500 bp). MAP method was assessed on

simulated data compared with widely used

assemblers on long reads data. Specifically, the

assessment test results on simulated dataset with

800 bp reads demonstrate that the total assembly

performance of MAP can be superior to both

Celera and Phrap for typical longer reads by

Sanger sequencing, and the results on simulated

dataset with 200 bp reads show that MAP has

evident advantage over Celera, Newbler

(Margulies et al. 2005), and Genovo (Laserson

et al. 2011), for typical shorter reads by

454 sequencing (Lai et al. 2012).

Availability

MAP is written in C++ and the source code is

freely available under GNU GPL license. The

MAP is freely available at http://bioinfo.ctb.

pku.edu.cn/MAP/.
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Synonyms

Statistical or intrinsic methods of gene prediction

Definition

Computational inference of how a metagenomic

sequence is divided into protein-coding and non-

coding regions based on presence or absence of

characteristic oligonucleotide frequency patterns.

Introduction

As of April 2013 sequences of 370 metagenomes

were available in databases. On the other

hand, Genomes Online Database (www.

genomesonline.org) lists 186 complete archaeal

and 3,956 complete bacterial genomes; also there

are about 15,000 incomplete (draft) prokaryotic

genomes. With the average size of a metagenome

being 100 times larger than an average prokary-

otic genome, the current volume of metagenomic

sequences is twice as large as the total sequence

in “genomic” data. Therefore, current

metagenomes carry a larger wealth of genes

than all the prokaryotic genomes, and this gap is

growing.

Notably, gene prediction and annotation of

gene and protein function is more challenging in

metagenomes than in draft or complete genomes.

To give a historic perspective, one can compare

gene annotation of a metagenome with

annotation of the first completely sequenced

archaeal genome, Methanococcus jannaschii

(Bult et al. 1996). All the M. jannaschii genes
were predicted by the ab initio statistical method

(Borodovsky and McIninch 1993) while function

of 2/3 of them was a mystery since the translated

protein sequences did not show sequence similar-

ity to proteins in databases.

The history repeats itself in metagenomes,

since majority of protein-coding regions in a new

metagenome may code for proteins that do not

show similarity to already known proteins.

“Evidence-based” or “similarity-based” methods

of gene finding (Kunin et al. 2008) provide gene

prediction along with valuable information about

function of encoded proteins. Similarity-based

gene finders possess high specificity, close to

100 % (Altschul et al. 1997; Badger and Olsen

1999; Frishman et al. 1998; Gish and States 1993).

Still, the drawback of similarity-based methods is

low sensitivity; they cannot predict novel genes.

The similarity-based methods are less useful

for gene prediction in metagenomes that carry

many novel genes, while the ab initio gene

prediction methods, not depending on presence

of homologs in protein databases, are both effec-

tive and efficient for annotating genes in

metagenomic sequences (Kunin et al. 2008).

Ab Initio Gene Finding

Ab initio gene prediction tools have high sensi-

tivity (above 90 % for the best tools) and high

specificity (above 90 % as well). Ab initio gene

finders use statistical pattern recognition methods

(Wooley et al. 2010). Statistical models such as

Markov models, hidden Markov models (HMM),

and hidden semi-Markov models (HSMM, also

called hidden Markov model with duration)

proved to be very useful to model statistical pat-

terns of nucleotide ordering in protein-coding and

noncoding regions. Accurate ab initio gene find-

ing in isolated genomes requires ample sequence

data for estimation of algorithm parameters

(model training).

Contrary to isolated (complete and draft)

genomes metagenomic sequences are derived
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from numerous genomes of heterogeneous

microbial communities (microbiomes). A typical

metagenomic sequence is short; its genomic con-

text and the phylogenetic origin are rarely known.

Gene identification is also affected by sequencing

and assembly errors; for example, errors that lead

to frameshifts (change of coding frame).

The major challenge for ab initio gene predic-

tion in metagenomic sequences is that the

metagenomic sequences are often too short for

reliable estimation of parameters of species-

specific models of coding and noncoding regions.

Special training techniques have to be developed

to address the challenging task of parameter esti-

mation (see below). Similarly to gene prediction

in isolated genomes, newly predicted genes are

immediately translated into proteins and the sim-

ilarity search is used in an attempt of function

annotation.

Gene Finders Currently Available for
Metagenomes

Current metagenomic gene-finding tools include

FragGeneScan (Rho et al. 2010), Glimmer-MG

(Kelley et al. 2012), MetaGene Annotator

(Noguchi et al. 2008), MetaGeneMark (Zhu

et al. 2010), and Orphelia (Hoff et al. 2009,

2008). Glimmer-MG and MetaGeneMark are

extensions of gene finders for complete or draft

genomes Glimmer3 (Delcher et al. 2007) and

GeneMarkS (Besemer et al. 2001), respectively.

The MetaGeneMark algorithm uses HSMM

architecture, originally developed in GeneMarkS

(Besemer et al. 2001). The HSMM parameter

derivation approach used in MetaGeneMark is

to arrive to a large set of parameters (thousands

of parameters related to oligonucleotide frequen-

cies) from a small set (nucleotide frequencies

determined in a short fragment) using the depen-

dencies between oligonucleotide and nucleotide

frequencies that have been formed in evolution.

The original idea of this approach (Besemer and

Borodovsky 1999) has been developed for small

viral genomes before the start of “metagenomic

era” (see below for more details).

Glimmer-MG is based on interpolatedMarkov

models or IMMs (Salzberg et al. 1998). Glimmer-

MG scores metagenomic sequences and assigns

them into clusters; then, the algorithm iteratively

estimates the IMM parameters and reassigns

sequences to clusters.

FragGeneScan (Rho et al. 2010), an

HMM-based gene finder, has an additional ability

to predict frameshifts caused by sequencing

errors. Transition probabilities between coding

frames are determined with respect to the error

models of sequencing technologies used to derive

the input sequence.

MetaGene Annotator (Noguchi et al. 2008)

works in two steps: in the first step the program

scores open reading frames (ORFs) with respect

to base composition and lengths; in the second

step, it connects high-scoring ORFs using

dynamic programming.

Machine learning classification algorithms

such as support vector machines and neural net-

works are also used for ab initio gene finding. In

order to classify coding or noncoding ORFs,

Orphelia (Hoff et al. 2009, 2008) uses an artificial

neural network combining multiple features to

get ORF’s scores.

Parameter Estimation for Metagenomic
Gene-Finding Algorithms

Patterns of oligonucleotide frequencies differ in

coding and noncoding regions; these patterns are

more pronounced when frequencies of longer

oligomers are considered. Sequences with spe-

cific oligomer frequencies can be modeled by

Markov chain models and in the important case

of protein-coding sequences by three-periodic

Markov chain models (Borodovsky et al. 1986).

The number of parameters of a three-periodic

Markov chain model increases exponentially

with the model order; estimation of parameters

of the practically useful fifth order model requires

at least several hundred thousand nucleotide long

sequence. Use of a shorter training sequence

leads to over-fitting and will corrupt gene predic-

tion. If the origin of the metagenomic sequence is
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known, sequences from the whole parent genome

could be used for training. Alternatively, if novel

metagenomic sequences from a single species are

assembled in sufficiently long contig the model

parameters can be estimated by self-training

on the contig sequence (Besemer et al. 2001;

Kelley et al. 2012). Most frequently, however,

metagenomic sequences are short and novel

(of the order of a few hundred nucleotides).

Therefore, new approach to the model parameter

derivation is needed.

A novel approach for constructing parameters

and making efficient models for gene prediction

in short genomic sequences was proposed back in

1999 (Besemer and Borodovsky 1999). The idea

was to use observed trends in the nucleotide fre-

quencies in the three codon positions in genomes

with various GC content. Use of these dependen-

cies allows for reconstructing the species-specific

codon usage pattern in the whole genome starting

from a short fragment of this genome whose

length is sufficient to estimate the genome GC

content. This approach is based on the assump-

tion of genome compositional uniformity that is

largely valid for prokaryotic genomes. It was

shown that parameters provided by this approach

allow sufficiently accurate gene prediction in

short metagenomic sequences. Later on, with

more genomes becoming available, this idea

was extended (Zhu et al. 2010) to longer oligo-

nucleotides (e.g., hexamers). With GC content of

a genome being an independent variable X, it

could be shown that frequency of phased

K-mers in any of three frames, variable Y, can

be approximated by a polynomial of order

K. Particularly, the mononucleotide frequencies

in three codon positions can be approximated by

linear functions. These dependencies indicate

that GC content is a major driving factor that

determines evolution of genome-wide codon

usage pattern (Chen et al. 2004). In

MetaGeneMark, the value of GC content deter-

mined for a short metagenomic sequence is used

as an estimate of GC content of the whole

genome the sequence originated from. This

value allows immediate reconstruction of fre-

quencies of phased oligonucleotides and, at the

next step, parameters of three-periodic Markov

chain models of the heuristic model (Zhu

et al. 2010).

Interestingly, the heuristic models can also be

used for gene prediction in complete genomes or

draft genomes. In comparison with the “native”

models (models trained on a genome of interest),

heuristic models are more sensitive to so-called

“atypical” genes. Many atypical genes appear to

be horizontally transferred genes with codon fre-

quencies deviating from dominant codon usage

pattern of the “host” genome.

Another approach to model parameter estima-

tion is attempting to make a sufficiently large

set of training sequences by linking anonymous

sequences that appear to be taxonomically close.

For example, Glimmer-MG assigns a taxon for

a metagenomic sequence by a classification

method called Phymm (Brady and Salzberg 2009)

and then searches databases for genomes that

belong to this taxon. Since such type of training is

executed in real time, the running time of gene-

finding algorithm may increase significantly in

comparisonwith the algorithm selecting a heuristic

model from a set of models precomputed for

possible values of GC contents.

Additional Sequence Features Used by
Metagenomic Gene Finders

Besides function-specific patterns in oligonucle-

otide composition, gene identification algorithms

can use additional features that help discriminate

protein-coding and noncoding regions. Such fea-

tures include empirical length distributions of

coding and noncoding regions, mutual orienta-

tion of neighboring coding regions, and sequence

patterns related to functional sites such as ribo-

somal binding sites (RBS). The two-component

model of RBS, containing positional frequency

matrix as a model of the RBSmotif and the length

distribution of a “spacer,” the sequence between

RBS and gene start, carries important additional

information for improving accuracy of gene start

prediction. In prokaryotic genomes an average

spacer length is 5–7 nt. The RBS positional
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frequency matrix can be derived by algorithms

such as MCMC (Markov chain Monte Carlo)-

based Gibbs sampler (Lawrence et al. 1993) or

EM (Expectation Maximization)-based MEME

(Bailey and Elkan 1994); detection of the RBS

motif is done by finding the most conserved set

of ungapped sequence fragments within the

multiple alignment window. The structure of

two-component RBS model is convenient for

incorporation into HMM-based framework of

several algorithms such as MetaGeneMark and

FragGeneScan

Another feature, the prokaryotic gene length

distribution, is approximated for complete or

draft genomes by the gamma distribution with

mean value about 900 nt; yet another one, the

distribution of length of noncoding region is

approximated by exponential distribution. These

two distributions, as well as the RBS spacer

length distribution, are used as in the HSMM-

based algorithms (Besemer et al. 2001). Since

short metagenomic sequences are more likely to

contain partial genes than complete genes, length

distributions of partial genes are used in HSMM-

based metagenomic gene finders (Rho et al. 2010;

Zhu et al. 2010).

About 70 % of neighboring genes in prokary-

otic genomes have the same orientation

(Noguchi et al. 2006), and many of them make

co-transcribed “chains” or operons. Genes in an

operon are located on a close distance or even

overlap. Four base-pair overlap ATGA is very

common in adjacent genes as an overlap of stop

and start codons ATG and TGA. Average dis-

tance between adjacent genes having the same

orientation is shorter than that between neighbor

genes residing in complementary strands, espe-

cially in gene start-to-gene start configuration

where additional space has to be available for

promoters.

All these features are incorporated in

metagenomic gene finders, e.g., MetaGeneMark.

Tests of ab initio gene finders on simulated

metagenomic sequences have shown that these

algorithms are quite accurate, with average

values of sensitivity and specificity above 90 %;

see Table 1. However, the sensitivity drops if the

sequence length goes below 200 nt (Yok and

Rosen 2011; Zhu et al. 2010).

An Initio Gene Finding in Metagenomic
Sequences with Errors

Real metagenomic sequences contain errors: sub-

stitutions, insertion, and deletions (indels), as well

Ab Initio Gene Identification in Metagenomic Sequences, Table 1 Gene prediction accuracy for five ab initio

gene finders. Sn stands for sensitivity and Sp stands for specificity

Programs Test set

Sequence

length (bp) Sn (%) Sp (%)

(Sn + Sp)/2

(%) Publication

Orphelia Fragments from 12 test

species

300 82.1 91.7 86.9 Hoff et al. (2009)

FragGeneScan Simulated short reads of

9 genomes

400 91.3 86.1 88.7 Rho et al. (2010)

MetaGeneMark Fragments from

50 microbial chromosomes

400 97.0 94.6 95.8 Zhu et al. (2010)

Glimmer-MG Simulated 454 sequences 535 98.4 71.8 85.1 Kelley

et al. (2012)

MetaGeneAnnotator Subsequences of

13 genomes

700 95.1 91.0 93.1 Noguchi

et al. (2008)

FragGeneScan Simulated reads with 1 %

sequencing error rate

400 85.4 79.5 82.5 Rho et al. (2010)

Glimmer-MG Simulated 454 reads with

1 % sequencing error rate

535 83.6 62.5 73.1 Kelley

et al. (2012)
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as chimerisms, when two reads from different

species are joined due to assembly error. Indels

can cause frameshifts in coding regions; thus gene

prediction accuracy is affected by sequencing

errors. The overall effect on accuracy depends on

error rates specific to sequencing and finishing

technologies; for example, the error rates reported

for Sanger sequencing may be as low as 0.001 %

while sequencing errors in NGS technologies can

go above 1 %. In both simulated Sanger reads and

simulated 454 reads significant decrease of gene

prediction sensitivity is observed when error rate

exceeds 1 % (Hoff 2009). Still, in assembled

sequences, the per-nucleotide error rate of 0.5 %

in raw reads can be reduced to as low as 0.005 %.

This error rate is still large enough to affect

�3–4.5 % of genes in assembled sequences (Luo

et al. 2012).

To identify frameshift errors in metagenomic

sequences, gene-finding algorithms have to

model frame transitions that occur due to

sequencing errors. In HSMM-based gene finders,

e.g., FragGeneScan, new hidden states designat-

ing transitions between coding frames in the same

strand were incorporated into the HSMM archi-

tecture. Another recent tool able to detect frame-

shift in metagenomic coding regions is

MetaGeneTack (Tang et al. 2013). It combines

the original HSMM-based MetaGeneMark with

an ab initio frameshift finding programGeneTack

(Antonov and Borodovsky 2010). Several filters

of false-positive predictions were employed in

MetaGeneTack to achieve higher accuracy.

MetaGeneTack is reported to have higher frame-

shift prediction specificity than FragGeneScan

(Table 2) in reads with error rate typical for

metagenomic projects (Tang et al. 2013).

Yet another approach was used in Glimmer-

MG, which, to trace possible indel errors, splits

an ORF into three branches (frames), starting

from the position of a nucleotide called with

low confidence (Kelley et al. 2012). This

approach was reported to have higher gene pre-

diction accuracy on error-contained reads than

FragGeneScan. Methods that account for

sequencing errors generally perform better in

real error-prone metagenomic sequences than

“idealistic” approaches. The accuracy of

sequencing error detection, however, depends

on how accurate is the modeling of sequencing

errors is.

Summary

Accurate ab initio gene prediction in

metagenomic sequences is necessary for reliable

functional annotation. Ab initio algorithms iden-

tify genes in metagenomic sequences by

detecting intrinsic statistical patterns of coding

and noncoding regions. Being independent of

data stored in databases, these methods are espe-

cially useful for discovering novel genes. Special

techniques have been developed for derivation of

parameters of the ab initio algorithms working

with short anonymous metagenomic sequences.

We have reviewed several ab initio gene finders

developed for metagenomic sequences including

the latest tools that take into account possible

sequencing errors (frameshifts).

Ab Initio Gene Identification in Metagenomic Sequences, Table 2 Frameshift prediction accuracy

Programs

Sequence

length (bp) Sn (%) Sp (%) (Sn + Sp)/2 Test set Publication

FragGeneScan 400 81.0 43.2 62.1 Fragments from

18 prokaryotic

genomes with

20 % containing

frameshifts

Tang

et al. 2013600 81.9 35.1 58.5

800 82.8 29.4 56.1

MetaGeneTrack 400 75.8 70.2 73.0

600 80.1 61.7 70.9

800 81.5 51.9 66.7
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Cross-References

▶Computational Approaches for Metagenomic

Datasets

▶ FragGeneScan: Predicting Genes in Short and

Error-Prone Reads

▶Metagenomics, Metadata, and Meta-analysis

▶ Protein-Coding Genes as Alternative Markers

in Microbial Diversity Studies

▶ Proteomics and Metaproteomics

▶RITA: Rapid Identification of High-

Confidence Taxonomic Assignments for

Metagenomic Data
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Definition

Binning is unsupervised clustering of

metagenomic sequences into an unknown set of

species.

AbundanceBin is a binning tool utilizing the

different abundances of the species in

a community.

Introduction

Binning is one of the challenging problems in the

metagenomics field. It has two main applications.

One application is for studying the structure of

microbial communities. The other application is

for improving the downstream analysis of

metagenomic sequences, including metagenome

assembly (which has shown to be extremely dif-

ficult), considering that assembling reads one bin

at a time significantly reduces the complexity of

the metagenome assembly problem.

Composition-based methods have been the

main approaches to unsupervised classification

of reads. The basis of these approaches is that

the genome composition (G + C content, dinucle-

otide frequencies, and synonymous codon usage)

vary among organisms and are generally charac-

teristic of evolutionary lineages. Tools in this

category include TETRA (Teeling et al. 2004),

TACOA (Diaz et al. 2009), and MetaCluster

(Leung et al. 2011). Due to the substantial vari-

ance in sequence properties along a genome, the

main limitation of composition-based approaches

is that they require relatively long reads (at least

800 bp), although it is shown that MetaCluster

(Leung et al. 2011) can bin reads of 300 bp by

employing a different distance metric (Spearman

Footrule Distance) to reduce the local variations

for 4-mers.

Note a large collection of methods have been

developed to classify sequencing reads in

a supervised manner. MEGAN (Huson and

Mitra 2012) is a representative approach of this

kind. These methods either use composition

information (as in NCB, a naı̈ve Bayes classifier

to metagenomic sequence classification (Rosen

et al. 2011)) or employ similarity searches of

metagenomic sequences against a database of

known genes/proteins (as in MEGAN) and assign

metagenomic sequences to taxa accordingly,

with or without using phylogeny. They also differ

in the algorithms used for classification:MEGAN

pioneers the lowest common ancestor (LCA)

algorithm (Huson et al. 2007), MTR (Gori

et al. 2011) improves on LCA algorithm consid-

ering multiple taxonomic ranks, and MetaPhyler

(Liu et al. 2011) achieves better classification
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results by tuning the taxonomic classifier to each

matching length, reference gene, and taxonomic

level. Note that some tools in this category can

only classify a subset of the metagenomic

sequences instead of all. MLTreeMap (Stark

et al. 2010) uses phylogenetic analysis of

31 marker genes for taxonomic distribution esti-

mation. CARMA (Krause et al. 2008) searches

for conserved Pfam domains and protein families

in raw metagenomic sequences and classifies

them into a higher-order taxonomy. RDP classi-

fier is designed for classification of 16S rRNA

genes, and later extended to classification of 18S

rRNA genes using a naı̈ve Bayes classifier (Cole

et al. 2009).

AbundanceBin

AbundanceBin (Wu and Ye 2011) is the first

unsupervised clustering algorithm that utilizes

abundance information of the species in the

same microbial community to group reads into

bins. The fundamental assumption of the

AbundanceBin algorithm is that reads are sam-

pled from genomes following a Poisson proce-

dure, such that the sequencing reads can be

modeled as a mixture of Poisson distribution.

An expectation–maximization (EM) algo-

rithm is used in AbundanceBin to find parameters

for the Poisson distributions (i.e., the means),

which reflect the relative abundance levels of

the source species. AbundanceBin then assigns

reads to bins based on the fitted Poisson distribu-

tions. AbundanceBin gives an estimation of the

genome size (or the concatenated genome size of

species of the same or very similar abundances)

and the coverage (which reflects the abundances

of species) of each bin in an unsupervised manner

without requiring prior knowledge of the struc-

ture of the microbial communities. The EM algo-

rithm needs an important parameter, the number

of bins, which is typically unknown, as for most

metagenomic projects. AbundanceBin solves this

problem by using a recursive binning approach to

determine the total number of bins automatically.

The recursive binning approach works by sepa-

rating a dataset into two bins and proceeds by

further splitting bins. The recursive procedure

continues if (1) the predicted abundance values

of two bins differ significantly; (2) the predicted

genome sizes are larger than a certain threshold;

and (3) the number of reads associated with each

bin is larger than a certain threshold proportion of

the total number of reads classified in the

parent bin.

AbundanceBin achieves accurate classifica-

tion of even very short sequences sampled from

species with different abundance levels, as tested

on simulated and real metagenomic datasets. The

software is available for download at http://

omics.informatics.indiana.edu/AbundanceBin.

Integrated Binning Methods

MetaCluster 3.0 is an integrated binning method

based on the unsupervised top–down separation

and bottom–up merging strategy, which can bin

metagenomic fragments of species with very bal-

anced abundance ratios to very different abun-

dance ratios (Leung et al. 2011). MetaCluster 4.0

further improves the binning algorithm and is

able to handle datasets with large number of

species (e.g., 100 species) (Wang et al. 2012).

MetaCluster is available for download at http://

i.cs.hku.hk/~alse/MetaCluster/.

Joint Analysis of Multiple Metagenomic
Samples

Baran and Halperin proposed an abundance-

based (also termed as coverage-based) binning

algorithm (MultBin) that operates on multiple

samples of the same environment simulta-

neously, assuming that the different samples con-

tain the same microbial species, possibly in

different proportions (Baran and Halperin

2012). MultBin employs a k-medoids clustering

algorithm to cluster reads according to their cov-

erage across the samples. Testing of MultBin on

simulated metagenomic datasets shows that inte-

grating information across multiple samples

yields more precise binning on each of the

samples.
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Summary

Abundance-based (or coverage-based) binning

approaches achieve an accurate performance

even for extremely short reads – when there

exist species abundance differences, an ability

that cannot be achieved by composition-based

approaches which suffer from the variances of

the compositions of short reads. Approaches

that integrate abundance and composition infor-

mation and approaches that utilize multiple

samples have shown promising binning results.
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Synonyms

Genome Relative Abundance estimation using

Mixture Model theory (GRAMMy)

Introduction

Accurate estimation of microbial community

composition based on metagenomic sequencing

data is fundamental for subsequent metagenomic

analysis. However, it is also a challenging com-

putational problem because of the mixed nature

of metagenomes and the fact that only a small

fraction of them get sequenced.

With the advents of next-generation sequenc-

ing (NGS) technologies, there has been signifi-

cant increase in sequencing capacity yet

reduction in single read length. This paradigm

shift in sequencing technologies has impacted

downstream analyses. Specifically, the identifica-

tion of the origin of a read becomes more difficult

for several reasons. First, a large number of short

reads cannot be uniquely mapped to a specific

location of one genome. Instead, they map to

multiple locations of one or multiple genomes.
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These ambiguities are directly associated with

the read length reduction in NGS technologies.

Second, communities usually consist of many

microbes with similar genomes, different only

in some parts, making it indeed impossible to

determine the origin of a particular short read

based solely on its sequence.

Despite these difficulties, NGS read sets have

brought in richer abundance information of micro-

bial communities than traditional datasets because

of the significant increase in the number of reads.

Along with the increase of read set size, efforts to

assemble more reference genomes are ongoing. In

addition, new experimental techniques, such as

single-cell sequencing approaches, are being

developed to sequence reference genomes directly

from environmental samples. In face of the chal-

lenges from short reads and the opportunities from

fast-expanding reference genome databases,

GRAMMy is a statistical framework developed

to accurately and efficiently estimate the relative

abundance of microbial organisms within the

community (Xia et al. 2011).

Description

The GRAMMy Framework

The GRAMMy framework is based on a mixture

model for the short metagenomic sequencing and

an expectation-maximization (EM) algorithm, as

outlined in the model schema and the analysis

flowchart in Figs. 1 and 2. GRAMMy accepts

a set of shotgun reads as well as external refer-

ences (e.g., genomes, scaffolds, or contigs) as

inputs and subsequently performs the

maximum-likelihood estimation (MLE) of the

genome relative abundance (GRA) levels.

Accurate Genome Relative Abundance Estimation
Based on Shotgun Metagenomic Reads, Fig. 1 The

GRAMMy model. A schematic diagram of the finite

mixture model underlies the GRAMMy framework for

shotgun metagenomics. In the figure, “iid” stands for

“independent identically distributed”
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In the typical GRAMMy workflow, which is

shown in Fig. 2, the end user starts with the

metagenomic read set and reference genome set

and then chooses betweenmapping-based (“map”)

and k-mer composition-based (“k-mer”) assign-

ment options (He and Xia 2007). In either option,

after the assignment procedure, an intermediate

matrix describing the probability that each read is

assigned to one of the reference genomes is

produced. This matrix, along with the read set

and reference genome set, is fed forward to the

EM algorithm module for estimation of the GRA

levels. After the calculation, GRAMMy outputs

the GRA estimates as a numerical vector, as well

as the log-likelihood and standard errors for the

estimates. If the taxonomy information for the

input reference genomes is available, strain

(genome) level GRA estimates can be combined

to calculate high taxonomic level abundance, such

as species- and genus-level estimates.

Accurate GRAMMy Estimates with EM

Algorithm

Formally, GRA is defined as the normalized

abundance for m unique genomes, where the

relative abundance for the jth known genome is

aj ¼ #j-th genome

#known genomes

Note that gm is a collective surrogate for

unknown genomes and cannot be estimated in the

model. Knowing length lj, aj is one-to-one related

to the corresponding mixing parameter pj by

aj ¼ pj

lj
Xm�1

k¼1

pk
lk

Mixing component distributions are needed to

solve for mixing parameter p, which are p(ri|

zij ¼ 1; g)’s – i.e., the probabilities of generating

a read ri from gj. They are approximated empir-

ically. The first approach is to use the number of

high-quality hits sij fromBLAST, BLAT, or other

mapping tools and approximate by
sij
lj
; the second

approach is to use k-mer composition as detailed

in the original study (Xia et al. 2011). The EM

algorithm to calculate p iterates between E-step

z
tð Þ
ij ¼ p rijzij ¼ 1; g

� �
p tð Þ
j

Xm

k¼1

p rijzik ¼ 1; gð Þp tð Þ
k

and M-step

p tþ1ð Þ
j ¼

Xn

i¼1

z
tð Þ
ij

n

until convergence, where n is the total number of

reads and zij’s are entries in the missing read

Accurate Genome Relative Abundance Estimation
Based on Shotgun Metagenomic Reads, Fig. 2 The

GRAMMy flowchart. A typical flowchart of

GRAMMy analysis pipeline employs “map” and

“k-mer” assignment
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origin matrix Z. The estimated mixing parame-

ters p are then converted back to GRA

estimates a.

GRAMMy Estimates for Human Gut

Metagenomes

The human gastrointestinal tract harbors the

largest group of human symbiotic microbes.

Figure 3 shows the 99 most frequent species of

human gut based on the GRAMMy analysis of

the 33 metagenomic samples collected

from three human gut metagenome projects

(Gill et al. 2006; Kurokawa et al. 2007;

Turnbaugh et al. 2009). The medians of esti-

mated average genome lengths for these

metagenomes range from 2.8 to 3.7 Mbp.

Among the top ten most frequent species,

there are eight from the Firmicutes phylum

including members of Faecalibacterium,

Eubacterium, and Ruminococcus genera, and

two from the Bacteroides genus of the

Bacteroidetes phylum. Firmicutes and

Bacteroidetes dominate the human gastrointes-

tinal tract. Species’ relative abundance displays

a long-tail distribution, suggesting that many

are detected across samples, though most of

them are not highly abundant. The abundance

levels of some species are highly variable (with

larger box size), while most others are rela-

tively constant.

Conclusions

GRAMMy is a rigorous probabilistic framework

for accurately and efficiently estimating genome

relative abundance (GRA) based on shotgun

metagenomic reads. Users have a wide choice

of mapping and alignment tools to assign reads

to references. The method is particularly suit-

able for NGS short read datasets due to its better

handling of read assignment ambiguities.

GRAMMy tools are packaged as a C++ exten-

sion to Python, which can be downloaded freely

from GRAMMy’s homepage: http://meta.usc.

edu/softs/grammy.

Cross-References

▶Approaches in Metagenome Research:

Progress and Challenges

▶Computational Approaches for Metagenomic

Datasets

▶Extended Local Similarity Analysis (eLSA) of

Biological Data

▶Metagenomic Research: Methods and

Ecological Applications

▶Metagenomics, Metadata, and Meta-analysis

▶Molecular Ecological Network of Microbial

Communities

Accurate Genome Relative Abundance Estimation
Based on Shotgun Metagenomic Reads,
Fig. 3 Frequent species of human gut microbiome. The

99 species occurring in at least 50 % of the 33 human gut

samples with a minimum relative abundance of 0.05 %

were selected
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Wolfgang Ludwig4, Karl-Heinz Schleifer4,

Rudolf Amann5, Frank Oliver Glöckner6,7 and
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Synonyms

16SrRNA(SSU) and 23SrRNA( LSU) gene

sequence databases; Alignments; LTP project;

Manual curation; “Orphan” species; Taxa bound-

aries; Taxonomy/classification/phylogeny of

Bacteria and Archaea; Type strains

Definition

The All-Species Living Tree Project (LTP) is an

international initiative for the creation and main-

tenance of highly curated 16SrRNA and

23SrRNA gene sequence databases, alignments,

and phylogenetic trees for all the type strains of

Bacteria and Archaea.

Introduction

Classification and identification of Bacteria and

Archaea came across to a turning point around

35 years ago. It was the time when Carl Woese

and co-workers demonstrated that ribosomal

markers were appropriate to infer genealogical

relationships bymeans of phylogenetic reconstruc-

tions (Fox et al. 1977). Rapidly, comparative anal-

ysis of rRNA gene sequences became a standard

procedure with mature implications in microbial

ecology and taxonomy: culture-independent

exploration of ecosystems’ diversity (Amann

et al. 1995) and settlement of the phylogenetic

backbone (i.e., our current accepted classification

of Bacteria and Archaea; Garrity 2001). As

a result, the total amount of ribosomal RNA entries

in the public DNA databases has grown exponen-

tially since early 1990s, currently comprising at

least 3,500,000 small (SSU) and 300,000 large

(LSU) ribosomal subunit gene sequence entries.

On the other hand, the number of bacterial and

archaeal species with validly published names

has followed arithmetic trends with a ratio of

around 500–700 annual descriptions during the

last 7 years (Fig. 1), currently (December 2012)

exceeding the total number of 10,300 species and

subspecies. A comparative overview of these

trends until December 2011 is shown in Fig. 1.

As from early 1990s, the 16S rRNA has been,

by orders of magnitude, the most often sequenced

gene, there is no alternative phylogenetic marker

with such a high coverage in public repositories.

However, abundance is not the single requisite

for a proper phylogenetic inference and other

single molecules (e.g., 23S rRNA) or combina-

tions of them might perform better at reflecting
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genealogies of certain groups given the higher

information content (Ludwig and Klenk 2001).

Although far from reaching 16S rRNA levels,

submission of alternative markers is growing

fast, mostly because (i) the number of meta-

genomes and complete genomes is growing

exponentially due to the reduction on sequencing

and analysis costs and (ii) the recent initiative to

complete the genome sequence of all type strains

(GEBA initiative). Undoubtedly, comparative

genomics will involve a new breakthrough for

microbial taxonomy and the current phylogenetic

backbone based on ribosomal sequences will be

carefully reviewed (Coenye et al. 2005). Never-

theless, at this point, the number of sequenced

genomes of type strains is still low and therefore

All-Species Living Tree Project, Fig. 1 Annual growth

of ribosomal 16S rRNA (a) and 23S rRNA (b) gene

sequence databases and species and subspecies names

with standing in nomenclature until December 2011.

SILVA SSU-Parc111 and LSU-Parc111 databases

(http://www.arb-silva.de/documentation/release-111/) were

filtered by submission date until December 2011 and its

cumulative annual growth was plotted in red (SSU, 1A)

and yellow bars (LSU, 1B). The cumulative growth of

published species and subspecies names (according to

LPSN; http://www.bacterio.cict.fr/number.html) since

1980 until December 2011 is plotted in blue. Note that the

total number of names is around 2,000 above the total

number of distinct type strains due to homotypic synonyms,

new combinations, nomina nova, later heterotypic syno-

nyms, or illegitimate names
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the current possibilities for an in-depth taxo-

nomic study are sparse.

The responsible teams of the ARB, SILVA,

and LPSN projects (www.arb-home.de, www.

arb-silva.de, and www.bacterio.net) together

with the journal Systematic and Applied Micro-

biology (SAM) started the “All-Species Living

Tree Project” (LTP; http://www.arb-silva.de/pro-

jects/living-tree), a project conceived to provide

a tool especially designed for the microbial tax-

onomist scientific community (Yarza et al. 2008).

The main objectives considered so far are (1) pro-

vide a curated 16S and 23S rRNA gene database

for the type strains of all species with validly

published names; (2) set up an optimized and

universally usable alignment; (3) reconstruct reli-

able phylogenetic trees with all the type strains;

(4) maintain the database, alignments, and trees

through regular updates including the new validly

published taxa and their respective 16S and 23S

rRNA gene sequences; and (5) investigate, with

the use of the database, fundamental aspects

about taxonomy of Bacteria and Archaea such

as phylogenetic thresholds in new taxa circum-

scriptions, coherence of current taxonomy by

means of phylogenetic schemes, and relevance

of the ribosomal RNA genes in taxonomic

studies.

Creation and Maintenance of LTP
Releases

LTP Datasets

First LTP datasets (release LTPs93 for SSU

(Yarza et al. 2008), release LTPs102 for LSU

(Yarza et al. 2010)) were prepared following six

main steps:

1. Set up a list of candidate sequences. An initial

sequence dataset consisted on a subsample of

the SILVA database, filtering by “type” (T) or

“cultured” (C) strains; this information mainly

came from StrainInfo.

2. Set up a list of species names. In parallel we

built a comprehensive, updated, and

nonredundant (i.e., free of synonyms and

according to latest valid nomenclature) list of

validly published species and subspecies

names from LPSN. When a species is divided

into subspecies, we substituted the original

species name by that of the subspecies (e.g.,

Staphylococcus sciuri subsp. sciuri instead of

Staphylococcus sciuri). We avoided the

“Candidatus” names (e.g., “Candidatus

Aciduliprofundum boonei”), Cyanobacteria
not validly published under the Bacteriologi-

cal Code (e.g., Anabaena oscillatorioides),

and later heterotypic synonyms (e.g., Pseudo-
monas chloritidismutans).

3. Manual cross-check. Then, each entry from

our initial list of sequences was assigned to

a species name by manually examining the

companion contextual metadata. This process

had to be done manually given the often out-

dated, mistaken, or absent taxonomic informa-

tion such as the organism name or the strain

numbers.

4. Quest for missing type strains. We realized

that not all species names were represented

in the list of sequences. Then, we inverted

the process by searching in resources like

EMBL, Bergey’s Outlines, issues of the Inter-

national Journal of Systematic and Evolution-

ary Microbiology (IJSEM), etc. with the aim

to find a good-quality sequence entry for each

missing type strain.

5. “Orphan” species recognition. Finally, we got

a group of type strains whose 16S/23S rRNA

genes had never been sequenced or that the

existing sequences were of too low quality to

be considered for the project (i.e., in terms of

sequence length, number of ambiguities, etc.).

We called them “orphan” species. The LTP

project together with eleven international cul-

ture collections has driven the sequencing of

these “orphan” species through the SOS ini-

tiative (Yarza et al. 2013).

6. Keep one sequence per species. On the other

hand, the list of type-strain sequences was

redundant in the sense that one single type

strain could be represented by multiple

sequence entries. This is the case of multiple

independent sequencings and submissions, or

the existence of several sequences due to mul-

tiple copies of the ribosomal operon. The aim

of the LTP is, whenever possible, to keep one
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sequence per type strain in order to maintain

simplicity, avoid confusion, and improve tree

navigation and database usability. In general,

the best quality available (including manual

inspection of the alignment) was selected for

the project and, in case of doubt, the earliest

submission to an INSDC partner (www.insdc.

org). From release LTPs102 (Yarza

et al. 2010), when multiple paralogues exist

due to rRNA operon copy number, several

copies are kept if they show less than 98 %

sequence identity (see below for further

details).

LTP is maintained by a scrutiny of the new

described species, nomenclatural changes, taxo-

nomic notes, and opinions that are monthly

published in the IJSEM journal. Their respective

16S and 23S rRNA gene sequence entries are

acquired from the latest SILVA release and

appended to the existing LTP database. There-

fore, SILVA’s Reference (Ref) ARB databases

(http://www.springerreference.com/docs/html/

chapterdbid/304116.html) serve as template

for the new LTP-ARB databases. Until now

(December 2012) one LSU-based and seven

SSU-based LTP releases have been produced

(Table 1). New species are incorporated into

the database only if they account a good-

quality sequence existing in the respective

SILVA release. Certain entries can be deleted

if their corresponding species names are seen

to be later heterotypic synonyms, if they

become rejected, or as a matter of taxonomic

opinions. Sequence entries existing in an LTP

database can also change by means of their

metadata. Thus, for example, new combina-

tions (i.e., a type strain which changes its

name due to reclassification) or subdivision of

a species into subspecies leads to an entry

modification at its taxonomic information

fields.

Inaccurate or Mistaken Metadata

Inaccurate sequence-associated metadata tend to

happen in more than 50 % of the new added 16S

rRNA entries (Table 1). Often, these “mistakes”

consist on a lack of entries’ updating tasks at the

time of their first appearance in a scientific pub-

lication. It mainly occurs in taxonomy-associated

information fields. To prove the uniqueness of a

new species and to name it take time and, in the

meanwhile, sequences are quickly produced

and easily submitted to nucleotide databases.

Most often, these submissions only show

genus specifications, for example, sequence

entry GU808562 appears as “Hymenobacter sp.

HMD1010” but its real name is Hymenobacter

yonginensis. Indeed, a Bacteriological Code-

compliant (Lapage et al. 1992) nomenclature

may be somewhat tricky and is frequent to

All-Species Living Tree Project, Table 1 Summary of LTP releases. “Sync” fields correspond to IJSEM and EMBL

release dates. “Net increase” of a release is the number of new entries minus the number of deleted entries. “% incorrect”

refers to the percentage of new entries whose INSDC records carried incorrect information in the organism name field.

Averages include standard deviation

Release Type

IJSEM

sync

EMBL

sync

Total

entries

New

entries

Deleted

entries

Net

increase

%

incorrecta Average lengtha
Average

ambig.b

LTPs93 SSU Dec. 2007 Dec. 2007 6,728 6,728 0 6,728 22 1,465.0 � 51.2 0.10 � 0.26

LTPs95 SSU Jun. 2008 Jun. 2008 7,006 299 21 278 45 1,446.0 � 46.3 0.04 � 0.11

LTPs100 SSU Aug.

2009

Jun. 2009 7,710 750 46 704 50 1,448.0 � 54.2 0.03 � 0.11

LTPs102 SSU Feb. 2010 Nov.

2009

8,029 363 44 319 58 1,453.6 � 52 0.33 � 0.12

LTPs102 LSU Feb. 2010 Nov.

2009

792 792 0 792 6 2,866.1 � 177.6 0.02 � 0.11

LTPs104 SSU Dec. 2010 May 2010 8,545 545 29 516 74 1,444.6 � 62 0.27 � 0.11

LTPs106 SSU May 2011 Dec. 2010 8,815 279 9 270 77 1,445.9 � 51.1 0.03 � 0.12

LTPs108 SSU Dec. 2011 Jun. 2011 9,279 490 26 464 60 1,455.4 � 51.9 0.02 � 0.09

aAverage length for the “new entries”
bAverage percentage of ambiguities for the “total entries”
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consider several Latin terms and derivations until

one species name is finally accepted by authors

and reviewers. Unavoidably, this bad-quality

information is propagated from INSDC databases

(primary sources) to other technological services

like dedicated ribosomal databases (e.g.,

SILVA). Although extensive data curation is not

a task of primary sources of information, it would

be very beneficial that authors enhance their com-

mitment with the correctness of the metadata

provided (e.g., like the species name) or that

authors are forced to update their INSDC entries

prior to manuscript acceptation (recommended

action for scientific journals). Successively, this

rough data arrives finally to resources like LTP,

which have no choice but checking it carefully to

provide new informational fields with corrected

information; curated information can return back

to other resources of information.

Multiple Copies of the Ribosomal Operon

In 2010, a comprehensive study was conducted to

evaluate the intra-genomic variability of the 16S

rRNA gene on complete type-strain genomes

(Yarza et al. 2010). We observed that in very

unusual exceptions, the intra-genus (94.5 %;

Yarza et al. 2008) or intraspecies (98.7 %;

Stackebrandt and Ebers 2006) boundaries could

be exceeded within a single genome. In such

cases, the selection of one or another sequence

might seriously affect the interpretation of

a phylogenetic inference. However, despite the

fact that the vast majority of strains contain mul-

tiple copies of the rrn operon, only 2 % of them

reveal divergences beyond 2 % (30 nucleotides)

sequence identity. Thus, most likely, the selec-

tion of one or another copy should not affect the

phylogenetic reconstructions. Consequently,

starting from release s104 (Munoz et al. 2011),

the LTP database includes all paralogues with

higher divergences than 2 %. By now, it is the

case of three species: Haloarcula marismortui
ATCC 43049T, accession number AY596297,

with 5.7 % of maximum inter-operonic diver-

gence; Thermoanaerobacter pseudethanolicus
ATCC 33223T, accession number CP000924,

with 3.66 % of maximum inter-operonic diver-

gence; and Desulfitobacterium hafniense

DCB-2T, accession number CP001336, with

4.34 % of maximum inter-operonic divergence.

Sequence Quality in LTP Datasets

It has been suggested that sequences produced for

taxonomic purposes should be equal or larger

than 1,450 bases with less than 0.5 % ambiguities

(Stackebrandt et al. 2002). Reason is that infor-

mative content of a molecular clock is linked to

the total number of its variable positions (Ludwig

and Klenk 2001). Statistics derived from LTP

datasets indicate that in general, sequence quality

is acceptable for in-depth phylogenetic studies

(~1,455 bases and 0.02 % ambiguities for

LTPs108; Table 1). Figure 2 shows annual vari-

ation of gene sequence length and percentage of

ambiguities. Quality increase is mainly observed

in terms of ambiguities reduction, probably

related to amelioration of sequencing techniques.

In any case, the completion of more full genome

sequences of type strains will substantially

increase the sequence quality (indicated by

these two parameters) in the LTP database.

Researchers should be encouraged to complete

50 ends of 16S rRNA gene sequences, as first

250 bases contain hypervariable regions V1 and

V2 which play an important role in comparisons

between highly related organisms (Chakravorty

et al. 2007).

Curated Metadata Introduced by the LTP

In addition to regular fields provided by the

ARB-SILVA databases, sequence entries include

now the following LTP-specific metadata fields:

1. fullname_ltp: corrected species name

according to LPSN (http://www.bacterio.net).

2. rel_ltp: name of the LTP release where

a sequence entry appeared for the first time.

3. hi_tax_ltp: name of the family where the taxon

is classified. For unclassified genera, the name

of the next available higher taxon above genus

(e.g., “Acidobacteria” for Bryobacter
aggregatus).

4. type_ltp: type species receive the label “type

sp.” in this field.

5. riskgroup_ltp: risk-group classification of

microorganisms risk-group classification of

microorganisms obtained from the DSMZ
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(Deutsche Sammlung von Mikroorganismen

und Zellkulturen), according to the Federal

Institute for Occupational Safety and Health

(BAuA) in Germany.

6. tax_ltp: taxonomic classification into higher

taxonomic ranks according to LPSN (http://

www.bacterio.cict.fr/classifphyla.html).

7. url_lpsn_ltp: it contains the variable part of

the URL leading to the LPSN’s species file

(e.g., http://www.bacterio.net/bryobacter.html).

Alignments and Phylogenetic Trees

Setting up universal alignments is a key step in

order to achieve optimal and comparable phylo-

genetic reconstructions. It has been one of the

constant motivations of Wolfgang Ludwig and

co-workers who dealt with the huge task of pre-

paring common and reliable alignment of ribo-

somal SSU and LSU sequences of Bacteria,

Archaea, and Eukarya (Ludwig and Schleifer

1994). They found out that secondary structure

formations such as loops and helices occurred at

the same relative positions along the molecule.

This helped to refine the alignments because

variable stretches, with low sequence similarities,

could be optimally positioned by recognizing

functional homology (due to evolutionary pres-

sure) and functional stability of helices (due to

chemical stability of base pairs’ bounds). A core

dataset of sequences with highly curated align-

ments was incorporated into the SILVA system

so new added sequences can be automatically

aligned using this “seed alignment” as a reference

(Ludwig et al. 2004; Pruesse et al. 2007). Period-

ically more and more manually curated

sequences are added into the seed which

improves its quality over time.

Although all new sequences incorporated into

the LTP come from an ARB-SILVA database,

they are again manually revised to further correct

misplaced bases and to check highly variable

regions. Before tree calculation, the complete

alignment is shifted using maximum frequency

filters (Table 2) that remove dubious orthologous

positions caused by sequencing errors and

hypervariability. Typically, LTP phylogenetic

trees are calculated using the 40 % maximum

frequency filter.

All-Species Living Tree Project, Fig. 2 Annual distri-

bution of the 16S rRNA gene sequence length and % of

ambiguities in the 9,279 type-strain sequences

corresponding to LTP release s108. Gene sequence length

is given by the SILVA parameter “nuc_gene_slv” which

cuts off the bases at the extremes when beyond the

E.coli’s16S rRNA gene limits. Percentage of ambiguities

is given by the SILVA descriptor “ambig_slv”
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The first 16S rRNA-based phylogenetic tree

was calculated for the release LTPs93 (Yarza

et al. 2008). The sequence dataset consisted of

6,728 type-strain sequences plus 3,247

supporting sequences belonging to non-type

strains used to reinforce underrepresented groups

and to stabilize the topology. The multiple align-

ment of 9,975 16S rRNA gene sequences was

submitted to different treeing methodologies

including neighbor-joining, maximum likeli-

hood, and maximum parsimony, all tested with

several filters (30 %, 40 %, and 50 % maximum

frequency filters) and all implemented in the

ARB software package (Ludwig et al. 2004).

A high degree of congruence was observed

among them. The tree considered as optimal

was a 40 %-filtered maximum likelihood recon-

struction calculated using the RAxML algorithm

(Stamatakis 2006), with the GTRGAMMA cor-

rection, with 100 bootstrap replicates, in a 5-node

and 20-processor parallel environment. The last

de novo phylogenetic reconstruction appears in

the release LTPs108 and was similarly calcu-

lated; tree calculation was run with a dataset of

12,166 16S rRNA gene sequences.

The phylogenetic tree calculated using the 23S

rRNA gene was particularly challenging due to

data shortage in many groups. In order to set up

a reliable phylogeny based on 23S rRNA data, we

defined a core dataset made of high-quality

sequences (type and non-type strains). The strin-

gent quality filtering approach ended with around

2,000 high-quality and nonredundant LSU

sequences. This dataset was submitted to

a maximum likelihood reconstruction in combi-

nation with a 50 % maximum frequency filter

allowing 2,463 positions of the entire alignment.

The missing partial or lower-quality type-

strain sequences were added to the tree using

the ARB parsimony tool with the option for

keeping the initial topology while inserting

additional data.

The groups shown in the trees are defined by

recognizing the type members and according to

the taxonomic classification. The trees are care-

fully compared against previously reported topol-

ogies and current taxonomic classifications

(Yarza et al. 2010). All the additional supporting

sequences used to reconstruct the phylogeny are

removed from the final tree by keeping its topol-

ogy intact. Within the ARB database, the type

species are labeled with a distinct color for easy

recognition and tree handling.

Files Provided by the LTP

As a taxonomic tool, the LTP must be understood

as a collection of reference materials, all publicly

available at the project’s Web page (http://www.

arb-silva.de/projects/living-tree), including:

1. Release documentation: (I) readme file with

a release description and (II) PDF document

describing the metadata fields introduced by

the LTP

2. Tables: (I) new entries with outdated submis-

sion names and (II) list of changes in the

dataset: added/deleted/modified entries

3. Export filter: ARB-export filter (.eft format) to

extract data from LTP-ARB databases

4. Databases: (I) complete ARB databases

including sequences, alignments, metadata,

filters, and trees and (II) datasets in CSV for-

mat including LTP metadata

All-Species Living Tree Project, Table 2 Maximum frequency filters implemented into the LTPs 108ARB database

Filter name Start position Stop position %mina %maxa No. of positionsb

LTPs108_ssu_10 0 50,000 10 100 1,433

LTPs108_ssu_20 0 50,000 20 100 1,433

LTPs108_ssu_30 0 50,000 30 100 1,432

LTPs108_ssu_40 0 50,000 40 100 1,390

LTPs108_ssu_50 0 50,000 50 100 1,288

aMinimum and maximum sequence identity. For tree reconstructions, only columns are taken into account if they have a

positional conservation above the respective minimum values
bNumber of homologous positions (columns) taken into account for tree reconstructions
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5. Alignments: (I) gapped exports in multi-

FASTA format and (II) compressed exports

in multi-FASTA format

6. Phylogenetic trees: (I) collapsed overviews in

PDF format showing the distinct phyla,

(II) full SSU (more than 80 pages long) and

LSU trees in PDF format, and (III) full trees in

NEWICK format, including group names and

branch lengths

Side Research

Sequencing the Orphan Species

Initiative (SOS)

The understanding that around 6 % of all classi-

fied species were missing from the ribosomal

SSU sequence catalogues motivated us to start

the “Sequencing the Orphan Species” (SOS) ini-

tiative (Yarza et al. 2013). During 3 years of

work, the LTP team coordinated a network of

12 partner researchers and culture collections

(ATCC, BZF, CECT, CIP, CCUG, DSMZ,

JCM, ICMP, BCCM/LMG, MMG, NBRC,

NCCB) in order to improve this situation by

(re)sequencing the 16S rRNA gene of the

“orphan” species. As a result, 351 type strains

appear represented now by a good-quality SSU

gene sequence in the databases. They comprise

representatives of 14 bacterial and archaeal

phyla, 76 type species, and 78 pathogenic spe-

cies. However, 201 type strains could not be

accessed as cultivable strains were not available

at recognized culture collections. They represent

10 phyla and 17 type species.

Taxonomic Boundaries

In order to understand how the higher taxonomic

categories could be circumscribed by means of

a sequence identity threshold, we performed

a statistical procedure to get the lowest similarity

found within the members of a certain taxon

(Yarza et al. 2008, 2010). By taking into account

all the taxa at a particular taxonomic rank, we

obtained general lower cutoff values of sequence

identity for genus, family, and phylum based on

16S rRNA and 23S rRNA. In general, minimum

16S rRNA gene sequence identities of

94.9 % � 0.4, 87.5 % � 1.3, and 78.4 % � 2.0

lead to the circumscription of a new genus, fam-

ily, and phylum, respectively. For 23S rRNA

genes, these values are slightly different:

93.2 % � 1.3 (genus), 87.7 % � 2.5 (family),

and 75.3 % (phylum). As shown by the low

errors, historically used criteria for genera, fam-

ilies, and phyla are quite homogeneous and do not

lead to unambiguous circumscriptions. These

cutoffs should be used with caution and always

as a complementary approach. They are espe-

cially recommended for prospective studies in

clone libraries and as additional support for the

circumscription of new taxa or emendation of

existing ones.

Summary

SSU and LSU databases made by the All-Species

Living Tree Project (LTP; http://www.arb-silva.

de/projects/living-tree) provide high-quality

nearly full-length sequences of the type strains

of all Archaea and Bacteria with validly

published names. Setting up a type-strain

sequences database included the sieving of the

public DNA databases whose sequence entries

often appeared outdated or mistaken at their tax-

onomic metadata. It involved the initial manual

cross-check of nearly 14,000 SSU and 6,000 LSU

sequence entries against the catalogue of distinct

species with validly published names retrieved

from LPSN. Databases are complemented with

manually curated metadata, manually curated

alignments, and state-of-the-art phylogenetic

reconstructions (in contrast to other similar

resources like the EzTaxon (Santamaria

et al. 2012)). The LTP team wants to remark

that the aim of the project is not to reconstruct

the currently described species genealogy with

total fidelity but to provide a curated taxonomic

tool for the scientific community. Our small but

very representative SSU and LSU datasets may

be used as a reference for identification and clas-

sification purposes in several fields of applica-

tion, for example, facilitating the collection of

sequences for the reconstruction of taxa genealo-

gies (Cousin et al. 2012), enabling fast and
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reliable taxonomic affiliations in rRNA surveys

(Santamaria et al. 2012), or serving as reference

datasets for testing bioinformatic procedures

(Mizrahi-Man et al. 2013).

Cross-References

▶Culture Collections in the Study of Microbial

Diversity, Importance

▶ Phylogenetics, Overview

▶ SILVA Databases
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Definition

antiSMASH (Medema et al. 2011) is a web server

and a stand-alone software to identify, annotate,

and compare gene clusters that encode the bio-

synthesis of secondary metabolites in bacterial

and fungal genomes. antiSMASH offers a wide
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range of options to identify and analyze biosyn-

thetic gene clusters, including protein domain

analysis of the large multi-domain enzymatic

assembly lines involved, prediction of core

chemical structures of their end compounds, and

multiple cluster alignments to a database of all

currently sequenced gene clusters.

The antiSMASH web server can be found at

http://antismash.secondarymetabolites.org.

Introduction

Microbial secondary metabolites are of great

interest to society because of their diverse bio-

logical activities that are interesting starting

points for drug development. Many of them are

already used as antibiotics, antitumor agents, or

cholesterol-lowering drugs (Hutchinson and

McDaniel 2001; Fischbach and Walsh 2009).

Automated computational identification of gene

clusters in newly sequenced genomes is becom-

ing a cornerstone of genome-based drug discov-

ery, due to the affordability of sequencing large

numbers of genomes from microorganisms that

potentially produce novel secondary metabolites

(Walsh and Fischbach 2010).

Functionalities

Gene Cluster Detection

antiSMASH detects a wide range of different

types of biosynthetic gene clusters, including

those encoding the pathways toward polyketides

(PKs), nonribosomal peptides (NRPs), terpenoids,

ribosomal peptides, aminoglycosides, and

non-NRP siderophores. The detection is

performed by screening the gene sequences from

the input against a library of profile Hidden Mar-

kovModels (pHMMs) (Eddy 2011), each ofwhich

is specific for genes characteristic for a certain

gene cluster type, and passing the results through

a hierarchical logic filter. A second detection algo-

rithm is also run, which detects genomic regions

that are enriched in Pfam domains (Finn

et al. 2010) linked to secondary metabolism.

Protein Domain Analysis of Polyketide

Synthases and Nonribosomal Peptide

Synthetases

PKs and NRPs are synthesized by large

megasynthase enzymes containing a multitude

of protein domains, such as condensation

(C) and adenylation (A) and PCP-binding

domains in nonribosomal peptide synthetases

(NRPSs), ketosynthase (KS), and acyltransferase

(AT) and ACP-binding domains in polyketide

synthases (PKSs) (Fischbach and Walsh 2006).

antiSMASH contains a library of pHMMs that

can recognize all these protein domains as well

as distinguish between various subtypes of these

domains. In the antiSMASH output, the domain

structures of any NRPSs or PKSs encoded in

a gene cluster are visualized, and several down-

stream analysis options are provided for each

domain (Fig. 1).

Core Chemical Structure Prediction

When a secondary metabolite biosynthesis

gene cluster is detected, one of the key questions

of course is what kind of chemical structure it

produces. For NRPs and PKs, antiSMASH

is able to already give a first approximation of

the core chemical structure of the end compound

(Fig. 2). To do so, it uses several substrate

specificity prediction methods (Yadav et al.

2003; Minowa et al. 2007; Röttig et al. 2011)

that are based on the amino acid sequences of the

A domains of NRPSs and the AT domains of

PKSs. To infer the sequential arrangement of

the predicted substrates of the A/AT domains

in the resulting polyketide or peptide, the

order of the PKS enzymes in a multimodular

assembly line is predicted using their estimated

docking domain binding affinities (Yadav

et al. 2009) or, alternatively, colinearity of the

PKS or NRPS genes with their enzymes is

assumed.

Comparative Analysis of Gene Clusters

In order to understand the architecture and func-

tion of a secondary metabolite biosynthesis

gene cluster, much is gained by examining it

within its evolutionary context through the
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comparison with related gene clusters from spe-

cies across the tree of life. To facilitate this,

antiSMASH hosts a regularly updated database

of gene clusters it has detected in all nucleotide

sequences present in GenBank. antiSMASH

then combines multiple BlastP runs into

a comparative search of every identified gene

cluster against all other known gene clusters.

This is used to generate a multiple gene cluster

alignment (Fig. 3), which can aid the biologist

in assessment of the novelty of the gene cluster,

detecting the borders of the gene cluster and

identifying the conserved multigene modules

that constitute its building blocks.

Secondary Metabolism-Specific Gene

Family Analysis

Most genes involved in the biosynthesis of sec-

ondary metabolite have (close) homologues

with similar functions in other secondary

metabolite biosynthesis gene clusters. This can

be used to infer the functions of the genes
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residing in the biosynthetic gene cluster based

on sequence homology. antiSMASH simplifies

this process by categorizing the genes of

every identified gene cluster into secondary

metabolism-specific gene families and automat-

ically generating approximate phylogenetic

trees of each gene in the context of its gene

family.

Genome-Wide Pfam and Blast Analysis

Finally, antiSMASH also offers the possibility

(transferred from CLUSEAN; Weber et al.

2009) to do a comprehensive analysis of all

genes within a submitted genome, identifying

Pfam matches and running Blast for each gene

against a database of all bacterial and fungal

protein sequences.

Stand-Alone Version

Stand-alone versions of antiSMASH are avail-

able for download for Windows, Mac OS X, and

Ubuntu Linux. Additionally, several related

scripts are available from the antiSMASH

website. An EMBL formatting script can be

downloaded to format raw FASTA sequences

together with a text file containing gene

antiSMASH, Fig. 3 Example of a multiple gene cluster alignment by antiSMASH, showing identified homologue

clusters of the query gene cluster
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annotations into an EMBL file that can be sub-

mitted to antiSMASH. Also, a script is available

which allows running antiSMASH on multiple

files, in batch mode.

Development

antiSMASH is still under active development.

Some features projected for the next release are

batch input on the web server, protein sequence

input, and subclass prediction for enzyme classes

like terpene synthases and trans-AT PKSs.

Feature requests, bug reports, or other questions/

suggestions can be sent to the development team

via the online contact form on the antiSMASH

website.

Related Tools

Several other software tools for the study of sec-

ondary metabolism have been published. For

example, ClustScan (Starcevic et al. 2008) and

NP.searcher (Li et al. 2009) can both be used to

detect bacterial polyketide and NRP biosynthesis

gene clusters. The same is the case for CLUSEAN

(Weber et al. 2009), the pipeline which has now

been integrated entirely into antiSMASH. For the

analysis of fungal sequences, SMURF (Khaldi

et al. 2010) offers a gene cluster detection potential

similar to that of antiSMASH. Structural analysis

of polyketide synthases can be performed with

the SBSPKS suite (Anand et al. 2010). Finally,

draft genomes with many small contigs and

metagenomes with fragments too small for gene

cluster detection can be scrutinized with NaPDoS

(Ziemert et al. 2012) in order to find protein

domains related to secondary metabolite biosyn-

thesis and analyze these phylogenetically.

Summary

antiSMASH is an easy-to-use web server for the

detection of secondary metabolite biosynthesis

gene clusters. Various functionalities –

comparative, phylogenomic, enzymatic, etc. –

are integrated in one single pipeline, making it

straightforward for genomicists and natural prod-

uct researchers to study the biosynthetic potential

of any organism.

Cross-References

▶Bacteriocin Mining in Metagenomes

▶CLUSEAN, Overview

▶Mining Metagenomic Datasets for Antibiotic

Resistance Genes

▶ Phylogenetics, Overview

References

Anand S, Prasad MV, Yadav G, Kumar N, Shehara J,

Ansari MZ, Mohanty D. SBSPKS: structure based

sequence analysis of polyketide synthases. Nucleic

Acids Res. 2010;38:W487–96.

Eddy SR. Accelerated profile HMM searches. PLoS

Comput Biol. 2011;7:e1002195.

Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington

JE, Gavin OL, Gunasekaran P, Ceric G, et al. The Pfam

protein families database. Nucleic Acids Res. 2010;38:

D211–22.

FischbachMA,Walsh CT. Assembly-line enzymology for

polyketide and nonribosomal peptide antibiotics:

logic, machinery, and mechanisms. Chem Rev.

2006;106:3468–96.

Fischbach MA, Walsh CT. Antibiotics for emerging path-

ogens. Science. 2009;325:1089–93.

Hutchinson CR, McDaniel R. Combinatorial biosynthesis

in microorganisms as a route to new antimicrobial,

antitumor and neuroregenerative drugs. Curr Opin

Investig Drugs. 2001;2:1681–90.

Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC,

Wolfe KH, Fedorova ND. SMURF: genomic mapping

of fungal secondary metabolite clusters. Fungal Genet

Biol. 2010;47:736–41.

Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S,

Sherman DH. Automated genome mining for natural

products. BMC Bioinformatics. 2009;10:185.

Medema MH, Blin K, Cimermancic P, de Jager V,

Zakrzewski P, Fischbach MA, Weber T, Takano E,

Breitling R. antiSMASH: rapid identification, annota-

tion and analysis of secondary metabolite biosynthesis

gene clusters in bacterial and fungal genome

sequences. Nucleic Acids Res. 2011;39:W339–46.

antiSMASH 37 A

A

http://dx.doi.org/10.1007/978-1-4899-7478-5_689
http://dx.doi.org/10.1007/978-1-4899-7478-5_706
http://dx.doi.org/10.1007/978-1-4899-7478-5_729
http://dx.doi.org/10.1007/978-1-4899-7478-5_729
http://dx.doi.org/10.1007/978-1-4899-7478-5_708


Minowa Y, Araki M, Kanehisa M. Comprehensive analy-

sis of distinctive polyketide and nonribosomal peptide

structural motifs encoded in microbial genomes. J Mol

Biol. 2007;368:1500–17.
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Synonyms

Function-based screening, Metagenomic biomol-

ecule, Metagenomic library, Metagenomics,

Next-generation sequencing, Sequence-based

screening

Definition

Metagenomics comprises the culture-

independent and DNA-based analysis of entire

microbial communities and complements

cultivation-based analysis of microorganisms.

Metagenomic approaches allow comprehensive

insights into phylogenetic and functional diver-

sity of complex microbial consortia present in

moderate as well as extreme environments on

Earth. The introduction of next-generation

sequencing technologies enabled cost-effective

high-throughput sequencing of metagenomic

DNA molecules resulting in increased resolution

of microbial community analysis. In addition,

screening of metagenomic libraries led to the

identification of numerous novel biomolecules

from various environments such as soil, seawater,

or glacial ice.

Introduction

The immensely manifold microbial niches on

Earth comprise an extraordinarily high abun-

dance and diversity of prokaryotic and eukaryotic

microorganisms. The human body is colonized

by a wide variety of microbes representing all

three domains of life. The entirety of these micro-

bial cells (the human microbiome) that is often

described as an additional organ exceeds the

number of human cells by at least an order of

magnitude and outnumbers human genes bymore

than 100-fold (Li et al. 2012; Weinstock 2012).

Also in extreme environments such as hydrother-

mal vents, sea ice, or deep inside the Earth’s

crust, various microorganisms could be detected.

For example, a phylogenetically diverse and met-

abolically active microbial assemblage was iden-

tified in the brine of an ice-sealed Antarctic lake

(Murray et al. 2012). The microorganisms

existing in this aphotic ecosystem withstand

a temperature of �13 �C, anoxic conditions, and
high salinity.

Currently, less than 1 % of the microorgan-

isms on Earth are readily culturable under labo-

ratory conditions. To investigate the high

percentage of uncultured microbes, different
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metagenomic approaches can be routinely

applied. Metagenomics allows the direct study

of the collective genomes present in microbial

ecosystems (Handelsman 2004). This approach

significantly expanded our knowledge on micro-

bial phylogenetic and functional diversity and

enabled the discovery of numerous previously

unknown biomolecules. In the recent history

of metagenomics, especially next-generation

sequencing techniques, allowing cost-effective

and rapid decoding of metagenomic DNA, were

applied to analyze microbial populations. As

a consequence, a number of bioinformatic tools

to evaluate and compare comprehensive high-

throughput metagenomic data have been devel-

oped in the last few years.

In this review, an overview of traditional and

recent metagenomic research approaches, associ-

ated future challenges, and a short description of

related meta-omic studies will be given.

Microbial Phylogenetic and Functional
Diversity Determination

Small-subunit rRNA genes, universally distrib-

uted across prokaryotic and eukaryotic organ-

isms, can be considered as evolutionary clocks

enabling phylogenetic analysis. Most commonly,

metagenome-derived 16S rRNA and 18S rRNA

genes are used to phylogenetically characterize

microbial communities. Furthermore, other con-

served genes such as recA, rpoB, HSP70, or

EF-Tu allow phylogenetic assignments (Ludwig

and Klenk 2001). These genes can be investi-

gated by applying traditional molecular

approaches including fingerprinting methods

such as denaturing gradient gel electrophoresis

and terminal restriction fragment length

polymorphism analysis or Sanger sequencing.

A significant drawback of the Sanger sequencing-

based analysis of microbial communities is the

time-consuming and labor-intensive nature of

this approach, as well as the required construction

of clone libraries.

More recently, next-generation sequencing

platforms were used to decode metagenomic

DNA. Currently, the following next-generation

sequencing technologies are available: sequencing

by ligation (SOLiD – Applied Biosciences/Life

Technologies), sequencing by synthesis (Solexa/

Illumina), semiconductor chip sequencing (Ion

Torrent/Life Technologies), pyrosequencing

(454/Roche), and single-molecule sequencing

(Oxford Nanopore Technologies, SMRT – Pacific

Biosciences). Compared to Sanger sequencing,

these cloning-independent techniques allow the

generation of far more sequence data per run.

Thus, microbial diversity comparisons between

different environmental samples, requiring repli-

cated data and statistical analysis, as well as

deep analysis of highly complex microbial com-

munity structures, are possible. Currently, often

tens to hundreds of thousands partial metagenomic

small-subunit rRNA gene sequences are produced

using next-generation sequencing platforms.

In a recent pyrosequencing-based 16S rRNA

gene survey, a total of 41,141 bacterial and

30,651 archaeal sequences were analyzed to

investigate prokaryotic diversity in Yunnan

and Tibetan hot springs (Song et al. 2013).

To (pre-)process small-subunit rRNA gene

sequence datasets, various tools, software pack-

ages, analytical web servers, and virtual instances

can be used (Gonzalez and Knight 2012).

The QIIME package (Caporaso et al. 2010)

provides workflows to extensively analyze

high-throughput amplicon-based sequence data

starting with raw sequences. Nevertheless, the

avoidance of marker gene amplification bias by

applying direct sequencing of metagenomic

DNA instead of amplicon-based sequencing

allows the most exact taxonomic assessment

(Simon and Daniel 2011). For further improve-

ment of microbial diversity and abundance esti-

mation, Kembel et al. (2012) recently introduced

an approach, which incorporates 16S rRNA gene

copy number information.

To identify the taxonomic affiliation of all

sequences derived from metagenomic DNA,

a process called binning can be carried out.

Within binning procedures, sequences of

a metagenomic dataset sharing the same taxo-

nomic origin are “binned” (grouped).

Composition-based binning is based on con-

served genomic features such as dinucleotide

Approaches in Metagenome Research: Progress and Challenges 39 A

A



frequencies, GC content, and synonymous codon

usage, whereas similarity-based binning makes

use of sequence homology. Among others,

PhyloPythiaS, introduced by Patil et al. (2011),

represents an appropriate application to perform

composition-based binning. With respect to

similarity-based binning, typically searches

against reference databases (e.g., National Center

for Biotechnology Information databases) are

performed using alignment tools such as

BLAST+ (Camacho et al. 2009). Subsequently,

BLAST results can be interpreted by applying

software such as MEGAN (Huson et al. 2011).

Due to the often very high diversity of micro-

bial communities, assembly of metagenome-

derived sequences is challenging. In a recent

metagenomic survey of honey bee gut

microbiota, de novo assembly of 81,343,096

Illumina paired-end reads resulted in 54,700 scaf-

folds of contigs (total length, 76.6 Mb) (Engel

et al. 2012). Similar to the approach conducted by

Engel et al. (2012), single-genome assemblers

were used for metagenome assembly with modi-

fied settings. Recently, a single-genome assem-

bler (Velvet) has been extended to enable the

assembly of short metagenomic reads (Namiki

et al. 2012). This new de novo assembler

(MetaVelvet) generated significantly higher N50

scores, a parameter that evaluates assembly qual-

ity, than analyzed single-genome assemblers for

simulated datasets.

Based on assemblies or individual

metagenomic sequence reads, gene prediction,

annotation, and reconstruction of pathways can

be carried out to assess the functional potential

encoded by metagenomes. Consecutive

processing of these steps is provided by

a number of web-based tools like MG-RAST

(Meyer et al. 2008). These tools utilize resources

of reference databases such as SEED (Overbeek

et al. 2005) and KEGG (Kanehisa et al. 2008)

to link biological information to predicted

genes. In a recent survey including metagenomic

methods, the functional potential of Arctic

Thaumarchaeota was investigated (Alonso Sáez

et al. 2012). By analyzing a metagenome derived

from a Southeast Beaufort Sea sample collected

during Arctic winter, Alonso Sáez et al. (2012)

identified thaumarchaeal pathways for ammonia

oxidation. A number of other Thaumarchaeota
are also capable of ammonia oxidation, but unex-

pectedly these Arctic thaumarchaeal organisms

harbored a high abundance of genes involved in

urea transport and degradation.

Metagenomic Biomolecule Discovery

To access the large pool of unexplored biomole-

cules, microbial community DNA has been

extracted and metagenomic libraries have been

constructed. Small-insert and large-insert

metagenomic libraries can be screened to identify

novel biomolecules. For the construction of

small-insert libraries containing metagenomic

DNA � 15 kb, plasmids are appropriate vectors,

whereas cosmids, fosmids, and bacterial artificial

chromosomes (BACs) can be used for cloning of

large metagenomic DNA molecules (cosmids

and fosmids, �40 kb; BACs, 100–200 kb).

Metagenomic libraries from different microbial

habitats such as glacier ice, digestive tracts of

animals, soil, hot springs, or seawater have

already been constructed and successfully

screened for novel biomolecules (see, e.g.,

Nacke et al. 2012). Some of these biomolecules

exhibit valuable characteristics for industrial

applications such as thermal stability,

halotolerance, and activity under acidic or alka-

line conditions. In a recent metagenomic

approach, Sulaiman et al. (2012) isolated a gene

encoding a novel cutinase homolog designated

LC-cutinase with polyethylene terephthalate-

degrading activity from a leaf-branch compost

fosmid library. The enzyme showed higher spe-

cific polyethylene terephthalate-degrading activ-

ity than previously reported bacterial and fungal

cutinases. Thus, LC-cutinase is a potent candi-

date for industrial applications, i.e., in textile

industry. In general, two different metagenomic

screening approaches for the identification of

novel biomolecules can be distinguished:

function-based screening and sequence-based

screening.
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Principle and Variations of
Function-Driven Screens

To perform function-driven screening, the

construction of small-insert or large-insert

metagenomic libraries is required. A broad array

of different function-based screening approaches

can be applied using these libraries. The pheno-

typic insert detection (PID) is the most frequently

applied screening strategy. Metagenomic library-

containing clones expressing target genes are

identified based on phenotypic characteristics.

This method has been applied to identify novel

lipolytic genes and gene families from German

forest and grassland soil samples using tributyrin

as a screening substrate (Nacke et al. 2011).

A total of 37 lipolytic clones, encoding novel

lipases and esterases, which could be assigned

to five different known families and two puta-

tively new families of lipolytic enzymes, were

identified by halo formation on indicator agar

plates. The potential to identify entirely novel

target genes is an important advantage of

function-driven screening approaches. Modu-

lated detection (MD) represents another

commonly applied strategy to perform function-

based screening. Only if a certain gene product is

expressed by a metagenomic library-containing

host strain, it can grow under selective condi-

tions. Recently, novel acid resistance genes

were derived from planktonic and rhizosphere

microbial communities of the Tinto River

(Spain) using this strategy (Guazzaroni

et al. 2013). Fifteen genes, mainly encoding

putative proteins of unknown function,

conferred acid resistance to the host strain

Escherichia coli. Moreover, substrate-induced

gene expression (SIGEX), product-induced gene

expression (PIGEX), and metabolite-regulated

expression (METREX) screening strategies

allow the identification of target genes from

metagenomic libraries (Simon and Daniel

2009). Recently, Wang et al. (2012) suggested

biosensor-based genetic transducer (BGT) sys-

tems as an alternative and sensitive approach to

screen for gene clusters whose expression pro-

duce small molecules that activate the employed

biosensors. Nevertheless, all of these function-

based screening approaches share one significant

disadvantage: the dependence of target gene pro-

duction on the expression machinery of the

metagenomic library host.

Principle and Variants of
Sequence-Based Screening

Conserved regions of genes or proteins enable

sequence-driven screening approaches. Based on

these regions degenerate primers can be designed

and fragments of target genes amplified. For

example, novel biphenyl dioxygenase DNA seg-

ments encoding active site residues were obtained

from polychlorobiphenyl-contaminated soils

using this strategy (Standfuß-Gabisch et al.

2012). After sequencing of an amplified partial

target gene, it can be decoded completely using

primer walking and extracted environmental DNA

or a metagenomic library as a template. In this

way, an entire xylose isomerase gene (xym1) has

been derived from a soil metagenomic library

(Parachin and Gorwa-Grauslund 2011). The gene

product of xym1 consisted of 443 amino acids and

was most similar (83 % identity) to a xylose isom-

erase from Sorangium cellulosum. Additionally,

novel complex polyketide and nonribosomal pep-

tide biosynthesis gene cluster that often exceed

average insert sizes of large-insert metagenomic

libraries can be discovered by using degenerate

primers and subsequent chromosome walking

(Piel 2011). The potential to identify genes of

interest even if they are not expressed in

a metagenomic library host represents a major

advantage of sequence-based screening, but only

novel variants of already-known gene or protein

families can be detected by this method.

Future Challenges in Metagenomic
Research and Related Meta-omic
Approaches

One of the major requirements to combine and

compare metagenomic studies conducted by
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research groups worldwide is the definition and

acceptance of minimum standards in experimental

design. The same applies to metatranscriptomics,

metaproteomics, and metabolomics. In this way,

comparison and combination of results obtained

from the different meta-omic approaches are fea-

sible. Metatranscriptomics, metaproteomics, and

metabolomics comprise the study of the collective

gene transcripts, expressed proteins, and metabo-

lites, respectively, generated by the microorgan-

isms within an ecosystem (Nacke et al. 2014;

Hettich et al. 2012; Patti et al. 2012). The conse-

quent application and combination of appropriate

meta-omic approaches will lead to an enormous

extension of knowledge on the gene structure,

diversity, activity, and responses of microbial

communities on an ecosystem level. Furthermore,

the rapid growth of meta-omic technologies will

continuously demand for progress in the field of

bioinformatics. Thus, further development and

linkage of meta-omic analysis tools will be impor-

tant in the future. In addition, the application and

improvement of culture-based methods will be

still valuable in the future to extend the number

of available reference genomes allowing mapping

of metagenomic data. In this context, the young

discipline of single cell genomics has potential to

play a complementary role by continuously con-

tributing novel reference genomes.

Summary

The introduction of metagenomics allowed

culture-independent analysis of microbial

populations in complex ecosystems. Subse-

quently, other culture-independent meta-omic

disciplines including metatranscriptomics,

metaproteomics, and metabolomics were

established. Metagenomics provided insights

into the enormous phylogenetic and functional

diversity of microbial communities within vari-

ous environments on Earth. The increasing num-

ber of next-generation sequencing technologies

led to a more comprehensive and cost-effective

assessment of the information encoded by

metagenomic DNA. Metagenomic approaches

comprising the construction and screening of

metagenomic libraries resulted in identification

of previously unknown biomolecules, including

biomolecules with industrially relevant

characteristics.
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microbial diversity across the human microbiome.

PLoS ONE. 2012;7:e32118.

Ludwig W, Klenk HP. Overview: a phylogenetic back-

bone and taxonomic framework for procaryotic sys-

tematics. In: Garrity GM, Boone DR, Castenholz RW,

editors. Bergey’s manual of systematic bacteriology,

Vol. 1. 2nd ed. New York: Springer; 2001. p. 49–65.

Meyer F, Paarmann D, D’Souza M, et al. The

metagenomics RAST server – a public resource for

the automatic phylogenetic and functional analysis of

metagenomes. BMC Bioinforma. 2008;9:386.

Murray AE, Kenig F, Fritsen CH, et al. Microbial life at

�13 �C in the brine of an ice-sealed Antarctic lake.

Proc Natl Acad Sci USA. 2012;109:20626–31.

Nacke H, Will C, Herzog S, et al. Identification of novel

lipolytic genes and gene families by screening of

metagenomic libraries derived from soil samples of

the German biodiversity exploratories. FEMS

Microbiol Ecol. 2011;78:188–201.

Nacke H, Engelhaupt M, Brady S, et al. Identification and

characterization of novel cellulolytic and

hemicellulolytic genes and enzymes derived fromGer-

man grassland soil metagenomes. Biotechnol Lett.

2012;34:663–75.

Nacke H, Fischer C, Th€urmer A, et al. Land use type

significantly affects microbial gene transcription in

soil. Microb Ecol. 2014;67:919–30.

Namiki T, Hachiya T, Tanaka H, et al. MetaVelvet: an

extension of Velvet assembler to de novo metagenome

assembly from short sequence reads. Nucleic Acids

Res. 2012;40:e155.

Overbeek R, Begley T, Butler RM, et al. The subsystems

approach to genome annotation and its use in the

project to annotate 1000 genomes. Nucleic Acids

Res. 2005;33:5691–702.

Parachin NS, Gorwa-Grauslund MF. Isolation of xylose

isomerases by sequence- and function-based screening

from a soil metagenomic library. Biotechnol Biofuels.

2011;4:9.

Patil KR, Haider P, Pope PB, et al. Taxonomic

metagenome sequence assignment with structured out-

put models. Nat Methods. 2011;8:191–2.

Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics:

the apogee of the omics trilogy. Nat RevMol Cell Biol.

2012;13:263–69.

Piel J. Approaches to capturing and designing biologically

active small molecules produced by uncultured

microbes. Annu Rev Microbiol. 2011;65:431–53.

Simon C, Daniel R. Achievements and new knowledge

unraveled by metagenomic approaches. Appl

Microbiol Biotechnol. 2009;85:265–76.

Simon C, Daniel R. Metagenomic analyses: past and future

trends. Appl Environ Microbiol. 2011;77:1153–61.

Song ZQ, Wang FP, Zhi XY, et al. Bacterial and archaeal

diversities in Yunnan and Tibetan hot springs, China.

Environ Microbiol. 2013;15:1160–75.

Standfuß-Gabisch C, Al-Halbouni D, Hofer B. Character-

ization of biphenyl dioxygenase sequences and activ-

ities encoded by the metagenomes of highly

polychlorobiphenyl-contaminated soils. Appl Environ

Microbiol. 2012;78:2706–15.

Sulaiman S, Yamato S, Kanaya E, et al. Isolation of

a novel cutinase homolog wit polyethylene

terephthalate-degrading activity from leaf-branch

compost by using a metagenomic approach. Appl

Environ Microbiol. 2012;78:1556–62.

Wang Y, Chen Y, Zhou Q, et al. A culture-independent

approach to unravel uncultured bacteria and functional

genes in a complex microbial community. PLoS ONE.

2012;7:e47530.

Weinstock GM. Genomic approaches to studying the

human microbiota. Nature. 2012;489:250–6.

Arbuscular Mycorrhizal Fungi
Assemblages in Chernozems

Chantal Hamel, Luke D. Bainard and Mulan Dai

Semiarid Prairie Agricultural Research Centre,

Agriculture and Agri-Food Canada, Swift

Current, SK, Canada

Synonyms

Diversity, arbuscular mycorrhizal fungi, Cana-

dian Prairie, Chernozem, land use.

Definition

AM fungi are obligate plant symbionts that form

the phylum Glomeromycota. These fungi contrib-

ute to plant nutrient uptake, influence soil biotic

and abiotic environments, and provide important

ecosystem services. 454-pyrosequencing of

amplicons from metagenomic DNA revealed

the distribution of AM fungi in major Canadian

Chernozem great groups as influenced by land use

and crop management.

Introduction

AM fungi form a mycorrhizal symbiosis with the

roots of the majority of land plants. They have
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coevolved with plants over 450 Ma to produce

today’s mycorrhiza, which is an organ special-

ized in the extraction of soil nutrients. As such,

AM fungi are seen as a key stone of agricultural

sustainability (Garg and Chandel 2010).

World grain, pulse, and biofuel crop produc-

tion mainly occurs on deep (typically

>18–25 cm) warm-colored soils rich in humus

(>0.6 % organic carbon) and weatherable min-

erals, with high levels of base saturation (>50 %)

and calcium as the main exchangeable cation

(Durán et al. 2011). These soils have similar

properties but have different names in other soil

classification systems. They are Chernozems in

Canada, Ukraine, and Russia; Mollisols in the

USA and South America; Isohumosols or Black

Soils in China; and Chernozems, Kastanozems,

and Phaeozems according to the FAO (Liu

et al. 2012). These soils have typically developed

under condition of moisture deficit and grassland

vegetation in temperate regions around the globe.

They mainly occur in a band across Eastern

Europe and Central Asia, in northeast China,

from south-central Canada down to the Gulf of

Mexico, and over most of Uruguay and part of

Argentina.

Tackling the Complexity of Soil
Biodiversity

Soil hosts an extremely high level of microbial

diversity (Young and Crawford 2004). However,

high-throughput next-generation sequencing now

allows generation of the massive sequence data

required to characterize soil microbial diversity.

Amplicon sequencing is preferred over whole

genome sequencing for the study of the taxo-

nomic diversity of targeted microbial groups.

The 454 FLX and 454 FLX + technologies

allow the sequencing of DNA amplicons up to

400 and 800 bp in length, respectively. Such long

sequences contain sufficient taxonomic informa-

tion for the characterization of microbial commu-

nities and their use conveniently eliminates the

need for sequence assembly.

Pyrosequencing of amplicons and bioinfor-

matic analysis of sequence data yield the profile

of operational taxonomic units (OTU) of the tar-

get microbial group in a soil sample. The concept

of an OTU is useful in soil microbiology as the

majority of microbial species are still

undescribed. OTUs serve as a proxy for species

making it possible to measure and describe soil

microbial diversity. In addition, OTUs can be

identified by comparison with known sequences

in public databases such as GenBank and

MaarjAM. AM fungi have been difficult to

study due to their obligate biotrophy and inability

to grow in pure culture. However, polymerase

chain reaction (PCR) made possible the amplifi-

cation of DNA from their spores and enabled the

molecular characterization and classification of

taxa within the Glomeromycota (Schuessler

2013).

Fungal diversity is commonly assessed based

on the internal transcribed spacer (ITS) of the

ribosomal RNA gene. However, abundant SSU

rRNA gene sequences of AM fungi are found in

databases due to the traditional use of this region

for the Glomeromycota. Several primers sets pro-

ducing taxonomically informative amplicons

short enough for use with first- and next-

generation molecular techniques have been used

in ecological studies of AM fungi.

The AM fungi have a patchy distribution in

soil (Hart and Klironomos 2003). Thus in order to

capture their diversity, multiple samples must be

taken at a study site. A composite sample is

usually made by pooling and homogenizing all

the samples from a sampling site. The distribu-

tion of organisms varies with soil depth, thus

sampling depth also matters. The AM fungi are

normally found within the rooting depth.

Arbuscular Mycorrhizal Fungi in the
Canadian Chernozems

AM fungal communities in the Canadian Prairie

Chernozem soils are composed of a few dominant

and a large number of subordinate taxa. Less than

6 % of the AM fungal OTUs accounted for half of

all AM fungal reads (Dai et al. 2013). Across the

Canadian prairie landscape, the Glomeraceae

were the most abundant family, accounting for
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65 % of all AM fungal OTUs and 54 % of the AM

fungal reads. The Claroideoglomeraceae is sec-

ond in abundance with 25 % of all AM fungal

OTUs and 39% of the AM fungal reads. Diversis-

poraceae accounted for 8 % of the OTUs and 7 %

of the AM fungal reads. Paraglomaceae,

Gigasporaceae, and Archeosporaceae are poorly

distributed across the prairie landscape, and

Gigasporaceae and Archeosporaceae are rare.

In other regions, spore counts in grazed

Kastanozems of Inner Mongolia revealed that

the AM fungal communities resembled those

observed in Canadian Chernozems (Tian

et al. 2009). The Gigasporaceae are susceptible

to disturbance and largely absent in croplands,

which explains their greater abundance in

the Kastanozems than in the Canadian Prairie

Chernozems (Dai et al. 2012, 2013). Poorer

AM fungal diversity is reported from American

spore-based surveys of Mollisols under tallgrass

prairie cover where Paraglomaceae and

Archeosporaceae were undetected (Eom

et al. 2001; Bentivenga and Hetrick 1992).

Tallgrass prairies managed with fire were found

to be very highly dominated by the Glomeraceae

(Bentivenga and Hetrick 1992), underlining the

importance of land use in the structuring of AM

fungal communities.

AM fungi share root occupation with fungal

endophytes belonging to different taxonomic

groups. Non-AM fungal endophytes are particu-

larly abundant in temperate grasslands (Porras-

Alfaro et al. 2011). This observation triggered the

question as to whether AM fungi are at the end of

their range in dry areas.

This hypothesis was explored in the Canadian

Prairie using primers Glo1/NS31, which pro-

duced 18S rDNA amplicons of about 230 bp

(Yang et al. 2010). A succession of AM fungi

was detected as the soil dried from early to late

summer, suggesting that the adaptation of AM

fungi to soil moisture availability varies with

species. Glomus viscosum, Funneliformis

mosseae, and Glomus hoi were dominant in

early summer, under conditions of moisture suf-

ficiency, whereas the dominant AM fungal OTUs

in late season conditions (i.e., dry soil) belonged

to Glomus iranicum and Glomus macrocarpum.

This concurs with the previous observation of

differences in the seasonal pattern of sporulation

of different AM fungal species (Dhillion and

Anderson 1993). Seasonal variation of AM

fungi in the North American Great Plains was

also described as the replacement of the fungi of

the order Helotiales by AM fungi as the season

unfolds in the North American Great Plains

(Jumpponen 2011).

The Chernozem great groups are distributed

along a gradient of precipitation radiating out-

ward from the US border in eastern Alberta, i.e.,

from the Brown soil zone through Dark Brown

and Black soils up to the Gray soil zone at the

fringe of the boreal forest. The lowest abundance,

richness, and diversity of AM fungi were

observed in the driest soil zone (Brown Cherno-

zem), which supported a negative impact of

moisture deficit on these fungi.

Soil moisture appears to be just one of several

factors that influence the composition of AM

fungal communities in Chernozem soils. Despite

the highest levels of precipitation in the Gray soil

zone, the highly productive Black soils harbor the

most abundant and diverse AM fungal communi-

ties (Dai et al. 2012). Black, Gray, Dark Brown,

and Brown soils had an average of 10.2, 7.1, 7.0,

and 6.2 AM fungal OTUs, respectively, and the

Shannon diversity index of these soil groups fol-

lows a similar trend. AM fungal communities in

Brown soils are characterized by a reduced rela-

tive abundance of Claroideoglomeraceae com-

pared to Black and Dark Brown soils. Other

important factors that influenced the abundance

of AM fungal OTUs were A horizon thickness

and physicochemical properties of the soils, such

as bulk density, Zn level, pH, electrical conduc-

tivity, and sulfur level.

Soils are classified based on their physical and

chemical properties. A soil type represents

a living environment inhabited by different AM

fungal communities. American Mollisols and

Alfisols contain distinct AM fungal spore assem-

blages (Ji et al. 2012). Similarly, Canadian Cher-

nozems and Podzols and even different great

groups of Chernozems contained distinct assem-

blages of AM fungal rRNA gene sequences

(Dai et al. 2013).
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Land use modifies the conditions of the soil

environment and the impact of land use on the

structure of AM fungal communities exceeds that

of soil type. In the Canadian Prairie, roadsides

host a higher level of AM fungal diversity than

cropland or natural areas (Dai et al. 2013). Road-

sides have higher soil moisture levels than crop-

land and most natural areas, further indicating

that water availability is an important determi-

nant of the abundance and structure of AM fungal

communities. Seven percent of the AM fungal

OTUs found across the prairie soil zones are

unique to croplands, whereas 14 % of the AM

fungal OTUs are specific to roadsides. Roadsides

and natural areas are dominated by an OTU

closely related to Claroideoglomus lamellosum,

C. etunicatum, and C. claroideum, which account

for 14 % and 19 % of all AM fungal reads.

In cropland, an OTU closely related to

Funneliformis mosseae accounted for as much

as 17 % of all AM fungal reads. The dominance

of F. mosseae in croplands of the Canadian prai-

rie is supported by studies based on metagenomic

methods (Ma et al. 2005; Sheng et al. 2012; Dai

et al. 2012, 2013) and on spore counts (Talukdar

and Germida 1993).

Crop management systems also have a strong

influence on the composition of AM fungal com-

munities in Chernozem soils. Organic systems

have been shown to support more abundant and

diverse AM fungal communities compared to

conventional systems (Dai et al. 2014). Organic

systems also promote greater proliferation of

Claroideoglomus and of incertae sedis taxa of

the Glomeraceae, currently referred to asGlomus

iranicum and Glomus indicum. However, these
Glomeraceae incertae sedis are seemingly para-

sitic as they were associated with reduced crop

growth and N and P uptake efficiency.

Summary

Metagenomic studies on the distribution of AM

fungi in Chernozems are extremely useful to

understand how the living soil provides ecolog-

ical services and supports the production of

food and bioproducts. Brown Chernozems are

relatively poor in symbiotic AM fungi and are

less hospitable to the Claroideoglomus than

other Chernozems, whereas Black Chernozems

are rich in AM fungal resources. The influence

of soil type on the composition of AM fungal

communities is relatively small compared to

that of land use type. Funneliformis have

a competitive edge and proliferate in conven-

tional crop production systems, whereas

Claroideoglomus and Glomeraceae incertae

sedis are favored in organic production systems.

These Glomeraceae incertae sedis, currently

known as the G. iranicum/G. indicum group,

are associated with reduced crop productivity

and nutrient uptake.
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Synonyms

Bacterial communities in the phyllosphere of the

Atlantic forest

Definition

16S rRNA gene profiling is one of the main

approaches used for the study of microbial com-

munities that are associated with plants and ani-

mals, which are mostly comprised of species

unable to grow under laboratory conditions.

Even though plants harbor an enormous micro-

bial diversity on their various surfaces, the func-

tions of these microorganisms, except for a few

that are pathogens or symbionts, are largely

unknown, but are speculated to modify plant

chemical signals, alter root exudation patterns,

and provide protection against pathogens. Under-

standing of the factors that shape the structure of

microbial communities, and the functions of

microorganisms that are associated with plants,

will likely be essential for establishing conserva-

tion strategies for protecting endangered plant

species. The large reservoir of microbial diversity

on plant surfaces also represents a largely

untapped bank of microbial products that may

be of interest for pharmaceutical, agricultural,

and environmental applications.

Introduction

Plant surfaces in natural and agricultural ecosys-

tems are colonized by a variety of epiphytic

microorganisms that have been examined in rela-

tion to their diversity, ecology, and genetics using

culture-dependent and culture-independent

approaches. Among the various surfaces that are

presented by plants, the leaf surface, also known

as the phyllosphere (Ruinen 1956), is one of the

most common habitats for terrestrial microorgan-

isms. The phyllosphere may be colonized by bac-

terial cells at an average density of 106–107 cells

cm�2 on plants from temperate regions (Lindow

and Brandl 2003) and may be even higher on

tropical plants where dense canopies and

a moist shaded environment are conducive for

bacterial growth. Considering that the estimated

total leaf area of terrestrial plants is approxi-

mately 6.4 � 108 km2 (Morris and Kinkel

2002), the number of bacterial cells on leaf

surfaces globally has been estimated to be as

high as 1026 cells. Despite the importance of

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



plant-microbe interactions in plant disease,

almost nothing is known about the indigenous,

nonpathogenic bacteria that colonize plant leaf

surfaces and their functions in terrestrial

ecosystems.

The Phyllosphere Habitat

Due to the harsh conditions and the highly com-

petitive environment on plant leaves, microor-

ganisms that live in the phyllosphere almost

certainly have evolved specific traits that enable

them to grow in such environments. Diurnal var-

iations in UV light incidence, temperature, water

availability, osmotic conditions, the concentra-

tion of reactive oxygen species, as well as the

low availability of nutrients make the

phyllosphere an extreme environment for micro-

bial growth (Vorholt 2012). All of these factors,

together with the specific morphological traits of

the leaves, may contribute to the selection of

specific microbial populations of bacteria, fungi,

archaea, and protozoa that will colonize the

phyllosphere and interact at different levels with

the plant host. In addition, the microbial

populations will interact with each other through

metabolic and signaling networks, leading to the

self-organization of highly complex communities

that have been selected by long-term coevolution

with their plant host. In general, the bacterial

populations in the phyllosphere occur as multi-

species biofilms (Fig. 1) mostly located at the

base of trichomes and nutrient-rich locations

along the veins and junctions of epidermal cells

(Morris et al. 1998; Monier and Lindow 2004).

Communication between microbial cells, and

between microbial and plant cells, may be an

important factor controlling the dynamics of

leaf colonization and biofilm growth and

development.

One of the major selection factors for micro-

bial colonization of leaf surfaces is the ability to

tolerate or grow on the myriad chemical sub-

stances that are released from plant leaf tissues

and/or produced by other microorganisms. This

includes many thousands of secondary metabo-

lites, such as monoterpenes that serve as signal

factors and defense compounds, as well as chem-

ical attractants and deterrents for insects, herbi-

vores, and pathogens. However, the specific

secondary metabolites driving the structure of

bacterial communities in the phyllosphere are

unknown.

Bacterial Diversity in Tree Canopies of the Atlantic
Forest, Fig. 1 Microbial biofilm on the leaf surface of

trees of the Atlantic forest. (a) Biofilm with multiple

microbial species, based on morphology of cells.

(b) Diatom cells embedded in the microbial biofilm on

the leaf surface
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Bacterial Communities in the
Phyllosphere

Many early surveys of phyllosphere communities

have relied on descriptions of bacteria that can be

cultivated on agar media and isolated as individ-

ual colonies. Using various types of growth

media, 85 species of culturable microorganisms

from 37 genera have been reported in the

phyllospheres of rye, olive, sugar beet, and

wheat (Ercolani 1991; Legard et al. 1994;

Thompson et al. 1993). While this is an impres-

sive number of species, studies using molecular

methods have revealed that the actual microbial

species richness in the phyllosphere of agricul-

tural plants is much greater than this and suggest

that different plant species harbor unique com-

munities that are similar for individuals of the

same plant species (Yang et al. 2001). The dis-

covery of high levels of bacterial species richness

associated with different agronomic plants has

prompted many questions about the true extent

of microbial diversity that may be associated with

the phyllosphere of different plants in natural

ecosystems around the world. It has been specu-

lated that since bacteria can be transported across

the globe in dust (Griffin et al. 2002), only a small

number of bacterial species may be adapted to

grow on leaf surfaces. On the other hand, if each

plant species selects for its own microbial com-

munity, the microbial species diversity that is

associated with all of the different plant species

on earth could be enormous. This question can

only be answered by systematic surveys of

phyllosphere microbial diversity in different eco-

systems. Considering the current rate of extinc-

tion of plant species, it is especially urgent to

begin surveys of phyllosphere microorganisms

that are associated with endangered biomes.

Bacterial Community in the
Phyllosphere of the Atlantic Forest

Many tropical forests and biodiversity hotspots

contain endemic plant species that are preserved

only in a few remnant areas. The Atlantic forest

of Brazil is an example of a forest with high levels

of biodiversity that is struggling to survive. The

Atlantic forest used to be the second largest trop-

ical forest in South America and represented 1.3

million km2 in the 1500s, when the Portuguese

first arrived in Brazil. Today, approximately 7 %

of the original Atlantic forest remains, since most

of it has been converted to agricultural or urban

areas, leaving a patchwork of fragmented rem-

nants. The remnants of the Atlantic forest are

considered to be some of the oldest undisturbed

forests on the planet, containing approximately

20,000 plant species, of which nearly half are

endemic (Tabarelli et al. 2003). Several research

projects have been developed in the Atlantic for-

est as part of the ongoing BIOTA-FAPESP (São

Paulo Research Foundation) program, which has

been successfully established to examine the bio-

diversity of the São Paulo State (Brazil).

Different approaches can be used to survey the

microbial diversity in the phyllosphere. The first

approach is using DNA fingerprinting methods.

A low-resolution DNA fingerprinting method

referred to as PCR-DGGE (polymerase chain

reaction-denaturing gradient gel electrophoresis),

through which amplified fragments of highly var-

iable regions of the bacterial 16S rRNA gene are

separated by electrophoresis in a denaturing gra-

dient polyacrylamide gel, has been used for

studying the bacterial community structures in

the phyllosphere of tree species of the Atlantic

forest. This methodology generates a distinctive

fingerprint that can be used to compare the

relative similarities of communities, but does

not provide information on the identities of

the bacterial species within the communities.

To compare the phylogenetic diversity in the

phyllosphere and generate diversity indices for

different phyllosphere communities, sequencing

of specific regions of the bacterial 16S rRNA

gene is normally used.

With these combined approaches, it has been

shown that the 16S rRNA gene band patterns for

the bacterial communities from different tree spe-

cies of the Atlantic forest are distinct from each

other (Lambais et al. 2006). Communities from

replicates for different individuals of the same

tree species showed some expected variation,

but overall are highly similar to each other.

Bacterial Diversity in Tree Canopies of the Atlantic Forest 51 B

B



The similarities between the leaf bacterial com-

munities within and between species were further

measured statistically and showed that the trees

could be segregated into groups according to tree

species, family, and order, suggesting a coevolu-

tion between trees and microbial populations

associated with the phyllosphere (Lambais

et al. data not published). Evidence of coevolu-

tion of microbial populations associated with the

bark (dermosphere) and rhizosphere of trees of

the Atlantic forest also has been observed,

suggesting that plants coevolved with specific

microbiomes (Lambais et al. data not published).

An estimate of the bacterial species richness asso-

ciated with the phyllosphere of trees in the Atlan-

tic forest suggests the existence of 2–13 million

undescribed bacterial species that colonize the

collective phyllosphere of the Atlantic forest

(Lambais et al. 2006). Interestingly, studies of

the phyllosphere of different individuals of the

same tree species in the Atlantic forest over

a range of distances and at different times show

that the similarities between bacterial community

structures in the phyllosphere of the same plant

species decrease with the increasing distance

between individual trees, even though they still

share high levels of similarity (Lambais et al. data

not published). Over larger scales, such as when

the bacterial communities of the individuals of

the same plant species are separated by hundreds

of kilometers, significant differences in commu-

nity structure are observed. These data suggest

that the bacterial diversity in the phyllosphere of

plants of the Atlantic forest may be even higher

than the predicted 2–13 million species estimate

that does not take into account beta diversity.

While still in an early phase, research aimed at

measurements of beta diversity includes a survey

of Tamarix trees in Mediterranean and Dead Sea

regions in Israel and two locations in the USA

(Finkel et al. 2011). These studies suggest that

besides the plant genetic component driving

the bacterial community structure in the

phyllosphere, environmental conditions associ-

ated with particular geographical locations are

also important. On the other hand, the high

levels of similarity of the bacterial communities

in the phyllosphere of Pinus ponderosa over

transcontinental distances (Redford et al. 2010)

suggest a strong genetic component in the

regulation of the phyllosphere associated

microbiome.

The majority of bacterial OTUs in the

phyllosphere of the trees of the Atlantic forest

have been assigned to the phylum Proteobacteria.

Based on a survey of several tree species in the

Atlantic forest, including Ocotea dispersa,
Ocotea teleiandra, Mollinedia schottiana,

Mollinedia uleana, Eugenia cuprea, Eugenia

melanogyna, and Tabebuia serratifolia, it has

been shown that, in general, approximately half

of the bacteria in the phyllosphere are phyloge-

netically related to Gammaproteobacteria,

whereas 20 % are related to Alphaproteobacteria

and 5 % to Flavobacteria, even though interspe-

cific variation may occur (Lambais et al. data not

published). For instance, in the phyllosphere of

Ocotea teleiandra, a high frequency of Alphapro-

teobacteria and a low frequency of Gammapro-

teobacteria have been detected, in contrast to

other tree species.

Altogether, these results show that every tree

species that has been examined in the Atlantic

forest contains its own unique bacterial commu-

nity and that spatially separated individuals of the

same tree species have similar bacterial commu-

nities, within the same environment (forest phys-

iognomy). The variations in bacterial community

structures in the phyllosphere that were observed

using the PCR-DGGE and sequencing

approaches to compare similarities among indi-

viduals indicate that the community composi-

tions may vary on different leaves. This may

correspond with different leaf ages, location in

the canopy, light incidence, and microclimate

conditions that influence the leaf environment

and types of chemical substances that are

secreted by the plant leaves. The bacteria may

also interact with various fungi and algae that

colonize the leaf surfaces and change the chemi-

cal and physical environment of the leaf habitat.

In future studies, it will be necessary to examine

the microbial communities on leaf surfaces at the

microsite scale to determine changes in species

composition and the ecology of different habitats

on the leaf surface, for example, on the adaxial
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and abaxial leaf surfaces or within biofilms and

microcolonies at distinct physical locations on

the leaf surface.

Drivers of Community Structure in the
Phyllosphere

The development of different bacterial commu-

nities in the phyllosphere of different tree species

demonstrates the strong effect of leaf surface

environment as a selection factor. The initial

inoculation of leaves of different trees very likely

begins with the growth of opportunistic microor-

ganisms that are transported in dust, by insects, or

that are splashed from adjacent trees by rain.

Inheriting a minimal microbiome through the

seeds may also be a possibility. Further selection

then occurs depending on differences in the types

of carbon substrates that are available for growth,

as well as various physical and environmental

factors and interactions within the microbial

community. The primary carbon substrates that

are used for microbial growth include carbohy-

drates, amino acids, and organic acids. The com-

position and amounts of these substances may

vary for different plant species, but may also

vary over time depending on leaf age, insect

damage, and rainfall, for instance. Another

potentially important selective factor is the pro-

duction of different types and quantities of mono-

terpenes and other volatile substances that are

released from the leaf surfaces. These substances

may be both toxic to some microorganisms and

used as growth substrates by others. Phytochem-

istry research has shown that tree species have

species-specific differences in their biochemical

signatures for volatile molecules (Arey

et al. 1995). If terpenes act as selective sub-

stances, certain types of bacteria may be

predicted to occur in relation to the biochemical

signatures of volatile organic compounds

released by the leaves. Very little work has been

conducted on this research topic, but bacteria are

known to contain enzymes that convert terpenes

to derivative substances. In this manner, the

phyllosphere bacteria may influence chemical

signaling to insects and other microorganisms or

between plants. Terpenes and other plant second-

ary metabolites produced in plant leaves are also

important feedstocks for various biochemicals

that are used in the industry and for pharmacol-

ogy. Future studies should investigate the

genomes and genes encoding enzymes in the

phyllosphere that may have broad application

for industrial biotechnology, as in the work

described by Delmotte et al. (2009), which used

proteogenomics to study the microbial commu-

nity associated with the phyllosphere of soybean,

clover, and Arabidopsis.

Conclusion

Recent studies have provided only a glimpse into

the microbial diversity that is associated with the

tree canopies in the Atlantic forest, and there are

many new questions that arise from this research.

For example, to what degree do soil, nutritional,

and other environmental factors affect the com-

position and structure of microbial communities

in the phyllosphere? What is the diversity of

fungi and Archaea on the plant leaf surfaces,

and how do these microorganisms interact?

Future research should also examine the

functional aspects of phyllosphere microbial

communities and the interactions that occur

between phyllosphere bacteria and their host

plants using metagenomics, metaproteomics,

and metabolomics. As we begin to survey these

bacterial communities through systematic study

of different plant species, there will be exciting

opportunities for studies of the metabolic capa-

bilities and ecological functions of phyllosphere

microorganisms in terrestrial ecosystems.

Summary

Each plant species is able to select its own bacte-

rial community, and probably its own

microbiome, which may be affected by plant

genomic components and the environment. Alto-

gether, the phyllosphere of plant species of the

Atlantic forest may harbor several million species

of bacteria that remain to be described. The roles
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of the microbial communities of the phyllosphere

in forest ecology are not yet known, but are likely

to include chemical signaling, nitrogen fixation,

and plant protection, among other functions. This

immense microbial diversity may also provide

new biomolecules of interest for pharmaceutical,

agricultural, and environmental applications.
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Definition

Bacteriocins are heat-stable ribosomally synthe-

sized peptides produced by one bacterium which

are active against other bacteria and against

which the producer has a specific immunity

mechanism.
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Introduction

Bacteriocins are ribosomally synthesized antimi-

crobial peptides that are produced by many bac-

teria and which kill or inhibit the growth of other

bacteria. Bacteriocin producers are protected as a

consequence of dedicated immunity (self-

protective) systems (Cotter et al. 2005). Bacterio-

cins are of both academic and commercial

interest, with several in use as food preservatives

or as the active agent in clinical or veterinary

antimicrobials. It is not surprising that there is

significant interest in the identification and char-

acterization of new bacteriocin gene clusters. The

growing volume of metagenomic sequence data

is an important resource which can be mined for

the in silico discovery of novel bacteriocins.

A Background to Bacteriocins

Bacteriocins were first described in 1925 and

since then bacteriocin producers have been iden-

tified in a myriad of different environments, bear-

ing out a prediction by Klaenhammer in 1988 that

bacteriocin production may be almost ubiquitous

(Klaenhammer 1988). The spectrum of activity

of these peptides can be narrow (lethal to bacteria

in the same or closely related species) or broad

(lethal to bacteria in other genera). Many bacte-

riocins function by depolarizing the cell mem-

brane or through the inhibition of cell wall

synthesis (Cotter et al. 2005). There are

a number of different classification schemes.

One approach, originally employed to classify

bacteriocins produced by Gram-positive bacteria,

has been to divide bacteriocins into two major

classes: those which are modified (Class I) and

those which are unmodified (Class II) (Cotter

et al. 2005; Rea et al. 2011) (Table 1). This

approach to classification excludes larger pro-

teins, such as the bacteriolysins and the colicin-

type antimicrobials, which as a consequence of

their larger size may be regarded as representing

different classes of antimicrobials.

Further classification of the Class I and II

peptides is possible, for example, Class

I bacteriocins from Gram-positive bacteria can

be divided into Class Ia, Class Ib, and Class

Ic. Class Ia, the lantibiotics, harbor the unusual

posttranslationally modified residues lanthionine

(Lan) and/or b-methyllanthionine (meLan); these

are products of the interaction of cysteines with

enzymatically dehydrated serines (dehydroalanine;

Dha) and threonines (dehydrobutyrine; Dhb).

Lantibiotics can be subdivided according to the

enzyme responsible for lanthionine formation; sub-

class I use LanBC, subclass II use LanM, and

subclass III use RamC-like, while subclass IV are

modified by LanL enzymes. It should be noted,

however, that subclass III and IV peptides identi-

fied to date have not been shown to possess antimi-

crobial activity and thus are referred to as

lantipeptides. Class Ib, the labyrinthopeptins,
have a labyrinthine structure and contain

the posttranslationally modified amino acid

labionin, formed through a series of serine phos-

phorylations, dehydrations of phosphoserines to

didehydroalanines, and cyclizations. Class Ic, the

sactibiotics, are cyclic peptides, generated from the

posttranslation formation of intramolecular cross-

linkages between the a-carbon and sulfur of amino

Bacteriocin Mining in Metagenomes, Table 1 Classification scheme for bacteriocins (Modified from (Rea

et al. 2011))

Class Divisions Further subclasses Examples

Class I Ia: Lantibiotics Subclass I–IV Lacticin 3,147, nisin A, subtilin

Ib: Labyrinthopeptins Labyrinthopeptins A1 and A2

Ic: Sactibiotics Single- and two-peptide bacteriocins Thuricin CD, subtilisin A

Class II IIa: Pediocin-like Subclasses I–IV Pediocin PA-1, munticin

IIb: Two-peptide bacteriocins Subclasses A and B Salivaricin P, lactococcin G

IIc: Circular bacteriocins Subclasses 1 and 2 Acidocin B, gassericin A

IId: Linear non-pediocin-like Lactococcin A

Single-peptide bacteriocins
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acids within the peptide. Class Ic bacteriocins can

be further subdivided depending on whether they

are single- or two-peptide bacteriocins.

Class II bacteriocins can be divided in Class

IIa, Class IIb, Class IIc, and Class IId. Class IIa,

pediocin-like bacteriocins, are typically highly

active against the food pathogen Listeria

monocytogenes and contain a conserved hydro-

philic, cationic region in the N-terminal region

termed the “pediocin box.” They can be

subdivided into subclasses I–IV based on

sequence homology. Class IIb are two-peptide

unmodified bacteriocins. Both peptides are

required for activity and both possess

a conserved GxxG motif. These are further

subdivided into two subclasses based on

sequence homology. Class IIc are cyclic peptides,

resulting from the covalent linkage of their

N- and C-termini and tend to contain numerous

a-helical structures. Class IIc can also be further

divided into two subclasses based on sequence

identity. Finally, the Class IId, unmodified linear,

non-pediocin-like bacteriocins are in essence

bacteriocins which do not fit into any of the

other subclasses. (See Fig. 1 for an example of

bacteriocin structure.)

In addition to the requirement for a precursor

bacteriocin peptide, bacteriocin activity is also

dependent on the production of several other pro-

teins encoded within the corresponding bacterio-

cin gene cluster. This gene cluster may encode

proteins responsible for bacteriocin transport,

processing, regulation, immunity, and, in the

case of the Class 1 bacteriocins, peptide modifi-

cation enzymes. The highly conserved accessory

proteins encoded by bacteriocin gene clusters can

serve as useful driver sequences for downstream

analysis as the bacteriocin peptides themselves

can be very diverse in their primary sequences.

Application of Bacteriocins

Bacteriocins have proved useful as antimicrobial

compounds in the food and health industries. In

the food industry, bacteriocins such as nisin and

pediocin PA-1 can improve food safety and food

quality. Bacteriocins produced by lactic acid bac-

teria (LAB) are of particular interest to the food

industry since LAB have been awarded GRAS

status (Generally Regarded As Safe) and can

therefore be used in food preparations (Cotter

et al. 2005). More recently, the contribution of

bacteriocin production to the efficacy of certain

probiotics has been recognized, suggesting

another route via which bacteriocins can be of

value within the food for health arena (Dobson

et al. 2012). In the health industry, the use of

bacteriocins as an alternative to antibiotics has

long been mooted (Piper et al. 2009). The poten-

tial benefits of employing bacteriocins in this

arena have been particularly apparent in recent

times as a consequence of an appreciation of the

“collateral damage” which antibiotics can inflict

on the commensal microbiota. Narrow spectrum

bacteriocins may well address this issue in view

of their target specificity. In the area of veterinary

medicine, bacteriocins have proven useful in the

control of mastitis in cattle and as an additive to

animal feed with a view to improving general

animal health (Abriouel et al. 2011). It has also

been suggested that bacteriocins or bacteriocin-

producing microbes could be employed as bio-

control agents which, for example, could be

added to soil to control plant pathogens

(Abriouel et al. 2011).

Identification of Novel Bacteriocin Gene

Clusters

Traditionally, the identification of novel bacteri-

ocin gene clusters has involved using classical

Bacteriocin Mining in Metagenomes, Fig. 1 Structure of nisin A; the prototypical Gram-positive-modified bacte-

riocin (Modified residues in gray)
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microbiology to screen for large collections of

strains, using a culture-based assessment of their

ability to produce novel antimicrobials (Fig. 2).

This is then followed by the subsequent identifi-

cation of the responsible genes through

subcloning, mutagenesis, reverse genetics, or,

more recently, sequencing of the corresponding

genome. However, in spite of constant improve-

ments in culturing techniques, it is still estimated

that just 10–50 % of bacteria are culturable. For-

tunately, metagenomic DNA sequencing pro-

vides an alternative with respect to identifying

novel bacteriocin gene clusters by facilitating an

unbiased characterization of entire microbial

communities. In particular, recent improvements

in sequencing technologies have resulted in

a massive increase in sequence data, leading to

the development of valuable public databases and

annotation pipelines (http://camera.calit2.net/,

http://img.jgi.doe.gov/, http://metagenomics.anl.

gov/). The generation of vast quantities of DNA

sequence data from metagenomics-based pro-

jects from varying environments across the

globe represents a considerable resource from

which new bacteriocin gene clusters can be iden-

tified. There are a number of ways in which this

information can be harnessed. One example is

BACTIBASE, a bacteriocin database and suite

of analysis tools established to archive known

bacteriocin sequences and enhance the discovery

of bacteriocins in genomic data (Hammami

et al. 2010). The current release of BACTIBASE

contains 177 bacteriocin sequences against which

one can test the homology of a query bacteriocin

sequence, perform sequence alignments, and pre-

dict peptide structure (Hammami et al. 2010).

Searches are limited to the known sequences

already in the database, and the usefulness of

the tool is also affected by the fact that bacterio-

cin peptides themselves often share little or no

homology. A specific bacteriocin mining tool,

BAGEL2 (BActeriocin GEnome Location), was

established to search for novel bacteriocin

sequences in genomic data (de Jong et al. 2010).

BAGEL2 has a built-in database of bacteriocin

and bacteriocin-related sequences and, in addition

to genes encoding the structural bacteriocin pep-

tide, uses genes involved in bacteriocin biosynthe-

sis, regulation, export, and immunity to reveal

related genes in novel clusters. Additionally

searches can be implemented against finished

genome sequences or against novel genomes

uploaded by the user. The fact that genes involved

in the modification of Class I bacteriocins, such as

those generically named lanM, lanB, and lanC or

those encoding radical SAMs associated with

sactibiotic production, are frequently more

highly conserved than the structural genes them-

selves has also been utilized in recent years to

identify Class I gene clusters in genomic and

metagenomic databases. During this period targeted

searches for bacteriocins in genomic data have

resulted in the discovery of several novel active

bacteriocins, such as lichenicidin (Begley et al.

2009), and a Streptococcus-associated lantibiotic

(Majchrzykiewicz et al. 2010), among others. This

strategy parallels similar genome-based approaches

which have identified gene clusters encoding other

ribosomally synthesized natural products

(Velásquez and van der Donk 2011). In addition to

the identificationof novel bacteriocins, the screening

of genomes using theLtnM1protein of lacticin 3147

(Begley et al. 2009; O’Sullivan et al. 2011) or the

radical SAM proteins of thuricin CD (Murphy

et al. 2011) as drivers has also revealed several

Bacteriocin Mining in Metagenomes, Fig. 2 Repre-

sentative agar plate depicting the outcome of a culture-

based screen for bacteriocin activity
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potential bacteriocin-encoding clusters. It is antici-

pated that many of these will be the focus of further

investigation in the coming years.

Identification of Bacteriocins in

Metagenomes

The identification of bacteriocins within

metagenomic DNA can be performed via

laboratory-based or in silico-based approaches.

A recent example of the former involved

a PCR-based screen to establish the bacteriocin-

producing potential within metagenomic DNA

sourced from 40 Polish cheeses (Więckowicz

et al. 2011). In this case, PCR-primers were

designed to exploit conserved sequence motifs

within the four anti-listeral bacteriocin peptides,

divercin V41, enterocin P, mesenteric in Y105,

and bacteriocin 423. It was established that

metagenomic DNA for each one of the 40 cheeses

yielded a PCR product thereby highlighting the

bacteriocin-producing potential of the cheese

microbiota (Więckowicz et al. 2011). While

laboratory-based screens have considerable

potential, the vast information present in

metagenomic DNA databases suggests that in

silico screening for bacteriocin gene clusters can

be a more successful approach.

Recently, two studies have carried out basic

homology searches against metagenomes to iden-

tify clusters containing lanM genes and potentially

encoding novel type II lantibiotics (O’Sullivan

et al. 2011), or those possessing trnC-/trnD-like

genes which potentially encode novel sactibiotics

(Murphy et al. 2011). In both studies, a

simple BLAST search against the CAMERA

(http://camera.calit2.net) metagenomic databases

was implemented and homologous proteins were

identified. The lanM search revealed homologs in

11 metagenomes (Table 2). Three of these came

from an Indian Ocean metagenome, four from

hypersaline lagoon metagenomes from the

Galapagos Islands, and one each from a coastal

sea water metagenome from the Gulf of Mexico,

a farm soil metagenome, a whale fall carcass rib

bone metagenome, and a coral reef metagenome

(Table 2). Further phylogenetic analysis with the

11 homologs and previously identified

bacteriocin-like gene clusters revealed that the

homologs from the metagenomes were related to

other lanM genes from a wide variety of different

microorganisms, thus highlighting the diverse

nature of the metagenome-associated genes

(O’Sullivan et al. 2011). The search that used

trnC-/trnD-like genes as driver sequences yielded
365 TrnC homologs and 151 TrnD homologs in

metagenomes from environments as diverse as

Waseca soil, a coral reef, and the ocean surround-

ing the Galapagos Islands (Murphy et al. 2011),

again highlighting the presence of bacteriocin-

associated genes in metagenomic data.

Despite the valuable insights provided by

these analyses, they failed to identify complete

bacteriocin gene clusters. A more suitable analy-

sis tool would allow a homology search with

multiple genes (or even an operon) and therefore

enhance the possibility of identifying a true

Bacteriocin Mining in Metagenomes, Table 2 LanM homologs in metagenomic databases from (O’Sullivan

et al. 2011)

Protein function Metagenome Location % identity E-value

Lantibiotic-modifying enzyme Sea water Indian Ocean 29 1.07E-16

Hypothetical protein Soil sample Waseca County, USA 25 2.85E-16

Lantibiotic-modifying enzyme Whale fall rib carcass Santa Cruz Basin, USA 27 4.65E-12

Lantibiotic-modifying enzyme Hypersaline lagoons Galapagos Islands 30 1.83E-08

Hypothetical protein Coastal sea water Gulf of Mexico 25 2.39E-08

Hypothetical protein Hypersaline lagoons Galapagos Islands 24 1.55E-07

Hypothetical protein Open ocean Indian Ocean 36 4.51E-07

Hypothetical protein Coral reef Cook’s Bay, French Polynesia 24 5.89E-07

Hypothetical protein Open ocean Indian Ocean 29 1.71E-06

Mersacidin-modifying enzyme Open ocean Galapagos Islands 25 3.81E-06

Hypothetical protein Hypersaline lagoons Galapagos Islands 24 4.94E-06
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bacteriocin cluster. Existing tools for

metagenome analysis are in two formats: func-

tional key word search engines, such as those

available through the MG-RAST (Glass

et al. 2010) and IMG/M (Markowitz et al. 2008)

platforms, and homology search engines, such as

JCoast (Richter et al. 2008), MetaMine

(Bohnebeck et al. 2008), and CAMERA (Sun

et al. 2011). Functional searches rely heavily on

searching among annotated genes. This is inher-

ently reliant on accurate annotation, and due to

the small size and heterogeneous nature of bac-

teriocin peptides, the corresponding genes are

often overlooked or mis-annotated. Homology

search tools such as CAMERA and JCoast are

single gene search-driven, although JCoast does

have a graphical user interface that allows visu-

alization of the surrounding gene neighborhood

which would prove particularly useful for screen-

ing for the presence of other genes in the bacteri-

ocin operons (Richter et al. 2008). Metamine

allows homology searches with “gene neighbor-

hoods”; again this would prove particularly use-

ful for bacteriocin clusters. Metamine searches

are, however, restricted to marine metagenomic

databases (Bohnebeck et al. 2008). It should also

be noted that, as a consequence of the evolution of

DNA sequencing technologies, longer stretches of

contiguous metagenomic DNAwill become avail-

able which will further enhance our ability to

identify complete bacteriocin gene clusters.

Despite this, it must also be noted that the presence

of bacteriocin homologs alone is not an indicator

of function. Clearly in silico analysis is not suffi-

cient to determine functional presence of

a bacteriocin. However, the likelihood that even

a proportion of bacteriocin homologues will be

deemed functional is an intriguing prospect.

Harnessing Bacteriocin Gene Clusters

While the in silico analysis of newly identified

bacteriocin gene clusters within metagenomic

DNA can be of great value from a fundamental

perspective, the harnessing of the antimicrobial

potential of these clusters will undoubtedly

become a priority in the future. In the majority

of instances, the specific strain from which the

fragment of metagenomic DNA has originated

will not be available, or may not be culturable,

and other strategies will be required. The

genetics-based options available can be divided

into in vivo and in vitro approaches. Regardless

of the approach, specific genes within the cluster

will need to be regenerated through DNA synthe-

sis technology. In the case of in vivo harnessing,

the DNA fragment(s) will be cloned and

expressed heterologously, using approaches

such as those employed to facilitate the produc-

tion of a Streptococcus-associated lantibiotic

cluster by Lactococcus lactis (Majchrzykiewicz

et al. 2010) and by Escherichia coli. Alterna-

tively, when dealing with modified bacteriocins,

one can clone and express individual genes het-

erologously but then purify them to facilitate the

in vitro reconstitution of biosynthesis using the

corresponding modification proteins or related

enzymes originating from other sources (Knerr

and van der Donk 2012). Finally, an alternative

non-genetics-based approach, which is available

when gene clusters predicted to encode

unmodified residues are identified, is to employ

peptide synthesis with a view of generating

a synthetic equivalent of the natural antimicro-

bial. It is anticipated that these various options

will be widely used in the years to come.

Summary

In order to effectively mine metagenomes for

bacteriocins, accurate annotation of the datasets

is essential. As the volume of data grows, it is

anticipated that the precision of annotation tools

will improve in tandem. The number of

bacteriocin-associated gene homologs present in

diverse metagenomic environments suggests the

presence of multiple corresponding gene clusters.

The further expansion of metagenomic DNA

databases will undoubtedly further increase our

appreciation of just how widespread, and diverse,

these clusters are. As the commercial application

of bacteriocins becomes more common (for

review see (Cotter et al. 2005)), we can anticipate

that we will reap the benefits of in silico screening

and harnessing of this untapped reservoir of novel

bacteriocins.
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Definition

Binning is the process to categorize sequences

into different groups based on compositional

features or sequence similarity or both

of them.

Introduction

As metagenomes are typically composed of

sequences from various species, how to catego-

rize these sequences into groups can radically

affect the accuracy and sensitivity of down-

stream analyses. Thus, the sequence binning

is a critical step in the early process of

metagenomic analysis pipeline. Several binning

methods employing different strategies have

been proposed. For example, BLAST homology

search helps to identify sequences of related

species; kmer (Sandberg et al. 2001), self-

organizing map (SOM) (Abe et al. 2003), and

TETRA (Teeling et al. 2004b) cluster sequences

by similar compositional features, i.e., oligonu-

cleotide frequency; PhyloPythia (McHardy

et al. 2007), a support vector machine imple-

mentation, categorizes sequences based on

both pattern similarity and oligonucleotide fre-

quency. The above listed methods, either

supervised or unsupervised, have their own limi-

tations. Supervised learning methods, including

BLAST, kmer, SOM, and PhyloPythia, require

prior knowledge, like completed genomes or

labeled long contigs, as training datasets; the

unsupervised learning method, TETRA, may

become intractable for huge metagenomes

because of the required computation on

all-versus-all pair-wise comparison. Although

these methods have demonstrated great feasi-

bility, a solution to resolve bins without identi-

fiable labels makes the binning task more

applicable to typical metagenomes. In our con-

text, we introduce a semi-supervised learning

method that couples a seeding strategy with the

growing self-organizing map (GSOM), called

the seeded GSOM (S-GSOM), for sequence

binning.

Self-Organizing Map and Growing
Self-Organizing Map Algorithms

The self-organizing map (SOM) (Kohonen 1990)

is an unsupervised clustering algorithm. It can

visualize the clustering of unlabeled feature vec-

tors on a static lattice grid map, which has

pre-defined grid shape and map size, during the

entire training process. Within the map, every

node (or lattice) has a weight vector of the same

dimension as the input vector. The SOM algo-

rithm separates training into three phases: initial-

ization, ordering, and fine-tuning. In the

initialization phase, the weight vector of each

initial node can be either generated from random

values or, generally, using the principal compo-

nent analysis (PCA) to position a fully unfolded

map on the plane formed by the first two principal

vectors in the input space (Kohonen 1999). The

number of initial nodes needs to be determined

by the user. In the ordering and fine-tuning

phases, each input identifies a winning node,

which is of the smallest Euclidean distance to

the input, on the map. Then the weight vectors

of the winning node and its neighboring nodes are

updated by

w tþ 1ð Þ ¼ w tð Þ þ a� h� x kð Þ � w tð Þ½ �,

where w is the weight vector of the node, x is the
input vector (w, x ∈ RD where D is the dimen-

sion), k is the index of the current input vector, a
is the learning rate, and h is the neighborhood

kernel function.

The Growing SOM (GSOM) (Alahakoon

et al. 2000; Hsu and Halgamuge 2003) is an

extension of SOM. It is a dynamic SOM,

which overcomes SOM’s weakness of the

static map structure, i.e., GSOM initiates its

training with minimum single lattice grid,

depending on whether the rectangular or hex-

agonal network topology is used, to facilitate

the dynamic growth of the map in training

process. GSOM employs the same weight

adaptation and neighborhood kernel function

as SOM. The map size of a perfectly trained

GSOM map is controlled by a global
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parameter of growth, which is called Growth

Threshold (GT) and defined as

GT ¼ �D� ln SFð Þ,

where D is the data dimension and SF is the user-

defined Spread Factor that takes value (0, 1], with

0 representing minimum and 1 representing max-

imum growth.

There are four phases in GSOM training: ini-

tialization, growing, and two smoothing phases.

In the initialization phase, weight vectors of ini-

tial nodes in the minimum single lattice grid are

initialized by random values and the GT is calcu-

lated according to data dimension and user-

defined SF. During the growing phase, every

node keeps an accumulated error counter and

the counter of the winning node (Ewinner) is

updated by

EWinner tþ 1ð Þ ¼ EWinner tð Þ þ x kð Þ � wwinner tð Þj j:

When Ewinner exceeds GT, the winning node

that is at the boundary of current map will grow

new nodes to its neighboring vacant lattice and

initialize a weight vector by interpolating or

extrapolating weight vectors of existed neighbor-

ing nodes around the winning node. If the win-

ning node is not a boundary node, the

accumulated error (Ewinner) is evenly distributed

outwards to its neighbors. The two smoothing

phases are for fine-tuning the weights of nodes.

The hexagonal lattice was used for GSOM in this

study as the hexagonal lattice yields better data

topology preservation (Hsu et al. 2003).

Seeding Sequence and Metagenomic
Dataset Preparation

From the NCBI Archaea/Bacteria genome data-

base, we randomly selected 10, 20, and 40 species

to generate metagenomes of different complex-

ity. Three sets were drawn for the 10 and

20 species datasets, and only one set for the

40 species dataset due to the limitation imposed

by the available computing resources. Simulated

metagenomes were denoted by “XSp_SetY ”

where X is the number of species included in the

metagenome and Y represents the serial number

of metagenome. For example, “10Sp_Set1” is the

first metagenome containing 10 random species.

In each genome, the seeding sequences were

firstly identified as the flanking region of 16S

rRNA genes of the length ranging from 8 to

13 kilobase (kb). The seeding sequences that

overlapped with other rRNA and tRNA genes

were excluded to avoid possible interferences

caused by highly similar sequence compositions.

After removing the tRNA, rRNA, and seeding

sequences, the remaining genomic regions were

randomly chopped into simulated metagenomic

fragments of the length from 8 to 13 kb. The

length restriction of 8–13 kb is used to provide a

standardized rule for either seeding or

metagenomic sequences (Mavromatis et al.

2007), but with the outlook for single-molecule

sequencing techniques on the horizon (Clarke

et al. 2009), these are definitely achievable length

for metagenomes in the near future.

The tetranucleotide frequency of

metagenomic sequences is the training feature

we used in our implementation for binning

because it has a better resolution in species sep-

aration (Abe et al. 2003) and is highly similar

between intragenomic fragments compared to

intergenomic fragments. The tetranucleotide fre-

quencies were computed using a four-base slid-

ing window and normalized by the length of the

corresponding sequence (frequency per base).

A total of 256 (44) combinations of nucleotide

usages, i.e., AAAA, AAAT, AAAG, AAAC . . .

CCCG, and CCCC, are represented in the feature

vector of 256 dimensions.

Seeded GSOM Algorithm

Metagenomic sequences that belong to closely

related species are likely to have homologous

sequences between the clusters (bins), and this

fact makes the identification of clustering bound-

aries much more difficult. Therefore, a modified

strategy is needed to identify clusters so that

GSOM can be improved as a more practical solu-

tion for binning.
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The seeded GSOM (S-GSOM), which allows

identifying clusters automatically in the feature

map using seeds (labeled data), is our proposed

modification of GSOM. There are three core steps

in S-GSOM. Firstly, the very small amounts of

labeled seeds (labeled feature vectors) are com-

bined with unlabeled data (unlabeled feature vec-

tors). Secondly, the combined input vectors are fed

into GSOM training, which treats the seeds as the

unlabeled data. Finally, after the normal phases of

GSOM training, S-GSOM identifies clusters based

on the location of seeds in the final map and the

specified amount of nodes in the cluster (Fig. 1a).

In the last step of S-GSOM training, the cluster

identification phase, the nodes that have seeds are

identified and labeled as clustered nodes. Then

the S-GSOM is going to assign other un-clustered

nodes, one by one, to clusters iteratively until the

specified clustering percentage (more details in

Clustering Percentage (CP) Determination sec-

tion) is reached. In each iteration, a set of

un-clustered nodes that are adjacent to the clus-

tered nodes is identified. The node in the set of the

shortest Euclidean distance to the adjacent clus-

tered node will be assigned to the same cluster

with the clustered node. However, nodes not

containing any sample are most likely

representing a cluster boundary. So a penalty fac-

tor greater than one is multiplied to the actual

distance when calculating the distance between

empty nodes and clustered nodes. This will lead

the S-GSOM not to label empty nodes to any

cluster (Fig. 1b). According to the empirical

observation that the clustering results are not

very sensitive to the penalty factor value between

2 and 5, the penalty factor value of 2 was used in

all our experiments.

Before the initiation of the taxonomy-assigning

process, the seeded nodes must be assigned to

a specific taxon. When all seeds in one node are

coming from the same taxon or there is only

a single seed, it is trivial for S-GSOM to assign

the seeded node to the same taxon as contained

seeds. If the seeds in one node belong to multiple

taxa, the seeded node will be assigned to the major

taxon. However, when seeds are of multiple taxa

and have equal amounts, e.g., two seeds are in one

node and belonging to taxon A and B, respec-

tively, all seeds are discarded.

To illustrate the role of S-GSOM in binning,

Fig. 2 depicts the schematic diagram that explains

how S-GSOMfits into the whole binning process.

Binning Sequences Using Very Sparse Labels Within
a Metagenome, Fig. 1 The S-GSOM algorithm.

(a) Schematic diagram of the clustering process of

S-GSOM. (b) The pseudo-code for node assigning process
in S-GSOM
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Clustering Percentage (CP)
Determination

Because metagenomic sequences of closely

related species occur frequently at the cluster

boundary (Abe et al. 2003; Chan et al. 2008b)

that is very likely to disrupt the binning accuracy,

an appropriate control of how many nodes

assigned to bins is necessary for S-GSOM to

have a trade-off between the amount of binned

sequences and the binning accuracy. Hence, the

clustering percentage (CP) value is introduced,

which is defined as the percentage of the number

of clustered nodes relative to the total nodes on

the map. It was noted that the performance of

S-GSOM declined when CP was higher than

55 % (Fig. 3). However, S-GSOM binned more

than 80 % of sequences at CP ¼ 55 % in most

cases. Thus, the 55%CPwas used throughout the

following experiments.

Comparison of Semi-supervised
Algorithms for Binning

To test the feasibility of semi-supervised

methods for binning, other four notable semi-

supervised clustering algorithms, COP K-means,

Constrained K-means, Seeded K-means, and

Transductive Support Vector Machine (TSVM)

were used alongside S-GSOM. Among above

methods, different runs of random initiation of

the COP K-means and S-GSOM can lead to

diverse results, which is not an issue for

Constrained K-means and Seeded K-means

because they use the labeled data for initiation.

So the best results of COP K-means in 100 runs

of random initiations were reported, and to ensure

repeatability, all the feature vectors in S-GSOM’s

initialization were fixed with the mid value 0.5 in

all dimensions.

Two indices were used to measure clustering

performance: adjusted Rand index (ARI) (Hubert

and Arabie 1985) and weighted F-measure

(WF) (Van Rijsbergen 1979). The higher index

indicates the better performance.

S-GSOM manifested consistently superior

performance on both measures, ARI and WF,

with the exception of Constrained K-means on

the ARI measure for the 10Sp_Set3 dataset

(Table 1). We suspect the considerable worse

performance of TSVM as resulting from insuffi-

cient labeled data. The superior performance of

S-GSOM, which accurately assigned 75–90 % of

all sequences at CP ¼ 55 %, clearly demon-

strates that the adjustable CP value effectively

Binning Sequences Using Very Sparse Labels Within a Metagenome, Fig. 2 An overview of binning process

using S-GSOM
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helps S-GSOM to achieve better clustering by not

assigning those ambiguous sequences. The

S-GSOM visualization of binning sequences of

10Sp_Set1, 20Sp_Set1, and 40Sp is provided in

Fig. 4.

We considered the 20-species metagenomes

as examples to analyze the resolution of binning

with S-GSOM. At CP ¼ 55 %, an average of

82 % sequences were assigned with 92 % accu-

racy to their source species. The distribution of

binning result is shown in Fig. 4b. Nodes

containing seeds from multiple species were col-

ored in grey with the label of species number.

A significantly higher abundance of grey nodes

around “C6” and “C7,” respectively representing

Haemophilus influenzae 86-028NP and

Haemophilus somnus 129PT, indicates that

metagenomic sequences with similar

tetranucleotide frequencies, resulted from closely

related species, tend to be clustered without

Binning Sequences Using Very Sparse Labels Within
a Metagenome, Fig. 3 Identification of an appropriate

clustering percentage (CP). Five datasets for each of 5, 10,
and 20 species are randomly samples. The average of

S-GSOM’s performance for the datasets are plotted

against CP. A trend of decreasing in performance with

increasing in CP can be noted. A compromised value of

CP ¼ 55 % is marked where both the number of assigned

nodes and performance are high

Binning Sequences Using Very Sparse Labels Within a Metagenome, Table 1 Clustering performance of semi-

supervised algorithms. Performance is measured by the adjusted Rand index (ARI) and weighted F-measure (WF)

COP K Constrained K Seeded K TSVM S-GSOM-55

ARI WF ARI WF ARI WF ARI WF ARI WF

10Sp_Set1 0.84 0.94 0.84 0.94 0.84 0.93 0.25 0.59 0.85 0.95

10Sp_Set2 0.89 0.96 0.79 0.90 0.78 0.90 0.41 0.69 0.93 0.97

10Sp_Set3 0.58 0.83 0.85 0.93 0.84 0.93 0.27 0.62 0.83 0.93

20Sp_Set1 0.91 0.90 0.77 0.82 0.76 0.82 0.45 0.65 0.97 0.96

20Sp_Set2 0.76 0.82 0.70 0.79 0.67 0.79 0.43 0.62 0.83 0.89

20Sp_Set3 0.81 0.89 0.75 0.86 0.75 0.86 0.46 0.67 0.97 0.98

40Sp 0.58 0.76 0.71 0.85 0.68 0.84 0.24 0.56 0.83 0.91
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a clear boundary. This further highlights the

importance of obtaining seeds in non-boundary

regions.

In addition to the distinguished clustering per-

formance, S-GSOM possesses a prominent

advantage brought by the seeding method to

cluster sequences of unseeded species, i.e., the

unknown species. To demonstrate this advantage,

an iso-CP (constant CP) contour is delineated

in Fig. 5a, generated with a five-species

metagenome with only four seeds. By applying

different CP values, a group of nodes were found

Binning Sequences Using Very Sparse Labels Within
a Metagenome, Fig. 4 Resulted growing self-

organizing maps (GSOM) of (a) 10Sp_Set1, (b)
20Sp_Set1, and (c) 40Sp metagenomes. Each hexagon

represents a single node. If the node contains a single

species, it is displayed in a color that uniquely identifies

the species. The node without a letter indicates that there is

no data (sequences) located in it. The grey nodes represent

multiple species in the node, and the exact number is as

labeled
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only clustered at CP ¼ 77 % (on the top-right

region). This situation is most likely when

a species is relatively abundant, but does not

have a seed. Figure 5b shows the allocation of

nodes to seeds at CP ¼ 55 %. However, a protru-

sion of species “1” into the unassigned region,

which belongs to species “5,” is an incorrect

assignment that sometimes happens to nodes

without a correct seed.

Comparison of Binning Fidelity Using
S-GSOM

In this section, we compared the binning perfor-

mance of S-GSOM with three other methods:

BLAST, kmer, and PhyloPythia, reported on the

metagenomes of different complexities

(Mavromatis et al. 2007) after assembly by

Arachne (Batzoglou et al. 2002), Phrap (Green,

1996), and JAZZ (Aparicio et al. 2002). How-

ever, JAZZ produced small number of contigs

compared to Arachne and Phrap (Mavromatis

et al. 2007), so contigs assembled by JAZZ

were excluded. In addition, because the simHC,

a community without any dominant species, has

sparse long contigs required by the composition-

based analysis (Mavromatis et al. 2007; Teeling

et al. 2004a), we also excluded the simHC dataset

from our analysis.

For the purpose of fair comparison, all methods

need to be compared at the same taxonomic level

of binning. Binning at a very high level, e.g.,

kingdom, clearly has no significance; therefore,

the results are compared at the order level here

and results for comparing at other taxonomic

levels are included in the supplementary materials

of original publication (Chan et al. 2008a). At the

order level, the results for simLC (low complexity)

and simMC (medium complexity) metagenomes

are shown in two separated tables, one for binning

contigs larger than 8 kb and the other for contigs

composed of at least 10 reads. To evaluate the

performance, rather than using simple averages of

all bins (Mavromatis et al. 2007), we used weighted

average that gives higher weights to larger bins to

better reflect the amount of correctly binned contigs.

In both simLC and simMC, S-GSOM

performed reasonably for binning contigs larger

than 8 kb, where it is more accurate than all

Binning Sequences Using Very Sparse Labels Within
a Metagenome, Fig. 5 Illustration of exploring an

unseeded cluster. (a) The five-species S-GSOM map.

The seeded nodes are shown with unique colors and

labels. Nodes in charcoal color represent nodes that will

be assigned when CP ¼ 27 % and dark grey nodes

at CP ¼ 55 %, light grey at CP ¼ 77 %, and white at

CP ¼ 100 %. (b) Internode distance map with nodes

assigned at CP ¼ 55 %
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Binning Sequences Using Very Sparse Labels Within a Metagenome, Table 2 Binning summary for low

complexity metagenome for contigs larger than 8 kb

Assembler Method Bins

Binned

Contigs Total#Contigs %ofBinContigs #ofPredNotInAct wSp wSn

Arachne kmer (7 mer) 0 0 202 0 85 – 0.000

Arachne kmer (8 mer) 0 0 202 0 149 – 0.000

Arachne BLAST distr

1

0 0 202 0 0 – 0.000

Arachne BLAST distr

2

0 0 202 0 0 – 0.000

Arachne S-GSOM

(CP ¼ 55 %)

1 141 202 69.8 0 1.000 0.698

Arachne gen

PhyloPythia

(p:0.85)

1 168 202 83.17 0 1.000 0.832

Arachne ssp.

PhyloPythia

(p:0.85)

1 186 202 92.08 0 1.000 0.921

Arachne S-GSOM

(CP ¼ 75 %)

1 180 202 89.11 0 1.000 0.891

Arachne gen
PhyloPythia
(p:0.5)

1 201 202 99.5 0 1.000 0.995

Arachne ssp.
PhyloPythia
(p:0.5)

1 201 202 99.5 0 1.000 0.995

Phrap kmer (7 mer) 0 0 229 0 129 – 0.000

Phrap kmer (8 mer) 0 0 229 0 154 – 0.000

Phrap BLAST distr

1

0 0 229 0 0 – 0.000

Phrap BLAST distr

2

0 0 229 0 0 – 0.000

Phrap S-GSOM

(CP ¼ 55 %)

1 157 229 68.56 0 1.000 0.686

Phrap gen

PhyloPythia

(p:0.85)

1 185 229 80.79 0 1.000 0.808

Phrap ssp.

PhyloPythia

(p:0.85)

1 205 229 89.52 0 1.000 0.895

Phrap S-GSOM

(CP ¼ 75 %)

1 204 229 89.08 0 1.000 0.891

Phrap gen
PhyloPythia
(p:0.5)

1 227 229 99.13 0 1.000 0.991

Phrap ssp.
PhyloPythia
(p:0.5)

1 227 229 99.13 0 1.000 0.991

Total#Contigs total number of contigs in the dataset,%ofBinContigs the percentage of contigs binned, #ofPredNotInAct
the number of contigs predicted as a taxon that is not present in the dataset, which are treated as the un-binned contigs,

wSp weighted specificity, wSn weighted sensitivity
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settings of kmer and BLAST methods, but

was outperformed by PhyloPythia in both confi-

dence settings (CP ¼ 75% vs. p-value ¼ 0.5 and

CP ¼ 55 % vs. p-value ¼ 0.85) regardless of the

assembler used (Tables 2 and 3). Nevertheless,

S-GSOM still outperformed PhyloPythia for the

simMC, particularly in terms of sensitivity, i.e.,

having a higher true positive rate, at the family

level (refer to the supplementary materials of

original publication).

Binning Sequences Using Very Sparse Labels Within a Metagenome, Table 3 Binning summary for medium

complexity metagenome for contigs larger than 8 kb

Assembler Method Bins

Binned

contigs Total#Contigs %ofBinContigs #ofPredNotInAct wSp wSn

Arachne kmer (7 mer) 0 0 301 0 47 – 0.000

Arachne kmer (8 mer) 0 0 301 0 191 – 0.000

Arachne BLAST distr 1 0 0 301 0 0 – 0.000

Arachne BLAST distr 2 0 0 301 0 0 – 0.000

Arachne S-GSOM

(CP ¼ 55 %)

2 220 301 73.09 0 1.000 0.731

Arachne gen

PhyloPythia

(p:0.85)

2 242 301 80.4 0 1.000 0.804

Arachne ssp.

PhyloPythia

(p:0.85)

2 242 301 80.4 0 1.000 0.804

Arachne S-GSOM

(CP ¼ 75 %)

2 279 301 92.69 0 1.000 0.927

Arachne gen
PhyloPythia
(p:0.5)

2 301 301 100 0 1.000 1.000

Arachne ssp.
PhyloPythia
(p:0.5)

2 301 301 100 0 1.000 1.000

Phrap kmer (7 mer) 0 0 401 0 84 – 0.000

Phrap kmer (8 mer) 0 0 401 0 271 – 0.000

Phrap BLAST distr 1 0 0 401 0 0 – 0.000

Phrap BLAST distr 2 0 0 401 0 0 – 0.000

Phrap S-GSOM

(CP ¼ 55 %)

2 318 401 79.3 0 1.000 0.793

Phrap gen

PhyloPythia

(p:0.85)

2 301 401 75.06 0 1.000 0.751

Phrap ssp.

PhyloPythia

(p:0.85)

2 295 401 73.57 0 1.000 0.736

Phrap S-GSOM

(CP ¼ 75 %)

2 367 401 91.52 0 1.000 0.915

Phrap gen
PhyloPythia
(p:0.5)

2 399 401 99.5 1 1.000 0.995

Phrap ssp.
PhyloPythia
(p:0.5)

2 399 401 99.5 1 1.000 0.995
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At the order level, while PhyloPythia

performed best for all binning tests on contigs

larger than 8 kb, our S-GSOM was the

best-performing method when used to bin

contigs that contain at least 10 reads (Tables 4

and 5).

Discussion

By including sequences with taxonomic informa-

tion, i.e., seeds, S-GSOM exhibits more feasibil-

ity in binning task for metagenomes containing

many unknown species. The visualization

Binning Sequences Using Very Sparse Labels Within a Metagenome, Table 4 Binning summary for low

complexity metagenome for contigs with at least 10 reads

Assembler Method Bins

Binned

Contigs Total#Contigs %ofBinContigs #ofPredNotInAct wSp wSn

Arachne kmer (7 mer) 0 0 367 0 168 – 0.000

Arachne kmer (8 mer) 0 0 367 0 312 – 0.000

Arachne BLAST distr 1 0 0 367 0 0 – 0.000

Arachne BLAST distr 2 0 0 367 0 0 – 0.000

Arachne S-GSOM

(CP ¼ 55 %)

3 295 367 80.38 0 1.000 0.798

Arachne gen

PhyloPythia

(p:0.85)

2 214 367 58.31 0 1.000 0.583

Arachne ssp.

PhyloPythia

(p:0.85)

2 236 367 64.31 0 1.000 0.638

Arachne S-GSOM
(CP ¼ 75 %)

3 343 367 93.46 0 0.950 0.926

Arachne gen

PhyloPythia

(p:0.5)

2 292 367 79.56 0 1.000 0.796

Arachne ssp.

PhyloPythia

(p:0.5)

2 296 367 80.65 0 1.000 0.798

Phrap kmer (7 mer) 2 3 482 0.62 159 1.000 0.000

Phrap kmer (8 mer) 3 17 482 3.53 281 1.000 0.000

Phrap BLAST distr 1 0 0 482 0 0 – 0.000

Phrap BLAST distr 2 0 0 482 0 1 – 0.000

Phrap S-GSOM

(CP ¼ 55 %)

8 381 482 79.05 9 1.000 0.728

Phrap gen

PhyloPythia

(p:0.85)

3 236 482 48.96 0 1.000 0.488

Phrap ssp.

PhyloPythia

(p:0.85)

3 272 482 56.43 0 1.000 0.560

Phrap S-GSOM
(CP ¼ 75 %)

8 443 482 91.91 9 1.000 0.840

Phrap gen

PhyloPythia

(p:0.5)

4 368 482 76.35 1 1.000 0.759

Phrap ssp.

PhyloPythia

(p:0.5)

5 387 482 80.29 1 1.000 0.797
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property of S-GSOM further allows the identifi-

cation of unseeded clusters. However, the

sequence number of unseeded species should be

at least as many as in the seeded clusters; other-

wise, S-GSOM may wrongly assigned the

unseeded species to an unrelated species at low

CP value or be considered as part of the boundary

of neighboring clusters and thus become hardly

detectable.

It is very likely that the 16S rRNA fragments

of some species were not or difficult to be sam-

pled. In such circumstances, we can still obtain

Binning Sequences Using Very Sparse Labels Within a Metagenome, Table 5 Binning summary for medium

complexity metagenome for contigs with at least 10 reads

Assembler Method Bins

Binned

Contigs Total#Contigs %ofBinContigs #ofPredNotInAct wSp wSn

Arachne kmer (7 mer) 1 2 1,372 0.15 133 1.000 0.000

Arachne kmer (8 mer) 0 0 1,372 0 1,241 – 0.000

Arachne BLAST distr 1 0 0 1,372 0 0 – 0.000

Arachne BLAST distr 2 0 0 1,372 0 1 – 0.000

Arachne S-GSOM

(CP ¼ 55 %)

5 1,061 1,372 77.33 0 0.998 0.768

Arachne gen

PhyloPythia

(p:0.85)

3 562 1,372 40.96 0 1.000 0.409

Arachne ssp.

PhyloPythia

(p:0.85)

3 657 1,372 47.89 0 1.000 0.478

Arachne S-GSOM
(CP ¼ 75 %)

5 1,253 1,372 91.33 0 0.983 0.897

Arachne gen

PhyloPythia

(p:0.5)

4 1,036 1,372 75.51 6 1.000 0.753

Arachne ssp.

PhyloPythia

(p:0.5)

4 1,102 1,372 80.32 4 1.000 0.802

Phrap kmer (7 mer) 1 1 1,980 0.05 163 1.000 0.000

Phrap kmer (8 mer) 2 391 1,980 19.75 1,457 1.000 0.000

Phrap BLAST distr 1 0 0 1,980 0 2 – 0.000

Phrap BLAST distr 2 0 0 1,980 0 3 – 0.000

Phrap S-GSOM

(CP ¼ 55 %)

8 1,409 1,980 71.16 9 0.995 0.686

Phrap gen

PhyloPythia

(p:0.85)

3 799 1,980 40.35 1 1.000 0.404

Phrap ssp.

PhyloPythia

(p:0.85)

3 844 1,980 42.63 1 1.000 0.426

Phrap S-GSOM
(CP ¼ 75 %)

8 1,708 1,980 86.26 9 0.991 0.816

Phrap gen

PhyloPythia

(p:0.5)

5 1,484 1,980 74.95 6 1.000 0.745

Phrap ssp.

PhyloPythia

(p:0.5)

5 1,524 1,980 76.97 4 1.000 0.767
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those metagenomic sequences in the possible

bins, which have been identified by using the

iso-CP contour map, then comparing the

sequences with existing databases by BLAST

search. If any conserved marker gene is detected,

such as elongation factors and cytochrome oxi-

dase, then we may assess the clusters of these

sequences by phylogenetic analysis.

Even though these composition-based binning

methods have shown good results, currently they

are hindered by the requirement of long sequence

length. This limitation of length is partially due to

the occurrence of chimeric sequences from clon-

ing procedures of experiments and from the

incorrect assembly of sequences. The former

source of chimeric sequences can be reduced by

advanced cloning-free sequencing, e.g., Roche

454 genome sequencer FLX. However, the latter

source of chimeric sequence is derived from the

incompatible design of current assembler, which

assembles all reads into one single genome and

may not satisfy the requirement of metagenomes

of poor sequencing coverage or of high species

complexity. Therefore, if the number of chimeric

sequences is reduced, the required sequence

length in S-GSOM can also be reduced. To help

the reduction of chimeric sequences, we suggest

including the compositional information in the

assembling level.

Summary

S-GSOM enables the clustering (binning) of

metagenomic sequences by incorporating sparse

sequence fragments, with phylogenetic labels,

around highly conserved genes as seeds. The

application of seeds makes S-GSOM more feasi-

ble when dealing with metagenomes containing

many unknown species, which can be visualized

using CP contour display. In addition, S-GSOM

is also an efficient algorithm in terms of the

training time. By adjusting the CP value, users

can retrieve different clustering results without

retraining. The nature of self-organizing indeed

forms S-GSOM an automated process that can be

improved when new seeds are available.
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Synonyms

The economic and academic values of

metagenome resources

Definition

Given that the possibility and frequency of find-

ing novel genes, enzymes, and metabolites

through conventional pure culture technology

are decreasing gradually, exploration of

resources hidden in the metagenome as

a treasure of new resources is expected to provide

a new breakthrough. The metagenome is cur-

rently the most promising candidate for exploring

new biological resources, and therefore there will

be continuous efforts for refining strategies and

developing new protocols. Through research

using the metagenome, we can measure micro-

bial diversity, understand ecosystems through

a window into the microbial genome contents in

a specific environmental habitat and explore use-

ful resources, and then ultimately incorporate

them into the process of practical uses.

Introduction

The coming of a new era – the “metagenome

age” – that accesses the genomes of all microbes

retrieved directly from environmental samples

paves a new way for the understanding and prac-

tical application of microbial resources (Hunter-

Cevera 1998). The metagenome will provide

a revolutionary solution to offer powerful tools

for understanding the microbial world that has the

potential to uncover constituents of the entire

living organism for valuable use in various fields

such as agricultural, medicinal, and industrial

biotechnology.

Microbes have currently recognized as being

possessed the most extensive genetic biodiver-

sity. They have proliferated in the ecosystem on

Earth for a long age (3.5–4.2 billon years) and

thus evolved fittingly to various habitats seem-

ingly incompatible with life (from a conventional

point of view) such as the animal gut, desert,

Antarctic ice, and hot springs. Accordingly,

their taxonomical species and metabolic func-

tions are also more diverse than expected. There-

fore, microbial consortia are a treasure of

resources with infinite value in basic research

and practical applications. Since the appearance

of mankind on Earth, microbes and humans have

maintained a close relationship through both

direct and indirect interactions. In the view of

long direct interaction, the roles of microbes in

human nutrition and health are established

through integrated research – the Human

Microbiome Project – that aims to characterize

the microbial communities of the human body,

including nasal passages, oral cavities, skin, gas-

trointestinal tract, and urogenital tract

(Lewis et al. 2012).

Accessing the microbial diversity from vari-

ous niches through the approach using

metagenome has been presented to provide valu-

able resources and clues for the applications of

microbes in human health and industry, as well as

for scientific research on the ecosystem function,

the global biogeochemical cycle, and the origin

of life. However, microbial species known as

potential candidates in industry and those with
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elucidated functions in ecosystems are only those

that can be cultured, which are estimated to be

about <1 % of microbes existing in nature; thus,

most microbes are recognized as unculturable

species (Handelsman 2004). Accordingly, the

strategy to overcome the limitation of pure cul-

ture and thus to explore the entire microbial

resource have attempted, which has induced

a new paradigm shift.

Metagenomics is a research area that studies

the metagenome which is the total genomes of all

organisms existing in a certain habitat. It extracts

DNA from a complex microbial community and

analyzes the information of genomes using

molecular biological tools mainly based on direct

sequencing. Therefore, metagenomics is

a microbial community analysis method to access

all contents of microbial genomes, which goes

beyond the limited scope of cultivated cells.

Metagenomic research has been revolutionized

by the development of genome-manipulating

technologies, and despite its short history, new

functional genes, proteins, and biomaterials have

been mined successfully (Xu 2006). Comprehen-

sive understanding has also been attained on the

ecology and physiology of microbes. In addition,

a huge amount of sequence information derived

from metagenome is integrated using bioinfor-

matic tools. Accordingly, the scope of application

in the entire range of biotechnology has altered

based on the potential value of the metagenome

(Fig. 1).

The Value of Metagenome Resources

Exploited

The results of gene prediction, annotation on the

sequence, and metabolic assembly through

(individual) genome reconstruction of

metagenome give not only the understanding of

microbial ecology and physiology but also the

expectation that useful genetic resources and the

whole synthetic pathway of specific compounds

in vivo are readily explored. With the develop-

ment of the amplification tools for rare DNAs and

technology related to high-throughput sequenc-

ing of DNA, it is now possible to analyze and

understand the function of individual species in

the whole community of natural strains. As an

example, the elucidation of broad distribution of

non-extreme ammonia-oxidizing archaea, AOA,

as dominant species in a wide range of ecological

niches clarified a major provider of energy flow

and nitrogen cycling in ecosystem (Erguder

et al. 2009). Thus, a fundamental reconsideration

of the geochemical cycle of nitrogen is

demanded. In line with this, environmental shot-

gun sequencings of specific samples from ocean,

soil, plant, and animal stimulated interest in the

diversity of microorganism and indwelling met-

abolic gene clusters, enabling the elucidation of

species and community functions in specific

niche. With the introduction of high-throughput

screening that can detect extremely weak activity

and signal, newmethods have been developed for

rapid detection of target libraries with a small

Biological Treasure Metagenome, Fig. 1 A value of

metagenome resource. Current metagenomic studies

result in various fields of applications that include, but

are not limited to, environmental, agricultural, medical,

and industrial needs
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amount of sample, thus facilitating screening

with more positive hits (genes and proteins).

Candidates captured through this process are

compared with other known resources in shared

pattern of functional or sequence signature,

which predicts the functional roles of the candi-

dates in silico. With the derived functional roles,

metabolic pathway and/or capacity of the whole

microbiome is constructed. Currently, the

microbiome in a specific environment is reliably

established through reconstitution of the genome

data of all organisms by bioinformatic tools

(Kunin et al. 2008). Metagenome data provide

the understanding of complex biological systems

through online public databases and data-

integration tools. Currently, assembled genomes

analyzed in an integrated logics are providing

a window for forming more complete genomes,

and this is expected to reduce time and cost in

finding new resources considerably.

The Value of Metagenome Resources Remain

to be Elucidated

Besides the elucidated physiological and ecolog-

ical values by using metagenomic approaches,

there is an obvious reason for obtaining useful

genes or physiologically active substances from

the metagenome. This is because the access to

screening the library of pure-cultured cells has

been limited, and it is very difficult to sustain

the novelty of resources originating from

culturable strains. According to what is known,

enzymatic degradation or synthesis is possible for

almost every organic compound that can be found

naturally or synthesized chemically. However,

regardless of the existence of related enzymes

with promising activities, the functional and

sequence spaces of metagenome resources from

the whole living organisms in ecosystem are still

left mostly unexplored. Therefore, if hurdles in

the screening process, due to the approach based

on the homology of protein sequence, can be

overcome, it will be possible to find resources in

new areas. Of course, it is generally known

that the approaches of screening from the

metagenome compete with protein engineering

technologies that mutated or fine-tuned existing

genetic resources or induced forced evolution

in vitro. However, the limitation of engineering

processes in the exploration of sequence space

and the innate weak point of the stepwise screen-

ing process that cannot gather effectively the

effect of beneficial mutation in the alternative

landscape may reasonably explain the strength

of the exploration of the metagenome from

microbial community that has already possessed

various functional space (including biologically

permitted sequence space) by evolutionary expe-

rience. Therefore, the metagenome can play

a significant role as a resource to provide new

alternatives and get desired products from the

highly precise and specific enzyme reactions of

thousands of substrates used in industry (Fig. 2).

One of the major trends of research on biolog-

ically mediated processes is white biotechnology,

which is to find alternatives to petrochemical

compounds using renewable resources. There-

fore, attention is paid to the production of fossil

fuels by bioconversion or fermentation using bio-

mass. To this end, the acquisition of regulatory

genes, potential enzymes, and gene clusters

related to the production of organic acids, alco-

hols, solvents, and diesels is also obtainable from

metagenome. What is more, organic compounds,

which have been out of people’s attention for

economical reasons, are again spotlighted along

with their application to improved price compet-

itiveness, low risk of environmental pollution,

and innovative tools of systems biology. We

also expect critical roles of the metagenome in

increasing agricultural productivity and the utili-

zation of biomass. Besides, research on the

human metagenome can provide clues to causes

of diseases, acquired immune system, and new

methods of treating pathogen through the ana-

lyses of microbiome database from microbial

communities (Gill et al. 2006). Also, in response

to the serious side effects of synthetic drugs and

increasing drug-resistant pathogens, finding new

natural inhibitors or suppressors, including

quorum-sensing blocker, as antibiotics in the

metagenome could be possible. In this respect,

there are many attempts to approach the new

potential of metagenome resources through ana-

lyzing the resistome formed naturally by biolog-

ical species existing around the ecological
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producers of these substances (D’Costa

et al. 2007). It is generally believed that such an

expectation can be realized by research on the

metagenome evolved in ecosystem through

countless mutations, suppression, and

competition in tens of millions of microbial

species for billions of years.

Genomic data collected through the

metagenome will be used ultimately in creating

synthetically engineered species (with minimally

Biological Treasure Metagenome, Fig. 2 Exploring

value creation from integrative research activities of

metagenome. Information concerning the application

fields of metagenome resources is gathered and processed

by systematically integrative systems. This information

results in various fields of further applications that solve

global problems such as fine chemical, environmental,

medical services, and future energies. Basically,

metagenome information also provides a clue for the

origin and minimal genome of living organisms
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synthesized genomes; Gibson et al. 2008;

Lartigue et al. 2007; Dymond et al. 2011) solving

global problems such as medical services and

energies. The goal of synthetic biology is to pro-

duce cell-level bio-factories, aiming at the bio-

logical production of valuable chemicals and

drugs. In this research area, attempt to create

a platform for the engineering of orthogonal fac-

tor (function without any interference in vivo),

such as switches, circuits, and logic gates, was

made to control independently multiple genes in

host systems. In fact, the related tools and

methods have already been successfully applied

in various studies, giving rise to orthogonal DNA

or RNA-protein pairs. As example of one such

effort, orthogonal ribosome-mRNA pairs are

composed of an mRNA containing a ribosome-

binding site that does not recognize by the endog-

enous ribosome and an orthogonal ribosome that

specifically translates the orthogonal mRNA and

thus function independently without severe

effects on cell physiology and metabolism when

required (Wang et al. 2007). This result provides

a possibility that useful components of cells can

be synthesized efficiently for making microbes as

cell factories equipped with minimal but plentiful

genome and then adding more genes for specific

purposes. The assignment of speciality and/or

orthogonal function may partly be attainable

through novel parts (genes and proteins) and

genetic circuits (signaling cascades and meta-

bolic pathways) to be mined from the

metagenome.

Summary

Through metagenomics, scientists have obtained

a new view to the microbial world that is different

from traditional concepts and are working to

overcome difficulties in future society. The

exhaustion of natural resources such as fossil

fuels will increase people’s interest in biological

resources using renewable resources, and this

alone makes the metagenome highly worthy of

study. Microbial diversity is so extensive that it is

not easy to estimate their history in the ecosystem

of the planet, and even now at all of ecosystem

they may continue to mutate in order to resist or

adapt themselves to unceasing changes. Thus, the

metagenome provides a huge potential as

a resource with novel activity, which may be

used for any purpose.
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Definitions

Carbohydrate-active enzymes (CAZymes)

designate the ensemble of the enzymes that

catalyze the assembly, breakdown, or modifica-

tion of oligosaccharides, polysaccharides, and

glycoconjugates. They are usually comprising

glycoside hydrolases (GHs), polysaccharide

lyases (PLs), carbohydrate esterases (CEs), and

glycosyltransferases (GTs).

Introduction

Carbohydrates

Carbohydrates, in the form of mono-, di-, oligo-,

and polysaccharides, as well as glycoconjugates,

play important roles in all areas of biology.

Beyond simple energy storage, carbohydrates

underpin diverse biological processes, such as

host-pathogen interactions, signal transduction,

inflammation, intracellular trafficking, diseases

and tumor metastasis, and differentiation/devel-

opment. Importantly, carbohydrates represent

about 75 % of the structural components of pho-

tosynthetically produced biomass. Sugar-rich

plant cell walls, seeds, and tubers thus represent

a major source of nutrients for herbivorous and

omnivorous animals and for humans. These car-

bohydrates have also significant potential to

address energy and material needs.

A striking feature of carbohydrates is their

global structural variety, which results from

a large diversity of monosaccharide building

blocks, and the possibility of numerous stereo-

and regiospecific linkages (Laine 1994), which

give rise to a myriad of structures that can be

attached to proteins, lipids, nucleic acids,

etc. Any biological molecule can be

glycosylated, including proteins, lipids, nucleo-

tides, and carbohydrate themselves, the level of

such modifications often varying extensively. In

fact, glycosylation of proteins is the most com-

mon posttranslational modification in eukaryotes

but also present in prokaryotes, strongly influenc-

ing many of their functional aspects, including

cellular localization, turnover, and protein qual-

ity. Proteoglycans mediate cell communication,

growth factor sequestration, microbial recogni-

tion, chemokine and cytokine activation, tissue

morphogenesis during embryotic development,

cell migration, and proliferation. Nature has

exploited the tremendous possibilities offered

by the sugar code by elaborating and breaking

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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down very specific complex carbohydrates in

a highly specific manner. Exquisite details of

complex carbohydrates create immense func-

tional differences. For instance, cellulose and

amylose, two simple polymers of glucose resi-

dues linked between their position 1 and their

position 4, only differ by the equatorial vs. axial

orientation of the glycosidic bond (b for cellulose

and a for amylose). This minute difference gives

rise to two massively different polysaccharides:

cellulose, whose mechanical properties rival

those of steel, is synthesized by plants as

a structural polysaccharide notoriously recalci-

trant to hydrolysis while amylose is a component

of starch and, as a reserve carbohydrate, is readily

converted to glucose.

Carbohydrate-Active Enzymes and Their

Classification

Carbohydrate-active enzymes (CAZymes) cata-

lyze selective reactions to assemble and break

down complex carbohydrates and glycoconjugates

for a large array of biological functions globally

underpinning glycobiology. These enzymes,

which comprise glycoside hydrolases (GH), poly-

saccharide lyases (PL), carbohydrate esterases

(CE), and glycosyltransferases (GT), have gradu-

ally evolved from a limited number of primordial

carbohydrate-active enzymes coding genes by

acquiring novel specificities at substrate and prod-

uct level. In addition, these enzymes often display

a modular structure with a catalytic module

appended to one or several other domains, such

as carbohydrate-binding modules, allowing for

increased specificity and/or specific targeting to

a particular substrate/region (Boraston et al. 2004).

The sequence-based classification of

CAZymes was initiated in 1991 (Henrissat

1991; Henrissat and Bairoch 1993, 1996) as

a complement to the long-standing EnzymeCom-

mission (EC) number system (http://www.chem.

qmul.ac.uk/iubmb/enzyme/), which is based

solely on enzyme activities. Given the prevalence

of convergent evolution of enzymes that cleave

glycosidic bonds, as well as the demonstrable

catalytic promiscuity of individual enzymes,

sequence-based classification has proven to be

a robust way to unify information on enzyme

structure, specificity, and mechanism, which

provides significant predictive power. Initially

motivated by a need to delineate cellulases

(EC 3.2.1.4) into distinct structural families, the

first incarnation of the GH family classification,

as such, comprised 35 GH families (Henrissat

1991). Five years later, the number of GH fami-

lies grew to 57 families (Henrissat and Bairoch

1996), and has continuously expanded to reach

113 in 2009 (Cantarel et al. 2009). As of March

2012, 130 sequence-based families of GHs have

been defined and are presented in the continu-

ously updated CAZy database (http://www.cazy.

org/). In parallel with the development of the

classification of GH families, sequence-based

classifications of the glycosyltransferases (GTs)

(Campbell et al. 1997), polysaccharide lyases

(PLs) (Lombard et al. 2010), carbohydrate ester-

ases (CEs) (Cantarel et al. 2009), and

carbohydrate-binding modules (CBMs)

(Boraston et al. 2004) have similarly been devel-

oped and added to the CAZy database.

Functional Prediction of Carbohydrate-Active

Enzymes

The immense variety of carbohydrate structures

and their involvement in extremely different bio-

logical functions make that functional annota-

tions such as “putative carbohydrate-active

enzyme” or “putative glycosidase” have very

limited information value. Instead, a useful func-

tional prediction for a CAZyme should indicate

the likely nature of sugar being cleaved or trans-

ferred, with a description of the exact connectiv-

ity between the sugar undergoing catalysis and

the molecule it is attached to or detached from.

A feature that was recognized very early on

was that the sequence-based families of

carbohydrate-active enzymes group together

enzymes of differing substrate specificity and

hence group together enzymes with different EC

numbers (Henrissat 1991; Campbell et al. 1997).

Because of the multifunctional nature of these

enzymes, it is believed that a limited number of

catalytic and binding progenitors (protein domain

families), which can be found in different combi-

nation, gave rise to the vast number of enzymes

and of carbohydrate structures that exist in
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modern organisms, resulting in the gradual and

simultaneous acquisition of exquisite substrate

specificity for both carbohydrate biosynthesis

and carbohydrate degradation. Since most

CAZyme protein domain families are

multifunctional, prediction of functional roles

for uncharacterized carbohydrate-active enzyme

encoding genes simply by family assignment can

lead to erroneous annotations, especially at high

sequence divergence. Additionally, the universe

of known carbohydrate structures with the same

types of linkage bonds is smaller than the uni-

verse of possibility; therefore, even when func-

tions are known, there are potentially more

possible substrates. As a result the number of

sequences that can be assigned to CAZy families

increases very rapidly, but the number of

CAZymes whose substrate specificity has been

established (even roughly) grows at a much lower

pace. As sequencing data grows with increasing

genomic and metagenomic characterization, this

proportion of characterized enzymes continues to

decrease. In spite of limitations due to the pres-

ence of different substrate specificities in many

CAZyme families, it is often possible to assign

a broad substrate category (for instance, pectin,

cellulose, xylan) to a number of CAZyme fami-

lies (Cantarel et al. 2012) even if the precise

substrate or product specificity (for instance, to

distinguish between endo- and exo-acting

enzymes or to distinguish between b-D-
xylosidase and a-L-arabinofuranosidase) cannot
be predicted accurately based on simple family

assignment. In order to improve functional pre-

diction, the partition of CAZyme families into

subfamilies based on phylogenetic analysis has

been explored. Significantly subfamily classifica-

tion of several families of GHs and PLs has

shown that the majority of the defined subfam-

ilies were monospecific, thus indicating a better

correlation of substrate specificity between

sequences at the subfamily level than the family

level (Lombard et al. 2010; St. John et al. 2010;

Stam et al. 2006).

The advent of low cost DNA sequencing has

revolutionized biology, and the central question

is no longer how to obtain nucleotide sequence,

but how to make sense of it. In the vast majority

of cases, inferences are done by detecting the

similarity of sequence between the newly gener-

ated DNA sequence (or putatively encoded pro-

tein) and sequences already in databases. This

approach does not perform equally with different

classes of proteins in terms of the biological

inference that can be derived. For instance, the

assignment to families of protease/peptidases has

often limited predictive power: the prediction are

often only based on the fold the most informative

information being essentially that of the catalytic

machinery – for instance, “serine protease”– and

little predictive power in terms of what is the

specific peptide substrate targeted by the enzyme.

Thus, the very difficulty with CAZymes (huge

structural and functional variety of substrates) is

also at the origin of their intrinsic advantage:

these enzymes had to evolve to achieve the exqui-

site specificity necessary to carry out their func-

tion in a selective manner. The high information

content of complex carbohydrates has therefore

translated into the proteins that assemble and

deconstruct then by leaving evolutionary sig-

nals/traces that can be recognized in the

sequence. While experimental developments in

the field of glycomics are still slow in comparison

to the boom in sequencing technologies,

carbohydrate-active enzymes are perhaps the

most adapted to functional inference from geno-

mic and metagenomic data.

The direct genetic sequencing of microbial

communities (metagenomics) is beginning to

explore the great gene diversity in the microbial

world. Environmental samples from diverse envi-

ronment are being studied to better understand

the role of microbes in various habitats from the

human body to the ocean floor. This technology

has allowed scientist to begin to answer questions

not possible with studying only cultivable spe-

cies. Here we review the burgeoning exploration

of carbohydrate-active enzymes in metagenomic

samples.

Glycobiology in Microbial Communities

Microbial communities isolated from human

fecal material are the most well studied in the

usage of CAZymes. CAZyme diversity in

human gut microbiota studies (Gill et al. 2006;
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Mahowald et al. 2009; Turnbaugh et al. 2010)

showed 81 glycoside-hydrolase families, making

the human gut one of the richest sources of

CAZymes. Some of these studies aim to deter-

mine the relationship between CAZyme utiliza-

tion and disease (Turnbaugh et al. 2009) and diet

including a vegetarian (Kabeerdoss et al. 2011) or

differential fiber intake (Tasse et al. 2010). Tax-

onomic and genetic differences were found

between omnivores and vegetarians suggesting

that energy intake, complex carbohydrate degra-

dation, and butyrate production, a product of

dietary fiber fermentation, was higher in omni-

vores with these functions associated with an

increase in certain Clostridiales, such as Clos-
tridium, Roburia, and Eubacterium rectale

(Kabeerdoss et al. 2011). Gene clusters involved

in dietary fiber degradation have been shown to

be larger than clusters involved in starch degra-

dation and often contain genes involved in car-

bohydrate transports and binding (Tasse

et al. 2010). Studies of the human gut have also

revealed possible lateral gene transfer between

marine and human microbes interacting in the

human digestion system (Hehemann

et al. 2010), in order to increase algae cell wall

degradation.

While the human gut microbiota has been the

subject of most studies, studies in other animal

gut microbiota reveal an evolutionary-driven

composition of gut microbiota. Thus mammalian

gut microbiome composition and functional

capabilities is likely driven by diet, such that

carnivores, no matter the mammalian phylogeny,

contain organisms and have bacterial functions

for using proteins as an energy source, compared

to herbivores, whose gut microbiota aims to con-

vert complex plant carbohydrates into energy

(Pope et al. 2010; Muegge et al. 2011; Zhu

et al. 2011). The digestive microbiota of herbi-

vores is being actively explored for the discovery

of novel enzymes for the conversion of plant

biomass to biofuels (Brulc et al. 2009; Duan

et al. 2009; Suen et al. 2010). In a similar vein,

the termite gut microbiota revealed a wealth of

CAZymes involved in degrading wood polysac-

charides (Matteotti et al. 2011; Warnecke

et al. 2007).

In a comparison of carbohydrate active

enzymes in all human body sites (Cantarel

et al. 2012), differences in abundance of

CAZymes were identified between all major

sites. In general, digestive sites and particularly

stool contained the highest number of CAZy

families and the highest abundance of CAZymes.

These sites have a higher abundance of CAZymes

involved in plant and algae degradation. GH94

(cellobiose, cellodextrin, and chitobiose phos-

phorylases) and GH30 (b-1,6-glucanase,
b-xylosidase, b-D-fucosidase, b-glucosidase,
and b-1,6-galactanase) are statistically more

abundant in stool compared to the other four

major body habitats. Oral sites appear to special-

ize in starch and glycogen degradation, as these

functions are enriched in oral habitats compared

to the stool. Vaginal microbial communities are

enriched in CAZymes involved in sucrose cleav-

age and polymerization to fructans, potentially

important for biofilm formation. Overall, the

functional profiles are more similar within

a body habitat than between habitats, even when

the taxonomic profiles differ, suggesting func-

tional adaptation of the community to the carbo-

hydrates prevalent in the environment.

Practical Issues in Mining Metagenomes

for CAZymes

Practically annotation of CAZymes is not

completely trivial. First, for historical reasons

some CAZy families are distantly related, mean-

ing there are sequences that share statistically

significant sequence similarity with multiple

families in the same region. These families are

therefore grouped into “clans,” similarly to

PFAM clans. Therefore, family assignment of

these proteins is ambiguous, suggesting these

proteins are general members of the clan with

broad functional predictions. Secondly

CAZymes are modular, meaning these enzymes

are often composed multiple protein domains

connected by linker regions. These domains can

combine in a variety of permutations to form or

give rise to diverse functions, e.g., a carbohydrate

binding domain can be attached to multiple cata-

lytic domains to facilitate substrate specificity.

Therefore, accurate annotation requires
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comparison to a database of domains, rather than

whole proteins. The length of the domains can

vary greatly from as little as 30 amino acids to

several hundred residues, so when strict expecta-

tion value (calculated by BLAST or HMMER)

thresholds, such as E-value < 1e-6, are imposed,

the false-negative rates increase for the identifi-

cation of the distantly related short domain

family members. For metagenomics, these

challenges are amplified since metagenomic

gene predictions are (i) often fragmented,

(ii) are too short to contain multiple domains,

and (iii) could be from organisms with little to

no close evolutionary relatives.

As previously discussed, as sequencing cover-

age of microbial communities (in metagenomes)

increases, these challenges of metagenomics will

diminish and CAZy family assignment as well as

domain structure prediction will gradually

improve. The hardest problem to resolve will

thus be with the precise prediction of the sub-

strate/product specificity of CAZymes. Such pre-

dictions require close relatedness between the

query and at least one biochemically character-

ized CAZyme. Accelerating the pace of explora-

tion of the sequence to specificity space of

CAZymes is key to a leap toward accuracy, and

this will require new experimental innovations in

the field of carbohydrates and coupling

computer-guided high-throughput functional

investigations to structural genomics initiatives.

Yet, notwithstanding the accuracy of functional

prediction, the interpretation of carbohydrate-

active enzymes profiles resulting from

metagenomic investigations will require exper-

tise in complex carbohydrate assembly and

breakdown.

Summary

The advent of low cost DNA sequencing has

revolutionized biology, and the central question

is no longer how to obtain nucleotide sequence,

but how to make sense of it. Functional predic-

tions start by sequence comparisons against data-

bases of known annotated genes and proteins.

However, there are two major caveats to this

approach: (i) sequence similarity does not equal

same function and (ii) annotations on known

sequences have varying degrees of accuracy

depending on the level and quality of evidence,

which ideally relies on experimental validation,

but is often based on sequence similarity. Creat-

ing accurate annotations becomes complex in

multifunctional protein families. Because the

diversity in carbohydrate structure is large and

the number of protein families acting on sugar

limited, carbohydrate-active enzyme gene fami-

lies are often multifunctional and specificity is

mediated by additional structural or carbohydrate

binding modules. The Carbohydrate Active

Enzyme Database (Cantarel et al. 2009) (CAZy)

provides an expert curated resource for the

glycobiology community, whereby annotations

and their underlying evidence are documented.
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Introduction

As technology and methodology have allowed for

more advanced assemblies of metagenomes, the

need for commensurate assignment of quality to

these assemblies has become evident. There are

currently no set standards for describing the qual-

ity of sequencing, assembly, or analysis of

metagenomic assemblies. Uncorrected, this may
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lead to faulty conclusions based on assumptions

that the assembly is more or less accurate, or

representative of the sample, than it truly is. This

need is similar to, but far more complex than, the

dilemma that faced the microbial sequencing and

assembly community as more and more genomes

were sequencedwith new technologies and assem-

bled with novel algorithms.

For bacterial genomes, the quality of assembly

and finishing efforts has been standardized for

several years, resulting in a much better under-

standing of the types of analyses that can be

performed on each level of finished genome and

the resulting value. While the need for standards

in metagenomics has been very clear in terms of

metadata (Yilmaz et al. 2011), less attention has

been focused on the genomic data itself. As the

field continues to advance and mature, it is clear

that efforts in standardizing assemblies as well as

functional and phylogenetic classification are

sorely needed. Given the flux in application of

various sequencing technologies (with different

and sometimes variable sequence qualities) to

genome reconstruction, the most recent version

of this standard for microbial genomes is to

divide sequences into broad levels of complete-

ness and quality, from draft to completely fin-

ished (Chain et al. 2009). While these standards

are valuable, it is difficult to apply similar stan-

dards to metagenomic assemblies, where the

effort is to reconstruct the genomes (or parts of

genomes) of many organisms present within

a sample. The numbers of different species in

a community selected for sequencing and

metagenomic assembly can vary from two to

millions of individual genomes from many spe-

cies, with varying frequency of each genome.

Additionally, each genome may be different in

size, G+C content, and repetitiveness as well as

have other genome-specific issues that make it

impossible to assemble all genomes equally well.

Additionally, community genomics are com-

plicated by the potential existence of many

strains of the same species (species of the same

genus, etc.), of recombination, of horizontal gene

transfer events among members of the commu-

nity, and of other factors that further complicate

analysis and assembly. All of these factors under-

lie the highly variable nature of metagenomes,

making it difficult to generate accurate assem-

blies and also difficult to define standards or

otherwise grade the effectiveness of an assembly.

It can be reasonably stated that metagenomic

assembly is still in its infancy and generally pro-

duces what can only be described as draft assem-

blies of metagenomic data, though it has certainly

been possible in some rare cases to recover full

and near-complete genomes from some environ-

ments (Huttenhower et al. 2012).

The utility of sequencing a community sample

is based solely on the ability of the researcher to

garner useful information from the data

(assembly and annotation). This ability is, more

often than not, reflective of the “quality” of

a metagenome assembly. Additionally, the goals

of a given project can also affect this question, by

altering the types of analysis needed or the depth

of sequencing required, among many factors. The

gross differences and determinations of sequence

diversity between two or more metagenomes can

be typically analyzed using simple comparative

tests, whereas a more in-depth analysis for gene

content or for application to proteomic (peptide

mass prediction) or metabolic pathway (function

and operon prediction) analysis requires larger

assembled regions of contiguous sequence

(contigs), with low error rates.

While it is not possible to set de facto stan-

dards for metagenomic analysis or assembly, this

entry is an attempt to discuss a number of the

potential impediments to adequate or good

metagenome assembly. Additionally, several

possible methods for improvement and validation

of assembled contig sets from metagenomic

assemblies, as well as potential methods for gen-

erating higher quality draft metagenomes from an

individual sample, will be discussed.

Barriers to Metagenomic Assembly

As has been addressed previously, metagenome

assembly is difficult, requiring ever-increasing

computational resources at a rate fast outpacing
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“Moore’s law” (Miller et al. 2010; Scholz

et al. 2012). This is a product of the limitations

of current sequencing technologies coupled with

the available assembly algorithms that can falter

when running into the massive scale of data pro-

duced by current next-generation sequencers

(NGS). For metagenomic sequencing and assem-

bly, there is a paradoxical problem with data.

While the relatively low cost and highest

throughput sequencers produce hundreds to thou-

sands of gigabytes of data per run, the short read

lengths of these technologies limit the types of

assembly procedures that can be applied (Scholz

et al. 2012). Due to the diversity of genomes and

the variation between members of a community,

a good assembly of a metagenome requires sig-

nificantly more sequencing (potentially terabases

of data per sample for some environments). In

direct opposition to this requirement, the current

state-of-the-art assemblers for NGS data are lim-

ited by available computational memory, mean-

ing that, currently, computers are only capable of

assembling as little as 1 % of the data required for

the most complex of samples. The computational

time, processing power, and required system

memory for assembling any genome using

state-of-the-art assembly algorithms (Miller

et al. 2010) are directly proportional to the size

and complexity of the genome(s) to be assembled

(and partly coupled with errors introduced during

the sequencing process). In the case of

metagenomes, then, the first approximation

would be that the requirements for assembly are

a function of the number of unique bases

(or unique “words” or Kmers) in all genomes

contained within the community to be sequenced.

This easily overshadows even the largest and

most complex eukaryotic genomes, making

assembly of all microbial genomes within

a single metagenomic sample, given today’s

infrastructure and algorithms, infeasible. This

variation and computational limitation leads to

a variable amount of data that can be incorporated

into any given assembly. It can be expected that

read incorporation into metagenome assemblies

will follow a logarithmic curve, with the amount

of available sequence data covering more of the

diversity and complexity of the community being

sequenced and increasing the percentage of reads

incorporated, affecting the slope of the curve. In

short, the more complex communities, such as

those found in soils and sediments, will require

much greater sequencing inputs to allow for

assembly of a significant proportion of the data.

Conversely, simpler communities, such as bio-

reactors, enrichment cultures, and naturally sim-

ple environments can achieve nearly 100 %

incorporation of data even with relatively few

reads (<200 million Illumina reads).

Assembling Subsets of Data

To allow current assemblers to better process the

mountains of data, it is generally believed that

dividing reads into smaller, categorical bins may

enable improved, or “targeted,” assembly. While

this partitions the data into manageable parcels

for assembly, it has also been used as a filtering

method, to remove extraneous reads from the

dataset pre-assembly (Godoy-Vitorino et al.

2012). There have been several very thorough

methods developed for binning of reads or contigs.

Binning can be performed as a function of nucle-

otide frequencies, or abstractions of that (Kmer-

based filtering, etc.), on statistical analysis of

read relationships (read topology) or on similarity

to known genomes or genome signatures

(homology, etc.). Additionally, HMMs or other

learning algorithms may eventually be developed

to allow rapid binning of reads. However, once

binning is performed,many of the issues surround-

ing assembly of many sequences again become

relevant and require in-depth analysis and work.

As each binning method will invariably introduce

both false positives and false negatives, it is not

clear what effect these algorithms may have on

a “final” assembly or if the effect will be consistent

among different samples.

Whole Sample Assembly

Full metagenome sequence runs, or bins of

metagenomic data, are run through an assembly

methodology or program; however most current
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algorithms are designed for isolate genome

assembly (Miller et al. 2010; Scholz

et al. 2012). While isolate genome assembly

assumes that there are a limited number of solu-

tions to the assembly, as the complexity of the

genome increases and concomitant amount of

sequence data are required, these decisions

become more difficult for algorithms to make.

For metagenomes, there are additional complica-

tions, such as strain-level variation within

a species, varying levels of similarity among the

multiple species within the population, including

horizontal gene transfer, and the ever present

problem of variability of organism frequency/

abundance within the community. Several recent

attempts have been made (e.g., MetaVelvet

(Namiki et al. 2012), RAY (Boisvert

et al. 2010), or Meta-IDBA (Peng et al. 2011))

to solve one or more of these metagenome-

specific issues. However, there is not yet

a perfect algorithm, and all can benefit from

improved understanding of the inherent complex-

ities within metagenomes as well as from

improved algorithms for determining which data

are to be examined and how. Given the varied

nature of the complexities that exist in communi-

ties, it is likely that the perfect assembly algo-

rithm will have to evaluate the data and make

decisions during metagenome assembly.

Assembly Validation and Metrics

Validation of metagenomic assemblies is not cur-

rently a standard process. Some efforts have

focused on validation using tools adapted from

single-genome assemblies which, due to the dif-

ferences in complexity, can vary from being sim-

ply an inefficient method for validation at best to

being misleading and based on incorrect assump-

tions at worst. Validation of assembly complete-

ness (good assemblies provide large contigs with

more of the raw data) and accuracy (good assem-

blies harbor few errors such that it is a close

representation of the target organism) is

a nuanced and nebulous process even with isolate

genomes. A typical series of statistical properties

of contigs is often used to describe the goodness

of single-genome assembly (N50, total assembly

size, etc.). To improve accuracy, this can be com-

bined with manual inspection of the data under-

lying the contigs, using tools such as Consed

(Gordon 2003), Hawkeye (Schatz et al. 2011),

or other alignment viewers. It bears noting here

that these tools require sequential attention to

each individual contig, making validation of

metagenomic assemblies of many thousands to

millions of contigs prohibitively time-

consuming.

Additional validation can be gained by read

mapping input sequence data to contigs to iden-

tify errors or areas with unexplained variances in

coverage. None of the tools or processes avail-

able for validations of single-genome assemblies

is directly applicable to metagenomes and

requires either significant alterations in method

or a completely new approach. This is due in part

to the much larger amount of data required for

a metagenome assembly as well as the intrinsic

complexities associated with metagenomes, men-

tioned above.

How, then, does one assess whether

a metagenomic assembly is good or valid? It is

possible to examine statistics of an assembly to

determine if it has value and assess the quality of

assembled contigs to give a measure of what

analysis can be performed on the assembled

data (e.g., longer contigs allow for more annota-

tion analysis). Additionally, it is easy to calculate

the total number of bases assembled, allowing for

a rough estimate of how many genomes may be

captured in an assembly. However, it is also

important to validate that the assembly is an

accurate representation of the input data by use

of read mapping or other comparative tools. For

metagenomes, with the stated issues of lack of

uniformity, it is likely that a valuable tool for

obtaining improved assemblies will be to perform

several assemblies in parallel and compare inter-

sample assemblies to each other. This will also be

an important method to compare the results of

binning and of different assembly methods to

combined, or iterative, assemblies of the entire

dataset. For environments that have been amply

studied and for which there are a number of

pertinent reference sequences, such as for
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human microbiome samples (Lampe 2008;

Huttenhower et al. 2012; Methe et al. 2012), it

is possible to use these to validate assemblies.

Recent work with isolation and sequencing of

single cells from within environmental samples

raises the possibility of using reference-based

validation tools on metagenome samples as well

(Kant et al. 2011; Leung et al. 2012).

Statistical Comparisons

As mentioned above, the first approximation of

the quality of any assembly is an examination of

the metrics associated with the assembly. For

metagenomes, these metrics should be different

from those used for isolate genome work. Statis-

tics that are linked to the total assembly size (e.g.,

N50) have little value, as the size of the

metagenome, the assembly (and the assembled

number of contigs), and the choices made for

assembly (binning, filtering, assembler algo-

rithm, Kmer size, etc.), which can affect the num-

ber and types of bases included in a metagenomic

assembly, can all result in drastically different

interpretations. The evaluation of metagenome

assemblies is often conducted in a holistic man-

ner, utilizing a number of important statistics and

validation metrics. This can be used to assess the

completeness of various assembly methods.

Table 1 shows a selection of assembly statistics

for a single sample (MH0001) from the MetaHIT

project using the assembly program

SOAPdenovo with different Kmers as an input

parameter. What is important to note is that it is

difficult to select the best assembly based on any

single metric, even given the same assembler

with a single parameter change. In fact, it is the

rule rather than the exception that no single

assembly of the data can provide the best statis-

tics for every metric.

Read Mapping as Contig Validation

It is important that any assembly be verified by

methods beyond those utilizing simple statistical

methods. It is also important that validation algo-

rithms be independent from those utilized to per-

form the assembly. Currently, Burrows-Wheelers

(Langmead et al. 2009; Li and Durbin 2010) read

mapping can serve as an independent approach of

validating the contigs assembled based on the raw

sequencing data. This approach has the ability to

validate assembled contigs by basis of coverage

of every base contained within the contig (Fig. 1)

as well as based on the variation of coverage

within the contig (Fig. 2).

It may not always be the case that coverage

along a contig will appear as even as with isolate

genomes, due to the issues of strain (allele) var-

iations, of gene duplication, of ribosomal gene

similarities between species, and of horizontal

gene transfer. Additionally, because read

Challenge of Metagenome Assembly and Possible Standards, Table 1 Statistical metrics of metagenome

assembly

Assembly type

Number of

contigs

Maximum

contig size Total bases

Bases in largest

100 contigs

Bases in contigs

>10 kb

% read

incorporation

SOAPdenovo-

Kmer 21

378,624 18,148 63,350,050 1,025,623 438,734 60.8

SOAPdenovo-

Kmer 23

303,536 18,150 55,682,346 1,155,330 839,420 61.1

SOAPdenovo-

Kmer 25

244,200 25,192 47,972,706 1,220,072 949,421 60.6

SOAPdenovo-

Kmer 27

188,074 23,935 40,311,428 1,162,160 843,499 59.9

SOAPdenovo-

Kmer 29

140,502 28,068 33,228,335 1,177,230 804,055 58.9

SOAPdenovo-

Kmer 31

109,722 28,068 27,463,402 1,245,286 918,627 57.8
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mapping is fundamentally different from Kmer-

based assemblies, short contigs will generally

have poorer coverage, when considering the per-

centage of total bases in the contig. This is due to

a so-called edge-effect that prevents a read from

mapping to a contig if the read-to-contig align-

ment ends in the middle of the read yet at the end

of the constructed contig. However, due to the
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Fig. 1 Coverage

histogram of metagenome

assembly. Displays

percentage coverage of

every contig as a function

of the contig length
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Metagenome Assembly
and Possible Standards,
Fig. 2 Base-by-base

coverage histogram of

a single contig generated

within a metagenome

assembly. Areas where

coverage varies from the

mean may be identified as

regions of low quality or

confidence
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speed and accuracy of Burrows-Wheeler style

aligners, this method of validation is both rapid

and sufficiently accurate to allow reasonable cer-

tainty that an assembly is valid and that the

contigs represent the genomes present within

the sample. Finally, read mapping can be com-

bined with a number of other tools such as

SAMtools (Li et al. 2009) to locate possible pop-

ulation differences such as single nucleotide

polymorphisms (SNPs), insertions or deletions

(indels), and other assembly errors within the

contigs. This allows assemblies to be validated

and potentially improved in an unsupervised

manner based on the alignment of reads as well

as to make empirical judgments of assembly

quality.

Comparisons of Multiple Assemblies

Beyond statistical comparisons of multiple

assemblies and evaluation using the raw input

data, it is also possible to determine how similar

two assemblies are using the same initial data.

For example, for the entries listed in Table 1,

there is no guarantee that the largest contigs

from each sample are the same or that the contigs

have been recapitulated in the various other

assemblies. The mechanisms for comparing two

contig sets to each other are evolving and can

range from full assembly alignments using

BLAST- (McGinnis and Madden 2004) or

NUCmer-based comparisons (Delcher et al.

2002) to protein coding content-based analyses

to more sophisticated methods. In the future,

training of better assembly pipelines may involve

evaluating differences among several results in

terms of possible rearrangements, SNPs, indels,

and errors in joining repetitive regions to deter-

mine if one methodology can be considered con-

sistently better than another.

Generalized References and Site-
Specific References for Validation

The recent explosion in sequencing capacity has

resulted in an ever-increasing number of draft and

finished reference bacterial genomes. These

genomes are useful both for phylogenetic and

functional classification and for validation of

assembly. When it is known or suspected that

a particular organism is present within a sample

(e.g., Rhizobium spp. are expected in rhizosphere
samples, while Escherichia coli are generally

found in fecal samples), alignments against such

references can be used to validate contigs that are

generated from the metagenomic sample in

question.

In the future, reference-based approaches may

be best utilized in a sample-specific manner to

both contribute to and help validate metagenomic

assemblies by using draft reference genomes gen-

erated via single-cell (or microcolony) isolation

from the same site, followed by amplification and

sequencing. The advent of multiple displacement

amplification to allow for the sequencing of

minute quantities of DNA, including single cells

or clusters of cells, shows great promise for

metagenomic projects by allowing the inclusion

of sample-specific genomes to be used in

reference-based assembly methods.

Metagenome Assembly Standards:
A Proposed Tiered System

As a nascent field, the methodology for

metagenome assembly is still under great flux.

Currently available tools are able to produce

valid, useful assemblies of some fraction of any

metagenomic sample. However, these assemblies

must be considered as a set of draft contigs only,

particularly if no form of validation has been

performed. Read-based validation can be used

to inform and improve on assemblies; however

this is a time-consuming process and should not

be expected to be a long-term, high-throughput

solution for metagenome assemblies. However,

this does not obviate the need for validation pro-

tocols; it merely highlights the lack of algorith-

mic approaches to the technique.

There are several promising areas of assembly

investigation that could produce assemblies dis-

tinguishable from draft or validated draft

metagenomic assemblies. These include the use
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of reference genome datasets to improve assem-

blies, the inclusion of long read technologies to

help generate longer contigs and scaffolds as well

as to allow linkage of genetic differences among

haplotypes, and the use of iterative and combined

assembly methods to correct “invalid” contig and

scaffold regions and to find previously

unreported overlaps among contigs and reads.

In order to provide a complete assembly over-

view, the standardized reporting of two important

pieces of information for any assembly of

metagenomic sample is proposed. Tables 2 and

3 describe a first approximation of reporting that

would help disseminate information regarding

the quality (Table 2) and assembly levels

(Table 3) of metagenome assemblies to a broader

audience. The first and most important level of

reporting is an accurate and consistent descrip-

tion of the assembly metrics as discussed above

and in Table 2. These metrics should include, at

a bare minimum, the percentage of reads

incorporated in a sample, the total number of

bases in the resulting assembly, the size of the

largest contig, and the number of bases in the

largest 100, 1,000 and 100,000 contigs. Addi-

tional options can include a histogram of fold

coverage of assembled contigs and alternative

measures of assembly. The second level of

reporting requires a community acceptance of

assembly types, similar to isolate genome assem-

blies. The current default methodology for

metagenome assembly (use of a single assembler,

with a single or best parameter selected) is pro-

posed to be called a Draft Metagenome Assem-

bly. Iterative and multiple assemblies coupled

with the merging of contigs and validation/cor-

rection of contigs, such as that utilized at the

DOE Joint Genome Institute and Los Alamos

National Laboratory, could be considered high-

quality draft. Additional levels of quality require

technologies that are not currently adopted,

including the use of general reference genomes

to perform reference-guided assemblies. Finally,

the best assembly possible will require sequenc-

ing and assembly of genomes gathered by use of

Challenge of Metagenome Assembly and Possible
Standards, Table 2 Proposed statistical reporting met-

rics for metagenome assembly

Proposed metric Description

Percent of read

incorporation

Percentage of read mapping or

incorporated into assembly. This

serves as a metric as to how much

additional sequencing may be

required for better assembly

Size of metagenome

assembly

Number of base pairs included in

the final assembly. This is

a measure of how many genomes

may have been assembled and can

be utilized to determine what

additional sequencing will be

allowed in terms of additional

sequence data incorporation

Largest contig size This is typically a measurement of

how well the most abundant

organism assembled

Number of bases in

large contigs

This measurement is similar to

largest contig size but also allows

depth of analysis to potentially

include less well-assembled species

Fold coverage

histogram

A histogram describing the number

of bases covered at a given fold

coverage. This will indicate the

variation between abundant and

non-abundant organisms

Challenge of Metagenome Assembly and Possible
Standards, Table 3 Classification of assembly methods

for metagenomes. Reporting would ideally describe both

classification and statistics described in Table 2

Quality Description

Draft One assembler, one parameter

Quality draft (QD) Multiple assemblers, multiple

parameters, merging-based

final assembly

Binning assisted (HQD) Multiple parameter assemblies

performed by binning of reads

into subsets, followed by

merging-based final assembly

Reference-guided

RHQD

Binning based on reference

sequences, followed by HQD

assembly

Location-specific

reference-guided

assembly

Reference-guided assembly

including sequencing and

assembly of individual isolate,

single cells, or microcolony-

based organisms isolated from

the same environment as the

metagenome sample in

question
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single-cell or microcolony isolation techniques

for organisms present in the study site. This

best-case scenario would allow binning, assem-

bly, and in-depth analysis of both the reads and

the contigs assembled.

The levels of validation, including read map-

ping or correction of reads, should be reported.

Using current technologies, this is the most likely

end point for metagenome assemblies for the

foreseeable future. The final stages of improve-

ment will result in near-total incorporation of all

generated reads into a final assembly set. Finally,

for all assembly classifications, it is also impor-

tant that metadata, including the sample type, the

amount and type of sequencing technologies as

well as any modifications (trimming, filtering,

binning) to the data, the numbers and types of

reference genomes used to guide assembly, as

well as the percent of reads incorporated, be

attached to all assemblies, for future analysis to

be applicable to the same samples.

Summary

This entry discusses the current difficulties asso-

ciated with metagenomic assembly and presents

a path for systematic, universally understood

and accepted methods for validation and

a classification system for metagenomic assem-

blies. Each of these areas will require intensive

research and tool development to approach the

specified methods and to generate standard met-

rics for analysis and comparisons. There is still

a strong need to develop universally applicable

validation methods as well as a need to develop

a panel of defined datasets for new techniques to

be validated against. Validation in this manner,

coupled with active development of newmethods

of assessing and reporting the quality of assembly

techniques, will maximize the possibility of gen-

erating broadly applicable and accurate assembly

tools that not only perform well using a single

method of validation. In all, these proposed

reporting mechanisms (metagenome metadata)

will improve the ability of researchers to effec-

tively and confidently utilize metagenome assem-

bly data.
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Synonym

CLUster SEquence ANalyzer

Definition

CLUSEAN, the CLUster SEquence ANalyzer, is

a BioPerl-based software pipeline for the annota-

tion of secondary metabolite biosynthetic gene

clusters encoding the biosynthesis of molecules

with, e.g., antibiotic or anticancer activities.

CLUSEAN contains modules for automated

homology search, protein domain identification,

and, in case of modular polyketide synthases and

non-ribosomal peptide synthetases-containing

pathways, substrate prediction for the biosyn-

thetic enzymes.

Introduction

Amajority of antimicrobials used in human med-

icine to combat infectious diseases, e.g., tetracy-

cline, penicillin, vancomycin, or erythromycin,

many anticancer drugs, and other bioactive mol-

ecules, e.g., the immunosuppressant rapamycin,

are derived from microbial secondary metabo-

lites, also denoted as natural products. These

compounds are mainly synthesized by bacteria

and fungi. Traditionally, screening for such com-

pounds is performed by isolating potential pro-

ducers from diverse sources, testing many

different growth conditions, chemically isolating

and purifying the produced compounds, and sub-

sequently determining their structure and testing

their bioactivities. The progress in the develop-

ment of novel high-throughput sequencing tech-

nologies that allow cost-effective sequencing of

microbial genomes, and the increased knowledge

on the biosynthetic pathways of natural product

formation, recently led to the availability of

genome-mining methods as an alternative

approach to the time- and cost-effective biologi-

cal/chemical screening approach. In genome

mining, DNA sequence information is used to

assess and evaluate the genetic potential of the

investigated strain. This approach is possible as

the molecular principles underlying secondary

metabolite biosynthesis – despite the vast diver-

sity and number of compounds – are highly

conserved.

Aim and Scope of CLUSEAN

CLUSEAN, the CLUster SEquence ANalyzer
(Weber et al. 2009), is a BioPerl (Stajich

et al. 2002)-based tool collection that allows

a semiautomatic annotation and analysis of sec-

ondary metabolite gene clusters. A typical

CLUSEAN analysis run is carried out in two

stages: in the first stage, the gene products of

whole genomes or biosynthetic gene clusters are

compared against standard databases. In the sec-

ond stage, secondary metabolite-specific ana-

lyses are carried out (Fig. 1).

During the first analysis stage, similar proteins

of all annotated gene products are identified using

BLAST (Altschul et al. 1990) against the

non-redundant protein database, and conserved

protein domains are identified with the

HMMER (Eddy 2001) software searching against

the Pfam protein family database (Bateman

et al. 2002).

In the second stage, protein domains com-

monly observed in the context of secondary

metabolism are identified using HMMER on
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a custom HMM profile database. This analysis

leads to the identification of the conserved func-

tional domains in modular polyketide synthases

and non-ribosomal peptide synthetases (NRPS).

Amino acid specificities of NRPS adenylation

domains are predicted with an integrated NRPS

predictor (Rausch et al. 2005; Röttig et al. 2011).

All annotation is provided as annotation tags

in EMBL-formatted sequence flat files which can

be imported in standard sequence analysis tools,

e.g., the Artemis sequence editing software

(Rutherford et al. 2000) or the ACT sequence

comparison tool (Carver et al. 2005). The

CLUSEAN annotation can be exported in

tabulator, or comma-separated text files, or as

MS Excel tables.

In addition to the prediction modules inte-

grated into the automated pipeline script, addi-

tional tools exist to define KS types of trans-AT

PKS according to Nguyen et al. (2008) and to

check the presence of conserved amino acids in

the catalytic domains of modular PKS and NRPS,

which can indicate functionality of the enzymatic

domain and thus has an influence on the synthe-

sized product.

CLUSEAN has been included as an integral

part into antiSMASH, antibiotics, and secondary

metabolites analysis shell, http://antismash.

secondarymetabolites.org (Medema et al. 2011),

where most analysis results can be accessed

interactively or downloaded on a user-friendly

web page.

Availability and System Requirements

CLUSEAN is freely distributed under a GNU

GPL and can be downloaded from https://

bitbucket.org/tilmweber/clusean.

CLUSEAN has the following software

requirements: BLAST + 2.2.24 (or later),

HMMer 2, HMMer 3, BioPerl 1.6.9 (or later),

CLUSEAN, Overview, Fig. 1 Data processing within the CLUSEAN annotation pipeline (Reprinted from Weber

et al. 2009 with permission from Elsevier)
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and Perl libraries Sort::ArrayOfArrays and

Spreadsheet::WriteExcel::Simple.

Summary

Mining microbial and fungal genome data is

a successful novel strategy to identify producers

of novel drug candidates. CLUSEAN is a widely

used tool to provide automated annotation of

secondary metabolite gene clusters and to extract

information from the sequence data which can be

basis for the deduction of the putative biosyn-

thetic products.

Cross-References

▶ antiSMASH

▶Bacteriocin Mining in Metagenomes
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Synonyms

Bioinformatic analysis; Metagenome data

analysis

Definition

The process of gaining information about

a metagenomic community from sequence data

using a variety of interdisciplinary techniques

and approaches.

Introduction

The history of computational approaches to

metagenomic data analysis is brief given the

rapid development of the field. In 1998,

a visionary paper described techniques for inves-

tigation of the molecular diversity of environmen-

tal communities and coined the term metagenome

(Handelsman et al. 1998). Focus was placed on

screening clone libraries for interesting biological

activities, a mainly laboratory-based endeavor
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which has been continually successful at identify-

ing relevant novel genes with novel functionality.

Other researchers took a more technology-driven

approach by randomly sequencing metagenomic

DNA from an acid mine biofilm and the

well-known Sargasso Sea projects. These

sequence-based approaches required considerable

computational capacity for assembly and

similarity searches. The Sargasso Sea project in

particular provided researchers with considerable

headaches with data analysis due to its sheer size.

Microbiomes of humans and mice quickly

followed and have remained a major source of

metagenomic data to date, particularly with

respect to diet, health, and disease. As sequencing

has become cheaper so has the demand for multi-

ple groups of samples and detailed comparative

analyses of time courses. Study design with con-

trol groups has in turn become more complex and

critical. Some groups have even flirted with the

next stage in community analysis and investigated

metatranscriptomes and metaproteomes of envi-

ronmental communities.

While targeted sequencing of single genes has

been the norm for most projects to date (2012),

many groups are becoming interested again in

true metagenomics sensu stricto, i.e., the investi-

gation of microbial community structure and

function using whole genome shotgun

metagenome datasets. Large studies such as

Metahit (Qin et al. 2010) and a comprehensive

cow rumen analysis (Hess et al. 2011) have

driven the acceptance of this approach. Storage

requirements and computational resources can

quickly become limiting in these types of ana-

lyses, though many of the state-of-the-art

algorithms described below do a good job at

mitigating these factors.

In the following sections we concentrate on

the principles, advantages, and problems of the

main approaches to computational metagenome

analysis. We highlight existing approaches and

mention some of the most widely applied soft-

ware in the field, which is then listed with web

links in Table 1. We first deal with 16S rDNA

profiling, before describing the state of the art in

metagenome assembly and taxonomic assign-

ment algorithms. Subsequently, we discuss

programs intended for annotation of

metagenomic sequences before making some

comments on relevant statistical analyses. Lastly,

we briefly review the current state of affairs in

metadata collection and standards.

16S rDNA Profiling

Targeted sequencing of the ubiquitously present

16S SSU bacterial and archaeal ribosomal gene

has become a common technique in deriving

estimates of microbial diversity in a community.

Despite its popularity, with approximately 90 %

of all datasets having been produced according to

this method (Davenport and T€ummler 2012), this

approach is not metagenomics in the strict sense.

16S rDNA profiling completely ignores func-

tional diversity such as gene content and acces-

sory genome elements while also overlooking

potentially important viral and eukaryotic taxa.

However, this approach provides consistent qual-

itative estimates of bacterial and archaeal mem-

bers of the community, although care must be

taken with quantitative aspects. In addition, sev-

eral capable software packages are available for

analysis. Errors can occur for a number of rea-

sons, including copy number variations of ribo-

somal RNA operons in prokaryotic genomes, the

lack of coverage of “universal” primers, and

multi-template PCR biases. A recent effort has

incorporated copy number information of the 16S

gene and reported improvements in microbial

diversity estimates (Kembel et al. 2012).

In the past, 16S genes were sequenced using

long Sanger reads, and only fully covered genes

were used for analysis. Later, the long-read

454 sequencing technology made targeting of

one or more of the shorter so-called hypervariable

regions of 16S genes possible at a much reduced

cost. In turn, others have investigated the use of

overlapping paired end Illumina short-read tech-

nologies to sequence hypervariable regions.

There is still debate about whether only targeting

regions of the 16S gene leads to similar results as

using the full length gene and if this leads to

biases for some phylogenetic groups (Pinto and

Raskin 2012).
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Computational Approaches for Metagenomic Datasets, Table 1 A non-exhaustive list of software used directly

or indirectly in metagenomics and mentioned in the article

Program

Availability (online

tool or standalone) Purpose URL

Allpaths LG Standalone Read assembly http://www.broadinstitute.org/software/

allpaths-lg/blog/?page_id¼12

PE-Assembler Standalone Read assembly http://www.comp.nus.edu.sg/~bioinfo/

peasm/PE_manual.htm

SSPACE Standalone Contig scaffolding http://www.baseclear.com/

landingpages/sspacev12/

AMOS (AMOScmp) Standalone Assisted read assembly http://sourceforge.net/apps/mediawiki/

amos/index.php?title¼AMOScmp

Velvet (Columbus) Standalone Assisted read assembly http://www.ebi.ac.uk/~zerbino/velvet/

Newbler (runMapping) Standalone Assisted read assembly http://454.com/products/analysis-

software/index.asp

VAAL Standalone Assisted read assembly,

polymorphism discovery

ftp://ftp.broadinstitute.org/pub/crd/

VAAL/VAAL_manual.doc

MetaVelvet Standalone Metagenome assembly http://metavelvet.dna.bio.keio.ac.jp/

Meta-IDBA Standalone Metagenome assembly http://i.cs.hku.hk/~alse/hkubrg/

projects/metaidba/

Cross_match Standalone Masking of vector

sequences

http://www.phrap.org/

phredphrapconsed.html

Phrap Standalone Long-read assembly http://www.phrap.org/

phredphrapconsed.html

CAP3 Standalone Long-read assembly http://seq.cs.iastate.edu/cap3.html

Glimmer-MG Standalone Ab initio gene finding in

metagenomic samples

http://www.cbcb.umd.edu/software/

glimmer-mg/

MetaGeneMark Online and

standalone

Ab initio gene finding in

metagenomic samples

http://exon.gatech.edu/metagenome/

Prediction/

http://exon.gatech.edu/

license_download.cgi

FragGeneScan Standalone Ab initio gene finding in

metagenomic samples

http://omics.informatics.indiana.edu/

FragGeneScan/

MetaGeneAnnotator Standalone Ab initio gene finding in

metagenomic samples

http://metagene.cb.k.u-tokyo.ac.jp

Orphelia Standalone Ab initio gene finding in

metagenomic samples

http://orphelia.gobics.de/

Prodigal Standalone Ab initio gene finding in

metagenomic samples

http://prodigal.ornl.gov/

BLAST Standalone and

online

Homology search http://blast.ncbi.nlm.nih.gov/

BLAT Standalone and

online

Homology search http://genome.ucsc.edu/FAQ/FAQblat.

html

HMMer Standalone and

online

Homology search http://hmmer.janelia.org/

MG-RAST Online Metagenomic analysis

pipeline

http://metagenomics.anl.gov/

IMG/M Online Metagenomic analysis

pipeline

http://img.jgi.doe.gov/cgi-bin/m/main.

cgi

CAMERA Online Metagenomic analysis

pipeline

http://camera.calit2.net/

WebMGA Online Metagenomic analysis

pipeline

http://weizhong-lab.ucsd.edu/

metagenomic-analysis/

(continued)
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A typical 16S rDNA profiling analysis would

include the following steps. Artifacts and errors

can be excluded for the most part by rigorously

filtering sequence reads according to empirical

experience. Commonly used filter steps include

rigorous checking of sequencing barcodes, read

average Phred quality scores of 20 or more, and

exclusion of reads with uncalled nucleotides

(Ns). Software tools such as QIIME (Table 1)

facilitate the computational processing of the

sequence data. The next step is alignment to

a reference sequence of mostly full length 16S

genes such as the Greengenes or Silva databases

(Table 2) using the naı̈ve Bayesian Classifier

from the Ribosomal Database project (Table 1).

Lastly, software tools such as QIIME, Mothur, or

the R Vegan package (Table 1) allow calculation

of diversity metrics, rarefaction curves and

various statistical analyses (see below) which

provide further information about the community

under study.

Assembly

Longer DNA sequences extracted from

metagenomic samples afford more precise taxo-

nomic assignment and annotation by providing

more information for homology and composition

analyses at the cost of losing quantitative infor-

mation on the number of reads attributed to taxa.

Also, full length genes may be recovered from

resulting assemblies when using a gene

prospecting approach investigating phylogenies

created with single-copy genes. Therefore,

depending on available coverage, sequence read

assembly can be considered. Estimation of the

proportion of bacteria of interest present in

a metagenomic sample and the total number of

microbial (nonhost) reads can give a general idea

of how successful the assembly step may be.

A good discussion on estimation of probability

to assemble a whole genome or achieve a specific

average contig length for a particular microbe of

Computational Approaches for Metagenomic Datasets, Table 1 (continued)

Program

Availability (online

tool or standalone) Purpose URL

QIIME Standalone and

online

Metagenomic analysis

pipeline

http://qiime.org/

Mothur Standalone Metagenomic analysis

pipeline

http://www.mothur.org/

Uclust Standalone Sequence fragment

clustering

http://drive5.com/usearch/manual/

uclust_algo.html

tRNAscan-SE Standalone and

online

tRNA detection http://lowelab.ucsc.edu/tRNAscan-SE/

InterProScan Standalone and

online

Protein functional analysis http://www.ebi.ac.uk/Tools/pfa/

iprscan/

MEGAN Standalone Comparative metagenomic

analysis

http://ab.inf.uni-tuebingen.de/software/

megan/

Vegan (R package) Standalone Major ordination methods http://cc.oulu.fi/~jarioksa/softhelp/

vegan.html

Picard

(CollectGcBiasMetrics)

Standalone GC bias metrics http://picard.sourceforge.net/

MetaPhlAn Standalone Taxonomic classification http://huttenhower.sph.harvard.edu/

metaphlan

PhyloPythiaS Online Taxonomic classification http://phylopythias.cs.uni-duesseldorf.

de/index.php?phase¼wait

Genometa Standalone Taxonomic classification http://genomics1.mh-hannover.de/

genometa/

PhymmBL Standalone Taxonomic classification http://www.cbcb.umd.edu/software/

phymm/
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interest in a metagenomic sample is given in

Wendl et al. (2012). Several sequencing biases

are likely to differentially affect the quality of

assembly for bacterial genomes due to their

DNA composition. For example, reads from

GC-rich genomes are likely to be underrepre-

sented due to sequencing issues caused by the

secondary structures and higher melting temper-

atures of GC-rich sequences (Frey et al. 2008)

interfering with polymerization and ligation reac-

tions. Polymerization errors occurring during

PCR amplification will also result in sequencing

errors. Presence of homopolymer runs is likely to

introduce frameshift errors during sequencing

(especially with the 454 and Ion Torrent plat-

forms). Genome length would also affect the

number of sequenced reads for a particular bac-

terium. These biases should be taken into account

in quantitative metagenomics analysis. In sum-

mary, the dominant (or more common) species in

the sample should produce more reads and are

more likely to assemble better, though depending

on their DNA composition and the sequencing

technology used the higher rate of sequencing

errors can cause poor-quality assemblies for

these dominant species.

Computational Approaches for Metagenomic Datasets, Table 2 A non-exhaustive list of online databases used

directly or indirectly in metagenomics and mentioned in the article

Online

database Data URL

Greengenes 16S dRNA http://greengenes.lbl.gov/cgi-bin/nph-index.cgi

Silva rRNA http://www.arb-silva.de/

PFAM Protein families http://pfam.sanger.ac.uk/

TIGRFAM Curated multiple sequence alignments,

HMMs for protein sequence classification

http://www.jcvi.org/cgi-bin/tigrfams/index.cgi

KEGG Genomic, chemical, and systemic functional

information

http://www.genome.jp/kegg/kegg1.html

EggNOG Orthologous groups of genes http://eggnog.embl.de/version_3.0/

COG Clusters of orthologous groups of proteins http://www.ncbi.nlm.nih.gov/COG/

SEED Functional classification http://www.theseed.org/wiki/Main_Page

GenBank Annotated DNA http://www.ncbi.nlm.nih.gov/genbank/

RefSeq Genomic DNA, transcripts, and proteins http://www.ncbi.nlm.nih.gov/RefSeq/

UniProt Protein sequence and functional information http://www.uniprot.org/

GO Gene ontology http://www.geneontology.org/

PATRIC Protein families http://www.patricbrc.org/portal/portal/patric/Home

PROSITE Protein domains, families, and functional

sites

http://prosite.expasy.org/

PRINTS Protein fingerprints http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/index.

php

Pfam Protein families http://pfam.sanger.ac.uk/

ProDom Protein domain families http://prodom.prabi.fr/prodom/current/html/home.php

SMART Proteomes http://smart.embl-heidelberg.de/

PIR

superfamily

Protein families, functions and pathways,

interactions, structures and structural

classifications, genes and genomes,

ontologies, literature, and taxonomy

http://pir.georgetown.edu/pirwww/dbinfo/iproclass.shtml

Superfamily Structural and functional annotation of

proteins and genomes

http://supfam.cs.bris.ac.uk/SUPERFAMILY/

Gene3D Protein domains http://gene3d.biochem.ucl.ac.uk/Gene3D/

Panther Gene functions http://www.pantherdb.org/

HAMAP Microbial proteomes http://pbil.univ-lyon1.fr/help/HAMAP.html
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Read length plays an important role in achiev-

ing accuracy and high genomic coverage of an

assembly. There is an ongoing debate whether it

is sufficient to use short reads for metagenomic

analysis (Luo et al. 2012) or alternatively only

use reads that are as long as possible for proper

annotation of genes, which ideally should include

their promoters, riboswitches, co-operonic genes,

and signature protein domains (Temperton and

Giovannoni 2012). Regardless, using longer

paired end reads will always result in more accu-

rate assemblies better covering the length of the

assembled genomes.

Due to sequencing costs, next-generation

sequencing technologies offering relatively

long, paired end reads and yet providing high

coverage (enough to assemble underrepresented

bacterial genomes) are ideal for metagenomics

projects. For example, the Illumina MiSeq instru-

ment can produce 8 Gb of 2 � 250 bp reads in

one run at a lower per base cost than Sanger or

454 sequencing technologies, while still offering

substantial sequence length. Another reason to

avoid short single-end reads in the assembly

step is that aside from problems with assembly

of repetitive regions these reads are also likely to

produce misassembled chimeric contigs. Gener-

ally, repetitive regions of any length can be

assembled by using multiple libraries of paired

end reads with varying insert sizes. Libraries with

shorter insert sizes can be used to build initial

contigs avoiding misassembly of repetitive reads

into pseudo contigs. Longer insert libraries can be

used for scaffolding and gap filling of the initial

contigs. For these reasons programs like Allpaths

LG and PE-Assembler (Table 1) require paired

end libraries with different insert sizes. Alterna-

tively, standalone scaffolding tools such as

SSPACE (Table 1) can be utilized to scaffold

already existing contigs using long insert librar-

ies. It is recommended to filter out poor-quality

reads and analyze average base quality of the

remaining reads. Based on this analysis

a minimal required read length can be determined

for uniform or adaptive (quality-based) trim-

ming. When references of closely related organ-

isms are available, it is possible to perform

assisted assemblies using the reference genome

as a guide. Programs such as AMOScmp, Velvet

(Columbus), Newbler (runMapping), and VAAL

(Table 1) can be used for assisted assembly. Most

short-read assemblers are designed to assemble

a single genome and, thus, not optimal for assem-

bly of metagenomic samples where reads from

homologous regions of less represented genomes

can be treated as error reads. Development of

metagenomic assemblers, such as MetaVelvet

and Meta-IDBA (Table 1) should address this

problem. In these assemblers the de Bruijn

graph (Flicek and Birney 2009) for the entire

assembly is analyzed for presence of subgraphs

corresponding to multiple bacterial genomes in

the sample.

Due to high costs Sanger shotgun sequencing

of metagenomic samples is less attractive.

However, it can be considered for low-diversity

samples. Assembly of long Sanger reads can

generate nearly complete bacterial genome

sequences, ideal for subsequent annotation

efforts. Cloning vectors offer large insert sizes,

e.g., bacterial artificial chromosomes (BACs)

(up to 200 Kb), yeast artificial chromosomes

(YACs) (up to 1.5 Mb), and fosmids (up to

90 Kb). Therefore, it is possible to amplify,

sequence, and assemble manageably large

stretches of DNA sequence randomly positioned

within a genome and overlapping each other, thus

leading to assembly of nearly complete genomes.

Vector sequences should be excluded from the

assembly using vector-masking software such as

Cross_match (Table 1). The two most commonly

used long-read assemblers are Phrap and CAP3

(Table 1). Trimming of poor-quality 50- and 30

ends should be implemented to improve the

assembly.

Taxonomic Assignment (Binning)

Assignment of derived sequence reads to their

taxon of origin is a key goal of most metagenomic

studies. This process is also referred to as bin-

ning, as sequences are placed into “bins”

representing the various taxa. Two types of

assignment have been largely utilized to date,

compositional and sequence similarity based.
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Compositional signals depend on the concept

of the genome signature. This relies on the simple

idea that the composition of oligomers such as

tetramers from closely related genomes is more

similar than those from distantly related genomes

(Mrázek 2009). There is a significant body of

research on this topic involving research into

identification of genomic islands, genes of aber-

rant composition, genome evolution, and classi-

fication of metagenome sequences. The main

advantage of compositional classifiers is that

they can determine associations in the absence

of alignment by assessment of normalized oligo-

mer counts. Furthermore, unsupervised machine

learning techniques such as self organizing maps

are not biased by the availability of fully

sequenced reference sequences. The main draw-

back of these classifiers is the long sequences

needed to derive robust oligomer statistics. For

example, the program PhyloPythiaS (Table 1)

and more recent frameworks typically require

more than 1,000 bp of input sequence. As such,

they are not able to assign the numerous short

reads from modern Illumina and SOLiD

sequencers to various taxa, which is certainly

possible with other techniques (see next section),

but they do work well on assembled contigs. This

leads to problems, as contigs do not reflect the

distributions of raw reads initially observed in the

metagenome. Also, some distantly related organ-

isms may not have sufficiently divergent genome

signatures for assignment.

Compositional data has been used in a number

of metagenomic studies. Willner et al. (2009)

analyzed the compositions of 86 microbial and

viral metagenomes sequenced with 100 bp

454 reads. They found that dinucleotides

explained more of the variance observed than

higher order nucleotides such as tetramers,

although this is probably due to the short length

of the read sequences used, which leads to

non-robust statistics for higher order oligomers.

Another advantage of oligomers is their ability to

detect contamination in contigs due to the diver-

gent oligomer profile and their relatively modest

computational burden.

A more widely-used method of binning

sequences is to find sequences by similarity,

given that a reference sequence is available. The

key advantages of these methods are that they are

an accurate and widely accepted robust method

and also can give direct knowledge of gene con-

tent following alignment. The main disadvantage

is the lack of available reference sequence for

some taxa, which can lead to false overrepresen-

tations of somewhat related taxa in the estimates.

Also, computation tends to be more demanding

than the compositional approach. This is espe-

cially so in the case of the BLAST algorithm

used in the popular software MEGAN (Table 1).

MEGAN uses a lowest common ancestor

approach to assign reads with two database hits

to a taxon. If the reads hit unrelated bacteria from

different phyla, the lowest common ancestor will

be that prior to phylum, such as Bacteria. How-

ever, if the reads hit different species of say

Burkholderia, the algorithm will appoint a hit to

the genus Burkholderia. BLAST is effective

since it allows alignments against the well char-

acterized metagenomic protein space, as well as

the less well-known nucleotide space.

Another popular solution is the web-based

analysis toolbox MG-RAST (Table 1).

MG-RAST allows taxonomic binning, but is

more focused on functional investigation and

comparison of metagenomes. It is further detailed

in the Annotation section below. WebMGA

(Table 1) is an alternative very capable

metagenomics web server which uses efficient

algorithms such as FR-HIT and CD-HIT for flex-

ible read alignment and highly efficient cluster-

ing, respectively. MetaPhlAn (Table 1) attempts

to optimize unique clade-specificmarker genes as

a reduced reference sequence of about 400 thou-

sand genes most representative of each taxo-

nomic unit and map reads to it. This kind of

mapping potentially allows assignment of reads

to higher taxonomic levels such as species and

has the advantage of being extremely rapid.

A further solution which seeks to use curated

reference sequences is Genometa (Table 1).

This GUI program puts emphasis on finding the

mapping coordinates of even very short reads in

a genome to check if a taxon is actually present,

or if it is more likely to be either contamination or

just a related ORF or genomic island.
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Other programs aim to combine composi-

tional and similarity based tools. A well-known

approach is PhymmBL (Table 1). This program

uses both BLAST and compositional attributes

to assign even reads as short as 100 bp. The

authors found this technique to be more accu-

rate than either of the methods alone and have

continued to improve their software. In general,

binning is still a difficult task, and algorithms

which work very well on one dataset may be

extremely limited on the next. As such, we

recommend using at least two binning

approaches on the sample to gain the maximum

possible information.

Annotation

Annotation of metagenomics samples requires

identification of features of interest in the assem-

bled fragments or reads binned into their Opera-

tional Taxonomic Units (OTUs). For ab

initio identification of potential gene sequences

entire ORFs should be located. Various software

exists to perform this task in metagenomic

projects, e.g., Glimmer-MG, MetaGeneMark,

FragGeneScan, MetaGeneAnnotator, Orphelia

(Table 1). These programs utilize various types

of Markov models for analysis of codon usage or

frequency of other genome composition elements

in the binned genomes. However, instead of

a single model the analysis is based on multiple

Markov models trained with data from a large

variety of bacterial species. The trained

model providing the best fit is then selected for

gene prediction. Given the complexity of

metagenomic assemblies, especially when only

short reads are utilized, it is expected that a large

proportion of assembled contigs may only have

partial ORFs. These sequences can still be

included in homology analysis using BLAST,

BLAT, or HMM (Table 1) searches against

gene or protein nonredundant databases. There

are a number of online pipelines, e.g.,

MG-RAST, IMG/M, and CAMERA (Table 1),

available for ab initio- and homology-based

DNA structure annotation as well as functional

analysis of identified genes using a battery of

publically available databases that can be used

for functional annotation, such as PFAM,

TIGRFAM, KEGG, EggNOG, COG, SEED,

GenBank, RefSeq, UniProt, GO, and PATRIC

(Table 2).

MG-RAST allows the users to upload their

sequence data (in FASTA, FASTQ, and SFF for-

mat) and metadata. The uploaded data are pre-

ferred to be shared, but this is not mandatory. The

data are quality controlled with the QC pipeline

based on the settings provided by the user. The

QC pipeline features include read quality filtra-

tion and trimming, dereplication, model organ-

ism screening, demultiplexing and merging mate

pairs. Currently, the minimal accepted read

length is 75 bp. Assemblies can also be submit-

ted. Starting from version 4.0 the pipeline will

also support read assembly. Submissions to this

pipeline are queued and submitted for feature

prediction using FragGeneScan, which identifies

the most likely reading frame and performs

homology search on translated features. A pro-

gram called Uclust is then used to cluster 90 %

identical protein fragments. The number of reads

in each cluster is identified to estimate abun-

dances. The pipeline also provides various visu-

alization tools to view the results and to perform

comparative analysis with over 590 public

metagenomes.

IMG/M concentrates on comparative analysis

of microbial genomes. The pipeline accepts

assembled or unassembled reads. Unassembled

reads are quality controlled, trimmed, and

dereplicated; their low-complexity regions are

masked. Aside from protein coding genes, ab

initio gene finding also includes detection of

CRISPRs and noncoding RNA. RNA detection

is performed using tRNAscan-SE for tRNAs and

HMM models for rRNAs. Coding sequences are

predicted using a combination of Prodigal,

Metagene, MetaGeneMark, and FragGeneScan

(Table 1). Longer sequences are also searched

against a local nonredundant protein database

using BLASTX. IMG/M provides functional

annotation of the entire metagenome and sup-

ports functional comparisons to other stored

annotated metagenomes. Various visualization

tools facilitate this kind of comparison,

C 102 Computational Approaches for Metagenomic Datasets



e.g., Phylogenetic Distribution of Genes or

Radial Phylogenetic Tree.

CAMERA provides a collection of online

tools for metagenomics analysis. The provided

tools allow the following analysis steps: sequence

QC, sequence assembly, ORF prediction, RNA

prediction, BLAST, clustering, functional anno-

tation, and viral diversity estimation.

InterProScan (Table 1) is one of the most

advanced programs for protein functional analy-

sis. It incorporates BLAST and HMM searches

against an array of protein domain and functional

site databases (PROSITE, PRINTS, Pfam,

ProDom, SMART, TIGRFAMs, PIR superfam-

ily, SUPERFAMILY, Gene3D, PANTHER, and

HAMAP (Table 2)). Online and locally installed

versions are available. Due to highly

CPU-intensive nature of the BLAST and HMM

searches, it is recommended to run this program

on a computer cluster.

MEGAN is a standalone tool for visualization of

BLAST search results as taxonomic dendrograms,

functional dendrograms using the SEED classifica-

tion, pathways using KEGG orthology, compara-

tive visualization, etc. A good collection of general

information about other available metagenomics

software and resources can be found on http://

seqanswers.com/wiki/Metagenomics.

Statistical Analysis

Early metagenomic datasets, such as the Sargasso

Sea, were relatively simple surveying projects by

design. Attempts were made to quantitate species

abundances using relative abundance of reads

and presence of 16 S rRNA and single-copy

genes. Later studies then focused more on com-

parative spatial or temporal variation of the

microbial community. Due to this increasing

sophistication multiple metrics for characterizing

the complexity of the community have been

developed. As many projects in metagenome

analysis are not based on strict hypothesis testing,

exploratory data analysis techniques such as mul-

tivariate statistics are often employed (see

below). Generally, the metric under study is the

estimate of abundance of a taxon, which can be

obtained by multiple methods. An important step

to ensure comparability is normalization. Nor-

malization of these metrics can be undertaken

using relative abundances, GC content, genome

size, or prevalence of single-copy genes. How-

ever, particularly normalization of true

metagenomic data is in a state of flux with little

current consensus. Care must be taken with the

GC content delivered by sequencers as a result of

the different sample preparation and amplifica-

tion schemes. It must be assumed that all

sequencing runs have some form of quantitative

bias against either or both low GC and high GC

organisms, meaning that they will be underrepre-

sented in the samples. This problem has not been

widely considered in metagenomics to date. GC

bias assessment programs, such as Picard’s

CollectGcBiasMetrics (Table 1), are particularly

useful in observing and quantifying relative bias

of read coverage at different GC values using just

a reference sequence and a BAM alignment file.

Larger genomes are more likely to be sampled in

a randomly sheared metagenomic DNA sample.

This can be compensated for by normalizing for

genome length, if applicable for the taxonomic

attribution method used.

Many metrics have been taken directly from

the field of ecology. Alpha, beta, and gamma

diversity summarize the species diversity in one

habitat, species diversity across multiple habitats,

and total diversity over total species diversity

across a larger scale landscape, respectively. Spe-

cies richness is simply the number of species

found, while species diversity includes

a measure of the abundance of members of each

species. Other measures such as Shannon and

Simpson indices are also available. One use

case is from Dinsdale and coworkers (2008),

where functional metagenomic diversity was

characterized separately across a range of bacte-

rial and viral genomes in many different habitats.

Interestingly, functional metagenomics was

reported by Dinsdale and coworkers to explain

a larger proportion of the variance in each dataset

(about 75 %) and thus be predictive of metabolic

capacity within the taxa of an ecosystem,

than analysis of taxa by 16S rRNA genes only

(about 10 %).
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The aforementioned indices attempt to char-

acterize a highly multidimensional dataset into

a single number, which can be useful as

a summary but obscures the underlying data.

Therefore, advanced ordination methods for

multidimensional datasets such as principal com-

ponents analysis (PCA) and multidimensional

scaling (MDS) have been applied to differentiate

communities and reveal associations with abiotic

parameters. Whichever of the many ordination

methods is chosen, it is of great importance to

check the variance explained by the observed

components or functions. Where the principal

components or alternative statistics explain little

of the variance in the data, this indicates the

variation in the data cannot be explained by the

variables measured, and caution must be taken in

interpreting the results. Various clustering algo-

rithms have also been demonstrably useful in

grouping similar datasets based on measures

from normalized read counts to oligomer content

and differentiating them from controls in

a manner identical to the clustering schemes pop-

ular in microarray group expression analysis

(Mrázek 2009). Clustering can also be important

for quality control and identification of outlier

microbial communities, which may also be attrib-

uted to technical artifacts.

Further types of statistical community com-

parison metrics have been developed especially

for metagenomics. One example is the UniFrac

distance metrics used to calculate a distance mea-

sure between microbial communities using infor-

mation from a supplied phylogenetic tree

(Hamady et al. 2010). UniFrac uses a beta diver-

sity measure detailing community membership

over space and time, which has distinct advan-

tages, and the phylogenetic tree method shows

improvements over comparing simple lists

of taxa.

Experimental design is of paramount impor-

tance in obtaining robust statistical results. Since

estimates of microbial communities tend to be

noisy, replicates are necessary to gain a reliable

assessment of variance. As finance is usually the

limiting factor, either samples can be sequenced

at a lesser depth or cheaper sequencing technol-

ogies can be used.

As with any statistical analyses, care must be

taken when performing multiple tests due to fre-

quent generation of false positives. While

Bonferroni corrections are extremely good at

removing false positive test results, the extreme

stringency of this method will certainly mask

a number of biologically true associations (false

negatives). As such, we advocate the use of less

stringent tests such as the Benjamini-Hochberg

false discovery rate method (FDR; van den Oord

and Sullivan 2003). Lastly, it should be noted that

extensive and high quality metadata is crucial to

observing and quantitating trends in microbial

community structure.

Metadata

Collection of metadata about metagenomes is

essential for making the sequence data and anal-

ysis results meaningful and reusable by the sci-

entific community. Moreover, properly collected

and complete metadata can also help the scien-

tists originally analyzing a metagenomic sample

to draw conclusions about their findings that oth-

erwise may be overlooked. A first step in this

direction is development of the minimum infor-

mation about a genome sequence (MIGS) speci-

fication and its extension to the minimum

information about a metagenome sequence

(MIMS) specification by the Genomic Standards

Consortium (GSC). MIGS provides general

information about a genomic sequence, similar

to what is collected by the NCBI Trace Archive

or NCBI Short Read Archive, extended to more

detailed metadata about environment, nucleic

acid sequence source, and assay preparation.

MIMS extends this specification to also include

metadata about the habitat, e.g., temperature, pH,

salinity, pressure, chlorophyll, conductivity, light

intensity, dissolved organic carbon (DOC), cur-

rent, atmospheric data, density, alkalinity,

dissolved oxygen, particulate organic carbon

(POC), phosphate, nitrate, sulfates, sulfides, and

primary production (Field et al. 2008). An XML

schema is used to implement the MIGS/MIMS

checklist. This schema is the basis for ongoing

development of the Genomic Contextual Data
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Markup Language (GCDML). This language

should support polymorphic validation of various

taxa (requiring different checklists) and develop-

ment of ontologies.

Another interesting resource that addresses the

need for sharing standardized metagenomics data

is the Genomes OnLine Database (GOLD, http://

www.genomesonline.org/). This database con-

tains a collection of completed and ongoing pro-

jects with the associated metadata, which are

based on a controlled vocabulary coordinated

with the GSC.

Another online resource that collects

GSC-compliant metadata is CAMERA, already

mentioned in the Annotation section of this

review. CAMERA is involved in GSC activities

and provides input for development of

metagenomic metadata standards that are also

used for submission of metagenomic data to

CAMERA.

Summary

Recent improvements in next-generation

sequencing technologies are providing new

opportunities for metagenomics. While 16S

rRNA gene profiling is still predominantly used

for quantitative profiling of communities analy-

sis, availability of long paired end reads produced

by an Illumina MiSeq instrument or similar tech-

nology with high coverage and comparatively

low cost should shift the focus of future

metagenomics projects to genome assembly of

microbes of interest and their functional annota-

tion. As more microbial genomes and

metagenomes are being sequenced and anno-

tated, it is hard to overestimate the need for shar-

ing these data and standardization of the

associated metadata for comparative analysis. In

this regard, development of minimum informa-

tion standards (MIGS and MIMS) by the Geno-

mic Standards Consortium and adaptation of

these standards by the online analysis/storage

resources, such as MG-RAST or IMG/M, are

encouraging developments. As the increasing

number of metagenomic projects becomes more

detailed and complex, the need for more

advanced analysis software also increases. In

conclusion, computational analysis of

metagenomic samples is becoming more afford-

able and available to the research community and

provides exciting research and software develop-

ment opportunities.

Advances in metagenomic analysis of micro-

bial communities also provide opportunities for

metatranscriptomic and metaproteomic research.
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Definition

The taxonomic classification of prokaryotic organ-

isms based on morphological differences is diffi-

cult. A ribosomal RNA (rRNA) sequence has

many polymorphic sites that can act as a genetic

earmark to uncover the genetic background of

prokaryotes (Fox 2010). Bacterial and archaeal

genomes contain one to several copies of 16S

rRNA genes (rDNA), depending on the physiolog-

ical condition of the microbes (Klappenbach

et al. 2000; Liao 2000). Because the rRNA

sequences are vertically delivered to the next gen-

eration, they cannot be inherited by a different

species. Hence, 16S rRNA sequences are consid-

ered to be a stable marker of morphological dif-

ference and have been applied in the taxonomic

classification of prokaryotes (Woese 1987). Since

the 1980s, partial and full-length sequences have

been obtained using polymerase chain reaction

(PCR) technology (Lane et al. 1985). These

sequences have been deposited in the Ribosomal

Database Project (RDP), Greengenes (http://

greengenes.lbl.gov), and SILVA rRNA public

databases (Cole et al. 2009; Pruesse et al. 2007).

The closest relative of a microbial organism of

interest can be figured out by comparing the organ-

ism’s rRNA sequence with the collected

sequences of known species (DeLong 1992;

Fuhrman et al. 1992). Moreover, with the devel-

opment of next-generation sequencing techniques

(Quail et al. 2012), rRNA sequences of microbial

communities in environmental samples can be

massively obtained in a short period (the effi-

ciency is platform dependent). These advances in

detection have dramatically improved our under-

standing of the communities of environmental

microbes in different sites on Earth (Qian

et al. 2011; Roussel et al. 2008).

The primer design is critical, regardless of

which sequencing method is employed, the

Sanger method or next-generation methods.

With the rapid advances in metagenomics, envi-

ronmental samples can now consist of thousands

of microbial species (Tremaroli and Backhed

2012). Therefore, it is important to use primers

that are suitable to most of the species to fully

investigate the microbial community. If the

primers fail to land on the matching parts of the

rDNA of certain dominant microbes, then these

species will be excluded from the PCR

amplicons, resulting in a poor survey of the com-

munity. For example, in a study of the microbial

communities in the Red Sea, the selection of

primers almost failed to capture the entire

SAR11 group belonging to alpha-Proteobacteria

(Qian et al. 2011). Primer specification is also the
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major concern in other studies (Huse et al. 2008;

Huws et al. 2007; Klindworth et al. 2013).

The strategy for primer design is based on the

conservation of the target sequences. Primers are

designed to obtain the variant sequences between

two conserved regions. The degree of conserva-

tion of the regions directly contributes to the

coverage rate of the primers targeting

a community in an environmental sample. The

conserved regions in 16S rRNA sequences are

involved in essential translational functions and

interact with ribosomal proteins. For instance,

universally conserved sites G530, A1492, and

A1493 in 16S rRNA sequences are crucial for

tRNA binding in the A site (Brimacombe and

Stiege 1985; Demeshkina et al. 2012). Along

with the neighboring conserved sites, these sites

have been recognized to be ideal regions for

primer design, as exemplified by the frequently

used universal primers U519 and U1492 (Baker

et al. 2003). Apart from the conserved regions,

there are a total of nine variant regions that

correspond to the species-specific structural

sequences of ribosomal RNA (Huws et al. 2007;

Wang and Qian 2009). The variant regions can be

obtained through PCR, followed by sequencing

and comparison for taxonomic assignment.

Conserved Regions in 16S rRNA
Sequences

In a previous study, a method had been developed

for the de novo identification of conserved

regions in 16S rRNA sequences (Wang and

Qian 2009). First, conserved sites are detected

by checking the alignment file of the 16S rRNA

sequences, and consecutive conserved sites are

regarded as potential candidates as primers with

a high coverage rate for all known species. Thus,

all possible conserved regions can be located with-

out having to understand every detail of the role of

16S rRNA sequences in ribosome and protein

translation. The previous study examined long

16S rDNA sequences (>1,200 bp), but the over-

representation of Firmicutes and Proteobacteria

sequences skewed the results toward the dominant

phyla (Wang and Qian 2009). The conserved

regions were searched again using nonredundant

core sequences from the SILVA database. A total

of 11 bacterial and seven archaeal segments with

degeneration sites were obtained. Because the

nonredundant sequences were used and many of

them were incomplete, the identified conserved

sequences had more polymorphisms and the con-

servation degree at both ends of the 16S rDNA

sequences could not be evaluated (Table 1).

However, three new conserved regions, located

at the bacterial 252–275 and 547–575 regions

and the archaeal 560–578 region, were found in

these sequences. In the overlapping segment

between 565 and 575, a universally conserved

region was recognized for bacterial and archaeal

sequences: 50-TGGG[C/T][C/G/T]TAAAG-30.
This region has been used to design primers for

the identification of clinical bacteria (Nikkari

et al. 2002). The positions of the conserved

regions are standardized to the approximate posi-

tions on Escherichia coli 16S rDNA. It is inter-

esting that all the archaeal conserved segments

have corresponding bacterial segments at the

same standardized positions and share some

conserved sites with the bacterial counterparts

(Table 1).

Evaluation of Candidate Primers

Candidate primers were selected from the con-

served regions and were subjected to further eval-

uation. The candidates were matched to the core

16S rDNA sequences, and only two mismatches

were allowed between the primers and the

targeting regions. The results in Table 2 show the

coverage rates of the candidates on the SILVA

core datasets. Archaeal primers in the 328–346,

340–357, 916–931, and 953–972 regions are asso-

ciated with a low coverage rate. This was caused

by the presence of short archaeal 16S rDNA in the

core dataset, at least 7 % of which did not have the

targeting regions for these primers. Therefore, the

core sequences could have been recovered better

by these candidates. In addition to these archaeal

primers, the two primers initiate from position

683 in the bacterial and archaeal 16S rDNA

sequences have the lowest coverage rates of
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88.5 % and 81.1 %, respectively (Table 2). Two

candidates, 683–700 and 691–707, were selected

from the bacterial conserved region of 683–707

for the test; both were associated with low cover-

age rates. Obviously, more degeneration sites have

been introduced in these bacterial primers com-

pared with the same sets described previously

(Wang and Qian 2009). This means that more

polymorphisms emerged in the nonredundant

dataset, which results in the low rates for the two

primers. Thus, the primers from this rRNA region

are not recommended due to their generally low

coverage rate, although a previous study obtained

a 90.5 % coverage rate for a similar primer (Wang

and Qian 2009). The overall quality of the other

candidate primers is high, with the average cover-

age rate being 92.7 % (Table 2). The best bacterial

primers in this study were located at the E. coli

positions of 547–568, 556–575, 907–928, and

1,046–1,062. These primers are able to recover

more than 95 % of the bacterial 16S rDNA

sequences. For the archaeal candidates, the two

candidate primers in the region of 514–539 have

the highest coverage rates, 93.5 % and 93.8 %,

respectively. Thus, the archaeal rDNA sequences

appear to be more difficult to be fully covered than

the bacterial sequences, considering the average

coverage rate of 90.8 % with the low rates for the

four primers at both ends ignored. In regard to

universal primers, this study recommends the

primers at the 515–533, 785–806, and 907–928

positions. High coverage rates for these primers

were confirmed using the bacterial and archaeal

datasets (Table 2).

Summary

A short list of 16S rDNA primers has been com-

piled using simplified nonredundant rDNA

Conserved Regions in 16S Ribosome RNA Sequences and Primer Design for Studies of Environmental
Microbes, Table 1 Conserved regions in archaeal and bacterial 16S rRNA core sequences

Start End Conserved sequence

Bacteria

252 275 TTGGYRRGGTAAHRGCYYACCAAG

311 365 CCACAHKGGVACTGAGAYACKGBCCACCTACGGGWGGCWGCAGTVRRGAAT

507 536 CTAACTHYGTGCCAGCAGCCGCGGTAAKAC

547 575 AGCGTTRYYCGGAWTYAYTGGGYKTAAAG

683 707 GTGTAGVRGTGAAATBCGTWGAKAT

765 806 GAAAGCKWGGGKAGCRAACRGGATTAGATACCCBGGTAGTCC

883 932 CTGGGRAGTACGVYCGCAAGRBTRAAACTCAAAGGAATTGACGGGGRCYC

935 986 ACAAGCRGYGGAGYRTGTGGYTTAATTCGAHRMWAMGCGMRRAACCTTACC

1,045 1,062 CAGGTGBTGCATGGYTGT

1,067 1,085 AGCTCGTGYCGTGAGRTGT

1,090 1,113 TTAAGTSCBRYAACGAGCGCAACC

Archaea

325 359 CWRGYCCTACGGGRYGCAGCAGKCGCGAAAMCTYY

514 539 GGTGYCAGCCGCCGCGGTAAHACCGC

560 578 WTTAYTGGGYYTAAAGCRT

679 701 GACRGTGAGGRAYGAARSCYDGG

781 806 CRAWCSGGATTAGACCCSRGTAGTCC

883 931 CTGGGRAGTAYGRYCGCAAGRYTGAAACTTAARGGAATTGGCGGGGGAG

953 972 GGTTYAATYGRABTCAACGC

The conserved regions were obtained by searching consecutive conserved sites in alignment file of 339 archaeal and

1,845 bacterial nonredundant core 16S rDNA sequences in SILVA database (release 108). Cutoff percentage of

occurrence of a nucleotide at a conserved site is 90 %. The positions are according to Escherichia coli 16S rDNA

positions. Abbreviations for degeneration sites are Y for C or T, R for A or G, W for A or T, K for G or T, M for C or A,

S for C or G, V for not T, H for not G, B for not A, and D for not C
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datasets. These primers will be useful for identi-

fying environmental microbes, as they are capa-

ble of detecting more than 90 % of the known

bacteria and archaea. However, the number of

prokaryotic organisms that resist being captured

by these 16S rRNA primers cannot be estimated.

It has been estimated that only about 1 % of the

microbes on Earth are culturable. Moreover, the

microbes colonizing extreme and geologically

isolated environments are far from being

completely explored (Pace 1997; Sogin

et al. 2006). The conserved sites in the 16S

rDNA sequences will be degenerated if more

sequences and polymorphisms are revealed.

Alternatively, the conserved sites will be more

evident if full-length 16S rRNA sequences from

variant rare biospheres are found to exhibit the

same conservation patterns. In return, these con-

servation patterns may help to understand the role

of ribosome RNAs in protein translation.

The method proposed here is also useful for

generating specific primers for interested taxa at

lower taxonomic levels in an environment. In

a previous report, the CHECK_PROBE program

in the RDP database and the BLAST program

were employed to predict cyanobacteria-specific

Conserved Regions in 16S Ribosome RNA Sequences and Primer Design for Studies of Environmental
Microbes, Table 2 Evaluation of candidate primers

Position Sequence % coverage

Bacteria

259–275 GGTAAHRGCYYACCAAG 93.6 %

321–338 ACTGAGAYACKGBCCACC 86.6 %

334–353 CCACCTACGGGWGGCWGCAG 94.1 %

515–533 GTGCCAGCAGCCGCGGTAA 93.6 %

547–568 AGCGTTRYYCGGAWTYAYTGGG 95.1 %

556–575 CGGAWTYAYTGGGYKTAAAG 96.9 %

683–700 GTGTAGVRGTGAAATBCG 88.5 %

691–707 GTGAAATBCGTWGAKAT 75.9 %

765–782 GAAAGCKWGGGKAGCRAA 82.1 %

785–806 GGATTAGATACCCBGGTAGTCC 94.7 %

907–928 AAACTCAAAGGAATTGACGGGG 96.6 %

946–964 AGYRTGTGGYTTAATTCGA 92.5 %

1,046–1,062 AGGTGBTGCATGGYTGT 95.8 %

1,067–1,085 AGCTCGTGYCGTGAGRTGT 93.0 %

1,090–1,113 TTAAGTSCBRYAACGAGC 90.8 %

Archaea

328–346 GYCCTACGGGRYGCAGCAG 83.8 %a

340–357 GCAGCAGKCGCGAAAMCT 80.2 %a

514–533 GGTGYCAGCCGCCGCGGTAA 93.8 %

519–539 CAGCCGCCGCGGTAAHACCGC 93.5 %

560–578 ATTAYTGGGYYTAAAGCRT 90.3 %

683–701 GTGAGGRAYGAARSCYDGG 81.1 %

785–806 GGATTAGATACCCSRGTAGTCC 90.9 %

883–902 CTGGGRAGTAYGRYCGCAAG 92.6 %

897–914 CGCAAGRYTGAAACTTAA 91.4 %

907–928 AAACTTAARGGAATTGGCGGGG 92.9 %

916–931 GGAATTGGCGGGGGAG 82.9 %a

953–972 GGTTYAATYGRABTCAACGC 79.9 %a

Degenerated nucleotides are referred to Table 1
aCoverage percentages that need an adjustment due to incompleteness of some short 16S rDNA sequences at the region
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primers (Nubel et al. 1997). However, there are

problems with these methods as demonstrated

previously (Wang and Qian 2009). Hence, the

method here is recommended since it may enable

more specific primers to be generated for differ-

ent taxonomic levels.

Cross-References

▶Binning Sequences Using Very Sparse Labels

Within a Metagenome

▶Challenge of Metagenome Assembly and

Possible Standards

▶ I-rDNA and C16S: Identification and

Classification of Ribosomal RNA Gene

Fragments

▶RITA: Rapid Identification of

High-Confidence Taxonomic Assignments for

Metagenomic Data
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Introduction

Prokaryotes, which comprise the bacterial and

archaeal domains, show very high biodiversity.

Over 50 different phyla including candidate phyla

with cultivable species and uncultivable represen-

tatives, which are only characterized via

metagenomics, have been detected. Microbial

strains are ubiquitous and are able to grow in

extreme environments, and to determine their func-

tions and activities in the environment is essential

for our understanding of life. Culture collections

can help in the cataloging and preservation of

microbial strains and their genomic DNA.

Role of Culture Collections

Culture collections are important in the preserva-

tion of biodiversity and thus contribute to the

objectives of the Convention on Biological

Diversity (CBD; www.cbd.int) through the pres-

ervation of important genetic resources.

The primary function of microbial culture col-

lections is to gather, maintain, and distribute

strains which have unique properties and are of

practical value in various applications like

research, teaching, quality control assays, and

biotechnology (Uruburu 2003; Emerson and

Wilson 2009). Culture collections supply their

users with well-characterized strains and replicable

parts (plasmid, DNA) as well with the associated

documentations relevant to these biological mate-

rials. Cultures, strain, and DNA from culture col-

lections are distributed with a material transfer

agreement (MTA) which provides users with all

relevant handling information and regulations for

commercial use of the supplied biological material.

Type strains, which constitute the name-

bearing reference strain of a species and are

often used in the study of bacterial systematics,

are available from culture collections worldwide.

Type strains must be deposited in two public

collections in two different countries in order to

have the name and thus the species validated

(Stackebrandt 2010).

Culture collections are a valuable resource for

the exploitation of biological diversity and can

help countries rich in biodiversity to understand

and utilize their microbial diversity more effec-

tively (Arora et al. 2005). Culture collections also

act as an interface between their providers and

users of genetic resources to support fair and

equitable sharing of the benefits based on docu-

ments like Prior Informed Consent (PIC) and

mutually agreed terms (Sievers et al. 2010). In

fulfilling these roles, culture collections have sev-

eral responsibilities regarding biosafety require-

ments. These include compliance with

international agreements and conventions on bio-

diversity, the support of researchers seeking

intellectual property rights, and to implement

new technologies and to find additional funding

for their vital work.

In addition, microbial culture collections

which are recognized as international depositary

authorities (IDA) offer deposition of microorgan-

isms involved in inventions for patent purposes

according to the Budapest Treaty (http://www.

wipo.int/treaties/en/registration/budapest/trtdocs_

wo002.html).

Importance of Microorganisms

Microbial strains are used for a wide range of

scientific, industrial, and health-care applications,

for example, as sources of enzymes, proteins,

vitamins, organic acids, bioactive compounds,

antimicrobial peptides, and biopolymers. Micro-

organisms are used in agriculture as bio-fertilizer,

in wastewater treatment as agents for degradation

of compounds with complex structures, for metal

recovery to catalyze specific chemical reactions,

for bioenergy production, as starter cultures in the
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production of fermented food, as probiotics, and as

reference material in diagnostics and development

of new therapeutics.

In contrast to their beneficial relatives, patho-

genic microbes cause severe diseases in humans,

animals, and plants, resulting in significant eco-

nomic loss and risk to global health. The useful

products and processes provided by microorgan-

isms can be grouped into four broad categories:

fine chemicals, processes, commodities, and

emerging technologies (Kuo and Garrity 2002).

Thus, the use and the study of microorganisms

contribute to further economic growth and health

promotion and are of immense social and ecolog-

ical value (Komagata 1999; Prakash et al. 2012;

Smith 2003).

Microbial Diversity

Due to their myriad environmental roles and

functions, microorganisms are important compo-

nents of the world’s biodiversity. Microbial

diversity refers to the richness and degree of

variability among species and strains within an

ecosystem. Microbial communities of an investi-

gated sample are composed of species which

could be isolated as well as the “silent majority”

species which are considered non-culturable

under standard laboratory conditions and only

their DNA is accessible for genetic characteriza-

tion. The richness of bacterial species is highly

variable in different environmental communities.

Some environments like the upper atmosphere,

glacial ice, and highly acidic stream waters have

low numbers of bacterial species in comparison

to soil, microbial mats, and marine water, which

harbor vast numbers of bacterial species (Fierer

and Lennon 2011). The estimation of the number

of bacterial species per gram of soil is not a trivial

task. Metagenomic approaches based on analysis

of environmental DNA sequence data help to

study microbial communities and to estimate

their species richness. Based on high-throughput

16S rDNA pyrosequencing and phylogenetic

analysis, the most abundant species of bacteria

in different soil samples were assigned to

the phyla Proteobacteria and Bacteroidetes

(Roesch et al. 2007). A large percentage of soil

bacteria could not be isolated by cultivation

(between 90 % and 99 % in a given sample).

Soil bacteria of the phyla Acidobacteria and

Verrucomicrobia are poorly represented in pure

cultures, and members of the Actinobacteria,
Firmicutes, and Proteobacteria, in contrast, are

well represented in culture collections. For exam-

ple, the most dominant genus of the American

Type Culture Collection (ATCC) soil accessions

is Streptomyces, belonging to the phylum

Actinobacteria, reflecting their importance as

producers of bioactive compounds and in soil

ecology (Floyd et al. 2005).

Currently, culture collections cover only

a fraction of the diversity of microorganisms

and will benefit from the deposition of new

strains which are suitable for industrial use since

they represent rich and abundant source of novel

molecules with various biological activities.

Identification of Strains at Species Level

Isolated strains are checked for purity microscop-

ically, for morphological homogeneity by unifor-

mity of colony form on agar plate, by distinct

color formation on chromogenic agar, and con-

formation by denaturing gradient gel electropho-

resis DGGE (single band obtained). Identification

of pure strains at species level is usually

performed using ribosomal RNA gene sequence

analysis. Housekeeping genes encoding RNA

polymerase beta subunit (rpoB), RNA polymer-

ase sigma factor (rpoD), gyrase beta subunit

(gyrB), recombinase A (recA), or heat shock pro-
tein (hsp60) provide in some cases better genetic

resolution on the species level than the 16S rDNA

sequence used in taxonomic studies. Combina-

tions of housekeeping genes in multi-locus ana-

lyses provide a taxonomic tool for identification

of prokaryotes at species and strain level (Moore

et al. 2010). DNA sequences in combination with

protein spectra obtained by MALDI-TOF-MS are

very efficient to identify strains at species level.

MALDI-TOF-MS used for species identification

generates protein spectra in the size range between

2 and 20 kDa which is dominated by ribosomal
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proteins. By use of this technology, the generated

spectra of an unknown strain are compared with

a reference data bank (Wieser et al. 2012).

DNA-DNA hybridization (DDH) values are

used to determine relatedness between strains

and strains belong to the same species when

DDH values are approximately 70 % or greater

(Wayne et al. 1987). Average nucleotide identity

(ANI) of common genes is discussed to be an

alternative method for replacing DDH. The cut-

off value of 70 % DDH for species delineation

correlates to 95 % ANI value (Goris et al. 2007).

ANI can be calculated by partial sequencing of

the genomes (at least 20 %) of the query strains

(Richter and Rosselló-Móra 2009). Unique

strains of one species can be identified by meta-

bolic activities (sugar utilization, acid produc-

tion), resistance to antibiotics, and genetic

fingerprints obtained by rep-PCR.

Strains in a collection should undergominimal

passages before distribution to reduce genetic

variations within these strains. This can be

achieved by establishment of a two-tiered system

composed of a master and working (distribution)

bank for each organism (Day and Stacey 2008).

Future Tasks of Culture Collections

Environmental samples from habitats that harbor

undiscovered microorganisms and are

disappearing due to climate change or forest

clearance should be a primary focus of culture

collections to preserve its microbial diversity.

The filamentous fungi Penicilliopsis

clavariaeformis producing an orange pigment

penicilliopsin occurred on fruits and seeds of

Diospyros trees in Indonesia and Taiwan (Hsieh

and Ju 2002; Oxford and Raistrick 1940), and

strains of these species are lost for isolation,

when the trees disappear (Colwell 2002). To pre-

vent loss of microbial strains from disappearing

habitats, preservation methods of ecosystems and

natural communities have to be developed

(Prakash et al. 2013).

Data generated from genomic and proteomic

studies are useful to identify microbial species in

communities and help to determine their function

in an ecosystem. These data sets can be applied to

develop cultivation methods for ecologically

important microorganisms which are not-yet cul-

tivable (Prakash et al. 2012). Information based

on DNA sequences is increasingly used in eco-

logical research and in investigating microbial

communities. Storage of extracted DNA for use

of DNA barcoding technology should be depos-

ited in a repository for further taxonomic and

biotechnological studies (Vernooy et al. 2010).

Handling of biological sequence data derived

from “omics” (genomics, transcriptomics, prote-

omics, metabolomics) including storage and

accessibility should be standardized. Culture col-

lections developing to biological resource centers

(BRC) meet the high standard of quality manage-

ment and accreditation processes and are able to

participate in networking initiatives to strengthen

the collaboration between collections and their

users (Janssens et al. 2010; Stackebrandt 2010).

Sequencing of complete bacterial genomes

leads to the discovery and characterization of

new gene families (Wu et al. 2009). The ongoing

characterization of microbes will lead to new

strains, microbial metabolites, and novel

protein-coding genes suitable for use in many

industrial and health applications.

Summary

Culture collections play a key role in preserva-

tion, taxonomic characterization, and supply of

diverse microbial strains with associated infor-

mative documents. Collection organizations such

as WFCC (World Federation for Culture Collec-

tions) and ECCO (European Culture Collections’

Organisation) and activities of CABRI (Common

Access to Biological Resources and Information)

promote and support culture collections and their

related services.

With recent advances in genomic analysis and

molecular genetics, researchers are increasingly

able to understand, harness, and engineer the vast

biochemical potential of microorganisms. And

thus, further activities are necessary to fully real-

ize the huge scientific and economic potential of

these rich and diverse nature resources.
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Culturing
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Definitions

Microbiome: The microbes (bacteria, archaea,

fungi, protists, and viruses) that inhabit

a specific environment or host, such as all the

microbes that live in and on the human body.
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Mesophile: An organism that grows and thrives

within a moderate temperature range, usually

between 20� and 45 �C.
Fastidious Organism: An organism that has

very specific and usually complex growth

requirements.

Microbial Commensalism: Interaction between

two species where one benefits but does not harm

or affect the other.

Microbial Mutualism: Interaction between two

species where both organisms benefit.

Introduction

Only about 1 % of all prokaryotic species in the

biosphere are thought to be cultivatable

(Handelsman 2004). A few thousand taxa are

associated with the human microbiome. The

taxa on the skin are mostly cultivatable (ca.

90 %) (Gao et al. 2007), about 50 % of the oral

species are cultivable (Dewhirst et al. 2010), and

about 50% of the taxa of the gut microbiomemay

be cultivable (Goodman et al. 2011). The history

of cultivation of microbes can be traced to the

Egyptians who used yeasts and lactic acid bacte-

ria in the production of breads, wines, and beers.

Robert Koch first cultivated bacteria on solid

medium in 1881. This permitted single colony

isolation and production of pure cultures. While

this seemed a logical approach, we are now learn-

ing that some organisms cannot grow in pure

culture and these pure cultures are often not rep-

resentative of the environment from which they

were isolated.

Environmental Requirements for
Growth

Bacteria can be separated into groups based on

their growth requirements, which include specific

nutrients, optimal temperature (usually

mesophiles for members of the human

microbiome) and pressure ranges, and sensitivity

or tolerance to salinity or pH. A very important

feature is the optimal oxygen concentration

required for growth. There are five categories:

(1) obligate aerobes (require ca. 20 % O2);

(2) microaerophiles, which grow well at reduced

O2 concentration; (3) facultative anaerobes that

can grow aerobically or can respire anaerobically

or grow fermentatively; (4) aerotolerant anaer-

obes, which are not killed by O2 but that cannot

respire aerobically and only grow optimally

under anoxic conditions; and (5) obligate anaer-

obes that are usually killed in the presence of O2

and grow only in the absence of oxygen. Strict

anaerobes must be manipulated in an anoxic

chamber. Aerotolerant anaerobes can be briefly

handled on the laboratory bench for standard

bacteriological techniques, but they must be incu-

bated anaerobically. Anaerobic organisms pre-

dominate in the human oral, gastrointestinal,

and vaginal tracts. Examples of obligate genera

in the human body are Clostridium and

Bacteroides; aerotolerant members include

Propionibacterium and Lactobacillus;

Escherichia is a facultative anaerobe. Some

organisms require high concentrations of CO2

(5 %) in addition to O2. These are capnophiles;

examples are some streptococci, Neisseria spp.,

and Haemophilus spp. that are residents of the

respiratory tract.

Nutritional Requirements: Media Types

All bacteria require carbon, nitrogen, and sul-

fur for metabolism. It is generally believed that

the human body is colonized only by hetero-

trophic bacteria that obtain energy from oxida-

tion of organic carbon substrates, although the

presence of autotrophic cyanobacteria has been

reported in some oral and fecal samples based

on 16S rDNA sequencing. In complex bacteri-

ological culture media, carbon, nitrogen, and

sulfur for heterotrophic growth are usually pro-

vided by a peptone (digested protein) such as

casamino acids, Lab-Lemco (Oxoid), tryptone,

or soytone. Vitamins, amino acids, and carbo-

hydrates are provided by the addition of yeast

extract. Sodium chloride is sometimes added as

an osmotic stabilizer. Since many bacteria have

special requirements for vitamins and other

trace minerals, media are often supplemented
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with hydrolysates such as beef extract or yeast

extract. To create a solid medium, agar,

a polysaccharide product of seaweed, is added

to the broth formulation prior to autoclaving.

To support the growth of fastidious organisms,

fresh defibrinated blood (usually sheep’s blood)

is often added to cooled agar media prior to

pouring into Petri dishes. Haemophilus and

Neisseria require blood that has been lysed prior

to use (chocolate agar). Strict anaerobes require

agar media that can be pre-reduced (i.e., incu-

bated in an anoxic environment to remove all

O2 prior to use), and some species require the

addition of hemin and vitamin K. A good general

agar for this use is Anaerobic Reducible Blood

Agar (Remel, Lenexa, KS), which contains cys-

teine HCl, palladium chloride, and dithiothreitol

to maintain a low redox potential of the agar. It

also contains hemin and vitamin K and can be

purchased with colistin and nalidixic acid as

a selective medium for isolation of gram-

positive organisms or with kanamycin, vanco-

mycin, and neomycin as a selective medium

for gram-negative organisms, particularly the

Bacteroides.

Numerous preformulated specialty powdered

and premade bacteriological media and plates are

available for selection, identification, and culti-

vation of a wide variety of human bacterial spe-

cies, with a focus on pathogens.

Methods to Enhance Growth of
Uncultivable Organisms

The concept of isolation of the pure cultures has

been challenged by groups that have shown that

cocultivation of organisms can sometimes

lead to the successful isolation of previously

uncultivable organisms. New technologies have

been applied to isolate and capture cells and then

incubate them an environment that simulates

(or is) the natural one.

The groups of Slava Epstein and Kim Lewis

have made key contributions to methods and

discoveries leading to the cultivation of such

isolates. In 2002 they reported on the use of

diffusion chambers to grow microbial colonies

from an intertidal sandy flat in an aquarium

containing seawater as the growth medium

(Kaeberlein et al. 2002). They estimated that up

to 40 % of the cells inoculated into the chamber

could be cultivated, but attempts to grow these

microcolonies in pure culture were very ineffi-

cient. One isolate, which grew poorly on the agar

plates, grew well in coculture with any of three

other isolates obtained from the chambers. They

expanded this to create a high-throughput Ichip

diffusion array that contains 192 chambers per

array (Nichols et al. 2010). A clever application

of the technology was the creation of an upper

palate dental appliance that carried a 72-chamber

Ichip diffusion array (Sizova et al. 2012). The

appliance was worn by a subject for 48 h then

recovered and placed in an anaerobic chamber.

Bacterial cells from the chambers were plated on

a “basic anaerobic medium” that was low in sugar

concentration to prevent selection for fast-

growing species. This method contributed 39 iso-

lates, several of which represented taxa that had

not been previously cultivated. The take-home

lessons that these authors stressed were that

“domestication” of uncultivated organisms from

the human microbiome is more likely if the bac-

teria are first grown in vivo and that cell growth

should be allowed to occur “unimpeded by neigh-

bors,” for example, by growth in diffusion cham-

bers, by dilution to extinction (Rappe et al. 2002),

or by growth encapsulated in microdroplets

(Zengler et al. 2002). They also stressed the

requirements of strict anaerobic conditions (for

oral samples) and the utilization of media low in

readily utilizable carbohydrates (Sizova

et al. 2012).

The commensalism and mutualism of some

bacterial species have been exploited to stimulate

growth of previously uncultivated organisms.

Examples of commensalism in dental plaque are

well established, such as the catabolism of sugars

by streptococci to lactic acid, which is fermented

by the veillonellae, which cannot utilize sugars.

Vartoukian et al. were able to cultivate Cluster
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A Synergistetes, which had not been previously

accomplished, by growing human plaque sam-

ples in a complex cooked meat medium

(Vartoukian et al. 2010). Using fluorescent in

situ hybridization (FISH) directed against the

Synergistetes 16S rRNA, they followed the pres-

ence of an isolate, Synergistetes SGP1, and

observed that the Synergistetes cells formed

aggregates with other bacteria. Ultimately, they

showed that growth of SGP1 was stimulated

by cross-streaks of Staphylococcus aureus,

Fusobacterium nucleatum, Parvimonas micra,
and Treponema forsythia, which were members

of the cell aggregates. The mechanism of the

effect has not yet been ascertained. Siderophore
sharing, or “stealing,” is a theme common in

bacterial pathogenesis and is the one that the

Epstein and Lewis group observed as

a mechanism that permitted coculture of some

strains of bacteria isolated from sand biofilms

(D’Onofrio et al. 2010). They observed that

samples plated in high density yielded much

higher numbers of colonies than expected

compared to plates with diluted biofilm samples

and hypothesized that adjacent pairs of species

might have growth dependencies. One strain,

Micrococcus luteus KLE1011, was shown to

secrete 5 distinct but related siderophores, any

one of which was able to induce growth of the

uncultivated strain Maribacter polysiphoniae
KLE1104. The M. luteus strain was then used as

“bait” to capture additional uncultivated bacteria

from the samples (D’Onofrio et al. 2010). It

would be surprising if this phenomenon was not

observed between members of the human

microbiome.

Summary

The cultivation of prokaryotes continues to

follow mostly traditional methods, although

some groups are beginning to recognize that

the cultivation of the uncultivable requires

a better appreciation of the in vivo

environment of the species that is sought.

The application of diffusion chambers and

microdroplet technologies to human

microbiome samples should accelerate cultiva-

tion of some species, and metabolic predic-

tions from whole genome shotgun sequencing

may, in future, permit rationale cultivation of

new species of bacteria.
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Synonyms

A customizableWeb server for fast metagenomic

sequence analysis

Definition

WebMGA is a Web server through which

researchers can upload metagenomic sequence

data and run various tools to analyze the data.

The tools in WebMGA can also be accessed

through the Web services using client-side

scripts.

Introduction

Metagenomics is an approach that studies the

environmental microorganism populations pre-

dominantly using the next-generation sequencing

technologies developed during the last decade.

Today, scientists have already studied the

microbes under many different environments

such as water, soil, air, human body sites, and

many others.

Metagenomic data analysis from raw sequenc-

ing reads to biological discoveries is a very

complicated process and includes many compu-

tational procedures such as sequence quality

control, filtering, mapping, assembly, gene pre-

diction, normalization, function and pathway

analyses, visualization, and statistical studies. In

the last several years, many computational tools

have been developed to address the problems in

metagenomic data analysis. For example,

Metagene (Noguchi et al. 2006) and

FragGeneScan (Rho et al. 2010) predict ORFs

from fragmented sequences. Meta-RNA (Huang

et al. 2009) scans rRNA from short sequences.

Mothur (Schloss et al. 2009), QIIME (Caporaso

et al. 2010), and CD-HIT-OTU (Li et al. 2012)

are software packages for estimating microbial

diversities based on 16S rRNA tags. RAMMCAP

(Li 2009) is an integrated annotation pipeline that

provides gene prediction, clustering, function

annotations, and several other functions.

These complicated processes plus limited

availability of computational resources tend to

overwhelm bench biologists from attempting to

analyze their own metagenomic data. So, inte-

grated bioinformatics systems specific to

metagenomic data analysis, especially easy-to-

use Web portals, are of great importance for

researchers in various communities to fully uti-

lize metagenomic approach.

WebMGA was developed as a fast, easy, and

flexible solution for metagenomic data analysis.

It is freely available at http://weizhongli-lab.org/

metagenomic-analysis to all users.

Metagenomic Analysis Tools Provided
in WebMGA

More than 20 different analysis tools specially

designed for metagenomic data analysis are pro-

vided by WebMGA Web portal. Most of these

tools are very fast. Also, they are implemented to

be executed in parallel on a computer cluster.

Given the rawmetagenomic sequencing reads,

the following analyses can be completed:

• A quality control (QC) script filters and trims

raw sequencing reads and yields high-quality

reads.

• Software SolexaQA (Cox et al. 2010) can also

be used as a QC tool.

• Program CD-HIT-454 (Niu et al. 2010) iden-

tifies and removes artificial duplicate.

If the input sequences are filtered reads or

DNA sequences, WebMGA provides the follow-

ing analyses:

• tRNAscan (Lowe and Eddy 1997) finds

tRNAs from the input sequences.
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• Meta-RNA (Huang et al. 2009) identifies

rRNAs from fragmented sequences using

a hidden Markov model-based algorithm.

• A BLAST-based program identifies rRNAs by

comparing the query against several rRNA

reference databases.

• For metagenomic data from human subjects,

WebMGA offers a tool that identifies human

DNAs and RNAs and removes them from

input metagenomic sequences. A fast mapping

program FR-HIT (Niu et al. 2011) is used to

align the input sequences against human ref-

erence sequences.

• CD-HIT-EST, an ultrafast sequence-

clustering program, clusters the DNAs into

groups or removes redundant sequences.

Customizable Web Server for Fast Metagenomic Sequence Analysis, Fig. 1 The web server page for DNA

clustering
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• WebMGA has a taxonomy-binning tool that

maps the reads to reference genomes using

FR-HIT and then assigns taxonomy

annotations.

• ORF_finder (Li 2009) calls ORFs from input

sequences by six-reading-frame translation.

• Metagene (Noguchi et al. 2006) identifies

ORFs from fragmented sequences.

• FragGeneScan (Rho et al. 2010) identifies

ORFs and also tries to correct frameshift

errors.

Users can input protein or peptide sequences

to run the following analyses:

• CD-HIT (Li et al. 2001, 2002; Li and Godzik

2006; Huang et al. 2010) clusters the input

sequences into protein clusters or removes

redundant sequences.

• A multistep clustering pipeline groups protein

sequences into protein families.

• WebMGA uses HMMER3 program (Eddy

2009) to compare input peptides against

Pfam and Tigrfam databases and assign the

domain or protein families.

• WebMGA uses RPS-BLAST to compare

NCBI’s COG, KOG, and PRK databases and

provide function annotations.

• WebMGA provides Gene Ontology

(GO) annotations.

• WebMGA searches KEGG database and pro-

vides pathway annotations.

16S rRNA tags can also be analyzed through

WebMGA:

• RDP Classifier (Wang et al. 2007) analyzes

rRNA tags and assigns taxonomy annotations.

• CD-HIT-OTU (Li et al. 2012) is a pipeline that

filters and processes the raw rRNA tags and

clusters them into operational taxonomic units

(OTUs). CD-HIT-OTU is available at http://

weizhongli-lab.org/cd-hit-otu.

Each of the above tools has a Web interface

where users can run them individually. Users

with programming skills can even compose

a script to run a customized multistep analysis

workflow through WebMGA’s Web services. As

illustrated in Fig. 1, a user can upload a DNA

dataset to run several analysis processes in paral-

lel. The user can use HMM-based or BLAST-

based method to find rRNAs and to produce

a FASTA file with rRNA masked. The latter

result file is then processed by an ORF calling

program, and the ORFs are used for function and

pathway annotation. This workflow is illustrated

in Fig. 2.

Summary

WebMGA provides researchers the tools for

rapid metagenomic sequence analysis through

Web server and Web services. The tools and

functions in WebMGA cover a large scope of

metagenomic data analysis such as raw sequence

quality control, human DNA filtering, OTU esti-

mation, taxonomy binning, sequence clustering,

and function and pathway annotation. By directly

accessing the Web services with client-side

scripts, users can customize and run their own

workflows. The tools and data in WebMGA are

Customizable Web Server for Fast Metagenomic Sequence Analysis, Fig. 2 A simple workflow using tools in

WebMGA
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constantly being updated, and new tools for fast

metagenomic data analysis will be continuously

added.

Cross-References

▶ Fast Program for Clustering and Comparing

Large Sets of Protein or Nucleotide Sequences

▶ FR-HIT Overview
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Synonyms

Phylogeny ¼ phylogenetic tree ¼ tree; Multiple

sequence alignment ¼ MSA

Definition

DACTAL ¼ “Divide-and-conquer trees (almost)

without alignments.”

Introduction

DACTAL (divide-and-conquer trees (almost)

without alignments) is a method for estimating

very large phylogenetic trees which utilizes an

iterative divide-and-conquer technique to

“boost” the accuracy and speed of an existing

phylogeny estimation method. DACTAL con-

structs trees without needing to compute or use

a multiple sequence alignment on the full dataset.

This contribution describes the method and dem-

onstrates its performance on biological and sim-

ulated datasets.

Phylogeny estimation is a basic step in many

bioinformatics analyses, and there are many

methods for estimating phylogenies (Felsenstein

2003). Most frequently, phylogeny estimation for

a given set of taxa is performed in a sequence of

steps: (1) a gene is selected, (2) sequences for that

gene in the taxa are obtained, (3) a multiple

sequence alignment of the molecular data

(DNA, RNA, or amino acid) is estimated, and

(4) a tree is estimated on that resultant alignment.

Although many preferred methods for phylogeny

estimation are based on hard optimization prob-

lems (e.g., maximum likelihood), small datasets

are not that hard to analyze, and effective heuris-

tics are able to analyze small datasets quite well.

Maximum likelihood analysis of datasets with

many thousands of sequences is much more dif-

ficult, although some methods (e.g., RAxML

(Stamatakis 2006) and FastTree-2 (Price

et al. 2010) but see also Felsenstein 2003;

Warnow 2013) are highly effective even on

these datasets. The estimation of large multiple

sequence alignments (MSA) is itself very chal-

lenging (Kemena and Notredame 2009; Liu

et al. 2010; Blair andMurphy 2011): most current

MSA methods are unable to analyze very large

datasets (10,000 sequences and more) due to

computational issues, while those that can ana-

lyze datasets of this size (e.g., Clustal-Quicktree

and MAFFT-PartTree) produce alignments that

result in insufficiently accurate trees. Of the var-

ious methods available for large-scale multiple

sequence alignment, to date only SATe (Liu

et al. 2009, 2012) has been shown to be effective

at producing alignments that result in highly

accurate trees. However, SATe is limited to

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



datasets of about 50,000 sequences. Thus, the

estimation of a large phylogenetic tree is a very

challenging problem, and one of the biggest

issues is the estimation of the multiple sequence

alignment for the dataset.

Methods

DACTAL (Nelesen et al. 2012) is a method for

estimating a very large phylogeny without need-

ing to estimate a multiple sequence alignment on

the entire dataset. The basic approach is

a combination of divide-and-conquer plus itera-

tion (see Fig. 1).

The input is a set of unaligned but homologous

sequences, and each iteration produces a tree (but

no alignment) on the full dataset. With the excep-

tion of the first iteration, each iteration begins

with the tree from the previous iteration. In the

first iteration, the method begins by dividing the

dataset into overlapping subsets, each with at

most some user-specified number of sequences;

the default for this is 200. This division into sub-

sets can be accomplished through the use of

a technique that uses BLAST to form small sets

of sequences around each sequence with some

overlap between the sequence subsets. Alterna-

tively, the division can be performed by comput-

ing an alignment and tree on the dataset (using

some fast and approximate methods) and then

using the tree to produce a recursive decomposi-

tion of the sequence dataset. In either case, the

decomposition that is produced produces subsets

that overlap at least one other subset by some

specified minimum amount (default 50) and that

are themselves small (by default each subset has

at most 200 sequences).

Once the decomposition is performed, trees

are estimated on each subset, using some favored

method; the default is a maximum likelihood

analysis (default RAxML) on a good multiple

sequence alignment, with the default being

MAFFT (Katoh et al. 2005). These subsets are

small (by default, they have at most

200 sequences in them), and as the experimental

results show, this is sufficient even for datasets

with about 28,000 sequences.

After the trees are computed, they can be

merged together into a tree on the full set of

taxa using a supertree method; the default is

SuperFine+MRP (Swenson et al. 2012),

DACTAL, Fig. 1 DACTAL algorithmic design.

DACTAL can begin with an initial tree (bottom triangle),
or through a technique that divides the unaligned sequence

dataset into overlapping subsets. Each subsequent

DACTAL iteration uses a novel decomposition strategy

called “PRD” (padded recursive decomposition) to divide

the dataset into small, overlapping subsets, estimates trees

on each subset, and merges the small trees into a tree on

the entire dataset (figures included from a previous publi-

cation (Nelesen et al. 2012), with permission from the

publisher).
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a supertree method that has excellent accuracy

and which “boosts” the accuracy of MRP

(another supertree method; see Bininda-Emonds

2004). Subsequent iterations begin with the

tree estimated during the previous iteration and

then decompose the dataset into overlapping

subsets, compute trees on subsets, and merge

the trees into a tree on the full dataset. The num-

ber of iterations is a parameter that is set by the

user. Thus, DACTAL is a method that can be

modified to enable different techniques for esti-

mating trees on subsets and for combining

subset tree into a full set of trees, and the target

subset size and overlap between subsets are

parameters that can be set by the user. The default

settings were selected for accuracy and speed

and provide good results, as the results section

demonstrates.

Results

The performance of DACTAL was evaluated in

comparison to maximum likelihood trees com-

puted on SATe-I (Liu et al. 2009) and other

alignment methods on simulated datasets with

1,000 sequences and on biological datasets with

6,000–28,000 sequences (Nelesen et al. 2012).

The results of these experiments are shown in

the figures below and demonstrate that DACTAL

had accuracy comparable to that of SATe-I and

could analyze larger datasets than SATe-I. These

experiments also show that DACTAL was sub-

stantially more accurate than two-phase methods

(i.e., methods that align sequences and then esti-

mate trees on these alignments).

Figure 2 compares running time and tree accu-

racy on the 20 replicate datasets for 15 model

DACTAL, Fig. 2 Comparisons of ten iterations of

DACTAL to SATe and RAxML trees estimated on differ-

ent alignments on “moderate-to-difficult” simulated

1,000-taxon datasets. We show missing branch rates

(top) and runtimes in hours (bottom); n ¼ 20 for each

model condition, and standard error bars are shown.

DACTAL and SATe runtimes include the time to compute

RAxML(MAFFT) starting trees. Asterisks (*) denote

model conditions for which DACTAL’s missing branch

rate is a statistically significant improvement over the next

best method, according to Benjamini-Hochberg-corrected

pairwise t-tests (n ¼ 40; alpha ¼ 0: 05) (figures included

from a previous publication (Nelesen et al. 2012), with

permission from the publisher).
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conditions with 1,000 taxa, originally used to

evaluate SATe-I (Liu et al. 2009). These model

conditions vary in terms of rates of evolution,

indel lengths (short, medium, or long), and rela-

tive rates of substitutions and indels (insertions

and deletions).

The error in tree estimation is computed using

the missing branch rate, which is the fraction of

the nontrivial bipartitions in the true (model) tree

that are missing in the estimated tree. In this

experiment, DACTAL is run for ten iterations,

while SATe-I runs for 24 h after it computes the

RAxML(MAFFT) starting tree. The running time

comparison shows that DACTAL is much faster

than SATe-I on every model condition. The com-

parison with respect to accuracy shows that

DACTAL has approximately the same accuracy

as SATe-I and that both DACTAL and SATe-I

are much more accurate than the two-phase

methods on the difficult 1,000-taxon model con-

ditions. Finally, this figure also shows that

DACTAL is faster than SATe, although it is

slower than the two-phase methods.

Figure 3 shows performance on a single bio-

logical dataset, 16S.T, from the Comparative

Ribosomal Webpage (CRW) (Cannone

et al. 2002). This dataset has 7,350 sequences

and a high rate of evolution and so represents

a challenging phylogenetic dataset. The reference

tree for this dataset is based on a curated struc-

tural multiple sequence alignment (Cannone

et al. 2002). This figure gives four different

two-phase methods (maximum likelihood com-

puted using FastTree-2 or RAxML on either

Clustal-Quicktree or MAFFT-PartTree align-

ments), but also shows trees obtained for each

of ten iterations produced by SATe-I and

DACTAL. Note how SATe-I and DACTAL

both improve with each iteration, with the initial

iterations producing the biggest reductions in tree

error, and that they track each other iteration by

iteration. However, note that each DACTAL

DACTAL,
Fig. 3 Comparisons of

DACTAL and SATe

iterations with two-phase

methods on the 16S.T

dataset with 7,350

sequences. The starting

trees were RAxML on the

MAFFT-PartTree

alignment (RAxML(Part))

for SATe and FastTree-2 on

the MAFFT-PartTree

alignment (FT(Part)) for

DACTAL. We show

missing branch rates (top)
and cumulative runtimes in

hours (bottom); n ¼ 1 for

each reported value.

Iteration 0 is used to

compute the starting tree

for DACTAL and SATe

(figures included from

a previous publication

(Nelesen et al. 2012), with

permission from the

publisher).
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iteration is much faster than each SATe-I itera-

tion, so that ten iterations of DACTAL finish in

about 1/8 the time of ten iterations of SATe-I.

Discussion

DACTAL is a method for estimating trees from

unaligned sequences. While it does not require

the estimation of an alignment on the full dataset,

it is not entirely alignment-free, since it estimates

alignments on subsets. However, these subsets

are small, containing only 200 sequences, which

reduces the computational and analytical chal-

lenges to running DACTAL. These experiments

show that DACTAL can produce highly accurate

phylogenetic estimates on very large datasets,

improving on the accuracy of both two-phase

methods (that first align the sequences and then

estimate the tree) and SATe-I.

Alignment-free methods (i.e., that do not use

any multiple sequence alignment technique at all

to compute trees) have also been designed; these

are surveyed in Vinga and Almeida 2003 and

Chan and Ragan 2013. Alignment-free methods

typically compute trees in three steps: first, each

sequence is characterized by some distribution

(e.g., its k-mer distribution for some appropri-

ately chosen k), then distances between

sequences are computed, and finally a tree is

computed on the distance matrix. Unlike

DACTAL, these truly alignment-free methods

have not, to our knowledge, been shown to pro-

duce trees of comparable accuracy to methods

that estimate multiple sequence alignments and

then compute maximum likelihood trees on these

alignments. Furthermore, the alignment-free

methods surveyed in these papers do not have

any theoretical guarantees under Markov models

of evolution. An interesting contrast to these

methods is the recent result given in Daskalakis

and Roch 2010. This technique is guaranteed

statistically consistent under the TKF1 model

(Thorne et al. 1991) and so represents an impor-

tant advance in theory. However, this method has

not yet been implemented, so it remains

a theoretical contribution rather than a usable

technique.

Unlike these truly alignment-free methods,

DACTAL is not completely alignment-free,

since it does compute alignments on subsets.

However, the results shown here suggest that

highly accurate trees are indeed possible without

requiring a multiple sequence alignment on the

full dataset.

Future Work

The phylogenetics research community has been

developing improved methods for alignment and

phylogeny estimation. These methods may well

lead to improved estimations of larger trees and

could reduce the need for methods like DACTAL.

However, DACTAL may continue to be a useful

tool for improving scalability of these methods to

very large datasets, containing many tens of thou-

sands of sequences, since these improved tech-

niques could be used to estimate trees on subsets

of taxa. This may be particularly relevant to the

recent effort to develop methods that co-estimate

sequence alignments and trees under complex

models of sequence evolution (see Bouchard-

Cote and Jordan 2013 for a recent paper and

other methods surveyed in Warnow 2013). Most

of these methods are computationally very inten-

sive and limited to at most 200 sequences (and

even then are computationally intensive), and

DACTAL could potentially be used to improve

their scalability to larger datasets. More generally,

the phylogenetics research community has been

developing sophisticated techniques for highly

accurate estimations of alignments and trees, but

these statistically based methods often use tech-

niques (such as MCMC) that are computationally

intensive and do not run on large datasets.

DACTAL provides a basic tool for improving the

scalability of these techniques and so comple-

ments these efforts. Thus, large-scale phylogeny

estimation may well improve through a combina-

tion of efforts – some aimed at improving the

estimation of trees and alignments on small

datasets, using statistically informed but computa-

tionally intensivemethods, and other efforts aimed

at using divide-and-conquer to combine smaller

trees into larger trees.
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Summary

DACTAL is a method for estimating large trees

from unaligned sequences that uses an iterative

divide-and-conquer technique. By design,

DACTAL does not produce a multiple sequence

alignment, yet analyses on many datasets (both

real and simulated) show that DACTAL produces

trees with great accuracy, improving on existing

two-phase methods that first align and then esti-

mate the tree from the sequences. These analyses

also show that DACTAL matches the accuracy of

SATe while being much faster. With the increased

interest in estimating very large trees, this type of

approach could enable highly accurate and very

large-scale phylogenetic estimation.
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Marine microbial eukaryotes (MME) are mor-

phologically, phylogenetically, and functionally

diverse. The term protist is often used but not
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a valid taxonomic classification (Adl et al. 2005,

2007), and evolutionary relationships among

MME at the highest taxonomic ranks remain

controversial.

Functionally, they span all trophic levels, with

phototrophic, heterotrophic, and mixotrophic

taxa, where mixotrophic taxa are able to use

both photosynthesis and heterotrophy as sources

for carbon and energy. Taxonomically MME are

found among all major branches of the eukary-

otic tree of life, with the exception, at least

up until now, of the Excavata (Adl et al. 2012).

This taxonomic and functional diversity is

also manifest in morphological diversity over

several microscopic scales, depending on the

group.

Unassignable taxa: Taxa that do not fit

within descriptions based on standard tax-

onomy. In the case of gene sequences, this

occurs when the sequence in question

shows little homology with other

sequences. The degree of difference is

indicative of taxonomic level differences,

e.g., domain, phyla, and order, to the level

of genus. For the first 18S rRNA gene sur-

veys using cloning and Sanger sequencing,

several phyla-level novel sequences were

discovered. The majority of these belong to

uncultivated taxa and so there are no organ-

isms available to infer functional roles.

The use of molecular tools to identify MME

began some 10 years after the first reports of

bacterial and archaeal diversity in the sea, in

part because the existing taxonomic record

from microscopy seemed complete. This

changed when the first surveys were carried out

with two publications in 2001 highlighting sur-

prising diversity of MME in the deep sea and

identification of unassignable taxa (Diez

et al. 2001); (Moon-van der Staay et al. 2001).

These studies triggered major programs that

were mostly aimed at the so-called picoplankton

operationally defined as cells passing through

a 3 mm filter and collected on either 0.8 or

0.2 mm filters (Vaulot et al. 2008). Most studies

operationally defined picoplankton by size-

fractionated filtration, and many of the novel

groups originally thought to be picoplanktonic

can in fact include cells>3 mm. Fragile cells are

broken during filtration with cellular contents

passing through the filter, and free DNA pre-

served in seawater can also be collected on the

0.2 mm filter. Such size fractionation however is

useful since it enriched the proportion of smaller

cells. More recently, surveys of picoplankton

have been carried out using cells that were col-

lected following flow cytometry (FCM) cell

sorting. Using this technique, other novel pho-

tosynthetic taxa have been discovered (Not

et al. 2008). Placing novel taxa into known phy-

logenies requires aligning sequences with

known groups and determining their placement

within phylogenetic trees. Using nearly full-

length 18S rRNA gene sequences, most of the

early novel MME have been found to be within

some higher level taxonomic grouping, and as

new environments are surveyed, the distribution

and diversity of uncultivated groups can be

documented.

In principle, it is possible to identify whole

communities of MME using metagenomic

approaches. In practice, high-throughput

multiplexing of different samples with primers

specific for hypervariable regions of the 18S

rRNA gene can be used to identify MME in

natural environments (Amaral-Zettler et al.

2009); (Comeau et al. 2011). These short

sequences or reads are taxonomically assigned

based on reference-curated 18S rRNA gene phy-

logenies. However, as with Bacteria and

Archaea, the utility of identifying MME and

their functional genes is directly related to the

accuracy and completeness of reference data-

bases. Many species that are found in the marine

environment are the same as those reported using

microscopy, and a major challenge is linking

microscopy records with sequence data. An addi-

tional complication is the desirability to exploit

historic data sets and taxonomic treatises where

only morphological descriptions are provided

with no voucher specimens or cultures in exis-

tence, and sequences cannot be matched to

describe morphological species.
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Classification of MME

Historically MME were divided into plants

(algae) and animals (protozoa), with algal classi-

fication following the botanical nomenclature

code and protozoa following the zoological

code. The term algae is now considered

non-taxonomic functional grouping of oxygenic

C-photo-autotrophic (oxygen evolving photosyn-

thesis) organisms that are neither bryophytes nor

vascular plants. Cyanobacteria are sometimes

referred to as algae, are the important phototrophs

in much of the world ocean, but are not eukary-

otes and not treated here. Below is a brief survey

of major MME categorized by trophic roles.

Phototrophs

While diatoms, coccolithophores, and dinoflagel-

lates are the most frequently mentioned

phototrophs in the ocean, there are many other

taxa that can contribute substantially to oceanic

primary productivity. The eukaryotic algae

include heterogeneous and evolutionarily differ-

ent groups. The origin and development of the

first eukaryotic algae is explained through an

endosymbiotic event where a heterotrophic

eukaryote acquired or enslaved an ancestral cya-

nobacterium (cf. Reys-Prieto et al. 2010). After

genetic reduction and transformation, this event

gave rise to primary plastids (chloroplasts) pre-

sent in Glaucophyta, Rhodophyta (red algae), and

Chlorophyta (green algae), and the three lineages

are classified as Plantae (Raven et al. 2005) or

more broadly as Archaeplastida (Adl et al. 2010)

with the higher plants. Chlorophyta are ancestral

to algal Streptophyta and are predominantly

green with chlorophyll b as a secondary pigment;

Prasinophyta and Mamiellaceae are the most

common marine pelagic Chlorophyta.

Other algae are polyphyletic (lack an identifi-

able common ancestor), and for most, their chloro-

plasts originated as a secondary endosymbiotic

event where a single-celled pre-rhodophyte alga

was acquired or enslaved by another heterotrophic

protist. Over time this lineage gave rise to other

major algal phyla (Reyes-Prieto et al. 2010);

(Keeling 2009). Chlorophyll c is a secondary

pigment common to most of these other algae;

in the ocean, these include Diatomea,

Pelagophyceae, Eustigmatales, Dictyochophyceae,

Chrysophyceae, Raphidophyceae, and other

stramenopiles. Among these are Parmales, which

have siliceous walls and have been reported from

electron microscopy (Kosman et al. 1993) and are

closely related to or within the flagellated

bolidophytes (Ichinomiya et al. 2011). About half

of the living species of Dinophyceae (within the

alveolates) are photosynthetic (Taylor et al. 2008).

Cryptophyta and Haptophyta, also with chlo-

rophyll c, are now thought to have arisen through

separate endosymbiotic events with different pro-

tists (Baurain et al. 2010), and their phylogenetic

positions are uncertain.

Haptophyta in the sea include flagellated taxa

mostly in the Prymnesiales, and Phaeocystales,

and coccolith bearing taxa referred to as

coccolithophores, which include Isochrysidales

(e.g., Emiliania) and Coccolithales. Many

coccolithophores also have flagellated stages,

and some species lack chloroplasts (Adl

et al. 2012).

There are two other algal phyla that arose from

endosymbiotic events where single-celled green

algae gave rise to the chlorophyll b containing

chloroplasts in the photosynthetic Euglenophyta

and the Chlorarachniophyta, both of which are

common in marine waters. Several dinoflagel-

lates from diverse lineages have lost their original

secondary endosymbiotically acquired chloro-

plast and have acquired new chloroplasts directly

from either green algae, cryptophytes, or even

diatoms in what are termed tertiary endosymbi-

otic events (Keeling 2009).

Mixotrophs

The majority of the phototrophic groups named

above are also more than likely mixotrophic, at

least on some level. Mixotrophy can range from

the ability to use dissolved organic matter

(osmotrophy) to the capacity to engulf

(phagotrophy) bacteria or other microbial

eukaryotes, including species that are larger

than themselves. These mixotrophs can compete

with heterotrophs for nutrients, carbon, and even

energy when taking up preformed organic

material. It is important to reiterate that these
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are not plants. For example, mixotrophic

Chrysophyceae are particularly common in Arc-

tic Sea ice and Arctic marine waters (Lovejoy

et al. 2002); (Rozanska et al. 2008). Other

stramenopile mixotrophs include members of

the Dictyochophyceae, Pelagophyceae, and

Raphidophyceae; Euglenozoa, Cryptophyceae,

Haptophyceae, and photosynthetic dinoflagel-

lates are also mixotrophic.

Heterotrophs

Heterotrophic MME are also phylogenetically,

morphologically, and functionally diverse.

Among these are several microscopically recog-

nizable heterotrophic species with uncertain tax-

onomic affinities that are also frequently

recovered in environmental gene surveys.

These include Telonema, Katablepharidae, and

Centrohelida. Other groups are well placed in

phylogenies, for example, choanoflagellates

which are included along with animals in the

Opisthokonta. Among novel uncultivated

MME are the biliphytes originally termed

picobiliphytes (Not et al. 2007), which although

still uncultivated have been sequenced using

single-cell genome amplification technology on

cells collected via FCM. The genome from these

cells has confirmed that they branch apart from

other eukaryotes as a sister group to

Cryptophytes and that they are most likely strict

heterotrophs (Yoon et al. 2011), and have been

formally described as a new Phyla; the Picozoa

by Seenivasan et al. (2013).

Among historically important protist hetero-

trophs in the sea are representatives from the

large supergroup Rhizaria, which includes

Cercozoa, Polycystinea, Acantharia, and Forami-

nifera. Cercozoa from microscopy studies that

have also been retrieved using environmental

gene surveys include Cryothecomonas (Thaler

and Lovejoy 2012).

The first environmental 18S rRNA gene sur-

veys revealed a number of distinct lineages of

marine stramenopiles (MASTs) (Massana

et al. 2004), which for the most part seem to be

bactivors, although cultured representatives are

lacking (Massana et al. 2009). Also among

groups that are mostly known from

environmental surveys are several clades of

marine alveolates that are mostly related to para-

sitic taxa, including Amoebophyra, which infect

dinoflagellates (Groisillier et al. 2006) and others

most closely related to zooplankton parasites

(Skovgaard et al. 2005).
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Synonyms

Quantitative sequencing by synthesis

Definition

Pyrosequencing is a sequencing-by-synthesis

method that quantitatively monitors the real-

time incorporation of nucleotides using an

enzymatic conversion of pyrophosphate into

a proportional light signal. Quantitative mea-

sures are crucial for applications such as the

analysis of DNA methylation patterns, which

are intensively studied in various developmen-

tal and pathological contexts as well as for bac-

terial identification and determination of allelic

imbalance.
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Introduction

While Sanger sequencing has been the “gold

standard” for the identification of sequence vari-

ants for a long time, pyrosequencing with its

improved ability for quantification, decreased

limit of detection and accelerated workflow lead-

ing to a shorter time to results, has become

a valuable alternative notably for many clinical

and diagnostic applications. Pyrosequencing is

a sequencing-by-synthesis method, where nucle-

otides are incorporated complementary to

a template strand leading to the release of pyro-

phosphate (PPi) that will – after several enzy-

matic reactions – produce a light signal

proportional to the amount of incorporated nucle-

otide (Fig. 1).

The experimental procedure of the

pyrosequencing assay is simple and relatively

robust and results are highly reproducible. There-

fore, pyrosequencing has become a widely used

analysis platform for various biological and/or

diagnostic applications such as routine

(multiplex) genotyping of single-nucleotide

polymorphisms (SNPs), methylation analysis of

bisulfite-treated samples, bacterial typing, muta-

tion detection, and allele quantification (Marsh

2007).

DNA Methylation

DNA methylation is a post-replication modifica-

tion that occurs in mammals almost exclusively

DNA Methylation Analysis by Pyrosequencing,
Fig. 1 Nucleotides added into the pyrosequencing reac-

tion (here exemplified by a thymine) are incorporated by

the DNA polymerase extending the pyrosequencing

primer when they are complementary to the DNA tem-

plate sequence. This incorporation releases PPi, which is

used together with APS by an ATP sulfurylase to produce

ATP. ATP will be subsequently used by luciferase to

oxidate luciferin to oxyluciferin generating a proportional

light signal. Unincorporated nucleotides are degraded by

apyrase to avoid unspecific background signals. The reac-

tions are detailed in the text
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on the 50 position of the pyrimidine ring of cyto-

sines in the context of a dinucleotide CpG (Tost

2009). CpGs represent less than 1 % of all bases

and are mostly methylated in the mammalian

genome. CpGs are relatively rare because they

are easily transformed into TpGs by deamination,

and as thymine is a naturally occurring building

block of the DNA, these mutations are less well

recognized and repaired by the cellular machin-

ery. This elevated mutation rate has led to CpG

depletion during evolution.

However, relatively CpG-rich clusters, called

CpG islands, are found in the promoter and first

exon of approximately two-thirds of all genes.

Mostly unmethylated, these CpG islands are dis-

tributed throughout the human genome andmain-

tain the chromatin in an open configuration to

allow transcription. The absence of DNA meth-

ylation is not directly correlated to the transcrip-

tional activity of the corresponding gene, but

rather the transcriptional potential. However,

a certain number of promoter CpG islands are

methylated in a tissue-specific manner, and this

DNA methylation helps to maintain transcrip-

tional silence in non-expressed or noncoding

regions of the genome. Methylated regions also

maintain transcriptional inactivation, as exempli-

fied by the methylation and repression of repeti-

tive and transposable elements. Furthermore,

some genes, called imprinted genes, express

only one allele depending on their parent of ori-

gin (maternal or paternal allele), and the

non-expressed allele is associated with

a repressed imprinting control region, which is

in many cases marked by DNA methylation.

Inactivation of one X chromosome in female

mammals is another example in which DNA

methylation plays an important role in gene dos-

age and regulation.

During aging and in the context of patholo-

gies, particularly cancer, regions normally

unmethylated become methylated, and this

hypermethylation can induce or is at least asso-

ciated with aberrant gene expression patterns. For

example, methylation of the DNA repair genes

MLH1 and MGMT can lead to their inactivation,

resulting respectively in microsatellite instability

and increased mutation frequency. Methylation

can also promote spontaneous deamination,

enhance DNA binding of carcinogens, or increase

ultraviolet absorption by DNA and, as a result,

increase the rate of mutations, DNA adduct for-

mation, and subsequent gene inactivation. As

DNA methylation has been shown to be

influenced by diet and environmental exposure,

it has been postulated that DNA methylation

might constitute a measurable molecular memory

of our lifestyle and environment (Cortessis

et al. 2012).

Methylation of cytosines in other sequence

contexts (CpNpG, CpA, etc.) has been identified

in cultured cells such as mouse embryonic stem

cells. In plants, methylation on cytosines is more

prevalent and more diverse compared to mam-

mals, and their DNA is highly methylated. The

methylcytosines are mainly located in CpG and

CpNpG sequences, but they may also occur in

other contexts. DNA methylation controls plant

growth and development, with a particular

involvement in the regulation of gene expression

and DNA replication, similar to its function in

mammalian cells.

Compared to mammals, bacteria have at least

two methylated bases in addition to

5-methylcytosine: N6-methyladenine in the

sequence context GpApTpC and GpApNpTpC

and N4-methylcytosine (Casadesus and Low

2006). These methylated bases are involved in

the protection of bacterial DNA, where they act

as a defense mechanism against bacteriophage

infection. They play also crucial roles in the con-

trol of DNA repair, replication, transposition,

and – similar to eukaryotes – gene expression.

Particularly, adenine methylation plays an impor-

tant role in the regulation of gene expression in

bacteria, with its absence allowing the binding of

specific proteins to the bacterial DNA. Methyla-

tion patterns have also been correlated to the

virulence of several pathogens.

However, due to their greater diversity, the

presence of many “orphan” methyltransferases,

i.e., enzymes not part of a restriction enzyme

system that methylate bacterial genomes at spe-

cific sites and the only recent emergence of

appropriate tools to study the DNA modifica-

tions, DNA methylation in bacteria has not been
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a topic of intensive research. The advent of single

molecule sequencing technologies such as the

single molecule real-time sequencer from Pacific

Biosciences performing sequencing with an

immobilized polymerase at the bottom of zero-

mode waveguide wells in zeptoliter volumes has

revolutionized the possibilities for DNA methyl-

ation analysis in bacteria and allowed the direct

readout of CpG and other methylation modifica-

tions in bacteria (Davis, et al. 2013).

Principles of the DNA Methylation
Analysis

As DNAmethylation is involved in many biolog-

ical processes, it is of great importance to analyze

DNA methylation patterns and their variability.

As DNA methylation is not retained during PCR

amplification, it is necessary to make use of pro-

cedures that are able to differentiate the epige-

netic state. Methods for DNA methylation

analysis are based on four main principles:

(1) the use of methylation-sensitive restriction

endonucleases, i.e., enzymes that are blocked by

methylated cytosines in their recognition

sequence are widely used for the analysis of

methylation patterns in combination with their

methylation-insensitive isoschizomers. Although

methods based on methylation-sensitive restric-

tion enzymes are simple and cost-effective as

they do not require any special instrumentation,

they are hampered by the limitation to specific

restriction sites as only CpG sites found within

these sequences can be analyzed. (2) The meth-

ylated fraction of a genome can be enriched by

precipitation with a bead-immobilized antibody

specific for 5-methylcytosine or (3) affinity puri-

fication of methylated DNA with MBD proteins,

but these methods do not permit the analysis of

DNA methylation patterns at single-nucleotide

resolution. (4) The most widely used approach

consists of the chemical modification of genomic

DNA with sodium bisulfite. This chemical reac-

tion induces the hydrolytic deamination of

non-methylated cytosines to uracils, while meth-

ylated cytosines are resistant to conversion under

the chosen reaction conditions. This method thus

translates the methylation signal into a sequence

difference. After PCR amplification the methyla-

tion status at a given position is manifested in the

ratio C (former methylated cytosine) to T (former

non-methylated cytosine) and can be analyzed as

a virtual C/T polymorphism spanning the entire

allele frequency spectrum from 0 % to 100 % in

the bisulfite-treated DNA. The latter principle is

commonly used for DNAmethylation analysis by

pyrosequencing. It should be noted that the

reduced complexity of the bisulfite-treated DNA

(which essentially consists of a three-letter

genome) creating homopolymeric and highly

AT-rich sequences provides a challenge for the

design of PCR amplification-based assays and

induces frequently a preferential amplification

of either unmethylated or methylated alleles.

This bias has to be monitored and corrected for

to ensure accurate quantification of DNA meth-

ylation levels of the analyzed CpGs.

Principle of the Pyrosequencing
Reaction

Pyrosequencing is a polymerase-based quantita-

tive real-time sequencing method used to analyze

multiple sequence variations in a region of inter-

est. In contrast to conventional Sanger sequenc-

ing that uses a mixture of the four fluorescently

labeled chain-terminating ddNTPs and strand-

elongating dNTPs, only one nucleotide is dis-

pensed at a time by an inkjet-type cartridge in

pyrosequencing reactions using either a user-

defined sequence-specific dispensation order or

a repetitive cyclic dispensation order of the four

nucleotides for unknown sequences.

This iterative incorporation of unmodified

nucleotides by the exonuclease-deficient Klenow

fragment of DNA polymerase I will result in the

release of inorganic pyrophosphate (PPi), while

all unincorporated nucleotides will be degraded

prior to addition of the next nucleotide by an

apyrase. When the polymerase encounters

a noncomplementary nucleotide, it pauses while

nucleotide degradation takes place. The pyro-

phosphate is in the presence of adenosine

phosphosulfate (APS) transformed by an ATP
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sulfurylase into several products including ATP.

The latter will be used in the subsequent step to

oxidize luciferin to oxyluciferin by a luciferase

resulting in the creation of a proportional amount

of photons, which can be monitored by a CCD

camera (Fig. 1). The four enzymes are present in

a well-balanced mixture allowing the DNA poly-

merase to extend the newly synthesized DNA

strand until it encounters a noncomplementary

nucleotide while at the same time avoiding

unspecific nucleotide incorporation and out-of-

phase sequencing. A key step in the development

of applications for pyrosequencing was the addi-

tion of a single-stranded DNA binding protein to

the reaction mixture (now also included in the

commercial kits), which led to a substantial

increase in read length and overall greater accu-

racy through the reduction of the formation of

secondary structures and mispriming (Dupont

et al. 2004).

Samples of interest are amplified by PCR

performed with one of the two amplification

primers being biotinylated. This allows the isola-

tion of a single-stranded sequencing template

through the capture of the biotinylated amplifica-

tion product on streptavidin-coated Sepharose

beads. After washing steps, the use of a sodium

hydroxide solution allows the denaturation of the

double-stranded DNA and isolation of the

biotinylated single strand used as template in

the pyrosequencing procedure. A (pyro)sequenc-

ing primer is subsequently annealed to this tem-

plate, and the sequence is synthesized one

nucleotide at a time. The light signals are then

generated by the enzymatic cascade by extending

the 30 end of the nascent strand described above.

It should be noted that the nucleotide dATP acts

as a natural substrate for luciferase (although less

efficient compared to ATP). Therefore the a-S-
dATP analogue is used as nucleotide for primer

extension as it is equally well incorporated by the

polymerase.

Pyrosequencing can analyze almost any poly-

morphism in the amplified sequence. As the

expected sequence is in most cases known

a priori, the sequence to analyze is simply entered

into the software creating automatically

a dispensation order, and once the sequencing

reaches this polymorphism, both nucleotides of

the variable position will be added successively

and their proportional luminometric signal quan-

tified by the software.

Since all the enzymatic reactions are quantita-

tive, the intensity of the bioluminometric response

is directly proportional to the amount of incorpo-

rated nucleotides: the incorporation of two identi-

cal consecutive nucleotides will have the double

intensity (and therefore peak height in the resulting

pyrogram) compared to the signal of a single-

nucleotide incorporation. This quantitative nature

of the results is the most important characteristic

of the pyrosequencing technology because it

allows performing quantitative applications such

as DNA methylation analysis. Furthermore, as

pyrosequencing proceeds at a rate of one dispen-

sation per minute, results on the presence and

abundance of variable nucleotides will be avail-

able between 10 and 60 min after launching

a pyrosequencing reaction. The total time to

results starting from the PCR amplification is com-

monly below 3–4 h and therefore much faster than

conventional Sanger sequencing.

Inconveniences

However, there are some inconveniences

associated with this technology, mainly

concerning the analysis of variation in the close

proximity of homopolymers, the size of the

amplification product, and the sequencing read

length. Pyrosequencing as well as the closely

correlated 454 sequencing and semiconductor

sequencing (Ion Torrent) suffer from the lack of

precision in the analysis of homopolymers.

The bioluminometric response is only linear

(R2 > 0.99) for the sequential addition of up

to five identical nucleotides (C, G, T) or three

a-S-dATPs. Sequence variation in close proxim-

ity to homopolymer reads might therefore not be

easily resolved, and the quantitative accuracy

might be limited. Due to the thermal instability

of the enzymes, pyrosequencing has to be carried

out at 28 �C which limits the size of the amplifi-

cation product to 350 base pairs as the formation

of secondary structures can complicate annealing
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of the sequencing primer or increase background

signals. The limitation in the read length (less

than 100 dispensed nucleotides) is mainly due to

dilution effects and increasing background due to

frameshifts of subpopulations of sequenced mol-

ecules. This drawback can be partly overcome

using the below described serial pyrosequencing

approach. Lastly, the setup and optimization of

robust pyrosequencing assays including the assay

design but also the entry of an optimal dispensa-

tion order requires a certain degree of experience

and expertise, and only few tools are available in

the public domain for the assay design.

Serial Pyrosequencing

To overcome the restriction in read length, a solu-

tion was found in the “recycling” of the single-

stranded template after the pyrosequencing run.

As this template is not altered during the

pyrosequencing reaction, it can be recovered

after the run by the same template preparation

protocol used after PCR amplification. Several

pyrosequencing primers can therefore be used on

the same DNA template to cover the entire ampli-

fied sequence with sufficient intensity and good

quantitative resolution. This improvement enables

the analysis of an entire region amplified in

a single PCR. While the approach has initially

been devised for DNA methylation analysis (Tost

et al. 2006), it could also be used for the analysis of

several sequence variation within the same ampli-

fication product.

Application: Genotyping and Mutation
Detection

Pyrosequencing can be used to genotype single-

nucleotide polymorphism (SNP) and detect

mutations involved in various diseases (cancer,

Alzheimer’s disease, heart diseases, diabetes) or

in biological traits such as eye color or lactose

intolerance.

Once the sequencing reaches the SNP (entered

in the sequence to analyze in the software using

the IUPAC single letter code), all possible

nucleotides will be added one after another.

Each allele combination will result in a specific

pyrosequencing pattern that can easily be read

either by the software or by the user. Besides

simple qualitative genotyping, pyrosequencing

can be used for quantitative applications such as

the level of mutation or the potential loss of one

allele (loss of heterozygosity (LOH)). LOH can

result in a neutral phenotype but can also be

involved in cancer as exemplified by the LOH

of BRCA1 or BRCA2 in breast cancer.

Due to its relatively short read length,

pyrosequencing is best suited for the detection

and quantification of mutation hotspots such as

the codons 12 and 13 of KRAS (Ogino

et al. 2005), a gene commonly mutated in many

cancers including colorectal cancer, where it is

the most commonly mutated gene with

a prevalence of ~ 40 % of patients, lung, or

pancreatic cancer. Similar applications concern

the analysis of BRAF (V600E) or JAK2 (V617F)

mutations and polymorphisms such as C677T

MTHFR. Compared to conventional Sanger

sequencing, the limit of detection is significantly

improved (i.e., 2–7 % for pyrosequencing com-

pared to 10–20 % for conventional Sanger

sequencing) which enables the user to call

low-level mutations with greater confidence and

resolve, e.g., ambiguous Sanger sequencing

results. This property of pyrosequencing is also

of special importance in situations where, for

example, few tumor cells are present among nor-

mal cells and/or a subclone of the tumor carries

the mutation of interest, which might expand

upon a given therapy and induce drug resistance.

Pyrosequencing has also been applied to more

complex genetic analyses requiring accurate

sequencing such as HLA (sub)typing (Ugolotti

et al. 2011). A quantitative readout is also of

interest for the genotyping of SNPs in polyploidy

organisms such as plants where pyrosequencing

has proven to be an effective tool.

Application: Transcript Quantification

Just as it can quantify the ratio of mutations in a

heterogeneous mixture of DNA, pyrosequencing
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can quantify any variation of sequence. In the

case of cDNA, it is thereby possible to determine

an imbalance in the transcript quantity of differ-

ent alleles (Yang et al. 2013).

Application: Bacterial Typing

Similar to the analysis of genetic variations, tech-

nologies used for bacterial identification have

shifted from Sanger sequencing to the more

user-friendly pyrosequencing technology

enabling a more extensive sampling of microbial

diversity with reduced efforts. Pyrosequencing

has been used for the identification of microbial

species and detection of genetic mutations that

confer resistance to antibiotics and antiviral drugs

by sequencing well-characterized short hypervar-

iable regions of bacterial genes such as 16S, 23S

rRNA, or rnpB. Universal primers are located in

the conserved regions amplifying the variable

regions, which are subsequently pyrosequenced.

The provided sequence (sometimes in addition to

biochemical data) gives unambiguous and dis-

criminatory information for microbial identifica-

tion. It should be noted that due to the limited

read length of the pyrosequencing technology,

the careful design of the targets and location of

the amplification primers are of utmost impor-

tance and depend on the biological question.

Pyrosequencing has been successfully used to

identify pathogens, which were refractory to bio-

chemical analyses in a hospital setting identify-

ing 78 different genera representing 16 different

specimen types. Further it was applied to the

identification and subtyping of different strains

of, for example,Helicobacter pylori,Mycobacte-

rium, and Streptococcus (Petrosino et al. 2009).

It has been used to differentiate between Gram-

positive and Gram-negative bacteria using the

16S RNA demonstrating superior results to con-

ventional Gram staining. Pyrosequencing has

also been shown to have sufficient discrimination

potential to identify highly similar strains of

Yersinia pestis in a relatively short time and can

also be used to identify antimicrobial resistance

genes including mutations in the gyrase and other

genes in quinolone-resistant Salmonella and

ciprofloxacin-resistant Neisseria gonorrhoeae.
Similar assays have been developed for fungal

and viral identification. It should be noted that

similar to Sanger sequencing, pyrosequencing

requires pure bacterial isolates and thus

a culture step prior to the analysis, as mixtures

of different bacteria will lead to sequence pat-

terns that will be inconclusive or difficult to inter-

pret. Genome-wide sequencing approaches using

the pyrosequencing-based 454 technology for

metagenomics which will circumvent this prob-

lem through clonal amplification of single DNA

molecules (and thus single bacteria) are discussed

elsewhere in this encyclopedia in the context of,

e.g., the Human Microbiome Project.

Application: DNA Methylation Analysis

Due to the recent interest in epigenetics in general

and DNA methylation analysis in particular,

DNA methylation analysis by pyrosequencing is

probably the prime application of the technology

as it allows simultaneous analysis and quantifica-

tion of the methylation status of several CpG

positions in close proximity (Tost and Gut 2007).

This point is of particular interest as succes-

sive CpGs might display significantly different

levels of methylation particularly in imprinted

genes as well as at promoters devoid of a CpG

island. Pyrosequencing has been demonstrated to

be very reproducible if assays are performed in

a quality-controlled and standardized fashion

including sufficient amount of input DNA for

methylation analysis (Dupont et al. 2004). Fur-

thermore, the possibility to include controls for

complete bisulfite conversion (i.e., the measure-

ment at a cytosine outside of a CpG context)

avoids a potential pitfall of DNA methylation

analysis. Pyrosequencing has a limit of detection

of ~ 5 % for the minor unmethylated or methyl-

ated allele, respectively, and the technical vari-

ability of the pyrosequencing reaction alone is

very limited (~ 2 %). Variability increases to

about 5 % if independent bisulfite conversion

and PCR amplifications are performed (Dupont

et al. 2004). Pyrosequencing is therefore much

better suited and less complex than standard

D 138 DNA Methylation Analysis by Pyrosequencing



Sanger sequencing for DNA methylation analy-

sis. The recording of calibration curves using

standards with a known degree of methylation

during assay setup or during routine use also

allows for correction for potential preferential

amplification of methylated or unmethylated

alleles, a phenomenon frequently encountered

with bisulfite-treated DNA.

The quantitative accuracy can be applied to

analyze global or gene-specific DNAmethylation

patterns of a sample. Pyrosequencing has been

widely used to analyze the DNA methylation

patterns of genes aberrantly silenced by promoter

hypermethylation in cancer and other diseases. It

has been used for the distinction between

age-related and cancer-associated DNA methyl-

ation patterns or the analysis of the epigenetic

field defect in cancer. A diagnostic test using

pyrosequencing for the detection of aberrant

DNA methylation patterns involved in the

imprinting disorders Prader-Willi and Angelman

syndromes was proposed.

Pyrosequencing can also be used for screening

of differential DNA methylation between two

sample groups by creating pools stratified for

clinical parameters of interest, for example, can-

cerous versus matched peritumoral tissue

(Dejeux et al. 2007). This method helps to con-

centrate research efforts and available biological

material on genes displaying variable methyla-

tion patterns.

DNA methylation analysis can be performed

in the tissue of interest itself or in biofluids that

were in contact with the diseased tissue such as

serum, plasma, sputum, or urine (How Kit

et al. 2012). However, amounts of DNA that can

be isolated are normally very small and thus

require an additional step of genome-wide ampli-

fication prior to the quantitative DNA methyla-

tion detection. As DNA methylation marks are

not retained during amplification, the amplifica-

tion has to be performed on the bisulfite-treated

DNA with its lower sequence complexity,

decreased integrity due to the harsh conditions

of the chemical treatment, and increased potential

for secondary structures. The qMAMBA

(quantitative methylation analysis of minute

DNA amounts after whole bisulfitome

amplification) assay has combined this amplifi-

cation step with a pyrosequencing-based readout

starting from as little as 100 pg of DNA (Paliwal

et al. 2010). As a significant quantity of DNA is

obtained after amplification, the DNA can be

analyzed at multiple loci. It should however be

noted that the quantitative accuracy of the

genome-wide amplification on bisulfite-treated

DNA is still controversial.

Nonetheless these approaches have been used

for, e.g., forensic trace identification, whereby

tissue-specific DNA methylation patterns ana-

lyzed by pyrosequencing after bisulfitome ampli-

fication were used to identify the biofluid of

origin (Madi et al. 2012). Another approach to

analyze minute amounts of DNA methylation

patterns combines the high sensitivity of

methylation-specific PCR (MSP) with the speci-

ficity of the pyrosequencing-based readout.

The replacement of the gel-based detection with

the sequencing-based readout avoids some of the

problems associated with potentially false-

positive results induced by mispriming of the

MSP primers (Shaw et al. 2006). Nonetheless,

as molecules with a specific DNA methylation

patterns are specifically enriched, the resulting

pyrosequencing-based analysis is no longer

quantitative and/or representative of the methyl-

ation patterns present in the analyzed sample.

Application: Global DNA Methylation
Analysis

The LUminometric Methylation Assay (LUMA)

is based on a polymerase extension assay using

the pyrosequencing platform after digestion by

methylation-sensitive and nonsensitive restric-

tion enzymes (Karimi et al. 2006). In this case,

the pyrosequencer measures the luminometric

signal produced by the nucleotide extension of

the resulting number of digested sites. It is

a quantitative and highly reproducible method

and uses an internal control for DNA input.

Besides, no modification of genomic DNA is

required.

Furthermore, the global analysis of DNA

methylation can be performed using the
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pyrosequencing-based analysis of methylation

patterns in repetitive elements such as ALU or

LINE1 elements (Yang et al. 2004). While

LINE1 elements do have a relatively conserved

sequence allowing thus the design of a sequence-

specific pyrosequencing assay for DNA methyl-

ation analysis, methylation of ALU elements is

assessed by a cyclic dispensation. These assays

have been widely used for the measurement of

global DNA methylation changes in response to

environmental stimuli (Cortessis et al. 2012).

Application: Allele-Specific DNA
Methylation Analysis

Some genes display different methylation pat-

terns on the two alleles either randomly or in

a parent of origin-specific manner. Imprinting

control regions regulating the expression of

imprinted genes are commonly methylated on

only one allele (inherited from the mother or the

father) so that only one “parental allele” is

expressed. Using a heterozygous SNP to differ-

entiate the two alleles, the methylation status of

each allele can be interrogated after enrichment

of the methylated molecules using the above-

described MSP with primers complementary to

a specific DNA methylation pattern. The

resulting amplification products are subsequently

pyrosequenced, and the ratio of the two alleles

after methylation enrichment is quantified by

genotyping the two alleles of the SNP after meth-

ylation enrichment (Kristensen et al. 2013).

To analyze methylation on both alleles sepa-

rately, it is possible to design two pyrosequencing

primers, each specific of one allele using the two

alleles of a heterozygous single-nucleotide poly-

morphism to differentiate the two alleles (Wong

et al. 2006). The specificity of the allele-specific

enrichment can be further improved by modify-

ing the base complementary to the SNP with an

LNA (locked nucleic acid). Locked nucleic acids

are RNA monomers with a modified backbone.

The sugar phosphate backbone has a 20-O-40-C
methylene bridge. The bridge increases the

monomer’s thermal stability, reduces its flexibil-

ity, and increases the hybridization interactions

of the base with the template ensuring an ampli-

fication of only the exact complementary allele at

the chosen temperature.

Summary

Pyrosequencing is a sequencing-by-synthesis,

easy-to-use method that can precisely analyze

genetic and epigenetic variation in an amplified

sequence of up to 350 base pairs. Its applications

are wide and various: genotyping, methylation

analysis, transcript quantification, bacterial typing,

etc. The broad range of applications combined

with the above-described advantages has made

pyrosequencing a widespread analysis method.
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Vedran Lucić1, Masa Roller2, Istvan Nagy3 and

Kristian Vlahoviček2
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Definition

Whole microbial communities exhibit patterns

similar to those of single microbial species in

terms of synonymous codon usage, regardless of

their phyletic composition. Therefore, methods

applicable on single microbial genomes to

predict for functionally important and lifestyle-

relevant genes based on translational optimiza-

tion of synonymous codons can be applied to the

study of the entire metagenomes. Using these

predictions opens up a possibility to discover

new and functionally unannotated genes relevant

for the community metabolism and overall adap-

tation to a particular environment. This approach

presents an integrated approach to the study of

microbial community genomic information and

provides an in silico functional metagenomic

platform to complement metaproteomic studies.

Introduction

Environmental diversity studies have bypassed

the common problem where less than 1% of

microbes are amenable to cultivation in labora-

tory conditions (Staley and Konopka 1985) by

instead using high-throughput sequencing to

extract genomic information directly from the

environmental sample, without prior culturing.

Various environments and geological sites have

been sampled using new-generation sequencing,

such as sea (Venter et al. 2004), soil (Tringe

et al. 2005a), and various extreme habitats

(e.g., acid drainage from a metal mine (Tyson

et al. 2004), as well as gastrointestinal tracts of

diverse organisms – including human (Gill

et al. 2006) and mouse (Turnbaugh et al. 2006)).

Most of the analyss of the sampled environments

were focused in twomain directions. The first one

classifies the functions of identified genes (open

reading frames) according to annotation available

through orthology databases such as COG/KOG

(Clusters of Orthologous Groups of genes)

(Tatusov et al. 2003) or KEGG-KO (Kyoto Ency-

clopedia of Genes and Genomes – Orthology)

(Kanehisa et al. 2006) and subsequently ranking

the relative “importance” of a particular function

according to its abundance in the environment.

The second direction focuses on estimating

the phyletic distribution of microbial species

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



represented in the environment, based on similar-

ity searches against known microbial species’

sequences (Huson et al. 2007).

For a thorough understanding of microbial

communities at the systems level, it is necessary

to capture the interplay of community constitu-

ents and organizational complexity in the com-

munity metabolism. Microbes in the same

environment live within the same physical and

chemical constraints, such as temperature, pH, or

ion concentration, probably causing the GC con-

tent to be metagenome specific (Foerstner

et al. 2005). Furthermore, communities of

microbes have been shown to share tRNA pools

to facilitate horizontal gene transfer (Tuller

et al. 2011), which also implies a limited choice

of preferred cognate codons within the shared

tRNA pool. It has also been shown that fast

growth rates introduce stronger bias in synony-

mous codon usage at the level of whole

metagenomes (Vieira-Silva and Rocha 2010),

much like the effect observed in single microbial

species (Rocha 2004; Sharp et al. 2005).

Microbial communities living under the same

environmental constrains, at the level of genes,

can effectively be considered and studied as

metagenomes, thereby using approaches and

methodology valid for single microbial genome

studies. One such approach is the functional char-

acterization by translational optimization through

synonymous codon usage bias.

The codon usage (CU) bias within a genome

reflects the selection pressure for translational

optimization of highly expressed genes – primar-

ily the protein synthesis machinery such as ribo-

somal genes and elongation factors, but also

genes with environmental adaptation functions

(Supek et al. 2010). At the level of a single micro-

bial genome, the effect of CU bias is routinely

used to predict for functionally relevant and

highly expressed genes (Sharp and Li 1987;

Karlin and Mrazek 2000; Plotkin and Kudla

2011). The choice of preferred codons in

a single genome is most closely correlated with

abundance of the cognate tRNA molecules

(Ikemura 1985; Kanaya et al. 2001; Tuller

et al. 2010) and further influenced by the

genome’s GC content (Chen et al. 2004).

Eleven different microbial community sequenc-

ing samples (Table 1.) were used to demonstrate

that microbes living in the same ecological niche,

regardless of their phyletic diversity, share

a common preference for codon usage. CU bias is

present at the community level and is also different

between distinct communities. CU bias also varies

within the community, with distributions resem-

bling that of single microbial species, i.e., the

intercommunity CU bias can be observed. The

effects of intercommunity CU bias and transla-

tional optimization concepts are utilized to identify

genes with CU close to that of the meta-ribosomal

sample. These genes have high predicted expres-

sion across the entire microbial community and

define its “functional fingerprint.” This approach

establishes a functional metagenomic platform that

enables functional studies at the level of the entire

microbial community samples.

Description

Microbes living in the same ecological niche

share a bias in CU. When comparing the distance

Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Table 1 Metagenomes used to demonstrate the concept

of environmental shaping of codon usage

Metagenome

NCBI

Project

ID Reference

Global Ocean Sampling

Expedition Metagenome,

the Sargasso Sea version 1

13694 (Venter

et al. 2004)

Waseca County farm soil

metagenome

13699 (Tringe

et al. 2005b)

Whale fall metagenomes 13700

5-way (CG) acid mine

drainage biofilm metagenome

13696 (Tyson

et al. 2004)

Human distal gut biome 16729 (Gill

et al. 2006)

Leanmouse 1 gut metagenome 17391 (Turnbaugh

et al. 2006)

Obese mouse 1 gut

metagenome

17397

US EBPR sludge metagenome 17657 (Martin

et al. 2006)

OZ EBPR sludge metagenome 17659
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of each gene’s CU in a metagenome from overall

metagenome CU in the metagenome of origin

with all other metagenomes, genes originating

from one metagenome form a distinct cluster

(as shown in Fig. 1a) and have CU predominantly

closer to that of metagenome overall CU than

genes from other metagenomes. If the amino

acid sequence of each gene is kept constant but

the codons randomly chosen (Fig. 1b), the genes’

CU becomes equidistant to both metagenomes

(i.e., occupy the same portion of the plot) regard-

less of their metagenome of origin.

The Variability of Single Species’ Codon

Usage Across Metagenomes

When comparing CU of species present in two

distinct metagenomes, they can be compared in

terms of CU distance with (i) their respective

metagenome overall CU and (ii) CU of genes

from the same species in a different metagenome.

The resulting distance distributions, quantified

with the intraclass correlation coefficient measure

(ICC), show a statistically significant difference

in CU patterns of compared phylogenies – the

within-species’ CU pattern is more variable

between metagenomes than in different species

within the same metagenome (Fig. 2).

Comparison of CU variability of indepen-

dently sequenced strains of microbes living in

distinct niches is used to demonstrate that CU is

a dynamic property that changes with different

environmental constraints at the level of single

bacterial species. Comparison between 12 strains

of Propionibacterium acnes (Bruggemann

et al. 2004; Hunyadkurti et al. 2011), commensal

gram-positive bacteria that live in consistent

environmental conditions, with 6 strains of cos-

mopolitan bacterium Rhodopseudomonas

palustris (Larimer et al. 2004; Oda et al. 2008),

shows that there is less variation in CU per

orthologous group in P. acnes strains than in the

R. palustris strains (Fig. 3). Despite the fact that

the sampling includes more than twice as many

strains from constrained environmental condi-

tions (P. acnes) than variable conditions

(R. palustris), the variability in CU is smaller in

Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Fig. 1 Codon usage is metagenome specific. Soil versus

human gut metagenome codon usage (CU) frequencies.

(a) The distance (MILC) of each gene’s CU frequency to

overall CU frequencies of two microbial communities.

Genes (red in human gut (N¼ 33,422) and blue inWaseca

soil (N ¼ 88,696) metagenome) are predominantly closer

to their respective metagenome of origin therefore

forming two distinct groups (the distribution of log2

ratio of the two distances for each gene is shown in the

inset). If the amino acid composition of metagenomes is

kept constant and the codons are randomly chosen, CU

bias of each metagenome would be eliminated resulting in

uniform distribution of CU distances and overlap of two

samples, as shown in b)
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the constrained environmental conditions.

R. palustris samples show on overall higher vari-

ability in CU, suggesting plasticity of codon usage

that reflects on translational optimization and

adopts to each specific environment. Even though

the R. palustris strains generally show more vari-

ation in CU (Fig. 3), both species, regardless of

environmental constraints, show the least relative

variation of CU within the COG categories (i.e.,

orthologous genes) for housekeeping, including

ribosomal protein genes.

The Variability of Codon Usage in

Metagenomes upon Removal of

Dominant Phyla

Community-level codon usage bias is not an

effect caused by the most abundant species. CU

frequencies of the Sargasso Sea metagenome, the

largest dataset in this study, were compared to

other investigated metagenomes and to itself but

with dominant phyla removed. The comparisons

between Sargasso Sea CU frequencies and other

metagenomes all show ICC < 0.75, while the

same Sargasso sample with dominant phyla

of the Alphaproteobacteria class removed

(�36% of the whole set) and the Alphaproteo-
bacteria class itself show virtually no deviation

(ICC > 0.98 and 0.95, respectively) from the

original metagenome CU.

Codon Usage in Metagenomes Follows

Similar Patterns as in Single Microbial

Genomes

As has been established at the level of single

microbial genomes (Ikemura 1985; Kanaya

et al. 2001), the distance of each gene’s CU fre-

quency to the overall CU of the whole genome and

to that of a “reference set” of highly expressed

genes (ribosomal protein genes) gives a character-

istic crescent-shaped plot (Fig. 4a, introduced by

(Karlin and Mrazek 2000)). Metagenomes exhibit

similar CU distance distributions to those

observed in single bacterial genomes, despite the

fact that they comprise of genes that originate from

diverse phylogenies (i.e., Santa Cruz whale car-

cass bone in Fig. 4b). If the amino acid composi-

tion of genes in a metagenome is kept constant but

the codons are randomly chosen, the crescent plot

shape analogous to single bacterial genomes and

CU bias is lost.

Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Fig. 2 Codon usage variability between same species

in different metagenomes is larger than within a

metagenome. ORFs from each identified species (using

MEGAN) were compared against their originating

metagenome (orange, total comparisons N ¼ 2,058) and

against same-species ORFs in a different metagenome

(green, total comparisons N ¼ 1,029 comparisons). ICC

measures were calculated, representing how “close” the

CU profiles match, with ICC ¼1 denoting the perfect

match. The orange distribution shows less variability and

is shifted toward higher ICC values, denoting the closer

overall match of species’ CU to their metagenome of

origin
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Predicting Metagenomic Expression and

Functional Profiles Through Synonymous

Codon Usage

Under different environmental constraints, CU

varies in single bacterial species, and

metagenomes share synchronized CU as do sin-

gle bacterial species. CU bias in metagenomes

can be used to predict the expression levels of

genes in the same manner as is routinely used to

predict genes optimized for high levels of expres-

sion in single microbial genomes (Sharp and Li

1987; Karlin and Mrazek 2000; Supek and

Vlahovicek 2005). Figure 5 depicts the resulting

predictions at the level of whole metagenomes

using the meta-ribosomal protein reference set.

The most significantly enriched functions in the

high expression level sets are (i) amino acid

transport and metabolism (COG supercategory

E) for Sargasso Sea, (ii) energy production and

conservation (COG supercategory C) for the

Whale fall metagenomes, and (iii) inorganic ion

transport and metabolism (COG supercategory P)

for the acid mine biofilm metagenome. The most

striking difference between metagenomes was

lack of enrichment in energy production and car-

bohydrate metabolism (COG supercategories

C and G) in the obese mice microbiota sample,

in contrast to both lean human and mouse

microbiota samples, indicating high metabolic

activity of lean gut bacteria.

Artificial metagenomes, constructed from ran-

domly selected genes of whole genome bacterial

sequences from the NCBI with the same COG

composition as their corresponding microbial sam-

ples, show loss of environment-specific enrichment

of optimization in their expression profiles.

Validation with Metaproteomic Data

Predictions of gene expression for Sargasso Sea

metagenome were compared to the Sargasso Sea

metaproteomic study (Sowell et al. 2008) and

a functionally (COG) classified subset of the

human gut metaproteomic study (Verberkmoes

et al. 2009). Predicted expression values based

Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Fig. 3 Environmental variability of codon usage. Vari-

ability of codon usage per COG category in 6 strains of

Rhodopseudomonas palustris and in 12 strains of

Propionibacterium acnes. The codon usage variability

(calculated as median CU distance from the ribosomal

set within an orthologous group to its centroid CU) for

the strains of P. acnes (N ¼ 15,436), living in consistent

environmental conditions, is shifted to the left, i.e., it

shows smaller variation and higher bias than for the

R. palustris strains (N ¼ 24,071) living in diverse envi-

ronmental conditions
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Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Fig. 4 Metagenomes show codon usage distribution sim-

ilar to single genomes. The distance of each gene’s codon

usage (CU) frequency forms the overall CU of the (meta)

genome and ribosomal reference set, displayed as a Karlin

B-plot for (a) a single microbial genome (Escherichia
coli, N ¼ 4,358) and (b) a metagenome (whale carcass,

N¼ 33,422). The metagenome shows the same character-

istic distribution as the genome with ribosomal genes

closer to the CU of the ribosomal set than the overall CU

of the whole (meta)genome

Environmental Shaping of Codon Usage and Func-
tional Adaptation Across Microbial Communities,
Fig. 5 Enrichment of functions within highly expressed

genes in metagenomes. Enrichment or depletion of func-

tional annotations in the 3% genes with highest predicted

expression (highest MELP measure) relative to the abun-

dance of each COG supercategory in the whole

metagenome for the OZ EBPR sludge (N ¼ 29,754),

Waseca farm soil (N ¼ 88,696), acid mine biofilm

(N ¼ 79,257), Sargasso Sea (N ¼ 688,539), US EBPR

sludge (N¼ 20,175), Whale fall Santa Cruz microbial mat

(N ¼ 40,916), Whale fall Antarctic bone (N ¼ 30,503),

Whale fall Santa Cruz bone (N ¼ 33,422), obese mouse

gut (N ¼ 4,058), lean mouse gut (N ¼ 4,955), human gut

(N ¼ 47,765), Santa Cruz whale fall bone (N ¼ 33,422),

and acid mine (N¼ 79,257). Metagenomes show different

functional enrichment patterns that are consistent with

environmental requirements (e.g., metabolite transport

functions [E] in the Sargasso Sea or energy conversion

[C] in the whale carcass metagenome). Letters at the

bottom represent COG supercategories
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on CU optimization positively correlate with

abundance in metaproteomic studies, both for

the comparison of each gene with the protein

most similar in sequence (Sargasso Sea

rho¼0.34) and when median values per gene

and protein COG are compared (human gut

rho¼0.34). This opens up for an in silico predic-

tion of overall metagenomic proteome status.

Summary

Analysis of eleven distinct metagenomes shows

that microbial communities exhibit codon usage

bias similar to that already described for single

microbial species. Microbial communities sharing

an environment are likely to have similar synony-

mous codon usage-based translational optimiza-

tion for expression of environment-specific

genes. This effect can be used to identify genes

with unknown function and “optimal” codon

encoding, indicating their potential for high

expression and therefore high relative importance

in the community metabolism and lifestyle.

References

Bruggemann H, Henne A, Hoster F, Liesegang H,

Wiezer A, Strittmatter A, et al. The complete genome

sequence of Propionibacterium acnes, a commensal of

human skin. Science. 2004;305:671–3.

Chen SL, Lee W, Hottes AK, Shapiro L, McAdams

HH. Codon usage between genomes is constrained by

genome-wide mutational processes. Proceedings of

the National Academy of Sciences of the United States

of America. 2004;101:3480–5.

Foerstner KU, von Mering C, Hooper SD, Bork

P. Environments shape the nucleotide composition of

genomes. EMBO reports. 2005;6:1208–13.

Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ,

Samuel BS, et al. Metagenomic analysis of the human

distal gut microbiome. Science. 2006;312:1355–9.

Hunyadkurti J, Feltoti Z, Horvath B, Nagymihaly M,

Voros A, McDowell A, et al. Complete Genome

Sequence of Propionibacterium acnes Type IB Strain

6609. J Bacteriol. 2011;193:4561–2.

Huson DH, Auch AF, Qi J, Schuster SC.MEGAN analysis

of metagenomic data. Genome Research. 2007;17:

377–86.

Ikemura T. Codon Usage and Transfer-RNA Content in

Unicellular and Multicellular Organisms. Molecular

Biology and Evolution. 1985;2:13–34.

Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura

T. Codon usage and tRNA genes in eukaryotes: Cor-

relation of codon usage diversity with translation effi-

ciency and with CG-dinucleotide usage as assessed by

multivariate analysis. Journal of Molecular Evolution.

2001;53:290–8.

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF,

Itoh M, Kawashima S, et al. From genomics to chem-

ical genomics: new developments in KEGG. Nucl

Acids Res. 2006;34:D354–7.

Karlin S, Mrazek J. Predicted highly expressed genes of

diverse prokaryotic genomes. Journal of Bacteriology.

2000;182:5238–50.

Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S,

Do L, et al. Complete genome sequence of the meta-

bolically versatile photosynthetic bacterium

Rhodopseudomonas palustris. Nature Biotechnology.

2004;22:55–61.

Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW,

McHardy AC, et al. Metagenomic analysis of two

enhanced biological phosphorus removal (EBPR)

sludge communities. Nature Biotechnology. 2006;24:

1263–9.

Oda Y, Larimer FW, Chain PSG, Malfatti S, Shin MV,

Vergez LM, et al. Multiple genome sequences reveal

adaptations of a phototrophic bacterium to sediment

microenvironments. Proceedings of the National

Academy of Sciences of the United States of America.

2008;105:18543–8.

Plotkin JB, Kudla G. Synonymous but not the same: the

causes and consequences of codon bias. Nat Rev

Genet. 2011;12:32–42.

Rocha EPC. Codon usage bias from tRNA’s point of view:

Redundancy, specialization, and efficient decoding for

translation optimization. Genome Research. 2004;14:

2279–86.

Sharp P, Li W. The codon Adaptation Index–a measure of

directional synonymous codon usage bias, and its

potential applications. Nucleic Acids Res. 1987;

15(3):1281–95.

Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett

RE. Variation in the strength of selected codon usage

bias among bacteria. Nucleic Acids Research.

2005;33:1141–53.

Sowell SM,Wilhelm LJ, Norbeck AD, Lipton MS, Nicora

CD, Barofsky DF, et al. Transport functions dominate

the SAR11 metaproteome at low-nutrient extremes in

the Sargasso Sea. ISME J. 2008;3:93–105.

Staley JT, Konopka A. MEASUREMENT OF IN SITU

ACTIVITIES OF NONPHOTOSYNTHETIC

MICROORGANISMS IN AQUATIC ANDTERRES-

TRIALHABITATS. Annual Review ofMicrobiology.

1985;39:321–46.
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Introduction

The term chimera has its origins in the Greek

mythology defining a creature composed of

body parts from different living beings. In molec-

ular biology, a chimeric sequence or chimera is

a DNA sequence composed of DNA fragments

originated from two or more genes or genomes.

Chimeric sequences can be naturally gener-

ated during DNA recombination which occurs

naturally within a genome or by taking up foreign

DNA by an organism. These processes of cross-

over recombination are of interest in phyloge-

netic and evolution studies and need to be

identified (Posada and Crandall 2002). Neverthe-

less, chimeras represent a serious problem to be

considered when they are generated as artifacts

during DNA manipulation and/or analysis.

Chimeric artifacts can be produced at different

stages during experimental DNA studies. Some

examples can be described relating to cloning

procedures, DNA amplification, and/or DNA

assembling during computational analysis

(Fig. 1).

During DNA library preparation, genomic

DNA is generally broken down into small frag-

ments which will be introduced into cloning vec-

tors or sequenced independently (Sambrook and

Russell 2001). These fragments are generated by

physical or enzymatic means. The generation of

overlapping strand endings can lead to the ran-

dom fusion of DNA fragments resulting in chi-

meras which can be detected upon sequencing

(Fig. 1a).

By far, DNA amplification procedures repre-

sent the most frequently reported processes gen-

erating chimeric sequences. Most amplification

procedures are prone to generate chimeras. The

most studied case is the polymerase-chain reac-

tion (PCR) amplification procedure where multi-

ple sequences of a target DNA region are

produced through a cycling amplification reac-

tion. The amplification is exponential and errors

during the reaction can be greatly amplified at the

end of the PCR (Fig. 1b). Due to a variety of

causes, incomplete amplification of the target

fragment can behave as a priming sequence in

the next cycle potentially originating a DNA

fragment from two, or more, different DNA tem-

plates. The generation of chimeric sequences dur-

ing PCR amplification can occur for any gene

although the most studied case is that of

E 150 Evaluating Putative Chimeric Sequences from PCR-Amplified Products



ribosomal RNA genes (rRNAs) which present

both highly conserved and variable regions

within their sequences. The rRNAs are present

in every organism because the cells require them

for protein synthesis. In Microbiology, rRNAs

are widely used to detect and classify microor-

ganisms; because most of these microorganisms

are often unculturable and cannot be detected

otherwise, the rRNAs are, at present, the only

mean to survey for these microbes. It is easy to

deduce that a chimera would represent

a nonexisting microorganism, and so considering

chimeras as real sequences can induce serious

overestimations of the microbial diversity in

environmental studies (Hugenholtz and Huber

2003; Gonzalez et al. 2005). Thus, it is of most

importance to detect and filter out those chimeric

DNA sequences.

In addition to the potential to generate chi-

meras during DNA manipulation, the possibility

to produce chimeras during computer processing

of DNA sequences should be considered. Small

DNA fragments forming DNA libraries are

sequenced through a variety of sequencing plat-

forms. These sequences are assembled into larger

fragments of gene or genomic DNA. During this

chimera

chimera

a b

c

chimera

chimerachimera

A B C D

A E C F

A B C D
A E C F

A E C DA B C F

Evaluating Putative Chimeric Sequences from
PCR-Amplified Products, Fig. 1 Scheme of different

possibilities of potential chimera formation during DNA

cloning and library preparation (a), PCR amplification (b)
and computer processing of assembling DNA fragments

(c). Examples are presented on chimeras formed during

libraries aimed at both vector cloning (left on a) and direct
sequencing (right on a). During PCR amplification (b),

incomplete synthesis of the target DNA fragment can lead

in the next cycle to the annealing to a different target with

conserved regions and result in its extension using

a different DNA target. The consequence is the generation

of a chimera resulting from two different DNAs. During

computation of the assembly of small DNA fragments

obtained through sequencing (c), different possibilities

could be similarly valid and some of them can be chimeras
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assembly, a potential exists to produce a chimeric

final sequence (Fig. 1c). Above all, this can be

generated at the extreme of DNA assembled

fragments generally induced by the presence of

repetitive sequences (which often causes trouble

during the assembly process) or by chimeras

formed during early DNA manipulation steps or

library preparation. As well, these assembling

errors can truncate the generation of larger

contigs or fragments of genomic DNA during

the assembly. The assembly of DNA fragments

from different organisms into a single DNA

sequence is a risk when working with DNA sur-

veys of complex communities, for instance, on

metagenomes, that is, genomic studies of com-

plex microbial communities (Mende et al. 2012).

Independently of the step where chimeric

sequences have been generated, they need to be

detected and filtered out to clean up these

sequence artifacts for further analysis. Numerous

strategies and pieces of software have been pro-

posed. Herein, the case of rRNAs will be used as

example as most studies on chimera evaluation

have been carried out on these genes.

Chimeras and Microbial Diversity

Most surveys of the composition of microbial

communities in natural environments are being

performed through a PCR amplification step

(Gonzalez et al. 2012). Generating a high number

of fragments from the rRNAs (rRNA amplicons)

represented in a community is a step previous

to library preparation and sequencing

(Wintzingerode et al. 1997; Roesch et al. 2007).

At present, microbial communities are under-

stood as composed by a highly diverse number

of microorganisms most of which remain

unculturable (Curtis et al. 2002). If microorgan-

isms cannot be cultured in the laboratory, it

implies that the only means to analyze their

potential features is through their nucleic acids.

Due to the complexity of genomes, accurate tax-

onomic classification of microorganisms can

only be performed with a small number of

genes; the most frequently used are the rRNAs.

Extensive databases have been built with rRNAs

and today these genes represent the primary way

to classify microorganisms which are difficult to

differentiate otherwise, either by morphology or

physiological traits.

The rRNAs combine highly conserved and

variable regions. Thus, partial synthesis of these

genes during PCR amplification can lead to

a DNA fragment able to anneal to a different

rRNA sequence in a complex mixture of DNAs.

Annealing of that incomplete DNA fragment to

a target DNA from a different organism and

extension in the same PCR cycle will result in

the formation of hybrid sequences of rRNAs.

This rRNA has been originated by portions of

sequences from different microorganisms

(Fig. 1b). Subsequent PCR cycles will generate

multiple copies of that artifact. The result is the

generation of chimeras which represent

undesired artifacts that need to be detected and

eliminated previous to further analysis.

The presence of chimeras in DNA databases

have been previously reported (Hugenholtz and

Huber 2003; Ashelford et al. 2005; Gonzalez

et al. 2005) which affects negatively when users

attempt to classify microorganisms by their

rRNAs. About 5 % of rRNA gene sequences

can represent suspicious or potential chimeras

(Ashelford et al. 2005; Haas et al. 2011). The

use of curated rRNA-specific databases is

recommended. Databases, such as RDP

(Ribosomal Database Project; Cole et al. 2009),

Greengenes (DeSantis et al. 2006), and SILVA

(Quast et al. 2013) (Table 1), have curated

entries. These repositories ensure the lack of chi-

meras and so a realistic approximation to the

identification of microorganisms through

amplicon sequencing.

In spite of the potential for chimeras in envi-

ronmental microbial surveys, current understand-

ing of these communities suggests a huge

microbial diversity (Curtis et al. 2002). This enor-

mous diversity suggests that chimera detection is

more complex than expected. However, the exis-

tence of a large set of sequences from microbial

rRNAs can be an allied for an increasing accu-

racy in detecting chimeras. Only by knowing

what is real, one can be in situation to discard

what is unreal or chimeric (Gonzalez et al. 2005).
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In fact, the large diversity of microorganisms

known so far can provide with a range of vari-

ability within specific microbial taxa.

As microbial taxonomy and the sequences of

rRNAs become increasingly defined and curated,

the detection of chimeric rRNAs is gaining accu-

racy. Thus, curated and extensive rRNA data-

bases will definitively contribute both to avoid

the potential detection of real sequences as chi-

meras and to improve on the accurate detection of

unreal sequences as chimeras.

Chimera Evaluation

Different procedures have been published to

check for chimeras in newly generated DNA

sequences. There has been a long list of programs

proposed to check or detect chimeras. Table 2

presents some of those alternatives with indica-

tion of its original publication and a link to its

www homepage. As mentioned above, most of

these studies have been carried out to detect chi-

meras in DNA fragments obtained from PCR

amplification and specifically on rRNA genes.

Originally, a simple method to intuitively and

approximately detect a potential chimera was to

search independently for homologues to the ini-

tial and finals portions of the DNA fragments.

This search was usually performed by blast

searches (Altschul et al. 1990). If this blast

resulted in different organisms for the initial and

final portions of the DNA fragment, it was suspi-

cious to be a chimera (Cole et al. 2003). More

sophisticated attempts have been designed

through the years. A fruitful method was to

Evaluating Putative Chimeric Sequences from PCR-Amplified Products, Table 1 Some resources focused on

rRNAs including database and software suites incorporating options and tools for chimera detection

Name

Chimera check

procedure

Database/

software Link Reference

Ribosomal Database

Project (RDP)

Pintail Database and

tools

http://rdp.cme.msu.edu Cole et al. 2003,

2009

SILVA Pintail Database and

tools

http://www.arb-silva.de Quast et al. 2013

Greengenes Bellerophon Database and

tools

http://greengenes.lbl.gov DeSantis

et al. 2006

Mothur Variousa Software suite http://www.mothur.org Schloss

et al. 2009

QIIME ChimeraSlayer Software suite http://qiime.org Caporaso

et al. 2010

AmpliconNoise Perseus Software suite http://code.google.com/p/

ampliconnoise/

Quince

et al. 2011

aVarious options are available: Bellerophon, Ccode, Pintail, ChimeraSlayer, Uchime, Perseus

Evaluating Putative Chimeric Sequences from PCR-Amplified Products, Table 2 Some of the latest software

alternatives for chimera detection in sequence data

Program Link Reference

Bellerophon http://comp-bio.anu.edu.au/bellerophon/bellerophon.pl Hugenholtz and Huber 2003

Ccode http://www.microextreme.net/downloads.html Gonzalez et al. 2005

Pintail http://www.mybiosoftware.com/rna-analysis/1262 Ashelford et al. 2005

WigeoN http://microbiomeutil.sourceforge.net/#A _WigeoN Haas et al. 2011

Decipher http://decipher.cee.wisc.edu/FindChimeras.html Wright et al. 2011

ChimeraSlayer http://microbiomeutil.sourceforge.net/#A_CS Haas et al. 2011

Uchime http://drive5.com/uchime/uchime_download.html Edgar et al. 2011

Perseus http://code.google.com/p/ampliconnoise/ Quince et al. 2011

Evaluating Putative Chimeric Sequences from PCR-Amplified Products 153 E

E

http://www.mobio.com/soil-dna-isolation/powermax-soil-dna-isolation-kit.html
http://www.epibio.com/item.asp?id=388
http://www.omegabiotek.com/product_detail.php?ID=95
http://www.zymoresearch.com/media/downloads/212/D6001d.pdf
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analyze potential chimeras by comparison to the

sequences obtained from the rRNA gene library

being sequenced and analyzed (Hugenholtz and

Huber 2003). Similar analysis can be carried out

to full DNA databases or repositories (Ashelford

et al. 2005; Quast et al. 2013). Further improve-

ments included the analysis of the query sequence

in relationship to the known sequences showing

highest homology, for instance, within a taxo-

nomic group. These known sequences marked

the variability for small portions of the DNA

fragment under analysis, and so those sequences

showing the highest dispersion than the limited

by known sequences were identified as potential

chimeras, and these assessments included statis-

tical results of the computational analysis

(Ashelford et al. 2005; Gonzalez et al. 2005).

Different procedures are periodically proposed

to screen for chimeras, mainly performing ana-

lyses of portions of the DNA fragment (Wright

et al. 2011) by searching if different results are

received from DNA database searches. A DNA

fragment is proposed as a chimera if it presents

different homology results for different portions

throughout its length.

As a result of the next-generation sequencing

(NGS) platforms, large number of sequences is

being generated through whole library sequenc-

ing. The screening of such amount of data would

not be possible without the latest developments

and the recent design of pipelines for the analysis

of large data sets of DNA amplicon sequences

(Schloss et al. 2009; Caporaso et al. 2010; Quince

et al. 2011). The inclusion of chimera checking

procedures within these pipelines (Table 1) has

greatly facilitated the analysis of massive

sequencing data. Nevertheless, the newly intro-

duced algorithms are masked by the advantages

presenting the whole pipelines and the easily

handling of large sequencing data (Quince

et al. 2011). One should confirm that the compu-

tational pipeline to process your sequencing data

includes a chimera filtering procedure. Besides,

some of these pipelines offer the possibility of

using different databases. The inclusion in these

analyses of curated databases is an important

point to be considered.

Amplicon sequencing is still the most used

procedure for microbial surveys through rRNAs.

The detection of potential chimeras during

these studies is a requirement to avoid the false

consideration of nonexisting microorganisms

and an overestimation of microbial diversity.

Current pipelines for the processing of amplicon

sequencing data incorporate chimera screening

and filtering procedures. Databases must con-

tinue their current effort to evaluate newly

deposited sequences for potential chimeras.

Curated rRNA databases are a required refer-

ence for the taxonomically classification of

microorganisms through sequencing data.

These efforts will result in a more accurate

detection of chimeras, a significant decrease in

misclassifications due to erroneous sequences

included in databases, and an improved knowl-

edge of microbial species, gene, and genomic

diversity.

Future Perspectives

As NGS is attracting most research on genomics,

metagenomics, transcriptomics, and amplicon

sequencing surveys, the massive data they gen-

erate and the work needed for processing

these results is exponentially increasing. High-

throughput procedures are required to cope with

this demand. The use of current pipelines, or

future improvements, should build a standard

for amplicon sequencing. The detection of

sequencing errors through algorithms in bioin-

formatics should also be introduced into these

high-throughput pipelines, all aiming to obtain

clean and accurate data previous to pursue fur-

ther analysis. The screening and curation being

performed by public repositories must continue

in spite of the developments in pipelines and

algorithms to ensure that databases remain as

clean as possible of chimeric and erroneous

sequences. At a time when sequencing analyses

are not manually edited anymore, algorithms to

automatically filtering off chimeras and the

required curation at the scientist and database

ends will become of increasing relevance.
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Introduction

The advances in high-throughput low-cost exper-

imental technologies have made possible time

series studies of hundreds or thousands biological

factors simultaneously. The availability of such
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datasets leads to an increased interest in profile

similarity analysis techniques that can identify

significant association patterns possibly embrac-

ing biological insights. In the context of

metagenomics, factors of particular interest are

operational taxonomic units (OTUs), microbial

genomes, and environmental genes. Their

association patterns may suggest microbe-

environment, symbiotic relationships, and other

types of interactions.

Many computational or statistical approaches

exist to study the profile similarity at global scale,

such as Pearson’s correlation coefficients (PCC),

Spearman’s correlation coefficients (SCC),

principal component analysis (PCA), multi-

dimensional scaling (MDS), discriminant func-

tion analysis (DFA), and canonical correlation

analysis (CCA). However, in many biological

settings, the interaction may be active within

only certain subintervals or the response to regu-

lation may be time lagged. Methods based on the

global relationships of profiles may fail to detect

these interactions. Extended local similarity anal-

ysis (eLSA) method is specifically developed to

capture local and potentially time-delayed

co-occurrence and association patterns in time

series data that cannot otherwise be identified

by ordinary correlation analysis.

Description

Local Association with Possible Time Delays

Local association refers to the association that

only occurs in a subinterval of the time of inter-

est. Time-delayed association indicates that there

is a time lag for the response of one factor to the

change in another factor. As an example of local

association, in Fig. 1, the top-left panel shows

two series X and Y with nonsignificant correla-

tion (r ¼ 0.26, P ¼ 0.273); however, they are in

fact significantly correlated in the time interval

from 7 to 16 as shown in the bottom-left panel

(eLS ¼ 0.43, P ¼ 0.028). As an example

of time-delayed local association, in Fig. 1,

the top-right panel shows two series X and Y

with nonsignificant correlation (r ¼ �0.26,

P ¼ 0.272); however, they are in fact

significantly correlated in time interval from

4 to 17 if X is shifted three units toward origin

as shown in the bottom-right panel (eLS ¼ 0.51,

P ¼ 0.006).

Extended Local Similarity Analysis

Extended local similarity analysis (eLSA) is an

analysis technique designed to capture local asso-

ciations possibly with time delays. eLSA extends

the original local similarity analysis technique

(Qian et al. 2001; Ruan et al. 2006) and local

shape analysis technique to time series data with

replicates (Xia et al. 2011). Improvements in

computation efficiency of p-values are also made

(Xia et al. 2013). Time series data of a pair of

factors X and Y with replicates can be expressed

as data matrices X[1:m][1:n] and Y[1:m][1:n], where

each column is one sample from the time point

and n is the number of time points; each row is

a replicate and m is the number of replicates.

Given time series data of two factors and

a user-constrained delay limit, eLSA uses

dynamic programming algorithm to find the con-

figuration of the data that yields the highest

extended local similarity (eLS) score –

a similarity metric defined as

eLS X 1:m½ � 1:n½ �, Y 1:m½ � 1:n½ �
� �j ¼ 1

n
maxi, j, l s:t: ji�jj�D j

Xl�1

k¼0

F X 1:m½ �, iþk

� �
F Y 1:m½ �, jþk

� �

�������

�������

where D is the delay limit and F is the summa-

rizing function for repeated measures (mean,

median, etc.). For example, within a delay limit

of two units, the first time spot of one series might

be aligned to the third time spot of the other

series, thus maximizing their eLS.

For a dataset of many factors, eLSA is applied

to each pairwise combination of factors in the

dataset. Candidate associations are then evaluated

statistically by a permutation test, which calculates

the p-value – the proportion of scores exceeding

the original eLS score after shuffling the first series

and reevaluating the eLS score many times – or

more efficiently by theoretical approximation.

Researchers can use eLSA to detect undirected

associations, i.e., association patterns without
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Extended Local Similarity Analysis (eLSA) of Biolog-
ical Data, Fig. 1 Examples of local and time-delayed

associations. Top left, two series X and Y with nonsignif-

icant correlation (r ¼ 0.26, P ¼ 0.273); bottom left, they
are in fact significantly correlated in the time interval from

7 to 16 (eLS ¼ 0.43, P ¼ 0.028); top right, two series

X and Y with nonsignificant correlation (r ¼ �0.26,

P ¼ 0.272); bottom right, they are significantly correlated
in time interval from 4 to 17 if X is shifted three units

toward origin (eLS ¼ 0.51, P ¼ 0.006)

Extended Local Similarity Analysis (eLSA) of Biolog-
ical Data, Fig. 2 The eLSA pipeline. Users start with

raw data (matrices of time series) as input and specify their

requirements as parameters. The LSA tools subsequently

F-transform and normalize the raw data and calculate

extended local similarity (eLS) scores and Pearson’s

correlation coefficients. The tools then assess the statisti-

cal significance (p-values) of these correlation statistics

using the permutation test and filter out insignificant

results. Finally, the tools construct a partially directed

association network from the significant associations
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time delays, and directed associations, where the

change of one factor may temporally lead or fol-

low another factor. Figure 2 shows the analysis

pipeline of the eLSA technique.

Inferring Co-occurrence Networks Using eLSA

Studies adopting the local similarity analysis

technique have shown interesting and novel dis-

coveries for microbial community network anal-

ysis. In one of the studies (Steele et al. 2011),

eLSA is used to find associations among relative

abundances of bacteria, archaea, protists, total

abundance of bacteria and viruses, and physico-

chemical parameters. Co-occurrence networks

were generated from significant eLSA associa-

tions to visualize and identify time-dependent

relationship among ecologically important taxa,

for example, the SAR11 cluster, stramenopiles,

alveolates, cyanobacteria, and ammonia-

oxidizing archaea.

A subnetwork from the study is shown in

Fig. 3. It is built around g-proteobacteria OTUs

as central nodes (abbreviated Alt, alteromonas;

CHB, CHABI-7; Gam, g-proteobacterium; S86,

SAR86; S92, SAR92). This subnetwork identifies

12 g-proteobacterial OTUs. g-proteobacteria
OTUs correlate with eukaryotes and Crenarchaea

(Cren), as well as environmental parameters and

bacterial production. g-proteobacterium SAR92-

749 is more likely opportunistic species, as the

relative abundance of SAR92-749 positively cor-

related with bacterial production measured by

leucine and thymidine incorporation

(eLS ¼ 0.54, P ¼ 0.003 and eLS ¼ 0.495,

P ¼ 0.005, respectively).

Conclusion

eLSA technique uniquely captures local and

potentially time-delayed co-occurrence and asso-

ciation patterns in time series data. eLSA tech-

nique is also applicable to other types of gradient

data, including the response to different levels of

treatments, temperature, humidity, or spatial dis-

tributions. The analysis pipeline is implemented as

a C++ extension to Python, which streamlines

data normalization, local similarity scoring,

permutation testing, and network construction.

More information about the software is available

from eLSA’s homepage at http://meta.usc.edu/

softs/lsa.
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▶Accurate Genome Relative Abundance
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Reads
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Definition

The variability in extraction methods is defined

as differences in quality and quantity of DNA

observed using various extraction protocols,

leading to differences in outcome of microbial

community composition assessments using

genomic approaches.

Introduction

Microbial communities are at the very basis

of life on Earth, catalyzing biogeochemical

reactions and driving global nutrient cycles

(Falkowski et al. 2008). As yet, they are not on

the global biodiversity conservation agenda,

implying that microbial diversity is not under

any threat by anthropogenic disturbance or

climate change. However, this maybe a

misconception caused by the rudimentary knowl-

edge we have concerning microbial communities

in their natural habitats as compared to the

knowledge we have on plants and animals. The

inability to culture the vast majority of microbes

present in ecosystems prevents the detailed study

of their ecology and physiology. The introduction

of culture-independent methods based on DNA

and RNA studies has revolutionized our abilities

to study microbes and microbial communities in

their natural habitat. A vast array of methods has

been established going from assessing the com-

plete genomes of single cells to whole communi-

ties. A vast number of books, overview articles,

as well as reviews have been published on the

molecular assessment of ecology, functioning

and diversity of environmental microbes, and

microbial communities of which the following

are recommended: Liu and Jansson (2010), De

Bruin (2011), and Kowalchuk et al. (2007).

Despite the advances made and insight gained

since the genomic revolution, we are still far

away from understanding the functioning of

microbial communities in situ and especially

their individual contributions to biogeochemical

reactions. The most challenging task ahead in

microbial ecology will be to compare and

integrate data from various habitats and

environmental conditions that are collected by

different laboratories in order to come to con-

cepts and general principles of community

structure, functioning, and regulation. This is

a challenge because the most crucial step in any

culture-independent molecular microbial study is

the extraction of nucleic acids from cells and the

recovery from the environment. Within the last

decades, countless procedures and protocols have

been developed to obtain DNA or RNA from

often very complex habitats optimized to yield

DNA/RNA amendable to PCR- or non-PCR-

based downstream community composition ana-

lyses. This was necessary because microbial cells

as well as the habitats where they are retrieved

from contain compounds which damage the

nucleic acids directly, make the DNA/RNA inac-

cessible, or inhibit downstream applications

directly. The major problem microbial ecology

research is facing is that the efficiency and out-

come of community composition analyses is var-

iable between protocols used and between

environmental matrices the protocols are applied

to. This entry will give an overview of DNA

extraction methods and associated biases and

what can be done to improve comparability

between different habitats.

DNA Extraction from Environmental
Samples and Sources of Variability

When retrieving DNA from complex habitats,

there are two main hurdles to take. First, the

DNA has to be liberated from the cells. Second,

the DNA has to be protected from degradation

and precipitation which requires the separation

from other cell components and environmental

contaminants. As said, countless protocols have

been developed which consist mainly of the five

key steps which can vary in the way they are

executed. An overview of these steps and variants

in execution is given in Fig. 1. The overview is

a summary of many studies and giving these

references goes beyond the goal of this overview.

However, most aspects addressed can be found in

Kowalchuk et al. (2007), Herrera and Cockell

(2007), and Lombard et al. (2011).
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Environmental sample

Sample processing and storage

Direct extraction in environmental matrix

DNA liberation from cells

DNA extraction and recovery

Additional Purification Quality control and quantitation.

Indirect

Physical Enzymatic Chemical

(Mixing, fresh, frozen, freeze dried)

Extracting cells and separation
from environmental matrix

Free-thawing
Micro wave
Cryogenic mill
Grinding

Anion exchange chromatography
Spin columns based (solid phase, molecular size separation)
Density centrifugation
Electro elution
Agarose gel electrophoresis (linear and non linear SCODA)

NanoDrop

Lab on Chip
Picogreen/SYBR green

Spectrophotometry (260/280nm ratio)
Pulse field gel electrophoresis
Agarose gel electrophoresis

Sonication
Xanthogenate
Proteinase K
Lysozyme

Sarcosyl
CTAB
SDS

Extraction using organic hydrophobic solvents (phenol, chloroform, isoamyl alcohol) causing precipatation of organic
cell components. The hydrophilic DNA remains in the aqeous phase which can be collected after phase separation

following  centrifugation. DNA is recovered from the aqeous phase by precipitation with ethanol or isopropanol.

Collection of the aqueous phase containing DNA after centrifugation and subsequent
removal of environmental matrix, including proteins, humic acids and polysaccharides.

Optional Agarose plug digestion of indirectly extracted cells:
high molecular weight DNA! For metagenomics!

Bead beating

Shaking in extraction buffer, blending,
sonication, density centrifugation

In buffer of alkaline pH containing salts and chelating agents (e.g. EDTA) for nucelase deactivation.
Vitamins, activated charcoal, Al2(SO4)3, CaCO3, CaCl2, can be added to bind and remove humic acids.

a

b

c

d e
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Fig. 1 Schematic presentation of the steps and proce-

dures to extract and purify DNA from environmental

samples. Step B is the step in all protocols where most

biases are introduced
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The first step in every DNA-based study is the

collection and storage of environmental samples

before the DNA is extracted (step A in Fig. 1).

Depending on whether the samples are fresh or

have been stored cold or frozen or whether they

have been freeze dried can already give rise to

variations in the extracted DNA quality and quan-

tity depending on the environmental matrix and

the community composition. However, recently

it has been shown using a pyrosequencing

approach that the variation introduced due to

sample storage of soil and human-associated

samples was insignificant (Lauber et al. 2010).

After sample storage two routes can be followed

to step B, the liberation of DNA from cells (step

B in Fig. 1). Either cells are released from the

environmental matrix by shaking or sonication

followed by harvesting by, e.g., density centrifu-

gation with subsequent lysis (indirect extraction)

or the cells are lysed in the environmental

matrix directly (direct extraction). Generally,

the direct lysis is preferred because the DNA

yield is higher due to no cell loss during cell

extraction and purification. However, especially

in metagenomic studies where large intact DNA

fragments are required to (>20 kb in size) obtain

complete genes, operons, and genomes, it has

been shown that the indirect method is preferred

and does also not lead to a significant difference

in overall diversity (Delmont et al. 2011b). The

subsequent liberation of DNA from cells is the

step in all extraction protocols where most bias is

introduced. Cell walls have to be broken. The

efficiency is dependent on the cell wall structure

(gram + vs. gram –) and the presence of extracel-

lular slime layers composed of polysaccharides

and proteins. Also the lyses methods commonly

used, physical, enzymatic, and chemical (Fig. 1),

differ in their efficiency of lyses, giving rise to

variability, strongly depending on the community

composition in terms of the presence of difficult

to lyse cells. Also at this step, a choice of method

can be made on the basis of the downstream

application. The physical disruption techniques

(e.g., bead beating) yield low molecular weight

DNA (<20 kb) not suitable for metagenome stud-

ies. In this case the enzymatic lyses methods in

combination with detergents are preferred. The

use of agarose plugs to perform enzymatic lysis

has shown to be very effective in obtaining high

molecular weight DNA (Williamson et al. 2011).

Next to the method of lyses the environmental

matrix is also a source of variation. The extrac-

tion and liberation of DNA always is executed in

a “lysis buffer.” The buffer normally is of alka-

line pH (8–9) which reduces electrostatic inter-

actions between DNA and proteins and which

inhibits enzymes degrading DNA (nucleases)

and facilitates denaturing of other proteins.

Often a chelating agent (e.g., EDTA) is added to

the buffer which destabilizes cell walls and mem-

branes as well as proteins by binding cations

(Ca2+, Mg2+). Besides protecting DNA from deg-

radation once it is liberated, compounds that bind

the DNA should be removed before non-DNA

components are removed by centrifugation.

Humic acids are derived from plant and animal

remains by decomposition and are highly diverse

in chemical structure. Due to their variability of

functional groups on the molecules that can more

or less strongly adhere to DNA and to the fact that

the amount and structure depend on the biota and

chemical conditions of the environment, the

impact of humic acids on DNA extraction is

highly variable. Hence, a large number of com-

pounds (step B, Fig. 1) have been tested and used

to bind and remove humic acids already at the

stage of liberation of DNA. The latest addition

was the use of vitamins (Techer et al. 2010). Cen-

trifugation removes cell debris and precipitated

components, while the supernatant containing the

DNA is taken to step C (Fig. 1) which is the

extraction from DNA out of the remaining

organic cell and environmental components.

This is done by phase separation using hydropho-

bic solvents (step C, Fig. 1), keeping the DNA in

the aqueous which is underneath the hydrophobic

phase containing the remaining cell components.

Variability in this step can only come from the

quality of the chemicals and the pipetting skills of

the researcher. Care has to be taken not to collect

any of the hydrophobic phase which leads to

differences in the amounts of aqueous phase col-

lected. The DNA is recovered by precipitation
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using ethanol or isopropanol which destroys the

helical structure leading to precipitation. After

resuspension in water or buffer, the DNA can be

ready for use in various analyses of abundance,

diversity, or genomic procedures or has to be

additionally cleaned up to remove any remaining

impurities as indicated in step D (Fig. 1). The

potential additional variation introduced here is

that loss of DNA can occur leading to changes in

relative abundances of species not reaching the

detection limits of the respective downstream

method. Hence, when DNA yield from samples

is low, additional cleanup is often not an option.

Also at this step some procedures are more appli-

cable when HMWDNA is preferred. A procedure

where direct current and pulsating nonlinear cur-

rents in gel electrophoresis are alternate has been

shown to be very effective in purifying HMW

DNA from the soil (Engel et al. 2012). The last

step before downstream analyses is the quality

control and quantification of the DNA concentra-

tion. UV spectrophotometry is most often used as

an indicator of purity, where the ratio of absor-

bance at wavelengths 260/280 nm should be

2 when DNA is free from proteins or humic

acids. The NanoDrop device is mostly used for

this purpose because it only requires a few ml
of the precious extracted DNA. However, the

spectrophotometric methods suffer from the fact

that co-extracted RNA is also measured and

that humic acids also lead to absorbance, eventu-

ally overestimating the amount of DNA in the

extract. Alternative methods based on fluorescent

dyes binding to double-stranded DNA can be

used which only detect DNA, but which are also

sensitive to interference by humic acids. Bias-

free quantification methods are the ones where

gel electrophoresis is combined with densitome-

try, which even is available in a lab-on chip

format.

All the procedures described in Fig. 1

have also been combined and offered as commer-

cial ready-to-go DNA extraction kits for various

environmental matrices often by machinery

for cell lyses. In Table 1 an overview of some

commercially available kits and equipment is

given.

Variability and Community Composition
Assessment

The central question in microbial ecological

research is why microbial communities are com-

posed in the way they do and what factors influ-

ence community composition. To this end it is

essential when comparing one sample with

another that differences observed are due to

biotic or abiotic factors and not biases introduced

by the methods used. It is obvious from the pre-

vious section that a bias-free extraction of DNA

from all environments is not possible. The matrix

as shown in Fig. 1 is a collection of methods

developed with the goal to obtain

PCR-amplifiable DNA. Hence, the protocols

were not designed for bias-free extraction but

for obtaining extract enabling downstream appli-

cations. Considering the inherent problems spe-

cific to various environmental matrices, not

a single protocol will suffice to be applied to all

environments. The protocols developed were

designed and tested to yield the highest quality

and quantity of DNA and highest diversity in

fingerprinting (denaturing gel electrophoresis

(DGGE), terminal restriction fragment length

polymorphism(T-RFLP), microarray) methods

or highest abundance assessed with quantitative

polymerase chain reaction (qPCR) or highest

MW DNA in metagenomic studies. Hence, com-

munity composition was the criterion for testing

performance of protocols, and the amount of pro-

tocols available is a good indicator of the biases

introduced. However, it was demonstrated that

even when applying 1 protocol on exactly the

same soil sample, community composition ana-

lyses following DNA extraction are not bias-free

(Pan et al. 2010). When a single well-

homogenized soil sample was extracted in differ-

ent laboratories using the same protocol, biases

were already introduced at the initial extraction.

The DNA quantity (Fig. 2a) as well as quality

varied significantly between laboratories leading

to significant differences in community composi-

tion of methane-oxidizing bacteria (Fig. 3) as

assessed by PCR-based microarray analyses.

Moreover, the same extractions performed by
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two investigators simultaneously in the same lab-

oratory using exactly the same chemicals and

equipment also yielded significant differences in

DNA quantity (Fig. 2b) and quality proving that

also the investigator can introduce biases, proba-

bly due to pipet handling in step C (Fig. 1) of the

protocol. Another source of bias appeared to

come from the DNA quantitation method

(Fig. 2) leading to significantly different commu-

nity profiles (Fig. 4) as well as abundance of

methane-consuming bacteria. In this case

overestimation of DNA quantity by NanoDrop

leads to a higher dilution of the DNA to reach

the same input amount of target DNA as in the

PicoGreen-based PCR reaction. This dilution

reduced the remaining inhibition of the PCR by

contaminants still present in the DNA with

consequences for the subsequent outcome of the

downstream analyses.

Important improvements were made to reduce

extraction bias by extracting the same sample

matrix, remaining in the pellet of step B (Fig. 1)

multiple times (Feinstein et al. 2009). After three

extractions DNA quantity as well as bacteria

abundance reached a plateau which was similar

for a number of different lyses protocols. This

demonstrates that a single extraction always

gives a biased picture of the community compo-

sition. Combining multiple extraction protocols

has shown to enhance the detected diversity of

recovered species by more than 80 % (Delmont

et al. 2011a) in soil samples. However, the rela-

tive abundance of the various approaches was

different, making this approach very important

Extraction Methods, Variability Encountered in, Table 1 Overview of a number of commercially available DNA

extraction kit, lyses equipment, additional cleanup kits, and DNA quantitation methods

Soil DNA extraction kits

PowerSoil and PowerMax/Mobio http://www.mobio.com/soil-dna-isolation/powermax-soil-dna-isolation-

kit.html

SoilMaster/Epicentre Technologies http://www.epibio.com/item.asp?id¼388

E.Z.N.A._ Soil DNA Kit/Omega BioTek http://www.omegabiotek.com/product_detail.php?ID¼95

ZR Soil Microbe DNA Kit/Zymo Research http://www.zymoresearch.com/media/downloads/212/D6001d.pdf

FastDNA_ SPIN kit for Soil/MP

Biomedicals

http://www.biocompare.com/11793-DNA-Purification-Kits-Soil/

2691724-FastDNA96-Soil-Microbe-DNA-Kit/

Cell disruption equipment

BioSpec Mini Bead Beater http://www.biospec.com/product/28/mini_beadbeater/

MP Biomedicals FastPrep®-24 or MP

Biomedicals FastPrep®-96

http://www.mpbio.com/product_info.php?family_key¼116004500

Geno/Grinder® http://www.spexsampleprep.com/equipment-and-accessories/

equipment_product.aspx?typeid¼1

Free/Mill® http://www.spexsampleprep.com/equipment-and-accessories/

equipment_product.aspx?typeid¼2

Additional cleanup kits

Wizard® SV Gel and PCR Clean-Up

System

http://www.promega.com/products/dna-and-rna-purification/dna-

fragment-purification/wizard-sv-gel-and-pcr-clean_up-system/

Sepharose 4B® columns http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/nl/

GELifeSciences-nl/products/AlternativeProductStructure_17546/

17075701

Nonlinear electrophoresis (SCODA) http://www.borealgenomics.com/products/aurora/

DNA quality/quantity

NanoDrop http://www.nanodrop.com/

PicoGreen (QuaniTTM) http://www.invitrogen.com/site/us/en/home/brands/Product-Brand/

Quant-iT.html

Microfluidics

Agilent Bioanalyzer

http://www.genomics.agilent.com/GenericB.aspx?

PageType¼Family&SubPageType¼FamilyOverview&PageID¼183
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for complete diversity assessment but not for

comparisons between different samples or envi-

ronments. The first attempt for standardization

between samples and environments has been

established for soils where an ISO-certified

extraction protocol was tested on various soils

and by a number of different laboratories (Petric

et al. 2011). The protocol was only standardized

up to what is believed to be the step (step B,

Fig. 1) causing most variation. Thirteen different

laboratories tested a number of soil types. There

was variation in DNA quantity and quality and

Extraction Methods, Variability Encountered in,
Fig. 3 Nonmetric multidimensional scaling plot using

log-transformed Bray-Curtis dissimilarity matrices based

on signal intensity values of the pmoA microarray ana-

lyses on DNA extracted in five different laboratories.

Distances between symbols represent relative

dissimilarity between MOB communities. Analyses of

similarity (ANOSIM) resulted in a significant difference

between MOB community structures analyzed in the dif-

ferent laboratories. Only samples from laboratory A and

B did not differ from each other (n ¼ 8, except for labo-

ratory E [n ¼ 6]) (From Pan et al. 2010 with permission)
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Fig. 2 DNA concentrations (means � 1 standard devia-

tion) as analyzed with NanoDrop or PicoGreen, showing

the comparisons between laboratories (a) and between

investigators in the various laboratories (b). Different

letters in panel A indicate significant differences between

countries (P < 0.05, unequal honestly significant differ-

ence test). In panel B, the asterisk indicates a significant

difference between investigators within one laboratory

(as assessed using Students’ t test; P < 0.01) (From Pan

et al. 2010 with permission)
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also in community fingerprinting but acceptable

as compared to commonly observed variation.

Although the soils did not differ/vary much in

their complexity and only one fingerprinting

method was used, this standard protocol is

a very important step toward comparability of

samples. At least for the intensively studied soil

habitat, comparisons may be possible and similar

standardizations for related habitats may be

a way to go.

Conclusions

It is obvious that not one protocol of DNA extrac-

tion will be bias-free and that applying a single

protocol to a sample will never yield a “true”

picture of microbial community composition.

The inherent differences in the properties of envi-

ronmental matrices prevent this. However,

important improvements have been made leading

to the recommendation to perform multiple

extractions on the same matrix and multiple pro-

tocols with varying stringency of lyses to maxi-

mize diversity assessments of single samples.

When different samples have to be compared in

time or between treatments or habitats, it is best

when extractions are performed in the same

laboratory by the same person using the identical

chemicals and machinery, especially the bead-

beating apparatus. Of course the latter may not

always be feasible, and an extraction robot may

be very useful in order to reduce variation caused

by pipet handling (e.g., Maxwell-16 system from

Promega). However, in order to come to real

ecological comparisons of microbial communi-

ties, new methods of standardization have to be

developed. Internal standardization by spiking

samples with a known amount of cells may be

an option. The most important, however, will be

to assess for every sample matrix what the extent

of the bias is and take that into account in the

interpretation.

Summary

Microbial communities are the drivers of all eco-

systems on Earth but are also the least understood

branch on the tree of life. The advent of molecu-

lar biological techniques assessing environmen-

tal nucleic acids has revolutionized the amount of

information on environmental microbial commu-

nities. However, in the era of metagenomics and

high-throughput sequencing, the critical step in

microbial community analyses is still the

Extraction Methods, Variability Encountered in,
Fig. 4 Nonmetric multidimensional scaling plot using

log-transformed Bray-Curtis dissimilarity matrices based

on signal intensity values of pmoA microarray analyses,

performed on the basis of the NanoDrop or PicoGreen

DNA quantitation method. Distances between symbols

represent relative dissimilarity between MOB communi-

ties. Analyses of similarity (ANOSIM) resulted in

a significant difference between MOB community struc-

tures when based on different DNA concentration mea-

surements (n ¼ 8) (From Pan et al. 2010 with permission)
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extraction of DNA from environmental samples.

DNA is extracted by liberation from cells

followed by extraction from the matrix using

organic solvents and recovered by precipitation

with alcohols. The lyses of cells and the removal

of contaminants that degrade or adhere to the

DNA call for many different approaches varying

in effectiveness and leading to substantial bias in

downstream genomic or metagenomic applica-

tions. Next to this, variation can also be intro-

duced to investigator skills. Improvements have

been made for increasing the observed diversity

in one single sample, and for soils, an

ISO-certified extraction protocol has been

established facilitating ecological comparisons

for this habitat. For true ecological comparisons,

new ways of standardization have to be

developed.
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Synonyms

Extradiol Dioxygenases

Definition

Extradiol dioxygenases (EDOs) are mononuclear

metalloenzymes that cleave the meta-position of

the C–C bond of catecholic compounds, yielding

yellow-pigmented open-ring products (Fig. 1).
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Introduction

Both naturally existing and synthetic aromatic

hydrocarbons (e.g., petroleum products and

chemical wastes of agricultural and industrial

origin) are common contaminants of the envi-

ronment (US Environmental Protection

Agency; http://www.epa.gov). Microorganisms,

particularly bacteria, play crucial roles in the

biodegradation of these compounds and contrib-

ute to various biochemical cycles (Abraham

et al. 2002; Chakraborty and Coates 2004;

Furukawa et al. 2004). Extensive efforts have

been directed at surveying and analyzing the

pathways and genes responsible for the degra-

dation of aromatic compounds with the aim of

reviving polluted environments by using these

microorganisms (i.e., bioremediation) (Top and

Springael 2003; Janssen et al. 2005; de Lorenzo

2008). These studies have shown that the initial

conversion step in the degradation of aromatic

compounds is catalyzed by various types of

enzymes, depending on the aromatic compound

substrate, pathway, or the organism. Despite the

variation, however, aromatic compound sub-

strates are converted to a limited number of

central intermediates, most commonly the

catecholic compounds (Fritsche and Hofrichter

2005). The subsequent cleavage of the aromatic

rings of catechol derivatives is catalyzed by

extradiol dioxygenases (EDOs); these reactions

are considered crucial in the biodegradation of

aromatic compounds (Lipscomb 2008). EDOs

have thus served as functional markers in the

assessment of the biodegradation potential of

specific bacterial communities (Vilchez-Vargas

et al. 2010).

Most of our knowledge on EDOs has been

obtained from activities involving microbial

screening. Based on the observation of bacterial

colonies that develop yellow pigments attribut-

able to the ring-cleavage products of catecholic

substrates, those expressing EDOs were isolated

and studied in detail for the past three decades.

However, information on the degradation path-

ways, enzymes, and genes that are harbored by

“uncultured” bacteria remain unknown. Screen-

ing of those genes using a metagenomic approach

should thus shed light on the diversity, evolution,

and biochemical properties of novel pathways,

enzymes, and genes.

Enzymatic Classification of EDO Family

EDOs can be classified into at least three evolu-

tionarily distinct families (Vilchez-Vargas

et al. 2010): type I belongs to the vicinal oxygen

chelate superfamily, type II includes enzymes

consisting of different subunits, and type III

belongs to the cupin superfamily. Type I is con-

sidered as a major family and is further divided

into subfamilies (e.g., I.2.A) depending on

the amino acid sequences of the enzymes

(Fig. 2). Enzymes belonging to the same sub-

family are defined as those with >54 %

sequence identity (Eltis and Bolin 1996). They

are roughly classified into two families: those

that act on monocyclic aromatics (subfamily I.2)

and those that act on bicyclic aromatics

(subfamily I.3). Despite differences in substrate

specificities, these enzymes share common

mechanisms of reaction, occurring at similar

catalytic centers that contain a Fe(II) ion in the
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Metagenome, Fig. 2 A phylogenetic tree showing both

metagenomic EDOs and previously identified type I EDOs.

Themetagenomic clones identified from the activated sludge

of wastewater from a Coke plant (Suenaga et al. 2007) are

shown in red. The accession numbers of the previously

identified EDOs are as follows: BPHC BACPJ, Q8GR45;

Q59770 RHORH, Q59770; PHEB BACST, P31003;

Q89NL9 BRAJA, Q89NL9; Q59693 PSEPU, Q59693;

Q9ZAN5 9BURK, Q9ZAN5; Q52264 PSEPU, Q52264;

Q52444 9SPHN, Q52444; Q45459 SPHYA, Q45459;

XYLE2 PSEPU, Q04285; Q59708 PSEPU, Q59708;

DMPB PSEUF, P17262; Q59709 PSEPU, Q59709; NAHH

PSEPU, P08127; Q59720 PSESP, Q59720; Q7M0R7

ALCXX, Q7M0R7; XYLE1 PSEPU, P06622; XYLE

PSEAE, P27887; Q83U22 9PSED, Q83U22; Q6N3D3

RHOPA, CGA009; Q44048 ARTGO, Q44048; Q50912

9SPHN, Q50912; MPC2 RALEU, P17296; Q6W1M5

RHISN, Q6W1M5; Q9KWQ8 RHOSR, Q9KWQ8;

Q8L185 9NOCA, Q8L185; BPHC2 RHOGO, P47232;

DBFB PSEPA, P47243; CATA RHORH, Q53034; BPHC

PSEPA, P11122; P72325RHOSO, P72325;Q52533PSESP,

Q52533; Q8VV92 9MICO, Q8VV92; O69355 RHOER,

O69355; Q762H4 RHORH, Q762H4; O69362 RHOER,

O69362; Q762I0 RHORH, Q762I0; O69359 RHOER,

O69359; Q9KWQ5 RHOSR, Q9KWQ5; Q9LC87 9ACTO,

Q9LC87; Q762F5 RHORH, Q762F5; O69358 RHOER,

O69358; TODE PSEPU, P13453; BPHC1 RHOGO,

P47231; Q53126 RHOSR, Q53126; Q51749 PSEFL,

Q51749; BPHC PSES1, P17297; Q84EP0 9BURK,

Q84EP0; Q52032 PSEPU, Q52032; BPHC PSEPS,

P08695; BPHC BURCE, P47228 (This figure was drawn

using the FigTree software (http://tree.bio.ed.ac.uk/software/

figtree/))

Extradiol Dioxygenases Retrieved from the Metagenome 169 E

E

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/


active site and are coordinated by the

so-called 2-His-1-carboxylate facial triad motif

(Lipscomb 2008).

EDOs Retrieved from the Metagenome

At the time of writing of this report (March 2013),

42,295 “extradiol dioxygenase” sequences have

been deposited in the Protein database of NCBI

(www.ncbi.nlm.gov/protein), 1,076 of which are

derived from “uncultured bacteria.” Of the 1,076

sequences, however, only few contain complete

EDO sequences (Vilchez-Vargas et al. 2010;

Suenaga 2012).

Based on the yellow coloration of catechol

ring-cleavage products, 235 positive clones were

identified from the fosmid library constructed

from environmental DNA extracted from petrol-

contaminated soil (Brennerova et al. 2009).

PCR-based classification of the internal sequences

of the metagenomic EDO genes showed that only

one-fourth of the observed EDOs belong to sub-

family I.3.A of I.3.B that would be expected as

predominant taking into consideration of the

knowledge obtained from isolated bacteria.

Genes of subfamily I.2.A, which have frequently

been used as DNA markers for assessing the cat-

abolic potential of polluted sites, were also absent

(Vilchez-Vargas et al. 2010). Functional analysis

of representative proteins indicated that 1 clone,

s45, has exceptionally high affinity for different

catecholic substrates.

Coke plant wastewater contains various aro-

matic compounds and activated sludge that is

used for decontamination may serve as a rich

resource for EDO discovery. Suenaga

et al. (2007) created a metagenomic fosmid

library using the activated sludge and by func-

tional screening, 91 EDO-positive clones were

identified. Based on their substrate specificity

for various catecholic compounds, 38 clones

were subjected to shotgun DNA sequencing.

Some clones contained 2 EDO genes and as

a result, a total of 43 EDO genes were identified.

Approximately half of these were classified into

known subfamilies, but surprisingly, 23 genes

could not be classified into existing subfamilies,

and therefore, four new subfamilies, namely,

I.1.C, I.2.G, I.3.M, and I.3.N (Fig. 2), were pro-

posed. Among these novel EDOs, the I.2.G sub-

family genes were overrepresented among the

retrieved metagenomic EDOs and branched at

a deep point in the lineage. Enzymatic character-

ization demonstrated that the I.2.G EDOs have

unique properties, including Mn(II) dependence

instead of the more common Fe(II) dependence,

as well as the highest affinity for catechol

reported thus far, and tolerance for thermal and

chemical inhibitors (NaCN and H2O2) (Suenaga

et al. 2009).

EDO Application for Bioremediation

Each polluted site harbors contaminants that

carry environment-specific EDO genes. Monitor-

ing these “marker” EDO genes using the

metagenomic approach may be a good method

in evaluating the bioremediation process

(Widada et al. 2002). Furthermore, retrieving

novel EDOs, as well as engineering these for

higher activity and stability, can enhance the

development of bioremediation processes.

Summary

Metagenomic approaches are an effective means

of discovering novel enzymes including EDOs,

which present specific sequences and enzymatic

properties based on their substrate preference,

metal dependence, inhibitor tolerance, and vari-

ous physicochemical properties. Research

targeting different environments may help in fur-

thering the knowledge about the diversity

of EDOs.

Cross-References

▶Metagenomics Potential for Bioremediation

E 170 Extradiol Dioxygenases Retrieved from the Metagenome

http://www.ncbi.nlm.gov/protein
http://dx.doi.org/10.1007/978-1-4899-7478-5_123


References

Abraham WR, Nogales B, Golyshin PN, et al.

Polychlorinated biphenyl-degrading microbial com-

munities in soils and sediments. Curr Opin Microbiol.

2002;5:246–53.

Brennerova MV, Josefiova J, Brenner V, et al.

Metagenomics reveals diversity and abundance of

meta-cleavage pathways in microbial communities

from soil highly contaminated with jet fuel under

air-sparging bioremediation. Environ Microbiol. 2009;

11:2216–27.

Chakraborty R, Coates JD. Anaerobic degradation of

monoaromatic hydrocarbons. Appl Microbiol

Biotechnol. 2004;64:437–46.

Eltis LD, Bolin JT. Evolutionary relationships among

extradiol dioxygenases. J Bacteriol. 1996;178:5930–7.

Fritsche W, Hofrichter M. Aerobic degradation by micro-

organisms. In: Rehm H-J, Reed G, editors. Biotech-

nology: environmental processes II, vol. 11b.

2nd ed. Weinheim: Wiley-VCH Verlag GmbH; 2008.

Furukawa K, Suenaga H, GotoM. Biphenyl dioxygenases:

functional versatilities and directed evolution.

J Bacteriol. 2004;186:5189–96.

Janssen DB, Dinkla IJT, Poelarends GJ, et al. Bacterial

degradation of xenobiotic compounds: evolution and

distribution of novel enzyme activities. Environ

Microbiol. 2005;7:1868–82.

Lipscomb JD. Mechanism of extradiol aromatic ring-

cleaving dioxygenases. Curr Opin Struct Biol.

2008;18:644–9.

De Lorenzo V. Systems biology approaches to bioreme-

diation. Curr Opin Biotechnol. 2008;19:579–89.

Pieper DH, Seeger M. Bacterial metabolism of

polychlorinated biphenyls. J Mol Microbiol

Biotechnol. 2008;15:121–38.

Suenaga H, Ohnuki T, Miyazaki K. Functional screening

of a metagenomic library for genes involved in micro-

bial degradation of aromatic compounds. Environ

Microbiol. 2007;9:2289–97.

Suenaga H, Mizuta S, Miyazaki K. The molecular basis

for adaptive evolution in novel extradiol dioxygenases

retrieved from the metagenome. FEMS Microbiol

Ecol. 2009;69:472–80.

Suenaga H. Targeted metagenomics: a high-resolution

metagenomics approach for specific gene clusters in

complex microbial communities. Environ Microbiol.

2012;14:13–22.

Top EM, Springael D. The role of mobile genetic elements

in bacterial adaptation to xenobiotic organic com-

pounds. Curr Opin Biotechnol. 2003;14:262–9.

Vilchez-Vargas R, Junca H, Pieper DH.

Metabolic networks, microbial ecology and “omics”

technologies: towards understanding in situ biodeg-

radation processes. Environ Microbiol. 2010;12:

3089–104.

Widada J, Nojiri H, Omori T. Recent developments in

molecular techniques for identification and monitoring

of xenobiotic-degrading bacteria and their catabolic

genes in bioremediation. Appl Microbiol Biotechnol.

2002;60:45–59.

Extradiol Dioxygenases Retrieved from the Metagenome 171 E

E



F

Fast Program for Clustering and
Comparing Large Sets of Protein or
Nucleotide Sequences

Weizhong Li

J. Craig Venter Institute, La Jolla, CA, USA

Synonyms

CD-HIT is a fast program for clustering large

amount of protein and nucleotide sequences

Definition

Sequence clustering is a process to group

sequences into groups (clusters) such that similar

sequences are clustered together and can be

potentially represented by a single representative

sequence. CD-HIT uses a greedy incremental

clustering algorithm enhanced by an efficient

word filtering heuristics and an effective

parallelization technique to do clustering on big

sequence datasets efficiently.

Introduction

Since the development of high-throughput

sequencing technologies, the amount of available

biological sequences has increased dramatically

and continues to increase rapidly. Efficient han-

dling and effective analysis of such massive

amount of data has become one of the major

issues and challenges in many sequencing-based

research. Such challenges are typically domi-

nated by two factors: huge data size and high

sequence redundancy. Sequence clustering is

a key technique that can address these two issues

at once, by clustering the sequences and reducing

them to a smaller subset of representative

sequences.

Sequence clustering is a technique to group

sequences into groups (clusters), such that similar

sequences are clustered together and can be

potentially represented by a single representative

sequence. A sequence similarity between two

sequences is normally defined based on an opti-

mal alignment between them. Such optimal

alignment is usually found by dynamic program-

ming techniques, which are computationally

expensive. Traditional clustering algorithms that

require many pairwise sequence comparisons are

impractical for clustering very large sequence

datasets. Reducing the number of sequence com-

parisons is the key to efficient sequence cluster-

ing that can cope with the massive amount of

sequencing data.

Greedy incremental clustering has been

employed in sequence clustering to reduce the

number of sequence comparisons since the

implementation of a tool by Holm and Sander

(1998) to create nrdb90 for protein sequences

with a decapeptide filter to further reduce the

number of comparisons. To overcome some lim-

itations of that tool and further improve the clus-

tering efficiency, CD-HIT was developed to use

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



the same greedy incremental algorithm, but with

a much more efficient filtering heuristics

(Li et al. 2001, 2002). CD-HIT was then extended

to support clustering of nucleotide sequences

(Li and Godzik 2006) and became one of the

most widely used programs for sequence

clustering due to its efficiency to handle large

datasets.

The rapid increasing amount of sequence data

demand even more efficient clustering programs

and have lead to the development an enhanced

version of CD-HIT (Fu et al. 2012), which has

been reengineered to support clustering of very

large sequence datasets. In this new CD-HIT,

a parallelization technique was developed to

safely and efficiently parallelize the greedy incre-

mental clustering algorithm. This parallel

CD-HIT can achieve very good speedup

(quasilinear speedup for up to eight cores) on

multicore computers for sequence clustering.

CD-HIT and its derived programs such as

CD-HIT-454, CD-HIT-DUP, CD-HIT-LAP, and

CD-HIT-OTU have extensive applications in

metagenomics field. A summary of these

applications is available from a recent review

paper (Li et al. 2012).

Methods

CD-HIT uses a greedy incremental clustering

algorithm with filtering heuristics based on

shared word counting for efficient clustering. It

is further enhanced by an effective parallelization

technique that can achieve very good speedup on

multicore computers.

Greedy Incremental Clustering

A greedy incremental clustering essentially

works in the following way. Given a list of

DNA or protein sequences, sort them from long

to short, and take the first sequence as a cluster

representative sequence. Then, for each (query

sequence) of the remaining sequences, check if

it is similar to any of the existing representative

(reference) sequences, if yes, mark the sequence

as a redundant sequence, otherwise, add it to the

representative sequence list.

Filtering Based on Shared Words

Checking a query sequence against each of the

representative sequences is very inefficient,

because such checking involves sequence com-

parison based on sequence alignment using

dynamic programming, which is computationally

expensive. To reduce such comparisons, a word

(k-mer or q-gram) indexing table can be used to

filter out unnecessary comparisons based on the

number of words shared between the query

sequence and each of the representative

sequences.

The idea is that, for two sequences to have

identity above an identity cutoff, they must

share a minimum number of common words

given the sequence lengths. It is easy to see that,

given two sequences with an alignment length

L and an identity cutoff C, the maximum number

of mismatches and gaps that are allowed between

two aligned sequences is E ¼ L(1 � C), so the

minimum number of shared words of length

W should be L + 1 � (E + 1)*W. This is also

the minimum number of shared words between

a query sequence of length L and any other longer

reference sequences. In CD-HIT, this threshold is

adjusted according to the presence of unknown

letters such as “N” and “X,” etc., and to the

command line options.

To speed up the counting of shared words, an

indexing table is built for the representative

sequences to record for each word the indices

of the representative sequences and the number

of occurrences the word appears. This will

allow efficient counting of shared words

between a query and each of the representative

sequences.

Banded Alignment and Sequence Identity

In CD-HIT, sequence identity is computed based

on an optimal alignment between two sequences.

To reduce the computational time of dynamic

programming, CD-HIT uses heuristics based on

short words (shorter than the words for filtering)

to estimate an optimal band and does banded

alignment. Sequence identity is then calculated

as the percentage of matched bases among the

aligned bases within the whole or best alignment

region.
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CD-HIT Core Procedures: Checking and

Clustering

In order to simplify CD-HIT and make an efficient

implementation possible, the key steps of CD-HIT

are abstracted into two core procedures: checking

and clustering. The distinction between checking

procedure and clustering procedure is also the key
to an efficient parallelization.

Given a word indexing table, the checking

procedure will check a query sequence against

this table and its associated representatives, using

the filtering heuristics and sequence comparison

techniques described above. If the query is simi-

lar to one of the representatives, the query

sequence will be marked as redundant and be

skipped in all future clustering steps.

The clustering procedure is identical to the

checking procedure except that, if the query is

not marked as redundant, it will be added to the

representative sequence list of the table, and the

table is updated to index and incorporate the

words of the new representative sequence.

The Sequential CD-HIT Algorithm

The sequential CD-HIT algorithm is formed by

combining the greedy incremental clustering algo-

rithm and the above described heuristics and tech-

niques, with proper dividing of the input sequences.

Basically, the steps are the following (Fig. 1):

1. Given a list of DNA or protein sequences (say

S), sort them from long to short.

2. Take a sub-list of the longest sequences from

S (and remove them from S) and do the clus-
tering procedure on them starting from an

empty word indexing table.

3. Use the word indexing table from step 2, do

the checking procedure on the remaining

sequences of S, and remove the sequences

that are marked as redundant from S.

4. Repeat steps 2 and 3, until S becomes empty.

The Parallel CD-HIT Algorithm

The parallel CD-HIT algorithm uses two word

indexing tables to do sequence clustering. Since

an efficient parallelization cannot be achieved

within each single clustering cycle as described

in the sequential algorithm section, the idea of the

parallelization technique developed in the paral-

lel CD-HIT is to properly interweave the step

2 and step 3 between two consecutive clustering

cycles, as the following (Fig. 2):

1. Given a list of DNA or protein sequences

(say S), sort them from long to short.

2. Take a sub-list (say G) of the longest

sequences from S (and remove them from S).

3. Use all threads to do the checking procedure

concurrently on G using the word indexing

table built by the clustering procedure from

the previous cycle.

4. Use all-but-one threads to do the checking
procedure on the sequences in S and simulta-

neously using the remaining one thread do the

clustering procedure on the sequences in

G starting from an empty word indexing table.

5. Repeat steps 2, 3, and 4, until S becomes empty.

Here, if the clustering procedure finishes

processing G before the checking procedures fin-

ish processing the S, the thread for the clustering

procedure will switch to do the checking proce-

dure on S as well. But if the checking procedures

Fast Program for
Clustering and
Comparing Large Sets of
Protein or Nucleotide
Sequences,
Fig. 1 Diagram for the

sequential CD-HIT

algorithm
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finish before the clustering procedure, the clus-

tering procedure will be terminated in order to

start a new clustering cycle, and the unfinished

sequences in G will be put back in S.

In this parallel version of the algorithm, the

first and last clustering cycle will effectively use

a single thread to do the clustering procedure.

Efficiency of the Parallel CD-HIT

The described parallelization technique is very

effective for CD-HIT on large datasets. The main

reason is that, in the parallel CD-HIT, all threads

are guaranteed to be active simultaneously and do

effective computation, and only the first and the

last clustering cycle cannot use multithreading.

But for large sequence datasets, the time spent on

single threaded computation for the first and the

last cycle is negligible. So in theory, the speedup

should approach linear for large datasets.

Figure 3 shows a benchmarking result on two

protein sequence datasets Swissprot (437,168

sequences) and NR (12,954,819 sequences) and

two nucleotide sequence datasets Twin Study
(8,294,694 sequences) and Human Gut (23,285,083

sequences). This test was done on a Debian Linux

server with four 12-core AMD Opteron 6172 pro-

cessors. As it demonstrated, the parallel CD-HIT can

achieve quasilinear speedup for up to eight cores,

with good speedup for up to 16 cores.

Summary

CD-HIT is a very fast sequence clustering pro-

gram that can cluster very big sequence datasets

efficiently. The parallelized version of CD-HIT

can further speed up the clustering process by

using multiple CPU cores. With the high-

throughput sequencing technologies becoming

more and more widely used, CD-HIT could play

an essential role to facilitate the analysis of the

massive amount of sequencing data.
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Synonyms

BAC; Cosmids; Large insert vectors

Definition

Original molecular cloning vectors were plas-

mids such as the pBR232, were meant to clone

single genes, and were based in multicopy plas-

mids that have low stringency control of the copy

number. Later on with the development of geno-

mics, larger insert vectors were required for the

assembly of repeated regions and in general to

pair-end the individual shotgun reads. Bacterial

artificial chromosomes (BAC) were developed

based in the large single-copy plasmids of the

F group (Shizuya et al. 1992). These can be

propagated in Escherichia coli with inserts larger

than 300 Kbp. BACs were used by Beja and

coworkers in one of the first and more influential

papers of the early development of metagenomics

in which the existence of an energy-generating

rhodopsin was found in a proteobacterial BAC

clone (Beja et al. 2000). However, BACs are

laborious to generate and do not work well with

the limited amount of DNA that normally is

available for metagenomics.

In the meanwhile, fosmid (F-based cosmid)

was developed. Basically, they contain the repli-

cation origin of the E. coli F plasmid and can be

packaged in a lambda capsid to be transfected

rather than transformed. Based loosely on the

cosmid vector but adding the F origin of replica-

tion, fosmids combine the advantages of BAC

vectors (stability and single-copy maintenance)

and the easiness of transfection using a cosmid-

based vector (Kim et al. 1992). Cosmids have

cosN of phage lambda on the vector and use

a phage terminase to generate cohesive ends at

the cosN. This way, a fosmid insert of 40-kb

average size can be cloned very efficiently after

packaging in a lambda phage capsid and infected

as in conventional cosmid cloning. Extensive

libraries of fosmid clones are readily constructed

and offer increased insert stability. They can be

propagated by standard E. coli cultures and the

clones isolated as colonies can be collected by an

automated colony picking robot. They can be

stored as phage suspensions and transferred to

the host very efficiently. Also the insert size is

very even and can be estimated in the range of

between 30 and 40 Kbp in most cases. The E. coli

F-factor single-copy origin of replication guaran-

tees that there will be only one copy per genome

during the cloning phase, avoiding problem with

chimera formation during this critical step. How-

ever, the inducible high-copy oriV can be used to

amplify to up to 50 copies per cell which, while

maintaining the stability of the plasmid, increases

the DNA yield and the possibilities to be

expressed in E coli. For specific protocols of

fosmid cloning, see for example: http://www.

epibio.com/item.asp?ID¼385.

Fosmids in Metagenomics

Before the development of second-generation

sequencing such as 454 pyrosequencing or

Illumina, all metagenomic studies were depen-

dent on cloning of environmental DNA to

sequence by Sanger using the vector primers.

Small insert vectors have been widespread for

the easiness to generate very large libraries and

also because the insert that can be sequenced by
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Sanger using primer vectors is smaller than the

size of most inserts of this size (Venter

et al. 2004).

However, large insert and particularly fosmids

have been very popular for metagenomic workers

(DeLong et al. 2006; Martin-Cuadrado

et al. 2007). The main reason is that the insert in

a fosmid is a sizeable natural contig that contains

typically 30–40 genes. This size is very appropri-

ate for annotation since bacterial and archaeal

gene clusters are arranged functionally, i.e.,

genes with related function, such as different

enzymes of a metabolic pathway, are located

next to each other, often organized in operons.

Therefore, function can be inferred with much

more reliability from a large contig. A common

approach taken for analysis of fosmid libraries is

the fosmid-end sequencing by using the vector

primers. This generates datasets that are similar

to the short insert (also known sometimes as

shotgun) libraries but with the important

difference that the ends sequenced are separated

by a much larger distance. Also, the fosmids that

show promise of revealing some interesting

activity, or corresponding to an interesting

microbe, can be fully sequenced (Fig. 1), tradi-

tionally by Sanger dideoxy but now also by

high-throughput approaches (Martin-Cuadrado

et al. 2009).

Fosmids can also be screened by PCR to select

those belonging to selected groups of microbes,

largely by using 16S rRNA primers (Martin-

Cuadrado et al. 2008). This way, the fosmids

containing ribosomal operons can be identified

and those containing the target rRNA gene fully

sequenced. This approach is a bit tricky when the

target group are bacteria because fosmid prepa-

rations are always contaminated with E. coli

DNA and PCR of 16S rRNA gene gives always

that amplicon. As an alternative methodology to

select bacterial fosmids containing ribosomal

operons, primers for 16–23S gene spacer or ITS

Sequencing insert ends

Screening

BLAST
phylogenetic analysis

16S rDNA Archaea
18S rDNA Eukaryotes

Bacteria

16S ITS 29S

Multiplex PCR
Hybridisation with different probes:
rDNA, protein genes, etc

Spotting clones on membrane

Fosmid System, Fig. 1 Methods for selecting fosmids

for full sequencing. End sequences can provide clues as to

the kind of genes present in the fosmid and allow for

selecting those involved in interesting processes or

microbes (Martin-Cuadrado et al. 2009). Alternatively,

fosmid clones can be screened by PCR or hybridization

to select those that contain taxonomically informative

genes such as rRNAs. In the case of bacteria, a strategy

to select those containing other rRNAs different from

E. coli that is present in all the clones is shown. The

amplicon includes the internal transcribed spacer (ITS),

and the size of this hypervariable region shows the clones

containing rRNA genes different from those of E. coli
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were used. The amplicons were run in an agarose

gel, and only those with a significantly different

size from that of E. coli were selected (Quaiser

et al. 2008).

With the advent of high-throughput sequenc-

ing (HTS), the applications of fosmids are still

significant. First of all, they provide a way to

assemble much larger contigs, the Achilles’ heel

of the HTS. Ghai et al. (Ghai et al. 2010)

sequenced 1,000 pooled fosmids by

454 pyrosequencing and compared the results

with the direct 454 pyrosequencing of the same

DNA before cloning. The results indicated

a strong bias in the fosmid clones against some

specific groups of microbes such as Candidatus
Pelagibacter ubique and Prochlorococcus that

happen to be the most abundant microbes in this

environment. Besides, the GC distribution plot

indicated that high GC of ca. 50 % was enriched

versus the reads of the directly sequenced DNA

(Fig. 2). The reasons for these biases are obscure,

and a similar bias was found for environmental

BAC libraries (Feingersch and Beja 2009). How-

ever, fosmid cloning provided a complementarity

to direct pyrosequencing, providing a way to

access microbes that were relatively less abun-

dant in the sample such as marine Euryarchaea or

cyanophages in the case of marine samples from

the photic zone. Also it provided much larger

contigs (up to 44 Kbp and close to 200 contigs

over 10 Kbp). The importance of long contigs for

interpreting metagenomic datasets cannot be

stressed enough since annotation of large clusters

of genes is much more reliable (see above). For

example, Ghai et al. assemble large fragments of

the genomes of marine Euryarchaea of group II

that later on were instrumental in assembling the

complete genome of one of their members from

a natural environment (Iverson et al. 2012).

A recent application described for fosmid vec-

tors has been their use for metaviriome studies.

Metaviromes have a major problem when

sequenced by HTS. Viral genes are even more

difficult to annotate, and to infer information

from their sequence is close to impossible unless

large fragments of the viral genome are available.

This problem has been solved by fosmid cloning

in a pilot study carried out by Garcia-Heredia

et al. (2012). These authors have retrieved viral

DNA from a natural extreme environment and

could reconstruct complete to near-complete

viral genomes that prey on microbes which pure

culture is very fastidious and hence not adequate

for classical phage isolation in pure culture.
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Fosmid System, Fig. 2 Frequency distribution of GC%

for the two metagenomic sequence datasets from the

Mediterranean water column at the deep chlorophyll max-

imum (50 m deep). (a) All reads obtained in the DCM

direct 454 pyrosequencing dataset. (b) All reads of the

DCM fosmids dataset after removing the vector pCC1fos

sequences. GC% of vector pCC1fos ¼ 48 %. For details

see Ghai et al. (2010)
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Besides, the chances of screening for biologi-

cal activity are better when using larger inserts,

among other things because the complete meta-

bolic pathwaymight be present, in case more than

one gene is needed, and also the genomic context

facilitates expression (e.g., better chances of the

required promoters and control machinery being

present). Many recent examples have used

fosmid clones for expression of activities such

as enzymes (Selvin et al. 2012) or bioactive

compounds (Riaz et al. 2008; Huang et al. 2009;

Parsley et al. 2011).

The third generation of high-throughput

single-molecule nucleic acid sequencing such as

Nanopore or Helicos might generate long reads

that, provided they have enough reliability, might

make fosmid cloning and sequencing obsolete

(Munroe and Harris 2010; Manrao et al. 2012).

Summary

Many authors used the fosmid vectors to describe

metagenomes. They allow to generate large librar-

ies with relatively small investment of time and

money, and they can be used for multiple pur-

poses. For example, fosmid-end sequencing pro-

vides data similar to shotgun libraries (in small

insert vectors) but can be screened for sequences

of interest for full fosmid sequencing. There are

many examples of studies carried out that way.

They can be screened by PCR for genes of interest

such as 16S rRNA or others. Fosmids are also

better vectors for expression screening by biolog-

ical activity. The advent of high-throughput

sequencing technologies provides new opportuni-

ties for sequencing and screening fosmids. How-

ever, long read single-molecule sequencing might

replace the need for fosmid cloning and render this

metagenomic approach obsolete.
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Definition

Protein-coding genes are functional units in

genomes that encode for proteins.

FragGeneScan is a hidden Markov model

(HMM)-based predictor of incomplete and com-

plete genes from short reads or complete

genomes of prokaryotes.

Introduction

Identification of genes is one of the most impor-

tant and challenging problems in whole microbial

genome sequencing projects (Davidsen et al.

2001; Aziz et al. 2008; Stewart et al. 2009). In

metagenomics, gene finding can provide the

opportunity to elucidate the activities and interac-

tions of genes within an environmental sample,

from which the metabolic and signaling pathways

specific to the environment can be reconstructed

and identified (Turnbaugh et al. 2009; HMP con-

sortium 2012).Most commonly, genes encoded by

metagenomes have been identified by using

homology-based methods such as BLASTX

(Altschul et al. 1990; Meyer et al. 2008), which

however is facing a challenge due to the large

amount of sequencing data evenwith recent devel-

opments of faster tools including RAPSearch

(Ye et al. 2011; Zhao et al. 2012). Homology

searches against known protein databases, how-

ever, cannot be used to predict novel genes,

although discovering new genes is one of the

most important aspects in metagenomics research.

Alternatively, sequence conservation information

can be utilized for prediction of novel protein-

coding genes (Krause et al. 2006; Yooseph

et al. 2008); for example, a Ka/Ks value of ~1 for

a group of similar sequences indicates that these

sequences are under no selective pressure and

hence unlikely to code for proteins. This way,

novel families that have multiple members in

a metagenomic dataset can be identified

(Yooseph et al. 2008). The other straightforward

solution to novel gene prediction in metagenomics

is to use feature-based approaches such as proba-

bilistic models to evaluate the probabilities of

open reading frames (ORFs) being protein-coding

regions (Noguchi et al. 2006, 2008; Hoff

et al. 2009), in a manner similar to conventional

gene-finding methods such as Glimmer and

GeneMark (Lukashin and Borodovsky 1998;

Salzberg et al. 1998; Delcher et al. 1999).

Short read length and sequencing errors are

two major issues that pose significant challenges

to gene prediction: incomplete genes (gene frag-

ments) are difficult to predict, and sequencing

errors may cause frameshifts that further compli-

cate gene prediction. The average length of genes

in microorganisms is about 950 bps (Noguchi

et al. 2006), which is much longer than the

sequencing reads generated by most NGS

(Morozova et al. 2009; Metzker 2010; Quail

et al. 2012). Different NGSmethods now produce

sequencing reads of various lengths ranging from

100 bps (from Illumina sequencers) to thousands

of base pairs (PacBio sequencing) and have dif-

ferent error profiles (Morozova et al. 2009).

Sanger sequencers produce reads with an error

rate of up to 1 %, whereas 454 sequencers pro-

duce reads with an error rate of up to 3% (Richter

et al. 2008; Hoff 2009). Illumina sequencing

technology may produce reads that have high

mismatch rates, especially when relatively long

reads are acquired (e.g., G is mistaken as T, and in

later cycles A, C, and G are mistaken as T)

(Kircher et al. 2009). In 454 sequencing reads,

sequencing errors tend to occur in the homopol-

ymer regions, resulting in frequent insertions and

deletions. Most of the sequencing errors in
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PacBio reads are also indels (Carneiro

et al. 2012). It has been shown that ORF-based

gene prediction methods are more substantially

affected by sequencing errors (indels) that cause

frameshifts (Hoff 2009; Tang et al. 2013). As

a consequence, programs that are currently avail-

able for gene prediction from short reads show

a significant decrease in their performance as the

sequencing error rate increases. For example,

a low sensitivity of 26–43 % was observed with

sequencing error rate of 2.8 % (Hoff 2009).

FragGeneScan Algorithm

The core of FragGeneScan (Rho et al. 2010) is

a hidden Markov model (HMM) (Rabiner 1989),

which incorporates codon usage bias, sequencing

error models, and start/stop codon patterns in

a unified model. FragGeneScan HMM consists

of two-level representations based on data

abstraction. FragGeneScan considers separate

states representing the gene regions in the for-

ward strand and the reverse strand of a nucleotide

sequence, such that it can predict genes simulta-

neously from both strands. The model has seven

superstates, representing gene regions, start

codons and stop codons in both the forward

(three states) and backward strands (three states),

and noncoding regions (one state), respectively.

The states for gene regions consist of six consec-

utive sets of a match state, an insertion state, and

a deletion state, which collectively correspond to

a six-periodic inhomogeneous HMM. Each

match state in the gene regions uses a second-

order Markov chain to model the codon usage.

The state for noncoding regions is based on

a first-order Markov chain. FragGeneScan also

incorporates the sequence patterns for each start

codon (ATG, GTG, and TTG) and stop codon

(TAA, TAG, and TGA) in the start and stop

state, respectively.

FragGeneScan HMM has a unique feature. By

allowing transitions between the insertion/deletion

states and the match states, this model effectively

detects frameshifts that are caused by indel errors

in sequencing. Considering that complete genomic

sequences are unlikely to contain indel errors, the

transition probabilities to insertion and deletion

states are set to 0 when applying FragGeneScan

to gene prediction in complete genomic sequences.

Given a short read (or a complete genome), the

gene prediction problem is to find the best path of

hidden states (see below) that is most likely to

generate the observed nucleotide sequence,

which can be solved by the Viterbi algorithm.

FragGeneScan reports genes if they meet the

following three conditions: (1) the length of the

genes is longer than 60 bps, (2) the genes start in

a start state (start codon) or in a match state

(internal region of genes), and (3) the genes end

in a stop state (stop codon) or in a match state

(internal region of genes). Therefore,

FragGeneScan can predict complete genes as

well as partial (fragmented) genes without start

and/or stop codons. Since the probability of gene

regions and noncoding regions is calculated

solely based on the composition of sequences

(which is consistent regardless of the read length

and gene length), FragGeneScan is more robust

when input sequences are of different lengths.

Applications of FragGeneScan

FragGeneScan software is available as open

source on http://omics.informatics.indiana.edu/

FragGeneScan. It has been incorporated into sev-

eral metagenomic analysis pipelines, including

MG-RAST (http://press.igsb.anl.gov/mgrdev/

under-the-hood/mg-rast-tools/fraggenescan/),

IMG/M (Markowitz et al. 2012), WebMGA

(Wu et al. 2011), and EBI metagenomics service

(Wu et al. 2011).

Summary

Gene prediction in short reads (and assemblies)

will remain a challenging problem, even with

recent advances in the field (Tang et al. 2013).

Proteins predicted from environmental sequences

have already greatly expanded the universe of

protein sequences. Not surprisingly, an increas-

ingly large number of these proteins we are get-

ting are hypothetical proteins. Functional
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prediction of these hypothetical proteins will play

a key role in elucidating their functions, which

however, will be an even more daunting task.
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Definition

A crucial step in metagenomic data analysis is

fragment recruitment, a process of aligning
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sequencing reads to reference genomes. FR-HIT

offers high speed and high sensitivity in

recruiting large-scale metagenomic reads.

Introduction

Microbiome data are directly obtained from

various environments and contain genomics

information of many known and novel microor-

ganisms. An important step to study these organ-

isms’ identity and abundance is to align the

sequencing reads against the available reference

genomes. This process was called fragment

recruitment in the Global Ocean Sampling

(GOS) project that surveyed the world’s oceans

(Rusch et al. 2007).

A metagenomic dataset may have many novel

species without available reference genomes.

Even if references are available, the microbial

species may undergo large variations. So

a fragment recruitment method needs to find all

significant alignments with arbitrary number of

mismatches and gaps.

There are many available alignment pro-

grams that can be considered for fragment

recruitment. In terms of accuracy, BLAST is

the best tool because it can identify very remote

homology so it was used in earlier studies such

as GOS. But it is too slow for computing reads

from the next-generation sequencing (NGS)

platforms. The new generation of mapping pro-

grams, such as SOAP (Li et al. 2008), Bowtie

(Langmead et al. 2009), BWA (Li and Durbin

2009), and many others, are orders of magnitude

faster than BLAST. However, these mapping

programs only tolerate a few mismatches so

they are not suitable for recruiting metagenomic

reads.

FR-HIT is a very fast program to recruit

metagenomic reads to homologous reference

genomes (Niu et al. 2011). It offers both high

speed and high sensitivity in recruiting NGS

reads. A C++ implementation of FR-HIT and

more details of this method are available at

http://weizhongli-lab.org/frhit.

Methods

FR-HIT adopts a seeding strategy with

overlapping q-gram hashing to locate candidate

matching blocks on the reference sequences and

then applies an effective filtering within the can-

didate blocks to filter out blocks that do not meet

the minimum criteria for containing an alignment

with specified parameters. For each candidate

block that passed the filter, the best matching

subregions between a candidate block and

a read are determined and used subsequently by

the banded Smith-Waterman algorithm to carry

out the actual alignment efficiently, which will

finally verify if this can be a valid recruitment hit.

Constructing Overlapping Q-Gram

Hash Table

All reference sequences are stored together with

a hash lookup table to rapidly locate q character

overlapping q-gram. The overlapping q-grams

are sampled at equidistant steps along the refer-

ence sequences. A reference of length m contains

(m – q)/(q – p) + 1 q-grams with an overlap of

p bases. Here q and p are user-adjustable

parameters.

Identifying Candidate Matching Block

The candidate blocks are fragments on reference

sequences that will be further considered for

alignment with the query. For each query, all its

overlapping q-grams are used to scan the q-gram

hash table and collect the q-grams shared by

reference sequences. Candidate blocks are

derived from clusters of pieces on reference

genomes marked by the shared q-grams.

Q-Gram Filtering and Banded Alignment

Q-gram filtering strategy was used before in

QUASAR (Burkhardt et al. 1999) based on the

q-gram lemma (Jokinen and Ukkonen 1991;

Owolabi and Mcgregor 1988), which states two

sequences of length n with Hamming distance e
share at least n + 1 – (e + 1)q common q-grams.

FR-HIT calculates the maximal number of mis-

matches according to user-specified alignment

cutoff value and rejects the candidate blocks
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that do not have enough common q-grams. In this

step, the length of q-gram is 4. After filtering,

banded alignments between the query and the

candidate blocks that passed the filter are

performed.

Performance of FR-HIT

The fragment recruitment performance of

FR-HIT was compared to some widely used

short-read mapping and sequence alignment

tools including BLASTN, MegaBLAST,

SOAP2, BWA, BWA-SW, SSAHA2, BLAT,

and LAST using four metagenomic datasets of

up to one million reads covering 454 GS20,

454 GSFLX, 454 Titanium, and Illumina plat-

forms. Reads are aligned to available microbial

reference genomes and considered recruited if the

alignments are at least 30 bp and at least 80 %

identity.

The overall comparison of CPU time and the

number of recruited reads are shown in Fig. 1.

On average, FR-HIT is ~2 orders of magnitude

faster than BLASTN with similar recruitment

rate. FR-HIT is slower than the mapping pro-

grams SOAP2, BWA, and BWA-SW, but it

recruits several times more reads.

Fragment Recruitment Viewer

The results of alignments from FR-HIT can be

interactively visualized using Fragment

Recruitment Viewer, a tool that plots the align-

ments on a 2D map where the x-axis is the

genome coordinate and y-axis is the alignment

identity (Fig. 2). The map can be operated

like a Google Map so that users can explore

the recruitment alignments from one or

multiple samples to many reference genomes.

Fragment Recruitment Viewer is available

from http://weizhongli-lab.org/mgaviewer.

Some pre-calculated recruitment results using

FR-HIT are available from the CAMERA

project (http://camera.calit2.net).

FR-HIT Overview, Fig. 1 Recruitment rate and speed of FR-HIT and other programs for four datasets. The x-axis is the

ratio of CPU time relative to BLASTN; y-axis is the ratio of number of recruited reads relative to BLASTN
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Summary

FR-HIT is an important tool to perform fragment

recruitment analysis for metagenomic sequences.

The recruitment results can be visualized using

the fragment recruitment reviewer. They can also

be analyzed to provide taxonomy and function

annotations. As a fast alignment tool, FR-HIT can

also be used for many applications such as filter-

ing out human contaminations for human

microbiome samples.
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Synonyms

Host-microbiota interactions

Definition

Functional analysis of a metagenome (combined

genomes of a defined system) with the aim to

understand and/or identify single components of

the interaction of a microbe with specific cells.

Introduction

Complex ecosystems often exert several niche-

specific functions. Dependent on their entangle-

ment and the accessibility of the ecosystem, the

identification and analysis of these single func-

tions can be challenging.

Cultivability and metabolic interdependence

of microbes in their ecosystems have confronted

microbial ecologist with “the great plate-count

anomaly” (Staley and Konopka 1985) since the

beginning of their studies. The term summarizes

the great discrepancy between the loads of micro-

scopically observed bacteria in an environmental

sample and the lower numbers obtained using

culture-dependent counting techniques, indicat-

ing the lack of representativeness of culture-

dependent techniques in the study of most com-

plex bacterial ecosystem.

The development of molecular cloning

approaches led microbial ecologists to explore

the enzymatic potential of their ecosystems by

heterologous expression. They developed tech-

niques to extract total genomic DNA of bacterial

origin from complex environmental samples.

These metagenomes can subsequently be

expressed in a well-known and cultivable host

using fosmids, cosmids, or bacterial artificial

chromosomes (BACs). The first application of

this technique allowed the identification of for-

merly unknown fibrolytic enzymes from, among

others, anaerobic and Gram-positive bacteria

(Healy et al. 1995) usingE. coli (a Gram-negative

bacterium) as a host. The use of heterologous

expression of the metagenome of an ecosystem

to identify functionalities of uncultivable bacteria

was later coined “functional metagenomics” as

opposed to the use of molecular techniques for

phylogenetic characterization and in silico func-

tional predictions of microbial ecosystems called

metagenomics.

Human Metagenomics

With the discovery of the importance of the

human microbiota for human health, the study

of the different ecological niches of the human

body gained a lot of attention in the late 1990s.

All over the human body to date, five principal

niches were addressed: the skin, nasal, oral,

urogenital, and gastrointestinal microbiota

(Huttenhower et al. 2012). Based on the rapid

development of the next-generation sequencing

technologies, these complex ecosystems have
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been explored mainly through metagenomic

studies of their phylogenetic composition and

their metabolic repertoire as far as in silico pre-

diction is possible.

Most attention has been focused on the intes-

tinal microbiota. Not only because of its unique

bacterial density but also because of the large

mucosal interface that exposes the human body

to this bacterial load. The study of germ-free

animals and large human cohorts revealed corre-

lations between the composition of the intestinal

microbiota and physiological conditions of the

host, such as the proper development of immu-

nity, a balanced metabolism, and the systemic

inflammatory status (Cerf-Bensussan and

Gaboriau-Routhiau 2010). This systemic impact

indicates an interaction between the intestinal

microbiota and the host that has since been sub-

ject to intensive scientific research.

Functional Studies of the Intestinal
Microbiota

The human intestinal microbiota harbors

a genetic repertoire >25 times larger than that

of each human host (Qin et al. 2010) encoding

a multitude of functions that contribute directly

or indirectly to host’s physiology. Cultivation

efforts as compared to molecular techniques

revealed that 70–80 % of the dominant bacteria

are not yet cultured. Therefore up to 80 % of the

intestinal microbes have no representative in any

bacterial strain collection for potential functional

studies (Suau et al. 1999; Hayashi et al. 2002).

Functional studies of intestinal bacteria have

therefore long been limited to the study of

cultivable bacteria or the study of monoxenic

and gnotobiotic animal models. In order to cir-

cumvent this limitation, culture-independent

methods such as functional metagenomics have

been adapted and used to study functions of the

human intestinal microbiota (Table 1). Initially

the approach was used to search for enzymatic

activities specific for intestinal metabolic

functions.

Using a BAC library prepared in an E. coli

host, Walter and colleagues screened a mouse

intestinal metagenome for b-glucanase activity

identifying 3 out of a total 5,760 clones

(containing a total of 320 Mb of genomic DNA,

each clone bearing on average 55 Kb) encoding

enzymes of interest (Walter et al. 2005).

Similarly, by screening a small fragment

metagenomic library (14,000 clones,

representing 77 Mb of genomic DNA, cloned

DNA fragments had sizes of up to 8 kb) derived

from a cow rumen content, Ferrer and colleagues

identified and characterized 22 clones with dis-

tinct hydrolytic activities (Ferrer et al. 2005). In

these two studies, the screening process only

allowed a very limited coverage of the actual

metagenome due to the size of the library.

Although several studies have identified hydro-

lytic enzymes using plasmid libraries, one of the

key issues of the functional approach is to obtain

libraries bearing large fragments of DNA to have

access to full operons and operational gene clus-

ters, i.e., from 10 to 50 Kb.

Indeed, Jones and colleagues developed

a more promising approach by screening about

90,000 metagenomic fosmid clones derived from

a human fecal sample (representing a total of

about 3.6 Gb bacterial DNA which is about one

Functional Metagenomics of Bacterial-Cell Crosstalk, Table 1 Reported functional metagenomic screenings of

the human intestinal microbiota

Target n� of clones tested Hit rate (%) Reference

Enzymatic activity Bile salt hydrolases 89,856 1 � 10�3 (Jones et al. 2008)

Carbohydrate-active enzymes 156,000 2 � 10�3 (Tasse et al. 2010)

b-Glucuronidase 4,608 1.79 (Gloux et al. 2011)

Host –Microbe interaction Cell proliferation 20,725 4 � 10�2 (Gloux et al. 2007)

NF-kB activation 2,640 6 � 10-2 (Lakhdari et al. 2010)
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equivalent of the dominant intestinal

metagenome) for bile salt hydrolase activity

(Jones et al. 2008). They observed that these

functions were present and enriched in all major

gut bacterial divisions including Archaea,

demonstrating the powerful capacities for

discovery of the functional metagenomic

approach. In the same way, Tasse and colleagues

applied high throughput functional screenings

to search human gut-derived metagenomics

clones (156,000 clones representing 5.5 Gb of

DNA) for their capacity to hydrolyze different

polysaccharides (Tasse et al. 2010). This exhaus-

tive analysis of carbohydrate-active enzymes

allowed the identification of highly prevalent

genes encoding enzymes that are involved in

the catabolism of dietary fibers in the human

intestinal tract, demonstrating again the

strategic interest of the functional metagenomic

approach.

Functional Metagenomics and Host-
Microbiota Interaction

The intestinal microbiota had successfully been

screened for its enzymatic activities with the help

of metagenomic libraries using fosmids, cosmids,

or bacterial artificial chromosomes (BAC) with

single, low copy, or copy control vectors. Thus

Gloux and colleagues set out to test if these

metagenomic libraries were suited for the study

of bacteria-host cell interactions at the intestinal

interface, targeting the intestinal epithelial cells.

They therefore screened a library of over

20,000 clones for their influence on proliferation

of HT-29 human intestinal epithelial cells and

CV1 kidney fibroblast showing that indeed this

approach could reveal genes of interest in the

dialogue between the host and its microbiota

(Gloux et al. 2007).

The same group further developed this

approach performing the screening of over

2,500 clones on human colorectal carcinoma

cell lines, namely, Caco-2 and HT-29, which

were stably transfected with NF-kB-dependent

reporter genes (Lakhdari et al. 2010). NF-kB is

a key transcription factor in intestinal epithelial

cells controlling, among others, the inflammatory

response. This unique combination of reporter

cell technology and functional metagenomics

established a new approach to identify specific

regulatory elements of the intestinal microbiota

in the complex interactions between the intestinal

microbiota and its host. They further identified

the genes implicated in the observed effect using

random transposition on the bioactive clones,

showing that this approach can be used to identify

genes involved in bacteria-cell crosstalk at the

level of intestinal epithelium.

In order to reach a reasonable level of cover-

age of the metagenomic samples, this approach

has been automated and in parallel screens have

been developed for other transcription factors

(AP1, PPARg. . .) or target genes (ANGPTL4,

TSLP, TGFb. . .) in order to allow the high

throughput application necessary to identify bio-

active compounds of the intestinal microbiota

(www.mgps.eu). The identification of these bio-

active clones and the corresponding genes, mol-

ecules, and mode of action will help to untangle

the complex interactions of the intestinal

microbiota with its host.

Functional metagenomics can also be applied

to identify indirect interactions of the intestinal

microbiota with its host. Gloux and colleagues

identified b-glucuronidases using a functional

metagenomic screen on libraries derived from

intestinal samples from healthy individuals and

Crohn’s disease patients (Gloux et al. 2011). The

study revealed the presence of a new class of

b-glucuronidase that seems to be gut-specific

and is hypothesized to play a role in the

metabolism of xenobiotics. On this background,

functional metagenomics in the human intestine

could be a powerful tool to identify specific

biodegradation or conversions observed in the

intestine that can have physiological effects and

for which the dominant causal agent is often

unknown.

Up to now all reported functional

metagenomic studies of host microbe interactions

published were performed using E. coli as a host
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strain. Since the Gram + bacteria represent a large

part of the intestinal microbiota and most of the

probiotic bacteria described to have beneficial

effects on human health are Gram+, great efforts

have been made to develop easy cloning tools for

such studies in Gram + hosts. Since the expres-

sion of heterologous genes in E. coli gave access

to around 40 % of the genes for both Gram + and

Gram- bacteria (Gabor et al. 2004), it makes it

a suitable but not universal host. The utility of

a Gram + bacterial host is based on eventual

potential preference for RBSs and hence

increased transcription but also on secretion of

proteins through Gram + specific signal peptides

or eventual surface exposure of bioactive proteins

through cell wall anchoring motifs. Screenings of

metagenomic libraries in Streptomyces spp.

(Wang et al. 2000) and even Archaea (Albers

et al. 2006) have successfully been performed

for other ecosystems. Efforts for targeted expres-

sion of candidate proteins of the human intestinal

microbiota have been made by developing pre-

diction tools for surface-exposed and secreted

proteins in Gram + hosts in order to mine the

abundantly available metagenomic data

(Barinov et al. 2009). The expression of the iden-

tified candidate genes in a Gram + host such as

Bacillus subtilis or Lactococcus lactis will allow

functional screening in cell-based assays. Though

such tools have been used for functional screens

of pathogen-cell interaction, a functional

metagenomic study of interactions between com-

mensal bacteria and host cells using a Gram +

host has not been published yet.

Summary

Metagenomic studies are applied to complex sys-

tems. Functional metagenomics is no exception.

If we study a complex system, simplification can

bring clarity. This is the case if we search for

specific enzymatic activities in a complex eco-

system. Simultaneously, simplification harbors

the danger of oversimplification and therefore

error or deception.

The authors consider functional metagenomics

as a very useful and powerful tool to screen

complex ecosystems for specific functions and

believe it can be extended to the study of host-

microbiota interactions as performed in the stud-

ies mentioned above. For a full understanding of

the complex interaction of a microbiome with its

cellular counterpart, this is however only an

exploratory tool that will always require valida-

tion in a more holistic and thus more complex

model (Fig. 1).

Functional
Metagenomics of
Bacterial-Cell Crosstalk,
Fig. 1 Possible models to

study host-microbiota

interactions ordered by

complexity of the microbial

(ordinate) and cellular

model (abscise) toward the

understanding of human

intestinal physiology
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Definitions

b-glucuronidases: Enzymes belonging to glyco-

side hydrolase family 2 that catalyze the cleavage

of b-D-glucuronic acid residues from a range of

different compounds.

Functional metagenomics: Screening of

metagenomic DNA cloned into heterologous

hosts for the expression of specific functions.

Sequence-based metagenomics/metagenomic

sequence mining: In silico analysis of

metagenomic sequence libraries for the presence

of genes with sequence similarity to known genes.

Degenerate PCR: Usage of a mixture of similar

PCR primers designed to amplify the same gene

from different organisms, by targeting highly

conserved gene regions.

Introduction

Intestinal b-glucuronidases (EC 3.2.1.31) are

among the major enzyme families associated

with chemical detoxification (Fig. 1). They cata-

lyze the hydrolysis of b-glucuronides naturally

present in the human diet, in drugs, or those

produced in the liver by glucuronidation via

UDP-glucuronosyltransferases (EC 2.4.1.17),

which is the major conjugation process in mam-

mals (Tukey and Strassburg 2000; Haiser and

Turnbaugh 2013). Numerous lipophilic com-

pounds including metabolic wastes, vitamins,

steroid hormones, plant- and animal-derived sec-

ondary metabolites, xenobiotics, and pharmaceu-

ticals are thus converted to water-soluble

compounds, allowing excretion via the bile and

the digestive tract. The b-glucuronidase activity

on glucuronide compounds in the gut lumen is

primarily due to intestinal bacteria (Rod

et al. 1977). This activity regenerates aglycone

insoluble forms that are frequently reabsorbed by

the host through the enterohepatic circulation,

thus increasing circulating aglycone concentra-

tions and extending body exposure. The presence

of circulating hormones and xenobiotics is sub-

stantially due to this phenomenon and linked to

bacterial b-glucuronidase activity. With regard to

toxic aglycones, the bacterial activity is largely

used as a marker of the potentially harmful

effects of commensal bacteria, particularly in

studies relating to colorectal cancer (McBain

and Macfarlane 1998). b-glucuronidase activity

can also lead to increased toxicity of chemother-

apeutics; such toxic effects were reduced by

coadministration of a b-glucuronidase inhibitor

in an animal model (Haiser and Turnbaugh

2013). In contrast, it is also involved in the ben-

eficial bioconversion of dietary compounds

including lignans, flavonoids, sphingolipids,

glycyrrhizin, or baicalein (Kim et al. 1998,

2000; Schmelz et al. 1999).
b-glucuronidase activity is phylogenetically

widely distributed among the microbiota and is

present in numerous genera including

Bacteroides, Clostridium, Eubacterium, Lacto-

bacillus, Ruminococcus, Faecalibacterium,

Roseburia, Streptococcus, Peptostreptococcus,
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Enterococcus, Bacillus, Staphylococcus,Coryne-
bacterium, Acinetobacter, Catenabacterium, and

Propionibacterium (Beaud et al. 2005; Dabek

et al. 2008; Russell and Klaenhammer 2001;

McBain and Macfarlane 1998). However,

because of the difficulty differentiating

b-glucuronidase from b-galactosidase genes,

very few corresponding protein or gene

sequences have been clearly annotated as

b-glucuronidase in the databases. The

b-glucuronidase genes annotated in NCBI pri-

marily are associated with the four major bacte-

rial phyla present in the digestive tract:

Bacteroidetes, Firmicutes, Actinobacteria, and

Proteobacteria.

Taking into account the great diversity of glu-

curonides likely present in the digestive tract, the

question of the diversity and specificities of

b-glucuronidases is crucial to discriminate bene-

ficial from harmful intestinal bacteria with regard

to this activity. A few studies have suggested

a diversity of enzyme action. Some bacterial

groups are thought to exert activity toward

para-nitrophenyl glucuronide or phenolphthalein

glucuronide (Nanno et al. 1986), while others

activate 1-nytropyrene (Morotomi et al. 1985).

b-glucuronidases from Escherichia coli

strains were more strongly induced by

methyl-b-D-glucuronide than were those from

other bacterial species (Tryland and Fiksdal

1998). In the case of glycyrrhizin metabolism,

highly specialized b-glucuronidase activities

were involved in cleavage of the two glucuronic

acid residues carried by the molecule (Kim

et al. 2000).

Genetic diversity has been demonstrated

within the gusA genes of E. coli (Ram

et al. 2004) and Ruminococcus gnavus species

(Beaud et al. 2005) and for the genetic environ-

ment of different gusA genes of Ruminococcus

gnavus strains (Beaud et al. 2005). We herein

summarize the most recent results of

metagenomic investigations of b-glucuronidase
diversity within the human intestinal microbiota,

derived from function-based and sequence-based

approaches. This provides key elements toward

a better understanding of the “ambiguous” roles

of these enzymes in handling the large diversity

of glucuronides reaching the colon.

Functional Screening-Based
Identification of Human Fecal
b-Glucuronidases in Metagenomic
Clone Libraries

The genetic information from complex microbial

ecosystems can be cloned as large fragments of

genomes (Handelsman 2004) into libraries that

can be used to detect gene clusters or operons

allowing functional investigation. This approach

has recently been applied to the intestinal

gut

b-glucuronides
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Functional
Metagenomics of
Human Intestinal
Microbiome
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Activity, Fig. 1 Role of

gut bacterial

b-glucuronidase activity in

the detoxification of dietary

glucuronides, xenobiotics,

drugs, and endogenous

compounds
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ecosystems and offers the potential to identify

new genes from the microbiota, including its

uncultured fraction. It is expected that about

40 % of enzymatic activities should be recover-

able in E. coli (Gabor et al. 2004) and this host

can express a significant number of genes

(Handelsman et al. 1998; Rondon et al. 2000).

The metagenomic approach has revealed new

enzymes (Hayashi et al. 2005; Humblot

et al. 2007; Yun et al. 2004; Kim et al. 2006,

Tasse et al. 2010, Cecchini et al 2013), anticancer

products (Piel et al. 2005), and compounds

important for industrial, biotechnological, or

therapeutic applications (Streit and Schmitz

2004), all having no homolog in the host bacte-

rium (E. coli). b-glucuronidase represents an

important function of interaction between the

intestinal microbiota and the host and a relevant

intestinal activity for human health.

Metagenomic libraries from microbiota

obtained from human ileum or feces were

constructed in E. coli and their phylogenetic

diversity analyzed (Manichanh et al. 2006). The

first functional approach using these libraries

argued in favor of an efficiency of functional

expression from the four dominant phyla of the

digestive tract (Gloux et al. 2007). Despite the

presence of b-glucuronidase genes in the host

bacterium (E. coli), we designed a screening

strategy that allowed the identification of numer-

ous bioactive clones. Following primary screen-

ing for metagenomic clones overexpressing

b-glucuronidase activity, we subcloned the

inserts in a uidA- E. coli strain (Gloux

et al. 2011). Overall, 19 out of 6,144

metagenomic clones tested had fosmids able to

express a b-glucuronidase activity based on

para-nitro-phenyl-b-D-glucuronide bioconver-

sion (Bardonnet and Blanco 1992), with levels

ranging from 0.02 to 0.88 units. Phylogenetic,

genetic, and functional characteristics of

b-glucuronidase-positive inserts were investigated.
A novel BG gene encoding a b-glucuronidase was
identified in both Firmicutes and Bacteroidetes

genetic backgrounds. The protein encoded by the

gene has two conserved glutamate residues

required for catalysis (Salleh et al. 2006) and the

conserved predicted TIM barrel domain structure

of glycosyl hydrolase family 2 enzymes (Marchler-

Bauer and Bryant 2004). The BG protein also had

unique features, including an additional C-terminal

domain compared to known b-glucuronidases
and primary sequence specificities that led to the

proposal of novel consensus motifs for the

Firmicutes-borne BG and for glycosyl hydrolase

family 2 (Gloux et al. 2011).

On the basis of sequence specificities, the fre-

quency of the novel Firmicutes or Bacteroidetes

BGs within the human gut metagenomes could be

assessed. It was such that at least one homolog

could be found within approximately 104 bacte-

rial genes, making it by far the most dominant BG

gene in human gut metagenomes. It was absent

from other environmental metagenomes, includ-

ing animal guts, making it specific to the human

gut metagenome (Fig. 2). It was present in the

genomes of numerous human intestinal commen-

sals belonging to the phylogenetic and

Functional Metagenomics of Human Intestinal
Microbiome b-Glucuronidase Activity, Fig. 2 Abun-

dance of Firmicutes BG (blue), Bacteroidetes BG

(orange), and uidA homologs (green) in different

environments. Abundance was assessed as hits per bil-

lion base pairs to correct for size difference of

metagenomic datasets. The hit threshold was set as at

least 50 % identity with 50 % sequence coverage. For full

details of the different genomic hits, see Gloux et al.

(2011)

F 194 Functional Metagenomics of Human Intestinal Microbiome b-Glucuronidase Activity



metagenomic cores described for the human

microbiome (Tap et al. 2009; Qin et al. 2010).

Finally, gene duplications and its spread across

diverse phylogenetic lineages suggested an eco-

logical drive to ensure the presence of the activ-

ity, via functional redundancy, in spite of

population variability between individuals.

In conclusion, a novel class of BG was

revealed by our functional metagenomic

approach that may be part of a functional core

specifically evolved to adapt to the human gut

environment and potentially important in

maintaining health.

Sequence-Based Analysis of Human
Fecal b-Glucuronidases

As described above, two different

b-glucuronidase genes have been described, the

gus (also referred to as gusA or uidA) gene, which
is present in many bacteria as well as higher

organisms, and the BG gene, which was identi-

fied by a functional metagenomic approach

(Gloux et al. 2011). Human fecal metagenomic

sequences can be searched to establish the distri-

bution of b-glucuronidases within the human gut

community. Degenerate primers targeting highly

conserved regions were designed to amplify both

types of b-glucuronidase gene from human fecal

DNA (McIntosh et al. 2012). This revealed that

the gus gene is present in many different phylo-

genetic groups, whereas the BG gene appears

only to be present in bacteria related to

Bacteroidetes and Firmicutes. Over 30 different

sequence types (operational taxonomic units,

OTUs) were found for both genes, with only

a few of those being highly abundant (Fig. 3).

The majority of OTUs, including some of the

abundant ones, corresponded to sequences

that currently cannot be assigned to specific bac-

teria, as either they remain uncultured or their

genomes have not yet been sequenced. Three

Lachnospiraceae species appear to be among the

main carriers of gus (Fig. 3). A recent study that

compared levels of human fecal b-glucuronidase
activity with overall community diversity also

concluded that b-glucuronidase activity was

mostly due to particular taxa rather than the

wider community (Flores et al. 2012). Interest-

ingly, the phylogenetic relationship of gus genes

in known bacteria often did not agree with their

relatedness based on the 16S rRNA gene

sequence (McIntosh et al. 2012), which is com-

monly used to classify bacteria phylogenetically.

Thus, it appears that the gus gene has been

obtained by horizontal gene transfer in several

bacteria. For the BG gene, there was a clear phy-

logenetic distinction between Firmicutes and

Bacteroidetes, but many bacteria, especially

among the Bacteroidetes, carried several copies

of the gene with slightly divergent sequences.

The degenerate PCR approach described here

to investigate specific functions within microbial

communities may miss sequences with slight var-

iations in the primer regions that may neverthe-

less encode the same function. The data were

therefore compared to a large metagenomic

sequence library of 85 healthy human volunteers

(Qin et al. 2010), which showed that the vast
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Clostridiaceae
Peptostreptococcaceae
Streptococcaceae

Actinobacteria:
Bifidobacteriaceae

Proteobacteria:
Enterobacteriaceae
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Bacteroidaceae

Unknown OTUs
Unknown OTUs likely

belonging to
Firmicutes

Unknown OTUs likely 
belonging to
Bacteroidetes

gus

BG

Roseburia
intestinalis

OTU3
OTU24

Eubacterium
eligens

Rum.
gnavus

OTU15
Bacteroides
vulgatus

B.
ovatus

Functional Metagenomics of Human Intestinal
Microbiome b-Glucuronidase Activity, Fig. 3 Distri-

bution of different types of b-glucuronidase gene in

feces of human volunteers (gus gene: 685 sequences

from ten volunteers, BG gene: 400 sequences from six

volunteers). For full details of the different OTUs

detected, see McIntosh et al. (2012)
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majority of sequences had indeed been captured

by the degenerate PCR approach (McIntosh

et al. 2012). There were slight differences in

relative abundance, which is not surprising con-

sidering the difference in technical approach as

well as volunteer numbers, but overall both

approaches correlated significantly in terms of

relative abundance as well as prevalence of dif-

ferent OTUs. Thus, a targeted approach based on

degenerate primers appears to provide a good

coverage of b-glucuronidase genes. It currently

also allows for a more in-depth analysis per vol-

unteer, as the actual metagenomic sequence cov-

erage per volunteer in the pioneer metagenomic

sequencing studies is relatively low and many

genes are only partially covered. With the vast

advances in sequencing technology, however,

direct metagenomic mining for specific functional

genes will become increasingly attractive.

Sequence-based analysis of functional genes

poses the risk of assigning functions to genes that

may in fact carry out a different activity, and the

actual enzyme activity will ultimately have

to be established for representatives of gene var-

iants less closely related to biochemically

characterized ones. Especially for glycoside

hydrolases, it is often difficult to infer function

from sequence alone (▶Carbohydrate-Active

Enzymes Database, Metagenomic Expert

Resource). Both b-glucuronidase genes are

remotely related to each other based on protein

sequence identity and belong to glycoside hydro-

lase family 2, which also includes enzymes with

other specificities, including b-galactosidases
and b-mannosidases (http://www.cazy.org/GH2.

html). The gus gene has been characterized bio-

chemically in bacteria from different phyloge-

netic backgrounds (Beaud et al. 2005; Russell

and Klaenhammer 2001), and the presence of

the gene in a panel of human gut isolates corre-

lated relatively well with the detection of

b-glucuronidase activity (Dabek et al. 2008). On

the other hand, it was shown that different strains

of the same species can show differences in

enzyme activity levels when grown under the

same conditions and that the level to which

b-glucuronidase activity is induced varies in

dependence of the growth substrate and the

presence of b-glucuronides (Dabek et al. 2008;

McIntosh et al. 2012). The BG gene was identi-

fied by screening for b-glucuronidase activity

(Gloux et al. 2011), thus confirming its function.

An investigation of several bacteria that harbor

a BG gene but no gus gene revealed only low

levels of b-glucuronidase activity, in both the

absence and presence of b-glucuronide as inducer
(McIntosh et al. 2012). Thus, BG genes may only

be expressed under specific conditions that are

yet to be identified. Alternatively, some variants

of this diverse gene family may actually encode

enzymes with different substrate specificities.

In conclusion, sequence-based analysis of

genes encoding b-glucuronidases can be used to

reveal the diversity of the b-glucuronidase-
positive community and forms a solid basis for

further functional investigation of this activity in

representative organisms.

Summary

The metabolic activities of the microbial commu-

nity present in the human gut are closely linked to

the physiological status and overall health of its

host. Bacterial b-glucuronidase activity directly

interferes with one of the major host detoxifica-

tion systems for a wide range of lipophilic com-

pounds that enter the body via the diet, drugs, or

exposure to environmental pollutants, as well as

endogenous molecules. Glucuronidation of those

compounds renders them more hydrophilic and

facilitates their excretion, but b-glucuronidase
activities within the gut microbiota convert them

back to their respective aglycones, which leads to

an extended retention time in the body. Many of

those compounds are toxic or carcinogenic, but

potentially health-promoting compounds, such as

plant phenolics ingested with the diet, may also be

glucuronidated. Metagenomics can be utilized to

enhance our understanding of which bacteria in

the human gut carry b-glucuronidase activity.

A functional metagenomic approach, whereby

genes from environmental communities are

expressed in a heterologous host, has led to the

identification of a novel type of b-glucuronidase
gene, which was found to be prevalent within the
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human gut microbiota but not commonly found in

other environments. Metagenomic sequence min-

ing for this novel gene, as well as a previously

known b-glucuronidase gene, revealed the distri-

bution of these genes in different phylogenetic

lineages. These results provide a valuable founda-

tion for further functional characterization of this

important microbial activity.

Cross-References
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Pierre Monsan P, Potocki-Véronèse G. Functional
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Introduction

The enzymes of phages and other viruses were

vital to the early development of molecular biol-

ogy and are still essential tools. However, the

available viral enzymes represent a tiny sample

of the potential diversity found in the global

virosphere. Viral metagenomics has revealed

a vast diversity of novel genes and its virtually

limitless potential to provide new enzymes for

use in molecular analysis. An important chal-

lenge to both the understanding of viral ecology

and development of new viral enzymes is func-

tional characterization of metagenomic

sequences, which has lagged far behind the abil-

ity to collect sequence data. Described is

F 198 Functional Viral Metagenomics and the Development of New Enzymes



a program to identify and characterize replication

operons of viral metapopulations isolated from

natural thermal environments and develop the

gene products as thermostable enzymes for

nucleic acid amplification and sequencing.

Approaches to functionally characterize viral

replicases include (1) expression and biochemi-

cal analysis of gene products identified by

sequence similarity, (2) functional screens to dis-

cover new families of genes, and (3) assembly of

operons to predict function based on gene posi-

tion. These approaches have uncovered at least

two diverse families of replication operons

including dozens of genes for thermostable

DNA polymerases and reverse transcriptases, as

well as likely replicase subunits. In addition,

functional screens have uncovered one viral Pol

unrelated to any known protein. These enzymes

are being engineered as improved PCR, RT PCR,

and DNA sequencing reagents. Diversity in the

viral metagenomes is also being explored to opti-

mize the activity of the genes discovered in the

libraries and make them more suitable for the

targeted applications.

Gene products of phages and other viruses

(collectively referred to here as viruses) have

historically provided many of the enzymatic

tools for molecular biology. However, most of

the commonly used viral enzymes are derived

from a very limited number of cultivated viruses,

primarily phages T4, T7, lambda, SP6, and phi29,

and retroviruses Moloney murine leukemia virus

(Mo-MLV) and avian myeloblastosis virus

(AMV). The program to study hot spring virology

in Yellowstone National Park (YNP), California,

and Nevada has provided insight into viral ecol-

ogy (Otto et al. 1998; Breitbart et al. 2004;

Schoenfeld et al. 2008) and has revealed

a nearly unlimited source of diversity for the

search for new enzymes (Beechem et al. 1998;

Moser et al. 2012; Perez et al. 2012). However,

current approaches to functional analysis of viral

metagenomes, while informative, are limited by

their reliance on sequence similarity to infer gene

function. Improvements in the ability to function-

ally characterize viral metagenomes are neces-

sary to advance the field.

Thermostable DNA polymerases (Pols) have

been a major research focus due mainly to their

wide use in molecular detection and analysis.

DNA polymerases are essential for PCR (Staley

and Konopka 1985) and other target-specific

(Petruska et al. 1998; Notomi et al. 2000) and

whole genome amplification methods (Goodman

and Fygenson 1998) and are also essential com-

ponents of all the major DNA sequencing plat-

forms. Sanger (dideoxy chain termination) DNA

sequencing was the first major sequencing

method to use DNA polymerases and was

advanced by thermostable Pols (Tang

et al. 2008). All of the leading next-generation

sequencing-by-synthesis platforms (e.g., Roche/

454 FLX, Illumina Genome Analyzer, Helicos

Heliscope, Pacific BioSystems SMRT, ABI

SOLiD) (Mardis 2008b; Shendure and Ji 2008)

use at least one DNA polymerase for base dis-

crimination and/or template preparation. DNA

polymerase-based methods are driving discovery

in research labs and, increasingly, in the clinic

(Bhui-Kaur et al. 1998) as methods for nucleic-

acid-based detection of infectious agents, cancer

and genetic variation advance next-generation

diagnostics, and personalized medicine. Progress

in improving all these methods depends in part on

more suitable DNA polymerases.

Viruses are rich sources of diverse new DNA

polymerases. Compared to their cellular hosts,

viruses use a wide array of strategies to replicate

their genomes, and their genomes adopt nearly

every conceivable form, including double-

stranded and both positive and negative single-

stranded RNA and DNA forms, with linear,

circular, and multipartite topologies ranging in

size from 1.2 Mb (mimivirus) down to 3.2 kb

(hepatitis B virus) (Blanco et al. 1989; Detter

et al. 2002). While many of these replicative

strategies rely on host enzymes, a substantial sub-

set of viral families supplies its own replication

proteins. There is speculation that viruses may

have played a key role in the evolution of repli-

cation strategies used by cellular life (Koonin

2006).

As replicases, viral polymerases are function-

ally distinct from the bacterial and archaeal
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enzymes currently used in molecular biology.

During prokaryotic cellular replication,

processive leading-strand synthesis depends on

a multisubunit complex including Pol III holoen-

zyme, helicases, and primases. E. coli Pol III

holoenzyme is a 791 kD protein comprised of

nine subunits (reviewed in Xiang et al. (2008)).

Due to their complexity, no Pol III derivative has

been developed as a molecular biology reagent.

Cell-derived reagent Pols, e.g., Taq, Pfu, or

E. coli DNA polymerases, are all bacterial Pol

I or archaeal Pol II derivatives that are mainly

responsible in vivo for lagging strand and repair

synthesis, neither of which requires strand sepa-

ration or processive synthesis of long sequences.

Viral Pols are functionally more like the leading-

strand replicases and, accordingly, exhibit higher

fidelity, rates of synthesis, and processivity (Ley

et al. 2008). Phage T7 Pol, for example, incorpo-

rates 300 nt per second, six times faster than

Escherichia coli Pol I; T4 phage replicates DNA

ten times faster than its E. coli host (Heckler

et al. 1984). Phi29 Pol has a processivity of

>70,000 nucleotides (Blanco et al. 1989) (i.e., it

incorporates over 70,000 nucleotides before dis-

sociating), far greater than that of Taq Pol I,

which has a processivity of between 50 and

80 (Merkens et al. 1995). Phi29 also has

a strong strand displacement capability that,

together with its processivity, makes it the poly-

merase of choice for whole genome amplification

by multiple displacement amplification (MDA)

(Dean et al. 2001). T7 phage Pol holoenzyme

has a processivity of 1,000 nucleotides (Tabor

et al. 1987) and efficiently incorporates chain-

terminating nucleotide analogs, which facilitated

Sanger sequencing until it was displaced by

Thermo Sequenase, a Taq Pol derivative that

was engineered based on the nucleotide variation

in T7 DNA Pol that conferred efficient incorpo-

ration of dideoxynucleotides (Tabor and Richard-

son 1995). T5 Pol has both high processivity and

a potent strand displacement activity that are

independent of additional host or viral proteins

(Andraos et al. 2004). T4 DNA Pol has a high

proofreading activity that is commonly exploited

for generating blunt ends, especially in physically

sheared DNA (Karam and Konigsberg 2000).

Retroviral replicases (i.e., reverse transcriptases),

especiallyMo-MLV and AMV, are indispensable

for detection, analysis, and cloning of transcripts

and RNA viruses (Morin et al. 2008; Wang

et al. 2008). Together, these qualities make viral

Pols attractive targets for development as

reagents.

While the emphasis has been DNA polymer-

ases, viruses encode other useful enzymes. RNA

polymerases, for example, are key components of

a number of in vitro and in vivo transcription and

translation systems, as well as several

transcription-mediated amplification methods

(Guatelli et al. 1990; Compton 1991). Virtually

all ligation methods used for cloning and linker

attachment depend on T4 DNA ligase due to its

high activity on 50- and 30-extended and blunt

DNA. The integrases and recombinases of vari-

ous phages (e.g., lambda red and P1 cre/lox) have

been used to integrate genes into bacterial and

eukaryotic genomes. Resolvases (e.g., T4 endo-

nuclease VII and T7 endonuclease I) have been

used to detect single nucleotide polymorphisms

(SNPs) (Babon et al. 2003). It is likely that these

and many other methods that rely on viral

enzymes can be further improved by novel

enzyme activities. Functional metagenomic-

based enzyme discovery and development should

benefit a wide range of applications.

The enzymes that have been isolated by culti-

vation over the years demonstrate the potential of

viruses as a source of new enzymes, but greatly

underrepresent the richness of this resource. The

extreme global abundance and diversity of

viruses is well documented (Breitbart

et al. 2002; Angly et al. 2006; Dinsdale

et al. 2008; McDaniel et al. 2008; Schoenfeld

et al. 2008). A liter of ocean water contains as

many viruses as there are humans on the planet

and much more genetic diversity (Wang

et al. 2007). In fact, the bulk of the world’s

genetic diversity is probably encoded in viral

genomes. Despite the richness of the global

virosphere as a source of diverse replicative pro-

teins, standard approaches to discovering new

enzymes by cultivating the viruses have proven

extremely inefficient and few new viral enzymes

have been commercialized in the past decades.

F 200 Functional Viral Metagenomics and the Development of New Enzymes



Notably, despite their widespread potential appli-

cations and notwithstanding substantial effort,

thermostable viral Pols have completely eluded

discovery by cultivation. There are now 34 fully

sequenced genomes from thermophilic viruses in

the NCBI database (February 2010): 27 archaeal

viruses and 7 bacteriophages. None of these

genomes or broad screens of hundreds of culti-

vated Thermus phage (Lopatto et al. 2008) has

produced a thermostable DNA polymerase.

Extensive analysis of cultivated crenarchaeal

viral genomes from high-temperature environ-

ments reveals few recognizable features other

than a small number of methylases, helicases,

glycosyltransferases, and several unknown but

shared genes (Rehrauer et al. 1998). At least one

presumptive DNA polymerase has been identi-

fied in an archaeal viral genome (Baklanov

et al. 1984), but not expressed in the lab. At

least five Pols have been expressed from thermo-

philic bacteriophage genomes (Wang et al. 2006;

Schmidt et al. 2008; T. Schoenfeld, unpublished);

however, for unknown reasons, these

enzymes are only moderately thermostable and

incapable of surviving thermocycling in PCR

or sequencing, despite the thermostability of

their host Pols. In order to identify useful

thermostable Pols, more efficient approaches are

needed.

One of the main barriers to discovery of new

viral enzymes is technical challenges associated

with cultivation. It is widely noted that cultiva-

tion in the lab selects against the great majority of

Bacteria and Archaea. Cultivation of new viruses

introduces another extreme level of selection

against the vast majority of natural populations

because cultivation requires the investigator to

choose a host that can be grown in the lab,

which severely limits the comprehensiveness of

the screens. When examining extreme environ-

ments like thermal springs, which are dominated

by autotrophic microbes, this host selection is

even more limiting. Most of these cultivation

efforts have focused on viruses that infect hetero-

trophic Bacteria, especially Thermus (Reha-

Krantz et al. 1998; Karam and Konigsberg

2000; Pavlov and Karam 2000; Bebenek

et al. 2001; Blondal et al. 2003;

Ding et al. 2008; Lopatto et al. 2008; Schmidt

et al. 2008) or a small number of thermoaci-

dophilic Archaea, particularly Sulfolobus and

Acidianus (reviewed in Rehrauer et al. (1998)),

due to the relative ease of cultivating these hosts.

Metagenomics promises to overcome these bar-

riers and provide a largely unbiased sampling of

viral populations.

In some respects viral metagenomes are espe-

cially well suited for discovery of enzymes for

use in molecular analysis. Viral genomes are

highly diverse and dense with genes associated

with nucleic acid metabolism (Paulsen and

Wintermeyer 1984). For example, a typical bac-

terial genome of 2 Mb contains three to five DNA

polymerase genes, only one of which, polA,

encodes enzymes that have been used as reagents.

In contrast, a comparable 2 Mb of viral

metagenome can yield up to 40 pol genes

(Schoenfeld et al. 2008). However, the promise

of using this diversity to advance the understand-

ing of global ecology and in developing useful

enzymes from viral metagenomes is tempered by

the challenge in assigning function to the genes.

The gigabases of viral metagenomic sequence

data that have been generated over the past

decade have provided only inferential insight

into function or biochemistry of the viral genes

and, consequently, few new molecular tools.

Efforts to glean insight from metagenomes are

hampered by the nearly complete reliance on

sequence similarity coupled with the extreme

viral genomic diversity and the dearth of anno-

tated sequences. Depending on the environment,

40–90 % of viral metagenomic sequences are

unknown, novel sequences (Angly et al. 2006;

Dinsdale et al. 2008; Bench 2007; Srinivasiah

2008; Schoenfeld 2008). All the next-generation

platforms generate shorter reads that are even

more difficult to assemble or align to sequences

in GenBank, resulting in artificially low BLASTx

homologies or, conversely, artificially high num-

bers of “unique” sequence (Wommack 2008).

The VIROME database (virome.dbi.udel.edu)

has cataloged 201 Mb of predicted open reading

frames (ORFs) from long read sequence data

(Feb 2010), the vast majority of which are novel

and functionally uncharacterized.
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Functional characterization of viral

metagenomes has lagged far behind the ability

to collect sequence data. Essentially none of the

millions of gene functions inferred by sequence

similarity has been proven biochemically by

expression and analysis of the gene products.

More importantly, the mere description of

sequence similarity does little to further the

understanding of viral biology or to identify use-

ful new enzymes. Furthermore, sequence-

similarity screens only identify genes with an

annotated counterpart in a database. The relative

scarcity of functionally annotated viral genes in

GenBank has likely prevented discovery of truly

novel enzyme families, which should be the

strength of viral metagenomics.

Finally, a conceptual barrier associated with

the definition of related viral types has prevented

assembly of viral genomes, and, consequently,

inferences into function that are based on gene

position. Phage genes of related function, espe-

cially replication-related genes, often occur in

proximity within operons (El Omari et al. 2006).

Assembly of sequence reads should allow recon-

struction of operons; however, standard

approaches relying on nucleotide identities of

greater than 95 % are ineffective in assembly of

viral metagenomes and only a few very small,

abundant phage genomes have been

reconstructed from metagenomic data (Angly

et al. 2006). Because even the relatively long

Sanger reads are almost always too short to

include more than one complete gene, these asso-

ciations are generally missed. Since traditional

shotgun sequencing, used in some of the work

described below, involved the construction of

clone libraries, success in identifying adjacent

genes by sequencing entire inserts from archived

clones was achieved, but even this approach is

limited by the sizes of inserts in the libraries,

generally less than 5 kb. Since none of the next-

generation sequencing methods uses clone librar-

ies, this approach is impossible for most of the

ongoing viral metagenomic projects. The funda-

mental problem is that viral populations are too

molecularly diverse to accommodate this crite-

rion. Among cultivated viruses, closely related

phages are up to 50 % divergent at the nucleotide

level (Truncaite et al. 2006; Wang and Silverman

2006). When assembly criteria are reduced to as

low as 50 %, much larger assembled contigs are

generated (Schoenfeld et al. 2008). This approach

has proven effective in generating contigs that

contain identifiable operons that not only allow

isolation of genes of related function but allow

mapping of diversity onto the protein structure.

These sequence variations correspond to bio-

chemical differences in the gene products and

provide a guide to enzyme engineering. In the

work described below, a tripartite approach was

used for functional analysis of viral metagenomes

including (1) expression and biochemical charac-

terization of the “BLASTx hits,” (2) functional

screens to identify enzymes too dissimilar to

known genes to be detected by sequence similar-

ity, and (3) assembly of operons to infer gene

function based on position in the genome.

Methods

Sampling, Library Construction, and

Sequencing

Sampling, library construction, and sequencing

of the YNP samples have been described

(Schoenfeld et al. 2008). The Great Boiling

Spring samples were collected as described and

amplified using the Repli-g kit (GE Healthcare).

DNAwas sheared and inserted into pETite vector

(Lucigen) and the library used to transform

E. coli HI-Control BL21(DE3) cells (Lucigen).

Individual clones from both libraries were

sequenced in their entirety using standard chem-

istry (Life Technologies).

Bioinformatics

Sequence assemblies were performed using

Sequencher (Gene Codes) or SeqMan

(DNASTAR). ClustalW analysis was performed

as described (Nandakumar and Shuman 2005).

Functional Screens

The clones from the Great Boiling Spring sam-

ples were grown on Luria broth, pelleted, and

resuspended in buffer containing lysozyme.

Lysates were incubated for 10 min at 70 �C and
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centrifuged, and the supernatants were tested for

DNA polymerase activity using the standard

assay. Positive clones were cultivated at 50 ml

in LB and retested. The inserts of clones with

activity were sequenced in their entirety.

Cloning, Expression, Purification, and

Mutagenesis

DNA polymerase genes that were further charac-

terized were expressed at higher levels by inser-

tion into pET28 vector and expression in E. cloni

EXPRESS BL21(DE3) (Lucigen). DNA poly-

merase was purified by heat treatment and stan-

dard chromatography methods. Mutagenesis was

performed using the QuikChange II Site-Directed

Mutagenesis Kits (Agilent).

Biochemical Analysis and Applications

Development

Biochemical assays were performed using stan-

dard methods (Mardis 2008; Marks et al. 2008).

Results and Discussion

Sequence-Based and Functional Discovery of

New DNA Polymerases

In a recent study of viral metagenomes from

Yellowstone hot springs, more than 28,000

Sanger-based long sequence reads (nearly

30 Mb of sequence) were determined

(Schoenfeld et al. 2008). BLASTx alignment to

the nonredundant protein database indicated that

156 ORFs had similarity to known pol genes.

Fifty-nine appeared to be complete genes and

were tested for DNA polymerase activity. Ten

showed activity and seven of these were

sequenced in their entirety. Although highly

divergent from known viral and cellular genes,

four were loosely grouped with family

A polymerases and three grouped with family

B polymerases. These pol genes are referred to

as “PyroPhage” followed by an identifying

number. The family A pols detected by this

screen were too divergent to be grouped, but the

family B Pols are referred to below as

“PyroPhage 4110-like Pols” in reference to the

first one discovered.

The degree of sequence conservation among

pol genes in these libraries, while relatively low,

was higher than most sequences found in viral

metagenomes. The discovery of 156 partial genes

among roughly 600 viral genome equivalents

suggests that sequence-based screens were rela-

tively efficient in identifying pol genes. Nonethe-

less, there are important disadvantages to this

approach. One is that the diversity of viral pol
genes is likely to be high enough that interesting

new enzymes are missed. Another problem is that

a gene must be situated in the random clone so

that an identifiable portion of it is within the read

length of the sequencing method (>1,000 nucle-

otides by Sanger, much less by newer sequencing

approaches) and the gene must not extend beyond

the boundaries of the random insert so that it is

incomplete. It is unknown howmany genes failed

to fulfill the first criterion and were within the

insert, but not within the sequence range. Of the

156 identified candidate pol genes, only 38 %

fulfilled the second criterion and appeared com-

plete. Finally, the identification of a gene does not

mean that the gene will express efficiently in

E. coli. For unknown reasons, among the 59 likely

complete genes, 83 % failed to express at detect-

able levels.

Functional screens address many limitations

of sequence-similarity screens and can often

detect completely novel activities regardless of

divergence from known genes or position in the

insert, as long as the complete gene is present. By

their nature, functional screens only detect

complete, expression-competent genes. Viral

metagenomic DNA from the Great Boiling

Spring, Gerlach, NV, kindly provided by Brian

Hedlund and Jeremy Dodsworth (University of

Nevada-Las Vegas), was used to construct

a library that was screened for expression of

thermostable pol activity. Screening of 2,800

clones resulted in the discovery of 12 that were

positive for primer extension activity. Eleven of

these were more than 97 % identical to each other

and are referred to as the “PyroPhage 74-like

polymerases” in reference to the first member

discovered. These pol genes share up to 45 %

identity with the other polA-type genes from Yel-

lowstone (PyroPhage 3173 and 967) and 56 %
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identity to PyroPhage 488, a pol gene isolated

8 years earlier in a sequence-based screen of

a metagenome from Little Hot Creek, Long Val-

ley, CA, which is 400 km from Gerlach, NV, but

still in the Great Basin. The final clone identified

in the functional screen, PyroPhage 347, had no

significant similarity to any known pol gene. In

fact the strongest E value to any known gene had

a barely significant 0.750 score to an open read-

ing frame of unknown function in a crenarchaeal

virus. Due to this lack of similarity to genes of

known function, this gene would never have been

identified by sequence similarity.

The pol genes discovered by both screens

were aligned by ClustalW to each other and to

representative cellular and viral pol genes to con-

struct a neighbor-joining tree (Fig. 1). Viral genes

from these screens, as well as those retrieved

from GenBank, were noticeably more diverse

than cellular genes. Most PyroPhage pol genes

are highly divergent from known cellular or viral

pol genes. The exception is PyroPhage 3063,

which is related to several polA genes of

Aquificales family, which are known to be quite

divergent from other bacterial polA genes

(Griffiths and Gupta 2004).

Since the libraries were constructed from dif-

ferent hot spring populations, direct comparisons

are difficult. However, while the overall rate of

discovery of apparent DNA polymerase genes

was comparable for the sequence-based and func-

tional screens (156 pol genes from 28,000 clones

compared to 12 from 2,800 clones, respectively),

the rate of discovery of functional thermostable

Functional Viral
Metagenomics and the
Development of New
Enzymes for DNA and
RNA Amplification and
Sequencing,
Fig. 1 Polymerase
phylogenetic tree. Full-
length viral metagenomic

DNA polymerase amino

acid sequences were

compared by ClustalW to

representative viral,

microbial, and eukaryotic

Pols and displayed in

a neighbor-joining tree
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enzymes was much lower for the sequence

screens than the functional screens (10 of

28,000 vs. 12 of 2,800). The diversity of the

enzymes in the GBS library was much lower

than those fromYellowstone springs, presumably

reflecting a lower overall population diversity.

Biochemical Characteristics and Directed

Engineering Improve Use of PyroPhage Pols

in PCR and Sanger Sequencing

PyroPhage 3173 and 347 Pols proved to be the

most thermostable of the newly discovered poly-

merases. In fact, these are the first viral Pols with

adequate thermostability for PCR. PyroPhage

3173 Pol, which has been studied in greatest

detail (Table 1), has adequate thermostability

for thermocycling, inherent reverse transcriptase

activity, and high fidelity that enable a number of

applications for this enzyme. The proofreading

activity proved highly beneficial for high-fidelity

PCR amplification (Fig. 2). However, many

applications benefit from the absence of proof-

reading activity. Alignment of the PyroPhage

3173 pol gene to E. coli polA (Beese and Steitz

1991) identified codons for two acidic residues,

either of which could be mutated to eliminate

exonuclease activity. This reduced fidelity to

very close to that of Taq Pol, but simplifies its

use in PCR and other amplification methods. Like

most family A Pols, 3173 has a strong discrimi-

nation against dideoxynucleotides that made it

less effective in Sanger sequencing. Based on

alignment to known proteins (Tabor and Richard-

son 1995), mutation F418Y (Fig. 3a) reduced

discrimination against chain terminators to nearly

zero, making the enzyme very effective for dye

terminator cycle sequencing (Fig. 3b).

Single-Enzyme RT PCR with 3173 DNA

Polymerase

The thermostability and reverse transcriptase

activities seen in PyroPhage 3173 Pol allow effi-

cient RT PCR amplification of mRNA and viral

RNA genomic targets with improved perfor-

mance compared to alternative single-enzyme

solutions (Fig. 4). Quantitative detection of viral

targets is linear over at least seven logs of dilution

(Fig. 5). These benefits have significant improved

detection of transcripts and RNA viruses (Moser

et al. 2012).

Currently almost all RT PCR depends on ret-

roviral RTs, i.e., M-MLV and AMV RTs, which,

despite wide use, have well-documented defi-

ciencies that compromise RT PCR. Side activi-

ties in retroviral reverse transcriptases, including

RNAse H and terminal transferase, lead to

mismatch extension artifacts (Blumenthal 1980;

Blumenthal and Hill 1980; Harrison and

Zimmerman 1984; Pulsinelli and Temin 1991;

Shah et al. 1995; Vratskikh et al. 1995; Ho and

Shuman 2002; van Dijk et al. 2004). Primer-

dependent bias in extension efficiency (Yin

et al. 2003) and fidelity (Cheng et al. 2005) likely

account for documented inaccuracy of RT PCR

quantification (Loeffler et al. 2003), poor corre-

lation between tests (Nelson et al. 2001), and/or

complete amplification failure depending on the

RT and the abundance of transcript (Damasko

et al. 2005). Inherently low synthesis fidelity

(up to one error per 500 nt, 20X higher than Taq

Pol) results in misincorporations, frameshifts,

and deletions (Kerr and Sadowski 1972; Little

1981; Heaphy et al. 1987). Strand-switching

(Strauch et al. 2003) probably causes the inter-

and intramolecular rearrangement artifacts

(Cherepanov and de Vries 2001) that can be pref-

erentially extended (Sharp et al. 1994) and result

in recombination or insertion/deletion (indel)

artifacts in cDNA synthesis (Evans et al. 1989;

Snyder et al. 1992). A consequence of

Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Table 1 Biochemical

characteristics of PyroPhage 3173 DNAP

30–50 exonuclease Strong

50–30 exonuclease None

Strand displacement Strong

Extension from nicks Strong

T½ at 95� 10 min

Km dNTPs 40 mM
Km DNA 5.3 nM

Processivity 42

Fidelity 8 � 104

30 ends of amplicons Blunt

Template DNA or RNA
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two-enzyme RT PCR is that the RT step can

interfere with subsequent PCR (Harnett

et al. 1985; McLaughlin et al. 1985; Evans et al.

1989; Petric et al. 1991; Snyder et al. 1992; Sharp

et al. 1994), which compromises quantification of

low abundance targets. Efforts to ameliorate

these deficiencies include mutagenesis to

disable or remove the RNAse H domain

(Downie et al. 2004). These mutations reduce

rearrangements, but lead to increased substitution

errors and bias (Blumenthal and Hill 1980;

Middleton et al. 1985; Vratskikh et al. 1995).

Functional Viral
Metagenomics and the
Development of New
Enzymes for DNA and
RNA Amplification and
Sequencing,
Fig. 2 Fidelity of
PyroPhage 3173 Pol and
its exo- derivative.
Fidelities of PCR

amplification of PyroPhage

3173 wt and exonuclease

minus Pols were compared

to commercial sources of

thermostable Pols in the

lacI forward mutation assay

(Lundberg et al. 1991)

Functional Viral
Metagenomics and the
Development of New
Enzymes for DNA and
RNA Amplification and
Sequencing,
Fig. 3 Directed
engineering of 3173 Pol to
improve Sanger
sequencing. (a) Shown is

the increased incorporation

of dideoxy- and acyclo-

nucleotides by the F418Y

mutant of PyroPhage 3173

Pol, as indicated by

increased inhibition of Pol

activity by chain-

terminating nucleotides. (b)
The F418Y mutant was

used as a direct substitute

for Thermo Sequenase in

a BigDye® (ABI)

sequencing reaction
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Other enzymes have been explored as alterna-

tives to retroviral RTs (e.g., Tth Pol (Rand and

Gait 1984)), but none has proven a satisfactory

replacement for most methods that rely on

reverse transcription of RNA. PyroPhage 3173

is the most efficient Pol for single-enzyme RT

PCR and, as such, an alternative to the retroviral

RT-dependent methods.

Assembly of Composite Contigs from Viral

Metagenomes

One anticipated drawback of using

metagenomics as an enzyme discovery tools

was the fragmentary nature of the reads, which

was expected to hamper efforts to associate sub-

units of multisubunit enzymes. Many proteins,

replicases in particular, function as multiple

Functional Viral
Metagenomics and the
Development of New
Enzymes for DNA and
RNA Amplification and
Sequencing,
Fig. 4 Reverse
transcription PCR using
PyroPhage 3173 Pol.
(a) Total human liver RNA

(1 mg, Promega) was

reverse transcribed by

M-MLV RT or PyroPhage

3173 Pol and then PCR

amplified using Lucigen

EconoTaq® PLUS Master

Mix. Shown are targets of

144, 246, and 298 bp.

(b) Single-enzyme RT PCR

amplifications by

PyroPhage 3173 Pol and

Tth (Epicentre) were

compared using a 160 bp

MS2 phage RNA target

over a 102- to 108-fold

dilution series. Shown are

real-time and post reaction

melt data (top) and
corresponding end point

RT PCR agarose gel

(bottom). Tth polymerase

was used with Mn2+ as

directed. Arrows show
correct melt Tm (top) and
amplicon (bottom)
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subunits. Indeed, the replicases of phages T4, T7,

and Phi29 and viruses Mo-MLV, vaccinia, and

herpes all function in vivo as multigene replica-

tion complexes encoding a number of subunits,

e.g., helicases, primases, processivity factors, and

clamp loaders (Blanco et al. 1994; Bertram

et al. 1998; Goodman 1998; Reha-Krantz

et al. 1998; Tang et al. 1998). While, in most

cases, the polymerase subunits function

independently in vitro, the utility may be

improved by additional subunits. For example,

T7 Pol apoenzyme, by itself, has low processivity

and was not very effective in Sanger sequencing

without its host-derived processivity factor,

thioredoxin (Tabor et al. 1987; Tabor and Rich-

ardson 1987). Because proteins in replication

complexes often have highly specific contacts

with one another (Goodman 1998), it is important

Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Fig. 5 Single-enzyme, one-step
RT PCR amplification of MS2 phage RNA using 3173
Pol. MS2 RNA was amplified by 40 cycles of RT PCR

using the primers shown in Table 1 and 3173 Pol. (a)
Products from 89 to 362 bp in length were amplified

using one-step single-enzyme RT PCR cycling condi-

tions: 15 s at 94 �C (10 s at 94 �C, 30 s at 72 �C)*40.
Products were resolved by 2 % agarose gel

electrophoresis. (b) The MS2 RNA was diluted from

101- to 107-fold and amplified using a primer pair

corresponding to the 160 bp fragment in Panel A. Real-

time PCR fluorescence in RFU (relative fluorescence

units) vs. PCR cycles. (c) Post-amplification thermal

melt in -dRFU/dTemperature vs. Temperature (�C).
Light blue region indicates melt curves for specific prod-

ucts. (d) Standard curve PCR cycle threshold vs. log10
RNA copy number in triplicate with linear least squares

best fit line
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that subunits are derived from the same viral

genome and not from unrelated viruses.

Because these functionally related genes are

often adjacent in operons, it is theoretically pos-

sible to identify them given long enough contig-

uous sequence. Experience shows that operons

are almost always too large to be found in the

relatively small insert clones seen in typical

metagenomic libraries and, without modified

assembly rules, are missed. With deep sequenc-

ing, these fragments could theoretically be

assembled to recover complete viral genomes.

In practice, the high degree of sequence polymor-

phism that characterizes viral metapopulations

confounds assembly of related genes and only

very limited assembly has been possible by stan-

dard protocols.

To accommodate this natural population

diversity, assembly stringency was lowered

experimentally from the standard 95 % identity

to as low as 50 %. Assembly of the YNP Bear

Paw (74 ºC) and Octopus (93 ºC) metagenomes

at 50 % identity allowed recovery of composite

contigs as large as 35 kb. Fully 7.04Mb (33 %) of

the Octopus reads assembled at this identity into

17 contigs of greater than 10 kb (Schoenfeld

et al. 2008). These assemblies appear very reli-

able in associating orthologous sequences. Par-

ticularly in the Octopus library, the sequence

reads are evenly distributed throughout the

contigs with minimal stacking or other anomalies

that would suggest amplification or cloning

artifacts. The high numbers of reads on both

strands, evenly distributed throughout the

contigs, suggest these contigs represent indepen-

dent clones of closely related genomes. Using the

lower stringency assemblies, SNPs can be iden-

tified and mapped to the coding sequences. As

additional biochemical and structural data

become available, molecular diversity may be

correlated with variations in function and

structure.

Assembly of a Replication Operon from

a Viral Metagenome

One of these contigs provided a unique opportu-

nity to identify potential replicase subunits and

associate population diversity of an assembled

metagenome with the biochemistry of the gene

products (Fig. 6).

This 16.5 kb contig, assembled at 50 % iden-

tity, includes 187 reads (average coverage of

11 reads per nucleotide position). GeneMark

(Besemer and Borodovsky 2005) predicted

26 ORFs of greater than 100 nucleotides, which,

when translated and annotated by BLASTp,

appears to include at least a partial replication

operon. The genes with the strongest similarity

to four of these ORFs encode two primase sub-

units, uracil DNA glycosylase, a family B DNA

polymerase, and nucleotide excision repair

nuclease (dna G, udg, pol B, and ERCC4 genes,

respectively). Homologs of these ORFs belong to

crenarchaeal DNA replication/repair complexes

(Roberts et al. 2003; Dionne and Bell 2005; Barry

and Bell 2006). The predicted pol B gene showed

28 % identity to Pyrobaculum islandicus polB2

(Kahler and Antranikian 2000). Three of the dis-

creet clones that include the pol B gene in this

contig (PyroPhage 4110, 2783, and 2323 Pols;

Fig. 1) have been expressed in E. coli to produce

a functional thermostable DNA polymerase (data

not shown). This contig also contains apparent

homologs to a zinc fingerlike protein and a

transposon-like integrase/resolvase (tnp).
Another ORF with highest similarity to the

CRISPR-associated sequence cas4 (Haft

et al. 2005) is more likely a separate member

of the cas4 COG, presumably a recB-like

exonuclease gene.

To correlate the level of sequence divergence

with predicted gene function, SNP frequency was

calculated and overlaid onto the 50 % assembly

consensus sequence of the contig (Fig. 6). Overall

distribution of SNPs in the contig was 0.705 per

10 bp. Replication-associated genes showed

noticeably lower molecular diversity than the

other ORFs. SNP distribution in the dna G, udg,

pol B, and ERCC homologs was 0.565, 0.617,

0.569, and 0.548 per 10 bp, respectively, while

the distribution in the Zn finger, cas4, and thy

A homologs was 0.979, 1.31, and 0.728, respec-

tively. Finer mapping of this diversity is being

used to understand the functional differences in

the enzymes encoded by the constituent clones of

this contig.
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Identification of a Replicase Polyprotein from

the Great Boiling Spring Metagenome

Based on the large number of highly similar iso-

lates (<3 % amino acid divergence), the

PyroPhage 74-like family of pol A-like genes

from the Great Boiling Spring in Nevada

(Fig. 1) appears to be derived from abundant

viruses with limited molecular diversity. Unlike

the previously described pol genes, these were

identified by functional screening, precluding

the assembly of large contigs. However, this

group of pol genes proved particularly useful for

dissecting the molecular biology of a different

replicase. The various polymerase positive

clones contain the carboxy terminal half of an

apparent polyprotein, but vary in the amount of

coding sequence for the amino terminal half

(Fig. 7a), implying that the carboxy terminal

half of the polyprotein is sufficient for polymer-

ase activity. The polymerase gene appears to be

part of an open reading frame that would encode

a polyprotein of at least 100 kD. After expression

in E. coli, this polyprotein is processed, either

in vivo or in vitro, to produce a protein of about

55 kD (Fig. 7b). The amino terminal half of this

apparent polyprotein has no known function and

no significant sequence similarity to known pro-

teins, but is likely to be associated with replica-

tion and, therefore, the target of ongoing

investigation.

Polyproteins are common elements used by

RNA viruses (Nandakumar et al. 2004). The ret-

roviral reverse transcriptases, for example, are all

expressed as polyproteins that are proteolytically

processed (Clepet et al. 2004). Heterologous viral

polyproteins from hepatitis C have been shown to

be active and properly processed in E. coli (Yin
et al. 2004). However, replicases expressed as

polyproteins are much rarer in DNA viruses.

PyroPhage 74-family Pol described here and

the PyroPhage 3173 Pol described below are

the first documented examples of thermophilic

phage polyproteins that are actively processed

in E. coli.
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Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Fig. 6 Assembly of a 16.5 kb
viral metagenome consensus contig from Octopus hot
spring showing single nucleotide polymorphism het-
erogeneity. (a) 16.5 kb contig was assembled at 50 %

identity from the NYP Octopus hot spring library.

Sequence coverage is shown on the top, with each line

representing a separate read. Single nucleotide

polymorphisms per 10 base pairs were normalized to the

number of reads covering the respective nucleotide and

are aligned with predicted open reading frames from the

consensus sequence in the contig and the gene name of the

strongest BLASTx similarity. Direction of transcription is

shown by the arrows. Similarities to known genes were

identified by BLASTp (Reprinted with permission

(Schoenfeld et al. 2008))

F 210 Functional Viral Metagenomics and the Development of New Enzymes



Molecular Biology of the PyroPhage 3173

Replicase Operon

Expression of PyroPhage 3173 Pol, described

above, illustrates another challenge in

metagenomic-based enzyme discovery. Since,

as with all metagenomes, the intact virus has

never been cultivated and the sequence data is

fragmentary, delineation of the open reading

frame of the pol gene was unclear. For production

and study of the 3173 Pol, expression was initi-

ated at an ATG codon that appeared to be the

most probable start site based on alignment to

bacterial pol genes. Despite the success in using

this 55 kD expression product in RT PCR and

other applications (see above), anomalies were

apparent in the open reading frame that was

used for expression of this enzyme. First, there

was no obvious adjacent ribosome binding site or

transcriptional promoter. Second, there was no

homologous ATG codon in the related 488 and

967 clones (Fig. 1), despite overall alignment

with the 3173 gene. Finally, an open reading

frame extended upstream from the putative start

codon to the insertion site of the viral sequence in

the cloning vector.

Low identity assembly of the 3173 clone

proved useful in dissecting the molecular biology

of this gene and allowed production of the com-

plete enzyme corresponding to the likely in vivo

product. In contrast to the 4110-like and 74-like

polymerase families, the 3173 clone was derived

from a highly divergent, less abundant virus,

since reads from this clone failed to assemble at

95 % identity with any other read in the library.

Assembly at 75 % identity resulted in a 7,299 nt

contig (Fig. 8a), comprised of four reads. This

assembly was confirmed by PCR amplification of

nearly the entire contig from viral DNA isolated

from the same hot spring 4 years later to produce

a product of the predicted size (Fig. 8b). This

amplification also suggests the 3173-encoding

virus is more persistent in the environment than

other viral families, none of which was detectable

in the later samples. This contig encodes four

open reading frames of greater than 100 nt. The

largest of these encodes a protein of 1608 amino

acids (170 kD), the carboxy terminal portion of

which includes the 55 kD PyroPhage 3173 DNA

polymerase. The amino terminal portion contains

a coding sequence with only weak similarity to

known genes. The other open reading frames

encode putative helicases and a cas4/recB endo-

nuclease protein.

The amplification product of the entire 1608

amino acid ORF expressed in E. coli produced an
80 kD protein (Fig. 8c) that co-purified with

thermostable DNA polymerase activity. The sim-

plest explanation is that the 1608 amino acid

protein (expected MW of 170 kD) is processed

in vivo or in vitro to generate the 80 kD product

and that the original 55 kD PyroPhage 3173 Pol

was a cloning anomaly. Supporting this

Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Fig. 7 Putative polyprotein
from Great Boiling Spring viral metagenome. The

PyroPhage 74-like pol genes are aligned to the consensus

sequence (Panel A). All of the clones contain the

C-terminal half of a 100 kD ORF, but vary in the amount

of N-terminal sequence. Despite differences in the sizes of

open reading frames of the inserts, all PyroPhage 74-like

clones express a thermostable protein of about 55 kD

(Panel B). The 347 clone, in contrast, produces a 35 kD

thermostable protein
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interpretation, amino acids 884 to 894 form the

motif AYIYLGSIFVE, which was predicted by

cleavage site analysis to be both labile to auto-

lytic cleavage and accessible on the surface

(Cosstick et al. 1984). Cleavage between G and

S would result in a 704 amino acid (80 kD) pro-

tein. The amino terminal amino acids from the

80 kD protein aligns with the 50–30 exonuclease
domains of T. aquaticus and E. coli. The amino

acids involved in nucleotide binding are con-

served, but not the amino acids required for

hydrolysis. Although the 55 kD protein has

shown great utility, it is possible that addition of

this 25 kD amino terminal sequence, or a portion

thereof, would improve its function for certain

applications. In addition to the 80 kD Pol protein,

the other ORFs are being expressed to reconsti-

tute the presumptive replicase holoenzyme.

This work highlights an important caveat of

enzyme discovery by metagenomics. The frag-

mentary sequences can result in the recovery

of partial genes. Assembly of sequences can

be the only means of verifying ORFs. In this

case, the partial gene proved highly useful,

but in many cases, a functional protein could

easily be missed by recovery of partial

sequences.

Sequence Variants of PyroPhage 3173 DNA

Polymerase Isolated from the Viral

Metagenome

Metagenomics has proven quite useful for new

enzyme discovery. The utility of viral

metagenomes is greatly expanded when it is

used to guide engineering. One approach to

improving DNA polymerases is directed evolu-

tion (Ghadessy et al. 2001) based on random

mutagenesis. While effective, quite daunting is

the sheer number of mutants that must be

screened to approach saturation. For an enzyme

of the size of Taq Pol (832 amino acids), this

would require 20832 clones to completely saturate

the entire gene with mutagenized codons and test

all the possible amino acids at each positions.

Even a fraction of this number overwhelms any

current or conceivable screening capability.

To limit the search, algorithms have been devel-

oped to target mutagenesis to specific domains

(Voigt et al. 2001).

Metagenomic libraries are an alternative to

random degenerate libraries as a source of molec-

ular diversity. Since, in native populations, nature

selects for active proteins, activities of variants in

the libraries may differ, but they should all retain

function. To study sequence variants, the 55 kD

Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Fig. 8 Analysis and PCR

amplification of a 7.3 kb contig from 75 % NIAID assem-

bly. A 7.3 kb contig was assembled from four clones in the

hot springs viral metagenome. GeneMark identified four

open reading frames of greater than 100 amino acids, the

sizes of which (144, 229, 202, and 1,608 amino acids) are

indicated (Panel A). These genes had BLASTx similarity

to helicases, cas4 (recB), and DNA polymerases, with the

indicated E values. Primers derived from the assembly are

indicated by arrows and their positions on the contig are

indicated by the associated numbers. These primers were

used to amplify viral DNA isolated 4 years after the

original collection (Panel B). An amplicon covering the

1608 amino acid ORF (Panel B, lane 2) was used; inserted
into an expression system and used to produce an apparent

truncation product of ~80 kD, indicated by the arrow
(Panel C); that co-purified with the Pol activity
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version of PyroPhage 3173 amplified from viral

DNA collected at Octopus hot spring (Fig. 8b)

was cloned in an expression vector. Eleven

clones were used to express DNA polymerase

activity and the inserts were sequenced. The var-

iants were 93 % identical to the original 3173

isolate and at least 97 % identical to one another.

When the polymerases were partially purified and

tested, they had a significant range of thermosta-

bility (Fig. 9). The two most labile enzymes had

only one or two unique nucleotide polymorphism

each. Two of these independent sequence poly-

morphisms map within four codons of each other.

No three-dimensional structure is available for

PyroPhage 3173 Pol, but, based on sequence

alignment to Taq DNA polymerase and its

known protein structure (Kim et al. 1995), the

polymorphisms associated with reduced thermo-

stability likely map to the same alpha helix (the

Q-helix) within one of the “fingers” of the Pol

structure. If so, the two affected amino acids are

at the proper spacing to be adjacent on the alpha

helix (four amino acids apart) and likely interact

to stabilize or destabilize the alpha helix and

thereby alter thermostability.

While a goal of screening hot spring viromes

was to find the most thermostable enzymes pos-

sible, the lower thermostability variants have

value. Isothermal amplification methods such as

LAMP (Notomi et al. 2000) use intermediate

temperature (i.e., 50–70 �C) and do not require

extreme thermostability. Less thermostable

enzymes will likely have higher activity at these

intermediate temperatures (Giver et al. 1998).

Equally important, amino acids that reduce ther-

mostability map to regions that can be targeted to

increase thermostability (Bae and Phillips 2004)

and are attractive targets for mutagenesis.

Prospects

The focus of the efforts has been discovering and

improving thermostable DNA polymerases.

Functional Viral Metagenomics and the Develop-
ment of New Enzymes for DNA and RNA Amplifica-
tion and Sequencing, Fig. 9 Thermostability of
PyroPhage 3173 Pol variants. The amplification product

from Fig. 7b, lane 2, was cloned and expressed to produce

thermostable protein. The clones grouped into at least four

families that were 97 % identical to one another and 93 %

identical to the original clone. The expressed Pol activity

was purified and tested for thermostability by incubating

for 10 min at the indicated temperature and assaying using

the standard DNA polymerase assay (Panel A). Shown are
amino acid alignments of a portion of the Q-helix from the

prototype PyroPhage 3173 and the two least thermostable

sequence variants (variants 1 and 11) (Panel B). These
thermolabile variants had one or two unique amino acids,

respectively, that mapped to this region
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Metagenomics is playing a role in both the dis-

covery and development phases of this project.

Viral metagenomics has revealed new replicase

operons, thermophilic polyproteins, and entirely

new classes of Pols with novel and useful activ-

ities for a number of methods of DNA and RNA

detection and analysis. In the near future, it may

be possible to assemble complete genomes from

uncultivated viruses from thermal environments

and recover intact replicase operons using the

appropriate combination of sequencing strategy,

assembly paradigm, and genome walking tech-

niques. The information encoded in the viral

metagenomes is being used to direct an enzyme

improvement program. Additional applications

can likely be improved by the discovery of

enzymes other than Pols. In many cases, viral

metagenomes are excellent sources of diversity

for these discovery programs and presumably any

biochemical characteristic that can be measured

can be further improved by application of the

knowledge gained through metagenomics.
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Traditional microbiology has used a single spe-

cies approach, as in Koch’s postulates, where

a bacterium is shown to be pathogenic by first

isolation from infected organisms, then grown in

monoculture, and finally reintroduced into

healthy individuals and causing the disease. In

contrast, microbial ecology studies multispecies

and community structures. Both of these

areas have been very successful, and these two

different approaches can be seen in comparative

genomics, with the traditional analysis of single

genomes versus many genomes or metagenomes

isolated from an environment. It is possible to

relate microbial ecology to reductionist, mono-

culture microbiology by comparing the two

different data types. In this case, the reference

is the single genome of an organism, the other

being the metagenome samples where most

of the DNA in the environment is sampled.

Surely, the comparisons are most reliable when

the environmental DNA is preferably in

chunks containing at least several genes – from

fosmids, longer read lengths, or assembled short

reads.

In recent years, there has been many

metagenomic data available on public databases

such as CAMERA (Sun et al. 2011) or IMG/M

(Markowitz et al. 2012). Some of these databases

also provide analysis tools as Web servers,

e.g., a BLAST (Altschul et al. 1990), or other

fast alignment tool is implemented. This allows

quick comparison of any sequence data against

the metagenomes provided. However, if one is

not looking for a single sequence but rather

chromosome-wide comparisons, then the inter-

pretation of results might become difficult and

complicated. Therefore, a visualization tool

such as BLAST Atlas (Hallin et al. 2008) is

a very useful way of looking at conservation of

proteins in various metagenomic samples, along

a given reference chromosome.

Figure 1 is a BLAST Atlas, as an example to

illustrate this. An abundant ocean bacterium,

Candidatus Pelagibacter ubique strain HTCC1062

(Giovannoni et al. 2005) has been chosen as

a reference genome, to compare against several

genomes and metagenome samples that are

found on CAMERA Projects. P. ubique is a mem-

ber of Alphaproteobacteria, found in the SAR11

cluster, and known to be a very common inhabitant

of marine environments (Garcı́a-Martı́nez and

Rodrı́guez-Valera 2000; Brown et al. 2012).

It is a free-living cell with a relatively small

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



genome of 1.3 Mbp, first isolated from Saragossa

Sea (Giovannoni et al. 1990), and requires added

reduced sulfur for growth (Tripp et al. 2008).

The genome comparisons in this study include

other Pelagibacter species and Pelagibacterium
halotolerans B2 (Huo et al. 2012). Note the

darker green colors for the P. ubique lane and

for other closely related Pelagibacter species.

However, apart from the reference strain, there

are some regions of missing genes (gaps) that

can be seen.

The Metagenome projects that are chosen are

Moore Marine Microbial Sequencing (Sun

et al. 2011), Global Ocean Sampling (GOS)

(Yooseph et al. 2007), Whale Fall (Tringe

et al. 2005), Acid Mine Drainage (Tyson

et al. 2004), Microbial Community Genomics at

the HOT/ALOHA (DeLong et al. 2006), Waseca

County Farm Soil (Tringe et al. 2005), andWash-

ington Lake (Kalyuzhnaya et al. 2008). In all

comparisons, the P. ubique proteins were com-

pared against the metagenomes using the BLAST
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Genome Atlases, Potential Applications in Study of
Metagenomes, Fig. 1 A BLAST Atlas representing the

comparison of marine bacterium Pelagibacter ubique to

the other four Pelagibacter genomes and seven

metagenome samples. The six innermost lanes show the

DNA properties of the reference genome P. ubique

HTCC1062 followed by the genome’s annotation lane.

Then comes the BLAST lanes, where the BLAST result

for the query genome against the reference is shown. The

BLAST hit significance is indicated with the color inten-

sity, where higher intensity corresponds to a more

significant hit
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tool of the database itself with default parameters,

and the results are then visualized with BLAST

Atlas. Moore Marine Microbes, GOS, and

HOT/ALOHA samples have protein annotations;

therefore, a BLASTP search was used. The other

metagenomes are assembled but not annotated,

so TBLASTN comparison was made.

Metagenomes that are not assembled were not

used in this study, because protein comparison

against metagenome reads was not very reliable.

In the BLAST Atlas, the six innermost lanes

show some of the DNA properties (Jensen

et al. 1999; Pedersen et al. 2000) of the reference

chromosome, P. ubique HTCC1062; these are,

from innermost to outermost: the average AT

percentage (over a 10,000 bp average), GC

Skew (10,000 bp average), Global Direct

Repeats, Nucleosome Position Preference

(green regions represent chromatin-free areas;

Satchwell et al. 1986; Baldi et al. 1996), DNA

helix stacking energy (on this scale, red regions

will melt more readily, and green regions are

more stable; Ornstein et al. 1978), and intrinsic

curvature (blue means highly curved areas, and

yellow indicates low levels of curvature; Bolshoy

et al. 1991; Shpigelman et al. 1993). The next

outer lane is the annotations, coding sequences on

plus and minus strand. After the annotations the

BLAST lanes start, which show the BLAST hits

on each position. The color intensity indicates

how good a BLAST hit is, with darker colors

representing regions of conserved proteins and

grey areas contain poor or no matches. The first

BLAST lane is P. ubique itself as a control. The

next few lanes are other Pelagibacter sp., and

they show high resemblance to the reference

P. ubique. The 5th lane is a Pelagibacterium

which should not be mixed because it is classified

as a completely different clade in Alphaproteo-
bacteria, as can be seen from the low protein

similarity. However it’s BLAST hit profile still

resembles the other Pelagibacter sp.
According to this figure, we can see that

almost all the coding genes of P. ubique are

found in the CAMERA Marine Microbes sam-

ples, and most are also found in the GOS data,

which means that the bacterium is present in

these environments, as expected. One of the gap

regions around 510–564 kb contains the genes

that are related to amino sugar metabolism

(rfaD,rfaE), pentose phosphate pathway (tktC),
lipopolysaccharide synthesis (gmhA and gmhB),

streptomycin biosynthesis (rpbB), and transfer-

ase activity (spsA, rfaG, rfaK). This gap region

and a few bases downstream is marked as “sur-

face” because this area contains proteins related

to surface features (ompS, LPS biosynthesis,

etc.). Another gap includes a “giant protein”

(Strom et al. 2012), annotated as “hypothetical

protein SAR11_0932,” and is 7,317 amino acid

residues long. The reason why this protein seems

to be partially found in Marine Microbes and

GOS metagenomes (dark blue lane) is due to the

many repeat regions in the protein, which might

look like other regions in the proteins of the other

genomes. But the whole protein itself is not found

because it varies even within the same species;

these “giant proteins” are known to be variable

and thought to be involved in protection against

viral attacks, as well as predation by protists

(Strom et al. 2012). Some of the other gaps are

due to tRNA or rRNAs, because the BLAST lanes

only compare protein sequences. When looked at

the other metagenome BLAST lanes, the BLAST

hits are seen very weak meaning that P. ubique
genes that are compared here are not present in

those metagenome samples.

In summary, BLAST Atlas is a way to visual-

ize the mapping of bacterial genomes against

metagenomes, and this can be used to compare

many different environments. If a certain protein,

a set of proteins, or a genomic region is being

investigated, this tool will guide in finding the

presence or absence of those proteins. It is also

possible to zoom in to desired ranges of the

genome to see local differences (Hallin

et al. 2008).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.

Basic local alignment search tool. J Mol Biol.

1990;215(3):403–10.

Baldi P, Brunak S, Chauvin Y, Krogh A. Naturally occur-

ring nucleosome positioning signals in human exons

and introns. J Mol Biol. 1996;263(4):503–10.

Genome Atlases, Potential Applications in Study of Metagenomes 221 G

G



Bolshoy A, McNamara P, Harrington RE, Trifonov

EN. Curved DNA without A-A: experimental estima-

tion of all 16 DNA wedge angles. Proc Natl Acad Sci

USA. 1991;88:2312–6.

Brown MV, Lauro FM, DeMaere MZ, et al. Global bio-

geography of SAR11 marine bacteria. Mol Syst Biol.

2012;8:595.

DeLong EF, Preston CM, Mincer T, et al. Community

genomics among stratified microbial assemblages in

the ocean’s interior. Science. 2006;311(5760):496–503.

Garcı́a-Martı́nez J, Rodrı́guez-Valera F. Microdiversity of

uncultured marine prokaryotes: the SAR11 cluster and

the marine Archaea of group I. Mol Ecol. 2000;9(7):

935–48.

Giovannoni SJ, Britschgi TB, Moyer CL, Field

KG. Genetic diversity in Sargasso Sea bacterio-

plankton. Nature. 1990;345(6270):60–3.

Giovannoni SJ, Tripp HJ, Givan S, et al. Genome

streamlining in a cosmopolitan oceanic bacterium.

Science. 2005;309(5738):1242–5.

Hallin PF, Binnewies TT, Ussery DW. The genome

BLAST atlas – a GeneWiz extension for visualization

of whole-genome homology. Mol Biosyst. 2008;4(5):

363–71.

Huo Y-Y, Cheng H, Han X-F, et al. Complete genome

sequence of Pelagibacterium halotolerans B2(T).

J Bacteriol. 2012;194(1):197–8.

Jensen LJ, Friis C, Ussery DW. Three views of microbial

genomes. Res Microbiol. 1999;150(9–10):773–7.

Kalyuzhnaya MG, Lapidus A, Ivanova N, et al. High-

resolution metagenomics targets specific functional

types in complex microbial communities. Nat

Biotechnol. 2008;26(9):1029–34.

Markowitz VM, Chen I-MA, Chu K, et al. IMG/M: the

integrated metagenome data management and compar-

ative analysis system. Nucleic Acids Res. 2012;40-

(Database issue):D123–9.

Ornstein RL, Rein R, Breen DL, MacElroy R. An

optimised potential function for the calculation of

nucleic acid interaction energies. I. Base stacking.

Biopolymers. 1978;17:2341–60.

Pedersen AG, Jensen LJ, Brunak S, Staerfeldt HH, Ussery

DW. A DNA structural atlas for Escherichia coli.
J Mol Biol. 2000;299(4):907–30.

Satchwell SC, Drew HR, Travers AA. Sequence period-

icities in chicken nucleosome core DNA. J Mol Biol.

1986;191(4):659–75.

Shpigelman ES, Trifonov EN, Boishoy A. Curvature: soft-

ware for the analysis of curved DNA. Comput Appl

Biosci. 1993;9:435–40.

Strom SL, Brahamsha B, Fredrickson KA, Apple JK,

Rodr’iguez AG. A giant cell surface protein in

Synechococcus WH8102 inhibits feeding by

a dinoflagellate predator. Environ Microbiol. 2012;

14(3):807–16.

Sun S, Chen J, LiW, et al. Community cyberinfrastructure

for advanced microbial ecology research and

analysis: the CAMERA resource. Nucleic Acids Res.

2011;39(Database issue):D546–51.

Tringe SG, von Mering C, Kobayashi A, et al. Compara-

tive metagenomics of microbial communities.

Science. 2005;308(5721):554–7.

Tripp HJ, Kitner JB, SchwalbachMS, et al. SAR11marine

bacteria require exogenous reduced sulphur for

growth. Nature. 2008;452(7188):741–4.

Tyson GW, Chapman J, Hugenholtz P, et al. Community

structure and metabolism through reconstruction of

microbial genomes from the environment. Nature.

2004;428(6978):37–43.

Yooseph S, Sutton G, Rusch DB, et al. The Sorcerer II

global ocean sampling expedition: expanding the uni-

verse of protein families. PLoS Biol. 2007;5(3):e16.

Genome Portal, Joint Genome
Institute

Igor V. Grigoriev, Susannah Tringe and

Inna Dubchak

US Department of Energy Joint Genome

Institute, Walnut Creek, CA, USA

Synonyms

Comparative genomics; Data integration;

Genome analysis; Genome projects;

Metagenomics

Definition

The US Department of Energy (DOE) Joint

Genome Institute (JGI) is a national user facility

with massive-scale DNA sequencing and analy-

sis capabilities dedicated to advancing genomics

for bioenergy and environmental applications.

The JGI Genome Portal is an integrated geno-

mic resource, which provides for the research

community around the world access to the large

collection of genomic data for plants, fungi,

microbes, and metagenomes and to web-based

interactive tools for their analysis.

Introduction

The Department of Energy (DOE) Joint Genome

Institute (JGI) was established for the Human
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Genome Project (Lander et al. 2001) and later

was transformed into a national user facility for

genome research in the DOE mission areas of

bioenergy, carbon cycling, and biogeochemistry.

JGI provides expertise and resources in DNA

sequencing, technology development, and bioin-

formatics to the broader scientific community.

Scientists around the world can make proposals

to the JGI Community Sequencing Program

(CSP; e.g., Martin et al. 2011) to sequence

genomes, transcriptomes, and metagenomes and

address important scientific questions of DOE

mission relevance. Massive amounts of genomic

data are assembled, annotated, and delivered to

users by means of integrated databases and inter-

active analytical tools interconnected within the

JGI Genome Portal (http://genome.jgi.doe.gov;

Grigoriev et al. 2012).

Leading the world in the number of sequenced

plants, fungi, microbes, and metagenomes

(according to the Genomes Online Database

(GOLD; Pagani et al. 2012)), JGI has dramati-

cally increased its sequencing capabilities using

new sequencing technologies. JGI projects

evolved from sequencing three of the human

chromosomes (Lander et al. 2001) to the large-

scale “Grand Challenge” projects such as the

Genomic Encyclopedia of Bacteria and Archaea

(GEBA; Wu et al. 2009), the 1,000 Fungal

Genome Project (Grigoriev et al. 2011), and the

metagenomic projects targeting soil and rhizo-

sphere. Since tracking individual organisms and

samples at such a scale becomes critical,

genomes and metagenomes sequenced or

selected for sequencing are carefully catalogued

and made available to the public along with their

status and links to the produced data and avail-

able tools.

The sequenced data are assembled, annotated,

and analyzed using various computational pipe-

lines developed for each of the products delivered

by JGI to its users. The resulting annotations are

available for download and also can be interac-

tively viewed using the JGI Genome Portal offer-

ing a wide array of databases and analytical

systems to interpret the data. Some systems

work across multiple JGI databases, while others

allow users to specifically manage datasets on

plants (Phytozome; Goodstein et al. 2012),

fungi (MycoCosm; Grigoriev et al. 2012),

microbes (Integrated Microbial Genomes or

IMG; Markowitz et al. 2012b), and metagenomes

(IMG/M; Markowitz et al. 2012a).

The JGI Genome Portal provides a unified

access point to all JGI genomic databases and

analytical tools, as well as worldwide statistics

on the usage of the JGI resources and the infor-

mation about the latest genome releases and new

tool development. A user can find all DOE JGI

sequencing projects and their status, search for

and download raw data, assemblies and annota-

tions of sequenced genomes and metagenomes,

and interactively explore those datasets and com-

pare them with other sequenced microbes, fungi,

plants, or metagenomes using specialized sys-

tems tailored to each particular class of organ-

isms. All these can serve as building blocks in

comprehensive analyses of individual organisms

or systems of interacting organisms.

A Catalogue of Genome Sequencing
Projects

Metagenomic analysis requires reference

genomes for better interpretation of sequence

data derived from complex microbial communi-

ties. The democratization of sequencing allows

many scientists to sequence appropriate genome

references in their own labs prior to approaching

metagenomes. Consolidation of genomic data

sequenced in different places around the world

is an important step in both genomics and

metagenomics.

JGI’s collection of genomic projects includes

thousands projects of different types and is pub-

licly available and searchable. Product types

include standard or improved genome drafts, fin-

ished genomes, gene expression profiling,

resequencing, metagenome projects, and others.

The Project List (http://genome.jgi.doe.gov/

genome-projects) is available from most of the

Portal pages as a menu item and includes

a detailed description of each project including

its scope and current status, taxon, the JGI pro-

gram, and the project lead. The Resources

Genome Portal, Joint Genome Institute 223 G
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column lists tools available for this project. Some

of these tools, e.g., download, are available for all

genomes, while others are taxon, project type, or

stage dependent. For example, a plant or fungal

genome will be linked to Phytozome or

MycoCosm, respectively.

All JGI projects are also registered in the

GOLD database, which includes a larger collec-

tion of projects sequenced around the world

(Pagani et al. 2012). Currently it contains a list

of about 16,000 genomes including over 3,000

that are complete and over 2,000 metagenomes.

Besides utility for metagenomics, having

a comprehensive list of sequencing projects

from all laboratories around the world also helps

to avoid redundancy when sequencing targets are

selected for the large-scale projects like GEBA or

1,000 Fungal Genomes.

Annotated Genomes and Metagenomes

Finding genes in metagenomes is challenging,

especially for eukaryotes with their complex

intron-exon gene structure and often relies on

gene prediction based on similarity to proteins

from other organisms. This requires

a comprehensive collection of genes from differ-

ent organisms across all domains of life. Besides

the human genome (Lander et al. 2001), JGI

sequenced and annotated genomes of the first

poplar tree (Tuskan et al. 2006) and its

ectomycorrhizal symbiont (Martin et al. 2008);

lignocellulose degrading fungi (Berka et al. 2011;

Eastwood et al. 2011) andmicrobial communities

(Hess et al. 2011); diverse eukaryotes, often the

first representatives of the Tree of Life branches

(Tyler et al. 2006; Bowler et al. 2008; King

et al. 2008; Fritz-Laylin et al. 2010; Colbourne

et al. 2011); and prokaryotes (Wu et al. 2009) as

well as soil (Tringe et al. 2005) and ocean

metagenomes (Walsh et al. 2009). There are

over 3,000 annotated reference genomes in the

JGI database and three ways to find a particular

genome of interest: using an interactive Tree of
Life, search, and select functions.

The Tree of Life organizes the annotated

genomes by the domains of life and links to

Organism home pages. Clicking on a branch

name produces a menu displaying available

genomes in this kingdom, phylum, class, or

order (Fig. 1), each connected to pages in differ-

ent analytical resources. The same pages can be

reached in a step-by-step genome selection from

a hierarchical selection menu on the top of the

page or searching for genomes by keyword (e.g.,

plants, Eukaryota), name, taxonID, or projectID.

Each of the genomic datasets can be analyzed

with a collection of tools linked directly to their

genome databases. Each organism’s home page

contains a description of the project, BLAST,

download, and links to specialized resources as

described in the next section.

Comparative Databases and Tools

Comparative genomics is a more powerful

approach for functional annotation and evolu-

tionary studies of genomes than analysis of indi-

vidual genome sequences. It is also a primary

method for annotation and analysis of

metagenomes. The JGI Genome Portal includes

a set of efficient comparative tools, such as gene

clustering, whole-genome alignment, and build-

ing phylogenetic trees that are used across differ-

ent genomic resources at JGI. VISTA Point

(http://genome.lbl.gov/vista) is an example of

such tools. It was, designed for visualization and

analysis of pairwise and multiple DNA align-

ments (Frazer et al. 2004) at different levels of

resolution in three visualization modes:

(a) VISTA Browser, for visual comparative anal-

ysis of complete genome assemblies using

pairwise and multiple large-scale alignments;

(b) VISTA Synteny Viewer, a multi-tiered graph-

ical display of pairwise alignments at three dif-

ferent levels of resolution; and (c) VistaDot, an

interactive two-dimensional dot-plot genome

synteny viewer across multiple chromosomes/

scaffolds. Several specialized domain-specific

computational systems for comparative genome

analysis built at JGI include Phytozome,

a comparative hub for plant genome and gene

family data and analysis; MycoCosm to enable

users to navigate across sequenced fungal
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genomes and to conduct comparative and

genome-centric analyses and community annota-

tion; and the IMG family of tools for large-scale

comparative analysis of microbial genomes and

metagenomes.

Phytozome (http://phytozome.net; Goodstein

et al. 2012) gives access to the sequences and

functional annotations of a growing number of

complete plant genomes (31 in release v8.0),

including land plants and selected algae.

Phytozome provides both organism-centric and

gene family-centric views as well as access to the

BLAST, BLAT, and Search capabilities.

Phytozome provides a view of the evolutionary

history of every plant and every plant gene at the

level of sequence, gene structure, gene family, and

genome organization. The Phytozome project

organizes the proteomes of green plants into gene

families defined at the nodes on the green plant

evolutionary tree. Genes have been annotated with

PFAM, KOG, KEGG, and PANTHER assign-

ments, and publicly available annotations from

RefSeq, UniProt, TAIR, and JGI are hyperlinked

and searchable. The gene family view gives access

to the information on each family and its members,

organized to highlight shared attributes.

GBrowse provides genome-centric views for

all genomes included in Phytozome. Each organ-

ism browser displays a number of tracks includ-

ing a gene prediction track, a track of

homologous sequences from related species

aligned against the genome, supporting EST and

VISTA tracks identifying regions of this genome

that are syntenic with other plant genomes.

MycoCosm (http://jgi.doe.gov/fungi;

Grigoriev et al. 2012) brings together genomic

data and analytical tools for diverse fungi that are

important for energy and environment. Genomic

data from the JGI and its users are integrated and

curated via user community participation in data

submission, curation, annotation, and analysis.

Over 150 newly sequenced and annotated fungal

genomes are available to the public through

MycoCosm for genome-centric and comparative

analyses. Visual navigation across the MycoCosm

tree (Fig. 2b), where each node represents a group

of phylogenetically related fungi and is linked to

analysis tools, allows users to redefine the search

and analysis space from a single organism to the

entire list of fungal genomes.

The Genome browser with configurable selec-

tion of tracks displays predicted gene models and

annotations along with different lines of evidence

in support of these predictions, such as gene and

protein expression profiles. Gene models and

annotations are linked to community annotation

tools to revise them if needed. Functional profiles

of each genome summarize gene annotations

according to the GO, KEGG, and KOG classifica-

tions and can be comparedwith each other to study

gene family expansions or contractions at different

levels of granularity. Clustering using BLAST

alignments of all proteins and MCL can expand

these analyses to gene families even without anno-

tation and enable side-by-side comparison of each

of the cluster members for pattern of protein

domains, intron-exon structure, and synteny.

MycoCosm comparative views combine the

abovementioned tools to study entire groups of

genomes corresponding to MycoCosm nodes.

Unlike the genome-centric view, there is no ref-

erence genome in this analysis, and, for example,

a keyword or BLAST search for protein kinases

in Basidiomycota or Ascomycota will show dif-

ferences in the number of found genes or BLAST

hits across different members of these phyla.

IMG, the Integrated Microbial Genomes

database (http://img.jgi.doe.gov; Markowitz

et al. 2012a, b), is a system designed for flexible

comparative analyses of microbial genomic data,

which incorporates all complete public microbial

genomes as well as those sequenced at JGI. IMG

with microbiome samples (IMG/M) is an

expanded database that includes metagenome

data from diverse environments, both sequenced

at JGI and submitted by external users.

In addition to importing all public genomes

and their annotations from NCBI’s RefSeq, IMG

curates the data by adding features missed by

many annotation pipelines, such as small RNAs;

assigning proteins and domains to all major pro-

tein family databases (e.g., COG, TIGRfam); and

linking to organism metadata stored in GOLD,

such as oxygen requirements or environment of

origin. Annotations can be viewed in detailed

gene pages or summarized in genome pages that
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include organism metadata in addition to statis-

tics on genome size and gene counts within

various categories.

The tools available in IMG allow for analyses

at the gene, function, or genome level, using

customizable “carts” for each of these data

types. Thus, any given analysis can readily be

performed on a single (meta)genome or several

and can be extended to many individual genes,

functions, or pathways. IMG/M includes

a number of metagenome-specific functions,

including the option to account for different

organism abundances by weighting comparative

analyses according to estimated gene copies,

based on the contig read coverage reported in

the assembly rather than simple gene counts.

It also includes a “scaffold cart” for exploring

genes within a given set of contigs or scaffolds

as well as the option to categorize contigs/

scaffolds into population “bins” based on oligo-

nucleotide composition or other features.

Recent developments in IMG and IMG/M

include the capacity to add and view (meta)

transcriptome and (meta)proteome data in the

context of a reference and compare expression

profiles across experiments.

Metagenome Analysis

Analysis of metagenome data presents a number

of challenges beyond those faced in isolate

Genome Portal, Joint Genome Institute, Fig. 2 Comparative genomic resources at JGI: (a) Phytozome for plants,

(b) MycoCosm for fungi, and (c) IMG family of tool
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genome analysis, in particular the wide variation

in individual organism abundances and the shal-

low coverage of low-abundance, but nonetheless

biologically important, taxa. Both of these tend to

result in highly fragmented assemblies, which are

most readily interpreted when high-quality refer-

ence genome data are available.

Most metagenome analyses approach the data

from either a phylogenetic perspective (i.e., who is

there?) or a functional one (i.e., what are they

doing?). Each of these uses a specific suite of

tools, though nearly all rely on a well-curated

database of genes with known phylogenies and

functions. For phylogenetic analysis, genes or

gene fragments are assigned to phylogenetic line-

ages based on homology to genes of known phy-

logenetic origin. This can be done for all genes

from a metagenome dataset, for example, using

Genome Portal, Joint Genome Institute, Fig. 3 Metagenomic analysis. A protein recruitment plot showing

alignment of genes from a hot spring sample to genomes from the family Hydrogenothermaceae
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MEGAN (Huson and Mitra 2012), or for a set of

conserved phylogenetic markers which can be

placed onto a tree of known sequences from isolate

genomes and/or amplified from uncultivated

organisms, for example, using pplacer (Matsen

et al. 2012). IMG/M allows for both approaches –

an overall perspective of all the genes in a dataset

or on a specific set of contigs is provided through

the “Phylogenetic Distribution of Genes” option

on the main metagenome page or in the scaffold

cart, and genes with homology to particular phyla,

families, genera, or species can be retrieved.When

there are good reference genomes available, align-

ments of protein-coding genes to those genomes

can be viewed in a recruitment plot (Fig. 3).

Phylogenetic marker genes can also be extracted

and incorporated into trees using the “Phyloge-

netic Marker COGs” option under the “Find

Functions” tab.

Functional or “gene-centric” approaches

enable the comparison of metagenome datasets

at the functional level to both assess their relative

similarity and identify genes or functions that are

over- or underrepresented in a given dataset. This

type of approach is utilized by metagenome anal-

ysis systems like MG-RAST (Meyer et al. 2008).

IMG/M provides several options for whole

metagenome comparisons. Metagenomes can be

clustered (under the “Compare Genomes” tab)

according to gene content, using either functional

(e.g., COG, Pfam) or phylogenetic criteria, and

the results visualized via hierarchical clustering,

principal components analysis (PCA), or

a correlation matrix. Relative abundances of spe-

cific gene families can be viewed via the abun-

dance profile function also under the “Compare

Genomes” tab. As mentioned above, these com-

parisons can be made between partly assembled

genomes by taking contig read depth into account

when calculating gene abundance.

Summary

Technological innovations leading to the democ-

ratization of genome sequencing have resulted in

large amounts of genomic data being produced in

different parts of the world. Effective analysis of

genomic and metagenomic data depends on the

availability of comprehensive catalogues of ref-

erence genome data for annotation and compara-

tive genomics as well as computational tools able

to process the large amounts of sequence data.

The JGI Genome Portal (http://genome.jgi.doe.

gov) provides a unified access point to all JGI

genomic databases and analytical tools including

list of sequencing projects at JGI and around the

world, a comprehensive collection of annotated

genomes in all domains of life, and specialized

databases for comparative analysis of plant, fun-

gal, and microbial genomes and metagenomes.

The latter is still in early stages of development,

and data generated at unprecedented scale and

complexity for metagenomes will require new

approaches to data processing, analysis, and

visualization.
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Synonyms

Genome mining of marine microorganisms

Definition

Genome-based studies of marine microorgan-

isms mean utilizing genetic information

retrieved from genomic sequences of marine

microorganisms to guide the discovery of useful

enzymes and natural products from marine

microorganisms. Chemical structures of natural

products potentially synthesized by marine

microorganisms can be predicted by aligning

the biosynthetic genes with known gene

sequences that are responsible for the biosynthe-

sis of natural products, and the physicochemical

properties (UV spectrum, molecular weight,

polarity, etc.) obtained from the prediction can

be used to guide further purification and struc-

ture elucidation of the compounds. In case that

the interested genes or gene clusters are not

expressed or express in low level, various

methods can be employed to activate the expres-

sion of biosynthetic genes. Identification of tar-

get natural products can be achieved by

comparative metabolic profiling, heterologous

expression, and other genome-mining strategies.

For unculturable or yet-uncultured marine

microbes in given environments, metagenomic,

metatranscriptomic, and metaproteomic

sequences can be employed. Function-based or

Genome-Based Studies of Marine Microorganisms 231 G

G



sequence-based screening of metagenomic

libraries is subsequently performed to identify

novel enzymes and natural products.

Introduction

Marine microorganisms are important sources for

novel natural products and industrial enzymes,

and many unique small molecules and proteins

produced by marine microorganisms have been

reported in the recent years, which facilitate

novel drug discovery, agricultural biocontrol, as

well as industrial applications. In case of marine

natural products, it has been clear that vast diver-

sity of chemistry can be explored from marine

microorganisms, mainly including marine bacte-

ria and marine fungi (Imhoff et al. 2011). How-

ever, bioassay-guided screening of natural

products has limitations in identification of com-

pounds with novel functions that are not readily

assayed, as well as in the discovery of novel

compounds which exist in low amount, or even

not be produced under normal culture conditions.

In addition, some marine microbes may glow

very slowly under laboratory conditions or

unculturable using currently available methods.

Therefore, it is important to develop new strate-

gies to fully explore the biosynthetic potential of

marine microorganisms.

The development of high-throughput sequenc-

ing technologies has facilitated the exploration of

the full biosynthetic potential of marine microor-

ganisms. It has become increasingly evident

through the analysis of abundantly available

genomic sequences and metagenomic sequences

that microorganisms have much greater potential

than we expected to produce various metabolites.

It was estimated by comparing the known sec-

ondary metabolite and the analysis of the geno-

mic sequences of several actinobacteria that as

much as 90 % of the biosynthetic potential of

actinomycetes remains undiscovered (Wilkinson

and Micklefield 2007). The available genomic

sequences of marine microorganisms enable us

to rapidly identify useful enzymes and natural

products by genome mining.

Genome Mining for Natural Product

Discovery

Typically, biosynthetic genes of small molecules

in microorganisms are clustered together in the

genome to form gene clusters, and bioinformatic

analysis allows the rapid identification of gene

clusters similar to the known ones, thus speeding

up the discovery of natural products. Genome

mining involves prediction of biosynthetic poten-

tial of organisms by analyzing their genomic

sequences, followed by screening or activation

of enzymes and natural product biosynthesis by

process optimization and/or genetic manipula-

tions (Scheffler et al. 2013). Two types of small

molecules encoded by multimodular polyketide

synthases (PKS) and non-ribosomal peptide syn-

thetases (NRPS) have been extensively focused.

The biosynthesis of many polyketides and

non-ribosomal peptides follows a colinearity

rule and is assembled based on the number and

type of domains within the enzymes, which

makes it possible to predict the molecule struc-

tures (Winter et al. 2011; Nikolouli and

Mossialos 2012).

Similar to genome scanning method

(Zazopoulos et al. 2003), genome mining has

the limitation that only the genes with similar

functions to those of known ones are focused;

new or unusual pathways are poorly explored.

However, the presence of PKS and NRPS genes

is good indication of natural products with possi-

ble broad spectrum of activities (Nikolouli and

Mossialos 2012).

Genome mining of microorganisms was first

started in 2000, with the identification of

coelichelin as one of the first examples (Challis

and Ravel 2000), while the first compound iden-

tified in marine actinobacteria by genome mining

is the polyene macrolactam salinilactam A from

Salinispora tropica (Udwary et al. 2007). The

structures of coelichelin and salinilactam

A were shown in Fig. 1.

Various genome-mining techniques have been

reviewed elsewhere (Scheffler et al. 2013). Pre-

diction of gene functions and chemical structures

can be achieved using computer programs such as

BLAST and THREADER, as well as other useful
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bioinformatic tools such as antiSMASH and NP.

searcher (Nikolouli and Mossialos 2012). Due to

the limited knowledge on enzymatic functions

and metabolic cross talks, the prediction of chem-

ical structures is not always correct, and accurate

annotation of gene functions and prediction of

chemical structures requires more advanced bio-

informatic tools.

In case that the biosynthetic genes are actively

expressed under lab conditions, information on

the physicochemical properties of the target mol-

ecules such as UV spectrum, molecular weight,

and polarity obtained from the bioinformatic pre-

diction can be used to guide the further purifica-

tion of the compounds. Thailandamide A was

discovered by genome mining of Burkholderia

thailandensis (Nguyen et al. 2008). Being tem-

perature and light sensitive and also being pro-

duced in the early growth stage, thailandamide

A may not have been identified using classical

methods without the genomic-guided isolation

(Nguyen et al. 2008). The structure of

thailandamide A was shown in Fig. 1.

Genomisotopic approach was first described

with the discovery of orfamides from Pseudomo-

nas fluorescens (Gross et al. 2007), which stable

isotope amino acid precursors feeding into the

culture broth and subsequent detection of the

labeled molecule to identify NRPS or mixed

PKS/NRPS compounds.

Although low-level production of target mol-

ecules can be identified by genomisotopic

method, some metabolites are only produced

under special circumstances; activation of pro-

duction of these molecules requires mimicking

specific nutritional, environmental, and biologi-

cal conditions, such as special carbon and nitro-

gen source, high temperature, UV irradiation,

osmotic stress treatments, and coculture with

another microbial strain (Scherlach and

Hertweck 2009). In addition, genetic methods

can also be employed to activate production of

certain metabolites identified by genome min-

ing, including overexpression of activation reg-

ulators and deletion of repressive regulators

(Scheffler et al. 2013). Heterologous expression

of the entire gene cluster in well-defined host

strains, including E. coli, Streptomyces, Bacil-

lus, and Saccharomyces cerevisiae, has also

been employed in genome mining (Zhang

et al. 2011). Selection of suitable host strains

and expression vectors are critical to achieve
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heterologous production of target active

molecules. Scheme of genome mining was

depicted in Fig. 2.

Metatranscriptomic and Metaproteomic

Studies for Discovery of Novel Enzymes and

Small Molecules

In addition to culture-dependent genome-mining

studies, genome-based discovery of novel

enzymes and natural products from environmen-

tal samples can also be achieved using culture-

independent tools. It has been estimated that less

than 1 % of the bacteria in most environmental

samples are culturable (reviewed by Brady

et al. 2009), and it is thus important to study the

yet-uncultured microorganisms in marine envi-

ronment. Metagenome stands for a collection of

genetic materials (genomic DNA) of a mixed

community of organisms recovered directly

from given environmental samples. Environmen-

tal DNA (eDNA) extracted from marine sedi-

ments, seawater, or marine sponges, plants, or

animals can serve as starting point for

metagenomic studies. Metagenomic DNA is

cloned into various host cells, the most popular

host being E. coli. Phenotypic-based screening

and DNA sequencing-based screening of

metagenomic libraries yield positive clones with

aimed sequences (reviewed by Brady et al. 2009).

Novel enzymes such as laccase, aromatic hydro-

carbon dioxygenase, and halogenase have been

isolated from marine metagenomic studies (Fang

et al. 2011; Marcos et al. 2012; Bayer et al. 2013,

reviewed by Kennedy et al. 2011), which have

great potential for industrial applications and

environmental bioremediation. In addition,

novel natural products were also identified in

metagenomic libraries (reviewed by Brady

et al. 2009), and Streptomyces and Ralstonia

metallidurans were used as hosts for heterolo-

gous expression of metagenomic library.

Metagenome mining of symbiotic bacteria of

marine sponge Theonella swinhoei resulted in

the discovery of polytheonamides which are

extensively posttranslationally modified ribo-

somal peptides (Freeman et al. 2012).

Metagenomic workflow was illustrated in Fig. 3.

Metatranscriptomic and metaproteomic stud-

ies focus on the expression of certain genes in

a given environment at a given time (Schweder

et al. 2008; Stewart et al. 2012) and have been

used to characterize metabolic behavior of micro-

bial community. Such techniques have not been

employed to study the isolation of novel enzymes

Genome-Based Studies
of Marine
Microorganisms,
Fig. 2 Genome mining for

identification of natural

products

G 234 Genome-Based Studies of Marine Microorganisms



and small molecules from marine environment.

In comparison to metagenomic studies, metatran-

scriptomics and metaproteomics overlook genes

that are not expressed in certain time and thus

have limitation to fully explore the biosynthetic

potential of marine microorganisms. However,

same problems of silent gene expression can

also be encountered when the metagenomic

libraries are propagated in certain host cells;

therefore, choosing diverse host cells and testing

various conditions for expression of

metagenomic libraries are important to identify

novel enzymes and small molecules in marine

environment.

Summary

Genome mining has speeded up the discovery of

natural products and novel enzymes from micro-

organisms by exploring their full biosynthetic

potentials. Metagenomic studies combined with

genome mining promote the advancement of

studies of yet-uncultured marine microorgan-

isms. The discovery of marine natural products

and novel enzymes using genome-based methods

is still in its early stage; however, development of

genome mining and metagenomic approaches

will facilitate discovery of more novel marine

enzymes and natural products for biotechnologi-

cal applications.
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Definition

Functional gene arrays (FGAs) are a special type

of microarray containing probes for key genes

involved in microbial functional processes, such

as biogeochemical cycling of carbon, nitrogen,

sulfur, phosphorus, and metals, biodegradation of

environmental contaminants, antibiotic resis-

tance, energy processing, and stress response.

GeoChips are considered to be the most compre-

hensive FGAs and an important metagenomic

tool for microbial community analysis.

Introduction

Microorganisms are the most diverse group of

organisms known in terms of phylogeny and

functionality. However, they do not live alone

but form distinct communities and play inte-

grated and unique roles in ecosystems, such as

biogeochemical cycling of carbon (C), nitrogen

(N), sulfur (S), phosphorus (P), and metals (e.g.,

iron, copper, zinc), biodegradation or stabiliza-

tion of environmental contaminants, and
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interaction with hosts. Therefore, one of the most

important goals of microbial ecology is to under-

stand the diversity, composition, structure, func-

tion, dynamics, and evolution of microbial

communities and their relationships with envi-

ronmental factors and ecosystem functioning.

Toward this goal, several challenges remain.

First, microorganisms are generally too small to

see or characterize with most approaches used for

plant or animal studies. Second, microbial com-

munities are extremely diverse. It is estimated

that 1 g of soil contains 2,000–50,000 microbial

species (Torsvik et al. 2002) and even up to

millions of species (Gans et al. 2005). Third,

a vast majority of microorganisms (>99 %) are

uncultured (Whitman et al. 1998), making it dif-

ficult to study their functional ability and molec-

ular mechanisms. Finally, establishing

mechanistic linkages betweenmicrobial diversity

and ecosystem functioning is even more difficult.

To address these challenges, culture-

independent, high-throughput technologies for

analysis of microbial communities are necessary.

Indeed, many culture-independent approaches

are available including PCR-based cloning anal-

ysis, denaturing gradient gel electrophoresis

(DGGE), terminal-restriction fragment length

polymorphism (T-RFLP), quantitative PCR, and

in situ hybridization. However, these methods

only provide snapshots of a microbial community

but fail to provide a comprehensive view. There-

fore, high-throughput metagenomic technologies

are necessary for providing a rapid, specific, sen-

sitive, and quantitative analysis of microbial

communities and their relationships with envi-

ronmental factors and ecosystem functioning.

Microarray-based technology can examine

thousands of genes at one time, providing

a much more comprehensive analysis of micro-

bial communities. This technology, like

GeoChip, has been developed and adopted to

analyze microbial communities (He et al. 2007,

2010a; Hazen et al. 2010) and has been used to

profile the functional diversity, composition, struc-

ture, and dynamics ofmicrobial communities from

different habitats (He et al. 2011, 2012a, b).

A variety of studies demonstrate that microarrays

can provide phylogenetic and functional

information on a microbial community in a rapid,

high-throughput, and parallel manner.

This overview is focused on the analysis of

functional diversity, structure, and activity of

microbial communities using GeoChip-based

metagenomic technologies but also includes

a brief introduction of GeoChips, GeoChip devel-

opment, and GeoChip hybridization and data

analysis.

GeoChips as the Most Comprehensive
Functional Gene Arrays

Functional gene arrays (FGAs) are special

microarrays containing probes for key genes

involved in microbial functional processes, such

as biogeochemical cycling of carbon (C), nitro-

gen (N), phosphorus (P), sulfur (S), and metals,

antibiotic resistance, biodegradation of environ-

mental contaminants, energy processing, and

stress response. Since the exact functions of

selected genes on FGAs are known, this type of

array is especially useful for examining the func-

tional diversity, composition, and structure of

microbial communities across different times

and scales. Several FGAs have been reported

and evaluated, and they generally target specific

functional processes, populations, or environ-

ments, including nodC and nifH arrays,

a methanotroph gene (pmoA) array, a virulence

marker gene (VMG) array, pathogen detection/

diagnosis arrays, and a bioleaching array

(He et al. 2012b). However, GeoChips are the

most comprehensive FGAs to date, especially

the later versions (GeoChips 2.0, 3.0, and 4.0),

which target a variety of key microbial functional

processes, such as C, N, P, and S cycling, con-

taminant bioremediation, and antibiotic resis-

tance (He et al. 2012a).

GeoChips, constructed with 50-mer oligonu-

cleotide probes, have evolved over several gen-

erations. The prototype GeoChip contained

89 PCR-amplicon probes for N-cycling genes

(nirS, nirK, amoA, and pmoA) derived from

pure-culture isolates and marine sediment clone

libraries (Wu et al. 2001). The first-generation

GeoChip (GeoChip 1.0) was constructed with
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763 gene variants involved in nitrogen cycling

(nirS, nirK, nifH, amoA), methane oxidation

(pmoA), and sulfite reduction (dsrAB). Then, an
expanded array was developed with 2,402 genes

involved in organic contaminant biodegradation

and metal resistance to monitor microbial

populations and functional genes involved in

biodegradation and biotransformation (Rhee

et al. 2004). Specificity evaluation with represen-

tative pure cultures indicated that the designed

probes appeared to be specific to their

corresponding target genes. The detection limit

was 5–10 ng of genomic DNA in the absence of

background DNA and 50–100 ng of pure-culture

genomic DNA in the presence of background

DNA. Real-time PCR analysis was very consis-

tent with the microarray-based quantification

(He et al. 2011).

Although the prototype and GeoChip 1.0

arrays were used to probe specific functional

groups or activities, they lacked a truly com-

prehensive probe set covering key microbial

functional processes occurring in different

environments. Therefore, more comprehensive

GeoChips have been developed and evaluated.

For example, GeoChip 2.0, containing 24,243

(50-mer) oligonucleotide probes, targeting

~10,000 functional gene variants from 150 gene

families involved in the geochemical cycling

of C, N, and P, sulfate reduction, metal reduction

and resistance, and organic contaminant degrada-

tion, was developed as the first comprehensive

FGA (He et al. 2007). After 2 years, GeoChip 3.0

was developed, which contained about 28,000

probes and targeted ~57,000 sequences from

292 gene families (He et al. 2010a). GeoChip

3.0 is more comprehensive and has several other

distinct features compared to GeoChip 2.0, such

as a common oligo reference standard (CORS)

for data normalization and comparison, a soft-

ware package for data management and future

updating, the gyrB gene for phylogenetic analy-

sis, and additional functional groups including

those involved in antibiotic resistance and

energy processing (He et al. 2010a). Based on

GeoChip 3.0, GeoChip 4.0 was developed,

which contains ~84,000 probes and targeting

>152,000 genes from 410 functional families.

GeoChip 4.0 not only contains all functional cat-

egories from GeoChip 3.0 but also includes addi-

tional functional categories, such as genes from

bacterial phages and those involved in stress

response and virulence (Hazen et al. 2010; He

et al. 2012a). All evaluation and studies demon-

strate that GeoChip is a powerful tool for specific,

sensitive, and quantitative analysis of microbial

communities from a variety of habitats

(He et al. 2011, 2012a, b).

GeoChip Development

GeoChip development involves several major

steps, including selection of target genes,

sequence retrieval and verification, oligonucleo-

tide probe design, probe validation, and array

construction as well as future automatic update,

which are generally implemented by a GeoChip

development and data analysis pipeline (http://

ieg./ou.edu/) (He et al. 2010a).

Selection of Target Genes and Sequence

Retrieval

A variety of functional genes can be used as

functional markers targeting different processes,

such as biogeochemical cycling of C, N, S, P, and

metals, contaminant bioremediation, antibiotic

resistance, and stress response. For example,

292 functional gene families were selected for

GeoChip 3.0 with 41 for C cycling, 16 for

N cycling, 3 for P utilization, 4 for S cycling,

173 for biodegradation of a variety of organic

contaminants, 41 for metal reduction and resis-

tance, 11 for antibiotic resistance, and 2 for

energy processing. In addition, a phylogenetic

marker (gyrB) was also chosen (He et al.

2010a). More importantly, when sequences for

a known functional gene are available, they can

be added in an updated GeoChip. For example,

when GeoChip was updated to GeoChip 4.0,

functional gene families involved in stress

responses, bacterial phages, and virulence were

added, resulting in 410 functional gene families

on GeoChip 4.0 (Hazen et al. 2010; He

et al. 2012a).Generally, genes are chosen for

key enzymes or proteins with the corresponding
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function(s) of interest. If a process involves mul-

tiple steps or a protein complex, those genes

responsible for catalytic subunits or with the

active site(s) will be selected (He et al. 2011).

Sequence retrieval is performed generally

with a pipeline with a database integrated for

managing all retrieved sequences and subse-

quently designed probes. For each functional

gene, the first step is to submit a query to the

GenBank protein database and fetch all candidate

amino acid sequences. The key words may

include the name of the target gene/enzyme, its

abbreviation and enzyme commission number

(EC), and affiliated domains of bacteria, archaea,

and fungi. Second, retrieved sequences are vali-

dated by seed sequences (those sequences that

have been experimentally confirmed to produce

the protein of interest and that the protein func-

tions as expected) with the HMMER program.

Finally, all confirmed protein sequences are

searched against GenBank again to obtain their

corresponding nucleic acid sequences for probe

design (He et al. 2010a).

Oligonucleotide Probe Design

A new version of CommOligo (He et al. 2012a)

with group-specific probe design features can be

used to design both gene- and group-specific oli-

gonucleotide probes with different degrees of

specificity based on the following criteria: (i) a

gene-specific probe must have �90 % sequence

identity, �20-base continuous stretch, and

��35 kcal/mol free energy; (ii) a group-specific

probe has to meet the above requirements for

nontarget groups, and it also must have �96 %

sequence identity, � 35-base continuous stretch,

and��60 kcal/mol free energy within the group.

Computational and experimental evaluation indi-

cates that these designed probes are highly spe-

cific to their targets (He et al. 2007, 2010a).

Probe Validation and GeoChip Construction

All designed probes are subsequently verified

against the GenBank (NR) nucleic acid database

for specificity. Normally, multiple (e.g., 20)

probes for each sequence or each group of

sequences are designed, but only the best probe

set for each sequence or each group of closely

related sequences will be chosen for array con-

struction. GeoChip can be constructed in-house,

such as GeoChips 2.0 and 3.0 (He et al. 2007,

2010a), or commercially, like GeoChip 4.0

(Hazen et al. 2010; He et al. 2012a).

GeoChip Operation and Data Analysis

Generally, GeoChip operation and data analysis

include target preparation, GeoChip hybridiza-

tion, image and data preprocessing, and data

analysis (Fig. 1).

Target Preparation

Target preparation involves a few steps, includ-

ing nucleic acid extraction and purification, label-

ing, and hybridization (Fig. 1a). The most

important step for successful GeoChip analysis

is nucleic acid extraction and purification from

environmental samples generally using a well-

established method, which is able to produce

large fragments of DNA. High-quality DNA

should have ratios of A260/A280 ~ 1.8 and

A260/A230 > 1.7. Low A260/A230 ratios indicate

impurities in the DNA sample and can negatively

influence subsequent labeling and hybridization.

Generally, since 1–5 mg of DNA or 5–20 mg of

RNA is required for GeoChip hybridization,

whole-community genome amplification

(WCGA) for DNA and whole-community RNA

amplification (WCRA) for RNA are necessary

(He et al. 2012b). Non-amplified or amplified

nucleic acids are then labeled with fluorescent dye

(e.g., Cy3, Cy5) using random priming with the

Klenow fragment of DNA polymerase for DNA

and SuperScriptTM II/III RNase H-reverse tran-

scriptase for RNA. The labeled nucleic acids are

then purified and dried for hybridization (Fig. 1a).

Hybridization, Imaging, and Data

Preprocessing

Labeled nucleic acid target is suspended in

a hybridization buffer containing 40–50 % form-

amide and hybridized on GeoChip at 42–50 �C
(He et al. 2007, 2010a, 2012b). The hybridization

stringency can be adjusted by changing the

temperature and/or formamide concentration.

GeoChip-Based Metagenomic Technologies 239 G

G



For every 1% increase in formamide, the effective

temperature increases by 0.6 �C (He et al. 2011).

Hybridized arrays are imaged with

a microarray scanner having a resolution of at

least 10 mm for homemade arrays and 2 mm for

commercially manufactured arrays. Microarray

analysis software is then used to quantify the

signal intensity (pixel density) of each spot.

Spot quality is also evaluated at this point using

predetermined criteria, and positive spots are

called generally based on signal-to-noise ratio

[SNR; SNR ¼ (signal mean – background

mean)/background standard deviation] or signal-

to-both-standard-deviations ratio [SSDR;

SSDR ¼ (signal mean – background mean)/(sig-

nal standard deviation – background standard

deviation)] (He et al. 2012b).

Raw GeoChip data are further evaluated via

the GeoChip data analysis pipeline

(He et al. 2010a). The quality of individual

spots, evenness of control spot hybridization sig-

nals across the slide surface, and background

levels are assessed to determine overall array

quality. Spots flagged as poor or low quality are

removed along with outliers: positive spots with

(signal – mean signal intensity of all replicate

spots) greater than three times the replicate

spots signal standard deviation (He et al. 2011).

The signal intensities are then normalized for

further statistical analysis (Fig. 1b).

GeoChip Data Analysis

Data analysis is the most challenging part in the

use of GeoChip for microbial community analy-

sis, and a variety of methods have been used to

address fundamental microbial ecology questions

(Fig. 1c). First, various diversity indices (e.g.,

richness, evenness, diversity) based on the num-

ber of functional genes detected and their abun-

dances are used to examine the functional

GeoChip-BasedMetagenomic Technologies for Ana-
lyzing Microbial Community Functional Structure
andActivities, Fig. 1 A schematic presentation of target

preparation, GeoChip operation, and data analysis of

microbial communities from a variety of habitats. (a)
Target preparation, (b) GeoChip hybridization and data

processing, (c) GeoChip data analysis (This figure is

adapted from Fig. 1 by He et al. (2012b))
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diversity of microbial communities. The relative

abundance of specific genes or gene groups can

be determined based on the total signal intensity

of the relevant genes or the number of genes

detected. The percentage of genes shared by dif-

ferent samples can also be calculated to compare

microbial communities examined. Second, for

statistical analysis of the overall microbial com-

munity composition and structure with FGA data,

ordination techniques can be used such as princi-

pal component analysis (PCA), detrended corre-

spondence analysis (DCA), cluster analysis (CA),

and nonmetric multidimensional scaling

(NMDS). PCA and DCA are multivariate statis-

tical methods, which reduce the number of vari-

ables needed to explain the data and highlight the

variability between samples. CA groups samples

based on the overall similarity of gene patterns.

NMDS finds both a nonparametric monotonic

relationship between the dissimilarities in the

item-item matrix and the Euclidean distances

between items and the location of each item in

the low-dimensional space. Also, the response

ratio can be used to determine changes of specific

functional genes between the control and the

treatment. In addition, analysis of variation

(ANOVA), analysis of similarities (ANOISM),

nonparametric multivariate analysis of variance

(Adonis), and multi-response permutation proce-

dure (MRPP) can be used to discern dissimilar-

ities of microbial communities over time and

space (He et al. 2011, 2012b). Third, if environ-

mental data or other metadata are available,

GeoChip data can be used to correlate environ-

mental variables with the functional microbial

community structure. These include the

Pearson’s correlation coefficient (PCC), canoni-

cal correspondence analysis (CCA), and Mantel

test. PCC measures the strength of linear depen-

dence between two variables, such as functional

gene abundances detected by GeoChip, and envi-

ronmental variables. CCA has been used in many

cases in GeoChip-based studies to better under-

stand how environmental factors affect the com-

munity structure (He et al. 2011, 2012b). Also,

based on the results of the CCA, the relative

influence of environmental variables on the

microbial community structure can be

determined using variance partitioning analysis

(VPA). In addition, further correlations of

GeoChip data with environmental parameters

can be performed with the Mantel test

(He et al. 2007, 2010a, b, 2011, 2012b). Finally,

GeoChip data can be used to infer functional

molecular ecological networks for revealing

interactions of functional genes and their associ-

ated populations. A recent study indicated that

elevated CO2 substantially altered the network

interaction of soil microbial communities and

the shift in network structures is significantly

correlated with soil properties (He et al. 2012b;

Zhou et al. 2010) (Fig. 1c).

GeoChip Applications

Different versions of GeoChip have been used to

analyze microbial communities from different

habitats, such as aquatic systems, soils, extreme

environments, human microbiomes, and bioreac-

tors for addressing fundamental scientific ques-

tions related to global change, bioenergy,

bioremediation, agricultural management, land

use, and human health and disease as well as

ecological theories (He et al. 2011, 2012b). Sev-

eral recent studies are highlighted, especially

with a focus on soil and water microbial commu-

nities. A list of representative studies with differ-

ent GeoChip versions is shown in Table 1.

Soils

Soil may harbor the most complex microbial

communities among known habitats, and

recently GeoChips have been used to investigate

soil microbial communities to address fundamen-

tal ecological questions related to global change

(e.g., elevated CO2, elevated O3, warming), bio-

remediation of oil-contaminated fields, land use,

agricultural management, and livestock grazing.

Three recent studies focused on the response

of soil microbial communities to global change,

including elevated CO2, temperature, and O3.

First, GeoChip 3.0 was used to analyze soil

microbial communities under elevated CO2 at

a multifactor grassland experiment site, BioCON

(biodiversity, CO2, and nitrogen deposition), in
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GeoChip-Based Metagenomic Technologies for Analyzing Microbial Community Functional Structure and
Activities, Table 1 Summary of representative GeoChip applications. If no references are cited, those studies are

described in a previous review (He et al. 2012b)

Habitat or

ecosystem Ecosystem/sample type GeoChip Objectives of study/biological questions

Aquatic

systems

Marine sediment GeoChip

1.0

Functional microbial community structure of marine

sediments in the Gulf of Mexico

Ebro and Elbe river sediment GeoChip

2.0

Pesticide impacts on European rivers

Coral-associated marine water GeoChip

2.0

Microbial communities in healthy and yellow-band

diseased coral (Montastraea faveolata)

Soils Antarctic latitudinal transect

soil

GeoChip

2.0

Microbial C and N cycling across an Antarctic latitudinal

transect

Deciduous forest soil GeoChip

2.0

Gene-area relation in microorganisms

Native grassland soil GeoChip

2.0

Afforestation impacts soil microbial communities and their

functional potential

Strawberry farmland soil GeoChip

2.0

Microbial responses to farm management

Grassland soil GeoChip

2.0

Microbial responses to plant invasion

Agricultural soil GeoChip

2.0

Agricultural practices/land use (Xue et al. 2013)

Grassland soil GeoChip

3.0

Global change (elevated CO2) (He et al. 2010b)

Grassland soil GeoChip

3.0

Global change (warming) (Zhou et al. 2012)

Wheat rhizosphere soil GeoChip

3.0

Global change (elevated O3) (Li et al. 2013)

Citrus rhizosphere soil GeoChip

3.0

Rhizosphere microbial community responses to

Candidatus Liberibacter asiaticus-infected citrus trees

Grassland soil GeoChip

4.0

The effect of grazing on microbial communities (Yang

et al. 2013)

Contaminated

sites

U-contaminated underground

water (Oak Ridge, TN)

GeoChip

1.0

Bioremediation of U-contaminated groundwater

GeoChip

2.0

Bioremediation of U-contaminated groundwater (Van

Nostrand et al. 2011)

U-contaminated sediment

(Oak Ridge, TN)

GeoChip

2.0

Bioremediation of U-contaminated sediments

U-contaminated underground

water (Rifle, CO)

GeoChip

2.0

Bioremediation of U-contaminated groundwater (Liang

et al. 2012)

PCB-contaminated soil GeoChip

2.0

Microbial bioremediation of PCB-contaminated soil

Oil-contaminated soil GeoChip

2.0

Bioremediation of oil-contaminated soil

Arsenic-contaminated soil GeoChip

3.0

Rhizosphere microbial community responses to arsenic

contamination and phytoremediation

Landfill groundwater GeoChip

3.0

Microbial responses to landfill-derived contaminants in

groundwater (Lu et al. 2012)

Oil-spill seawater GeoChip

4.0

Microbial bioremediation of oil-spill sites (Hazen

et al. 2010)

(continued)

G 242 GeoChip-Based Metagenomic Technologies



the Cedar Creek Ecosystem Science Reserve,

MN (He et al. 2010b). The results showed that

the functional microbial community structure

was markedly different between ambient CO2

and elevated CO2 as indicated by DCA of

GeoChip 3.0 data and 16S rRNA gene-based

pyrosequencing data. Also, genes involved in

labile C degradation and C and N fixation were

significantly increased under elevated CO2

although the abundance of recalcitrant

C degradation genes remained unchanged. In

addition, changes in the microbial community

structure were significantly correlated with soil

C and N contents and plant productivity

(He et al. 2010b). Second, GeoChip 3.0 was

used to understand the effect of increased tem-

perature on soil microbial communities and their

roles in regulating soil carbon dynamics at

a tallgrass prairie ecosystem in the US Great

Plains of Central Oklahoma. The results suggest

soil microorganisms may regulate soil carbon

dynamics through three primary feedback mech-

anisms: (i) shifting microbial community compo-

sition, leading to the reduced temperature

sensitivity of heterotrophic soil respiration;

(ii) differentially stimulating labile C but not

recalcitrant C degradation genes to maintain

long-term soil carbon stability and storage; and

(iii) enhancing nutrient-cycling processes to pro-

mote plant growth (Zhou et al. 2012). Third,

GeoChip 3.0 was used to investigate the func-

tional composition, and structure of rhizosphere

microbial communities from O3-sensitive and

O3-relatively-sensitive wheat (Triticum aestivum
L.) cultivars under elevated O3 (eO3). Based on

GeoChip hybridization signal intensities,

although the overall functional structure of rhizo-

sphere microbial communities did not signifi-

cantly change by eO3 or cultivars, the results

showed that the abundance of specific functional

genes involved in C fixation and degradation,

N fixation, and sulfite reduction did significantly

alter in response to eO3 and/or wheat cultivars.

Also, the O3-sensitive cultivar appeared to harbor

microbial functional communities in the rhizo-

sphere more sensitive in response to eO3 than

the O3-relatively sensitive cultivar. In addition,

CCA suggested that the functional structure of

microbial communities involved in C cycling was

largely shaped by soil and plant properties includ-

ing pH, dissolved organic carbon (DOC), micro-

bial biomass C, C/N ratio, and grain weight

(Li et al. 2013). Those studies indicate that global

change significantly impacts soil microbial com-

munities, which may in turn regulate ecosystem

functioning through different feedback

mechanisms.

Various agriculture management practices

may have significant influences on soil microbial

communities and their ecological functions.

GeoChip-Based Metagenomic Technologies for Analyzing Microbial Community Functional Structure and
Activities, Table 1 (continued)

Habitat or

ecosystem Ecosystem/sample type GeoChip Objectives of study/biological questions

Extreme

environments

Deep-sea hydrothermal vent

(chimney)

GeoChip

2.0

Functional gene diversity of deep-sea hydrothermal vent

microbial communities

Deep-sea basalt samples GeoChip

2.0

Functional gene diversity and structure of deep-sea basalt

microbial communities

GSL hypersaline water GeoChip

2.0

Functional gene diversity and structure of hypersaline

water microbial communities

Acid mine drainage (water) GeoChip

2.0

Functional gene diversity of microbial communities in acid

mine drainage (AMD) systems

Bioreactors Fluidized bed reactor for

bioremediation

GeoChip

2.0

Microbial bioremediation of hydrocarbon-contaminated

water

Microbial electrolysis cell for

hydrogen production

GeoChip

3.0

Microbial hydrogen production using wastewater
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GeoChip 2.0 was used to evaluate the potential

functions of soil microbial communities under

conventional (CT), low-input (LI), and organic

(ORG) management systems at an agricultural

research site in Michigan. Compared to CT,

a high diversity of functional genes was observed

in LI. The functional gene diversity in ORG did

not differ significantly from that of either CT or

LI. The abundance of genes encoding enzymes

involved in C, N, P, and S cycling was generally

lower in CT than in LI or ORG, but functional

genes involved in lignin degradation, methane

generation/oxidation, and assimilatory N reduc-

tion remained unchanged. Also, significant

correlations were observed between NO3
� con-

centration and denitrification gene abundance,

NH4
+ concentration and ammonification gene

abundance, and N2O flux and denitrification

gene abundance, indicating a close linkage

between soil N availability or utilization and

associated functional potential of soil microbial

communities (Xue et al. 2013).

Livestock grazing is a type of global land-use

activity. However, the effect of free livestock

grazing on soil microbial communities at the

functional gene level remains unclear. GeoChip

4.0 was used to examine the effects of free live-

stock grazing on the microbial community at an

experimental site in Tibet, a region known to be

very sensitive to anthropogenic perturbation and

global warming. The results showed that grazing

changed the microbial community functional

structure, in addition to aboveground vegetation

and soil geochemical properties. Further statisti-

cal analysis showed that microbial community

functional structures were closely correlated

with environmental variables and variations in

microbial community functional structures were

mainly controlled by aboveground vegetation,

soil C/N ratio, and NH4
+-N. Therefore, these

results indicated that soil microbial community

functional structure was very sensitive to live-

stock grazing and revealed the role of soil micro-

bial communities in the regulation of soil N and

C cycling, supporting the necessity to include

microbial components in evaluating the conse-

quence of land use and/or climate change (Yang

et al. 2013).

Groundwater and Aquatic Ecosystems

Due to human activities, groundwater and aquatic

ecosystems are often contaminated from various

sources (e.g., mining, oil spill, landfill) and with

a variety of toxic compounds (e.g., heavy metals,

herbicides, antibiotics, pesticides) and conditions

(e.g., low pH, high salinity). To understand how

such contamination impacts groundwater and

aquatic ecosystems, GeoChips were used to inves-

tigate those microbial communities to explore the

potential of in situ bioremediation of contaminated

sites by indigenous microbial communities.

A pilot-scale system was established to exam-

ine the feasibility of in situ U(VI) immobilization

at a highly contaminated aquifer in Oak

Ridge, TN. Ethanol was injected intermittently

as an electron donor to stimulate microbial

U(VI) reduction, leading to a decrease of

U(VI) concentrations below the Environmental

Protection Agency drinking water standard.

GeoChip 2.0 was used to monitor microbial

communities in three wells during active

U(VI) reduction and maintenance phases. The

results showed that the overall microbial commu-

nity structure exhibited a considerable shift over

the remediation phases examined and functional

populations of Fe(III)-reducing bacteria (FeRB),

nitrate-reducing bacteria (NRB), and sulfate-

reducing bacteria (SRB) reached their highest

levels during the active U(VI) reduction phase

(days 137–370), in which denitrification, Fe(III)

reduction, and sulfate reduction occurred sequen-

tially, suggesting that these functional

populations could play an important role in both

active U(VI) reduction and maintenance stability

of reduced U(IV) (Van Nostrand et al. 2011).

To better understand the microbial functional

diversity changes with subsurface redox condi-

tions during in situ U(VI) bioremediation,

GeoChip 2.0 was applied to examine groundwa-

ter microbial communities at a uranium mill tail-

ings remedial action (UMTRA) site (Rifle, CO).

The results indicated that functional microbial

communities altered with a shift in the dominant

metabolic process and the abundance of dsrAB
and mcr genes increased when redox conditions

shifted from Fe-reducing to sulfate-reducing con-

ditions, while cytochrome genes were primarily
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detected from Geobacter species and decreased

with lower subsurface redox conditions. Statisti-

cal analysis of environmental parameters and

functional genes indicated that acetate, U(VI),

and redox potential were the most significant

geochemical variables linked to the microbial

functional gene structures. This study indicates

that microbial functional genes could be very

useful for tracking microbial community struc-

ture and dynamics during bioremediation (Liang

et al. 2012).

In another study, GeoChip 3.0 was used to

study the functional gene diversity and structure

of groundwater microbial communities in

a shallow landfill leachate-contaminated aquifer

in Norman, OK. Samples were taken from eight

wells at the same aquifer depth immediately

below a municipal landfill or along the predomi-

nant downgradient groundwater flowpath. The

results showed that functional gene richness and

diversity immediately below the landfill and the

closest well were considerably lower than those

in downgradient wells and that landfill leachate

impacted the diversity, composition, structure,

and functional potential of groundwater micro-

bial communities as a function of groundwater

pH and concentrations of sulfate, ammonia, and

dissolved organic carbon (Lu et al. 2012).

In 2010, the Deepwater Horizon oil spill

occurred in the Gulf of Mexico. GeoChip 4.0 was

used to examine the functional composition and

structure of water microbial communities from the

oil plume and control sites. The results indicated

that the water microbial community composition

and structure were dramatically altered in deep-sea

oil plume samples. A variety of functional genes

involved in both aerobic and anaerobic hydrocar-

bon degradation were highly enriched in the plume

compared with outside the plume, indicating

a great potential for intrinsic bioremediation or

natural attenuation in the deep sea. Various other

microbial functional genes that are relevant to C,

N, P, S, and iron cycling, metal resistance, and

bacteriophage replication were also enriched in

the plume. Overall, this study suggests that indig-

enous microbial communities could have

a significant role in biodegradation of oil spills in

deep-sea environments (Hazen et al. 2010).

Other Environments

GeoChips were also used to analyze microbial

communities from other habitats/ecosystems,

including various contaminated sites (e.g.,

chromate-contaminated water, U-contaminated

sediments, polychlorinated biphenyl- and arsenic-

contaminated soils), extreme environments (e.g.,

acid mine drainage, hypersaline lakes, deep-sea

basalts, deep-sea hydrothermal vents), bioleaching

systems, and bioreactors as well as the human

microbiome (He et al. 2011, 2012b).

Summary

Although GeoChip technology has been demon-

strated to be specific, sensitive, and quantitative

and applied to analyze microbial communities

from different habitats, some key issues and chal-

lenges still remain, including probe coverage,

specificity, sensitivity, quantitative capability,

nucleic acid quality, the detection of microbial

community activity, and challenges by high-

throughput sequencing technologies. It should

be noted that probe coverage on GeoChip is rel-

atively low compared to the availability of func-

tional gene sequences in databases, especially for

earlier versions of FGAs. One of the reasons is

that some sequences do not have specific probes

based on the availability of sequence databases

and software. Also, GeoChip probe sets need

continuous updates to reflect the current status

of functional gene sequence information.

Critical issues with GeoChip design and

detection are specificity, sensitivity, and quanti-

tative capability, which are especially important

since many gene variants within each environ-

mental sample are unknown. Array specificity is

controlled by probe design and hybridization

conditions. A novel microarray probe design soft-

ware tool, CommOligo (He et al. 2012a), and its

improved versions were used to design probes for

GeoChip 2.0, GeoChip 3.0, and GeoChip 4.0.

Experimental evaluations of GeoChip 2.0 and

GeoChip 3.0 indicated that low percentages of

false positives (0.002–0.025 %) were observed

(He et al. 2007; He et al. 2010a). GeoChip hybrid-

izations are generally performed at 42–50 �C
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with 50 % formamide. Sensitivity is another

major concern since many gene variants are

expected to be low abundant in environmental

samples. The current level of sensitivity for oli-

gonucleotide arrays using environmental samples

is approximately 50–100 ng or 107 cells, or

approximately 5 % of the microbial community,

providing a coverage of only the most dominant

community members. Several strategies have

been utilized to increase sensitivity. For example,

with WCGA and WCRA approaches, the sensi-

tivity of GeoChip hybridization could increase to

10 fg. Also, array surface modifications,

a decrease of hybridization solution, and the use

of new labeling techniques could increase

GeoChip detection sensitivity (He et al. 2011,

2012a). An important goal in microarray analysis

is to provide quantitative information. GeoChip

has been shown to have a linear relationship

between target DNA or RNA concentrations and

hybridization signal intensities. However, this

relationship can be affected by sequence diver-

gence (i.e., the more divergent the sequence, the

lower the signal intensity). Therefore, two strate-

gies are used to improve quantitative ability:

mismatch probes and using relative comparisons

across samples rather than absolute comparisons

(He et al. 2012a).

The quality and quantification of environmen-

tal nucleic acids are one of the most important for

successful GeoChip hybridization and reliable

data generation. DNA with large fragments and

minimal amounts of contaminants are especially

important when samples need to be amplified

using WCGA. Accurate measurement of DNA

yields is also important, so quantification should

be based on double-strand DNA (dsDNA)

measurement (e.g., PicoGreen) rather than via

absorbance. While DNA detection provides

information on the presence of functional genes

in the environment, it does not provide uncondi-

tional evidence for microbial activity. Population

changes can be used to infer microbial activity,

but this may not be accurate. To monitor micro-

bial activity, mRNA should be used. However,

since mRNA is easily degraded with rapid turn-

over, usually has a low abundance, and has

a small proportion of the total RNA, improved

RNA extraction methods are necessary to use

environmental RNA for GeoChip analysis. Alter-

natively, other techniques, such as stable isotope

probing (SIP), enzyme activity, metaproteomic

analysis, and metabolite assays, may be used to

study the functional activity and ecosystem func-

tions of microbial communities.

High-throughput sequencing technologies (e.g.,

454, Illumina) are available for microbial commu-

nity analysis, which challenge GeoChip technolo-

gies. However, although these sequencing-based

technologies can discover novel sequences, it can

be expensive to do in-depth shotgun sequencing of

a community. In addition, it suffers from lack of

appropriate conserved primers for many target

genes. Also, sequencing-based technologies have

a disadvantage of random sampling, and/or under-

sampling, making it difficult to compare different

samples, while microarray-based technologies

have a defined probe set, which is good for com-

munity comparisons (He et al. 2012b). Therefore,

due to the unique features and advantages and

disadvantages of both microarray-based and

sequencing-based technologies, it is preferable

that they be used complementarily for microbial

community analysis in order to address fundamen-

tal questions in microbial ecology and environ-

mental biology.
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Definition

GHOSTM is a homology search tool developed

for metagenomics and accelerated by

GPU-computing. GHOSTM can be used as the

alternative of BLASTX program, which searches

protein databases using a translated nucleotide

query. The GHOSTM system achieved calcula-

tion speeds that were 130 times faster than

BLAST with 1 GPU. It also had a calculation

speed that was 3.4 times faster than BLAT with

higher search sensitivity. GHOSTM is distributed

under the MIT license and its source code is

available for download at http://code.google.

com/p/ghostm/.

Introduction

In metagenomic analysis, the DNA sequence

fragments obtained from environmental samples

frequently include DNA sequences from many

different species, and closely related reference
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genome sequences are often unavailable. Thus,

sensitive approaches are required for the identifi-

cation of novel genes. Metagenomic DNA frag-

ments are often translated into protein coding

sequences and then further assigned to protein

families, such as COG and Pfam databases. The

BLASTX (Altschul et al. 1990) program has been

used for such binning and classification because it

can identify homologues that do not have high

nucleotide sequence identity, but once these

sequences are translated, the homologue can be

found in a distantly related member of a protein

family (Turnbaugh et al. 2006). The BLAST

algorithm is sufficiently sensitive for searching

protein families, but its performance is insuffi-

cient for analyzing the large quantities of data

produced by a next-generation sequencer. In

practice, approximately 1,000 CPU days were

needed for querying 20 million short reads

against the KEGG database using BLASTX

program.

To address the issue, the GHOSTM software

(Suzuki et al. 2012) had been developed.

GHOSTM can efficiently search homologous

sequences for a database based on

GPU-computing technique. Graphics processing

units (GPUs) were originally designed for

graphics applications, but new generation GPUs

have been transformed into powerful coprocessors

for general purpose computing because their com-

putational power supersedes that of CPUs. For

example, the peak performance of a GPU, such

as the NVIDIA Tesla K20, is approximately 3.5

TFLOPS. This speed is more than tenfold faster

than the most recent CPUs. GPUs have already

been used for several bioinformatics applications,

such as CUDASW (Liu et al. 2010) and CUDA-

BLASTP (Liu et al. 2011).

GHOSTM employs a new and efficient

homology search algorithm suitable for GPU cal-

culation. The system accepts a large number of

short DNA fragment sequences produced by

a next-generation sequencer as the input like the

BLASTX program and performs DNA sequence

homology searches against a protein sequence

database. The system demonstrated a calculation

speed that was 130 times faster with one GPU

than BLAST on a CPU.

Overview of the Algorithm

The GHOSTM is mainly composed of three com-

ponents, as shown in Fig. 1. The first component

searched the candidate alignment positions for

a sequence from the database using the indexes.

The second component calculated local alignments

around the candidate positions using the Smith-

Waterman algorithm for calculating the alignment

scores. Finally, the third component sorted the

alignment scores and output the search results.

Both the candidate search and local alignment

components required a large amount of comput-

ing time. Therefore, queries on both components

are processed in parallel and they are mapped

onto GPUs. Thus, multiple queries were simulta-

neously processed on different GPU cores. GPUs

have many computing cores (the Tesla S1070 has

240 cores per GPU) and this is the reason for the

acceleration of GHOSTM in processing time.

Importantly, the GHOSTM system requires

a sufficient number of queries for maximum effi-

ciency, and in fact, when using only one query

sequence, the calculation of GHOSTM becomes

much slower than BLAST.

Search Performances

Because metagenomic analyses require highly

sensitive searches, it is difficult to use homology

search program with high speed but low sensitiv-

ity, such as BLAT (Kent 2002). In contrast,

GHOSTM has sufficient search sensitivity for

metagenomic analysis.

Figure 2 shows the comparison of search sen-

sitivity for each homology search program. To

evaluate the search sensitivity, the search results

obtained with the Smith-Waterman local align-

ment method implemented in SSEARCH

(Pearson 1991) were assumed to be the correct

answers. The performance of a particular method

is evaluated in terms of the fraction of its results

that corresponded to the correct answers obtained

by SSEARCH. The search accuracy of GHOSTM

was clearly higher than BLAT. Low-scoring hits

(e.g., <50) are generally not used in practice

because such hits can occur by chance. With the
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exception of the low-score hits, GHOSTM suc-

cessfully identified more than 90 % of the hits

identified by SSEARCH. This result suggests that

GHOSTM is sufficiently accurate for general

usage.

The computational times of BLAST, BLAT,

and GHOSTM for 100 thousand reads are shown

in Table 1. Each query read has the length from

60 to 75 bp and the search target is KEGG Genes

(“genes.pep”) database (Kanehisa et al. 2010) with

approximately 2.5 GB. The GHOSTM program

achieved a calculation speed approximately

130 and 400 times faster than the BLAST program

using 1 thread and 4 threads, respectively. More-

over, GHOSTM was approximately 3.4 times

faster than BLAT despite of its higher search sen-

sitivity. GHOSTM achieves both high search

speed and high search sensitivity compared with

previous homology search tools.

GHOSTM, Fig. 1 Data

flow and processing within

GHOSTM

GHOSTM, Fig. 2 Search

accuracy of GHOSTM

GHOSTM, Table 1 Comparison of search speed

Program #GPUs

Time

(s)

Acceleration

ratio

GHOSTM (K ¼ 4) 1 2,855 129.5

GHOSTM (K ¼ 4) 4 909 406.7

BLAT 9,898 37.3

BLASTX (1 thread) 369,678 1

BLASTX

(4 threads)

102,255 3.6
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Installation and Requirements

The source code of GHOSTM is distributed

under the MIT license and is available for down-

load at http://code.google.com/p/ghostm/.

GHOSTM was implemented in C++ and the

NVIDIA CUDA library and requires CUDA ver-

sion 2.2 or higher. Thus, the user has to prepare

NVIDIA’s GPU card, such as Tesla K20, for

executing the GHOSTM program. The user can

also execute GHOSTM on a general GeForce

graphics card as well as Tesla. The performance

of GHOSTM basically depends on the number of

CUDA cores and their clocks. Thus, several

GeForce GTX cards show better performance

than Tesla. However, current GeForce cards do

not have Error Check and Correct (ECC) mem-

ory, and thus, the search results obtained using

such cards are unreliable because of the GPU

memory error. Therefore, Tesla GPUs were

recommended especially if the user have to pro-

cess large amount of sequences.

Summary

Currently, sequencing technology continues to

improve, and sequencers are increasingly produc-

ing larger and larger quantities of data. This

explosion of sequence data makes computational

analysis with contemporary tools more difficult.

However, GHOSTM is an efficient tool based on

GPU-computing techniques and it would be

a potential solution to this problem.
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Synonyms

Lateral gene transfer

Definition

Horizontal gene transfer (HGT) is the process in

which genetic material is transmitted between

two organisms that are not parent and offspring.

HGT is pervasive among bacteria, even among

very distantly related ones. Through transmission

of distinct physiological traits from one organism

to another, it may cause drastic changes in the

ecological and pathogenic character of bacterial

species and thereby may catalyze the diversifica-

tion of bacterial lineages.

Introduction

Bacteria are the most diverse and versatile life

forms of our planet. In view of the fact that they

are tiny, unicellular organisms with relatively

small genomes, variations observed in their cel-

lular architectures, metabolic properties, and eco-

logical preferences are remarkable. Such

enormous diversity may be attributed to the

extremely dynamic genomes of bacteria that

evolve rapidly through alteration, acquisition,

deletion, and rearrangements of relevant genetic

information through various molecular mecha-

nisms. These mechanisms include not only the

processes of internal modification of genetic

materials like mutation or homologous recombi-

nation but also exchange of specific set of genes

with other species through the process of hori-

zontal transfer (Ochman et al. 2000). Mutations

usually lead to slow, subtle, but continuous refine-

ment and alteration of existing genes that may

foster diversification and speciation of microor-

ganisms on an evolutionary time scale. HGT, on

the contrary, is capable of introducing abrupt

large-scale changes in the gene repertoire of an

organism that may confer novel physiological

traits to the recipient and enable an organism to

explore new ecological niches and even can gen-

erate new variants of bacterial strains by “genetic

quantum leaps” (Groisman and Ochman 1996).

Mechanisms of HGT

HGT is in sharp contrast with the process of

vertical transfer that propagates genes from the

parental generation to offspring via sexual or

asexual reproduction.
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There are three principal mechanisms for

interspecies transmission of DNA elements in

HGT (Ochman et al. 2000):

(i) Transformation – uptake of naked DNA

element from environment

(ii) Transduction – the bacteriophage-mediated

transmission of genetic materials between

organisms recognized by the phage

(iii) Conjugation – transfer of DNA from the

donor to the recipient through cell-to-cell

contact via sexual pilus

However, mere insertion of the donor DNA

element into a recipient cytoplasm does not

ensure a successful HGT, unless this foreign

DNA sequence becomes stable in the host chro-

mosome. Though the transfer or uptake of a short

DNA sequence is usually indiscriminate with

respect to the functional or compositional fea-

tures of the transmitted sequence, stabilization

of this foreign DNA element into the host organ-

ism depends critically on the compatibility of the

transferred genes with the transcriptional and

translational machinery of the host (Dutta and

Pan 2002). Stable incorporation of the newly

acquired DNA into the host genome can be

mediated by any of the following processes:

(i) homologous recombination, which normally

limits the process among closely related organ-

isms; (ii) persistence as an episome, if favored by

natural selection; (iii) integration mediated by

mobile genetic elements; and (iv) illegitimate

incorporation through chance events of double-

strand break repair.

Factors Regulating the Events of HGT
and Their Outcomes

Depending on the organisms involved and the

gene transfer mechanisms that are operational,

there are a number of factors that can foster or

limit the transfer, uptake, stabilization, and

expression of foreign DNAmolecules in bacteria.

Factors that may foster an event of HGT

(Wiedenbeck and Cohan 2011) include both

mechanistic as well as functional aspects. The

phylogenetic closeness of the donor and the

recipient often facilitate HGT, since close

relatives are likely to have greater sequence iden-

tity and hence higher probability of homologous

recombination as well as HFIR. Bacteria with the

same restriction–modification system can more

easily share a phage or a plasmid and exchange

their DNA elements. DNAs of short length

(carrying one to several genes) usually has

a greater probability of undergoing a successful

adaptive HGT, even across deeply divergent bac-

teria, as it may allow an organism to selectively

pick up a niche-transcending gene or set of genes

without acquiring the niche-specifying genes of

the donor. Furthermore, a short DNA may also

survive in a host with distinct restriction–modifi-

cation system, as it is less likely to contain a given

recognition sequence and may thereby be more

protected from cleavage by the restriction system

of the host. And, needless to say, a niche-

transcending HGT that provides an important

adaptation to a recipient will always have

a selective advantage.

Among the mechanistic barriers limiting

unregulated uptake of foreign DNA in bacteria

are the lack of similarity between the donor and

the recipient, which may prohibit the integration

of new sequence into a replicating genetic unit,

surface exclusion that may create an effective

barrier against conjugative transfer into cells,

and presence of distinct restriction/modification

systems present in the host (Thomas and

Nelsen 2005).

A protein’s connectivity may be another

important factor for the transferability of genes

across organisms. The complexity hypothesis

(Jain et al. 1999) predicts a low rate of transfer

of genes, products of which are involved in many

complex interactions. Transfer of only one part of

a complex set of coadapted structures is likely to

bring about an incompatibility and loss of func-

tion. It is thought that bacterial genes may be

broadly classified into two categories according

to their transferability (Nakamura et al. 2004):

(i) less transferable “informational” genes

involved in replication translation and transcrip-

tion and (ii) frequently transferable “operational”

genes involved in metabolism. It has also been

reported that among operational genes, those

involved in cell surface, DNA binding, and
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pathogenicity-related functions have higher

probability of HGT as compared to the genes

related to amino acid biosynthesis, biosynthesis

of cofactors, energy metabolism, intermediary

metabolism, fatty acid and phospholipid metabo-

lism, and nucleotide biosynthesis.

Any recipient organismwould also try to resist

an event of HGT that might incur harmful pleio-

tropic effects. The deleterious side effects of

a new acquisition often drive natural selection

toward “domesticating” the acquired DNA, i.e.,

toward ameliorating its negative fitness effects

(Wiedenbeck and Cohan 2011). Newly acquired

genes may have higher rates of evolution than

other genes in the genome. Another mechanism

for domesticating a horizontally acquired adapta-

tion involves initial repression of the acquired

gene(s) in the host genome by histone-like

nucleoid-structuring proteins (H-NS) (Dorman

2004). The compositional differences between

a donor segment and the recipient are diminished

over time as incorporated genes are subjected to

the mutational bias of the host (Lawrence and

Ochman 1997).

Bacterial Diversity Incurred by HGT

HGT is thought to be a prime contributor to

bacterial evolution. As more and more genome

sequences are being determined, it is becoming

clear that cross-species transmission of genetic

information through HGT is pervasive among

bacteria and that it may occur at vast phyloge-

netic distances and that it may confer novel phe-

notypes and functions to the host organism by

introducing fully functional genes and gene clus-

ters. Unlike point mutations that can only adjust

preexisting phenotypes, HGT may result in dras-

tic changes in metabolic, pathological, or ecolog-

ical character of a microbial species, thereby

allowing effective and competitive exploitation

of new niches (Lawrence 1999; Hacker and

Kaper 2000). In cases where habitat differences

suggest ecological differentiation between close

relatives, a genome-based analysis often iden-

tifies one or more events of HGT as the primary

cause of the ecological divergence. Some of the

niche-transcending traits that are commonly

introduced in bacterial species through HGT are

as follows.

Novel Metabolic Traits and Niche Adaptation

In bacteria, a substantial portion of species-

specific functions can be attributed to HGT.

Through HGT, divergent bacterial populations

may share an adaptation that transcends their

differences in cellular architectures, physiologi-

cal capabilities, and ecological niches. For

instance, enterotoxigenic Escherichia coli that

attacks the epithelial cells of the small intestine

shares the class 5 fimbriae with Burkholderia

cepacia that resides in human lungs of cystic

fibrosis patients and attacks the respiratory epi-

thelium. On the other hand, closely related bac-

teria or even strains of same species may exhibit

radically different metabolic, physiological, or

pathogenic traits – thanks to HGT. Bacillus

anthracis (strain Ames ancestor), Bacillus cereus
(ATCC1098), and Bacillus thuringiensis (serovar

konkukian str. 97–27), all are considered as

a single species, as they show more than 94 %

ANI and have highly syntenic gene repertoire.

And yet they are drastically different in their

phenotypes – a highly virulent pathogen and

potentially lethal bioterror agent, a source of

food poisoning, and an eco-friendly organic bio-

pesticide, respectively (Doolittle and Papke

2006).

HGT, in many cases, endows the recipient

with novel metabolic capabilities that enable it

either to invade a new niche or to improve its

performance in its current niche (Cohan and

Koeppel 2008). For example, acquisition of the

lac operon has enabled Escherichia coli to uti-

lize the milk sugar lactose as a carbon source

and thereby to explore a new niche, the mam-

malian colon, where it has established a

commensal relationship (Ochman et al. 2000).

An event of HGTmay even allow for conversion

of the recipient into a radically different organ-

ism that may inhabit niches completely

unexplorable by the organisms relying on muta-

tional processes alone. Examples include the

aerobic methanotrophs that have gained the

ability to synthesize critical cofactors for
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H4MPT-mediated methyl-group transfer by

acquiring genes from methanogenic archaea,

bacteria that exploit halorhodopsin homologues

as light-driven proton pumps, and cyanobacteria

gaining the capability of oxygenic photosynthe-

sis through acquisition of a second photosystem

(Gogarten et al. 2002).

Speciation and Sub-speciation in Bacteria

A substantial part of the speciation and

sub-speciation in bacteria can be explained as

the result of macroevolution events mediated by

HGT (Cruz and Davies 2000). Using E. coli and

Salmonella as a model system, it has been dem-

onstrated that 17 % of their genomes (~800 kb)

appear to have been acquired by HGT during the

past 100 million years. As the majority of these

DNAs seem to be recently recruited, it is apparent

that considerable genetic flux may still be occur-

ring across these two species and the 234 detect-

able HGT events that have persisted are probably

“the tip of the iceberg of the thousands of mobile

sequences” that have been acquired or shaded off

by any particular E. coli strain (Cruz and Davies

2000). Comparison of the members of a well-

known collection of E. coli strains (the ECOR

collection) revealed that these strains are quite

variable in the size and macro-organization of

their chromosomes and plasmids. These observa-

tions point toward the fact that a significant pro-

portion of the genome of any strain of a single

bacterial species may comprise fragments of

functional genetic elements from various origins,

which, if properly “nurtured,” can give rise to

new bacterial species.

Adoption of Pathogenic/Symbiotic Lifestyle

Through Acquisition of Genome Islands

Horizontal acquisition of virulence factors is

a common strategy of bacterial organisms for

undergoing transformation from the benign

form into a pathogen. A pathogenic strain of

any bacterial strain is often distinguished from

the nonpathogenic variants of the same or related

species by the presence of a cluster of virulence

factors like toxins, invasion factors, adherence

factors, and secretion systems, the G+C compo-

sition of which may differ significantly from that

of the core genome of the respective species.

Such discrete gene clusters, referred to as “viru-

lence cassettes” or “pathogenicity islands”

(Groisman and Ochman 1996; Hacker

et al. 1997), usually reside at tRNA and tRNA-

like loci, which appear to be common sites for

integration of foreign sequences (Hacker

et al. 1997; Ochman et al. 2000) and are flanked

by 16–20 bp perfect or almost perfect direct

repeats. They may also carry insertion elements

or transposons. All these observations strongly

argue in favor of horizontal acquisition of these

islands by their host genomes. Conversion of

laboratory strains of E. coli from avirulent to

virulent forms upon experimental introduction

of genes from other species (Isberg and Falkow

1985; McDaniel and Kaper 1997) or presence of

large virulence plasmids in pathogenic Shigella
and Yersinia (Gemski et al. 1980; Portnoy

et al. 1981; Maurelli et al. 1985; Sasakawa

et al. 1988) supported the notion of horizontal

transfer of virulence factors in bacteria.

With accumulation of genome sequences of

diverse bacterial species, it became clear that

pathogenicity islands represent a subclass of

a more diverse group of genetic elements, desig-

nated as genomic islands (GI). A GI refers to

a part of genome – usually 10–200 bp in length –

containing a set of horizontally acquired genes

that might be beneficial for the host bacterium

under specific environmental conditions. GIs

may be associated with diverse adaptive func-

tions that enable the respective species to survive

or colonize within a specialized niche or to adopt

a distinct lifestyle. For instance, nitrogen fixation

genes harbored by “symbiosis islands” in various

Rhizobiaceae species enable these organisms to

develop a symbiotic relationship with legumes,

which, in turn, facilitate their survival inside

the root nodules of the legumes (Sullivan and

Ronson 1998).

Dissemination of the gene clusters (operons)

involved in the catabolism of xenobiotics in pol-

luted environment is often attributed to transfer

of specific integrative and conjugative elements

(ICElands) – a special type of genome islands –

across bacterial populations (van der Meer and

Sentchilo 2003; Cruz and Davies 2000).
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Examples include the ICElands containing the

clc element for chlorobenzoate and

chlorocatechol degradation in Pseudomonas

sp. strain B13 or in Ralstonia spp. strain JS705.

It may be mentioned in this context that the xeno-

biotic degradation pathways usually require com-

plex genetic systems like operons of ten or more

genes or even regulons of several operons along

with their control circuits. For instance, in

Sphingomonas aromaticivorans, there are

15 gene clusters – directly associated with the

catabolism or transport of aromatic compounds –

in a large conjugative plasmid pNL1 that have

enabled the host bacteria to degrade compounds

such as biphenyl, naphthalene, xylene, and cresol

(Romine et al. 1999).

The same or similar GIs may carry out distinct

functions in different species, depending upon

the genetic background and lifestyle of its hosts

(Dutta and Paul 2012). For instance, GIs carrying

secretion systems of type III in the pathogenic

strains of Salmonella, Shigella, and Yersinia

groups or type IV in Legionella pneumophila

andHelicobacter pylori are known to be involved
in the infectious process of their respective hosts.

But similar GIs encoding the type III system of

rhizobia or the type IV system of F plasmids

function as symbiotic islands that enhance the

fitness of the host organisms in their natural

niches. GIs encoding the adherence factors like

P-, S-, and F1C-fimbriae in E. coli strains of the

human gut microbiome act as a saprophytic

island that facilitate colonization of these

microbes at the gut. But if under special circum-

stances the P-, S-, or F1C-positive E. coli reaches

the urinary tract of human, the same island may

serve as a pathogenicity island that helps its host

microbe to infect the bladder/kidney.

Antibiotic Resistance

A major health concern over past few decades is

the emergence of numerous antibiotic-resistant

pathogenic strains. Horizontal gene transfer is

one of the major reasons for the dissemination

of various antibiotic-resistant factors throughout

diverse microbial species. The resistant genes

located in various mobile DNA elements (such

as plasmids) are easily transferred from one

species to another especially in hospital environ-

ment among close contaminants and in patients

with compromised immunity, thus resulting in

nosocomial infections caused by multidrug resis-

tance bacterial strain.

Among different antibiotic-resistant classes of

organisms, the cases of two most widely studied

phenotypes include resistance to b-lactams and

resistance to fluoroquinolones (Barlow 2009).

b-lactam antibiotics, one of the major groups of

antibiotics used globally, act by inhibiting bacte-

rial cell wall biosynthesis mainly in gram-

positive bacteria. They contain a b-lactam ring

in their structures and require this ring to be intact

in order to be effective. The transfer of

b-lactamase (acts by invading the b-lactam ring)

gene into many previously sensitive strains,

predicted to be transferred from different gram-

negative species such as E. coli, has resulted in

various pathogenic strains resistant to most avail-

able antimicrobials. One most cited example is

methicillin-resistant Staphylococcus aureus

(MRSA), one of the most virulent strain of

S. aureus, resistant to most b-lactams. In addition

to the b-lactamase activity, another gene mecA is

found to be associated with resistance to most

b-lactams. This gene acts by producing an altered

penicillin-binding protein having lower affinity

for b-lactam antibiotics. Another group of antibi-

otics, the fluoroquinolones (cephalosporin),

effective against many gram-negative bacteria,

widely used in both human medicine and veteri-

nary practice is also becoming less functional

because of the growing incidence of resistant

strains.

Different strains of Enterococci, a natural

commensal in human gut, have shown to contrib-

ute in several cases of HGT due to having a large

number of plasmids. Cases of vancomycin resis-

tance in E. faecalis and E. faecium have been

shown to be mediated through a type of

pheromone-independent plasmids (Palmer

et al. 2010). Recent cases showing plasmid-

mediated transfer of vancomycin resistance

from Enterococci to MRSA are producing an

alarming rate of last line antibiotic failure, thus

leading to combined growth of nosocomial path-

ogens having no effective antibiotic.
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Evolutionary or Ecological Implications
of HGT

Discoveries of rampant interspecies gene transfer

across the entire microbial world and even

beyond have underscored the need for reviewing

the basic concepts of biological evolution. As

proposed by Doolittle (1999), a single universal

phylogenetic tree might not be the best way to

depict relationships between all living and extinct

species. Instead, a web- or netlike pattern might

provide a more appropriate representation

(Doolittle 1999). It appears that some genes

have flowed “randomly” through the biosphere,

almost as if all life forms constituted one global

superorganism, divided into subpopulations,

within and between which genes are exchanged

at varying frequencies (Dutta and Pan 2002).

The microbial niches are also no longer con-

sidered as a static domain. Amicrobial niche may

be considered as a dynamic domain, which is

continuously being redefined after each gene

transfer event. This alternation of niche bound-

aries then imposes a different filter on the influx

of foreign DNA, imparting distinct selective

pressures on incoming genes. Recently Martin

et al. (2013) proposed a new model of ecological

speciation via gradual genetic isolation, insti-

gated by differential niche acclimatization of

nascent bacterial populations. The model

predicted how microbial populations, despite

having ecological cohesion, can display high

genomic diversity through employment of

selective, local HGT events, by tapping into

a gene pool that is adaptive toward continuously

changing, local organismic interactions.

Pervasiveness of HGT across the entire living

world has also redefined the concept of the “uni-

versal ancestor” (Woese 1998). The presence of

a gene in all three domains of life – Bacteria,

Archaea, and Eukarya – not necessarily

ensures its existence in their common ancestor;

it could have arisen at a later age in one

domain and spread to the others. As stated by

Woese (1998): “the universal ancestor is

not a discrete entity. It is, rather, a diverse com-

munity of cells that survives and evolves as

a biological unit.”

Summary

Horizontal gene transfer (HGT) – the process of

interspecies transfer of genetic material via

mobile genetic elements such as plasmids,

phages, genomic islands, and genomic modules –

plays an important role in bacterial evolution,

speciation, and diversification. HGT is pervasive

among bacteria and may occur at vast phyloge-

netic distances. By introducing fully functional

genes and gene clusters, an event of HGT may

confer novel phenotypes and functions to the host

organism; may result in drastic changes in its

metabolic, pathological, or ecological character,

thereby allowing effective and competitive

exploitation of new niches; and even can generate

new variants of bacterial strains by “genetic

quantum leaps.” The widespread distribution of

various antibiotic-resistant genes throughout

diverse microbial species, dissemination of

the gene clusters (operons) involved in

biodegradative pathways, transformation of vari-

ous bacterial organism from the benign form into

a pathogen, evolution of rhizobia–legume symbi-

osis or interstrain variations in size, and macro-

organization in chromosomal structures of any

specific bacterial species all may be attributed

to HGT. Genetic elements that can be transferred

as a functional unit and provide a niche-

transcending adaptation have a greater probabil-

ity of undergoing a successful adaptive HGT.

Informational genes involved in replication trans-

lation and transcription are, in general, less trans-

ferable than the operational genes involved in

metabolism. Stabilization of the transferred

material within the host is often limited by the

genetic and ecological similarity of the donor and

the recipient. Recognition of HGT as a prime

factor for bacterial speciation and diversification

has revolutionized the basic concepts of biologi-

cal evolution. It has been proposed that all pro-

karyotes together might be considered as one

“global superorganism” divided into subpopula-

tions within and across which genes are fre-

quently exchanged. It has also been proposed

that the bacterial niches and HGT constantly

interact with one another, each affecting the

other as lineages evolve.

H 256 Horizontal Gene Transfer and Bacterial Diversity



Reference

Barlow M. What antimicrobial resistance has taught us

about horizontal gene transfer. Methods Mol Biol.

2009;532:397–411.

Cohan FM, Koeppel AF. The origins of ecological diver-

sity in prokaryotes. Curr Biol. 2008;18:R1024–34.

de la Cruz F, Davies J. Horizontal gene transfer and the

origin of species: lessons from bacteria. Trends

Microbiol. 2000;8:128.

DoolittleWF.Lateral genomics.TrendsCellBiol. 1999;9:M5–8.

Doolittle WF, Papke RT. Genomics and the bacterial

species problem. Genome Biol. 2006;7:116.

Dorman CJ. H-NS: a universal regulator for a dynamic

genome. Nat Rev Microbiol. 2004;2:391–400.

Dutta C, Pan A. Horizontal gene transfer and bacterial

diversity. J Biosci. 2002;27 Suppl 1:27–33.

Dutta C, Paul S. Microbial lifestyle and genome signa-

tures. Curr Genomics. 2012;13:153–62.

Gemski P, Lazere JR, Casey T, Wohlhieter JA. Presence

of a virulence-associated plasmid in Yersinia pseudo-

tuberculosis. Infect Immun. 1980;28(3):1044–7.

Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic

evolution in light of gene transfer. Mol Biol Evol.

2002;19:2226–38.

Groisman EA, Ochman H. Pathogenicity islands: bacterial

evolution in quantum leaps. Cell. 1996;87:791–4.

Hacker J, Blum-Oehler G, M€uhldorfer I, Tsch€ape H. Path-
ogenicity islands of virulent bacteria: structure, func-

tion and impact on microbial evolution. Mol

Microbiol. 1997;23:1089–97.

Hacker J, Kaper JB. Pathogenicity islands and the evolution

of microbes. Annu Rev Microbiol. 2000;54:641–79.

Isberg RR, Falkow S. A single genetic locus encoded by

Yersinia pseudotuberculosis permits invasion of cul-

tured animal cells by Escherichia coli K-12. Nature.

1985;317(6034):262–4.

Jain R, Rivera MC, Lake JA. Horizontal gene transfer

among genomes: the complexity hypothesis. Proc

Natl Acad Sci U S A. 1999;96:801–3806.

Lawrence JG. Gene transfer, speciation, and the evolution of

bacterial genomes. Curr OpinMicrobiol. 1999;2:519–23.

Lawrence JG, Ochman H. Amelioration of bacterial

genomes: rates of change and exchange. J Mol Evol.

1997;44:383–97.

Martin F, Polz MF, Alm EJ, Hanage WP. Horizontal gene

transfer and the evolution of bacterial and archaeal

population structure. Trends Gen. 2013;29:170–5.

Maurelli AT, Baudry B, d’Hauteville H, Hale TL,

Sansonetti PJ. Cloning of plasmid DNA sequences

involved in invasion of HeLa cells by Shigella flexneri.

Infect Immun. 1985;49(1):164–71.

McDaniel TK, Kaper JB. A cloned pathogenicity island

from enteropathogenic Escherichia coli confers the

attaching and effacing phenotype on E. coli K-12.

Mol Microbiol. 1997;23(2):399–407.

Nakamura Y, Itoh T, Matsuda H, Gojobori T. Biased

biological functions of horizontally transferred genes

in prokaryotic genomes. Nat Genet. 2004;36:1126.

Ochman H, Lawrence JG, Groisman EA. Lateral gene

transfer and the nature of bacterial innovation. Nature.

2000;405:299–304.

Palmer KL, Kos VN, Gilmore MS. Horizontal gene trans-

fer and the genomics of enterococcal antibiotic resis-

tance. Curr Opin Microbiol. 2010;13(5):632–9.

Portnoy DA, Falkow S. Virulence-associated plasmids

from Yersinia enterocolitica and Yersinia pestis.

J Bacteriol. 1981;148(3):877–83.

Romine MF, Stillwell LC, Wong KK, Thurston SJ,

Sisk EC, Sensen C, Gaasterland T, Fredrickson JK,

Saffer JD. Complete sequence of a 184-kilobase cata-

bolic plasmid from Sphingomonas aromaticivorans

F199. J Bacteriol. 1999;181(5):1585–602.

Sasakawa C, Kamata K, Sakai T, Makino S, Yamada M,

Okada N, Yoshikawa M. Virulence-associated genetic

regions comprising 31 kilobases of the 230-kilobase

plasmid in Shigella flexneri 2a. Bacteriol. 1988;

170(6):2480–4.

Sullivan JT, Ronson CW. Evolution of rhizobia by acqui-

sition of a 500-kb symbiosis island that integrates into

a phe-tRNA gene. Proc Natl Acad Sci U S A.

1998;95:5145–9.

Thomas CM, Nelsen KM. Mechanisms of, and barriers to,

horizontal gene transfer between bacteria. Nat Rev

Microbiol. 2005;3:711.

van der Meer JR, Sentchilo V. Genomic islands and the

evolution of catabolic pathways in bacteria. Curr Opin

Biotechnol. 2003;14:248–54.

Wiedenbeck J, Cohan FM. Origins of bacterial diversity

through horizontal genetic transfer and adaptation to

new ecological niches. FEMS Microbiol Rev.

2011;35:957–76.

Woese C. The universal ancestor. Proc Natl Acad Sci

U S A. 1998;95:6854–9.

Host-Virus Interaction: From
Metagenomics to Single-Cell
Genomics

Arbel D. Tadmor1 and Rob Phillips2

1TRON – Translational Oncology at the

University Medical Center of the Johannes

Gutenberg University Mainz, Mainz, Germany
2Departments of Applied Physics and

Bioengineering California Institute of

Technology, California Institute of Technology,

Pasadena, CA, USA

Synonyms

DNA packaging gene; Large terminase subunit

gene; TerL

Host-Virus Interaction: From Metagenomics to Single-Cell Genomics 257 H

H



Definition

dPCR (digital PCR) is a PCR reaction performed

in a nanoliter or subnanoliter volume making it

possible to detect single molecules.

MetaCAT (metagenome cluster analysis tool)

is a metagenome data mining tool that uses an

iterative dynamic clustering approach to identify

the most abundant genes in a given metagenome

with respect to a reference dataset containing

potentially homologous genes.

Bacteriophage is a virus that infects and rep-

licates within bacteria (phage for short).
Prophage is a phage genome that is integrated

into the bacterial genome or exists in the form of

a plasmid within the cell.

Introduction

It is widely appreciated today that viruses are

a dominant and critical part of Earth’s biosphere.

Yet despite the major advances in the study of

environmental viruses in most cases, our knowl-

edge of which viruses go with which hosts is

meager. In the classic phage isolation technique,

known as the plaque assay, a confluent layer of

host cells is infected with a low density of viral

particles. When a virus infects a cell within this

“lawn” of host cells, the cell lyses, and new viral

particles infect adjacent cells thereby creating

a clearing, or plaque, in the lawn. This technique

for isolating viruses requires that the host of the

virus be culturable. However, given that>99% of

microbes on Earth cannot be cultured at this time,

the vast majority of phage-host systems cannot be

investigated in the laboratory using these classi-

cal phage enrichment techniques. Consequently,

little is known about the biology of most viruses

and their host specificity in the wild.

Metagenomic studies of environmental

viruses circumvent the cultivation limitation and

therefore have offered a unique glimpse into the

genetic composition of environmental viruses

(Kristensen et al. 2010; Mokili et al. 2012). In

low complexity environments such as natural

acidophilic biofilms, metagenomic analysis can

utilize antiviral defense systems known as

CRISPRs to pair viruses with their hosts by

matching spacer sequences that occur both in

the genome of the virus and in the genome of

the host (Andersson and Banfield 2008).

Metagenomes, however, are generally limited in

their ability to shed light on the nature of host-

virus interaction since most environments are

more complex. More importantly, the physical

entity of the cell is lost in the process of preparing

the metagenome thus destroying the possibility of

assigning a given virus to a corresponding host.

A way to circumvent this problem is through

culture-independent single-cell analysis methods

that use microfluidic devices to trap and manipu-

late single cells.

Single-Cell Genomics

Microfluidic devices are currently routinely used

to control and manipulate small volumes of liq-

uid, including trapping and analyzing single cells

(Kalisky et al. 2011). Once trapped, individual

cells are lysed, and their genetic content can be

probed. In the case of host-virus interaction, the

genome of the virus forms a unique association

with the bacterial cell (Fig. 1). Thus, in an ideal

scenario, both the genome of the host and its virus

would be sequenced. Although single-cell

sequencing has been demonstrated (Kalisky

et al. 2011; Kalisky and Quake 2011), for practi-

cal reasons, the number of cells that may be

interrogated using this method remains at present

quite low. As an alternative approach, it is possi-

ble to analyze single bacterial cells by PCR using

microfluidic digital polymerase chain reaction

(dPCR) arrays. This method, which is relatively

high throughput, can currently interrogate several

thousands of single cells within days.

Microfluidic Digital PCR

In microfluidic digital PCR a sample consisting

of either DNA or cells is partitioned uniformly

onto an “array” of nanoliter or subnanoliter PCR

chambers, with each chamber ideally containing

a single DNA molecule or a single cell
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(Kalisky et al. 2011; Kalisky and Quake 2011).

Each chamber is loaded with a mixture of primers

and fluorescent probes that target the loci of

interest. The advantage of performing quantita-

tive PCR (qPCR) reactions in such tiny volumes

is that the likelihood of contamination is reduced,

and the fluorescent signal per PCR chamber is

greatly intensified. In a standard benchtop qPCR

reaction, for example, the reaction volume is

15 ml compared to a dPCR reaction volume of 6

nl. Therefore dPCR Ct values are reduced by

about log2 (2,500) ¼ 11.3 cycles. In addition,

the large dilution factor ensures that the vast

majority of dPCR chambers are free from

spurious reactions and contaminating molecules

such as residual genomic DNA that is intrinsic to

some reagents. These factors together provide the

sensitivity required to PCR amplify and detect

single molecules. Once thermocycling is com-

pleted, chambers containing the targets of interest

are identified via the fluorescent signal, sampled

and post-amplified in the laboratory for sequenc-

ing using conventional benchtop PCR machines.

An appealing aspect of this technology is that

cells may be harvested directly from the environ-

ment and loaded onto a microfluidic dPCR array.

This method therefore does not require that cells

be cultured beforehand and does not depend on
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Host-Virus Interaction: From Metagenomics to
Single-Cell Genomics, Fig. 1 End point fluorescence
measured in a panel of a microfluidic digital PCR
array. (a) The measured end point fluorescence from the

rRNA channel (right half of each chamber) and the

terminase channel (left half of each chamber) in

a microfluidic array panel. Each panel in this array (one

of twelve) consists of 765 150 � 150 � 270 mm3 (6 nL)

reaction chambers. Retrieved colocalizations are outlined

in orange, and positive rRNA chambers randomly selected

for retrieval are outlined in gray. FA indicates false alarm

(a probable terminase primer-dimer). (b) Normalized

amplification curves of all chambers in (a) after linear

derivative baseline correction (red/viral, green/rRNA).

(c) Specific physical associations between a bacterial

cell and the viral marker gene resulting in colocalization

include, for example, an attached or assembling virion, an

injected DNA, an integrated prophage, or a plasmid

containing the viral marker gene (Tadmor et al. 2011)
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gene expression, the position of the targets in the

genome or on the physiological state of the cell at

the time of harvest (Ottesen et al. 2006).

The first application of microfluidic digital

PCR technology to study environmental bacteria

involved colocalization of two genes present in

the same individual bacterium (Ottesen

et al. 2006). In this study, one marker targeted

an important functional gene expressed by certain

members of the microbial community resident in

the hindgut of termites, and the second marker

targeted the small subunit ribosomal RNA (SSU

rRNA) gene that was used to phylogenetically

identify the bacterium (also known as the 16S

marker). By colocalizing and subsequently

sequencing both markers from many individual

cells, the identity of cells carrying the functional

gene was ascertained in cases of repeated

colocalizations.

To study host-virus interaction, the dPCR

approach described above was extended to

colocalize the SSU rRNA gene with a marker

targeting a certain viral gene prevalent in the

environment of interest, demonstrating proof-of-

concept on the termite system (Tadmor

et al. 2011). Targeting viruses, however, which

are fundamentally different biological entities

than bacteria, raised certain questions that needed

to be addressed. First and foremost, unlike pro-

karyotes that have universal markers such as the

SSU rRNA gene, viruses do not have a single

shared gene that can be used as a universal

marker (Rohwer and Edwards 2002). In fact,

viral metagenomic studies have shown that

viruses are likely the largest reservoirs of

unknown genetic diversity with the majority of

putative viral sequences exhibiting no significant

similarity to currently known genes (Edwards

and Rohwer 2005; Kristensen et al. 2010; Mokili

et al. 2012). To make matters worse, viruses are

notorious for replicating their genetic material

with borderline fidelity. Consequently the defini-

tion of a viral gene in the environment is rela-

tively fluid. Finally, many genes present in the

genome of the virus may be of prokaryote origin

making them poor signature markers for the

virus. Thus, to utilize digital PCR to study host-

virus interaction, an unequivocal viral marker

that is ubiquitous in the environment of interest

should be identified.

Requirements from a Viral Marker Gene

Not all viral genes are suitable to be unequivocal

markers of a viral entity. As an example, the

integrase gene, which codes for an enzyme that

is used by the virus to integrate into the genome,

is prevalent not only among phages, but also

among certain nonviral entities such as plasmids,

pathogenicity islands, and integrons (Casjens

2003). Similar arguments apply to viral genes

involving lysis, regulation of gene expression,

and DNA replication in viruses (Casjens 2003).

Casjens therefore argues that ideal “cornerstone”

phage genes (or at least prophages genes) are

genes involved in the assembly of the virion. Of

these, genes that appear to be not only virus

specific but also particularly conserved are the

large terminase subunit (TerL) and portal protein

genes (Casjens 2003).

TerL genes have certain additional features

that make them particularly attractive as viral

markers. The TerL gene is a component of the

DNA packaging and cleaving mechanism present

in numerous double-stranded DNA phages (Rao

and Feiss 2008). It contains an N-terminal

ATPase domain, which is the “engine” of the

DNA packaging motor, and a C-terminal nucle-

ase domain (Rao and Feiss 2008). The ATPase

domain of the TerL gene is conserved in a wide

variety of dsDNA phages, including the eukary-

otic herpes virus (Przech et al. 2003), suggesting

it is an ancient viral domain (Rao and Feiss 2008).

Indeed, Koonin et al., who define “hallmark viral

genes” as “genes shared by many diverse groups

of viruses with only distant homologs in cellular

organisms and with strong indications of mono-

phyly of all viral members of the respective gene

families” and thus “can be viewed as

distinguishing characters of the virus state”

(Koonin et al. 2006), identified theATPase subunit

of the terminase gene as such a hallmark viral

gene. Since TerL genes have particularly well-

conserved functional residues and motifs (Rao

and Feiss 2008), they are well suited for
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degenerate primer design. At the same time, across

biology TerL genes do not share overall significant

sequence similarity (Rao and Feiss 2008), thereby

making them sensitive viral markers.

Targeting a “cornerstone” or “hallmark” gene

of a virus may, however, be of questionable use if

the selected marker tags a defective prophage.

Since a necessary condition for the virus to be

active is that its cornerstone gene be functional, it

is important to verify that the cornerstone gene is

under negative selection pressure (Nei and

Kumar 2000). Nonfunctional genes may contain

errant stop codons, frameshift mutations, or

mutations in certain highly conserved residues

essential for the proper function of the protein.

Yet demonstrating that a particular family of

TerL alleles from the environment of interest is

under negative selection pressure does not guar-

antee that the virus is active in this environment

since a viral gene may remain functional while

the prophage itself is defective. Such a situation

can occur if there was insufficient time for point

mutations to have accumulated in the gene of

interest after the prophage was inactivated

(Casjens 2003). Therefore, viruses carrying the

viral marker may have been active only in recent

evolutionary history. In an alternative scenario,

the putative marker indeed degraded over time

upon prophage inactivation, but it was subse-

quently repaired by a recombination event with

another phage that was likely functional (Casjens

2003). In such a case the marker can serve as an

indicator for indirect infection.

Another possibility is that the putative marker

was recruited by the bacterium because it confers

on the bacterium a competitive advantage, as is

the case with lysogenic conversion genes. In this

case the gene would remain under negative selec-

tion pressure, while the rest of the prophage

degenerated (Boyd and Br€ussow 2002; Casjens

2003). It is unlikely, however, that the host will

recruit TerL genes since these are highly special-

ized motors required for virion synthesis. Alter-

natively, the putative marker could be part of

a functional non-phage entity such as a gene

transfer agent (GTA) or a bacteriocin (Casjens

2003). In the case of TerL genes, bacteriocins can

be ruled out since these taillike structures do not

contain head-related proteins (Daw and Falkiner

1996). GTAs can only be ruled out if the entire

genome of the putative viral entity is obtained.

Full length viral genomes may be obtained by

means of single-cell sequencing techniques.

Identifying Ubiquitous Viral Markers

Although universally shared viral genes do not

exist, it is beneficial to select a viral marker that is

ubiquitous in the environment of interest. Ubiqui-

tous markers not only have the potential to recover

greater genetic diversity from the environment, but

can possibly also be found in similar or related

environments. Identification of a ubiquitous viral

marker in the environment of interest, assuming

one exists, is not straightforward and requires

sophisticatedmetagenome datamining approaches.

To address this problem the authors developed

a bioinformatic program called MetaCAT

(metagenome cluster analysis tool), which

employs a heuristic clustering and ranking

approach that aims to identify the most abundant

genes of a given class (e.g., viral genes) in

a metagenome, without relying on superficial

features such as gene annotation (Tadmor

et al. 2011). The input to MetaCAT is

a metagenome (either assembled translated

contigs or raw nucleotide reads) and a reference

library of known genes (e.g., all known viral

genes). The output of MetaCAT is a list of

known reference genes (derived from an input

reference library) that were found to be present

in the metagenome, ranked by their abundance in

the metagenome. Abundance of a reported gene

is defined as the number of metagenome gene

objects or reads that yield significant alignments

with respect to this gene. A key feature of

MetaCAT is that it uses an iterative dynamic

clustering algorithm to group putative homolo-

gous reference genes from the input reference

library. The clustering is dynamic in the sense

that it is performed on the fly based on the

matches found in the given metagenome, thereby

avoiding loss of information that would occur if

the reference library was a priori clustered. The

clustering is performed iteratively until all
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identified redundancy is removed. In this way the

final reported list of ranked genes (or clusters of

genes) contains orders of magnitude fewer ele-

ments than the reference library and is amenable

to manual inspection (Fig. 2).

If gene annotation information is included in

the reference database this information will be

provided by MetaCAT in the ranked list of

genes making it a straightforward task to identify

genes of interest. As an example, Table 1 lists all

the TerL genes identified by MetaCAT in the

metagenome of the hindgut of a higher termite

collected from Costa Rica (Tadmor et al. 2011).

Each known reference gene found by

MetaCAT to be present in the metagenome can

be paired with a metagenome gene object that

yielded the lowest E value. This metagenome

gene object is referred to as the “representative

contig” of the known reference gene. By

BLASTing the representative contigs

corresponding to the top ranking candidate

markers against other metagenomes from similar

environments, or against genomes of organisms

isolated from similar environments, it is possible

to identify ubiquitous viral genes, if present

(Fig. 3). Closely related genes found in multiple

datasets are favorable candidates for putative

ubiquitous markers.

In the case of the termite hindgut, the list of

representative contigs corresponding to reported

genes in Table 1 was BLASTed against the

genome of Treponema primitia, a spirochete iso-

lated from a lower termite collected from North-

ern California. Performing this analysis revealed

that the representative contig of the top ranking

gene found by MetaCAT indeed had significant

hits (E value of ~10�5) in the genome of

T. primitia and mapped to two prophage-like

elements. In this case, BLASTing the TerL gene

from the prophage-like element back against the

metagenome revealed close homologs with a

similarity of 70 to 78% identity (Tadmor et al.

2011). Such a bootstrapping approach enabled

the identification of a ubiquitous viral marker in

the termite hindgut environment. Indeed, degen-

erate primers designed against this marker were

able to amplify closely related homologs of this

marker in other species of termites (as well as a

wood-feeding roach) collected from various loca-

tions in the United States (Tadmor et al. 2011).

In this context, it is worthwhile to mention that

MetaCAT is not restricted to ranking only viral

Host-Virus Interaction: From Metagenomics to
Single-Cell Genomics, Fig. 2 Schematic illustration
of the MetaCAT algorithm. MetaCAT maps clusters of

similar known reference genes to groups of metagenome

gene objects or reads. MetaCAT defines two known ref-

erence genes as being similar or “related” if their footprint

in the metagenome has a significant overlap. The abun-

dance of a given cluster of related known reference genes

in the metagenome is defined as the number of

metagenome gene objects (or reads) with an E value

below a given threshold found when BLASTing

a representative from the gene cluster against the

metagenome. The key feature of MetaCAT lies in its

ability to cluster the list of known reference genes per

metagenome and report a minimally redundant list of

known genes that have putative homologs in the

metagenome, ranked by their abundance in the

metagenome. This list can then be used to generate

hypotheses about the given metagenome. In this figure

the left oval depicts a reference database of genes (black

dots), and the right oval depicts a metagenome, with black

dots representing metagenome gene objects. Hexagons in

the reference database represent clusters of related refer-

ence genes identified by MetaCAT. Each hexagon is

linked to a corresponding cluster of metagenome gene

objects depicted by a circle of matching color
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Host-Virus Interaction: From Metagenomics to Single-Cell Genomics, Table 1 TerL genes identified by
MetaCAT in the metagenome of a hindgut of a higher termite collected from Costa Rica. The following table

lists TerL genes with minimal E values �10�7 and abundances �5 that were identified by MetaCAT to have putative

homologs in the metagenome of the hindgut of a Nasutitermes sp. termite. TerL genes are ranked by the number of

metagenome gene objects yielding alignments with E value scores below 0.001. Also shown are the E value scores

obtained when BLASTing the representative contig of each RefSeqTerL gene cluster against the genome of Treponema
primitia (ZAS-2), using a cutoff value of 0.01, with values above this threshold marked as not significant (N.S.)

Organism name Virus classification

No. of hits in

metagenome

BLAST

RefSeq gene

against

metagenome

(E value)

BLAST

representative

contig against

ZAS-2

(E value)

Clostridium

phage phiC2

dsDNA viruses Caudovirales; Myoviridae 19 4.0E-40 2.0E-05

Streptococcus

phage SMP

dsDNA viruses Caudovirales 11 3.0E-34 N.S.

Pseudomonas

phage PaP3

dsDNA viruses Caudovirales; Podoviridae 7 2.0E-09 N.S.

Enterobacteria

phage lambda

dsDNA viruses Caudovirales; Siphoviridae 6 2.0E-180 N.S.

Enterobacteria

phage HK022

dsDNA viruses Caudovirales; Siphoviridae 6 8.0E-69 N.S.

Host-Virus Interaction: From Metagenomics to
Single-Cell Genomics, Fig. 3 Bioinformatic approach
to identify ubiquitous viral markers in a given envi-
ronment. In the proposed approach to identify putative

ubiquitous viral markers, a metagenome from a given

environment is first analyzed by MetaCAT to produce

a list of candidate viral genes abundant in the

metagenome. The corresponding representative contig of

each candidate viral gene (defined as the contig yielding

the lowest E value) is then BLASTed against a second

dataset, such as another metagenome from a similar envi-

ronment or a genome of an isolate from a similar environ-

ment. If the percent identity is sufficiently high allowing

for degenerate primer design, this candidate can be con-

sidered a putative viral marker and can be further evalu-

ated by experiment. If the percent identity is not high, but

the E value is significant, a bootstrap-like approach may

be employed where the contig/gene from the new dataset

is BLASTed back against the original metagenome,

thereby potentially revealing more conserved markers.
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genes, but it is possible to define other taxonomic

groups as input reference libraries. For example,

one can use MetaCAT to find the most abundant

genes in a given environment involved in

a certain metabolic pathway, the most abundant

mitochondrion-related genes in a given sample,

the most abundant antibiotic genes in a soil sam-

ple, and so on.MetaCAT can therefore be thought

of as a useful tool for generating hypotheses

regarding a given environment. (Requests to

obtain a beta version of MetaCAT may be sent

to arbel.tadmor@tron-mainz.de.)

Colocalizing Viral-SSU rRNA Genes on
Digital PCR Arrays

Once a viral marker has been selected, a diversity

of this marker can be retrieved from various

bioinformatic sources (e.g., metagenomes and

sequenced genomes), and degenerate primers

targeting the marker of interest may be designed.

Colocalization of viral genes is, however, com-

plicated by the fact that the low replication fidel-

ity of viruses makes it unlikely to recover the

exact same allele twice from the dPCR arrays,

contrary to the case of colocalizing two bacterial

genes. P-values can, nevertheless, still be

assigned to repeated SSU rRNA ribotypes

retrieved from a given array, irrespective of the

paired gene, using knowledge of the frequency of

the given ribotype on the array. It is possible to

estimate ribotype frequencies by randomly

selecting chambers positive for the SSU rRNA

gene and constructing a phylogenetic library of

array ribotypes (Tadmor et al. 2011). Host-phage

cophylogeny can then be reconstructed from gen-

uine colocalizations, providing a unique glimpse

Host-Virus Interaction:
From Metagenomics to
Single-Cell Genomics,
Fig. 4 Workflow using the

microfluidic digital PCR

array for host-virus

colocalization in a novel

environmental sample

(Tadmor et al. 2011)
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into the evolutionary dynamics of the system and

shedding light on the flow of viral genes between

hosts in the given environment. An overview of

the workflow using dPCR to colocalize host-virus

genes is provided in Fig. 4.

Summary and Outlook

The method outlined in this review provides

a general scheme for analyzing host-virus inter-

actions at the single-cell level without having

to culture either host or virus. The method

first involves a bioinformatic analysis of a

metagenomic dataset or datasets from the envi-

ronment of interest to recover a ubiquitous viral

marker. This marker is then colocalized with

a universal gene identifying the host by means

of dPCR performed on single cells. The methods

presented in this review are general and can be

applied to other environments.

Cross-References

▶Computational Approaches for Metagenomic

Datasets

▶Use of Viral Metagenomes from Yellowstone

Hot Springs to Study Phylogenetic

Relationships and Evolution

▶Viral MetaGenome Annotation Pipeline
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Synonyms

Genes in the human gut microbial community;

Metagenome of the human gut microbiota

Definition

A gene is identified in human distal gut (colon)

microbes when reads from high-throughput

sequencing of fecal samples are assembled and

an open reading frame (ORF) is predicted from

the resulting DNA sequence. Such a gene could

usually be mapped to a group of bacterial species

and linked to certain functions. Metagenomic
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studies on other parts of the gastrointestinal tract

are often performed invasively using animals and

are not discussed here.

Introduction

The human gut has long been known to contain

microbial species. Until the advent of

high-throughput metagenomic sequencing, how-

ever, these mysterious microbes largely eluded

interrogations by their human host. Recent

advancements described here and in other entries

reveal awe-inspiring complexity, dynamics, and

significance of the gut microbiota.

Eubacteria dominate the microbial commu-

nity in the human gut (Scanlan and Marchesi

2008; Marchesi 2010; Parfrey et al. 2011). Both

eubacteria and archaebacteria species are routinely

classified to genus level according to their 16S

rRNA gene sequences. Unfortunately, taxonomic

classification of commensal eukaryotes in the gut

has remained a tedious process (Parfrey et al. 2011).

As a consequence, our understanding of the eukary-

otic minorities in the gut lags far behind that of the

bacterial communities. The term “gut microbes” is

equivalent to “gut bacteria” hereafter.

Metagenomic sequencing of total DNA

extracted from fecal samples constitutes a key

step in forging our understanding of gut bacteria

beyond taxonomy. The approach allows

researchers to obtain complete genome

sequences, identify genes, and predict functions.

Such metagenomic information is especially pre-

cious for those bacteria that are yet to succumb to

laboratory culture conditions.

This overview is intended to briefly summa-

rize our current roll call of the various genes

present in the human gut flora as well as the

functional relevance of these genes to the micro-

organisms and human beings under normal and

perturbed states.

Identification of Gut Microbial Genes

Next-generation, high-throughput, and cost-

efficient short-read data (mainly produced by

Illumina sequencing technology) have come of

age in metagenomic studies. Considering the

nonuniform abundance of gut microbial species

and the high level of discordance between

individual humans, deep sequencing and wide

sampling are critical for a comprehensive under-

standing of the human gut flora. In 2010,

high-throughput short-read sequencing was intro-

duced into human gut microbiome research and

showed great potential (Qin et al. 2010).

Bacterial DNA obtained from human fecal

samples could be readily used for high-

throughput sequencing on the Illumina platform.

After a few quality control steps, the short reads

from each sample were assembled de novo

(Fig. 1), using software such as SOAPdenovo

(Kultima et al. 2012). Protein-coding genes

were then predicted from the assembled contigs

(Kultima et al. 2012). Genes from multi-samples

were pooled together and compared with one

another to remove redundancy. Finally, a

nonredundant gene catalog was generated and

could serve as a basis for functional and phylo-

genetic analyses (Fig. 1) (Qin et al. 2010).

Alternative to de novo assembly, mapping of

reads to an existing gene catalog allows conve-

nient identification of genes in a sample. Natu-

rally, such a time-saving approach requires the

gene catalog to encompass a complete set of

high-quality reference genes.

Total Gene Number and Its Variability

Metagenomic sequencing of 124 Europeans

(as part of the MetaHIT (Metagenomics of the

Human Intestinal Tract) project) resulted in a gut

microbial gene catalog containing 3.3 million

nonredundant genes (Qin et al. 2010). Although

this gene number might still increase as more

samples are sequenced, especially those from

patients of a particular disease (e.g., in Qin

et al. 2012), this number of known gut microbial

genes is already 150-fold greater than the number

of genes encoded by the human genome.

Two hundred ninety-four thousand one hun-

dred ten of the gut microbial genes were found in

at least 50 % of individuals, which were termed

H 266 Human Gut Microbial Genes by Metagenomic Sequencing



“common” genes (Qin et al. 2010). The

remaining ~90 % genes, although typically seen

in multiple samples, were not widely shared.

Each individual carried 536,112 � 12,167

nonredundant genes, of which 204,056 � 3,603

(around 38 %) were common genes. Thus, signif-

icant interpersonal differences exist in terms of

the number, type, and sequence of the genes.

Common Functions Encoded by Gut
Bacteria

Functional annotation of the gut metagenome

involves aligning the genes to databases such as

KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways, COG (Clusters of

Orthologous Groups), and eggNOG (evolutionary

genealogy of genes: Non-supervised Orthologous

Groups) databases (Fig. 1). At present, a significant

fraction of genes remain functionally unknown

regardless of the database used, although common

genes could usually be annotated with greater suc-

cess. The wealth of information in the gut

metagenome awaits exploration in both global

and targeted fashion.

Just as gut microbial genes are to some extent

shared between individuals, there are functional-

ities that are common to the human gut

microbiota (Qin et al. 2010; Human Microbiome

Project Consortium 2012). Major metabolic path-

ways such as central carbohydrate metabolism and

amino acid synthesis can be seen in all samples.

Essential protein complexes, for example, DNA

replication machinery, RNA polymerases, ribo-

some, and secretory apparatus, are also part of the

core gut microbiota genes. Moreover, genes not

required for all bacteria but are important for life

in the gut are expected in the common set. Such

genes would presumably reflect adaptation to gut

temperature, oxygen level, and nutrients as well as

interaction with host cells and other microbes

(Fig. 2). The distinction between common and

rare functions, however, becomes semantic as one

looks into these genes. We find it more convenient

to discuss these in the following section.

Genes Influenced by Host
Environmental Factors

Traditionally viewed as a place for water and salt

resorption, the colon’s integral role in human

Human Gut Microbial Genes by Metagenomic
Sequencing, Fig. 1 High-throughput metagenomic

analysis of the human gut flora. DNA from fecal samples

are sequenced using the Illumina platform. The short reads

generated are assembled into contigs and open reading

frames (ORFs) are predicted. A nonredundant gene cata-

log is created from the ORFs. The genes are then anno-

tated functionally and phylogenetically according to

databases
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nutrition has only become realized through stud-

ies of the gut (fecal) microbiota. Various digested

or indigestible components of the diet arrive at

the colon and constitute a major environmental

factor shaping the gut microbial ecosystem

(Fig. 2). Complex carbohydrates are fermented

by bacteria of the phylum Firmicutes, producing
short-chain fatty acids (SCFAs, including acetate,

propionate, and butyrate) for use by the host cells.

In contrast, if the host diet relies more on simple

sugars, as has become common in the United

States, enzymes for metabolizing mono- and

disaccharides could be more prominent in the gut

flora (Yatsunenko et al. 2012). Similarly, dietary

intake of amino acids and vitamins appears to

modulate the balance between their catabolism

and anabolism by gut bacteria.

Bile acids (BAs) secreted by the host to emul-

sify dietary fats make a strong impact on the

gut microbiota. On one hand, primary BAs are

known to be converted to more effective second-

ary BAs through 7a-dehydroxylation by intesti-

nal bacteria. On the other hand, with their

amphipathic properties, BAs show a strong anti-

microbial activity. Rats on a diet supplemented

with the BA cholic acid recapitulated effects of

high-fat diet on the gut flora (reported in mice),

namely, an increased ratio of Firmicutes to

Bacteroidetes and a declining microbial diversity

(Islam et al. 2011; Ley et al. 2005). Thus, ele-

vated bile secretion stimulated by high-fat diet

likely plays a major role in reshaping the gut

microbiome (Islam et al. 2011).

Antibiotic administration could lead to pro-

found and long-lasting alterations in the intestinal

microbiome (Dethlefsen and Relman 2010; Cho

et al. 2012). The distortion is typically manifested

as a sharp decrease in microbial diversity accom-

panied by an overgrowth of Proteobacteria,

especially in pathogenic Enterobacteriaceae
populations (Nyberg et al. 2007). Antibiotic

intake exerts a strong selective pressure on the

intestinal flora and increases transfer of

antibiotic-resistant genes (ARGs) among gut

microbes, leading to an accumulation of resis-

tance strains (Sullivan et al. 2001; Schjørring

and Krogfelt 2011). These antibiotic-resistant

pathogens and nonpathogens could persist in

the gut well after removal of the selective

pressure.

Notably, current evidence suggests that

while commensal bacterial species vary between

hosts of different genetic background and envi-

ronmental factors, the individuality is smaller

at the functional level, i.e., similar genes in

different gut bacteria could serve similar pur-

poses and are selected by similar factors (Spor

et al. 2011).

Gut Microbiota and Diseases

A growing body of evidence suggests that the

gut microbial flora is central to human health.

Although we are very far from a definitive com-

prehension of healthy versus diseased gut

Human Gut Microbial
Genes by Metagenomic
Sequencing,
Fig. 2 Functions encoded

by the human gut microbial

metagenome in relation to

the gut. Gut microbes

contain genes important for

the survival and success of

themselves, at the same

time depend on, serve, and

manipulate their human

host. Diseases follow when

the symbiotic relationship

goes awry
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microbiota, it is fair to say that a productive

and well-balanced symbiotic relationship with

our little gut residents is of key importance

for us human beings. Altered gut microbial

composition has been reported in various gut-

related diseases such as colorectal cancer and

inflammatory bowel diseases (IBDs) and extend

to conditions like anorexia, allergies, cardiovas-

cular diseases, and even autism (Clemente

et al. 2012; Tremaroli and B€ackhed 2012).

These diseases are more or less accompanied

by dysbiosis, a state where benign or beneficial

gut microbes are overtaken by pathogens and

normal processes like fermentation, synthesis

of metabolites, barrier function, etc. become

disrupted.

On a metagenomic level, the gut microbiome

of leptin-deficient obese mice (ob/ob) showed

an increased capacity for energy harvest from

the gut, encoding enzymes that could initiate

breakdown of otherwise indigestible polysac-

charides (Turnbaugh et al. 2006). However,

the end products of bacterial fermentation,

SCFAs especially butyrate, appear protective

and negatively regulate inflammation in the gut

(Maslowski et al. 2009). Butyrate synthesis

genes in the gut flora were depleted in diabetes

and symptomatic atherosclerosis patients com-

pared to healthy controls (Qin et al. 2012;

Karlsson et al. 2012). Together with studies on

butyrate and IBDs (Thibault et al. 2010; Scharl

and Rogler 2012), current results point to a key

role of butyrate metabolism in colon health, with

extensive interplays between the gut flora and

the host.

Another common theme in gut microbial

homeostasis may be the handling of oxidative

stress. The gut metagenome of diabetes patients

was enriched for genes involved in sulfate

reduction and oxidative stress resistance (Qin

et al. 2012). Atherosclerosis was associated with

an underrepresentation of phytoene dehydroge-

nase gene and a matching reduction in the anti-

oxidant b-carotene in patient serum (Karlsson

et al. 2012). Oxidative stress is also known to

contribute to IBDs such as Crohn’s disease

(Iborra et al. 2011).

Metagenome-Wide Association Study
for Diagnosis

To go beyond a descriptive account of genes pre-

sent in healthy or unhealthy human gut microbiota,

it could be very helpful to perform a metagenome-

wide association study (MGWAS) for identifica-

tion of disease markers and evaluation of disease

prospect (Fig. 3). A standard genome-wide associ-

ation study (GWAS) looks for genetic variants,

typically single-nucleotide polymorphisms (SNPs)

in a genome, and relates them to a phenotype such

as a disease. MGWAS stems from the concept of

“metagenome.”Accordingly, the relative abundance

of a gene in ametagenome, instead of the presence of

a SNP, is used to establish correlation with disease.

The proof-of-principle study for MGWAS

was performed on type 2 diabetes mellitus (Qin

et al. 2012). In a reference gene catalog updated

from previous work (Qin et al. 2010), 3,298,811

genes were found in the healthy or diabetic

cohorts (total n ¼ 145). After filtering for shared

genes and clustering based on numerical relation-

ships and phylogeny, the dimensionality was

reduced to 1,138,151 genes. The first stage of anal-

ysis concluded with 278,168 statistically signifi-

cant gene markers for diabetes. In Stage II, new

samples (n ¼ 100 for each cohort) were sequenced

and profiled with the markers from Stage I. The

analysis further reduced the number of gene

markers to 52,484. For lowest error rate, as few

as 50 gene markers were found to be optimal and

were successfully applied to diabetic/nondiabetic

classification of 23 additional samples. Besides

genemarkers, markers from functional annotations

(KEGG orthologous groups, eggNOG orthologous

groups) and metagenomic linkage groups (MLG)

that represent taxonomic units also present valu-

able information (Qin et al. 2012).

In addition to diabetes, the same study identified

gene markers and orthologous group markers for

IBDs and for enterotypes (Qin et al. 2012), raising

the stakes for routine application of MGWAS to

other microbiota-related diseases. It remains to be

seen how factors such as age, gender, and BMI

(body mass index) confound MGWAS in various

diseases, especially during initial marker
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selection. Things like sample size, read length, and

ecological and genomic diversity all need to be

taken into consideration during study design and

interpretation. The emergence of an optimum

MGWAS workflow and subsequent biological

investigations would probably involve effort

from researchers across disciplines.

Summary

Metagenomic analyses of the human gut

microbiota offer road maps for elucidating the

interplay between the gut symbionts and their

human host. The information could guide

detailed characterization of bacterial species

Human Gut Microbial Genes by Metagenomic
Sequencing, Fig. 3 Metagenome-wide association

study for gut flora-related diseases. For each sample,

sequencing reads are mapped to the reference gene catalog

(Fig. 1) and relative abundance of genes is computed.

Genes and species that are under- or overrepresented in

patients are selected following a rigorous procedure. The

analysis results in gene markers and metagenomic linkage

groups that can be used for diseased/undiseased classifi-

cation and potentially for prognosis and diagnosis
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individually and as a community. The range of

metabolites flowing in and out of the microbes

and the plasticity of the gut flora are expected to

revolutionize nutrition science. Causal relation-

ships between host factors, gut microbiota, and

diseases, when established, hold great promise

for human health.
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Edlund C, Huovinen P, et al. Long-term antimicrobial

resistance in Escherichia coli from human intestinal

microbiota after administration of clindamycin. Scand

J Infect Dis. 2007;39:514–20.

Parfrey LW,WaltersWA, Knight R.Microbial eukaryotes

in the human microbiome: ecology, evolution, and

future directions. Front Microbiol. 2011;2:153.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS,

Manichanh C, et al. A human gut microbial gene

catalogue established by metagenomic sequencing.

Nature. 2010;464:59–65.

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A

metagenome-wide association study of gut microbiota

in type 2 diabetes. Nature. 2012;490:55–60.

Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of

the human distal gut microbiota: qualitative assess-

ment using culture-dependent and -independent anal-

ysis of faeces. ISME J. 2008;2:1183–93.

Scharl M, Rogler G. Inflammatory bowel disease patho-

genesis: what is new? Curr Opin Gastroenterol.

2012;28:301–9.

Schjørring S, Krogfelt KA. Assessment of bacterial anti-

biotic resistance transfer in the gut. Int J Microbiol.

2011;2011:312956.

Spor A, Koren O, Ley R. Unravelling the effects of the

environment and host genotype on the gut

microbiome. Nat Rev Microbiol. 2011;9:279–90.

Sullivan A, Edlund C, Nord CE. Effect of antimicrobial

agents on the ecological balance of human microflora.

Lancet Infect Dis. 2001;1:101–14.

Thibault R, Blachier F, Darcy-Vrillon B, De Coppet P,

Bourreille A, Segain J-P. Butyrate utilization by the

colonic mucosa in inflammatory bowel diseases:

a transport deficiency. Inflamm Bowel Dis.

2010;16:684–95.

Tremaroli V, B€ackhed F. Functional interactions between

the gut microbiota and host metabolism. Nature.

2012;489:242–9.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V,

Mardis ER, Gordon JI. An obesity-associated gut

microbiome with increased capacity for energy har-

vest. Nature. 2006;444:1027–31.

Yatsunenko T, Rey FE, Manary MJ, Trehan I,

Dominguez-Bello MG, Contreras M, et al. Human

gut microbiome viewed across age and geography.

Nature. 2012;486:222–7.

Human Oral Microbiome Database
(HOMD)

Tsute Chen1 and Floyd Dewhirst2

1Department of Microbiology, The Forsyth

Institute, Cambridge, MA, USA
2Department of Molecular Genetics, The Forsyth

Institute, Cambridge, MA, USA

Introduction

The human oral cavity is a rich biological site

with several microbial niches including teeth,

gingival sulcus, tongue, cheek, hard and soft
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palates, tonsils, throat, and saliva. The

microbiome of the oral cavity (Dewhirst

et al. 2010) and its niches have been examined

based on 16S rRNA sequencing (Aas et al. 2005;

Bik et al. 2010; Human Microbiome Project

2012a, b). The metagenome of the oral cavity

has been studied to a limited degree prior to

2012 due to the complexity of the site (Alcaraz

et al. 2012; Belda-Ferre et al. 2012; Xie

et al. 2010). More than 700 prevalent species

comprise the oral microbiome, but many taxa

are present at less than 0.1 % of the microbial

population (Dewhirst et al. 2010). As oral bacte-

rial reference genomes are becoming available,

primarily through the efforts of the Human

Microbiome Project (Human Microbiome Pro-

ject 2012a, b), it is becoming possible to attribute

metagenomic sequences to organisms at genus

and species level (Martin et al. 2012). The

anchoring of metagenome sequence information

to specific organisms in a taxonomic framework

is key to developing a full description of the

bacteria-bacteria and bacteria-host interactions

that underlie human oral health and disease.

The Human Oral Microbiome Database

(HOMD) was developed in response to the lack

of any naming or taxonomic scheme for the thou-

sands of human oral 16S rRNA clone sequences

that were being generated in the early 2000s and

dumped into GenBank without any taxonomic

anchor. Investigators were publishing manu-

scripts using clone names (such as BU063) as

provisional taxonomic names. The only way to

phylogenetically place an oral clone was to per-

sonally align sequences and generate one’s own

phylogenetic trees. We recognized that there was

a need for a 16S rRNA-based provisional taxo-

nomic scheme to name and provide reference

sequences for unnamed taxa known only from

clone or isolate 16S rRNA sequences. The nam-

ing scheme had to be provisional because formal

naming under the bacterial code requires isola-

tion in pure culture and full phenotypic charac-

terization; 16S rRNA sequence by itself is

insufficient for formal naming. The taxonomic

scheme described more fully below is based on

a Human Oral Taxon number which runs cur-

rently from 001 to 918.

At about the time we recognized the need to

create a taxonomic framework for the oral

microbiome, the National Institute of Dental

and Craniofacial Research released a request

from proposal on “The metagenome of the oral

microbiome.” We responded with a proposal

entitled “A foundation for the oral microbiome

and metagenome,” which was funded as

DE016937. The goals of the grant were to

(1) set up the HOMD web-accessible database

with a provisional taxonomic scheme and to pre-

sent all oral genomes in a graphical interface,

(2) to complete reference genomes for oral taxa,

and (3) to obtain isolates of previously

uncultivated taxa and make them available to

the research community by placing them in

national-type culture collections. We have made

steady progress in achieving these goals, and this

project is currently in its seventh year of funding.

The HOMD Website

The HOMD contains various types of informa-

tion on human oral microorganisms including

taxonomic, genomic, and bibliographic. The pur-

pose of the HOMD website (http://www.homd.

org) is to provide an easy-to-use online interface

to search, retrieve, and navigate among these

different types of information. HOMD also pro-

vides web-based bioinformatics software tools

for data mining and analyses.

Technically, the HOMD website is

constructed using a LAMP system and hosted

on the web server computers. The LAMP system

provides a Linux operating system, Apache web

service, MySQL relational database, and PHP

dynamic web page rendering. Textual contents

such as the taxonomy and metagenomic informa-

tion are queried and results dynamically

displayed in the web browser by the LAMP sys-

tem. A dedicated high-performance computer

cluster is deployed to handle the computational

demanding analysis such as homology sequence

searches.

The HOMD has been designed to be compat-

ible with most commonly used web browsers

such as Microsoft Internet Explorer, Firefox,
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Google Chrome, and Safari. We suggest the use

of one of these popular web browsers to ensure

the functionalities of HOMD web pages and

tools. All the HOMD information and tools are

viewable and available to the general public with-

out having to log in or acquiring a user account.

The log-in function is mainly for the purpose of

maintaining the website and the curation of the

database information. If a user has been desig-

nated a curator, he or she will see additional

administrative submenus.

Detailed functionalities, web interfaces, and

tools as well as useful usage tips are presented

below. Technical information such as the imple-

mentation and design of the HOMD has been

published elsewhere (Chen et al. 2010).

Features of the HOMD Web Pages

The design of the website was based on the feed-

back of several researchers in the field of oral

microbiology over the past several years. The

user interface was designed to be user-friendly,

intuitive, and practical. On top of every HOMD

page (Fig. 1), there is a top banner for the HOMD

logo, which automatically reduces to smaller size

(in height) once the user navigates away from the

home page so that the banner will not take up too

much space from the requested content. Clicking

the top banner image also brings the user back to

the HOMD home page. Top navigation menu is

located right below the top banner and is also

accessible throughout all the HOMD pages. The

top navigation menu provides access points to all

HOMD’s tools and information on all the web

pages.

Another useful feature of the HOMD web

pages is the unique page ID system. The rightmost

item displayed on the top navigation menu is the

page ID – a unique code that distinctly identifies

the current page that a user is viewing. For exam-

ple, the page ID of the HOMD home page is

“HP1” (Fig. 1), and once a user navigates away

from home page to, e.g., the Taxon Table page, the

page ID automatically changes to “TT1.” This

feature allows precise page referencing. This is

particularly useful when a user needs to refer to

a specific page on HOMD site for discussion, bug

reporting, or suggestion.

The HOMD home page also includes a

top-down oriented expandable menu on the left

side and an introductory paragraph in the center.

On the right side are the Meta-Database Search,

the Announcement, and the Database Update

boxes. The Meta-Database Search is very useful

for searching desired information across all the

subsets of HOMD databases, including the tax-

onomy, the metagenomic information, as well as

the dynamic genome annotations. The result lists

the number of matches to the keyword that pro-

vides links, leading to detailed information. The

Announcement box displays the important

system-wise updates and news for the HOMD.

The Database Update box is automatically

updated by the HOMD dynamic genome annota-

tion pipeline (see “Dynamic Annotation of Geno-

mic Sequences” section) to keep track of the

status of the genome annotation.

HOMD also provides comprehensive docu-

mentation and updates history of data and tools.

The HOMD User’s Guide (i.e., the help docu-

mentation) was designed to help users to use the

tools, navigate the information, and interpret the

results provided by HOMD. The User’s Guide is

accessible through the top navigation menu on all

pages and is dynamically linked to the relevant

guide for each different tool. For example, when

users are viewing the Taxon Table page, the

“How to Use This Page” menu item shown in

the top navigation menu will lead directly to the

page that explains the use of the Taxon Table.

Alternatively users can also browse the entire

user documentation by clicking the “Table of

content” tab shown on top of each documentation

page as well as the “User’s Guide” links on top

menu and side menu of home page. Every docu-

ment of HOMD can be searched either through

the search box located at the bottom of the table

of contents of the documentation page or through

the Meta-Database Search box located at the

top-right part of the home page.

The design of the online interfaces of HOMD

has been driven by suggestions fromHOMDusers.

HOMD is open to suggestions and feedback from

the research community to further improve its

interface and content. Currently, HOMD provides

several different ways to communicate with the
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research team and research community. The con-

tact information provides e-mail addresses for

direct communication with the HOMD research

team. There is also a mailing list for important

updates and announcement. Users can use their

own e-mail address to subscribe to the HOMD

Mailing List (https://groups.google.com/forum/

#!forum/homd-mail) by sending an empty e-mail

to the e-mail address: homd-mail+subscribe@

googlegroups.com. An automatic e-mail will be

sent to the subscriber for confirmation. HOMD

also provides a discussion platform for the

research community (https://groups.google.com/

forum/#!forum/homd-forum). Note that these

web links may change over time. In any case,

current or updated web links provided here will

be available on the HOMD website.

The HOMD Database Schema

The information and data provided by HOMD are

stored in several databases. The Oral Taxon IDs

and the genome IDs serve as the keys to cross-

link these databases. The database table struc-

tures and the contents can be downloaded from

the HOMD FTP (file transfer protocol) site at

ftp://ftp.homd.org to allow users to reconstruct

the databases and perform advance queries on

their own computers.

Download Data from HOMD

Most of the data recorded in HOMD, including

taxonomy, genomics, and 16S rRNA reference

sequences, can be downloaded from the HOMD

FTP site (ftp://ftp.homd.org). The FTP site pro-

vides both current and archived versions of the

Human Oral Microbiome Database (HOMD), Fig. 1 Screenshot of the HOMD home page
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data for comparison. The FTP site can be

accessed directly in the web browser. Each folder

comes with a “readme” text file explaining the

data, data format, and potential usage. Selected

data such as the aligned reference sequence

dataset, aligned 16S rRNA datasets for each

taxon, and an HOMD taxonomy database in

Excel format can be downloaded from the links

provided in the HOMD web pages.

Taxonomy

Compilation of the HOMD Taxa

The HOMD describes information linked to oral

microbe species. For bacteria, or archaea, that

have not been validly named, there is no defini-

tion of “species.” Molecular methods to identify

novel species generally have used 16S rRNA

sequencing of isolates or 16S rRNA-based anal-

ysis of clone libraries. These strains or clones can

then be clustered into phylotypes or taxa based on

their 16S rRNA sequences. Phylotype can be

defined for any similarity cutoff. In HOMD,

a cutoff of 98.5 % 16S rRNA sequence similarity

was used to cluster the 16S rRNA sequences at

the species level to define novel oral bacterial

phylotypes. Each validly named species and

novel phylotype cluster was given a unique inte-

ger number called Human Oral Taxon (HOT) ID.

The original collection of oral microbial tax-

onomy information came from a combination of

literature, primarily reports from Forsyth Insti-

tute investigators (Dzink et al. 1985, 1988;

Socransky and Haffajee 1994; Tanner

et al. 1979, 1998) and from Lillian Holderman

Moore and Ed Moore (Moore et al. 1982, 1983;

Moore and Moore 1994) formerly at the Anaer-

obe Laboratory at the Virginia Polytechnic Insti-

tute. 16S rRNA sequences for these named

species came either from sequences obtained in

our laboratory or from GenBank. Over the past

20 years, our laboratory constructed and

sequenced over 600 16S RNA gene libraries and

obtained over 35,000 clone sequences. The clon-

ing, sequencing, aligning, treeing, and clustering

methods used to create HOMD are described

elsewhere (Dewhirst et al. 2010). In brief,

sequences were manually aligned in a secondary

structure-based database using the program RNA

(Paster and Dewhirst 1988). Distance matrices

and neighbor-joining trees were generated to

determine the clustering of sequences. Sequences

with similarity equal to or greater than 98.5 %

were grouped together into a single taxon.

Sequences were extensively checked for chi-

meras and several sequences and some provi-

sional taxa were removed. As a result, several

hundred apparently novel full 16S rRNA

sequences were identified this way.

To share the information of both the named

and novel human oral microbial taxa with the

research community, we decided to build

a database and designed web query interfaces

and tools. When the HOMD was publicly

launched in 2010, there were a total of

619 Human Oral Taxa in the initial release of

the HOMD database. The 753 reference 16S

rRNA gene sequences upon which this analysis

was done have been released publicly for down-

load on the HOMD website as version 10. At the

time of writing this chapter, the total number of

taxa described in the HOMD taxonomy database

has grown to 688, represented by a total of

833 reference 16S rRNA sequences (HOMD

RefSeq Version 13.1).

Navigating the HOMD Taxa

The HOMD taxonomy information can be

viewed and retrieved in several different ways.

The information can be viewed online directly in

a web browser or downloaded as text files. For the

online web browser viewing, the taxonomy pages

can be searched with keywords or by visual nav-

igation with the Taxon Table (Fig. 2) and the

Taxonomic Hierarchy (Fig. 3). The Taxon

Table can also be downloaded in Excel and

tab-delimited plain text file from the Tools &

Download page or through the HOMD FTP site.

The keyword search can be done through the

Meta-Database Search box on the home page or

on the Taxon Table page. Both search boxes look

for input keyword(s) in all text fields of the

HOMD taxonomy database table.

On the Taxon Table page, all the human oral

microbial taxa are listed in a table ordered
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alphabetically by organism names. The order can

be changed by clicking the column name HOT

IDs, Genus, or Species names, to toggle the dis-

play sort order. Three commonly used filters are

also provided to show only those taxa with

“named species,” “unnamed cultivated species,”

or “uncultured phylotypes.” Each taxon listed in

the table contains links to the individual Taxon

Description page (described later) and to the

genomic information, if available.

The taxa can also be viewed in the taxonomic

hierarchical order, i.e., from domain, phylum,

class, order, family, genus, to species levels, on

the Taxonomic Hierarchy page (Fig. 3). The hier-

archical tree is fully collapsed by default and can

be dynamically expanded at any given level

(or all levels). The link, at the species level,

brings users to the detailed Taxon Description

page. The designation of each level is followed

by two numbers enclosed in the square brackets

indicating the number of taxa and genome

sequences. For example, “Phylum Proteobacteria

[107, 144]” indicates that in the phylum

Proteobacteria, 107 taxa were identified in the

oral cavity and 144 strains have genomic

sequences available at HOMD. If a strain has

been sequenced by multiple groups, or multiple

strains sequenced for a species, we provide each

sequence when available.

Another way to check the summary of the

HOMD taxa is to view the number of taxa at

various taxonomy levels. The Taxonomic Level

page provides a list of taxa and the number

of taxa at the next lower level for each of the

7 taxonomic levels: Currently, the numbers are

Domain (2), Phylum (14), Class (24), Order

(40), Family (83), Genus (183), and Species

(688).

Human Oral Microbiome Database (HOMD), Fig. 2 Screenshot of the Taxon Table
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Taxon Description

The HOMD Taxon Description page (Fig. 4) pro-

vides comprehensive information for a specific

human oral microbial taxon. Information pro-

vided can be summarized in four categories: Tax-

onomic Hierarchy, biological characteristics,

references, and community comments. Through-

out the page, clickable dynamic cross-links are

provided for additional information. The taxon

page can be edited and curated by designated

curators upon their logging-in. The page also

allows input and comments provided by the

users in the research community. Information

described on this page are the following:

Human Oral Taxon (HOT) ID – The Human

Oral Taxon ID is a unique numeric ID

representing a particular taxon. The taxon

can be unambiguously referred to from other

sources of scientific literature. The taxon can

be accessed on the web with an easy universal

resource locator (URL) format, http://www.

homd.org/taxon¼NNN, where NNN is the

HOT ID. The Human Microbiome Project

Data Analysis and Coordination Center

(DACC; accessible at http://www.hmpdacc.

org) is using HOT IDs to designate taxonomic

identity isolates of the oral cavity with URLs

cross-referenced to HOMD. These URLs are

embedded in the data provided by DACC so

that user can track down to the more compre-

hensive information for individual genome.

The HOT IDs were also embedded in the

GenBank sequence records for the 35,000

clone sequences that were used to build the

initial collections of the HOMD taxa. The text

embedded in the GenBank records has the

syntax /db_xref¼“HOMD:tax_NNN,” in

which NNN is the numeric HOT ID. If the

GenBank sequence is viewed in the web

browser through the NCBI website, the

Human Oral Microbiome Database (HOMD), Fig. 3 Screenshot of the Taxonomic Hierarchy expanded at the order

level Bacteroidales
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portion of the text “tax_NNN” is also click-

able and links to the corresponding taxon page

on the HOMD website. For example, the

GenBank record for the partial 16S rRNA

sequence of the Alloprevotella rava clone

GB024 (Accession No. GU409552, http://

www.ncbi.nlm.nih.gov/nuccore/GU409552)

contains the text /db_xref¼“HOMD:tax_302,”

because the HOT ID for A. rava is 302.

Clicking “tax_302” in this GenBank record

in the web browser will bring the user

to the corresponding taxon page on HOMD

(http://www.homd.org/taxon¼302). NCBI

embeds external database reference IDs in

the GenBank records for cross-database

referencing. More information can be found

at this link http://www.ncbi.nlm.nih.gov/

genbank/collab/db_xref.

Human Oral Microbiome Database (HOMD), Fig. 4 Screenshot of the Taxon Description page
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Status – This field displays the culturing status

for the taxon. A taxon can be either a validly

named cultivated species, an unnamed culti-

vated species, or an unnamed uncultured

phylotype. This status is shown in this field

and will be updated upon the change of actual

status of the taxon.

Type strain/reference strain – If the taxon’s sta-

tus is validly named cultivated species, the

Type Strain is listed here; if the taxon is an

unnamed isolate, the strain information will be

listed as Reference Strain. If no cultivated

strain is available yet, the Reference Strain

field will be listed as “None, not yet

cultivated.”

Classification – The Taxon Description page lists
the nomenclatures of each taxonomic level

from Domain to Species. This classification

is defined by HOMD and may be different

from the NCBI Taxonomy. The NCBI Taxon-

omy can be accessed using a dynamic link.

The HOMD taxonomy is based on analysis

of where each taxon falls in phylogenetic

trees generated using several treeing methods

and including over 100 non-oral reference

taxa identified by searching the “greengenes”

16S rRNA gene database (http://greengenes.

lbl.gov). For example, in HOMD, an organism

such as Eubacterium saburreum is placed in

the family Lachnospiraceae (because that is

where it falls phylogenetically), rather than in

the family Eubacteriaceae (because its incor-

rect genus name “Eubacterium” has not yet

been revised). Synonyms of the taxon that

are currently in use or were used before in

the literature or publications are also provided.

16S rRNA gene sequence – GenBank accession

number and link to NCBI corresponding

Entrez record to one or more 16S rRNA gene

sequences associated with the taxon.

16S rRNA gene sequence alignment – This field

provides the link to the downloadable clone

sequences preliminarily aligned to the refer-

ence sequence to which the clones belong. The

current set contains the approximately 35,000

clone sequences (Dewhirst et al. 2010) aligned

for each taxon. The clone alignments are pro-

vided concatenated FASTA format with the

reference sequence(s) on top which were

used as the template for alignment. To view

the alignment in color format and for further

adjustment, third-party alignment viewing

software may be used, such as SeqView

(http://pbil.univ-lyon1.fr/software/seaview.

html) and BioEdit (http://www.mbio.ncsu.edu/

BioEdit/bioedit.html). Because some pairs

of clone sequences may be nonoverlapping

(i.e., 500-base sequences at opposite end of

the molecule), this file must be used with cau-

tion for tree construction.

Phylogeny –A phylogenic tree showing the posi-

tion of this taxon among related HOMD taxa is

provided here. The tree images are in PDF

format and can be viewed or downloaded

with the link provided in this field. A link to

a list of all the downloadable phylogenetic tree

images encompassing all the HOMD taxa is

also provided.

Prevalence by molecular cloning – The number

of clones found for this taxon in an analysis of

approximately 35,000 clones (Dewhirst

et al. 2010). Based on the number of clones

found, the rank abundance of the taxon (out of

619) is given.

Synonyms – Lists previous names for the organ-

ism if validly named. Isolate or clone designa-

tions are given as synonyms when they have

appeared in the literature as “names” for the

taxon, such as “BU063.” (Zuger et al. 2007).

NCBI taxonomy – For validly named species,

there is a link to the NCBI Taxonomy. NCBI

has no taxonomy for unnamed taxa; hence, the

reason HOMD was created.

PubMed search – The number of hits when the

name (genus plus species) of this taxon is used

in the PubMed search. HOMD automatically

and periodically updates this hit number every

2 weeks. To get a most up-to-date search,

simply click the “PubMed Link” to pull up

the search result live from NCBI PubMed

site. In general, there are no results for

unnamed taxa, hence the need for HOMD.

When articles referencing these taxa (often

through clone numbers) are found by HOMD

curators or community members, they are

manually added to the Taxon Description.
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Nucleotide search – Similar search as above using

NCBI Entrez “nucleotide” as reference data-

base. The latest result (hit count) is displayed

with link to NCBI for most updated search.

Protein search – Similar search as above using

NCBI Entrez “protein” as reference database.

The latest result (hit count) is displayed with

link to NCBI for most updated search.

Genomic sequence – Number of genomes that

have been sequenced is indicated here with

a link to a detailed list of these genomes.

Hierarchy structure –An expandable/collapsible

view of a dynamically displayed taxonomy

tree indicating the position of the taxon on

the page.

Cultivability – Conditions and media for growing

strains of this taxon, if available.

Phenotypic characteristics –Generic phenotypic

description of the taxon if the taxon has culti-

vated member(s).

Prevalence and source – Describes the fre-

quency and source of clones and isolates

from different oral sites and states of health

or disease when known.

References – Literature and publications

referencing this taxon. These references are

manually curated with up to ten key references

which may also include older references not

indexed in PubMed.

Community comments – Registered and logged-

in users can provide their feedbacks related to

this taxon. The comment requires the approval

of the HOMD curators before it is shown to the

public.

Identification of 16S rRNA Gene Sequence by

BLAST Search

One of the most used HOMD software tools is the

customized BLAST search specifically designed

to identify user-provided 16S rRNA sequences

against the comprehensive collection of the 16S

rRNA reference gene sequences. Currently there

are a total of 688 taxa defined based on version

13.1 of the 16S rRNA reference sequences. Since

a phylotype can include members with up to

1.5 % sequence divergence (23 bases for a full

1,500-base sequence), multiple reference

sequences have been selected where we have

sequences diverging by more than 10 bases

within a taxon.

HOMD provides two primary sets of 16S

rRNA gene reference sequence (RefSeq) for

download and for BLAST search. The first set is

the HOMD 16S rRNA RefSeq. This set contains

sequences representing all currently named and

unnamed oral taxa. In the latest reference

sequence set (version 13.1 at the time of writing),

there are 834 reference sequences representing

the 688 taxa. The second is the HOMD 16S

rRNA Extended RefSeq. This set contains addi-

tional16S rRNA reference gene sequences that

are distinctively different from existing taxa but

have not yet been assigned with a taxon ID.

The HOMD reference sequences are corrected

consensus sequences. Many have been corrected

and extended based on alignment with other

sequences for that taxon and Ns and indels

removed. Therefore, for many sequences, there

will be differences between the reference

sequence and the GenBank sequence listed in

the header information. We have not yet updated

our own GenBank sequences and cannot update

those from other depositors. We believe these are

currently the best reference sequences available

and, for the purposes of BLAST analysis, have

the advantage of being of a uniform length.

On the HOMD 16S rRNA Sequence Identifi-

cation page (Fig. 5), users can copy and paste the

query sequences in the text field or upload from

user’s computer. The query sequences should be

in the concatenated FASTA format. The maximal

number of query sequences allowed to upload in

a single search is 5,000. Since viewing of the

BLAST results in the web browser for over

5,000 query sequences becomes very slow, for

search over 5,000 sequences, please contact the

HOMD team. The HOMD 16S rRNA BLAST

online toolwas only designed for amodest number

of sequences, up to a couple of thousands, which

can be submitted in several batches. It is not capa-

ble of handling larger numbers of sequence reads,

such as hundreds of thousands of reads from the

next-generation sequencing pipeline. For larger

numbers of sequences, the search can be done on

a collaboration basis. HOMDprovides secure FTP

(sFTP) upload for large batches of user sequences,
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and the search will be sent manually to the HOMD

BLAST server cluster on user’s behalf and results

made downloadable through the sFTP site. The

upload page also provides options for adjusting

the BLAST search parameters although the default

setting should be sensitive enough to pick up

matches with even short oligo sequences.

Once the query sequences are submitted, the

sequences are uploaded to the HOMD computer

servers and queued for the BLAST search. Once

all the searches are done, the results are presented

back to submitter in a tabularized format. Results

containing up to 20 top matches for each query

sequence can be downloaded in text or Excel file

formats. Original full BLAST results including

the alignments can also be accessed from the

result page. The match identity is presented as

straight BLAST results and as an adjusted percent

identity (API) calculated as

API ¼ 100�M= MþMMð Þ

where M is the matched (identical) and MM the

mismatch sequence length between the query and

the reference sequence, respectively. This calcu-

lation excludes any gaps introduced during the

alignment process of the BLAST search. We

have found that this correction gives much better

values for single primer sequence reads where the

sequence adjacent the primer often includes

indels. The top hits are ordered by their API

rank, and sequences with alignment shorter than

Human Oral Microbiome Database (HOMD), Fig. 5 HOMD 16S rRNA Sequence Identification. (a) Query

sequence input interface; (b) Result page
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95 % of query sequence are excluded from rank-

ing. The top four matched reference sequences

are listed by this method, and the table shown on

the web page contains links to the original

BLAST results as well as to the Taxon Descrip-

tion pages for reference sequences. The results

for the 20 top matches can be downloaded as

plain text or in Microsoft Excel format.

Genomics

Genomics Tools Overview

Complimentary to the taxonomy information, the

HOMD also provides comprehensive informa-

tion and tools for studying genomes of the

human oral microbes. HOMD genomics database

serves as the curated repository for the molecular

sequences of human oral microbiome, including

complete and partial genomics sequences, as well

as 16S rRNA mentioned in the previous section.

Genomic sequences available at HOMD can be

fully assembled genomes, high-coverage genomes,

or genome surveys.HOMDalso keeps tracks of the

status of ongoing genome sequencing projects for

human oral microorganisms. A Sequence Meta

Information page is created to hold relevant

genomics and sequence meta information if

a sequencing project for a human oral microbe is

announced and available in the NCBI Genome

Project Database. The genome project status is

updated biweekly based on information collected

from the NCBI Genome Project Database with an

automatic query script. Once genomic sequences

are publicly released, they are dynamically anno-

tated by HOMD (Dynamic Annotation). Annota-

tion done by other data centers, if available, is

termed “static annotation” and is viewable in

a separate panel in the Genome Viewer

(described below). Relevant tools are provided for

viewing and searching the annotation. These tools

were first developed as part of the Bioinformatics

Resource for Oral Pathogens (BROP: http://www.

brop.org; Chen et al. 2005). The programs and the

data-mining schemes used in HOMD are designed

for both finished and unfinished (collections of

multiple contigs) genome sequences. The tools

are integrated with the HOMD website and are

conveniently accessible by users. Icons or links to

available tools pertaining to a specific genome are

automatically presented on relevant page to users.

Important genomic data and bioinformatics tools

provided by HOMD are described below. Addi-

tional information on tools is also available in the

previous publication (Chen et al. 2005).

Genome Table

HOMD organizes genomes in three viewing

options: Taxa with Annotated Genomes, Taxa

with Genomes in Progress, and View All

Genomes. The first option lists the oral taxa

with annotated (static or dynamic) genomic infor-

mation and provides links to all the genomes

available for each taxon. The View Genome but-

ton links to the Genome Table showing all the

available genomes of a specific taxon. The

Genome Table shows the Oral Taxon ID (HOT),

the Genus and Species names, Strain Culture

Collection, HOMD Sequence ID (SEQ ID), num-

ber of contigs and singlets, combined sequence

length, and links to available tools and informa-

tion. The second option (Taxa with Genomes in

Progress) lists those oral taxa with genomic

sequencing project still in progress but no

sequence is yet available. The third option shows

all the genomes in the alphabetical order and pro-

vides searching and sorting function for easy nav-

igation. Each genome listed has a link to the

Sequence Meta Information page described next.

Sequence Meta Information

The Sequence Meta Information page provides

detailed biological, molecular biological,

genetic, genomic, and taxonomic as well as anno-

tation information for a particular strain that has

been, is being, or will be sequenced (Fig. 6).

Information on these pages is semiautomatically

updated. Updated information from both

Genomes OnLine and NCBI Genome Project

Database is retrieved biweekly and compared

with the existing database automatically. New

or modified Genomic Project information are

then added to the Sequence Meta Information

pages with confirmation by curators. The

Sequence Meta Information page contains the

following human-curated information related to

H 282 Human Oral Microbiome Database (HOMD)

http://www.brop.org
http://www.brop.org


the target organism: Oral Taxon ID, HOMD

Sequence ID (SEQ ID), Organism Name (genus,

species), Culture Collection Entry Number, Iso-

late Origin, Sequencing Status, NCBI Genome

Project ID, NCBI Taxonomy ID, Genomes

Online Goldstamp ID, NCBI Genome Survey

Sequence Accession ID, JCVI (previously

TIGR) CMR ID, Sequencing Center, number of

contigs and singlets, combined length (Kbp), GC

percent, DNA molecular summary, ORF annota-

tion summary, and 16S rRNA gene sequence.

In addition, original external information such

as NCBI Genome Project Database, NCBI

Taxonomy Database, Genomes OnLine Data-

base, and rRNA in NCBI Nucleotide Database,

if available, is parsed into separate tables below

the Sequence Meta Information for convenient

referencing.

Full and High-Coverage Genomes

Full genomes are the oral microbial genomes that

have been fully assembled, while the high-

coverage genomes are not fully assembled but

represent coverage of most of the genomes.

Both types of genomes are annotated and depos-

ited in a public database such as GenBank.

HOMD aims to provide frequently updated geno-

mic annotation for oral bacterial genomes (see

below). In addition, HOMD provides graphical

genomic viewing for static annotations done by

other public data centers such as NCBI or JCVI.

Genome Surveys

One of the original major goals of the

NIH-funded project “A Foundation for the Oral

Microbiome and Metagenome,” DE016937, was

to partially sequence up to 100 representative

human oral microbial species. A total of 12

low-coverage partial genomic sequences were

sequenced and deposited in NCBI before this

project fused with the Human Microbiome Pro-

ject. The genome information for these 12 surveys

is still maintained on HOMD even though they

currently also have complete or high-coverage

genomes (The Forsyth Metagenomic Support

Consortium and Izard 2010). Since the launch

of the Human Microbiome Project, the HOMD

team has been providing genomic DNA from

Human Oral Microbiome Database (HOMD), Fig. 6 Screenshot of the Sequence Meta Information page
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human oral microbes to the four HMP sequencing

centers for high coverage rather than survey

sequencing (The Forsyth Metagenomic Support

Consortium and Izard 2010).

Dynamic Annotation of Genomic Sequences

One of the major features of the HOMDGenomic

Database is the automatic and frequent updating

of genomic annotation pipeline for genomes of

oral isolates. Although the amount of sequence

data is still growing rapidly, the computational

power needed for bioinformatic analysis of this

data is catching up and the cost and energy con-

sumption per CPU decreasing due to the avail-

ability of multi-core CPU formats. The lower cost

of computational power has made it feasible for

us to set up a small computation farm dedicating

to the annotation of human oral microbial

genomes. HOMD recruited a cluster of multi-

core multi-node computer servers to frequently

update the annotation. Current HOMD genome

annotation algorithms include (i) BLASTP

(http://www.ncbi.nih.gov/BLAST; Altschul

et al. 1997) search against weekly updated

NCBI nonredundant protein data (ftp://ftp.ncbi.

nih.gov/blast/db/), (ii) BLASTP search against

Swiss-Prot protein data (http://us.expasy.org/

sprot/; Boeckmann et al. 2003), and (iii)

InterProScan search against various sequence

databases (Zdobnov and Apweiler 2001; http://

www.ebi.ac.uk/interpro/). To provide data on

functional potential of genomes, BLASTP search

results against Swiss-Prot are further processed

for the construction of KEGG metabolic path-

ways and Gene Ontology Trees. We take advan-

tage of the fact that the well-annotated Swiss-Prot

protein sequence descriptions contain interlinks

to the ENZYME (Bairoch 2000) and Gene Ontol-

ogy (Camon et al. 2003). The dynamic genome

annotation is running full time daily on the ded-

icated computer cluster except during the week-

end, when the latest NCBI nonredundant protein

database, Swiss-Prot, and InterPro databases are

being downloaded to and updated on our server.

Currently a total of 324 genomes representing

306 taxa are being repeatedly annotated by this

pipeline. On average, each genome takes ~ 3 h to

be annotated; thus, the current re-annotation

frequency is approximately a month for all the

300+ genomes. Additional genomes are being

added to the annotation pipeline as more

sequences are made available by other public

sequencing projects such as the Human

Microbiome Project (http://www.hmpdacc.org).

A live update status of the genome annotation is

provided on the HOMD home page indicating the

latest genome annotated or updated. HOMD aims

to maintain frequent and dynamic computer

annotation for genomic sequence of at least one

isolate from each oral taxon whenever sequences

are made publicly available, as well as static

annotation of all annotated releases.

Genome Explorer

Genome Explorer is the centralized web interface

that interconnects all the genomics resources in

HOMD (Fig. 7). The front end of Genome

Explorer is a user-friendly interface that allows

investigators to navigate among all the genomics

information provided at HOMD. HOMD Geno-

mics Tools can be accessed either by selecting the

tool or the genome first. If the user chooses

the desired tool first, the user is then directed to

the Genome Explorer interface for selecting

genomes. Once a target genome is chosen, the

interface dynamically presents all the tools,

including linked external databases, available

for the selected genome. Currently available

tools include Genome Viewer, Dynamic Annota-

tion, BLAST, Annotator, EMBOSS, KEGG path-

ways (Kanehisa 2002), Gene Ontology Tree

(Ashburner et al. 2000), Genomewide ORF

Alignment, and Sequence Download. The back

end of Genome Explorer is a searchable annota-

tion database that integrates all the results gener-

ated from the data-mining pipeline described

below. The search result is presented in

a paginated and sortable table that also provides

web links to (i) a summary page for individual

ORF, (ii) Genome Viewer to show the exact

location of the target ORF in the genome, and

(iii) the original BLAST or InterProScan results.

The summary page provides all the information

and tools available for a specific ORF, including

all the data-mining results mentioned above, as

well as convenient links to other web tools for
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performing fresh search and analysis. In short,

Genome Explorer is a one-stop interface for all

the genomic information available for each target

genome or gene.

Genome Viewer

Genome Viewer is a unique graphical genomic

sequence viewer developed originally for the

BROP project (Chen et al. 2005) (Fig. 8).

The Genome Viewer was designed to alleviate

the inconvenience encountered when comparing

two different sets of annotations for the same

genome. Genome Viewer provides a graphical,

six-frame translational view of the same region

of the genome with individual panels showing

different sets of annotations. It has easy navigat-

ing features including zooming, centering, and

searching by gene ID. For example, the genome

Porphyromonas gingivalis W83 has been anno-

tated by JCVI (TIGR), Los Alamos National

Laboratory, and NCBI separately. These

different annotations can be viewed and com-

pared side by side in the Genome Viewer (http://

www.homd.org/index.php?name¼GenomeExp&

org¼pgin&gprog¼gview).

HOMD Genomic BLAST

With the increasing number of genomes being

sequenced, the output of a high-throughput

BLAST search can be very complex and time-

consuming to interpret, with many redundant

results. We recently developed a graphic tool

based on newly improved BLAST+ (Camacho

et al. 2009) that allows the user to customize

BLAST searches by dynamically selecting

a group of any combination of the genomic

sequences available in HOMD. The HOMD

Genomic BLAST provides a visual taxonomy-

based navigation interface (Fig. 9) for easy and

dynamic selection of a set of genomes for

sequence homology search. The selection can be

a combination of individual genomes and/or

Human Oral Microbiome Database (HOMD), Fig. 7 HOMD Genome Explorer displaying results of Dynamic

Annotation for the genome Aggregatibacter actinomycetemcomitans HK1651
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a group of genomes related at any taxonomic

level (species, genus, etc.). The BLAST parame-

ters are dynamically presented after the genome

selection, and the results are available on the web

and for download in multiple formats.

The HOMD Genomic BLAST query interface

starts with the selection of the genomes to be

searched against. All the HOMD genomes avail-

able for search are displayed and selectable in

a collapsible tree based on the taxonomy

hierarchy. As shown in Fig. 9, upon starting the

HOMD Genomic BLAST, the taxonomy hierar-

chical tree is fully expanded by default and can be

dynamically collapsed at any given level. The

links, at the species level or genomes level, lead

to the detailed Taxon Description or Sequence

Meta Information page, respectively. Numbers

indicated in the square brackets at each level are

the numbers of oral taxa, genomes with meta

information, genomes with HOMD annotation,

Human Oral Microbiome Database (HOMD), Fig. 8 HOMD Genome Viewer displaying multiple sources of

annotations for Aggregatibacter actinomycetemcomitans HK1651
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and genomes with NCBI annotation, respec-

tively. The genome selection is flexible and can

be a single genome, any randomly selected indi-

vidual genomes, a group of genomes at any tax-

onomy level (from Domain to Species), all the

genomes dynamically annotated at HOMD, all

the genomes with static annotations by NCBI,

or a representative genome from all the species.

The total number of genomes selected is shown

on top of the page.

After the genomes are selected, users are

directed to the next page for providing the

query sequence and options for BLAST search

(Fig. 10). A summary of the selected genome(s) is

presented on top of this page with an option

for going back and modifying the selection.

Below the summary is the query sequence form.

The query sequence, in FASTA format, can be

copied and pasted into the sequence field or

uploaded directly from user’s computer. Multiple

sequences are allowed with the limit of ten

sequences. BLAST parameters are dynamically

changed based on the type of query and subject

sequences. The query sequences can be either

nucleotide or protein sequences. The subject can

be whole genomic DNA sequences or nucleotide

or amino acid sequences of the annotated proteins

of the selected genomes. Once the sequence type

(nucleotide or protein) is selected by user for both

query and subject sequences, suitable BLAST

programs are dynamically displayed for selec-

tion. For example, if both query and subject

sequences are proteins, only BLASTP is avail-

able for search; likewise, if both queries and

Human Oral Microbiome Database (HOMD), Fig. 9 Screenshot of the HOMDGenomic BLAST tool – the genome

selection page showing 107 Bacteroides genomic sequences selected for BLAST Search
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Human Oral Microbiome Database (HOMD), Fig. 10 The HOMD Genomic BLAST tool – query sequence input

and BLAST parameter adjustment page
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subjects are nucleotides, the search can be done

with BLASTN, BLASTX, or TBLASTX. Fur-

thermore, alternative algorithms are available

for nucleotide to nucleotide searches, including

MegaBLAST (Morgulis et al. 2008) and

Discontiguous MegaBLAST (Morgulis

et al. 2008). Similarly, for protein to protein

searches, available algorithms are BLASTP,

PSI-BLAST (Altschul et al. 1997), PHI-BLAST

(Zhang et al. 1998), and DELTA-BLAST

(Boratyn et al. 2012). For each BLAST program,

only the parameters and options corresponding to

the selected program type and algorithm appear

on this page. Detailed information about BLAST

parameters is available under the link “Help.” For

the advanced users, the command-line style

BLAST+ parameters can be added in Advanced

Option section (Camacho et al. 2009).

Upon submission of the BLAST search, the

requested job is sent to the back-end service for

processing. The back-end service consists of

a computer cluster to handle multiple requests

from the query interface. The selected genomes/

nucleotides/proteins are dynamically compiled to

a virtual sequence database searchable by the

BLAST programs, using the “blastdb_aliastool”

tool provided by BLAST+ (Camacho et al. 2009).

The searched jobs are distributed to the computer

nodes of the cluster, which is managed by the

TORQUE resource manager (http://www.

adaptivecomputing.com/products/open-source/

torque). During the search process, user is

presented with an intermediate page to monitor

the job status. This status page reports

a summary of the job as well as time/duration

elapsed since submission. The status page peri-

odically refreshes itself, effectively polling the

server while the job runs. BLAST result is auto-

matically presented when the job completes.

BLAST results are presented dynamically in

the output interface (Fig. 11). Users can check the

details of BLAST job information and choose

to download the results in different formats,

such as HTML, archive, text, tabular, CSV, and

XML. Additional jobs can also be submitted for

the same queries and subjects with modified

parameters. The search strategy including the

query, subject, and BLAST parameters can be

saved or downloaded for future reference. The

actual BLAST results are presented in a manner

similar to the typical HTML format. They include

a Graphical Overview section (Fig. 3) to display

the alignment of the “high-scoring pairs” (HSPs)

between the query and the subject sequences.

HSPs are plotted against the query sequence and

highlighted by different colors based on align-

ment scores. Every HSP on the plot is

hyperlinked with the corresponding pairwise

alignment in the Alignment section. Subject

sequences that matched the query are listed in

the Descriptions section, sorted by the expected

(e) values. The Alignment section presents the

alignments of the HSPs as a series of pairwise

alignments. Each alignment contains a hyperlink

to the corresponding HOMD- or NCBI-annotated

gene, if such information is available.

To provide the research community with sat-

isfactory experience with and the convenient fea-

tures of the HOMD Genomic BLAST, we

currently allow up to ten query sequences to be

searched in a single job request. Since the time

needed for the computation is linear-proportional

to the numbers of both query and subject

sequences, we expect the maximal waiting time

to be no longer than 10 min, provided no previous

job is waiting in the job queue. In fact, when

a total of ten protein sequences with the size of

500 amino acids in length were submitted to an

empty queue to search against all the protein

sequences of all HOMD genomes, the job was

completed in about 400 s, without any prior jobs

waiting in the cluster queue. Special requests may

be considered for jobs containing more query

sequences than the current limit, on the collabo-

ration basis.

The number of the genomes hosted by HOMD

database has been growing from approximately

600 genomes at launch (June 2011) to nearly

1,200 genomes towards the beginning of 2013.

We expect the number continue to grow, in con-

cordance with the growth or the NCBI microbial

genomes, as well as the progress of the Human
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Microbiome Project. To keep pace with this fore-

seeable growth and the computing power neces-

sary for Genomic BLAST and other tools, we will

continue the efforts to enhance the capabilities of

HOMD’s computer backbone.

Conclusions

The goal of creating the HOMDwebsite and tools

has been to create a community resource for those

interested in obtaining information on human oral

Human Oral Microbiome Database (HOMD), Fig. 11 The HOMD Genomic BLAST tool result summary page

showing different download option for the BLAST search results
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bacteria and their genomes.We have attempted to

create a useful provisional taxonomic scheme so

that investigators can refer to phylogenetically

defined taxa rather than unanchored clones

or OTUs. We provide full-length reference

sequences and BLAST tools tied to our taxo-

nomic scheme. Finally, we provide access to all

genomes completed for human oral bacteria.
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Definition

The high sequence diversity of microbial func-

tional genes can hinder cultivation-independent

molecular analyses. Likewise, cultivation-based

approaches also provide a distorted picture of in
situmicrobial communities. When cultivation and

cultivation-independent molecular approaches are

acquired in tandem, deeper insights into commu-

nity structure of organisms catalyzing specific

metabolic functions can be obtained. Coupled

cultivation, amplicon, genome, and metagenome

sequence data, targeting denitrifying bacteria

from a highly contaminated subsurface environ-

ment, were analyzed to reveal novel denitrifier

diversity and the extent of bias associated with

commonly used PCR primer sets targeting denitri-

fication genes. Furthermore, genome sequencing

revealed that some denitrifiers are incapable of

denitrification from nitrate and demonstrated

the need for integrated molecular and cultivation

approaches to characterization of microbial

communities.

Introduction

The advent of next-generation sequencing plat-

forms and the subsequent increased availability

of genomic and metagenomic sequence data have

revolutionized environmental microbiology.

However, though our eyes have been opened to

the vast genotypic and metabolic potential of

microbial communities in nature, exploration of

the role of specific microbial groups in ecosystem

function still requires the application of

cultivation-based approaches. In fact, the verifi-

cation of microbial phenotypes through cultiva-

tion is arguably more critical than ever as

metagenomic information now allows for the

generation of boundless hypotheses based on the

metabolic potential represented by complex

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



microbial communities. Although the advances

in cultivation-independent molecular analyses

of microbial communities have been well adver-

tised (e.g., high-throughput amplicon sequencing

(e.g., Caporaso et al. 2011), metagenomics

(e.g., Tringe et al. 2005), and metatran-

scriptomics (e.g., Poretsky et al. 2009)), parallel

advances in cultivation have also been made,

including the use of lower organic carbon

media, extended incubation, single-cell encapsu-

lation approaches, and overall improved mimick-

ing of natural conditions within a culture vessel

(e.g., Bollmann et al. 2007; Kaeberlein et al.

2002; Zengler et al. 2002). Here, data from

metagenomic sequencing and isolation, physio-

logical testing, and whole-genome sequencing of

denitrifying bacteria from the highly contami-

nated subsurface of the Oak Ridge Integrated

Field Research Challenge (ORIFRC) site are con-

sidered and the implications of this analysis on

understanding the environmental distribution and

ecological niche of denitrifying bacteria.

The ORIFRC Site

The ORIFRC site is highly contaminated with

spent uranium and a wide variety of other con-

taminants (e.g., other radionuclides, heavy

metals, and volatile organic contaminants) as

a result of long-term uranium enrichment for

nuclear weapons, coupled with improper disposal

in unlined ponds (S-3 ponds) (Brooks 2001;

Kostka and Green 2011; NABIR 2003; Watson

et al. 2004). Although the ponds have been sub-

sequently drained, much of the contaminant has

migrated into the subsurface, where it serves to

feed a plume migrating down-gradient across the

site (Watson et al. 2005). Uranium is the priority

contaminant of concern, though the nitrate in the

near-source zone (adjacent to the former S-3

ponds) reaches extraordinarily high concentra-

tions (in the range of 10–1,000 mM) due to the

use of nitric acid in the processing of uranium.

The high level of nitrate complicates remediation

strategies at the site by inhibiting microbial

reduction of soluble hexavalent uranium to an

insoluble mineral form of tetravalent uranium

(e.g., Finneran et al. 2002; Kostka and Green

2011; Shelobolina et al. 2003). The moderately

high acidity in the source zone (pH 3–4) also

suppresses microbial activity and diversity

(Fields et al. 2005; Hemme et al. 2010). Despite

the restrictive conditions, there is evidence for

significant nitrous oxide production in the near-

source zone (Spalding and Watson 2008). As the

low pH is ameliorated down-gradient of the

source zone, nitrate, nitrous oxide, and soluble

uranium are attenuated without active remedia-

tion, due to both microbial and geochemical

processes (Kowalsky et al. 2011).

The contaminant levels in the near-source

zone are alarming, and source zone remediation

strategies have been examined, with limited suc-

cess (Wu et al. 2007). The extraordinary levels of

nitrate must be removed before microbial reduc-

tion of U(VI) to U(IV) can proceed (Akob

et al. 2008; Luo et al. 2005; Wu et al. 2006,

2010), and down-gradient remediation has been

more effective as nitrate is essentially absent

(e.g., Gihring et al. 2011). The presence of nitrous

oxide in the source zone wells suggested the

presence of in situ denitrification, and thus grew

an interest in microorganisms capable of nitrate

reduction at in situ pH, with the hope that stimu-

lation of these native organisms could aid in the

long-term removal of uranium from the site

groundwater. Initial studies revealed significant

diversity in nitrite reductase genes in groundwa-

ter at the site, including both genes encoding for

copper-containing (nirK) and cytochrome (nirS)

forms (Palumbo et al. 2004; Yan et al. 2003).

Based on metagenomic analysis of acidic

groundwater from the site, Hemme et al. (2010)

hypothesized that denitrification comprised the

predominant form of metabolism in the near-

source zone microbial community due to the

low oxygen and lack of fermentation genes

observed there. The overabundance of nitrate/

nitrite antiporters in the metagenome was

interpreted as a further indication of the strong

effect of the elevated nitrate on the source zone

microbial community.

Prior to the metagenome sequencing of the

acidic groundwater at the ORIFRC site,

cultivation-independent molecular surveys had

been performed to track denitrifying organisms.

As the denitrification phenotype is a polyphyletic
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trait, and can be acquired readily via lateral gene

transfer, ribosomal RNA gene sequencing is not

suitable for identifying and tracking denitrifying

organisms. Functional genes assays – targeting

nitrate, nitrite, nitric oxide, and nitrous oxide

reductases – have been performed for this pur-

pose. Yan et al. (2003) and Palumbo et al. (2004)

performed site-wide surveys of nitrite reductase

genes at the ORIFRC site. No clear pattern relat-

ing the composition and relative abundance of

nitrite reductase genes with groundwater geo-

chemical conditions was observed, however.

For example, a principal component analysis of

clusters of nirK (gene encoding for copper-

containing nitrite reductase) sequences grouped

all wells across the pH gradient together, with the

exception of one high nitrate groundwater sam-

ple. In all wells, the most abundant nirK
sequences were most similar to the nirK gene

sequence derived from Hyphomicrobium

zavarzinii, and all sequences were most similar

to gene sequences derived from Proteobacteria.

Thus, although a substantial diversity of nitrite

reductase genes was observed, with many novel

gene sequences recovered, more recent data from

genome and metagenome sequencing indicates

that the predominant denitrifiers were not

detected in single-gene surveys (Green

et al. 2010, 2012; Hemme et al. 2010).

Combined Cultivation and Direct Molecular

Studies of Denitrifying Bacteria

The study of denitrifying microorganisms at the

ORIFRC field site was approached in

a multipronged fashion, including (a) site-wide

microbial community characterization using

DNA extraction from sediment and groundwater,

coupled with high-throughput bacterial ribo-

somal RNA (rRNA) gene amplicon sequencing,

(b) quantitative PCR (qPCR) analyses of bacte-

rial small subunit (SSU) rRNA and nitrite reduc-

tase (nirK) gene abundance in groundwater and

sediment samples, (c) cultivation and physiolog-

ical testing of denitrifying bacteria from sediment

and groundwater, and (d) de novo whole-genome

sequencing of denitrifying isolates. Subse-

quently, genomic DNA (gDNA) samples from

the site were reanalyzed with novel primers

targeting unique nirK genes, and whole-genome

sequences were also recovered from

non-denitrifying reference strains related to

organisms isolated from the field site.

Bacteria from six distinct genera of

denitrifiers were isolated, including strains

of Hyphomicrobium (Alphaproteobacteria),

Afipia (Alphaproteobacterium), Pseudomonas

(Gammaproteobacteria), Rhodanobacter
(Gammaproteobacteria), Bacillus (Firmicutes),

and Intrasporangium (Actinobacteria) (Green

et al. 2010). Under laboratory conditions, all

strains were capable of growth with nitrate as

the sole electron acceptor, though the Gram-

positive strains produced only nitrous oxide as

a terminal product, while Rhodanobacter spp.

produced a mixture of nitrous oxide and nitrogen

gas. Physiological and genetic characterization of

the isolates from the genus Rhodanobacter was

prioritized, as these organisms had been detected

in great abundance in acidic groundwater as well

as sediments from the near-source zone (Green

et al. 2010, 2012). Bacteria from this genus were

revealed to have extraordinarily high relative

abundance in the near-source zone, over multiple

sampling seasons, and were sometimes the only

active organisms detected in RNA-based ana-

lyses of groundwater samples (Green

et al. 2012). Highly similar strains were indepen-

dently isolated from ORIFRC site sediment using

a diffusion chamber approach (Bollmann

et al. 2010), and in a metagenomic survey of

acidic groundwater from the site, one of the dom-

inant organisms detected (so-called FW106 gI) is
clearly a member of the genus Rhodanobacter

(Hemme et al. 2010). This organism contained

a full denitrification pathway.

Despite the apparent numerical abundance of

members of the genus Rhodanobacter in the

acidic source zone, these organisms were not

detected in prior molecular surveys of denitrifi-

cation pathway genes at the ORIFRC site

(Palumbo et al. 2004; Yan et al. 2003). Nor

could PCR amplification of nirS (cytochrome cd

1-containing nitrite reductase), nirK, or nosZ
(nitrous oxide reductase) genes be achieved

using standard primer sets (Green et al. 2010).

Similar challenges were presented by the other
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isolated strains, excepting Afipia. For the

Hyphomicrobium strain, a novel primer set

targeting nirK was designed based on

a reference gene available in GenBank, but no

similar reference sequences were available for

the other strains. Subsequently, metagenome

sequence data from acidic groundwater acquired

at the site (Hemme et al. 2010) was surveyed, and

two novel nirK sequences were identified. Using

these de novo assembled sequences, primer sets

were developed that allowed the amplification of

a nirK gene from the Rhodanobacter isolates and
from putative Rhodanobacter organisms from

environmental genomic DNA (Green et al.

2010, 2012). Quantitative PCR analysis was uti-

lized to quantitate SSU rRNA and nirK gene

abundance in groundwater from across the water-

shed, and this analysis revealed that nirK genes

were present in abundance across the ORIFRC

site, including nirK genes derived from

Rhodanobacter (Green et al. 2012). Coupled

with relative abundance measurements derived

from qPCR of rRNA genes and from rRNA

gene amplicon sequencing, this analysis revealed

that Rhodanobacter were the most abundant

organisms in the near-source zone, that nirK

genes most similar to those from Rhodanobacter
strains were most abundant in the near-source

zone, and that Rhodanobacter organisms were

active, not just present in the near-source zone.

Coupled with in vitro analysis of the physiologi-

cal capabilities of Rhodanobacter strains in pure

culture, these data led to the hypothesis that bac-

teria from the genus Rhodanobacter are the dom-

inant near-source zone denitrifiers at the ORIFRC

site. This hypothesis is supported by studies

conducted in other ecosystems which demon-

strate that Rhodanobacter spp. dominate under

low pH, denitrifying conditions (e.g., van den

Heuvel et al. 2010).

Direct PCR amplification of nitrite reductase

genes from Rhodanobacter and other denitrifiers

isolated from the site was not successful using

standard primers, and subsequently, de novo

shotgun genome sequencing and draft assembly

of these bacterial denitrifiers was performed. The

initial draft sequences of Rhodanobacter and

Intrasporangium recovered complete nirK genes

and helped determine the cause of PCR amplifi-

cation failure. First, the putative nitrite reductase

genes from these organisms were highly diver-

gent from many sequences present in gene data-

bases, and the sequences contained a large

number of mismatches with the most commonly

used primer sets for targeting bacterial nirK genes

(e.g., 10 and 11 mismatches, respectively,

between primer R3Cu and first and second nirK
gene of R. denitrificans 2APBS1 (Green

et al. 2010; Hallin and Lindgren 1999)). In addi-

tion, most Rhodanobacter spp. have two highly

divergent nirK genes located in different posi-

tions in the genome (Green et al. 2010; Kostka

et al. 2012). Two strains of Rhodanobacter inde-
pendently isolated (Bollmann et al. 2010) simi-

larly contain two nirK genes apiece, and both are

nearly (>99% similar) or completely identical to

nirK genes from R. denitrificans 2APBS1T. Both

forms of nirK are expressed under denitrifying

conditions in R. denitrificans 2APBS1T, but the
purpose of two copies of the gene is not yet clear

(Green et al. 2012). One copy of the gene, collo-

quially called “nirK-B,” is most similar to nirK
genes from certain Proteobacteria, including

Betaproteobacteria from the genera Burkholderia

and Ralstonia. The second copy, called

“nirK-V,” is most similar to the nirK gene from

Opitutus terrae PB90-1, within the phylum

Verrucomicrobia.

To examine this phenomenon on a broader

phylogenetic scale, Green et al. (2010) recovered

complete nirK and nosZ genes from a number of

microorganisms which had been sequenced by

the Joint Genome Institute. These genes were

aligned and primer binding sites were identified.

This analysis revealed that the difficulty in ampli-

fying nirK genes from ORIFRC site isolates is

symptomatic of a broader difficulty in detecting

denitrifying bacteria through single primer set

amplification due to large numbers of mis-

matches between primer and gene sequences.

The commonly used primer sets (including quan-

titative PCR primer sets) target a relatively nar-

row range of organisms, primarily within the

Proteobacteria (Green et al. 2010). Thus, molec-

ular approaches that depend upon single primers,

even heavily degenerate primers, cannot be used
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suitably to detect or quantify denitrifiers in envi-

ronmental samples, and the true diversity and

abundance of denitrifiers is most likely greatly

underestimated from current surveys. Alternate

approaches, which utilize the full availability of

reference sequence data derived from de novo
genome sequencing and from shotgun

metagenome sequencing of environmental sam-

ples, must be developed to more fully assess the

distribution of these important organisms.

Although the nitrite reductase gene is

a particularly dramatic example, it is not unique

in this regard, and other functional genes of sig-

nificance to biogeochemical processes have

shown similar levels of sequence diversity. The

sequence diversity of nirK may be in part due to

the multiple physiological roles for nitrite reduc-

tion (detoxification, respiration), different condi-

tions under which the enzymes may be active

(e.g., prior to anoxic conditions, after total

anoxia), and multiple locations for nitrite reduc-

tases (periplasm, inner membrane) and for the

different forms of the gene (copper nitrite reduc-

tase, nirK, and cytrochrome-cd1 nirS). This broad
sequence divergence but with retained function is

present in other functional genes, including other

genes in the denitrification pathway (e.g., nosZ;
Green et al. 2010; Jones et al. 2013; Sanford

et al. 2012).

Although many Rhodanobacter spp. isolated

from the ORIFRC site subsurface were capable of

complete denitrification, some members of the

genus were incapable of growth on nitrate. Sim-

ilarly, in a survey of the literature regarding

Rhodanobacter, most strains were identified as

aerobic bacteria, incapable of nitrate reduction.

Strains isolated independently from the ORIFRC

site were observed to be acid tolerant (arrest of

growth was observed at pH 3.5–4), tolerant of

high levels of nitrate (up to 250 mM), and mod-

erately tolerant of various heavy metals, includ-

ing uranium (Bollmann et al. 2010). The initial

description of R. thiooxydans, the closest relative

of R. denitrificans, indicated that the organism

was capable of nitrate, but not nitrite, reduction

(Lee et al. 2007). Subsequent work, however,

demonstrated that these organisms are capable

of complete denitrification from nitrate

(Prakash et al. 2012; van den Heuvel et al.

2010). More recently, a novel species, R. caeni,

was described as capable of nitrate reduction to

nitrite, but no evidence for complete denitrifica-

tion was demonstrated (Woo et al. 2012).

Likewise, R. sp. strain A2-61, shown to form

intracellular uranium-phosphate complexes, was

unable to reduce nitrate (Sousa et al. 2013).

To understand the genetic basis of the differ-

ences in physiology with respect to denitrifica-

tion, the genomes of five additional strains of

bacteria from the genus Rhodanobacter were

sequenced (Kostka et al. 2012). In total, three

strains of denitrifying Rhodanobacter were

sequenced (R. denitrificans 2APBS1T,

R. denitrificans 116-2, R. thiooxydans) alongside

three strains of apparent non-denitrifying (from

nitrate) Rhodanobacter (R. fulvus Jip2

(Im et al. 2004), R. spathiphylli B39 (De Clercq

et al. 2006), and R. sp. 115, isolated from the

ORIFRC site (Kostka et al. 2012)). Preliminary

analysis of the genomes of the six Rhodanobacter

strains revealed that all members of the genus

contained nearly complete denitrification path-

ways, including two copies of the nitrite reduc-

tase gene nirK (excepting R. spathiphylli, with

only a single copy). All denitrifying isolates

contained many genes in the dissimilatory deni-

trification pathway, but non-denitrifying isolates

were missing several key genes involved in

nitrate respiration, such as nitrate reductase

genes (i.e., narG, narH, narJ, and narI). The

genomic context of these genes was further

examined, and it was observed that the nitrous

oxide genes (e.g., nosZ) showed the greatest

synteny among all six genomes (Fig. 1). Since

relatively few organisms conduct nitrous oxide

reduction alone, it may be supposed that the high

level of synteny in this gene and the lower

synteny in other parts of the denitrification path-

way favor the hypothesis that the ancestral com-

mon ancestor of the bacteria within the genus

Rhodanobacter likewise contained a full denitri-

fication pathway, with subsequent rearrangement

of the genes in the pathway. Further clarity will

be obtained with additional whole-genome

sequences of related organisms from the

Xanthomonadaceae.
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Conclusions Regarding Rhodanobacter

Bacteria from the genus Rhodanobacter appear to

fill a relatively specific ecological niche, but

under appropriate conditions, these organisms

can dominate to an extreme extent. Conditions

which appear to enable bacteria from the genus

Rhodanobacter to dominate include low pH, high

nitrate, low/variable oxygen concentrations, and

heavy metal contamination. Although data in the

literature are not particularly abundant for

Rhodanobacter, what is present suggests that

heavy metal tolerance is a common feature of

these organisms. Bollmann et al. (2010) isolated

two strains of Rhodanobacter that are tolerant of

200 micromolar uranium (as well as other heavy

metals), and most recently Sousa et al. (2013)

described R. sp. strain A2-61, tolerant of up to

500 micromolar uranium, under aerobic condi-

tions. R. denitrificans strains are capable of toler-
ating 1 mM uranium (data not shown).

Insights into Environmental Microbial Denitrifica-
tion from Integrated Metagenomic, Cultivation,
and Genomic Analyses, Fig. 1 Gene order in the
genomic region of the nitrous oxide reductase gene
(nosZ) in denitrifying and apparent non-denitrifying
strains of bacteria from the genus Rhodanobacter.
Strong gene synteny is observed between denitrifying

(highlighted in green) and apparent non-denitrifying line-
ages (highlighted in pink). Gene order in Marinobacter
aquaeolei VT8 (Gammaproteobacteria, Alteromo-

nadaceae), capable of anaerobic growth on nitrate, was

included as an out-group organism with a complete

genome sequence. Gene symbols: apbE, ApbE family

lipoprotein; cheY-like, two-component system sensor his-

tidine kinase-response regulator hybrid protein; dapE,
succinyldiaminopimelate desuccinylase; DUF, protein of

unknown function DUF2165; hip, high potential

iron-sulfur protein; hisK, sensor histidine kinase; HYP,
hypothetical protein; nosD, periplasmic copper-binding

protein; nosF, ABC transporter related protein; nosL,
NosL protein; nosR, nitrous oxide expression regulator,

NosR; nosY, ABC-type transport system involved in

multi-copper enzyme maturation, permease component;

nosZ, nitrous oxide reductase; PGA, peptidase S45 peni-

cillin amidase; tatA, twin-arginine translocation protein,

TatA/E; tatB, twin-arginine-targeting protein translocase

TatB; tatC, twin-arginine-targeting protein translocase

subunit TatC; trxB, thioredoxin reductase oxidoreductase;
badM/Rrf2, BadM/Rrf2 family transcriptional regulator;

nifB, molybdenum cofactor biosynthesis protein A; ppiC,
PpiC-type peptidyl-prolyl cis-trans isomerase
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Interestingly, R. sp. strain A2-61 was capable of

forming intracellular uranium-phosphate com-

plexes, presumably a detoxification strategy. In

a survey of the genome of R. denitrificans

2APBS1T, multiple genes involved in metal

resistance have been detected, and these genes

are strongly associated with horizontal gene

transfer as indicated by low lineage probability

scores (LPI), anomalous nucleotide composi-

tions, and association with putative mobile

genetic elements such as transposons and

integrons (data not shown).

The presence of a near-complete denitrifica-

tion pathway in “non-denitrifying” strains of bac-

teria from the genus Rhodanobacter suggests that
denitrification capability is an inherent trait of all

members of the genus but that denitrification by

these organisms often requires nitrite rather than

nitrate. Since nitrite is often available where there

is nitrate, and a number of organisms are capable

of nitrate-to-nitrite reduction, but cannot reduce

nitrite further, the lack of a nitrate reductase may

not be overly limiting for facultative anaerobes

such as members of the Rhodanobacter. For

example, in a study of denitrification capabilities

in bacteria from the genus Bacillus, most-

probable-number assays of a soil sample revealed

nearly an order of magnitude greater abundance

of organisms capable of nitrate-to-nitrite reduc-

tion relative to complete denitrifiers (Verbaendert

et al. 2011). A further confounding observation is

the presence of two putative nirK genes in almost

all Rhodanobacter, including the non-nitrate

reducers. It may be that the multiple nitrite reduc-

tases are involved in tolerance of high nitrate/

nitrite conditions, stressful conditions that are

further exacerbated by low pH (Spain and

Krumholz 2012). The nitrite reductases may

also represent two different strategies relating to

denitrification by Rhodanobacter under fluctuat-

ing aerobic/anaerobic conditions, such as those

found in the ORIFRC site subsurface. As

described by Bergaust et al. (2011), bacteria can

employ complex strategies to maximize energy

generation, but provide insurance in case of sud-

den changes in environmental condition. Thus,

while in the presence of oxygen, denitrifying

bacteria (which are nearly always facultative

anaerobes) will favor the use of oxygen as termi-

nal electron acceptor, and repress nitrogen

oxyanion reduction to avoid loss of

ATP-generation capability through a truncated

respiratory pathway, and “entrapment” under

anoxic conditions without capability to continue

respiration (Bergaust et al. 2011). It has been

hypothesized that an earlier onset of denitrifica-

tion (in terms of oxygen concentration) is an

indication of the likelihood for nitrous oxide pro-

duction by the strain (Bergaust et al. 2011; Zumft

and Kroneck 2007). This is consistent with the

initial characterization of R. denitrificans, in

which both nitrous oxide and dinitrogen accumu-

lated during pure culture growth conditions

in vitro, while other isolates from the site com-

pleted denitrification to dinitrogen (Afipia,

Hyphomicrobium) or nitrous oxide only (Gram

positives; Bacillus and Intrasporangium) (Green

et al. 2010). Further work is needed to determine

the regulatory strategy taken by Rhodanobacter
in the subsurface under aerobic/microaerophilic/

anaerobic conditions.

Are Rhodanobacter extremophiles? Based on

the current data, it is not clear that they are.

Although members of the genus can grow at pH

values below pH 4, the optimum growth pH for

R. denitrificans 2APBS1 is pH 6 (Bollmann

et al. 2010; Prakash et al. 2012). However, even

at circumneutral pH with excess organic carbon,

growth by R. denitrificans is slow (generation

time ~24 h). This may represent another strategy

by Rhodanobacter strains leading to dominance

in contaminated/extreme environments, but low

relative abundance in more ameliorated condi-

tions. It appears most likely that Rhodanobacter
retain a variety of physiological capabilities –

anaerobic growth, metal tolerance and detoxifi-

cation, denitrification phenotype, and broad car-

bon substrate utilization capability (including

acetate) – that under specific environmental con-

ditions provides them with the opportunity for

dominance.

Conclusions Regarding Denitrification

The ORIFRC, with nitrate-replete groundwaters,

represents an ideal natural laboratory for investi-

gation of the microbial populations that mediate
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denitrification. Through a close coupling of

cultivation-based and molecular approaches,

characterization of denitrifying bacteria from

the ORIFRC site has significant implications not

just for broader characterization of denitrifying

organisms but also for the application of

PCR-based approaches to characterize microbial

functional groups. With specific reference to

denitrification, it was observed that the most

commonly used primers targeting functional

genes within the dissimilatory denitrification

pathway were highly biased to a select group of

genes largely derived from bacteria within the

Proteobacteria and the genes from organisms out-

side this group could not conceivably be targeted

with PCR due to the excessively large number of

mismatches between primer and gene sequence.

Thus, results generated from single-gene primer

(even degenerate) sets must be interpreted care-

fully. A similar finding has been obtained for

nitrous oxide genes as well (Sanford

et al. 2012). Since de novo genome and shotgun

metagenome sequences generate gene sequences

that are clearly identifiable as nitrite (or nitrous

oxide) reductases but also impossible to target

with common primers, new strategies must be

developed to detect a broader collection of deni-

trifiers in the environment. As the organisms

capable of denitrification are broadly distributed

and are polyphyletic, functional gene analyses

will continue to be essential to identify and quan-

titate denitrifying microorganisms and to charac-

terize denitrifying microbial communities.

One of the essential extrapolations of these

findings is that the true abundance of denitrifica-

tion capability in bacterial lineages is

underestimated due to two processes revealed in

this study. First, the high sequence divergence

present in functional genes in the denitrification

pathway limits the detection of denitrification

genes from isolates through PCR and sequencing.

Second, the partial pathway observed in

Rhodanobacter strains suggests that when

searching for denitrification capabilities, other

electron acceptors besides nitrate should be

tested. In a sense, cultivation approaches and

physiological testing of Rhodanobacter strains

have been partially misleading regarding the

potential ecological niche for these organisms,

and only when coupled with whole-genome

sequencing has the putative in situ functional

capability of these organisms been revealed. In

an analysis of Bacillus isolate and culture-

collection strains, Verbaendert et al. (2011)

revealed that nitrate was not always a suitable

electron acceptor for verification of denitrifica-

tion capability and that 20 % of denitrifying

strains could use nitrite but not nitrate-to-initiate

denitrification. They opine that the true abun-

dance of denitrifiers is underestimated because

typically only nitrate is used as an electron accep-

tor when testing for denitrification capability, and

this is consistent with observations of isolates of

the genus Rhodanobacter. Remarkably, they also

observed that growth conditions can also affect

electron acceptor utilization, and this can further

lead to missing identification of physiological

capability. No doubt analogous situations for

other genes, organisms, and functions are with

us, waiting to be identified. Thus, it seems clear

that for more robust physiological characteriza-

tion of bacterial strains, genome-guided physio-

logical testing must be implemented. Such an

approach will have profound implications for

the assessment of the ecological role of

bacteria taxa.

Prior to the acquisition of multiple genomes

from the genus Rhodanobacter, the denitrifica-

tion phenotype in Rhodanobacter strains was

hypothesized to result from a relatively recent

lateral gene transfer rather than from vertical

transmission, as appears to be the case (Green

et al. 2010). Hemme et al. (2010) also opined

that the inferred lateral gene transfer events

most likely occurred after the introduction of

contamination at the site. With multiple genomes

in hand, phylogenetic analysis of the nitrite

reductase genes from the whole-genome

sequences of multiple Rhodanobacter strains

revealed a phylogeny consistent with that of the

rRNA genes from the same organisms. If there

were lateral gene transfer events, these predated

the last common ancestor of the genus

Rhodanobacter, with the most parsimonious
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interpretation being that nitrate reduction capa-

bility was later lost from certain members of the

genus. The evolutionary history of the full deni-

trification pathway, however, appears to be

fragmented – for example, the nirK genes do

appear to be derived from a lateral gene transfer,

but this transfer is not recent and certainly is

independent of the ORIFRC site. The

Rhodanobacter nosZ genes are more consistent

with other Gammaproteobacterial denitrifiers. It

is possible, though entirely speculative, that

Rhodanobacter previously had type (or class)

I soluble periplasmic nitrite reductases, like

those present in Pseudomonas denitrificans, and

these have been subsequently replaced by type II

cytoplasmic membrane nitrite reductases. The

ecologic benefit derived from this is not clear

yet, but may relate to activity under aerobic and

anaerobic conditions, as has been observed for

nitrate reductases (Bedzyk et al. 1999).

Summary

A combination of approaches to the study of

denitrifying bacteria in a contaminated subsur-

face environment, including cultivation and

physiological testing of denitrifying bacteria, de

novo whole-genome sequencing, and shotgun

metagenome sequencing, revealed key limita-

tions to the application of more straightforward

molecular approaches. Commonly used PCR

primers targeting functional genes in the denitri-

fication pathway are shown to be incapable of

detecting a broad diversity of environmental

denitrifiers. Likewise, some denitrifiers are inca-

pable of nitrate reduction from nitrate and may be

misidentified in routine physiological testing of

bacterial isolates. Bacteria from the genus

Rhodanobacter, which can be abundant in highly

contaminated environments with low pH, appear

to be native denitrifiers, while metal resistance

genes appear to have been acquired via lateral

gene transfer. Overall, Rhodanobacter dominate

in certain environments with low pH, heavy

metal contamination, and conditions favoring

denitrification phenotype.
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Synonyms

Database; Environmental data; Environmental

genomics; GIS; Integration; Marine;

Metagenomics

Definition

Megx.net, the integrated database resource for

marine ecological genomics, is the first database

to integrate bacterial and archaeal genes,

genomes, and metagenomes from the marine

environment with curated contextual metadata,

as well as environmental data from heteroge-

neous resources.

Introduction

Over the last years, microbial ecology and envi-

ronmental microbiology have undergone

a paradigm shift, moving from a single experi-

ment science to a high-throughput endeavor.

Although the genomic revolution is rooted in

medicine and biotechnology, it is currently the

environmental sector, specifically the marine,

which delivers the greatest quantity of data

(Gilbert and Dupont 2011). Marine ecosystems,

covering >70 % of the Earth’s surface, host the

majority of biomass and significantly contribute

to global organic matter and energy cycling.

Microorganisms are known to be the “gate-

keepers” of these processes, and insights into

their lifestyle and fitness can enhance our ability

to monitor, model, and predict future changes.

Recent developments in sequencing technol-

ogy have made routine sequencing of whole
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microbial communities from natural environ-

ments possible. Prominent examples in the

marine field are the Global Ocean Sampling

(GOS) campaign (Rusch et al. 2007), ICOMM,

TaraOceans, Malaspina, and the Ocean Sampling

Day 2014 of the Micro B3 project.

These large-scale sequencing projects bring

new challenges to data management and software

tools for assembly, gene prediction, and annota-

tion, which are fundamental steps in genomic

analysis. Several dedicated database resources

have emerged to tackle the current need for

large-scale metagenomic data management and

analysis, among which are CAMERA (Sun

et al. 2010), IMG/M (Markowitz et al. 2008),

and MG-RAST (Meyer et al. 2008). Neverthe-

less, it is increasingly apparent that the full poten-

tial of comparative genome and metagenome

analysis can be achieved only if the geographic

and environmental context of the sequence data is

considered. The metadata describing a sample’s

geographic location and environment, the details

of its processing, from the time of sampling to

sequencing and subsequent analyses are impor-

tant for modeling species’ responses to environ-

mental change or the spread and niche adaptation

of bacteria and viruses. Megx.net’s unique inte-

gration of contextual and sequence data allows

microbial ecologists and marine scientists to bet-

ter compare biological data to understand the

complex interplay between organisms, genes,

and their environment.

Database Structure and Content

The Microbial Ecological Genomics Database

(MegDB), the backbone of megx.net, is

a centralized database based on the PostgreSQL

database management system. The georeferenced

data concerning geographic coordinates and time

are managed with the PostGIS extension to

PostgreSQL.

Sequences in MegDB are retrieved from the

International Nucleotide Sequence Database Col-

laboration (INSDC). Currently, MegDB contains

1,832 prokaryote genomes (940 incomplete or

draft) and 80 marine shotgun metagenomes

from the GOS microbial dataset. Finally, megx.

net also incorporates all sequenced marine phage

genomes in MegDB, which is the first step

towards integrating viral genomic and biogeo-

chemical data (Duhaime et al. 2011).

In an effort towards integrating microbial

diversity with specific sampling sites, megx.net

includes georeferenced small and large subunit

rRNA gene sequences from the SILVA rRNA

gene databases project (Quast et al. 2013). As of

SILVA release 102, only 9 % (16S/18S) and 2 %

(23S/28S) of over one million sequences in

SILVA SSUParc (16S/18S) and LSUParc

(23S/28S) databases are georeferenced.

All genomic sequences in megx.net are

supplemented with contextual data from GOLD

(Pagani et al. 2012), NCBI Genome Projects, and

Moore Foundation’s Marine Microbial Genome

Sequencing Project.

The main environmental data is retrieved from

three sources:

1. World Ocean Atlas: a set of objectively ana-

lyzed (one decimal degree spatial resolution)

climatological fields of in situ measurements

2. World Ocean Database: a collection of scien-

tific, quality-controlled ocean profiles

3. SeaWIFS chlorophyll a data

These data are described at 33 standard depths

for annual, seasonal, and monthly intervals.

Together, the location and time data (x, y, z, and t)

serve as a universal anchor and link environmental

data to the sequence and contextual data.

Standards Compliance and
Interoperability

Standards are an important means of enhancing

data exchange and interoperability between dif-

ferent database resources. MegDB is designed to

store all contextual data recommended by the

Genomics Standards Consortium and is thus

compliant with the Minimum Information about

any (x) Sequence (MIxS) standard (Yilmaz

et al. 2012). However, most sequence data is

missing contextual metadata. Therefore, numer-

ous bacterial and archaeal genomes were manu-

ally curated to assign geographic coordinates to
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reveal their environmental origin. Even with

careful curation, a geographic origin could not

be assigned to the majority of genomes. In order

to give at least an indication of the environmental

origin of sequence data, they were manually

curated with terms of the Habitat-Lite subset

of the Environmental Ontology (Hirschman

et al. 2008).

Functionalities

Genes Mapserver

The Genes Mapserver gives a sample-centric

view of the georeferenced MegDB content. The

map is interactive, offering user-friendly naviga-

tion and an overlay of the MegDB environmental

data layers to display sampling sites on a world

map in their environmental context. Sample site

details and interpolated data can be retrieved by

clicking the sampling points on the map.

The GIS Tools of the Genes Mapserver allow

extraction of interpolated values for several phys-

icochemical and biological parameters, such as

temperature, dissolved oxygen, nitrate and chlo-

rophyll concentrations, over specified monthly,

seasonally, or annually intervals.

Geographic-BLAST

The Geographic-BLAST tool queries theMegDB

genome, metagenome, marine phages, and rRNA

gene sequence data using the BLAST algorithm

(Altschul et al. 1990). The Geographic-BLAST

tool permits the alignment of query sequences

against five databases instead of the standard

BLAST query database:

• Prokaryotic genomes

• Global Ocean Sampling Metagenomes, which

are publicly available metagenomes from the

Global Ocean Sampling expedition

• 16S/18S rRNA

• 23S/28S rRNA

• Marine phage genomes

The results are reported according to the sam-

ple locations (if available) of the database hits

and plotted on the Genes Mapserver world map,

where they are labeled by the number of hits per

site. Standard BLAST results are shown in

a table, which also provides direct access to the

associated contextual data of the hits (Fig. 1).

GIS Tools

The GIS tools allow post-factum retrieval of

interpolated environmental parameters, such as

temperature, nitrate, or phosphate for any loca-

tion in the ocean waters based on profile and

remote sensing data.

Two GIS tools are currently available:

• World Ocean Atlas Extractor, comprised of

analyzed climatological fields of physico-

chemical parameters and biological layers

obtained at monthly, seasonal, and annual

samplings

• World Ocean Database Extractor, comprised

of time series measurements of physicochem-

ical parameters and biological layers

Both GIS tools make use of Inverse Distance

Weighted (IDW) interpolation to estimate the

environmental data at a given geographic loca-

tion, time, and depth in the ocean.

MetaBar

MetaBar aims to support investigators to effi-

ciently capture, store, and submit contextual

metadata gathered in the field. It is a spreadsheet-

based sample data collection tool designed to

support the complete workflow from the sam-

pling event up to the metadata-enriched sequence

submission to an INSDC database (Hankeln

et al. 2010).

CDinFusion

Megx.net hosts a public installation of

CDinFusion, a Web-based tool to combine

MIxS compliant contextual and sequence data

in (Multi)FASTA formatted files prior to submis-

sion (Hankeln 2011). It creates submission ready

files for the NCBI submission system. However,

CDinFusion is not (yet) appropriate for preparing

data for the Sequence Read Archive (SRA)

submission system.

Web Services

Megx.net offers programmatic access via Web

services for experienced users and software

developers. All geographical maps can be
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retrieved via simpleWeb requests, as specified by

the Web Map Service (WMS) standard. The base

URL for WMS requests is http://www.megx.net/

wms/gms, where one can also find a tutorial on

how to use this service. Megx.net also provides

access to MIxS reports in Genomic Contextual

Data Markup Language (GCDML) XML files

for all marine phage genomes through similar

HTTP queries, e.g., http://www.megx.net/gcdml/

Prochlorococcus_phage_P-SSP7.xml (Kottmann

et al. 2008).

Current and Future Developments

Currently, megx.net is further developed within

the FP7 EU project Micro B3 as an open source

project to become an integral part of the Micro B3

Information System. This information system

builds on a handful of long-established data

resources that span marine science. These data

resources include SeaDataNet and its network

of National Oceanographic Data Centers

(oceanographic data), EurOBIS (macrobiological

data), and EBI’s European Nucleotide Archive

(EBI-ENA; molecular sequence data). While

these resources exist to broaden and simplify

access to data in their domains, integration of

their data across domains requires megx.net to

develop a set of new tools and Web services to

facilitate seamless interoperability between the

different data domains.

Summary

Megx.net’s unique integration of environmental

and sequence data allows microbial ecologists

and marine scientists to better contextualize and

compare biological data, using, e.g., the Genes

Mapserver and GIS tools. The integrated datasets

facilitate a holistic approach to understanding the

complex interplay between organisms, genes, and

their environment. As such, megx.net is continu-

ously improved to serve as a fundamental resource

in the emerging field of ecosystems biology.

Cross-References

▶A 123 of Metagenomics

▶Computational Approaches for Metagenomic

Datasets

▶ SILVA Databases

Integrated Database Resource for Marine Ecological
Genomics, Fig. 1 Geographic distribution of BLAST

results of a proteorhodopsin from Dokdonia sp. PRO95.

Blue crosses and label indicating the number of significant

BLAST hits in the GOS metagenome samples. The map is

generated using the web service of the Genes Mapserver

I 306 Integrated Database Resource for Marine Ecological Genomics

http://www.megx.net/wms/gms
http://www.megx.net/wms/gms
http://www.megx.net/gcdml/Prochlorococcus_phage_P-SSP7.xml
http://www.megx.net/gcdml/Prochlorococcus_phage_P-SSP7.xml
http://dx.doi.org/10.1007/978-1-4899-7478-5_728
http://dx.doi.org/10.1007/978-1-4899-7478-5_739
http://dx.doi.org/10.1007/978-1-4899-7478-5_739
http://dx.doi.org/10.1007/978-1-4899-7478-5_250


References

Altschul SF, Gish W, Miller W, Myers EW, Lipman

DJ. Basic local alignment search tool. J Mol Biol.

1990;215:403–10.

Duhaime MB, Kottmann R, Field D, Glöckner
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Synonym

Novel proteins engaged for LGT within the gene

cassette/integron system

Definition

An important vehicle for lateral (or horizontal)

gene transfer in bacteria is the integron: it enables

the capture and expression of genes as small

mobile elements, or gene cassettes. These mobile

gene cassettes encompass a vast pool of genetic

novelty, ostensibly for purposes of adaptation.

In most cases, their functional annotation is

obscured by their characteristically high

sequence novelty. Our isolation and solving of

protein structures encoded by the cassette

metagenome reveals a relatively high proportion

of completely novel folds. These newly defined

crystal structures are found to encompass diverse

topologies and fold families and delineate new

protein domains.

Integrons as Repositories of Genetic Novelty 307 I

I



Introduction

Bacteria dominate the planet; they are omnipres-

ent, inhabiting a wide range of environments,

including those appearing too extreme or inhos-

pitable for life (Rothschild and Mancinelli 2001).

Lateral gene transfer (LGT) is known to contrib-

ute to the enormous genetic diversity of this

microbial world. Rendering the bacterial genome

in a constant state of flux, LGT can be said to

produce a gene pool that is collectively owned,

leading to the concept of a mobile prokaryotic

metagenome (Koonin and Wolf 2008).

One important mediator of LGT involves the

integron system (Boucher et al. 2007; Cambray

et al. 2010; Hall 2012), which allows bacteria to

capture and express genes occurring in the envi-

ronment as small mobile elements, named gene

cassettes. Although originally identified as the

vehicle for the spread of antibiotic resistance, it

is now clear that the integron/gene cassette sys-

tem is not just limited to the clinical context, but

plays a wider role in shaping niche advantage

(Labbate et al. 2012). While most integrons con-

tain a small number of gene cassettes (generally

up to ~10), in some instances multiple insertion

events assemble large cassette arrays, particu-

larly notable within chromosomes of Vibrio spe-

cies (Boucher et al. 2006; Joss et al. 2009).

It is immediately obvious that the cassette

metagenome comprises a repertoire of distinctly

novel genes, with sequence homologs (if any)

sparsely represented or not annotated in current

databases. This is true for both isolated gene

cassettes and gene cassette arrays derived from

cultivated bacterial strains (Rowe-Magnus

et al. 2003; Boucher et al. 2006), as well as for

wider metagenomic surveys (Elsaied et al. 2007;

Koenig et al. 2008).

With the cassette metagenome extending

beyond the coverage of conventional sequenc-

ing, protein structure provides a first functional

inference for many gene cassettes through deter-

mination of three-dimensional fold homology

relationships (Sureshan et al. 2013). This

approach has resulted in the structural definition

of many new proteins, although a large subset

includes entirely novel folds. It is now

established that the gene cassette metagenome

encodes fully folded and functional proteins

and includes new enzymes and protein-binding

factors (Robinson et al. 2005; Robinson et al.

2008). This newly expanding group of protein

folds and structures reveals the extraordinary

genetic novelty encoded by the cassette

metagenome.

This entry focuses on cassette-encoded pro-

teins directly recovered by the technique of cas-

sette PCR (outlined in Fig. 1) (Stokes et al. 2001;

Boucher et al. 2007). The method has been

exploited for uncultured bacteria present within

environmental samples, as well as for strain iso-

lates of Vibrio cholerae and the related

V. metecus (formerly V. paracholerae).

Novel (Currently Unique) Gene Cassette
Structures

Examination of protein structures encoded by the

cassette metagenome reveals a relatively high

proportion to display a completely novel fold

(Sureshan et al. 2013). These newly defined

three-dimensional structures encompass diverse

topologies and fold families and impact beyond

specific gene cassettes to delineate new protein

domains and their sequence homologs. Although

it is not possible to yet identify specific substrates

or biochemical properties for these first members

of new families, their molecular features and

organizations (see Fig. 2) contribute currency to

the ongoing discussion assessing the degree to

which function and/or protein network capacity

favors mobilization of genes (Cohen et al. 2011;

Labbate et al. 2012).

All-a Fold Members

The crystal structure determined for a gene cas-

sette isolated from a sewage outfall (Hfx_cass2,

PDB 3FXH) depicts a dimeric protein incorpo-

rating a compact fold of six helical segments.

The homodimer is stabilized by a hydrophobic

interface engaging two helices from each chain

(Fig. 2a). Exposed on the external face of

each subunit is a triangular-shaped hydrophobic

crevice flanked by two acidic residues and
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a flexible loop. Pronounced acidic surface fea-

tures extend perpendicular to each cavity due to

Glu and Asp side chains of an outer helix. This

unique binding groove, presented twice on

opposing faces of the dimer and possibly gated

by residues of the flexible loop, appears highly

appropriate for hydrophobic and/or basic sub-

strates or protein partners.

Integrons as Repositories of Genetic Novelty,
Fig. 1 Recovery of gene cassettes from integron arrays.

The structure of an integron, showing core features includ-

ing the intI gene (beige) with its Pint promoter, the attI

attachment site and the Pc promoter. Three integrated

gene cassettes (blue, red, and yellow) are shown. By

using primers (green arrows) targeting the 59-be ele-

ments, cassette PCR has the capacity to recover gene

cassettes and arrays independently of any specific encoded

sequence. This allows recovery of entirely novel gene

cassettes (Adapted from Boucher et al. 2007 and Stokes

et al. 2001)

Integrons as Repositories of Genetic Novelty,
Fig. 2 Ribbon depiction of novel cassette-encoded pro-

tein structures: (a) Hfx_cass2, (b) Vpc_cass2, (c)
Hfx_cass5, (d) Vch_cass3, (e) Vch_cass14, (f)

Hfx_cass1. Each subunit within the oligomeric organiza-

tion is indicated in a different color. Putative binding sites,

for interaction with either small molecule ligands or,

potentially, other protein partners, are highlighted in cyan
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A distinct all-helical protein had also been

identified in a gene cassette recovered from

a V. metecus strain, Vpc_cass2 (PDB 3JRT).

The fold incorporates a four-helix bundle with

helical extensions wrapping about at midpoint

(Fig. 2b); orthogonal packing of two chain pairs

creates a globular-shaped dimer. Sequence

homologs (Shewanella baltica and Moritella

genomes, at ~50 % identity) highlight preserva-

tion of exposed residues (Lys63, Glu66,

His1090, Val110’) clustered across the dimeric

interface, indicating a possible substrate-

binding site. This fold is weakly related to the

substrate-binding domain of the kanamycin

nucleotidyltransferase (KNTase-C) clan of pro-

teins, yet the shape of the dimeric interface in

Vpc_cass2 is distinct to that found in its closest

KNTase-C relatives (e.g., HI0074 from

Haemophilus influenzae). Lehmann and

workers have documented substrate-binding/

nucleotide-binding module pairs prevalent in

bacterial genomes, particularly from harsh con-

ditions and pathogens (Lehmann et al. 2003).

Thus, the mobile gene cassette Vpc_cass2 may

comprise one half of a bipartite system with the

capacity to organize with a nucleotidyl-

transferase domain into a functional enzyme.

a + b Fold Members

A gene cassette also isolated from a sewage out-

fall (Halifax, Canada), Hfx_cass5, occurs as

two domain-swapped a + b dimers organized

into a tetramer (PDB 3IF4; Fig. 2c). Across the

center of the tetramer, 310 helices of two oppos-

ing subunits stack via polar and charged groups.

The flattened nature of the tetramer and the

asymmetrical interactions of its component

dimers result in two large faces with markedly

different surface features. A small group of

sequence homologs (55–71 % identity) include

gene cassettes from contaminated environments:

a geographically distinct sewage outfall in Can-

ada and an Australian industrial site (Stokes

et al. 2001). Residues mediating the tetrameric

organization are preserved across all members of

this emerging sequence family, indicating this to

be the functional form. Also conserved is the

inter-module linker segment, which presents

basic groups that line the pronounced surface

clefts on both faces of the tetramer.

Derived from a strain of V. cholera, the struc-
ture of Vch_cass3 (PDB 3FY6) reveals an

unusual two-layered a + b organization. Within

the dimer, central helices stack end-to-end, so

separating and exposing two distinct sheet com-

ponents (Fig. 2d). A long pronounced surface

cleft is enclosed between the outer edge strands

of these two sheets, flanked by acidic side chains.

To date, two sequence homologs (~40% identity)

have been detected: within Desulfatibacillus
alkenivorans from polluted water and

a metagenomic sample of Antarctic bloom-

forming cyanobacterium. These sequence rela-

tives do not, however, retain the distinctive

Asp/Glu residues surrounding the proposed bind-

ing cleft within the Vch_cass3 structure.

Another V. cholera-derived gene cassette,

Vch_cass14, also incorporates an a + b dimer,

in this case within a two-layer sandwich fold

(PDB 3IMO, Fig. 2e). Sequence relatives of this

gene cassette have been found in the genomes of

several soil- and water-dwelling bacteria.

A particularly long and deep ligand cavity is

internalized within this protein, appropriate for

a linear hydrophobic substrate (e.g., fatty acid or

alcohol). The features of this binding cavity are

retained across all sequence relatives; 20 of the

Vch_cass14 internal residues are conserved in its

two closest homologs. A high degree of conser-

vation is also seen among residues responsible for

mediating dimerization of the module, pointing

to a dimeric functional protein. A notable feature

of the dimer, possibly of functional importance, is

the projection of positively charged surface clus-

ters from the two exposed b-sheets.

a/b Fold Members

An unusual trimeric protein is encoded by

Hfx_cass1, a gene cassette extracted from a salt

marsh environment (Koenig et al. 2008).

Although there are no sequence homologs in cur-

rent databases, the unique three-layered a/b fold

bears some topological relationship to the zinc

transporter CzrB of Thermus thermophilus. This

new cassette-encoded protein presents three

clefts at each inter-subunit interface across the
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flattened trimer surface (Fig. 2f). The clefts are

polar in nature, occupied in the crystal structure

by water, and surrounded by pronounced acidic

loops. Although the chemical organization of the

binding site is unique to Hfx_cass1, some com-

ponents are common to active site chemistry of

enzymes known to engage with adenosine-

and/or nicotinamide-based cofactors.

New Variants of Known Folds Encoded
by Gene Cassettes

Cationic Drug-Binding Module

The structure (PDB 3GK6) of gene cassette

Cass2 derived from environmental V. cholera

has identified an independent binding module

related to domains of the AraC/XylS transcrip-

tion activator system (Deshpande et al. 2011).

Sequence analysis identifies the cassette-encoded

protein to be representative of a group of inde-

pendent binding modules undergoing lateral gene

transfer within Vibrio and related species. Closest

structural relatives of theCass2 b-barrel (Fig. 3a)
occur as domains of multidrug-binding proteins

(including BmrR), incorporating a hydrophobic

binding pocket with a signature glutamate side

chain. Cass2 has been demonstrated to bind

a range of cationic drug compounds. The struc-

ture of this module depicts a surface proximal to

the drug-binding cavity with features homolo-

gous to those engaged for protein interaction

within multidomain transcriptional regulators.

Thus, it can be proposed that the Cass2 family

has the capacity to form functional transcription

regulator complexes and possibly represents evo-

lutionary precursors to multidomain regulators of

cationic compounds.

a + b Barrel Transporter

A gene cassette derived from industrially polluted

soil has yielded a new member of the highly

adaptable a + b barrel family of transport proteins

and enzymes (Fig. 3b). The dimeric structure of

Bal32a (PDB 1TUH (Robinson et al. 2005)) fea-

tures cone-shaped binding pockets within each

barrel, common to this superfamily for engaging

small hydrophobic substrates or peptides. The

Bal32a structure is, however, unique in that each

of its central cavities is unusually deep and iso-

lated from solvent by a flexible loop. A potential

catalytic site of clustered polar groups within the

barrel is equivalently positioned to corresponding

active sites within structurally related enzymes.

Although these enzymes likely share a common

evolutionary ancestry, with preservation of active

site features internal to the barrel, their very low

overall sequence relationship to Bal32a (<20 %

identity) suggests a wide adaptation of the a + b
barrel fold for varied demands. Within its origi-

nating cassette array, theBal32a gene cassette was

immediately adjacent to a second cassette,

Bal32b, encoding a likely membrane-associated

protein. This suggests the two components may

well possibly function in concert as a combined

binding and transport system.

Integrons as Repositories of Genetic Novelty,
Fig. 3 Ribbon depiction of cassette-encoded new vari-

ants of known folds: (a) Cass2, (b) Bal32a, (c) iMazG.

Each subunit within the oligomeric organization is

indicated in a different color. Putative binding sites, for

interaction with either small molecule ligands or, poten-

tially, other protein partners, are highlighted in cyan
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MazG Enzyme Subfamily

As part of an ongoing investigation of an intact

integron array of 116 gene cassettes located in

Vibrio rotiferianusDAT722 (Boucher and Stokes
2006; Chowdhury et al. 2011), a new type of

MazG nucleoside triphosphate pyrophospho-

hydrolase (NTP-PPase) has been described

(Robinson et al. 2007). This cassette-encoded

protein, iMazG, has close sequence relatives

(some within gene cassettes) only within Vibrio
sp. and other aquatic g-proteobacteria. The struc-
ture of the iMazG tetramer (PDB 2Q5Z) (Fig. 3c)

shows the typical a-helical hairpin fold of the

general enzyme family in “closed” and “open”

states, as well as its essential Mg2+-coordination

site. However, this new class of MazG enzymes

contains significant variation, with unique loop

and b-turn features connecting the four helices of

the scaffold, creating a distinct substrate site adja-

cent to the divalent metal. Functional assays dem-

onstrated that this single-domain type of MazG

cleaves phosphates of dNTP substrates, with

a preference for dCTP and dATP. Thus, iMazG

has the capacity to act as a house-cleaning enzyme

capable of removing noncanonical dNTPs.

Gene Cassettes Encode Novel Protein
Folds with Distinct Binding Features

Regardless of the degree of novelty displayed, all

gene cassette-derived structures appear to be con-

sistent with adaptive functions (e.g., secondary

metabolism, DNA modification) and possibly

selective advantage (e.g., drug resistance).

A tendency to form homo-oligomers has been

a consistent observation across this structural

survey of cassette proteins, with only one excep-

tion to date (the cationic drug-binding protein

Cass2 from Vibrio (Deshpande et al. 2011)).

This clear preference for oligomerization may

be a consequence of the relatively short sequence

lengths of genes cassettes within arrays, stabiliz-

ing small protein modules which can perhaps also

be readily and flexibly mixed for different func-

tions. Such modules may readily combine with

appropriate catalytic, binding, or membrane

domains as adaptive pressure selects more spe-

cific biochemical or regulatory networks

(Bornberg-Bauer and Alba 2013). Certainly, the

surface features described for each of the cassette

protein structures have potential to act as hetero-

geneous protein interfaces within multidomain or

multi-protein systems.

Summary

Our structural studies continue to enforce the

notion that the highly novel gene cassette

metagenome is not merely a repository of

sequence divergent variants of known proteins,

but in fact mobilizes a repertoire of genes belong-

ing to poorly characterized protein families.

Thus, to fully scope and understand the global

proteome, it remains essential to continue to inde-

pendently target structural investigation of the

metagenomic element.
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Abbreviations

EBI European Bioinformatics Institute

GO Gene Ontology

IMG/M Integrated Microbial Genome/

Metagenomics

pHMM Profile hidden Markov model

PSSM Position-specific scoring matrix

SQL Structured Query Language

XML Extensible Markup Language

Definition

IPRStats is a lightweight platform-independent

open-source licensed software package for stor-

ing and visualizing metagenomic data annotated

by InterProScan. IPRStats is unique in that it

provides the user with the same annotation

choices offered by the popular open reading

frame annotation pipeline, InterProScan.

IPRStats can be installed either as a Web server

or as a stand-alone software.
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Introduction

The functional annotation of open reading frames

(ORFs) in metagenomic data is a highly challeng-

ing problem. The problem is difficult enough

with regular genomic data. When functionally

annotating metagenomic data, one is confronted

with the additional problems arising from

sequence fragmentation, imperfect assemblies,

unmitigated sequencing errors, partially identi-

fied ORFs, and higher rates of error in ORF

calling. One way to overcome these problems is

to do away with ORF calling altogether. Instead,

assembled metagenomic sequences are translated

in six open reading frames. Those that produce

proteins above a certain minimal length threshold

(say, 100aa) are subjected to functional analysis.

The rationale behind such a strategy is that there

is a very low probability that a sequence which is

(1) long enough and (2) found in a database of

protein signatures is not a true ORF or a partial

ORF. Each such sequence is then treated as

a member in a population, with biological func-

tion attributes assigned to it. The storage, visual-

ization, and analysis of metagenomic data can be

handled using common database, statistical and

visualization tools used in population analyses.

Here such a package, IPRStats, which is based on

the popular InterProScan tool, is described.

Annotation of Translated Sequences

Homology-based transfer algorithms require,

first and foremost, a comprehensive, accurately

annotated, and up-to-date reference sequence

database, but no single database can boast all

three traits at 100 % (Schnoes et al. 2009). This

is true for pairwise sequence alignment algo-

rithms and simple sequence-motif algorithms as

well as for the more complex profile hidden Mar-

kov models (pHMM) (Eddy 1998) and position-

specific score matrix (PSSM) similarity- based

algorithms. Therefore, several function annota-

tion programs are typically used to functionally

annotate ORFs. The rationale is that by using

more than one algorithm to functionally annotate

a protein, the lack of sensitivity that may result

from using only one program can be overcome.

Additionally, a consensus method can help weed

out false positives, by picking only those annota-

tions on which there is a plurality agreement, or

some other voting mechanism. InterProScan

(Zdobnov 2001) is a function annotation program

that compares query protein sequences against

a repository of collected and annotated protein

signatures. These InterPro (McDowall and

Hunter 2011) member databases employ

a variety of motif, pHMMs, and position-specific

score matrices (PSSMs) to describe protein fam-

ilies. Those include PROSITE, PRINTS, Pfam,

ProDom, SMART, TIGRFAMs, PIR superfam-

ily, SUPERFAMILY, Gene3D, PANTHER, and

HAMAP. These also include the associated soft-

ware used to query these databases: pfscan,

FingerPRINTScan, HMMer3.0, HMMER 2.3,

and BLAST. More information on current mem-

ber databases and search software employed in

InterPro, including updated references, can be

found at ftp://ftp.ebi.ac.uk/pub/software/unix/

iprscan/README.html

Visualization and Management of
Metagenomic Function Annotations
from InterProScan Using IPRStats

InterProScan can be installed on computer clus-

ters and therefore can handle large amounts of

sequence data. However, when analyzing large

amounts of sequence data, as in metagenomic

data, there are two needs which InterProScan

does not provide: first, a visualization of the

results to make them comprehensible and, sec-

ond, a simple data storage and retrieval mecha-

nism for further analysis.

To implement both goals, each translated

sequence is treated as a member in a population,

which is assigned one or more functional attri-

butes by the member programs of InterProScan.

IPRStats (Kelly 2010), or InterProScan STATis-

tics, uses the output of InterProScan as its input

and quickly produces charts and tables enabling

a visualization of the functional potential of the
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sequences analyzed. It also stores the results in

a simple SQL schema (Fig. 1b), which can be

used by other applications for downstream data

analysis and presentation.

Figure 1 describes the information flow in

IPRStats. The output of an InterProScan run is

stored in XML format. The XML file is parsed

into a 7-table SQLite or a MySQL database. The

tables follow the data structure outlined by the

InterProScan XML schema. After reading the

tables, IPRStats displays the information alpha-

numerically and graphically. The tabs in the side-

bar of the main program screen toggle between

the displays of results for each sequence signature

program called by InterProScan. The results dis-

play includes a chart (Fig. 1d) and a table

(Fig. 1e). The chart is either a pie chart or a bar

chart, which shows the count of different

sequence signatures from the relevant program

in the analyzed sequence population. Chart draw-

ing is implemented using either Google Chart

Tools or matplotlib. Google Chart Tools is a

web-based API that dynamically generates charts

using a URL string, so when drawing using Goo-

gle Chart Tools, an active Internet connection is

required. Alternatively, matplotlib may be used:

matplotlib is a Python-based clone of MatLab,

which can be used for chart graphics as well,

and does not require an Internet connection.

Availability

IPRStats is written in Python, with a graphic user

interface (GUI) based on wxWidgets, a cross-

platform toolkit for graphic user interfaces. Rely-

ing on platform-independent fully open-source

infrastructure ensures that we maximize portabil-

ity of IPRStats. Currently IPRStats has been

tested on Windows XP/7, Max OS � 10.6, and

Ubuntu GNU/Linux 9.10 and 10.04. IPRStats is

IPRStats, Overview, Fig. 1 Overview of IPRStats.
(a) Protein sequence information as a single FASTA file

submitted to InterProScan (one or more proteins).

(b) InterProScan XML output imported into IPRStats

SQL database. (c) Display of sequence signature statistics.

�

IPRStats, Overview, Fig. 1 (continued) (d) Graphic dis-

play. (e) Table display. (f) Toggle between results from

different InterPro member databases (Reproduced from

seven under BMC CC 2.0 license, copyright owned by

authors)
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downloadable from GitHub at http://github.com/

idoerg/IPRStats. Packages for Windows, Mac

OSX, and Linux are available at http://github.

com/idoerg/IPRStats/downloads Community

participation and further development of this

tool are strongly encouraged.
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Synonyms

Classification of 16S rRNA gene fragments;

In silico identification of 16S rRNA gene

fragments

Definition

Estimation of microbial diversity in an environ-

ment by efficiently identifying and classifying

16S rRNA gene fragments in metagenomic

datasets using computational methods.

Introduction

Recent advances in high-throughput sequencing

technologies have enabled life-science

researchers to rapidly sequence and characterize

the entire genomic content of microbial commu-

nities residing in diverse ecological niches. A key

advantage of characterizing microbial communi-

ties in this fashion is that it enables the concom-

itant characterization of several microbes

(constituting the community), most of which can-

not be studied using traditional culture-based

genomic approaches. Moreover, this approach

(referred to as “Metagenomics”) is useful in

understanding the interaction patterns between

the resident microbes as well as between the

microbes and the environment.

Characterizing and comparing the taxonomic

as well as functional diversity of microbial com-

munities (obtained from varied ecological

niches) are the broad objective of metagenomic

projects. These objectives are attained using two

well-established approaches (Fig. 1). In the first

approach (commonly referred to as the amplicon-

based approach), a quick snapshot of taxonomic

diversity of a given environmental sample is

obtained by specifically amplifying, cloning,

and sequencing gene or gene fragments

corresponding to one or more phylogenetic

marker genes. The 16S rRNA gene is the most

widely used phylogenetic marker gene employed

in such amplicon-based approaches. Subse-

quently, bioinformatic approaches are used for

taxonomically classifying these sequenced

genes or gene fragments. The relative proportions

of various taxonomic groups present in the

metagenomic dataset (representing a given envi-

ronmental sample) are then obtained from the

identified taxa. In the second approach
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I-rDNA and C16S: Identification and Classification of
Ribosomal RNAGene Fragments, Fig. 1 An overview

of different approaches adopted by metagenomic projects

for profiling the taxonomic and/or functional diversity of

a given environment. Advantages and limitations of each

approach are also summarized. Black regions depicted in

the genomic fragments correspond to entire or a fragment

of 16S rRNA gene
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(commonly referred to as the shotgun-sequencing

approach), the genomic content of a given envi-

ronmental sample is extracted and sequenced.

Genomic fragments (referred to as “reads”)

obtained from the sequencing platforms are then

computationally analyzed in terms of taxonomy

and function. Since the shotgun-sequencing

approach generates millions of reads originating

from random positions/locations within the

genomes of various microbes constituting

a given environmental sample, a subset of these

reads (hereafter referred to as 16S rDNA frag-

ments) are expected to originate from genomic

regions that specifically encompass the 16S

rRNA genes of the resident microbes. Identifying

16S rDNA fragments (from within millions of

reads constituting a typical metagenomic dataset)

and subsequently classifying them is therefore

expected to aid in quickly deciphering the taxo-

nomic diversity of a given metagenomic dataset.

The following sections describe two algorithms,

namely, i-rDNA and C16S, which are used for the

identification and taxonomic classification of 16S

rDNA fragments in metagenomic datasets,

respectively.

i-rDNA: Algorithm for Identification of 16S

rRNA Gene Fragments in Metagenomic

Datasets

One of the simplest ways of identifying 16S

rDNA fragments in a metagenomic dataset is by

performing similarity searches of all reads con-

stituting the dataset against a database containing

known 16S rRNA gene sequences. Such similar-

ity searches are typically performed using popu-

lar algorithms such as BLAST (Altschul

et al. 1990) and BLAT (Kent 2002). Similarity

of a read with sequences in the database is eval-

uated based on how it aligns with these

sequences. Reads having significant similarity

(similarity being defined in terms of alignment

parameters such as e-value, identity, and align-

ment length) with database sequences are identi-

fied as 16S rDNA fragments. Since this approach

enables identification as well as taxonomic clas-

sification of 16S rDNA fragments, it is currently

incorporated as a standard procedure in popular

metagenomic analysis platforms such as

MG-RAST (Meyer et al. 2008) and CAMERA

(Seshadri et al. 2007). Given the robustness of

BLAST/BLAT algorithms, this approach has

high sensitivity in identifying/classifying 16S

rDNA fragments (even for reads with lengths

<100 bp) originating from known and

characterized genomes.

The BLAST-based approach, although iden-

tifies 16S rDNA sequences with high sensitivity,

requires huge compute power for performing

alignments of millions of metagenomic reads

with thousands of reference 16S rRNA gene

sequences. This makes it unsuitable for practical

use in research labs lacking access to high-end

computational infrastructure. Another alignment-

based methodology attempts to address/over-

come this limitation by employing hidden Mar-

kov models (HMMs) that represent the

universally conserved sequence architecture of

the 16S rRNA gene (Huang et al. 2009). These

HMMs, built separately for bacterial and archaeal

kingdoms, reflect the sequence conservation pat-

tern observed within the 16S rRNA genes of

microbes belonging to these two lineages. For

identification of 16S rDNA fragments, reads in

a metagenomic dataset are individually aligned to

these two HMMs. Reads obtaining significant

alignment scores are then tagged as 16S rDNA

fragments. Given that the alignments of individ-

ual reads are done only against two HMMs, rather

than against thousands of individual reference

16S rRNA gene sequences (as in the case of the

BLAST-based approach), the execution time as

well as the requirements of compute power are

significantly reduced. Moreover, this approach is

observed to achieve similar levels of detection

sensitivity as that of BLAST-based approach.

Though the above-described HMM-based

approach represents a rapid way of identifying

16S rDNA fragments (as compared to the

BLAST-based approach), it still involves

performing alignments of each individual read

(in metagenomic datasets) against two HMMs.

Consequently, adopting the HMM-based

approach (on a standard work-station) for identi-

fication of 16S rDNA fragments within huge

metagenomic datasets (e.g. the Human

Microbiome Project containing more than
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32 million sequences) is expected to take several

hours to a few days. The recently published

i-rDNA method (Mohammed et al. 2011) has

addressed this issue by employing a sequence

composition-based step prior to the similarity

search step performed against the bacterial and

archaeal HMMs (Fig. 2). This precursor step is

based on the following premise/observations.

Given that significant portions of 16S rRNA

gene sequences are universally conserved across

all prokaryotic lineages, genomic regions

encompassing 16S rRNA genes are characterized

by distinct sequence compositions (in terms of

oligonucleotide usage patterns) as compared to

the other regions of the genome. The i-rDNA

method utilizes this observation to first identify

a subset of reads which have an oligonucleotide

composition similar to that of 16S rRNA gene

sequences and subsequently provide this small

subset of reads as input to the HMM-based

approach. This step of prefiltering data (based

on compositional characteristics) essentially

reduces the volume of data which are provided

as input to the HMM alignment step. The finer

algorithmic details of the i-rDNA method are

explained in the subsequent paragraphs.

The i-rDNA method first captures the oligo-

nucleotide usage patterns which are specific to

16S rRNA gene sequences. This procedure is

performed as a one-time preprocessing step. For

this purpose, genomic fragments (of lengths

1,000 bp each) from all completely sequenced

prokaryotic genomes are first obtained. Each

fragment is then represented as a 256-dimensional

vector containing the frequencies of all

possible tetranucleotides. Subsequently, vectors

I-rDNA and C16S: Identification and Classification of
Ribosomal RNA Gene Fragments, Fig. 2 Available

approaches for identification of 16S rRNA gene fragments

in metagenomic datasets obtained using shotgun

sequencing. Advantages and limitations of each approach

are also summarized. Black regions depicted in the geno-

mic fragments correspond to entire or a fragment of 16S

rRNA gene
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corresponding to all fragments are clustered

(using k-means clustering algorithm) based on

their tetranucleotide frequency patterns. This

generates a feature vector space with a number

of clusters. Centroids of the clusters are then

calculated based on the fragments contained in

them. Each cluster in the feature vector space is

thus represented by its centroid. Given the unique

sequence composition of the 16S rRNA gene,

genomic fragments encompassing this gene are

localized to a subset of these clusters. In the

preprocessing step of i-rDNA method, clusters

containing significant proportions of 16S rRNA

gene fragments (as compared to other clusters)

are identified and tagged as “probable 16S” clus-

ters (Fig. 3). This information is stored in the

form of a mapping file that contains cluster cen-

troids along with their respective tags (either

probable 16S or non-16S).

The i-rDNA method identifies 16S rDNA

fragments (from amongst all reads constituting

a given metagenomic dataset) in the following

manner. For each read, the distances of its

tetranucleotide frequency vector to all the cluster

centroids in the mapping file (obtained as

described in the previous paragraph) are first

computed. This step helps in identification of

a set of clusters having tetranucleotide composi-

tion most similar to that of the read. If

a significant proportion of the identified clusters

are observed to be pre-tagged (in the mapping

file) as “probable 16S,” the read is classified as

a “probable 16S rDNA” fragment (Fig. 3). Only

those reads classified as “probable 16S rDNA”

fragments are provided as input to the down-

streamHMM search. Adoption of the above strat-

egy in the published study (Mohammed

et al. 2011) indicated a six to ten times reduction

in the number of sequences provided as input to

the HMM search, thereby drastically reducing the

overall time for identifying 16S rDNA fragments

(in metagenomic datasets). Furthermore, this

noticeable reduction in the overall analysis time

was observed to be achieved without any signif-

icant loss in detection sensitivity (Mohammed

et al. 2011).

Table 1 provides an additional comparison of

detection sensitivity and execution time for three

approaches, namely, BLAST based, HMMbased,

and i-rDNA, for four simulated metagenomic

datasets. These datasets were generated by pro-

viding 35 prokaryotic genomes as input to the

MetaSim sequence simulator software (Richter

et al. 2008). Sequences in each of these datasets

simulated the lengths and error rates of four pop-

ular sequencing platforms, viz., Sanger (sequence

length approximately 800 bp), 454-titanium

(~400 bp), 454-standard (~250 bp), and Illumina

(~ 110 bp). These comparative evaluations were

performed on a standard Linux workstation hav-

ing a 2.33 GHz dual core processor and 2GB

RAM memory. Results in this table indicate the

utility of the i-rDNA method in reducing the

overall time taken for identification of 16S

rDNA fragments in metagenomic datasets. The

i-rDNA method is observed to be 50 and 8 times

faster in identifying 16S rDNA fragments as

compared to the BLAST-based and

HMM-based meta-rna program, respectively. As

can be observed, this reduction in time for iden-

tification is not accompanied by a noticeable

decrease in detection sensitivity.

C16S: Algorithm for Taxonomic Classification of

16S rRNA Gene Fragments in Metagenomic

Datasets

Extraction and classification of 16S rRNA gene

fragments is one of the quickest ways to estimate

taxonomic diversity of any microbial commu-

nity. Due to the presence of several characteristic

features, the 16S rRNA gene has been used as an

ideal taxonomic marker. Primarily, this gene is

ubiquitously present within the genomes of all

prokaryotic organisms. Secondly, given its role

in key cellular processes (e.g., protein synthesis),

the probability of this gene being involved in

lateral gene transfer events is also minimal (Jain

et al. 1999; Daubin et al. 2003). This property

enables its use as a phylogenetic marker to study

the evolutionary patterns in diverse prokaryotic

lineages with high confidence. Furthermore, 16S

rRNA genes are characterized by highly con-

served regions (U1-U8) that flank hypervariable

regions (V1-V9) (Jonasson et al. 2002). Univer-

sal/customized primers designed against these

conserved stretches (which are adjacent to the
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I-rDNA and C16S: Identification and Classification of
Ribosomal RNA Gene Fragments, Fig. 3 A concep-

tual overview of the framework used by the i-rDNA

method. (a) A schematic representation of the

preprocessing step of i-rDNA method. A feature vector

space is generated by performing a k-means clustering

(using tetranucleotide frequencies) of genomic fragments

from all completely sequenced microbial genomes. In this

feature vector space, clusters C3, C5, C6, and C7,

containing genomic fragments harboring portions of 16S

rRNA gene in significant proportions, are tagged as “prob-

able 16S” clusters. Red dots: fragments originating from

genomic regions harboring portions of 16S rRNA gene.

Blue dots: fragments not containing any portion of the 16S

rRNA gene. Black dots: centroids corresponding to each

of the clusters in the feature vector space. (b) Identifica-
tion workflow of the i-rDNA method. Tetranucleotide

frequency vectors corresponding to query reads
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hypervariable regions) facilitate specific isola-

tion, PCR-based amplification and subsequent

sequencing of the entire length (or specific por-

tions) of 16S rRNA genes. The hypervariable

regions within the sequenced 16S rRNA gene

fragments are specific to each organism and

thus serve as “taxonomic barcodes.” These

“barcodes” can be used to classify 16S rRNA

gene fragments sampled from a given environ-

ment into different taxonomic groups.

Various strategies are currently employed for

classification of 16S rDNA fragments (Fig. 4).

Overall, these strategies involve comparing the

sequences and/or the compositions of 16S rDNA

fragments with sequences/models corresponding

to known taxonomic groups. Details of these

strategies are described below. The BLAST-

based approach (described in the previous sec-

tion) is also employed for classifying 16S rDNA

fragments. For this purpose, 16S rDNA frag-

ments having significant hits with reference 16S

rRNA gene sequences (from known and charac-

terized microbes) are assigned to the taxa

corresponding to the best hit(s). In this process,

the quality of the BLAST hit (obtained between

the query 16S rDNA fragment and reference 16S

rRNA gene sequence) is judged based on user-

specified thresholds of alignment parameters

such as bit score, e-value, identity percentage,

etc. Apart from the huge compute power require-

ment (for performing the alignment step), the

BLAST-based approach has the following limi-

tation. In a given metagenomic dataset, a large

proportion of query 16S rDNA fragments typi-

cally originate from hitherto unknown taxa. Such

sequences may belong to an entirely new species

or genus or family or order or class or even a new

phylum. Attempting to map such novel query 16S

rDNA fragments to known taxonomic groups is

expected to result in incorrect taxonomic

classification. Although using a stringent set of

BLAST thresholds (for evaluating alignment

quality prior to assignment) is expected to reduce

the misclassification rate (to some extent), a large

number of 16S rDNA fragments may remain

unassigned/unclassified. It may be noted that var-

ious read mapping algorithms, e.g., BWA (Li and

Durbin 2010), Bowtie (Langmead et al. 2009),

etc., have also been used for aligning query 16S

rDNA fragments with sequences in reference

databases. The premise and the overall method-

ology for inferring the taxonomic origin of query

sequences however remain the same as in the

BLAST-based approach.

Inferring the taxonomic origin of query 16S

rDNA sequences can also be performed by map-

ping/aligning them to precomputed multiple

sequence alignments (MSAs). These MSAs are

generated by pre-aligning well-annotated 16S

rRNA gene sequences belonging to organisms

of known taxonomic lineages. A detailed descrip-

tion of the methods adopting such strategies is

provided in another review (Sun et al. 2011).

MSA-based approaches, though observed to pro-

vide robust taxonomic inferences, are critically

dependent on the quality and the taxonomic cov-

erage of the reference sequences which are used

for generating the precomputed alignments. Fur-

thermore, given the algorithmic complexity of

the process of performing/generating multiple

sequence alignment(s), enormous amount of

time and compute power are typically required

for MSA-based analyses.

The widely popular RDP classifier (Wang

et al. 2007) attempts to address the limitations

associated with the above-described BLAST-

based as well as MSA-based approaches. This

method taxonomically classifies a query 16S

rDNA fragment by comparing its compositional

properties (e.g., oligonucleotide usage pattern)

��

I-rDNA and C16S: Identification and Classification of
Ribosomal RNA Gene Fragments, Fig. 3 (continued)

(R1 and R2) are first mapped to the feature vector space

(generated in the preprocessing phase of i-rDNA as

described above in (a). Read R1 maps to an area (within

the feature vector space) that is in close proximity to

cluster centroids C3, C5, C6, and C7 (all of which are

pre-tagged as “probable 16S” clusters). Consequently,

read R1 is identified as a “probable 16S rDNA” fragment.

Read R2 is in close proximity to clusters C8, C9, and C10

(all of which are pre-tagged as “non-16S” clusters). Read

R2 is therefore identified as a “non-16S rDNA” fragment
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with models generated using compositional fea-

tures of sequences of known taxonomic lineages.

For this purpose, it first creates (as a

preprocessing step) Naive Bayesian models that

capture 8-mer oligonucleotide word frequencies

in 16S rDNA sequences belonging to known gen-

era. During the classification step, for a given

query sequence, the RDP classifier first identifies

a model (and the corresponding genus) whose

8-mer word frequencies are “most” similar to

that of the query sequence. The classifier then

employs a bootstrapping procedure to compute

a confidence score of assignment to each taxa

belonging to the taxonomic lineage of the

I-rDNA and C16S: Identification and Classification of Ribosomal RNA Gene Fragments, Table 1 Performance

of i-rDNA, meta-rna (a HMM-based identification method) and BLAST in terms of detection sensitivity and execution

time. The approximate length of reads constituting each of the four simulated test datasets is indicated in brackets

Test dataset Number of reads

Detection sensitivity (%) Execution time (in seconds)

i-rDNA meta_ma BLAST i-rDNA meta_rna BLAST

Illumina (~110 bp) 1,000,000 93.1 94.6 98.1 102 1,110 6,317

454-Standard (~250 bp) 400,000 90.6 96.4 99.2 97 1,026 6,681

454-Titanium (~400 bp) 250,000 91.3 97.1 99.6 92 947 6,128

Sanger (~800 bp) 100,000 87.6 95.2 99.8 105 929 5,783

I-rDNA and C16S: Identification and Classification of Ribosomal RNA Gene Fragments, Fig. 4 Different

approaches available for the taxonomic classification of 16S rRNA gene fragments
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identified genus. The query sequence is then

assigned to a taxon (within this lineage) that is

at the most specific taxonomic level and also

generates a confidence score that exceeds the

user-specified confidence score threshold.

Besides being alignment-free, a major advantage

of the RDP classifier is the bootstrapping proce-

dure employed to compute the confidence scores.

The overall strategy of this procedure ensures the

accurate assignment of novel 16S rDNA

sequences (i.e., originating from hitherto

unknown organisms) to related taxa at appropri-

ately higher taxonomic levels. However, it is

important to note that the overall process of clas-

sification involves scoring and identifying the

“best” taxonomic lineage corresponding to the

query sequence. This scoring however does not

take into account the actual level of composi-

tional similarity between the model

corresponding to the “best” taxonomic lineage

and the query sequence. Consequently, in cases

where 16S rDNA fragments originate from taxo-

nomic lineages that have minor representation in

existing 16S rDNA databases, the classification

accuracy of the RDP classifier has been shown to

decrease (Biers et al. 2009).

In contrast to all the three methods described

above, the recently published C16S algorithm

(Ghosh et al. 2012) employs genus-specific

HMMs for the taxonomic classification of 16S

rDNA fragments. The overall classification strat-

egy is based on the following premise. 16S rDNA

sequences contain alternating conserved and

hypervariable regions. The latter regions are

characterized by clade-specific sequence varia-

tion patterns. As a preprocessing step, the C16S

algorithm captures these clade-specific patterns

at the taxonomic level of genus. For this purpose,

genus-specific HMMs are first generated and sub-

sequently utilized for classifying query 16S

rDNA fragments. During the classification

phase, a query 16S rDNA fragment is first

mapped to these precomputed genus-specific

HMMs and the genus corresponding to the best

scoring HMM is identified. The score obtained in

this process is then utilized for dynamically

identifying an appropriate level of taxonomic

assignment for each query sequence. The strategy

of correlating the HMM score with the taxonomic

level of assignment is based on the empirical

observation that the HMM score decreases with

increasing taxonomic divergence between the

taxa corresponding to the query and the HMM

(Ghosh et al. 2012).

The classification methodology adopted by

C16S has the following advantages. First,

employing representative genus-specific HMMs

significantly reduces the time and compute

power as compared to that typically required by

BLAST-based or MSA-based classification

approaches. Second, the use of precomputed

threshold scores in C16S ensures assignment of

query sequences (originating from unknown

organisms) at appropriately higher taxonomic

levels, thereby reducing its misclassification rate

as compared to that by the RDP classifier. Finally,

given that the identified taxonomic levels are spe-

cific to the extent possible, the overall specificity

of assignments by C16S is not compromised.

The above observations (with respect to clas-

sification efficiency of C16S) are also reflected in

the results of a comparative evaluation between

the C16S algorithm and the RDP classifier (run

with default parameters). This evaluation was

performed using five simulated 16S rDNA

datasets (each comprised of 30,000 sequences).

While one of these datasets consisted of full-

length 16S rRNA gene sequences from taxonom-

ically diverse microbes, the others consisted of

16S rDNA fragments that mimicked the length

and the sequencing error rates associated with

four popular sequencing platforms, viz., Sanger,

454-titanium, 454-standard, and Illumina. Fur-

thermore, for each dataset, evaluation was

performed in four different simulated

metagenomic scenarios, wherein the input 16S

rDNA sequences mimicked those originating

from entirely new genera, families, orders, and

classes, respectively. These simulated scenarios

were generated by progressively removing the

models corresponding to the genus, family,

order, and class of the source organisms
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(corresponding to the query 16S rDNA frag-

ments) from the databases utilized by RDP clas-

sifier as well as the C16S algorithm. Results of

this evaluation (Table 2) indicate improved levels

of classification accuracy of C16S algorithm as

compared to the RDP classifier. Interestingly, the

improvement in performance, with respect to

both classification accuracy and specificity, is

especially pronounced in simulated scenarios,

wherein query sequences originate from hitherto

unknown genomes lacking counterpart models at

the levels of order and class (in the databases of

both algorithms). Furthermore, for full-length

and Sanger datasets, the classification accuracy

and specificity of C16S is observed to be notice-

ably better than the RDP classifier.

Correct assignments are assignments made to

taxa lying in the path between the root and the

source genus of the query sequence.

Correct assignments are further

subcategorized into “specific levels,” “intermedi-

ate levels,” and “higher levels” as described

below

(a) Specific levels: If HMMs corresponding to

genus or family or order or class are absent

from the reference database, assignment of

a query sequence is classified as “correct” at

“specific level,” only if the assignment is

I-rDNA and C16S: Identification and Classification of Ribosomal RNA Gene Fragments, Table 2 Distribution

of taxonomic assignments obtained using C16S and RDP classifier for five simulated metagenomic datasets (each

comprised of 30,000 sequences)

Assignment category

Database scenario

Minus genus Minus family Minus order Minus class

C16S RDP C16S RDP C16S RDP C16S RDP

Illumina dataset (average read length ~ 110 bp)

Correct 86.7 81.2 91.2 86.2 88.7 86.2 85.3 84.9

Higher levels 16.7 10.2 21.2 16.6 39.2 34.7 65.7 63.9

Intermediate levels 56.4 56.7 52.2 48.5 25.6 26.3 0 0

Specific levels 13.6 14.3 17.8 21.1 23.9 25.2 19.6 21

454-Standard dataset (average read length ~ 250 bp)

Correct 95.7 80.5 92.6 88.2 84.5 80.7 84.6 84.3

Higher levels 12.6 4.5 19.8 8.3 37.8 31.5 60.4 60.2

Intermediate levels 56.4 46.7 47.8 45.9 18.4 22.6 0 0

Specific levels 26.7 29.3 25 34 28.3 26.6 24.2 24.1

454-Titanium dataset (average read length ~ 400 bp)

Correct 94.4 79.5 92.6 84.3 87.2 70.3 86.4 79.5

Higher levels 1.2 2.7 20.3 4.1 22.2 7.3 47.2 43.4

Intermediate levels 56.4 42.5 45.9 44.2 18.4 21.3 0 0

Specific levels 36.8 34.3 26.4 36.0 46.6 41.7 39.2 36.1

Sanger dataset (average read length ~ 800 bp)

Correct 82.2 58.1 88.4 73.1 90.1 59.6 88.2 68.6

Higher levels 11.2 2.1 19.9 3.1 37.0 6.0 48.2 32.4

Intermediate levels 34.1 20.2 41.1 32.2 6.4 25.8 0 0

Specific levels 36.9 35.8 27.4 37.8 46.7 27.8 40.0 36.2

Dataset with full-length 16S rRNA gene sequences

Correct 90.1 57.6 88.8 64.9 78.8 48.3 70.7 51.8

Higher levels 3.3 2.1 6.4 3.4 11.2 4.4 19.8 13.8

Intermediate levels 44 16 47.3 26.4 19.6 15.8 0 0

Specific levels 42.8 39.5 35.1 35.1 48.0 28.1 50.9 38.0
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made to a correct taxon at the immediate

higher taxonomic level. For instance, in

a “new family” simulated database scenario

(wherein HMMs corresponding to the source

family of the query 16S rDNA fragment are

absent from the reference database), an

assignment of the query sequence to the

corresponding order is categorized as correct

at specific level.

(b) Intermediate levels: Correct assignments to

taxa lying between the phylum level and the

specific level (as described above) are classi-

fied as “correct” at “intermediate levels.”

(c) Higher level: Assignments to root or cellular

organisms or to superkingdom levels are cat-

egorized as correct assignments at “higher

levels.”

Summary

One of the major objectives of most

metagenomic projects is to profile and subse-

quently compare the spatial and temporal varia-

tions of microbial communities residing in

diverse ecological niches. Analyzing such varia-

tions helps in the identification of microbial

groups that confer specific characteristics to

a given environment in terms of phenotype/func-

tion. Development of efficient in silico methods

for identifying and classifying 16S rRNA genes

(or gene fragments) from metagenomic datasets

(obtained using amplicon-based or shotgun

sequencing approach) is therefore an important

computational problem. This article describes

two recently reported methods, viz., i-rDNA

and C16S, that cater to the tasks of identification

and classification of 16S rDNA fragments in

metagenomic datasets. The i-rDNA method rep-

resents an approach which is efficient in terms of

execution speed as well as detection sensitivity.

Given its ability to directly identify 16S

rDNA fragments from metagenomic datasets

(obtained using the shotgun sequencing

approach), it holds the potential to completely

bypass the experimental procedures (and the

related costs of the same) associated with extrac-

tion, cloning, and sequencing of the 16S rRNA

gene or gene fragments. On the other hand, the

relatively higher classification accuracy of the

C16S method (as compared to other contempo-

rary classification methods) is expected to pro-

vide an accurate picture of taxonomic diversity

of microbial communities inhabiting any given

environment.
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Synonyms

GenomeNet; Kyoto Encyclopedia of Genes and

Genomes

Definition

KEGG (Kyoto Encyclopedia of Genes and

Genomes) is a database resource representing

biological systems, such as the cell, the organism,

and the ecosystem, from molecular-level infor-

mation, especially large-scale molecular datasets

generated by genome sequencing and other

high-throughput experimental technologies.

GenomeNet is database and computational

services for genome research and related research

areas in biomedical sciences, operated by the

Kyoto University Bioinformatics Center in

Japan. Both services work in collaboration put-

ting a special focus on the visualization and inter-

pretation of large amount of data, such as

metagenome sequence data, derived from high-

throughput measurement techniques.

Introduction

The number of complete genomes has been

increasing dramatically. From the completion of

the influenza genome in 1995, it took about

13 years (1995–2008) to complete a total of

500 species. The number of complete genomes

is expected to have quadrupled (~2,000) during

the following 4 years (2009–2012). The total

number of putative genes in these ~2,000

genomes is ~8 million. In contrast, recent

prevailing technology such as Next Generation

Sequencing produces even larger amount of data.

One emerging field enabled by this advance in

technology is referred to as metagenomics, i.e.,

genomic-scale sequencing of samples containing

a mix of different species. The total amount of

publicly available metagenomic data has already

become larger than that of genomes:

139 metagenome samples are currently stored in

the KEGG database (http://www.kegg.jp/;

Kanehisa et al. 2012) and the total number of

putative genes in these samples is ~14 million.

The need arises for novel tools and interfaces to

handle this flood of data, which is expected to

exponentially increase in the foreseeable future.

KEGG have been storing complete genome,

draft genome, and metagenomic data and given

them additional functional annotations. The

development of KEGG is the continuous effort

to construct an integrative knowledgebase for

widespread use in many fields, such as molecular

biology. GenomeNet (http://www.genome.jp/;

Kanehisa et al. 2002) is a database and

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015
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computational service for genome research and

related research areas in biomedical sciences,

operated by the Kyoto University Bioinformatics

Center. It integrates KEGG with other databases

that focus on genes, proteins, enzyme reactions,

metabolic compounds, drugs, natural products,

and other biological resources scattered all

over the world. DBGET/LinkDB (http://www.

genome.jp/dbget/; Fujibuchi et al. 1998) is an

integrated database retrieval system for handling

such molecular biology databases and is used as

a backbone system in GenomeNet and KEGG.

They also develop Web tools for functional

analysis based on genome, metabolome, and met-

abolic reaction information and provide an inte-

grated analysis environment for researchers and

general public (Fig. 1). KEGG and GenomeNet

depend on each other to provide the high-quality

knowledge and sophisticated user interfaces that

promote the interpretation of massive amounts of

biological data.

Genomic and Metagenomic Contents
in KEGG

The KEGG Organism pages list complete

genomes, expressed sequence tag (EST) datasets,

metagenomes, and pangenomes (set of sequences

derived from a group of closely related strains,

typically in bacterial phyla) in the following

URLs:

Complete and draft genomes (http://www.kegg.

jp/kegg/catalog/org_list.html)

EST datasets (http://www.kegg.jp/kegg/catalog/

org_list2.html)

Metagenomes (http://www.kegg.jp/kegg/cata-

log/org_list3.html)

Pangenomes (http://www.kegg.jp/kegg/catalog/

org_list1.html)

Genome sequences registered in the RefSeq

database are incorporated in the KEGG GENES

database, and additional annotation is given so

that the genes have links to ortholog groups,

pathways, etc. Annotation is processed manually

with the help of the in-house KOALA (KEGG

Orthology And Links Annotation) software,

based on the bidirectional best-hit strategy of

SSEARCH. Once the annotation is completed,

the organism-specific pathway is automatically

generated on the basis of the KEGG Orthology

and reference pathway (explained below).

By June 2011, KEGG had incorporated two

environmental metagenome samples retrieved

from the ocean and 137 microbiome samples

from human intestines (Fig. 2). KEGG gives

organism codes for complete and draft genomes

consisting of three or four characters (e.g., hsa for

H. sapiens, human). The KEGG Organism codes

specify organisms and are also used as the

headers of the pathway map IDs (e.g., hsa00010

for glycolysis/gluconeogenesis pathway in

H. sapiens). KEGG recently introduced an iden-

tifier system named “T numbers” that specify the

sets of sequencing data (EST, metagenomes, and

pangenomes). At the time of writing, KEGG has

incorporated metagenome data from three

sources (NCBI, Metagenome.jp, and MetaHIT).

KEGG and GenomeNet,
New Developments,
Metagenomic Analysis,
Fig. 1 KEGG and

GenomeNet among

Internet resources
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The examples of T numbers include T30001 for

planktonic microbial communities from North

Pacific Subtropical Gyre (retrieved from NCBI),

T30003 for human gut metagenome collected

from a healthy Japanese adult male F1-S

(retrieved from Metagenome.jp), and T30016

for human gut microbial gene sample from

healthy Danish female (retrieved from

MetaHIT).

For users interested in an organism (identified

by the KEGG Organism code) or a sample

(identified by the T number), embedded links

make it is easy to jump to the corresponding

summary pages. Clicking the “T30003”, for

instance, in the KEGG Metagenomes page takes

the user to the summary page specific for the

sample T30003. KEGG provides this type of

pages for all genomes, metagenomes,

pangenomes, and EST datasets. Also, users can

search for genes of interest and jump to pathway

maps, functional hierarchy, modules, etc.

KEGG PATHWAY Maps and BRITE
Functional Hierarchy

KEGG PATHWAY maps (http://www.kegg.jp/

kegg/pathway.html) and BRITE functional hier-

archy (http://www.kegg.jp/kegg/brite.html) gen-

erally do not focus on a specific organism. BRITE

contains a number of hierarchical classifications

of vocabularies used in journal articles and

other public data in academic communities. The

“reference” pathway maps are the combined

KEGG and GenomeNet, New Developments, Metagenomic Analysis, Fig. 2 Screenshot of KEGG

Metagenomes page
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pathways present in a number of organisms and

are consensus among many published articles.

Only the reference pathway map is manually

drawn with in-house software called KegSketch,

whereas all other organism-specific maps are

computationally generated. The user can conduct

a search limited to an organism of interest as well

as a comprehensive search throughout all of the

genome-sequenced organisms. In the pathway

maps, rectangles and circles represent gene prod-

ucts (mostly proteins) and other molecules

(mostly metabolites), respectively. The maps are

colored in black and white in reference pathways,

i.e., when no organism has been specified. When

the user can specify an organism of interest, the

organism-specific pathways include some col-

ored rectangles indicating that the specified

organism possesses the corresponding genes or

proteins in the genome (Fig. 3, left). White rect-

angles indicate that no genes have been annotated

to the corresponding function. This does not nec-

essarily mean the organism does not possess the

corresponding genes, but it is possible that the

genes have not been identified yet.

KEGG Module

KEGG has three different levels of resolutions for

visualizing pathways: global maps (Fig. 6),

(conventional) pathway maps (Fig. 3, left), and

pathway modules (Fig. 3, right). Mapping genes

to global maps helps users to grasp the overview

of the sample. Mapping genes to pathway maps is

useful to check the functional capability of the

genome or metagenome. There are some cases

where the smaller functional units, as defined in

KEGG Modules, are more helpful to conduct the

detailed analysis. KEGG Modules include con-

secutive reaction steps, operon or other regula-

tory units, and phylogenetic units by genome

comparison. KEGG have recently been focusing

effort on the development and annotation of

KEGG Modules, leading to the increase of the

number of entries. KEGG Module (http://www.

kegg.jp/kegg/module.html) collects functional

units classified into the following four categories:

(1) pathway modules – representing smaller path-

way units than KEGG PATHWAYmaps, such as

M00002 (glycolysis, core module involving

three-carbon compounds; see Fig. 3, right);

(2) structural complexes – often forming molec-

ular machineries, such as M00072

(oligosaccharyltransferase); (3) functional sets,

for other types of essential sets, such as M00360

(aminoacyl-tRNA synthetases, prokaryotes); and

(4) signature modules, as markers of phenotypes,

such as M00363 (EHEC pathogenicity signature,

Shiga toxin).

KEGG Orthology (KO)

Coloring the rectangles in the organism-specific

pathways, i.e., estimating the presence/absence in

the respective genes in pathway maps, is deter-

mined based on the KEGG Orthology (KO). KO

collects the groups of orthologous genes having

a common function and the same evolutionary

origin. A group of orthologous genes (a KO

entry) is given an identification number

(K number) and in principle corresponds to

more than one gene derived from more than one

organism. Genes assigned to the same K number

correspond to the same rectangle in

a PATHWAY map (Fig. 3, left), MODULE

(Fig. 3, right), and BRITE hierarchy. The top

page of KO (http://www.kegg.jp/kegg/ko.html)

provides the form to obtain an ortholog table

(Fig. 4), which shows currently annotated genes

in individual genomes for a given set of

K numbers, together with coloring of adjacent

genes on the chromosome. Each KEGG Module

also contains a link to the corresponding ortholog

table. The ortholog table is a useful tool to check

completeness and consistency of genome anno-

tations. KO entries for complete genomes are

manually defined and annotated by the KEGG

expert curators based on the phylogenetic profiles

and functional annotations of the genes. On the

other hand, KO for draft genomes, metagenomes,

pangenomes, and EST datasets are automatically

annotated by KAAS (KEGG Automatic Annota-

tion Server), one of the GenomeNet tools.
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KAAS Automatic Annotation

The KEGG Automatic Annotation Server

(KAAS) (Moriya et al. 2007) is one of the

genome analysis tools available in GenomeNet

(http://www.genome.jp/tools/kaas/) and has been

developed for annotating draft genomes,

metagenomes, pangenomes, and EST datasets in

the framework of KEGG. KAAS accepts any

groups of gene sequences and helps users anno-

tate these genes if the genes are derived from

organisms that are not yet a member of the

KEGG Organisms, or users obtain the gene IDs

otherwise (Fig. 5). After submitting the sequence

data, it may take a long time to complete the

calculation. Therefore, users are requested to

input their e-mail addresses, and the URL to

access the calculation result will be informed

later. The result contains the corresponding KO

list, links to automatically colored PATHWAY

pages and the BRITE pages. It is recommended

that the users download the result, since these

results will be removed from GenomeNet server

after a few days.

Mapping Metagenome Data on KEGG
PATHWAY

It is possible to color KEGG PATHWAY/BRITE

in a user-defined manner by using KEGGMapper

(http://www.kegg.jp/kegg/mapper.html). This

will become more valuable for the interpretation

of metagenome and pangenome studies. KEGG

Mapper has an option to specify multiple organ-

isms at a time. This option is particularly helpful

KEGG and GenomeNet, New Developments,
Metagenomic Analysis, Fig. 4 Screenshot of the

ortholog table for module M00002. Ortholog tables contain

links to the genes corresponding to the orthologs

(K numbers) in genome-sequenced species. Columns and
rows represent orthologs and species, respectively
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not only for comparing genomes but also for

visualizing host-microbiome relationship such

as in human gut microbiome, host-symbiont rela-

tionship, and host-pathogen relationship. If a user

inputs “hsa + pfa”, meaning human (Homo sapi-

ens) plus a pathogen (Plasmodium falciparum
3D7), the resulting pathways will be double col-

ored. The two colors would represent the gene

products from the two organisms. This option

accepts any combinations up to a total of ten

genomes. For instance, the query “hsa + mmu +

dme”, which means human (Homo sapiens) +

mouse (Mus musculus) + fruit fly (Drosophila

melanogaster), provides the three-colored map.

Metagenomes can also be viewed with KEGG

Mapper. Figure 6 shows the human genome and

a human intestine metagenome mapped onto

a global map, where green lines indicate genes

that the human genome (only) possesses, red

lines indicate gut metagenome (only) genes, and

blue lines indicate genes possessed by both.

Figure 7 shows an example of the reconstructed

thiamine metabolism pathway by mapping

human genome (hsa, colored in green) and

human intestine metagenome (T30003, colored

in pink). Thiamine diphosphate shown in this

pathway works as an essential nutritional factor

for human, but this cannot be synthesized without

the help of the symbiotic bacteria in human intes-

tine. By clicking one of the pink-colored rectan-

gles (e.g., ThiC), a user can see the list of

corresponding genes in the metagenome

(Fig. 8). The possible common sets of functions

between human genome and human gut

KEGG and GenomeNet, New Developments, Metagenomic Analysis, Fig. 5 KEGG Automatic Annotation

Server (KAAS)
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KEGG and GenomeNet, New Developments, Metagenomic Analysis, Fig. 7 Mapping of human genome and

human intestine metagenome on thiamine metabolism

KEGG and GenomeNet, New Developments, Metagenomic Analysis, Fig. 6 Mapping of human genome and

human intestine metagenome on a global map
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metagenome can also be compared in terms of the

possessed KEGG Module entries. From the top

page of a metagenome samples (e.g., T30003),

the user can jump to the module page, where

the thiamine biosynthesis module (M00127) is

present (Fig. 9). In contrast, the human genome

also has the corresponding page, but there is no

such module, meaning that no gene in human

genome has been annotated to have such

a function.

Conclusion

This review introduced the KEGG and

GenomeNet resources, putting emphasis on the

KEGG and GenomeNet, New Developments, Metagenomic Analysis, Fig. 8 Examples of the metagenome

sequences annotated in the place of ThiC
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usage for metagenomics studies. Their focus on

metagenomes has just begun; however, they plan

on developing novel user-oriented tools designed

for discovery and analysis of metagenomic data.

For further reading, some other publications are

recommended (Wheelock et al. 2009a, b;

Tokimatsu et al. 2011; Kotera et al. 2012)

explaining other contents that are not mentioned

in this review. The authors appreciate any

suggestions, questions, and comments on KEGG

and GenomeNet. Please send a message

through the feedback form (http://www.genome.

jp/feedback/).
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Definition

Krona is an interactive visualization tool for

exploring the composition of metagenomes

within a Web browser.

Introduction

Much of the research performed inmetagenomics

is exploratory, making visualization a prominent

aspect of the field. Graphically representing

a metagenome, however, is not a trivial task.

A single sample can easily contain too many

species to represent in one figure, and classifica-

tions are not always specific. This often forces

visualizations to summarize the sample at higher

ranks, such as genus or family, trading details for

a meaningful overview. Though user interaction

can typically reveal more specific classifications,
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Krona: Interactive Metagenomic Visualization in
a Web Browser, Fig. 1 Types of overviews. The tradi-

tional pie chart (a) shows abundances of organisms in

a metagenome, summarized at the phylum level. Many

phyla are still too small to compare, while genus- and

species-level classifications for the larger phyla cannot

be seen even though they would be large enough. The

multilayer pie chart (b) depicts ranks more dynamically,

dividing high-level classifications into more specific ones

toward the outside of the circle. This allows more details

to be shown for large phyla while small phyla are grouped

and labeled
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there is still a trade-off between comparing the

most abundant organisms and viewing their most

specific classifications (Huson et al. 2007; Meyer

et al. 2008). Krona uses multilevel pie charts to

visualize both the most abundant organisms and

their most specific classifications (Fig. 1). Rather

than hiding lower ranks in its overview, Krona

hides low-abundance organisms, which can be

expanded interactively. Additionally, Krona’s

browser-based implementation allows it to be

much more portable than other interactive

metagenomic visualization tools.

Overviews and Details

Interactive visualizations can make complex

results more accessible by providing both

high-level overviews and detailed views of spe-

cific portions as needed (Shneiderman 2002).

Though an overview can (and usually must)

omit some complexity, this view helps users

determine which areas to view in further detail

and provides context as they browse between

sections. Multilevel pie charts are a good option

for metagenomic overviews because they can

convey hierarchy implicitly, nesting lower-level

wedges within higher ones (Draper et al. 2009).

This allows the abundances of multiple levels to

be shown in the same view and using the same

scale. As in other metagenomic visualizations,

some nodes will have to be hidden for the over-

view to be informative. The benefit of multilevel

pie charts is that the nodes are hidden based on

abundance rather than specificity of their classi-

fications. This gives priority to nodes that make

Krona: Interactive Metagenomic Visualization in
a Web Browser, Fig. 2 Zoomed multilayer pie chart.

Standard zooming can show more detail for a region of

a multilayer pie chart, but can move the center off screen

and cause wedges to become nearly rectangular. As

a result, it is less intuitive to discern relative abundances

and hierarchical organization
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Krona: Interactive Metagenomic Visualization in
a Web Browser, Fig. 3 Polar zooming. Zooming in

polar space allows the zoomed region to retain the intui-

tive properties of the original multilayer pie chart.

A wedge in the overview (a, green) is stretched around

the center (b–e) until it fills the entire circle (f). The
detailed view also serves as a new overview from which

the process can be repeated with smaller wedges
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up the greatest portion of the sample, which are

typically of the most interest. A potential draw-

back, however, is that simply zooming in on the

smaller nodes would cause them to lose their

resemblance to a pie chart (Fig. 2). Krona avoids

this problem using polar zooming, in which

a wedge is stretched around the center until it

forms a new multilayer pie chart (Fig. 3). The

zoomed in view also serves as a new overview for

further zooming, allowing even complex hierar-

chies to be explored with only a small amount of

navigation.

Interactivity Without Installation

Since researchers often use visualizations to

convey data to others, portability is an essential

feature of visualization software. In the past,

interactive features were typically at odds with

portability because they required software to be

installed. However, thanks to technologies such

as JavaScript and HTML5, the modern Web

browser has become a ubiquitous, standardized

platform for interactivity. Many software pack-

ages are now entirely Web based, hosting both

tools and data on centralized servers. While this

“cloud computing” model offers many advan-

tages, it also creates a dependency on those

servers and an obligation for the software devel-

opers to maintain and scale them. Furthermore,

it requires researchers to store their data

remotely, which may not always be desirable.

Krona offers a compromise in which each chart

is a locally stored Web page, in the form of

a single HTML file with embedded XML data.

When this file is opened in a Web browser,

viewing code is fetched from the Internet,

allowing the data to be viewed interactively

without installing software or using remote stor-

age (Fig. 4). Krona charts can easily be shared

with anyone that has an Internet connection

and a modern Web browser. They can also be

embedded in existing Web pages without

modifying the server. For cases in which an

Internet connection is not available, Krona

charts can still be viewed locally, but require

installation.

Showing More Information

Confidence

Metagenomic classification algorithms are con-

stantly improving, but their results still come

with a significant degree of uncertainty. Only

a small fraction of the tree of life is represented

in reference databases, and this causes wide-

spread bias in classifications (Wooley

et al. 2010). It is thus important to consider

classification confidence, whenever it is avail-

able, when analyzing classificatory results.

Krona can vary wedge coloring to visualize

classification confidence in tandem with abun-

dances (Fig. 5).

Comparison

Metagenomic studies often compare differences

in metagenomes sampled from multiple locations

or times. Though direct comparison of samples is

infeasible for multilayer pie charts, it is possible

to convey differences through animation and

color. To show animated differences, the chart

can be morphed from one sample to the next,

causing wedges that change significantly in size

to draw attention from the user (Fig. 6). To show

the differences with color, each wedge can be

colored based on how much it varies between

Krona: Interactive Metagenomic Visualization in
a Web Browser, Fig. 4 Krona architecture. Embedding

XML data within an HTML document and linking to

remote JavaScript allows a hybrid of Web-based interac-

tivity and locally stored data
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samples. These two methods can also be com-

bined to provide a clearer picture of sample

variation.

Applications in Metagenomics

Metagenomic analyses typically produce data

from one of the two categories: taxonomic and

functional. Taxonomic classifications, which

place sequences on the tree of life, are inherently

hierarchical because of the various ranks in the

tree (species, genus, etc.). Functional classifica-

tions, which describe the roles of predicted pro-

teins, are often made hierarchical by grouping

specific functions into more general ones. Since

both types of data focus on quantities within

hierarchies, both are suited to visualization with

Krona charts. To create Krona HTML files

from these data, many common formats can be

imported with KronaTools, a software pack-

age for Unix-based systems. Classifications

can be directly imported from the RDP

Classifier, Phymm/PhymmBL, FCP, MG-RAST,

or the Web-based bioinformatics platform

Galaxy. For raw BLAST results downloaded

from NCBI or the METAREP metagenomic

repository, KronaTools performs MEGAN-like

(lowest common ancestor) classification using

NCBI taxonomy information. When importing

Krona: Interactive Metagenomic Visualization in
a Web Browser, Fig. 5 Classification confidence.

Classification confidence is mapped to a gradient from

red (signifying low confidence) to green (signifying high

confidence), allowing it to be depicted in tandem with

abundance and hierarchy
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classifications from RDP and PhymmBL, a color

gradient can be used to represent the average

reported confidence of assignments to each

node. For MG-RAST, METAREP, and raw

BLAST results, the nodes can be colored by

e-value, score, or percent identity. Since classi-

fications can sometimes be performed on assem-

bled contigs rather than reads, KronaTools can

be given contig magnitudes to more accurately

convey abundance in the chart. To extend

KronaTools to formats that are not yet

supported, it can also import generic tabular

files containing NCBI Taxonomy Identifiers or

Enzyme Commission numbers. Other types

of classifications can be imported from basic

text files or an Excel template detailing lineage

and magnitude. Finally, a custom XML file can

be imported to gain complete control over the

chart, including custom attributes and colors for

each node. Since node attributes can contain

HTML and hyperlinks, XML import allows

Krona to be deployed as a custom data browsing

and extraction platform in addition to a visuali-

zation tool.

Summary

Krona enables the interactive visualization of com-

plex metagenomic data without installed software

or cloud computing resources. It uses multilayer

pie charts to provide overviews that emphasize the

most abundant members of a sample, while its

polar zooming intuitively provides details for the

least abundant. Supplementary data, such as clas-

sification confidence and sample variation, can be

conveyed through color and animation. Krona’s

hybridWeb/local architecture allows each interac-

tive chart to be a single file, viewable on any

computer with an Internet connection and a mod-

ern Web browser. Charts can be created from

common metagenomic and generic file formats

using KronaTools, a software package for Unix-

like systems. Both Krona and KronaTools are

freely available under a BSD open-source license

and available from http://krona.sourceforge.net.
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Synonyms

Horizontal gene transfer (HGT); Lateral gene

transfer (LGT)

Definition

LGT is genetic changes within an individual or

a population that occur through the acquisition of

DNA from individuals that are not an organism’s

direct cellular parent or progenitor. One of its

effects on microbial populations is to alter diver-

sity through the acquisition of genetic material or

by homogenization of a population. If molecular

sequences are available for a community, statis-

tical estimators can be used to calculate its total

diversity and structure so that it can be compared

to other ecosystems.

Introduction

The “uncultured majority” (Whitman et al. 1998)

of prokaryotes capture the imagination, as it

suggests a seemingly limitless potential for

biological diversity. This estimate of less than

1 % of prokaryotes being represented by cultures

(Torsvik et al. 1990) suggests that exploration of

the untapped diversity of microbial species, genes,

pangenomes, metabolism, behaviors, and complex

interactions will be a fruitful endeavor. However,

how we discover and understand microbial diver-

sity has been heavily influenced by LGT. We can

compare any bacterial or archaeal 16S rRNA gene

directly recovered from the environment to the

comprehensive public sequence databases. This

allows the identification of this gene’s host based

on its similarity and phylogenetic placement rela-

tive to sequences from described (and therefore

cultured) prokaryotes. These sequences can also

be compared to all the other 16S rRNA gene

sequences directly retrieved from the environ-

ment; however, without a described culture, little

can be inferred about their hosts physiology and

thereby their role in an ecosystem. This is further

complicated by the prevalence of LGT making

inferences of few if any phenotypic characteristics

of a species, genera, family, or phylum impossible.

Therefore, a sequence rarely tells us anything

about the ecology of an organism and its real

value is that it can tell us something about the

biological diversity of an ecosystem.

Impact of LGT on Measurements of
Microbial Diversity

Diversity has been used as a metric by ecologists

for decades and can be correlated with other
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information to describe an ecosystem (Gravel

et al. 2011). The diversity of a system is not

simply the number of organisms or unique DNA

sequences identified. Probability-based estima-

tors can be used to extrapolate the total diversity

from subsampling the diversity of operational

taxonomic units (OTUs) defined as a similarity

threshold of the 16S rRNA gene sequence. This

can be done for populations with parametric (e.g.,

a rarefaction) or nonparametric (e.g., Chao1) dis-

tributions. This is analogous to capture-recapture

methods of determining the population size of

animals. For example, to determine the popula-

tion size of swamp wallabies, several wallaby’s

ears are tagged within a population and subse-

quent sampling of the population can be used to

estimate its size by calculating the probability of

recapturing tagged wallabies among non-tagged

wallabies. Molecular microbial ecology is much

more powerful than such macroecology studies

as it rarely focuses on a single species, but rather

the total bacterial and/or archaeal community and

the numerous populations that encompass thou-

sands of species. Diversity estimators are then

used to calculate the total diversity and structure

of the community using indices such as

Simpson’s Diversity Index (proportional distri-

bution of all species), species evenness

(distribution of individuals among species), and

Shannon Index (entropy of community measured

from the richness and evenness of community).

These indices allow us to compare natural and

experimental communities to identify factors that

influence diversity such as the volume of water in

tree holes (Bell et al. 2005) or a chronosequence

within a lichen (Mushegian et al. 2011).

Microbial systems rarely have a perceived

intrinsic value in that people do not marvel at

a termite’s hindgut as they do old growth forests.

Their value is in what they do, their function.

Diversity is a powerful measurement in microbial

ecology as it has a major influence on the produc-

tivity and stability (or resilience) of an ecosystem

(Gravel et al. 2011). The indices described above

are useful in characterizing these systems as it

can be used to compare their productivity. How-

ever, in microbial systems, the productivity is not

often studied (with the exception of phytoplank-

ton in aquatic systems). Often a specific process

is of interest, such as degradation of xenobiotics

or denitrification. This presents one of the biggest

dilemmas for microbial ecologists as they cannot

study a phylogenetic group (for which there are

many 16S rRNA-based primers and probes that

could be used in targeted studies) and infer the

function of the group (Case et al. 2007).

Macroecologists can infer that plants are primary

producers at the base of the food web and provide

shelter for other species as habitat-forming spe-

cies, which is not possible for microecologists.

This is the result of LGT, as this phenomenon

facilitates the movement of genes among phylo-

genetically distant organisms. This means that

phylogeny based on universal marker genes

such as 16S rRNA is not a predictive tool of

function in microbiology.

Molecular methods have been adapted to cir-

cumvent this conundrum so that functional genes

(such as hupL for hydrogen oxidation) can

be directly targeted through PCR (Balskus

et al. 2011). Such functional genes can then be

used in community fingerprinting, clone libraries,

or CARD-FISH, which has been adapted to iden-

tify mRNA to look at expression of specific genes

inside cells. Such gene-omic (sequencing of

a single marker gene directly from an environ-

mental sample) approaches are popular for

targeted studies and can be adapted to high-

throughput sequencing techniques. Datasets that

include deep sequencing of a gene involved with

a specific function can be used to identify redun-

dancy in a system. Such redundancy is important

for the stability of an ecosystem through

environmental change, as genetic redundancy

represents the diversity of organisms able to

perform a function within a system. The alterna-

tive to gene-omic approaches is metagenomics,

whose popularity has been greatly influenced by

the disconnect created by LGT between phylog-

eny and function. Metagenomics retrieves

large nontargeted sequence datasets from an

environment such that metabolic networks

and interactions can be inferred from the

community’s metagenome. This method can be
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coupled to metatranscriptomics (RNA) and/or

metaproteomics (proteins) to move beyond the

genetic potential of a metagenome to the tran-

scribed and translated. These methods, however,

have their greatest power when targeted or used

in low-diversity systems (Hugenholtz and Tyson

2008).

Mechanisms Responsible for the
Generation of Genetic Diversity in
Microbes

What is measured through gene-omic approaches

such as the 16 rRNA gene or nifH clone libraries

is nucleotide sequence diversity. The latter, how-

ever, is not the only type of genetic diversity.

Metagenomic or genomic approaches allow the

measurement of gene content diversity, which is

the measurement of differences in the genes

found in various genomes or metagenomes.

Both of these are strongly affected by LGT,

which influences not only the rate at which they

change but also how they change.

Sequence Diversity. The only force responsi-

ble for de novo creation of genetic diversity is

mutation. It can be defined as changes in the DNA

sequence of a genome that is inherited from

a progenitor. The nature of such changes can

vary: base pair substitutions, insertion/deletion

of one or more nucleotide(s), as well as larger or

more complex changes (such as chromosomal

rearrangement or gene duplication) (Fig. 1). The

physical causes of mutations are also diverse:

unforced DNA replication errors, errors during

proofreading or post-replication mismatch repair,

and DNA damage leading to replication errors or

inaccurate repair. Although mutation is responsi-

ble for creating diversity, it is not the only phe-

nomena introducing variation in particular

groups or lineages of microbes. Genetic changes

within an individual or a population can occur

through the acquisition of DNA from individuals

that are not an organism’s direct cellular progen-

itor. This process is LGT. In bacteria and archaea,

it has two main steps. First, foreign DNA pene-

trates the cellular envelope in one of three ways:

transformation (the uptake of DNA directly from

the environment or from a membrane vesicle),

conjugation (cell-to-cell contact mediated by the

apparatus encoded on a conjugative element

or by a cytoplasmic fusion), or transduction

(introduction of DNA by a phage) (Fig. 1). Sec-

ond, integration into the new host genome is

required, which can be achieved by homologous

recombination (i.e., this requires a homologous

region of DNA between the donor and recipient),

heterologous recombination (i.e., that does not

require a homologous region of DNA between

the donor and recipient DNA), or extrachromo-

somal maintenance and replication.

We can now obtain minimal LGT estimates

through quantification of homologous recombi-

nation. This type of LGT directly affects

sequence diversity and is usually simply termed

“recombination” in most molecular population

studies. This is because mathematical models

currently used in population genetics can only

take into account changes in genetic material

that is present in all members of the population,

therefore excluding acquisition of novel genetic

material through heterologous recombination and

as extrachromosomal elements. Population

recombination rates therefore only include events

in which foreign DNA, through replacement of

a homologous locus by recombination, is inte-

grated in the host genome. Studies that have

compared population mutation and recombina-

tion rates in various prokaryotic lineages have

found a relatively even split between those in

which mutation introduces most of the changes

and those where homologous recombination is

responsible for most nucleotide variations

(sequence diversity).

Gene Content Diversity. LGT also (if not pre-

dominantly) introduces change through the

acquisition of novel genetic material through het-

erologous recombination. This, in combination

with gene loss and gene duplication, leads to

changes in the gene content of an organism. For

example, strains of the marine heterotrophic bac-

terial genera, Vibrio, which are identical at one or
more protein-coding housekeeping gene, can be

differentiated by genome size (up to 800 kb
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variation) (Thompson et al. 2005). Also strains of

the nitrogen-fixing soil bacteria Frankia that are

more than 97 % identical in their rRNA gene

sequences – the conventional cutoff value for

a bacterial species – can differ by as many as

3,500 genes, which represents nearly half of

their 7.5 Mb genomes (Normand et al. 2007).

Although gene content and sequence diversity

are often correlated, it is not always the case.

According to empirical data, the correlation is

hypothesized to hold for bacteria that partially

overlap in their ecological niche (Konstantinidis

et al. 2006). Sequence diversity dominates for

bacteria with identical or almost entirely

overlapping niches (little change in gene con-

tent), and gene content diversity is more pro-

nounced when bacteria occupy separate niches.

Ecological adaptation is therefore directly linked

with gene content diversity but less so with

sequence diversity.

Lateral Gene Transfer and Microbial Diversity, Fig. 1 Description of the processes generating genetic diversity in

bacteria and archaea
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Impact of LGT on the Phenotypic
Diversity of Microbes

Microorganisms exhibit great diversity in their

cellular structures, metabolic properties, interac-

tions, and ecological niches. It is well established

that mutation (sequence diversity) has contrib-

uted to this phenotypic diversifications of

microorganisms. However, growing numbers of

genomic studies suggest that LGT influences the

acquisition of novel functions through its effect

on gene content, not sequence, diversity. For

example, recent studies of the genomic context

and phylogenetic relatedness of proteorhodopsin

genes suggested that they had been transferred by

LGT from marine Archaea to Proteobacteria.

This single gene is hypothesized to provide its

host with a competitive advantage by allowing it

to harness light energy for cellular function. As

these organisms reside in the photic zone of the

ocean, proteorhodopsin allows them to take full

advantage of available UV energy (Frigaard

et al. 2006).

In some species, most of the genetic variation

and adaptation occurs through LGT. Although

Prochlorococcus species have a conserved core

of genes, they show a significant variation in the

genes present on genomic islands. These repre-

sent the evolutionary hot spots inside their

genomes. It is hypothesized that these genomic

islands are acquired by LGT and undergo exten-

sive rearrangement, suggesting a common mech-

anisms of niche differentiation in microbial

species. The pathogenicity islands of pathogenic

bacteria also share the same characteristics

(Coleman et al. 2006). Some genomic island

associated LGTs are thought to be mediated by

phages, since they can carry host genome frag-

ments. For example, the cholera toxin gene in

Vibrio cholerae that is actually encoded within

a bacteriophage (CTXf) genome that necessarily

needs the toxin co-regulated pilus (TcpA), an

intestinal colonization factor, as its receptor.

TcpA is encoded within the pathogenicity island

named VP1. However, this VP1 region mainly

constitutes the genome of another bacteriophage

(Faruque and Mekalanos 2012). Thus, two

individual LGT events involving these two

phages have the potential to make almost any

Vibrio cholerae strain into a potent human

pathogen.

Various metabolic properties, virulence, and

antibiotic resistance traits can also be carried on

plasmids or transposons or a combination of the

two. This makes these genes more likely to be

transferred through LGT. For example, Tn10 is

a transposon consisting of a pair of IS10,

a tetracycline determinant and a regulatory

gene. Similarly, transposon Tn5 consists of two

IS50 elements and a three-gene operon that attri-

butes resistance to kanamycin, bleomycin, and

streptomycin. Both of these transposons can be

incorporated into the chromosomes of phyloge-

netically diverse groups of bacteria. Plasmids are

the other major mediator of antibiotic resistance

gene acquisition by LGT. Not only are plasmids

themselves transfer agents, but they can also

change rapidly through LGT. For example,

based on gene organization and sequence simi-

larity, plasmid pKF3-140 found in Klebsiella
pneumoniae has been speculated to have origi-

nated from Escherichia coli (plasmids

p1ESCUM and pUTI89) and further modified

by acquiring resistance genes from different

enteric bacteria by LGT.

Another genetic element facilitating LGT and

phenotypic diversity is the integron. This genetic

element carries genes for site-specific recombi-

nation known as mobile gene cassettes in the host

genome. It has been found that about 17 % of the

sequenced bacterial genomes have integrons. For

example, many species of Pseudomonas contain
integrons with a variable number of gene cas-

settes (10–32) that are considered to have been

obtained by LGT at the late stage of species

segregation (Vaisvila et al. 2001).

These are only a few representative examples

of the contribution of LGT to the phenotypic and

genotypic diversity of microbial populations.

Importantly, this diversity is not only driven by

natural selection. Microbes have evolved the

ability to sense the environments and generate
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diversity as a response to a stressor. For example,

the transfer of genomic islands encoding specific

metabolic properties is sometimes controlled by

quorum sensing mechanisms. The genomic

island ICEMISymR7A of Mesorhizobium loti

strain R7A encodes proteins required for symbi-

otic nitrogen fixation and that regulate the

transfer of plasmid by quorum sensing to

nonsymbiotic mesorhizobia (Ramsay et al.

2009). Another example of stressor-generated

genotypic diversity is CRISPRs. These elements

are considered to be an acquired immune system

against virus and plasmids by which the host

identifies foreign DNA in a sequence specific

manner (Horvath and Barrangou 2010). Experi-

mental evidence of CRISPR-mediated immunity

to bacteriophages has been shown in Streptococ-

cus thermophilus. After exposure to a phage to

which S. thermophilus was susceptible, only

a small fraction of cells survived, but the genome

of the survivors had acquired novel sequences in

their CRISPR loci identical to the DNA of the

infecting phage. This a genomic change directly

triggered by an environmental factor. Similarly,

the SOS response, a global regulatory network

that is activated in response to DNA damage, has

recently been discovered to induce recombina-

tion activity integrons. This causes an increased

acquisition of gene cassettes, potentially

encoding novel phenotypes. This creates a link

between environmental factors inducing the SOS

responses such as oxidative stress, pH change,

and exposure to antibiotics and genetic diversity

(Guerin et al. 2009).

Cross-References
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Definition

A simulation is the dynamic modeling of a real

process over time. A simulated metagenomic

dataset is the product of a single simulation iter-

ation of the sequencing process of a microbial

community under a specific set of sequencing-

platform model parameters.

Summary

The use of simulations to produce model

metagenomic datasets allows to test the perfor-

mance of technological methodologies and the

testing of theoretical hypothesis that cannot be

achieved by empirical experimentation. Method-

ologically, it has been used to evaluate the per-

formance of assembly programs and the effect of

differences of read length and error rate on the

quality of the resulting datasets. Theoretically, it

has revealed biases and heterogeneity in the esti-

mation of several diversity metrics from

metagenomic samples. However, the full poten-

tial of the implementation of simulated datasets

to metagenomics is still to be revealed.

Introduction

The complexity of microbial communities, and

the nature of the metagenomic datasets resulting

from their sequencing, belongs to systems with

high nested complexity. To analyze them, there

is a growing need to test the robustness of new

methodological and analytical tools (Angly

et al. 2012). The evaluation of these tests could

in theory be done by the construction of in vitro

communities (Morgan et al. 2010), but this

approach is expensive, time-consuming, and

limited to communities of reduced complexity,

so the alternative presented is to apply mathe-

matical models and simulations to test the

robustness of the tools for their analysis

(Caswell 1988).

A simulation is the imitation of a natural time-

ordered sequence of states a system takes in

a given time period with another that is the prod-

uct of a representative model (Peck 2008). In

other words, they are the dynamic imitation of

natural processes that follow the changing states

of a system under a particular theoretical model.

Simulations are used principally because the

equations in the models cannot be followed in

time, but the individual states in the processes

defined by the model are. The models create

virtual worlds, with rules defined by the model

parameters, that can be modified and followed in

ways that would be too costly or unethical in real

systems, and the simulations that can be run in

these modeled worlds can be seen as individual

experimental systems (Winsberg 2003). Most

commonly, simulations are theoretical models

used to explain natural phenomena and test the

outcome of theoretical hypotheses (Caswell

1988), often used in computational biology to

numerically estimate the behavior of a system

that is too complex to be resolved by analytical

solutions by generating a sample of scenarios that

represent stochastically distinct moments of the

same state of a modeled system under particular

conditions (Peck 2008).

Since no ecological community (microbial

or otherwise) has been sampled to exhaustion,

and no completely and accurately annotated

metagenome is available (Mende et al. 2012),

the construction of simulated datasets rely on the

available genomic data from the complete

genomes of individual datasets. These simulated

datasets have been used to date for two main

purposes: the test of the sequencing perfor-

mance of different platforms and their

processing pipelines and the analysis of the

accuracy of a diverse set of alpha and beta diver-

sity estimations.
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Simulation of Metagenomic Datasets

To simulate the production of a metagenomic

dataset, a program needs three basic components:

a pool of reference sequences, usually annotated

complete genomes, fromwhere sequences will be

drawn; a profile that details the composition

(taxonomic assignment of species) and structure

(relative abundance of species) of the designed

source community; and an error model that spec-

ifies how variability will be introduced to the

simulation, and usually accounts for sequencing-

platform-associated errors and rates for mutation-

introduction. In recent years, several different

simulation software programs have been made

available that differ in the type of sequencing

platform supported and the adjustable parameters

to model errors. The nature of the first and most

commonly used simulated dataset, and the two

most commonly used and representative software

programs available for metagenomic dataset sim-

ulations, is reviewed in the following section.

The FAMeS Dataset

The first metagenomic simulated dataset was pro-

duced by the group led by Konstantinos

Mavrommatis at Department of Energy Joint

Genome Institute (JGI), with the objective of

benchmarking the alternative metagenomic

processing pipelines commonly used in the JGI

sequencing facility (Mavromatis et al. 2007).

They randomly selected reads from the complete

genome projects of 113 isolates sequenced at JGI

as their pool of sequences. Since these reads were

derived from the real clone libraries in the shot-

gun sequencing process, they incorporate real

errors derived from the Sanger sequencing

method. Three different artificial source commu-

nities were designed with contrasting structure

and composition reflecting the following: a low

complexity community with a single dominant

near-clonal population like that found in bioreac-

tors (simLC), a moderately complex community

with few dominant populations and several low

abundance ones like those observed in the acid

mine drainage biofilms (simMC), and a high

complexity community with no dominant

populations such as those observed in soils and

microbial mats (simHC). These datasets were

deposited and made available online as part of

the Fidelity of Analysis of Metagenomic Samples

program (FAMeS:http://fames.jgi-psf.org/index.

html) as an attempt to standardize the

benchmarking of metagenomic assembly and

annotation tools.

These datasets are very atypical in that they

were simulated from real sequencing reads, so

that the sampling step from genomes was not

simulated. As such, they only model the error

distribution of the Sanger sequencing platform

as implemented by the JGI’s particular shotgun

sequencing process and prevent their extrapola-

tion to other sequencing platforms and error

models. Moreover, the lack of replication, the

fixed species richness (the 113 isolate genomes

from the pool), and the reduced and arbitrary

complexity range of the source community pro-

files prevent their use for testing more ecological

hypothesis regarding contrasting either species

richness or gradients in structure complexity.

These datasets, however, introduced the concept

of benchmarking metagenomic analysis pipelines

with simulated datasets, and more recent studies

have used their community profiles for the con-

struction of new simulations with replications

and their extrapolation to different sequencing

platforms (Mitra et al. 2010; Charuvaka and

Rangwala 2011; Pignatelli and Moya 2011).

MetaSim

One of the first computer programs developed

specifically to simulate metagenomic datasets

was developed and is maintained by the group

led by Daniel Huson at the University of T€ubingen
(Richter et al. 2008). It has been widely used both

because of its efficient algorithm and the benefit of

having aGUI.MetaSim uses complete genomes as

a reference pool of sequences and by default can

take advantage of the complete genomes available

at the NCBI RefSeq database. This also allows the

use of NCBI’s taxonomy to construct the source

community profiles, either by providing a relative

abundance matrix or by using an interactive

graphic taxonomy tree to select the genomes to

be included. Finally, MetaSim provides a large

array of adjustable error-model configurations
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such as read length, sequencing depth, error rate,

and error distribution. MetaSim includes a variety

of default error models for the three main sequenc-

ing platforms (Sanger, 454, Illumina) that can be

easily modified.

MetaSim allows the user to easily develop

complex designs of source community profiles

by specifying the richness, structure, and compo-

sition of a community via a species-abundance

matrix. These profiles can be saved and several

simulations can be run, allowing the comparison

of simulated datasets from the same sample under

different sequencing platforms and error models.

As such, its main limitation is then its depen-

dency on the available reference genomes and

their associated taxonomy at NCBI, which to

July 2012 contains more than 2,000 genomes.

Finally, MetaSim includes a tool to simulate

sampling from a set of “evolved” genome off-

springs derived from the reference genomes

using an evolutionary tree. That is, it simulates

real metagenomic datasets that usually contain

populations of organisms with different degrees

of relatedness to the available reference genomes,

in a way that it simulates genetic variability in

real, natural populations.

Grinder

While most metagenomic dataset simulators

were developed under a vision of metagenomic

process benchmarking, Grinder, developed and

maintained by Florent Angly at the Australian

Centre for Ecogenomics (Angly et al. 2012), is

the first simulator with a more ecologically ori-

ented perspective. Its main novel feature is that it

can also simulate amplicon datasets, addressing

the need to benchmark the tools for the analysis

of 16S rRNA amplicon datasets that are widely

used in microbial ecology. As a pool of reference

sequences, Grinder can use any sequence data-

base with FASTA format, like the NCBI RefSeq

genomes database for metagenome datasets, and

GreenGenes or SILVA for the amplicon datasets.

Grinder supports error models for the three main

sequencing platforms (Sanger, 454, Illumina) and

allows the implementation of user-defined error

models. It allows for the adjustment of error-

model configurations such as genome size bias,

read length, sequencing depth, substitution and

error distribution, and homopolymer and read

end error rates for metagenomic datasets, and

chimera production and gene copy number for

amplicon datasets (Angly et al. 2012).

Grinder accepts two different methods to pro-

vide community profiles. The first is the canoni-

cal species-abundance matrix where the user

simultaneously defines community composition

and structure. The second one is by defining the

community richness and a rank abundance model

for the relative abundance distribution of species.

Composition will be, however, selected ran-

domly from the species list. Moreover, multiple

datasets can be produced simultaneously from the

same profile, both for replication purposes when

source communities are identical and to simulate

the sampling of related communities with

a defined percentage of shared species (beta

diversity) (Angly et al. 2012).

Lessons Learned from Simulated
Metagenomic Datasets

Benchmarking of Technical Aspects

As explained above, the first simulated

metagenome comprising the FAMeS dataset

(Mavromatis et al. 2007) was developed to eval-

uate the fidelity of the sequencing processing

pipeline regarding the assembly and gene predic-

tion of metagenomes derived from shotgun

sequencing. They revealed that the application

of common single-isolate genome assemblers

resulted in a low incorporation of reads into

contigs and a high degree of chimeric contigs,

which in turn can lead to up to 20 % of inaccu-

rately called genes in metagenomes and errors

in functional and taxonomic annotations

(Mavromatis et al. 2007). Although the pipelines

and sequencing platform addressed by

Mavromatis et al. (2007) are outdated, several

recent studies have confirmed their findings on

the low performance of metagenome assemblers

with communities that are more complex than

a few dominant clonal populations, either with

new sequencing platforms (Pignatelli and Moya

2011; Mende et al. 2012) or alternative assembly
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methods (Pignatelli and Moya 2011; Charuvaka

and Rangwala 2011; Mende et al. 2012).

The effect of average read length on gene

annotation has been addressed by Wommack

et al. (2008). They simulated the subsampling

of existing Sanger-sequenced metagenomic

datasets producing shorter (<400 bp) reads char-

acteristic of the next-generation sequencing tech-

nologies 454 and Illumina. Their simulations

revealed that short reads can miss up to 72 % of

the annotated functions revealed by longer

(~750 bp) Sanger reads and can detect only

highly conserved sequences with phylogeneti-

cally close relatives in reference databases

(Wommack et al. 2008). The simulations also

indicate that even an increase in sampling depth

with short reads (as promised by the Illumina

platform) does not improve the annotation

achieved by long reads. In addition, a related

study using simulated datasets to assess the effect

of sequencing error on gene prediction (Hoff

2009) revealed that all metagenomic gene predic-

tion tools show a reduced accuracy at gene call-

ing with increasing sequencing error rates and

that their individual performance seems to be

affected by the taxonomic composition of the

samples, except when using Sanger reads with

error rates below 0.15 % (Hoff 2009). Pignatelli

and Moya (2011) adapted the FAMeS commu-

nity profiles to the 454 and Illumina sequencing

platforms and at a deeper sequencing coverage

and demonstrated that all de novo assemblers

produce a significant amount of chimeric contigs

(up to 10 %) that have a profound impact on the

functional and phylogenetic annotation of

metagenomic sequences. Since domain and

motif databases like Pfam and TIGRfam rely on

short conserved sequences, they may give better

annotations at a more functionally general anno-

tation (Pignatelli and Moya 2011).

All these studies reveal that the assembly of

metagenomic datasets is highly influenced by the

community composition complexity, depth of

sequencing coverage, and average length of the

sequenced reads, discouraging the assembly of

metagenomic datasets. Nevertheless, the recent

development of software specifically designed

for the assembly of metagenomic datasets like

Genovo (Laserson et al. 2011), IDBA-UD (Peng

et al. 2012), and MetaVelvet (Namiki et al. 2012)

shows a promising improvement in metagenomic

assembly, although only for low complexity with

communities with phylogenetically distant mem-

bers. An approach that should be used in all

assembly benchmarking studies is the compari-

son of the assembly obtained with the mixed

simulated metagenomic dataset against the

assembly obtained with an independent assembly

of each species since most simulated datasets are

produced from the annotated complete genomes

from isolates, as done by Charuvaka and

Rangwala (2011) and Namiki et al. (2012).

Evaluation of Ecological Aspects

Computer simulations have been long used in

community ecology for modeling communities

(Garfinkel 1962) and testing the performance of

diversity indexes (e.g., Heltshe and Forrester

1983). But the use of computer-simulated

datasets to study the diversity of microbial com-

munities had to wait until molecular methods

were available to study microbial communities

(Liu et al. 1997; Bent and Forney 2008). Simu-

lated communities are the only option to test

the performance of diversity metrics on

metagenomic datasets, since currently no natural

community has been sampled to exhaustion and

hence no real diversity measure is accurately

known that we can compare our estimations

against. The design of an artificial community

in vitro and its subsequent sequencing (Morgan

et al. 2010) is at best methodologically and eco-

nomically unfeasible to test the performance of

several replicated datasets (Angly et al. 2012).

Three published studies exist that use

simulated datasets to evaluate the performance

of community diversity metrics, two of which

deal with 16S rRNA amplicon-derived datasets

(Kuczynski et al. 2010; Parks and Beiko 2012)

and one with metagenomic datasets (Bonilla-

Rosso et al. 2012).

Bent and Forney (2008) were the first to

implement large-scale sequencing simulations

to evaluate alpha diversity (species diversity in
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individual samples) metrics from 16S rRNA

amplicon clone libraries and T-RFLPs. They

demonstrated that most alpha diversity metrics

are sensitive to the number of rare and uncom-

mon species, which are precisely the ones likely

to be undersampled by 16S rRNA amplicon-

based techniques (the so-called tragedy of the

uncommons). Moreover, they show that different

methods applied on the same community can

produce radically different estimations for these

metrics (Bent and Forney 2008). Using

a replicated simulated dataset of nine communi-

ties in a cross-gradient of species richness and

dominance, Bonilla-Rosso et al. (2012) demon-

strated that the use of conserved protein genes in

metagenomic datasets outperforms 16S rRNA

genes at reflecting the original community. More-

over, they show that the most common alpha

diversity metrics derived from metagenomic

samples are biased because of insufficient sam-

pling and variations in the taxonomic composi-

tion representation. These last two studies point

toward the use of scale-dependent metrics

such as Rényi’s profiles or Hill’s numbers as

a better representation of alpha diversity’s

multidimensional nature.

Two studies have addressed the performance

of beta diversity metrics (similarity in species

composition between samples) with simulated

datasets. The use of simulated datasets to test

ecological hypotheses was first implemented

with deep sequencing of 16S rRNA amplicons

(Kuczynski et al. 2010). Addressing the effect

of the environment on community structure,

they simulated datasets to model communities

that were either shaped along an environmental

gradient or where the environment partitioned

them into discrete clusters. They found that the

patterns from environmental gradients were more

easily detected than those from ecological clus-

tering, specially when differences between clus-

ters were subtle. Moreover, qualitative methods

(richness based) performed better on clustered

datasets, while quantitative methods (abundance

based) performed better on gradients, so both

types of methods should be applied if the

underlying pattern is unknown. Finally, they

demonstrate that patterns are more readily iden-

tified with several low-coverage samples than

with few deep-coverage datasets (Kuczynski

et al. 2010). These results were further extrapo-

lated for similarity metrics that incorporate phy-

logenetic information, and it was found that most

distance metrics are highly intercorrelated, and

highly robust to rooting, choice of threshold for

defining OTUs and the presence of basal lineages

(Parks and Beiko 2012).

Perspectives

Often obscured by the large amount of data pro-

duced, metagenomics is still a very young disci-

pline where a consensus set of rigorously tested

analytical tools is still lacking. Moreover, the

rapid advance of sequencing technologies causes

a constant development and diversification of

their accompanying bioinformatic tools and

approaches that require an objective quantifica-

tion of their performance. This is worsened by the

lack of theoretical understanding of the assembly,

dynamics, and functioning of natural microbial

communities. The use of simulated datasets after

sequencing modeling is the best alternative to

approach the benchmarking of technical and ana-

lytical methodologies as well as the testing of

theories and hypotheses. However, a much more

efficient benchmarking framework is still

needed.

A set of source communities from where new

datasets are to be simulated need to be consensu-

ally designed by the academic community as the

minimal standard benchmarking start point, so

that the comparison of the performance of bioin-

formatic tools across studies and sequencing plat-

forms is achieved. This was the original intention

of the FAMeS dataset (Mavromatis et al. 2007),

but currently almost each new tool developed is

tested against a tailored simulated dataset, in part

because the three FAMeS communities cover

a narrow range of community composition

options. Ideally, this standard source community

dataset should be designed in a way that spans

a wide spectrum across three dimensions of
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assembled communities consisting of number

of species (richness), relative abundance

(dominance), and taxonomic composition

(phylogenetic relatedness). As an example, the

effect of the presence of closely related strains

on both the assembly and diversity estimation of

a metagenomic sample is largely unknown.

Variability is a factor that should be more

often considered in simulated datasets. There is

a need to incorporate variation in platform-

specific error models, and the incorporation of

empirical thresholds for best and worst case sce-

narios in simulation software would greatly

improve this. Moreover, due to their dynamic

nature, two independent simulations from the

same source community will produce a different

set of datasets, and this sampling variability

should be incorporated into the benchmarking

and hypothesis testing process that allow the

incorporation of variability in the models and

the statistical testing of significant differences.

Finally, it should be noted that the potential of

simulated datasets to metagenomics is far from

explored, since they have mostly been used to test

the performance of technical methodologies, and

as mentioned by Caswell (1988), they can be

readily applied for exploring the consequences

of proposed ecological theories, finding simple

explanatory models that can reproduce the

observed patterns in natural communities, and

aiding in the design of accurate future experi-

ments. Furthermore, the implementation of repli-

cations to variability modeling will also permit

the identification of theoretical thresholds for the

detection of differences between communities

and as such will help define the scopes and limits

of metagenomics.
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Definition

MEMOSys is a web-based platform for

constructing, managing, and storing genome-

scale metabolic models. It provides sophisticated

query and data exchange mechanisms, offers an

integrated version control system, and allows

researchers to easily compare models. MEMOSys

is freely available at http://www.icbi.at/memosys

under the GNU Affero General Public License.

Introduction

Driven by recent innovations in sequencing tech-

nology, genome-scale metabolic models have

been compiled for a number of different organ-

isms (Henry et al. 2010). Each model is in general

a network consisting of metabolites that are

connected by reactions. Genome-scale models

include all reactions occurring in a living organ-

ism and are primarily reconstructed using the

annotated genome and literature information.

Metabolic models can be used to provide an

alternative approach for integrating large

amounts of data about biological systems to

gain novel insights into their interconnected func-

tionality (Kay and Wren 2009). Moreover, they

have already been used for a variety of different

purposes including strain engineering (Benedict

et al. 2012), gene deletion studies (Choi et al.

2010), biofuel production (de Jong et al. 2011),

and interpretation of gene and protein expression

data (Gowen and Fong 2010).

The generation of new models is a well-

documented iterative process comprising a multi-

tude of different steps (Thiele and Palsson 2010),

where often 10 % of construction time is needed to

model 90 % of reactions and 90 % to collect the

remaining 10 % (Rocha et al. 2008). Until the final

version of a model is assembled, usually several

intermediate revisions are generated. During this

reconstruction process, simulated results are con-

stantly compared to experimental data, and if they

do not agree, the model is critically reevaluated

(Baart and Martens 2012). It is therefore of great

importance to be able to review all changes, extract

previous versions, compare different versions of

onemodel, and have access to easy to use software

for creating and manipulating models.

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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The MEtabolic MOdel research and develop-

ment System (MEMOSys) (Pabinger et al. 2011,

2014) has been developed to support the con-

struction, modification, and management of

genome-scalemetabolicmodels. It is aweb-based

bioinformatics platform that uses an automatic

version control system to store the complete

developmental history of all model components.

This allows researchers to access the entire model

at any time during the iterative model building

process. Furthermore, MEMOSys offers sophis-

ticated query mechanisms and supports the

exchange of models using standardized formats.

Model Management

Database Structure

MEMOSys has been designed to store all proper-

ties of a metabolic model in a database. The

model itself is represented by a name, its unique

model identifier, as well as containing reactions,

genes, and metabolites. In addition, it is assigned

to an organism and may contain references to an

image that graphically represents the metabolic

network. MEMOSys supports the upload of arbi-

trary additional data files, which can be directly

linked to stored models. Such files may include

experimental data sets that were used to validate

the model during the reconstruction process. In

addition, analysis results from external tools can

be directly attached to the investigated model.

Each model has an arbitrary number of reac-

tions, which are described by a multitude of prop-

erties, including name, Enzyme Commission

(EC) number, reactants, products, and reversibil-

ity. Reactions can be linked to citations in order to

provide primary literature evidence and are

assigned to a subsystem, which is used to group

reactions into metabolic pathways. MEMOSys

supports the definition of lower and upper bound

constraints, which are automatically included

when the model is exported into a file and can

then be directly used in constraint-based analyses.

Reactants and products of reactions contain the

metabolite itself and the stoichiometric coefficient

for that metabolite, and they are assigned to

a compartment. Compartments are linked to the

corresponding Systems Biology Ontology (SBO)

term and arranged in a hierarchy to support fine-

grained compartmentalization when exporting

models. SBO is a hierarchically arranged set of

controlled, relational vocabularies of terms that

are commonly used in mathematical modeling.

MEMOSys uses an integrated balance check

mechanism that validates the elemental composi-

tion of consuming and producing reactants. The

check is automatically executed when reactions

are modified, or during the import of a newmodel.

Each organism of a model can be annotated

with the corresponding BioCyc (Karp et al. 2005)

identifier. BioCyc is a biological database collec-

tion, which includes highly curated genome and

pathway information for individual organisms. In

order to facilitate the assignment process,

MEMOSys dynamically fetches all available

organisms fromBioCyc and provides suggestions

to select the correct identifier.

Genes and their relationship to other genes and

reactions can be described using hierarchical

structures and Boolean operators (e.g., [gene1 or

gene2] and gene3). They are linked to the

corresponding BioCyc pages if the organism

identifier and the unique gene symbol are pro-

vided. In addition, for genes having a reference to

the Universal Protein Resource (UniProt)

(Magrane and Consortium 2011) database,

MEMOSys offers a mechanism to download the

amino acid sequence of the transcribed protein

and provides an integrated system to fetch addi-

tional information from the UniProt entry.

UniProt is a popular, freely accessible compre-

hensive resource containing protein sequence

data as well as functional and annotation

information.

Genome-scale metabolic models rely on anno-

tations to unambiguously identify model compo-

nents. History has shown that biologists have

been using different notations and naming

schemes for the same gene or protein. MEMOSys

allows researchers to annotate reactions, metab-

olites, genes, and compartments with references

to external databases using the minimum infor-

mation requested in the annotation of biochemi-

cal models (MIRIAM) (Le Novère et al. 2005)

notation. Every MIRIAM identifier is a single
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unique string, which unambiguously references an

object in an external resource and facilitates sci-

entific collaborations and model comparability.

MEMOSys automatically transforms MIRIAM

annotations into web addresses and displays direct

links to the external data sources.

Furthermore, the application includes

a mechanism to easily define additional external

databases, which can then be used by all model

components to create further references and

annotations.

Due to the iterative model building process,

components may be modified several times by

different members of the reconstruction team.

To facilitate the discussion between researchers,

MEMOSys features an integrated web board that

allows attaching discussions to every model com-

ponent. Associated threads are shown at each

component page, and latest comments of all dis-

cussions are displayed on the home screen. In

addition, global threads can be created to discuss

general properties of models.

Querying System

MEMOSys uses enhanced lists to present and

query data stored in the database. Every list can

be customized to display a selection of available

attributes. They are fully sortable and incorporate

attributes from different tables into one view,

which allows comprehensive data representa-

tions. MEMOSys supports fine-grained searches

where different restrictions can be combined to

query for a specific question. In addition, the

application offers an easy to use quick search

mechanism that allows users to easily search for

reactions, metabolites, genes, and organisms.

As all model components are highly

connected with each other, MEMOSys displays

links to referenced components throughout the

system and allows free navigation within and

across all stored models.

Versioning

The construction of a metabolic model is an iter-

ative task, which has been broken down into

96 steps (Thiele and Palsson 2010) generating

several intermediate versions until the final

model is established. Therefore, MEMOSys

integrates an automatic version control system,

which creates a new revision for every modifica-

tion of a model component. This system allows

researchers to access the complete model history

and query, compare, and export previous versions

of a model. Each modification can be annotated

with a comment, and the complete change history

is displayed as a list at the respective component

pages. The home screen of the application lets the

user specify which version of a model should be

used and lists the latest modifications for metabo-

lites and reactions.

Data Access and Supervision

MEMOSys is a multiuser application using four

different user classes to control data access:

(a) unregistered visitors are allowed to view

accepted, publicly available versions of models;

(b) registered users are able to display in addition

to publicly available models, accepted versions

of assigned models; (c) editors have access to all

versions of their own models and are able to

create, update, and delete model components. In

addition they are allowed to upload files to the

application and import models; (d) administrators

are editors with additional rights to access all

models, change the public availability of models,

and accept modifications.

Each modification of a model component is

at first marked as pending and needs to be con-

firmed by an administrator. Upon approval of

a modification, a new internal revision number

is assigned to the model. In addition to the auto-

matically set revision number, administrators can

assign major version numbers to each model.

MEMOSys differentiates between publicly avail-

able models, which are visible to all visitors and

contain all accepted modifications, and restricted

models that are only visible to registered users

and editors of the assigned models.

Comparison

As the construction of a draft genome-scale met-

abolic model is getting more and more a routine
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application, future developments will strongly

rely on already existing reconstructions of related

organisms. In addition, researchers are often

interested in the subtle differences between

organisms when exploring specific biological

functionalities. Hence, MEMOSys offers

a flexible and intuitive mechanism to assess the

similarity between models allowing users to com-

pare any version of different models. Further-

more, it is possible to compare two versions of

the same model to identify development changes.

The first section of the comparison result pre-

sents Venn diagrams that graphically display the

calculated differences for reactions, metabolites,

and genes. Next, restrictions on the used models

can be set to display only differences in selected

compartments and subsystems. In addition to the

graphical representation, the application shows

detailed lists of unique and equal model compo-

nents and uses tabs to switch between reactions,

metabolites, and genes lists. Every model com-

ponent is connected to the corresponding page

where detailed information is presented.

Data Exchange

MEMOSys features the export of current metab-

olite and reaction query result lists into Excel or

PDF files, where only the active result set is

included. Since several methods and toolboxes

which analyze genome-scale metabolic models

have been published over the last years (Baart

and Martens 2012), MEMOSys provides

a sophisticated data exchange mechanism that

allows the export of models into valid SBML

files. The Systems Biology Markup Language

(SBML) (Hucka et al. 2003) provides

a common intermediate format that can be used

to define models in regulatory networks, meta-

bolic pathways, signaling pathways, and gene

regulation networks.

The exported files are compliant with the con-

sensus yeast format (Herrgård et al. 2008) or with

the COBRA toolbox format (Schellenberger

et al. 2011). Researchers are able to export all

available versions of a model and restrict the set

of exported reactions by either including only

reactions that are in certain subsystems or using

the result of a reaction query as input for the

export mechanism.

MEMOSys features three different ways to

assign reactions andmetabolites to compartments

(compartmentalization), which allow researchers

to directly use exported models in analysis tools

that do not support a fine-grained assignment of

reactions to compartments.

The system supports the import of models that

are encoded in valid format as defined by the

consensus yeast reconstruction group. In addi-

tion, existing models in SBML format can be

used to improve the annotation of stored model

components (see Fig. 1).

Installation

The application itself and the source code of

MEMOSys are freely available under the GNU

Affero General Public License. As MEMOSys is

a web application, it is recommended installing it

on a server system and set appropriate access

permissions for potential users. A detailed used

guide and installation instructions are available at

the distribution website. MEMOSys is available

for download at http://www.icbi.at/MEMOSys.

Summary

During the last years, numerous genome-scale

metabolic models have been developed for

a multitude of different organisms. They are

a promising approach to systematically analyze

complex cellular systems and have been success-

fully applied for improving gene annotation,

increasing the product yield, and predicting the

effect of gene deletions.

The web-basedMEtabolicMOdel research and

development System (MEMOSys) is a versatile

bioinformatics platform for the management,

storage, modification, and development of

genome-scale metabolic models. It facilitates the

construction of newmodels by providing a built-in

version control system, which allows researchers

to access the complete reconstruction history.
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Research on existing models is facilitated by

a powerful search system, a feature-rich compar-

ison mechanism, and standardized references to

external databases.

MEMOSys provides customizable data

exchange mechanisms using the SBML format

to enable further analysis in external tools and

supports different user roles and access rights to

allow collaborations across departments and uni-

versities. The system is freely available at http://

www.icbi.at/MEMOSys.

Cross-References

▶KEGG and GenomeNet, New Developments,

Metagenomic Analysis

▶New Method for Comparative Functional

Genomics and Metagenomics Using KEGG

MODULE
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Definition

MetaBin: Taxonomic binning of metagenomic

sequences.

Introduction

The first, and primary, challenge in metagenomic

data analysis is to ascertain the genomic origin of

metagenomic sequences and to make appropriate

taxonomic assignments (Tringe and Rubin 2005;

McHardy et al. 2007; Sharma et al. 2012).

Composition- or homology-based classification

of metagenomic sequences are the two main

approaches that are currently used (McHardy

et al. 2007; Huson et al. 2007). Among the two,

homology-based methods are more sensitive and

accurate but require a large amount of time to

generate the BLAST alignments, which are used

as an input for these programs. The composition-

based approach is exploited by classification

tools such as PhyloPythia, TETRA, and

TACOA, for taxonomic classification of

metagenomic sequences (Diaz et al. 2009;

McHardy et al. 2007; Teeling et al. 2004).

These methods require prior training using longer

reads (>800 bp) to carry out the classification,

and thus the classifications remain limited to

higher taxonomic levels. Homology-based

approach assesses the taxonomic identity of

a read from the results of a homology-based

search against a known reference sequence data-

base which is usually the NCBI non-redundant

(NR) database (Sayers et al. 2011). Examples of

some homology-based tools are MEGAN and

SOrt-ITEMS (Huson et al. 2007; Monzoorul

et al. 2009). Both of these carry out taxonomic

binning based on the BLAST bit-score and lowest

common ancestor (LCA) approach. If a read

shows a match with multiple genomes, it is

assigned to the common taxonomic ancestor

(higher level) of the hits. Since these are only

based on bit scores, they may lead to incorrect

or nonspecific taxonomic assignment. The

homology-based methods primarily depend on

the representation of genomic sequences in the

reference databases and are able to carry out

classification of metagenomic sequences at

lower taxonomic levels (genus or species) when

a comprehensive reference database is used.

Another homology-based method,WebCARMA,

scans for the presence of conserved Pfam

domains and protein families in the metagenomic

reads (Gerlach et al. 2009).

The motivation to develop a better homology-

based algorithm for taxonomic classification

came from the fact that none of the available

methods are comprehensive in that they have

not considered some key features of

metagenomic sequences which could result in

increased and more accurate taxonomic assign-

ments. Therefore, in this entry, a novel algorithm

called “MetaBin” is presented which exploits the

information from all possible ORFs (complete or

partial) for each sequence read while carrying out

the taxonomic assignment. This algorithm is

faster and results in much higher accuracy and

sensitivity for taxonomic classification. It can be

used for the taxonomic assignments of various

read lengths (�45 bp, single or paired end) which

are commonly generated using available tradi-

tional and next-generation sequencing

technologies.

Methods

Reference Database Construction and

Simulated Reads

The non-redundant (NR) sequence database

(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/) was

retrieved from NCBI (Sayers et al. 2011). In

addition, genomic sequences of 25 completed

bacterial genomes belonging to different taxo-

nomic lineages were retrieved (ftp.ncbi.nih.gov/

genomes/Bacteria). Local versions of the NR

database were created, to test the performance

of MetaBin, by removing all sequences belong-

ing to the associated genus and family. This helps

in assessing the performance ofMetaBin on reads

for which no genome of the genus (novel

genome) is present in the NRminusFamily or

NRminusGenus database. The reads created
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from these genomes are similar to reads of

novel or yet unknown genomes because the

NRminusGenus or NRminusFamily databases

do not contain any genome of that genus. Simu-

lated read datasets were created using the

MetaSim program to represent Sanger (read

length ~800 bp) and 454 (read lengths of ~400

and ~250 bp) sequences (Richter et al. 2008).

A Perl script was developed for generating

1,000 simulated reads of length ~75 bp and

~45 bp, respectively, from each of the bacterial

genomes, since the option to create short reads

was absent in MetaSim.

The metagenomic sequences for a real

metagenomic dataset were taken from human

gut samples from a single Spanish male individ-

ual generated by Illumina sequencing (V1.CD-2,

age 49, BMI 27.76, 20,707,369 high-quality

reads, library 090107) (ftp://public.genomics.

org.cn/BGI/gutmeta/High_quality_reads/) (Qin

et al. 2010). The sample data sequences

(Sargasso Sea Subsample 1) for Sargasso Sea

were downloaded from http://www-ab.

informatik.uni-tuebingen.de/software/megan/old-

datasets (Huson et al. 2007). This set contains the

first 10,000 reads from Sample 1 of the Sargasso

Sea dataset (Venter et al. 2004).

BLAST (version 2.2.22, ftp://ftp.ncbi.nih.gov/

blast/) was downloaded from NCBI. MEGAN

(version 3.8) (http://www-ab.informatik.

uni-tuebingen.de/data/software/megan/download/

welcome.html) (Huson et al. 2007), SOrt-ITEMS

(http://metagenomics.atc.tcs.com/binning/SOrt-

ITEMS) (Monzoorul et al. 2009), and TACOA

(version 1.0, http://www.cebitec.uni-bielefeld.

de/brf/tacoa/tacoa.html) (Diaz et al. 2009)

were retrieved from their respective sites.

WebCARMA (version 1.0) was run from their

Web server (http://webcarma.cebitec.uni-

bielefeld.de/cgi-bin/webcarma.cgi) (Gerlach

et al. 2009).

Algorithm Development

MetaBin provides significant improvements over

currently existing homology-based methods for

better taxonomic assignments. It reduces (up to

1,000-fold) the amount of time needed to

generate the alignments by implementing Blat

(Kent 2002) as the faster alignment method in

place of BLASTX which is comparable to the

time taken by composition-based methods. This

feature makes it practical to use a more accurate

and sensitive homology-based approach for both

Web- and console-based high-throughput analy-

sis of large datasets.

A unique approach has been adopted which

considers the taxonomic information from all

verified complete or partial ORFs present in

a read and then assigns a taxonomic bin. This

helps to make correct assignments of reads of

diverse lengths to different taxonomic bins.

Since our procedure comprehensively considers

all imaginable cases, the results are more accurate

and specific, and the assignments are not limited

by read length. (Details are provided in the

manuscript, Sharma et al. 2012.)

The taxonomic binning of the simulated read

datasets was carried out using MetaBin and

MEGAN, and the assignments were counted at

three levels, namely, “Genus,” “Phylum,” and

“Higher.” The “correct assignments” were those

where the assigned phylum was same as the

expected phylum or simply if it was assigned to

its own phylum. Only the intragenic reads were

considered to calculate sensitivity and the posi-

tive predictive value (PPV) because the NR ref-

erence database contains only protein sequences,

and thus the reads coming from known protein

coding regions (intragenic) are expected to find

a match. The following standard formulae were

used to calculate sensitivity and PPV:

Sensitivity ð%Þ ¼ TP= TPþ FNð Þð Þ � 100

Positive predictive value ðPPVÞ ð%Þ
¼ TP TPþ FPð Þð Þ � 100

True positive (TP) ¼ number of reads assigned

with correct (expected) phylum

False positive (FP)¼ number of reads assigned to

other (incorrect) phylum

False negative (FN) ¼ number of unassigned

intragenic reads plus number of reads assigned

above to the phylum level (higher)
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The average sensitivity and PPV were calcu-

lated for all simulated read datasets aligned with

the complete NR database or the NR-G versions.

MetaBin Development

The MetaBin algorithm was developed in Perl

(version 5.10.1), and the dendrogram images

were generated using the Perl GD module.

Options are provided to change the different run

parameters such as bin size, minimum bit- score,

and bit-score range, to select hits and to create

a dendrogram image after comparing the propor-

tions of each taxonomic group in the selected

metagenomes, and to display the respective pro-

portions as a pie chart. The algorithm can be used

for the taxonomic assignments of both single- and

paired-end sequence reads. A user-friendly

website (http://metabin.riken.jp/) was developed

on our server including detailed instructions for

installation, usage, and updating of the taxonomy

database. A free stand-alone executable program

is also provided and can be downloaded for dif-

ferent operating systems including Windows,

Linux, and Mac.

Results

The overall performance of MetaBin was found

to be superior to the other available tools such

as MEGAN, SOrt-ITEMS, TACOA, and

WebCARMA for all read datasets. It assigned

a higher percentage of reads to their correct

genus and phylum, as compared to the other

methods. Particularly for the short (<100 bp)

Illumina reads, it assigned up to 18 % more

reads to their correct taxonomic levels. This is

a useful and unique ability of MetaBin to make

more accurate assignments at the lower and more

specific taxonomic levels. For all simulated read

datasets, the average sensitivity and PPV of

MetaBin was similar to or higher than those of

MEGAN, especially for short reads. For ~75 bp

reads, MetaBin showed up to 6 % and 16.8 %

higher average sensitivity as compared to

MEGAN and SOrt-ITEMS, respectively. For

~45 bp reads, MetaBin showed up to 32 % and

46 % higher average sensitivity as compared to

MEGAN and SOrt-ITEMS, respectively.

The performance of MetaBin was also evalu-

ated on real metagenomic data using the recent

human gut data obtained by Illumina sequencing

(short reads) from a European male individual

and analyzed using MetaBin with Blat as the

alignment program. Only those bins containing

at least 10,000 reads were considered under

default parameter conditions. The analysis of

such a large metagenomic dataset proves the

ability of MetaBin to work on real metagenomic

datasets. In this analysis, Bacteroidetes was

found as the most abundant phylum (77.4 %)

followed by Firmicutes (16.8 %), Proteobacteria

(3.5 %), Actinobacteria (1.7 %), Cyanobacteria

(0.27 %), and Euryarchaeota (0.24 %). These

results corroborate previous observations

(Kurokawa et al. 2007).

The performance was also evaluated using

longer (~800 bp) reads obtained from the Sar-

gasso Sea dataset. Using this common dataset,

the results of MetaBin, MEGAN, and SOrt-

ITEMS were compared. MetaBin and MEGAN

both predicted a similar number of bins; however,

MetaBin assigned comparatively more reads

(nearly twice the number of reads at the species

level) to each of these common bins which shows

its higher sensitivity and higher accuracy. The

performance of SOrt-ITEMS was comparatively

poor compared to both MetaBin and MEGAN.

A brief comparison of MetaBin was also carried

out with one of the composition-based methods

(TACOA) and with another method based on

homology to protein families (WebCARMA)

using the above dataset. Both the composition-

and protein family-based methods showed limi-

tations in making comprehensive taxonomic

assignments and performed poorly as compared

to homology-based methods.

The Web Server

Different pages are provided on the Web server

with several options for carrying out online

taxonomic analysis. The main page is the
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“Application” page, where the user can submit

and carry out taxonomic analysis of either

sequence reads or Blastx output (Fig. 1).

Two options, BLAT and BLAST, are provided

to generate the alignments. The input sequences

should be submitted in FASTA format, for which

the ORFs are predicted, and the qualified ORFs

are aligned against the NCBI NR database using

Blat. This output is used to classify the sequences

into their appropriate taxonomic bins. Another

option, BLAST, uses Blastx for generating the

alignments and takes comparatively a much lon-

ger time for generating the alignments as com-

pared to Blat. The input parameters such as

minimum bit-score (Blat or Blastx output),

bit-score range to select hits, and bin size

(minimum number of reads needed to form

a taxonomic bin) can be changed or used as

default. The “Results” page provides the output

files in tab-delimited format and displays thumb-

nail images of the taxonomic tree (*.png file) and

functional annotation of the reads using COGs

functional classes. The results can be

downloaded from the website (Fig. 2).

The “Visualization” page provides several

options for displaying the results and carrying

out comparative analysis (Fig. 3).

An option to upload the resultant *.json file

generated after using the stand-alone version for

additional Web-based analyses is also provided.

There are options to visualize the taxonomic tree

and prepare a “composition chart” for a single

dataset. The composition chart gives an overview

of the microbial distribution in the dataset and

shows their abundance values. Another option is

available to compare the taxonomic profiles of up

to five metagenomic datasets by “Compare

Metagenome Profiles.”

The stand-alone console-based version is pro-

vided to analyze large metagenomic datasets

locally on the user’s system after installation.

A free stand-alone executable program is avail-

able for download for several operating systems

including Linux, Mac, and Windows.

Discussion

Homology-based approaches are more common

and considered to be more specific and useful for

diverse read length as compared to composition-

based approaches. However, their implementa-

tion on large metagenomic datasets is limited

due to the longer analysis time. The MetaBin

algorithm overcomes this limitation and pro-

vides a significant improvement over the cur-

rently existing homology-based methods for

better and faster taxonomic assignments by

using a more specific ORF-based approach. It

carries out more accurate and specific taxo-

nomic assignments at both genus and species

levels. The replacement of BLAST by Blat in

MetaBin makes it possible to employ a more

accurate and sensitive homology-based

approach for the high-throughput analysis of

large datasets and also for the development of

a Web-based community server. The perfor-

mance of this approach was validated using

MetaBin,
Fig. 1 Screenshot of

“application” page using

a sample query
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both simulated reads and real metagenomic

datasets. In addition, it can be a tool of choice

for large metagenomic datasets as demonstrated

in this entry. It can be used for the taxonomic

assignment of sequence reads of diverse lengths

(�45 bp) derived from any existing sequencing

technology, and perhaps it is the only method

which can be applied for the taxonomic binning

of reads of lengths as short as 45–75 bp with high

accuracy and sensitivity. Thus, the MetaBin

Web server and program can be considered

a significant improvement over currently

MetaBin, Fig. 3 Screenshot of visualization page

MetaBin, Fig. 2 Screenshot of results page for the sample query

MetaBin 371 M

M



existing programs for carrying out the taxo-

nomic binning of metagenomic sequences with

high accuracy, speed, and sensitivity.
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Introduction

The relationship between man and microbes is as

old as the age of man himself and it is no wonder

that man carries around ten times more of these

little friends than of his own cells (Gill et al. 2006).

However, it has only been a few 1,000 years since

man first learned to harness the power ofmicrobes,

initially to accomplish crude and trivial fermenta-

tions like brewing and curdling. With the evolu-

tion of man, today, these applications have been

extended to almost all areas such as agriculture,

pharmaceuticals, industry, biotechnology etc.,

where microbes have become indispensable.

These applications have now become more

refined, and the most remarkable change, which

has happened, is that microbial enzymes have

replaced whole microbes in many such processes.
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These microbial enzymes a.k.a. “biocatalysts”

offer ecologically friendly or “green” solutions

for the implementation of biochemical processes

at a reduced cost and produce a large variety of

chemical substances without involving the use

of polluting reagents that are often character-

istic of chemical synthesis (Ferrer et al. 2005).

However, only a few enzymes are currently

known which can be used as biocatalysts due to

the limited number of sequenced microbes,

which is principally limited by the fact that

most (>98%) of the microbes cannot be cultured,

a necessary step for their sequencing by tradi-

tional methods (Amann et al. 1995). This, yet

unculturable, majority of microbes potentially

conceals an enormous treasure of unknown bio-

logical functions locked in their unidentified

genes, proteins, and biochemical pathways.

Therefore, approaches aimed at mining environ-

mental genetic diversity can significantly

enhance the enzyme repertoire and will be help-

ful in the discovery of novel biocatalysts with

potential biotechnological applications.

Another feasible, yet challenging method is to

create novel biocatalysts by using in silico

approaches and bioengineering is to reshuffle

the 20 known amino acids and mutate the existing

proteins. However, there exist nearly infinite pos-

sibilities for such an approach, and it is impracti-

cal and costly to test them all. In this scenario,

nature appears the veteran since it began its

bioengineering laboratory billions of years ago

and has already created and tested an intriguing

diversity of biochemical pathways and their

constituent enzymes that perform numerous

transformations of molecules in diverse biologi-

cal systems with great precision and specificity.

Therefore, it is conceivable that the ideal biocat-

alyst may already exist in nature and a wise strat-

egy would be to augment our knowledge base by

exploring the inherent diversity of nature.

To this end, metagenomics has emerged as

a powerful culture-independent approach for

exploring the complexity of microbial genomes

in their natural environments (Tringe and Rubin

2005a).Manymetagenomic projects have recently

been conducted, such as metagenomic studies of

soil, sea, acidmines, human gut, termite gut, whale

fall, etc. (Daniel 2005; Edwards and Rohwer

2005; Kurokawa et al. 2007; Tringe et al. 2005;

Turnbaugh et al. 2006; Tyson et al. 2004;

Venter et al. 2004a; Warnecke et al. 2007), and

several large-scale worldwide metagenomic

projects are currently under progress or in plan-

ning. From these metagenomic projects,

some important biocatalysts have already been

isolated such as lipases/esterases, proteases,

nitrilases, b-lactamases, hydrolases, cellulases,

a-amylases, xylanases, oxidoreductases, and dehy-

drogenases (Ferrer et al. 2005;Yun andRyu 2005).

Therefore, the upcoming information from further

metagenomic projects holds enormous prospect

for the discovery of novel genes, biocatalysts,

and biochemical pathways, irrespective of the

necessity for complete genomic sequences.

Novel biocatalysts can be detected in genomic

or metagenomic libraries using three commonly

used strategies: (i) homology-driven screening,

(ii) substrate-induced gene expression screening,

and (iii) activity-based analysis (Ferrer

et al. 2005; Yun and Ryu 2005). While these

methods have certain advantages like high spec-

ificity and reliability, they require extensive min-

ing of large genomic or metagenomic libraries

and result in a few positives per enzymatic

screening (Ferrer et al. 2005). This is further

limited by the low quality of DNA, low coverage,

host bias, and need for better vector-host combi-

nations for expression.

An alternative and promising approach which

now exists involves direct shotgun sequencing of

metagenomic libraries (Tringe and Rubin 2005b).

This approach was earlier considered too expen-

sive, since it required massive sequencing by con-

ventional sequencers (Sanger). However, the recent

availability of a new generation of sequencers, like

Roche 454, Illumina HiSeq, Ion Torrent, etc., has

made sequencing even more high-throughput, sev-

eral orders less expensive, and most importantly

cloning independent (Mardis 2008). Considering

the sheer volume of metagenomic samples and

implementation of such high-throughput sequenc-

ing methods, combined with high-throughput

computational analysis, screening of potential

biocatalysts is more promising and is likely to

accelerate the process of biocatalyst discovery.
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In the present entry, we describe a computa-

tional platform and resource to identify novel

biocatalysts in metagenomic datasets using

homology-based approaches. We have developed

a comprehensive Metagenomic BioMining

Engine (MetaBioME) platform (Sharma et al.

2010), which provides a unique resource for the

identification of novel alternatives to the existing

known biocatalysts and novel biocatalysts in

metagenomic datasets, which can be used as

leads for further experimental verification.

Results

The distribution of 510 biocatalysts in nine appli-

cation categories indicates that the highest num-

ber (234, 46 %) of biocatalysts is present in the

“Biotechnology” category and the lowest (3, 3 %)

in the “Energy” category (Fig. 1).

Oxidoreductases (EC 1), which catalyze

oxidation-reduction reactions, are most abundant

in five out of nine applications, namely, Enzymatic

Analysis (95 %), Energy (75 %), General Appli-

cations (74 %), Environment (45 %), and Medical

(42 %). Transferases (EC 2), which perform the

transfer of functional groups from one molecule to

another, are most abundant in three application

categories, namely, Agriculture (50 %), Nutrition

(48 %), and Biotechnology (37 %). Hydrolases

(EC 3), which are involved in formation of two

separate products from a single substrate by hydro-

lysis, are most abundant only in Industrial appli-

cations (45 %). It is clear from the above findings

that oxidoreductases (EC 1) are most widely used

as biocatalysts followed by transferases (EC 2) and

hydrolases (EC 3). It is also noteworthy that

although hydrolases (EC 3) constitute most of the

enzymes among the six EC classes, they are not

the most widely employed biocatalysts. The

biocatalysts belonging to the remaining three EC

classes (4, 5, and 6) were not as widely distributed

or were completely absent from many of the nine

application categories.

Gene Prediction in Metagenomic Datasets

(Except HFV)

The average contig length in the metagenomic

datasets varied between 0.8 and 1.8 kb with the

exception of AMD (4.18 kb). The prediction of

General Applications

Oxidoreductase (EC1)
Lyase (EC 4)

Transferase (EC 2)
Isomerase (EC 5)

Nutrition

Medical

Industry

Enzymatic Analysis

Environment

Energy

Biotechnology

Agriculture

All Applications

All Enzymes

Hydrolase (EC 3)
Ligase (EC 6)

MetaBioME, Fig. 1 Distribution of enzymes (EC classes) into nine application categories
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ORFs by Glimmer and MetaGene showed con-

siderable variation with MetaGene predicting up

to twice the number of ORFs as compared to

Glimmer. With the exception of AMD, having

an average number of four ORFs per contig

predicted by MetaGene and Glimmer, the aver-

age number of ORFs per contig for the remaining

datasets was found to vary between 0.6 and 2.3.

The median protein length in bacteria was

reported in one study as 267 amino acids

(801 base pairs) (Brocchieri and Karlin 2005).

Since, in the above analysis, the average length

of the contigs varies between 0.8 and 1.8 kb, and

the average number of ORFs per contig varies

between 0.6 and 2.3, it is likely that a significant

portion of at least one ORF can be predicted in

a contig of about 1 kb (Tringe et al. 2005). The

ORFs predicted by Glimmer and MetaGene in all

the metagenomic datasets were fed into the

“Metabase” database, which is being used for

the development of MetaBioME.

Identification of Potential Biocatalysts

Using MetaBioME’s homology-based approach,

we identified 199 potential alternatives (49 % of

total biocatalysts) to known biocatalysts in the

metagenomic datasets using a stringent threshold

of identity �50 % and coverage �90 %. Among

the nine application categories, novel alternatives

to known biocatalysts could be predicted for

39–50 % of total biocatalysts in each category.

We further relaxed the above cutoff (identity

�30 % and coverage �90 %) to identify an

expanded list of potential alternate biocatalysts

in the metagenomic datasets which could be used

as leads for experimental verification. Using this

relaxed cutoff, novel alternatives for a total of

305 (75 %) biocatalysts could be identified in

the metagenomic datasets from all application

categories. Among these potential biocatalysts,

20 were commonly found in all nine

metagenomic datasets, while 64 biocatalysts

were rare and could be found in any one of the

nine metagenomic datasets.

Description of Web Resource: MetaBioME

We used the above strategy, data, and results to

develop a comprehensive resource “MetaBioME,”

which can be queried using a publicly available

Web interface available at http://metasystems.

riken.jp/metabiome (Sharma et al. 2010). The

key idea of MetaBioME is to develop a computa-

tional tool for mining metagenomic datasets by

using homology-based approaches to discover

novel biocatalysts and novel alternatives for

existing biocatalysts, with advanced analysis

options for facilitating the validation of results.

Therefore, for comprehensive querying, we have

developed the following query pages:

MetaSearch: It houses a pre-classified set of

510 biocatalysts in nine application categories

that can be searched for in different metagenomic

datasets.

MetaXplorer: It contains the complete set of

EC enzymes and options to search for their

homologous ORFs in metagenomic datasets.

MetaAlign: It allows users to submit a gene or

protein sequence of interest and search for the

existence of a homologous ORF in metagenomic

datasets.

The details of these query pages are provided

below.

MetaSearch: Search for Biocatalysts in

Metagenomic Datasets

The “MetaSearch” query page is designed to

identify novel biocatalysts, categorized into nine

main application categories in metagenomic

datasets (Fig. 2).

This pre-classification helps the user to select

biocatalysts belonging to any application area and

search for them inmetagenomic datasets. A search

can be made by selecting one or more of the

application categories and a single metagenomic

dataset. Since the metagenomic datasets contain

volumes of information, the number of hits

reported for each query is expectedly large; there-

fore, we have currently restricted the option to

select and search in only one metagenomic dataset

per query. The queries can also be made by

selecting different attributes such as EC number,

enzyme name, Swiss-Prot ID, biochemical path-

way, and substrate or products. Multiple keywords

can also be submitted using Boolean operators. An

option is also provided to limit the number of

results by selecting “Best hit” or “Best 10 hits.”
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On submission of a query for a selected appli-

cation category and metagenomic dataset,

MetaBioME examines the alignments of all

Swiss-Prot sequences known for all EC numbers

present in that category with the ORFs predicted in

contigs of the selected metagenomic dataset. The

subsequent “MetaResults” page displays the qual-

ified hits as a table sorted on the basis of percent

coverage (completeness of the alignment) and pro-

vides a list of all matching Swiss-Prot IDs which

showed at least 50 % coverage with the matched

metagenomic contigs (Fig. 3).

Comprehensive information for each match

can be retrieved by clicking on the Swiss-Prot

ID link on the Results page which opens up the

“MetaBioME Profile” page. The profile page

summarizes information on the enzyme proper-

ties, reaction performed, pathway information

(as available in KEGG), links to related

publicly available databases, queried dataset,

MetaBioME, Fig. 2 Screenshot of “MetaSearch” page with a sample query
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and application category. This information is

followed by a table of predicted ORFs, where

the ORFs are segregated as commonly predicted

by Glimmer and MetaGene and uniquely

predicted by Glimmer or MetaGene, respec-

tively. The ORF showing the best match with

the Swiss-Prot sequence is highlighted in green.

This table is followed by the contig view window

displaying the predicted ORFs as directional

arrows as per the orientation of the ORFs on the

contig. The best match is displayed as a green-

colored arrow. Each arrow can be clicked to

retrieve the nucleotide and protein sequences of

the predicted ORFs. This window is followed by

a table providing summary information for the

best matching ORF. The next table provides

information on the closest available PDB struc-

ture and displays the 3-D protein structure.

In order to provide a useful indicator for the

goodness of the results, we have provided

a “MetaBioME Rating,” which rates the best

matching ORF on a scale of 1–5 stars, with

a single star for lowest match and five stars for

the best match. In the case of a good match, users

are advised to carry out an “Advanced Search,”

which helps to confirm the goodness of the results

by using a suite of options. Users can check the

alignment of the Swiss-Prot sequence of the

selected biocatalyst with the best matching

ORF. Since conserved motifs likely play a key

role in the activity of an enzyme, all Swiss-Prot

sequences belonging to the same EC number can

be aligned together or with the best matching

ORF to find the overall sequence homology

among these sequences. This helps in the identi-

fication of conserved motifs and confirms if the

best matching ORF also possesses any conserved

motifs which may be present in the Swiss-Prot

sequences. As another functional confirmation,

users can also look for the presence of conserved

domains in the best matching ORF by aligning

the sequence against the NCBI Conserved

Domains Database (CDD).

Additionally, the user can also check if the

same Swiss-Prot sequence of the biocatalyst in

question is present in any other metagenomic

MetaBioME, Fig. 3 Screenshot of “MetaResults” page showing the results of the submitted sample query
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dataset by carrying out a homology search against

other metagenomic datasets. Another search

option is provided to determine if the novel

predicted ORF sequence is already present or

has a close match with any protein from a

known genome available in the Non-Redundant

(NR) database. These additional options are help-

ful in confirming the uniqueness of the novel

identified biocatalyst.

CUEsXplorer: Explore Commercially Useful

Enzymes (CUEs) Database

This page provides options for exploring the

CUEs database for any application category or

EC classification. It provides details about

enzyme function and the curation summary of

any selected enzyme (Fig. 4).

MetaXplorer: Search for Enzymes in

Metagenomic Datasets

This query page provides an option to select and

search for any enzyme from the six EC classes in

metagenomic datasets (Fig. 5).

On selecting any EC class, a list box

containing all EC numbers belonging to that

class opens up. Selecting an EC number from

this list box reveals an expanded page with infor-

mation on the enzyme name, EC number, Prosite

ID, enzymatic reaction, KEGG pathway, and list

of all Swiss-Prot IDs belonging to that EC

number. Any representative Swiss-Prot sequence

can be selected and searched by TBLASTN in

one or more metagenomic datasets selected from

the drop-down menu. The results “MetaSearch

Results” and profile “MetaBioME Profile”

pages, for the submitted query, are similar to as

explained in the earlier section. This query page

provides users with an option to search all known

enzymes, as available in EC, irrespective of their

known role as biocatalyst, which is a subset of

this set.

MetaAlign: Online Application to Search for

Protein Sequences in Metagenomic Datasets

MetaAlign is an application powered by the

BLAT (faster and less sensitive) and BLAST

(slower and more sensitive) sequence alignment

tools (Fig. 6).

It provides the user an option to carry out

homology-based searches for single or multiple

(multi-FASTA format) submitted nucleotide or

protein sequences against the metagenomic

sequences available in the ten metagenomic

datasets. Larger files containing multiple

sequences can also be uploaded, with an email

being sent to the user on completion of analysis.

The searches can be limited by selecting the

threshold E-value and the number of resultant

hits. The output format can also be specified as

“tabular” or “full” (complete alignment).

MetaBioME, Fig. 4 Screenshot of “CUEsXplorer” page
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Discussion

There is so much richness and natural diversity

inherent in the metagenomic data that the possi-

bility of retrieving functional genes of interest is

almost certain. This is further assured with the

availability of more metagenomic datasets, deeper

coverage, and completed genomic sequences.

Therefore, a computational homology-based

approach search engine such as MetaBioME has

great potential to reveal novel alternatives for

existing biocatalysts.

To look for an “ideal biocatalyst,” however, is

not an easy task, since the requirements and con-

ditions of the bioprocesses are not constant. Gen-

erally, an “ideal” catalyst is defined in terms of

turnover number (kcat) or, for a given process,

in terms of the maximum specificity constant

(kcat/KM) (Burton et al. 2002). However, from

a bioprocess viewpoint, each bioprocess is

constrained by a set of conditions governed by

the specific properties of the substrates, products,

and the bioconversion reaction. Thus, the currently

used microbial biocatalysts, whose selection has

been limited by the limited number of available

genomes, may not be “ideal” and sometimes, the

industrial processes have to be designed to fit only

mediocre enzymes (Lorenz and Eck 2005).

Therefore, MetaBioME does not involve an

exclusive approach in looking for ideal

biocatalysts, but employs an inclusive approach

to identify all possible alternatives with reasonable

criterion. For any given function (EC number),

MetaBioME reports all possible ORFs (with strin-

gent cutoff similarity) from the naturally existing

diverse protein repertoire of yet unidentified

microbial genomes which have evolved and sur-

vived in diverse environments. Thus, each resul-

tant metagenomic ORF having significant

similarity to a known biocatalyst is unique with

distinct characteristics such as thermodynamic and

pH stability, turnover frequency, specific activity,

etc., offering a wide choice for their selection and

employment as per the requirements for a given

bioprocess. This approach is especially useful for

pharmaceutical and supporting fine-chemical

companies, both of which exploremultiple diverse

biocatalysts to construct their local databases for

biotransformations (Lorenz and Eck 2005).

The alternative novel biocatalysts found using

MetaBioME can serve as leads for further exper-

iments involving cloning and expression to estab-

lish their enzymatic activity and commercial

potential. Therefore, a combination of computa-

tional predictions of MetaBioME with activity-

based mining and subsequent tailoring of these

proteins using bioengineering techniques could

provide a proficient prospect to replace chemical

synthesis with biotechnological processes, which

are ultimately more sustainable to mankind.

MetaBioME, Fig. 5 Screenshot of “MetaXplorer” page
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Methods

Enzyme Database

We have used the Enzyme Commission number

(EC number) as a numerical classification

scheme for enzymes based on the chemical reac-

tions they catalyze, with each EC class exclu-

sively defining the function performed by the

enzyme (Bairoch 2000). Information on the com-

plete set of 4,877 enzymes annotated with an EC

number was retrieved from the ENZYME

nomenclature database, as available at ExPASy.

Swiss-Prot sequences were retrieved from the

Swiss-Prot database (O’Donovan et al. 2002)

for the different enzymes belonging to these EC

numbers. The remaining EC numbers did not

have any known Swiss-Prot sequence. An EC

number in this analysis is used exclusively to

refer to an enzyme and defines its function.

We curated a database of 510 microbial

enzymes, with known or potential commercial

applications as “biocatalysts,” by mining the

information available at BRENDA (Barthelmes

et al. 2007), NCBI (Wheeler et al. 2008), ExPASy

(Gasteiger et al. 2003), and available literature.

These biocatalysts were classified into nine broad

MetaBioME, Fig. 6 Screenshot of “MetaAlign” page
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application categories, namely, Agriculture, Bio-

technology, Energy, Environment, Enzymatic

Analysis, General Applications, Industry, Medi-

cal, and Nutrition. These broad application cate-

gories were further subclassified into 21 more

specific subcategories.

Other Resources

The Non-Redundant (NR) and Conserved

Domains Database (CDD) were retrieved

from NCBI (ftp://ftp.ncbi.nih.gov/blast/db),

and Protein Data Bank (PDB) database was

retrieved from the Worldwide Protein Data

Bank (wwPDB) (http://www.wwpdb.org/). Pro-

tein structures were created using RasMol

(version 2.6).

Mining the Metagenomic Databases

The publicly available metagenomic data from

ten diverse environments is analyzed in the cur-

rent version of the database. Of these, the

Sargasso Sea [SSEA] dataset was retrieved from

the J. Craig Venter Institute (https://research.

venterinstitute.org/sargasso/) (Venter et al.

2004b), and the remaining nine datasets, includ-

ing sludge [SLUDGE] (Garcia et al. 2006), acid

mine drainage [AMD] (Tyson et al. 2004), whale

fall [WFALL] (Tringe et al. 2005), soil [SOIL]

(Tringe et al. 2005), human gut (2 individuals)

[HGUTI] (Gill et al. 2006), human gut (13 indi-

viduals) [HGUTII] (Kurokawa et al. 2007),

mouse gut [MGUT] (Turnbaugh et al. 2006),

termite gut [TGUT] (Warnecke et al. 2007),

and human fecal virus [HFV] (Zhang et al.

2006), were retrieved from the DDBJ data-

base (ftp://ftp.ddbj.nig.ac.jp/database/wgs/WGS_

ORGANISM_LIST.html). The sequences avail-

able in these datasets are referred to as “contigs”

by the authors; therefore, we have called them

“contigs” in this analysis. However, we realize

that several metagenomic sequences in these

datasets are too short to be called contigs and are

likely singletons.

Swiss-Prot protein sequences of known

biocatalysts were aligned with their

corresponding nucleotide sequences (contigs) in

each metagenomic dataset using TBLASTN with

a threshold of E < 10�6, with only the best ten

matches being considered, and the output was

generated in XML format.

Complete and partial ORFs (open reading

frames) were predicted in the metagenomic

sequences using the Glimmer (Delcher et al.

2007) and MetaGene (Noguchi et al. 2006)

gene prediction programs with a minimum

length of 50 amino acids (150 nucleotides).

We adopted a self-training approach for

implementing Glimmer by using the contig

itself as the training sequence. Additional confi-

dence for an ORF prediction is provided by

integrating the results of MetaGene and Glim-

mer, using an in-house developed algorithm

“SuperGene.” It called the ORFs as “Exact”

(same start and end predicted by both methods),

“End_match” (start is variable and only end is

matching), and “Unique” (predicted by only one

method). The “Exact” ORFs are certainly

predicted with higher confidence with reliable

start and end positions, because they were

predicted by two independent methods. For the

“End_match” cases, the longer ORF was kept in

this analysis to ensure that no part of an ORF

was left out, even if some extra part was

included in the initial prediction. The exact

start and end were further confirmed after align-

ment of the ORFs with their corresponding

Swiss-Prot sequences. The ORFs lying at the

terminals of the contigs were considered partial.

The above data was imported into a MySQL

database (Metabase).

Web Interface and Metabase Development

Apache (version 2.2.8), MySQL (version 5.0.45),

PHP (version 5.2.4), and Perl (version 5.8.5) were

used for development of the GUI. The back-end

database was called as “Metabase.” The Web

server was developed using Apache HTTP Server

(version 2.2.8). Client-side scripting was done

using XHTML, JavaScript, and AJAX, and

server-side scripting was done using PHP and

XML. The publicly available applications,

BLAT (v34) (Kent 2002), BLAST (version

2.2.17) (Wheeler et al. 2008), and MAFFT

(version 6.240) (Katoh et al. 2005), were used

for additional analysis.
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MEtaGenome ANalyzer (MEGAN):
Metagenomic Expert Resource

Daniel H. Huson

Center for Bioinformatics, Algorithms in

Bioinformatics, University of T€ubingen,

T€ubingen, Germany

Synonyms

MEGAN ¼ MEtagenome ANalyzer

Definition

MEGAN is a tool for analyzing metagenomic

sequencing data, allowing the user to interac-

tively explore the taxonomic and functional con-

tent of a dataset. It also supports the comparison

of multiple datasets. The program was originally

published in (Huson et al. 2007), and the most

recent version was published in (Huson

et al. 2011). Written in Java, the program runs

on all major operating systems. The program can

be downloaded from http://www-ab.informatik.

uni-tuebingen.de/software/megan.

Introduction

Metagenomics is the study of uncultured organ-

isms in their native environment using DNA

sequencing (Handelsman et al. 1998). In

a typical project, DNA (or, in the case of meta-

transcriptomics, cDNA reverse-transcribed from

RNA) is extracted from an environmental sample

and then shotgun sequenced. Once a metagenome

dataset of DNA sequencing reads has been gen-

erated in this way, the first three main computa-

tion challenges are to (1) estimate the taxonomic

content of the sample, (2) estimate its functional

content, and (3) compare different samples.

To address these challenges, the first step is to

align the set of sequencing reads against

a database of known reference protein sequences

such as NCBI-NR or RefSeq (Benson et al. 2005)

using a pairwise alignment tool such as BLASTX

(Altschul et al. 1990) or RapSearch2 (Zhao

et al. 2012). A read is said to hit a given reference

sequence, if a significant alignment is found in

this process. The comparison of the sequencing

reads against a reference database is usually the

computationally most expensive step of analysis,

and subsequent steps are based on the obtained

alignments. Given the result of the alignment

step, an analysis program such as MEGAN is

then required to explore and analyze the data.

Taxonomic Analysis

To perform a taxonomic analysis of

a metagenomic dataset, MEGAN attempts to

place each read onto a node in the NCBI taxon-

omy, based on an analysis of its hits. The key idea

is to use all ranks of the taxonomy so as to assign

reads specific to a particular species near the

leaves of the taxonomy and to map sequences

that are conserved across a wider range of organ-

isms to higher-level nodes. For example, a read

that comes from a gene that only Escherichia coli

has will be placed on the E. coli node, whereas

a read that comes from a gene that is shared

widely across different Proteobacteria will be

assigned to the node labeled Proteobacteria.
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The input to MEGAN is a file of DNA reads

and a file containing all their hits in a reference

database, usually in BLAST or SAM format. In

addition, at start-up, MEGAN reads in the whole

NCBI taxonomy. To perform a taxonomic analysis

of a metagenome dataset, MEGAN processes each

DNA read in turn, assigning each read to the node

in the NCBI taxonomy that is the lowest common

ancestor of the set of species associated with all

reference sequences that were hit by the read. This

approach is known as the LCA algorithm.

The LCA algorithm has a number of parame-

ters, such asminScore, the minimum bit score that

an alignment must achieve to be considered;

minPercent, a further filter to remove all those

hits whose bit score differences by more than the

given percentage from the top scoring hit for the

given read; andminSupport, the minimum number

of reads that a node in the NCBI taxonomy must

attract before it is shown in the final output.

Reads that have no hits are assigned to

a special node labeled No Hits, whereas reads

that have hits but cannot be assigned to a taxon

are mapped to a special Unassigned node. In

addition, reads consisting of highly repetitive

sequence are assigned to a Low Complexity node.

MEtaGenome ANalyzer (MEGAN): Metagenomic
Expert Resource, Fig. 1 Taxonomy analysis of

�500,000 reads from an in vitro-simulated microbial

community Morgan et al. (2010). Each circle represents

a taxon in the NCBI taxonomy and is scaled

logarithmically to indicate how many reads have been

assigned to it. In addition to the taxon name, each node

is also labeled by the cumulative number of reads assigned

to, or below, that node
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The pertinent part of the NCBI taxonomy is

displayed in the taxonomy viewer of MEGAN,

and by default, each node is scaled logarithmi-

cally to represent the number of reads associated

with it; see Fig. 1. Nodes can be interactively

collapsed or expanded to show more or fewer

details of the classification. The user can select

nodes of interest and then either inspect the

associated reads and alignments, or save them

to a file, or chart them in a number of standard

ways.

Functional Analysis

MEGAN uses both the SEED (Overbeek

et al. 2005) and the KEGG (Kanehisa and Goto

2000) classifications to analyze the functional con-

tent of a metagenome dataset. In essence, the

SEED classification maps genes onto functional

roles, and these appear in different subsystems.

Similarly, KEGG maps genes onto KEGG

orthology groups, or KO groups, which are asso-

ciated with enzymes that appear in different

MEtaGenome ANalyzer (MEGAN): Metagenomic
Expert Resource, Fig. 2 SEED-based functional analy-

sis of �500,000 reads from an in vitro-simulated micro-

bial community Morgan et al. (2010). The SEED

classification tree has been partially expanded to show

details on functional roles involved in flagellar motility.

Each circle represents a SEED category and is scaled

logarithmically to indicate the cumulative number of

reads that have been assigned to it. In addition to the

SEED name, each node is also labeled by the number of

reads assigned to, or below, that node

MEtaGenome ANalyzer (MEGAN): Metagenomic Expert Resource 385 M

M



pathways. In both cases, the classification can be

represented as a tree with roughly 13,000 nodes.

To perform a SEED-based analysis, for each

read in the input, MEGAN identifies the highest

scoring hit to a reference sequence for which the

corresponding functional role is known and then

maps the read to that functional role. In a KEGG-

based analysis, each read is mapped to a KO

group in a similar fashion.

Both the SEED and KEGG classifications are

displayed as trees in MEGAN, and the viewers

provide the same interactive features as the

taxonomy viewer. In additional, the KEGG

viewer allows one to see how reads map to dif-

ferent enzymes in a given pathway; see Figs. 2

and 3.

Sequence Alignment

As pointed out above, the main computational

step is to compute pairwise alignments between

the set of DNA reads and all sequences in an

appropriate reference database. Based on this,

MEtaGenome ANalyzer (MEGAN): Metagenomic
Expert Resource, Fig. 3 KEGG-based functional anal-

ysis of �500,000 reads from an in vitro-simulated micro-

bial community Morgan et al. (2010). The KEGG

classification tree has been partially expanded to show

details on KO groups involved in flagellar assembly.

Each circle represents a KEGG category and is scaled

logarithmically to indicate the cumulative number of

reads that have been assigned to it. In addition to the

KEGG name, each node is also labeled by the number of

reads assigned to, or below, that node
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it is possible to construct reference-guided mul-

tiple sequence alignments between all reads that

hit the same reference sequence. This calculation

is implemented in MEGAN in a new feature

called the alignment viewer. Once the user has

specified a node in the taxonomy, SEED or

KEGG viewer for which the alignment viewer is

to be launched, the program first collects all ref-

erence sequences that correspond to the given

node and then, for each such reference sequence,

the program determines all reads that hit it. The

user can then select a reference sequence, and the

corresponding sequence alignment is subse-

quently displayed; see Fig. 4.

Comparison of Datasets

To facilitate the comparison of datasets, MEGAN

allows the user to open multiple datasets simul-

taneously, showing each dataset in a different

window. The user can then select a number of

open datasets to be combined into a single new

comparison document. For such a document, the

taxonomy, SEED, and KEGG viewers indicate

how many reads were assigned to each node for

each original input document by drawing the

node as a pie chart or bar chart, for example, see

Fig. 5. MEGAN also supports the calculation of

standard ecological indices for a comparison

MEtaGenome ANalyzer (MEGAN): Metagenomic
Expert Resource, Fig. 4 MEGAN’s alignment viewer

constructs and displays a multiple sequence between all

reads that map to the same reference sequence. The top

track shows the reference sequence and the main panel

displays the aligned reads. Letters shown in gray belong to

the reads but are not part of the alignment
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document and then, based on this, the program

can be used to compute a tree, network, or MDS

plot (not shown here).

Handling Large Data

As sequencing technologies continue to improve,

the size of analyzed datasets continues to

increase. MEGAN was reportedly used to per-

form the taxonomic analysis of 124 human gut

samples involving around 600 gigabases of

sequence (Qin et al. 2010). In an ongoing study,

MEGAN is currently being used to analyze a set

of 350 million reads with 1.3 billion BLASTX

matches. While MEGAN is mainly designed for

interactive use on a laptop or desktop computer,

all features of the program can also be accessed in

command-line mode, and thus analyses can also

be performed on a server within the framework of

a larger bioinformatic analysis pipeline.

Summary

MEGAN is an interactive tool for analyzing

the taxonomic and functional content of

metagenomic (and metatranscriptomic) datasets.

MEtaGenome ANalyzer (MEGAN): Metagenomic
Expert Resource, Fig. 5 High-level comparison of

taxonomic content of four different cDNA datasets from

a seawater monitoring study (Gilbert et al. 2008). The four

different datasets are represented by different colors, and

each node shows a bar chart that indicates the number of

reads assigned to that node, on a logarithmic scale
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Input is a set of DNA reads and the result of

comparing the reads against a reference database.

Taxonomic analysis is performed by placing

DNA reads onto nodes of the NCBI taxonomy,

whereas functional analysis is based on mapping

reads to SEED and KEGG categories.

The program supports comparative analysis of

multiple datasets. The program is written in

Java and runs on all major operating systems.

When run in command-line mode, the program

can also be integrated into larger bioinformatic

analysis pipelines.

Cross-References

▶Metagenomics, Metadata, and Meta-analysis
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Synonyms

The microbiome of Andean acidic hot springs

Definition

Metagenomic analyses were done to obtain

a deeper view of the microbial community struc-

ture and to gain insight regarding the functional

properties present in the planktonic fraction of

these Neotropical high Andean acidic hot

springs.
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Introduction

High-mountain Andean ecosystems are rich in

biodiversity and natural resources (Myers

et al. 2000). The South American Andean region

is part of what is known as the “Ring of Fire” and

has several hot springs that represent unique and

undisturbed extreme environments due to their

high elevation and exposure to ultraviolet

(UV) light. These springs are heated mainly by

the underlying magma chamber from volcanic

activity; they are oligotrophic and vary in their

geochemistry, such as mineral content, tempera-

ture, and pH. Thus far, little is known regarding

the microbiomes of these high-mountain ecosys-

tems. A hot spring is characterized by discharge

of hot water from a vent. There is, however, no

universally accepted definition of “hot,” and the

temperature for distinguishing a “warm spring”

from a “hot spring” remains contentious (Rzonca

and Schulze-Makuch 2003; Pentecost et al. 2003;

Jones and Renaut 2011). Hot springs contain

several microhabitats such as the planktonic frac-

tion (which has low cell density), microbial mats,

and sediments (with high cell density) each with

different microbial assemblages. The microbial

diversity in the planktonic fraction is dictated by

environmental physicochemical characteristics

as a pH, redox potential, temperature, and con-

centration of trace elements (Siering et al. 2006;

Mathur et al. 2007). Metagenomic (total DNA),

metataxonomic (16S rRNA and/or ITS

sequences), meta-transcriptomic (mRNA), and

PCR-target analyses have been extremely valu-

able for describing the microbial structure and

functionality in different hot springs (López-

López et al. 2013; Wemheuer et al. 2013; Liu

et al. 2011). Cyanobacteria and Chloroflexi, for

example, are abundant in low temperature-

sediment samples from high-mountain hot

springs located in the Tibetan plateau (Wang

et al. 2013). A previous analysis of the planktonic

microbial community in one Colombian acidic

hot spring (El Coquito) located in the national

park of Los Nevados showed that Bacteria rather

than Archaea dominated the community, with

predominance of Proteobacteria, Firmicutes,

and Planctomycetes (Bohórquez et al. 2012a).

These acidic-hot ecosystems are also of interest

as a source of potential biotechnological prod-

ucts, new species (Tirawongsaroj et al. 2008;

Bouraoui et al. 2013), and features relevant to

ecosystem maintenance and ecology such as hor-

izontal gene transfer, UV damage, and biogeo-

chemical cycles. The microbial planktonic

community contained putative chemotrophic

bacteria potentially involved in cycling of ferrous

iron and sulfur-containing minerals. In extremely

acidic and UV light-irradiated hot springs, pri-

mary production may also be mediated by

phototrophic acidophiles (mainly eukaryotic

micro-algae) (Aguilera et al. 2010). However,

the presence of bacterial-rhodopsin photosystems

has been reported to complement the

chemotrophic lifestyle (Bohórquez et al. 2012b).

Metataxonomic Approach: Microbial
Diversity Assessment by 16S rRNA
Sequences

Microbial diversity in terrestrial hot springs has

been extensively studied in locations as varied as

Yellowstone National Park (YNP), Japan, New

Zealand, Great Basin, Iceland, Thailand, the Phil-

ippines, Russia, and the Tibetan plateau. These

surveys, done mostly by 16S rRNA gene analy-

sis, have expanded our view of the microbial

communities present in these extreme and

difficult-to-study water ecosystems. An elegant

multi-approach based on 16S rRNA analysis of

an acidic hot spring in the Colombian Andes,

called El Coquito (EC) (Fig. 1), was recently

carried out using high-throughput sequencing,

PhyloChip, and 16S rRNA clone libraries

(Bohórquez et al. 2012a). The EC hot spring is

located at 3,973 m above sea level and is charac-

terized by an acidic pH (2.7), high solar radiation

(~9–11 mW/cm2 nm UV-B), and high sulfate

content (1,003 mg SO4
�2 L�1). This spring is

moderately hot, with a water temperature of

approximately 29 �C, which is considerably

higher than ambient temperature (~9 �C) (Rzonca
and Schulze-Makuch 2003). Despite differences

among the results obtained with the three strate-

gies used to analyze the microbial diversity of
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this ecosystem, there was dominance of the

orders Burkholderiales, Legionellales,

Rhodospirillales, Rhodocyclales, Clostridiales,

Planctomycetales, Nitrospirales, Rhizobiales,

and Acidomicrobiales. The most abundant gen-

era belonged to Acidithiobacillus, Acidiphilium,
Leptospirillum, Thiomonas, Acidocella, and

Acidisphaera. In general, the community was

reminiscent of those found in hot and acidic envi-

ronments with mesophilic organisms (Norris

2001; Stout et al. 2009). The high abundance of

chemolithoautotrophic and heterotrophic acido-

philes suggested that primary production in this

community could be driven by solar energy at the

surface and by inorganic chemicals that affect the

biogeochemistry of iron and sulfur in the water.

Amore recent evaluation of 16S rRNA sequences

present in EC hot spring, based on analysis of

whole metagenome sequencing, which thus elim-

inates biases associated with PCR and cloning

(Jiménez et al. 2012), showed consistent results

and prevalence of Gammaproteobacteria,

Alphaproteobacteria, and Betaproteobacteria

(25 %), followed by micro-algae chloroplast

ribosomal DNA (15 %), Firmicutes (14 %), and

Bacteroidetes (6 %). Both studies detected oxy-

genic eukaryotic phototrophs that could be pre-

sent both in the planktonic fraction and in mat

communities. Overall, the community was dom-

inated by Bacteria rather than Archaea; it had

a large proportion of novel and unclassified

sequences and the presence of eukaryotic micro-

algae. In addition, the presence of chemolithoau-

totrophic acidophiles in this high-mountain

thermal spring suggested that primary production

could be driven by chemical energy in the water,

as well as by solar energy at the surface.

A comparative study of the planktonic micro-

bial communities in five high-mountain hot

springs was also carried out by 16S rRNA gene

assessment. The springs, which varied in altitude,

geographical location, and geochemical

Metagenome of Acidic Hot Spring Microbial Plank-
tonic Community: Structural and Functional
Insights, Fig. 1 Photographs of the acidic hot spring

El Coquito (EC); red circle indicates the planktonic

fraction and black square indicates the biofilm surface

formation

Metagenome of Acidic Hot Spring Microbial Planktonic Community 391 M

M



characteristics, also showed differences in terms

of diversity indexes. However, certain bacterial

phyla showed predominance in all of them:

Proteobacteria, Aquificae, Chloroflexi,

Cyanobacteria, Firmicutes, Nitrospirae, and

Thermotogae. Based on cluster analysis of the

microbial populations, these spring communities

grouped together in a manner consistent with

sample physicochemical parameters, with pH

and sulfate concentration being the parameters

that most influenced the population structure.

Some springs were also characterized by site-

specific bacterial taxa that distinguished each

community. Thus despite their geographic prox-

imity and similar origins, the environmental fac-

tors at each location have resulted in marked

differences in the microbial assemblages present.

Metagenomic Approach: Taxonomic
and Functional Assignment of
Metagenome Sequences

Although 16S rRNA gene analysis is very useful

for assessing microbial diversity, it does not pro-

vide ecologically relevant functional informa-

tion. Thus a direct analysis of total

metagenomic sequences becomes relevant. The

current and most frequently used tools for taxo-

nomic and functional classification of

metagenomic reads are based on local alignments

(BLAST) against different databases and associ-

ating best hits to taxa, specific genes, functional

identifiers, or metabolic pathways (Montaña

et al. 2012). An analysis was therefore carried

out with 53 Mb of metagenomic information

retrieved from a planktonic fraction of the

EC hot spring (Jiménez et al. 2012). However,

only 8,121 reads (2.9 %) of the total reads

could be assigned to a taxonomic category,

suggesting a great amount of newly described

sequences or a large amount of noncoding DNA

present in these genomes (especially in micro-

eukaryotes). A high number of sequences were

related to Acidithiobacillales (represented by

sequences related to Acidithiobacillus caldus,

Acidithiobacillus ferrooxidans, and Acidithio-

bacillus thiooxidans) followed by Legionellales

and Rhodospirillales that included Acidiphilium
cryptum (1,681 assigned reads). A high propor-

tion of sequences related to enzymes involved in

transposition and integration of mobile genetic

elements (transposases) were mapped to the

A. cryptum JF-5 genome. By using BLASTX

against the NCBI-nr database and the MEGAN

v4.0 software, 19,876 sequences were associ-

ated with KEGG pathways, specifically to

metabolism of carbohydrates (2,623), amino

acids (2,584), energy (1,920), and nucleotides

(1,431). A total of 87,023 reads (30.9 %) were

assigned to 25 COG categories and most of the

sequences were related to replication, recombi-

nation, and repair (10,712 reads), suggesting

that these systems could be important in this

ecosystem where high UV radiation, acidic pH,

and high water temperature may cause signifi-

cant damage to DNA. Deep sea hydrothermal

vent chimneys and hot spring microbial commu-

nities are enriched in genes involved in

mismatch DNA repair and homologous recom-

bination, perhaps due to the need for extensive

DNA repair systems to cope with extreme con-

ditions that could have potential deleterious

effects on their genomes (Klatt et al. 2011; Xie

et al. 2011). In this study we also identified

sequences associated with quorum sensing and

cellular communication in biofilms, structures

that could form on the surfaces of these acidic

hot springs and could be relevant for ecosystem

functionality (Fig. 1).

Metagenomic Approach: Nitrogen and
Sulfur Transformations

Pathways involved in nitrogen and sulfur metab-

olism could be important in acidic hot spring

habitats where terminal electron acceptors other

than O2 may be relevant, such as nitrate, ferric

iron, arsenate, thiosulfate, elemental S, sulfate, or

CO2. Genes related to the dissimilatory reduction

of nitrate to nitrite (nar GHI genes), conversion

of nitrite to N2 (nir K, nir S, nor B, nos Z), and
associated with ferredoxin-nitrite reductase

(nir A) were found in the metagenome of EC

hot spring (Fig. 2a). The presence of nif

M 392 Metagenome of Acidic Hot Spring Microbial Planktonic Community
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K genes (associated with sulfate-reducing

Thermodesulfovibrio and sulfur-reducing bacte-

ria Desulfitobacterium) also indicated that in

addition to denitrification, nitrogen fixation

could also be taking place in this acidic hot

spring. Based on taxonomic affiliation, the

dissimilatory nitrate reduction is most likely

carried out by Proteobacteria-like organisms,

while assimilatory reduction of nitrate was asso-

ciated mostly with acidophilic micro-algae,

Acidobacteria, Spartobacteria, and Alphaproteo-

bacteria (Jiménez et al. 2012). Conversion of

sulfate into adenylylsulfate and, further, to

generate sulfite and H2S were also predicted

from sequence analysis of the EC metagenome.

This included genes involved in conversion of

adenylylsulfate to sulfite (apr AB; cys H), in

sulfite reduction and H2S formation (cys I), and
in the oxidation of sulfite to sulfate (sulfite oxi-

dase enzymes) (Meyer and Kuever 2008). These

pathways indicate that the oxidation of H2S and

(or) SO2 could be linked to the acidity of the

environment (Jones et al. 2012).

PCR-Target Approach:
Proteorhodopsin-Like Genes in Andean
Acidic Hot Springs

These Andean mountain hot springs are

subjected to a large amount of solar light, yet

taxonomic surveys identified only few

phototrophic bacteria (Bohórquez et al. 2012a;

Jiménez et al. 2012). Thus a search was

conducted to identify energy-harvesting bacte-

rial proteorhodopsins (PRs) that could also con-

tribute to productivity in these ecosystems

(Bohórquez et al. 2012b). PRs are retinal-

binding bacterial transmembrane proton pumps

that can generate energy from light, which are

therefore important in terms of carbon cycling

and energy flux in various aquatic ecosystems

(Fuhrman et al. 2008). PCR with degenerate

primers designed to target an internal conserved

region in the PR gene was used to identify puta-

tive PR sequences. Recovered sequences

showed between 80 % and 100 % identity at

the amino acid level with previously reported

PR sequences from both freshwater and marine

samples. These sequences contained conserved

residues indicative of proton-pumping activity

and of pigments that absorb green light. They

harbored diversity at the amino acid level and

clustered into three groups, showing similarity

with both freshwater and marine sequences. The

presence of these genes indicated that PR

phototrophy might play a role in these oligotro-

phic high-mountain aquatic habitats exposed to

abundant sunlight by providing a possible

advantage that could contribute to survival.

Summary

The sequence-based exploration of the

metagenomic content in Andean hot springs

goes beyond the identification of taxa using 16S

rRNA gene analysis and provides insight into

metabolic potential and ecosystem function. Tax-

onomic surveys of EC spring and other similar

springs indicated overall predominance of Bacte-

ria over Archaea, even in the most acidic waters.

Certain bacterial taxa predominated, but there

were also site-specific groups at each spring,

indicating that the surveyed microbiomes were

different. The functional annotation showed that

the microbial community in EC spring contained

pathways involved in nitrogen and sulfur metab-

olism, as well as extensive DNA repair systems,

possibly to cope with UV radiation at such high

altitudes. Processes involved in denitrification,

nitrogen fixation, and sulfide oxidation were

likely linked to the acidity of the environment.

Finally, the presence of PR sequences in these

communities suggests that these genes might play

a role important for bacterial survival in these

aquatic ecosystems.
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Rendueles O, Amils R. Eukaryotic microbial diversity

of phototrophic microbial mats in two Icelandic

geothermal hot springs. Int Microbiol. 2010;13(1):

21–32.

Bohórquez LC, Delgado-Serrano L, Lopez G, Osorio-

Forero C, Klepac-Ceraj V, et al. In-depth characteri-

zation via complementing culture-independent

approaches of the microbial community in an acidic

hot spring of the Colombian Andes. Microb Ecol.

2012a;63:103–15.
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Jiménez DJ, Andreote FD, Chaves D,Montaña JS, Osorio-

Forero C, et al. Structural and functional insights from

the metagenome of an acidic hot spring microbial

planktonic community in the Colombian Andes.

PLoS ONE. 2012;7(12):e52069.

Jones B, Renaut R. Hot springs and geysers. In: Reitner J,

Thiel V, editors. Encyclopedia of geobiology.

Berlin: Springer; 2011. doi:10.1007/Springer-

Reference_187284 2012-09-10 14:32:43 UTC.

Springer Reference (www.springerreference.com).

Jones DS, Albrecht HL, Dawson KS, Schaperdoth I,

Freeman KH, et al. Community genomic analysis of

an extremely acidophilic sulfur-oxidizing biofilm.

ISME J. 2012;6:158–170.

Klatt CG, Wood JM, Rusch DB, Bateson MM,

Hamamura N, et al. Community ecology of hot spring

cyanobacterial mats: predominant populations and

their functional potential. ISME J. 2011;5:1262–78.

Liu Z, Klatt CG, Wood JM, Rusch DB, Ludwig M, et al.

Metatranscriptomic analyses of chlorophototrophs of

a hot-spring microbial mat. ISME J. 2011;5:1279–90.

López-López O, Cerdán ME, González-Siso MI. Hot
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Definition

As an evolutionary marker, 23S ribosomal RNA

(rRNA) offers more diagnostic sequence

stretches and greater sequence variation than

16S rRNA. The main drawback of using 23S

rRNA as a phylogenetic marker is that it is still

not as widely used. In a survey of 23S rRNA gene

sequences found in metagenomic datasets, the

Global Ocean Sampling (GOS) metagenome

revealed that 23S rRNA gene sequences are

twice as abundant as 16S rRNA gene fragments,

with 23S rRNA gene fragments being generally

about 100 bp longer.

Introduction

The distribution of 23S rRNA gene sequences in

the GOS and other metagenomes remains

unexplored. Although the 16S rRNA gene has

been established as the standard molecule for

analyzing the taxonomic diversity in

metagenomes, using the 23S rRNA gene as

a phylogenetic marker offers advantages over

using the 16S rRNA gene.With an average length

of 2,900 bases, it is almost twice as long as the

16S rRNA and, therefore, is theoretically a more

informative phylogenetic marker than the 16S

rRNA gene (Ludwig and Schleifer 1994; Ludwig

et al. 1995; Ludwig and Klenk 2001). Both the

23S and 16S rRNA molecules share the same

properties in terms of molecule ubiquity, as well

as sequence and structure conservation. Further-

more, phylogenetic trees based on 16S rRNA and

on 23S rRNA genes have comparable topologies

(Rijk et al. 1995; Ludwig and Schleifer 1999).

A disadvantage of the 23S rRNA gene is the

relatively low number of sequences available in the

public databases as compared to 16S rRNA genes.

Currently (May 2014), only 446,998 23S/28S

sequences are publicly available, compared to

4,346,367 16S/18S sequences (Quast et al. 2013).

Furthermore, the low number of 23S/28S rRNA

sequences (29,397) longer than 1,900 bases (full

length) limits the assessment of taxonomic diver-

sity due to reduced resolution in taxonomic assign-

ments. The lower number of available 23S rRNA

gene sequences can historically be explained by the

technical difficulty and higher cost of sequencing

the larger molecule with Sanger sequencing tech-

nology. However, with new technologies and con-

stantly decreasing sequencing costs, these

difficulties are becoming less pronounced.

Summary of rRNA Gene Fragment
Retrieval

The 23S/28S rRNA gene is twice as long as the

16S/18S rRNA gene; hence, the probability of

retrieving a 23S/28S rRNA gene fragment should

be proportionately higher. Ratios of approxi-

mately 2:1 of identified 23S/28S rRNA over

16S/18S rRNA observed at different sites in the

GOS metagenome study support this expecta-

tion – GS000d (904 23S/28S vs. 438 16S/18S),

GS029 (351 23S/28S vs. 162 16S/18S), or

GS112a (227 23S/28S vs. 113 16S/18S)

(Fig. 1a). This twofold difference is also reflected

by the average number of fragments retrieved per

site, which is 301 for 23S/28S rRNA and 177 for

M 396 Metagenomes: 23S Sequences



16S/18S rRNA. Furthermore, 23S/28S rRNA

gene fragments are considerably longer than

16S/18S gene fragments (Fig. 1b). Where an

average 23S/28S rRNA fragment has 836 aligned

bases within the rRNA gene boundaries,

a 16S/18S rRNA fragment has 713 aligned

bases. More abundant and longer rRNA gene

fragments may provide additional information

in assessing taxonomic diversity, both with phy-

logeny and operational taxonomic unit-based

methods, as well as increasing the chances to

affiliate other gene fragments with specific line-

ages. Both 23S/28S and 16S/18S rRNA frag-

ments are randomly distributed over the rRNA

gene regions, meaning that no specific sequence

region is over- or underrepresented.

Taxonomic Diversity Based on 23S and
16S rRNA Genes

Percentages of both 23S and 16S rRNA frag-

ments associated with major marine bacterial

and archaeal taxa show good agreement with

each other (Fig. 2, b). Specifically, based on 23S

rRNA assignments, 43 % of the retrieved rRNA

fragments are associated with Alphaproteo-

bacteria, followed by 17 % Gammaproteo-
bacteria, 9 % Actinobacteria, 8 %

Cyanobacteria, 8 % Bacteroidetes, 3 %

Betaproteobacteria, 2 % Euryarchaeota, and

0.4 % Crenarchaeota (Fig. 2a). However, less

agreement in the assignment of 23S rRNA and

16S rRNA fragments is observed with less

Metagenomes: 23S Sequences, Fig. 1 (a) Compari-

son of number of 23S/28S (dark gray bars) and 16S/18S

(light gray bars) rRNA fragments retrieved from each

GOS sample dataset. (b) Average length of 23S/28S

(dark gray circles) and 16S/18S (light gray circles)

rRNA fragments from each GOS sample dataset in terms

of number of aligned bases within the rRNA gene bound-

aries, excluding any fragment (23S/28S or 16S/18S) that

contained less than 100 aligned bases. Sites marked with

an “*” indicate that less than five fragments were retrieved
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abundant marine taxa. For example, Chloroflexi-
andDeferribacteres-associated fragments are not

observed in the 23S rRNA gene-based classifica-

tion, which may be ascribed to the lack of anno-

tated clades for these taxa. In such cases, 16S

rRNA gene-based classifications appear to pro-

vide better estimations.

Similar trends are also observed in sample-by-

sample distribution of taxa at the “class” level for

both 23S and 16S rRNA-based assignments, as

compared to the previous overall assessment

(Fig. 3a, b). Alphaproteobacteria, Gammapro-

teobacteria, Actinobacteria, Cyanobacteria,
Flavobacteria, and Betaproteobacteria are the

most abundant taxa in the majority of sample

datasets. However, differences are observed in

the occurrence or relative abundance of minor

groups, such as Planctomycetacia or Aquificae.

In certain cases, 23S rRNA-based assessments

predict higher relative abundances or occurrence

in sample datasets for other taxa. Up to 12-fold

more Epsilonproteobacteria-associated 23S

rRNA fragments are found in sample dataset

GS000b compared to 16S rRNA fragments.

Additionally, Lentisphaeria, which appears to

be present in ten sites according to 23S rRNA

classifications, are observed only at two sites

according to 16S rRNA gene classifications.

The former case, where 16S rRNA-based

assignments estimated more taxa in more sample

datasets, demonstrates the current drawback of

23S rRNA-based classification (i.e., its lack of

resolution due to insufficient full-length reference

sequences). On the other hand, the latter observa-

tions demonstrate that when reference sequences

are present for a taxon, the higher number of 23S

rRNA fragments retrieved can capture what is

missed with 16S rRNA fragments.

Investigating relative abundances at lower

taxonomic levels can shed light on more promi-

nent habitat-specific diversity patterns. However,

with the current size and content of LSU rRNA

reference databases, the 23S rRNA has a distinct

disadvantage in achieving this. As summarized in

Table 1, the percentage of 23S rRNA gene frag-

ments that can be classified to a certain taxa is

comparable to the 16S rRNA gene-based classi-

fication at domain, phylum or class levels.

A decrease in percentage of classified 23S

rRNA fragments was observed at lower levels,

from 95 % at the class level down to even 17 % at

the genus level. This can be explained by the

23,197 sequences of taxonomically classified cul-

tured organisms in the SILVA SSU Ref dataset

(release 102) versus only 3,602 sequences in the

LSU Ref dataset of the same release.

Metagenomes: 23S Sequences, Fig. 2 Percentage of

23S (a) and 16S (b) rRNA fragments associated with

major marine bacterial and archaeal taxa among all GOS

sample datasets, except GS038–GS046 and GS050. Per-

centages were calculated based on absolute numbers of

fragments associated with a given taxa
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Metagenomes: 23S Sequences, Fig. 3 The relative

abundance of 23S (a) and 16S (b) rRNA fragments asso-

ciated with different taxa (rows) at each GOS sample

dataset (columns). Presence of a spot indicates the pres-

ence of fragments associated with a given taxa, and the

area of a spot represents the relative abundance. Relative

abundances are based on absolute counts of all fragments

from a given site associated with a certain taxa, which are

then normalized according to the total fragment counts

from that site. Abundances are not normalized with

respect to single copy genes, and since rRNA operons

can occur multiple times in a genome, the numbers do

not represent cell abundances. The taxa shown here are on

the “class” level, except Cyanobacteria, which is at the

“phylum” level

Metagenomes: 23S Sequences 399 M

M



Specificity of Common 23S rRNAPrimers
and Probes

Including the 23S rRNA gene sequences identi-

fied in the GOS metagenome dataset in the

SILVA LSU Parc dataset increased its size by

12 % (SILVA release 102). Furthermore, they

have not undergone PCR amplification and

hence provide a unique opportunity for testing

the coverage of previously described universal

amplification primers, as well as widely used

class-specific probes.

The most recently developed primer sets

(129f, 189f, 457r, 2490r) (Hunt et al. 2006), as

well as primer 2241r (Lane 1991), show reason-

able group coverage for the 23S rRNA gene

sequences identified in the GOS dataset with an

average of 85 % (Table 2), and the results are

comparable to those obtained from matching the

primers against the SILVA LSU Parc dataset

(release 102) with a difference of only �2 %.

The reference dataset used by Hunt and col-

leagues is with 2,176 sequences smaller than

both the LSU Parc (average of 11,000 target

group sequences) and the GOS 23S (average of

5,400 target group sequences) datasets used in

this study. However, the authors have included

environmental shotgun sequences from the Sar-

gasso Sea pilot study (Venter et al. 2004) in their

dataset, which would account for the comprehen-

siveness of these primers also in the GOS 23S

dataset.

Contrary to these results, the primers devel-

oped for the amplification of variable regions of

bacterial 23S rRNA sequences (11a–97ar) (Van

Camp et al. 1993) show very poor group coverage

in the GOS 23S dataset sequences, with generally

less than 50 % coverage of the target group. 90 %

group coverage is only observed for 69ar

(Table 2). Although the primer binding sites

were highly conserved, this is counteracted by

the very small dataset that these primers were

based on. Surprisingly, primers 53a to 97ar are

observed to have higher group coverage within

the GOS 23S rRNA sequences than within

LSU Parc.

The two archaeal primers (LSU190-F and

LSU2445a-R) (DeLong et al. 1999) show very

low group coverage in the GOS 23S dataset

(Table 2), with 14 % and 5 %, respectively. Nev-

ertheless, while the percentages are higher in the

LSU Parc, they do not exceed 50 %.

For the BET42a probe (Manz et al. 1992),

79 % group coverage is observed. This, as well

as the number of outgroup hits within the GOS

23S dataset, is close to that reported by a previous

evaluation (Amann and Fuchs 2008) (Table 2).

Group coverage within LSU Parc (87 %) is in

accordance with Amann and Fuchs (Amann and

Fuchs 2008) (Table 2), although considerably

more outgroup hits, 348 in LSU Parc versus

62, are observed.

The GAM42a probe coverage in the GOS 23S

dataset (Table 2) is almost half (42 %) of the

value reported previously (76 %) (Amann and

Fuchs 2008) and the corresponding evaluation

of the LSU Parc (78 %) dataset. Since the mis-

matches could result from sequencing errors, the

alignments of sequences with mismatches to the

probe GAM42a were manually inspected. A few

cases were likely to be sequencing errors and

were mainly observed in fragments obtained

from ends of sequencing reads. The majority of

the mismatches revealed consistent, class-

specific mismatches. These mismatches are up

to four bases and are found mainly between

E. coli positions 1,030–1,040. Although this eval-
uation of the GAM42a probe was based on

a single environment, the surface ocean, limita-

tions and anomalous results with the GAM42a

Metagenomes: 23S Sequences, Table 1 Percentage

of 23S and 16S rRNA gene fragments that can be classi-

fied up to domain, phylum, class, order, family, and genus

levels. Total number of fragments classified are 20,036

and 12,491 for 23S and 16S rRNA, respectively, exclud-

ing Eukarya and fragments with less than 300 aligned

bases for LSU and less than 100 aligned bases for SSU

23S rRNA gene

fragments (%)

16S rRNA gene

fragments (%)

Domain 99.9 100.0

Phylum 96.6 100.0

Class 94.4 99.1

Order 78.8 96.3

Family 35.4 80.0

Genus 16.6 31.2
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probe have been reported previously for other

environments as well, which were found to be

mainly due to polymorphisms at E. coli position
1,033 (Yeates et al. 2003; Barr et al. 2010). Our

observation confirms these reports, by adding

additional polymorphisms before and after this

position. Consequently, the limitations of the

GAM42a probe might be more severe than pre-

viously thought, and therefore, we recommend

the design and testing of novel Gammaproteo-

bacteria probes.

Summary

This comparative overview of 16S and 23S

rRNA fragments retrieved from the GOS

metagenomes exemplifies the possibility and

power of using 23S rRNA genes. High-quality

taxonomic classification for biodiversity analy-

sis, as well as primer and probe design, depends

on the size and extent of the reference dataset

used. The advantage of using the larger 23S

rRNA genes for biodiversity analysis, especially

for the marine system, has been shown previ-

ously (Peplies et al. 2004). Additionally,

a recent study assessing the diversity of

paralogous 23S rRNA genes has shown that

significant sequence diversification was

observed in 184 species, further supporting the

suitability of this molecule for taxonomy (Pei

et al. 2009). Although an obvious limitation

faced during this study was the small size of

the 23S rRNA gene reference datasets, this is

likely to be overcome in the near future with the

contribution of (meta-)genomic sequences from

Metagenomes: 23S Sequences, Table 2 Specificities of selected primers and probes, evaluated on the 23S/28S

rRNA gene fragments retrieved from the GOS metagenomes having more than 300 aligned bases within the rRNA gene

boundaries and on the SILVA Parc release 102 LSU dataset. Outgroup hits are the sum of both Archaea and Eukarya in
case of bacterial primers, both Bacteria and Eukarya in case of archaeal primers, only Eukarya in case of bacterial and
archaeal primers, and non-Betaproteobacteria and non-Gammaproteobacteria for BET42a and GAM42a probes

Primer/

probe Target group

GOS 23S/28S LSU Parc

Size of

target group

Group

coverage

(%)

Outgroup

hits

Size of

target group

Group

coverage

(%)

Outgroup

hits

129fa Bacteria 4,853 74 % 0 10,640 82 % 4

189fa Bacteria 5,285 87 % 0 11,508 87 % 0

457ra Bacteria 5,551 86 % 4 11,177 83 % 279

2241rb Bacteria 5,832 84 % 10 11,457 86 % 3,967

2490ra Bacteria 5,734 94 % 0 10,821 98 % 0

11ac Bacteria 5,256 20 % 0 11,478 39 % 0

23arc Bacteria 5,619 23 % 0 10,526 49 % 4

43ac Bacteria 5,633 6 % 0 10,999 44 % 0

53ac Bacteria 5,320 3 % 0 10,594 1 % 0

62arc Bacteria 5,540 8 % 0 11,455 5 % 0

69arc Bacteria 5,731 90 % 0 11,443 87 % 0

93ac Bacteria 5,737 62 % 0 10,322 55 % 0

93arc Bacteria 5,731 63 % 0 10,327 56 % 2

97arc Bacteria 4,969 55 % 0 9,165 29 % 38

LSU190-Fd Bacteria and Archaea 5,348 14 % 0 11,741 24 % 0

28 %

LSU2445a-

Rd
Archaea 142 5 % 0 262 28 % 0

BET42ae Betaproteobacteria 209 79 % 63 570 87 % 348

GAM42ae Gammaproteobacteria 980 42 % 1 2,877 78 % 10

References: aHunt et al. 2006; bLane 1991; cVan Camp et al. 1993; dDeLong et al. 1999; eManz et al. 1992
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mega-sequencing projects, such as the Human

Microbiome Project, the TerraGenome, the Tara

Oceans, or the Genomic Encyclopedia of Bacte-
ria and Archaea. Moreover, studies assessing

the characteristics and sequence diversity of

23S rRNA genes in bacterial and archaeal

genomes, in combination with efforts to design,

test and, reevaluate universal and group-specific

primers and probes, can renew the interest and

utilization of this molecule. The application of

continually advancing, cheaper sequencing

technologies to the undiscovered fraction of the

23S rRNA gene sequences can result in a higher

appreciation of this valuable phylogenetic

marker.
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Definitions

Metagenome/metagenomics: The collective

genomes of all members of a particular

microbial community may be referred to as

the metagenome (or a genome of many).
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Metagenomics refers to methods which seek to

understand the composition, development, and

function of microbial ecosystems through analy-

sis of the community metagenome.

Function-driven metagenomics: A meta-

genomic approach in which emphasis is placed

on the recovery of genes encoding a defined func-

tion of interest, through assays based on heterol-

ogous gene expression. Typically metagenomic

DNA is used to generate genetic libraries in

a surrogate host species that may be easily manip-

ulated in the laboratory. Each clone in the library

(analogous to books in a conventional library)

represents a fragment of metagenomic DNA

from a member of the microbial community

under study. Libraries are then subsequently

screened to identify clones encoding and

expressing activities of interest.

Large-insert library/genetic library: Due to

the complexity of microbial communities,

genetic libraries constructed for function-driven

metagenomic analysis often seek to clone large

fragments of metagenomic DNA (typically rang-

ing from 40 to 200 kb in size, depending on the

specifics of the cloning system used). The term

“insert” refers to the metagenomic DNA frag-

ments which are ligated, or “inserted,” into

a plasmid vector that maintains them in the sur-

rogate host bacterium. Insert sizes of ~40 kb and

over are usually referred to as “large inserts,”

giving rise to the term “large-insert library.”

Sequence-driven metagenomics: A meta-

genomic approach in which the emphasis is

placed on the generation and analysis of nucleo-

tide sequence data from metagenomic DNA.

Typically sequence-based approaches are uti-

lized to provide a broad overview of the popula-

tion structure and predicted functions undertaken

by a microbial community.

Heterologous gene expression: Refers to the

expression of genes in an organism from which

they did not originate. For function-driven

metagenomics, this generally refers to the expres-

sion of genes encoded by cloned fragments of

metagenomic in the surrogate host species used

to construct genetic libraries (typically

Escherichia coli).

Bile Acids and Microbial Bile Acid
Metabolism

Bile acids (BA) are cholesterol derivatives syn-

thesized in the liver and linked with either glycine

or taurine to form conjugated bile acids (CBA)

(Ridlon et al. 2006; Begley et al. 2005a, b; Fig. 1).

The dominant CBA in humans are glycine con-

jugates of cholic acid and chenodeoxycholic acid,

with CBA forming a major component of bile

stored in the gall bladder (Ridlon et al. 2006). In

response to food intake, bile is secreted into the

lumen of the intestine where CBA facilitate the

digestion of dietary fat, promoting the emulsifi-

cation of lipids and their subsequent absorption

across the intestinal epithelium (Ridlon

et al. 2006; Begley et al. 2005a). However, the

functions of bile acids are not limited to diges-

tion, and BA are also important signaling mole-

cules that contribute to the regulation of diverse

metabolic processes (Thomas et al. 2008; Fig. 2).

These include regulation of mucosal immune

responses in the intestine, as well as aspects of

energy homeostasis and fat storage (Thomas

et al. 2008; Inagaki et al. 2006; Houten

et al. 2006; Jones 2011; Watanabe et al. 2006;

Fig. 2). As such, BA are now no longer viewed as

purely digestive secretions but also as metabolic

integrators and key regulators of intestinal

homeostasis (Thomas et al. 2008; Hofmann and

Eckmann 2006; Jones 2011).

The regulatory functions of bile acids are

believed to act through two main receptors, the

nuclear receptor FXRalpha and the membrane

receptor TGR5, for which bile acids are the nat-

ural ligands (Thomas et al. 2008). These recep-

tors are highly expressed in the liver and

intestinal tissues but also in numerous

extraintestinal tissues (Thomas et al. 2008).

Although the majority of bile acids are efficiently

reclaimed from the intestine and returned directly

to the liver for reuse (referred to as enterohepatic

circulation), a portion enter the systemic circula-

tion and signal other organs through these recep-

tors, coordinating cholesterol, triglyceride and

glucose metabolism, as well as fat storage

(Thomas et al. 2008; Fig. 2).
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CBA have also been implicated in the control

of microbial growth in the small intestine via

toxic effects on colonizing bacteria (Begley

et al. 2005a; Ridlon et al. 2006). This antimicro-

bial effect is thought to repress bacterial growth

in the small intestine and prevent microbes pro-

liferating to levels which are harmful to the

human host. Local mucosal immune responses

in the intestine are also regulated by bile acids

(through FXRalpha) and implicated in microbial

population control in this compartment (Inagaki

et al. 2006). It is most likely that bile acid medi-

ated mucosal immune regulation works in syn-

ergy with the direct effects of bile acids on

resident microbes, to prevent bacterial over-

growth in the small intestine and associated

deleterious effects on host health (Inagaki et al.

2006; Hofmann and Eckmann 2006; Begley

et al. 2005a; Fig. 2).

However, once secreted into the intestinal

lumen, CBA are subject to extensive biotransfor-

mation by indigenous gut microbes, leading to

the formation of a range of secondary and tertiary

products (Ridlon et al. 2006; Begley et al. 2005a;

Jones et al. 2008; Fig. 3). These modified bile

acids display altered binding characteristics for

bile acid receptors, with microbial products of

bile acid metabolism among the most potent ago-

nists (Thomas et al. 2008). This highlights the

potential for microbes resident in the human gut

microbiome to influence wider aspects of host

metabolism and phenotype, through interaction

with bile acid signaling pathways (Jones

et al. 2008; Thomas et al. 2008; Jones 2011;

Ogilvie and Jones 2012). Congruent with this

hypothesis is the accumulating body of evidence

implicating microbial bile acid metabolism as the

basis of a long-standing dialogue between the

human host and its gut microbiome (Jones 2011;

Inagaki et al. 2006; Gadaleta et al. 2011; Maran

et al. 2009; Modica et al. 2008; Duboc et al. 2013;

Jones et al. 2008). As such, there is increasing

interest in understanding the role of this activity

in human health and disease processes, with this

function of the gut microbiome likely to be

a viable target for disease prevention through

manipulation, or augmentation of the intestinal

microbial ecosystem.

Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 1 Structure of domi-
nant conjugated bile acids in humans (Modified from

Begley et al. 2005a). Major bile acid species in the human

bile acid pool are conjugated forms linked to either gly-

cine or taurine via amide bonds, with glyco-conjugates

dominant in humans (Ridlon et al. 2006). The predomi-

nant bile acid species are cholic acid (CA) and

chenodeoxycholic acid (CDCA), which are generated de

novo in the liver from cholesterol and referred to as

primary bile acids (Ridlon et al. 2006; Thomas

et al. 2008). De-conjugated CA and CDCA, as well as

derivatives of these primary BA formed in the intestine,

are recovered and returned to the liver where they are

conjugated and re-assimilated into the bile acid pool. For

comprehensive reviews, see Ridlon et al. (2006) and

Begley et al. (2005a)
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Overview of Bile Salt Hydrolases:
Biochemistry, Structure, and Function

Bile salt hydrolases (BSH; EC 3.5.1.24) (also

designated as choloylglycine hydrolases or con-

jugated bile acid hydrolases) are members of the

N-terminal nucleophilic (Ntn) hydrolase super-

family of proteins and catalyze the hydrolysis of

conjugated bile acids, linked with the amino acids

taurine or glycine (tauro-CBA, glyco-CBA), to

liberate free primary bile acids and amino acids

(Fig. 3; Begley et al. 2006; Kumar et al. 2006).

The wider enzyme superfamily also contains the

penicillin V acylase (PVA; EC 3.5.1. 11) enzyme

family, and BSH and PVA enzymes share signif-

icant homology and catalyze hydrolysis of the

same type of chemical bond.

While the main substrates for BSH and PVA

enzymes (conjugated bile acids and penicillins,

respectively) vary considerably in structure, PVA

has been shown to exhibit somemoderate activity

against bile acids and some BSH enzymes dem-

onstrate mild activity against penicillin

V (Kumar et al. 2006). This suggests that each

enzyme group has preferential activity against

a specific substrate but that some overlap in activ-

ities also occurs (Kumar et al. 2006). The

sequence homology between these enzyme fam-

ilies has led to mis-annotation of PVA in some

bacterial genomes, for example, in the initial

genome annotation of Listeria monocytogenes

(Begley et al. 2005b) and Lactobacillus

plantarum WCFS1 (Lambert et al. 2008a). This

highlights a requirement for functional enzymatic

Metagenomic Analysis
of Bile Salt Hydrolases in
the Human Gut
Microbiome,
Fig. 2 Overview of
physiological functions
undertaken by bile acids.
Boxes shaded violet
summarize the direct

functions of bile acids in

the small intestine,

attributed to their physical

properties. Boxes shaded
blue summarize regulatory

functions of bile acids,

through interaction with the

main bile acid receptors

TGR5 and FXRalpha. For

comprehensive reviews of

bile acid signaling, see

Thomas et al. (2008)
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analysis in order to determine substrate prefer-

ences and to guide annotation (Jones et al. 2008;

Lambert et al. 2008b).

The crystal structure has been solved for

a number of BSH (Kumar et al. 2006; Rossocha

et al. 2005) and PVA (Suresh et al. 1999)

enzymes and demonstrates a conservation in

overall structure suggestive of shared mecha-

nisms of action and an evolutionary relationship

between BSH and PVA (Kumar et al. 2006).

Detailed analysis of the structure of BSH and

PVA enzymes indicates that there is

a significant difference in the organization of

specific loops near the active site in each case

which may explain differences in substrate spec-

ificity (Kumar et al. 2006).

Structural and functional analysis of BSH

enzymes from different bacteria has revealed

the presence of conserved amino acids that are

thought to be essential for bile hydrolysis. In

particular the thiol group of the Cys-1 amino

acid has been shown to be essential for catalytic

activity (Kim et al. 2004; Lodola et al. 2012). In

addition a number of amino acids including

Asp-20, Tyr-82, Asn-175, and Arg-228 are

highly conserved across numerous BSH enzymes

Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 3 Major bile acid
transformations undertaken by the human gut
microbiota (Modified from Jones 2011). Bile salt hydro-

lase (BSH) catalyzes the initial de-conjugation of CBA to

liberate free primary bile acids and amino acids. Free

primary bile acids are then available to further modifica-

tion by the gut microbiome and converted to secondary

forms. A multistep 7-alpha dehydroxylation pathway is

responsible for generation of key secondary BA species

which accumulate in the bile acid pool.GCA, TCA, glyco-
and tauro-conjugated cholic acid, respectively; GCDCA,
TCDCA, glyco- and tauro-conjugated chenodeoxycholic

acid, respectively; CA, CDCA, free primary bile acids

cholic acid and chenodeoxycholic acid, respectively;

DCA, LCA, free secondary BA deoxycholic acid and

lithocholic acid, respectively. For comprehensive reviews

of microbial bile acid transformations, see Ridlon

et al. (2006) and Begley et al. (2005a)
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(Begley et al. 2006) and have recently been

shown to be essential for catalytic activity mainly

through electrostatic interactions with the Cys-1

sulfur atom (Lodola et al. 2012)

(Begley et al. 2006). Despite high levels of

amino acid conservation, different BSH enzymes

display subtle differences in their preferred bile

substrates with some enzymes exhibiting hydro-

lysis of glyco- and tauro-conjugated bile acids

and others demonstrating specific hydrolysis

of tauro-conjugated bile acids (Jones et al.

2008). BSH enzymes with specificity for tauro-

conjugated bile acids are highly represented

among the Bacteroidetes and form a separate

phylogenetic group relative to other BSH

enzymes but have not been characterized in

detail (Jones et al. 2008). Further biochemical

analysis of a variety of BSH enzymes is

warranted to determine the structural variances

that give rise to these subtle differences in bile

acid substrate range.

Metagenomic Analysis of Bile Salt
Hydrolases (BSHs)

As the human gut microbiota is composed pre-

dominantly of microbes which are yet to be

grown in the laboratory, a range of culture-

independent approaches have been developed

and applied to study this and other microbial

communities (Handelsman 2004; Jones and

Marchesi 2007; Qin et al. 2010; Kurokawa et al.

2007; Gill et al. 2006). Metagenomic approaches

constitute a particularly powerful branch of the

culture-independent techniques available for

characterization of microbial ecosystems, in

which the collective genomes of all species com-

prising a community are considered as a single,

community-wide, genetic unit (the metagenome)

(Handelsman 2004). Access and analysis is

guided by this basic principle, and metagenomic

approaches are rooted in the extraction of total,

mixed community DNA (metagenomic DNA)

without any prior cultivation (Handelsman

2004). Recovered community DNA is then either

subject to direct analysis using high-throughput

sequencing (shotgun metagenomics or sequence-

based metagenomics) or used to construct

large-insert genetic libraries for function-based

screening (function-driven metagenomics)

(Handelsman 2004) (Fig. 4).

The resulting data not only affords access to

census-type information describing the composi-

tion of a community (who is there?) but also

permits access to the broader functional content

encoded by microbial ecosystems (what are they

doing?) (Handelsman 2004; Jones et al. 2008).

Recently both function-driven and sequence-

based metagenomic approaches have been

applied to analyze BSH activity in the gut

microbiome and provide good examples of the

capacity for metagenomics to generate novel

functional insights into a microbial community

and, in the case of the human microbiome, to

understand its influence on host health (Jones

et al. 2008; Ogilvie and Jones 2012).

Function-Driven Metagenomic Analysis of

Bile Salt Hydrolases: Due to the relative paucity

of information regarding the genes underpinning

bile acid metabolism in the gut microbiome, ini-

tial community-wide studies of this activity uti-

lized a function-driven metagenomic approach,

to assess the diversity and phylogenetic distribu-

tion of BSH activity in this ecosystem (Jones

et al. 2008; Fig. 4). The reliance on heterologous

gene expression in the surrogate host (typically

E. coli) and the requirement for a phenotypic

screen for the trait of interest are clear limitations

of the function-based strategy but are offset by

unique benefits of this approach over other

metagenomic techniques (Handelsman 2004).

A major advantage of the function-driven

approach is that no prior knowledge or sequence

data for the genes underpinning an activity is

required, which not only allows the application

of metagenomics to poorly studied microbial

functions in a community (such as bile acid

metabolism) but also permits the recovery of

novel, unrelated enzyme classes catalyzing

a particular reaction (Jones et al. 2008;

Handelsman 2004). Furthermore, a clear confir-

mation of activity among the genes identified is

intrinsic to the function-driven approach. This is
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Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 4 Overview of
metagenomic approaches to study microbial ecosys-
tems. Recovery of metagenomic DNA (Modified from

Ogilvie et al. 2012): Metagenomic approaches begin

with sampling the microbial ecosystem and extracting

DNA from the mixed community as a whole, without

any prior cultivation. This metagenomic DNA may then

be subjected to one or more strategies to access the func-

tional content of the ecosystem under study and/or explore

the population structure and identify species present.

Sequence-driven metagenomics: Metagenomic DNA

may be subject directly to high-throughput sequencing

(shotgun metagenomics) or first used as a template for

PCR reactions intended to amplify key genes of interest.

The latter is most typically used to amplify phylogenetic

anchors, such as genes for 16S ribosomal RNA, which
permit a census of the species present in a community.

Sequences generated directly in the shotgun approach can

subsequently be compared with well-characterized micro-

bial genomes and/or assembled into large contigs and

genes predicted, in order to assess the functions encoded

by community members (with information on population

structure also captured in this strategy where relevant gene
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of major benefit in the analysis of enzymes such

as BSH, which share a considerable degree of

sequence homology with closely related enzymes

in the wider Ntn_CGH-like (COG3049) family of

proteins (Jones et al. 2008; Kumar et al. 2006). In

particular BSH are closely related to penicillin

V amidases, fromwhich they are believed to have

evolved, and comparison of sequence data alone

is often insufficient for the accurate prediction of

function in these enzymes (Kumar et al. 2006;

Jones et al. 2008).

The function-driven approach employed to

survey BSH activity in the gut microbiome was

based on screening large-insert genetic libraries

(constructed from metagenomic DNA derived

from stool samples), using a simple plate-based

assay to identify clones able to de-conjugate

CBA (Fig. 5 Library construction and Screen).

The basis of this screen is the complementa-

tion of the BSH-deficient E. coli host used

to construct libraries and the subsequent

de-conjugation of CBA incorporated into the

bacterial growth media used for screening

(Jones et al. 2008; Dashkevicz and Feighner

1989). Once liberated, free bile acids are no

longer soluble and precipitate to form a halo

around BSH-positive clones, allowing those

harboring active BSH to be easily identified

and recovered for further analysis (Jones

et al. 2008; Fig. 5). Characterization of BSHs

recovered from the human gut metagenomic

library through function-based screening pro-

vided the basis to subsequently examine the dis-

tribution and evolution of this activity among

members of the gut microbiome, the conserva-

tion of this function between distinct human

microbiomes, and the role of this activity in

gut-associated bacteria (Jones et al. 2008;

Ogilvie and Jones 2012; Fig. 6).

Distribution of BSH Activity Among Mem-

bers of the Human Gut Microbiome: Sequence

data obtained from metagenomic clones

encoding BSH activity was used to predict the

phylogenetic origin of the BSHs obtained and

determine which members of the gut microbiome

encode this function (Jones et al. 2008). Although

the taxonomic resolution afforded by this analy-

sis was limited by a lack of conserved phyloge-

netic anchors in many metagenomic clones (such

a 16S rRNA genes) and the limited availability of

genome sequences from gut-associated bacterial

species at the time of analysis (against which

recovered BSH sequences could be compared),

this survey nevertheless revealed a broad distri-

bution of BSH activity within the gut microbiome

(Jones et al. 2008).

All major bacterial phyla comprising the

human gut microbiome (Bacteroidetes,

Firmicutes, Actinobacteria) were shown to encode

this function, highlighting the high level of redun-

dancy and general stability of BSH activity within

the community (Jones et al. 2008). Furthermore,

BSH activity was also identified in the archaeal

species Methanobrevibacter smithii, which com-

monly forms a part of the human gut microbiome

(Jones et al. 2008). These observations further

expanded the representation of BSH among com-

munity members and revealed this function to be

��

Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 4 (continued) such as

16S rRNA genes are identified). Function-driven
metagenomics: these approaches rely on the construc-

tion of large-insert genetic libraries and the heterologous

expression of cloned genes in the surrogate host species

(as used to explore BSH activity in the human gut

microbiome; Jones et al. 2008). Although the require-

ment for genes originating in diverse and distantly

related species to express functional proteins in the

library host is a limitation of this method, unlike

sequence-driven approaches, there is no requirement

for prior information or well-characterized sequences

from genes of interest. This is a major advantage of the

function-driven approach which facilitates the identifi-

cation of novel enzyme classes and is well suited to

explore activities for which few initial examples of

well-characterized genes or proteins exist. However,

a second major caveat of the function-driven approach

is that a suitable high-throughput screen for the activity

of interest must also be available (see Fig. 5). Fosmid

(vectors based on the E. coli F-plasmid) and BACs

(bacterial artificial chromosomes) represent the most

commonly used systems for construction of large-insert

metagenomic libraries
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present in two domains of life (bacteria and

archaea) in the gut microbiome (Jones et al. 2008).

In addition, the expression in E. coli of BSH
genes predicted to originate from a wide range of

bacterial species, as well as archaea, highlights the

coverage afforded by the function-driven

approach in this case (Jones et al. 2008). Despite

this strategy being limited by the ability of the

surrogate host to express the trait of interest, and

genes derived from a wide range of often distantly

related microbes, the function-driven survey of

BSH demonstrates the clear potential for genes

of diverse phylogenetic origin to be obtained by

this method (Jones et al. 2008). Continued

improvements in the range of hosts and vector

systems available will further enhance the utility

of this approach and expand the role of this strat-

egy in the analysis of microbial communities.

Insights into BSH Evolution and Its Role in

Gut Bacteria: The recovery of novel BSH

sequences from the gut microbial ecosystem

with confirmed function also allowed a deeper

insight into the evolution and role of this activity

in the gut microbiome (Jones et al. 2008). To

understand the evolution of this activity within

the gut community, sequences from novel BSH

obtained by function-driven metagenomics were

compared with a large collection of related

sequences, from gut-associated and non-gut-

associated species, belonging to the wider

Ntn_CGH family of which BSH are members.

Clustering of these enzymes based on similarity

of amino acid sequences revealed those derived

from gut-associated microbes generally grouped

together, despite originating from very different

species (Jones et al. 2008). When the substrate

range of enzymes with proven function was

mapped against the observed groupings, a clear

shift toward BSH activity was also evident

among sequences that originated from gut

microbes (Jones et al. 2008). Subsequently,

murine experiments designed to test the contri-

bution of BSH to bacterial survival in the gut

clearly demonstrated the role of BSH in facilitat-

ing colonization of this habitat by mitigating the

toxic effects of bile acids in the intestine (Jones

et al. 2008).

Collectively, the results of experiments in

murine models, together with trends observed in

comparisons of functional BSH with related

sequences, indicated BSH activity to be

a common microbial adaptation to the gut envi-

ronment, with selective pressure from conjugated

bile acids likely to have driven the divergence of

members of the Ntn_CGH family of proteins in

gut bacteria toward BSH activity (Jones

et al. 2008). Overall, this points to CBA as

a key selective pressure in the gut habitat, and

the development of a common mechanism for

dealing with this stress in a diverse cross section

of the community is congruent with the concept

of host-level selection on functions of the gut

microbiome (Ley et al. 2006). Bacteria face

many challenges when colonizing and persisting

in the mammalian intestinal tract, but the solu-

tions developed for mitigating these barriers to

survival must also be acceptable to the higher

host organism and facilitate bacterial coloniza-

tion without negative impact on fitness of the host

(Jones et al. 2008; Ley et al. 2006). Therefore, the

human host is believed to exert a selective pres-

sure on functions and activities undertaken by the

gut microbiome as a whole, and analysis of

Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 5 Example of function-
based screening for bile salt hydrolase activity
(Modified from Jones et al. 2008). High-throughput

function-driven metagenomic analysis of BSH activity in

the human gut microbiome utilized a simple plate-based

screen to identify clones encoding this activity

(Dashkevicz and Feighner 1989). De-conjugation of

CBA incorporated in the media results in precipitation of

free bile acids and the formation of a distinct halo around

BSH + clones. The image shows the phenotype of

the surrogate, BSH-deficient E. coli host, and

a corresponding BSH-positive metagenomic clone on the

bile agar media
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microbial BSHs suggests that these may be an

example of a mutually acceptable arrangement

between the host and its microbiome (Jones

et al. 2008).

BSH Activity as a Conserved Feature of the

Human Gut Microbiome: Although the initial

application of function-driven screens provided

much fundamental insight into bile acid metabo-

lism by the gut microbiome, these studies also

fill an additional role in generating baseline

sequence data from genes with proven functions

or activities. Such data in itself constitutes

a useful and valuable resource for numerous

other applications, including the accurate anno-

tation and interpretation of shotgunmetagenomes

(and complete bacterial genomes), opening the

way for larger-scale sequence-based surveys of

key functions within microbial ecosystems. This

is exemplified by the use of BSH recovered

through function-driven metagenomics to

Metagenomic Analysis of Bile Salt Hydrolases in the
Human Gut Microbiome, Fig. 6 Relative abundance
of bile salt hydrolases in the gut microbiome in health
and disease (From Ogilvie and Jones 2012). Human gut

microbiomes from the MetaHIT dataset were surveyed

using sequence fromBSHwith proven function to identify

homologues to these genes (minimum of 35 % amino acid

identity � 50 aa or more and 1e�5 or lower) in the

124 individual gut microbiomes represented in this dataset

(Qin et al. 2010). Identified BSH sequences were subse-

quently affiliated to different bacterial divisions based on

sequence similarities and used to calculate the relative

abundance of BSHs for major phylogenetic divisions in

each gut microbiome (expressed as Hits/Mb DNA). ACT
Actinobacteria; BACT Bacteroidetes; FIRM Firmicutes;

TOTAL BSH relative abundance in MetaHit dataset as

a whole irrespective of phylogenetic affiliations. Healthy
healthy individuals only (n ¼ 99), UC individuals with

ulcerative colitis only (n ¼ 21), CD individuals with

Crohn’s disease only (n ¼ 4). Error bars indicate stan-

dard error of the mean. Level of significance: * P ¼
< 0.01; ** P ¼ < 0.00
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subsequently interrogate a range of sequence-

based shotgun metagenomes, in order to examine

the representation of this activity among distinct

gut communities and other microbial ecosystems

(Ogilvie and Jones 2012; Jones et al. 2008).

This approach was first applied to survey

15 human gut metagenomes and several non-gut

metagenomes from a range of habitats

(Jones et al. 2008). Comparison of the relative

abundance of genes with homology to functional

BSHs in human gut microbiomes with non-gut

habitats revealed an enrichment of putative BSHs

in the human gut microbiome (Jones et al. 2008).

This is in keeping with the concept of CBA as an

important habitat-associated selective pressure

for gut microbes (absent in non-gut environ-

ments) and BSH as a conserved microbial adap-

tation to life in the mammalian intestinal tract

(Jones et al. 2008).

When relative abundance of BSH homologues

was compared between individual gut

microbiomes, the potential for interindividual var-

iation in abundance and types of BSH was also

highlighted (Jones et al. 2008). Because BSH cat-

alyzes the initial rate limiting step in the wider

pathway of microbial bile acid metabolism facili-

tated by the gut microbiome (Fig. 3), variation in

overall levels of BSH should be good predictors of

the capacity for bile acid modification in a given

microbiome (Jones et al. 2008; Ogilvie and Jones

2012). Furthermore, previous characterization of

BSH types originating from the main phylogenetic

groups in the human gut microbiome revealed

differences in substrate range of enzymes encoded

by different phyla, highlighting the potential for

shifts in community structure to also alter aspects

of bile acid metabolism by altering the prevailing

bile acid modifications undertaken by gut

microbes (Jones et al. 2008).

Metagenomic Analysis of Bile Salt
Hydrolases in Health and Disease

Due to the role of bile acids in regulating metab-

olism and mucosal immune responses and the

potential for the gut microbiome to influence

this signaling network through bile acid transfor-

mations, alterations in capacity for bile acid

metabolism in the human gut microbiome may

play a role in the pathogenesis of numerous dis-

eases (Jones et al. 2008; Ogilvie and Jones 2012;

Jones 2011). For example, the products of micro-

bial bile acid metabolism have been linked to the

initiation and pathogenesis of colorectal cancer

(CRC) through several mechanisms, including
the direct carcinogenicity of some BA

(Bernstein et al. 2005; Hill 1990; O’Keefe 2008;

Debruyne et al. 2001).

Recent observations also implicate the pertur-

bation of bile acid signaling as a potential mech-

anism contributing to the pathogenesis of CRC

and other inflammatory bowel diseases, with the

dedicated bile acid receptor FXRalpha demon-

strated to be protective against both CRC and

Crohn’s disease in murine models (Gadaleta

et al. 2011; Modica et al. 2008; Duboc

et al. 2013; Maran et al. 2009). Since activation

of this receptor is implicated in the

downregulation of mucosal immune responses

and protection against autoimmune damage and

induction of antiapoptotic pathways in the human

gut (Gadaleta et al. 2011; Duboc et al. 2013),

alterations to microbial bile acid metabolism

leading to changes in the balance of BA species

available for receptor binding have clear impli-

cations for disease initiation and progression.

The initial function-driven metagenomic anal-

ysis of BSH activity in the gut microbiome also

provided the basic information to explore these

theories further and to begin to explore the asso-

ciation between microbial bile acid metabolism

and intestinal diseases (Jones et al. 2008; Ogilvie

and Jones 2012). This is exemplified by the appli-

cation of gut-derived BSH sequences (with

proven activity) to explore changes in the BSH

profile in the microbiomes of individuals with

inflammatory bowel disease (Ogilvie and Jones

2012). Surveys of whole community shotgun

metagenomes for genes homologous to functional

BSH sequences revealed a distinct reduction in

the relative abundance of BSH homologues in the

gut microbiomes of individuals with Crohn’s dis-

ease (CD), primarily within BSHs affiliated with
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the Firmicutes division (Ogilvie and Jones 2012).

These changes are in keeping with the well-

documented dysbiosis and shift in community

structure characteristic of CD (where the diversity

of Firmicutes is markedly reduced) (Manichanh

et al. 2006; Qin et al. 2010) and the role of

FXRalpha signaling in regulation of mucosal

immune responses (Gadaleta et al. 2011). These

metagenomic-based predictions of changes in

functional capacity of the CD gut microbiome

related to bile acid metabolism have since been

validated and a reduction in capacity for bile acid

modification demonstrated in active disease

(Duboc et al. 2013). The apparent deficiency of

this function in the CD gutmicrobiome now raises

the potential for targeting bile acid metabolism in

the gut microbiota as a marker for disease risk or

therapeutic intervention.

Summary

The analysis of bile acid metabolism in the

human gut microbiome has benefited greatly

from the application of metagenomics and pro-

vides an excellent example of how these powerful

community-level approaches can rapidly provide

significant insight into the functioning and devel-

opment of microbial ecosystems. In the case of

the human gut microbiome, and other host-

associated microbial consortia, metagenomic

approaches can also generate new understanding

of how bacteria interact with and impact upon

their higher host organisms.

In the case of bile acid metabolism by the gut

microbiome, the deployment of metagenomics to

explore this aspect of the indigenous intestinal

microbiota has rapidly enhanced our understand-

ing of this activity, its effect on human health, and

its function within the gut microbiome. Our

knowledge of bile acid metabolism by the gut

microbiome has now been elevated to a point

where tangible hypotheses regarding impacts on

host health can be formulated and tested. Although

much remains to be done and our understanding is

far from complete, metagenomics will undoubt-

edly continue to play a key role in ongoing studies

and has already yielded new targets for disease

diagnosis, prophylaxis, or treatment which can

now be explored further.
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Metagenomic by RAPD Profiling
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Ilhéus, BA, Brazil

Detailed description and study of taxa, metabolic

pathways, protein/peptide interactions, and

molecular relationships in microenvironments

bring out great interest due to the possibility of

yielding new molecules with important applica-

bility and new knowledge about the microenvi-

ronment dynamics. However, such advances are

not possible by culturing dependent techniques,

due to lack of knowledge of culturing conditions

to unknown microorganisms (Yun et al 2004;

Riesenfeld et al. 2004). Metagenomic approaches

have been pointed as a way to further access data

contained in these ecosystems (Johnson and

Slatkin 2006; McHardy and Rigotsos 2007).

This technology allows access to taxonomical

and metabolic data (Streit and Schmitz 2004;

Roh et al. 2006; McHardy and Rigotsos 2007)

independently of culturing proceedings. Never-

theless, a main drawback using metagenomic

approaches is that most of them are preceded by

conventional DNA extraction methods that prej-

udice taxonomical representativeness and diffi-

culties cloning steps by interference substances.

By biasing taxonomical representativeness, such

methods also limit the mining of new molecules.

In addition, such metagenomic conventional

approaches based on cloning of polymerase

chain reaction (PCR) products are unfeasible if

the aim is to access taxonomical and metabolic

diversity at the same time (Schloss and

Handelsman 2003). Another aspect that limits

the study of metagenomic content is the use of

bioinformatics methods (Rondon et al. 2000; Roh

et al. 2006; Huson et al. 2007) that depend on

sequences of the same gene to compute taxonom-

ical or metabolic profile of the environment

(Rondon et al. 2000; Roh et al. 2006). Thus,
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once more, they do not allow understanding of

taxonomical and metabolic content at the same

time (Rondon et al. 2000; Roh et al. 2006).

The random amplified polymorphic DNA

(RAPD) is an approach that allows the study of

genetic diversity and population structure of bac-

teria (Baker and Banfield 2003; Akbar

et al. 2005). In metagenomic studies, it has been

exploited in its conventional form, through anal-

ysis of the polymorphic amplified DNA segments

in electrophoretic devices (Helton and Wommac

2009; Patel and Behera 2011). However, we

recently reported a new and interesting applica-

tion for RAPD in metagenomics by coupling it

with an innovative metagenomic DNA extraction

method (Amorim et al. 2012). By cloning RAPD

instead of PCR products, we were able to access

taxonomical and metabolic content at the same

time. This advantage is due to the capacity of

RAPD primers to anneal in a more broad number

of DNA segments, yielding amplified DNA with

different sizes and from different gene families.

Randomly amplifying metagenomic DNA seg-

ments may result in at least three great fields of

investigation: (i) it is possible to infer the taxo-

nomical diversity of a specific environment if

a suitable bioinformatic approach is available

(Huson et al. 2007; Amorim et al. 2012); (ii) it

is possible to take advantage on the variety of

gene families amplified and mine new genes and

molecules; (iii) if DNA fragments with different

sizes and from different gene families are ampli-

fied, it is possible to infer the metabolic network

in a specific environment. All of these possibili-

ties may significantly improve and expand the use

of RAPD in the study of genetic diversity and

population structure of microorganisms.

To study the environmental taxonomical and

genetic diversity using RAPD in the context of

metagenomics, it is necessary to clone such

amplified DNA and then study their sequences.

Another possibility is to determine their

sequences directly on pyrosequencing devices.

However, it is important to determine a size cut-

off of sequences that will be used to compute the

taxonomical diversity of the environment, in

order to avoid inconclusive sequences regarding

taxonomical information (Huson et al. 2007). In

addition, it is also necessary to use a suitable

algorithm that is able to compute such taxonom-

ical content based on sequences from different

gene families (Amorim et al. 2012). The advan-

tage of studying environmental diversity with this

approach is the possibility to amplify not only

bacterial but also viral, fungi, and other eukary-

otic sequences at the same time due to the no

specificity of RAPD primers. Thus, this approach

makes possible to infer the whole taxonomical

diversity of a specific environment.

Randomly amplifying sequences from

a variety of gene families may yield new mole-

cules that may have important applications.

Again, the nonspecificity of RAPD primers

works in benefit of the diversity of amplified

environmental DNA. However, it is necessary to

determine again a size cutoff, in order to maxi-

mize the probability of cloning a complete viable

gene. In addition, the representativeness of

metagenomic content must be considered in

order to also maximize the probability of new

genes and molecule mining. Such requirement

is due to some DNA extraction methods that

precede metagenomic approaches and have

the characteristic of restricting or limiting the

metagenomic representativeness regarding the

taxonomical and metabolic diversity of a specific

environment (Amorim et al. 2008, 2012). The

advantage of mining new substances with this

approach is the possibility to search for molecules

with different biological functions at the same

time. In addition, it is possible to couple new

molecule mining to genetic diversity profiling

by using RAPD.

As a new and interesting applicability, it was

shown that the use of RAPD in metagenomics

may turn possible to infer the metabolic network

of a specific environment. Once that genes

involved with related metabolic pathways are

amplified, it is possible to use suitable algorithms

to study its relationships in the same taxon or

between different taxons. For all possibilities

discussed here, RAPD seems to be a simple but

robust tool to significantly improve the

metagenomic research.
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Definition

Horizontal gene transfer (HGT) describes the

biological phenomenon by which an organism

acquires genes from organisms belonging to

other species, genera, or taxa. Its name reflects

the fact that the transfer of genetic information

between organisms that are not necessarily

related is different from the “vertical” transmis-

sion of genes from parent to offsprings. Early

reports (Smith et al. 1992) interpreted HGT as

a rare event, unable to significantly influence the

global composition of target genomes. This first

impression was rapidly subverted by the advent

of genomic sequencing technologies. For exam-

ple, the comparison of the genomes of

Escherichia coli and Haemophilus influenzae,

two bacteria belonging to the same evolutionary

lineage, shows a significant difference in their

gene content (Tatusov et al. 1996). This differ-

ence, which is not at all justifiable only in terms

of vertical descent, gave a first indication of the

massive role played by HGT in the evolution of

prokaryotic genomes. Subsequent evidence from

multiple genomes indicates that HGT acts
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pervasively on prokaryotic genomes (Woese

2000). For example, a detailed analysis made by

Dagan et al. (Dagan and Martin 2007) considered

57670 gene families across 190 sequenced

genomes demonstrating that at least two-thirds

and possibly all of them have been affected by

HGT at some time in their evolutionary past.

Introduction

The pervasive HGT occurrence reveals the impor-

tance of this process in forging the extant prokary-

otic genomes (Ochman et al. 2005). The

consequent question is how and to what extent

the transferred genes innovate a genome over the

course of evolution and how they are incorporated

into a genome’s existing biochemical and regula-

tory networks. This issue requires the study of

multiple genomes and naturally overlaps with

metagenomics, because HGT is affected by envi-

ronmental, ecological, and population factors act-

ing at the level of communities of coexisting

species. In brief, the understanding of HGT passes

through the knowledge of its consequences on

genomes, populations, and ecosystems.

HGT Impact on the Evolution of
Genomes

A genome affected by HGT can acquire two

typologies of genes: genes homologous to

existing ones and genes that are not (Ochman

et al. 2000). Both types of HGT influence the

evolution of a lineage but do so in very different

manners and contexts. The first mechanism is

favored when the phylogenetic distance between

donor and acceptor is small (Andam andGogarten

2011); these transfers may occur via homologous

exchange, whose probability increases with

genetic similarity (Vulic et al. 1997). The second

type of HGT involves the acquisition of new

genes, with a sporadic phylogenetic distribution.

Such transfers might supply genes that confer

novel phenotypic properties and result in the

rapid adaptation of a bacterial species. Both

types of transfers can leave traces in the metabo-

lism of the acquiring genomes. Several studies

found that the majority of changes to the meta-

bolic network of Escherichia coli in the past

100 million years are due to HGT (Pál 2005;

Lercher and Pal 2008). Interestingly it appears

that horizontally transferred genes are integrated

at the periphery of the network, whereas central

parts remain evolutionarily stable. This is also

supported by the modular nature of prokaryotic

genes. Indeed, metabolically related genes (e.g.,

genes coding proteins in physiologically coupled

reactions) are often transferred together as

operons. Thus, HGT appears to be the main

force able to expand bacterial metabolic networks

by enlarging their periphery in response to chang-

ing environments (Lercher and Pal 2008; Pang

and Maslov 2011). Necessarily, this carries con-

sequences on the addition of new genes regulating

the metabolic pathways, defining some observed

quantitative features of genome composition

(Grilli et al. 2012; Koonin 2011). All the above

studies evaluate the contribution of HGT to the

evolution of prokaryotic genomes using the tools

of comparative genomics. Quite interestingly, the

effects and consequences of HGTs can also be

evaluated with direct experiments. For example

a single-cell analysis was performed in

Escherichia coli in 2008 (Babic et al. 2008).

This study proves the high efficiency (up to

96 % of recipients) of recombination and integra-

tion of transferred DNA. In another study, Babic

et al. monitored in real time, through fluorescence

microscopy, the sequential conjugation events of

an integrative and conjugative element encoding

for a green fluorescent protein (GFP) (Babic

et al. 2011). A recent study investigated the nov-

elty of protein domains acquired through HGT in

Proteobacteria, focusing on their specific features

(Grassi et al. 2012). The results indicate that

protein domains subject to HGT have

a transferability proportional to their total fre-

quency in the pool of considered genomes, and

at the same time, HGTs of exogenous protein

families are found less frequently for larger

genomes. Based on these observations, one can

conclude that HGTs behave as if they were drawn
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randomly from a cross-genomic community

gene pool, much like gene duplicates are drawn

from a genomic gene pool. Similar conclusions

were drawn from a recent comparative study

of Escherichia coli and Salmonella enterica

genomes (Karberg et al. 2011). These results indi-

cate a role of a common gene pool in determining

the genes available for horizontal transfer and link

the problem to the structure of past and existing

bacterial communities and ecosystems.

Advantage of Metagenomics
in the Study of HGT

The use of single (often cultured) bacterial spe-

cies for the study of HGT has several limitations.

Firstly the great majority of bacteria (more than

99 %) cannot be cultured in the laboratory. Fur-

thermore, such a “single-species” approach

gives, by definition, an organism-centric view of

the phenomenon. This implies a limited under-

standing of microbial physiology, genetics, and

community ecology. Many recent shotgun

sequencing projects characterized the genome

content of whole microorganism communities

(Riesenfeld et al. 2004). For example, the “Sor-

cerer II” Global Ocean Sampling expedition was

designed with the precise aim of giving a global

snapshot of the marine microbiological world

(Rusch et al. 2007). The results of this important

project traced an impressive distance between

marine microorganisms and cultivated ones.

Very few metagenomic sequences were found

to be similar to the ones of annotated genomes.

A subsequent analysis of these data indicates that

the abundant and cosmopolitan picoplanktonic

prokaryotes tend to have smaller genomes

(Yooseph et al. 2010). Such condition is probably

associated to a slow growth lifestyle and with the

relative inability to sense or rapidly acclimate to

energy-rich conditions. By contrast, the micro-

bial taxa display the ability of growing slowly

and surviving in energy-limited environments,

while growing rapidly in energy-rich environ-

ments. One other focus of interest for

metagenomics is the exploration of the human

microbiome. This large project has the final goal

of characterizing associations between human

microbiome and health of an individual (Nelson

et al. 2010), i.e., the ecological influence that

microorganisms have on humans.

Metagenomic data make it difficult to formal-

ize the traditional concept of species (and conse-

quently of recombination and HGT among

prokaryotes). Nevertheless, there are interesting

findings that reveal the crucial role played by

HGT in microbial communities. For example,

Hehemann et al. (2010) point out that

metagenomic samples derived by feces of Japa-

nese individuals are enriched in carbohydrate-

active enzymes (e.g., porphyranases and

agarases), while the same enzymes are absent in

metagenomic samples derived by North Ameri-

can individuals. Interestingly, gut bacteria from

Japanese individuals have acquired these

enzymes through HGT. This finding confirms

the observation that HGT events among bacteria

from different environments can occur also inside

the human intestine (Lester et al. 2006). Another

recent study of Smillie et al. (2011) uses

metagenomics to describe the forces governing

HGT. The authors identified, through a heuristic

method, recent HGTs among thousands of micro-

bial genomes. Roughly one-quarter of the identi-

fied transfers includes at least one predicted

mobile element, confirming the importance of

such elements in facilitating gene exchange.

However, the most interesting finding of this

study is that bacteria isolated from human body

are 25 times more likely to share HGT genes than

bacteria living in different environments

(aquatic, terrestrial, and nonhuman host associ-

ated). This phenomenon is even more striking

considering human isolates derived by the same

body site, with a rate of transfer increased by

a factor of two. The authors also studied this

high transferability in human microbiome sepa-

rating bacteria by their ribosomal 16S distance,

reporting that even most divergent bacteria, sep-

arated by billions of years of evolution, but shar-

ing the same ecological niche, are affected by

more HGT than the most closely related isolates

living in different niches.

The above findings indicate that ecological

factors are relevant for driving HGT in the
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human microbiome and thus play a role in its

evolution and genomic composition. A global

understanding of these aspects is a future chal-

lenge for metagenomics, which could expand our

fundamental understanding of evolution, with

implications for biotechnology and health.

Summary

Horizontal gene transfer (HGT) is a widespread

phenomenon in prokaryotes. Its pervasive modal-

ity of action enormously influences the receiving

genomes. In light of this HGT appears among the

main forces able to expand bacterial metabolic

networks in response to changing environments.

Metagenomics opens up new perspective to the

study of HGT by giving the possibility to uncover

the ecological factors relevant for driving HGT.

Interestingly it can directly investigate complex

ecosystems as marine microbiological world and

the human microbiome.

Cross-References

▶ Integrons as Repositories of Genetic Novelty

▶Lateral Gene Transfer and Microbial Diversity

▶Metagenome of acidic hot spring microbial

planktonic community: Structural and

functional insights
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Definition

The aim of metagenomics is to investigate enor-

mous diversity of taxonomically and phylogenet-

ically relevant genes, individual catabolic genes,

and whole operons by explicating the genomes

of uncultured microbes. The concept of

metagenomics was introduced by Handelsman

which involves the extraction of genomic DNA

from the microbial community inhabiting the

environment. Either this DNA is cloned as librar-

ies for functional screening, or PCR-based

enrichment is performed with respect to gene of

interest. Generally, DNA is considered as the

most appropriate method for assessing environ-

mental microbial community’s structure as any

selection biasness is not involved. High-

throughput methods can be employed for direct

sequencing of the metagenome. The functional

approach is used to explore genes that encode

novel enzymes or drugs, but advancements are

needed for function-based metagenomics by

employing high-throughput screenings.

Introduction

Enormous genetic and biological pool of micro-

bial diversity is present on the Earth. It accounts

for 4–6 � 1030 prokaryotic cells containing

106–108 distinct genospecies. Various studies

based on molecular approaches prove that

approximately 1 % of the total vast microbial

population is culturable under cultivation condi-

tions and in media of restricted and optimized

range. Cultivation techniques pose several diffi-

culties and limitations. To encounter this prob-

lem, various DNA-based molecular methods

have been developed. Culture-independent

methods were firstly applied to environmental

system like hot springs in Yellow Stone National

Park. Further technical developments in this field

have led in to an era of metagenomics (Singh

et al. 2009).

Conserved rRNA gene sequences are used in

sequence-driven strategies of genomics to

explore microbial diversity. 16S rRNA gene has

been established as the standard molecule for

taxonomic diversity analysis in metagenomics.

Recently 23S rRNA has also been considered as

it offers advantages over 16S rRNA with size

almost twice as long as that of 16S rRNA. Thus,

it can prove to be a more informative phyloge-

netic marker in comparison to 16S rRNA gene

(Yilmaz et al. 2011); however, 23S rRNA faces

a drawback as lower number of reference

sequences of this marker is present in public

databases. All metagenomic output is collected

and shared across public databases and retrieved

using bioinformatic tools capable of dealing with

extensive generated data. Genomic Standards

Consortium (GSC) was established in 2005 with

its main intention to promote and share the infor-

mation about the resources required in the
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development of better and improved mechanisms

of metadata capture and exchange (Mocali and

Benedetti 2010).

Methodology

All metagenomic approaches are mainly based on

the technique of isolation and examination of

DNA extracts directly from naturally occurring

microbial populations. In functional

metagenomic studies (expression dependent),

the examination of DNA libraries is done by

high-throughput assays to identify clones that

have specific desired phenotype. However,

homology-based approach constitutes probing

of the library to identify clones containing con-

served sequences. Metagenomics includes the

following major steps.

Sampling

Most of the studies illustrate that estimate of

microbial diversity increases with the areas sam-

pled. While beginning with metagenomic analy-

sis of microorganisms, sampling is done using

well-established protocols to provide the best

representative sample of the desired site (Hirsch

et al. 2010). Microbial activity and growth pat-

terns in soil are influenced by physical, chemical,

and biological properties. Soil substratum and

geographical location affect the phylogenetic

composition of the microbial community. Selec-

tion of sampling site and sample method are

important considerations (Kakirde et al. 2010).

The number and diversity of microorganisms that

is to be sampled are affected by the depth of the

soil at which sampling is performed. Multiple

spatial scales are used for sampling at different

intervals, to demonstrate spatial heterogeneity of

soil microbial communities in an agriculture soil.

It was suggested that geo-statistical analysis can

be used to describe spatial distribution of the

microbes present at the subsurface of soil along

with power analysis for the assessment of the

required sample size (Mocali and Benedetti

2010). Sampling variability can be significantly

reduced by using such a regime. Sampling

from aquatic systems based on marine habitat

is comprehensively been undertaken by

Global Ocean Sampling (GOS) expedition. The

Atlantic, Pacific, and Indian oceans are covered

as part of their metagenomic studies (Yilmaz

et al. 2011).

Techniques for environmental sampling are

dependent on the purpose of the study, the habitat

to be sampled, and the desired downstream anal-

ysis (Lewin et al. 2012). With the advent of an era

of new high-throughput methods, the number of

samples accessed can be greatly increased. Sam-

pling has been reported from different environ-

ment for metagenomic analysis including soils,

surface water of the sea, deep sea sediments,

various organs of animals and humans, compost,

sludge, acid mine site, Arctic sediments, etc.

(Singh et al. 2009; Kakirde et al. 2010; Xing

et al. 2012). Oil samples were obtained from

a production well at the onshore Potiguar Basin,

Brazil, with an in situ temperature of 42.2 �C
and depth of 535.5–540.5 m for the purpose of

screening for hydrocarbon biodegraders in

a metagenomic clone library (Vasconcellos

et al. 2010).

Extraction Methods

Quality of extracted DNA samples should be high

for construction of metagenomic library. This

extraction and purification of nucleic acids

should be performed critically. Methodology of

DNA extraction is based according to the size of

the target genes and on screening strategies.

Metagenome extraction is the arbitration between

vigorous extraction that is done for the represen-

tation of all microbial genome and lowering DNA

shearing with simultaneous co-extraction of sam-

ple contaminants (Cowan et al. 2005). In direct

extraction methodology, the samples are

processed without the cultivation of the microbes

and involve the use of detergents and enzymes.

The samples are further treated with phenol or

chloroform. It has been argued that this method of

extraction is biased; for example, ammonia-

oxidizing bacteria and methane-oxidizing bacte-

ria are not easily displaced from soil particles,

when compared to the other bacterium inhabiting

the soil, and also actinomycete spores may be

underrepresented (Hirsch et al. 2010). Physical
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means of separation of microbes with lysis-based

extraction is employed in indirect extraction

approach. Cell lysis can be performed using

methods like sonication, grinding, freezing-

thawing, and solubilization of cell membranes

and cell walls by detergents or by employing

enzymatic means (Singh et al. 2009). Bead-

beating method was used for microbial lysis on

soil samples collected from barren regions of

Gujrat (India) to index microbial population and

community structure in saline-alkaline soil using

gene target metagenomics (Keshri et al. 2013).

Direct DNA extraction methods show higher

recovery rate of DNA (10–100 times) as com-

pared to indirect methods but length of DNA

fragments is larger in case of indirect methods.

Impurity content is more in DNA extracted using

direct methods as compared to indirect methods

(Xing et al. 2012).

The extraction method is selected on the basis

of desired applications. Delmont et al. (2011)

compared direct and indirect soil extraction

approaches, and they concluded that there was

a more than 40 % decrease in Eukarya sequences

when using indirect DNA extraction as compared

to direct method. Archaeal and bacterial

sequences also increased in indirect approaches.

Another concern in extraction process is the pres-

ence of various contaminants in the soil, for

example, humic acid, polyphenols, polysaccha-

rides, and nucleases, which can prove inhibitory

to different applications including PCR and

metagenomic library construction. Single-DNA

extraction methods can underestimate the total

number of bacterial ribotypes present in marine

sediments (Singh et al. 2009; Kakirde

et al. 2010). To obtain the significant amount of

DNA, large quantities of material is required.

RNA recovery from environments is quite similar

to that of DNA isolation. To decrease physical

degradation and RNase activity, samples are spe-

cifically processed. Harvesting of samples is

followed by freezing it at �80 �C. Sulfate salt

solution can be used to coprecipitate cellular

RNAwith proteins. cDNAmetagenomic libraries

can be constructed to identify functional eukary-

otic genes using RNA extraction approach

(Cowan et al. 2005).

Enrichment of Sample

Whereas non-enrichment methods have a capac-

ity to maintain high diversity of microbial com-

munities, to increase the specificity of a sample’s

genomic DNA, enrichment is performed. Screen-

ing of sequence-based novel genes is benefited by

enrichment (Xing et al. 2012). Such methods

have power to select particular community

based on its function. The loss of diversity can

be moderated by alteration of the degree of the

selection pressure applied. Active biomolecule of

the microorganisms can be targeted using

genome enrichment strategies. Enrichment of

the target population can be achieved by the use

of selective media due to its capability to utilize

specific substrate. Novel techniques are

employed to enrich specific microbial commu-

nity such as 5-bromo-2-deoxyuridine (BrdU)

labeling that can be done on actively growing

microbes, followed by separation of labeled

nucleic acids by density gradient centrifugation

and immuno-capture techniques. Growth of spe-

cific substrate utilizing microbial community can

be enhanced by addition of substrates along with

BrdU (Singh et al. 2009).

SSH (suppressive subtractive hybridization)

technique is also used for specific gene enrich-

ment and identifying genetic differences between

microorganisms. Samples are ligated with adap-

tors and such fragments are selected on the

basis of subtractive hybridization. The effect

of specific pollutants on the community DNA

can be determined with this enrichment tech-

nique by making a comparison with reference

metagenome in the absence of that pollutant

(Cowan et al. 2005). Another enrichment method

is stable isotope probing (SIP) that can be used to

target metagenomics to specific populations. SIP

involves stable isotope-labeled substrate and sep-

aration of heavier nucleic acids (DNA/RNA) by

density gradient centrifugation. Metagenome

expression profile can be compared in response

to specific substrates or xenobiotic compounds in

method based on differential expression analysis

(DEA), which can identify genes which are

upregulated for specific activity (Cowan

et al. 2005). In addition, microarray method,

phage display expression system, and multiple
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displacement amplification and differential dis-

play are other methods for enrichment of geno-

mic DNA (Singh et al. 2009). Aerobic and

anaerobic microbial enrichments can also be

performed as done in a study involved in screen-

ing for hydrocarbon degraders. These cultures

were grown in Schott bottles containing 500 ml

Widdel B mineral medium supplemented with

n-hexadecane as carbon source. This resulted in

anaerobic enrichment of sample (Vasconcellos

et al. 2010). WGA (whole genome amplification)

approach involves the use of short random

primers to replicate DNA and is employed when

limited-sized sample (microsamples) is to be

processed (Hirsch et al. 2010).

Construction of Metagenomic DNA
Libraries

Construction of a metagenomic library depends

on appropriate vector. Quality of extracted DNA

and associated research goals plays an important

role in vector selection. Plasmids, cosmids, bac-

terial artificial chromosomes, and fosmids are

extensively used vectors. The choice of vector is

influenced by the size of the insert fragment, copy

number of vector required, host used, and screen-

ing methods (Xing et al. 2012). Cosmid DNA

libraries are constructed with an insert size rang-

ing between 25 and 35 Kb. BAC libraries can

permit the size up to 200 Kb and fosmid libraries

with inserts of 40 Kb of foreign DNA (Streit and

Schmitz 2004). pCR 2.1 vector was used for

cloning, and plasmids were further screened for

insert size by PCR-based amplification in the

study of community structure in saline-alkaline

soil (Keshri et al. 2013). Molecular classification

of gliomas was done using P-1-derived artificial

chromosome (PAC). Large-sized human geno-

mic DNA is best cloned in YAC or BAC (Xing

et al. 2012). Entire metabolic pathways can be

recovered by cloning large fragments of

metagenomic DNA in vectors. Host selection is

another important criteria considered for efficient

cloning. Host strain should be selected on the

basis of efficiency of the conversion process,

gene expression, plasmid stability in the host

cells, and screening of the target genes. Com-

monly used host strains are E. coli, Streptomyces

sp., Pseudomonas sp. and Rhizobium sp. Highly
sheared DNA poses a major problem in library

generation, because ligatable sticky ends cannot

be formed out of highly sheared DNA. Blunt-end

ligation can overcome this problem to some

extent (Singh et al. 2009).

Integrated approach of stable isotope probing

(SIP) and metagenomics has increased the fre-

quency of clones containing target genes which

are desirable. In one of the study on methane-

utilizing bacteria in a forest soil, the sample was

labeled with CH4 and “heavy” DNA was used to

construct a bacterial artificial chromosome

library. 2,300 clones had to be screened in order

to obtain pmoCAB operon encoding subunits of

methane monooxygenase, whereas in non-SIP

study 250,000 fosmid clones were screened to

find pmoCAB operon (Uhlik et al. 2013).

Screening of Clones from Metagenomic
Libraries

After obtaining the metagenomic library, screen-

ing of clones is done. Function-based screening

also known as biological activity screening

selects positive clones that express desirable

characteristics. Specific phenotypes of the indi-

vidual clones can be directly detected by using

functional assays, by adding chemical-based

dyes or chromophore-conjugated enzymes. New

antibiotic resistance gene determinants (ARGD)

can be investigated by functional analysis.

A novel chloramphenicol-florfenicol-resistant

gene was discovered by screening Alaska soil

metagenomic clone library (Monier et al. 2011).

Banik and Brady (2010) reviewed the

metagenomic approaches toward discovery of

antimicrobials. In a work performed by Schmitz

and coworkers, bacteriophage DNA was isolated

from bat, guano, and earthworm guts; its func-

tional screening led to the discovery of three new

lysins capable of inhibiting Bacillus anthracis
proliferation. Another function-based approach

is the use of host strains requiring heterologous

complementation by foreign genes for growth
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under selective conditions. The recombinant

clones that contain target gene and produce

corresponding gene product in active form show

optimum growth. This functional complementa-

tion was used to isolate lysine racemase (Lyr)

gene from soil metagenome; in this E. coli
BCRC 51,734 cells were used as the host and

D-lysine as selection agent (Chen et al. 2009).

The above approach faces certain problems

including that of inaccurate transcription of target

genes and assemblage problems of the

corresponding enzymes. There is a scope of

improvement in screening efficiency by enrich-

ment of target microbes or use of screening sen-

sitive substrate (Streit and Schmitz 2004).

Sequence-driven screening methods comprise

of primers and probes of known conserved

sequence that include phylogenetic or functional

genes. Target clone is identified by PCR-based

amplification or hybridization. PCR amplifica-

tion of 30 genes encoding novel patellamide-

like precursor peptide from Prochloron sp.

symbionts living in consortia with marine

sponges was reported by Schmidt and coworkers

(Banik and Brady 2010). Fifteen new variants of

the gene encoding precursor to the microviridin

peptide were identified by Ziemert and coauthors

in a PCR-based methodology. Homology-based

screening is carried out mostly by using degener-

ate PCR primers, RT-PCR, DNA microarrays,

integron, and affinity capture methods of

sequence-based screening, as reported in litera-

ture (Xing et al. 2012). Relatively a new method

for genetic screening is substrate-induced gene

expression screening (SIGEX). These

metabolism-related genes are selectively

expressed in the presence of certain substrates.

Chromatography-based screening techniques

known as compound configuration screening are

also reported. Clones are screened on their capa-

bility to produce new structural compounds

depicting different chromatographic peaks rela-

tive to the host cells. Microarray-based GeoChip

technology has been developed to access genetic

and functional diversity of microbial community.

Reactome array is a new sensitive metabolite

array which offers functional analysis of meta-

bolic phenotypes (Streit and Schmitz 2004).

Gene of interest can also be identified by random

sequencing. Phylogeny can be linked with the

functional gene by performing phylogenetic

analysis with flanking DNA.

Metagenomic Sequencing

Gradual change has been experienced in the area

of sequencing. Classical Sanger’s sequencing

technology is being proceeded by next-generation

sequencing (NGS). Sanger method is preferred for

its low error rate, long read length (>700 bp), and

large insert sizes, but it has a drawback of being

a labor-intensive process. Array-based sequencing

and in vitro amplification of target DNA fragments

constitute the second-generation DNA sequenc-

ing. Such technology is implemented in

454 Genome Sequencer, Illumina Genome Ana-

lyzer, and SOLiD platform (Xing et al. 2012).

These next-generation approaches have the capac-

ity for abundant parallel sequencing of samples.

Pyrosequencing allows sequencing of 100–200 bp

of single-stranded DNA and employs luciferase-

based real-time monitoring of pyrophosphate

release (Guazzaroni et al. 2009) and has high

accuracy rates comparable to Sanger’s

sequencing.

Metagenomics employs two approaches:

firstly, system-based approach, where complete

sample of DNA is processed and analyzed.

MG-RAST (Metagenomic Rapid Annotation

Using Subsystem Technology) characterizes HTS

pyrosequencing run (Larsen et al. 2012). Secondly,

species identification-based approach involves the

probability of potentially missing certain taxa in

the process of PCR-based amplification of specific

regions. One of the efficient methods of high-

throughput analysis (HTS) of genes is based on

microarrays; differential gene expression quantifi-

cation of environmental bacterial diversity can be

monitored (Cowan et al. 2005). Second-generation

sequence technologies help in obtaining more

information from complex microbial communities

(Logares et al. 2012). Open reading frames

and operons can be identified by analysis of

longer contiguous sequences. Colony hybridiza-

tion and pyrosequencing when combined with
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metagenomic approach helped in gaining informa-

tion about genetic organization and diversity of

specific operon.

Addition of sample specific oligonucleotides

barcode to PCR primers had an advantage of

sequencing a number of samples simultaneously

at a relatively reduced cost, also known as

barcoding or multiplexing (Willner and

Hugenholtz 2013). Third-generation sequencing

is evolving fast. The first such technology became

available was PacBio RS from Pacific Biosci-

ences. This immobilized polymerase performs

sequencing, and four differently colored nucleo-

tides are detected in real time (Logares

et al. 2012). Another innovative sequencing plat-

form known as Ion Torrent is based on the princi-

ple that DNA polymerization releases protons

which can help in the detection of nucleotide

incorporation. Read length >100 bp can be

obtained in the above technology. DNA nanoballs

can be sequenced in a technology offered by Com-

plete Genomics (Thomas et al. 2012).

Assembly, Binning, and Annotation

Recovering and characterization of genome of

cultured organisms requires assembly of short-

read fragments into longer genome contigs.

Reference-based assembly method is applied, if

closely related reference genomes are available.

Large computational resources are required for de

novo assembly (Thomas et al. 2012). A process

based on sequence comparison of unknown DNA

with reference databases, known as binning, helps

to sort DNA sequences into groups representing

genomes from closely related organisms.

Metagenome sequence data is generally annotated

by feature prediction and functional annotation.

Feature prediction labels the sequences as gene,

and functional annotation assigns taxonomic

neighbors and putative gene function.

Data Handling and Statistical Analysis

Statistical approach aids metagenomics to link

functional and phylogenetic information to the

biological, physical, and chemical parameters

that fully characterize a microbial community.

Multivariate statistical analysis is provided by

various tools like Primer-E package. This pack-

age helps in the generation of multidimensional

scaling (MDS) plots, analysis of similarities

(ANOSIM), and species identification

(SIMPER) (Thomas et al. 2012). A wide variety

of bioinformatic tools and databases are available

for metagenomic studies (Table 1).

Ecological Inferences

Community Studies

The ecological role of the microorganisms

can be highlighted by conducting a genome-

wide analysis. The ecosystem is highly dynamic

in structure, and by employing shotgun

metagenomics, direct sequencing of community

DNA can be achieved. Metagenomics generate

environmental microbial community data that

helps in the investigation of microbial environ-

mental interactone (MEI) (Larsen et al. 2012).

PCR-based methods such as amplified ribo-

somal DNA restriction analysis (RISA), dena-

turing gradient gel electrophoresis (DGGE), and

terminal restriction fragment length polymor-

phism (T-RFLP) have been used for the charac-

terization of community microorganisms.

These techniques were applied to study the

bacterial response in a pesticide contaminated

soil (Imfeld and Vuilleumier 2012). Subsurface

oil reservoirs with high pressure, salt, heavy

metals, and organic solvent concentration have

been analyzed by metagenomics. In another

study, permafrost samples from the Canadian

High Arctic and Alaska were investigated, in

order to understand its potential linkage to

global warming (Lewin et al. 2012). Microbial

niche study was conducted on flowing acid mine

drainage to determine the industrial community

structure of a natural acidophilic biofilm

growing on it (Streit and Schmitz 2004).

ECOMIC-RMQS project is a French initiative

to characterize soil microbial communities.

Innovative studies and methodologies can

determine organism’s possible habitat in
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Metagenomic Research: Methods and Ecological Applications, Table 1 Bioinformatic tools and databases

commonly used in metagenomic studies

Name Description Website

ARB Tools for sequence database handling and data analysis www.arb-home.de

CAMERA Community Cyberinfrastructure for Advanced

Microbial Ecology Research and Analysis

http://camera.calit2.net

CARMA Characterizing short-read metagenomes www.cebitec.uni-bielefeld.de/brf/

carma/

COG Clusters of Orthologous Groups http://www.ncbi.nlm.nih.gov/COG/

DDBJ DNA Data Bank of Japan http://www.ddbj.nig.ac.jp/

DOTUR Defining Operational Taxonomic Units and Estimating

Species Richness

http://www.plantpath.wisc.edu/fac/

joh/dotur.html

EMBL European Molecular Biology Laboratory www.embl.de/services/

bioinformatics/index.php

GAAS Genome relative Abundance and Average Size http://sourceforge.net/projects/

gaas/

GenBank Genetic sequence database www.ncbi.nlm.nih.gov/Genbank/

metagenome.html

GOLD Genomes Online Database www.genomesonline.org

GSC Genomic Standards Consortium www.gensc.org

INSDC International Nucleotide Sequence Database

Collaboration

http://www.insdc.org/

IMG/M Integrated Microbial Genomes http://img.jgi.doe.gov/

KEGG Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/

LefSe LDA Effect Size http://huttenhower.sph.harvard.edu/

galaxy/root?tool_id¼lefse_upload

MEGAN MEtaGenome ANalyzer www-ab.informatik.uni-tuebingen.

de/software/megan

Megx.net Marine Ecological GenomiX www.megx.net

MetaPhlAn Metagenomic Phylogenetic Analysis http://huttenhower.sph.harvard.edu/

galaxy/root?tool_id¼lefse_upload

GraPhlAn Graphical Phylogenetic Analysis http://huttenhower.sph.harvard.edu/

galaxy/root?tool_id¼lefse_upload

METAREP JCVI Metagenomics Reports http://jcvi.org/metarep/

PyNAST Python Nearest Alignment Space Termination www.qiime.org/pynast/

Naive Bayes classifier Probabilistic classifier http://www.statsoft.com/textbook/

naive-bayes-classifier/

MG-RAST Metagenomic RAST http://metagenomics.nmpdr.org

PHACCS Phage Communities from Contig Spectra http://sourceforge.net/projects/

phaccs/

RefSeq Reference Sequence http://www.ncbi.nlm.nih.gov/

refseq/

ShotgunFunctionalizeR R-package for functional comparison of metagenomes http://shotgun.zool.gu.se

SILVA Comprehensive online ribosomal RNA sequence data

base

www.arb-silva.de

SINA Bioinformatic tools for sequence alignment www.arb-silva.de

SmashCommunity Stand-alone metagenomic annotation and analysis

pipeline

http://www.bork.embl.de/software/

smash/

Sort-ITEMS Sequence orthology-based approach for improved

taxonomic estimation of metagenomic sequences

http://metagenomics.atc.tcs.com/

binning/SOrt-ITEMS/

STAMP Statistical Analysis of Metagenomic Profiles http://kiwi.cs.dal.ca/Software/

STAMP

(continued)
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multidimensional space. Microbial assemblage

prediction (MAP), a bioclimatic tool, helps

in modeling relative abundance of microbial

taxa as a function of environmental parameters

(Larsen et al. 2012). SIP-metagenomics

approach can be employed in the identification

of microbial species degrading xenobiotic

compounds.

Bioprospecting

New thermostable and thermolabile biocatalyst

can be discovered from extreme ecological com-

munities. High-temperature metagenomes of

virus recently gave a new thermostable DNA

polymerase with reverse transcriptase activity

for RT-PCR (Lewin et al. 2012). Variety of

enzymes has been isolated using metagenomics

(Table 2). By using metagenomics, scientists

were able to identify many genes playing a role

in various processes including cell cycle, metab-

olism, DNA repair, transcriptional regulation,

etc. (Sharma et al. 2005).

A novel cold-active xylanase gene was iso-

lated from the community DNA of goat’s rumen

contents. Human gut metagenomic library was

subjected to high-throughput screening;

310 clones were isolated showing various

enzyme activities (Xing et al. 2012). Novel anti-

biotics were successfully achieved through

metagenomics, e.g., indirubin, deoxyviolacein,

and violacein (Ghazanfar et al. 2010).

Clinical Metagenomics

In an initiative by the National Institute of Health

(NIH), the Human Microbiome Project is being

undertaken to characterize microbial community

present at various sites in the human body. The

main objective of this project is to study these

microbes in healthy and diseased state of the

human body. Nelson et al. (2010) sequenced

178 microbial genomes present at multiple body

sites, and further novel predicted polypeptides

Metagenomic Research: Methods and Ecological Applications, Table 1 (continued)

Name Description Website

TACOA Taxonomic classification of environmental genomic

fragments using a kernelized nearest neighbor approach

http://www.cebitec.uni-bielefeld.

de/brf/tacoa/tacoa.html

TETRA Fragment assignment by intrinsic tetranucleotide

frequencies

www.megx.net/tetra

Treephyler Fast taxonomic profiling of metagenomes http://www.gobics.de/fabian/

treephyler.php

Fast UniFrac Comparison of microbial communities http://bmf2.colorado.edu/

fastunifrac

XplorSeq Mac OSX software for sequence analysis www.phyloware.com/Phyloware/

XplorSeq.html

Xipe Statistical comparison program http://edwards.sdsu.edu/cgi-bin/

xipe.cgi

Metagenomic Research: Methods and Ecological
Applications, Table 2 Enzymes/biocatalysts isolated

using metagenomic approaches

Name of enzymes

Agarase DNA

polymerase

Nitrile hydratase

Alcohol

oxidoreductase

Endoglucanase Nuclease

Alkane hydroxylase Exoglucanase Pectinase

Amidase Esterase Phytase

Amylase b-Glucosidase Polyketide

synthase

Cellulase Glucoamylase Protease

Chitinase Laccase Rhamnosidase

Decarboxylase Lipase Single-stranded

DNA ligase

4-Hydroxybutyrate

dehydrogenase

Mannanase Xylanase

Dehydratase Nitrilase b-Lactamase

Compiled from Cowan et al. 2005; Singh et al. 2009;

Ghazanfar et al. 2010; Xing et al. 2012
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were identified. Crohn’s disease patient’s gut

metagenome revealed a characteristic disease-

associated microbiota. By using metagenomics,

healthy human virome can be characterized and

infectious diseases with unknown etiology can be

diagnosed. Novel viruses such as cardiovirus and

klassevirus have been reported in viralmetagenome

of human fecal samples. For fungal diversity anal-

ysis, nuclear ribosomal internal transcribed spacer

region (ITS) is employed. Mycobiome was pre-

pared from oral rinse samples to study fungal

species diversity. High-throughput sequencing of

fungal metagenome was applied to the samples

from patients with cystic fibrosis for identifying

new species. Community profiling using HTS pro-

vides new insights in the area of clinical microbiol-

ogy (Willner and Hugenholtz 2013).

Summary

Metagenomic approach is a repertoire of huge

genetic information. DNA/RNA from numerous

ecosystems are sampled, extracted, and processed.

Functional- and sequence-based screening of

metagenomic libraries has helped in establishing

phylogenetic relationships among the communi-

ties. It has opened a new era of discovery of novel

genes and microbial interaction-based studies.

Innovative metagenomic sequencing efforts will

be essential to resolve the complexity involved in

various microbiomes. It is important to share

and critically apply outcomes of metagenomic

research. With the advent in the areas of

metagenome library construction, screening

methodology, and enhanced gene expression,

metagenomics can evolve as a significant tech-

nology in microbial diversity analysis.

Cross-Reference
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Synonyms

Metagenomics of polluted substrates/environments

Definition

Bioremediation refers to the detoxification of

environments through the activities of living

organisms. In many environments, microorgan-

isms are the main agents of bioremediation, as

they adapt their existing biochemical pathways to

the degradation or conversion of pollutants.

Human intervention can often improve the ability

of microorganisms to rapidly remediate contam-

inants, but how treatments affect species diver-

sity and gene allocation in complex microbial

communities is not well characterized. The

metagenome of a contaminated environment

includes all DNA contained within it; however,

a variety of screening methods can be used in

bioremediation studies to simplify the collection

and analysis of targeted genomic information.

Introduction

Pollution is a ubiquitous global concern, as many

natural and synthetic compounds have been intro-

duced into environments in which they are posing

hazards to the health of humans and ecosystems.

Bioremediation is the degradation, conversion, or

stabilization of these compounds by organisms,

generally performed by microorganisms and

plants. When the organisms that are native to

a contaminated site effectively remove contami-

nants without intervention, the toxicity at the site

may simply be monitored as the pollutant is

reduced or converted to a less toxic form. In

many cases, however, intervention can increase

the rate of bioremediation. The addition of stimu-

lating amendments on site (e.g., nutrients, organic

matter) and the relocation of contaminated mate-

rial to off-site treatment facilities are the most

common approaches to encouraging remediation.

Often it is microorganisms that play the most

significant role in bioremediation. High-

resolution genetic information is required to

understand how contaminants and treatments

affect the complex microbial communities that

exist in natural environments. Some taxonomic

groups have been linked to the presence of vari-

ous pollutants, but many of the taxa and enzymes

that can potentially participate in bioremediation

remain unknown. Thousands of microbial species

may exist in a single gram of soil, so when pol-

lutants are similar in composition to compounds
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that occur naturally in the environment, a large

number of species are able to compete to use the

pollutant as a source of carbon, nutrients, or

energy. At the other extreme, when the intro-

duced pollutant is complex or synthetic in origin,

there may be no local strains that are immediately

capable of metabolizing it or reducing its toxicity.

A number of bioremediating microorganisms

have been isolated from contaminated sites, but it

is now generally understood that the information

obtained from these isolates is insufficient to

understand the workings of complex microbial

communities. More complete genetic informa-

tion from natural environments is required to

understand how contamination affects microbial

communities on the whole, and whether there is

the potential for further optimization of bioreme-

diation. The large-scale, culture-independent

studies that are required to meet this end are

now possible with the advent of new high-

throughput sequencing technologies.

Aspirations for Metagenomics in
Bioremediation

Understanding the differences between

a contaminated environment and its

uncontaminated equivalent is a major topic of

study in bioremediation research, as it can help

in determining how much of the natural function

of the system has been altered by contamination.

Metagenomic data can provide information about

taxonomic and enzymatic diversity both pre- and

post-contamination, which will allow the mining

of potentially active genes and organisms. Accu-

mulating metagenomes from a variety of contam-

inated and uncontaminated equivalent

environments will make it possible to link

changes in contaminant composition and concen-

tration to specific genes and taxa. In addition,

such studies will answer questions about the

microbial ecology of the contaminated system,

specifically how microorganisms respond to the

disturbance created by the contaminant. Adjust-

ments of nutrients, carbon sources, pH, tempera-

ture, oxygen, and water content are frequently

parts of treatment scenarios applied to contami-

nated sites, so metagenomic studies of bioreme-

diation will also provide information on how

microbial communities respond to changes in

a variety of environmental factors. To date, only

a handful of such studies have been conducted

(Table 1).

Types of Metagenomic Studies Used in
Bioremediation

Strictly speaking, metagenomics involves the

entirety of genetic information contained within

a sample. More efficient sequencing now makes

it possible to produce this data, but the effort

required to thoroughly analyze such huge

datasets is a limiting step in metagenomic studies.

Even when full metagenomes are sequenced,

analysis of the data will often focus on specific

genes of interest. There is also a trade-off

between the number of samples analyzed and

the depth of sequencing possible. While it is

tempting to completely sequence and annotate

single samples, it is difficult to know how repre-

sentative this sample is of an entire environment

or in the case of composite samples, the variabil-

ity that exists within the environment.

As a compromise, many studies of contami-

nated sites have used what has been referred to as

gene-targeted metagenomics (Iwai et al. 2010), in

which specific gene regions are amplified and

then sequenced using high-throughput technolo-

gies. This has been used in bioremediation stud-

ies to look at specific functional genes (Bell

et al. 2011; Iwai et al. 2010) as well as 16S

rRNA gene diversity (e.g., Bell et al. 2011;

Gihring et al. 2011). The limitations of gene-

targeted metagenomics are that (1) genetic infor-

mation that is not immediately of interest cannot

be explored in the future, (2) novel genes that

cannot be amplified by the selected primers are

excluded from the analysis, and (3) information

about the relative occurrence of the targeted

genes within the sample will be lost.

Several recent reports have incorporated some

type of metagenomics into the study of the
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Metagenomics Potential for Bioremediation, Table 1 Studies that have used metagenomics to study microbial

populations in contaminated substrates

Substrate Contaminant Treatment

Gene groups

examined Key finding

Sequencing

type References

Whole genome sequencing

Groundwater Heavy

metals,

nitrate,

organic

solvents

None 16S rRNA,

metabolism,

stress response

Significant loss of

species and metabolic

diversity following

more than 50 years of

contamination

PRISM

3730

capillary

DNA

sequencer

Hemme

et al. 2010

Soil Diesel Monoammonium

phosphate and

aeration

16S rRNA,

alkyl group

hydroxylases,

extradiol

dioxygenase,

intradiol

dioxygenase,

gentisate/

homogentisate

dioxygenase

Shift from

Gammaproteobacteria
to Alphaproteobacteria
and Actinobacteria
after 1 year of

remediation

Roche/454

GS FLX

Titanium

Yergeau

et al. 2012

Gene-targeted sequencing

Soil JP-8 jet fuel Monoammonium

phosphate

16S rRNA,

alkB
Alphaproteobacteria in
contaminated soils

were more effective at

incorporating added

nitrogen than were

other bacterial taxa

Roche/454

GS FLX

Titanium

Bell

et al. 2011

Rhizosphere

soil

PCB None Toluene/

biphenyl

dioxygenases

Unexpected gene

diversity, including

25 novel clusters

Roche/454

FLX

Iwai

et al. 2010

Subsurface

sediment

Uranium

(VI)

Ethanol injection 16S rRNA Identified indicator

taxa specific to various

hydrochemical

conditions and those

that responded to

treatment

Roche/454

FLX

Cardenas

et al. 2010

Mangrove

sediment

MF380

heavy fuel oil

None 16S rRNA Wide diversity in both

contaminated and

uncontaminated

sediment, with

indicator taxa detected

for each

Roche/454

FLX

dos Santos

et al. 2011

Groundwater Uranium,

sulfate,

nitrate

Emulsified

vegetable oil

16S rRNA Very narrow group of

microorganisms that

were stimulated by the

treatment and/or

involved in

remediation

Roche/454

FLX

Gihring

et al. 2011

Liquid

media

Synthetic

aromatic

alkanoic

acids

Added individual

alkanoic acids

16S rRNA Microbial community

was unique to the

contaminant added,

which varied in alkyl

side branching

Roche/454 Johnson

et al. 2011

(continued)
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microorganisms living in contaminated environ-

ments. Since the labor required to process data is

beginning to outweigh the cost of sequencing as

the limiting step in metagenomic analyses,

a variety of screening methods have been used

in bioremediation studies to optimize the output

of information (Fig. 1). The various approaches

to metagenomics that have been taken in biore-

mediation research are outlined below.

Multiplexed 16S rRNA Gene Sequencing

Because of its potential to quickly assign taxon-

omy to large numbers of microorganisms, 16S

rRNA gene sequencing has gone through several

waves of popularity in microbial ecology. Com-

parisons of the 16S rRNA gene profiles of envi-

ronmental samples have taken off again with the

advent of high-throughput sequencing (Tringe

and Hugenholtz 2008) and are currently more

popular than any other type of metagenomic

study. One reason is that a large number of 16S

rRNA gene entries exist in NCBI and EMBL, as

do curated 16S rRNA gene databases such as the

Ribosomal Database Project (http://rdp.cme.msu.

edu/) and Green Genes (http://greengenes.lbl.

gov/). As a result, profiles of community diversity

can be conducted with only a cursory understand-

ing of bioinformatics. While early techniques

such as T-RFLP and DGGE gave some indication

of the variation between samples, they only

described small portions of microbial communi-

ties. Even clone library studies rarely sampled

more than a few hundred clones, whereas

multiplexed next-generation sequencing easily

provides several thousand sequences per sample.

Since studies into bioremediation generally

aim to identify effective pathways for converting

or tolerating contaminants, how relevant is tax-

onomy? There is still debate surrounding how

much functional redundancy exists between

microbial species and how prevalent horizontal

gene transfer (HGT) is within microbial commu-

nities, yet a recent metagenomic study shows that

distinct bacterial species likely do exist (Caro-

Quintero and Konstantinidis 2012). A number

of 16S rRNA gene surveys have been conducted

in contaminated environments and have been

used to assess how microbial communities vary

in relation to uncontaminated reference environ-

ments or how a community changes in

a contaminated environment over time. In several

of these studies, 16S rRNA gene-targeted

metagenomics has identified indicator species

that are specific to certain contaminants and envi-

ronmental conditions (Cardenas et al. 2010; dos

Santos et al. 2011). Similar multiplexed studies

may be used to identify indicator species across

multiple environments at similar stages of

Metagenomics Potential for Bioremediation, Table 1 (continued)

Substrate Contaminant Treatment

Gene groups

examined Key finding

Sequencing

type References

Functional screening

Soil Aliphatic and

aromatic

hydrocarbons

Air sparging Extradiol

dioxygenase

High diversity of

extradiol dioxygenase

genes in contaminated

soil; one extradiol

dioxygenase gene

found per 3.6 Mb of

DNA

ABI PRISM

3100

Genetic

Analyzer

Brennerova

et al. 2009

Activated

sludge

Various

aromatic

compounds

None Extradiol

dioxygenase

Identified novel

arrangements of the

extradiol dioxygenase

degradation pathway

on plasmid-like DNA

ABI 3730xl

DNA

Analyzer

Suenaga

et al. 2009
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Metagenomics Potential for Bioremediation, Fig. 1 Methods for integrating metagenomics into bioremediation

studies
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contamination, and these indicator species could

theoretically be used to assess the state of other

contaminated sites.

The major advantage of the high-throughput

sequencing approach when compared with earlier

16S rRNA gene profiling techniques is the depth

of coverage. In mangrove sediment contaminated

with heavy fuel, little change was seen at the

phylum level following contamination, while

large shifts were observed at finer taxonomic

levels (dos Santos et al. 2011), an effect that

may not have been visible using coarser profiling

methods. Similarly, 16S rRNA gene

pyrosequencing showed that a very narrow

group of taxa were stimulated by emulsified oil

injection in a uranium-contaminated aquifer

(Gihring et al. 2011). With less sequencing cov-

erage, it would be impossible to determine

whether these were the only taxa stimulated or

simply the most dominant members of the

community.

Multiplexed Functional Gene Sequencing

In many bioremediation studies, specific cata-

bolic, reducing, or oxidizing genes are the sub-

jects of interest. In such cases, it may be desirable

to simply amplify and sequence these targeted

genes. As with 16S rRNA gene sequencing,

many samples can be processed by multiplex

sequencing for a limited cost. Degenerate primers

have been used to amplify alkane

monooxygenase genes from hydrocarbon-

contaminated Arctic soil, and sequencing showed

that those related to Alphaproteobacteria

responded most positively to amendment with

monoammonium phosphate (Bell et al. 2011).

Amplicons were also obtained from a

PCB-contaminated soil using degenerate primers

targeting toluene/biphenyl dioxygenase genes,

and sequencing identified a variety of novel

dioxygenase gene clusters (Iwai et al. 2010). In

terms of gene discovery, the major drawback of

this approach is that gene identification depends

on novel genes having significant homology at

the primer-targeted regions. Even when the

targeted genes are known, the chosen primers

will bias the relative gene abundance within

each sample. Amplicon size must also be

considered, since many sequencing technologies

have a maximum read length, although with time,

this is becoming less of a concern.

Functional Screening

Since bioremediation is generally focused on

which microbial communities most effectively

degrade pollutants, it can potentially be straight-

forward to functionally screen for samples of inter-

est. A study of contaminated Arctic soils

compared the hydrocarbon-degrading efficiency

of various soils in response to different in situ

and ex situ treatments, with degradation occurring

significantlymore effectively in one location. Sub-

sequently, a metagenomic analysis was conducted

throughout a year-long time course on the soil that

most rapidly degraded the contaminating hydro-

carbons, along with an uncontaminated reference

soil (Yergeau et al. 2012). Metagenomic studies

that are conducted in vitro also involve an aspect

of selection, as onlymicroorganisms that are capa-

ble of growing in mixed culture prevail. Mixed

culture studies are common, as they often evaluate

the potential for bioremediation in treatment facil-

ities. Metagenomics is starting to be applied to

such studies, as in one case in which it was deter-

mined that the amount of branching in synthetic

aromatic alkanoic acids led to vastly different

microbial communities (Johnson et al. 2011).

Prescreening of DNA can also be conducted

on large genomic fragments that are contained

within plasmids, such as fosmids or cosmids. By

transforming these vectors into hosts such as

E. coli, the DNA fragment can be screened for

the ability to mineralize or tolerate a specific

contaminant. This strategy permits the identifica-

tion of genes that are involved in the catabolism

of particular pollutants, or that permit host sur-

vival, provided the essential pathway can be

contained in a single DNA fragment and can be

expressed in the host. Sequencing is also more

targeted using this approach, as the sequencing of

housekeeping and rRNA genes is limited.

To search for genes capable of degrading cate-

chol, metagenomic DNA from a hydrocarbon-

contaminated soil was fragmented, cloned into

fosmid vectors, transformed into E. coli, and

plated with catechol as a carbon substrate. A high
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diversity of extradiol dioxygenase genes was

observed, as well as a surprisingly high density

of one extradiol dioxygenase per 3.6 Mb of DNA

screened (Brennerova et al. 2009). A similar

approach identified novel extradiol dioxygenase

genes, as well as previously unknown arrange-

ments of catechol-degrading pathways (Suenaga

et al. 2009). The drawbacks of this approach are

that the entire genetic pathway must be contained

within a single plasmid; that the host may be

unable to survive in the presence of any toxic

gene products, meaning that not all relevant

genes will necessarily be identified; and that

some genes may not be expressed if the chosen

host is not closely related to the organism from

which the DNA fragment originated.

Full Metagenome Analysis

Full metagenomic sequencing, when possible,

provides the greatest amount of information.

With this approach, any number of post hoc ana-

lyses can be conducted on a dataset. While much

of the genetic information obtained from a given

environment may lack appropriate comparators

in existing gene banks, collecting full

metagenomic information will allow future

researchers the opportunity to analyze the

dataset. At the moment, a number of database

projects are ongoing in an attempt to collect and

annotate metagenomic data, including some from

contaminated sites (e.g., http://www.hydrocar-

bonmetagenomics.com/).

To date, only a handful of complete

metagenomic studies have been conducted in

contaminated environments. While 16S rRNA

gene studies are useful in determining the rela-

tive microbial diversity of environments,

the metabolic potential of a microbial commu-

nity may not be strictly linked to its taxonomic

profile. Thus, full metagenomic studies can

be used to assess how diversity relates to func-

tional potential. A metagenomic study of a

diesel-contaminated Arctic soil showed that

a shift in 16S rRNA gene sequences from

Gammaproteobacteria to Alphaproteobacteria

and Actinobacteria mostly correlated with

a shift in hydroxylases and dioxygenases that

were affiliated with those same organisms

(Yergeau et al. 2012), demonstrating that, in

this case, there was significance to taxonomic

affiliation. Similarly, most of the functional

genes (stress response, metal resistance, etc.)

identified in the metagenome of a heavy metal-

contaminated groundwater community were

traced to Gammaproteobacteria, the group that

also dominated the 16S rRNA gene profile

(Hemme et al. 2010).

Full metagenomes can also provide information

on the relative abundance of genes of interest.

PCR-based approaches introduce a primer bias

prior to sequencing, whereas strict metagenomic

analysis permits a more direct quantitative compar-

ison. Within the contaminated groundwater

metagenome, stress-response genes, such as those

involved inDNA repair and heavymetal resistance,

were more abundantly represented than would be

expected in an uncontaminated community

(Hemme et al. 2010). Most hydrocarbon-degrading

genes were high in abundance in the contaminated

Arctic soil metagenomes when compared with the

uncontaminated reference soil, but extradiol aro-

matic ring-cleavage dioxygenase sequences

decreased after a year of treatment, while other

dioxygenases increased in abundance, and alkane

hydroxylases remained constant throughout treat-

ment (Yergeau et al. 2012). Caution should be

exercised when using preparatory techniques such

as whole genome amplification, since the quantita-

tion of genes can be affected (Yergeau et al. 2010).

Although the amount of DNA required for

metagenomic sequencing is decreasing, whole

genome amplification may still be necessary in

very low biomass systems, as can be found in

some highly contaminated environments.

Information Lacking from
Bioremediation Literature

Genes Involved in Bioremediation

Key pathways involved in the bioremediation of

major contaminants are known, but many novel

enzymes and pathways are still being discovered.

The lack of sequence conservation in some key

gene families has made it difficult to determine

their true diversity using PCR-based methods.
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In the case of genes that code for enzymes that are

involved in normal forms of metabolism or other

housekeeping functions within the cell, this

diversity may be extensive. Metagenomic studies

across contaminated environments will help cor-

relate gene groups with contaminants, and this

may identify roles for pathways that had previ-

ously been considered unimportant in the conver-

sion or tolerance of contaminants.

Microbial species that are not directly

involved in bioremediation can also represent

a sizeable proportion of a contaminated commu-

nity. Soils contaminated with hydrocarbons have

still provided homes for populations of nitrifying

bacteria (Deni and Penninckx 1999) and

cyanobacteria (Yergeau et al. 2012), while the

stimulation of the microbial reductive chlorina-

tion of PCE and TCE by adding organic products

tends to promote many microorganisms that are

not involved in remediation (Strycharz

et al. 2008). In addition, microorganisms that

function in various nutrient cycles (e.g., nitrogen

fixers) may be important to the functioning of the

overall community. To date, it is not really

known how much these other species affect func-

tioning in contaminated environments or how

bioremediation is affected if some processes are

disrupted.

Extent of Horizontal Gene Transfer

It can be difficult to determine the taxonomic

affiliation of plasmid-borne DNA, and certain

key genes involved in bioremediation, such as

naphthalene dioxygenases and alkane

monooxygenases (Whyte et al. 1997), have been

found on plasmids. Mobile genetic elements are

known to be common in at least some natural

environments, but it is not known how significant

a role HGT plays in the adaptation of microbial

communities to contamination.

In metagenomic studies, genes can be com-

pared with the background DNA of the commu-

nity metagenome, which can help in identifying

the prevalence of HGT. Bioinformatic analysis of

a metagenome under long-term contamination

showed that roughly 12 transposons were present

per Mb of DNA, which was similar to reference

strains of Xanthomonas, the dominant

community member. In addition, large differ-

ences in % G+C and codon bias between puta-

tively transposed genes suggested a very recent

origin for acetone carboxylases, mercuric resis-

tance operons, and czcD divalent cation trans-

porters (Hemme et al. 2010). The persistence of

HGT after 50 years of continued contaminant

stress suggests that it may be very important to

the survival of microorganisms in a contaminated

environment.

Horizontal gene transfer was also suspected

when a mismatch between the number of cyto-

chrome P450 genes affiliated with Rhodococcus

and the relative abundance of Actinobacteria was

observed in the metagenome of diesel-

contaminated Arctic soils (Yergeau et al. 2012).

A number of the genes detected in this study can

be plasmid-borne, so this may be a common

response. Future metagenomic analyses pre- and

post-contamination may show how quickly this

process can shape the genetic structure of micro-

bial communities. If HGT is determined to be

a major force shaping newly contaminated envi-

ronments, the metagenomic screening of mobile

elements alone may be another method of elimi-

nating large amounts of housekeeping and redun-

dant genetic information.

Quantitation

As mentioned, metagenomes that have not been

modified by processes such as whole genome

amplification may permit actual quantification

of gene abundances. Whereas techniques such

as qPCR and PCR-based diversity studies are

subject to amplification biases, the metagenome

represents all of the genetic information that

could be extracted from a sample. Most previous

attempts to quantify microbial allocation of gene

resources to important processes in contaminated

sites have relied heavily on PCR methods.

Some early metagenomic studies have already

shown the potential of quantitation. The

relative genomic allocation to the degradation of

various components of jet fuel, a complex con-

taminant, was observed in a contaminated soil

community. It was also observed that known

hydrocarbon-degrading genes represented a dis-

proportionate amount of the total metagenome
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(Brennerova et al. 2009). An overabundance of

genes conferring resistance to heavy metals,

nitrate, and organic solvents was observed in

a heavy metal-contaminated aquifer (Hemme

et al. 2010). Semiquantitative approaches have

also been used to determine relative shifts in

species abundance and nitrogen incorporation in

contaminated environments (Bell et al. 2011;

Cardenas et al. 2010), and future studies using

full metagenome analysis would permit actual

quantification.

The Future of Metagenomics in
Bioremediation

Technologies that facilitate metagenomic

research are advancing quickly, and many studies

that had previously been outside the realm of

consideration are becoming possible. Companies

such as PacBio and Nanopore are producing

sequencers that will allow Kb reads of DNA,

which will make it possible to assemble continu-

ous genomes in mixed communities. Even with

current technologies this is becoming feasible, as

the entire draft genome of a novel permafrost

methanogen was assembled by end-to-end

linking of 113 bp paired-end reads that were

produced in a metagenomic study using Illumina

GAII technology (Mackelprang et al. 2011).

The combination of various high-throughput

techniques will enable comprehensive studies of

microbial communities and shed light on the

links between species diversity, gene density,

gene expression, protein production, and chemi-

cal transformation in contaminated environ-

ments. Stable isotope probing (SIP) is

a technique that involves adding heavy isotope-

labeled compounds to a substrate and allowing

microorganisms to consume it and incorporate

the labeled atoms into cellular components such

as DNA, RNA, and phospholipids. In the case of

DNA-SIP, all DNA from a treated sample is

extracted and then centrifuged in CsCl gradients

to separate the “heavy” (labeled) from the “light”

(unlabeled) DNA. This technique has great

potential in terms of identifying functionally

active microbes, specifically those involved in

contaminant breakdown, and a recent review

describes the potential power of combining SIP

with metagenomics (Chen and Murrell 2010).

SIP-metagenomic analyses of contaminated sub-

strates allow the genes and species that actively

respond to pollutants to be separated from the

huge amount of background genetic information

that may remain from the initial, uncontaminated

soil. The link between taxonomic affiliation and

community function is already being explored

through the combination of SIP and high-

throughput sequencing (Bell et al. 2011), while

advances in RNA-SIP will provide a comprehen-

sive picture of how the addition of substrates,

whether contaminants or amendments, directly

affects transcription. At the moment, the CsCl

gradients that are required to separate labeled

and unlabeled nucleic acids are extremely cum-

bersome and limit the number of samples that can

be processed within a given study.

However, a novel proteomic-SIP technique,

using 2-dimensional liquid chromatography-

tandem mass spectrometry (2D-LC-MS/MS),

was able to examine the isotopic ratios of roughly

100,000 spectra while simultaneously searching

a database of 31,966 protein sequences in under

24 h (Pan et al. 2011). The computing power

required to conduct the analysis was enormous,

but as with all high-throughput processing, this

can be expected to change rapidly with time. The

potential for applying the proteomic-SIP tech-

nique in bioremediation studies is enormous, as

even small numbers of proteins produced by rare

microorganisms can be tracked (Pan et al. 2011).

This will be especially useful in examining bio-

remediation pathways that involve syntrophic

interactions, or those involved in the processing

of slowly degraded contaminants, in which nutri-

ent flux and subsequent protein production are

bound to be low.

In contaminated environments, metagenomics

has been used to compare polluted substrates with

uncontaminated reference substrates (e.g.,

Yergeau et al. 2012) and has also been used to

directly measure species composition within the

same matrix before and after contamination (dos

Santos et al. 2011). These types of comparative

studies are geared at understanding what genetic
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information distinguishes a contaminated envi-

ronment from similar pristine systems. One of

the next major efforts in metagenomics is likely

to be the identification of a core microbiome

(Shade and Handelsman 2012). In other words,

what genes and species are common across an

environment and across multiple environments.

With a more comprehensive idea of what core

microbiomes exist, environments may be aligned

by their conserved regions, much as sequences

are now, and the true variability between envi-

ronments can then be assessed. In the context of

bioremediation, it will be important to understand

whether there are critical genes and organisms

that must respond positively to the introduction

of a contaminant in order to achieve successful

remediation. Genes promoted outside of this

common core must then be the result of other

environmental or stochastic processes.

Many current genomic studies focus on snap-

shots of genetic information in environmental

samples, but the high growth rate of microorgan-

isms means that many microbial communities

are undergoing constant and rapid evolution.

This suggests that longer-term metagenomic

studies should be a focal point of future research.

The metagenomic study by Hemme et al. (2010)

of metal-contaminated groundwater showed that

50 years of pollutant stress had reduced species

and metabolic diversity to a minimal level of

complexity. While all necessary metabolic path-

ways were found, more than ten times fewer

OTUs, with a similar loss in metabolic complex-

ity, were present than were observed at an adja-

cent background site. Monitoring how evolution

selects genes in contaminated environments over

the long term will undoubtedly assist in the

understanding and treatment of chronically con-

taminated sites, although the interpretation of

large amounts of data will first require

a solution to the human-processing bottleneck.

Summary

A variety of metagenomic approaches are avail-

able to bioremediation researchers. The choice of

technique will depend heavily on the question that

is being asked, as well as the resources that are

available.While full metagenomic studies provide

the greatest amount of data per sample, surveying

for indicator species or gene diversity across

a wide range of samples may be more appropriate

in many cases. These methods may change

quickly as technology continues to improve, but

ultimately, the best approaches will be those that

answer questions about how to most efficiently

improve the bioremediation of contaminated sites.
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Synonyms

Comparative analysis; Contextual data;

Environmental data; Network analysis; Shotgun

metagenomics

Definition

The analytical approach of identifying emergent

patterns in ecological properties of microbial

communities by sequencing community structure

and function and defining the physical, chemical,

and biological parameters of the ecosystem.

Metagenomics is the study of all genetic mate-

rial from all organisms in a defined sample

(Handelsman et al. 1998). However, it is defined:

metagenomics is just a term used to describe

a selection of tools and techniques that enable

us to uncover the DNA from the organisms in

an environment (which can comprise any ecosys-

tem, from soil to human intestinal tract). Meta-

data (also known as contextual data) refers

directly to information regarding the original

sample, the extraction and handling of the DNA,

and the sequencing platform and data processing

information (Field et al. 2011; Yilmaz et al.

2011). Without such metadata, metagenomic

sequence data would be redundant for anything

other than basic gene discovery. Meta-analysis,

which is the process of performing comparative

investigation of features between datasets, is

greatly enhanced by the combination of

metagenomic data and metadata (Knight

et al. 2012).

Metagenomics

Our microbial planet is more than 1 � 1030

microbial cells (Whitman et al. 1998), a billion

more cells than stars in the known universe

(Gilbert 2010). This dominance of biomass is

encapsulated nicely by a quotation accredited to

Julian Davies, “Once the diversity of the micro-

bial world is catalogued, it will make astronomy

look like a pitiful science” (Gewin 2006). Micro-

bial life comprises the main functional drivers of

our planet’s ecosystems (Falkowski et al. 2008),

yet their diversity and ecological networks

remain largely unknown. In the last 15 years,

metagenomics has provided a tool to explore the

vast unseen majority with a greater resolution and

depth of field than culturing has yet provided

(Hugenholtz and Kyrpides 2009). The explosion

Metagenomics, Metadata, and Meta-analysis 439 M

M



in 2004 of direct sequencing approaches, which

provided a different route to market compared to

clone-dependent sequencing, has accelerated the

implementation and data generation capability of

this technique. Existing studies have been well

reviewed in terms of the impact on community

ecology interpretation and novel biochemical

process identification (Gilbert and Dupont 2011).

Metadata

The ensuing data bonanza (Field et al. 2011) has

driven the need for more robust and comprehen-

sive standards for recording and sharing informa-

tion about why, how, and from where the

sequencing data was generated. One person’s

metadata is another person’s primary data,

and so the community outreach to determine

the consensus for recording different data

types and information has been a mammoth

effort. The Genomic Standards Consortium

(Field et al. 2011) has risen to be one of the

most prominent and successful standards com-

munities. The central tenet of the Genomic Stan-

dards Consortium is to promote mechanisms

that standardize the description of genomes,

metagenomes, and amplicon sequences and the

exchange and integration of these data and asso-

ciated metadata (www.gensc.org). The GSC has

created three minimal information checklists,

which collectively are known as the Minimal

Information about ANY sequence (MIxS) check-

lists. The three standards are the Minimal Infor-

mation about a Genomic Sequence (MIGS; Field

et al. 2008), the Minimal Information about

a Metagenomic Sequence (MIMS), and the Min-

imal Information about a Marker Gene Sequence

(MIMARKS) (Yilmaz et al. 2011). These infor-

mation checklists and the ancillary environmen-

tal data sheets describe the types of information

the community would like to see associated with

the sequence data, and importantly provide

a description for recording these data using

a defined standard. This enables a level playing

field for the provision and sharing of data

between organizations and PIs, and the checklists

have been adopted by the International Nucleo-

tide Sequence Database Collaboration (INSDC)

and a considerable number of journals. The major

proponent from the latter group is the GSC’s own

journal, Standards in Genomic Science, which

requires a detailed but standard description of

the associated metadata for genome and

metagenome reports (Gilbert et al. 2010a; Nelson

et al. 2009).

Meta-analysis

Meta-analysis is defined as the combination of

results from different studies that have similar or

related research hypotheses. While not strictly

a meta-analysis, the use of comparative

metagenomics to explore the principles of micro-

bial ecology stems from the common analysis of

data generated by different studies in different

ecosystems to explore central hypotheses, usually

related to the overall distribution of taxonomic

functional attributes in the community. Initial

efforts include comparative analysis of four

metagenomic samples from soil and whale fall

(Tringe et al. 2005), 87 viral and microbial

metagenomic datasets from nine biomes

(Dinsdale et al. 2008), metagenomic datasets

from 86 viral and microbial communities

(Willner et al. 2009), and more recently

77 metagenomes (Delmont et al. 2011). These

studies have led to the conclusion that different

environments have habitat-specific functional

and taxonomic fingerprints that indicate

environment-specific genomic adaptation. Of

course this should be taken with a caveat that

each comparative study has a small number of

metagenomes in the analysis and that each

metagenomic dataset only comprises a tiny frac-

tion of the functional information present in any

community. The latter point is made obvious by

ultra-deep screening of microbial diversity,

whereby even in marine coastal surface waters,

the species richness can be astounding (>100,000

taxa per L of water; Caporaso et al. 2011).

Importantly, cross-sample comparisons

should be performed in concert with dynamic
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comparative analysis of the contextual environ-

mental data. These physical, chemical, and bio-

logical data that describe the environment in

which the microbial organisms under investiga-

tion were isolated are vital to interpreting the

gradients of function and specific trends in gene

persistence seen between samples and studies.

Within one study, such as the Global Ocean Sam-

pling (Rusch et al. 2007) or Western English

Channel (Gilbert et al. 2010b), the link between

environmental metadata and the functional or

taxonomic sequence data can be implicit. How-

ever, in comparative studies, it is rare to be able to

generate canonical correlations between specific

functional gene abundances and different contex-

tual metadata as different studies tend to measure

different parameters differently. The Earth

Microbiome Project (www.earthmicrobiome.

org) is working to create not just comparable

data on the basis of methodological standard pro-

tocols (e.g., DNA extraction, PCR, sequencing)

but also by obtaining data with comparable con-

textual information, e.g., temperature measure-

ments, latitude and longitude, ammonia

concentrations, pH, etc. All these metadata are

being collated into large-scale databases with the

Genomic Standards Consortium’s MIxS check-

lists as the data framework, and so they represent

the community consensus for these records.

Summary

Metagenomics studies now need to be performed

using the principles of scientific investigation and

excellent statistical experimental design, using

replication and adequate controls to determine if

the perceived biological variation actually could

be used to explore basic ecological principles.

The only appropriate way to perform good

meta-analysis for metagenomic studies is to uti-

lize excellent metadata, and this comes back to

the design of the experiment, long before any

molecular analysis has even been suggested. It

also must leverage multidisciplinary effort to

obtain the right data to answer the relevant

questions.
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Definition

MetaRank is a rank conversion scheme for ana-

lyzing microbial communities based on the rela-

tive order of member (taxonomic unit or

functional group) abundances rather than their

estimated values (e.g., proportions). It leverages

a series of statistical hypothesis tests to compare

member abundances within microbial communi-

ties and determine their ranks, providing an alter-

native rank-based method for characterizing

metagenomes.

Introduction

Metagenomics is a field that involves sampling,

sequencing, and analyzing the genetic material of

microorganisms in microbial communities

(Hugenholtz and Tyson 2008). A key question

in metagenomics is whether and how changes in

the microbial abundances of taxonomic units or

functional groups relate to alterations of habitats

(Hamady and Knight 2009). To characterize the

relationship, it is important to compare microbial

community compositions in different environ-

ments (Wooley et al. 2010).

Many statistical methods (e.g., Metastats

(White et al. 2009), ShotgunFunctionalizeR

(Kristiansson et al. 2009), STAMP (Parks and

Beiko 2010)) have been developed for compara-

tive metagenomics in attempt to identify differ-

entially abundant features between microbial

communities. Most of these methods employ sta-

tistical hypothesis tests to determine whether

member abundances are equal in distinct commu-

nities and focus on the quantitative differences

between microbial community compositions.

They are highly dependent on the precision of

estimated values in member abundances.

However, estimated abundances might devi-

ate from the true abundances in habitats due to

sampling biases and other systematic artifacts in

metagenomic data processing (Ashelford

et al. 2005; Brady and Salzberg 2009; Gomez-

Alvarez et al. 2009; Mavromatis et al. 2007).

Although systematic artifacts can be corrected

through improvements in data processing tech-

niques, sampling biases will remain unavoidable

unless exhaustive data of the whole populations

become available (Wooley and Ye 2010).

To reduce the effects of sampling biases,

MetaRank performs a series of rank conversions

for analyzing microbial communities based on

the ranks of members rather than their estimated

abundances. It leverages the fact that the ranks of

highly abundant members are less affected by

sampling biases because large values and, by

extension, their relative order are robust against

small deviations. It also utilizes statistical

hypothesis testing to compare member abun-

dances within communities and determine the

ranks as follows: Highly abundant members are

delegated to high ranks and any two members

without statistically significantly different abun-

dances are assigned the same rank.
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Empirical tests on real datasets and synthetic

samples (Kurokawa et al. 2007; Ley et al. 2006;

Mavromatis et al. 2007) approve that MetaRank

is able to downsize the effects of sampling biases

and help to clarify the characteristics of

metagenomes. The ranks converted byMetaRank

have small normalized standard deviations,

which clearly reveal the common traits within

a set of metagenomes. The ranks also capably

identify the discriminating features of microbial

community compositions (Wang et al. 2011). In

addition, it is noted that MetaRank as a rank-

based approach has the same disadvantages of

all nonparametric methods. There is a loss of

information and the loss of ability to provide

parametric statistics for inference. Therefore,

MetaRank is a useful rank-based alternative for

analyzing metagenomes that complements para-

metric methods.

Methods

Given a metagenomic sample of a microbial com-

munity, MetaRank first employs binomial tests to

iteratively select highly abundant members within

the community followed by multinomial tests to

rank the selected members in each run.

Binomial Tests for Selecting Highly Abundant

Members

For N members in a microbial community, let Xn

represent the abundance of the nth member in the

metagenomic sample and p
_
n (i.e., Xn/S) be the

sample proportion of the nth member, where

n ¼ 1, 2, . . ., N and S ¼ X1 + X2 + . . . + XN.

Under the assumption that all nucleic acids of

microorganisms in habitats are equally likely to

be sampled and sequenced in metagenomic

experiments, the abundance Xn of the nth member

in the sample is modeled as a binomial random

variable:

Xn � Binomial S, pnð Þ,

where pn is the unknown population proportion of

the nth member in the habitat and estimated by

the sample proportion p
_
n.

To select highly abundant members with

proportions that are significantly higher than

the average proportion (1/N), MetaRank

applies hypothesis tests, Ho: pn 	 1/N vs. Ha:

pn > 1/N for all 1 	 n 	 N. Since

Xn � Binomial(S,pn) with mean E(Xn) ¼ Spn
and variance Var(Xn) ¼ Spn(1 – pn), the bino-

mial distribution of the test statistic Xn under

Ho is approximated by normal distribution with

z-statistic Zn:

Zn ¼ Xn � E Xnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xnð Þp ¼

Xn � S

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

N
1� 1

N

� �s

¼
p
_
n �

1

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

SN
1� 1

N

� �s � N 0, 1ð Þ

when sample size S is large enough such that

0 	 E Xnð Þp\pm3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xnð Þp 	 S: Otherwise, the

exact binomial test is applied when S is small

such that E Xnð Þ � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xnð Þp

< 0 or

S < E Xnð Þ þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xnð Þp

.

The p-value for exact binomial test is calcu-

lated as follows:

P Xn � xn½ 
 ¼
XS
k¼xn

S
k

� �
1

Nk
1� 1

N

� �S�k

where xn is the observed value of the test statistic

Xn.

MetaRank considers members that reject the

null hypothesis with statistical significance as

highly abundant. For those that fail to reject the

null hypothesis (assuming N0 members remain),

MetaRank temporarily sets them aside and con-

tinues to select members whose proportions

are significantly larger than the average (1/N0) in
the next iteration. When none of the remaining

members reject the null hypothesis, MetaRank

terminates the selection procedure and considers

all remaining members as rare members.
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Thus, in each iteration, the selected members

(whose proportions are larger than the average)

are higher than the remaining members (whose

proportions are equal to or smaller than the aver-

age). Moreover, the members selected in distinct

iterations are ranked in their selected order; more

specifically, the members selected in first itera-

tion are assigned a higher rank than the ones

selected in the second iteration. At the end, the

rare members are ranked the lowest in the

community.

Multinomial Tests for Ranking Highly

Abundant Members

Based on the above procedure, MetaRank ranks

the abundances in the target community

according to the following three rules. First, all

rare members are assigned the same smallest

rank. Second, the members selected in distinct

iterations are ranked according to the order in

which they were selected; thus, the members

selected in the first iteration of the procedure are

assigned higher ranks than all the others. Third, if

two abundances (the ith and jth members) are

selected in the same iteration, MetaRank deter-

mines their ranks (Ri > Rj, Ri < Rj or Ri ¼ Rj)

by two hypothesis tests, Ho: pi 	 pj vs. Ha: pi >
pj and H0

o: pj 	 pi vs. H0
a: pj > pi. If Ho is

rejected, Ri > Rj; conversely, if H
0
o is rejected,

Ri < Rj. However, if both Ho and H0
o are

accepted, Ri ¼ Rj.

Under the same assumption that all nucleic

acids are equally likely to be sampled and

sequenced, each abundance Xn is modeled as

a binomial random variable; any two abundances

Xi and Xj are jointly modeled by the multinomial

distribution (i.e., the generalization of binomial

distribution in multidimension):

Xi,Xj

� � � Multinomial S, pi, pj
� �

where pi and pj are the unknown population pro-

portions of the ith and jth members in habitat and

estimated by the sample proportions p
_
i and p

_
j. For

large S such that 0 	 E Xið Þp\pm3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xið Þp 	 S

and 0 	 E Xj

� �
p\pm3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xj

� �q
	 S, the

z-statistics of the approximate tests are

Zij ¼ Xi � Xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi þ Xj

p and Zji ¼ Xj � Xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj þ Xi

p :

Otherwise, the exact multinomial tests are

applied. The p-values are calculated as

P Xi � Xj � xi � xj
� � ¼ XS

h¼xi�xj

Xh� xi�xjð Þ

k¼0

S!

h!k! S� h� kð Þ!

p
_
i þ p

_
j

2

 !hþk

1� p
_
i þ p

_
j

� �S�h�k

and

P Xj � Xi � xj � xi
� � ¼ XS� xj�xið Þ

h¼0

XS
k¼hþ xj�xið Þ

S!

h!k! S� h� kð Þ!

p
_
i þ p

_
j

2

 !hþk

1� p
_
i þ p

_
j

� �S�h�k

where xi and xj are the observed values of Xi

and Xj.

As a result, the sorted abundances X(1) 	 X(2)

	 . . . 	 X(m) 	 . . . 	 X(M) are converted into

ranks 1 	 R(1) 	 R(2) 	 . . . 	 R(m) 	 . . . 	
R(M) 	 M, where the subscript in parentheses

(m) denotes the mth order in the community and

M is the total number of members. For members

whose abundances cannot be distinguished

from each other by hypothesis testing, MetaRank

converts them into their average order; i.e.,

for any m0, m00 such that R(m0) < R(m0+1) ¼
R

(m0+2)
¼ . . . ¼ R(m00�1) < R(m00) (given R(0) ¼ 0

and R(M+1) ¼ M + 1), we have

R m0 þ1ð Þ ¼ R m0 þ2ð Þ ¼ � � � ¼ R m00�1ð Þ ¼
m

0 þ m
00

2

For example, the ranks of the rare members

(assuming N00 members remain in the last itera-

tion) are converted into (N00 + 1)/2.

Empirical Tests

To evaluate its utility in comparative analysis

of microbiomes, MetaRank is applied to real
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metagenomes and synthetic samples (Kurokawa

et al. 2007; Ley et al. 2006; Mavromatis et al.

2007; Wang et al. 2011). In synthetic samples, it

is shown that as compared with the estimated

proportions or the ordinary ranks of straightfor-

ward sorted abundances, the ranks converted by

MetaRank have smaller normalized standard devi-

ation and are less affected by sampling biases. In

real metagenomes, using MetaRank is able to clar-

ify the common traits and detect the discriminating

features of those microbiomes.

Simulation Analyses of Synthetic Samples

Synthetic samples are generated by randomly

resampling reads from a pooled dataset of real

metagenomes (Ley et al. 2006) for investigating

the effects of sampling biases on the ranks

converted by MetaRank, estimated proportions,

and ordinary ranks (Wang et al. 2011). All the

reads are pooled together as a synthetic library,

and at the taxonomic level of phylum, five thou-

sand synthetic samples are generated for each

sample-sequencing depth r ∈ {10 %, 20 %, . . .,

90 %}. The effects of sampling biases are exam-

ined by the variability between the random syn-

thetic samples, and the variability between the

random samples is measured by the normalized

standard deviation (CV; coefficient of variation) in

the ranks converted by MetaRank, estimated pro-

portions, or ordinary ranks. As shown in Fig. 1, the

normalized standard deviations in the ranks

converted by MetaRank are smaller than the ones

in the estimated proportions and the ordinary

ranks. Similar observations are also found at the

taxonomic levels of class, order, family, genus,

and other simulated datasets in the Wang

et al. (2011) study. The results confirm that

MetaRank is able to reduce the effects of sampling

biases.

Demonstration Studies in Real Metagenomes

In the real datasets from the human gut

microbiomes (Ley et al. 2006; Kurokawa

et al. 2007), MetaRank demonstrates its ability

to clearly reveal the characteristics of

metagenomes in comparative analyses (Wang

et al. 2011). The first dataset contains samples

from obese individuals and lean controls of

human gut metagenomes in a one-year diet

study. The second dataset includes infant and

adult samples. In the first dataset, the obese sam-

ples are extracted from 12 obese individuals (I1,

I2, . . ., I12) at four distinct time points (week

0, 12, 26, and 52), and the lean controls are

extracted from two lean individuals (I13 and

I14) at two time point (week 0 and 52), all

MetaRank: Ranking Microbial Taxonomic Units or
Functional Groups for Comparative Analysis of
Metagenomes, Fig. 1 The averages of CV, which is

the normalized standard deviation, in the ranks converted

byMetaRank, estimated proportions and ordinary ranks at

the phylum level of the 5,000 synthetic samples for each

sample-sequencing depth r ∈ {10 %, 20 %, . . ., 90 %}.

Under distinct sample-sequencing depth, the averages of

CV in the ranks converted by MetaRank are smaller than

the ones in the others
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denoted by the convention, IxWy, where

x represents the xth individual and y represents

the time point. In the second dataset, four infant

and nine adult samples were extracted from dif-

ferent individuals for COG-functional analysis.

When comparing metagenomes in the first

dataset (Ley et al. 2006), using MetaRank is

able to clarify the common traits of similar sam-

ples (Wang et al. 2011). The taxonomic abun-

dances in the obese samples and the lean

controls are converted into ranks by MetaRank,

followed by hierarchical clustering with UPGMA

(Unweighted Pair GroupMethod with Arithmetic

Mean). Figure 2 illustrates the result of the simple

case that only consists of the samples at week

0 and 52 (before and after diet). As shown in

Fig. 2, given a fix distance 0.2 (i.e., Pearson

correlation 0.8), there are three main clusters,

where the unweighted arithmetic mean of dis-

tances within clusters are smaller than 0.2. The

four lean controls are closely grouped together in

one cluster that contains some obese samples at

week 0 and all the obese samples at week

52 except one (I4W52). More than half of the

MetaRank: Ranking Microbial Taxonomic Units or
Functional Groups for Comparative Analysis of
Metagenomes, Fig. 2 The hierarchical clustering

results of the ranks converted by MetaRank at the phylum

level in 12 obese individuals at week 0 (I1W0, I2W0, . . .,
I12W0) and 52 (I1W52, I2W52, . . ., I12W52), including

the four lean controls (I13W0, I14W0, I13W52, and

I14W52), based on UPGMA. The hierarchical

agglomerative clustering (bottom-up clustering) initially

treats each sample as a single cluster at the bottom and

then successively agglomerates pairs of nearest clusters

until all clusters have been merged into a single cluster at

the top. Given a fix distance 0.2 (i.e., Pearson correlation

0.8), there are three main clusters, where the unweighted

arithmetic mean of distances within clusters are smaller

than 0.2
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obese samples at week 0 are in the other two

clusters. The result shows that after dieting

almost all the obese samples are clustered

together with the four lean controls. Similar

results are observed in the members of the

biome at the taxonomic levels of class, order,

family, and genus (Wang et al. 2011).

Additionally, MetaRank is able to detect rank-

based differences and identify discriminating fea-

tures between metagenomes in the second dataset

(Kurokawa et al. 2007). The abundances of func-

tional groups in the infant and adult samples are

first converted into ranks by MetaRank. Then the

t-test is applied to identify rank-based differences

between the infant and adult samples.When com-

pared with proportion differences detected by

a parametric method (only t-test without

MetaRank), it is found that MetaRank,

a nonparametric approach, helped to identify

additional functional groups as discriminating

features (Wang et al. 2011). Since nonparametric

and parametric methods are complementary to

each other in statistics (one cannot replace the

other), MetaRank is thus a useful rank-based

approach complementary to parametric methods.

Summary

Most statistical methods for comparative analysis

of microbial community compositions rely on

estimated abundances of members. However,

when processing metagenomic data, sampling

biases and systematic artifacts cause noisy devi-

ations that may result in estimated abundances

differing from true abundances. MetaRank,

which converts highly abundant members into

higher ranks, is designed to cut the effects of

noisy deviations. It leverages the fact that

the ranks of highly abundant members are

robust against small deviations. Empirical tests

on synthetic samples and real metagenomes con-

firm that the ranks converted by MetaRank

have small normalized standard deviations, facil-

itate the comparative analysis of metagenomes,

and help to reveal the common characteristics

or the discriminating features within a set

of microbiomes. Therefore, MetaRank, as a

nonparametric approach, provides a useful rank-

based alternative to analyzing microbial commu-

nity compositions.

Cross-References

▶ STAMP: Statistical Analysis of Metagenomic

Profiles
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METAREP, Overview

Johannes Goll

Informatics Department, The J. Craig Venter

Institute, Rockville, MD, USA

With increasing scale and complexity of current

metagenomic studies approaching terabase-

volumes of sequence data, scalability of biological

analysis software has become an essential require-

ment. Toward that end, we have developed JCVI

Metagenomics Reports (METAREP), an open-

source tool, which integrates the highly scalable

search engine Solr/Lucene, R, and CAKEPHP

into an extendible Web-based software to query,

browse, compare, and share extremely large vol-

umes of metagenomic annotations. The software

allows flexible and simultaneous comparison of

taxonomic and biological pathway and individ-

ual enzyme abundances across hundreds of sam-

ples. In this chapter, we provide an overview of

this functionality, data format, import, installa-

tion, and customization. We present new fea-

tures that have been released with version 1.4.0

including the implementation of two-way statis-

tical tests to compare features of two datasets

without replicates, protein sequence integration,

and BLASTP homology search capabilities. The

latest functionality can be tested on example

data at JCVI’s public METAREP instance,

which is available at http://www.jcvi.org/

metarep (via the “Try It” button). The open-

source code of the software and developer

information is accessible at the project’s

source code repository at https://github.com/

jcvi/METAREP.

Introduction

Metagenomics describes a scientific approach in

which DNA, extracted from microbes sampled

from a certain environment, is used to reconstruct

the genomic potential and interactions of whole

microbial communities. This circumvents the

problem that the majority of microbes cannot be

cultured outside their native habitat and thus can-

not be investigated using a classic genome

sequencing approach (Handelsman 2004). With

increasing sequencing throughput of next-

generation sequencing technologies, this

approach has become commonplace and is

being applied to the soils, oceans, agriculture,

and human health. The goal is to understand

how the microbe’s genetic repertoire is used dur-

ing nutrient cycle and energy production and,

especially, what role it plays in human health

and chronic disease.

As a consequence, the challenge for most

microbiologists has shifted away from data gen-

eration to effective data storage and analysis

methods (Stein 2010). An effective approach, to

handle these immense data volumes, is to use

workflows in combination with high-

performance computer clusters or grids with hun-

dreds of processors that execute homology

searches in parallel for subsets of assembled or

unassembled fragmented sequences (reads).

Based on hits to reference sequences from

completely sequenced genomes, the end data

products are typically organismal as well as met-

abolic gene or read-based count profiles.

The Human Microbiome Project (HMP)

(http://nihroadmap.nih.gov) is an excellent

example of highlighting the scale of

metagenomic projects currently taking place.

The HMP is a very ambitious effort to character-

ize the microbial community associated with the

human body. The jumpstart consortium consists

of four sequencing centers: the Baylor College of

Medicine Human Genome Sequencing Center,

the Broad Institute, the J. Craig Venter Institute

(JCVI), and the Genome Center at Washington

University. While it involves a range of activities

including the extensive collection of metadata,

generation of reference genomes, and marker

gene studies, one of the most data-intensive

phases of the project is the shotgun metagenomic

survey of over 650 samples from 254 healthy

individuals initially examining 15–18 body hab-

itats. In future phases the HMP will compare this

baseline data to clinical samples to examine the

specific role the microbiome plays in disease and

the maintenance of human health. At present over
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20,864 million reads of Illumina data have been

produced from healthy individuals. The compar-

ison of the sequence reads to protein databases

alone is estimated to generate data exceeding

12 terabytes (Human Microbiome Project Con-

sortium 2012). We believe that the HMP typifies

the scope and complexity of metagenomic pro-

jects that will come. The collection, integration,

sharing, and comparison of this data represent

a characteristic example of the current

metagenomic data analysis challenges. Toward

this end we have developed METAREP, an

open-source and thus adjustable software that

enables exploratory data analysis for projects of

this size and larger (Goll et al. 2010, 2012).

A variety of other free metagenomic annota-

tion and analysis software is accessible to

researchers (Table 1). Efforts that include anno-

tation workflows and free compute resources are

provided by the US Department of Energy

(IMG/M (Markowitz et al. 2012)), the European

Bioinformatics Institute, the Argonne National

Laboratory (MG-RAST (Meyer et al. 2008)),

and the University of San Diego (CAMERA

(Sun et al. 2011)). Efforts that require compute

resources owned by the researches (or rented via

a cloud service) include CLOVR (Angiuoli

et al. 2011), Galaxy (Goecks et al. 2010), and

METAREP. The free annotation resources,

however, are often tightly coupled to each cen-

ter’s specific infrastructure including its com-

pute resources. Thus they cannot easily be

installed and modified to satisfy custom needs

including privacy concerns and advanced data

access management. In contrast CLOVR, Gal-

axy, and METAREP are self-contained and can

be run on other systems, and the source code can

be adapted to handle project-specific needs. On

the analysis side, most resources provide sum-

mary results that fit a certain workflow that are

tailored toward answering a certain question.

METAREP is an exception, as it supports

generic exploratory data analysis for annota-

tions from different workflows that can be

METAREP, Overview, Table 1 Comparison of metagenomic software

Resource/

software

Year

latest

release

Maintaining

institution

Free

annotation

services Workflow

Open-

source Web site

IMG/M 2012 US Department of

Energy

Yes Annotation: COG, Pfam,

TIGRFAM, InterPro, KEGG

No http://img.jgi.

doe.gov/cgi-

bin/m/main.

cgi

EBI portal

metagenomics

2011 European

Bioinformatics

Institute

Yes Annotation: InterPro, GO Yes https://www.

ebi.ac.uk/

metagenomics/

CLOVR 2011 University of

Maryland School of

Medicine

Yes 16 s, clustering, assembly,

annotation: COG, RefSeq

Yes http://clovr.org

Galaxy 2010 Penn State University No Only taxonomy/phylogeny,

some community extensions

{#15571}

Yes http://galaxy.

psu.edu

METAREP 2012 J. Craig Venter

Institute

No No inbuilt annotation

workflow, users can upload

existing annotations

Yes http://www.

jcvi.org/

metarep/

CAMERA 2.0 2010 California Institute for

Telecommunications

and Information

Technology

Yes ORF finding, tRNA, rRNA

finding, clustering, genome

assembly, annotation: Pfam,

TIGRFAM, COG

No https://portal.

camera.calit2.

net/

MG-RAST 2008 Argonne National Lab

cluster

Yes SEED subsystem Yes http://

metagenomics.

anl.gov/
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queried and filtered dynamically. For example,

its functionality can be used to visualize how

specific taxonomic or metabolic markers vary

across samples. METAREP does not support

a particular workflow but a generic annotation

input format. As a consequence, it does not

include annotation workflows. To bridge this

gap, users can run a public annotation service

or a custom local pipeline, format the data, and

import it.

In the following sections we will describe how

to import data, highlight features to analyze indi-

vidual and multiple datasets, carry out BLAST

searches, and customize the software.

Data Format and Import Process

The current METAREP tab-delimited format

specification for 17 fields is shown in Table 2.

Understanding this format is crucial for subse-

quent analysis. Following the outlined conven-

tions will help users to leverage as much of the

functionality as possible and understand what

fields are supported. The format has been

designed to accommodate common data types

that are produced by many annotation workflows

without being tied to a specific workflow. The

disadvantage of this flexibility is that a custom

parser needs to be written to format the output of

a certain workflow according to this tab format

before importing the data. However, in most

cases, generating the METAREP tab-delimited

format is trivial. In addition, METAREP provides

data formatting functionality for two workflows:

(1) the JCVI Prokaryotic Metagenomic Annota-

tion Pipeline (JPMAP (Tanenbaum et al. 2010))

and (2) the HUMAnN metabolic reconstruction

pipeline (Abubucker et al. 2012). The open-

source code for formatting output from these

two pipelines serves as a template for supporting

other formats. The code base also includes

a Perl utility script (scripts/perl/

metarep_loader.pl) to import tab-

delimited annotation files into METAREP

projects (more details on how to use the import

script can be found at https://github.com/jcvi/

METAREP/wiki/Installation-Guide-v-1.4.0).

Except for the first two columns (peptide_id and

library_id), which specify the unique ID of the

respective annotation entry (gene/protein ID) and

the library/dataset ID, respectively, columns are

optional. This has the advantage that workflows

that do not produce all of the data types are

supported. The last two columns in Table 2 provide

example values for each of the fields per pipeline.

While the unique ID fields mentioned before store

a single value, most of the other fields can store

multiple values (as indicated in column 3). By

convention, multiple values are double pipe sepa-

rated. For example, information for a multi-

enzymatic protein can be stored by setting the

value of the ec_id field to “1.6.99.3||1.6.5.3”. By

convention, the ec_id field stores the enzyme acces-

sions according to IUBMB format. Higher-level

enzymatic levels are encoded using dashes for all

unspecified levels, e.g., 3.4.-.-. The go_id field

stores accessions defined by the Gene Ontology

(Ashburner et al. 2000) with accessions being

prefixed using uppercase “GO:”. The hmm_id is

a generic field for hidden Markov model-based

assignments. It takes Pfam accessions (PF234)

(Punta et al. 2012), TIGRFAM accessions

(TIGR23423) (Haft et al. 2003), superfamily acces-

sions (SSF345) (Madera et al. 2004), and combina-

tions of the same (separated by double pipes).

The blast_* fields store information of BLAST

(Altschul et al. 1990) alignments (but can hold

alignment information from other alignment soft-

ware). In particular, the blast_tree field stores

organismal information in the form of the lowest

taxon using the NCBI Taxonomy as the reference

taxonomy. For example, to indicate that a certain

annotation entry belongs to Escherichia coli, the
blast_tree field can be set to NCBI taxon id

“83333”. If multiple NCBI taxon IDs are pro-

vided, the lowest common ancestor will be deter-

mined during the data import process based on

the NCBI taxon ID set provided by the user. The

blast_evalue, blast_pid (proportion of identical

amino acids), and blast_cov (proportion of cov-

erage of query sequence) reflect alignment qual-

ity data types. The field values range from 0 to

1 and allow users to filter their data based on

alignment quality (see searching and filtering).

The ko_id field stores the KEGG Ortholog
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accession (KO2134). Both the ec_id and ko_id

fields are used to support two types of pathway

analysis (see pathway analysis section). Pathway

analysis based on the ec_id field allows analysis

of 100, strictly metabolic, pathways. Pathway

functionality based on ko_id is more comprehen-

sive supporting 200 additional non-metabolic

pathways such as transcription and translation.

Depending on which field is populated, function-

ality is activated. Source fields (fields with a _src

postfix) describe the origin of certain value. For

example, an enzyme accession may have been

assigned based on a certain TIGRFAM model or

a reference gene/protein homology hit or other

methods. The ec_src field can be used to track this

information. Finally, the weight field allows users

to assign weight to a certain entry to adjust the

absolute and relative frequency of associated

entry values. The field can be used for encoding

abundance information such as the number of

reads that support a certain gene/protein

(in transcriptomic or assembly studies) or spec-

tral counts in meta-transcriptomic studies. By

default the weight field is set to 1.

When we subsequently refer to annotation

attributes, we mean a selection of these fields

that are used throughout the software to provide

summary statistics and compare datasets. They

refer to NCBI Taxonomy, Gene Ontology,

Enzyme Classification, HMM, and KEGG/

Metacyc pathways and KEGG Ortholog fields.

A feature refers to a certain value that an anno-

tation attribute can take. A feature-dataset matrix

is a two-dimensional matrix with features of

a certain annotation attribute as rows and

datasets as columns. Cells represent the sum of

weights of the respective feature-dataset combi-

nation (by default it reflects the number of genes/

peptides with that specific feature).

Single Dataset Options

Dataset Summary Statistics

The View Dataset Page displays the imported

annotations and provides high-level summaries

of annotation attributes including detailed path-

way summaries. The Data Tab shows the

imported data in tabular format. This is helpful

to check if the data has been correctly imported.

The Summary Tab provides an overview of over-

all annotation statistics including a high-level

taxonomic breakdown. Subsequent tabs summa-

rize statistics for a corresponding annotation attri-

bute. For each, the top 20 ranked features with the

absolute and relative counts are displayed. Users

can adjust the number of top feature that is being

displayed (up to 1,000 ranks) and download the

data in tab-delimited format.

Dataset Search and Filter Options

The Search Page facilitates dynamic filtering of

annotation and allows users to export matching

entries and associated statistics. Once a query is

executed, the page summarizes top 10 statistics

for several annotation attributes in the form of

lists and pie charts. The page also lists individual

matching annotation entries so that users can

confirm that the query correctly retrieved the

desired results. The top 10 statistics, matching

annotations, and underlying protein sequences

(if configured, see configuration) can be

exported. To search a dataset, users can enter

a search term and select the field to search in

from a drop-down box. Selections include

ID-based and name-based searches. The former

performs exact searches; the latter executes fuzzy

name-based searches. For example, the user can

enter 2.7.1.147 and select the Enzyme ID field

from the drop-down box to search for exact

matches. Alternatively, the user can carry out

a fuzzy name-based search for “Glucokinase”

which retrieves three matching enzymes:

ADP-specific glucokinase (2.7.1.147), glucoki-

nase (2.7.1.2), and phosphoglucokinase

(2.7.1.10). For both search strategies, the selec-

tion triggers a query generation process that cre-

ates a query that is compatible with the Solr/

Lucene query syntax (http://wiki.apache.org/

solr/SolrQuerySyntax). The original search term

is prefixed by the search field, and multiple terms

can be logically combined using the AND, OR,

and NOT keywords. In the ID-based example, the

final query that will be generated is “ec_id:

2.7.1.147”. For the name-based example, the

final query represents a logical combination
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(“OR”) of all individual matches, in this case

“ec_id: 2.7.1.147 OR ec_id: 2.7.1.2 OR ec_id:

2.7.1.10”. The same principle is being applied

to pathway name-based searches. A search for

“starch and sucrose metabolism” using the

name-based KEGG pathway name (EC) option

searches for all enzymes in that pathway by gen-

erating the following query: “ec_id:1.1.1.22 OR

ec_id:1.1.99.13 OR ec_id:2.4.1.1 OR

ec_id:2.4.1.10 OR . . .”. While the drop down

helps to build queries, experienced users can

enter the Solr/Lucene-formatted queries directly.

This has the advantage of entering custom logical

combinations of particular fields of interest

(a complete list of fields and example queries

are shown in Table 2). Note that if the value

contains itself a colon (which is a special charac-

ter of the Sorl/Lucene language to separate field

names from values), it needs to be preceded by

a backward slash. For example, a search for

“go_id:GO\:0000160” instead of “go_id:GO\:

0000160” will return the desired results – fields

that store complete hierarchies including the

NCBI Taxonomy and the Gene Ontology. The

former is encoded in the blast_tree field, which

stores the whole taxonomic lineage (according to

NCBI) for each entry in the form of NCBI taxon

IDs. For example, a protein entry with a species

assignment of “Escherichia coli” with NCBI

taxon 562 has the following nine NCBI taxon

IDs stored in the blast_tree field:

562 ¼ Escherichia coli; 561 ¼ Escherichia;

543 ¼ Enterobacteriaceae; 91347 ¼ Enterobac-

teriales; 1236 ¼ Gammaproteobacteria; 1224 ¼
Proteobacteria; 2 ¼ Bacteria; 131567 ¼
cellular_organisms; 1 ¼ root;

This allows users to find the entry by searching

for “blast_tree:562” (Escherichia coli) as well as

“blast_tree:2” (Bacteria) or any other IDs that are

part of that lineage. This can be very helpful for

excluding or including proteins that were

assigned to a certain taxonomic group. For exam-

ple, “ec_id:2.7.1.2 AND blast_tree:2” can be

used to filter the data for bacterial glucokinases.

A search for “NOT blast_tree:9606” excludes

entries that were assigned to “homo sapiens”.

Another way of fuzzy searching (in addition to

the name-based searches using the drop-down

menu) is to use Solr/Lucene wildcard characters.

There are two supported wildcards: “?” and “*”.

The “?” performs a single character wild card

search. For example, to find common names like

fliF, fliC, and fliS, one can search for

“com_name_txt:fli?”. The “*” performs a

multiple-character wild card search. For exam-

ple, to search for all transferases 2.1.1.1, 2.1.1.2,

2.1.13, etc., one can enter “ec_id:2.*”. The quan-

titative alignment information (proportion of

identical amino acids, proportion of covered

query amino acids, E-value) range queries can

be applied that identify entries that fall between

a minimum and maximum. For example, to filter

the data for a 1.0E-5 < ¼ E-value < ¼1.0E-20,

one can search the blast_evalue_exp (which

stores the negative E-value exponent) for

“blast_evalue_exp:[5 TO 20]”. To exclude the

boundary values from the result list, the user

can use “blast_evalue_exp:{5 TO 20}”. This is

equivalent to 1.0E-5 < ¼ E-value < ¼1.0E-20.

When filtering for E-values, there is usually no

defined lower bound. This can be reflected using

a wild card character “*”. For example,

“blast_evalue_exp:[5 TO *]” searches for all

entries with an E-value < ¼ 1.0E-5. Finally, if

the sequence store path has been defined (see

section “Installation and Configuration”), the user

can enter an amino acid sequence into the search

box and select the Search by Sequence option with
a certain minimum E-value. The software then

executes a BLASTP search behind the scenes and

returns the top-matching entry

accessions (peptide_id field) concatenated by an

OR and visualizes summary statistics for homolo-

gous proteins.

Drill into Datasets Using Hierarchical

Datasets

The Browse Dataset Pages are available for sev-

eral annotation hierarchies including NCBI Tax-

onomy, Gene Ontology, Enzyme Classification,

and KEGG and Metacyc metabolic pathways.

For KEGG two different pathway hierarchies

can be selected: enzyme based and KO based.

The difference is that the enzyme-based version

uses enzyme assignments and maps them to

EC-based KEGG pathways (a subset of KEGG
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pathways that are mainly related to metabolism),

while the KO-based version uses KEGG

Orthologs to infer pathway membership and

uses a more comprehensive set of pathways

including non-metabolic processes such as trans-

lation and transcription. The number of hits is

displayed for each node in the tree, and a user

can click on a tree node and expand further. After

clicking a node, a summary of that node is shown

in the right panel featuring a pie chart calculated

from its sub-nodes and top lists of functional and

taxonomic assignments. Once the user has

reached the pathway level, for the KEGG ver-

sions of the Browse Pathways pages, relative

abundance of pathway members is visualized on

top of pathway maps (Fig. 1).

Multi-dataset Analysis Options

Compare Feature Abundance Profiles Across

Datasets

The Compare Page unifies a variety of descrip-

tive, graphical, and statistical analysis options to

compare annotation attributes of dozens of

datasets. The page features three distinct panels,

the Dataset Select Panel, the Filter and Options

Panel, and the Results Panel (Fig. 2). The right

upper dataset select box in the Dataset Select

Panel allows users to select datasets by dragging

selected datasets to the left upper panel or by

clicking on the plus symbol. The dataset selection

can be narrowed down by entering keywords in the

search textbox in the left upper panel. The Filter

and Options Panel provides a textbox to enter

a Lucene query (see section “Dataset Search and

Filter Options” and Table 3). If applied, each

dataset gets filtered and only annotation entries

that match the query are being retained for the

comparison. A typical example is to apply

a more stringent BLAST E-value baseline.

Another example, highlighted in {REF}, is to

filter all datasets for a certain enzymatic marker,

e.g., pyruvate dehydrogenase complex

(“ec_id:1.2.4.1 OR ec_id:2.3.1.12 OR ec_id:

1.8.1.4” or the shorter version “ec_id:1.2.4.1 OR

2.3.1.12 OR 1.8.1.4”). A minimum count value

can be entered into the Min. Count Field to filter

out features whose minimum count across all

datasets is equal or higher than the specified

count. By default this field is set to 0 showing

any features with at least one dataset having

a count of one (features with zero counts across

all datasets are discarded). The main compare

METAREP, Overview, Fig. 1 Screenshot of the METAREP Browse Pathway (EC) page
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options can be selected from the drop down next

to the Min. Count Field and are organized by the

following categories: Count Matrices, Statistical

Tests (2 Datasets), Statistical Tests
(2 populations), and Plot options.

The Results Panel is automatically updated

upon option selection displaying feature-dataset

matrices or graphical representations of the same.

A certain annotation attribute can be selected by

clicking on the respective tab and exported using

the disk with the green array key. In the follow-

ing, we describe the option in more detail.

Count Matrices: Applicable if at Least One Dataset

Was Selected

Absolute Count Matrix shows a numeric repre-

sentation of a feature-dataset matrix with cells

containing the number of counts for a feature-

dataset combination.

Relative Count Matrix shows a numeric rep-

resentation of a normalized feature-dataset

matrix with cells containing the number of counts

for a feature-dataset combination divided by the

total dataset count. If a filter was entered, the cells

represent the number of counts for a feature-

dataset combination divided by the total count

of the filtered dataset.

Heatmap Count Matrix shows a numeric rep-

resentation of a row-normalized feature-dataset

matrix with cells containing the relative counts per

dataset divided by the sum of relative counts per

row, i.e., across all datasets. Cells are color coded

according to their row-normalized counts. The color

scheme can be changed using a drop-down menu.

Statistical Tests (2 Datasets)

The following dataset tests are applicable if two

datasets were selected. As input for the tests,

METAREP, Overview, Fig. 2 Screenshot/conceptual

overview of the METAREP Compare Page. Current

implementation of the METAREP Compare page (key

options are highlighted in green panels). The page allows

users to compare absolute and relative abundance of anno-

tations categories across multiple datasets including taxo-

nomic, pathway, enzyme, and GO classifications.

Visualization options include heatmap (shown), hierarchi-

cal clustering, multidimensional scaling, and Mosaic

Plots. Advanced Compare options include statistical tests

for pairwise dataset comparisons (Fisher’s Exact Test,

Equality of Proportions Test) as well as for comparing

two dataset populations (Wilcoxon Rank-Sum and

a nonparametric t-test)
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METAREP, Overview, Table 3 METAREP search fields

Field name Description Type/range Example

Core annotation fields

peptide_id Peptide ID text peptide_id:1120333534885

Retrieve hit with the specified peptide id

com_name_txt Common name

(default field)

text com_name_txt:phage

All hits containing the word phage

com_name_src Common name

source

text com_name_src:PF00204

All hits having names assigned based on this PFAM hit

go_id Gene Ontology ID text go_id:GO\:0000160

Hits with GO:0000160; use “\” before the colon

go_tree Gene Ontology tree Integer portion

of ID

go_tree:160

Skip “GO:” prefix; all hits with GO:0000160 or lower including all

hits with GO IDs that are lower (more specific) in the GO hierarchy

go_src Gene Ontology

source

text go_src:PF00204

All hits that have GO terms assigned based this PFAM hit

ec_id Enzyme ID text ec_id:5.99.1.3

All hits with Enzyme ID 5.99.1.3

ec_src Enzyme source text ec_src:PF00204

All hits that have EC IDs assigned based on this PFAM hit

ko_id KEGG Ortholog ID text ko_id: K01369

ko_src KEGG source text ko_src: ptr\:453118

hmm_id HMM ID text hmm_id:PF00204

All hits that have a PF00204 HMM assignment

library_id Library ID text library_id:GS-00a-01-01-2P5KB

All hits that belong to library GS-00a-01-01-2P5KB (helpful to

search for library entries within populations)

filter Any filter tag (e.g.,

sequence duplicates)

text filter:duplicate

All hits with filter tagged with duplicate

-filter:duplicate

Exclude entries with filter tag duplicate

Alignment fields

blast_species Species text blast_species:Chlamydia*

All Chlamydia species

blast_tree Taxonomy integer (NCBI

Taxonomy ID)

blast_tree:2

All bacteria

blast_tree:2

Exclude all bacteria

blast_evalue_exp Negative E-value

Exponent

positive integer blast_evalue_exp:[20 TO *]

All hits with BLAST E-value 	 10�20

blast_evalue_exp:[10 TO 20]

All hits with 10�20 	 E � value 	 10�10

blast_pid Percent identity Float between

0 and 1

blast_pid:[0.9 TO *]

All hits with BLAST percent identity � 90 %

blast_pid:[0.6 TO 0.8]

All hits with 60 % 	 percent identity 	 80 %

All hits with 60 % 	 percent identity 	 80 %

blast_cov Percent sequence

coverage

Float between

0 and 1

blast_cov:[0.8 TO *]

All hits with BLAST percent sequence coverage � 80 %

blast_cov:[0.2 TO 0.3]

All hits with 20 % 	 sequence coverage 	 30
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a 2 � 2 contingency table is generated separately

for each feature with two dataset columns and

rows representing observations for the presence

and absence of the respective feature. As multiple

features are simultaneously tested, Bonferroni-

corrected p-values and FDR-based q-values are

listed, which are recommended over the individ-

ual p-values.

Equality of Proportions Test tests whether

the relative counts for two features is equal or not.

It is equal to the chi-square test of independence

in case of a 2 � 2 contingency table. It is a large

sample approximation test, in which the normal

distribution is being used to approximate the

binomial distribution. Typically, a minimum

cell count of five is recommended so that the

large sample approximation holds reasonably

well. The software accounts for this by automat-

ically setting the Min. Count Option to five

removing any features from the feature-dataset

matrix that have counts lower than five. Results

are sorted by ascending p-value. As multiple fea-

tures are simultaneously tested, Bonferroni-

corrected p-values and FDR-based q-values are

listed. All three measures can be used to filter the

data using the drop-down menu (q-values are

being recommended). Result representation and

filtering can be applied to any statistical tests

described subsequently.

Fisher’s Exact Test tests whether the relative

counts for two features is equal or not. It is an

exact test, in which the null distribution follows

a hypergeometric distribution. Thus, it can be

used for feature-dataset matrices that contain

small cell counts. However, as it is computation-

ally much more intense, execution takes much

longer than for the Equality of Proportions Test.

Statistical Tests (2 Populations)

The following population tests are applicable if

two populations were selected. A typical scenario

for using these tests is to compare two groups of

samples, for example, multiple samples taken

from healthy and diseased individuals or from

unfarmed and farmed land. The METAREP

administrator has privileges to create populations

from the collection of imported libraries via the

Project Page. As for the two-way dataset tests,

multiple testing is taken into account by provid-

ing Bonferroni-corrected p-values and

FDR-based q-values which are recommended

over the individual p-values.

Wilcoxon Rank-Sum Test performs multiple

two-sample nonparametric Wilcoxon rank-sum

tests (also known as Mann-Whitney Test) in

which each feature is being compared across

two populations. It tests whether differences in

the medians of the normalized counts for a certain

feature are due to chance or not. The null hypoth-

esis states that there is no difference between the

dataset-normalized population medians of

a feature. The alternative hypothesis states that

there is a significant difference between the pop-

ulation medians.

METASTATS is a modified nonparametric

t-test for detecting differentially abundant features
in metagenomic samples (White et al. 2009).

The test can be used to compare features across

two populations. The null hypothesis states

that there is no difference between the dataset-

normalized population means of a feature.

The alternative hypothesis states that there is

a significant difference between the population

means. The null distribution approximated via

randomization, and a t-statistic is being computed

for each iteration (see the section “Installation and

Configuration” on how to adjust the number of

iterations). For low counts (less than 8),

a Fisher’s Exact Test is used instead of the non-

parametric t-test.

Plots

The following plot options are applicable if at

least three datasets were selected:

Mosaic Plots draw groups of aligned rectangles,

one for each dataset. Features are vertically

stacked with the height of a feature (vertical

axis) being proportional to the relative count

(Fig. 3c). The width of the rectangle

(horizontal axis) is proportional to the overall

dataset size (compared to the other datasets).

Thus, a Mosaic Plot provides a more compre-

hensive view than a Barplot as it provides

a way of visualizing both, the relative feature

contribution within datasets and the relative

overall dataset size.
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Hierarchical Cluster Plots provide visual sum-

maries of groups of dataset “clusters” that

are similar with respect to their feature

composition (Fig. 3a). The input to cluster-

ing is a normalized feature-dataset matrix.

Here, for normalization, the total feature

count across selected features is being used

per dataset (note, this is different from

the Relative Count Matrix normaliza-

tion which uses the total dataset count).

Distances (dissimilarities) between datasets

in multidimensional space can be computed

using the feature vectors. Users can choose

from various distance metric options includ-

ing Euclidean, Morisita-Horn, Bray-Curtis,

and Jaccard that can be selected available via

drop-down menu. After distances have been

computed, datasets are clustered using an iter-

ative procedure referred to as hierarchical

clustering: initially, each dataset belongs to

its own cluster. During each iteration, an

optimal cluster pair is being aggregated into

a higher-level cluster and distances are

recomputed between the new and the

remaining clusters. The process continues

until there is one single cluster and a tree

structure of successive clustering events,

a dendrogram, is being drawn (Fig. 3a, b).

Users can influence the process of

recomputing distances based on several aggre-

gation methods including single linkage (uses

minimum distance between the new cluster

members and an outside cluster), average link-

age (uses average distance), and complete

linkage (uses maximum distance). Centroid

uses the mean vector differences, while

Ward’s minimum variance minimizes the

overall within-cluster variance. For a review

see Milligan et al. (1980). According to

Milligan et al., the method with the best over-

all performance has been either average link-

age or Ward’s minimum variance. A PDF of

the dendrogram and computed distances can

be downloaded via the Results Panel’s export

option.

Heatmap Plots are similar to Hierarchical Clus-

tering Plots in that they visualize datasets as

well as feature differences using hierarchical

clustering in the form of a dendrogram

(Fig. 3b, shown on the right and top, respec-

tively). The main difference is additional

quantitative information in the form of

a heatmap in which normalized feature-

dataset counts are being color coded based

on a color gradient. Users can change the

base color of the gradient. Columns and rows

are reordered to optimize the layout of the two

dendrograms on each axis. Hierarchical clus-

tering options include the Distance Metric as

well as the Cluster Method. A PDF of the

heatmap and both sets of computed distances

can be downloaded via the Results Panel’s

export option.

Multidimensional Scaling Plots apply

non-metric multidimensional scaling to pro-

ject differences between datasets onto a

two-dimensional plane in which similar

datasets are closer and less similar datasets

area farther apart (Fig. 3d). Like for hierarchi-

cal clustering, a dissimilarity matrix based on

��

METAREP, Overview, Fig. 3 Compare Page plot

options exemplified using a selection of eight Global

Ocean Survey (GOS) samples. Plots A, B, and D show

the same selection of datasets based on organismal com-

position on the family level (assigned based on the best

reference hit using BLAST) with the Minimum Count

Option set to 5. Plot C summarizes the same datasets for

the phylum level. GS-11 and GS-12 were sampled from

the Chesapeake Bay, Annapolis, MD, USA, and Delaware

Bay, NJ, USA, respectively. GS-30, GS-31, and GS-G32

were sampled close to the Galapagos Islands (GS-30 off

Roca Redonda, GS-31 Fernandina Island, and GS-32

mangrove on Isabella Island). For GS-11, GS-30, and

GS-32, two samples were taken from the same location.

The hierarchical clustering and heatmap dataset-based

dendrograms and the MDS plot show that the replicated

samples cluster together. The dendrogram shows that,

although the mangrove samples are distinct from the rest

of the Galapagos Islands, they are more close to each other

when compared to the East Coast samples. The heatmap

shows an increase of Rhodobacteraceae (orange to

white) and a decrease in Comamonadaceae and

Burkholderiaceae families (orange to red) when compar-

ing these two groups based on the % abundance level
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the normalized counts is used as input for the

algorithm, which can be specified by the user.

A PDF of the final heatmap and the computed

distances can be downloaded via the Results

Panel’s export option.

Homology Searches

The BLAST Sequence Page provides functional-

ity to screen multiple datasets for a protein

sequence of interest (Fig. 4). Highly conserved

single-copy marker genes, such as dnaG, for

example, can be used to approximate the number

of genomes in a dataset (Wu and Eisen 2008).

The page uses the same “Select Datasets” panel

as the Compare Page. BLAST options include

the input sequence text area, BLAST Min.

E-value, and a text field for entering a filter

query. The Result Panel summarizes BLASTP

alignment results filtered for homologous entries

that match the filter query in different formats

that can be selected by choosing one of three

tabs. The Annotation Tab lists key alignment

statistics along with annotations of homologous

entries. The Alignment Tab displays the

default BLASTP alignment output including tex-

tual representation of sequence alignments.

The Tabular Tab tabulates the default tab-

delimited BLASTP output (-m8 BLASTP

option). Results for each of these tabs can be

downloaded via the Results Panel’s export

option. To activate this option, protein sequences

of each dataset need to be formatted using the

BLAST utility program formatdb and organized

in a sequence store on the Web server that runs

the METAREP instance (see section “Installation

and Configuration”).

Installation and Configuration

METAREP utilizes a variety of open-source soft-

ware including R, Lucene/Solr, CAKEPHP,

MySQL, Apache Http server, and SQLite that

need to be downloaded and installed. Version

1.4.0 of METAREP can be downloaded at

https://github.com/jcvi/METAREP/zipball/1.4.0-

beta. For installation instruction please visit

https://github.com/jcvi/METAREP/wiki/Installation-

Guide-v-1.4.0. For later versions, please visit

the Project Page at https://github.com/jcvi/

METAREP/wiki.

As part of the data import process, additional

annotation attributes including NCBI Taxonomy

lineage, GO assignments, and KEGG pathways

are fetched from a SQLite database. The database

can be updated using the scripts/perl/

metarep_update_database.pl script.

To update the KEGG attributes, the script needs

to be pointed to a local snapshot of KEGG

downloaded from the KGG FTP site (license is

required).

Once installation is completed, the instance

can be configured modifying the “app/config/

metarep.php” file. An important configuration

that impacts performance and stability is the

number of Solr/Lucene servers used for retriev-

ing annotation information. While METAREP

can be run in a setup with a single server

(SOLR_MASTER_HOST), for best performance

and stability, we recommend running a second

server (slave), on another machine. The addi-

tional server can be configured using the

SOLR_SLAVE_HOST variable. In theory, more

than two slave servers can be defined, but

METAREP currently supports only one slave

server. A two-server setup can handle more con-

current traffic than a single server and thus can

improve the average query response time

(an important factor if many users are anticipated

to access data simultaneously). The two Solr/

Lucene servers will replicate data across the two

different machines, and user traffic is balanced

between the two servers using an internal load-

balancing mechanisms implemented in the

Web-logic component of the METAREP soft-

ware. The slave server using Solr’s inbuilt repli-

cation functionality will automatically replicate

new index files that have been uploaded to the

master server. If one server goes down

(for maintenance, testing, malfunction, etc.), the

other server can still handle user requests. The

two-server system is thus also more fault tolerant

and enables updates to the server without inter-

fering with the user experience.
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The INTERNAL_EMAIL_EXTENSION vari-

able can be specified to identify internal users that

register with the instance and set permissions

accordingly. By default, users that register with

the specified e-mail extension are granted full

data access. The GOOGLE_ANALYTIC-

S_TRACKER_ID and GOOGLE_ANALY-

TICS_DOMAIN_NAME variables configure the

instance to synchronize Web usage with Google

Analytics to track usage statistics.

The NUM_METASTATS_BOOTSTRAP_

PERMUTATIONS variable sets the number of

replicates to determine the null distribution for

the METASTATS test and can be increased to

increase the precision of the p-values (see (White

et al. 2009) for details).

To activate the METAREP blast functionality,

searching and exporting of sequences, the

SEQUENCE_STORE_PATH variable needs to

be defined. This path points to the location on

the Web server where the formatdb-formatted

protein sequence files are kept (organized by

project ID and dataset, Table 4). The perl/

scripts/metarep_format_sequence.

pl utility can be used to format sequence data

according to this format. If an FTP server is

available, data sharing of a collection of custom

files per dataset the via dataset download option

METAREP, Overview, Fig. 4 Screenshot of the BLAST

Sequence Page. A protein sequence of interest can be

searched against a selection of datasets. BLAST results

can be displayed and exported in various formats includ-

ing annotation (shown), alignment (shown in the zoom

panel), and tabular
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can be activated by specifying the FTP_HOST,

FTP_USERNAME, and FTP_PASSWORD vari-

ables. The software identifies FTP data by

looking for the project ID folder followed by

a tar-gzipped file that has a matching dataset

name, i.e., <dataset-names>.tgz.

Example Hardware Configurations

The main requirements are driven by the amount

of annotations that are to be stored in index files

and served by a Solr/Lucene server. The main

impact on performance for a single machine is

the amount of memory available for result

retrieval, caching, and operating systems for file

caching. If annotations are weighted, i.e., the

weight field is set to values other than 1, the

CPU requirements increase (see (Goll

et al. 2012), Fig. 6). We are currently running

a two-server system that is served by two load

balanced Dell Power Edge R710 servers each

having eight cores (2.66 GHz), 72 G RAM, and

2 � 600 GB HD. So far we have successfully

indexed 190 M. Our HMP METAREP instance

that serves over 400million weighted annotations

entries runs on a single server with two multi-

threaded Xeon X7560 2.26 GHz processors with

a total of 16 cores (32 threads), 256 G RAM, and

4 terabyte of disk space. For performance bench-

marks, please see Goll et al. (2010), Supplemen-

tary Fig. 1, and Goll et al. (2012), Fig. 6.

Additional Resources

As part of the NIHHMP project, the software was

tested with short-read annotations derived from

over 14 trillion Illumina reads (Goll et al. 2012).

The study includes several scenarios on how to

METAREP, Overview, Table 4 METAREP sequence and FTP data organization

Feature Root

Project

directory Dataset directory Files

Sequence export and

BLAST functionality

Sequence

store root

directory

12 GS695_GDQ27C301_0p1 GS695_GDQ27C301_0p1.
phr

GS695_GDQ27C301_0p1.
pin

GS695_GDQ27C301_0p1.
psd

GS695_GDQ27C301_0p1.
psi

GS695_GDQ27C301_0p1.
psq

formatdb.log

12 GS695_GLDFQNX02 GS695_GLDFQNX02_viral/

GS695_GLDFQNX02_viral.
phr

GS695_GLDFQNX02_viral.
pin

GS695_GLDFQNX02_viral.
psd

GS695_GLDFQNX02_viral.
psi

GS695_GLDFQNX02_viral.
psq

formatdb.log

FTP export functionality FTP root

directory

12 GS695_GDQ27C301_0p1.
tgz

12 GS695_GLDFQNX02.tgz
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investigate the NIH human microbiome data

including how to analyze specific metabolic

markers, cluster datasets based on their metabolic

profile, and identify pathways that are differen-

tially abundant between human body habitats.

The data can be accessed at www.jcvi.org/hmp-

metarep. The following short video tutorial

summarizes key functionality (YouTube

ID:7FPJaPyLjMk). The METAREP home page

at www.jcvi.org/metarep provides an anonymous

login via the “Try It” button to evaluate the latest

functionality for a collection of ocean samples

taken from the North Pacific Subtropical Gyre

(DeLong et al. 2006). The open-source code of

the software and developer information including

how to contribute to the open-source project is

available at the project’s source code repository

at https://github.com/jcvi/METAREP. For ques-

tions and comments, please join the mailing list at

www.jcvi.org/metarep or directly send an e-mail

to metarep@googlegroups.com.
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Synonyms

Gene start annotation; Translation initiation site

(TIS) prediction

Definition

Gene start: the start position from which a geno-

mic sequence can be translated into protein.

Introduction

Knowledge of exact information of gene start plays

an important role in identification of native purified

proteins from the high-throughput proteomics

(Poole et al. 2005). In addition, a correct prediction

of gene start facilitates the identification of

cis-regulatory signals related to translation initia-

tion (Hu et al. 2008c) and thus facilitates the under-

standing of the diversity and evolution scenario of

translation initiation mechanisms (Zheng

et al. 2011). However, gene start annotation in

widely used public databases such as GenBank

and RefSeq is not of high quality in general

(Nielsen and Krogh 2005). In particular, the lon-

gest open reading frame is frequently used to anno-

tate a protein-coding gene (Besemer et al. 2001),

which results in a systematical low quality in gene

start annotations for GC-rich species (Nielsen and

Krogh 2005; Hu et al. 2008b). Therefore, accurate

gene start prediction has been an intensive research

subject for many labs in the last decade.

In recent years, gene start prediction for

microbial genomes has achieved high accuracies

for a number of methods (Besemer et al. 2001;

Zhu et al. 2004; Tech et al. 2005; Delcher

et al. 2007; Makita et al. 2007; Hu et al. 2008a,

2009; Hyatt et al. 2010). Most of the methods are

unsupervised and can be roughly sorted into two

groups based on whether specific assumptions are

made on gene start-related features. The first

group involves statistic models specifically

designed for the cis-regulatory signals in the

vicinity of gene start such as the Shine-Dalgarno

(SD) signal (Shine and Dalgarno 1974). Assump-

tions are then made regarding the length of the

signal, the start codon usage, and the distances

between the signal and start codon (Besemer

et al. 2001; Zhu al. 2004; Delcher et al. 2007;

Makita et al. 2007; Hu et al. 2008a; Hyatt

et al. 2010). These methods show consistently

high prediction accuracies on a number of

genomes such as E. coli and B. subtilis. However,
the assumptions that apply to these genomes may

not apply to others. The other methods build

statistic model to characterize the whole

sequences around gene starts and do not take

specific assumptions on gene start-related geno-

mic features. Tech et al. (2005) introduced a

second-order Markov model with positional

smoothing to characterize sequence properties

around gene start and achieved comparable accu-

racies to other methods. This method however is

criticized for potential dependency of the quality

of initial annotation (Makita et al. 2007). Later

on, Hu et al. (2009a) introduced a classification of

putative start codons into three categories based

on evolutional pressures acting on the sequences:

true start codons (purifying selection), false start

codons in intergenic regions (minimal sequence

feature preserved under neutral selection) ,and

false start codons in coding regions (period-

three oscillations in sequence content under puri-

fying selection) (Hu et al. 2008b). The sequence

feature of each group is then characterized by

a non-homogeneous Markov model, and an iter-

ative nonsupervised procedure is utilized for

parameter estimations (Hu et al. 2009b). The

method achieves a better accuracy than other
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methods, and the prediction is independent from

the quality of initial annotation (Hu et al. 2009b).

Since many of the metagenomics projects

involve high-throughput proteomics to identify

novel proteins followed by experimental valida-

tion, the development of gene start prediction

algorithm for metagenomic fragments receives

increasing attentions (Hoff et al. 2008). It is

important to realize that although the current

methods are successful in gene start prediction

for microbial genomes, they are not directly

applicable to the metagenomic projects

(Hu et al. 2009a). This is largely caused by the

fragmentary nature of the metagenomics

sequences and their uncertainties in phylogenetic

origins. A tool calledMetaTISA (Hu et al. 2009a)

was implemented to address this question.

“Binning Followed by Self-Training”

MetaTISA is essentially a sequential application

of metagenomics binning – a process that iden-

tifies from what species a particular sequence has

originated – and an unsupervised procedure for

gene start prediction within each bin:

1. Binning: giving a set of metagenomics frag-

ments, each fragment was assigned to a genus

based on its k-mer nucleotide frequencies as

described in (Sandberg et al. 2001). Briefly,

a metagenomic fragment F of size l consists of

l-(k-1) overlapping motifs M of size k. The

probability of finding fragment F in genus

Gi, denoted by p(F|Gi), can be estimated by

a product of the probabilities of finding each

motif M in genus Gi, which can be estimated

from the normalized k-mer nucleotide fre-

quencies within genus Gi. Based on Bayesian

statistics, giving the occurrence of fragment F,
the probability that F belongs to Gi may be

expressed as p(Gi|F) ¼ [p(F|Gi)p(Gi)]/P(F),

where P(F) is the probability of finding frag-

ment F, which is independent of genus, and

p(Gi) is a prior probability that reflects the

relative abundance of genus Gi in the

metagenomic sample of concern. MetaTISA

assumes that the prior probability is equal

among genera and then assigns the phyloge-

netic origin of fragment F to the genus that

reports the maximal value of p(F|Gi). Since

the k-mer frequencies are pre-calculated for

each genus Gi, it is crucial to keep the param-

eters updated to maintain the classification

accuracy especially when novel genera are

discovered.

2. Unsupervised gene start predictions: frag-

ments assigned to the same genus are sup-

posed to have close phylogenetic origin and

share a similar mechanism of translation initi-

ation. In this regard, gene start prediction

methods developed for microbial genomes

may be applied. MetaTISA utilizes the

methods described in Hu et al. (2009b) to

accomplish with several considerations.

Firstly, it trains the parameters for each

genus in an unsupervised manner (also

known as self-training). This offers the advan-

tage to exclude the needs of a set of known

training sets. However, for genus that receives

only a few number of fragments (<200 by

default), the prediction does require

pre-computed parameters. But note that the

parameters training for this genus is also

a nonsupervised process (Hu et al. 2009b).

Secondly, the predication is independent

from the quality of input. For metagenomic

samples, the quality of gene start prediction

from a gene annotation pipeline may vary

considerably across fragments bins with dif-

ferent GC content. Thirdly, the method esti-

mates the probability that a putative start

codon is within coding regions. This helps

tell the completeness of a coding sequence

within a fragment. Lastly but not the least, it

outputs genus-specific parameters that may

facilitate the comparison of TIS-related sig-

nals among different metagenomic samples

(Noguchi et al. 2008).

Prediction Accuracies

MetaTISA is designed as a post-processor for

gene prediction pipelines currently available for
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metagenomes, such as MGA (Noguchi

et al. 2008), GeneMark.hmm (Zhu et al. 2010),

and Glimmer-MG (Kelley et al. 2012). The

improvements brought by MetaTISA are demon-

strated by post-processing gene predictions from

MGA on metagenomic fragments simulated

using 100 genomes. Two kinds of simulations

with different fragment sizes are conducted:

400 bp for 454 or 700 bp for Sanger. When

assessed on experimentally verified datasets, the

sensitivities are improved by 6–8 % without

a loss of specificities regardless of the choice of

fragment length (Hu et al. 2009a). An indirect

way of accuracy assessment on real metagenomic

samples is to investigate the TIS-feature-

associated parameters self-trained for each

genus. As an example, the method is applied to

post-process MGA’s predictions for Human Gut

Community Subject 7, and as a result it reveals

expected RBS patterns such as SD signals for

genus within Firmicutes (Hu et al. 2009a).

Availability

The tool is written in C++ and the source code is

freely available under GNU GPL license. A web

server (http://mech.ctb.pku.edu.cn/MetaTISA/)

is dedicated for the user to run the program online

and to receive the results by email. The web

server also provides downloading service for

source codes, files for pre-computed parameters,

and executable version for Windows and Linux

platforms.

Summary

By a sequential combination of metagenomic

fragments binning and a self-training of parame-

ters within each bin, MetaTISA significantly

improves the identification of gene starts for

metagenomes. Noteworthy, this “binning-

followed-by-self-retraining” scheme has been

successfully applied to the prediction of protein-

coding sequences for metagenomes (Kelley

et al. 2012).

Cross-References

▶ FragGeneScan: Predicting Genes in Short and

Error-Prone Reads

▶MetaBin
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Synonyms

16S extraction; rRNA extraction; SSU extrac-

tion; Taxonomic assignment

Definition

Metaxa is a software tool for extracting full-

length and partial ribosomal small subunit

(SSU; 16S/18S/12S) sequences from

metagenomic datasets and for classifying the

extracted sequences to taxonomic domains and

organelle of origin. Metaxa is freely available

from http://microbiology.se/software/metaxa/.

Introduction

A common question in metagenomic studies con-

cerns the species composition of the community

sampled (Desai et al. 2012). This is frequently

addressed using a specific genetic marker, typi-

cally the ribosomal RNA (rRNA) small subunit

(SSU) gene sequence (also referred to as the 16S,

18S, or 12S subunit depending on the lineage

under scrutiny). In some studies, the SSU gene

is amplified by PCR and sequenced separately in

order to study microbial diversity. However, even

if the SSU sequences are not targeted for separate

sequencing, it is still possible to identify and

extract the SSU component of a metagenome.

This task has traditionally been carried out

through similarity searches against sequence

databases such as GenBank (Benson

et al. 2009), SILVA (Pruesse et al. 2007),

GreenGenes (DeSantis et al. 2006), or RDP

(Cole et al. 2007).

The complexity of the data requires frequent

manual intervention to accurately sort out the

origin of the sequences in such BLAST-based

approaches, and the process is further compli-

cated by the fact that the SSU gene is found not

only in the core genome of bacteria, archaea, and

eukaryotes but also in the chloroplasts and mito-

chondria of eukaryote organisms. These different

gene copies, although often very similar to one

another, are non-orthologous and should in most

cases not be analyzed jointly. Metagenomic

efforts are generally interested in the bacterial

and/or eukaryote diversity in the sample, and

thus any mitochondrial or chloroplast SSU

sequences, bearing high similarity to bacterial

SSU genes, may confound the analysis if left in

the dataset. To avoid noise and bias associated

with analyzing non-orthologous sequences as if

they were orthologous, the sequences must be

subjected to manual inspection, which is a time-

consuming process further complicated by the
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large number of incorrectly identified or poorly

annotated reference sequences in the public

sequence databases (Bidartondo 2008; Hartmann

et al. 2011).

Metaxa (Bengtsson et al. 2011) is a software

package that resolves the problem of extracting

and sorting SSU sequences to origin in an accu-

rate and rapid way. The end result is a set of

FASTA files, each representing all SSU

sequences from a particular organelle or taxo-

nomic domain, for further analysis of species

composition or other endeavors.

Methods

Extraction

The rRNA SSU gene is composed of eight to nine

hypervariable (“V”) regions flanked by more

conserved domains (Hartmann et al. 2010).

Metaxa carries out the extraction of SSU

sequence fragments from the metagenome using

the HMMER package (Eddy 2010) and Hidden

Markov Models (HMMs) representing the most

conserved parts of the SSU gene, chiefly at the 50

and 30 end of each V region. These HMMs are

modeled according to the same principles as

those of V-Xtractor (Hartmann et al. 2010).

Since the Metaxa models represent a set of highly

conserved domains, false-positive matches can

be all but avoided as only high-scoring profile

matches are considered. Metaxa features HMM

profiles representing the archaeal and bacterial

16S genes, the eukaryote 18S gene, the mitochon-

drial 12S and 16S genes, and the chloroplast 16S

gene. These sets of HMM profiles enable Metaxa

to identify and distinguish among all these classes

of SSU sequences.

Classification

After extracting all SSU sequences from the

query dataset, Metaxa proceeds to classify the

extracted SSU sequence fragments. This is

performed by comparing each fragment to

a carefully selected set of reference SSU

sequences from GreenGenes, SILVA, CRW

(Cannone et al. 2002), and MitoZoa (Lupi

et al. 2010) using BLAST (Altschul et al. 1997).

By default, the five highest-scoring BLAST

matches are examined for origin in terms of

organelle or taxonomic domain, and each origin

is given a score based on the number of sequences

among the top five BLAST hits that belong to the

respective origin. The matches to the HMM pro-

files in the previous step are weighted together

with these BLAST-based origin scores to make

a final call on the most likely origin of the

sequence fragment. In cases where the origin

cannot be determined with certainty, but where

there is a strong candidate, Metaxa assigns the

sequence to the most likely origin, but flags it as

potentially in need of manual inspection. If scores

for origin are tied altogether, the sequence is

assigned into a special “uncertain” bin. In the

two latter cases, sequence alignments of the

extracted fragment and the five best BLAST

matches are computed automatically using

MAFFT (Katoh and Toh 2008), to assist the

user in the interpretation process.

Input and Output

Metaxa takes input in the FASTA format and out-

puts one FASTA file for each origin found.

Optionally, Metaxa can also produce output in

table format. The entire running process is outlined

in Fig. 1.

Performance

Metaxa has been shown to classify more than

99.95 % of the core-release sequences in the

SILVA database according to their annotated ori-

gin, and it has a false-positive rate of 0.00012 %

(Bengtsson et al. 2011). When evaluated on sim-

ulated metagenomic data comprising three sets of

100,000 sequences with fragment lengths of

1,000, 300, and 100 bp, Metaxa processed the

datasets in 112, 47, and 35 min, respectively,

with very high accuracy down to typical

454 read lengths (300 bp), retaining fidelity for

bacterial sequences even at read lengths as short

as 100 bp (Fig. 2). This suggests that Metaxa is

highly reliable for Sanger, as well as 454-derived,

metagenomes, and that it is useful even on

metagenomes generated using short-read
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sequencing technologies, such as Illumina.

Metaxa takes advantage of multiple processor

cores, if available, and it has no software or

hardware restriction on the number of input

sequences.

Applications

Metaxa has obvious uses in deriving taxonomic

inferences from metagenomic sequence sets.

For example, a set of sequences extracted using

Metaxa could be used for sequence diversity

analysis. However, because of the classification

capabilities of Metaxa, it is also useful in sorting

out PCR-amplified SSU libraries before continu-

ing with species richness investigations such as

rarefaction or species accumulation analysis.

Here, the ability of Metaxa to separate chloro-

plast and mitochondrial SSU sequences from

other SSU entries is crucial for the accuracy of

the downstream analysis. Metaxa could also be

Metaxa, Overview, Fig. 1 Overview of the Metaxa running process
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used as a tool to verify the authenticity of anno-

tations in SSU sequence databases and reference

libraries.

Availability

Metaxa is written in Perl and released as an open-

source package under the GNU GPL v. 3 license.

It runs on Unix and Linux platforms, including

Mac OS X. The software package can be freely

downloaded from http://microbiology.se/soft-

ware/metaxa/.

Summary

Metaxa is a high-performance software tool for

extracting and classifying SSU sequences from

metagenomic datasets. The accuracy of the soft-

ware is very high, providing high sensitivity

toward SSU fragments even at short-read lengths

while maintaining a false-positive rate of about

0.00012 %. Metaxa is fast compared to, e.g.,

BLAST, and it takes advantage of multiple

processor cores where available. It can be used

as a tool for taxonomic analysis of metagenomes

as well as a classification tool for SSU amplicons.

Metaxa is freely available from http://microbiol-

ogy.se/software/metaxa/.
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Introduction

Amplicon fingerprints are useful for ecological

studies of microbial communities. Most studies

to date have used these techniques for determin-

ing how many species are present (richness, or

alpha diversity) in what ratios (beta diversity),

which populations or species are present, and

what metabolic or ecological functions the com-

munity and its constituents may provide. These

data inform downstream analyses to determine

the response of microbial ecosystems to environ-

mental change, the relationship between human

microbiota and health, the ecological succession,

the co-evolutionary constraints within and

between communities and their environments,

and more (Foster et al. 2012a).

This encyclopedia entry focuses on bacterial

fingerprinting, since it has a longer history and is

more mature than fingerprinting techniques for

other kingdoms of life. But these techniques are

in principle applicable to all microbial organisms,

including archaea and eukarya such as fungi,

diatoms and tiny arthropods, and viruses

(assuming they are organisms). Amplicons for

bacteria have been in use since the beginning of

the molecular revolution and their gene products

have been well characterized. However, potential

amplicons exist for all organisms. As dominant as

bacterial life is on Earth, it is by no means the

only microbial realm of interest. Nonetheless, it

is the focus of this entry.

The terminology herein is taken from the bac-

terial ecology literature. A population is

a collection of individuals of the same type. In

sexual organisms, a population is typically

a collection of individuals from the same species.
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In asexual organisms, however, the species con-

cept is problematic. In any case, one may be

interested in discriminating to a subspecific or

strain level, or indeed to higher levels. Thus, the

definition of a population is relative to the spe-

cific question under investigation. A community
is a collection of co-occurring populations.

Therefore, the number of distinct populations in

a community is the richness of that community.

The diversity of a community includes the rela-

tive abundance of populations and their potential

interactions.

Amplicon fingerprinting techniques have

developed in tandem with new sequencing tech-

nologies. Current fingerprinting approaches are

particularly well adapted to modern high-

throughput sequencing and have largely replaced

older techniques based on electrophoresis or cap-

illary sequencers. The older approaches are still

useful for crude estimates using older, and there-

fore inexpensive and less used, equipment. How-

ever, as the cost of new sequencing technologies

drops, more modern amplicon fingerprinting

approaches are likely to continue to replace

their predecessors.

Amplicon fingerprinting techniques are cul-

ture independent, meaning that it is unnecessary

to grow cultures of individual populations or

communities before extracting DNA. This is par-

ticularly significant in the microbial world, since

most bacteria and archaea cannot currently be

grown in the lab. Estimates show that as much

as 97 % of existing microbial biodiversity is

currently uncultivable (Whitman et al. 1998).

These techniques enable ecological and func-

tional analysis of communities that largely con-

sist of otherwise inaccessible “biotic dark

matter.”

Choosing Amplicons

With bacteria, the amplicon of choice has long

been the gene for the small RNA subunit of the

ribosome, known as 16S rDNA for its size

(16 Svedberg units). Nearly universal primers

exist for several regions of this gene. The second-

ary structure of 16S rDNA is well characterized

and highly conserved, providing a reliable guide

for fast and accurate alignment of large sets of

sequences (Nawrocki et al. 2009). This gene is

strongly conserved, since it is a critical part of the

replicative machinery in bacteria (and some

archaea). So it is in principle useful for recogniz-

ing deep phylogenetic divergences. And finally

the 16S rDNA gene shows little evidence of hor-

izontal transfer, which makes it more useful as

a phylogenetic marker. Woese and Fox first dem-

onstrated the utility of 16S rDNA analysis with

their discovery that archaea are a distinct king-

dom of life (Woese 2004; Woese and Fox 1977).

Several hypervariable regions in the 16S

rDNA gene provide enough sequence variation

to distinguish bacterial populations, sometimes to

the strain level. Hypervariable regions typically

contain loops in the rRNA secondary structure,

which change more as species evolve, since they

are not as structurally constrained as stems. Reli-

able primers exist for nine regions, known as V1

through V9, that were short enough to be

completely sequenced by Sanger sequencing

when the primers were developed (Kim et al.

2011). Hypervariable regions differ in the speci-

ficity and precision with which they can distin-

guish different types of organisms, so the choice

of amplicon primers is study specific (Schloss

2010; Bazinet and Cummings 2012). As newer

sequencing technologies have increased the

length of genetic fragments that can be

sequenced, it has become standard practice to

amplify from one end of one region to an end of

another region. For example, V35 and V69,

which span regions 3–5 and 6–9, respectively,

are common in the literature.

Since it has become possible to sequence

much larger fragments, it has become common

to attach “bar code adapters” to primers. This

makes it easier to multiplex samples from several

different experimental treatments into single

sequencing runs and then separate the data algo-

rithmically. In theory, one could improve resolu-

tion of fingerprinting techniques by multiplexing

several primers for multiple hypervariable

regions, as if fingerprinting multiple fingers at

the same time. However, most projects currently

work with only single sets of primers. However,
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very soon it will be feasible to sequence the entire

16S rDNA gene, which of course will comprise

all hypervariable regions, making the choice of

primers irrelevant for microbial community fin-

gerprinting. An intriguing possibility will be to

multiplex fingerprinting from multiple genes that

expand analysis beyond the bacterial kingdom,

for example, multiplexing 16S rDNA and 18S

rDNA amplicons.

Databases of full 16S rRNA sequences exist

for hundreds of thousands of microbes (Cole

et al. 2007; DeSantis et al. 2006). A typical

workflow searches these databases for putative

homologues to amplicons. The annotations for

these hits then inform likely taxonomic and func-

tional associations (Kuczynski et al. 2010).

But modern databases have serious limita-

tions. It is rarely possible to classify bacteria

below the family level, since there are vastly

more different populations than have been

observed. As cultivation-independent sequencing

methods grow more popular, new sequences in

the databases tend to be from unclassified, and

therefore unannotated, populations. Annotations

in existing databases are highly biased toward

pathogenic or other human-associated organisms.

Very closely related genera, species, and strains

can differ dramatically in their metabolic poten-

tial and preferred ecological habitats. Finally,

different species vary widely in their 16S rDNA

copy numbers, making it easy to confuse dosage

effects and within-individual sequence variation

with species abundances.

Other genetic targets may serve the same func-

tion as 16S does for microbial ecology, provided

they exhibit sufficient variation, stability, and

vertical inheritance. For example, the RNA poly-

merase b-subunit gene, rpoB, is a single-copy

gene and has been recommended as an alternative

to 16S rDNA. Other highly conserved house-

keeping genes such as cytochrome B (cytB),

those responsible for electron transport in aerobic

organisms, may be more appropriate for plant

studies or deep resolution of Cyanobacteria.

And of course, eukaryotes and some Archaea do

not have 16S ribosomal subunits, so a more

appropriate gene is their small subunit analogue,

the 18S rDNA gene. Currently, these alternatives

do not have databases comparable to those avail-

able for 16S rDNA and have fewer useful

primers.

No fingerprinting technique based on a single

gene, however, carefully chosen, can hope to

distinguish all microbes or fully elucidate all

microbial metabolic and ecological functions.

Even when it becomes feasible to routinely

sequence entire 16S rDNA genes from individ-

ual cells, the gene-based amplicon analysis will

only produce gene genealogies rather than

organismal phylogenies or full metabolic pro-

files. Multiplexing amplicon processing for

several genes may improve phylogenetic reso-

lution. But as it becomes feasible to sequence

entire genomes for whole communities with

shotgun metagenomics or single-cell genomics,

it will become unnecessary to choose target

amplicons at all.

Fingerprinting Techniques

Fragment-based techniques use the length of

amplicon fragments as fingerprints. The spectra

of these lengths indicate which microbial

populations were in the original sample, assum-

ing that there is sufficient variation in the

amplicon fragments. We present the three most

common fragment-based techniques here.

Temperature gradient and denaturing gradient

gel electrophoresis (TGGE and DGGE) separate

the DNA fragments by size using standard gel

electrophoresis (Fischer and Lerman 1979). The

resulting band patterns are then the community

fingerprints. Presumably, more complex patterns

represent more complex communities and pat-

terns from distinct populations contributing addi-

tively to the overall pattern so that one can

decompose the community fingerprint into con-

stituent populations.

Automated ribosomal intergenic spacer anal-

ysis (ARISA) determines the spectra of the

intergenic spacer region (ITR) between small

and large ribosomal subunit genes in bacteria

(Fisher and Triplett 1999). The flanking genes

are highly conserved, making ITS a reasonable

amplicon. Moreover, the length ITS is highly
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variable between bacterial species, so a spectrum

of ITS lengths is a reasonable fingerprint.

Terminal restriction fragment length polymor-

phism (TRFLP) analysis binds fluorescent

markers to the amplicon PCR primers before

restriction, marking the restriction fragments

adjacent to the primer (Sch€utte et al. 2008). One

can then separate the labeled fragments by size,

for example, in a capillary sequencer. The spectra

of the lengths of these fragments are then the

fingerprint for the study sample.

All three length-based fingerprinting tech-

niques have inherent biases and limitations, and

all three are still commonly used. A PubMed

search on 12 July 2012 for the terms “DGGE,”

“ARISA,” and “TRFLP” returned 5658, 119, and

107 hits, respectively, with several recent cita-

tions indicating current use of all three

techniques.

Bioinformatics has been critical for

interpreting fragment-based amplicon fingerprint

data. A common approach has been to perform in

silico analyses of existing databases, to determine

length spectra for known sequences. This pro-

vides a kind of “reverse telephone book” with

which one can translate empirical fingerprints

into possible population compositions. Two typ-

ical tools for this sort of analysis, focused on

TRFLP and still in heavy use, are the Microbial

Community Analysis (MiCA) suite and the TFLP

Analysis Program (TAP-TRFLP) (Shyu

et al. 2007; Cole et al. 2009).

Sequence-based fingerprinting techniques use

the amplicon sequences themselves as finger-

prints, rather than their length spectra. Current

sequencing technologies, also known as next-

generation sequencing, have made it feasible to

sequence millions of amplicons in a single run.

Different sequencing technologies vary in their

sequencing accuracy, typical type of sequencing

errors, and length of amplicon (Foster

et al. 2012b). Consequently, the vast majority of

current amplicon fingerprinting projects use

amplicon sequences rather than derived data

such as lengths.

Bioinformatics to analyze sequence-based

fingerprints is a very active area of research.

New and improved algorithms are constantly

emerging for cleaning and quality control of

raw data, detecting erroneous sequences (such

as chimeras), aligning sequences, clustering fin-

gerprints by similarity, searching for similar

annotated sequences in existing databases, and

more. Two software packages aggregate state-

of-the-art algorithms and pipelines to bring the

state of the art to the typical user, namely, Quan-

titative Insights Into Microbial Ecology

(QIIME) and MOTHUR (Caporaso et al. 2010;

Schloss et al. 2009). Both packages are compat-

ible with most computing platform and are

updated regularly with the newest algorithms

from the research community. Both have exten-

sive tutorials and reference documentation.

MOTHUR is open source. Both packages per-

form most standard diversity analyses and pro-

duce datasets that can be imported into the

R statistical environment for further analysis

(Beck et al. 2011).

To summarize, amplicon choice remains

important to fingerprinting analyses, though frag-

ments of the 16S rDNA gene remain the amplicon

of choice for bacterial community diversity stud-

ies. Amplicon sequences are becoming the fin-

gerprints of choice, though derived data such as

length spectra for restriction fragments or

interspacer regions are still widely used. Future

sequencing technologies are sure to change the

fingerprinting landscape significantly. Finally,

amplicon fingerprinting analysis requires exten-

sive bioinformatic support, and appropriate tools

are available.
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Introduction

Microbial ecology is an interdisciplinary science

related to microbiology and ecology. Its investi-

gations range from analyzing the diversity of

microorganisms within and among the different

ecological niches on Earth to understanding the

interrelationships among microorganisms,

between microorganisms and macroorganisms,

and between microorganisms and their abiotic

environmental factors. Microbial diversity and
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the interactions between microbes and other

organisms can be analyzed at morphological,

structural, physiological, and/or genetic levels.

The recent advances in high-throughput technol-

ogies, especially in genome sequencing, are

reshaping our understandings of microbial ecol-

ogy. This entry introduces the fundamental con-

cepts and issues in microbial ecology, with a brief

focus on how metagenomics tools are impacting

microbial diversity studies.

Microorganisms and Microbiology

Amicroorganism refers to any life form that can’t

be easily seen by the human naked eye. Microor-

ganisms encompass morphologically, structur-

ally, and phylogenetically very diverse forms of

life and traditionally include both acellular life

forms such as viruses and cellular life forms in all

three domains, the Bacteria, Archaea, and

Eukarya (Woese 1987). Organisms in Bacteria

and Archaea are completely microbial. Even in

Eukarya, macroorganisms such as animals and

plants represent only parts of two of at least

eight superkingdoms within this domain, while

the remaining six or more superkingdoms are

exclusively microbial (Baldauf 2003). While

most microorganisms can’t be seen at all by the

naked eye, for many microorganisms, certain

stages of their life cycles can be easily visualized.

For example, mushrooms, the sexual reproduc-

tive structure of certain groups of fungi, are

a common occurrence on forest floors at certain

times of the year.

Microorganisms were first seen and

described by Antonie van Leeuwenhoek in

1676 when he used a microscope to examine

a variety of natural and human-made objects.

Subsequent developments in methodologies for

growing, purifying, and studying microorgan-

isms ushered in a golden era of microbiology,

which is still going strong today. Microorgan-

isms have now been found in virtually every

habitable niche on Earth, from hot springs to

salt lakes, from frozen environments in the Ant-

arctica and glaciers at the top of mountains to

hydrothermal vents at the bottom of deepest

oceans. Current estimates put the number of

microbial cells on Earth at around 5.0 � 1030,

about eight orders of magnitude greater than the

number of stars in the observable universe.

Indeed, despite their small sizes, the large num-

ber of microbial cells on Earth makes microor-

ganisms the single largest carbon sink, more

than those from plants and animals. Their large

number, broad ecological distribution, and vast

diversity of metabolic pathways unparalleled by

macroorganisms make microbes indispensable

and central to our considerations of global geo-

chemical cycles and environmental issues.

Most of the early methodologies for studying

microorganisms are still widely used today, and

many discoveries about the fundamental fea-

tures of life were made using microorganisms

as model systems. Among the many practical

contributions of microbiology, microbiological

discoveries have significantly impacted (and are

continuing to impact) the control and prevention

of diseases in plants, animals, and humans.

However, techniques and methodologies alone

were insufficient for establishing microbiology

as a fledging field of scientific investigation.

Reductionist approaches and guidelines for

hypothesis testing such as the Koch’s postulates

for identifying the causative agents of infectious

diseases were pivotal for the development of

microbiology. Interestingly, with the rapid

developments both in high-throughput experi-

mental tools (e.g., Xu 2014) and in bioinformat-

ics software capable of analyzing large and

diverse datasets, holistic views about microor-

ganisms are beginning to attract significant sci-

entific attention. Indeed, aside from the

traditional subdisciplines such as microbial cell

biology, biochemistry, physiology, genetics,

ecology, and evolutionary biology, microbiol-

ogy now also includes microbial genomics, sys-

tems microbiology, microbial community

ecology, and ecosystem microbiology. In addi-

tion, the diverse subdisciplines of microbiology

have become integral components of agricul-

ture, forestry, animal husbandry, fishery, min-

ing, environmental sciences, and medicine.
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Microbial Ecology

Broadly speaking, microbial ecology is the scien-

tific discipline that examines the relationships

between microorganisms and their environments.

Ecologically oriented studies of microbes were

performed as soon as their existence was realized.

However, the term microbial ecology came into

frequent use only in the early 1960s, and its emer-

gence as an independent field of investigation was

propelled by both the awakening public interest in

environmental issues and the increasing recogni-

tion of the essential roles of microbes in Earth’s

geochemical cycling and in human welfare.

At present, microbial ecological investiga-

tions can be grouped into three broad types:

(i) identifying the taxonomic, structural, and

functional diversities of microorganisms in

natural ecological niches; (ii) analyzing the

relationships among microorganisms, between

microorganisms and macroorganisms (plants

and animals including humans), and between

microorganisms and environmental factors

(such as nutrients, temperature, pH, pressure,

oxygen); and (iii) investigating the mechanisms

that generate and maintain the diversity of micro-

organisms and their relationships with each other

and with their biotic and abiotic factors in natural

environments. Among the three types of research

activities, most metagenomics studies of micro-

bial ecology have focused on microbial diversity

in natural environments.

Below is a brief introduction to metagenomics

and how metagenomics approaches have shaped

our understanding of microbial diversity. For the

impact of metagenomics tools on the other two

aspects of microbial ecology, please refer to other

entries in this encyclopedia.

Metagenomics

Metagenomics refers to the field of study that ana-

lyzes genetic materials obtained directly from envi-

ronmental samples. Several other terms, such as

environmental genomics, ecological genomics,

and community genomics, have emerged over the

years to describe direct analyses of environmental

DNA (Marco 2009). However, metagenomics

has emerged as the favorite term and the prefix

“meta-“is now used to describe the direct

analyses of environmental RNA, proteins, and

metabolites, corresponding respectively to

meta-transcriptomics, meta-proteomics, and

metabolomics (Fig. 1). Together, the direct analyses

of biological molecules from natural environments

constitute the field of “meta-omics” (Fig. 1).

The different subfields of meta-omics analyze

complementary sets of biological molecules

directly from the environments that together help

provide holistic views of the natural biological

communities. For example, analyses of environ-

mental DNA samples can provide estimates of

the taxonomic and genome diversities of organ-

isms in ecological niches in nature, the extracted

RNA, protein, andmetabolites provide information

about the functions of the environmental genomes,

including the degrees to which genes are tran-

scribed and translated, and the types and amount

of metabolites are generated in natural ecological

niches. In addition, to properly analyze and inte-

grate the diverse biological datasets, effective

“meta-programs” are also needed and several

such programs are currently available (de

Bruijn 2011).

Because biological materials (e.g., different

types of microbial cells) can be very different

from each other in terms of their size, morphology,

and structure, obtaining DNA (and/or RNA, pro-

tein, and metabolites) directly from environmental

samples that can realistically reflect their native

biological states may require extensive sample

treatments. Such treatments may include sorting

biological samples (including different types of

cells and viral particles) based on sizes, removing

materials that inhibit downstream reactions, and

applying different extraction methods that permit

the lysis of cells with specific types of cell walls.

Once the pools of targeted biological materials are

obtained, additional treatments of these materials

may be needed before they are channeled into high-

throughput analytical platforms. Below is a brief

overview of the applications of metagenomic tools

on estimates of microbial diversity.
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Estimates of Microbial Genetic Diversity
Using Metagenomic Data

Depending on the objectives of research, micro-

bial diversity in the environment can be

expressed as a quantitative measure using several

common indices such as phylogenetic diversity,

species diversity, genotype diversity, gene diver-

sity, and nucleotide diversity. Above the species

level, microbial diversity can be quantified based

on evolutionary distances among the observed

taxonomic groups from a specific environment.

Below the species level, microbial diversity can

be described using population genetic parameters

such as nucleotide diversity, gene diversity, and

genotype diversity. Nucleotide diversity, gene

diversity, and genotype diversity refer respec-

tively to the probability that two randomly

drawn bases at a specific site of the genome,

alleles of a specific gene locus, and genotypes in

a population will be different (Xu 2010). At the

species level, microbial diversity is measured as

species diversity. There are various measures of

species diversity. One commonly used refers to

the frequency that two randomly drawn individ-

uals in an environment will be different species.

This measure takes into account both the number

of species (species richness) and the frequency of

each species (species abundance) in the environ-

ment. Conceptually, this measure of species

diversity is similar to those used for nucleotide

diversity, gene diversity, and genotype diversity.

Microbial species diversity is among the most

commonly analyzed and compared in microbial

ecological studies. The earliest and still one of the

most common metagenomics methods for esti-

mating species diversity of prokaryotes

(including both Bacteria and Archaea) in natural

environments is the direct analyses of sequence

variation at the 16S ribosomal RNA gene

Microbial Ecology in the Age of Metagenomics: An
Introduction, Fig. 1 Legend: an overview of meta-

omics: the direct analyses of biological molecules such

as DNA, RNA, protein, and metabolites using high-

throughput technologies. To effectively utilize such data,

suits of “meta-programs” are required to analyze and

integrate the diverse meta-datasets (Modified from Xu

2010)
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(Pace et al. 1985). These analyses may involve

the polymerase chain reaction (PCR), denaturing

gradient gel electrophoresis (DGGE), cloning,

and sequencing. A broadly accepted criterion to

delineate prokaryote species is that two strains

belong to the same species if their 16S rRNA

genes show �97 % sequence similarity

(de Bruijn 2011). In eukaryotic microbes such

as fungi, a similar criterion (�97 % sequence

similarity) is often used, albeit for a different

DNA fragment, the internal transcribed spacer

(ITS) regions of the ribosomal RNA gene cluster

(Schoch et al. 2012). However, in more recent

analyses, direct sequencing of extracted environ-

mental DNA using NGS technologies is increas-

ingly used. These analyses suggest that the

cultured microbes from most ecological niches

represent <1 % of the true microbial species

richness in their respective niches and that many

of these uncultured microbes belong to distinct

and previously unknown phylogenetic groups

(de Bruijn 2011). Metagenomic analyses, espe-

cially those based on NGS technologies (Xu

2014), have generated very large datasets from

environments including the human body (e.g., the

human microbiome initiative; http://nihroadmap.

nih.gov/hmp/) and the oceans (the Global Ocean

Sampling surveys; http://www.jcvi.org/cms/

research/projects/gos/overview/). Scientists

from many countries participate in these large-

scale projects.

The species diversity studies based on DNA

sequences at the 16S rRNA gene are increasingly

complemented by other types of data that aug-

ment our understanding of microbial diversity in

natural environments. One type of such data is

genetic variation among strains within a species.

With high-throughput DNA sequencing, genetic

variants of a gene fragment from different strains

of the same species in the same ecological niche

can be reliably identified (de Bruijn 2011). With

sufficient genome coverage, it’s also possible to

uncover genome variants. Such information

allows direct comparisons of gene frequencies

and genotype frequencies among microbial

populations from diverse ecological niches,

including the inferences of the modes of repro-

duction in nature (Xu 2010). The second type of

complementary data is the messenger RNA

sequences obtained from environmental samples.

In combination with DNA sequence data, the

mRNA data allow inferences of the potential

physiological activities of the different groups

of microorganisms in natural environments

(de Bruijn 2011).

Summary

This entry serves as an introduction to microor-

ganisms, microbiology, microbial ecology, and

metagenomics. The impact of metagenomics on

estimates of microbial diversity was briefly

discussed. With the increasing application of

high-throughput technologies in analyzing bio-

logical materials (DNA, RNA, proteins, and

metabolites) directly from environments, the

future of microbial ecology is looking brighter

than ever.
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Microbial Ecosystems, Protection of

Paul L. E. Bodelier

Netherlands Institute of Ecology

(NIOO-KNAW), Wageningen, Netherlands

Synonyms

Conservation of microbial diversity and ecosys-

tem functions provided by microbes; Preserva-

tion of microbial diversity and ecosystem

functions provided by microbes

Definition

The use, management, and conservation of eco-

systems in order to preserve microbial diversity

and functioning.

Introduction

Ecosystems collectively determine biogeo-

chemical processes that regulate the Earth sys-

tem. Loss of biodiversity is generally regarded

as detrimental to ecosystems and ecosystem

functioning and therefore has been a central

issue for environmental scientists during the

last decades (Hooper et al. 2012). Microorgan-

isms (i.e., bacteria, archaea, protozoa, and fungi)

comprise a major part of the total biomass of

organisms inhabiting on Earth and represent the

largest source of biodiversity. They play critical

roles in biogeochemical processes and ecosys-

tem functioning and are fundamental to many

ecosystem services (e.g., soil health, wastewater

treatment, nutrient recycling, human health, car-

bon sequestration, etc.) (see Table 1) (Ducklow

2008). Considering the challenges we are facing

with overexploitation of the planet, climate

change, pandemics, increasing demands in

food production, and need for renewable energy

and resources, it is remarkable that microbes and

their diversity are absent in the ongoing debates

about global biodiversity loss and conservations

policy, despite various pleas to do so (Cockell

and Jones 2009). The biodiversity-ecosystem

function (BEF) research inherently requires the

investigation of the relationship between species

assemblies and ecosystem processes, a link

which is difficult to make with microbes. High

diversity, rapid generation times, high adapt-

ability due to genome rearrangements, and ubiq-

uitous distribution have led to the notion that

microbial communities are highly redundant

and omnipresent and therefore inextinguishable.

However, the latter is a misconception driven by

a number of gaps in our understanding of the

functioning of microbial communities and the

relevance of microbial diversity in ecosystem

functioning.

Knowledge Gaps in Understanding
Microbial BEF

Definition of Species

Considering the IUCNRed List of species and the

associated criteria to get on this list (http://www.

iucn.org/), it is quite obvious that microbes have

not made it in there yet. A species is

a fundamental unit of biological organization,

but its relevance for microbes is debated. The

inability to define taxonomic units equivalent to

animal and plant species is also one of the most

fundamental problems hampering the study of the

BEF matter in microbial communities. The first

problem is that the isolation and cultivation of

microbes in order to assess their geno- and phe-

notype has led to the description of only 7,000

species whereas DNA based-methods have

indentified more than 100 prokaryotic phyla to

be present in ecosystems (Pace 2009). Hence,

approx. only 1 % of the actual microbial biodi-

versity is represented as cultured organisms while

the characteristics and functions of the remaining

99 % are unknown. Next to this, bacterial taxon-

omy employs universal thresholds of DNA-

sequence difference to help demarcate species.

However, the sequence-identity cutoff value

used to demarcate species has led to “species”

that are enormously diverse in their genome con-

tent physiology and ecology. Hence, what is
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regarded as a “species” in microbiology would

definitely not be comparable to species in

macroecology (animals and plants), and com-

monly the term “operational taxonomic units” is

used in microbiology. The situation will improve

due to better cultivation methods and insights,

resulting in increased coverage of phylogenetic

lineages with cultured representatives. Next to

this, metagenomic, metaproteomic, and even

single-cell genomic techniques enable the char-

acterization of functions of not-yet-cultivated

organisms in their environment (Raes and Bork

2008). These novel techniques will facilitate the

development and application of novel concepts in

environmental microbiology which may bridge

the gap with macroecology, bypassing the spe-

cies hang-up in order to develop generic concepts

and theories in microbial ecology. Recently, the

concept of ecological coherence of taxa higher

than the species level was put forward, which

suggests that deeper clades of various ranks may

be used as alternative ecologically meaningful

units in microbial ecology (Philippot

et al. 2010). With the vast amount of

metagenomic data available from an increasing

variety of environments and the advent of com-

parative genomics, the field of microbial ecology

is undergoing a paradigm shift away from taxa-

oriented concepts of community analysis that

have been inherited from macroorganism ecol-

ogy toward trait-centered and/or systems

biology-oriented approach in which functional

units (protein-coding genes, enzymes, metabo-

lites) are the key components of the overall eco-

system (Green et al. 2008). Using functional traits

and environmental gradients can bring general

Microbial Ecosystems, Protection of, Table 1 Major groups of microbes and ecosystem services they provide. The

last column depicts the ecosystem service category as was defined in the Millennium Ecosystem Assessment 2005

Microbial group Process Ecosystem service

Ecosystem

service

category

Heterotrophic

bacteria/Archaea

Organic matter breakdown, mineralization Decomposition, nutrient recycling,

climate regulation, water purification

Supporting

and

regulating

Photoautotrophic

bacteria

Photosynthesis Primary production, carbon

sequestration

Supporting

and

regulating

Chemo(litho)

autotrophic

Specific elemental transformations

(e.g., NH4
+, S2

-, Fe2
+, CH4 oxidation)

Nutrient recycling, climate regulation,

water purification

Supporting

and

regulating

Unicellular

phytoplankton

Photosynthesis Primary production, carbon

sequestration

Supporting

and

regulating

Archaea Specific elemental transformation (e.g.,

metals, CH4 formation, NH4
+ oxidation),

often in extreme habitats.

Nutrient recycling, climate regulation,

carbon sequestration

Supporting

and

regulating

Protozoa Mineralization of other microbes Decomposition, nutrient recycling, soil

formation

Supporting

Fungi Organic matter breakdown and

mineralization

Decomposition, nutrient recycling, soil

formation, primary production (i.e.,

mycorrhizal fungi)

Supporting

Viruses Lysis of hosts Nutrient recycling Supporting

All Production of metabolites (e.g., antibiotics,

polymers), degradation of xenobiotics,

genetic transformation and rearrangement

Production of precursors to industrial

and pharmaceutical products

Provisional

All Huge diversity, versatility, environmental

and biotechnological applications

Educational purposes, getting students

interested in science

Cultural

From Bodelier 2011

Microbial Ecosystems, Protection of 481 M

M



patterns into community ecology, and a trait-

centered perspective would be a tractable way

for microbial ecology to address the significance

of microbial diversity for ecosystem functioning.

Considering the fact that in plant sciences BEF

studies are also incorporating traits rather than

species richness only, the trait-centered approach

may offer options for convergence of macro- and

microbial ecology which will be essential for

including microbes in conservation policy.

Lack of Microbial Biogeography?

The conventional view of microbial distribution

of species through space and time has been dom-

inated for decades by the “Baas-Becking”

hypothesis “everything is everywhere, but the

environment selects.” The lack of dispersal limi-

tations of microorganisms would ensure a global

distribution, but that local deterministic factors

would determine the relative abundance of

“latent” and “flourishing” species. This view is

in sharp contrast with plants and animals which

show clear taxa-area relationships and biogeog-

raphy. The Baas-Becking legacy is likely one of

the main reasons why microbial diversity is not

on the biodiversity-conservation agenda. How-

ever, in the last decade there are a number of

studies demonstrating species-area relationships,

biogeography, and spatial patterns at various

scales for microbes (see Zhou et al. 2008). Next

to this, microbial endemism has been reported as

well, while studies using high-throughput

sequencing technology clearly demonstrated the

presence of habitat-specific communities shaped

by edaphic factors and historical contingencies.

A meta-analysis of all currently available 16S

rRNA gene sequences revealed clear environ-

mental distributions on the genus or species

level with soil and freshwater as least selective

habitats, while marine, animal, and thermal hab-

itats were the most selective (Tamames

et al. 2010). The emerging pattern in microbial

biogeography studies is definitely that not all

microbial communities occur everywhere and

that local conditions can lead to unique associa-

tions of microbes. However, whether microbes

obey the same distribution and community

assembly rules as macroorganisms can only be

answered when it is possible to study complete

microbial populations at ecologically relevant

scales.

Inability to Link Species Diversity to Function

Connecting individual microbial species to the

biogeochemical processes they catalyze is

a prerequisite for assessing BEF relationships in

microbial communities. However, considering

the lack of a species concept, the metabolic ver-

satility, the large number of unknown species,

and the scale issue involved, this is the central

problem area in the field of environmental micro-

biology. The majority of studies in the literature

have relied on correlating changes in activity to

changes in community composition or diversity,

and only a few articles can actually show a causal

relationship. A myriad of techniques have been

developed for linking diversity and function (see

Wagner 2009). However, many of these tech-

niques were based on the analyses of ribosomal

RNA or mRNA transcripts of functional genes,

indicating only the potential to be involved in

specific processes. The use of stable isotope prob-

ing (SIP) has evoked a major breakthrough in

environmental microbiology (see Murrell and

Whiteley 2011). The general approach is that

stable isotopically (13C/15N) labeled substrates

are incorporated into taxonomically relevant

molecules (RNA/DNA, lipids, proteins). Only

the microbes which have actively been incorpo-

rating the stable isotopes are detected when ana-

lyzing RNA/DNA or PLFA using GC-IRMS (gas

chromatography-isotope ratio mass spectrome-

try) or proteins using GC-MS or LC-MS (liquid

chromatography-mass spectrometry). The major

disadvantages of SIP are the use of unnaturally

high substrate concentrations in case of DNA-

and RNA-based SIP, the different label uptake

rates per species, and cross feeding. More recent

work brought improvements in the shortcomings

of traditional SIP studies by using magnetic bead

capturing of mRNA, Raman spectroscopy, and

NanoSIMS (secondary ion beam mass spectros-

copy) (see Murrell and Whiteley 2011) also in

combination with metagenomic techniques

uncovering active species of which no cultured

representatives are available or discovering
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unknown pathways or genes involved in biogeo-

chemical processes (see Chen and Murrell 2010).

The most recent addition to the SIP repertoire

combined microarray detection and NanoSIMS,

attaining low label incorporation levels and high

phylogenetic resolution without PCR amplifica-

tion of the target community (Mayali et al. 2012).

The challenge in applying SIP-based techniques

will be in BEF experiments, where experimental

designs allowing for causal and mechanistic con-

clusions require high sample throughput.

Resistance, Resilience, and Redundancy of

Microbial Communities

The absence of microbial diversity in BEF debate,

conservation issues, and global biogeochemical

process models is also caused by the paradigm of

microbial omnipresence, high adaptability, and

functional redundancy. Indeed, resilience after

reduced diversity and redundancy of species car-

rying out similar functions has been demonstrated

(see Bodelier 2011). But is this the rule? A number

of studies have demonstrated a direct relationship

between diversity and ecosystem process rate (see

Bodelier 2011). Recently, a comprehensive meta-

analyses demonstrated that out of 110 studies,

more than 70 % demonstrate that microbial com-

munity composition was not resistant (i.e., the

degree to which community composition remains

unchanged when disturbed) against disturbances

(fertilization, CO2 increase, temperature, carbon

amendment) (Allison and Martiny 2008). This

held true for broad taxonomic groups (fungi, bac-

teria, archaea) as well as narrow groups with spe-

cific functions (methane oxidation, nitrification).

The same study demonstrated that the resilience

(i.e., the rate at which microbial community com-

position returns to its original composition after

being disturbed) is in the order of years. Fertiliza-

tion even led to differences in communities of

N-cycling microbes (nitrifiers, denitrifiers) for

more than 50 years (Hallin et al. 2009). Similar

long-lasting effects have also been observed for

methane-consuming microbes. Microbes consum-

ing atmospheric methane are responsible for

6–10 % of global methane consumption. The pro-

cess is sensitive to agricultural practices, and

recovery after land abandonment can take decades

which coincides with an increase in diversity of

these microbes (Fig. 1; Levine et al. 2011).

Aspects of community composition other than

richness per se have been demonstrated to regulate

the stability of biogeochemical processes. The ini-

tial evenness of redundant community members

was demonstrated to be important in resistance to

salt stress in denitrifying communities (Wittebolle

et al. 2009), indicating that relative abundance of

the populations in a community is an important

determinative factor for process stability, even in

redundant communities. Functional redundancy

sensu stricto is difficult to assess in microbial

communities, since it requires the contribution of

individual community members to processes and

separation between diversity and environmental

factors. The stability of a particular function

(e.g., methane conversion) in time is very likely

affected by more properties or traits of species

than the expression of that one particular func-

tional gene only, e.g., response to inhibitors or

general adaptation of species to a particular envi-

ronment. Moreover, populations of interacting

microbes on microbial relevant scales may not

consist of many different species also due to spa-

tial arrangement or isolation, e.g., along roots, soil

pores, plant leaves, biofilms, or microbial flocs in

sewage treatment. The growing body of experi-

mental evidence suggests that microbial commu-

nities can be sensitive to disturbances and that

resilience is linked to diversity. However, the

majority of studies are descriptive, correlative, or

strongly reductionist in nature, not allowing for

causal or mechanistic conclusions.

Closing the Gaps

It is obvious that the omission of microbial com-

munities from the BEF debate and in the manag-

ing and conservation of ecosystems is due to

a lack of understanding of the functioning and

composition of environmental microbial commu-

nities. The controversy between huge diversity

and redundancy on the one hand and the lack of

knowledge on 99 % of that diversity on the other

hand leads to the fact that we do not know what

we have to protect and what might have been lost
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already. This controversy hampers the examina-

tion of the importance of microbial diversity for

ecosystem functioning. Consequently, BEF stud-

ies in environmental microbiology are largely of

descriptive nature and disconnected to ecological

concepts. Approaches have been “top-down” or

“bottom-up,” treating species/genotypes, com-

munity traits, and interactions as a “black box”

(see Bodelier 2011). However, the rapid method-

ological developments of the last decades are

narrowing down the limitations which kept envi-

ronmental microbiology at the descriptive level.

The “omic” techniques enable studying commu-

nity ecology and physiology of known as well as

unknown microbial species, and a systems biol-

ogy approach for microbial communities is not

out of reach (Raes and Bork 2008). In situ adap-

tation of community members as well as in situ

profiling of whole genome transcripts and pro-

teins of individual species is feasible. Next to

this, methodology and concepts are emerging,

enabling individual-based physiology and ecol-

ogy and even interactions on microbial relevant

scale. Theoretical and conceptual approaches

from macroecology are being applied to under-

stand microbial community structure and to link

it to ecosystem processes (Bodelier 2011).

Ultrahigh-throughput community assessment

methods will facilitate processing of large num-

ber of samples and replicates in order to obtain

sufficient information allowing for experimental

designs which yield mechanistic understanding

of environmental microbial communities, even-

tually leading to the opening of the “black box.”

Microbial Community Conservation

The fact that there are no microbial species on the

Red List nor are microbial communities in nature

conservation policy does not mean that there are

no initiatives toward conservation of microbial

Microbial Ecosystems, Protection of, Fig. 1 The

recovery of methanotroph diversity and atmospheric

CH4 consumption following row-crop agriculture.

Increase in methanotroph diversity (open symbols) and

CH4 consumption (closed symbols) as a function of time

since cessation of agriculture. The data clearly show that

agricultural use diminishes methanotrophic diversity as

well as function and that it can take decades before recov-

ery takes place. All measurements (diversity and

consumption) are annual averages with error bars

representing standard errors. Land-use treatments are as

follows: agricultural management of historically tilled

lands (AG), early successional fields abandoned from

agriculture in 1989 (ES), successional forests abandoned
from agriculture in the 1950s (SF), managed grasslands on

never-tilled soil (MG), and deciduous forests (DF) (From
Levine et al. 2011, with permission)
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communities. From the medical as well as bio-

technological perspective, there is a need for the

preservation of microbial genetic diversity which

is mainly done by storing isolated and described

microbial species in public culture collections

(e.g., ATCC (http://www.lgcstandards-atcc.org/),

DSMZ (http://www.dsmz.de/), and NCIMB

(http://www.ncimb.com/)). However, since most

of the diversity is represented in uncultured and

not characterized microbes as part of environ-

mental communities, we run the risk of losing

genetic diversity of which we do not know its

value yet, on itself a good reason for conserva-

tion. Well-known examples of biotechnological

spin-off of environmental microbial communities

have led to conservation efforts. The discovery

of the heat-resistant Taq polymerase enzyme,

used in PCR reactions, in the bacterium

Thermus aquaticus (http://en.wikipedia.org/

wiki/Thermus_aquaticus) in hot springs in

Yellow Stone National Park, has led to declaring

these hot springs as conservation targets in order

to preserve the microbial genetic potential mainly

for biotechnological applications (http://serc.

carleton.edu/microbelife/topics/bioprospecting.

html), thereby making these hot springs the

first environmental microbial conservation

areas. Another development that contributes

substantially to the “protection” of environ-

mental microbial communities is the TEEB

(The Economics of Ecosystems and Biodiver-

sity) initiative which expresses the value of

ecosystems, ecosystem services, and biodiver-

sity in monetary values (http://www.teebweb.

org/). Although this valuing of ecosystems is

controversial and anthropogenically centered, it

definitely created awareness for biodiversity

among policy makers, politicians, and industry.

The assessment of Earth ecosystems, biodiver-

sity, and ecosystem services by 1,300 experts

(Millennium 2005) identified key areas of eco-

system protection and conservation in order to

keep our planet habitable. In all of these eco-

systems, microbes play pivotal roles, a fact

which is generally being recognized. Especially

soils are a main focus when it comes to micro-

bial processes because of the many ecosystem

services soils and soil microbes provide and

because of the fact that soils harbor the largest

source of microbial biodiversity. It is within

the soil conservation that many initiatives are

taken toward conservation of soil biodiversity

like the EU soil framework directive in devel-

opment (http://ec.europa.eu/environment/soil/

biodiversity.htm) where also microbes are

explicitly taken into account (Gardi

et al. 2009). Combined with the already

existing EU habitat conservation legislation

(http://ec.europa.eu/environment/nature/natura

2000/index_en.htm), important habitats

containing a large part of microbial diversity on

Earth are conserved. However, we still need to

know what it is that needs to be preserved and

what we can potentially lose or affect by climate

change, habitat destruction, land-use change,

urbanization, etc. This requires inventories of

microbial diversity and functioning. Despite the

serious limitations in methods to assess the shear

endless microbial diversity, there are a number of

initiatives going on that come as close as possible.

The Earth Microbiome Project (http://www.

earthmicrobiome.org/) is an initiative to assess

functional microbial diversity in more than

200,000 environmental samples which will be

collected and analyzed in a coordinated way and

will be complemented with essential metadata

which can be used to infer ecological or biogeo-

graphical aspects of the communities in the data-

base. A similar initiative has already been in

place for a number of years focusing on marine

microbial communities (http://www.coml.org/

international-census-marine-microbes-icomm),

while the TerraGenome project specifically

focuses on soils (http://www.terragenome.org/).

Hence, many steps on the “roadmap toward

microbial conservation,” as put forward by

Cockell (Cockell and Jones 2009) a number

of years ago, have been taken. Projects

attempting to make microbial diversity inven-

tories are initiated and scientific approaches to

link microbial species to ecosystem functions are

being developed. Nevertheless, “the Red List”

species approach will definitely not be applicable

to microbes as already pointed out above. Hence,

we need different approaches and concepts

regarding “conservation units” for microbial
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communities which are useful and understandable

for policy makers and politicians. Habitat conser-

vation is a good starting point, but probablywe can

also put forward “vulnerable” nonredundant envi-

ronmental microbes which are carrying out impor-

tant ecosystem functions like methane oxidizers

which may be affected by anthropogenic distur-

bance, diminishing their functioning in the envi-

ronment for decades (see Fig. 1). Next to this,

educating the public, policy makers, and politi-

cians on the importance and shear uniqueness of

microbes and microbial communities will be of

utmost importance in the process of getting

microbes on the conservation agenda. If not

protecting them for their valuable functions, we

should do it for the sake of ethics (Cockell 2011).

Summary

Despite the eminent role microbes and microbial

communities play in all ecosystems on Earth,

they are not considered in conservation policy

or legislation. This is due to utter lack of funda-

mental knowledge on crucial issues concerning

environmental microbial communities. The

species-oriented approach in conservation biol-

ogy is not emendable to microbes where there are

difficulties in defining species and where more

than 99 % of all species present in the environ-

ment are not known. Next to this, we have no idea

what the importance is of microbial diversity for

ecosystem functioning because of the lack of

methodology to do so. The most important prob-

lem is probably the notion that microbes are so

abundant, diverse, and resilient that they are not

threatened by extinction. However, rapid devel-

opments in the field of environmental microbiol-

ogy, mainly in the application of genomic and

isotopic techniques, have revolutionized our

knowledge and demonstrate that microbes dis-

play biogeography and are sensitive to environ-

mental disturbance and that for a number of

environmentally relevant processes, community

composition is linked to ecosystem functioning.

Hence, microbes are not “untouchable” and omni-

present, but in order to get them onto the conser-

vation agenda, we have to be able to assess which

microbes are present in environments in order to

be able to monitor changes with possible conse-

quences for ecosystem functions. There are many

initiatives underway seeking to make inventories

of functional diversity of microbial communities

in marine, terrestrial, and freshwater habitats. This

knowledge will facilitate assessing impacts and

consequences of anthropogenic disturbances on

microbial communities and their functioning in

the future and pave the way for the protection of

environmental microbial communities. For the

time being, we have to rely on habitat conservation

guidelines and legislation to ensure maintenance

of microbial communities.
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Synonyms

Anthropogenic and human associated; Horizon-

tal gene transfer and lateral gene transfer; Whole-

genome sequencing and metagenomic

sequencing

Definition

Metagenomics refers to samples in which the

entire bacterial or microbial community DNA is

used and to high-throughput DNA sequencing of

microbial community DNA. These sample types

and methods can be used to gather information on

genes that code for antibiotic resistance.

Introduction

Antibiotics are medicines that are used to kill,

slow down, or prevent the growth of susceptible

bacteria. They became widely used in the

mid-twentieth century for controlling disease in

humans, animals, and plants and for a variety of

industrial purposes. Antibiotic resistance is

a broad term. Depending on the classification

scheme used, there are between eight and twenty

different classes of antibiotics, with multiple

compounds in each class. These different catego-

ries represent different basic chemical structures

and modes of action – some antibiotics will

inhibit cell wall synthesis, for example, while

others target portions of the ribosome and

a cell’s protein processing machinery. Just as

there are many types of antibiotics, there are

also many types of antibiotic resistance. Some

types of resistance are specific for an individual

antibiotic, while others, such as multidrug resis-

tance efflux pumps, can confer resistance to mul-

tiple different kinds of antibiotics. It is also likely

that there are naturally occurring antibiotics that

have yet to be described.

Antibiotic resistance is a normal and natural

phenomenon that can be documented even in

ancient (permafrost from 30,000 years ago) and

pristine habitats such as Antarctica and the Sar-

gasso Sea (Allen et al 2009; D’Costa et al. 2011;

Durso et al. 2012). In addition to naturally occur-

ring antibiotic resistance, there is no doubt that

anthropogenic or human-associated use of antibi-

otics for health, food production, veterinary, and

industrial purposes has dramatically impacted

resistance. The continued emergence of

antibiotic-resistant, opportunistic, and patho-

genic infections in health-care settings has

become a major public health concern, especially

the emergence of bacteria that are resistant to

multiple antibiotics or multiple classes of antibi-

otics. Yet few details are known about how
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antibiotic resistance genes move through envi-

ronmental, agricultural, and clinical settings.

Metagenomics provides one tool to start charac-

terizing antibiotic resistance genes across

habitats.

The term “metagenomic” has multiple mean-

ings. Historically it was used to describe the kind

of sample that was collected and referred to

collecting DNA or genomic information not just

from a single organism or isolate but from

a whole community, a metagenome, consisting

of both cultured and uncultured organisms

(metagenomic samples). More recently, the term

metagenomic has come to describe a specific type

of analysis that relies on high-throughput nucleic-

acid sequencing of either 16S rDNA or whole-

community DNA (metagenomic sequencing). In

addition to providing metagenomic sequencing

information, the new high-throughput sequenc-

ing methods can be used to profile whole-

community RNA profiles (metatranscriptome)

and whole-community protein profiles

(metaproteome). This entry will examine studies

using both metagenomic samples and the use of

metagenomic sequencing to gather information

on functional genes that code for antibiotic resis-

tance. Although the focus here will be on mining

metagenomic data for information on antibiotic

resistance genes, it is acknowledged that func-

tional and gene-based metagenomic studies com-

plement experiments involving gene expression,

protein production, and phenotypic characteriza-

tion of individual and community resistance.

The Antibiotic Resistome

The concept of an antibiotic “resistome” was first

proposed in 2006 by D’Costa et al. to describe the

sum total of all antibiotic resistance genes across

the globe and all genetic elements that could give

rise to antibiotic resistance genes (D’Costa

et al. 2006). It includes pathogenic bacteria that

cause illness, as well as opportunistic and non-

pathogenic bacteria. This concept provides

a framework that unites antibiotic resistance in

human, animal, and plant clinical applications,

with the broader pool of antibiotic-resistant

bacteria present in the environment, including

food, water, and soil. D’Costa et al. (2006) cul-

tured spore-forming bacteria from soil and

screened them against 21 antibiotics, including

both old and new antibiotics and naturally occur-

ring and synthetic antibiotics. Based on their

results, they identified the soil as a reservoir of

antibiotic resistance genes and proposed the idea

of a pan-microbial resistome. Contrary to the gen-

eral public perception that use of antibiotics in

human medicine and agriculture is the root cause

of antibiotic resistance, the antibiotic resistome

hypothesis supports the idea of a naturally occur-

ring global pool of antibiotic resistance and sug-

gests that the environment (especially soil) serves

as a reservoir of antibiotic resistance elements. In

this model antibiotic resistance elements can be

enriched and selected for by anthropogenic antibi-

otic use. However, unlike previous models, the

concept of the antibiotic resistome expands

the focus from the selection of pathogens via the

direct use of antibiotics in clinical settings to

a global pool of antibiotic resistance that can

potentially be transferred from harmless bacteria

into human, animal, and plant pathogens. Later

work by the same group (Wright 2007; D’Costa

et al. 2011) as well as others (Riesenfeld

et al. 2004; Henriques et al. 2006; Aminov and

Mackie 2007; Mori et al. 2008) provides

supporting evidence for the natural occurrence of

antibiotic resistance, especially in soil, and the

global distribution of antibiotic resistance genes.

Conceptually, the relationship between

increased anthropogenic use of antibiotics and

increases in the number and types of antibiotic-

resistant bacteria and antibiotic resistance genes

is clear. On a practical level, many of the details

regarding the ecology of antibiotic resistance and

antibiotic resistance genes in the environment

remain unknown. These include fate and trans-

port of naturally occurring and anthropogenically

induced antibiotic-resistant genes within and

between environmental, agricultural, and clinical

settings as well as rates of gene transfer, rates of

gene expression, and impact of naturally occur-

ring and anthropogenically introduced antibiotic

concentrations on short- and long-term microbial

community structure.
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Antibiotic Resistance Genes

The genes that code for antibiotic resistance are

carried either as part of the regular bacterial chro-

mosome, which is passed vertically to individual

daughter cells, or as part of mobile genetic ele-

ments such as plasmids and transposons which

can be transferred both vertically to daughter

cells and horizontally to other strains or species

of bacteria. These antibiotic resistance genes,

sometimes called antibiotic resistance determi-

nants or antibiotic resistance elements, code for

a variety of different kinds of proteins involved in

inactivating the antibiotic, removing the antibi-

otic from the cell, or modifying the target of the

antibiotic so that it is not recognized by the drug.

For any specific antibiotic, there may be multiple

types of resistance mechanisms. Many of these

mechanisms are complex and require the coordi-

nation of a suite of genes, so that for any individ-

ual antibiotic, there are multiple different

antibiotic resistance genes.

There are two basic approaches to mining

metagenomic datasets for antibiotic resistance

genes: those that are database dependent and

those that are discovery driven. The database-

dependent systems are good for comparative

studies that screen large numbers of samples or

large number of genes and examine similarities

or differences in antibiotic resistance gene pat-

terns across samples. These methods rely on pre-

viously sequenced antibiotic resistance genes to

provide the information used to design primers or

to provide a list against which new sequences are

compared. The limitation of database-dependent

methods is that a particular gene must already

have been sequenced in order to be in the data-

base, and researchers can only screen against

genes that have already been discovered, charac-

terized, and deposited in the database. Discovery-

driven methods, while time-consuming and

low-throughput, can be used to describe novel

antibiotic resistance genes. In this approach,

DNA fragments from metagenomic samples are

cloned into hosts such as E. coli, or constructs
such as bacterial artificial chromosomes (BACs),

and then screened for a particular phenotype. The

collection of DNA fragments in the new host is

called a library. In the case of antibiotic resis-

tance, the clone or BAC libraries are plated onto

media containing a specific amount of

antibiotic. If they grow in the presence of the

antibiotic, they are considered resistant. If they

do not grow, they are considered sensitive. In

human medicine and clinical settings, there are

well-defined standard methods that specify, by

organism and antibiotic, the concentration

needed to be considered resistant. In environmen-

tal and experimental settings, these standards do

not exist, and there is no consistent definition

across studies.

Studying Antibiotic Resistance Genes
from Metagenomic Samples

Metagenomic samples can bemined for known as

well as uncharacterized antibiotic resistance

genes using functional screening of metagenomic

clone libraries. After creating the libraries, clones

are plated onto media containing the antibiotic of

interest. Colonies that grow in the presence of the

antibiotic are assumed to be carrying an

antibiotic-resistant gene from the original sam-

ple. The inserts from the resistant clones can be

sequenced, and the sequences compared against

database of known antibiotic resistance genes. As

early as 1997, these methods were used to char-

acterize the diversity of quinolone resistance

genes in soil (Waters and Davies 1997). This

functional metagenomic approach has been used

to target specific classes of antibiotic resistance

genes, as well as more general surveys of antibi-

otic resistance where libraries are screened

against multiple antibiotics. For example, tetra-

cycline resistance has been assayed from human

mouth, and organic pig samples (Diaz-Torres

et al 2003; Kazimierczak et al. 2009) and

b-lactamase genes have been extracted from sam-

ples such as tropical surface waters and Alaskan

soil (Henriques et al. 2006; Allen et al. 2009).

The mining of functional genes focuses on two

main types of samples. When trying to determine

baseline levels of antibiotic resistance and evolu-

tionary relationships of individual genes, pristine

samples and those dating from before the use of
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antibiotics are used (D’Costa et al. 2011). When

searching for novel antibiotic resistance genes,

complex samples are used, especially those with

increased levels of antibiotic compounds such as

feces or activated sludge (Sommer et al. 2009;

Mori et al 2008). It is also possible to use publicly

available information to screen for potentially

novel antibiotic resistance genes. Both the

National Center for Biotechnology Information

(NCBI) and the MG-RAST server (Meyer

et al. 2008) have extensive DNA sequence

datasets that are available to the public. Once

identified via the public databases, antibiotic

resistance genes of interest can then be charac-

terized using other methods (Toth et al. 2010).

Studying Antibiotic Resistance Genes
Using Metagenomic Sequencing
Methods

One tool that is useful for exploring antibiotic

resistance in metagenomic samples is

MG-RAST (Meyer et al. 2008). MG-RAST,

developed at Argonne National Laboratory and

the University of Chicago, provides

metagenomic data analysis tools for both public

and private metagenomic sequencing sets. There

are hundreds of publicly available metagenomes

on the MG-RAST website (http://metagenomics.

anl.gov). These can be accessed directly using the

sample ID number or via the “browse

metagenome” function. Researchers may submit

their own metagenomic datasets to the site for

analysis, with processing priority given to

datasets that will be made immediately available

to the public. After normalization, both taxo-

nomic and functional data are extracted from

the submitted sequences and made available for

visualization via the website. There are many

different classification schemes that are available

for organizing data on MG-RAST. One system,

called SEED (Overbeek et al. 2005), is designed

to classify functional genes across genomes using

a standardized system for categorizing genes or

gene fragments. The SEED system of organiza-

tion is hierarchical in nature, and each of the

primary functional groups or systems is

composed of subsystems. Examples of primary

SEED functional groups are “cell wall synthe-

sis,” “nitrogen metabolism,” and “virulence.”

Within the virulence functional category is

a subset of genes that are associated with “resis-

tance to antibiotic and toxic compounds”

(RATC). Drilling even further down into this

particular functional group, gene fragments are

binned by categories such as “aminoglycoside

adenyltranferases,” “beta-lactamase resistance,”

and “resistance to fluoroquinolones.”

After identifying a metagenome, a list of anti-

biotic resistance genes can be accessed using the

“analysis” icon. Under “Data Type” choose “Func-

tional Abundance” and “Hierarchical Classifica-

tion.” The Data Selection annotation source

should be “subsystems” and the Data Visualization

option should be “table.” Then, hit the “generate”

button. After processing the data, a table will be

displayedwith three functional classification levels

displayed, along with abundance and quality data.

The abundance results are clickable, and open

a window that lists the taxonomic assignments of

each of the hits, as well as a link to the actual

sequence and M5nr nonredundant protein data.

The M5nr database allows classification of the

fragment across multiple classification schemes.

Because metagenomic sequencing is

performed on whole-community DNA without

a PCR step, the data generated can be considered

quantitative. So in addition to describing which

antibiotic resistance genes are present,

metagenomic analysis can quantify the relative

amounts or proportions of individual genes

and/or gene classes – both within any individual

sample and across samples from different habi-

tats. As with all methods associated with tracking

antibiotic resistance in the environment, there are

no standard methods (Allen et al. 2010). How-

ever, control metrics available through

MG-RAST, in particular a new metric called

duplicate read inferred sequencing error estima-

tion (DRISEE; Keegan et al. 2012), can serve as

screening tools to decide on minimum quality

standards for inclusion or exclusion of specific

metagenomic samples for analysis.

These metagenomic sequencing tools can be

used to start addressing questions related to the
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ecology of antibiotic resistance in specific habitats

and across ecosystems. Metagenomic analysis of

45 microbiomes across the globe revealed func-

tional gene profiles that correlated with environ-

ment (Dinsdale et al. 2008). This idea was

expanded to antibiotic resistance genes, providing

an antibiotic resistance “fingerprint” for some

samples (Durso et al. 2011). A metagenomic anal-

ysis of public datasets was performed specifically

comparing RATC genes from agricultural and

nonagricultural metagenomes (Durso et al. 2012).

Among the 26 metagenomes studied, the total

percent of RATC gene fragments (based on all

classified fragments) ranged from 0.7 % for the

Sargasso Sea sample to 4.4 % for the dog. The

fecal samples (dog, fish, three human, and cattle)

had the highest overall percent of RATC genes,

while the marine samples (Chesapeake,

Galapagos, Zanzibar, Gulf of Mexico, Key West,

Madagascar, Gulf ofMaine, and Sargasso Sea) had

the lowest overall percent of RATC genes. In

addition to having the highest proportion of

RATC genes, the dog metagenome also displayed

the highest diversity of RATC classes (31 classes)

and the Sargasso Sea displayed the lowest diver-

sity (7 classes). Using MG-RAST, individual clas-

ses of antibiotic resistance genes could be

examined. The fish metagenome, for instance,

had over ten times as many genes coding for mer-

curic reductase and mercury resistance (3.9 %),

compared to the average for the other

metagenomes (0.31 %), while the day 29 kimchi

metagenome, a Korean fermented vegetable, had

high levels of the two-protein Gram-positive

multidrug resistance compared to the other

metagenomes examined. In both of these exam-

ples, themetagenomic data reflect what we already

know about the biology of these systems and sug-

gest that metagenomic RATC data can be used to

distinguish fundamental differences in microbial

community ecology from diverse microbiomes.

In addition to information on specific antibi-

otic resistance genes, analysis of metagenomic

sequencing data can also provide taxonomic

information about a sample. The use of the 16S

ribosomal RNA gene to classify bacteria is well

known. Some of the fragments in a metagenomic

sample that code for 16S rRNA genes can be

pulled out and used for taxonomic purposes. In

addition, MG-RAST has the ability to link

protein-coding fragments with taxonomic assign-

ments using SEED and other systems. Currently,

the only way to access this linked information for

individual reads from MG-RAST is through the

“assignment” column on the functional gene

table, so it is time-consuming to assemble this

linked data, even for a single metagenome.

Grouped data are more easily accessible in

MG-RAST using the “workbench” function. In

the functional table, the last column contains

a box titled “to workbench.” Reads belonging to

specific functional groups can be selected, and

then a second taxonomic-specific analysis can

be run exclusively on the reads in the workbench.

Using these methods, information can be gath-

ered on which bacteria are likely carrying specific

antibiotic resistance genes and how the bacterial

communities may change over time or space.

Some types of antibiotic resistance, such as

beta-lactamase, MDR efflux pumps, and fluoro-

quinolone resistance, are broadly distributed

across many (>10) taxa, while other types of

resistance genes such as tetracycline and vanco-

mycin resistance are more taxonomically

restricted (4 or 5 taxa each). Within individual

antibiotic resistance classes, the taxonomic dis-

tribution of specific genes or gene classes varies

by metagenome. For example, MDR efflux pump

genes are associated mainly with Clostridia in

animal agriculture metagenomes but are more

frequently assigned to Gammaproteobacteria in

coastal marine samples. Metagenomic sequenc-

ing enables researchers to track the change in

microbial communities over time. One set of

publicly available metagenomes follows the fer-

mentation of kimchi over the course of a month.

The antibiotic resistance gene profiles associated

with the kimchi change dramatically as the fer-

mentation progresses, and these specific changes

can be tracked using metagenomic sequencing.

The strengths of these metagenomic sequenc-

ing methods are that they allow researchers to

identify and gain a quantitative understanding of

functional gene relationships across samples and

geographies. It should be kept in mind that there

are many places where artifacts of processing of
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either the sample itself or the resulting sequence

data can influence the results. Although these

sequence-based metagenomic data are excellent

for getting oriented in a system and providing an

overview of what is potentially there, the output

is of fairly low resolution and requires follow-up

using other methods before detailed conclusions

can be drawn. Nonetheless, there is great value in

the information that these kinds of techniques can

provide. Like the Lewis and Clark expedition,

which mapped the entire US western frontier

based on sampling a single route covering much

less than 1 % of today’s public roads in the area,

data generated by metagenomic sequencing

methods provide a first step in exploring previ-

ously unknown territory. For antibiotic resis-

tance, they offer the capacity to examine the

prevalence of antibiotic gene distribution on

a global scale and the opportunity to begin to

compare distribution of specific antibiotic resis-

tance genes across samples and time.

Summary

The ecology of antibiotic resistance genes in the

environment remains largely unexplored.

Metagenomic tools provide the opportunity to

identify novel antibiotic resistance genes, explore

the epidemiology of antibiotic-resistant genes

across multiple habitats, and begin to define rela-

tionships between antibiotic resistance genes and

the bacteria that likely carry them. The availabil-

ity of public metagenomic datasets affords all

researchers an opportunity to ask and answer

questions about antibiotic resistance.
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Synonyms

Environmental DNA; Glycosyl hydrolases;

Metagenomes; Metatranscriptomes

Definition

Metagenomic (DNA) or metatranscriptomic

(cDNA) sequence datasets generated using

DNA or RNA extracts are obtained directly

from environmental samples. These include soil,

water, gut contents, and degrading organic mat-

ter/plant biomass and biofilms; laboratory-

incubated microcosms or mesocosms in which

cellulose-degrading microorganisms are

enriched also serve as sources of nucleic acids

for the preparation of sequence datasets. Genes

encoding glycosyl hydrolases and specifically

those likely to be active against cellulose

(cellulases) can be sought, most efficiently in

the large sequence datasets generated by the

application of pyrosequencing technologies.

Cellulose and Its Biodegradation

Cellulose is the most abundant form of photosyn-

thetically fixed carbon in the biosphere. It is

a fibrous linear homopolymer of glucose in the

form of cellobiose (dimer) units linked by

b-1,4-glycosidic bonds, and it occurs naturally

in plants, some fungi, protozoa, and one group

of animals – the urochordates (Lynd et al. 2002).

Native cellulose is a highly crystalline polymer

due to the formation of rigid microfibrillar struc-

tures stabilized by inter- and intramolecular

hydrogen bonds and van der Waals interactions

between the polymer chains, and this is largely

responsible for its recalcitrance. This network of

bonds leads to a mostly uniform arrangement of

fibers, and the resultant crystalline cellulose lacks

enzyme-accessible surface morphologies, further

enhancing resistance to hydrolysis (Zhou

et al. 2009). Cellulose usually occurs naturally

in close physical association with hemicelluloses,

which are heteropolysaccharides that, in terres-

trial plants, form the lignocarbohydrate matrix

enveloping cellulose fibers and essentially con-

stituting the plant cell wall structure. Cotton is the

only naturally occurring pure form of highly crys-

talline cellulose. For microorganisms to hydro-

lyze and metabolize insoluble polymeric

cellulose, extracellular cellulases must be pro-

duced and in multiple forms that act synergisti-

cally. The two primary models are those in which

the enzymes are truly secreted, versus the

cellulosome, a surface-bound multimeric com-

plex of polypeptides comprising catalytic and

non-catalytic components; the cellulosome

has been likened to a polysaccharide process-

ing nanomachine (Fontes and Gilbert 2010).

There s a possible third model in which cellulose

is bound to the bacterial cell surface and fur-

ther processed in the periplasmic space (see

Ransom-Jones et al. 2012). Three major types of

enzymatic activities are found: (i) endoglucanases,

(ii) exoglucanases (cellobiohydrolases), and

(iii) b-glucosidases (cellobiases). The evidence

for oxidative attack on cellulose has often

been equivocal, but there are now data that

establish the involvement of an enzyme

(GH61) in cellulose depolymerization (Quinlan

et al. 2011).

Cellulase Structure and Function

Cellulases are generally glycosidic hydrolase

(GH) enzymes that utilize the same mechanism

of acid-base catalysis with inversion or retention

of glucose anomeric configuration (Davies and

Henrissat 1995). Cellulases are modular enzymes

composed of independently folding, structurally

and functionally discrete units, referred to as either

domains or modules (Henrissat et al. 1998), and
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are the most diverse enzymes that catalyze

a single reaction. Automated data mining sug-

gests that there are 15 glycoside hydrolase fami-

lies that contain cellulases; families are defined

by amino acid sequence similarity (CAZy – see

below). Structural studies show that cellulases

have eight different protein folds and contain

a carbohydrate-binding module, which is usually

linked to a catalytic-binding domain (Shoseyov

et al. 2006). Glycosyl hydrolases with open active

sites typically exhibit endocellulolytic activity

(endoglucanases) and cleave b 1–4 links at amor-

phous sites in the polysaccharide chain to gener-

ate chain ends and ultimately oligosaccharides of

various lengths (Horn et al. 2006). Those with

tunnellike active sites exhibit exocellulolytic

activity and are cellobiohydrolases that act

in a processive manner on the reducing or

nonreducing ends to liberate either glucose or

cellobiose as major products. b-Glucosidases
convert cellobiose to glucose, completing the

highly synergistic and complete enzymatic depo-

lymerization of cellulose.

The Carbohydrate-Active Enzyme
Database (CAZy)

Identification of cellulase genes per se can be

achieved by interrogating DNA sequence data-

bases to identify homologies or, more ambi-

tiously, to look for new types or classes of

enzymes among the genes of unknown function

that invariably dominate metagenome sequence

datasets. The former is facilitated by the

Carbohydrate-Active Enzyme (CAZy) database

(https://www.cazy.org) (Cantarel et al. 2009),

a comprehensive repository of CAZymes that is

an almost unique resource for enzyme discovery.

At present, CAZy covers approximately 300 pro-

tein families, including glycoside hydrolases

(GHs), glycosyltransferases (GTs), polysaccha-

ride lyases (PLs), carbohydrate esterases (CEs),

and carbohydrate-binding modules (CBMs). All

known cellulases are found within the CAZy

database and are denoted by two enzyme com-

mission numbers: EC 3.2.1.4 (endoglucanase)

and EC 3.2.1.91 (cellobiohydrolase). Families

GH5 and GH9 have the largest number of bio-

chemically characterized cellulases; however,

this could be largely due to the abundance of

these cellulases in the limited number of model

cellulolytic organisms that have been studied

(Sukharnikov et al. 2011). The database is fre-

quently updated to provide rich sets of manually

curated information on all groups of CAZymes,

i.e., names, GenBank accession numbers, EC

designations, 3D structure, and taxonomy, and

the information can serve as an invaluable

resource to identify CAZyme genes or gene frag-

ments in both genomes and metagenomes.

Although the collection of enzyme data in

CAZy is invaluable for enzymologists, annota-

tions could be significantly improved; the term

“characterized” in CAZy is applied equally to

proteins that have been analyzed biochemically

and to those for which function has been compu-

tationally predicted (Stam et al. 2006).

Metagenomics

The vast majority of microorganisms in the bio-

sphere have yet to be cultivated and remain an

untapped source of enzymes for biotechnological

applications. The current impetus to find novel

cellulases for applications, particularly in

biomass refining, stems from the importance of

utilizing cellulose as a substrate for second-

generation biofuel production. The requirement

for synergy and the low specific activity of cellu-

lases in native cellulose saccharification

processes remains a major challenge. Environ-

mental microbiology research was changed radi-

cally by molecular biology, with the greatest

effort directed toward describing true phyloge-

netic/functional diversity in natural microbial

communities by PCR amplification of marker

genes. However, cellulase genes, although well

defined at the protein sequence level, can rarely

be simply amplified in this way because the

extent of nucleotide sequence variation does not

enable the design of appropriate oligonucleotide

primers for PCR. Subsequently, the development

of quantitative PCR and the use of environmental

RNA as the template moved this field forward,
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but we are now firmly in the era of environmental

metagenomics, made possible by pyrosequencing

technology (next-generation sequencing). Thus,

metagenomics, the direct sequencing of DNA

fragments from environmental samples, enables

mining of the vast genetic resource held in

the genomes of uncultured microorganisms

that dominate natural microbial communities.

Currently, a single pyrosequenced metagenome

can comprise up to 15 gigabases in reads of

up to 600 bp (Illumina). Alternatively, the

metagenome can be cloned into a suitable vector

that can accommodate large inserts (20–40 kb)

and subsequently screened for cellulases (Rooks

et al. 2012). Functional screening in an expres-

sion host (usually E. coli) using Congo red

staining of carboxymethyl cellulose (CMC)

(McDonald et al. 2012) has successfully recov-

ered cellulases from a diversity of metagenomes,

including those from soil (Voget et al. 2006), the

buffalo rumen (Duan et al. 2009), the termite

hindgut (Warnecke et al. 2007), and the human

intestine (Qin et al. 2010).

Metatranscriptomes

Metagenomics provides information on the

potential metabolic and functional capacity of

a microbial community. However, these

DNA-based analyses cannot differentiate

between expressed and non-expressed genes.

Environmental transcriptomics (metatran-

scriptomics) retrieves and sequences mRNAs

from the microbial community to provide an

unbiased perspective on gene expression in situ.

Due to the difficulties inherent in the processing

of environmental RNA to maintain integrity and

ultimately recover the high-quality mRNA from

the predominantly ribosomal RNA background,

publications are relatively few in number. The

first report of a pyrosequenced metatran-

scriptome from a complex microbial community

was by Leininger et al. (2006) who demonstrated

that archaeal transcripts of the key enzyme

(amoA) in ammonia oxidation were several

orders of magnitude more abundant in soils than

the bacterial equivalent, suggesting that it is

members of the Archaea that are the primary

drivers of nitrification. Gilbert et al. (2008) iden-

tified a large number of novel highly expressed

sequence clusters frommarine microbial commu-

nities, the majority of which were orphaned, thus

demonstrating the utility of the metatran-

scriptomic approach in the discovery of novel

genetic variants. Damon et al. (2012) addressed

the global activities of soil eukaryotes by

sequencing 2 � 10,000 cDNAs synthesized

from polyadenylated mRNA directly extracted

from forest soils. A total of 2,076 sequences

were putative homologues to genes for different

enzyme classes; specific annotation identified

enzymes active on major plant biomass poly-

mers, with glycoside hydrolases representing

0.5 % of the total. Finally, a metatranscriptomic

analysis targeted specifically at fungal glycoside

hydrolases induced by the addition of cellulosic

substrates to soil, generated 47 putative cellulase

sequences spanning 13 families identified within

a cDNA sequence dataset comprising over

56,000 protein-coding sequence fragments

(Takasaki et al. 2013). Therefore, despite the

inherent difficulties of extracting, enriching, and

processing mRNA from environmental samples,

for which technological solutions are emerging,

metatranscriptomics offers the advantage of

targeting genes that are active in the environment

and therefore functionally competent and

exploitable.

Bioinformatics and Screening

In environmental metagenomics, determining the

true microbial community structure that will lead

to the discovery of new taxa, and hence novel

enzymes, has been the most important driver. The

bioinformatic tools and approaches available

tend to reflect this emphasis on taxonomy.

MEGAN (Huson et al. 2007) is a data manage-

ment program used in the taxonomic analysis of

large sequencing datasets, processing the results

of comparisons between a known database and

metagenome-derived sequences. In the context of

this entry, information on the presence/

abundance of known taxa of cellulose degraders
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can be provided, and it is always an analysis

worth doing. To identify novel cellulases, more

sophisticated bioinformatic approaches are

required to search for domains and motifs indic-

ative of enzymes with cellulose binding and/or

catalytic functions. Sequence comparisons

among proteins with suggestive domain architec-

tures or genomic contexts in metagenomic DNA

have the potential to identify novel cellulases; the

discovery of a new carbohydrate-binding module

in metagenomic DNA by Mello et al. (2010) is

a particularly good example of what can be

achieved by the continuing development of

bioinformatic tools.

With complete sequences and their genomic

context if located within larger sequenced DNA

fragments, homology-based approaches can be

extended. Firstly, structural modeling of mem-

bers of likely cellulase families can identify

those with unusual binding and catalytic sites

that may therefore exhibit functional novelty.

Secondly, domains of unknown function, which

are likely to be putative cellulase or cellulase-

related sequences because they are consistently

linked by genome context, can be characterized

through distant homology, non-homology, and

structure-based approaches. This is exemplified

by the identification of a novel cellulase from

a sequenced marine bacterial genome through

signature domains that assemble enzymes into

plant cell wall degradative complexes (Bras

et al. 2011).

Sequences with matches indicative of cellu-

lases can of course be identified by BLAST

searches against the CAZy database (see

above) and through functional annotation pipe-

lines such as SEED (Overbeek et al. 2005) and

MG-RAST (Meyer et al. 2008) to provide

taxonomic affiliations for functional and hypo-

thetical protein-encoding genes. However,

identification of even distant relationships for

the short sequence read output (<500 bp)

that is characteristic of pyrosequencing is

a bioinformatic challenge. The danger of simply

searching against databases of known cellulase

gene sequences is that true novelty will be

missed and the metagenomes will only be

mined for variants of these known cellulases.

Much longer sequences, ideally complete

genes, are the best source material for bioinfor-

matic prediction of potential cellulase function,

and metagenomic/metatranscriptomic datasets

can provide the probes to identify such genes

and their neighbors in contemporaneously pro-

duced fosmid or bacterial artificial chromosome

(BACS) libraries (Rooks et al. 2012). Subse-

quent cloning, overexpression, and purified pro-

tein production then provide sufficient material

for the detailed structure/function characteriza-

tion, combining classical biochemistry and

structural biology approaches, necessary to

establish that a novel cellulase has been teased

out from the metagenome.

Future Prospects

Firstly, the tandem approach of using environ-

mental RNA and DNA as the starting material

to generate complimentary metatranscriptomes

and metagenomes, thus benefitting from the spe-

cific advantages of each, is becoming more fea-

sible with developments in ribosomal RNA

depletion and messenger RNA enrichment tech-

niques. Four hundred and fifty four

pyrosequencing, which had predominated due to

the relatively long read lengths (ca. 800 bp) that

could be obtained, is receding to be replaced by

next-generation sequencing technology that can

deliver ever-increasing read lengths (currently

ca. 500 bp by using paired end reads) in combi-

nation with read numbers in the 107 range. All of

this in an economically competitive environment

in which sequencing run costs continue to

decrease. The bioinformatic bottleneck remains

in terms of computer processing capacity, and

thus time, but specifically in relation to mining

metagenomes for genes encoding enzymes, the

future is the ability to reliably predict and model

protein structure and function in silico and thus

identify truly novel cellulases among those

numerous translated metagenomic sequences

that lack homology with any known protein-

coding sequences.
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Mock Community Analysis

Sarah Highlander

Genomic Medicine, J. Craig Venter Institute,

La Jolla, CA, USA

Definitions

Mock community: A defined mixture of micro-

bial cells and/or viruses or nucleic acid molecules

created in vitro to simulate the composition of

a microbiome sample or the nucleic acid isolated

therefrom.

Microbiome: The microbes (bacteria,

archaea, fungi, protists, and viruses) that inhabit
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a specific environment or host, such as all the

microbes that live in and on the human body.

Metagenome: The complete DNA (genomic)

content of a microbiome sample. The term

“metagenome” was first used by Handelsman

et al. to describe the “collective genomes of soil

microflora” (Handelsman et al. 1998).

Introduction

Although a few studies have reported creation of

mock communities for environmental microbial

systems, this review will be restricted to mock

communities that have been developed for stud-

ies of the human microbiome.

Microbial Mock Communities

For the human sampling aspect of the Human

Microbiome Project (HMP), the clinical centers

at Baylor College of Medicine and the Washing-

ton University School of Medicine were tasked

with obtaining microbiome samples from 18 dif-

ferent body sites. These samples were in the form

of saliva, tooth scrapings, buccal swabs, vaginal

swabs, nasal swabs, skin scrapings, feces,

etc. Each sample had a different physical and

microbial composition, yet it was necessary to

have a standard and uniform method of DNA

extraction for each. The method selected

included chemical lysis with sodium dodecyl sul-

fate (SDS) and mechanical disruption by bead

beating followed by column purification of the

DNA from the cell lysate (http://www.hmpdacc.

org/doc/HMP_MOP_Version12_0_072910.pdf)

using the MO BIO PowerSoil DNA Isolation Kit

(Carlsbad, CA). As a means to evaluate the DNA

purification protocol, we created a mock cell

community that consists of 22 bacterial strains

and one archaeal strain, mostly representing

strains found at different sites within the human

body (Table 1). The strains were selected as hav-

ing different features such as different cell wall

compositions (gram positive, gram negative,

spore formers, encapsulated, thick cell wall),

aerobe or anaerobe, high and low percent G+C,

and having completely sequenced genomes. The

strains were grown under appropriate growth

conditions to late logarithmic or stationary

phase and then mixed at an equal ratio at

a concentration of 108 cells/ml. The cell mix is

available, free of charge, from BEI Resources

(www.beiresources.org). A similar mixture, for-

mulated in 40 % glycerol (BEI HM-281), was

also created to be used as a viable mock commu-

nity for single cell studies.

We extracted DNA from the mock cells com-

munity using the HMP standard DNA isolation

protocol, then performed 454 amplicon sequenc-

ing of the 16S ribosomal RNA variable regions,

V1-V3 regions. We failed to detect anyM. smithii

or bifidobacterial reads and recovered less

than 1 % of the total reads corresponding to the

following input organisms: Acinetobacter

Mock Community Analysis, Table 1 Strains in the

HMP mock cell community (BEI HM-280)

Genus species Strain number

Acinetobacter baumannii ATCC 17978

Actinomyces odontolyticus ATCC 17982

Bacillus cereus ATCC 10987

Bacteroides vulgatus ATCC 8482

Bifidobacterium adolescentis DSM 20083

Clostridium beijerinckii ATCC 51743

Deinococcus radiodurans ATCC 13939

Enterococcus faecalis ATCC 47077

Escherichia coli ATCC 700296

Helicobacter pylori ATCC 700392

Lactobacillus gasseri ATCC 33323

Listeria monocytogenes ATCC BAA-679

Methanobrevibacter smithii ATCC 35061

Neisseria meningitidis ATCC BAA-335

Porphyromonas gingivalis ATCC 33277

Propionibacterium acnes DSM 16379

Pseudomonas aeruginosa ATCC 47085

Rhodobacter sphaeroides ATCC 17023

Staphylococcus aureus ATCC BAA-1718

Staphylococcus epidermidis ATCC 12228

Streptococcus agalactiae ATCC BAA-611

Streptococcus mutans ATCC 700610

Streptococcus pneumoniae ATCC BAA-334
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baumannii, Actinomyces odontolyticus, Clostrid-
ium beijerinckii, Deinococcus radiodurans,

Helicobacter pylori, Lactobacillus gasseri,
Rhodobacter sphaeroides, or Streptococcus

spp. In contrast, the relative abundance of

Neisseria reads was approximately 35 % and the

relative abundance of Bacillus and Enterococcus

reads isolated from the mock community was

approximately 15 % for each genera. These

observations are likely due to a combination of

the relative ability of an organism to be lysed and

the percent match of the 16S primers to rRNA

gene targets. For example, it is known that the

534R primer has numerous mismatches to

actinobacterial 16S rRNA genes, particularly to

the bifidobacteria, and an evaluation of primer

mismatches to other members of the mock

community revealed F27 mismatches to

Acinetobacter, Pseudomonas, and Escherichia

and numerous 534R mismatches to Methanobre-

vibacter, as described below.

Although we did not use our mock cell com-

munity for rigorous testing of lysis and DNA

extraction methods for metagenomics, Yuan

et al. have performed a systematic evaluation of

common DNA extraction methods (Yuan

et al. 2012), using a mock community composed

of equal cell counts of 11 bacterial species chosen

to represent different human body sites: E. coli,

S. aureus, P. aeruginosa, S. agalactiae, Coryne-
bacterium tuberculostearicum, Lactobacillus

iners, Lactobacillus crispatus, Atopobium vagi-

nae, Gardnerella vaginalis, and P. acnes. They
compared six different DNA methods that com-

bined different lysis (enzymatic, chemical, and

bead beating) and DNA purification (silica col-

umn or phenol/chloroform plus isopropanol pre-

cipitation) methods. DNA yield and DNA

integrity (shearing) were evaluated. Microbial

abundance was measured by 454 sequencing of

the 16S rDNA V1-V2 regions using a mixture of

forward primers that were chosen to prevent bias

against Lactobacillus spp. and Gardnerella spp.

(Yuan et al. 2012), followed by statistical ana-

lyses that included accommodation for differ-

ences in 16S rRNA gene copy number per

organism. Extraction methods that included

bead beating (as included in the HMP protocol)

delivered the best representation of the commu-

nity structure. Addition of mutanolysin, but not

lysozyme, or lysostaphin, also enhanced recovery

of the expected proportions of 16S rRNA gene

sequences. In sum, L. iners was overrepresented
using all techniques and the two gram-negative

organisms, E. coli and P. aeruginosa, were

underrepresented in all. Thus, the authors caution

that none of the methods tested returned the

actual representation of the input mock

community.

In another comparison of extraction methods,

Willner et al. created a mock community of

12 strains that included organisms relevant to

respiratory infections and cystic fibrosis

(CF) (Willner et al. 2012). The goal was to use

this mock community to compare and evaluate

methods for DNA extraction prior to their appli-

cation to clinical bronchoalveolar lavage (BAL)

samples obtained from CF patients. They also

developed an in silico simulation of the mock

BAL community using the software package

Grinder (http://sourceforge.net/projects/

biogrinder/). The mock community was com-

posed of the following bacterial species from

actively growing stocks (relative proportions in

parentheses): P. aeruginosa (1), Burkholderia

cepacia (0.1), S. aureus (0.1), Haemophilus

influenzae (0.1), Moraxella catarrhalis (0.01),

S. epidermidis (0.01), Klebsiella pneumoniae

(0.01), N. meningitidis (0.001), Burkholderia

multivorans (0.001), Legionella pneumophila
(0.0001), S. pneumoniae (0.0001), and Neisseria

gonorrhoeae (0.00001). Aliquots of the mock

community were extracted using a “CTAB

method,” a “saline protocol,” using the

NucleoSpin Tissue Kit (pellet and liquid proto-

cols) and the MO BIO PowerSoil Kit. Commu-

nity abundance was evaluated by 454 16S rDNA

sequencing of the V8-V9 regions using

a degenerate 1,114 F3 primer (Willner

et al. 2012). Data were normalized to 900 reads

per sample. At this level, few (<1 %) to no

streptococcal reads were detected in most of the

preparations, and no Legionella reads were

detected in any of the preparations. In contrast,
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the abundance ofNeisseria reads was greater than
that predicted by the in silico model. Unfortu-

nately, each sample included Escherichia
and Dechloromonas as contaminants and the

CTAB samples had a high percentage of

Stentrophomonas. This made it difficult to draw

conclusions about the efficiency and reproduc-

ibility of the methods employed.

Diaz et al. created two different oral bacterial

mock cell mixes, one in even cell distribution and

one in unequal distribution, using seven species

that are representative of the tooth surface (Diaz

et al. 2012): Streptococcus oralis, S. mutans,

Lactobacillus casei, Actinomyces oris,

Fusobacterium nucleatum, P. gingivalis, and

Veillonella sp. Late logarithmic phase cultures

were mixed in an even distribution based on cell

counts and in an uneven mixture that replicated

the proportions found in the oral cavity. These

cell communities were lysed using a single pro-

tocol that included lysozyme treatment, over-

night proteinase K digestion, and column

purification of the DNA. As a control, genomic

DNAs from the seven bacteria were mixed, in

equal proportion based on 16S rRNA gene copy

number. All DNAs were used for 454 sequencing

of the V1-V2 region of the 16S rRNA gene. Very

few S. mutans or P. gingivalis reads were recov-

ered, despite efficient sequencing of the control

DNA, suggesting that the lysis method was inef-

ficient for these two members of the mock

community.

DNA Mock Communities

While mock communities composed of mixtures

of cells were intended to be used to evaluate

different DNA extraction methods, they also

revealed biases in 16S rRNA gene amplification,

sequencing, and classification. DNA mock com-

munities have been created in attempts to address

these issues, to examine sensitivity and presence

of chimeric sequences, to serve as controls for

protocol development, etc. DNA mock commu-

nities can be composed of mixtures of genomic

DNA, of plasmid clones of genes (usually the 16S

rRNA gene), or of PCR amplicons. Generally,

these mock communities were created as controls

and calibrators for 16S rRNA gene variable

region sequencing on next-generation sequenc-

ing platforms, but they are useful in the context

of metagenomic sequencing as well.

Turnbaugh et al. used genomic DNA from

67 gut bacterial strains (e.g., containing the gen-

era Bifidobacterium, Collinsella, Bacteroides,

Prevotella, Clostridium, Dorea, Roseburia,
Ruminococcus, Streptococcus, Citrobacter,

Enterobacter, Proteus, and Providencia) to cre-

ate even and uneven mixtures as calibrators for

454 16S rDNA sequencing of the V2 region for

a twin study of gut microbiomes (Turnbaugh

et al. 2010). Following quality filtering,

pyrosequencing, denoising and chimera removal,

the estimated diversity (at 97 % species cutoff) of

the three uneven mock communities was 75, 58,

and 63, respectively, which was remarkably close

to the 62 phylotypes expected in the community.

Diversity was not estimated for the even commu-

nities, although the ratio of observed-to-expected

sequences by phylotype was tabulated and

reported. This revealed an absence of

bifidobacterial reads, due to multiple primer mis-

matches, and overabundances of sequences map-

ping to other genera, including the Bacteroides
and the clostridia. The authors acknowledged that

these observations could be the result of a number

of factors including variations in 16S rRNA gene

copy number per strain and DNA quality.

During the development of standardized

454 16S rDNA sequencing protocols for the

HMP, we created mock DNA communities

using genomic DNAs from 21 of the strains

listed in Table 1 (B. adolescentis and

P. gingivalis were not included) plus Candida

albicansMYA-2876. DNAs were prepared from

individual cultures and each DNA preparation

was validated for purity by Sanger paired-end

sequencing of 384 full-length 16S rDNA clones

obtained from each. Genomic DNAs were com-

bined, based on 16S rRNA gene copy number, to

form even or staggered mock communities.

The even communities theoretically contained

105 16S rDNA copies from each species per

amplification reaction, and the staggered com-

munities had 16S rDNA copies that ranged from
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103 to 106 copies from a particular species per

reaction. All reactions contained approximately

1,000 copies of the C. albicans 18S rRNA gene

(Haas et al. 2011) (Jumpstart Consortium

Human Microbiome Project Data Generation

Working Group 2012). These mock communi-

ties were used to develop an improved chimera

detection tool, called ChimeraSlayer, and

revealed a high level of chimerism in short var-

iable region products (Haas et al. 2011). The

mock community was essential to validate and

benchmark methods for 16S rDNA sequencing

by all four genome sequencing centers involved

in the HMP (the Baylor College of Medicine

Human Genome Sequencing Center, the Broad

Institute, the J. Craig Venter Institute, and the

Washington University Genome Sequencing

Center) and revealed clear cases of primer

mismatches that caused some genera to be

underrepresented (Fig. 1).

Mock Community Analysis, Fig. 1 Deviation from the

expected for the 16S rDNA sequencing of the 20 bacterial

+ one archaeal mock community. (a) Distribution of reads
over the 18 genera; expected frequencies (gray) were

determined by whole-genome shotgun sequencing of the

mock community, and observed frequencies were

determined by 454 reads (red) or Sanger 3,730 reads

(blue). Error bars represent standard error. (b) Lowest

percent mismatch between prime and 16S rRNA gene

copy by organism, sequencing technology, and variable

gene region (Jumpstart Consortium Human Microbiome

Project Data Generation Working Group 2012)
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Sequencing the mock community clearly

illustrated the need for quality filtering and chi-

mera checking of 454 data of variable regions as

illustrated in Fig. 2. Without filtering, the diver-

sity of the 21 species (18 operational taxonomic

units) in the community is estimated number in

the 100s. Following quality filtering and chimera

removal, the community richness is only a

few-fold higher than expected, especially for the

V1-V3 and V3-V5 regions of the 16S rDNA

gene.

The HMP mock community also

revealed examples of misclassification, poor

classifiability (lowest in V6-V9), and

unexplained overrepresentation of some genera

(Jumpstart Consortium Human Microbiome

Project Data Generation Working Group 2012).

This mock community has been used to evaluate

how quality filtering impacts taxonomic classi-

fication of reads generated on the Illumina

platform (Bokulich et al. 2013), and a modified

version has been used to develop

a dual-index method for 16S amplicon sequenc-

ing on the Illumina MiSeq platform (Kozich

et al. 2013).

Another type of mock DNA community is

a set of plasmid clones of nearly full-length 16S

rRNA gene fragments (Wu et al. 2010). Here,

PCR amplicons from Clostridium difficile,

Bacteroides fragilis, S. pneumoniae,

Desulfovibrio vulgaris, Campylobacter jejuni,
Rhizobium vitis, Lactobacillus delbrueckii,

E. coli, Treponema sp., and Nitrosomonas

sp. were cloned into pTOPO vectors and then

used to create even and staggered DNAmixtures,

which were then used as templates for

454 sequencing of the V1-V2 regions of the 16S

rRNA gene. The authors report that correct pro-

portions of input 16S rDNA sequence type were

recovered following 454 sequencing and analy-

sis, although different polymerases used for rep-

licates of the staggered community gave slightly

different results. Use of cloned 16S rRNA genes

as controls is convenient, although genes on

Mock Community Analysis, Fig. 2 Quality filtering

and chimera checking and removal improve estimates of

community diversity as evaluated by rarefaction analysis.

Operational taxonomic units (OTUs) are plotted versus

number of 454 sequence reads for three 16S rDNA vari-

able region windows, V1-V3, V3-V5, and V6-V9, before

quality filtering (black), after quality filtering (green), and
after quality filtering and chimera removal (red). The
expected number of OTUs in the mock community was

18 (dotted line) (Jumpstart Consortium Human

Microbiome Project Data Generation Working Group

2012)
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supercoiled high copy number plasmids are not

likely to be good surrogates for chromosomal

ribosomal genes.

Summary

DNA mock communities have identified prob-

lems with use of “universal” 16S rRNA gene

primers for amplification of variable regions for

microbiome sequencing and have revealed flaws

in taxonomic classification systems, where

known sequences were classified incorrectly

(Jumpstart Consortium Human Microbiome Pro-

ject Data Generation Working Group 2012).

They have also shown the critical requirement

for stringent read quality filtering and chimera

removal of 16S rDNA sequencing reads, which

has helped to reduce estimates of the size the

“rare biosphere” of human microbiome.

Mock communities of cells have proved valu-

able as controls for development of uniformDNA

extraction methods for microbiome samples and

DNA mixtures continue to be important as cali-

brators for 16S rDNA and metagenomic sequenc-

ing on changing high-throughput platforms.

Neither type of mock community is perfect. Cell

mixtures are easily contaminated; they may have

incorrect cell counts due to clumping, dead cells,

or the presence of bacteriophage; and are limited

to species that can be grown without difficulty.

DNA mixtures may also be contaminated, so it is

important to validate the purity of the prepara-

tions prior to mixing, and mixtures based on 16S

rDNA copy number may be skewed if calcula-

tions or assumptions are incorrect, particularly if

the genomes of the input DNAs are not finished.

Cell communities are plagued with the same

issues of amplification bias and misclassification

discovered with DNA using DNA communities.

Despite the flaws inherent in mock communi-

ties, they are useful as a uniform benchmark for

microbiome and metagenome technology devel-

opment and evaluation. The concept could be

expanded to includemock communities of viruses,

and fungi. Further, one could imagine developing

mock communities composed of different types of

molecules such as RNAs or peptides or known

components of the metabolome as being useful

controls for microbiome work.
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Synonyms

Microbial community network; Microbial ecolog-

ical network; Microbial interaction network;

Microbial network; Molecular ecological network

Definition

The network of microbial communities

constructed using molecule-based experimental

data, especially metagenomic data (e.g., microar-

ray hybridization, sequencing), is referred to as

molecular ecological network (MEN). It aims to

understand the interaction of members in a given

community. If the molecules are based on phylo-

genetic gene markers (e.g., 16S small subunit

ribosomal DNA), the network is defined as phylo-

genetic molecular ecological networks (pMENs).

Introduction

In microbial ecology, the majority of data analyt-

ical efforts are focused on revealing the compo-

sition and diversity of amicrobial community and

also the changes across space, time series, and/or

with experimental treatments. The conventional

analytical approaches usually use species rich-

ness and a-diversity to depict a community struc-

ture, and several diversity indexes, such as

Simpson index and Shannon index, are used to

measure the level of a-diversity (Fig. 1). Besides,
the difference between two communities is often

estimated by b-diversity, and more multivariate

statistical techniques are used to describe the

community patterns and associations with envi-

ronmental factors, such as ordination and regres-

sion methods (Deng 2013). Compared to the

intensive studies in community compositions

and diversities, there is much less attention on

the interaction and network relationships among

microbial species (Zhou et al. 2010).

In natural environment, the microbial species

rarely live independently; instead, a large amount

of organisms tend to exist sympatrically and syn-

chronously through various types of symbiotic

relationships. Their relationship could be positive

(mutualism and commensalism) or negative

(competition, predation, and amensalism) to the

partner species (Faust and Raes 2012), and all

relationships among the species form a compli-

cated interaction web. These relationships can be

simply exhibited as a network structure (Fig. 1), in

which each node represents a species and the edge

linking two nodes represents the interaction

between these two species. More complex rela-

tionships in the community could be integrated

into the network model as well. For instance, the

strength of relationship could be represented to the

edge weights, and regulatory or beneficial rela-

tionships could be represented to the edge direc-

tions. Additionally, the abundance of species

could be visualized as the sizes of nodes. There-

fore, a comprehensive network structure could

adequately depict the inherent relationships within

a microbial community.

Since the end of the last century, the ecological

network studies have been started and well devel-

oped in the macro-ecology (Montoya et al. 2006).

Food web structures have been intensively

studied due to their crucial contribution to the

stability of creaturely communities (Pimm

2002). Meanwhile, the mutualistic networks

have also evoked a lot of attention (Bascompte

and Jordano 2007). Through those interactions, an

ecosystem is capable of accomplishing its

systems-level functions which could not be

achieved by individual populations. Therefore,
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explaining the ecological network structures,

dynamics, and mechanisms has become an essen-

tial part in ecology. However, the studies on inter-

actions among microbial species are much more

difficult than those studies in macro-ecology,

majorly due to their incredibly high species diver-

sity. Besides, most natural microbial species are

uncultivable and also invisible to the naked eyes,

which makes it more challenging to define net-

work structure in a microbial community. Here,

the definition of phylogenetic molecular ecologi-

cal network (pMEN) for microbial community,

the network inference, and the common network

properties are first introduced, and then several

key ecological questions are able to be addressed

through network analysis.

Phylogenetic Molecular Ecological
Network for Microbial Communities

Owing to the technique innovation of molecular

biology, the modern microbial taxonomy often

relies on phylogenetic molecular markers, such

as ribosomal RNA (rRNA) genes or some highly

conserved coding genes (e.g., nifH, amoA, gyrB).

In microbial diversity surveys, consequently, the

definition of operational taxonomic unit (OTU) is

used to delimit the microbial taxa by the similar-

ity of those sequences (Achtman and Wagner

2008). Each OTU then represents a certain

taxon, such as a species or a genus. The compo-

sition and diversity of microbial communities

actually are based on molecular OTUs rather

than individual species. Recently, due to the

rapid development of high-throughput sequenc-

ing technology, large amounts of microbial diver-

sity surveys have been carried out in various

environmental habitats through small subunit

(SSU) rRNA sequencing projects. These mas-

sive, community-wide, replicated metagenomic

data provide unprecedented opportunities to

infer the interaction networks in microbial com-

munities (Raes and Bork 2008).

As a result, an ecological network generated

from metagenomic data really reflects the

Molecular Ecological Network of Microbial Communities, Fig. 1 The study of microbial ecology from species

richness and diversity to interaction network
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relationships among molecular OTUs. Therefore,

such molecule-based ecological networks in

microbial communities are referred to as molec-

ular ecological networks (MEN) (Zhou

et al. 2010). The networks derived from func-

tional gene markers are referred to as functional

molecular ecological networks (fMEN) (Zhou

et al. 2010), and those based on phylogenetic

gene markers as phylogenetic molecular ecolog-

ical networks (pMENs) (Zhou et al. 2011).

Network Inference Approach

For metagenomic data analysis, the abundance of

each gene marker in a sample is measured by the

number of sequences for sequencing data or

hybridization signal intensity for microarray

data. Thereafter, the determined gene richness

and abundance are used to describe the composi-

tion and structure of this microbial community.

Based on such experimental data, a network

graph can be constructed to illustrate the interac-

tions of different gene markers (species) (Fig. 2).

The way of constructing the connection diagram

from the behavior of its components is known as

network inference or reverse engineering (Faust

and Raes 2012).

Various approaches for network inference

have been developed and widely used in both

genomic biology and ecology (Barabasi and

Oltvai 2004; Faust and Raes 2012). Based on

the mathematical algorithms, they can be classi-

fied into Bayesian network, relevance network,

and ordinary and partial differential equation

methods [reviewed by De Jong (2002)]. Besides,

some graphical theory-based methods were

recently developed (Kramer et al. 2009).

Among them, the relevance network method is

the most commonly used approach due to its

simple calculation procedure and high noise tol-

erance (Deng et al. 2012). For the relevance net-

work method, a similarity is first measured

between each two OTUs. This similarity mea-

surement can be Pearson, Spearman, biweight,

and jackknife correlations or mutual information

(Hardin et al. 2007).

For network inference, another critical step is

to identify a true link (Fig. 2). The key question is

how similar a true link should be. The most com-

monly used way to choose the similarity thresh-

old is based on biological knowledge which could

confirm some true interactions by previous exper-

imental discovery and then use similar values

between those interactions to determine the

threshold for other links. The constructed net-

work through this arbitrary threshold is subjec-

tive rather than objective (Barabasi and Oltvai

2004). There are also a couple of methodical

ways for determining the similarity threshold,

Molecular Ecological
Network of Microbial
Communities, Fig. 2 The

common steps of molecular

ecological network (MEN)

analysis. Two major parts

are included: network

inferences and network

analyses. In each of them,

several key steps are listed
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such as the significance level of correlation

(p value), false discovery rate (FDR), permuta-

tion test, and randommatrix theory (RMT)-based

methods. Among them, p value-based and per-

mutation test-based methods give the least strict

threshold and lead to large amounts of links in

a messy network that could be alike to random

network. The FDR-based method has the strictest

threshold, which could generate a loose network,

and a lot of true interactions might be ignored.

RMT-based algorithm has advantages in this step

(Luo et al. 2007). This method is able to automat-

ically identify a threshold based on the inherent

property of the similarity matrix. The results

indicated it is robust to reveal the meaningful

relationships through high-throughput data in

both genomics and ecology (Luo et al. 2007;

Zhou et al. 2010, 2011).

Network Properties

After the species interactions have been inferred,

many pMENs are formed for the communities in

different habitats, such as soil, ocean, groundwa-

ter, and human guts (Deng et al. 2012; Faust and

Raes 2012). Several common topological prop-

erties, such as small world, scale-free, and mod-

ularity (Table 1) were also observed in all kinds

of pMENs, like other biological networks from

food webs in macro-ecology to complex regula-

tion networks in molecular biology. These com-

mon network properties are important for the

robustness and stability of complex systems

(Barabasi and Oltvai 2004; Kitano 2004; Zhou

et al. 2010, 2011).

The scale-free is a most notable characteristic

in complex systems. It is used to describe the

finding that most nodes in a system have few

directly linked nodes (neighbors), while few

nodes have a large amount of neighbors

(Table 1). It implies the roles of species in the

microbial community might be quite different.

A few microbial species could be generalists

with higher connectivity which are inclined to

have closer relationships with environmental

traits than other species (Zhou et al. 2011; Deng

et al. 2012).

The “small world” is used to depict that any

two nodes in a network can be connected just by

passing a few of linked neighbors (Table 1). It is

originally referred in sociology that 6� of separa-
tion between us and everyone else on this planet.

This property usually reflects the efficiency of

system and may be valuable for microbial com-

munities. In the small-world community, the

energy, materials, and information can be easily

transported within the entire system. In the

microbial community, this characteristic drives

efficient communications among different mem-

bers so that relevant responses can be taken rap-

idly to environmental changes (Zhou et al. 2011;

Deng et al. 2012).

The modularity property is used to demon-

strate that a network could be degraded to sub-

networks, also called modules, according to its

structure (Table 1). Each module in gene regula-

tory networks is considered as a functional unit,

which consists of several elementary genes and

performs an identifiable task (Luo et al. 2007).

Modularity in an ecological community may

reflect habitat heterogeneity, physical contact,

functional association, divergent selection,

and/or phylogenetic clustering of closely related

species (Olesen et al. 2007; Zhou et al. 2010).

Also microorganisms in the same module could

have similar ecological niches (Zhou et al. 2011;

Faust and Raes 2012).

Except these three common properties, there

are many other topological indexes that could be

used to measure the organization and structure of

microbial networks, such as clustering coeffi-

cient, hierarchy, density, transitivity, and con-

nectedness [definitions and descriptions seen in

Deng et al. (2012)]. All these could become valu-

able indexes to measure the microbial structure

for the studies of microbial ecology.

Network Interpretation Aspects

Once the network graph is drawn, we should

disclose the ecological meanings behind this

structure. Several key ecological questions can

be revealed through network analysis procedures

(Fig. 2).
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Identify Key Populations/Species in the

Community Based on Network Topology

In a scale-free network, the roles of nodes for the

community could be quite different. Most nodes

are just peripheral, and they have less contribu-

tion to the network structure and stability. But

a few of the nodes may be located in the core of

the network, and if it is removed from the net-

work, it will largely change the network structure.

These key nodes could be identified by multiple

network indexes, such as connectivity, stress

centrality, betweenness, eigenvector centrality,

clustering coefficient, and vulnerability [defini-

tions and descriptions seen in Deng et al. (2012)].

The nodes with higher indexes may carry out

different functions for the network structure. For

example, the nodes with highest connectivity are

commonly regarded as centers in the network,

while the nodes with highest betweenness usually

serve as bridges to connect other nodes. There-

fore, in pMEN these key nodes representing spe-

cies also could play different roles for the

Molecular Ecological Network of Microbial Communities, Table 1 The most commonly used topological indexes

and properties for complex networks

Network

property Mathematic measurement Ecological implication

Connectivity
ki ¼

Xm
j¼1

aij, wherem is the number of all neighbors

(linked nodes) of node i and aij is the strength
between nodes i and j. For the unweighted network,
ki equals the number of neighbors

It was used to describe the number of interactions of

each node, also named as node degree. In most

complex systems, the nodes with the highest

connectivity always played crucial roles and were

usually considered as network centers. In pMEN,

the study found that nodes with higher connectivity

were inclined to have closer relationships with

environmental traits (Zhou et al. 2011; Deng

et al. 2012)

Scale-free P(k) ~ k� g,where P(k) is the number of nodes with

k degrees, k is connectivity, and g is a constant
In most cases, the connectivity distributions of

pMEN and other complex systems follow this

power law, indicating most nodes in a network have

few neighbors, while few nodes have large amount

of neighbors. This phenomenon suggests the most

species in the communities are peripherals, but

a few of the species could be generalists and play

more important roles than others

Small world
GD ¼

X
dij

n n�1ð Þ :GD is the abbreviation of the average

geodesic distance, where dij is the shortest path
between nodes i and j, and n is the total number of

all nodes

A smaller GD means all the nodes in the network

are closer, indicating each two nodes in the network

could be connected by a small number of

acquaintances, and so-called small-world network.

Most pMENs are small-world network, which

imply that the energy, materials, and information

can be easily transported through entire systems

(Deng et al. 2012)

Modularity
M ¼

XNM

b¼1

lb
L
� Kb

2L

� �2
" #

, where NM is the number

of modules in the network, lb is the number of links

among all nodes within the bth module, L is the

number of all links in the network, andKb is the sum

of degrees (connectivity) of nodes which are in the

bth module

Modularity property was used to demonstrate

a network which could be naturally divided into

subcommunities, so-called modules. A modularity

value can be calculated by Newman’s method

(Newman 2006) whose value is between 0 and

1. Modularity in an ecological community may

reflect habitat heterogeneity, physical contact,

functional association, divergent selection, and/or

phylogenetic clustering of closely related species

(Olesen et al. 2007; Zhou et al. 2010)
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microbial community. Previous results already

showed the nodes with higher connectivity were

inclined to have closer relationships with envi-

ronmental traits in pMEN (Zhou et al. 2011;

Deng et al. 2012), indicating they could be more

important to response the environmental change

than other species.

The key nodes also can be determined based

on the nodes’ roles in their own modules. In a

module-separated network, the node topological

roles can be defined by two parameters, within-

module connectivity (zi) and among-module con-

nectivity (Pi) (Guimera and Amaral 2005), and

the roles of nodes could be illustrated in a ZP plot

[seen in Deng et al. (2012) Fig. 4c]. According to

values of zi and Pi, the roles of nodes were clas-

sified into four categories: peripherals, connec-

tors, module hubs, and network hubs. In a pMEN,

peripherals could represent specialists, while

module hubs and connectors are close to gener-

alists and network hubs as supergeneralists (Deng

et al. 2012).

Associations Between Network Structures

and Environmental Factors

The correlations between pMEN topology and

environmental factors can be examined in both

direct and indirect ways. Indirectly, the OTU

significance (GS) is firstly calculated, which is

the square of the correlation coefficient (r2)
between OTU abundance profile and environ-

mental factor. A higher GS value indicates this

species better fits the variance of environmental

factor than the other species with lower GS

values. Thereafter, the correlation between GS

and nodes’ topological indexes (e.g., connectiv-

ity, betweenness) is able to measure the relation-

ship of network topology with environmental

factors (Deng et al. 2012). The correlation can

be calculated either by using Pearson correlation

for single GS or Mantel and partial Mantel tests

for multiple GS of environmental factors (Zhou

et al. 2011; Deng et al. 2012).

The correlations between module-based

eigengenes and environmental factors are able

to detect the modules’ response to

environmental variance. Module eigengene

is the most representative variable for all the

OTUs within a module through singular

value decomposition (SVD) (Langfelder and

Horvath 2007). Eigengene network analysis is

feasible to reveal the network organization

in module levels and directly test the correlation

between modules and environmental factors

(Deng et al. 2012). Because the taxa in

a module could be functionally associated with

overlapping ecological niches (Faust and Raes

2012), the module eigengenes are able to distin-

guish the module functions by associations with

environmental factors.

Network Comparisons for Microbial

Communities Under Different Conditions,

Locations, or Across Time Series

To analyze how the environment affects net-

work structures and species interactions, the

network is constructed and compared under dif-

ferent experimental conditions, geographic

locations, or across time succession. Various

network indexes can be evaluated among differ-

ent communities in terms of the network sensi-

tivity and robustness, but since only a single

value is available for each network, it is unable

to perform standard statistical analyses to assess

statistical significance of differences. Thus,

the randomized networks are introduced to gen-

erate a null model for each identified network.

Different methods can randomize the network

differently; however, the commonly used

Maslov-Sneppen method keeps the numbers of

nodes and links unchanged but rewires the posi-

tions of all links in the pMEN so that the sizes of

networks are the same and the randomly rewired

networks are comparable with the original ones

(Maslov and Sneppen 2002). This method has

been typically used for ecological network ana-

lyses. For each identified network, usually

a total of 100 randomized networks are

implemented, and therefore, all network indexes

could be generated 100 times. Then the average

and standard deviation for each index of all

random networks are obtained. The statistical
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Z-test is able to test the differences of the indices

between the MEN and random networks. Mean-

while, for the comparison between the network

indices under different conditions, the Student

t-test can be employed by the standard devia-

tions derived from corresponding randomized

networks (Deng et al. 2012).

Except for the overall network topology, net-

work comparisons also can be performed in dif-

ferent levels and aspects, such as node overlaps,

module preservations, topological roles of indi-

vidual nodes, and network hubs among different

networks (Zhou et al. 2011). The changes among

different levels suggested the switches of spe-

cies interactions under different conditions that

could be ecologically important for microbial

community to deal with the environmental

changes.

Summary

The current studies of microbial networks are still

limited but rapidly growing. From the network

inferences to network interpretations, there are

a lot of fundamental ecological concerns that

have not been well addressed, such as how well

the modeled networks reflect the real interactions

among microbial species, whether these interac-

tions are casual or fixed under different environ-

mental conditions, and how to classify the types

of interactions among microbial species (i.e.,

mutualistic or trophic). Cautions must be taken

for the interpretation of the underlying mecha-

nisms that shape microbial communities through

the present network analysis.

Nevertheless, by taking the advantage of rapid

technical revolution, microbial ecology studies

can be performed at a new level, network infer-

ences. Consequently, through the analysis of net-

work structures, previously ignored interactions

among microbial species could be revealed and

their responses to environmental changes could

be disclosed. With the development and comple-

ment on methodology, the studies of microbial

interaction networks will evoke more and more

attention in the near future.
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Definition

The composition of lactic acid bacteria during

fermentation of Japanese traditional distilled

spirit is reviewed.

Introduction

Shochu is a Japanese distilled spirit made from

several starchy materials. Fermentation of alco-

holic beverages is usually carried out by combi-

nation of several microorganisms. Lactic acid

bacteria (LAB) are well known to play beneficial

roles in several food fermentations, including

dairy products, vegetables, and meat. This bacte-

rial group is also beneficial for fermentation of

beverages, e.g., aroma production and reduction

of acid level in wines and growth prevention of

spoilage microorganisms in sake. Recent culture-

dependent and culture-independent study

revealed that LAB can be seen in fermentation

mashes of shochu. In the present chapter, lactic

acid bacterial diversity during shochu fermenta-

tion is briefly reviewed.

Shochu Fermentation

Shochu is a popular Japanese distilled spirit and is

mainly produced in the south Kyushu area of

Japan. Rice, sweet potato, or barley is usually

used as the main ingredient. The fermentation

process consists of three stages, i.e., koji produc-
tion, yeast-seed production, and alcoholic fer-

mentation. Koji mold (Aspergillus niger or

A. kawachii) saccharifies starches to glucose by

amylases, and yeast, Saccharomyces cerevisiae,

is responsible for alcoholic fermentation. Such

microorganisms are inoculated into the fermen-

tation as starters. Rice or barley is usually used as

a koji ingredient, and the main ingredient is added

to the mash at the beginning of alcoholic fermen-

tation stage. During the saccharification, the mold

produces large amounts of citric acid, resulting in

significant decrease of pH. The pH in the yeast-

seed production stage is therefore between 3.0

and 3.5 and that in the alcoholic fermentation

stage between 4.0 and 4.5. Alcoholic concentra-

tion at the end of fermentation is 14–17 % (v/v).

Because of such harsh environment for bacterial

survival, bacterial diversity had been considered

to be poor, and very few studies have done for this

microbiota so far.

LAB Diversity in Fermentation Mashes
of Shochu

Culture-dependent and culture-independent stud-

ies have been carried out to study for LAB diver-

sity in fermentation mashes of shochu. LAB

population in yeast-seed is generally low, i.e.,

below 105 CFU/ml of mash as determined by

culturing and real-time quantitative PCR. Poor

LAB diversity (0–2 species in each mash) is

seen in the yeast-seed. Lactobacillus plantarum,
L. paracasei, Weissella confusa/cibaria,

Leuconostoc citreum, and Enterococcus faecium

have been found in the mashes by denaturing

gradient gel electrophoresis (DGGE) combined

with LAB-specific primers (Endo 2005; Endo

and Okada 2005b). LAB diversity in alcoholic

fermentation stage is dependent on the variety

of main ingredients. Sweet potato generally pro-

duces higher population and richer diversity of

LAB than rice or barley. This might be due to

differences of nutrition between the main
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ingredients. Sweet potato mashes contain

104–108 CFU/ml of LAB and rice or barley

mashes contain 104–105 CFU/ml or less. Lacto-
bacillus brevis, L. fermentum, L. helveticus,

L. hilgardii, L. kefiri, L. nagelii, L. paracasei,

L. pentosus, L. plantarum, Leuconostoc
mesenteroides, Leuc. citreum, Leuc. lactis,

Lactococcus lactis, Enterococcus faecium,

Pediococcus pentosaceus, and W. confusa/
cibaria have been found in alcoholic fermenta-

tion mashes made from sweet potato (Endo 2005;

Endo and Okada 2005b). Lactobacillus
satsumensis is a novel species found in the

mashes (Endo and Okada 2005a). Of such spe-

cies,W. confusa/cibaria is the most seen species.

Several species found in this fermentation can be

also seen in wine fermentation. This might be due

to similar harsh environments (high alcohol con-

tent and low pH) in the fermentation of the two

alcoholic beverages. Mashes made from rice or

barley contain poorer LAB diversity than those

made from sweet potato.

An interesting DNA sequence, which was

characterized as uncultured Leuconostoc sp.,

was found in yeast-seed by DGGE profile.

BLAST analysis of the sequence revealed low

similarities (below 95 %) against known

Leuconostoc spp. but high similarities (99.3 %)

against uncultured Leuconostoc spp. (accession

nos. EU469745 and AJ405013) (Endo 2005,

2011), suggesting the presence of unknown

LAB in shochu mashes. Population of the organ-

ism is approximately 108 CFU/ml as determined

by qPCR. Because of its predominance in the

yeast-seed, it might be an acid-tolerant

Leuconostoc sp., although Leuconostoc spp. are

known to be acid sensitive.

Most of LAB strains found in shochu mashes

were resistant to 10–15 % (v/v) of alcohol, and,

moreover, they were able to grow at pH 3.5 (Endo

2011). Very few strains were able to grow at

pH 3.0. Most of the strains metabolize citrate

when in the presence of glucose. These charac-

teristics suggest that LAB seen in shochu mashes

have adapted to their habitat. Citrate metabolism

by LAB produces several aroma compounds,

including diacetyl, acetoin, and acetic acid.

These compounds have both positive and

negative impacts on the quality of the final prod-

uct. Proper management of LAB might therefore

introduce shochu having better quality.

Summary

Shochu is a Japanese traditional distilled spirit

made from starchy materials. During the fermen-

tation, Aspergillus spp. works for saccharification

of ingredients and Saccharomyces cerevisiae

plays alcoholic fermentation. Aspergillus
spp. produces large amounts of citric acid during

the fermentation and preserves the fermentation

from spoilage. LAB have generally low popula-

tion and poor diversity at the beginning of fer-

mentation (yeast-seed stage), but their population

and diversity increase at the latter fermentation

(alcoholic fermentation stage). W. confusa/

cibaria, Lactobacillus spp., and Leuconostoc

spp. are usually seen in the fermentation. Such

LAB have characteristics to survive in alcoholic

and acidic environment, suggesting that LAB

have adapted to their habitat.

Cross-References

▶Culturing

▶Evaluating Putative Chimeric Sequences from

PCR-amplified Products

▶ Phylogenetics, Overview
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Synonyms

Phylogeny ¼ phylogenetic tree ¼ tree;

MRL ¼ matrix representation with likelihood;

MRP ¼ matrix representation with parsimony

Introduction

The estimation of evolutionary trees is one of the

basic challenges in biology (Felsenstein 2003),

but current methods have great difficulties with

large datasets – often due to computational

issues. For example, methods like maximum like-

lihood (ML) and maximum parsimony (MP) are

highly accurate techniques when they can be

properly run, but both are NP-hard (a technical

term that has the consequence that exact algo-

rithms are not likely to be found except through

exhaustive search techniques). As a result, ML

and MP analyses on large datasets either cannot

be run at all, or take a very long time to run, or

return poor results. Since most accounts of the

number of species suggest that the Tree of Life

itself will involve many millions of species, truly

large-scale phylogenetic estimation is beyond the

reach of current methods. Instead, an alternative

approach has been proposed, in which different

research groups would calculate phylogenetic

trees on subsets of the species set and then these

trees would be combined into a tree on the full

dataset. The techniques that combine trees into

a tree on the full taxon set are called “supertree

methods,” and the resultant large tree is called

a “supertree.”

There are many supertree methods (surveyed

in Bininda-Emonds 2004), but matrix representa-

tion with parsimony (MRP), developed in Baum

(1992) and Ragan (1992), is the most well known

and most frequently used. MRP operates in two

steps: first the input source trees are each

represented by a matrix over {0,1,?}, where

each row represents a species and each column

represents a branch in the source tree. These

matrices are then concatenated together to form

the “MRP matrix.” Finally, this matrix is ana-

lyzed using maximum parsimony heuristics,

where maximum parsimony is the NP-hard opti-

mization problem that seeks to find a tree on the

species set with the smallest number of total

changes.

In Swenson et al. (2011), MRP was compared

to a collection of other supertree methods and

found to be the most reliable with respect to

accuracy and ability to analyze large datasets.

However, that study also showed that the Quar-

tets MaxCut (QMC) method developed by Snir

and Rao (2012) was more accurate than MRP for

those datasets on which QMCwas able to run. An

interesting variant on MRP was developed by

Nguyen et al. (2012), in which the MRP matrix

was analyzed under maximum likelihood, using

a symmetric two-state model. This method,

called MRL for “matrix representation with like-

lihood,” was shown to be more accurate than

MRP on simulated datasets.

Thus, while MRP remains the most frequently

used supertree method, MRL and QMC are new

supertree methods that offer some advantages

over MRP; furthermore, new supertree methods

continue to be developed.

In Swenson et al. (2012), a new technique was

developed called “SuperFine.” This is a meta-

method that can be used with any supertree

method (e.g., MRP, MRL, QMC, etc.), to pro-

duce a modified supertree method. For example,

when SuperFine is used with MRP, it is referred

to as SuperFine+MRP, and when it is used

with MRL, it is referred to as SuperFine+MRL.

SuperFine has two steps. The first step computes

a “strict consensus merger” (SCM) tree from the

set of input trees, where the SCM tree contains

many high degree nodes (“polytomies”). The

second step refines this tree by using the base

method to refine each polytomy. The refinement

around each polytomy is performed by encoding

each of the source trees on a new leafset {1. . .d},

where d is the degree of the polytomy; these
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smaller source trees are then passed to the base

supertree method, which computes a supertree on

{1. . .d}, and this supertree replaces the

polytomy. The refinements around the

polytomies can be performed in parallel since

they are independent. Hence, the second step is

not only very fast, but very easily parallelized. In

Swenson et al. (2012), they showed that Super-

Fine+MRP gave much more accurate trees than

MRP and was also much faster. They also com-

pared SuperFine+QMC and QMC and showed

similar improvements. Finally, Nguyen

et al. (2012) compared SuperFine+MRL and

MRL and showed similar improvements. Thus,

SuperFine is a method that can improve supertree

methods.

A comparison between these different

methods (SuperFine+MRP, SuperFine+MRL,

MRP, and MRL) is shown in Fig. 1. The experi-

ment involves gene trees that evolve within

a species tree under a birth-death process, and

so may not contain all the taxa; however, some

genes are universal and so contain all the taxa.

These genes are then used to evolve sequences

under different sequence evolution models.

There are two types of gene trees – “clade-

based” gene trees that are restricted to clades in

the species tree and “scaffold” trees that are used

to link the clade-based trees together. The scaf-

fold trees are produced by random sampling of

the taxa and then using the universal genes to

construct a source tree. Thus, the clade-based

source trees contain a subset of the taxa in

a clade, while the scaffold trees contain

a random subset of the taxa, but may – in some

cases – contain all the taxa. The scaffold density

refers to the percentage of the taxa in the scaffold

tree. Scaffold source trees for the supertree prob-

lem are produced by selecting a scaffold density

and then concatenating the alignments from the

universal genes on the randomly selected scaffold

taxa and computing a maximum likelihood tree

on the concatenated alignment. Similarly, the

clade-based source trees are computed by

selecting a clade and then finding the genes that

provide the best coverage for that clade (from the

clade-based genes), concatenating the align-

ments, and computing a maximum likelihood

tree on the concatenated alignments. Finally,

supertrees are computed on the source trees

using MRP, MRL, SuperFine+MRP, and Super-

Fine+MRL. The resultant species trees are then

compared to each other with respect to the miss-

ing branch rate and running time. Figure 1 shows

results obtained on 1,000-taxon simulated

datasets and demonstrates that SuperFine+MRP

MRL and SuperFine+MRL, Fig. 1 We present tree error

and running times (in minutes) for supertree methods on

ten replicates of 1,000-taxon datasets. The method given

parenthetically indicates the heuristic used to solve MRP

or MRL (e.g., PAUP* for MP and FastTree-2 (Price

et al. 2010) or RAxML for ML). The scaffold density

refers to the percentage of the taxa that are in the “scaf-

fold” dataset. We show standard error for the missing

branch rates, and the standard deviation for the running

times. Averages are computed for those replicates with

sufficient taxonomic overlap to perform an accurate

supertree analysis: n ¼ 10 for all scaffold densities except

n ¼ 7 for the 20% scaffold density and n ¼ 9 for 50%

scaffold density (reproduced (with permission from the

publisher) from Nguyen et al. (2012, 7:3))
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and SuperFine+MRL provide the best accuracy

of all methods and are much faster than the other

methods. It also shows that MRL outperforms

MRP with respect to accuracy under low scaffold

density conditions. Finally, MRP is “solved”

using MP heuristics in PAUP* (Swofford 2003),

while MRL is “solved” using either FastTree-2

(Price et al. 2010) or RAxML (Stamatakis 2006).

Note that the choice of ML heuristic has an

impact on the running time and accuracy of the

MRL method. Note also that SuperFine+MRL

(FastTree) matches the accuracy of SuperFine

+MRP(PAUP*) but is much faster.

Summary

The construction of a large phylogeny, poten-

tially spanning the Tree of Life, is considered to

be one of the hardest computational problems in

biology. A central approach to this problem

involves using supertree methods, which com-

bine source trees, each on a subset of the species,

into a tree on the full set of species. While many

supertree methods have been developed, MRP

(matrix representation with parsimony) is the

most well known and most frequently used

supertree method. However, newer supertree

methods – including MRL (matrix representation

with likelihood) and QMC (Quartets MaxCut) –

have been introduced that provide comparable or

better accuracy to MRP. Finally, a new technique

for “boosting” supertree methods has been devel-

oped. This method, called “SuperFine,” operates

in two steps, where the first step constructs

a consensus tree from the source trees and the

second step uses the base supertree method to

refine the consensus tree. Simulations show that

SuperFine improves the accuracy of MRP, MRL,

and QMC while also reducing the running time

used by these methods. Thus, SuperFine is

a general purpose meta-method for improving

supertree estimation.
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Definition

Microbial diversity is broadly defined as genetic

variation in natural microbial populations.

Introduction

Metagenomics studies the genetic materials of

a natural microbial community recovered

from an environmental sample. A typical

metagenomic study involves two major steps,

including an initial experimental stage for genetic

material extraction and sequencing and

a following stage using standard bioinformatic

tools for molecular sequence analysis. The pre-

sent review, however, focuses on several recently

developed computational methods that are

designed to explore ecological diversity of

microbial populations through analyzing

published metagenomic databases. Although

these methods have only been used to mine

metagenomic data sets from the oceans, they

can be easily adapted to those from any other

environments.

An Ensemble Machine Learning Method
to Predict Protein Subcellular
Localization of Metagenomic Sequences

Bacteria consume dissolved organic matter

(DOM) through hydrolysis, transport, and intra-

cellular metabolism, and these activities occur in

distinct subcellular localizations. Therefore,

investigation of protein and proteome subcellular

localization is likely to improve our understand-

ings about how bacteria interact with DOM.

Many computational algorithms have been

developed to predict the subcellular localization

of proteins. These algorithms employ a variety of

supervised machine learning techniques and dif-

ferent information sources to make predictions.

They can be generally classified into three types.

One type of methods explores the presence/

absence of signal peptides or specific protein

domains, such as SignalP (Dyrlov Bendtsen

et al. 2004) and Phobius (K€all et al. 2007).

These methods require protein sequences to be

complete. Metagenomic peptides, however, are

often fragmentary, making these methods not

applicable. The second type, such as Proteome

Analyst, uses localization information from

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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well-annotated homologous sequences identified

by BLAST. It is not suitable to make discoveries

of a protein family with different subcellular

localizations. The third type of methods builds

machine learning models (e.g., support vector

machine) and predicts protein localization using

features, such as amino acid/dipeptide composi-

tional bias, physicochemical properties of amino

acids, and others. Since these sequence features

are derived from whole protein sequences, most

algorithms in this category are minimally affected

by the incompleteness of peptide sequences.

Examples are CELLO (Lu et al. 2004), SUBLOC

(Hua and Sun 2001), and PSLDOC (Chang

et al. 2008). Only the third approach is useful in

the case of metagenomic peptides which are often

fragmentary.

Because all algorithms have their own bias,

the predictions from individual algorithms in the

third category are frequently inconsistent. This is

related to the fact that sorting signals targeting

different subcellular locations usually share some

similarities. For example, sorting signals

targeting the periplasm and outer membrane

both have N-terminal positively charged regions.

In this case, prediction algorithms usually have

some ambiguity for distinguishing these neigh-

boring compartments. When an algorithm pre-

dicts a protein as a periplasmic protein with the

highest confidence, it also implies that the protein

has a probability of being located in its neighbor-

ing compartments, including the cytoplasm, inner

membrane, outer membrane, and extracellular

space, with higher probability assigned to the

locations closest to the periplasm. Indeed, neigh-

boring compartments are usually reported as

suboptimal predictions by the component algo-

rithms (CELLO, SUBLOC, and PSLDOC). The

MetaP algorithm proposed recently considers

neighborhood relations among subcellular locali-

zations and also suboptimal predictions. It thus has

the benefit of resolving conflicting predictions by

the base algorithms and achieves higher precision

and accuracy of prediction (Luo et al. 2009).

The predicted location of MetaP for

a sequence s is the one that has the maximum

sum of weighted voting for that subcellular local-

ization. The prediction can be denoted formally

as Ps ¼ argmaxi
XN

j¼1

P i, jð Þ where N is the total

number of base predictors and i is the index of

a predicted subcellular compartment: cytoplas-

mic (i ¼ 1), cytoplasmic membrane (i ¼ 2),

periplasmic (i ¼ 3), outer membrane (i ¼ 4),

and extracellular (i ¼ 5). P(i, j) denotes the vot-

ing weight of the prediction of the j th element

predictor for compartment i . It is defined as

P i, jð Þ ¼
XMj

k¼0

2�jCK�ij �WK, whereMj is the num-

ber of predictions of the jth predictor. It means that

the votingweight of a prediction by the jth predictor

for compartment i depends on the offset of the

index CK of its predicted class with regard to

the index i as well as its normalized score WK.

The voting weightWK forKth prediction is defined
on the basis of its relative score by comparisonwith

all other predictions made by this algorithm.

Because raw scores of predictions from different

component base algorithms are not directly com-

parable, the raw score SK is converted into a nor-

malized probability p(K) ¼ p(S � SK) by

calculating the percentage of predictions with

lower raw scores among all predictions for a

given algorithm.WK is then defined asWK ¼ p(K).
The performance of MetaP and the component

algorithms was evaluated using sets of testing

sequences whose localizations were verified by

experiments (Menne et al. 2000). For the purpose

of testing the accuracy of fragmentary protein

prediction, the N-terminal of the testing

sequences is removed. This benchmark test

showed that MetaP makes more accurate predic-

tions of fragmentary peptide sequences than any

component method.

MetaP was applied to several protein families

of alkaline phosphatases using the Global Ocean

Sampling (GOS) metagenomic data sets (Luo

et al. 2009). Alkaline phosphatases are major

hydrolytic enzymes of organic phosphoesters

which are the dominant forms of dissolved

organic phosphorus in the ocean and providing

an important source to meet bacterial phosphorus

requirements. It was thought that marine

bacterial alkaline phosphatases are exclusively
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ectoenzymes. However, MetaP predicted that

about 40 % of the alkaline phosphatases are

located in the cytoplasm (Fig. 1). Further bioin-

formatic analysis suggested that the cytoplasmic

alkaline phosphatases might play a role in hydro-

lyzing the imported small organic phosphorus

compounds. In addition, application of MetaP to

a metatranscriptomics data set showed diel vari-

ations in the fraction of transcripts encoding inner

membrane and periplasmic proteins compared to

cytoplasmic proteins (Fig. 2), suggesting a close

coupling of photosynthetic extracellular release

and bacterial consumption (Luo 2012).

An Evolutionary Genetic Method to
Classify Metagenomic Reads
Taxonomically

Metagenomic DNA represents genetic potential

of the microbial community in an environment.

Due to its unbiased nature, a majority of

a metagenomic sample consists of DNA from

those abundant microbial lineages. Therefore, it

provides raw material for studying genome con-

tent of the abundant taxa in the nature. On the

other hand, metagenomic DNA is a mixture

from all microbes in the sample, making it diffi-

cult to study genome content of a specific micro-

bial lineage in a systematic way. It is therefore

important to develop high-throughput computa-

tional approaches to systematically classify

metagenomic genes taxonomically. This would

lead to an improved understanding of the ecolog-

ical functions of the abundant taxa in the nature.

Definitively assigning sequences from diverse

metagenomic data sets to taxonomic groups is

problematic, however. Most applications rely on

BLAST-based (Altschul et al. 1997) identifica-

tion of best hits to an annotated sequence data-

base. While the BLAST best hit approach is easy

to use, its accuracy is decidedly influenced by the

composition of the annotated database. Thus,

a substantial fraction of best BLAST hits may

not be the closest relatives phylogenetically, an

issue that is exacerbated when taxonomic groups

are not evenly represented in the database (Koski

and Golding 2001). A second type of methods

employs machine learning principles to classify

metagenomic reads based on the nucleotide

sequence characteristics (McHardy et al. 2007).

These methods are also subject to the high

New Computational
Methodologies to
Understand Microbial
Diversity,
Fig. 1 Subcellular

localization distributions of

APases recovered from the

GOS metagenomic

database (figure adapted

from Luo et al. 2009)
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false-positive issue, which cannot meet the needs

of many ecological studies.

A bioinformatic approach is recently devel-

oped to assign metagenomic gene fragments to

taxonomic groups by computing evolutionary

distances of protein-coding DNA sequences

(Luo et al. 2012). In a protein-coding DNA

sequence, point mutation occurs both in synony-

mous sites which do not change the

corresponding amino acid sequence and in

non-synonymous sites which change the encoded

amino acids. Thus, the evolutionary distances of

protein-coding DNA sequences can be

represented using synonymous (dS) and

non-synonymous (dN) substitution rate. More spe-

cifically, dS is the number of synonymous sub-

stitutions per synonymous site, and dN for the

number of non-synonymous substitutions per

non-synonymous site. Since synonymous muta-

tions are largely invisible to natural selection,

synonymous sites are easily saturated with sub-

stitutions. In contrast, most non-synonymous

mutations are deleterious, and many of them

have been eliminated by purifying selection.

Thus, dN is much smaller than dS in a vast majority

of genes (Luo and Hughes 2012). Often, marine

microbial ecologists are interested in highly

diverged lineages (e.g., Roseobacter, SAR11,

Vibrio, Prochlorococcus). At this level of diver-
gence, the synonymous sites are saturated with

substitutions among some members of the line-

age (Luo and Hughes 2012). Therefore, dN is used

to measure the evolutionary distances of protein-

coding genes. The dN pipeline assigns

a metagenomic gene to a microbial clade (e.g.,

the marine Roseobacter clade) based on the

requirement that the mean evolutionary distance

between a metagenomic gene and each of the

reference orthologous genes from the clade

members is smaller than the mean of all

pairwise comparisons among the reference

orthologous genes in that clade. Mathematically,

the requirement can be expressed using
Xn

1
dN, ref�meta

n <

X n
2ð Þ

1
dN, ref�ref

n
2ð Þ , in which n

is the number of reference orthologous genes, dN,

ref � meta is dN between a reference gene and the

metagenomic gene fragment, and dN,ref � ref is dN
between two reference genes.

The dN pipeline takes in alignments, each

consisting of reference orthologous genes

belonging to the core genome of a monophyletic

microbial clade and one metagenomic gene frag-

ment with unknown taxonomic affiliation. Iden-

tification of putative gene fragments from

metagenomic reads requires in silico translation

of the reads in six reading frames and then selec-

tion of all fragments with a certain minimal

length (e.g., 60 amino acids) between stop

New Computational
Methodologies to
Understand Microbial
Diversity,
Fig. 2 Differential gene

expression in protein

subcellular localizations

between day and night in

surface waters of

North Pacific Subtropical

Gyre. The letter above the

bar indicates the

significance level: (a),
P < 0.001; (b), P < 0.05

(figure adapted from Luo

2012)
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codons. Then, BLAST identifies a set of putative

metagenomic gene fragments that are homolo-

gous to the reference genes (Fig. 3). Each of the

homologous metagenomic gene fragments will

be aligned to the reference genes at the amino

acid level, and the DNA sequences are imposed

on the alignment. Next, the PAML software

(Yang 1997) computes dN for each pairwise com-

parison in the DNA alignment.

The output of the dN pipeline is a set of

metagenomic gene fragments that are assigned

to the microbial clade. Validation of the dN pipe-

line using phylogenetic analyses showed that the

false-positive rate is smaller than 1%. Since these

classified metagenomic gene fragments are

homologous to the core genomes of a microbial

clade which encode for biological functions that

are essential to basic cellular functionality, they

are unlikely to provide valuable information

about ecologically relevant processes. However,

depending on the library design for sequencing,

a read may be partnered with a pair end read, both

of which are from the same DNA molecular, and

the pair end read may carry an ecologically rele-

vant gene. Thus, an important extension of the dN

pipeline is to examine the pair end of the assigned

reads. Here, the metagenomic gene fragment that

is directly identified by the dN pipeline is named

“anchor sequence,” and its pair end read is named

“mate pair sequence.” These assigned

metagenomic genes are by no means

a comprehensive list of genes affiliated with this

microbial clade, since they can be only identified

if they are core genes or physically linked to

a core gene of that clade.

This whole procedure, including

preprocessing, the dN pipeline, and the mate read

analysis, was applied to assign metagenomic

genes in the Global Ocean Sampling (GOS) data

sets (Rusch et al. 2007) to the marine

Roseobacter clade. The major finding is that the

uncultivated Roseobacter populations differ sys-

tematically in several genomic attributes from

their cultured representatives, including fewer

genes for signal transduction and cell surface

modifications but more genes for Sec-like protein

secretion systems, anaplerotic CO2 incorpora-

tion, and phosphorus and sulfate uptake (Fig. 4).

Several of these trends match well with character-

istics previously identified as distinguishing

r- versus K-selected ecological strategies in

bacteria, suggesting that the r-strategist model

assigned to cultured roseobacters may be less

applicable to their free-living oceanic counterparts.

Thus, genomic analyses of cultured roseobacters

appear to be biasing our view of the lineage’s

New Computational Methodologies to Understand
Microbial Diversity, Fig. 3 A flowchart of

preprocessing steps for dN pipeline for high-confidence

phylogenetic classification of metagenomic DNA frag-

ments. The circles on the leftmost are Roseobacter
genomes, in which pink-colored parts represent core

genomes. The gene fragments in the GOS metagenome

are categorized into three parts, in which pink colored are

Roseobacter core genes, green colored are other bacterial

genes homologous to the Roseobacter core genes, and

blue colored are not homologous to the core genes which

are not recovered by a BLAST similarity search. The dN

pipeline is designed to filter out other bacterial genes in

green, but a few true Roseobacter sequences are missing

because of the conservative nature of the dN pipeline

(figure adapted from Luo et al. 2012)
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ecology toward a stronger r-selected ecological

model than is merited (Luo et al. 2012).

A Statistical Modeling Approach for
Comparative Metagenomics

An important goal of metagenomics is to explain

the genetic potential of the microbial community

in the context of the environmental gradients.

One way of approaching this goal is to reveal

correlations between environmental gradient

and gene abundance. Although standard statisti-

cal tests such as regression analysis have been

successful in correlating gene abundance and

geochemical parameters in large-scale sampling

efforts, exploring smaller data sets requires

designing sophisticated statistical modeling

approaches. The following example illustrates it

(Luo et al. 2011).

Phosphonate contains a stable carbon-

phosphorus (C-P) bond, comprising 25 % of the

high-molecular-weight dissolved organic phos-

phorus in the ocean. Phosphonates are degraded

by two types of enzymes, C-P lyases and hydro-

lases. The C-P lyase is a multienzyme complex,

and the corresponding genes are only expressed

when inorganic phosphate becomes limited,

suggesting that the activity of C-P lyase genes is

regulated by phosphate concentrations. In the

ocean, there is a vertical gradient of phosphate

level, in which phosphate is depleted in the upper

euphotic zone (<100 m), reaches its maximum at

the base of mesopelagic zone (1,000 m), and has

a minor decrease in the bathypelagic zone

(>1,000 m). Only the phosphate level in the

upper euphotic zone can be a limiting factor to

biological productivity. Thus, the depth profile of

ocean water column provides a natural platform

to test microbial adaptation to phosphate gradient

New Computational Methodologies to Understand
Microbial Diversity, Fig. 4 Differential representation

of gene families in oceanic compared to cultured

roseobacters (M versus A plot). Families plotting above

the line are enriched, and those plotting below the line are

depleted in the oceanic roseobacters. Non-gray symbols

represent gene families with significant differential repre-

sentation between the two metagenomes. Colors indicate

gene families with similar functions: dark purple,

anaplerotic CO2 incorporation; light purple, Sec secretion
system; dark orange, signaling; light orange, nutrient

transport; teal, antibiotic synthesis or resistance; maroon,
C1 metabolism; dark green, cell surface properties; and

light green, hypothetical. This plot shows differential

representation for just one of three simulated

metagenomic data sets that were constructed, all of

which had congruent results (figure adapted from Luo

et al. 2012)
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by correlating the vertical gradient of phosphate

and C-P lyase gene abundance in different

depths.

Examination of a recently available

metagenomic data set containing thousands of

sequences at each of seven depths (10 m, 70 m,

130 m, 200 m, 500 m, 770 m, 4,000 m) in the

North Pacific Subtropical Gyre showed that the

lytic executor genes (phnG, phnH, phnI, phnJ,

phnM) of the C-P lyase complex are exclusively

found in the upper euphotic zone. To validate the

pattern of C-P lyase executor genes being present

in the surface ocean metagenomes but absent in

deeper samples, a statistical approach was

designed. Testing the significance of the exis-

tence or absence of executor genes in the two

depth regions is equivalent to testing the follow-

ing two hypotheses: (1) executor genes exist in

surface waters (�70 m), and (2) executor genes

are absent at depths �130 m. The basic method

applied was the one-sample test on proportions.

Specifically, a 95 % confidence interval was set

up to indicate the range of possible true propor-

tions (or population proportions) of executor

genes, which was defined as

p� 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=Np� �

. Here, N is the num-

ber of observed genes in total. The symbol p

denotes the sample proportion. In this context,

sample proportions are the proportions of the

executor genes among all the genes collected

and mathematically defined as the ratio between

the number of observed executor genes and the

number of observed genes in total (i.e., sample

size N) at each depth category (either �70 m or

�130 m) in the water column. The confidence

interval was set up based on the normality

assumption of proportions when the sample size

(N) is large, which is certainly a valid assumption

for this data set. If zero is not included in the

interval, then the existence of the executor

genes can be confirmed with 95 % of confidence.

In the case of the upper euphotic zone, the 95 %

of confidence does not include zero, confirming

that executor genes exist in surface waters

(�70 m).

The above method would not be applicable if

sample proportions of the executor genes are

zeros because any 95 % confidence intervals

would include zero. This indicates that it is

unlikely to see any executor genes at the desig-

nated water depths where these genes are not

found. However, the absence of the executor

genes could indicate that these genes are rare

and the sample size is not large enough or the

number of observed executor genes might have

been miscounted, i.e., misclassification might

have occurred.

To take these possibilities into account, the

following two directions are considered for fur-

ther investigation: (1) increasing the sample size

so that it is large enough to collect one executor

gene or (2) increasing the number of observed

executor genes to correct possible misclassifica-

tions. Biologically, these two directions are inde-

pendent, but mathematically they are linked. The

following mathematical principle proves that if

direction 2 cannot lead to the confirmation of the

true existence of executor genes, then the exis-

tence cannot be confirmed through direction

1 either.

N130 is used to denote the current sample size

at depth 130 m and deeper. A larger sample

size is denoted as N130 + X with X > 0.

If the executor genes are miscounted

by 1, a 95 % confidence interval can be set

up with the lower bound given as

1=N130 � 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N130 � 1� 1=N130ð Þ=N130

p
.

If this lower bound of confidence interval

includes zero, then it must be negative, i.e.,

1=N130 < 1:96� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N130 � 1� 1=N130ð Þ=N130

p
.

This gives (N130 � 1)/N130 > 1/1.962. Now the

sample size increases to N130 þ X . Since

(N130 + X � 1)/(N130 + X) > (N130 � 1)/N130

and (N130 � 1)/N130 > 1/1.962, we then have

(N130 + X � 1)/(N130 + X) > 1/1.962.

To test direction 2, the numbers of miscounted

genes were specified as Nmis ¼ 1, 2, 3, 4, 5, 6.

Again, the sample proportions and the 95 % con-

fidence intervals are calculated for each case. It

can be seen that zero was always included in the

95 % confidence intervals unless four or more

executor genes are misclassified (Fig. 5), which

is unlikely to happen in practice due to the char-

acteristic of the rarity of these executor genes.
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Therefore, executor genes are indeed absent at

depths �130 m.

At this point, the two earlier proposed hypoth-

eses have been tested. The proposed statistical

modeling approach can be widely applied to

resolve biological questions regarding correla-

tions between environmental gradient and gene

abundance when the data sets are not large

enough to do linear regression analysis.

Summary

In the past decade, large-scale metagenomic data

sets have been released to the public community,

and this trend is likely to be continued. Many

biological questions may be answered by analyz-

ing these data sets with appropriate computational

approaches. Some of the promising methods are

illustrated above, which are based on machine

learning techniques, molecular evolutionary prin-

ciples, and statistical modeling approaches. These

studies are examples of future research directions

of computational metagenomics.
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Synonyms

Functional potential evaluator

Definition

Although one of the main goals of genomic anal-

ysis is to elucidate the comprehensive functions

(functionome) in individual organisms or a whole

community in various environments, a standard

evaluation method for discerning the functional

potentials harbored within the genome or

metagenome has not yet been established. Thus,

a new evaluation method for the potential

functionome, based on the completion ratio of

Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional modules, was developed.

Basic methodology and application of this

method for comparative functional genomics

and metagenomics are expounded in this entry.

Introduction

One of the main goals of genomic and

metagenomic analyses is to extract the compre-

hensive functions (functionome) harbored in an

individual organism or a whole community in

various environments. However, evaluating the

potential functionome is still difficult when com-

pared with the functional annotation of individual

genes or proteins, i.e., based on a similarity

search against a reference database such as the

NCBI-NR database of non-redundant protein

sequences, usually employing a variant of the

BLAST program, or on the protein domain search

against a protein family database such as PFAM.

This is mainly because a standard methodology

for extracting functional category information,

such as individual metabolism, energy genera-

tion, and transportation systems, has not yet

been fully established. Traditionally, clusters of

orthologous groups (COGs) have been used for

functional classification of proteins, particularly

in microbial genome sequencing projects. The

COG database provides 17 functional categories

for orthologous groups in order to facilitate func-

tional studies and serves as a platform for func-

tional annotation of newly sequenced genomes

and studies on genome evolution. Although

the COG functional categories are often used

within Standards in Genomic Sciences (http://

standardsingenomics.org/index.php/sigen) as a

standard analysis, through combination with

the Integrated Microbial Genomes (IMG) system

(Markowitz et al. 2012), no large functional

differences are usually observed in such broad

categories, even between phenotypically dif-

ferent organisms and also whole microbial
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communities in different environments. Thus,

it is difficult to differentiate the functional

potentials between different genomes and

metagenomes by analysis based on COG

classification.

Recently, more detailed and comprehensive

functional categories facilitated in KEGG

(Kanehisa and Goto 2000) and SEED (Overbeek

et al. 2005) have been used for comparative geno-

mics and as metagenomics tools to highlight

functional features represented by KAAS

(KEGG Automatic Annotation Server) (Moriya

et al. 2007), MG-RAST (Meyer et al. 2008), and

MEGAN (Huson et al. 2011) (Fig. 1). They all

employ a similarity-based method for functional

annotations, but utilize different databases for

protein sequences, default threshold values, and

orthology IDs for mapping annotated sequences

to functional categories depending on their

desired outputs, namely, pathways in KEGG or

subsystems in SEED. Notably, KAAS has been

applied to protein-coding sequences from several

metagenomic samples, and their annotated

KEGG pathways and other classifications are

already available. The outputs of these systems

include functional distributions of each sample

by hierarchical classification using KEGG and/or

SEED and comparisons between several samples

when necessary. However, it is still difficult to

evaluate the functional potentials via the current

classification systems (such as pathway

map-based analysis) because the functional infor-

mation from different organisms such as

microbes, plants, and animals has been mixed up.

New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE,
Fig. 1 Outline of the methodology. (a) Workflow from

sequencing to evaluation of the potential functionomes.

(b) Detailed workflow of the three annotation servers,

KAAS, MG-RAST, and MEGAN4, using query

sequences after gene finding process of sequenced data;

KAAS and MEGAN4 use BLASTP and BLASTX for

amino acid and nucleotide query sequences, respectively,

and MG-RAST uses only BLASTX. All use different

databases, i.e., KEGG GENES for KAAS, M5nr (Willke

et al. 2012) for MG-RAST (M5nr includes the SEED as

a subset), and NCBI-NR for MEGAN4, and different

default threshold values for the BLAST hits. Each server

converts the hit entries to the corresponding orthology IDs

for functional annotation and pathway/module/subsystem

mapping. Red-colored texts of KAAS indicate its

improvements in the current study. This figure has been

modified from the previous one (Takami et al. 2012)
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On the other hand, KEGGMODULE, a newly

defined database that collects pathway modules

and other functional units, presents a promising

tool for functional classification (Kanehisa

et al. 2008). Because the KEGG modules cover

major metabolisms and physiological processes

necessary for functional characterization of each

categorized organisms such as plants, animals,

and microbes, a new evaluation method using

the KEGG MODULE database was developed

to resolve the difficulties for evaluation of poten-

tial functionome and it was employed for com-

parative functional genomics and metagenomics

(Takami et al. 2012). Based on this result, we also

developed metabolic and physiological potential

evaluator (MAPLE) system. The MAPLE pro-

vides a user-friendly Web interface not only for

characterization of potential functionome har-

bored in the genomic and metagenomic

sequences but also for comparative analyses for

the module completion ratio (MCR) and mapping

patterns to the KEGG modules (http://www.

genome.jp/tools/maple/).

Development of New Evaluation
Method for Potential Functionome

Kegg Module

KEGG MODULE (Kanehisa et al. 2008) is

a collection of pathway modules and other func-

tional units designed for automatic functional

annotation or pathway enrichment analysis. Path-

way modules such as the TCA cycle core module

(Fig. 2a) are tighter functional units than KEGG

pathway maps and are defined as consecutive

reaction steps, operon or other regulatory units,

and phylogenetic units obtained by genome com-

parisons. Other functional units include (1) struc-

tural complexes representing sets of protein

subunits for molecular machineries such as pho-

tosystems (Fig. 2b), (2) functional sets

representing other types of essential sets such as

aminoacyl-tRNA synthetases, and (3) signature

modules representing markers of phenotypes

such as enterohemorrhagic E. coli pathogenicity

signature for Shiga toxin. The KEGG MODULE

falls into 56 small functional categories (Table 1),

and the latest version is available from the KEGG

FTP site (http://www.kegg.jp/kegg/download).

Each module is defined by the combination of

KO identifiers so that it can be used for annota-

tion and interpretation purposes in individual

genomes or metagenomes. Notations of the Bool-

ean algebra-like equation for this definition

include space-delimited items for pathway ele-

ments, comma-separated items in parentheses for

alternatives, a plus sign to define a complex, and

a minus sign for an optional item. Some modules

have branching points in their reaction cascades,

leading to different products or alternative reac-

tion pathways. These modules are divided into

several parts depending on the branching patterns

and are redefined as submodules for accurate

calculation of the completion ratio. The module

completion ratio was calculated for each

submodule to examine fine-grained functional

categories (Takami et al. 2012).

Calculation of the Module Completion Ratio

Based on a Boolean Algebra-Like Equation

The completion ratio of all KEGG functional

modules in each organism was calculated based

on a Boolean algebra-like equation. For this anal-

ysis, one genome was selected from each of the

1,041 available prokaryotic species as of March

2013. As one of the examples, M00009_1 is

a core pathway module for the TCA cycle com-

prising eight components (Fig. 2a). In each KO

number set, vertically connected KO identifiers

indicate a complex and therefore represent “And”

or “+” in the Boolean algebra-like equation,

whereas horizontally located K numbers indicate

alternatives and represent “Or” or “,” in the equa-

tion. When genes are assigned to all KO identi-

fiers in each reaction according to the Boolean

algebra-like equation, the module completion

ratio (MCR) becomes 100 %. If genes are not

assigned to KO identifiers in two components,

the MCR is calculated as 75 %

(6/8 � 100 ¼ 75). On the other hand,

M00163_1 comprising six components in

cyanobacteria represents a complex module for

photosystem I. If genes assigned to KO identifiers

in two of those components are missing, theMCR

is calculated as 66.7 % (Fig. 2b).
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New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE,
Fig. 2 KEGG functional modules. (a) A pathway mod-

ule. The module M00009 comprising eight components is

defined for the citrate cycle (TCA cycle) core module and

represented as a Boolean algebra-like equation of KO

identifiers or K numbers for computational applications.

The relationship between this module and the

corresponding KEGG pathway map is also shown by

indicating corresponding K number sets in the module

and EC numbers in the pathway map using the same

index. In each K number set, vertically connected
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Assignment of the Query Sequences to KO

Identifiers

Because KAAS is an efficient tool for assigning

KO identifiers to genes from complete genomes

based on a BLAST search of the KEGG GENES

database combined with a bidirectional best-hit

method (Moriya et al. 2007), the KAAS system is

used to assign KO identifiers to protein sequences

frommetagenome projects and to users’ own data

from other genome and metagenome projects.

Recently the KAAS system has just been slightly

modified to improve the accuracy of KO assign-

ments by (i) using a variable bit-score threshold

instead of a fixed one (60 in the original KAAS

system) to avoid missed annotations when there

are sufficient high-scoring hits for KO assign-

ment and (ii) considering taxonomic information

of each KO when more than one candidate KO is

obtained (Fig. 1) (Takami et al. 2012). This mod-

ification resulted in improved positive predictive

value (#true positives/#all positives) by 2–5 % in

the KO reassignment tests for 30 selected species.

The latest stand-alone KAAS system for Linux

and Mac OS X is available from the Web site of

KAAS HELP (http://www.genome.jp/tools/kaas/

help.html). This new KAAS was used for estima-

tion of database dependency on the accuracy of

the KO assignment (Fig. 3). Escherichia coli was
selected as a representative of prokaryotic species

and constructed four different types of data sets:

without E. coli and closely related species (1,239

species), without all species within family

Enterobacteriales (1,200 species), without all

species within class Gammaproteobacteria

(1,040 species), and without all species within

phylum Proteobacteria (755 species). The draft

genome of E. coli from infants in Trondheim,

Norway, (accession, ERX127960) was used for

this analysis because the assembled genome from

the short-read sequences produced by a 454 GS

FLX Titanium sequencer contains several

sequencing errors. The amino acid sequences of

complete CDSs identified from the draft genome

were randomly fragmented to 50, 60, 80, 100,

120, 150, and 200 residues in length, and each

fragment was subjected to verification of data-

base dependency based on the accuracy of KO

identifier assignment (Fig. 3). In general, because

most microbes thriving in natural environments

are uncultivable, many genes in environmental

metagenomes do not show significant similarity

to those from known species in the public genome

database. Especially when microbial genomes

belonging to the same phylum as the query

microbe are missing in the genome database, the

accuracy rate of KO assignment to proteins phy-

logenetically distant from known phyla is

expected to be low. In fact, when all species

within phylum Proteobacteria were not included

in the data set, the accuracy rate of KO assign-

ment to full proteins of E. coli decreased to 80 %,

but the accuracy rate of approximately 70 % was

maintained even in the proteins fragmented to

about 100 residues (Fig. 3). Considering these

results, even if the genes from unidentified

phyla of the so-called candidate division are

included in the metagenomes, the KAAS system

can presumably assign KO identifiers to genes

longer than 300 bp (100 amino acids) with an

accuracy rate of approximately 70 %.

Distribution Patterns of the Module
Completion Ratio in 1,256 Prokaryotic
Species

KEGG modules are modular functional units

derived from the KEGG pathways and are cate-

gorized into pathway modules, structural com-

plexes, functional sets, and genotypic

��

New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE, Fig. 2
(continued) K numbers indicate a complex and therefore

represent “And” or “+” in the Boolean algebra-like equa-

tion, whereas horizontally located K numbers indicate

alternatives and represent “Or” or “,” in the equation. (b)
A structural complex module. The structural complex

module M00163 comprising six components is defined

for the type I photosystem. The Boolean algebra-like

equation and the corresponding KEGG pathway map are

also shown. This figure has been redrawn with the updated

KEGG module database from the previous one (Takami

et al. 2012)

New Method for Comparative Functional Genomics and Metagenomics Using KEGG MODULE 529 N

N

http://www.genome.jp/tools/kaas/help.html
http://www.genome.jp/tools/kaas/help.html


signatures. Each KEGG module is designed for

automatic functional annotation by a Boolean

algebra-like equation of KEGG Orthology IDs.

However, it remains uncataloged as to which

species possess common modules or if certain

modules demonstrate universality or rareness

between specific species, phyla, etc. Specific

information regarding the phylogenetic profiles

of each module holder would be especially useful

for annotating metagenomes. Thus, the distribu-

tion patterns of the completion ratios of the

KEGG modules were examined in the 1,256 pro-

karyotic species whose genomic sequences have

been completed. Although distribution of the

module completion ratios in the 1,256 species

varied greatly depending on the kind of module,

it could be categorized into four patterns

(universal, restricted, diversified, and

nonprokaryotic) regardless of the module type

(pathway, structural complex, signature, or func-

tional set), when considering 70 % of all species

to represent a majority measurement for the pat-

ters (Table 2 and Fig. 4).

Pattern A defined as “universal” comprised

modules completed by more than 70 % of the

1,256 species (Fig. 4a). Of 226 pathway modules

containing submodules, modules grouped into

pattern A account for only 7.5 % (Table 2) and

mainly belong to the categories of central carbo-

hydrate metabolism and cofactor and vitamin

biosynthesis. Pattern B defined as “restricted”

comprised modules completed by less than

30 % of the species (Fig. 4b) and accounted for

17.3 % of all the pathway modules, and 37 mod-

ules were rare modules completed by less than

10 % of the 1,256 species (Table 2). Pattern

C defined as “diversified” accounted for 40.3 %

of all the pathway modules and comprised mod-

ules ranging widely in completion ratios.

M00012_1 (the glyoxylate cycle comprising

five components) is one of the representatives of

pattern C (Fig. 4c). One or several KO identifiers

were assigned to each reaction in this module;

however, KO identifiers, except for K01637 and

K01638 assigned to the third and fourth compo-

nents, were also assigned to other pathway mod-

ules such as the TCA (Krebs) cycle (M00009_1),

first carbon oxidation (M00010_1), reductive

New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE,
Table 1 Breakdown of small functional categories of

the KEGG modules

Pathway modules Structural complex modules

Cofactor and vitamin

biosynthesis

Saccharide and polyol transport

system

Central carbohydrate

metabolism

Phosphotransferase system

(PTS)

Aromatics degradation ATP synthesis

Lipid metabolism Phosphate and amino acid

transport system

Aromatic amino acid

metabolism

Mineral and organic ion

transport system

Carbon fixation ABC-2 type and other transport

systems

Methane metabolism Bacterial secretion system

Glycan metabolism Metallic cation, iron-

siderophore, and vitamin B12

transport system

Sterol biosynthesis RNA processing

Fatty acid metabolism Ubiquitin system

Lysine metabolism Spliceosome

Other carbohydrate

metabolism

Protein processing

Glycosaminoglycan

metabolism

Repair system

Terpenoid backbone

biosynthesis

DNA polymerase

Cysteine and methionine

metabolism

Peptide and nickel transport

system

Nitrogen metabolism Replication system

Branched-chain amino acid

metabolism

RNA polymerase

Lipopolysaccharide

metabolism

Proteasome

Purine metabolism Photosynthesis

Pyrimidine metabolism Carbohydrate metabolism

Polyamine biosynthesis Ribosome

Alkaloid and other

secondary metabolite

biosynthesis

Glycan metabolism

Sugar metabolism

Other terpenoid

biosynthesis

Functional set modules

Serine and threonine

metabolism

Two-component regulatory

system

Arginine and proline

metabolism

Aminoacyl-tRNA

Phenylpropanoid and

flavonoid biosynthesis

Nucleotide sugar

Sulfur metabolism

Histidine metabolism Signature modules

Other amino acid

metabolism

Pathogenicity
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New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE,
Fig. 3 Effect of database dependency on accuracy of
the KO assignment. Purple triangles show the results

using the data set without proteins from the genera

Escherichia, Salmonella, Shigella, and Yersinia (1,239

species). Similarly, green squares, brown diamonds, and

blue dots show the results without proteins from the order

Enterobacteriales (1,200 species), class Gammaproteo-
bacteria (1,040 species), and phylum Proteobacteria
(755 species), respectively. KO identifiers specific to the

genera Escherichia, Salmonella, Shigella, and Yersinia
(16 KO identifiers), order Enterobacteriales (90), class

Gammaproteobacteria (203), or phylum Proteobacteria
(370) were removed in advance from the protein

data set. Here, the accuracy is defined by the sensitivity

TP/(TP + FN), where TP and FN are the numbers of true

positives and false negatives, respectively. The truncated

proteins were also used to confirm the effect of amino acid

(a.a.) sequence lengths on the accuracy of KO assignments

as described in the text. This figure has been slightly

modified from the previous one (Takami et al. 2012)

New Method for Comparative Functional Genomics and Metagenomics Using KEGG MODULE,
Table 2 Classification of the KEGG modules based on the module completion ratio of 1,256 prokaryotes

Completion

pattern

Definition of module

type

Pathways [226]

Structural

complexes [331]

Functional sets

[86] Signatures [9]

No. of modules

(%)

No. of modules

(%)

No. of modules

(%)

No. of modules

(%)

Total rare Total rare Total rare Total rare

A Universal 17 (7.5) 0 (0) 9 (2.7) 0 (0) 1 (1.2) 0 (0) 0 (0) 0 (0)

B Restricted 39

(17.3)

37

(47.4)

133

(40.2)

99

(81.1)

77

(89.5)

67

(97.1)

8 (88.9) 8 (88.9)

C Diversified 91

(40.3)

41

(52.6)

70

(21.1)

23

(18.9)

5 (5.8) 2 (2.9) 1 (11.1) 1 (11.1)

D Nonprokaryotic 79

(35.0)

0 (0) 119

(36.0)

0 (0) 3 (3.5) 0 (0) 0 (0) 0 (0)

[] shows total number of the KEGG modules containing branched modules. “Rare” indicates the modules completed by

less than 10 % of 1,256 prokaryotic species. Universal, the modules completed by more than 70 % of 1,256 prokaryotic

species. Restricted, the modules completed by less than 30 % of 1,256 prokaryotic species. Diversified, the modules that

varies in the module completion ratio among 1,256 prokaryotic species. Nonprokaryotic, the modules not to be

completed by any prokaryotic species
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TCA cycle (M00173_1), and C4-dicarboxylate

cycle (nicotinamide adenine dinucleotide

(NAD)+-malic enzyme type) (M00171_1).

Some KO IDs assigned to many of the modules,

categorized into pattern C, were also assigned to

several other independent modules. Thus, when

the module completion ratio is low, the relation-

ship between the module completion ratio of the

targeted module and others to which the same KO

identifiers are assigned should be considered.

Pattern D, which accounted for 35.0 % of all

pathway modules, comprised nonprokaryotic

New Method for Comparative Functional Genomics
and Metagenomics Using KEGG MODULE,
Fig. 4 Typical completion patterns to the KEGG
modules by 1,256 prokaryotic species. (a) Universal

modules. The modules completed by more than 70 % of

768 prokaryotic species. M00018_1, which is threonine

biosynthesis (aspartate-homoserine-threonine), is one of

the examples of the pattern A-1. (b) Restricted modules

completed by less than 30 % of 768 prokaryotic species.

M00038_1, which is tryptophan metabolism, is one of the

examples of the pattern B. C: Diversified modules. These

are the modules that vary in the module completion ratio

among 1,256 prokaryotic species. M00012_1, which is

glyoxylate cycle, is one of the examples of the pattern

C. D: Nonprokaryotic modules completed by no prokary-

otic species. M00014_1, which is glucuronate pathway, is

one of the examples of the pattern D. Breakdown of

taxonomic variations that complete each KEGG module

is summarized in Table 3. This figure has been redrawn

with the updated KEGG module and genome databases

from the previous one (Takami et al. 2012)
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modules that are not completed by prokaryotic

species (Fig. 4d).

Of the 331 structural complex modules

containing submodules redefined from modules

with various complex patterns, 133 modules were

categorized into pattern B (47.4 %) and 99 were

rare modules (Table 1). Pattern C accounted for

only 21.1 % in the structural modules compared

with 40.3 % in the pathway modules. Thus, it was

hypothesized that most of the structural complex

modules, except for pattern D, are shared only in

limited prokaryotic species.

Nonprokaryotic modules account for 35 % of

pathway and 36 % of structural complex mod-

ules, respectively, and other modules were clas-

sified into various taxonomic patterns such as

prokaryotic, Bacteria specific, and Archaea spe-

cific based on the MCR profiles (Table 3). These

four patterns indicate the universal and unique

nature of each module and also the versatility of

the KO identifiers mapped to each module. Thus,

the four criteria and taxonomic classification for

each module should be helpful for the interpreta-

tion of results based on module completion

profile.

Application of the Evaluation Method
for Potential Functionome to Genomic
and Metagenomic Analyses

Comparative Functionome Analysis of Bacilli

Based on the KEGG Modules

Bacillus and its related species in genera such as

Oceanobacillus and Geobacillus reclassified

from genus Bacillus (Bacillus-related species)

are known to thrive in a wide range of environ-

mental conditions: pH 2–12, temperatures

between 5 and 78 �C, salinity from 0 % to 30 %

NaCl, and pressures from 0.1 Mpa (atmospheric

pressure) to at least 30 MPa (pressure at a depth

of 3,000 m) (Takami 2006). The genome struc-

ture of these species within family Bacillaceae is

comparatively similar, and the core structure

comprising more than 1,400 orthologous groups

is well conserved among Bacillaceae (Uchiyama

2008). Therefore, moderately related bacillar

genomes from eight species with different

phenotypic properties were selected to test our

evaluation method for potential functionome

using KEGG modules, in order to differentiate

the functional potentials harbored in their

genomes.

The gene products from eight bacillar

genomes were assigned to KO identifiers

constructing each module in 139 pathway,

112 structural complex, and 25 functional set

modules. There was a significant difference in

the module completion ratio by eight bacilli in

terms of at least 25 pathway, 40 structural com-

plex, and 15 functional set modules (Fig. 5a, b).

In particular, the completion ratio in

Oceanobacillus iheyensis, a mesophilic,

extremely halotolerant alkaliphile, was very low

in three modules for NAD biosynthesis, phospha-

tidylethanolamine biosynthesis, and biotin bio-

synthesis. These three modules were completed

by all bacilli except for O. iheyensis although

they are categorized into one of the diversified

modules (pattern C). Conversely, the module for

tryptophan biosynthesis belonging to pattern

C was completed by only O. iheyensis, although
other species partially completed them. Through

these results it was evident that O. iheyensis dif-

fers from other bacilli in its metabolic potentials.

Some of the completed structural complex

modules were found to be shared in bacilli with

the same phenotypic properties or to be indepen-

dently species specific (Fig. 5b). For example,

the Firmicutes-specific modules for the teichoic

acid transport system were shared only among

three mesophilic neutrophiles (B. subtilis,

B. amyloliquefaciens, and B. licheniformis),

although this module is widely shared in other

genera such as Staphylococcus, Clostridium, and

Listeria within phylum Firmicutes. On the other

hand, two other modules, the iron (III) transport

system and phosphonate transport system which

are shared in many prokaryotic species within

various phyla and belonged to pattern C, were

shared only among three mesophilic alkaliphiles

(B. halodurans, B. pseudofirmus, and

O. iheyensis). Although it has been previously

reported that the orthologous genes for the

phosphonate transport system were shared

between O. iheyensis and B. halodurans
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New Method for Comparative Functional Genomics and Metagenomics Using KEGG MODULE,
Table 3 Breakdown of taxonomic patterns of the KEGG modules

Pathway [226] Structural complex [331]

Major taxonomic pattern Number

(%)

Major taxonomic pattern Number

(%)

Nonprokaryote 79 (35.0) Nonprokaryote 119 (36.0)

Prokaryote 50 (22.1) Bacteria 55 (16.6)

Bacteria 30 (13.3) Prokaryote 51 (15.4)

Proteobacteria 27 (11.9) Proteobacteria 36 (10.9)

Euryarchaeota 10 (4.4) Firmicutes 17 (5.1)

Proteobacteria/Actinobacteria 5 (2.2) Actinobacteria 5 (1.5)

Firmicutes 4 (1.8) Cyanobacteria 5 (1.5)

Proteobacteria/Firmicutes/Actinobacteria 3 (1.3) Archaea 4 (1.2)

Chloroflexi 2 (0.9) Proteobacteria/Firmicutes 4 (1.2)

Crenarchaeota 2 (0.9) Euryarchaeota/Crenarchaeota 3 (0.9)

Cyanobacteria 2 (0.9) Euryarchaeota/Crenarchaeota/Nanoarchaeota 3 (0.9)

Actinobacteria/Crenarchaeota 1 (0.4) Proteobacteria/Firmicutes/Fusobacteria 3 (0.9)

Chlamydiae/Cyanobacteria 1 (0.4) Euryarchaeota 2 (0.6)

Chloroflexi/Deinococcus-Thermus/
Euryarchaeota

1 (0.4) Firmicutes/Tenericutes/Actinobacteria 2 (0.6)

Euryarchaeota/Crenarchaeota 1 (0.4) Proteobacteria/Actinobacteria 2 (0.6)

Firmicutes/Euryarchaeota 1 (0.4) Proteobacteria/Aquificae 2 (0.6)

Proteobacteria/Acidobacteria 1 (0.4) Proteobacteria/Firmicutes/Actinobacteria 2 (0.6)

Proteobacteria/Actinobacteria/
Acidobacteria

1 (0.4) Actinobacteria/Cyanobacteria 1 (0.3)

Proteobacteria/Actinobacteria/
Bacteroidetes

1 (0.4) Actinobacteria/Verrucomicrobia/Nitrospirae 1 (0.3)

Proteobacteria/Actinobacteria/
Cyanobacteria

1 (0.4) Firmicutes/Fusobacteria 1 (0.3)

Proteobacteria/Cyanobacteria 1 (0.4) Firmicutes/Spirochaetes 1 (0.3)

Proteobacteria/Firmicutes 1 (0.4) Proteobacteria/Actinobacteria/Deinococcus-
Thermus

1 (0.3)

Proteobacteria/Verrucomicrobia 1 (0.4) Proteobacteria/Actinobacteria/
Verrucomicrobia

1 (0.3)

Functional set [86] Proteobacteria/Bacteroidetes/Aquificae 1 (0.3)

Major taxonomic pattern Number

(%)

Proteobacteria/Chlamydiae 1 (0.3)

Proteobacteria 26 (30.2) Proteobacteria/Chlorobi 1 (0.3)

Firmicutes 19 (22.1) Proteobacteria/Chlorobi/Deferribacteres 1 (0.3)

Bacteria 11 (12.8) Proteobacteria/Cyanobacteria 1 (0.3)

Actinobacteria 6 (7.0) Proteobacteria/Cyanobacteria/Chlorobi 1 (0.3)

Cyanobacteria 6 (7.0) Proteobacteria/Firmicutes/Deferribacteres 1 (0.3)

Nonprokaryote 3 (3.5) Proteobacteria/Firmicutes/Spirochaetes 1 (0.3)

Prokaryote 3 (3.5) Proteobacteria/Tenericutes 1 (0.3)

Firmicutes/Fusobacteria 2 (2.3) Proteobacteria/Thermodesulfobacteria 1 (0.3)

Proteobacteria/Nitrospirae 2 (2.3) Signature [9]

Firmicutes/Tenericutes/Thermotogae 1 (1.2) Major taxonomic pattern Number

(%)

Proteobacteria/Acidobacteria/
Deferribacteres

1 (1.2) Proteobacteria 5 (55.6)

Proteobacteria/Acidobacteria/
Planctomycetes

1 (1.2) Euryarchaeota 1 (11.1)

(continued)
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(Takami et al. 2012), it could be easily visualized

using our new evaluation method that this system

was also shared in other mesophilic and

alkaliphilic B. pseudofirmus, whose genome

sequence has been completed recently. Although

how the differentiated functional modules confer

phenotypic properties directly or indirectly is still

unclear, a series of the above results should be

helpful in better understanding of the physiolog-

ical properties.

Comparative Functionome Analysis of

Humans and Human Gut Microbiomes

The completion ratio of each KEGG module was

compared between humans and human gut

microbiomes to illustrate their metabolic linkage.

The metagenomic data of gut microbiomes from

13 healthy Japanese individuals, previously

reported on, was used (Kurokawa et al. 2007).

There was a significant difference in the module

completion ratios of 13 individuals in terms of at

least 33 pathway modules (Fig. 6a).

The most complete 16S rRNA gene sequence-

based enumerations available in human gut

microbiomes indicate that more than 90 % of

phylotypes belong to just two of the 70 known

divisions of Bacteria, the Bacteroidetes and

the Firmicutes, with the remaining phylotypes

distributed among eight other phyla (Eckburg

et al. 2005). Pairwise comparison of the

completion ratio of the KEGG module clearly

demonstrated the well-recognized functional

complementation of the gut microbiome to the

human host, which includes essential amino acid

and vitamin biosynthesis. The contributors com-

pleting the modules for vitamin production are

Firmicutes, Bacteroidetes, Actinobacteria, and

Gammaproteobacteria. Completion patterns of

the KEGG module for these amino acids and

vitamins mainly fall into patterns C and

D except for riboflavin biosynthesis belonging

to one of the universal modules A, indicating

that these modules are involved in the nutritional

supply for the gut microbiome as well as for the

host (Fig. 6b). Interindividual variation was also

evident in the completion ratio of the module for

vitamins. For example, the module belonging to

pattern C for pyridoxal (vitamin B6) biosynthesis

was mainly attributable to Bacteroidetes in

adults and Gammaproteobacteria in infants;

however, its completion ratio in two male infants

(In-B and In-E) was extremely low (33.33 %)

(Fig. 6a). Interindividual variations in comple-

tion ratios were also observed in modules for

polyamine biosynthesis, for example, putrescine,

spermidine, and spermine (Takami et al. 2012).

Similarly, the completion ratio of the KEGG

modules for g-aminobutyric acid (GABA) varied

among individuals, and Gammaproteobacteria
mainly contributed to GABA production

(Fig. 6a). Because these polyamines and GABA

are essential biological substances that act as cell

growth promoters and inhibitory neurotransmit-

ters, respectively, in humans, these variations

may be linked to susceptibilities to certain dis-

eases. Indeed, a recent report on metabolic

changes in gut microbiomes after bariatric sur-

gery for obese patients demonstrated their poten-

tial for polyamine production in the gut; elevated

protein putrefaction because of the bypassed food

passage promoted putrescine and GABA produc-

tion from gut microbiota (Li et al. 2011).

Interestingly, gut microbiomes showed pref-

erence for amino acid catabolism. The gut

New Method for Comparative Functional Genomics and Metagenomics Using KEGG MODULE, Table 3
(continued)

Pathway [226] Structural complex [331]

Proteobacteria/Chrysiogenetes/Firmicutes 1 (1.2) Proteobacteria/Actinobacteria 1 (11.1)

Proteobacteria/Cyanobacteria 1 (1.2) Proteobacteria/Thaumarchaeota 1 (11.1)

Proteobacteria/Firmicutes/Chlamydiae 1 (1.2) Proteobacteria/Verrucomicrobia/Nitrospirae 1 (11.1)

Proteobacteria/Nitrospirae/Deferribacteres 1 (1.2)

Proteobacteria/Spirochaetes/
Verrucomicrobia

1 (1.2)

[] shows total number of the KEGG modules containing branched modules
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microbiome did not seem to utilize exogenous

lysine, leucine, and aromatic amino acids such

as tryptophan and tyrosine (Fig. 6c). To our

knowledge, this is a novel finding on the nutri-

tional preference of gut microbes. This may be

one of the mutualistic representations of gut

microbiomes to avoid nutritional competition

with the host because these aromatic amino

acids are precursors of various biological sub-

stances such as catecholamines, melatonin, sero-

tonin, thyroid hormones, and NAD. Thus, the

new evaluation method based on the KEGGmod-

ules is expected not only to highlight the meta-

bolic linkage between host and commensal

microbes but also to identify microbiome-based

biomarkers for particular diseases.

Summary

A new evaluation method for potential

functionomes based on the KEGG modules was

developed. Using this new method, significant

difference in module completion ratio by eight

bacilli in terms of at least 25 pathway, 40 struc-

tural complex, and 15 functional set modules was

highlighted, although how the differentiated

functional modules confer phenotypic properties

directly or indirectly is unclear thus far. Because

the coverage of KEGG modules over whole met-

abolic and signaling networks is continuously

increasing, differences in module completion

ratio will provide some important clues to the

understanding of phenotypic properties. Further-

more, variations in the functional potential of

human gut microbiomes from 13 healthy individ-

uals could be characterized by the pathway and

structural complex module units, and the comple-

mentarity between biochemical functions in

human hosts and nutritional preferences in

human gut microbiomes identified.

Functional annotations to metagenomic

sequences remain difficult because metagenomic

data targeting various environments still contains

incomplete genes from various unidentified spe-

cies, absent in a reference database. In this entry,

the KAAS system was used for functional anno-

tation to the human metagenomes and also

applied to estimate database dependency on the

accuracy of the KO assignment using the E. coli

draft genome. As a result, the KAAS system

could correctly assign to KO groups with an

accuracy rate of approximately 80 %, even if

the gene hosts were not classified into known

phyla within the reference database. Thus, this

method will work well for comparative func-

tional analysis in metagenomics, able to target

unknown environments containing various

uncultivable microbes within unidentified phyla,

although further verification studies on database

dependency for metagenomics should be

performed. Based on this method, we developed

the metabolic and physiological potential evalu-

ator (MAPLE) and provided a user-friendly Web

interface not only for the characterization of

potential functionome harbored in the genomic

and metagenomic sequences but also for compar-

ative analyses for the MCR and mapping patterns

to the KEGG modules (http://www.genome.jp/

tools/maple/).

Cross-References

▶Computational Approaches for Metagenomic

Datasets

▶Human Gut Microbial Genes by Metagenomic

Sequencing
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Introduction

Microorganisms contribute the largest number of

living cells in the world. The activity of different

microbes forms a microbial ecosystem which

affects all species in the world. Traditional

method of studying microorganisms requires cul-

turing a single kind of microbe and studying each

microbe based on next-generation sequencing

(NGS) technology by its genome one at a time

(Perna et al. 2001). However, as a single kind of

microbe usually cannot live alone and over 99 %

of microbes cannot be cultivated in the laboratory

(Rappe and Giovannoni 2003; Eisen 2007), tra-

ditional culture-based method cannot analyze the

interactivity of a microbial community well.

Metagenomic, which studies all microbes in

a community as a whole, is introduced for solving

the problem. Based on the NGS technology

(Shendure and Ji 2008), instead of sequencing

each single cultivated microbe one by one,

metagenomic sequences all microbes in an envi-

ronment sample as a community directly without

cultivation (Weinstock 2012; Gilbert and Dupont

2011; Hunter et al. 2012; Tremaroli and Backhed

2012; Wooley et al. 2010). Thus, genomes of

microbes that cannot be studied before can now

be obtained and be analyzed.

However, the complexity of a microbial com-

munity is high. There can be tens of thousands

kinds of microbes in a single sample. As genomes

of these microbes coexist in the sample, reads

(DNA short fragments) obtained from genomes

of different microbes are mixed and required to

be separated after NGS step. More seriously, as

the abundance of different microbes in a sample

can vary with several orders of magnitudes (Qin

et al. 2010), few reads are sequenced from the

low-abundance species which may be treated as

erroneous reads. Thus, several approaches have

been developed for analyzing metagenomic data

depending on the property of samples and

research objectives.

Sequencing Biomarker

Traditional sequencing techniques, e.g., Sanger

(Sanger and Coulson 1975), have a relatively low

throughput. Thus, it is impossible to sequence the

whole genome sequences of all microbes in

a sample, especially for the low-abundance spe-

cies. Instead of sequencing the whole genome,
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biologists usually design primers for capturing

short regions in the genomes of various microbes,

e.g., fingerprinting polymerase chain reaction

(PCR) on 16S rRNA genes. Each 16S rRNA

gene is a 1.5-kilobase-long gene for encoding

part of the prokaryotic ribosome. Although each

genomic sequence varies among different bacte-

ria, there are some conserved regions (for the

ribosome function) in the 16S rRNA gene such

that primer can be designed for capturing the 16S

rRNA gene for different bacteria. Moreover, spe-

cies with 97 % identical in the 16S rRNA gene

usually are in the same operational taxonomic

unit (OUT) (Weinstock 2012). Thus, sequencing

the 16S rRNA genes can determine which kinds

of bacteria in a sample and their relative abun-

dances (16S rRNA genes of high-abundance bac-

teria will be sequenced more than those of

low-abundance bacteria resulting more reads

covering these genes). Instead of 16S rRNA,

18S rRNA gene encodes eukaryotic ribosome

and can also be sequenced for identifying eukary-

otes in a sample.

However, as the read lengths of most popular

sequencing techniques are shorter than 1.5 kb

(typical length of a 16S rRNA gene), biologists

can only sequence a portion of 16S rRNA genes,

and the accuracy of identification depends on the

read length. Traditional Sanger sequencing tech-

niques can produce 1-kb-long read which can

cover a larger portion of 16S rRNA genes. How-

ever, its throughput is low such that 16S rRNA

genes of many species may not be sequenced and

the relative abundances of species may not be

estimated well. One of the next-generation

sequencing techniques, 454 pyrosequencing, can

produce several orders more reads than the

Sanger sequencing technique, but the read length

is about 400 bases, which can cover only a short

portion of 16S rRNA gene, and thus the sensitiv-

ity of identifying different microbes in a sample

will decrease. The Illumina platform, another

next-generation sequencing technique, can

produce several orders more reads than

454 pyrosequencing; however, the read length is

at most 250 bases, thus resulting to lower sensi-

tivity than 454 pyrosequencing.

Besides the problem of sequencing the whole

16S rRNA gene with high throughput, there is

another problem of analyzing metagenomic data

using 16S rRNA genes (or 18S rRNA genes).

Microbe can transfer gene from one to another

without reproduction process, horizontal gene

transfer, and thus the 16S rRNA gene of one

kind of microbe may be transferred to another

microbe and introduces problems in analyzing

metagenomic data. In real situation, microbes

can have multiple copies of 16S rRNA genes,

varying from 1 to 15 (Case et al. 2007;

Klappenbach et al. 2001), and horizontal gene

transfer makes the abundances difficult to be

estimated. Recently, other housekeeping genes,

e.g., rpoB, amoA, pmoA, nirS, nirK, nosZ, and

pufM, are used (in addition of 16S rRNA gene)

for identifying different species in a

metagenomic sample.

Sequencing Whole Genome

Since using a single or only several biomarkers to

represent a species may have a problem, another

way to analyze metagenomic data is sequencing

the whole genomes of different microbes in the

sample. With the help on the high-throughput

next-generation sequencing techniques, biolo-

gists can sequence the whole genomes of all

microbes in a sample with reasonably high

sequencing depth.

Assembling Reads

As the read lengths of next-generation sequenc-

ing are much shorter than the genomes of

microbes, analyzing sequenced reads directly is

difficult especially for Illumina platform. One

possible way is assembling overlapped short

reads to longer contigs before analysis (Mende

et al. 2012). Although there are many existing

assembling algorithms (Vyahhi et al. 2012;

Peng et al. 2010) designed for genomic data,

they cannot be applied on metagenomic data

directly because of the following results:

1. Abundances of different microbes vary in

metagenomic data. Since erroneous reads
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introduce arbitrary for assembling, existing

genomic assemblers try to determine errone-

ous reads and remove them before assembling.

Based on the assumption that erroneous reads

are sampled fewer times than correct reads,

these genomic assemblers usually consider

those reads or length k substring of reads,

called k-mers, with low sampling rate

(multiplicity) as erroneous reads and k-mers.

These erroneous reads are removed before

assembling. However, since the abundance of

microbes vary a lot in metagenomic data, cor-

rect reads and k-mers from low-abundance

microbes could be sampled much fewer than

the erroneous reads and k-mers from high-

abundance microbes. These genomic assem-

blers fail to remove erroneous reads and

k-mers and produce either very short contigs

or incorrect long contigs.

2. Common regions across differentmicrobes. Due

to horizontal gene transfer and the existence of

common housekeeping genes, some common

patterns could appear in multiple genomes. As

the read length can be shorter than these com-

mon patterns, genomic assemblers cannot deter-

mine the genomic sequences of microbes near

their common patterns. Although similar prob-

lem also appears in assembling genomic data,

the number of common patterns inmetagenomic

genomic is much more than those in genomic

data (Peng et al. 2011). As a result, shorter or

erroneous contigs will be produced by existing

genomic assemblers.

3. Huge data size. As the number of microbes in

a metagenomic data is huge, a high sequenc-

ing depth is required to obtain enough reads

(say 10� coverage) from each microbe

(especially for the low-abundance microbes).

Thus, the total amount of input reads (e.g.,

200G nucleotides in the metagenomic data of

cow stomach (Qin et al. 2010), over 100G of

nucleotides required for studying soil

metagenome (Frisli et al. 2013)) for assem-

bling metagenomic data can be much more

than the genomic data. How to store and pro-

cess this huge amount of reads becomes a big

problem.

Due to the above problem, several assemblers

have been developed for assembling

metagenomic data, including Genovo (Laserson

et al. 2011) for 454 pyrosequencing and

MetaVelvet (Namiki et al. 2012), Ray Meta

(Boisvert et al. 2012), Meta-IDBA (Peng

et al. 2011), and IDBA-UD (Peng et al. 2012)

for the Illumina platform. Since the length of

454 pyrosequencing read is longer than those

constructed by Illumina platform and the number

of input reads is much smaller than those by

Illumina platform, Genovo stores all the input

reads and calculates their pairwise overlapped

relationship. It then calculates the probability of

a set of reads sampled from the same contigs

based on Bayesian approach and applies a series

of hill climbing to obtain a set of contigs with the

highest likelihood. However, this approach fails

when the number of input reads increases

(Boisvert et al. 2012). Because of the huge

amount of input reads, MetaVelvet, Ray Meta,

Meta-IDBA, and IDBA-UD all assemble contigs

using de Bruijn graph approach. A de Bruijn

graph represents the connection of a set of reads

using k-mers, length k strings of the read. Each

k-mer in the reads is represented by a vertex, and

there is an edge from vertex u to vertex v if and

only if k-mers u and v appear in at least one read

consecutively, i.e., the length-(k-1) suffix of u is

the same as the length-(k-1) prefix of v. Thus,
a contig is represented by a path in the de Bruijn

graph. Because of the existence of sequencing

error and common regions among different

genomes, paths representing different genomes

may overlap and the de Bruijn becomes compli-

cated. Existing metagenomic assemblers apply

different approach to decompose the de Bruijn

graphs or determine contigs directly from the de

Bruijn graph. Meta-IDBA decomposes the de

Bruijn graph based on the observation that there

are more interconnections between k-mers sam-

pled from the same genome than k-mers from

sampled different genomes. After decomposi-

tion, paths representing different genomes will

be separated and can be reconstructed easier.

MetaVelvet decomposes the de Bruijn graphs

based on the multiplicities of k-mers.
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By determining some local peaks in the distribu-

tion of multiplicities of k-mers, MetaVelvet

decomposes the de Bruijn graph according to

the multiplicities. As k-mers sampled from dif-

ferent genomes may have similar multiplicities

and k-mers sampled from the same genome could

have different multiplicities (due to sequencing

bias), IDBA-UD calculates the average multi-

plicity of k-mers in the same contig and uses it

to determine erroneous k-mers and k-mers sam-

pled from different genomes. As the threshold is

determined locally, it can decompose the de

Bruijn more accurate than Meta-IDBA and

MetaVelvet using global thresholds. Ray Meta

uses another approach to construct the contigs.

Instead of decomposing the de Bruijn graph, it

applies a heuristics-guided graph traversal to

reconstruct the contig. Although all the above

assemblers try to reconstruct contigs from

metagenomic data, short contigs (several thou-

sand nucleotides) and chimera contigs

(misassembles contigs from different genome

together) could be resulted because of the high

diversity of metagenomic data.

Since the number of k-mer is large, researches

have been performed for investigating storage of

de Bruijn graph using less memory. Several effi-

cient data structures have been developed based

on bloom filter (Chikhi and Rizk 2012; Pell

et al. 2012). A bloom filter uses a hash table and

several hash functions to store the existence of

k-mers. When storing a k-mer, each hash function

will calculate an address based on the pattern of

k-mer, and all these addresses will be set to 1 in

the hash table. Thus, the existence of a k-mer in

the reads can be determined by checking several

bits in the hash table. Although there may be

some false-positive k-mers, the number of false

positives is small when the hash table is large

enough and there are multiple hash functions.

Binning

After reconstructing contigs, each long contig

can be aligned to known reference genomes in

the database for identifying the microbes in the

samples (Huson et al. 2011). Even when there is

no similar reference genome in the database, gene

sequence may be predicted (Rho et al. 2010)

using different classifiers which help analyzing

the metabolism of the unknown microbes. How-

ever, for the contigs sampled from microbes

without genome reference and low-abundance

microbes without enough reads for assembling

long contigs, binning approach is required. Note

that since the most microbes cannot be cultivated

and their genomes are still unknown, many reads

and contigs cannot be aligned to reference

genome in the database.

Binning reads and contigs is to cluster reads

and contigs sampled from the same microbes

using the common property on the reads.

Composition-based methods use generic fea-

tures, e.g., GC content, codon usage, dinucleo-

tides distribution, and 4-mer distribution to

classify reads sampled from different genomes.

Existing supervised or semi-supervised binning

algorithm (Brady and Salzberg 2009; McHardy

et al. 2006) can construct a classifier to determine

the source of reads based on reference genome in

the database. Compared with alignment-based

methods, these algorithms do not require the

exact reference genome. Instead, classifier can

be constructed from a similar genome in the

database such that more reads can be binned.

However, as there are limited number of refer-

ence genomes in the database, many reads still

cannot be classified correctly. Some binning

algorithms are designed to cluster reads sampled

from the same genome using properties on reads

directly without any reference genomes.

MetaCluster 3.0 (Yang et al. 2010) clusters

reads based on 4-mer distribution. Given two

long reads from the same genome, the occurrence

frequencies of different 4-mers on the two reads

should be similar (Zhou et al. 2008). MetaCluster

3.0 calculates the pairwise spearman distance of

reads based on 4-mer distributions and clustering

reads using k-mean clustering methods. How-

ever, MetaCluster 3.0 can only handle

metagenomic data with similar abundances and

long read length (500 bp or more). In order to bin

short reads of length about 100 bp,

AbundanceBin (Wu and Ye 2011) and TOSS

(Tanaseichuk et al. 2012) consider the occurrence

frequency of k-mers (k ¼ 25) in all the reads.

k-mers that occur frequently should be sampled
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from high-abundance microbes, while k-mers

that occur rarely should be sampled from

low-abundance microbes. Based on this assump-

tion, AbundanceBin and TOSS can bin reads

according to the k-mer frequencies. However,

when the abundances of two microbes are similar

(abundance ratio within 1:3), these algorithms

fail to separate the reads sampled from the two

microbes. MetaCluster 4.0 further improves

MetaCluster 3.0 by combining overlapped short

reads to long virtual contigs and estimates the

4-mer or 5-mer distribution of the virtual contigs.

As the lengths of virtual contigs are much longer

than the short reads, 4-mer distribution of the

virtual contigs can be estimated accurately. By

constructing a huge number of small clusters and

merging cluster with similar 4-mer distribution,

MetaCluster 4.0 (Wang et al. 2012a) can handle

metagenomic data with microbes of different

abundances. However, these unsupervised bin-

ning algorithms cannot handle low-abundance

microbes well because they cannot distinguish

reads sampled from these low-abundance

microbes from the error reads sampled from

high-abundance microbes. MetaCluster 5.0

(Wang et al. 2012b) is designed for binning

reads from both high- and low-abundance

microbes. It performs binning with two rounds.

In the first rounds, its target is to bin reads sam-

pled from high-abundance microbes using

restricted parameters for constructing virtual

contigs and clustering reads. Reads sampled

from low-abundance microbes can be handled

in the second round using less restricted parame-

ters. By applying multiple rounds of binning,

MetaCluster 5.0 can bin reads from microbes

with sequencing depth as low as 6� in

a metagenomic dataset containing 100 microbes.

However, it still cannot bin reads sampled from

microbes with sequencing depth lower than 6�.

Conclusion

Assembling and binning reads are two important

procedures for analyzing metagenomic data. The

high biodiversity and large variations in abun-

dances of genomes in metagenomic data make

the problems challenging. A common practice for

analyzing metagenomic data is to assemble short

reads to longer contigs. Then try to identify

microbes in the sample by aligning the contigs

and unassembled reads to reference genomes. As

most of the microbes have no reference in the

database, the unaligned reads and contigs should

be binned together using generic features, e.g.,

GC content, codon usage, dinucleotide distribu-

tion, and 4-mer distribution. Previous study

shows that binning contigs instead of reads can

improve the accuracy of binning. It is because the

long contigs carry more generic information than

the short reads. However, few researches have

been performed on studying how to improve the

result of assembling using binning. Moreover,

researchers usually use the information of refer-

ence genomes by alignment and supervising bin-

ning. In fact, similar genomes in the database

may be used to improve the performance of de

novo assembling. As the performance of existing

de novo assemblers and binning algorithms on

real biological data is not satisfied, further

researches on combining assembling, binning,

and the use of reference genomes may be

a possible way to improve the performance of

analyzing metagenomic data.
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Definition

NGS QC Toolkit is a Perl-based stand-alone pro-

gram package for the quality control (QC) of

next-generation sequencing (NGS) data. In addi-

tion to QC tools, it consists of many subsidiary

tools for handling and processing of data obtained

from Illumina and Roche 454 sequencing plat-

forms. The open-source toolkit is freely available

at http://www.nipgr.res.in/ngsqctoolkit.html.
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Introduction

The need for fast and high-throughput sequenc-

ing has resulted into discovery of NGS technolo-

gies. The advent of these technologies has

transformed the genomics research by providing

an opportunity to study genetic information at

a single-base resolution in cost-effective manner

(Metzker 2010). However, usually several arti-

facts are reflected in NGS data due to technical

errors and limitations associated with different

NGS platforms. These sequence artifacts, includ-

ing read errors, poor-quality reads, and primer/

adaptor contamination, might affect downstream

sequence analysis, such as de novo genome and

transcriptome assembly, gene expression studies,

and single nucleotide polymorphism detection.

To avoid misleading conclusions, it is necessary

to filter the NGS data for these sequence artifacts

(Benaglio and Rivolta 2010).

NGS platform vendors have developed com-

mercial QC pipelines dedicated to mitigate the

effect of limitations associated with their plat-

forms. However, even after processing through

these pipelines, many sequence artifacts remain

in the data. Several efforts have been made to

resolve one or the other sequence artifacts, but

many of them are specific to a particular sequenc-

ing platform. NGS QC Toolkit (Patel and Jain

2012) can handle many of the known sequence

artifacts in Illumina and Roche 454 sequencing

data. It is a stand-alone and user-friendly toolkit

written in Perl programming language by

employing modularized structure supported by

several subroutines for various tasks, which

allows better maintainability. The toolkit com-

prises many easy-to-use tools for quality check

and filtering, trimming, generating statistics, and

different file format/variant conversion for

Illumina and Roche 454 sequencing data (Fig. 1).

QC Workflow

The toolkit provides dedicated tools for the QC of

single-end (SE) and paired-end (PE) data from

Illumina (IlluQC tools) and Roche 454 (454QC

tools) sequencing platforms. Although various

parameters in these tools are set to the sensible

default values, they can be adjusted by the users

to optimize QC analysis, which makes these tools

versatile for different NGS assays. IlluQC has the

ability to identify different FASTQ file variants

(Cock et al. 2009) and set the quality scoring

system accordingly for further analysis. Reads

are analyzed based on their quality, and the

poor-quality reads not fulfilling the user-specified

criteria are discarded. The filtered reads are

checked for the primer/adaptor sequence contam-

ination and the matching reads are discarded. The

high-quality filtered data is exported as output

along with various quality statistics. 454QC

tools read FASTA files and filter reads based on

the specified length cutoff at several stages in the

analysis. The tool can also perform trimming of

reads containing homopolymer(s) longer than

specified length. Further, the quality check and

primer/adaptor sequence match are performed

similar to that of IlluQC tools. However, unlike

IlluQC tools, 454QC tools trim respective ends of

the read showing primer/adaptor match. Eventu-

ally, the high-quality reads are exported in

FASTA format. Processing of Roche 454 PE

data (using 454QC_PE.pl) requires an additional

step of finding the linker sequence to separate and

process both end reads simultaneously.

Key Characteristics

While NGS QC Toolkit shares its features with

many other QC tools (Schmieder and Edwards

2011; Cox et al. 2010; Lassmann et al. 2009;

Pandey et al. 2010), it also provides few unique

attributes for the QC analysis of NGS data. In

addition to high-quality filtered data output, it is

also equipped with the modules for generating

several different kinds of statistics in graphical

format along with text files to help users make

better understanding of the data quality (Patel and

Jain 2012).

Reduced Computational Time and Storage

Space Requirement

Continued improvement in NGS technologies

has achieved larger read length and manyfold
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increase in throughput. To reduce time require-

ment for the QC of several gigabases of sequence

data, parallel computing has been implemented in

the QC tools. Significant decrease in the analysis

time was evident using parallelized QC tools on

multi-core computer systems (Patel and Jain

2012). Nevertheless, tools can also be run on

single-core computers without any additional

requirement. Another challenge with the huge

NGS dataset is the increased storage space

requirement, which is considerably reduced by

the use of compressed (gzip) files. The high-

quality filtered output data in compressed gzip

files can be used directly for downstream analy-

sis, which saves large amount of storage space.

Conservation of PE Data Integrity

PE sequencing data helps increase sequence cov-

erage and confidence in the alignment which is

very crucial for downstream analysis. However,

surprisingly, not many QC pipelines maintain the

pairing information of the PE data in the filtered

data but the NGS QC Toolkit. QC tools analyze

both reads of each pair concurrently and export

the high-quality filtered PE data along with the

unpaired reads (when only one read of the pair

passes QC filters). In this way, QC tools maintain

PE data integrity and try to retain all important

high-quality sequencing data.

Homopolymer Trimming

A major artifact is introduced in Roche

454 pyrosequencing data by the use of pyrophos-

phate for the detection of incorporated bases. It

was found that linearity of signal intensity is

disturbed when longer homopolymer is encoun-

tered (Margulies et al. 2005). This artifact may

affect the downstream analysis due to frameshift.

454QC tools provide an optional parameter to

trim the homopolymer of the given minimum

threshold length.

FASTQ Variant Detection

Use of inconsistent variants of FASTQ format by

different sequencing platforms makes it tough for

the users to apply appropriate tools for the anal-

ysis, because the quality scoring system varies

with the variants (Cock et al. 2009). To make

the analysis easier, IlluQC tools are programmed

to first identify the input FASTQ variant automat-

ically and set appropriate scoring system for fur-

ther QC analysis.

Additional Tools

Apart fromQC tools, a number of additional tools

are provided in the toolkit to manage and gener-

ate statistics for the NGS data (Fig. 1). A set of

sequence format converter tools offer facility to

convert between different variants of the FASTQ

format based on the equations described previ-

ously (Cock et al. 2009). It also provides tools for

conversion between FASTQ and FASTA for-

mats. TrimmingReads.pl tool is capable of trim-

ming reads based on two criteria. It can trim

given number of bases from the 50 and/or 30 end
of the reads. Another mode of trimming is to trim

low-quality bases from the 30 end of the reads

using user-defined threshold value of quality

scores. HomopolymerTrimming.pl, as the name

suggests, clips the 30 read end from first nucleo-

tide of the homopolymer of user-defined cutoff

length. A newly introduced tool upon request

from users, i.e., AmbiguityFiltering.pl, helps to

filter reads containing ambiguous bases (N/X

content) or to trim flanking ambiguous bases.

A couple of tools, AvgQuality.pl and N50Stat.

pl, generate statistics to help nonexpert users to

access various sequence statistics.

Installation

The toolkit requires Perl interpreter and few addi-

tional Perl modules like GD (optional; required to

generate QC graphs) and String:: Approx. Users

need to download NGSQCToolkit zip folder

from the website. The toolkit is ready to use just

after unzipping the folder. The distribution

includes all the tools along with a user manual,

which provides important links for the module

installation and describes the tools and their

usage in detail. Tools can report the missing

dependencies, if required modules are not found

or improperly installed.

N 546 NGS QC Toolkit: A Platform for Quality Control of Next-Generation Sequencing Data



Toolkit Updates

Continuous support and updates played a crucial

role in the popularity of the NGS QC Toolkit

among the researchers working on NGS data

analysis. It has been under active development

since after it had been developed more than

3 years ago. Several updates have been made to

make the toolkit compatible with the ever-

evolving sequencing technologies and fulfill the

requirements of users (http://www.nipgr.res.in/

ngsqctoolkit.html).

Summary

NGS QC Toolkit is an open-source stand-alone

toolkit for the QC of NGS data, which can be used

on any operating system with installed prerequi-

sites. It offers user-friendly parallel computing

QC tools for the quality check and filtering of

Illumina and Roche 454 sequencing data. These

tools provide various parameters to optimize the

QC analysis of different kinds of NGS assays.

In addition, the toolkit is comprised of numerous

supplementary tools for handling/processing of

NGS data. This toolkit is being regularly modi-

fied and improved to accommodate users’

requirements and make it compatible with chang-

ing sequencing data file formats. It is anticipated

that this toolkit will provide an easy platform to

even non-bioinformaticians for QC analysis of

NGS data.

Cross-References

▶A De Novo Metagenomic Assembly Program

for Shotgun DNA Reads

▶DNA Methylation Analysis by

Pyrosequencing
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Definition

For retrieving genes encoding thermo-alkali-

stable xylanases by culture-independent

(metagenomic) approach, the DNA extracted

from hot and alkaline environmental samples is

restricted and the fragments are cloned. The

clones are screened to select colonies with the

desired xylanase gene, and the insert is sequenced

and the gene is subcloned and expressed. The

recombinant xylanase is purified and character-

ized and tested for its applicability in generating

xylo-oligosaccharides from agro-residues and

pulp bleaching.

Introduction

Hemicellulosic components are integral part of

lignocellulosic residues and the second most

abundant renewable polymer of plant cell walls

after cellulose. Xylan is the main constituent

in hemicelluloses of lignocellulosic agro-

residues. b-1,4-linked xylosyl residues form the

backbone of xylan that makes it a homopoly-

saccharide. Since xylan contains several groups

such as arabinosyl, acetyl, and glucuronosyl

residues that are present in the side chains,

xylans are heteroploysaccarides (Hori and

Elbein 1985; Coughlan and Hazlewood 1993).

Heteropolymeric xylan requires synergistic

action of multiple xylanolytic enzymes for com-

plete degradation. The complex xylanolytic sys-

tem includes endoxylanase (1,4-b-D-xylan
xylanohydrolase; EC 3.2.1.8), b-xylosidase (1,4

b-D-xylan xylohydrolase; EC 3.2.1.37),

a-glucuronidase, a-L-arabinofuranosidase, and

acetyl xylan esterase. The CAZY database

(http://www.cazy.org/fam/acc_GH.html) classi-

fied xylanases into six glycosyl hydrolase fami-

lies GH5, GH8, GH10, GH11, GH30, and GH43

(Collins et al. 2005). Family 10 and 11 xylanases

are however widely distributed in nature. Owing

to lowmolecular weight and substrate stringency,

family 11 xylanases are considered as true

xylanases, while GH10 xylanases share broad

substrate specificity with higher molecular

weight.

Xylanases have successfully been used in var-

ious industries like ramie fiber degumming, food

processing, and textile, biofuels, feed, and paper/

pulp industries. However, xylanases must be

alkalistable and thermostable to withstand the
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extreme conditions prevailing in the paper indus-

tries in the pre-bleaching of kraft pulp. Although

several xylanases have been reported from a large

number of microorganisms, most of them do not

have adequate thermostability and alkalistability

for their utility in paper and pulp industries.

Majority of xylanases have been obtained from

the culturable 0.1–1 % of the total microbial

diversity existing in natural environments. The

culture-independent metagenomic approaches

permit retrieval of genes encoding useful

enzymes from environmental samples without

involving laborious and elaborate methods of

cultivation of microbes. The immense demand

for alkalistable and thermostable xylanases

encouraged us to adapt this innovative strategy

for retrieving genes that encode thermo-alkali-

stable xylanases from environmental

metagenomes.

In this investigation, a metagenomic library

was constructed and screened for clones with

xylanase activity. Xylanase-encoding gene

(Mxyl) (accession no. AFP81696) was subcloned

and expressed, and the recombinant xylanase was

purified and characterized. To the best of our

knowledge, this is the first report on retrieving

thermo-alkali-stable GH 11 family xylanase by

a metagenomic approach.

Methodology

Collection of Samples and Construction of

Metagenomic Library

The samples of compost soil were collected in

sterile polyethylene bags from the vicinity of

a hot water spring near Fukuoka Japan and stored

at 4 ºC. The pH of the samples is in the acidic

range (3.0–4.5). Soil DNA was extracted

according to Verma and Satynarayana (2011).

Metagenomic DNA was processed for

constructing the metagenomic library. Five mg
of metagenomic DNA was partially digested

with 0.5 U of restriction enzyme Sau3AI. The

fragments of 3–12 kb were eluted from agarose

gel (1.2 %, w/v) by gel extraction kit according to

manufacturer’s protocol (Macherey-Nagel,

Germany). Hundred nanogram of insert DNA

and 300 ng of Bam HI digested and

dephosphorylated p18GFP vector were ligated

by using T4 DNA ligase overnight at 16 �C. The
ligation mixture was transformed into competent

E. coli DH10B cells by heat shock method. The

metagenomic library was spread and screened for

xylanase activity on 0.3 % (w/v) RBB-xylan

(4-O-methyl-D-glucurono-D-xylan-remazol bril-

liant blue R) (Sigma, St. Louis, MO, USA)

LB-ampicillin agar plates. The transformants

were grown at 37 �C overnight and observed for

the zone of xylan hydrolysis.

Screening for Xylanase and Sequence

Analysis

The pure clone (TSDV-MX1) showing clear zone

of xylanase hydrolysis was sequenced using M13

forward and reverse primers followed by differ-

ent internal primers using Applied Biosystem

373 stretch automated sequencer (Applied

Biosystems, Foster City, CA, USA) at Nucleic

Acid Sequencing Facility of the University of

Delhi South Campus, New Delhi (India), for

obtaining full sequence of the insert. The ORFs

were identified by using the NCBI’s open reading

frame (ORF) finder tool (http://www.ncbi.nlm.

nih.gov/gorf/gorf.html). BLASTN and BLASTP

of NCBI were used to align the nucleotide and

amino acid sequences, respectively. Multiple

alignments of the amino acids were carried out

using the CLUSTALWprogram (http://www.ebi.

ac.uk/clustalW). The phylogenetic analysis was

done using MEGA 2.1 with neighbor-joining

strategy.

Construction and Expression of Plasmids

pET28a-Mxyl and pET22b-Mxyl

The xylanase gene was amplified and ligated into

the digested vectors followed by transformation

into competent E. coli XL1 blue cells to obtain

pET28-Mxyl and pET22-Mxyl. The recombinant

constructs were confirmed by colony PCR

followed by double digestion of the construct

with restriction enzymes. The clones having

xylanase gene were transformed into E. coli

BL21(DE3) and processed for sequencing.
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The recombinant plasmid having the accurate

sequence was then transformed into E. coli

BL21 (DE3) competent cells for the expression

of recombinant proteins from pET28a-Mxyl and

pET22b-Mxyl. The expression was induced by

adding isopropyl-b-D-1-thiogalactopyranoside
(IPTG) to a final concentration of 1 mM and

the culture was further cultivated at 30 �C. The
samples were collected at 1 h intervals for

determining the enzyme titers. Localization of

the recombinant protein was determined by

collecting the intracellular, extracellular, and

periplasmic fractions from the cells followed by

assay for xylanase (Verma and Satyanarayana

2012).

Site-Directed Mutagenesis

Multiple sequence alignment of recombinant

xylanase with the known xylanases revealed

Glu117 and Glu209 to be catalytically important

residues. Experimentally it has been proved by

site-directed mutagenesis using GeneArt site-

directed mutagenesis kit (Invitrogen, Carsband,

USA). Two point mutations (Glu117Asp and

Glu209Asp) were created in the metagenomic

xylanase gene and expressed in E. coli

BL21(DE3) cells. The induced mutations were

confirmed by sequencing.

Xylanase Assay

Xylanase was assayed according to Archana and

Satyanarayana (1997) at 80 �C and pH 9.0. One

unit of xylanase is defined as the amount of

enzyme required to liberate 1mmole of reducing

sugar as xylose ml�1 min�1 under the assay

conditions.

Purification and Biochemical

Characterization of rMxyl

The rMxyl was purified by affinity chromatogra-

phy using Ni2+-NTA agarose (Novagen, Ger-

many) (Verma and Satyanarayana 2012). The

characteristics of the recombinant xylanase like

the effect of pH, temperature, metal ions, inhibi-

tors and detergents on enzyme activity, thermo-

stability, and substrate specificity have been

studied. Kinetic properties of the recombinant

enzyme (Km and Vmax) on different xylans from

birchwood, beech wood, and oat spelt were

calculated from Lineweaver-Burk double recip-

rocal plots.

Saccharification of Agro-residues/Hydrolysis

of Xylan

One percent (w/v) standard xylo-

oligosaccharides (X2–X6) and agro-residues

(wheat bran, corncobs, and sugarcane bagasse)

were treated with recombinant xylanase

(10 U–20 U/g) to find out the hydrolysis of XOs

and lignocellulosic substrates. All the substrates

(wheat bran, corncobs, and sugarcane bagasse)

were suspended in glycine-NaOH buffer

(pH 9.0) and incubated at 80 �C. Aliquots at the
desired intervals were collected and analyzed on

silica-based TLC plates (Merck, Germany) to

determine the hydrolysis products. The sacchari-

fication of agro-residues was determined using

DNSA reagent (Miller 1959).

Results

Construction of metagenomic library, DNA

sequencing, and bioinformatics analysis.

When 5.0 mg of high molecular weight

(20–30 kb) metagenomic DNA was digested

with Sau3AI and the fragments were ligated into

p18GFP vector with an efficiency of 3.6 � 104

clones per mg of DNA in constructing the library,

the insert sizes were in the range of 3.0–8.0 kb

with an average size of 5.5 kb. On screening,

a clone having xylanase gene was spotted on

RBB xylan containing LB-amp plate. The full

sequence of the insert showed the size of 6.231

kbp that revealed its prokaryotic origin on blast

analysis. The complete insert contained nine tran-

scriptional units with a complete ORF of 1,077 bp

long xylanase gene. The sequence showed puta-

tive sequences of �35 (CACGCCA), �10

(TAAAAA), and ribosomal binding sites

(AGGGG) at the upstream of xylanase gene

followed by complete ORF having ATG and

TAA as start and stop codons, respectively

(Fig. 1). The xylanase displayed five conserved

regions (I–V) of GH11 xylanase having two
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Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 1 Deduced amino acid sequence

of recombinant xylanase (rMyl) and its nucleotide

sequence. The red underlined region is leader sequence;

cyan-highlighted regions represent GH11 catalytic

domain. Gray-highlighted regions are compositionally

biased regions that were not used in database search and

proposed as linker regions. Bluish-green-highlighted
region depicts substrate binding domain
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catalytically important residues (Glu109 and

Glu217) present in signature sequence II and

V (Fig. 2). Amino acid homology showed maxi-

mum identity (79 %) with the xylanase gene of an

uncultured bacterium and Actinoplanes sp. SE50/

110 followed by a metagenomic GH11 xylanase

(71 %). It shared 63–75 % homology with

xylanases produced by Streptomyces spp. The

xylanase retrieved in this investigation exhibits

75, 67, and 64 % similarity with the endo-1,4

b-xylanases of Cellulomonas fimi,

Micromonospora aurantiaca 27029, and

Amycolatopsis mediterranei U32, respectively.

It, however, has lower homology with the

xylanases of Microbulbifer hydrolyticus (63 %),

Pseudomonas sp. ND137 (62 %), uncultured

Cellvibrio sp. (58 %), Cellvibrio mixtus (57 %),

and Aspergillus fumigatusAF293 (52 %) (Fig. 3).

Expression of the Xylanase Gene in
E. coli and Localization of the Encoding
Recombinant Xylanase (rMxyl)

Xylanase gene was successfully cloned into

pET28a and pET22b vectors. The recombinant

plasmids were expressed in E. coli BL21(DE3)

on induction with 1.0 mM IPTG at A600 of

0.6–0.7 and 30 �C. At higher level of expression,
it led to the formation of inclusion bodies, which

could be solubilized using 6.0 M urea. The

highest titer of the recombinant enzyme was

achieved in 4–6 h. The construct (pET28a-Mxyl)

expressed a high proportion of xylanase in cyto-

plasmic fraction (83 %), followed by periplasmic

(9 %) and extracellular (8 %) fractions after 4–5 h

of induction. When xylanase gene was cloned and

expressed in pET22b(+) vector, a high proportion

Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 2 Multiple sequence alignment of

xylanase with other xylanases available in database.

GenBank accession number and source of microorgan-

isms were given as follows: 182406872 (glycosyl hydro-

lase family 11 precursor [uncultured bacterium]),

17826947 (Pseudomonas sp. ND137), 29367333

(uncultured Cellvibrio sp.), 388259220 (Cellvibrio

sp. BR), 302868167 (Micromonospora aurantiaca
ATCC 27029), 386849796 (Actinoplanes sp. SE50/110),
194368056 (Streptomyces sp. S27). Five signature

sequences: I (AYLTLYGW), II (VEYYIVDN), III
(FWQYWSV), IV (HFDAWASLG), and V(MATEGY)

of GH11 family are colored. Two catalytically important

residues (Glu 117 and Glu 209) are marked with black
circle
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of intracellular enzyme (>60 %) was produced in

the initial 3 h of induction, and thereafter, it

declined. The periplasmic xylanase was optimum

at 12 h, while the extracellular fraction gradually

increased and it reached a peak (29 %) in 24 h.

Site-Directed Mutagenesis

Muteins having Glu117Asp and Glu209Asp

completely lost the activity. These two gluta-

mates are highly conserved residues in the signa-

ture sequences LVEYYIVDN and MATEGY,

and these are responsible for catalytic activity of

GH 11 xylanase.

Purification, Biochemical
Characterization, and Zymogram
Analysis of rMxyl

The recombinant xylanase was purified by

Ni2+-NTA resin affinity chromatography and the

purified recombinant protein could be eluted

using imidazole (100–400 mM). The protein

appeared as a single band of 40 kDa against the

protein markers on 15 % SDS-PAGE, and the

recombinant xylanase revealed as a clear band

of xylan hydrolysis by zymogram analysis

(Fig. 4). The xylanase exhibited broad range of

pH (6.0–12.0) with optimum at 9.0, and it retained

~55 % residual activity at pH 10.0 (Fig. 5a).

Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 3 Phylogenetic tree of recombinant

xylanase. rMxyl showed highest homology with xylanase

of Cellulomonas fimi ATCC 484 followed by uncultured

microbial GH 11 xylanase. Neighbor-joining (NJ) tree is

constructed by using MEGA 4.0 software. Bootstrap

values (n ¼ 1,000 replicates) are represented as percent-

age. The scale bar depicts the allowed changes per amino

acid position

Novel Alkalistable and Thermostable Xylanase-Encoding Gene (Mxyl) 553 N

N



The rMxyl is active in the temperature range

between 40 �C and 100 �C (Fig. 5b) with opti-

mum at 80 �C and retains more than 90–95 %

activity after exposure to 60 �C and 70 �C for 3 h.

The enzyme has a T1/2 of 2.0 h at 80 ºC and

15 min at 90 ºC (Fig. 5c). The recombinant

enzyme did not lose activity after 3 h exposure

to pH 8.0 and 9.0, and thereafter, it declined

(50 % residual activity after 4 h). Approximately

20–45 % loss in activity was recorded on either

side of the pH optimum after 1 h incubation

(Fig. 5d). Mg2+, Sn2+, and Fe2+ stimulated

rMxyl activity, while Hg2+ and Mn2+ strongly

inhibited enzyme activity even at 1 mM. Other

metal ions exerted varied inhibitory action on

xylanase. More than 30 % activity was lost in

the presence of Mn2+ (Table 1). NBS and PMSF

inhibited the activity to a significant extent even

at 1 mM concentration. b-ME and DTT strongly

inhibited enzyme activity. A stimulatory effect

EDTA was recorded on xylanase activity.

Most of the metal ions did not affect enzyme

activity at 1 mM concentration. Xylanase

activity was, however, significantly inhibited at

higher concentration by Pb2+, Ag2+, Ca2+, Mn2+,

Ba2+, Cd2+, and Co2+. In the presence of Hg2+,

enzyme lost activity completely. Similarly, trace

amounts of b-mercaptoethanol (b-ME) and

dithiothreitol (DTT) completely inhibited the

xylanase activity. Inhibition in the presence of

N-bromosuccinimide (NBS) signifies the role of

tryptophan in catalysis, while EDTA confirms it

as a non-metalloenzyme.

Saccharification of Agro-residues/
Hydrolysis of Xylan

The rMxyl hydrolyzed xylan from various

sources. The enzyme activity was very high in

birchwood xylan (relative activity 100 %) in

comparison with that on xylan from beech wood

(97 %) and arabinoxylan (80 %). There was no

activity on carboxymethylcellulose (CMC) and

other non-xylan polysaccharides (starch,

pullulan, and chitin). The Km and Vmax values

of the enzyme on birchwood xylan are

8.0 � 1.21 mg/ml and 300 � 09.12 mmol/min/

mg, respectively. The saccharification of wheat

bran was high (15.2 %) as compared to that of

corncobs (9.89 %) and sugarcane bagasse

(4.71 %). Various xylo-oligosaccharides were

detected in the hydrolysates (Fig. 6).

Discussion

Although several xylanases have been reported

from diverse microbiota using traditional culture-

dependent approaches, majority of them do not

endure the extreme temperature and alkaline con-

ditions prevailing in industrial processes. An alter-

nate strategy was, therefore, adapted to retrieve

a thermo-alkali-stable xylanase gene (Mxyl) by

culture-independent metagenomic approach. The

metagenomic library constructed with the DNA

extracted from the compost-soil samples yielded

a clone that produced xylanase.Although, the com-

post soils are in the acidic pH range, an alkalistable

and thermostable endoglucanase had been reported

from rice straw compost (Son-Ng et al. 2009).

Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 4 Analysis of rMxyl using

SDS-PAGE (15%polyacrylamide gel). (a). Lane 1 protein
marker, Lane 2 and 3 are washes with 20 and 30 mM

imidazole. Recombinant xylanase was eluted using differ-

ent concentrations of imidazole (100, 200, 250, 300,

400, 450, 500 mM). Purified xylanase showed molecular

mass of ~42 kDa on staining with Coomassie Brilliant

Blue R-250. (b). Zymogram analysis of purified xylanase

using Congo red staining method
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The culture-independent approach has started

yielding the useful biocatalysts from the hidden

Pandora’s Box of non-culturable microbial diver-

sity. The protein encoded by xylanase gene com-

prises 358 amino acids, of which 16 are acidic and

21 basic. The predicted molecular weight, pI, and

instability index of recombinant xylanase are

~40 kDa, 8.8, and 33.44 respectively. The xylanase

contained a 43-amino-acid-long leader sequence at

the N-terminal region followed by a catalytic

domain (44th–212th) of GH11 family interrupted

by a short stretch of arginine- and threonine-

rich non-catalytic region (WSVRQ2R2TG2TIT2).

In addition, serine-rich Q linker region

(S2GS2DITVG2TS2G2TS2G2S3G2S10G4) has also

been detected from amino acid 213 to 248 just after

catalytic domain. Such repeated amino acids make

linker regions that usually discriminate catalytic

domain from carbohydrate-binding domain

(Gilkes et al. 1991). Moreover, linkers have also

been reported as integral parts of various xylanases

that connect thermo-stabilizing domains, surface

Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 5 Effect of pH and temperature on

the activity and stability of rMxyl. (a and b) The recom-

binant xylanase incubated in various buffers (pH 3–12)

and temperatures (40–100 �C) and assayed for xylanase

activity. (c) Recombinant xylanase was incubated in

glycine-NaOH buffer without substrate and kept at vari-

ous temperatures. Aliquots were collected at various time

interval and store at 0 �C for calculating residual activity.

(d) Similarly enzyme was incubated in various buffers

(pH 8–11) and aliquots of different time intervals were

used xylanase assays
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layer homology domains, and dockerin domains

which play a role in stabilizing the protein. Amino

acid homology and hydrophobic cluster analysis

categorized this high molecular weight xylanase

into GH11 family. Metagenomic origin, distinct

characteristics, lower homology, and higher

molecular weight (>30 kDa) make this a novel

xylanase. The integrated N-terminal pelb signal

sequence in pET22b(+) directed the enzyme to

periplasm that further led to secretion into the

extracellular environment.

The site-directed mutagenesis of two residues

of glutamate to aspartate resulted in a complete

loss of xylanase activity due to disruption in

double-displacement mechanism. In order to

take the advantage of thermostability of the

recombinant xylanase, it was subjected to high

temperature prior to purification by Ni2+-NTA

agarose resins. This step reduced the extra load

of non-His-tagged, less thermostable, and con-

taminant host proteins (Mamo et al. 2006;

Verma and Satyanarayana 2012).

The rMxyl exhibits optimum activity at

higher temperature (80 �C) and pH (9.0) which

is similar to xylanases produced byDictyoglomus

thermolacticum, Thermotoga maritima,
Bacillus stearothermophilus, and Geobacillus

thermoleovorans having optimal activity at or

above 80 �C (Uchino and Fukuda 1983; Mathrani

and Ahring 1992; Khasin et al. 1993; Verma and

Satyanarayana 2012). The activity and stability

of rMxyl at higher pH are the crucial properties of

Novel Alkalistable and Thermostable Xylanase-Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Table 1 Effect of modulators on rMxyl activity

Metal ions 1 mM 5 mM 10 mM

Mg2+ 106.45 � 1.05 99.65 � 0.98 87.38 � 0.45

Fe2+ 108.65 � 0.75 116.01 � 0.27 93.67 � 1.32

Sn2+ 110.43 � 0.67 76.12 � 0.44 45.17 � 0.63

Ni2+ 91.21 � 0.22 79.01 � 1.34 32.84 � 0.43

Zn2+ 91.67 � 0.32 76.64 � 0.78 32.89 � 0.89

Pb2+ 81.33 � 067 20.78 � 0.32 09.65 � 0.67

K+ 81.21 � 1.08 20.62 � 0.12 12.67 � 0.45

Ag2+ 73.48 � 0.53 54.55 � 0.69 27.83 � 0.98

Ca2+ 72.43 � 0.43 35.45 � 0.21 12.09 � 0.19

Mn2+ 71.76 � 0.63 27.34 � 1.32 09.67 � 0.27

Ba2+ 66.45 � 0.67 23.91 � 0.34 18.65 � 0.33

Cd2+ 54.67 � 0.43 29.33 � 0.49 12.87 � 0.65

Co2+ 59.15 � 1.23 29.63 � 0.65 12.54 � 1.12

Na+ 61.43 � 0.78 39.75 � 1.06 27.35 � 0.78

Cu2+ 29.12 � 0.18 15.76 � 0.76 10.09 � 0.87

Hg2+ 0 0 0

Inhibitors 1 mM 5 mM 10 mM

NBS 46.66 � 0.12 35.67 � 0.09 20.12 � 0.11

IAA 103.45 � 0.54 89.75 � 0.32 69.85 � 1.56

b-ME 0 0 0

DTT 0 0 0

EDTA 105.65 � 1.23 107.19 � 1.01 89.98 � 0.56

Detergents 0.1 % (v/v) 0.5 % (v/v)

Tween 20 103.45 � 1.32 105.67 � 0.98

Triton X100 108.32 � 0.96 104.05 � 0.92

SDS 97.34 � 1.32 65.89 � 0.19

Control 100 � 0.12 100 � 0.23 100 � 0.67
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xylanases for their applicability in paper

processing industry. The shelf-life of rMxyl is

more than 3 months at 4 �C, which retains greater
than 90 % activity. The recombinant xylanase is

optimally active at 80 �C and pH 9.0 that distin-

guishes it from already reported xylanases. The

xylanase of Thermotoga maritima has Topt of

90 �C, but it gets inactivated fast at pH 6.0

(Yoon et al. 2004). Similarly the alkalistability

at higher pH is reported in many xylanases but are

active at lower temperatures (Khasin et al. 1993).

The recombinant xylanase of GH10 family

from Bacillus halodurans showed both

properties together having optima at 75 �C and

pH 9.0, but it losses 50 % activity at 65 �C after

4 h and gets inactivated very fast at 80 �C
(Mamo et al. 2006). The metagenomic xylanase,

on the other hand, has good thermostability at

higher temperatures (60 �C, 70 �C and 80 �C)
with only 20–30 % loss after 3 h exposure. The

most significant aspect of this investigation is

obtaining a highly alkalistable (pHopt. 9.0)

and thermostable (Topt. 80
�C) xylanase from

environmental samples by a metagenomic

approach.

Cations (Mg2+, Sn2+, and Fe2+) stimulated the

rMxyl activity while 1 mM, Hg2+, and Mn2+

significantly inhibited the activity. The inhibition

of xylanase by Hg2+ suggests the presence of

tryptophan residues that oxidize indole ring,

thereby inhibiting the xylanase activity. The inhi-

bition of xylanase activity by Cu2+ is similar to

the majority of the xylanases (Matteotti

et al. 2012). In Glaciecola mesophila KMM

241, EDTA caused ~25 % enhancement in activ-

ity (Guo et al. 2009). NBS inhibition suggests the

involvement of tryptophan in xylanase activity.

Total loss of xylanase activity by b-ME and DTT

suggests the distortion of disulfide linkages pre-

sent between cysteine residues (Maalej

et al. 2009; Matteotti et al. 2012). Detergents

exerted a slight stimulatory effect on the recom-

binant xylanase which is a common feature of the

other xylanases. However, rMxyl was inhibited

by SDS.

The rMxyl hydrolyzed birch wood and beech

wood xylans efficiently. The structural similarity

of beech wood and birch wood xylans may be the

reason for the high activity. The enzyme

exhibited almost similar activities on oat spelt

Novel Alkalistable and Thermostable Xylanase-
Encoding Gene (Mxyl) Retrieved from Compost-Soil
Metagenome, Fig. 6 Profile of xylo-oligosaccharides

liberated by the action of rMxyl. Lane (A1–A4)*: spots

of X1, X2, and X3 were detected from wheat bran. Lane

(B1–B4)*: hydrolysate from corncobs showed prominently

X2 and X3. While X3, X4, and X5 were detected

from hydrolysate of sugarcane bagasse (C1–C4)*. Lane

M: standards of various XOs. X1 xylose, X2 xylobiose, X3
xylotriose, X4 xyloptetraose, X5 xylopentaose. *: 1/2/3/4

time intervals of 5, 15, and 30 min and 1 h, respectively

Novel Alkalistable and Thermostable Xylanase-Encoding Gene (Mxyl) 557 N

N



xylan and arabinoxylan. Oat spelt xylan is a type

of arabinoxylan very rich in arabinose (xylose/

arabinose ¼ 66:34) (Gruppen et al. 1992;

Kormelink and Voragen 1993). Interestingly the

rMxyl liberated xylo-oligosaccharides from

xylan in just 5 min and it was sustainable on

prolonged incubation. Several xylanases have

been reported from various microorganisms that

liberate xylo-oligosaccharides following xylan

hydrolysis. Alkaline xylanases show better action

on agro-residues by lowering the stearic hin-

drance caused by cellulose and enhancing the

solubility of hemicellulosic materials (Gruppen

et al. 1992). The metagenomic xylanase finds

application in food industry for the production

of xylo-oligosaccharides as prebiotics (Vazquez

et al. 2000).

Summary

Most of the xylanases retrieved by culture-

dependent and culture-independent approaches

exhibit optimal activity in the pH and tempera-

ture ranges of 6.0–8.0 and 40–60 �C, respec-
tively. The xylanase (rMxyl) obtained in this

investigation through metagenomic approach

displays alkalistability as well as thermostability.

This is the first report on the xylanase with twin

stabilities obtained through a culture-

independent approach. A very low similarity in

amino acid sequence of the enzyme with other

known xylanases makes it a novel xylanase. The

possibility of obtaining thermo-alkali-stable

xylanase from composts may lead to an intense

search for similar enzymes in this and other

related niches.
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Novel Approaches to Pathogen
Discovery in Metagenomes

Jun Hang

Viral Diseases Branch, WRAIR, Silver Spring,

MD, USA

Synonyms

Community genomics; Metagenomics and path-

ogen identification; Microbiome and virome;

Pathogenomics

Definitions

Pathogen discovery: identification of causative

microbial or viral agent(s) for an illness or

asymptomatic infection. The identification may

refer to etiological diagnosis for individuals, epi-

demiology investigation on population scale, and

animal or environmental surveillance on orphan

pathogens.

Metagenomics: genomic study on a population

of biologically or functionally close microorgan-

isms as a whole community, without separation of

components into pure culture isolates.

Introduction

The best-known statement on pathogen discovery

probably is the so-called Koch’s postulates, in

which isolation of disease causative microbe

and determination of its etiological features are

of the essence (Falkow 2004; Lipkin 2010).

There are fascinating and tragic stories in medical

history of human volunteers or doctors who

sacrificed health or even their lives to test patho-

gens on themselves to satisfy the postulates. The

principles guided the development of clinical

microbiology and remain the important guide-

lines, if not the rules, even in the era of molecular

biology and genomics. Nevertheless, study has

shown that the vast majority of microorganisms

cannot be readily grown or are not cultivable at

all (Handelsman 2004). It is also true for patho-

gens; in other words, there are numerous varieties

of potential pathogens that exist and evolve in the

environment; it is just a matter of time when and

where they will emerge or reemerge to cause

sporadic cases or outbreak. In addition, the man-

ifestation of some diseases is contributable to

coexistence of multiple organisms or imbalanced

microbial community at host tissues.

Technique approach for pathogen diagnostics

evolves along with scientific discovery and

technology innovation on microbiology as well

as other disciplines. A variety of techniques are

used in clinical labs, including the traditional

microbiology tests, rapid serological assays, and

various molecular assays. They are well designed

and validated with reliable sensitivity and speci-

ficity (Lipkin 2010). Many of them are automated

for improved speed, convenience, and accuracy.

However, in spite of the great effectiveness and

robustness, threat from emerging pathogens

remains real. In particular, because of the rising

globalization and drastic climate changes, novel

pathogens and new variant strains have more

often appeared and spread. There are chances that

a highly virulent pathogenmay escape detection by

conventional methods and can cause a widespread

outbreak and public health crisis with dramatic

economic loss and social consequences.

To answer the emergent challenge, novel

approaches utilizing the advanced technologies

have been developed to effectively identify path-

ogens as well as elucidate pathogenesis mecha-

nism in comprehensive way (Lipkin 2010; Olsen

et al. 2012). Metagenomics analyzes all genomic
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information in a specifically defined population.

The deep and comprehensive metagenomic

information allows individual organisms of inter-

est to be interrogated in the context of the whole

community and with its phylogenetic relatives

(Joseph and Read 2010). The significant strategy

has transformed the way we perceive microbial

world. The related laboratory and bioinformat-

ics approaches were successfully used in identi-

fying causal pathogens for outbreaks and

providing vital insights into the source and/or

evolutionary origins (Koser et al. 2012).

Approaches based on rich knowledge from

metagenomics are vigorously implemented to

pathogen discovery and are believed to be clear

path of future perspectives of the clinical diag-

nostics (Eisen and MacCallum 2009; Olsen

et al. 2012).

Strategy and Schemes

Genomic approaches to detection of pathogen in

clinical specimens are either based on known

genomic information (sequence dependent) or

designed to capture unique and disease-relevant

as well as redundant and irrelevant sequences

altogether (sequence independent) (Olsen

et al. 2012). Metagenomics was initially devel-

oped in the era of Sanger sequencing (Fredericks

and Relman 1996; Handelsman 2004) and truly

thrived with the emerging of the next-generation

sequencing (NGS) technologies which make

DNA sequencing much less expensive and

hugely productive (Petrosino et al. 2009). It is

now feasible and affordable to either sequence

a number of amplicons at exceedingly high depth

to capture rare variants or sequence all DNA and/or

RNA by design in a complex sample. NGS allows

direct sequencing of microbial contents without

microbiological cultivation for isolation and

enrichment. Numerous molecular biology tech-

niques for sample preparation prior to sequencing

and bioinformatics tools for data mining and ana-

lyses were developed (Thomas et al. 2012). Exper-

iment design and the choice of technical and

analytical approaches are vital for the sensitivity

and accuracy for pathogen discovery.

16S Ribosomal RNA Gene Sequencing
for Human Microbiota Assessment and
Identification of Bacterial Pathogens

Bacterial 16S rRNA gene sequence has long been

used to classify bacteria down to taxonomy levels

of genus or lower. In contrast to amplification,

cloning, and sequencing of full length 16S rRNA

genes by Sanger method, NGS enables massive

acquisition of a million or more 16S rRNA gene

segment sequences in a single run to decipher

bacterial composition (species richness and

abundance) in a community (Kuczynski

et al. 2012). Sequence across two to three vari-

able regions has been suggested to contain taxo-

nomic information unique enough for

classification. Roche 454 pyrosequencing is cur-

rently the method of choice due to its relatively

long read length and low sequence error rate. Read

length average 300–500 bases for Roche GS FLX

Titanium system and 500–800 bases for the recent

FLX + system. FLX + application on amplicon

sequencing is currently under development and

yet to be validated for 16S sequencing which will

achieve longer read length without comprising

sequence quality. Different fromgenome sequenc-

ing in which reads are assembled by overlapping

to obtain a consensus sequence, in 16S-based

metagenomic analysis, 454 sequencing reads are

classified individually, i.e., each read is one oper-

ational taxonomic unit (OTU). Therefore, high-

performance sample preparation and sequencing

procedures, stringent data processing, and analyt-

ical pipeline are critical for achieving and

maintaining accuracy and sensitivity. Many stud-

ies to compare materials and methods for optimi-

zation have been published (Kuczynski

et al. 2012). One significant open resource is the

Data Analysis and Coordination Center (DACC)

from the National Institutes of Health (NIH)

Common Fund supported Human Microbiome

Project (HMP) and is available at website
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http://www.hmpdacc.org/. The fundamental knowl-

edge on healthy humanmicrobial communities and

the developed metagenomics techniques and ana-

lytic tools are being brought into the clinical arena

with encouraging successes on making diagnoses

of difficult diseases and complex outbreaks

(Loman et al. 2012). Pathogenomics is showing

its power and clinical importance by revealing

genomics andmetagenomics basis for complicated

syndromes which cannot be explicitly understood

with conventional clinical tests. In consequence,

improved therapeutic practices, reduced medica-

tion costs, and more-informed disease prevention

measures can result in dependable public health

protection.

Microbial Metagenomics and Single-Cell
Sequencing

There are considerable and ongoing efforts to

characterize collective whole genomes in an

entire community. For example, several research

teams used Illumina’s NGS technology and shot-

gun sequencing approach to generate several

hundred gigabases of microbial sequences for

extensive cataloging of genes in human gut

microbes (Qin et al. 2010; Arumugam et al.

2011). From a number of studies, the depth and

comprehensiveness of our knowledge on human

microbiomes is unprecedented, and it would not

be possible without having the advanced NGS

technologies and the associated sophisticated

bioinformatics tools (Kuczynski et al. 2012;

Thomas et al. 2012). However, such a shotgun

unselective metagenomic strategy requires tre-

mendous computational power and may not be

efficient or cost-effective enough for a routine

pathogen diagnostics practice. There are multiple

approaches that may facilitate the overcoming of

the hurdles for the wide use of metagenomics in

clinical settings. The HMP and other interna-

tional programs aim to build a database of fully

annotated complete genome sequences for bacte-

ria of clinical and human health relevant. The

high-quality reference genome database with

rich and definitive genomic, genetic, functional,

and phenotypic information will be the key to

a metagenomics-based clinical test (Joseph and

Read 2010). Other components essential to the

feasibility include streamlined sample processing

and sequencing system with automation, conve-

nient data collection and management procedure,

and efficient bioinformatics pipeline in concert

with reference information for sequence analysis

and amenable to integration with medical record

and interactive communication to worldwide dis-

ease networks and specific study consortiums

(Koser et al. 2012).

In addition to the promising clinical use of

whole-genome metagenomics, the scientific and

technical resources gaining from metagenomics

quests have a multitude of utilities that can make

existing pathogen discovery methods design

and perform better (Fournier and Raoult 2011).

For instance, with the comprehensive genomic

information on the microbial community

corresponding to the specimens, multilocus

sequence typing (MLST), PCR-based molecular

assays, microarray-based assays, etc. can be

made more specific for the targets with reduced

nonspecificity. Moreover, assay results can be

interpreted with better estimation of probability

of miss-calling and the false-positive, therefore

concluded with increased confidence.

Another promising approach is single-cell

genome sequencing for pathogen discovery. Indi-

vidual microorganisms or parasites are physically

isolated out of a complex community, i.e., clinical

matrix, either under microscopy by morphology or

using devices such as flow cytometry cell sorting.

Both methods are well established and already rou-

tinely used in clinical laboratory. Harvested single

cell or a homogenous pool of cells are then

subjected to amplification and sequencing.Multiple

displacement amplification (MDA) from a single

cell has been shown robust and faithful for down-

stream sequencing and microarray applications.

Studies showed 95 % or higher genome coverage

by using single-cell genomic sequencing (Pallen

et al. 2010). The culture-free approach coupled

with lab-on-chip microfluidic cell harvesting and

processing automation may make its way to

become suitable for clinical diagnostic use.
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Unbiased Random Amplification and
Sequencing for Viral Pathogen
Identification

While microbial metagenomics for bacterial

pathogen identification is still at its early stage,

viral metagenomics has become a robust

approach for hunting novel viral pathogens

when viral culture and molecular assays cannot

make the diagnosis (Djikeng and Spiro 2009;

Mokili et al. 2012). Because of the vast number

and variety of viruses in nature and the high

frequency of evolution events including nucleo-

tide mutagenesis, sequence recombination, and

segment reassortment, it is not rare that a novel

virus or a new virus variant escaped initial detec-

tions or was misdiagnosed and caused an out-

break. De novo approach with no requirement

for known sequence is therefore advantageous

for viral pathogen discovery. One technique

breakthrough is to identify novel viral sequence

by unbiased random amplification and massive

sequencing with NGS platforms. The process

illustrated in Fig. 1 includes the following major

steps: sample preparation which may require

extra preprocessing to enrich viruses and reduce

non-virus contents, random reverse transcription

and anchored random PCR amplification,

sequencing the random amplicons by NGS, and

data mining for identification of viral pathogen

Novel Approaches to Pathogen Discovery in
Metagenomes, Fig. 1 Pathogen discovery workflow.

(a) Flow diagram of the main procedures to pathogen

identification. (b) 16S-based targeted metagenomics for

determination of bacterial composition. Top panel shows
16S rRNA gene and hypervariable regions 1–9. Center
panel shows three amplicons commonly used in

16S-based metagenomic sequencing. The arrows indicate
sequencing direction. Bottom panel shows fusion primers

for PCR amplification of 16S rRNA gene segments.

Primer A/B and key sequences are compatible to the

choice of downstream NGS platform, e.g., Roche/454

GS. Amplicon(s) for each sample can be barcoded indi-

vidually using sequences such as 454’s 10-ntMultiplexing

identifier (MID) sequences. (c) Unbiased random amplifi-

cation. Random reverse transcription is primed by random

hexamers or octamers tailed with specific sequence. Sub-

sequent random PCR uses the random primers and the

primer matching with the specific sequence. The double-

stranded random amplicons can be sequenced with NGS

for viral sequence identification
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sequences. The significance of the culture-

independent viral metagenomic approach was

shown in studies in which novel viruses respon-

sible for unresolved infections were identified.

The discoveries by metagenome sequencing

also led to subsequent confirmation with PCR,

successful viral isolation by choosing suited

cells, and complete viral genome sequences for

rapid molecular tests for epidemiology and

surveillance. Another noteworthy use of

unbiased metagenomic sequencing is to detect

coinfection of viruses or virus variants with esti-

mation of the relative abundance for personalized

medicine. For example, sensitive and accurate

monitoring of low-level drug-resistant HIV

variants is clinically relevant for proactive

health care of HIV-infected population (Gega

and Kozal 2011).

There are a variety of protocols which were

originated from the same technical approach but

designed differently based on individual circum-

stances. The considerations include enriching

viral contents in complex matrices by

pretreatment with nucleases to degrade nonviral

naked nucleic acids or concentration of viral par-

ticles by filtration or centrifugation, DNase treat-

ment prior to reverse transcription to reduce

genomic DNA, the removal of ribosomal RNA,

Metagenomic random sequencing raw reads

Pre-filtering: Trim QV17 bases; Remove reads shorter than 50 bases

Trim primer sequence from both ends

Sequence clustering

Remove host sequences
(decontamination)

Unassembled reads Contigs

De novo assembly

Bacterial hits
(bacteria database)

Bacterial hits
(bacteria database)

Viral hits
(virus database)

Viral hits
(virus database)

Other hits
(nr/nt database)

Other hits
(nr/nt database)

Other hits
(nr database)

Other hits
(nr database)

Artificial/Novel
sequences

Taxonomic Annotation
Summary Report

Artificial/Novel
sequences

Novel Approaches to
Pathogen Discovery in
Metagenomes,
Fig. 2 Bioinformatics

strategy for identification of

viral sequences.

Metagenomic sequencing

data are processed using

streamlined multiple

sequence analyzing tools to

search for disease-related

sequence hits. Two typical

analysis paths are shown as

examples. It is crucial for

the efficiency to reduce

redundancy (e.g., sequence

assembly) and human

genome sequences

(decontamination) prior to

database alignment while

retaining relevant

sequences. Reduced

volume sequences are

subjected to thorough

alignments to the specified

as well as mega databases
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size selection of amplification products, and

adjusting clonal amplification conditions to

sequence random amplicons of broad range of

sizes. To find virus sequence reads in

metagenomic sequencing of clinical samples,

capable bioinformatics workflow is needed to

achieve the sensitivity, specificity, and speed.

The workflow may comprise a set of data

processing operations which can be chosen from

tools such as de novo assembly, sequence clus-

tering, decontamination (e.g., removal of human

sequences), NCBI BLAST tools, etc. Two exem-

plary workflows are shown in Fig. 2. Neverthe-

less, further simplified and streamlined sample

preparation and sequencing procedure which

can be readily reproduced in clinical laboratory,

good data management and sharing practices, and

diagnostic-specific bioinformatics solution will

be essential for viral pathogen discovery by

means of metagenomics.

Summary

The capability on pathogen discovery is driven by

technology innovation. Koch’s postulates

evolved from its original microbial form to the

molecular postulates (Falkow 2004) and cur-

rently “the metagenomic version” (Mokili

et al. 2012). Multidisciplinary strategy and meth-

odology of metagenomics open a new era of

pathogen discovery: analyze pathogenesis in

comprehensive ecology and community views;

delineate etiology with information on pathogen

coinfection, virulent variants and concurrent fac-

tors, and individualized therapy with the consid-

erations of metagenomes for optimal efficacy;

and avoid misuse of antibiotics and antiviral

drugs (Relman 2011). Next-generation sequenc-

ing is not only the ultimate sequence-based

approach for pathogen identification but also

a solution to stimulate clinical microbiology and

molecular diagnostics when a novel pathogen is

encountered. Despite the sound “proof-of-

principle” as well as advancements on both tech-

nical and analytical means, substantial individual

and concerted efforts are needed on translating

pathogen discovery on metagenomes from

explorative research to standardized clinical

practices.
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Isaam Saeed

Optimisation and Pattern Recognition Group,

Melbourne School of Engineering, The University

of Melbourne, Parkville, Australia

Synonyms

Binning; Genome signature; Nucleotide

frequency

Definition

The composition of nucleotide bases in

a microbial genome is not random and is instead

biased toward different compositional structures

that vary between organisms. These biases occur

as identifiable patterns in oligonucleotide base

composition, and it is by these patterns that oth-

erwise anonymous metagenomic sequences are

grouped into inferred populations. This allows

for more in-depth analysis of the functional

potential of a sampled microbial community in

the context of constituent members (inferred

populations).

Introduction

The composition of nucleotide bases in

a microbial genome is not random and is instead

biased toward different compositional structures

that vary between organisms. These biases occur

as identifiable patterns in oligonucleotide base

composition, and it is by these patterns that oth-

erwise anonymous metagenomic sequences can

be grouped into inferred populations enabling

in-depth functional analysis.

Extensive sequencing of microbial DNAmade

possible the large-scale analysis of this genome

base composition. Such analyses have revealed

that the various patterns in base composition may

be related to specific molecular machinery within

microbial cells that help shape base composition.

These biasing effects are thought to be mediated

by the processes of DNA repair and replication,

mutations, and base-step conformational tenden-

cies that operate in concert to give rise to the

characteristic base composition of different

microbial genomes (Karlin et al. 1997).

Since the sequencing methodology of

metagenomics does not preserve the association

between sequenced reads and their genome of

origin, functional analysis of a metagenome can

only provide an overall snapshot of what

a microbial community can potentially

do. However, if the association between

a sequence in a metagenome and the original

genome (or population) from which it was sam-

pled from can be inferred, then the resulting func-

tional analysis can probe deeper into the inner

workings of a microbial community. Processing

sequences in this manner prior to functional anal-

ysis is referred to as binning. There are currently

two major ways to address the binning problem

(McHardy and Rigoutsos 2007): the first classifies

sequences using a database of preexisting knowl-

edge of microbial organisms; and the second

groups related sequences based on the common

patterns that arise from biases in the base compo-

sition of microbial genomes. The latter approach

reflects the exploratory nature of metagenomics,

given that the majority of microorganisms cannot

be cultivated in a laboratory environment and

therefore they may not be represented in current

databases as yet.

When considering the use of patterns

(or genome signatures) in nucleotide base com-

position for binning, there are two major factors

that will influence the quality of the resulting set

of indentified groups (inferred populations). The

first is the taxonomic resolution of patterns to be
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used, which is governed by the between-genome

distinctness of a pattern. The second is the accu-

racy at which these patterns can be grouped,

which is governed by the within-genome conser-

vation of a pattern.

A Simple Binning Strategy Using GC
Content

It is well established that there are differences in

GC content between various microbial genomes.

The benefit of this to binning is that these biases

can often be used as a representative pattern to

group related sequences that share similar GC

content. Although localized GC content can

vary throughout a genome, if large enough

sequences are available in a metagenome, then

the assumption that the observed GC content is

representative of the full genome composition

still holds. It should be noted that GC content is

not a unique property of individual genomes and

if it is used it will group sequences coarsely

(in terms of microbial taxonomy). In such

a scenario, if GC content is significantly different

between the identified groups, then it can be

assumed that these groups are unrelated, but it is

not conclusive to say that the sequences within

each group are related unless further analysis is

conducted (due to the nonuniqueness property of

GC content). To increase the taxonomic resolu-

tion of binning using GC content, for example, it

can often combine with other complementary

features. An approach of this sort was used to

group sequences of the metagenome of an acid

mine drainage biofilm (Tyson et al. 2004), where

GC content was combined with local assembly

depth to distinguish the dominant populations

that shared similar GC content.

Generally, metagenomes with a small number

of dominant species tend to be easier to assemble,

and the resulting contig lengths can oftenmakeGC

content a viable option to group sequences in such

data sets. However, there are still limitations to this

approach, and for more complex metagenomes,

GC content has been superseded by higher-order

statistics of base composition, referred to as oligo-

nucleotide (or n-mer) frequencies.

Nucleotide Frequency

With the advent of large-scale, high-throughput

DNA sequencing, the increased sample size of

sequenced DNA molecules provided a foundation

for extensive statistical evaluation of nucleotide

composition in different genomes. Further studies

of genomic composition, in light of the increasing

number of available genome sequences, pioneered

the use of higher-order statistics to describe signa-

tures in microbial genomes. The underlying princi-

ple of these signatures is based on the observation

that specific oligomers are under-/overrepresented

in different genomes and that the similar biases

occur in related genomes. Nucleotide frequency is

among the most widely used ways of representing

these biases and is calculated by counting all occur-

rences of fixed length oligos (or n-mers) within

a sequence and then normalizing by the total num-

ber of oligos in that sequence to arrive at an esti-

mate of the oligonucleotide frequency content. The

features of microbial genomes based on nucleotide

frequency, which have been successfully applied to

metagenomic studies, include the following: the

dinucleotide odds ratio, codon signatures/trinucle-

otide frequencies, and tetranucleotide frequencies.

Dinucleotide Odds Ratio

Among the earliest of these nucleotide frequency

signatures that was found to be biologically rele-

vant was the dinucleotide odds ratio, which was

based on early in vitro studies on differences in

dinucleotide content between various organisms

(Karlin et al. 1997). This signature considered the

dinucleotide frequency content of a sequence and

factored out the effect of mononucleotide fre-

quencies using a normalization scheme based on

a Markov model, as given by

r2i ¼
f XY
f X f Y0

where X and Y represent the first and second

mononucleotide in the dinucleotide to be normal-

ized and f represents the frequency of mono-/

dinucleotides. The derived statistic, also referred

to as the dinucleotide odds ratio, could ade-

quately describe biases specific to various
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microbial organisms. For example, it was

observed that there is a general TpA avoidance

mechanism across various microbial genomes

and a CpG underrepresentation in thermophilic

microbes. Distances between sequences

represented using the dinucleotide odds ratio are

evaluated using the Manhattan distance, also

referred to as the d* distance. When this odds

ratio differs from 1, the resulting statistic pro-

vides a means to estimate the under-/

overrepresentation of specific dinucleotides,

given by the limits 0.78 and 1.23, respectively

(Karlin et al. 1997). Although several genome-

wide biases were found when using this odds

ratio statistic, the discrimination between larger

sets of microbial genomes (more representative

of real-world metagenomes) is still better handled

by higher-order frequencies.

Codon Signatures/Trinucleotide Frequency

Gene sequences are relatively conserved within

a genome, as any changes at critical locations

may cause the gene product to be defective. This

motivated the use of signatures based on this

knowledge to capture more representative patterns

in microbial genomes. Codon usage in the gene

sequences is thought to be mediated by the overall

genome composition and is also related to the

flexibility of the choice of codons due to the

degeneracy of the genetic code. Trinucleotide fre-

quencies (i.e., frequencies of all possible 3-mers:

AAA, AAC, AAT, . . ., GGG) can be used to

capture some of these biases, and alternatively,

an extension to the dinucleotide odds ratio is also

able to capture these codon signatures using dinu-

cleotides (Karlin et al. 1998). This codon signature

is constructed as follows:

gXY 1, 2ð Þ ¼ f XY 1, 2ð Þ
f X 1ð Þf Y 2ð Þ

gXY 2, 3ð Þ ¼ f XY 2, 3ð Þ
f X 2ð Þf Y 3ð Þ

gXY 3, 4ð Þ ¼ f XY 3, 4ð Þ
f X 3ð Þf Y 4ð Þ0

where the indices represent the nucleotide base at

the first, second, or third nucleotide within

a codon (with index 4 referring to the first base

of the next codon). This signature requires at least

50 full-length genes from a given genome to

make a stable estimate, and these ratios can be

biased within a genome (not only between

genomes), depending on the set of gene classes

that comprise the genes in a genome. Due to these

issues, such signatures may cause difficulty in

grouping sequences for the purpose of binning.

Tetranucleotide Frequency

Tetranucleotide frequency (all possible combina-

tions of 4-mers, of which there are 256) offers

greater discrimination between species in

ametagenome than lower-order nucleotide frequen-

cies. For this reason, tetranucleotide frequency is

perhaps the most widely used in clustering

metagenomic sequences. Moreover, it has been

found to capture a species-specific signature

(a reasonably strong phylogenetic signal at lower

taxonomic ranks), which makes it not only a more

powerful alternative to clustering metagenomic

sequences but also offers biologically meaningful

groupings of sequences (Teeling et al. 2004). This

was also confirmed by (Mrazek 2009) who corre-

lated 16S rRNA distances with various signatures

and found that tetranucleotide frequencywas able to

outperform other feature sets. It has also been found

that tetranucleotide frequency can be used to find

conserved signatures flanking 16S rRNA genes,

which can in turn be used to assign classes to the

identified groups of sequences (Chan et al. 2008).

Strand Bias

Prior to the use of these signatures, it should be

noted that for oligonucleotide frequencies, the

feature vector requires correction for biases

between strands (Tyson et al. 2004). This is

often remedied by counting the number of

n-mers on the original sequence, as well as on

the reverse complement, and then taking the aver-

age of the two prior to normalization.

Normalization Techniques for
Nucleotide Frequency

Given the observed nucleotide frequencies for

each sequence, it is often necessary to normalize

each observation prior to further analysis. (Note:
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it is still possible to simply take the frequencies of
the observed number of n-mers in a sequence.)

Markov Normalization

The dinucleotide odds ratio is a special case of

Markov normalization. In the general case, the

maximal-order Markov normalization of an

observed nucleotide frequency vector is given by

rki ¼
f 1...k f 2...k�1

f 1...k�1 f 2...k
,

where the appropriate statistic for tetranucleotide

frequency, for example, is given when k¼ 4. This

normalization scheme essentially aims to filter

out lower/higher nucleotide frequencies. Lower-

order normalization schemes are possible, but

they have poorer correlation properties with phy-

logenetic distances (Mrazek 2009).

Z-Score Normalization

Another approach to normalization uses the

Z-score transform to assess the statistical signif-

icance of observed n-mers (Tyson et al. 2004).

For tetranucleotide frequency, the Z-score nor-

malization is computed as follows: the expected

value for a given tetramer is calculated by

E n1n2n3n4ð Þ ¼ N n1n2n3ð ÞN n2n3n4ð Þ
N n1n2ð Þ ,

and the variance is calculated using

s2 n1n2n3n4ð Þ¼E n1n2n3n4ð Þ

� N n2n3ð Þ�N n1n2n3ð Þ½ 	 N n2n3ð Þ�N n2n3n4ð Þ½ 	
N n2n3ð Þ2 ,

which gives the required normalization for each

tetramer:

Z n1n2n3n4ð Þ ¼ N n1n2n3n4ð Þ � E n1n2n3n4ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 n1n2n3n4ð Þp :

The Oligonucleotide Frequency-Derived
Error Gradient (OFDEG)

An extension to oligonucleotide frequency-

based features is the oligonucleotide

frequency-derived error gradient (OFDEG)

(Saeed and Halgamuge 2009). OFDEG was

observed by exploring the relationship of

nucleotide frequency between short fragments

and the original DNA sequence from which

they are sampled. The observation is based on

a resampling method, where instead of using

the entire sequence to estimate the maximum

likelihood point estimate of nucleotide fre-

quency, the OFDEG measure resamples the

nucleotide base composition of varying length

subsequences to capture the distribution of

oligomeric frequencies.

For example, it is straightforward to com-

pute the un-normalized nucleotide frequency of

an entire genome (referred to in this definition

as an occurrence vector). Similarly, the occur-

rence vector for a short subsequence sampled

from anywhere along the genome can be easily

computed. Intuitively, the error between these

two occurrence vectors (defined in terms of

Euclidean distance) would be large. Neverthe-

less, the error is recorded and another subse-

quence, of increased length, is sampled again

from anywhere along the genome. Trivially,

the error between the occurrence vector of

this new subsequence and the occurrence vec-

tor of the genome would be reduced. This

process is continued until the length of sub-

sequences is equivalent to the length of the

genome, while keeping track of the error at

each sampling instance. The resulting error as

a function of subsequence length is found to be

linear (up to a given subsequence length). The

rate of error reduction (or gradient) of this

linear trend, within the bounds of the linear

region, is referred to as the OFDEG. It has

been found that this linear gradient is different

for various genomes and is remarkably consis-

tent within genomes as well as between frag-

ments of a genome. The measure essentially

captures the relative magnitude of biases in

nucleotide base composition in a manner sim-

ilar to entropic measures and has been used in

combination with other complementary fea-

tures to successfully group related sequences

in various simulated and real-world

metagenomes.
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Combining Features to Increase the
Taxonomic Resolution of Binning

It has recently been demonstrated that when two

signatures capture the different characteristics of

base composition, they can be used to group

sequences differently, and in cases where these

groups are mutually exclusive and at different

taxonomic resolutions, such features can be

arranged hierarchically to increase the taxonomic

resolution at which sequences in a metagenome

are grouped (Saeed et al. 2012).

This concept was demonstrated using the

combination of GC content and OFDEG as

a preliminary set of features to coarsely group

a metagenome and then using tetranucleotide fre-

quency to refine these coarse groups further. This

is particularly important when the number of

populations in a metagenome increases, as

tetranucleotide frequency on its own is known

to saturate in its discriminatory power when this

occurs (Saeed et al. 2012). Since both OFDE and

GC content generate coarse groups, the groups

can then be processed using a high-resolution

feature set for refinement. This has been found

to improve the binning performance over existing

methods on simulated as well as real

metagenomic data sets (Saeed et al. 2012).

Grouping Related Metagenomic
Fragments Based on Sequence
Composition

Methods that operate on nucleotide composition

for grouping related sequences can be classified

in terms of two broad machine learning para-

digms: those which construct supervised classi-

fiers and those which rely on unsupervised

exploratory clustering.

Supervised Classification

A classifier can be trained using existing knowl-

edge of patterns based on the analysis of refer-

ence sequences in current databases. These

methods consider the classification of each

sequence in isolation, and their accuracy will be

dependent on the representativeness of the

training set in relation to the metagenome under

investigation.

Unsupervised Clustering

Unsupervised learning is not predicated on

the availability of reference sequences for

training. Instead, methods which operate in

this paradigm group related DNA sequences

by the inferred similarity of patterns, which

is consistent with the exploratory nature of

metagenomic studies. When using patterns it

can often be advantageous to use this approach,

particularly when the sampled community con-

sists of microbes that are either underrepre-

sented or not represented in existing databases.

Moreover, these methods can be applied

directly to a data set to reveal hidden patterns

among related sequences in a metagenome

without enforcing a priori knowledge of what

phylotypes should be present.

However, for clustering methods which oper-

ate on density estimation, these methods require

a sufficient number of sequences per population

in order for it to be discovered as a cluster. As

such, highly complex metagenomes with no

dominant populations are difficult to analyze in

this manner and are at present perhaps better

suited to supervised methods (provided

a suitable training set can be constructed).

The Effects of Various Forms of Noise in

Grouping Metagenomic Sequences Using

Nucleotide Base Composition

Category I: When unrelated, or distantly related,

genomes have highly similar compositional

signatures, the number of false positives in

grouping sequences can increase and will con-

sequently affect binning specificity.

Category II: Genomes that have large intra-

genomic variation in base composition can

often increase the number of false negatives

(these can sometimes be observed as outliers)

during binning and consequently affect bin-

ning sensitivity.

Category III: A more complex form of noise

occurs when organisms partially share com-

mon characteristics in base composition,

which will cause groups to overlap.
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With the use of model-based clustering in an

unsupervised setting with a hierarchical set of

features, there is the potential to increase the

accuracy of binning by removing these forms of

noise (Saeed et al. 2012).

Limitations and Future Directions

Significant advances in compositional binning

approaches have primarily looked at the issue of

representing the composition of a sequence,

rather than refining machine learning methods

that operate in an unrepresentative feature

space. Such is the case of the succession of GC

content by higher-order oligonucleotide frequen-

cies, for example. For instance, with an increase

in the number of fully sequenced bacterial and

archaeal genomes, it was observed that composi-

tional features tend to saturate in their capacity to

uniquely describe a microbial genome (or clade)

(Teeling et al. 2004). The use of complementary

features can address this limitation to a certain

extent (Saeed et al. 2012).

Given that metagenomes only contain frag-

ments, which in most cases can be quite short,

the length of sequences often limits the represen-

tativeness of features based on nucleotide fre-

quency (Mavromatis et al. 2007). This is

because these signatures are statistical in nature

and require sufficient sequence lengths with

which to estimate a representative signature.

The minimum sequence length has been argued

to be 1 kbp (McHardy and Rigoutsos 2007),

40 kbp (Teeling et al. 2004), and even

50–100 kbp (Karlin et al. 1997); but in general

caution is advised when applying such techniques

to sequences less than 1 kbp as this may result in

unrepresentative and sparse feature vectors.

This limitation of sequence length in

metagenomes is not only due to currently achiev-

able read lengths but also the complexity of

assembling metegenomes (in comparison to

single-genome studies). For complex communi-

ties (species rich), the required coverage for rea-

sonable levels of assembly (N50 contig length

greater than 1 kbp) translates into substantial

sequencing requirements. In light of this,

methods that operate on nucleotide frequency

alone can be seen to be at a disadvantage, but

with the anticipated longer read lengths and

higher throughput that future sequencing plat-

forms are capable of generating, coupled with

the development of a wide variety of novel tools

for metagenomic data analysis, these issues may

be largely alleviated and composition-based bin-

ning will be an important tool for metagenome

analysis.

Summary

The analysis of nucleotide base composition in

grouping related metagenomic sequences allows

for more in-depth analysis of the functional

potential of a sampled microbial community, in

the context of constituent members (inferred

populations), rather than simply observing the

overall functional potential of a community.

The features in current use are essentially based

on nucleotide frequencies, which describe the

relative abundance of n-mers in a sequence, and

various extensions to these signatures have also

been introduced, such as the oligonucleotide

frequency-derived error gradient (OFDEG).

The performance of using composition-based

features for binning can be improved when using

complementary features in combination, which

can result in an increase in the taxonomic resolu-

tion of the groups that result. In general, however,

the accuracy of grouping sequences using nucle-

otide base composition is largely governed by the

algorithm used to analyze the patterns (whether

in a supervised or an unsupervised setting), the

available sequence lengths, and the choice of

compositional feature. On the other hand, the

level of taxonomic resolution that can be

achieved in such an analysis is more heavily

influenced by the choice of compositional feature

alone. In most cases, these can be alleviated with

advances in sequencing technology. Neverthe-

less, there is much that can be unveiled when

patterns are extracted from metagenomic

sequences. It is, however, a matter of knowing

what patterns to extract and how best to extract

them before an attempt is made to group them.
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Synonyms

Open-access metagenomics; Open-source

metagenomics; Shared metagenomic libraries

Definition

Open resource metagenomics encompasses the

emerging resource sharing system that facilitates

distribution of metagenomic libraries throughout

the research community. These libraries are

constructed from DNA isolated directly from

environmental samples. Broad host range

cosmids are ideal for open resource

metagenomics, accommodating large DNA

inserts for screening or selections in multiple

prokaryotic or eukaryotic hosts.

The Challenges of Functional
Metagenomics

By capturing DNA extracted directly from envi-

ronmental samples, the first metagenomic librar-

ies were constructed in the late 1990s

(Handelsman et al. 1998; Rondon et al. 2000).

Metagenomic libraries are typically constructed

for specific applications such as retrieving genes

with desired functions. Functional metagenomics

is the use of metagenomic libraries to isolate

genes of interest based on associated activity of

captured environmental genes (recently reviewed

in Ekkers et al. 2012). Metagenomic libraries

may be screened or selected in several potential

host organisms (Wexler and Johnston 2010),

commonly for functions of potential biotechno-

logical value. This approach facilitates the dis-

covery of novel genes, without requiring culture

of the organisms that naturally carry those genes

or sequence homology to known genes.

In recent years, the combination of high-

capacity sequencing and advances in computa-

tional analysis of metagenomic sequence data has

resulted in dramatic improvements in gene dis-

covery in the absence of functional screening

(Thomas et al. 2012). Despite these improve-

ments, a fundamental limitation is that links

between sequence and function tend to be sub-

stantially incomplete. This is not only a limitation

of metagenomic library analysis, it is also an

important caveat for the study of genomes from

individual organisms. For example, it is often not

possible to assign a function to a gene product of

a characterized protein family, although that is

precisely the limitation of computational

methods for sequence-based analyses. Confident

determination of specific functions, such as sub-

strate specificity associated with sequence

motifs, relies on the availability of experimental

data. Arguably, the most interesting and valuable

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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metagenomic genes will be those whose function

could not have been predicted by sequence alone;

these genes would be more likely to encode prod-

ucts with truly novel properties.

A major advantage of metagenomic libraries

is that once they are made, they can be

a permanent resource, a snapshot of the microbial

community that the DNA was extracted from.

The same library, if stored properly, can be

screened multiple times, indefinitely. Below we

outline several methodological considerations

for maximizing benefit from open resource

metagenomic libraries.

Although they have sometimes been used,

small-insert libraries are not optimal for func-

tional metagenomics. The smaller the insert, the

less chance that individual clones will contain

full operons, including the regions required

for control of gene expression. As a result, the

use of bacterial artificial chromosome (BAC;

Kakirde et al. 2012) and cosmid/fosmid

(Aakvik et al. 2009; Neufeld et al. 2011;

Taupp et al. 2011) vectors enables the cloning

of fragments that are large enough to include

multiple operons. Such large-insert libraries

require fewer clones to ensure that they are

representative.

Depending on DNA yields, quality, and size,

metagenomic libraries of environmental micro-

bial communities may yield several million

clones. If such libraries are distributed into

384-well plates, this would represent over 2,500

plates per million clones. Plate storage would

require extensive freezer space, and screening

such libraries, one clone at a time, would be

prohibitively laborious and costly, even with the

use of robotic manipulation. An alternative strat-

egy we recommend is to recover and maintain the

libraries as pools of clones. This procedure

involves physical harvesting and mixing of all

individual colonies from all initial library plates,

followed by the preparation of aliquot suspen-

sions for cryopreservation and subsequent

distribution.

Another important consideration is that differ-

ent host backgrounds will selectively express

only a subset of an environmental metagenome.

For example, Bacteroides genes use specialized

promoters for their transcription (Mastropaolo

et al. 2009). Host-specific limitations on gene

expression include posttranscriptional controls,

including translation initiation, codon usage, pro-

tein folding, enzyme activation, and transport.

Also, wild-type and mutant strains that are most

appropriate for a given screen might be available

only in a host background that does not support

replication of a given vector. This is especially

true when using vectors that only replicate in

Escherichia coli and other Gammaproteo-

bacteria. For these reasons, it is advantageous to
choose or design vectors that can be maintained

in diverse host backgrounds.

Metagenomic libraries are often constructed

for specific applications, such as to screen for

a desired enzyme activity. Unlike the situation

for single culture isolates, which must be depos-

ited in accessible culture collections or otherwise

made available as a requirement of publication of

research results involving them, there is no such

requirement or expectation for metagenomic

libraries. This is unfortunate, as high-quality

metagenomic libraries are technically challeng-

ing and costly to construct, and their full value is

often not realized if their use is restricted to one or

a few research groups.

Achieving Metagenomic Resource
Sharing

We formally proposed that to ensure maximum

value, metagenomic libraries should be made

publicly available to members of the research

community, without restriction (Neufeld

et al. 2011). This is the concept of open resource

metagenomics that libraries be pooled to ensure

ease of archiving as frozen stocks and for subse-

quent distribution and handling. We also

recommended that cosmid libraries be used,

because they allow the efficient cloning of large

inserts of >30 kb. To facilitate screening in

a diversity of host backgrounds, cosmid vectors

with broad host range origins of replication are

recommended, as well as Gateway recombina-

tional systems for easy transfer of inserts to

other vectors. An example of such a resource is
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the Canadian MetaMicroBiome Library project

(CM2BL; http://cm2bl.org), which houses

a collection of Canadian soil metagenomic librar-

ies in an IncP cosmid Gateway vector. The largest

library in this collection contains over eight mil-

lion clones. To assist users in deciding which

libraries to choose for a given application, exten-

sive metadata and taxonomic sequence informa-

tion is accessible in an online database.

Summary

The open resource metagenomics initiative aims

to increase the availability of metagenomic

libraries to the research community as a public

and scientific resource. The principle of free and

open sharing of metagenomic libraries is central

to this initiative, including direct access to asso-

ciated metadata and DNA sequences. Increased

gene discovery as a result of the use of these

libraries not only has the potential to provide

novel, biotechnologically useful genetic material

but should increase the overall understanding of

gene functions and their relationship to DNA

sequence.
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Synonyms

Evolutionary relatedness

Definition

Phylogenetics, derived from the Greek terms

phylon (meaning “tribe”) and genetikos

(meaning “genitive” or origin), is the study of

the evolutionary history of species, organisms,

genes, or proteins through the construction and

analysis of mathematical entities known as trees

or phylogenies.

Introduction

Darwin’s The Origin of Species marked the birth

of phylogeny, a discipline whose primary aims

are to classify all living organisms, grouping all

extant descendants of a given ancestor within

specific groups or clades; to provide insights

into the shared properties of members within

each clade; and to allow retro direction, i.e., the

ability to infer ancestral properties based on

observable characteristics of extant organisms.

A significant limitation of traditional

morphology-based phylogeny approaches is the

fact that reconstructing ancient evolutionary

events requires a vast sum of character changes.

Furthermore, many of these morphological char-

acters are likely under selective pressure and

subject to convergence (Sleator 2010). Based

solely on this criterion, most organisms lack

sufficient phenotypic characters to perform

effective comparative analyses (Lopez and

Bapteste 2009).

The development of modern DNA and protein

sequence technologies has however effectively

eliminated this limitation. Modern phylogenetic

analysis involves the progressive alignment of

nucleic acid and/or protein sequences between

extant organisms. A hypothesis is then produced

to explain the repartition of character states, and

the results presented as a phylogenetic tree –

which is simply a graphic representation of the

computed output.

The accelerating accumulation of molecular

sequence data arising from recent concerted

large-scale genomic and metagenomic sequenc-

ing projects (Sleator et al. 2008) continues to

afford new opportunities and perspectives for

dissecting evolutionary relationships. Indeed,

while early molecular phylogenetic approaches

centered on individual DNA sequences coding

for RNA or proteins, or the derived amino acid

sequences of the latter, more recent analysis of

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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whole genomes has led to the development of

phylogenomics – a powerful approach to analyze

complete genome sequences as a metasequence

(Forterre and Gadelle 2009).

Discussion

Tree-Building Methods: The Major Analytical

Approaches

While several methods exist for inferring evolu-

tionary relatedness, most can be classified as

either distance- or character-based methods

(outlined in Fig. 1). Distance (or algorithmic)
methods employ an algorithm incorporating

a model of evolution (e.g., amino acid substitu-

tion) to compute a distance matrix from which

a phylogenetic tree is calculated by means of

progressive clustering. Specifically, distances in

the matrix relate to the number of differences

between each pair of sequences (either DNA or

protein). The model of evolution specifies how

amino acid substitutions occurred in the protein

sequence since they last shared a common ances-

tor. Finally, the tree is constructed from the

numerical data in the matrix, with the most

closely related sequences occupying a position

on the tree which is distant from the less closely

related sequences. Both the neighbor-joining

(NJ) and the unweighted pair group method

using arithmetic averages (UPGMA) approaches

to tree building employ distance-based methods.

Although fast and readily available in user-

friendly software packages such as MEGA

(Tamura et al. 2011), distance-based methods

have a number of significant limitations. NJ, for

example, provides only a single tree as opposed

to character-based methods which compute

a consensus tree from several optimal or near

optimal candidates. Furthermore, NJ may com-

pute different tress depending on the order in

which the constituent sequences are added.

Finally, given that differences are presented as

distance values, it is impossible to identify the

specific character changes that support a branch

(Soltis and Soltis 2003a).

Character-based methods (also referred to as

tree-searching methods) search for the most prob-

able tree for a specific sequence set based on

characters at each position of the sequence align-

ment and a model of evolution. The most com-

mon character-based approaches include

maximum parsimony (MP), maximum likelihood

(ML), and to a lesser extent Bayesian methods.

MP seeks to find the tree or trees that are

compatible with the minimum number of substi-

tutions among sequences, i.e., the fewest evolu-

tionary changes. An advantage of MP is that it

provides diagnosable units (i.e., specific sets of

characters) for each clade and branch lengths in

terms of the number of changes on each branch of

the tree. However, a significant limitation of the

MP approach is that it requires strict assumptions

of consistency across sites and among lineages.

Thus, MP performance is significantly affected

when mutational rates differ between conserved

and hypervariable regions or if evolutionary rates

are highly variable among evolutionary lineages.

Finally, parsimony lacks an explicit model of

evolution.

Phylogenetics,
Overview, Fig. 1 Tree-

building methods.

Schematic overview of the

major analytical

approaches to phylogenetic

tree building
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ML methods are based on specific probabilis-

tic models of evolution and search for the tree

with maximum likelihood under these models.

The model of evolution may be empirical,

derived from general assumptions about the evo-

lution of sequences, or parametric, based on

values estimated from the dataset. The major

advantage of likelihood approaches is that they

are based on powerful statistical theory which

facilitates the application of robust statistical

hypothesis testing and significant refinements to

the resulting phylogenetic trees. However, while

these strong statistical foundations make ML

techniques arguably the most powerful approach

in terms of phylogenetic reconstruction, paradox-

ically this strength is also a significant weakness,

in that ML approaches are computationally inten-

sive and, as a result, significantly slower than

alternative approaches. As such, ML analysis

can only be practically applied to a limited num-

ber of sequences (Soltis and Soltis 2003a).

In practice, both distance- and character-based

methods tend to be used in tandem. An initial tree

may be estimated by a distance-based method

and used to test the parameters of the model of

evolution. The most appropriate of these might

then be used in a maximum likelihood tree

search.

Testing the Reliability of a Tree

There are two approaches to finding the best tree:

those that use optimality criteria that can be eval-

uated for any given tree (used for MP and ML)

and those that involve the progressive clustering

of sequence subsets (used for NJ and UPGMA).

In the optimality methods trees are evaluated one

by one by either exhaustive, branch and bound, or

heuristic searches. Exhaustive searches evaluate

all possible bifurcating trees to find a globally

optimal topology; such an approach is only fea-

sible for a relatively small number of taxa (<10).

Rather than evaluating every possible tree, the

branch and bound approach first chooses a local

optimum value for tree length representing the

total number of evolutionary changes on the tree;

any tree length greater than the local optimum is

automatically discarded, thus saving time and

computational expense. Branch and bound

searches are effective up to ~20 taxa. Heuristic

(or “best guess”) searches employ a “hill

climbing” approach; an initial tree is chosen and

subsequently modified; changes leading to an

inferior tree descend the hill and the tree is

rejected; changes leading to an improvement

ascend the hill – when no further improvement

is possible, the search is terminated. Although an

extremely fast approach, there is no guarantee

that the returned tree is the global optimal (the

summit) or merely a local optimum (a foothill’s

plateau).

Once an optimum tree is chosen, some statis-

tical measure of internal support for clades must

also be provided to prove that the tree is suffi-

ciently robust and biologically meaningful. To

this end a variety of methods have been proposed

to verify the evolutionary reliability of trees of

which the most commonly used is the bootstrap

analysis. Bootstrapping can be divided into both

parametric and nonparametric approaches

(Wrobel 2008). Nonparametric bootstrapping is

a numerical resampling approach in which

a subset of sequence alignments referred to as

bootstrap or pseudo-alignments are formed from

the dataset by random sampling. This process is

repeated several times (depending on the size of

the dataset and the specifications of the analysis)

usually with a default setting of 1,000 replicates.

Bootstrap values are conservative measures of

phylogenetic accuracy with values of 70 % or

more representing “true” clades in experimental

phylogenies. Parametric bootstrapping on the

other hand creates replicate samples using

numerical simulation as opposed to resampling.

This approach is usually applied to test compet-

ing hypotheses.

Although generally effective, the bootstrap

approach rests on a number of assumptions

which are not optimal when applied to molecular

sequence analysis (for an overview see Box 1). In

addition to bootstrapping another measure of

internal support which is often used in phyloge-

netic analyses is jackknifing. Although similar to

bootstrapping, jackknifing involves one signifi-

cant difference; rather than resampling the data,

this approach uses only subsets of the available

data (i.e., resampling without replacement to
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create a smaller dataset). The purpose of which is

to account for the presence of possible “outlier”

characters which might have a disproportionate

influence on the resulting tree.

Other less common approaches to measuring

internal support include the decay index for par-

simony analyses (Hernandez Fernandez and Vrba

2005) and the posterior probabilities generated in

Bayesian inference (Wrobel 2008).

Box 1. Limitations of Bootstrap Analysis when

Applied to Molecular Sequences

• The statistical bases of bootstrap analysis

require that all positions of an alignment are

independently identically distributed. How-

ever, this assumption fails to hold true for

either nucleotide or amino acid sequences.

For example, in proteins certain di-residues

(in the primary structure) are either over- or

underrepresented (Karlin et al. 1991), while

strong correlations are observed between posi-

tions that interact within the 3D structure

(Karlin et al. 1994).

• Bootstrap analysis is hampered by unequal

evolutionary rates. If mutational rates are too

high or uneven among lineages, the bootstrap

proportion P is usually an overestimate (Soltis

and Soltis 2003b).

• Molecular sequences are not representative of

a homologous population, and as such

resulting bootstrap values may not signify reli-

able clusters (Brocchieri 2001).

Difficulties Associated with Creating Reliable

Phylogenetic Trees

Phylogenetic inferences are only as good as the

alignments they are drawn from – “Garbage in;

garbage out.” The majority of current alignment

protocols are based on dynamic programming

(DP) procedures which seek to identify the max-

imal alignment score, a value determined by the

choice of scoring matrix (e.g., PAM or

BLOSUM) and the assignment of gap penalties.

Rather than searching for the optimal alignment

of n sequences in an n-dimensional space, most

DP methods employ fast heuristic or “greedy”

approaches, progressively aligning pairs of

sequences. However, while effective this

approach has a number of shortcomings in terms

of phylogenetic analysis (for an overview of these

shortcomings, see Box 2).

An alternative approach involves the

application of motif finding algorithms which

select common sequence motifs and align

only these most conserved domains with no

allowance for gaps or insertions (Lawrence

et al. 1993).

In addition to alignment difficulties, two of the

most significant problems associated with

assessing tree reliably are long-branch attraction

(LBA) associated with mutational saturation and

lateral gene transfer (LGT) mediated, at least in

part, by viruses and mobile genetic elements

(Sapp 2007). As mutations cumulate during evo-

lution, a point of mutational saturation is reached

at which there is no further divergence between

taxa (Brocchieri 2001). From this point on it

becomes impossible to estimate evolutionary dis-

tance; furthermore very divergent sequences tend

to be attracted together (Fig. 2) – hence the

name – thus skewing their true position (Lopez

and Bapteste 2009).

Box 2. Sequence Alignment Shortcomings

• Heuristic methods, although fast, only provide

a best guess or estimate of the optimal

alignment.

• Alignments are sensitive to the choice of sim-

ilarity matrix (for amino acid sequence align-

ments) and gap penalty which are user

adjustable – thus requiring human

intervention.

• Hierarchically aligning pairs of sequence is

prone to generate biases and dominance by

the most similar sequences.

What Next. . .?

Phylogenomics – the merging of phylogenetics

and genomics – is perhaps the most exciting

recent development in the field of evolutionary

mapping (Delsuc et al. 2005). Rather than con-

centrating on a single phylogenetic marker,

whole-genome phylogenomic approaches

involve comparisons of gene content: the
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presence or absence of orthologous genes

(or gene families) and/or gene order. Genomic

relationships based on genomic content and orga-

nization (representing the genomic profile) are

inferred using the genomic signature which com-

putes differences within, and between, species

specific sequences based on dinucleotide relative

abundance differences. The generality and

robustness of the genomic signature gives it an

advantage over traditional approaches which,

based on individual sequences, are strongly

influenced by mutational events such as LGT.

Finally, while it is tempting to consider only

the Darwinian-Mendelian model of vertical gene

transfer in phylogenetic analysis, recent evidence

suggests that the role of LGT in shaping evolution

can no longer be ignored. Indeed, in certain pro-

karyotes the LGT rate is comparable to and, in

some instances, significantly higher than the rate

of spontaneous mutation (Lawrence 2002). LGT

has also been observed between eukaryotes

(Andersson et al. 2007) as well as between organ-

elles of the same cell (Archibald et al. 2003).

A major consequence of LGT is that instead of

focusing on the elusive “tree of life” (Puigbo

et al. 2009), phylogenetic analysis must now con-

sider the whole forest, corresponding to the inte-

grated framework of vertical and lateral gene

transfer (Lopez and Bapteste 2009). Slowly, but

surely, evolutionary biologists are beginning to

“see the wood for the trees” (Sleator 2011).

Summary

Recent rapid expansions in the DNA and protein

databases, arising from large-scale genomic and

metagenomic sequence projects, have forced sig-

nificant development in the field of phylogenetics,

the study of the evolutionary relatedness of the

planet’s inhabitants. Advances in phylogenetic

analysis have greatly transformed our view of the

landscape of evolutionary biology, transcending

the view of the tree of life which has shaped evo-

lutionary theory since Darwinian times. Indeed,

modern phylogenetic analysis no longer focuses

on the restricted Darwinian-Mendelian model of

vertical gene transfer but must also consider the

significant degree of lateral gene transfer which

connects and shapes almost all living things.

Cross-References

▶DNA Methylation Analysis by

Pyrosequencing

▶Horizontal Gene Transfer and Bacterial

Diversity

Phylogenetics, Overview, Fig. 2 Long-branch attrac-

tion. A simulated example of long-branch attraction.

(i) The real tree of the relationships among five taxa,

with two taxa (B and C) having long evolutionary

branches. (ii) An inferred tree of the taxa in which B and

C are artificially grouped together because of the phenom-

enon of long-branch attraction

Phylogenetics, Overview 581 P

P

http://dx.doi.org/10.1007/978-1-4899-7478-5_799
http://dx.doi.org/10.1007/978-1-4899-7478-5_799
http://dx.doi.org/10.1007/978-1-4899-7478-5_225
http://dx.doi.org/10.1007/978-1-4899-7478-5_225


References

Andersson JO, Sjogren AM, Horner DS, Murphy CA,

Dyal PL, Svard SG, Logsdon JR JM, Ragan MA, Hirt

RP, Roger AJ. A genomic survey of the fish parasite

Spironucleus salmonicida indicates genomic plasticity

among diplomonads and significant lateral gene trans-

fer in eukaryote genome evolution. BMC Genomics.

2007;8:51.

Archibald JM, Rogers MB, Toop M, Ishida K, Keeling

PJ. Lateral gene transfer and the evolution of plastid-

targeted proteins in the secondary plastid-containing

alga Bigelowiella natans. Proc Natl Acad Sci U S A.

2003;100:7678–83.

Brocchieri L. Phylogenetic inferences from molecular

sequences: review and critique. Theor Popul Biol.

2001;59:27–40.

Delsuc F, Brinkmann H, Philippe H. Phylogenomics and

the reconstruction of the tree of life. Nat Rev Genet.

2005;6:361–75.

Forterre P, Gadelle D. Phylogenomics of DNA

topoisomerases: their origin and putative roles in the

emergence of modern organisms. Nucl Acids Res.

2009;37:679–92.

Hernandez Fernandez M, Vrba ES. A complete estimate

of the phylogenetic relationships in Ruminantia:

a dated species-level supertree of the extant ruminants.

Biol Rev Camb Philos Soc. 2005;80:269–302.

Karlin S, Bucher P, Brendel V, Altschul SF. Statistical

methods and insights for protein and DNA sequences.

Annu Rev Biophys Biophys Chem. 1991;20:175–203.

Karlin S, Zuker M, Brocchieri L. Measuring residue asso-

ciations in protein structures. Possible implications for

protein folding. J Mol Biol. 1994;239:227–48.

Lawrence JG. Gene transfer in bacteria: speciation with-

out species? Theor Popul Biol. 2002;61:449–60.

Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald

AF, Wootton JC. Detecting subtle sequence signals:

a Gibbs sampling strategy for multiple alignment. Sci-

ence. 1993;262:208–14.

Lopez P, Bapteste E.Molecular phylogeny: reconstructing

the forest. C R Biol. 2009;332:171–82.

Puigbo P, Wolf Y, Koonin E. Search for a ‘Tree of Life’ in

the thicket of the phylogenetic forest. J Biol.

2009;8:59.

Sapp J. The structure of microbial evolutionary theory.

Stud Hist Philos Biol Biomed Sci. 2007;38:780–795.

Sleator RD. An overview of the processes shaping protein

evolution. Sci Prog. 2010;93:1–6.

Sleator RD. Phylogenetics. Arch Microbiol. 2011;193:

235–9.

Sleator RD, Shortall C, Hill C. Metagenomics. Lett Appl

Microbiol. 2008;47:361–6.

Soltis DE, Soltis PS. The role of phylogenetics in compar-

ative genetics. Plant Physiol. 2003a;132:1790–800.

Soltis PS, Soltis DE. Applying the bootstrap in phylogeny

reconstruction. Stat Sci. 2003b;18:256–67.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M,

Kumar S. MEGA5: molecular evolutionary genetics

analysis using maximum likelihood, evolutionary dis-

tance, and maximum parsimony methods. Mol Biol

Evol. 2011;28:2731–9.

Wrobel B. Statistical measures of uncertainty for branches

in phylogenetic trees inferred from molecular

sequences by using model-based methods. J Appl

Genet. 2008;49:49–67.

PhyloPythia(S)

Alice C. McHardy

Algorithmic Bioinformatics, Heinrich Heine

University D€usseldorf, D€usseldorf, Germany

Definition

PhyloPythia and its successor PhyloPythiaS are

fast and accurate oligomer signature-based clas-

sifiers for the taxonomic assignment of

metagenome sequence fragments.

Introduction

Metagenomics uses random shotgun sequencing

to recover genome sequence information from

microbial communities without the need for cul-

tivation of its member species. It thus gives

access to the vast portion of the microbial world

that cannot be cultured with standard techniques

(Hugenholtz 2002). The sequencing of randomly

sheared microbial community DNA initially gen-

erates a collection of short sequence fragments

called reads. Depending on the sequencing tech-

nology used, the amount of generated data and

read lengths vary (Metzker 2010; Droge and

McHardy 2012): while traditional Sanger

sequencing generates reads of around 800 bp,

the commercially available “next-generation”

sequencing technologies return reads of approxi-

mately 50–75 bp (SOLID sequencing by Applied

Biosciences/Life Technologies), 75–300 bp

(sequencing by synthesis technology by Solexa/

Illumina), 100–200 bp (semiconductor chip

sequencing by Ion Torrent/Life Technologies),

and 550–1,000 bp (pyrosequencing by
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454/Roche). The recently developed single-

molecule sequencers produce read lengths of

over 1 kb (PacBio SMRT) and of 5–10 kb

(Oxford Nanopore technology). Currently,

a single run of an Illumina HiSeq 2000 machine

produces up to six billion paired-end reads or

600 Gb of sequence data (Illumina 2012).

Bioinformatics methods are subsequently

applied to process the data. Assembly software

such as MetaVelvet (Namiki et al. 2012) can be

used to reconstruct longer contiguous sequence

fragments, or contigs, based on overlaps in reads.

For paired-end reads, the distances between reads

originating from the two ends of an individual

DNA fragment are approximately known. If

paired-end reads are assembled into different

contigs, the orientation of these contigs relative

to each other and the size of the unassembled gap

between them can be inferred. This ordering of

contigs with gaps of known sizes is also referred

to as a scaffold. The resulting sequence frag-

ments, i.e., the contigs, scaffolds, and remaining

unassembled reads, could principally originate

from any member species of the microbial

community.

In taxonomic assignment or “binning,” the

fragments are assigned to individual species or

higher-ranking clades (see Droge and McHardy

(2012) for a recent review). The term “binning”

was coined as a metaphor to describe the

process of separating the fragment mixture by

placing individual fragments into bins

representing the different taxonomic origins.

Besides variations caused by amplification bias

of sequencing, the number of reads recovered for

a community member should be approximately

proportional to the product of its abundance

and the size of its genome (Segata et al. 2012).

Thus fragments are more likely to originate from

the more abundant community members, which

are more extensively covered by sequencing.

Taxonomic assignment is different from taxo-

nomic profiling for a metagenome. In profiling,

the relative abundances of the different commu-

nity members are estimated based on taxonomic

assignment of either universal or clade-specific

marker genes found on a subset of the sample

fragments (Wu and Eisen 2008; Sharpton

et al. 2011; Segata et al. 2012; Wu and Scott

2012).

With the exception of highly complex com-

munities, such as those found in soil, assembly

and taxonomic assignment of metagenome sam-

ples sequenced to sufficient depth allows the

reconstruction of draft genomes, corresponding

to sets of contigs or scaffolds representing more

than 50 % of a genome (Pope et al. 2010; Hess

et al. 2011; Iverson et al. 2012). This enables

a functional analysis and reconstruction of meta-

bolic potential for individual community mem-

bers. The annotation of assembled and

unassembled metagenome fragments can be

performed with publicly available servers such

as MG-RAST, IMG/M, and CAMERA (Glass

et al. 2010; Sun et al. 2011; Markowitz

et al. 2012). In annotation, the presence and func-

tionalities of genes and operons are identified and

metabolic pathways reconstructed by comparing

enzymes predicted to be encoded in these frag-

ments with known reference pathways for model

organisms.

In the following, the PhyloPythia and

PhyloPythiaS software for the taxonomic assign-

ment of metagenome sequence fragments are

described.

Description

PhyloPythia and its successor PhyloPythiaS are

oligomer signature-based classifiers for the taxo-

nomic assignment of metagenome sequence frag-

ments (McHardy et al. 2007; Patil et al. 2011).

The methods are named after the Pythia, the

priestess at Apollo’s oracle in ancient Delphi.

They use the similarity in oligomer usage

between a query sequence and a target clade as

information. For prokaryotes, this allows to

assign genome sequence fragments to species or

higher-ranking taxonomic clades from which

they originate. Oligomer- or composition-based

taxonomic assignment differs from sequence

similarity-based or phylogenetic methods in that

global instead of local properties of the genome

sequence are used as information. There is no

requirement for homologous sequences of related
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taxa to be known for every analyzed fragment.

A fraction of a species’ genome sequence, typi-

cally 100 kb or more, suffices as reference data.

Reference data can be obtained by identifying

contigs with conserved marker genes such as

16S rRNA from the sample itself or by additional

sequencing of large insert libraries containing

marker genes (Warnecke et al. 2007; Pope

et al. 2010). Oligomer-based assignment there-

fore is advantageous for taxonomic assignment of

metagenomes from microbial communities with

few available sequenced genomes of its members

or of related species. Oligomer-based taxonomic

assignment is faster than alignment-based

methods, as no sequence similarity searches in

a large collection of reference sequences are

required. This makes it well suited for the analy-

sis of large next-generation sequence samples.

For short fragments of less than 1 kb or for

assignment over long taxonomic distances,

homology-based methods tend to be more accu-

rate (Patil et al. 2011). With PhyloPythia, the

relative frequencies of 4–6 mer oligomer patterns

with up to two wildcard characters in a sequence

fragment are used as features to train ensembles

of multi-class support vector machine classifiers

with a Gaussian kernel for individual taxonomic

ranks. These are subsequently combined for the

assignment of variable length sequence frag-

ments. PhyloPythiaS uses an ensemble of struc-

tured support vector machines with a linear

kernel trained with the relative frequencies of

4–6 mer oligomers in sequence fragments. The

structured output formulation allows to learn

a classifier simultaneously for the entire taxon-

omy under consideration of commonalities of

clades with partially shared evolutionary

histories.

Summary

Metagenomics uses random shotgun sequencing

to recover genome sequence information from

microbial communities without the need for cul-

tivation of its member species. It thus gives

access to the vast portion of the microbial world

that cannot be cultured with standard techniques.

Bioinformatics methods are subsequently applied

to process the data. Assembly software is used to

generate genomic sequence fragments, which

could principally originate from any member

species of the microbial community. In taxo-

nomic assignment or “binning,” the fragments

are assigned to individual species or higher-

ranking clades from which they originate.

PhyloPythia and its successor PhyloPythiaS are

oligomer signature-based classifiers for the taxo-

nomic assignment of metagenome sequence frag-

ments. Oligomer signature-based taxonomic

assignment is faster than alignment-based

methods, as no sequence similarity searches in

a large collection of reference sequences are

required. Oligomer signature-based assignment

is well suited for the taxonomic assignment of

metagenomes from microbial communities with

few available sequenced genomes of its members

or of related species. For microbial community

members with draft genomes reconstructed by

taxonomic binning, a functional analysis based

on gene content and reconstruction of metabolic

potential can be performed.
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Definitions

Metagenome: The collective genomes of all

members of a bacterial community.

Mobile metagenome: The total pool of

mobile genetic elements associated with

a bacterial community.

Mobile genetic element (MGE): A discrete

genetic unit capable of mediating its own transfer

between distinct DNA molecules and/or between

distinct host cells of the same or different species.

Plasmids, transposons, insertion sequences,

conjugative transposons, integrons, and bacterio-

phage are all examples of MGE.

Plasmid: Closed circular DNA molecule that

replicates within host cells as an autonomous

extrachromosomal element.

Plasmidome: Plasmid fraction of the mobile

metagenome. May be defined as the total pool of

plasmids associated with a microbial community

and a component of the mobile metagenome as

a whole.

Horizontal gene transfer: Transfer and

acquisition of genetic material between distinct

cells or species, outside of and in addition to the

normal process of inheritance (vertical gene

transfer).
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Synonyms

Gut microbiota; Lateral gene transfer (LGT);

Mobile microbiome

Introduction

Complex and diverse microbial ecosystems exist

in a wide range of habitats ranging from aquatic

and terrestrial environments, to those created on

and within animals, plants, and other metazoans.

The activities of these microbial consortia

(microbiomes) contribute to important environ-

mental processes such as nutrient cycling and

bioremediation, while those associated with

higher eukaryotic organisms are now widely

recognized to be intimately involved in host

health and aspects of host development (Ley

et al. 2006; Jones 2010; Jones and Marchesi

2007a; Strom 2008).

However, members of both host-associated

and “free-living” environmental microbiomes in

turn play host to a wide range of mobile genetic

elements (MGE) such as plasmids, transposons,

and bacteriophage, which are now also being

recognized as important components of these

microbiomes (Jones and Marchesi 2007a; Jones

et al. 2010; Jones 2010; Ogilvie et al. 2012; Kav

et al. 2012; Reyes et al. 2010; Zhang et al. 2011).

Collectively the total pool of MGE associated

with a particular microbial ecosystem is referred

to as its mobile metagenome (Jones andMarchesi

2007a, b), and there is increasing interest in

understanding how this versatile, and dynamic

reservoir of genes and genetic elements is

involved in the development of these ecologies.

For host-associated microbiomes there is also the

added dimension of how the mobile metagenome

of a particular ecosystem may impact on the

health of the higher eukaryotic host, either

through effects on the host microbiome or

directly through the functions encoded by con-

stituent MGE (Jones 2010; Ogilvie et al. 2012;

Ley et al. 2006).

Moreover, MGE have also been proposed to

facilitate the spread of beneficial functions within

a bacterial community (Jones and Marchesi

2007a; Jones 2010; Lozupone et al. 2008; Heuer

and Smalla 2012; Ley et al. 2006). MGE are

capable of moving between distinct molecules

of DNA and/or host cells and are also well

documented to acquire new genetic material

from host bacteria and subsequently disseminate

this to other species. This feature of MGE facil-

itates the exchange and maintenance of genetic

material between diverse species, a process

termed horizontal gene transfer (HGT). HGT

allows cells to rapidly acquire new genes and

activities which facilitates adaptation to new

environments, and the formation of new func-

tional pathways, and is believed to be a pivotal

factor in the evolution and diversification of bac-

teria (Ochman et al. 2000; Heuer and Smalla

2012; Jones and Marchesi; Jones 2010).

This is of particular relevance to host-

associated ecosystems, such as the human

microbiome, where HGT is proposed to have

played a key role in stabilizing the functional

output of such ecosystems. For example, in the

human gut microbiome dissemination of key

traits to multiple species in the community

through HGT is thought to generate functional

redundancy and protect against loss of important

activities from the community as a whole (Ley

et al. 2006; Lozupone et al. 2008; Jones and

Marchesi 2007a; Jones 2010). In this context, it

is notable that the human microbiome has now

been shown to support an emergent and extensive

network of gene exchange (with the highest rates

of transfer observed in the gut microbiome)

(Smillie et al. 2011), and it seems likely that

MGE forge the majority of connections within

this network.

Plasmids and Plasmidomes

Of the numerous types of MGE that will make up

a particular mobile metagenome, those capable of

autonomous cell to cell transfer are of special

interest. Plasmids in particular are believed to

be highly important in this regard and to be prev-

alent in many bacterial ecosystems. Not only are

plasmids frequently capable of mediating their

own transfer between distinct and diverse
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bacterial species, but also act as vehicles for other

MGE, and are known to encode a diverse array of

accessory functions, including those relevant to

health of higher eukaryotic organisms (Reviewed

in Ogilvie et al. 2012; Ochman et al. 2000; Smalla

et al. 2000a). Functions encoded by plasmids

include virulence factors, antibiotic resistance

determinants, bacteriocines, nutrient acquisition

and utilization, and degradation of xenobiotic

compounds, as well as factors that mediate toler-

ance of a wide range of physical parameters

(reviewed in Ogilvie et al. 2012; Ochman

et al. 2000; Smalla et al. 2000a; Heuer and

Smalla 2012).

Plasmids are covalently closed circular mole-

cules of DNA which replicate as extrachromo-

somal elements in the cytoplasm, independently

of the host cell chromosome. The copy number of

different plasmids can vary considerably, ranging

from 1 to 2 copies per cell for some plasmids to

several hundred copies per cell for others

(Espinosa et al. 2000; Novick 1987). This varia-

tion in copy number contributes to gene dosage

effects for plasmid encoded genes, potentially

increasing the output from plasmid encoded

activities.

The size and gene content of these elements is

also highly variable and ranges from small cryp-

tic plasmids encoding no obvious functions

outside of those essential for replication and

maintenance to large mega plasmids of several

hundred kilobases, which encode a diverse array

of activities (Espinosa et al. 2000; Novick 1987;

Heuer and Smalla 2012). Typically, larger plas-

mids are present in low copy number as they

present a greater metabolic burden to host cells

and often also encode all machinery necessary to

initiate their own transfer between host cells via

conjugation.

Plasmids are classified into distinct families,

generally distinguished based on their ability to

coexist and replicate within the same host cell

(incompatibility groups) and the sequence

homology of their replication machinery

(Espinosa et al. 2000; Novick 1987). However,

from studies of the established and well-

characterized plasmid families, it is clear that

plasmid genomes are highly diverse in nature,

with plasmids in a particular family exhibiting

a high degree of similarity around regions

involved in basic replication and maintenance

(the plasmid “backbone,” or core replicon) but

considerable variation in overall size and gene

content. Many plasmids have also been described

as possessing a modular organization, with essen-

tial backbone functions and accessory genes

organized as distinct gene clusters (Schl€uter
et al. 2007; Heuer and Smalla 2012). This modu-

larized genome architecture affords plasmids

a high degree of genetic flexibility in terms of

gene loss or recruitment and is consistent with the

diversity of plasmids and functions represented

within a particular plasmid family.

Considering the diversity of the prokaryotic

world and the relatively small numbers of plas-

mids characterized to date, it is clear that our

knowledge of these elements remains limited. In

conjunction with the insights into microbial ecol-

ogy and diversity provided by the application of

molecular genetic approaches (such as

metagenomics) to the study of microbial commu-

nities, this has prompted many researchers to

adopt a broader view of plasmids (and other

MGE) associated with a particular microbiome

(Jones et al. 2010; Ogilvie et al. 2012; Kav

et al. 2012; Zhang et al. 2011). This shifts the

emphasis to the global population of plasmids

resident in a given ecosystem and the collective

functions and activities they encode, giving rise

to the concept of the plasmidome (Kav

et al. 2012). The plasmidome refers to the total

pool of plasmids associated with a particular

mobile metagenome, and may be thought of as

a distinct component of the mobile metagenome

as a whole.

Accessing the Plasmidome

Plasmids are probably the best studied MGE, and

a range of strategies exist to specifically recover

and characterize these genetic elements

(reviewed in Ogilvie et al. 2012). These include

approaches that have been specifically designed

to permit community-level analysis of microbial

plasmidomes and to capture and analyze
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plasmids from the non-cultivatable fraction of

microbial communities, which account for the

vast majority of bacterial species in these ecosys-

tems. The development of such tools has been,

and will continue to be, a major challenge with

current approaches each exhibiting distinct

strengths and weaknesses when applied to

community-level analysis of plasmids

(Summarized in Table 1).

A particular issue faced by all approaches to

survey microbial plasmidomes, as well as other

facets of a given mobile metagenome, is the dif-

ficulty in evaluating the ability of any method to

provide universal access to the plasmidome and

identify any bias in the plasmids that may be

identified and recovered (Ogilvie et al. 2012).

Unlike analysis of the core chromosomal content

of a microbiome, where detailed surveys of

Plasmid Capture from Metagenomes, Table 1 Relative merits of approaches available for analysis of microbial

plasmidomes and plasmid capture from metagenomes (Modified from Ogilvie et al. 2012)

Plasmid isolation

strategy Advantages Disadvantages Reference

Endogenous

isolation

• Original bacterial host is known

• May be used for all cultivatable

bacteria

• Applicable to all plasmid types

• Requires host cultivation restricting utility

for study of natural communities

• Reliance on plasmid encoded traits if

surrogate host species required for plasmid

characterization

Reviewed in

Smalla and

Sobecky

(2002)

Heuer and

Smalla (2012)

Ogilvie

et al. (2012)

Exogenous

isolation

• Culture independent

• Selective isolation of

self-transmissible or

mobilizable elements

• Potentially capable of isolating

all plasmid types (circular and

linear) and sizes

• Can isolate plasmids irrespective

of abundance in community

• Relies on plasmid encoded traits for

plasmid transfer, selection, and maintenance

in surrogate host

• Original bacterial host unknown

• Range of plasmids isolated dependent on

mating conditions used and dictated by

numerous “unknown” environmental

variables influencing host cell physiology

and plasmid transfer kinetics

Bale

et al. (1988)

PCR-based

detection

• Culture independent

• High throughput

• Sensitive

• Scope for accurate quantitation of

plasmids

• Original bacterial host unknown

• Complete characterization of plasmid

detected generally impossible

• Limited to detection of known and

characterized plasmid lineages used for

primer design

Götz

et al. (1996)

TRACA • Culture independent

• Suitable for development of

high-throughput strategies

• Can isolate plasmids irrespective

of abundance in a community

• Fully independent of plasmid

encoded traits

• Sequence-based characterization

of plasmids facilitated by known Tn

sequence in plasmids

• Potentially applicable to all

circular plasmids and bacterial

communities

• May permit capture of MGE

other than plasmids when present as

circular DNA molecules

• Original bacterial host unknown

• Transposon may inactivate genes of

interest, impeding phenotypic

characterization

• Currently available Tn elements and

surrogate host may limit range of plasmids

isolated

• Linear plasmids not captured

• Transformation step may introduce size

bias

• Plasmids belonging to same

incompatibility group as Tn origin may not be

captured due to stability issues in surrogate

host

• Potential for bias towards numerically

dominant plasmids

Jones and

Marchesi

(2007b)

Jones

et al. (2010)

Warburton

et al. (2011)

Zhang

et al. (2011)

(continued)
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population structure can be first undertaken using

conserved housekeeping genes present in all bac-

terial chromosomes (such as genes encoding 16S

rRNA), no such global survey is possible for

plasmids (Ogilvie et al. 2012). As such, surveys

of microbial plasmidomes are impeded by

a fundamental lack of knowledge regarding the

composition of these malleable gene pools, mak-

ing the development and validation of methods

which access a representative cross section of the

plasmidome virtually impossible at present. Nev-

ertheless, available strategies still offer the poten-

tial to provide much insight into microbial

plasmidomes and have been applied to study

a range of microbial ecosystems yielding impor-

tant fundamental insights into the composition

and functional content of associated plasmid

pools.

Endogenous isolation: The simplest and most

widely used approach to study plasmids is the

direct isolation of plasmid DNA from host bacte-

ria. This approach classically involves the culti-

vation of host species, usually with selection for

particular traits of interest believed to be plasmid

encoded (reviewed in Smalla and Sobecky 2002;

Jones and Marchesi 2007a; Ogilvie et al. 2012).

Plasmid Capture from Metagenomes, Table 1 (continued)

Plasmid isolation

strategy Advantages Disadvantages Reference

Standard

metagenomic

libraries

(BAC/Fosmid)

• Culture-independent

• Suitable for development of

high-throughput strategies

• Initial capture independent of

plasmid encoded traits

• Sequence-based characterization

facilitated

• Original bacterial host unknown

• Likely bias towards numerically dominant

plasmids

• Screening relies on plasmid encoded traits

expressed in surrogate host species

• Not specifically designed for plasmid

capture, and non-plasmid sequences

dominate libraries

• Generally only incomplete, partial

plasmids identified

• General compatibility of library

construction methods with plasmid capture

unknown

• Plasmids belonging to same

incompatibility group as vector

(BAC/Fosmid) may not be represented due to

instability of clones in surrogate host

• Plasmids belonging to same

incompatibility group as vector may not be

captured due to stability issues in surrogate

host

Kazimierczak

et al. (2009)

Shotgun

sequencing of

plasmidomes

• Culture-independent

• Suitable for development of

high-throughput strategies

• Independent of plasmid encoded

traits

• Potential for complete access to

circular elements within a bacterial

plasmidome

• Original bacterial host unknown

• Removal of contaminating chromosomal

DNA potentially problematic

• Not suitable for survey of linear plasmids

with present strategies for removal of

chromosomal DNA

• Accurate assembly of complete plasmids

will likely require a more comprehensive set

of reference plasmid genomes than presently

available

• Pre-sequence processing of plasmid DNA

(removal of chromosomal fragments and

plasmid DNA amplification) likely to

introduce bias into final dataset. Requires

subsequent quantitative analysis to confirm

relative abundance of particular plasmids

Zhang

et al. (2011)

Kav

et al. (2012)
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Extracted plasmid DNA is subsequently trans-

ferred into a new host, ideally of the same spe-

cies, with E. coli K12-type strains most

commonly deployed. Plasmids are then typically

characterized based on the phenotypes they con-

fer upon host species but are increasingly exam-

ined at the nucleotide level, and plasmids

sequenced as part of whole genome sequencing

projects may also be considered as examples of

endogenous isolation.

Aside from its simplicity and general applica-

bility to all plasmid types (including linear plas-

mids), the major benefit of this approach is the

identification of the natural hosts species of

a particular plasmid. Conversely, the reliance on

cultivation of host bacteria, as well as the reliance

on plasmid encoded traits and their expression in

surrogate hosts species (selectable markers and

plasmid replication machinery), severely restricts

the utility of this approach for access to the

plasmidome. However, the general strategy of

direct isolation of plasmid DNA from host cells

can also be applied to the total community with-

out prior cultivation, and when combined with

high-throughput sequencing or other culture-

independent approaches, this direct extraction

method forms the basis for many “metagenomic”

strategies for plasmidome analysis (discussed in

detail below).

Exogenous isolation: Exogenous isolation

approaches were the first to address some of the

limitations inherent in endogenous approaches

for community level analysis of plasmidomes

(Bale et al. 1988; Hill et al. 1992). Exogenous

methods rely on the natural ability of plasmids to

initiate or participate in cell-cell transfer between

distinct host species. This strategy accesses plas-

mids using a selectable surrogate host species

(most typically E. coli) in biparental or

tri-parental matings with the donor population,

during which plasmids may be transferred from

donor cells in the community to the selectable

recipient (Fig. 1; Bale et al. 1988; Hill et al. 1992;

Reviewed in Ogilvie et al. 2012; Smalla and

Sobecky 2002; Heuer and Smalla 2012). Essen-

tially this system utilizes the surrogate host as

a “fishing net,” to pick up plasmids circulating

within the donor community under study, and

plasmid carrying recipient cells are subsequently

identified by cultivation on media selectable for

the recipient organism (often rifampicin resis-

tance), as well as plasmid encoded traits.

Biparental matings, involving only the donor

community and selectable recipient, can be used

to retrieve self-transmissible plasmids capable of

initiating autonomous conjugal transfer pro-

cesses (Fig. 1). Alternatively donor cells carrying

a “helper” plasmid may also be introduced along

with the selectable recipient, in a tri-parental mat-

ing approach (Hill et al. 1992). In this case, the

“helper” plasmid sets up plasmid conjugation

apparatus, which can subsequently be exploited

by plasmids that may be mobilized between

cells, but are not capable of independent transfer

(Fig. 1). In particular, the retrieval of self-

transmissible elements may be seen as

a strength of the exogenous isolation approach,

since these elements are likely to be the most

informative and important in understanding

MGE-mediated prokaryotic gene flow both

within and between microbiomes.

Although this method offers a number of sig-

nificant advantages over endogenous approaches,

the capture of plasmids is still reliant on plasmid

encoded traits, including the presence of select-

able markers, as well as the ability of plasmids to

successfully replicate in the surrogate host spe-

cies used (Ogilvie et al. 2012; Smalla and

Sobecky 2002; Heuer and Smalla 2012). Plas-

mids lacking in traits selected for, or unable to

replicate successfully in surrogate hosts, will not

be captured using these approaches. In addition,

the cell-cell transfer of plasmids is influenced by

numerous environmental variables, as well as

the physiological status of donor and recipient

cells, with metabolically inactive community

members unlikely to participate in conjugal

transfer processes. These factors also impact on

plasmid transfer rates, the types of plasmid that

can be acquired and the portion of the

plasmidome that may be accessed (Ogilvie

et al. 2012; Smalla and Sobecky 2002; Heuer

and Smalla 2012). Collectively, these factors

restrict the range of plasmids that may be cap-

tured and limit the utility of this approach for

studying microbial plasmidomes.
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Direct plasmid detection by PCR: A range

of PCR primers have been developed in order

to distinguish between plasmids of different

families based on backbone sequences, but

these have also been employed as surveying

tools to identify the presence of particular

plasmid types in total community DNA

extracts (Götz et al. 1996; Smalla

et al. 2000b). While this approach is poten-

tially useful in gaining an overview of the

types of plasmids comprising a particular

plasmidome and their relative abundance

(if utilized with a quantitative PCR strategy),

its usefulness is currently limited by the rela-

tively small number of plasmid genomes avail-

able from which discriminatory primer sets

may be established.

This limits the range of plasmids encompassed

in such surveys to those families already isolated

and characterized. A further disadvantage is that

along with a lack of data on host range, no infor-

mation on functional content of plasmids is

offered by this method, and there is little or no

scope to characterize detected plasmids in greater

detail. As such, this approach does not at present

constitute a viable strategy for in depth and com-

prehensive analysis of entire plasmidomes, but

may be used to augment other strategies and

provide further information on isolated plasmids.

Despite the present limitations, the usefulness of

this approach is likely to grow as more sequence

information and associated data is generated, and

greater numbers of habitat associated reference

data sets become available in the future.

Plasmid Capture from
Metagenomes,
Fig. 1 Overview of

exogenous isolation

approaches for the

acquisition of plasmids

from microbial

communities. Arrows
indicate plasmid transfer

between donor (mixed

microbial community),

recipient, and “helper”

populations. Purple arrows
indicate plasmid transfer in

biparental matings in which

selectable recipient cells

are used to acquire self-

transmissible plasmids

directly from the donor

population. Green arrows
indicate transfer events in

tri-parental matings, in

which cells harboring

a self-transmissible

“helper” plasmid are

utilized to initiate conjugal

transfer events with the

donor population and the

selectable recipient, in

order to acquire

mobilizable but non-self-

transmissible plasmids
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Transposon aided capture (TRACA): The

culture-independent transposon-aided capture

system (TRACA) has been specifically designed

for the acquisition of plasmids from whole com-

munities and to overcome some of the main lim-

itations of endogenous and exogenous

approaches (Jones and Marchesi 2007b). The

basic premise of this system is to retrofit all

plasmids with a suitable selectable marker and

an origin of replication compatible with the sur-

rogate host biomachinery, using an in vitro

transposon (Tn) system encoding this informa-

tion (Fig. 2).

Following Tn integration, plasmids are subse-

quently transformed into a surrogate bacterial

host and cells carrying plasmids selected for

based on antibiotic resistance genes harbored by

the inserted Tn. In this way, plasmids may be

acquired independently of the traits they encode,

and their replication in the surrogate host is facil-

itated (Jones and Marchesi 2007b). This provides

access to plasmids in a bacterial community

Plasmid Capture from Metagenomes,
Fig. 2 Overview of culture-independent metagenomic

approaches for microbial plasmidome analysis. Acquisi-

tion of plasmid DNA: Plasmid DNAmay be harvested and

processed in a number of ways before use in strategies to

capture plasmids or access the plasmidome. Plasmid DNA

may be acquired from either total metagenomic DNA

extracts of the microbial community or specific plasmid

extraction methods. Recovered pools of plasmids may

subsequently be processed to remove contaminating

chromosomal sequences and to amplify the recovered

plasmid DNA for certain plasmidome if necessary. Plas-

mid capture and plasmidome access: Recovered

plasmidome extracts may then be used in conjunction

with one or more culture-independent approaches for

plasmid capture or general access to the plasmidome.

Available culture-independent approaches include the

generation of standard metagenomic libraries, the used

of the TRACA plasmid capture approach, or direct shot-

gun sequencing of amplified plasmids
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regardless of functions encoded and has been

successfully applied to study plasmids in

a number of environments, including the human

gut, the oral cavity, and activated sludge (Jones

and Marchesi 2007b; Warburton et al. 2011;

Zhang et al. 2011).

Although the TRACA system offers major

advantages over other approaches, this method

does not circumvent all issues and may be subject

to a unique limitation in regard to the size of

plasmids that can be captured when using this

approach (reviewed in Jones and Marchesi

2007a; Ogilvie et al. 2012). Plasmids isolated by

this system to date have all been in the smaller

size range (~14 Kb and smaller), indicating the

TRACA system may be biased towards the cap-

ture of small plasmids or even unable to acquire

larger plasmids altogether. The reasons behind

this potential size restriction are presently

unclear, although the transformation step in

which Tn-tagged plasmids are introduced into

surrogate host cells is known to work more effi-

ciently with smaller DNA molecules, and there is

also potential for a size bias to be introduced

during the purification of plasmid DNA (Jones

and Marchesi 2007b).

It is also possible that the size range of plas-

mids captured by this system will be a function of

the plasmidome composition and the predomi-

nance of smaller plasmids in the ecosystems

that have been explored with this method to date

(Ogilvie et al. 2012). Although there is presently

no definitive data available on the average plas-

mid size in any given microbial ecosystem, initial

evidence suggests that physical features of plas-

mids, such as size, are responsive to pervading

environmental and ecological conditions in the

same way as host chromosomes (Slater

et al. 2008). Overall, it is most probable that

both the composition of the plasmidome and

inherent attributes of the TRACA system dictate

the profile of plasmids captured by this approach.

Regardless of these potential limitations, the

TRACA method provides an additional and use-

ful tool for the exploration of bacterial

plasmidomes, overcoming some of the major dis-

advantages of other methods. There is also much

scope to improve the existing TRACA approach

and expand the range of plasmids that may be

acquired with this system.

Retrieval of plasmids from standard

metagenomic libraries: Access to plasmid

sequences contained in standard metagenomic

libraries derived from total community DNA

have also been described (Fig. 2; Kazimierczak

et al. 2009). In particular, the isolation of plas-

mids or plasmid fragments, from such libraries of

the organic pig gut microbiome, has been dem-

onstrated and included those with the ability to

replicate autonomously when liberated from the

library vector and reconstructed by self-ligation

(Kazimierczak et al. 2009). Despite the novelty

of this approach, this strategy suffers from the

same drawbacks as endogenous and exogenous

methods in its reliance on plasmid encoded traits

for initial plasmid identification and subsequent

demonstration of autonomous replication in sur-

rogate host species (Kazimierczak et al. 2009).

Furthermore, this approach is not at present

designed to specifically retrieve plasmids, but

rather total community DNA which is dominated

by chromosomal sequences. As such this

approach is not presently suitable for the specific

analysis of microbial plasmidomes, and in the

original study by Kazimierczak et al. (2009),

libraries were analyzed for clones encoding anti-

biotic resistance genes, rather than plasmid

sequences per se. However, there is clearly

scope to utilize this method to further explore

existing metagenomic data sets and enhance the

interpretation of these valuable resources by illu-

minating mobile genetic elements captured in

these repositories.

Shotgun sequencing of plasmidomes: More

recently the first true applications of the

metagenomic approach to study plasmidomes

have been described (Fig. 2; Zhang et al. 2011;

Kav et al. 2012). In these studies, plasmid DNA

was extracted from the target community without

any prior enrichment or cultivation, subjected to

high-throughput sequencing, and fragments of

plasmid genomes subsequently assembled from

the resulting reads (Zhang et al. 2011; Kav

et al. 2012). This permitted a global survey of

plasmid-encoded functions present in the bovine

plasmidome (Kav et al. 2012), as well as an
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activated sludge microbial community (Zhang

et al. 2011), demonstrating proof of principal for

the shotgun sequencing approach to plasmidome

analysis.

Although this approach should in theory be

able to offer total and unbiased access to the

entire plasmidome of a given microbial commu-

nity, in practice limitations and potential biases

remain. For example, in the study by Kav

et al. 2012, sufficient plasmid DNA for sequenc-

ing was only obtained after amplification of the

recovered plasmid DNA by rolling circle ampli-

fication. As such there is potential for some plas-

mids to be preferentially amplified over others,

introducing bias into the resulting data set. In

addition, the complete removal of contaminating

chromosomal sequences is also challenging, and

despite the availability of “plasmid safe” DNases

which do not act on circular molecules, total

elimination of chromosomal DNA from plasmid

extracts appears to constitute a bottleneck in this

strategy (Zhang et al. 2011; Kav et al. 2012), with

linear plasmids also likely to be removed during

this process. As such there is further potential to

alter the composition of the plasmid pool

obtained during this stage of plasmid DNA

preparation.

There is also potential for errors in assembly

due to the mosaic nature of these elements,

a situation that may be exacerbated by the pres-

ence of any contaminating chromosomal

sequences. In this regard, the availability of ref-

erence plasmid genomes captured by methods

which acquire whole, intact plasmids (such as

exogenous isolation and TRACA) will constitute

a highly valuable resource that will significantly

enhance the power and accuracy of the shotgun

plasmidome approach (Fig. 2), and some

researchers have already begun to combine

these strategies (Zhang et al. 2011). Finally,

extensive sequencing will likely be required for

most plasmidomes, in order to move beyond rep-

resentation of numerically dominant plasmids

(particularly for assembly of complete replicons)

and provide the depth of coverage required to

access the full diversity of a given plasmidome.

Despite these potential issues, it is clear that

the shotgun sequencing approach to plasmidome

analysis constitutes a major advance in accessing

plasmids resident in microbial communities, in

terms of both depth of coverage and the cross

section of plasmids that may be covered.

Further development of such approaches, in

parallel with the development of more detailed

and extensive reference data sets from plasmids

captured through TRACA or exogenous

approaches, for the first time places the compre-

hensive analysis of a microbial plasmidome

within reach.

Retrieval of Host Range Data Following

Plasmid Capture from Metagenomes

A major drawback of all culture-independent

community-level approaches for investigation

of microbial plasmidomes, and capture of plas-

mids from metagenomic data sets, is the loss of

host range data inherent in these strategies

(Table 1). All such strategies effectively divorce

acquired plasmids or plasmid sequences of any

phylogenetic affiliation, undermining a primary

motivation for undertaking many such surveys:

a fundamental understanding of gene flow in

these communities. Despite this, several

approaches may be used to supplement the initial

culture-independent plasmid capture strategy and

provide some indication of plasmid phylogenetic

affiliation and long-term host range.

Plasmids captured through culture indepen-

dent approaches may subsequently be utilized to

develop fluorescent probes suitable for use in

fluorescence associated cell sorting (FACS)

applications (reviewed in Ogilvie et al. 2012).

The development and use of such probes in

FACS systems permits intact cells harboring

target genes or sequences to be separated from

the rest of the microbial community and subse-

quently identified through culture-independent

molecular genetic approaches, such as 16S

rDNA sequence analysis (Zwirglmaier et al.

2004). This strategy, termed Ring-FISH

(recognition of individual genes by fluorescence

in situ hybridization), has previously been

implemented and demonstrated as a feasible

approach for the recovery of cells encoding

genes of interest, including those encoded by

plasmids.
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Alternatively a range of in silico approaches

have been applied to plasmid host affiliation

(reviewed in Ogilvie et al. 2012). Plasmid

sequences may be compared directly to curated

sequence databases where phylogenetic informa-

tion on plasmid genomes and other genes is avail-

able. The homology of plasmid sequences to

database entries may then be used to infer phy-

logeny of captured plasmids (Jones and Marchesi

2007b; Jones et al. 2010; Kav et al. 2012; Zhang

et al. 2011). However, the mosaic nature of plas-

mids and the potential for a single element be

composed of genetic material with highly diverse

origins, coupled with inherent biases in public

databases due to the paucity of available plasmid

genomes, undermines the accuracy of this

approach and particularly when applied to frag-

mentary data sets such as metagenomic libraries

and shotgun plasmidomes.

Alternatively, strategies based on correlation

of nucleotide usage patterns in plasmids with

bacterial chromosomes have also been described

(Campbell et al. 1999; Suzuki et al. 2010). These

are based on the premise that over time, plasmids

and other MGE that are long-term residents of

a given host species adapt to their host at the

nucleotide level and acquire a corresponding

“genomic signature” in terms of nucleotide

usage profiles (Campbell et al. 1999; Suzuki

et al. 2010). As this underlying genomic signature

has been shown to permit discrimination between

chromosomal sequences of different bacterial

species, there is also scope to employ plasmid

nucleotide usage patterns to retrieve host range

information. Dinucleotide and trinucleotide

usage patterns, based on the abundance of all

possible two-nucleotide or three-nucleotide com-

binations in a given DNA sequence, have been

used in this way and shown to provide insight into

plasmid host range, at least in terms of potential

long-term bacterial host species to which plas-

mids are well adapted (Campbell et al. 1999;

Suzuki et al. 2010). There is much scope to incor-

porate such analyses into culture-independent

surveys of bacterial plasmidomes, as downstream

processing steps that may provide some of the

phylogenetic inference lacking in metagenomic

approaches.

Summary

There is now much evidence to support the

concept of distinct, community-associated

plasmidomes and wider mobile metagenomes

(reviewed in Jones 2010; Ogilvie et al. 2012).

However, the mobile and promiscuous nature of

many MGE (including many plasmids) makes

this a much less clearly defined genetic reservoir,

and membership of a particular mobile

metagenome will be far less exclusive than for

the core chromosomal compliment of the associ-

ated microbiome (Jones 2010). A greater under-

standing of the composition and functional

capacities of these mobile metagenomes, and

key MGE such as plasmids, will be important

for understanding and ultimately manipulating

many important microbial ecosystems, as well

as providing fundamental insight into the mech-

anisms of gene flow within and between distinct

microbiomes. Although no available method for

accessing microbial plasmidomes represents

a panacea for the study of these dynamic gene

pools, the application of tools currently available,

particularly when used in combination,

holds much potential for greatly expanding our

knowledge of plasmid diversity, abundance,

and functionality within microbial mobile

metagenomes.
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Automated Phylogenomic Inference Application

(AMPHORA)

Introduction

The small ribosomal unit RNA (SSU rRNA or

16S rRNA) has been widely used in microbial

systematic and diversity studies. The appeal of

using 16S rRNA gene as a marker gene is numer-

ous. First of all, it is distributed in every single
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cellular organism. Secondly, because regions of

16S rRNA sequence are highly conserved, 16S

rRNA gene can be PCR amplified from a wide

diversity of taxa using “universal” primers and

sequenced, bypassing the need to isolate and cul-

ture the organisms in question. Consequently,

millions of 16S rRNA reference sequences are

available for microbial classification and identi-

fication (Cole 2009).

Although 16S rRNA has been the “gold stan-

dard” in microbial diversity studies, it has several

shortcomings. First, because 16S rRNA only

makes up a tiny fraction of a genome (~0.1 %),

its application as a marker gene in classifying

metagenomic sequences is seriously limited. Sec-

ondly, the widely recognized bias in 16S rRNA

PCR skews the estimation of the relative abun-

dance of species in a population (Acinas

et al. 2005). Thirdly, the 16S rRNA gene copy

number varies substantially from species to spe-

cies, further complicates the effort to accurately

estimate microbial composition (Kembel

et al. 2012). To circumvent these problems,

protein-coding genes such as as rpoB, pyrG,
recA, and HSP70 have been used as alternative

phylogenetic markers to complement rRNA-

based analyses (Ludwig and Klenk 2000; Santos

and Ochman 2004). Because protein genes are

conserved at the amino acid level and not at the

nucleotide level, they evolve faster and thus have

more power at resolving the relationships of

closely related species than the 16S rRNA gene.

Unfortunately for the same reason, it is extremely

difficult to design “universal primers” that can be

used to PCR amplify protein-coding genes from

distantly related species (Santos and Ochman

2004). As a result, protein-coding genes have

seen very limited use in broad-spectrum

microbial surveys.

Recent explosive growth in genomic

sequences has changed the landscape. Thousands

of complete bacterial genomes are available and

many more are on the way of being sequenced

(Pagani et al. 2012). With each genome sequence

come along thousands of protein-coding genes,

vastly expanding the amount of data available for

protein marker genes. In metagenomic studies,

genomes of a mixed microbial population are

sequenced directly from environments without

prior isolation, culturing, and PCR amplification.

Metagenomics therefore overcomes a major hur-

dle for using protein genes for microbial diversity

studies in that it makes the sequences of protein

genes readily accessible. Because metagenomic

sequencing is random in nature, microbial com-

position estimated based on metagenomic

sequencing is less biased than the 16S rRNA

PCR-based survey. When using single-copy

protein-coding genes for relative species abun-

dance estimation, it further eliminates the bias

associated with the copy-number variations of

the 16S rRNA gene.

The rapid growth of genomic data also pre-

sents challenges for using protein-coding genes

in microbial diversity studies. In order to answer

the question of “who is there” in metagenomic

studies, there is a pressing need for developing

an automated high-throughput, high-quality

application for metagenomic phylotyping. Sev-

eral factors should be considered for such an

application. First, because genes can be

exchanged in bacteria and archaea, it is impera-

tive to only use genes that are recalcitrant to

lateral gene transfer for phylotyping. Secondly,

for accurate estimation of the microbial compo-

sition, only single-copy protein genes should be

used as the marker genes. Thirdly, tree-based

phylotyping involves multiple steps including

marker identification, sequence alignment, tree

reconstruction, and taxonomy assignment. For

large-scale phylogenetic analysis, several techni-

cal hurdles need to be overcome to make

high-quality sequence alignments prior to the

phylogenetic inference.

Description

AMPHORA is an automated phylogenomic

inference application (Wu and Eisen 2008; Wu

and Scott 2012). It offers speed, reliability, and

high-quality analyses using protein-coding genes

as alternative marker genes for microbial diver-

sity studies. The main components of the

AMPHORA are illustrated in Fig. 1 and are

described in detail below.
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Protein Phylogenetic Marker Database

AMPHORA relies on a core phylogenetic marker

database to identify a set of protein marker genes

from the input sequences. The phylogenetic

marker database contained 31 bacterial markers

initially (Wu and Eisen 2008) and was recently

expanded to include 104 genes from the archaeal

domain (Wu and Scott 2012). To limit potential

complications from paralogy and lateral gene

transfers, only single-copy genes that are “uni-

versally” distributed in bacteria or archaea were

selected. As expected, most of the marker genes

are housekeeping genes involved in DNA repli-

cation, transcription, translation, or central

metabolism, which are thought to be less prone

to lateral gene transfers (Jain 1999; Sorek

et al. 2007). The use of single-copy genes pro-

vides the additional benefit by reducing the bias

in the relative species abundance estimation.

AMPHORA uses the HMMER3 package to

search for marker genes in the input sequences.

Profile Hidden Markov Model (HMM)-based

sequence similarity search is as fast as BLAST

but is more sensitive (Eddy 2011). AMPHORA

can take either protein or DNA sequences as

input, which means that users can use

AMPHORA to phylotype metagenomic reads

directly without having to first annotate the

DNA sequences. When DNA sequences are

used, AMPHORA will first identify the open

reading frames (ORFs) and then search the trans-

lated peptide sequences for marker genes.

High-Quality and Highly Reproducible

Sequence Alignments

Molecular phylogenetic analysis assumes com-

mon ancestry, or homology, for every single col-

umn of a multiple sequence alignment. However,

Protein-Coding Genes as
Alternative Markers in
Microbial Diversity
Studies, Fig. 1 A

flowchart illustrating the

major components of

AMPHORA
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this assumption is often violated when distantly

related sequences are aligned. Low-quality align-

ment regions are noisy and can obscure the true

phylogenetic signal contained elsewhere in the

alignment. It has been shown that alignment qual-

ity can have greater impact on the accuracy of the

tree than does the tree-building method employed

(Lake 1991; Morrison and Ellis 1997; Hwang

et al. 1998; Cammarano et al. 1999; Landan and

Graur 2007). Therefore, preparing high-quality

sequence alignments is the most critical part of

tree-based phylotyping process. Quality of the

sequence alignment at each column can be

assessed (a step known as masking), and

low-quality regions of the alignment can be

deleted or down weighted (a step known as

filtering) prior to making a tree. Masking and

filtering improve the accuracy of phylogenetic

analysis (Grundy and Naylor 1999; Castresana

2000; Loytynoja and Goldman 2008; Wu

et al. 2012).

One great advantage of using AMPHORA is

that it provides automated high-quality alignment

masking and filtering. This is achieved by taking

advantage of a unique feature of the profile

HMM-based multiple sequence alignments.

When using HMM to align sequences, new

sequences can be mapped to the “seed” sequence

alignment that is used to build the HMM, column

by column. If the columns in the “seed” align-

ment have precomputed quality scores, they can

then be transferred to the new alignment, thereby

providing automated masking and filtering.

Quality scores have been assigned to the “seed”

alignments of the AMPHORA’s marker genes

using a probability-based alignment masking

program named Zorro (Wu et al. 2012). Incorpo-

rating Zorro makes it practical to quickly

expand the phylogenetic marker database to

include hundreds of marker genes. It also makes

it much easier for users to add markers of their

own choice and to build their personalized

phylogenetic marker database to use with

AMPHORA.

Tree-Based Phylotyping

By comparing to the reference sequences,

metagenomic sequences can be classified and

assigned taxonomy. There are two approaches

of phylotyping. Similarity-based phylotyping

such as MEGAN works by BLAST searching

the metagenomic sequence against a reference

database such as NCBI nonredundant amino

acid database and then assigning the common

taxonomy of the top hits to the sequence (Huson

et al. 2007). Similarity-based phylotyping is

extremely fast. However, it requires the user to

select an arbitrary cutoff to define the top hits.

Since different microbial species and protein

families evolve at different rates, there is no sin-

gle universal cutoff that is applicable in all situ-

ations. Also because of the evolutionary rate

variation, top hits are not guaranteed to be the

closest relatives of the query sequence (Koski and

Golding 2001). Therefore, taxonomy assigned

using the top hits can be misleading, especially

when no close relatives are available in the

database.

Tree-based phylotyping works by placing

the metagenomic sequences into a phylogeny

of the reference sequences. The metagenomic

sequence is assigned the taxonomy of its sister

clade, the closest relative according to the

phylogeny. Since evolutionary methods can

account for the evolutionary rate variations,

tree-based phylotyping is more robust than

similarity-based phylotyping. In addition,

there is no need to choose an arbitrary cutoff

in tree-based phylotyping. It has been shown

that tree-based phylotyping outperformed

similarity-based phylotyping methods (Wu and

Eisen 2008).

Insertion of the sequences into the reference

tree has been one of the rate-limiting steps in tree-

based phylotyping. However, new placement

algorithms make it possible to insert thousands

of sequences into a reference tree simultaneously,

therefore dramatically speeding up the process

(Matsen et al. 2010; Berger et al. 2011).

AMPHORA takes advantage of RAxML’s evo-

lutionary placement algorithm and can perform

either parsimony or likelihood tree-based

phylotyping. It places sequences into the

NCBI’s taxonomic hierarchy and assigns

a confidence score at each rank of the taxonomic

classification.
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AMPHORA Analysis of the Global Ocean

Survey Dataset

AMPHORA was used to phylotype the environ-

mental shotgun sequencing reads of the Global

Ocean Survey (GOS) (Rusch et al. 2007). From

the 41 million predicted peptides, 213,583 peptides

were identified that corresponded to the 31 bacterial

and 104 archaeal marker genes. Using the number

of reads per marker, it was estimated that 95.4 % of

the reads inGOSdataset belonged to bacteriawhile,

4.6%of the readswere fromarchaea, indicating that

the ocean surface water is dominated by bacteria.

The relative abundance of major bacterial groups is

shown in Fig. 2. Alphaproteobacteria is the most

abundant group overall, making up 47.8 % of the

bacterial population. This is mainly due to a single

clade of Pelagibacter ubique that constituted

35.8% of the bacterial population sampled in GOS.

Because all the marker genes in AMPHORA

are single-copy genes, the relative abundance of

sequences in each marker gene can be used as

approximation for the relative organismal abun-

dance in the population. In agreement, the rela-

tive abundance of Pelagibacter ubique clade

estimated by AMPHORA (35.8 %) is very close

to previous quantitative estimations by fluores-

cence in situ hybridization showing that, on aver-

age, cells of the clade account for one-third of the

ocean surface bacterioplankton communities

(Morris et al. 2002). Also as expected, the bacte-

rial diversity profiles are remarkably consistent

between the different marker genes (Fig. 2).

Summary

Metagenomics has the potential to transform the

way we studymicrobial diversity. To fully realize

this potential, it is important to develop a set of

well-curated protein-coding genes as alternative

Protein-Coding Genes as Alternative Markers in Microbial Diversity Studies, Fig. 2 Bacterial composition of

the GOS dataset analyzed using AMPHORA
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marker genes. AMPHORA builds on a set of

universally conserved, single-copy protein

genes that are ideal for analyzing bacterial diver-

sity. It facilitates the large-scale phylogenetic

analysis of these marker genes and should be of

broad application in the study of microbial evo-

lution and ecology.
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Definition

Proteomics pertains to the comprehensive analy-

sis of expressed proteins from a cell,

a multicellular system, an extracellular environ-

ment, or a large set of recombinant clones. This is

achieved using combinations of protein separa-

tion, identification, and/or assay techniques, such

as liquid chromatography-mass spectrometry

(LC-MS), two-dimensional gel electrophoresis-

mass spectrometry (2DE-MS), affinity

purification-mass spectrometry (AP-MS), and

protein- or antibody-based microarrays. The

objectives in proteomics research can be diverse;

they include protein quantification on a global

scale, highly parallel analysis of protein functions

and interactions, structural characterization of

protein complexes, unraveling trafficking of pro-

teins and their distribution in different cellular

compartments, and discovery of protein signa-

tures for a disease state or other perturbation.

Metaproteomics is a recent extension of proteo-

mics where the biological systems under study

are increased in complexity. This pertains to two

or more coexisting organisms that may function-

ally interact with each other, with mutual benefits

or to the advantage of some and detriment of

other species.

Introduction

Proteomics is a relatively young scientific disci-

pline at the interface of analytical biochemistry

and molecular biology. Together with

transcriptomics, the discipline emerged in part

as a result of the “genomics revolution,” specifi-

cally the availability of databases derived from

genome sequencing and annotation efforts that

reliably predict potentially expressed proteins.

Protein sequence information for all open reading

frames (ORFs) is an important component of

high-throughput mass spectrometry- and

microarray-based proteomics. Proteins arrayed

on microarray chips are usually derived from

the expression of genes in recombinant systems.

Expression requires sequence information to gen-

erate clones for the targeted genes. Proteins

analyzed by mass spectrometry (MS), the tech-

nology that advanced proteomics the most and

resulted in Nobel Prize awards in Chemistry for

K. Tanaka and J. B. Fenn in 2002, can be identi-

fied from complex mixtures on a global scale

using computational methods that compare

experimental mass spectra to the entirety of the-

oretical peptide masses and sequences derived

from protein sequences annotated in

a searchable database. Typically, peptides rather

than proteins are analyzed in MS-based proteo-

mic experiments because their mass range (length

of 5–30 amino acids) makes them more suitable

for ionization and accurate mass analysis, and

fragmentation of peptides in tandem MS experi-

ments allows sequence analysis. Peptide-spec-

trum matches (PSMs) require mathematical

algorithms for probability-based assignment of

peptides to their protein(s) of origin. In addition

to increasingly powerful algorithms and the

exponential growth of complete genomic data-

bases (for thousands of species and subspecies),

MS techniques regarding ionization, accurate

measurement of mass-to-charge ratio of peptides,

and proteins and their fragmentation have also

dramatically advanced. Mass spectrometers now

measure proteins with sensitivities in the

attomole range, mass accuracies in the 1–3 ppm

range, and a peak resolution of up to 60,000, at

very high speeds and with considerable automa-

tion. Proteomes of prokaryotic and mammalian

cells can now be profiled in a few days to a couple

of weeks, including proteins present in less than

100 copies in a cell. For example, the proteomes

of yeast and the human HeLa cell line have been

exhaustively characterized (de Godoy et al. 2008;

Nagaraj et al. 2011). MS-based proteomics

requires high-resolution separation techniques to

reduce the complexity of peptides or proteins in

a sample. Two-dimensional gel electrophoresis

(2DE) has been used for protein separation before

MS emerged as the method of choice. In the last

decade, 2DE has been gradually replaced by shot-

gun proteomics, a strategy that takes advantage of

controlled enzymatic fragmentation of proteins

into peptides prior to MS analysis. Shotgun pro-

teomics has a superior dynamic range for prote-

ome coverage compared to 2DE and is a more
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sensitive detection method and less problematic

as it pertains to the exclusion of proteins difficult

to solubilize and separate in gels.

Protein microarrays allow immobilization of

thousands of purified proteins and their interac-

tion analysis with other proteins or small mole-

cule ligands (Wolf-Yadlin et al. 2009). This

technique does generally not require MS since

the position of proteins on the array is predefined,

and a highly parallel assay on the microarray

facilitates detection of an activity or interaction

with a ligand or substrate. Interactions of proteins

with small molecules have more recently been

studied with chemical probes that establish cova-

lent bonds to proteins and thus characterize their

functions (Speers and Cravatt 2009). Here, MS is

typically used for protein identification. Finally,

by the use of protein interaction screens, large

protein networks (“interactomes”) have been

established, e.g., for the bacterium Mycoplasma

pneumoniae (Kuhner et al. 2009) and for baker’s

yeast (Ho et al. 2002). MS is the only proteomic

technique that permits comprehensive analyses

of posttranslational modifications which play

a key role in the modulation of protein functions,

localizations, interactions, and control of turn-

over rates in the cell (Olsen et al. 2010; van

Noort et al. 2012). It is also the leading technol-

ogy for research in metaproteomics, where the

expressed proteome is derived from more than

one species, often a microbial community. Com-

munity dynamics and in some cases a host species

influence the protein complement expressed by

each participating species. Metagenomic data or

concatenated genomes of multiple species are

essential input as they deliver the databases

necessary for proteomic analysis of a complex

biological system.

Expression Proteomics

Protein/Peptide Sample Preparation and

Separation

Various areas of proteomic research were already

mentioned. This overview focuses on expression

proteomics. First, it is more relevant and applica-

ble to the questions of metagenomics (i.e., the

competitive and/or synergistic nature of interac-

tions in multi-species communities). Second,

functional analysis of uncharacterized proteins

requires multiple methodological approaches

not yet feasible on a metagenomic scale or meth-

odologically not distinct. In expression proteo-

mics, sample preparation is an essential

component and usually needs to be adapted to

a given scientific objective. Table 1 lists the

examples of common sample types and

approaches to recover the protein mixtures prior

to their analysis or that of their digestion

products.

Expression proteomics may focus solely on

protein identifications from a given biological

Proteomics and Metaproteomics, Table 1 Proteo-

mics and metaproteomics sample preparation methods

Sample group Type of sample

Protein recovery

method

Multiple-

organism

environmental

sample

Soil, ocean water,

stool/gut

microbiome

Enrichment for

cellular materials,

cell lysis

Heterogeneous

tissue

Liver, bladder Isolation of cell

types prior to cell

lysis or tissue

disruption

Cell culture Bacterial, fungal,

or mammalian cell

culture

Concentration of

extracellular

fraction or cell

lysis

Cell

compartment

or fraction

Mitochondria,

nuclei, exosomes,

chloroplasts,

bacterial periplasm

Cell compartment

isolation followed

by its

disintegration

Cellular

complex

Proteasome,

bacterial secretion,

and secondary

metabolite

biosynthesis

systems

Cell complex

purification and

disintegration

Protein-

containing

secretion fluid

Blood plasma,

urine, hatch fluid of

larvae

Removal of lipids,

carbohydrates,

cellular debris

Host-pathogen

system

Intracellular

viruses, bacteria,

fungi, infected

eukaryotic cells

Separation of host

and pathogen cells;

cell lysis

Life cycle

stages of

a species

Parasitic organism

with a complex life

cycle

Lysis of cells or

cellular

compartments
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sample, but quantitative assessments of

a subcellular or cellular proteome are often of

interest (e.g., the comparative analysis of the

Escherichia coli proteome isolated from expo-

nential versus stationary-phase cultures or of the

mouse liver proteome prior to, during, and after

recovery from an infection with a hepatitis virus).

Sample preparation may involve steps to remove

nonorganic or other matter not of interest in

a study (e.g., soil or digested foods in studies of

soil and gut microbiomes, respectively), but typ-

ically it starts with the isolation of tissues, cells,

cell organelles, or fluids followed by extraction

and/or concentration of protein mixtures. An

exception to this experimental sequence is

a strategy that involves protein labeling with iso-

topes of a living cell/organism prior to cell and

protein extraction. Stable isotope labeling of

amino acids in culture (SILAC) is a frequently

used method where cells are cultured with

defined media containing amino acids (e.g., Lys,

Arg) that contain carbon and nitrogen atom iso-

topes which alter the total mass of the amino acid.

If two types of samples are to be compared in an

experiment (e.g., two cell cycle time points or

mammalian cells pre- and post-viral infection),

they are cultured with different Lys and/or Arg

isotopes. Following combination of the two cell

populations and their lysis, otherwise identical

proteins (peptides) can be compared quantita-

tively based on their isotope mass differences.

Chemical isotope-labeling methods for proteins

such as iTRAQ follow the same principles

(differential quantification from a multiplexed

sample), but the labeling step occurs after isola-

tion of the protein digestion products.

Traditionally, the first step of proteomic anal-

ysis has been high-resolution separation of pro-

teins in two-dimensional gels that permitted

mapping of the most abundant proteins of

a complex mixture and their relative quantifica-

tion (O’Farrell 1975). Proteins are visualized in

2D gels using protein-binding dyes such as

Coomassie Brilliant Blue, and more sensitive

fluorescent dyes that stain most proteins resolved

in a gel (up to 1,000 protein spots). Sample prep-

aration for 2D gels includes solubilization or

dilution of a protein mixture in a denaturing

solution (8 M urea, 2 M thiourea, detergents

such as 4 % CHAPS or 1 % Nonidet-NP40,

0.1 % ampholytes, and DTT as a reducing

agent). Prior to this step, the removal of salts

and other macromolecules positively affect reso-

lution and identification of proteins. Many differ-

ent 2DE modification techniques have been

introduced to improve spot resolution in alkaline

and acidic pH ranges, in high and lowMr regions,

and for lipid-associated and hydrophobic proteins

(Gorg et al. 2004). Figure 1 displays a 2D gel

profile of an E. coli O157:H7 cell lysate next to

one from a mouse stool microbiome fraction.

While more than 500 proteins were resolved in

the E. coli gel, it is evident that the resolution

limit of the more complex stool protein sample

(hundreds of different gut microbial species and

secreted human proteins) was reached. For such

complex metaproteomic samples, 2D gels are not

useful because few proteins are well resolved and

identifiable as distinct spots. Differential quanti-

fication of proteins from 2D gels is performed

with software tools that allow pixel-based spot

intensity measurements, gel-to-gel spot matching

and normalization, and generation of annotated

spot maps that characterize the proteome under

investigation. Subcellular proteomes of bacteria

exposed to various environmental stress condi-

tions have been analyzed in 2D gels (Pieper

et al. 2008). Sample preparation of body fluids

such as serum may include LC separations to

remove highly abundant proteins and fractionate

other proteins prior to 2DE (Pieper et al. 2003).

Sample preparation for analysis of eukaryotic

subcellular compartments often involves buoyant

density-based centrifugal enrichment steps and

differential display. Tagging of genes with

reporter gene constructs to localize expressed

proteins in subcellular compartments has also

been used. An example is the comprehensive

survey of the mitochondrial proteome in yeast

(Prokisch et al. 2004). Methods used for the dis-

integration of cells, the isolation of subcellular

organelles, and the subsequent protein extraction

and solubilization require project- and cell type-

specific optimization.

The shotgun proteomics workflow integrates

a protein digestion step prior to analyte (peptide)
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separation, identification, and quantification.

Shotgun proteomics was developed 10 years ago

(Wolters et al. 2001). Proteins are solubilized,

denatured, and subjected to proteolysis with

endoproteinases such as trypsin, LysC, and/or

GluC. Using a combination of these enzymes

increases the coverage of a proteome. The mix-

ture of digested proteins typically contains more

than 100,000 peptide fragments in a wide abun-

dance range. Digested proteins are sometimes

applied to an LC column (e.g., with a reversed

phase or ion exchange matrix) or an immobilized

pH gradient gel strip to separate peptides further

and reduce their complexity in the resulting frac-

tions. Peptides are fractionated based on certain

biophysical traits such as hydrophobicity, Mr, or

net charge. Peptide eluates from LC columns may

be directly spotted on plates for serial analysis via

matrix-assisted laser desorption ionization

MS (MALDI-MS). A far more time- and cost-

effective and less tedious approach to obtain

comprehensive proteome coverage, however, is

to apply concentrated and desalted peptide frac-

tions to online LC tandem mass spectrometry

(LC-MS/MS). The shotgun proteomics workflow

is displayed in the schematic of Fig. 2.

Protein Identification

MALDI-MS and LC-MS/MS have been the stan-

dard techniques for identifying proteins from 2D

gel spots, often with considerable automation in

the spot excision from gels and the enzymatic

digestion to generate dissolved peptide mixtures.

MALDI-time of flight (TOF) MS generates pep-

tide mass fingerprints (PMFs) that are analyzed

with an MS algorithm in which the protein of

origin is identified based on the count of mass-

matching peptides in the experimental spectrum

compared to those predicted from the in silico

enzymatic digest for a given protein (Fig. 3a).

Nano-electrospray ionization (ESI) is the main

ionization technique for LC-MS/MS experi-

ments. LC-MS/MS not only provides one separa-

tion dimension for peptides, but also the data for

protein identification, first on the MS level via

generation of an accurate mass-to-charge ratio

(m/z) for a peptide and then via data-dependent

selection of an MS (peptide) peak for further

fragmentation via gas-phase collision-induced

dissociation (CID). MS peaks in fragment spec-

tra, typically y- and b-ions resulting from the

cleavage of peptide bonds, define the peptide

sequence. Computational methods are available

Proteomics and Metaproteomics, Fig. 1 Protein pro-

files of (a) Shiga toxin-producing E. coli (serotype H157:
O7) and (b) a murine stool fraction enriched in bacteria

displayed in 2D gels. Samples of ~150 mg protein were

loaded onto pH 4–7 25 cm immobilized pH gradients

strips and isoelectrically focused applying 64 kVh. Fol-

lowing reduction and alkylation of proteins in the IPG

strips, proteins were separated according to size in second

dimension 8–18 %T SDS-PAGE gels (25 � 20 cm) for

1.8 kVh. Gels were stained with the dye Coomassie Bril-

liant Blue G250 (Courtsey of Christine Peterson and

Prashanth Parmar for their contributions to the gel elec-

trophoresis data depicted in the courtesy)
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to assign a peptide sequence based on its original

m/z value and tandem MS data that deliver

a series of daughter m/z values for N- and

C-terminal fragment ions (Fig. 3b). The MS and

subsequent MS/MS analyses are performed in

automated duty cycles defined by the LC-MS

instrument software so that tens or even hun-

dreds of thousands of MS and subsequent

MS/MS scans are performed in series. The

aggregate of data from these scans describes

the proteome in the shotgun proteomics experi-

ment. Due to the fact that the matching of the-

oretical MS/MS (peptide fragment) spectra and

experimental spectra is performed with probabi-

listic models defined by a software and its inher-

ent algorithm(s), shotgun proteomics data yield

a number of peptide (and protein) identifications

at a specific false discovery rate, often in con-

junction with an MS score matrix that also attri-

butes a measure of correct peptide identification.

Algorithms integrated in such software tools are

used to score PSMs and assign the highest scor-

ing PSM to a peptide. Protein inferences are

made by assigning peptides to a distinct protein

sequence in the database (Fig. 3c). The larger

the database of theoretical PSMs, the more com-

putationally challenging it is to determine the

best peptide match for an experimental mass

spectrum. Herein lies one of the fundamental

challenges of metaproteomics: protein sequence

databases to be searched not only contain

sequences derived from one but numerous fully

annotated genomes or large metagenomic read

assemblies that are partially annotated. Their

content of predicted protein sequences is sub-

stantially increased. MS platforms have recently

moved towards ultra-high pressure LC for high-

resolution peptide separations and high-

resolution, high-mass accuracy MS, such as the

Orbitrap and Quadrupole-TOF instruments.

Excellent peptide separation has the benefit

that more peptides derived from

low-abundance proteins are enriched in frac-

tions and more likely to be selected during the

MS data-dependent duty cycle for MS/MS anal-

ysis. High-mass accuracy and resolution

enhance the confidence in peptide (sequence)

assignments via PSMs. For a detailed review

of LC-MS platforms used for proteomics appli-

cations, see (Yates et al. 2009).

Proteomics and Metaproteomics, Fig. 2 Shotgun

proteomics workflow. After generation of a cell lysate or

protein extract, proteins are digested with an

endoproteinase (e.g., trypsin). The peptide mixture is sep-

arated on a reversed phase C18 or a strong anion exchange

LC column. Peptide fractions are lyophilized and applied

to nano LC-MS/MS sequentially. The mass spectra

combined from all fractions are collected and interpreted

with an algorithm and a relevant protein sequence data-

base. Identified peptides are assigned to proteins of origin

and counted to obtain a protein quantity estimate. Abun-

dance profiles from different samples can be displayed in

form of heat maps
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Protein Quantification

Relative protein quantification from 2D gel pro-

files involves correct spot matching based on

their gel coordinates and MS data for each indi-

vidual spot. 2DE has low dynamic range (two

orders of magnitude) and high-abundance thresh-

olds for accurate volumetric spot density mea-

surements, resulting in quantitative analyses

limited to the top 5–20 % of the actual proteome.

These are a major reason as to why quantitative

proteomics has moved towards the use of other

techniques: (1) shotgun proteomics which allows

quantification of a far larger proportion of the

proteome with higher dynamic range and

(2) targeted proteomics which allows high-

precision peptide quantification in absolute

terms in a wide dynamic range, but usually for

a small number of proteins. The latter technique

is moving towards larger scale, as demonstrated

recently in an effort to monitor all yeast kinases

and phosphatases (Picotti et al. 2010). Targeted

proteomics is often associated with the term mul-

tiple reaction monitoring (MRM) proteomics

where stable isotope-labeled peptide standards

are used for quantitative comparisons. MRM pro-

teomics is dominated by triple quadrupole/ion

trap hybrid MS instruments. It requires preselec-

tion of “target” peptides, often tryptic peptides

that are unique to a given protein of interest.

Such peptides are generated in situ via enzymatic

digestion of a sample in which the protein is

to be quantified. Equivalent chemically synthe-

sized peptide standards are spiked into to the

sample in known concentrations to allow

absolute quantification. MRM experiments con-

tinue to advance in speed and complexity

(multiplexing is possible) as shown in a recent

study in which 63 urinary proteins were simulta-

neously measured in hundreds of samples (Chen

et al. 2012).

A variety of methods for global quantification

of proteins are available for shotgun proteomics

as recently reviewed (Mueller et al. 2008; Elliott

et al. 2009). In addition to isotope label-based

approaches (e.g., SILAC, iTRAQ), spectral

counting and MS1 (peptide) intensity-based mea-

surements are common. Unlike MS1 peak

intensity measurements, spectral counting can

be performed with low-resolution (ion trap) MS

instruments. For both methods, software tools

have been created allowing estimation of protein

copies per cell (absolution quantification) for

a large number of distinct proteins expressed in

a cell. The schematic in Fig. 2 illustrates how

spectral counting data are analyzed for

proteome-wide quantification following assign-

ment of peptides to different proteins of origin.

Recently, more than 10,000 human proteins have

been identified and quantified via shotgun prote-

omics using an Orbitrap mass analyzer, presum-

ably representing the entire expressed proteome

of a cancer cell line (Nagaraj et al. 2011). An

additional layer of complexity is added when

proteomic data are searched for specific post-

translational modifications (PTMs). Among the

PTMs are N-terminal truncation, phosphoryla-

tion, N-acetylation of Lys residues and

N-termini, and glycosylation of various side

chains, all of which can modify the protein’s

cellular function, localization, and trafficking

and interaction with other proteins or ligands

inside or outside of the cell. Ubiquitination of

Lys residues often sends a protein into

a degradation pathway. Comprehensive knowl-

edge of all PTMs and their dynamics in a specific

environment or cell state has not yet been

achieved. Likewise, proteomic research is just

beginning to provide information on distinct pro-

tein activities not functionally annotated in data-

bases. One of the promising technologies is

activity-based proteomic profiling that allows

labeling of proteins in their active sites by the

use of chemical probes (Speers and Cravatt

2009). The main limitation is generating a large

number of specific chemical probes for high-

throughput screens. A field more adapted to

high-throughput analyses is interaction proteo-

mics, where proteins of unknown function can

be associated with protein complexes of known

function, thus allowing assignment of new bio-

logical roles. This field includes AP-MS which,

for example, has been utilized to study 178 solu-

ble protein complexes of the M. pneumoniae

proteome (Kuhner et al. 2009).
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Metaproteomics

The term metaproteomics was first introduced

in 2004 by Rodriguez-Valera to describe the

concept of an expressed protein complement

from environmental microbial communities

(Rodriguez-Valera 2004). Metagenomics has

been a driving force behind metaproteomic

efforts; it essentially defines the protein sequence

databases to be searched, and it also provides

a biological context. Major interest has also

arisen from the human microbiome project.

Metaproteomics should take into consideration

the host environment. This would expand the

definition of metaproteomics to the study of bio-

logical systems consisting of two or more species

that may interact in a mutualistic manner or to the

detriment of some but the benefit of other species.

This definition would include symbiotic relation-

ships (e.g., N2-fixing bacteria with legumes),

host-pathogen relationships (infectious disease),

and host-commensal relationships (e.g., the gut

microbiome). The boundary of the latter two is

fluid, as metagenomic and other studies have

revealed. Metaproteomic data are of interest

because they add a degree of function to the

description of a complex community: microbes

(and their hosts) live in the same environment,

compete for the same resources, and send molec-

ular signals to each other including quorum sens-

ing, chemotaxis, and adhesion in response to the

changing environment. The competition for

resources implicates metabolism that is enabled

by proteins. Likewise, inter- and intraspecies

signaling implicates proteins and peptides or

structures synthesized by proteins (e.g., LPS

and secondary metabolites). Thus, quantitative

analysis of proteins via metaproteomics promises

to deliver new insights into the dynamics

of complex biological communities. Studies

may be highly experimental, considering the

efforts to model microbial communities or a path-

ogen invading a macrophage in vitro. They

may constitute a natural environment such as

polybacterial biofilms growing in hydrothermal

hot springs or on a urinary tract device (Hall-

Stoodley et al. 2004).

While the first metaproteomic studies

pertained to low complexity systems, they

highlighted the ability to elucidate dynamic

aspects of the adaptation of species to community

living. Ram et al. investigated natural acid mine

drainage microbial biofilms (Ram et al. 2005).

More than 2,000 proteins from five different spe-

cies were identified using shotgun proteomics,

48 % from Leptospirillum group II. Oxidative

stress and refolding proteins were highly

expressed, supporting the notion that their activ-

ities were critical in a challenging environment.

Markert et al. investigated the proteome of an

unculturable g-proteobacterial endosymbiont of

Riftia pachyptila, a deep-sea tube worm without

a digestive system (Markert et al. 2007). The

worm sustains a high growth rate using the sym-

biont’s capacity for chemosynthesis of carbon

compounds fixing CO2 and oxidizing ambient

H2S. Using 2DE-MS proteomics, three abundant

major sulfide oxidation proteins critical for

energy metabolism in the endosymbiont were

identified. It was determined that both the reduc-

tive tricarboxylic acid and Calvin cycles were

used for CO2 fixation. A more complex

metaproteome, that of human distal gut

microbiota, was examined by Verberkmoes

et al. (2009). A particular challenge of analyzing

such a complex metaproteome is the high number

of species (and diverse subspecies and strains),

most of which are not culturable and whose

genomes remain to be sequenced. Therefore,

databases for metaproteomic data searches,

which are composed of only sequenced and

fully annotated genomes of bacteria known to

colonize the distal gut, are not truly representa-

tive of metagenomic (species) complexity. It is

nonetheless useful to use such “imperfect” data-

bases to gain insights into a human body-

associated complex microbial metaproteome.

Assessing quantitative estimates of protein

counts representing distinct cellular function cat-

egories, it was reported that proteins linked to

carbohydrate metabolism, energy generation,

and ribosomal translation were most abundant

in the distal gut metaproteome (Verberkmoes

et al. 2009). Nearly 20 % of the mass spectra
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matched protein sequences derived from

Bacteroides and Bifidobacterium, confirming rel-

atively high abundance of these genera in the

human gut. Despite the application of a bacterial

enrichment procedure, 30 % of the PSMs

represented matches to human proteins, includ-

ing a large proportion of those active in cell-cell

adhesion and innate immunity. This finding

supported the notion that the host immune system

interacts extensively with its gut microbiome.

Analysis of urinary tract metaproteomes linked

to asymptomatic bacteriuria (Fouts et al. 2012)

resulted in protein identifications from two to five

different opportunistic pathogens and provided

preliminary evidence for host-bacterial interac-

tions, specifically a battle for iron. Human

lactotransferrin, an iron sequestration protein,

and iron acquisition proteins and receptors from

E. coli and Klebsiella pneumoniae were identi-

fied in the same samples.

Summary and Outlook

In conclusion, proteomics is a highly advanced

discipline that contributes to science at the bio-

logical systems level. Metaproteomics has clear

potential to elucidate functional interactions of

coexisting microbial species and, if applicable,

those with their eukaryotic host environments.

Major challenges to enable in-depth and accurate

metaproteomic profiling efforts for highly

diverse communities remain to be addressed.

Only a fraction of the genomes represented in

complex microbial communities have been

sequenced. Comprehensive metagenomic

sequence datasets are very promising resources

for advanced proteomic data searches. However,

such datasets can be incomplete and may have

sequence inaccuracies and significant redun-

dancy which, in turn, affects the reliability of

assignments of peptides and proteins on the

species level via PSMs derived from MS-based

proteomic datasets. Further improvement of

metagenomic assembly and computational

methods will benefit the quality of

metaproteomic datasets since their analysis

depends on predicted protein sequence data.

A particular challenge pertains to the high

amino acid sequence identities among highly

conserved (housekeeping) proteins of related

species in a microbiome. Since protein identifi-

cation in shotgun proteomics relies on peptide

sequence data followed by in silico assignment

to proteins, it impedes taxonomic profiling on the

species level analogous to the short reads of

NextGen sequencing technologies. Nonetheless,

metaproteomic data already contribute effec-

tively to the elucidation of the metabolic capacity

of complex biological systems and the cross-talk

of such systems with their host environments.

Robust computational algorithms and workflows

will have a positive impact on the future of

metaproteomics. Use of multiple “omics” tech-

nologies allows insights into complex intra- and

extracellular biological processes and their cross-

talk and integration into a biological system.
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Definition

Algorithm, software, and Web service for taxo-

nomic classification of metagenome fragments

using both homology and compositional

information.

Introduction

A central task in many metagenomic studies is

the inference of community function from

sequence data. An additional challenge is the

need to assign functional genes to particular

members of the community, in order to determine

which organisms are responsible for carrying out

which molecular processes. While sequences

derived from a given microorganism often carry

a “signature” that reflects mutational bias and

other processes in the genome of that organism

(Campbell et al. 1999), these patterns are by no

means uniform and they often cannot distinguish

closely related organisms. Further compounding

the problem is the reliance on short-read-based

approaches to metagenome sequencing, which

can generate reads less than 200 nucleotides in

length, and short or ambiguous assemblies in

many cases. Successful classification methods

use homology (e.g., BLAST comparisons against

genes or proteins from a set of reference

genomes) or composition (e.g., distribution of

tetranucleotide sequences) for classification,

with a newer generation of “hybrid” classifiers

using both (e.g., PhymmBL; Brady and Salzberg

2009). We have developed RITA, a hybrid

approach that uses streamlined approaches to

rapidly generate homology and composition

information and combines these sets of predic-

tions in a supervised classification pipeline that

sorts sequences into different classification

groups based on the strength and agreement of

the two types of predictions.

Requirements

Software: RITA is implemented in Python and

can be used as a stand-alone program (http://kiwi.

cs.dal.ca/Software/RITA) or via the Web service

(http://ratite.cs.dal.ca/rita). Queries to the Web

service are limited to 10,000 sequences at a time.

For compositional classifications RITA uses the

Fragment Classification Package FCP (Parks

et al. 2011; http://kiwi.cs.dal.ca/Software/FCP).

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015
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For the stand-alone version, a locally installed

copy of either the BLAST+ software suite or

USEARCH (Edgar 2010) is necessary.

Reference Databases: Since RITA is

a supervised classifier, it requires a reference data-

base of sequenced genomes with associated taxo-

nomic information. Genomic information is

typically acquired from the NCBI database of

sequenced genomes and can be performed auto-

matically using the scripts provided with the FCP

software package. From these sequenced genomes

(and optionally, similarly formatted files provided

by the user), RITA can build reference models for

both composition and homology. If rank-flexible

classification (described below) is to be

performed, a set of 16S rRNA gene sequences

corresponding to the reference sequenced

genomes will be required as well. Instructions on

acquiring and preparing these can be viewed at

http://kiwi.cs.dal.ca/Software/RITA.

Input Data: The user must provide their

metagenomic sequences in a FASTA-formatted

file. The sequences can be of any length. If rank-

flexible classification is desired, a list of sampled

16S rRNA gene sequences must also be provided.

The RITA Pipeline

The primary objective of RITA is to make taxo-

nomic assignments that consider both the agree-

ment between composition and homology and the

strength of evidence from both types of classifica-

tion technique. Homology-based classification is

performed using local alignment-based compara-

tive tools such as BLAST (Altschul et al. 1997).

Many variants of BLAST have been developed

which differ in the type of sequence information

being compared (e.g., nucleotide, 6-way translated

nucleotide, amino acid), as well as sensitivity and

speed. Although RITA can be configured to run in

a number of different ways, the default approach is

based on the sequential use of three different algo-

rithms: Discontiguous MEGABLAST for fast but

low-sensitivity comparisons between a nucleotide

query and nucleotide database, BLASTN for

slower but more sensitive nucleotide-nucleotide

comparisons, and BLASTX for sensitive

comparisons between a translated query sequence

and reference database of protein sequences. The

objective in using this ordering is to place the

fastest algorithms first, which removes the need

to run the slower algorithms on all query

sequences. The stand-alone version of RITA also

includes the option to use UBLAST (Edgar 2010),

which aims to prioritize searches against

a reference database in order to avoid searching

the entire database. Approaches such as LCA

(Huson et al. 2007), MetaPhyler (Liu et al. 2011),

and CARMA (Gerlach and Stoye 2011) use phy-

logenetic information for taxonomic classification,

but our trials of RITA showed no additional ben-

efit to the use of phylogenetic trees in the classifi-

cation scheme we describe below.

For compositional classifications, we encode

each reference genome as a series of nucleotide

words (i.e., k-mers) of a fixed length to generate

frequency distributions of each word. These fre-

quency profiles are then used to train a naı̈ve

Bayes (NB) classifier (Parks et al. 2011), which

assigns likelihoods to each query fragment based

on the match between its k-mer profile and those

representing the different genomes in the reference

database. The genome with the largest likelihood

for a given fragment is the best compositional

match to that fragment. The crucial assumption of

the NB classifier is of independence among input

k-mers: while this assumption is clearly violated by

k-mer decompositions of DNA sequences (for

instance, the frequency of the 6-mer AAAAAA

will be closely tied to that of AAAAAC), in prac-

tice this does not impact on the performance of the

classifier. Phymm is a compositional classifier that

uses more-sophisticated Markov models of

sequence composition: while these are better at

describing the compositional profile of a genome,

in practice they are much slower and no more

accurate than our NB approach.

The RITA pipeline combines homology and

composition information by first assessing

whether the predictions of composition and

homology agree. While homology alone outper-

forms composition alone in most classification

tasks, the genomic patterns reflected in composi-

tional profiles provide complementary informa-

tion, and agreement between the two types of
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data is not trivially obtained. If agreement is found

for a given fragment and the first BLAST algo-

rithm considered, then the fragment will be clas-

sified with the predicted taxonomic label and

assigned to group 1, the highest-confidence

group. If the predictions of composition and

homology disagree, then classification using

homology alone will be attempted in the follow-

ing manner. When running RITA, the user spec-

ifies a minimum margin for homology-based

classification based on e-values: the default value

is 20 orders of magnitude. If the globally best

e-value is greater than the best e-value from

a different taxonomic group by an amount greater

than or equal to this margin, then the result is

considered as strong evidence for assignment to

the best-matching group, and the fragment is

assigned to group 2. If the fragment remains

unclassified, the same procedure is followed for

subsequent BLAST algorithms with potential

classifications to group 3, group 4, etc. If all

homology-based options have been exhausted,

classification is made to one of two groups based

on the NB classifier alone. Similar to the homol-

ogy margin described above, the globally best NB

likelihood is compared to the best likelihood from

a different taxonomic group. If this ratio exceeds

a user-specified amount, then the fragment is

assigned to the higher-confidence composition-

only group. If the ratio does not exceed this

amount, then the fragment is assigned to the last

and lowest-confidence group.

The procedure above describes rank-specific

classification, where all fragments are classified

at a given taxonomic rank, for instance, phylum

or genus. However, different groups of microbes

may be more or less represented by sequenced

genomes, and there may be more evidence to

make precise assignments to some groups than

to others. In the extreme case, some bacterial

phyla are represented by a single sequenced indi-

vidual, making it impossible to distinguish

between genera and other groups within this phy-

lum. One solution to this problem is to classify all

fragments to a very high rank such as phylum or

class, but this discards precision in cases where it

may be available. Our solution is to use a rank-

flexible version of RITA that assigns an

appropriate taxonomic group and rank based on

the strength of available evidence. To perform

rank-flexible classification of a metagenome

sample using RITA, the user must provide a list

of 16S rRNA genes that were identified from the

sample. These genes are used to limit the taxo-

nomic scope of the RITA predictions. The pro-

vided 16S rRNA genes are mapped into a tree of

all 16S genes from the reference database of

sequenced genomes. All genomes represented

within a minimal clade containing one of the

sampled 16S genes will be flagged as assignable

to a taxonomic rank that is no more precise than

the rank covering all members of that clade. For

example, if a sampled 16S gene maps to the

reference tree such that all of its sister taxa are

from the same order, then RITA will consider

matches to those taxa to be equivalent at the

rank of order. In this manner, the level of classi-

fication is determined by the density of reference

genome sampling around the observed 16S rRNA

gene sequences from the environmental sample.

Interpreting RITA Results and Factors
Affecting Prediction Accuracy

RITA Output: RITA returns detailed results of

both composition- and homology-based models.

Most critical in the RITA output is a tab-separated

file that lists the predictions associated with each

DNA sequence. Examples of RITA output are

given in Table 1, with some taxonomic ranks

omitted to fit each result on a single line:

The first column contains the name of the

sequence as obtained from the sequence file.

The second and third columns give the confi-

dence group associated with the prediction, first

by number and then by name. Group 1,

“NB_DCMEGABLAST,” indicates agreement

between the first homology prediction method

used (Discontiguous MEGABLAST) and the

NB classifier, while group 2 corresponds to

a prediction made based on a strong separation

between the best and second-best groups

according to homology. The fourth column

shows the taxonomic rank at which the prediction

was made, and the remaining columns give the
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labels associated with that prediction, with the

final column showing the actual genome that

yielded the best prediction.

Summarizing Results: In most cases, we do

not recommend using all classes when building

taxonomic summaries of the contents of

a metagenome. In particular, the accuracy of the

final two classes (which are based on composition

only) tends to be very poor when sequences are

short. If high precision is desired, then a user can

focus their attention on either group 1 alone or

those groups in which homology is a factor in the

prediction. In the example above, this would

include groups 1–4 and exclude the last two

groups, 5 and 6. However, when sequences are

long (>2,500 nt in length) due to assembly, pre-

dictions based on composition alone are more

reliable and can be included in the final set of

predictions. Also, if the user has a reasonable

expectation of “who is there” based on, e.g.,

taxonomic assignment of marker genes, this

knowledge can be used as the basis for accepting

a subset of predictions from the last two groups.

Factors Affecting the Accuracy of RITA

Predictions: Several factors have been tested

and shown to impact on the accuracy of RITA

predictions. Among the most notable are:

Reference genome availability. Classification of

a fragment to a taxonomic group at a given

rank obviously depends on the existence of at

least one sequenced genome from this group

in the reference database. Even at the level of

genus, inclusion of multiple reference

genomes is desirable to adequately map out

the pan-genome for homology-based predic-

tions and to capture compositional variation

within the group. Compositional signal is

highly variable within order, class, and phy-

lum, and best matching to homologs is diffi-

cult as well due to the confounding effects

of gene loss and lateral gene transfer.

Consequently the classification accuracy on

fragments from genomes that are taxonomi-

cally novel (i.e., that have no relatives in the

reference database at ranks such as order or

class) will be extremely poor. This presents a

significant challenge when samples are known

to be enriched in poorly represented phyla

such as Verrucomicrobia, Acidobacteria, or

the many candidate phyla that lack sequenced

representatives. If human microbiome sam-

ples are being processed using RITA, it is

highly desirable to add the draft genomes

sequenced by the Human Microbiome Con-

sortium (Markowitz et al. 2012) to increase

the coverage of common human-associated

taxonomic groups: the effects of including or

excluding these genomes are shown in Fig. 1.

Short fragments. The effect of fragment length on

classification accuracy has been extensively

characterized (McHardy and Rigoutsos 2007;

Brady and Salzberg 2009; MacDonald

et al. 2012). While hybrid classifiers such as

RITA can give accuracy in excess of 50 %

even on metagenomic fragments �50 nt in

length, a high degree of misclassification is

likely and many false-positive predictions

can be anticipated. Restricting predictions to

the “agreement” groups such as group 1 is

highly desirable in this case.

Long fragments. A different problem is seen

when applying RITA to long, assembled

metagenomic fragments. Since RITA considers

only the best BLAST match for a given frag-

ment, the homology prediction for a long

assembly will be based on one of many genes.

If the prediction associated with this gene is

incorrect (for instance, if it was recently trans-

ferred into the sequenced organism from

a different genome), then homology and com-

position will likely disagree, and the entire

fragment will likely be assigned to a

RITA: Rapid Identification of High-Confidence Taxonomic Assignments for Metagenomic Data,
Table 1 Examples of RITA output

seq1 1 NB_DCMEGABLAST CLASS Actinobacteria Nocardioides_sp._JS614

seq2 2 DCMEGABLAST_RATIO CLASS Deltaproteobacteria Syntrophus aciditrophicus

seq3 5 NB_RATIO CLASS Alphaproteobacteria Phenylobacterium zucineum

seq4 6 NB_ML CLASS Sphingobacteria Pedobacter saltans
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RITA: Rapid Identification of High-Confidence Taxo-
nomic Assignments for Metagenomic Data,
Fig. 1 RITA classifications of �33,000 metagenomic

fragments from obese twin gut metagenomes

(Turnbaugh et al. 2009). D-BLASTN ¼ Discontiguous

MEGABLAST. The number of assignments to each

RITA group is shown, with different colors indicating

assignments to different genera. (a) Assignments made

to a set of reference genomes, excluding the draft genomes

sequenced by the HMP. A majority of sequences are

assigned to the low-confidence “NB ratio” category. (b)
Classifications of the same data set with inclusion of the

HMP reference genomes, showing a doubling of the num-

ber of assignments to the highest-confidence group

(NB and D-BLASTN) and a near-halving of assignments

to the NB ratio group. Plots were generated by the RITA

Web server
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composition-only bin. In this case, the NB clas-

sification will likely be correct due to the length

of the fragment, and inspection of the homol-

ogy affinities of other genes in this fragment

will likely confirm the correct classification.

“Sticky” taxa. Some genera are both extremely

diverse in their gene content and well

represented in the set of sequenced genomes.

Notable examples of this include genera Clos-

tridia, Streptococcus, and Bacillus. Since

these genera have large pan-genomes and

appear to share frequently with other lineages,

many query fragments may be incorrectly

assigned to these large groups. Care should

be taken when results include a large number

of these genera. Also, genera such as

Buchnera and Sulcia that are dominated by

small genomes tend to have low genomic

G + C contents; as a consequence, fragments

from low-G+C regions of other genomes may

tend to be incorrectly assigned to these organ-

isms. Since many of these organisms are

restricted to highly specific settings such as

insect bacteriomes, spurious matches to these

groups can readily be identified.

Summary

RITA is a hybrid supervised classification system

for metagenomic reads that has been shown to

give useful accuracy on fragments as small as

50 nt in length. Accurate classification depends

on the criteria listed above, in particular the avail-

ability of good reference databases. The key to

RITA’s speed is the use of the very fast NB

classifier and prioritizing the slower homology

search approaches. BLASTX in particular is very

slow and can increase running time by an order of

magnitude, so avoiding translated nucleotide

queries or using the UBLASTX algorithm of

Edgar (2010) is crucial to rapid execution. Predic-

tions based on composition alone are less reliable

than those that include homology as a criterion, but

composition-based predictions becomemore accu-

rate with increasing sequence length.

Cross-References

▶MEtaGenome ANalyzer (MEGAN):

Metagenomic Expert Resource

▶Taxonomic Classification of Metagenomic

Shotgun Sequences with CARMA3
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Synonyms

Evolutionary tree; Phylogenetic tree; Phylogeny;

Tree

Introduction

Taxonomic identification of DNA fragments pro-

duced in a shotgun sequencing analysis is a basic

problem in metagenomic data analysis. One

approach for this problem operates as follows:

the fragmentary sequences are assigned to genes

and then these fragmentary sequences are

inserted into a calculated or precomputed taxon-

omy based on the same gene. The insertion of

fragments of a gene sequence into a tree on

full-length sequences is called “phylogenetic

placement.”

The input to the phylogenetic placement prob-

lem is generally assumed to be a reference align-

ment A on full-length sequences for a gene and its

maximum-likelihood tree T (Felsenstein 2003;

Price et al. 2010; Stamatakis 2006; Swofford

2003), as well as a set Q of “query sequences.”

The set Q thus represents the fragmentary

sequences, whose taxon identification is uncer-

tain but for which the gene assignment is assumed

correct. In general, the reference alignment A and

tree T are also assumed correct, and so the objec-

tive is to place the fragments in Q into T as close

as possible to their correct position.

Methods for phylogenetic placement include

EPA (Berger et al. 2011), pplacer (Matsen 2010),

PaPaRa (Berger and Stamatakis 2011), and

others. Of these, EPA and pplacer are essentially

identical in performance and technique: first,

a Profile Hidden Markov Model (HMM, Eddy

1998) is computed for the reference alignment,

and then it is used to align each of the query

sequences, one at a time. Thus, |Q|-extended

alignments are computed, each containing the

reference sequences and one query sequence,

and inducing A on the reference sequences.

Then, maximum-likelihood methods are used to

insert the query sequence into the tree T. The

calculation of the extended alignment and the

placement of a single query sequence into

the tree itself is also reasonably fast; however,

because there can be many query sequences, this

approach can be computationally intensive.

However, the analyses of different query

sequences are independent, and so this process

can be easily parallelized. Furthermore, this

approach has good accuracy when the reference

alignments and trees are correct.

In Mirarab et al. (2012), PaPaRa and pplacer

were studied on a range of datasets, varying the

rate of evolution and the number of sequences.

This study showed that both PaPaRa and pplacer

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



had good accuracy for genes that evolve under

low rates of evolution, but when the rate of evo-

lution increased, then their accuracy dropped

substantially. Two observations resulted: first,

under a high rate of evolution, the reference

alignment and tree would be difficult to estimate,

an observation that has been made elsewhere.

However, more surprisingly, when the sequences

evolved under a high rate of evolution, even with

a good alignment and tree, the technique for

computing the extended alignment did not have

good accuracy.

Mirarab et al. developed a divide-and-conquer

technique for improving this approach to phylo-

genetic placement, which they termed SEPP.

This technique operates by using the reference

tree to divide the dataset into subsets (as used in

SATé-II (Liu et al. 2012)) and then uses HMMER

(Eddy 1998) to compute an HMM on each subset

using the induced alignment from the reference

alignment. Thus, SEPP stands for SATé-enabled

phylogenetic placement. Thus, instead of using

a single HMM to represent the reference align-

ment, a collection of HMMs is used, each on

a different subset of the taxa. The calculation of

the extended alignment for each query sequence

is then made by using HMMER to score the fit

between the query sequence and each of the sub-

set HMMs, and the one that has the best score is

used to align the query sequence to the alignment

on that subset. Because the subset alignments are

all in agreement with the reference alignment on

the full dataset, transitivity then provides the

alignment of the query sequence to the full

dataset. In this way, the extended alignment of

each query sequence can be computed. Once the

extended alignment is calculated, the query

sequence can be inserted into the reference tree

using maximum likelihood, just as in EPA and

pplacer.

SEPP also allows the user to limit the subtree

of the reference tree into which the query

sequence will be placed through an additional

parameter. Thus, SEPP takes two

parameters: the number of leaves in the subtree

on which SEPP builds an HMM (based on the

induced alignment) and the number of leaves in

the (perhaps larger) subtree that contains the

alignment subset, into which the query sequence

is then placed. Both parameters influence the

accuracy and running time of SEPP.

Thus, the most important difference between

SEPP and EPA and pplacer is just how the

extended alignment is computed. The technique

in SEPP for calculating the extended alignment is

based on decomposing the taxon set into subsets

using the reference tree, and so the important

issue is how the taxon set is decomposed. They

used the centroid edge decomposition strategy

first employed in the SATe multiple sequence

alignment method (Liu et al. 2012). This strategy

removes an edge that breaks the taxon set roughly

in half and then repeats the process on each

subtree until the desired number of subtrees is

computed. Thus, SEPP is SATe-enabled phylo-

genetic placement.

SEPP takes two parameters – the size of the

“alignment subsets” that the reference tree is

decomposed into and the size of the larger subsets

(called “placement subsets”) into which the query

sequences can be placed after their extended

alignments are computed. Both parameters

impact accuracy and speed. For example, smaller

alignment subsets result in better accuracy but

increase the running time. Similarly, larger place-

ment subsets improve accuracy but increase the

running time. The experimental study showed

that setting both parameters identically and

decomposing to ten subsets gave a good trade-

off between accuracy and running time.

The experimental study in Mirarab

et al. (2012) showed that this default setting for

SEPP gave improved accuracy compared to

pplacer and PaPaRa; results from this study are

reproduced below in Fig. 1. The test datasets have

500 query sequences (half “long” and half

“short,” where long sequences have a length on

average of 250 and short sequences have a length

on average of 100), and the placement methods

insert these query sequences into a reference tree

and alignment on 500 full-length sequences

(average length 1,000 nt). Mirarab et al. (2012)

also showed that SEPP provided improved com-

putational performance over these methods with

respect to both time and peak memory usage for

very large datasets.
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Summary

SEPP is a technique for performing phylogenetic

placement, a basic algorithmic problem in large-

scale phylogeny estimation and also in taxonomic

classification of fragmentary sequences that are

often produced in a shotgun sequencing analysis

of metagenomic data. Phylogenetic placement

methods such as EPA and pplacer use

a reference tree and alignment on full-length

sequences for a given gene, represent the refer-

ence alignment using a HMM, and then align

each fragmentary sequence to the reference

alignment using the HMM. This extended align-

ment for the given fragmentary sequence is then

used to find the best placement in the reference

tree. SEPP produces more accurate placements

than both EPA and pplacer, because instead of

using a single HMM to represent the entire refer-

ence alignment, it uses multiple HMMs, each on

a different subset of the taxa. Although formu-

lated for use specifically with HMMER tools for

computing HMMs and aligning sequences to the

reference alignment, it could also be used to boost

other phylogenetic placement methods. Finally,

the divide-and-conquer technique employed in

SEPP is a general technique for boosting machine

learning methods that could be extended to other

classification problems in bioinformatics.
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SATe-Enabled Phylogenetic Placement, Fig. 1 Delta

tree error of three phylogenetic placement methods

on simulated datasets with 500 query sequences and

500 reference sequences, given the true alignment and

the true tree. The delta error is the average number of

additional distance from the correct placement produced

by using the extended alignment rather than the true align-

ment in placing each query sequence. We show results

obtained using PaPaRa or HMMALIGN to compute the

extended alignments followed by pplacer to place each

query sequence. We also show SEPP(50/50) (the default

setting), which uses alignment subsets of size 50 (10% of

the reference tree) to compute the extended alignment, and

then places the query sequences into the same subtree.

Note that SEPP(50/50) has less than half the error of

HMMALIGN+pplacer, and that PaPaRa+pplacer has

about double that of HMMALIGN+pplacer (reproduced

from Mirarab et al. 2012, with permission from the

publisher)
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Synonyms

Serial analysis of ribosomal sequence tags

(SARST); Serial analysis of V6 ribosomal

sequence tags (SARST-V6)

Definition

By this technique, the V1 hypervariable region of

16S rRNA genes is amplified as a ribosomal

sequence tag (RST) by PCR using universal

primers, concatenated head to tail, cloned, and

sequenced. By enabling multiple RSTs to be

sequenced from each RST concatemer, SARST-

V1 substantially increases the number of

sequences on either the Sanger or next-generation

sequencing platforms, thus, increasing the depth

of coverage of microbiome analysis.

Introduction

Sufficient characterization of actual diversity is

a prerequisite to understanding the function of

microbiomes and to exploring and manipulating

them for beneficial applications. Sequencing and

phylogenetic analysis of 16S rRNA genes have

been the primary approaches in such a pursuit.

Detailed characterization of microbiomes, how-

ever, requires a large number of 16S rRNA genes

to be sequenced from each microbiome sample,

especially when members present at low

abundance need to be identified. Before next-

generation sequencing (NGS) technologies for

DNA sequencing became available, it was not

feasible to generate adequate sequences of 16S

rRNA genes from any complex microbiome

because 16S rRNA genes first need to be cloned,

and then individual clones need to be sequenced

in a one-clone-one sequence fashion, which is

a costly and labor-intensive process. Indeed, all

the 16S rRNA gene datasets produced by the

Sanger sequencing technology are too small to

capture the full diversity (Bent and Forney 2008;

Tiedje et al. 1999). One strategy to reduce the

cost of DNA sequencing-based analysis of micro-

bial diversity is to sequence concatemers of

a sequence tag of 16S rRNA genes using the

serial analysis of ribosomal sequence tags

(SARST) (Kysela et al. 2005; Neufeld

et al. 2004; Yu et al. 2006). SARST was adapted

from the serial analysis of gene expression

(SAGE) (Velculescu et al. 1995), an approach

first developed to substantially improve analysis

of gene expression in eukaryotes (Carulli

et al. 1998). In SARST, one of the hypervariable

regions of 16S rRNA genes is used as a

sequence tag. By far, SARST has been developed

based on either hypervariable V1 (referred to as

SARST-V1) (Yu et al. 2006) or V6 (SARST-V6)

(Kysela et al. 2005). Except for the two different

hypervariable regions as the sequence tags,

SARST-V1 and SARST-V6 have similar

procedures.

Overview of SARST-V1 Procedures

The entire process of SARST-V1 (Fig. 1) consists

of (i) amplification of the V1 region of 16S rRNA

genes using a pair of bacterial primers;

(ii) digestion of the PCR amplicons to cut off

the primers; (iii) purification and concatenation

of individual ribosomal sequence tags (RSTs);

(iv) gel sizing, end repair, and cloning of the

concatemers; and (v) sequencing of cloned

RST concatemers and phylogenetic analysis of

individual RSTs. The detailed procedures have

been described elsewhere (Yu and Morrison

2011; Yu et al. 2006). Here we describe the

major steps, alternatives, and cautions when

warranted.
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(i) PCR amplification. The V1 region is

amplified using BsgI-Bact64F (50-dual
biotin-TTT GAC CGT GCA GCY TAA

YRC ATG CAA GTCG-30) and BsgI-
Bact109R (50-dual biotin-TTT GAC CGT

GCA GYY CAC GYG TTA CKC ACC

CGT-30). Each primer has an extension

region that contains a recognition site for

BsgI (bolded and underlined), and the most

50 nucleotide of this extension region is

labeled with at least one biotin or biotin-

tetra-ethyleneglycol (biotin-TEG) molecule.

The quality and quantity of the PCR prod-

ucts are evaluated using PAGE (8 %T, 19:1)

mini gel. Then, the PCR products are purified

using the QIAquick PCR Purification Kit

(QIAGEN, Valencia, CA) or by ethanol pre-

cipitation following extraction with phenol/

chloroform. Hot-start PCR using a hot-start

Taq DNA polymerase or a hot-start dNTP

mix is recommended in the PCR amplifica-

tion to reduce formation of primer dimers,

which can contaminate the RSTs.

(ii) Digestion of PCR products and primer

removal. The purified PCR products are

digested with BsgI, a type IIs restriction

endonuclease that cuts 16 base pairs

(bp) downstream from the recognition site.

The released RSTs are separated from the

primers using streptavidin-coated magnetic

beads, such as Dyna 280 beads (Dynal, Oslo,

Norway), which immobilize the primers that

have a biotin label at the 50end.
(iii) Concatenation of individual RSTs. Each

of the freed RSTs has one 2-nt overhang

at both 30 termini, and these overhangs

facilitate annealing of individual RSTs in

hand-to-tail orientation in series (Fig. 1).

RST concatemer libraries

Inference of diversity and
microbiome composition

1. Digest with BsgI
2. Recover RSTs (by magnetic beads)

PCR

Concatenate (by T4 ligase)

1. Gel sizing

2. Blunt end polishing

3. Cloning

i)

ii)

iii)

iv)

n

n

Sequencing and analysis of RSTsv)

16S rRNA gene

n

CA
GT

CA

GT

CA

GT

CA

GT

CA

GT

BsgI-64F

BsgI-109R

……

BB

BB

BB
BB

Serial Analysis of V1
Ribosomal Sequence
Tags, Fig. 1 Schematic of

the SARST-V1 process.

BB, dual biotin label

conjugated to the 5 end of

the primers. BsgI-Bact64F
and BsgI-Bact109R,
bacterial forward primer

and reverse primer, each

with an extension

containing a BsgI
recognition site (the figure

was modified from

reference 22 with

permission from

Wiley-Blackwell)
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Consequently, individual RSTs are ligated

head-to-tail to form concatemers in 50–30

orientation. Because of the short overhangs

and the desire to form long (>0.5 kb)

concatemers, the concatenation is often

performed overnight using a DNA ligase,

such as T4 DNA ligase. It should be noted

that BsgI is the most suitable type IIs endo-

nuclease available. New type IIs endonucle-

ases that produce 3- or 4-nt overhangs will

improve concatenation. Additionally, when

new primers are designed to target other

V regions, the recognition site of BsgI (or the
type IIs restriction endonuclease used) should

be at such a distance from the 30end that

digestion of the PCR products leaves at least

five base pairs of the primers at each end of the

freed RSTs. These conserved base pairs allow

delineation of individual RSTs from the

sequenced concatemers.

(iv) Gel sizing, end repair, and cloning of

concatemers. Concatenation of individual

RSTs produces concatemers of varying

lengths. The concatemers of 0.5–2.0 kb

need to be size selected, typically using gel

(either agarose or polyacrylamide) electro-

phoresis, and recovered from the gel slice

using commercial kits, such as the MinElute

Gel Extraction Kit (QIAGEN). Following

end repair by T4 DNA polymerase, the

concatemers are then cloned by ligation

into a cloning vector (e.g., pZerO-2.1 from

Invitrogen or pSmartLCKan from Lucigen)

that has been digested with a blunt-end

restriction endonuclease. Alternatively, an

adenine overhang can be added to each end

of each concatemer so that the concatemers

can be cloned using the TOPO TA cloning

kit (Invitrogen). Direct cloning of the blunt-

ended concatemers might be preferred

because it increases cloning efficiency of

SAGE concatemers (Koehl et al. 2003),

which have similar length as RST

concatemers.

(v) Sequencing and phylogenetic analysis of

cloned RST concatemers. The cloned

concatemers are sequenced using the Sanger

DNA sequencing technology. A typical

Sanger sequencing read (greater than

500 bp) can determine the sequence of

19 individual RSTs (Yu et al. 2006). Indi-

vidual RSTs are then delineated using the

conserved base pairs that flank individual

RSTs. The individual RSTs first can be

grouped into OTUs and then compared to

databases (Neufeld et al. 2004; Poitelon

et al. 2009; Yu et al. 2006), or they can be

compared to databases without grouping

(Kysela et al. 2005). BLASTn and SEQ

MATCH are two programs that can be

used to compare RSTs to the sequences

archived in GenBank (http://www.ncbi.

nlm.nih.gov/) and RDP (http://rdp.cme.

msu.edu/), respectively. Other programs,

such as ESPRIT (Sun et al. 2009), Mothur

(Schloss et al. 2009), Qiime (Caporaso

et al. 2010), CD-HIT (Li and Godzik

2006), and UniFrac (Lozupone et al. 2006),

can also be used in RST analysis.Most of the

RST datasets produced in previous studies

can be found either in the NCBI Gene

Expression Omnibus (GEO) database

(Ashby et al. 2007; Neufeld et al. 2004; Yu

et al. 2006) or in the Sequence Read Archive

(SRA) (Huber et al. 2007).

Full-length 16S rRNA gene sequences can be

grouped or assigned to species and genera using

97 % and 95 % sequencing similarity as the

cutoff values, respectively (Ludwig et al. 1998;

Stackebrandt and Goebel 1994). However, most

researchers also use these cutoff values in ana-

lyzing partial sequences. Because sequence

divergence is not evenly distributed along the

16S rRNA gene (particularly among the nine

V regions), different cutoff values are needed

when different regions of 16S rRNA genes are

analyzed (Kim et al. 2011). As such, different

cutoff values of sequence similarity are needed

to group and assign individual RSTs to

RST-based OTUs. Alternatively, individual

RSTs can be compared to rRNA gene sequence

databases to identify longer sequences, which

can then be used to characterize the

microbiomes.

S 624 Serial Analysis of V1 Ribosomal Sequence Tags

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/


SARST Based on Other V Regions

Besides the V1 region, the V6 region

(987–1,045 nt) (Kysela et al. 2005; Poitelon

et al. 2009) has also been used in SARST. As

demonstrated in analyzing soil, rumen, and

marine samples, both V1 and V6 appeared to

have sufficient phylogenetic information to

allow taxonomic assignments of the recovered

RSTs (Neufeld and Mohn 2005; Neufeld

et al. 2004; Pinloche et al. 2013; Poitelon

et al. 2009; Yu et al. 2006). The V5 region has

also been used in a SAGE-like analysis

(referred to as serial analysis of rRNA genes,

SARD) of the soil microbiome (Ashby

et al. 2007). Since it only generates 14-bp

RSTs, SARD may not provide enough phylo-

genetic information for reliable taxonomic

assignments of the RSTs. Other V regions can

be targeted in SARST, but when choosing a V

region for SARST, the following need to be

considered: the length and divergence of

sequence, the availability of universal primers,

and the frequency of the recognition site of the

type IIs restriction endonuclease chosen within

the V region.

Summary

SARST was developed before NGS technolo-

gies became available, and it significantly

improved upon the traditional one-clone-one-

sequence approach with respect to both cost

and coverage. SARST will still be useful

when NGS technologies is affordable. First,

SARST-V1 can generate as much phylogenetic

information as longer 454 pyrosequencing

reads (Pinloche et al. 2013). Second, deep cov-

erage is not compromised when multiple

bar-coded microbiome samples are analyzed

simultaneously in a single NGS run. Addition-

ally, as the read length of NGS continues to

increase, concatemers of RSTs can be

sequenced without cloning of RST

concatemers.

Cross-References

▶A 123 of Metagenomics

▶Approaches in Metagenome Research:

Progress and Challenges

▶Computational Approaches for Metagenomic

Datasets

▶Metagenomic Research: Methods and

Ecological Applications
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Synonyms

Alignment; Classification; Probe and primer

evaluation; Quality assessment; Ribosomal

RNA gene datasets; Taxonomy

Definition

SILVA (from Latin silva, forest) is a comprehen-

sive web resource (http://www.arb-silva.de) for

up-to-date, quality-controlled databases of aligned

ribosomal RNA gene (rDNA) sequences from the

Bacteria, Archaea, and Eukarya domains.

Introduction

Sequencing the ribosomal RNA gene (rDNA) is

the method of choice for nucleic acid-based detec-

tion and identification of microbes, their taxo-

nomic assignment, phylogenetic analysis, and

investigation of microbial diversity. Today (July

2012), more than 3.5 million small and large

subunit (SSU and LSU) rDNA sequences are pub-

licly available and their analysis demands for

appropriate software tools and specialized,

quality-controlled databases. The SILVA datasets,

established in 2007, provide high-quality,
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comprehensive rDNA datasets comprising

sequences from the Bacteria, Archaea, and

Eukarya domains. All sequences are checked for

anomalies, carry a rich set of sequence-associated

contextual information, and have multiple taxo-

nomic classifications and the latest validly

described nomenclature. The SILVA datasets are

based on the EMBL/EBI Nucleotide Sequence

Database (EMBL-Bank), a member of the Inter-

national Nucleotide Sequence Database Collabo-

ration (INSDC) comprising all publicly available

DNA sequences. They are generated by an auto-

matic software pipeline for the extraction of SSU

and LSU rDNA sequences as well as quality con-

trol. The alignment is based on the latest compre-

hensive ARB (Ludwig et al. 2004) alignments.

The datasets are extensively annotated by third-

party data integration. Substantial manual curation

of the alignment and taxonomy is performed on

each public release. SILVA dataset updates and

new online features are continuously released on

the SILVA web portal (http://www.arb-silva.de)

which provides detailed statistics and documenta-

tion of the resource.

SILVA Datasets

The SILVA project provides datasets for all SSU

and LSU rDNA sequences found in EMBL-Bank

that fulfill the SILVA quality criteria. Since their

first public release in February 2007, based on

EMBL-Bank release 89, these datasets have

increased in size by a factor of 10 and 5 for the

SSU Parc and LSU Parc datasets, respectively.

Moreover, the growth is clearly exponential

(Fig. 1) as is the growth of the general DNA

sequence databases. Detailed information on the

current SILVA database content can be found in

the documentation section of the SILVA web

portal.

The SILVA SSU and LSU rDNA datasets

each consist of two subsets: (1) the “Parc”

datasets comprising the complete SILVA
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database content and (2) the “Ref” datasets com-

prising high-quality subsets of sequences in the

Parc datasets. For the SSU dataset, additionally,

two subsets are provided, (3) the “Ref NR”

dataset, a nonredundant version of the Ref subset,

and (4) a type strain dataset provided by the “All-

Species Living Tree Project” (LTP) (Munoz

et al. 2011) which is also available for the LSU

rDNA. All datasets and individual subsets can be

downloaded as ARB files for direct use with the

ARB software package (Ludwig et al. 2004). In

the future, only SSU Ref and SSU Ref NR

datasets will be offered in the ARB format to

avoid unmatched hardware demands on the

user side.

SILVA Parc

All sequences in the Parc datasets have

a minimum length of 300 aligned nucleotides

within the boundaries of the rRNA genes.

Sequences are only accepted if they have less

than 2 % ambiguities or homopolymers or vector

contamination. Additionally, after the alignment,

minimal quality requirements for sequence qual-

ity and base-pair score, as well as alignment

identity and quality, are applied. For details,

please refer to the section “Quality Control”

and the respective dataset documentation page

(e.g., http://www.arb-silva.de/documentation/

background/release-111/).

SILVA Ref

The SILVA Ref datasets represent subsets of the

corresponding SILVA SSU and LSU Parc

datasets. They comprise only “full-length” or

nearly “full-length” sequences. An SSU sequence

is considered to be of “full length” if it contains at

least 1,200 aligned bases within the rRNA gene

boundaries. For sequences classified as Archaea,
this threshold has been lowered to 900 aligned

bases to avoid losing the majority of sequences.

LSU sequences are considered “full length” if

they are at least 1,900 bases long.

More stringent thresholds for alignment qual-

ity and identity are applied for the Ref datasets.

Consequently, the Ref datasets contain consider-

ably less sequences than the Parc datasets,

particularly about one-fourth in case of the SSU

Parc database and about one-tenth for the LSU

Parc database (ratios for the SILVA 111 release).

Sequences originating from the “Human Skin

Microbiome” (HSM) (Grice et al. 2009), the

“Mouse Wound Microbiota” (MWM) (Grice

et al. 2010), and the “Guerrero Negro

Hypersaline Microbial Mat” (GNHM) large-

scale sequencing projects are excluded from

the SSU Ref dataset. Instead, these sequences,

with more than 490,000 (SILVA 111) long

sequence reads in total, are provided in

a dedicated dataset. This is done to further restrict

the size of the SILVA SSU Ref dataset and to

avoid overrepresentation of sequences of a spe-

cific origin.

For both SILVA Ref datasets, the ARB files

are supplemented with a manually classified

“guide tree,” incrementally built using the ARB

parsimony tool with filters to remove highly var-

iable positions and followed by removal of

sequence entries represented by anomalous tree

branch lengths. These trees also represent the

basis for the SILVA taxonomy (see section

“SILVA Taxonomy” below).

SILVA Ref NR (Nonredundant)

For users interested in a representative SSU

rDNA sequence collection, the SILVA project

offers a nonredundant (NR) version of the SSU

Ref subset. This dataset is created by applying

clustering at 99 % (up to SILVA 108) and 98 %

(from SILVA 111 on) sequence identity. Of each

cluster, only the longest sequence is kept. This

reduces the size of the dataset to less than 50 % of

its original size, even though the sequences omit-

ted in the SSU Ref dataset from the HSM,MWM,

and GNHM projects (see above) are included for

clustering. Sequences from cultivated species are

preserved in all cases to lead as an anchor for

taxonomy. The resulting SSU Ref NR dataset

with its manually curated “guide tree” can be

used as a representative dataset for classification,

phylogenetic analysis, and probe design. It is the

recommended dataset to be used as a starting

point for all users interested in environmental

rDNA sequence analysis.
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SILVA Taxonomy

A substantial revision of the classification of all

prokaryotic sequences in the Ref datasets was

first published with SILVA release 100. Based

on the “guide trees,” all phylogenetic assign-

ments are manually curated, taking into account

taxonomic information provided by Bergey’s

Taxonomic Outline of the Prokaryotes (Garrity

et al. 2004); the taxonomic outlines for volumes

3, 4, and 5 of Bergey’s Manual; and the List of

Prokaryotic names with Standing in Nomencla-

ture (Euzéby 1997). Furthermore, extensive effort

is spent to represent prominent uncultured and not

validly published environmental clades, groups,

and taxa, respectively. The majority of these clades

and groups are annotated in the “guide tree” based

on literature surveys and personal communica-

tions. Taxonomic groups consisting only of

sequences from uncultured organisms are named

after the clone sequence submitted earliest. Due to

this exhaustive manual approach, SILVA currently

contains the most up-to-date and detailed bacterial

and archaeal taxonomic classification.

To create also an improved and unified taxon-

omy for Eukarya based on 18S rDNA sequences,

the Eukaryotic Taxonomy Working Group

(ETWG) has been founded in October 2011.

The first version of these efforts is deployed

with SILVA release 111.

SILVA SEED Datasets

SILVA uses customized and specialized refer-

ence datasets for specific tasks within its software

pipeline. Such internal reference datasets are

called SEEDs.

SEEDs for Alignment

As of July 2012, the SEED used for SSU rRNA

gene sequence alignment has 50,000 alignment

positions including all gaps and consists of about

57,000 high-quality, aligned SSU rDNA refer-

ence sequences. The alignment SEED of the

LSU rRNA gene comprises 150,000 positions

but includes only about 3,000 aligned sequences.

Both SEEDs contain representative sequences

from the Bacteria, Archaea, and Eukarya

domains and are manually curated and continu-

ously enhanced.

SEEDs for Quality Control

The SEED used for the detection of sequence

anomalies in SSU sequences is based on the

corresponding alignment SEED with all

sequences removed if any indication of an anom-

aly was found. This reduces the size of the SEED

by a factor of 6. The detection of anomalies is not

done for LSU rDNA sequences because none of

the available tools can be applied.

For identification of vector contaminations,

a SEED based on the EMVEC (EBI) and UniVec

(NCBI) reference datasets is used with all

sequences removed resembling an rDNA

sequence.

Data Retrieval

Three strategies are applied to retrieve SSU and

LSU rDNA sequences from EMBL-Bank:

• A keyword search is used to extract annotated

SSU and LSU rDNA sequences. Additionally,

a set of relaxed keywords is applied to account

for sequences with spelling mistakes in the

annotation.

• A whitelist taken from the Ribosomal Data-

base Project (RDP) (Cole et al. 2005) is used

to retrieve sequences that are not covered by

the keyword search.

• HMMs (one for each of the three domains of

life for both LSU and SSU) taken from the

RNAmmer tool (Lagesen et al. 2007) are

searched against the complete EMBL-Bank.

Sequences that match one of the HMMs and

were not already imported by one of the two

previous approaches are added.

In all cases, the entries in the datasets are

flagged by its origin of retrieval.

Alignment

After import, sequences are aligned using the

SINA software (SILVA Incremental Aligner)
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(Pruesse et al. 2012). Similar to the ARB project,

the tool follows the concept of an incremental

alignment. Briefly, no de novo multiple sequence

alignment is created; instead, the highly accurate

manual alignment of closely related sequences

found in the corresponding alignment SEED is

used as a template to align each sequence

included in the SILVA datasets. This approach

guarantees a high-quality alignment of rDNA

sequences.

Quality Control

Every imported and aligned SSU and LSU gene

sequence has to pass a multistage quality inspec-

tion to assure the high quality of the SILVA

datasets. Sequences are checked for sequence

and alignment quality using various parameters.

Sequences are excluded from the SILVA releases

in case they fail any of the applied tests or show

reduced quality based on combined quality

values. Additionally, sequences are tested for

anomalies but no filtering is done by the SILVA

project based on these results. The information is

provided to the users for individual filtering of the

datasets, if required.

Detailed statistics on the SILVA quality con-

trol can be found on the SILVA web portal for all

SILVA releases, e.g., http://www.arb-silva.de/

documentation/background/release-111/.

Sequence Quality

The SILVA sequence quality checks test for

ambiguous bases, extended homopolymeric

stretches, and vector contaminations.

Ambiguous bases are nucleotides representing

valid characters according to the International

Union of Pure and Applied Chemistry (IUPAC)

DNA encoding but do not resolve to “A”, “C”,

“G”, or “T”. A maximum of two percent of

ambiguous nucleotides within the rRNA gene

boundaries is allowed by SILVA.

Homopolymers are stretches of identical

nucleotides that commonly appear with

a maximum of up to four nucleotide repetitions

in native rDNAs. In contrast, extended stretches

within a sequence represent an indication of

reduced sequence quality caused by the sequenc-

ing process. As a consequence, if homopolymers

of five or more nucleotides are found within

a sequence and these stretches count for more

than 2 % of the sequence within the rRNA gene

boundaries, the sequence is excluded from the

SILVA datasets.

Unaligned overhangs of a sequence are

checked against the vector SEED using BLAST

(Altschul et al. 1998) to identify cloning artifacts.

If it is likely that the unaligned part of a sequence

is a vector sequence and the unaligned part is

longer than the aligned part, the sequence is

excluded from SILVA. Sequences in SILVA are

not allowed to contain more than 2 % vector

contamination.

The three parameters are combined into an

overall “sequence quality” value. This score rep-

resents the mean of the three individual parame-

ters. It is normalized to values in the range of

0–100, such that 100 represents the best possible

quality of a sequence.

All thresholds to reject a sequence were

defined based on statistical analysis of the

retrieved SSU and LSU rDNA sequences.

Alignment Quality

Four characteristics of the alignment process are

evaluated in the pipeline and a sequence is

rejected if it fails to pass one of these: the base-

pair score, the alignment quality, the alignment

identity, and the alignment length within the

boundaries of the rRNA gene.

The base-pair score is calculated from the

number of bases involved in helix binding

according to the secondary structure model of

Gutell et al. (1994).

The alignment quality score is a measure of

the identity of the query sequence to the reference

sequences that are used as a template for the

alignment. High values (>90) indicate that

closely related sequences have been found in

the alignment SEED and that the resulting align-

ment is likely to be accurate. Low values suggest

that further manual inspection of the particular

sequence is needed.

Additionally, the alignment identity of the

query sequence to its closest relative in the
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alignment SEED is considered to guarantee the

specificity of the alignment. Two positions in the

alignment are considered identical if both posi-

tions have the same unambiguous nucleotide

according to the IUPAC encoding.

To fit the SILVA unified scoring scheme, the

base-pair and alignment quality scores are nor-

malized to values between 0 and 100, such that

100 represents the maximum score.

Chimera/Anomaly Detection

To detect sequence anomalies, a customized

version of the Pintail software (Ashelford

et al. 2005) is used. This software checks whether

a pair of sequences is mutually anomalous (e.g.,

chimeric) by computing a distance profile and

comparing it to a predicted distance profile. The

result is “yes,” “likely,” or “no,” depending on

the amount of measured deviation from expecta-

tion. From this operation, the SILVA Pintail

score is constructed by running each sequence

against the ten most similar sequences retrieved

from the chimera SEED. Sequences that have

passed all tests with “no” (not anomalous) get

a score of “100 %,” whereas all tests returning

“likely” would yield a 50 % score. Only SSU

sequences are checked for anomalies because

the Pintail software does not contain profiles for

sequences other than 16S rDNAs.

Third-Party (Meta) Data

One of the unique features of the SILVA datasets

is extensive data integration based on various

third-party resources and manifold linkage of

the SILVA database entries to external data

sources.

Taxonomies

Every sequence in the SILVA databases carries

the EMBL-Bank taxonomy assignment. Where

available, the greengenes (DeSantis et al. 2006)

and RDP (Cole et al. 2005) taxonomies are added

for comparison. All entries of the SILVA Ref

datasets are also assigned to the taxonomy of

the SILVA project (see section “SILVA

Taxonomy”).

For LSU rDNA sequences, only the EMBL-

Bank and SILVA taxonomy are available due to

a lack of additional resources.

Nomenclature

With every SILVA release, all organism names

are updated according to the “Nomenclature

Up-to-Date” website of the “Deutsche Sammlung

f€ur Mikroorganismen und Zellkulturen”

(DSMZ). All synonyms and name replacements

are recorded.

Strain Annotation

The strain field of an entry in the SILVA datasets

is annotated using SILVA-specific labels if an

entry matches one or more of the following

criteria:

• The label “e[G]” is added if an entry is part of

the list of genomes offered by the EBI.

• The label “l[T]” is added if the entry is part of

the type strain datasets of “The All-Species

Living Tree” Project (Munoz et al. 2011).

• The label “s[T]” is added if an entry is listed as

a type strain by the StrainInfo project

(Dawyndt et al. 2005).

• The label “s[C]” is added if an entry is

a cultured strain according to the StrainInfo

project.

• The label “r[T]” is added if an entry is listed as

a type strain by the RDP project.

Furthermore, manually curated habitat infor-

mation and GPS coordinates are assigned to each

entry based on information provided by the

megx.net project (Kottmann et al. 2010).

SILVA Website/Online: Service

One of the problems associated with the

ever increasing amount of sequences is the

hardware resources required to store and analyze

the data. As a response to allow users to still

work with these datasets, features requesting

comprehensive reference datasets such as probe

and primer evaluation for testing the in silico

accuracy of oligonucleotide signatures are now

offered by the SILVA web portal. Additionally,

the SILVAwebsite offers extensive data retrieval
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functions for the compilation of individual

sequence subsets from the comprehensive online

database as well as preconfigured, quality-

constrained subsets for direct download.

Taxonomy Browsing, Searching, and

Download Cart

The SILVA “Taxonomy Browser” allows navi-

gation through a selected taxonomy by clicking

on the respective nodes. The browser starts with

showing all taxonomic groups of the highest level

of the selected taxonomy. By selecting one of

these groups, a new list view appears with all

subgroups, preserving the former levels within

a horizontal scroll bar layout. If a sequence

entry is selected, a detailed summary will be

opened. This summary shows full annotation of

an entry and a traffic light like view of the main

quality parameters (Fig. 2).

The browser can also be used to create cus-

tomized subsets of the SILVA databases and to

display the results of the online services provided

by SILVA. For each taxonomic group in the

browser, the fraction of corresponding sequences

in the cart can be highlighted (Fig. 2).

The advanced search functionality offered on

the SILVA website allows the user to easily com-

pile custom subsets of sequences. Besides simple

searches, e.g., for accession numbers, organism

names, taxonomic entities, or publication

DOI/PubMed IDs, complex queries including

several database fields are also possible. Con-

straints such as the sequence length or quality

values can be used to further filter the sequences.

Customized sequence subsets compiled by the

user including the results of the SILVA online

services can be collected in the SILVA cart sys-

tem and downloaded in various formats.

SILVA Databases, Fig. 2 The entry of Amorphus coralli (DQ097300) within the genus Amorphus displayed in the

SILVA “Taxonomy Browser”
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Alignment, Sequence-Based Searches, and

Classification

Users can align their own sequences using the

SILVA SSU and LSU SEEDs with a fully

configurable online version of the SILVA aligner

(SINA). The aligned sequences can be

downloaded in either ARB or FASTA file

formats.

Submitted sequences can also be searched

against one of the predefined datasets (Parc,

Ref, or NR). This function will return a list of

closely related sequences which can be added to

the cart system for building and downloading

customized datasets.

Finally, the “Least Common Ancestor” fea-

ture of the aligner can be used to classify

sequences against any of the taxonomies pro-

vided by the SILVA project.

TestProbe

The SILVA probe match and evaluation tool

called “TestProbe” detects and displays all occur-

rences of a given probe or primer sequence within

any specified SILVA datasets or subsets thereof.

It is offered to test and visualize in silico speci-

ficity and target group coverage (sensitivity) of

rDNA-targeting probes and single primers

against the SILVA datasets. The tool can be

SILVA Databases, Fig. 3 The web interface and results of the SILVA “TestProbe” service
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configured to allow up to five mismatches

between probe and target sequences and mis-

matches can be weighted. The resulting number

of matches and non-matches is shown as a set of

pie charts (Fig. 3), and an additional list provides

sequence names, accession numbers, and

a graphical representation of the probe’s binding

site within all matches. Sequences in this list can

be added to the cart system for subsequent

download.

TestPrime

Similar to the SILVA “TestProbe” tool,

“TestPrime” allows searching for all sequences

within the SILVA datasets or subsets thereof

which are targeted by a given pair of primers.

The number of allowed mismatches can be con-

figured and results are shown in overview pie

charts (Fig. 4) and the corresponding sequences

can be selected for download.

Summary

The SILVA project provides comprehensive,

quality-controlled, richly annotated, and aligned

reference rDNA datasets to support the molecular

assessment of biodiversity, as well as

SILVA Databases, Fig. 4 The web interface and results of the SILVA “TestPrime” service
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investigations of the evolution of organisms.

Applications of these datasets range from basic

research in microbiology and molecular ecology

to the detection of contaminants and pathogens in

biotechnology and medicine. The taxonomically

fully classified Ref and Ref NR datasets are

perfectly suited for the classification of

metagenomic or amplicon-based next-generation

sequencing data.

The combination of SILVA datasets with the

ARB software suite provides an easy to use work-

bench for researchers to perform in-depth

sequence analysis and phylogenetic reconstruc-

tions as well as manual curation of rDNA

datasets. Furthermore, the SILVA datasets have

become an integral part of the MOTHUR

(Schloss et al. 2009), QIIME (Caporaso

et al. 2010), and MG-RAST (Meyer et al. 2008)

analysis tools and pipelines.

Cross-References

▶A 123 of Metagenomics

▶Computational Approaches for Metagenomic

Datasets
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Definition

The term “quantification” derives from the Latin

terms quant (meaning “how much”) and facere
(meaning “to make”). Quantifying is the act of

determining the quantity of, measure. Simulta-

neous quantification of multiple bacteria stands

for medium- to high-throughput detection and

abundance determination of a bacterial

community.

Introduction

Bacteria are widespread and abundant in the

environment and comprise bacterial strains

which are pathogenic for plants, animals, or

human beings. Historically, the threat

represented by pathogenic bacteria lead to the

development of cultural-, serological-, and

molecular-based methods to identify and possi-

bly quantify the causative agent of an occurring

infectious disease. These methods commonly tar-

get with high sensitivity and specificity one or

few bacterial strains or species, but are not suit-

able for collecting comprehensive information on

a microbial community. Recently, the advent of

high-throughput sequencing technologies and the

extensive metagenomic studies performed on

human microbiomes have shown how shifts in

bacterial composition and quantity may also cor-

relate locally or systemically with the health sta-

tus of the human host. These high-throughput

metagenomic technologies can provide compre-

hensive information on microbial composition,

functions, and dynamics, accelerating the devel-

opment of complementary or alternative methods

for environmental studies, clinically oriented

studies, and routine diagnostics. The methods

for simultaneous quantification of multiple bac-

teria are based on the following techniques: PCR,

microarray, or high-throughput sequencing.

End-point and real-time quantitative PCRs

are widely used techniques for identification

and/or quantification of bacteria. The PCR is

based on a primer extension reaction catalyzed

by DNA polymerase, thus requiring a priori

knowledge of the potential target bacteria.

These techniques amplify a few copies of the

target DNA to millions of copies after 30–40

cycles, ensuring high sensitivity of detection.

Being also user-friendly, fast, and cost-effective,

these techniques are broadly used for clinical

detection of potential pathogens. Multiplexing

can also be applied by means of multiple primer

pairs hybridizing to different target sequences.

However, the multiplexing capacity is limited,

as simultaneous detection of a high number of

bacteria leads to decreased sensitivity, increased

costs, and bacterial misidentifications. Thus,

these techniques cannot reach the throughput

required for bacterial community assessment.

High-throughput sequencing (see entries

“▶Approaches in Metagenome Research: Pro-

gress and Challenges”; and “▶Metagenomic

Research: Methods and Ecological Applica-

tions”) is the most used method for metagenomic

studies, allowing the highest throughput and

in-depth determination of bacterial communities’

composition without the requirement of a priori

knowledge. The advantage of this technology is

to be able to detect not only well-characterized

microbes but also variant strains (Roh et al.

2010). It can be applied either for deciphering all

genetic information including functional classes’

composition via whole-genome shotgun sequenc-

ing or for defining exclusively the taxonomic com-

position of bacterial communities by targeted

sequencing of phylogenetic markers. Despite the

continuous cost reductions, whole-genome shot-

gun sequencing still requires high expense, time,

and complex computational resources (see entry

“▶Computational Approaches for Metagenomic

Datasets”). For these reasons, this method is

prohibited for prolonged clinical studies or routine

diagnostics. On the other hand, targeted sequenc-

ing is less costly and complex in data processing

but commonly addresses the 16S rRNA gene,

which was reported to have a phylogenetic resolu-

tion limited to the family or genus level for several

clades.

Microarray-based methods allow parallel

detection of a large number of sequences in

a single hybridization. As PCR-based assays,

they require the a priori knowledge of the poten-

tial targets. Their feature is to combine a medium
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to high throughput with a small format, a rapid

and automated processing, and a low cost per

sample. Thus, they span in between PCR and

sequencing and are well suitable for cost-

effective clinically oriented studies and informa-

tive routine diagnostics. Moreover, applied to

metagenomic samples, they can provide a useful

complementary approach to high-throughput

sequencing, determining the appropriate

sequencing depth according to the complexity

of the bacterial communities.

Here below, the overview is focused on DNA

microarrays as tools for simultaneous quantifica-

tion of multiple bacteria and more extensively on

well-known 16S microarrays and the recently

developed BactoChip, a multi-marker phyloge-

netic microarray.

DNA Microarrays for Simultaneous
Detection of Multiple Bacteria

DNA microarrays technology allows high-

throughput screening of nucleic acid sequences

for complementary binding. The sequences

bound to the solid surface of the microarray

may be synthetic oligonucleotides or DNA frag-

ments either synthesized directly or spotted on

the surface. In the presence of the target DNA

sample, nucleic acid hybridization can occur. The

stringency and rate of hybridization can be con-

trolled by varying temperature, salt concentra-

tion, and washes (passive hybridization) or by

applying electric fields on a microelectronic

device (active hybridization). After hybridiza-

tion, unbound template DNA is washed away

and the bound template is detected, using dedi-

cated scanners, mostly by means of fluorescent

label or enzymatically active moieties previously

incorporated in the DNA sample. The high-

affinity binding of template nucleic acids to

their complementary target can be used for the

identification of microorganisms and relative

abundance determination. Key steps for highly

accurate bacterial detection are target DNA

region selection and probe design. According to

the target regions chosen, microarrays for bacte-

rial profiling can be classified in two main

categories: microbial function or phylogeneti-

cally targeted.

Functional gene microarrays target mostly

a combination of functional classes’ genes. The

feature of these microarrays is to define the capa-

bilities of the bacterial community under investi-

gation rather than its composition. For clinical

purposes, arrays commonly target functional

genes belonging to virulence and antibiotic resis-

tance gene families (Jaing et al. 2008). Environ-

mental applications focused instead on the known

functions of the specific bacterial niche under

study.

An example of this microarray type is the

GeoChip, which was developed for characteriz-

ing microbial communities isolated from the

environment both at structural and functional

level. It proved successful in association with

high-throughput approaches to provide in-depth

information of defined environmental niches,

such as sulfate-reducing bacterial communities

important to environmental cleanup [see entry

“▶GeoChip-Based Metagenomic Technologies

for Analyzing Microbial Community Functional

Structure and Activities”].

The second category is represented by phylo-

genetic oligonucleotide microarrays (see entry

“▶ Phylogenetics, Overview”), which target

instead phylogenetic marker genes, and can be

based on a single or multiple marker approach. In

contrast to functional gene arrays, they aim at

discriminating bacteria by defining their identity.

Single marker phylogenetic arrays target variants

of universally conserved rRNA sequences. Some

of the publicly described chips targeting single

phylogenetic markers are listed here.

An example of a panmicrobial 16S-based

microarray is the GreenChipPm (Palacios

et al. 2007). This single marker detection array

was designed to target respiratory pathogens

(vertebrate viruses, fungi, bacteria, and proto-

zoa). It includes, among others, probes designed

to specifically bind variable segments of the 16S

rRNA gene, the most well-known “universal”

bacterial marker for phylogenetic determination.

The PhyloChipTM (Second Genome, San

Francisco) is an oligonucleotide microarray

targeting the segments of the single 16S rRNA
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gene for high-throughput detection of microbial

communities both in the environment and clinical

samples (Brodie et al. 2007; Ghosh et al. 2009;

Wu et al. 2010). Several versions were devel-

oped, the latest being the G3 version (Hazen

et al. 2010). The G3 comprises 1.1 million DNA

probes and covers nearly 60,000 operational tax-

onomic units. In order to increase the reliability,

some microarray designs, including the

PhyloChips, define multiple target regions within

the marker adopting a so-called multiple probe

concept to increase the overall detection

accuracy.

HOMIM (Preza et al. 2009) is the acronym

for Human Microbial Identification Microarray,

a tool developed to detect simultaneously

300 bacterial species from the oral microbiome,

including non-cultivable ones. The target bacte-

ria were selected among the ones identified by

16S rRNA sequencing in health roots and root

caries in elderly. Experiments performed with

this array showed a general agreement in the

results with 16S RNA gene sequencing analysis.

Since 2008, a core facility at the Forsyth Institute

(Cambridge, Massachusetts) provides a service,

based on this platform, to rapidly screen clinical

samples from the oral cavity, esophagus, and

lungs.

The HITChip (human intestinal tract chip)

(Rajilic-Stojanovic et al. 2009) is a microarray-

based metagenomic tool designed for profiling

the human gastrointestinal microbiota. This phylo-

genetic microarray comprised 4,809 oligonucleo-

tide probes and discriminate 1,140 species via two

hypervariable regions of the small subunit ribo-

somal RNA (SSU rRNA) gene. The validation

performed with SSU rRNA clones and clinical

samples proved that this microarray provides

a highly reproducible fingerprint and has also quan-

tification potential. In particular, tests performed

with syntheticmixtures showed it can detect 40 dif-

ferent amplicons and also those with relative abun-

dance of 0.1 %. The HITChip showed to correctly

identify a universal microbiota at genus-level

resolution.

Overall, the most used phylogenetic marker is

the 16S rRNA gene. The presence of highly con-

served regions flanking the variable 16S rRNA

target sequence allows introducing a PCR-based

amplification step for bacterial target enrichment

(e.g., GreenChipPm). This pre-amplification step

ensures an increased sensitivity in detection but

does increase the processing time and may intro-

duce biases in relative abundance quantitation.

Besides that, being universally conserved

within the bacterial kingdom, the 16S RNA

gene may not be sufficient for specific and repro-

ducible bacterial identification, especially in

complex systems. In fact, the high conservation

score of this gene across taxa has been reported to

cause cross-hybridization events, affecting both

resolution and abundance determination, and to

fail to discriminate below the genus level for

many clades.

Recently, as alternative to 16S or single

marker array for microbial profiling, a multiple

marker phylogenetic microarray has been

designed, the BactoChip (Ballarini et al. 2013).

The array design was based on the notion that

metagenomic sequencing data offer a powerful

view on the microbial diversity of the sampled

communities and an increasingly higher number

of complete and annotated bacterial genomes are

publicly available.

The BactoChip: A Multi-marker
Phylogenetic Microarray for
Species-Level Resolution

The BactoChip (Ballarini et al. 2013) was

designed with the aim to overcome the issues of

resolution and abundance determination of

16S-based microarrays and thus approach the

throughput and specificity of sequence-based

techniques. Up to date, one version of the

BactoChip has been described, detecting via

a PCR-independent approach a set of 54 bacterial

species belonging to multiple genera of clinical

interest. The number of target bacteria was lim-

ited by the availability of typed strains for exper-

imental validation and of complete bacterial

genome sequences for computational microarray

design. However, the developed method for

marker selection may be extended to the whole

microbial world, thus allowing high accuracy of
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microbial composition assessment even in com-

plex samples.

Computational and Experimental Design.

The BactoChip in silico design is based on the

knowledge deriving from metagenomic datasets

and complete bacterial genome sequences. The

computational tool for DNA marker identifica-

tion employed a pairwise identity threshold

above 99 % to define core genes for most species,

where core genes are those shared by all available

sequenced strains of the same species. Unique

genes (i.e., core genes unique for each bacterial

species) were then selected by removing all core

genes with blastn hits outside the target species.

Probes targeting an average of 10 markers per

bacterial species were designed to have similar

physicochemical parameters and were directly

synthesized on “custom high-definition Agilent

DNA Comparative Genomic Hybridization

arrays 8x15K” (Agilent Technologies, Santa

Clara, CA, USA). Besides internal control and

other probes, the BactoChip includes 2,094

marker gene probes targeting 54 bacterial

species.

Testing on Pure Isolates, Synthetic Com-

munities, and Clinical Samples. The BactoChip

was validated by performing hybridization exper-

iments with 37 bacterial species singularly, mul-

tiple congeneric species, and synthetic bacterial

communities of up to 15 microorganisms. Also, it

was tested with oral microbiomes from two

healthy subjects spiked with 5 different species

at known relative abundance. Single reference

strains used for validation were collected from

the LGC Standards ATCC, the Leibniz Institute

DSMZ, or university hospitals. Synthetic com-

munities were obtained by mixing single strains

in known DNA quantities. Oral microbiomes

were collected from saliva, DNA was extracted

with standard protocols, and the bacterial load

was determined by real-time PCR. The

BactoChip identified univocally almost all tested

species (97.3 %) from 19 genera with near-

perfect accuracy (AUC > 0.99). In case of

malfunctioning probes (false negative or false

positive), the presence of multiple probes per

marker genes and multiple genes per species

prevented species misidentification. Testing

performed with multiple congeneric bacterial

species from the Staphylococcus genus showed

how this microarray design can resolve to the

species level even genera known to be poorly

resolved by the 16S marker genes. The perfor-

mance of the BactoChip in identifying bacteria

and determining relative abundances was tested

by means of synthetic bacterial communities

comprising 9 and 15 different species at even

and staggered concentrations. The species-level

specificity was confirmed also in this experimen-

tal setting. The microarray quantified both bacte-

rial communities with high accuracy with an

overall high correlation (0.97, p < 10�10)

between reference relative abundance values

and estimated ones. Experiments performed on

saliva microbiomes isolated from healthy volun-

teers, spiked in with reference species in known

amounts, proved the feasibility of this approach

for microbiome profiling, and detected the native

and spiked-in species within clinical samples

over a 100-fold dynamic range.

Summary and Conclusions

High-throughput metagenomic technologies

have provided an extensive amount of data on

microbial composition, functions, and dynamics,

accelerating the development of complementary

or alternative methods for environmental studies,

clinically oriented studies, and routine diagnos-

tics. Definitely, next-generation sequencing tech-

nology leads, without the need of a priori

knowledge, to the maximum amount of informa-

tion on the genomic sequences’ composition of

a microbial sample. However, this technology

requires complex computational analyses to

extrapolate information of interest and still

requires high costs and processing times.

Among the alternative molecular-based tech-

niques currently available (multiplex, real-time

PCR, or array-based assays), microarrays repre-

sent the most promising technique for parallel

detection and relative abundance quantitation of

bacteria with complex microbial samples, com-

bining a high-throughput with a user-friendly

rapid protocol and a low cost per sample. Besides
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functional microarrays, which commonly target

defined environmental niches and aim at func-

tional classes’ classification (e.g., GeoChip),

microarrays for microbial identification are phy-

logenetic based. Up to date, ribosomal genes

(in particular the 16S) are the most used phylo-

genetic markers for microbial profiling through

microarray (e.g., GreenChipPm, PhyloChipTM,

HOMIM, HITChip). However, being the 16S

gene highly conserved throughout the bacterial

kingdom, it is difficult to resolve bacteria below

the family or genus level for some clades.

Metagenomic data available on human body

sites samples has shown how defining the bacte-

ria profile at species level may generate a more

in-depth understanding of the relation between

bacterial composition and health. Recently,

a multi-marker phylogenetic microarray was

described (the BactoChip) which proved to be

highly specific in bacterial species identification,

feasible for microbial profiling, and reliable for

relative abundance quantification over a 100-fold

dynamic range, even within complex ecosystems.

Being based on complete genomic sequences, the

BactoChip array design stands on a lower number

of reference sequences available, in public

sequence databases, in comparison to the histor-

ically used 16S rRNA phylogenetic marker

sequences. However, the exponentially increas-

ing amount of complete bacterial genome

sequences will soon fill this gap allowing an

optimized marker selection for accurate micro-

bial profiling both for the ecosystem and the

human body.
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Definition

Cross-platform software providing statistical ana-

lyses and plots of taxonomic and functional profiles.

Introduction

Comparative metagenomic studies aim to under-

stand differences in the structure and function of

microbial communities from different habitats.

Statistical approaches can be used to highlight dif-

ferences between pairs of metagenomic samples or

defined groups of samples (e.g., samples from sick

and healthy individuals). STAMP (StatisticalAnal-

ysis of Metagenomic Profiles) is a software plat-

form for analyzingmetagenomic profiles (Parks and

Beiko 2010), such as taxonomic profiles indicating

the number of marker genes assigned to different

taxonomic units or functional profiles indicating

the number of sequences contributing to a specific

subsystem or pathway. It aims to promote best

practices in reporting statistical results by encour-

aging the use of effect sizes and confidence

intervals when assessing biological importance.

A user-friendly, graphical interface permits easy

exploration of statistical results and generation of

publication-quality plots for inferring the biologi-

cal relevance of features in a metagenomic profile.

STAMP is open-source, extensible via a plug-in

framework and available for all major platforms.

Defining Metagenomic Profiles and
Sample Metadata

STAMP requires metagenomic profiles to be

specified in a tab-separated text file. The first

row of the file contains the header for each col-

umn. Columns indicating the hierarchical struc-

ture of a feature must be organized from the

highest to lowest level in the hierarchy. There

are no restrictions on the depth of a hierarchy

and hierarchies may be multifurcating. However,

hierarchies must form a strict tree structure (i.e.,

a child can have only one parent). The number of

sequences or reads assigned to each leaf node in

the hierarchy must be specified for each

metagenomic sample. To allow for different nor-

malization methods, counts may be integers or

real numbers. An example STAMP profile is

given in Table 1.

Several methods have been proposed for gen-

erating taxonomic or functional profiles from

metagenomic data. STAMP supports analyzing

profiles generated by MG-RAST (Meyer

et al. 2008), IMG/M (Markowitz et al. 2008),

mothur (Schloss et al. 2009), CoMet (Lingner

et al. 2011), and RITA (MacDonald et al. 2012).

Profiles generated using these software platforms

can be converted to STAMP-compatible profiles

using functionality provided within STAMP. The

simple format of STAMP profiles helps ensure

that results from other software platforms can be

converted for processing by STAMP.

Additional data associated with each

metagenomic sample can be defined through an

optional tab-separated metadata file. The first

column of this file indicates the name of each

sample and should correspond to an entry in the

STAMP: Statistical Analysis ofMetagenomic Profiles,
Table 1 Example STAMP profile

Hierarchical

level 1

Hierarchical

level 2

Sample

1

Sample

2

Sample

3

Category A Subcategory

A1

0 4.4 4

Category A Subcategory

A1

3 5 5

Category A Subcategory

A2

4.8 3.5 2

Category B Subcategory

B1

2 32 6.5

Category C Subcategory

C1

1 2 2

Category C Subcategory

C1

7.2 6 4
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corresponding STAMP profile. Additional col-

umns may specify any other data relevant to

the samples being considered. Within STAMP,

these additional columns can be used to define

groups (i.e., collections of one or more samples)

over which statistical tests and plots can be

calculated. An example metadata file is given in

Table 2.

Statistical Analysis of Metagenomic
Profiles

STAMP provides statistics for assessing biologi-

cally relevant differences between pairs of

metagenomic samples or treatment groups.

Two-sample (e.g., Fisher’s exact test, G-test),

two-group (Welch’s t-test, White’s nonparamet-

ric t-test), and multigroup (ANOVA, Kruskal-

Wallis H-test) statistical hypothesis tests are

provided for identifying statistically significant

features. Features with p-values below a nomi-

nally chosen threshold (e.g., 0.05) can reasonably

be assumed to be enriched or depleted due to

ecological differences between samples or treat-

ment groups as opposed to representing

a sampling artifact. STAMP also reports effect

size statistics such as the difference or ratio

between proportions in order to aid in determin-

ing if a statistically significant feature is of bio-

logical relevance. Consideration of effect sizes

is essential as small, biologically uninteresting

differences may be statistically significant when

sample sizes are large. Confidence intervals are

computed for all effect size statistics. These indi-

cate the range of effect size values that have

a specified probability (typically 95 %) of being

compatible with the observed data and are an

important additional statistic for reasoning about

biological relevance.

Metagenomic profiles typically consist of sev-

eral hundred or thousand features. Care must be

taken when performing multiple hypothesis tests.

For example, a profile consisting of 1,000 fea-

tures will have 50 features with a p-value less

than 0.05 simply due to chance variation.

STAMP provides two techniques for correcting

p-values when multiple hypothesis tests are being

performed. The first controls the familywise error
rate using a correction method such as

Bonferroni, Holm-Bonferroni, or Šidák. This

adjusts the reported p-values so that the probabil-

ity of observing one or more false positives is

less than a specified probability. During data

exploration, this approach can be too conserva-

tive and it may be beneficial to adjust the

p-values using a false discovery rate procedure.

Under this approach, a q-value is calculated

for each feature that indicates the expected

proportion of false positives within the set of

features with a smaller q-value (Benjamini and

Hochberg 1995). Additionally, STAMP can filter

features using a number of criteria in addition to

p- or q-values in order to focus on biologically

interesting features, e.g., those with a large effect

size or consisting of a substantial number

of reads.

Exploration of Metagenomic Profiles

STAMP provides the following interactive,

publication-quality plots for exploring

metagenomic profiles:

Bar plots indicate the proportion of sequences of

each feature within a pair of samples or the

proportion of sequences of a single feature

across all samples (Fig. 1a).

Box plots illustrate how the proportion of

sequences of a single feature is distributed

within different treatment groups using

a box-and-whiskers graphic (Fig. 1b).

Box-and-whiskers graphics show the median

of the data as a line, the mean of the data as

a star, the 25th and 75th percentiles of the data

as the top and bottom of the box, and use

whiskers to indicate the most extreme data

point within 1.5*(75th–25th percentile) of

STAMP: Statistical Analysis of Metagenomic Pro-
files, Table 2 Example metadata file

Sample Id Location Phenotype Gender Sample size

Sample 1 Canada Obese Female 4,000

Sample 2 Canada Lean Male 2,000

Sample 3 Italy Lean Female 3,000
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the median. Data points outside of the whis-

kers are shown as crosses.

PCA plots give the first three principal compo-

nents of a metagenomic profile as determined

by applying principal component analysis

(Fig. 1c). Clicking on a marker within the

plot indicates the sample represented by

the marker.

Post hoc plots contrast each pair of groups con-

sidered in a multigroup statistical hypothesis

test (Fig. 1d). It indicates the mean proportion

of sequences within each group, the difference

Enterotype 1 : Enterotype 3

Enterotype 1 : Enterotype 2

Enterotype 3 : Enterotype 2
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STAMP: Statistical Analysis of Metagenomic Pro-
files, Fig. 1 Exploration of the gut microbiota of 32 indi-

viduals reported by Arumugam et al. (2011) to form three

distinct clusters or enterotypes. (a) Bar plot showing the

relative proportion of Bacteroides. Samples are colored

according to the enterotype to which they have been

assigned. (b) Box plot showing the distribution in the

proportion of Bacteroides from samples assigned to each

enterotype. (c) Principal coordinate analysis plot deter-

mined from the proportion of reads assigned to each

genera within a sample. (d) Post hoc plot for Bacteroides
indicating (1) the mean proportion and standard deviation

within each enterotype, (2) the difference in mean pro-

portions between each pair of enterotypes along with 95 %

confidence intervals, and (3) a p-value indicating if the

mean proportion is equal for a given pair
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in mean proportions for each pair of groups

along with the confidence interval of this

effect size statistic, and a p-value indicating

if the mean proportion is equal for a given pair.

Extended error barplots display the p-value,

effect size, and associated confidence interval

for all unfiltered features in a metagenomic

profile (Fig. 2). In addition, a bar plot indicates

the proportion of sequences assigned to

a feature in each sample or group. This pro-

vides all information required to reason about

the biological relevance of a feature in

a single plot.

Scatter plots indicate either the proportion of

sequences or mean proportion of sequences

assigned to each feature within a pair of sam-

ples or a pair of treatment groups, respec-

tively. This plot is useful for identifying

features that are clearly enriched in one of

the two samples or groups. When considering

a pair of samples, confidence intervals calcu-

lated with the Wilson score method can be

shown. For a pair of treatment groups, differ-

ent statistics indicating the spread of the data

can be displayed (e.g., standard deviation,

minimum and maximum proportions).

All plots provide a range of customization

options. For example, PCA plots can be restricted

to the first two principal components, and

individual panels of the extended error bar

plot can be selectively hidden. Plots can be

saved in either vector (PDF, PS, EPS, SVG) or

raster (PNG) formats. The resolution of raster

files can be set to allow for generation of plots

suitable for printed publication or display on

posters.

Tabular views of statistical results are also

provided and columns can be sorted to help iden-

tify interesting patterns. Tables can be saved as

tab-separated value files for subsequent display in

any text editor or spreadsheet program or for

inclusion as supplemental information in

publications.

Summary

Statistics can greatly aid in the comparison of

metagenomic profiles. STAMP provides

a simple graphical environment for performing

statistical analyses that are tailored to the needs of

comparative metagenomic studies. It provides

a range of statistical hypothesis test and can iden-

tify statistically significant features between pairs

of samples or defined treatment groups. Different

multiple test correction methods are provided in

order to account for the large number of features

F
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STAMP: Statistical Analysis of Metagenomic Pro-
files, Fig. 2 Exploration of compositional differences

in the gut microbiota of males and females sampled by

Arumugam et al. (2011). The extended error bar plot

indicates all genera where Welch’s t-test produces an

uncorrected p-value < 0.1. All genera are overabundant

within the gut microbiota of males (M) compared to

females (F)

S 644 STAMP: Statistical Analysis of Metagenomic Profiles



typical of metagenomic profiles and to aid in data

exploration. The biological relevance of signifi-

cant features can be assessed though a range of

publication-quality plots that provide key statis-

tics such as effect sizes and confidence intervals.

Interactive filtering allows the most biologically

interesting features to be quickly identified and

plots of specific features to be generated.

STAMP’s wide range of statistics and simple

interactive interface makes it a valuable tool in

comparative metagenomic studies.

Cross-References

▶MEtaGenome ANalyzer (MEGAN):

Metagenomic Expert Resource

▶Taxonomic Classification of Metagenomic

Shotgun Sequences with CARMA3
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Synonyms

Recovery of full-length ORFs frommetagenomic

DNA

Definition

Subtractive hybridization magnetic bead capture

(SHBMC) is a sequence-based metagenomic

technique for the recovery of full-length ORFs

from heterogeneous metagenomic DNA samples.

Introduction

It is widely acknowledged that the vast majority

(~99 %) of microorganisms present in the envi-

ronment are resistant to culture using classical

microbiological methods. Approximately half of

the total estimated bacterial phyla (61) are still to

be cultured (Vartoukian et al. 2010). However,

environmental microbial communities constitute

a valuable resource for biotechnology and are

a valid target for identification of novel genes

and/or biological compounds such as biocatalysts

or secondary metabolites (Sharma et al. 2005). In

order to bypass the limitations of microbial cul-

turing and to discover new microbial genes and

functions, two approaches have been

implemented, either culture-based, through the

development of innovative strategies and media
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to “culture the unculturables” (Vartoukian

et al. 2010), or culture-independent, by using

“meta-omics” technologies (Riesenfeld et al.

2004; Cowan et al. 2005).

Metagenomics enable to investigate in depth

the totality of (microbial) genomes present in any

given environments (Riesenfeld et al. 2004),

including extreme habitats which constitute fields

of choice for the discovery of robust enzymes and

biological compounds suitable for industrial

processes (Cowan et al. 2005). In practice,

metagenomic studies can either be function- or

sequence-driven (Riesenfeld et al. 2004;

Schmeisser et al. 2007). While the former is

widely used, it remains limited (i) by the choice

and number of substrates available, (ii) by the

difficulty of designing novel substrates, (iii) by

the fact that heterologous expression systems and

hosts are required, and (iv) by the need to clone

full-length open reading frames (ORFs) or gene

clusters to enable activities to be detected. Con-

trastingly, the latter allows access to all the

sequences from any given environment and thus

to its complete metabolic/catabolic potential pro-

viding that similar sequences have previously

been annotated and their encoded activity(ies)

characterized (Schmeisser et al. 2007). In

metagenomic gene-mining studies (whether

function- or sequence-based), one of the main

experimental challenges is therefore to recover

complete ORFs. The recent advent of high-

throughput second-generation “meta”sequencing

technologies potentially provides access to all

the sequences present in a metagenome, and

while it facilitates the isolation of the targeted

sequence(s) from metagenomic samples, it does

not avoid laborious experimental procedures.

Here, we report on a novel molecular biology

technique for the recovery of full-length ORFs

from environmental metagenomes, termed sub-

tractive hybridization magnetic bead capture

(Meyer et al. 2007).

Method

SHMBC is a sequence-based technique devel-

oped for the retrieval of complete ORFs from

metagenomic DNA from environmental samples.

The three core elements of the technology

include high-quality metagenomic DNA and the

production of “tester DNA” and “driver DNA,”

where the latter is immobilized on magnetic

beads (Fig. 1).

Metagenomic DNA Extraction and

Fragmentation

Prior to performing SHMBC, it is essential to

obtain high-quality and high molecular weight

metagenomic DNA, by chemical (e.g., cell lysis

using detergents) and/or mechanical (e.g., bead-

beating) extraction protocols (Roh et al. 2006).

Due to variable physical and chemical composi-

tions, extracting high-quality metagenomic DNA

from environmental samples can be challenging,

most notably in attaining a complete representa-

tion of the microbial (functional) diversity,

including rare phyla/sequences.

For functional investigation, the isolation of

complete ORFs and/or gene clusters is crucial.

For SHMBC, metagenomic DNA fragment sizes

of 1–5 kb are ideal as they are short enough to

permit relatively easy PCR amplification follow-

ing subtractive hybridization (Fig. 1). The

detergent-based metagenomic DNA extraction

method developed by Zhou is recommended as

it typically yields high-quality metagenomic

DNA (>23 kb; Zhou et al. 1996). The whole

extraction process requires ~6 h of labor. Alter-

natively, various column-based metagenomic

DNA extraction kits are commercially available

and are efficient in extracting high-quality DNA

(~10 kb in 1 h; Knauth et al. 2013).

The fragmentation of metagenomic DNA

to the appropriate size can be performed by phys-

ical disruption methods (e.g., by freeze/saw or

freeze-boiling cycles or bead-mill homogeniza-

tion) or enzymatic digestion (using restriction

enzymes). Metagenomic DNAs contaminated

by co-extracted compounds (notably humic

acids or heavy metals), which can hamper down-

stream restriction and/or PCR amplification reac-

tions, can be diluted or purified. These procedures

generally lead to the reduction of metagenomic

DNA yields.
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“Tester DNA” Construction

The “tester DNA” is a modified metagenomic

DNA sample to be probed by SHMBC for full-

length ORF recovery (Fig. 1). Once fractionated

to an appropriate size (1–5 kb), the metagenomic

DNA is manipulated to generate the “tester

DNA” by ligating T7 adapters at the 30 and 50

ends (in blue, in Fig. 1). Recommended protocols

are given in Meiring et al. (2010). The T7

adapters contain T7 priming sites which enable

a direct PCR amplification of the 1–5 kb DNA

fragments following subtractive hybridization.

“Driver DNA” Production

The “driver DNA” is the hybridization probe

used for the recovery of full-length ORFs from

the “tester DNA.” Its production is thus crucial

for the success of SHMBC. The “driver DNA”

can be PCR-amplified directly from the purified

metagenomic DNA using gene-specific primers

(Fig. 1). However, environmental samples are

characterized by composite bacterial communi-

ties, potentially with polymorphic sequences

coding for multiple related genes. To

PCR-amplify heterologous gene sequences, the

use of degenerate primers is necessary. For the

production of valid “driver DNA,” a compromise

must therefore be made between primer degener-

acy (the number of degenerate bases) and primer

coverage (the number of matched homologous

gene). Highly specific primers may only target

limited numbers of organisms/genes, while

excessive degeneracy often leads to high levels

of nonspecific binding and to the amplification of

untargeted sequences.

In general, in order to design degenerate PCR

primers, homologous nucleotide sequences from

different microorganisms are retrieved from data-

bases (e.g., GenBank) and aligned to such that

conserved ~20 mer long sequences can be

T7 adapter

Direct PCR amplification of full-
length ORFs using T7 primers

Subtractive hybridization:

Heat denaturation and Immobilization
on streptavidin covered magnetic beads

PCR amplification of the ‘Driver DNA’
using degenerated biotinylated primers

Environmental DNA extraction and fractionation (1-5kb)

1. Hybridization / 2. Wash

Heat denaturation

Construction of the ‘Tester DNA’
by Ligation of a

Targeted ORF

Subtractive Hybridization Magnetic Bead Capture: Molecular Technique for Recovery of Full-Length ORFs
from Metagenomes, Fig. 1 Schematic subtractive hybridization magnetic bead capture (SHMBC) protocol
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identified. An alternative is to identify conserved

amino acid sequences in homologous proteins, as

they usually constitute key components of active

sites and/or are necessary for protein stability.

Moreover, the genetic code being degenerate

(or redundant), synonymous codons (i.e., triplet

of nucleotide coding for a single amino acid)

generally differs by their last base, which may

be replaced in degenerate primers by the nucleo-

tide “inosine.” Amplicons obtained with degen-

erate primer sets must initially be cloned and

sequenced to verify their specificity.

Biotinylated ORF-/gene-specific “driver

DNAs” are produced using 50-biotinylated gene-

specific forward degenerate primers (the reverse

remaining unlabelled; Meyer et al. 2007, Meiring

et al. 2010). Single-stranded “driver DNAs” are

immobilized to streptavidin-coated magnetic

beads which have high affinity for biotin

(Fig. 1). The “driver DNA”-magnetic bead com-

plex constitutes the hybridization probe for

SHMBC.

Subtractive Hybridization of “Tester DNA”

and Full-Length ORF Amplification

“Tester DNAs” and “driver DNAs” are generally

hybridized overnight. To modify SHMBC selec-

tivity, hybridization temperatures and hybridiza-

tion buffer salt concentrations can be adjusted. To

ensure specific post-subtractive hybridization

PCR amplifications, unbound “tester DNAs” are

eliminated with successive SDS washes. Recov-

ered magnetic beads with hybridized “tester

DNA” can be used directly to amplify target

ORFs using T7 primers (Fig. 1). To amplify

full-length ORFs, high-fidelity and reading Taq

polymerases are recommended.

Comparison with Other Techniques

The function-driven isolation of ORFs has most

commonly been used with pure isolates or clones

from metagenomic libraries. However, this strat-

egy is limited because of significant technical and

methodological challenges. Notably, less than

1 % of environmental bacteria can be cultured.

Obtaining axenic cultures, a prerequisite for any

physiological characterization, is a fastidious and

unreliable process as numerous variables poten-

tially influence microbial growth (e.g., amounts

of various but specific nutrients, pH, temperature,

atmospheric gas composition, etc.). Function-

based screening of clones is dependent on the

expression of genes in foreign hosts, and only

few model microorganisms are widely used as

transformation hosts (e.g., Escherichia coli,
Bacillus subtilis, Geobacillus sp., Streptococcus

pneumoniae, Neisseria gonorrhoeae,

Haemophilus influenzae, Helicobacter pylori,
Acinetobacter baylyi, and some cyanobacteria).

In addition, a successful transformation guaran-

tees neither the expression of heterologous genes

nor the production of functional proteins/

enzymes in the foreign host. Finally, the detec-

tion of an enzymatic activity is dependent on the

existence or design of suitable media and/or of an

assay to detect the specific enzyme activities

(Waschkowitz et al. 2009).

Current advances in second-generation

sequencing technology (454 pyrosequencing,

Illumina, and SOLiD TM) have increased the

effectiveness of sequence-based screening as

hundreds of millions of sequencing reads can be

acquired in a single run, enabling the detection of

rare ORFs in metagenomic samples. However,

isolation of full-length sequences still necessary

for functional studies, and the short sequence

read lengths (which do not cover entire ORFs),

may become problematic (Morales and Holben

2011). In consequence, complex computational

gene assemblage strategies must be implemented

in order to recover full-length ORFs (Liu

et al. 2012). When working with genes or ORFs

with multiple homologous present in a database,

the latter can be used as reference sequences

during gene annotation and assembly processes.

However, in the absence of such a reference

sequence, de novo approaches can only provide

a probability of sequence fragments belonging to

a specific gene cluster (Thomas et al. 2012). New

gene families can be annotated from next-

generation sequencing datasets by de novo gene

assembly methods (i) by reconstructing novel

sequences/genes based on nucleotide frequency,

(ii) by implementation of a conventional Overlap
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Layout Consensus (OLC) strategy, or (iii) by

probabilistic De Bruijn graphs (Paszkiewicz and

Studholme 2010). However, gene size variations

due to large insertions, deletions, or polymor-

phisms can lead to complicated de novo assem-

blies even within closely related taxa. Finally,

computational assembly of next-generation

sequencing data is limited by the fact that short-

read assemblies rely on data reduction algo-

rithms, in which reads from low-abundance

organisms may be discarded, ultimately leading

to the disappearance of rare ORFs from the

datasets.

Applications and Improvements

The sequence-based SHMBC technique consti-

tutes a valuable prescreening method, as it col-

lects ORFs of interest from complex

metagenomic mixtures; and the latter can further

be functionally analyzed. Such an approach

increases the chance of obtaining positive hits in

post-functional screening protocols.

Recently, a comparable subtractive hybrid-

ization approach in combination with a

pre-enrichment microsatellite strategy was

performed to isolate novel phaC gene sequences

from the marine bacteria Paracoccus homiensis

(Latisnere-Barragan and Lopez-Cortes 2012).

This methodology allowed the efficient isolation

of full-length phaC ORFs and the construction of

enriched plasmid libraries of phaC genes, thereby

reducing the experimental costs of genome

sequencing (Latisnere-Barragan and Lopez-

Cortes 2012). In this study, a single genome was

screened but the authors suggest that SHMBC

coupled with microsatellite enrichments could

be used to retrieve phaC sequences from complex

microbial community metagenomes.

In forensic studies, SHMBC was developed

(i) to extract and pre-concentrate STRs (Short

Tandem Repeat) from degraded DNA samples,

which is a common problem in crime scene anal-

ysis, and (ii) to compensate for STR allele imbal-

ance, allele dropout, and sequence-specific

inhibitions generally encountered in such sam-

ples (Wang and McCord 2011). The authors

conclude that SHMBC using the specifically

designed probes (i.e., “driver DNA”) signifi-

cantly improved the recovery of STR alleles

from degraded DNA samples.

SHMBC was recently amended by combining

the DNA fractionation and linker ligation steps

(Harris et al. 2009). Such a procedure increased

the efficiency in constructing the “tester DNA.”

In this particular study, SHMBC was applied as

an enrichment tool to identify and isolate

sex-specific regions in the complex genome of

Australian python (Morelia spilota imbricata).
The authors stressed the critical importance of

nondegraded DNA.

SHMBC as a pre-enrichment tool could also

be used in comparative meta-transcriptomic stud-

ies. In such studies, the analysis of full-length

ORFs may identify the most frequently

represented functional genes in different ecosys-

tems and thus potentially unravel differential tro-

phic structures and functions.

To conclude, we strongly believe that this

technique should be considered by the scientific

community for use prior to any “meta-functional”

or functional genomic studies. SHMBC can

readily be automated and routinely used as

a full-length ORFs pre-enrichment tool to detect

functions of interest in metagenomic samples

(Latisnere-Barragan and Lopez-Cortes 2012),

for disease diagnosis (Wang et al. 2011), and

could further be implemented to test processed

food products for the presence of genetically

modified organisms (GMOs) and/or other adul-

terations (such as horse meat contamination in

beef lasagne!) or GMO cross-contaminations in

crop fields.

Summary

A wide range of function-based and/or sequence-

based screening techniques have been developed

to study/isolate ORFs in metagenomes. The sub-

tractive hybridization magnetic bead capture

(SHMBC) technique is potentially a cost-

effective and efficient method for the isolation

of full-length ORFs from metagenomic DNA

preparations. This approach could be widely
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used as a pre-enrichment tool prior to performing

post-functional studies or sequence-based func-

tional analyses.
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Synonyms

Short Read Analysis; Specific Peptides; Taxa

Counting

Definition

Motifs that appear on Aminoacyl tRNA Synthe-

tases can serve as specific peptides (SP) whose

presence in a metagenome indicates which taxa it

contains. This is used to devise a method, based

on gene fragments rather than on 16S rRNA

sequences, which allows for taxa counting from

short read metagenomic data. It is exemplified on

human gut microbial data.

Introduction: The SP Approach

Specific peptides (SPs) are short deterministic

motifs whose presence in the protein sequence

is a good predictor of an enzymatic activity of the

protein. SPs were introduced by Kunik et al.

(2007), and their predictive powers on full pro-

tein sequences were established by Weingart

et al. (2009). Their results are the basis of the

webtool http://horn.tau.ac.il/DME11.html which

supplies enzymatic assignments for queried pro-

tein sequences. This methodology has been

applied directly to short reads, obtaining enzy-

matic and taxonomic signatures of data, by

Weingart et al. (2010). These authors have

extracted a set of SPs that are associated with

single proteins of the aaRS families, known as

the S61 set (because the EC numbers of these

enzymes, indicating their 4-level enzymatic clas-

sification, start with 6.1.1.). The application of

SPs to taxa counting in metagenomic data has

been developed by Persi et al. (2012). To ensure

high precision of the prediction process, it is

required that the length of the SPs in the S61 set

is at least nine amino acids. The resulting list

contains 3,949 SPs.

The Taxa Counting Algorithm

For short read data one first converts all genomic

reads to amino acid strings in the six possible

reading frames. One then identifies all reads that

share a single SP. Choosing the largest group

of such reads, one tries to group the short reads

into sets such that all reads within a set are

consistent with one another (i.e., can be fused

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015
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with each other) and every set is inconsistent with

the other ones. Although this mathematical prob-

lem is NP complete, one may devise simple

algorithms that carry it out efficiently (Persi

et al. 2012). The strong consistency conditions

can be relaxed to allow for errors, such that reads

within a set may differ from each other by one

amino acid, and different sets have to differ from

each other by at least two amino acids. The num-

ber of different sets becomes a lower bound on

the number of different taxa. For short reads,

distinguishing between species belonging to the

same genus is impossible. Depending on the

length of the short reads, chances are high how-

ever for distinguishing between different fami-

lies, classes, and phyla. For the case of long

sequences or extensive contigs, one can resort to

searching for sequences that share several SPs of

the same aaRS enzyme. This allows one to

address the question of counting different species

or even different strains of the same species.

Tests and Applications

Persi et al. (2012) have compared the S61 SP

approach with the 16S rRNA analysis on an arti-

ficial metagenome composed of 64 genomes of

different species that represent bacterial taxo-

nomic diversity. For some of the principal

phyla, they selected pairs of strains of the same

species, such that the resolutions of the taxo-

nomic delineation of the two methods can be

tested and compared. The SP approach has been

proved to match the accuracy provided by the

16S analysis and sometimes even to surpass

it. The novel method has then been applied to

species counting in the human gut microbiome

employing the data of Qin et al. (2010). These

data were based on samples taken from 124 indi-

viduals. In addition to raw short read data, the

authors have presented genomic contigs, as well

as a nonredundant set of 3.3 M ORFs derived

from full genomic analysis (also called “preva-

lent genes”). The analysis of the prevalent genes

has led Qin et al. (2010) to conclude that there

exist more than 1,000 different species in their

metagenomic data. Persi et al. (2012) has argued

that the prevalent genes, when analyzed using the

S61 approach, display only half this count. If,

however, the full set of contigs is analyzed, an

estimate of over 1,000 different species and

strains is obtained. The number of different gen-

era has been estimated to be relatively small,

presumably of the order of a few tens.

Of particular interest is the application of the

novel method to short read data. Here this method

is quite unique. It allows for a quick estimate of

species count directly from raw data. Short read

singletons that are often discarded from

metagenomic analysis, because they cannot com-

bine with other short reads to form longer contigs,

can be readily included in this analysis. More-

over, one can test the sensitivity of the results to

sample size, to the minimal distance d allowed

between reads that are classified in the same taxa,

and to noise in the data.

The raw data contain errors, and every

misidentification of an amino acid will affect

taxa counts. The probability of such errors was

estimated to be below 1 %. This was then tested

by inserting artificial random errors at the level of

1 % into analyzed reads. The results showed that

the d � 2 counts of the set with artificial errors

are similar to the d � 1 estimates drawn from the

raw data. One may therefore conclude that limit-

ing oneself to d � 2 analysis of the raw data

suffices to eliminate the majority of errors in the

data. Sample sizes of order 1,000 short reads of

the Qin et al. (2010) data lead to counts of 200 or

more taxa. The counts keep increasing linearly

with sample size, indicating that greater depth

unravels larger numbers of strains and species.

Focusing on large distances between reads, such

as d � 7, the taxa counts in the analysis of Persi

et al. (2012) saturate at about 60, providing

a stable bound on the number of species that are

expected to have quite large Hamming distances

(over 150) between their relevant protein

sequences. Finally it is interesting to note that

an analysis of Persi et al. (2012) carried out for

all short reads of one of the subjects has shown
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10 % novel species with respect to the contigs of

Qin et al. (2010), and about 45 % novelties when

compared to all Uniprot enzymes.

Discussion

The richness of microbiomes has become

a widely recognized topic. It is often being ana-

lyzed by using 16S rRNA definitions of OTUs,

whose direct contact with observed and analyzed

organisms may be lacking. The alternative

method provided by the S61 SP approach is

based on peptides that have been extracted from

an analysis of enzymes recorded in Swiss-Prot.

This is the only bias of this method. It is conceiv-

able that some genes of new species will be so far

removed from the known ones that no SP match

will occur and they may thus avoid detection.

Therefore the list of SPs should be updated from

time to time (Weingart et al. 2009) as the data-

base grows.

A major advantage of the S61 SP methodol-

ogy is its simplicity: its straightforward imple-

mentation does not require any further choice of

parameters or comparisons with additional data-

bases. Furthermore, it is satisfying to realize that

it can be applied to short reads. Even those short

reads that cannot be combined into contigs may

lead to informative conclusions on taxa counting

using the S61 approach.

Summary

Taxonomic deciphering of metagenomic data

usually relies on 16S rRNA analysis. Alterna-

tively one may use genomic information, in par-

ticular genes related to single proteins, i.e., those

known to appear only once in a genome. Some of

the Aminoacyl tRNA Synthetases (aaRS) fit this

description. Employing specific peptides, whose

occurrence is restricted to these protein families,

one can devise algorithms of taxa counting. The

latter turn out to be informative even for short

read metagenomic data.

Cross-References

▶Computational Approaches for Metagenomic

Datasets

▶Human Gut Microbial Genes by Metagenomic

Sequencing
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Synonyms

Classification; Metagenome; Taxonomy

Definition

CARMA3 is a program to assign taxonomic iden-

tifiers to metagenomic sequences of unknown

taxonomic origin.
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Introduction

The vast majority of microbes cannot be culti-

vated in a monoculture and thus cannot be

sequenced by means of traditional methods. To

explore these microbes, they have to be analyzed

within their natural microbial communities.

High-throughput sequencing (HTS) technologies

like Roche’s 454 sequencing, ABI’s SOLiD, or

Illumina’s Genome Analyzer make it possible to

sequence microbial DNA samples of such com-

munities, called metagenomes. Due to the

restricted read lengths produced by these technol-

ogies, reconstruction of complete genomic

sequences from a metagenome is impossible.

However, by comparing the metagenomic frag-

ments with sequences of known function, it is

possible to analyze the biological diversity and

the underlying metabolic pathways in microbial

communities.

To infer the taxonomic origin of metagenomic

reads, two kinds of methods, composition-based

and comparison-based, can be distinguished. The

composition-based methods extract sequence

features like GC content or k-mer frequencies

and compare them with features computed from

reference sequences with known taxonomic ori-

gin (Abe et al. 2005; Diaz et al. 2009; Karlin

et al. 1997; McHardy et al. 2007).

A disadvantage is that short reads are not suited

for this method as rather long reads are required

to obtain a reasonable classification accuracy.

The comparison-based methods, in contrast, rely

on homology information obtained by database

searches. They can be further subdivided into

methods that are based on hidden Markov

model (HMM) homology searches (Eddy 1998)

and those that are based on BLAST homology

searches (Altschul 1990, 1997; Gish and States

1993). CARMA version 1 (Krause et al. 2008)

and CARMA version 2 (Gerlach et al. 2009)

belong to the HMM-based methods. CARMA

version 3 (Gerlach and Stoye 2011) has been

implemented in two variants, one of which is

HMMER3-based and therefore also belongs to

the HMM-based methods.

For the taxonomic classification of

metagenomic reads based on BLAST, different

methods have been developed. Probably the most

basic method is to use BLAST to search for the

best hit in a database of sequences with known

origin. Since the evolutionary distance between

the source organisms of the metagenomic frag-

ment and the database sequence is unknown,

a classification result solely based on a best

BLAST hit has to be interpreted carefully. In gen-

eral, such a classification ismore reliable on higher

taxonomic levels (e.g., superkingdom or phylum)

than on lower taxonomic levels (e.g., genus or

species), but it is difficult to decide which taxo-

nomic level is reliable enough, as this strongly

varies for each metagenomic fragment.

The program MEGAN (Huson et al. 2007,

2011) is based on the lowest common ancestor

(LCA) approach. A BLAST search is performed,

and all BLAST hits that have a bit score close to

the bit score of the best hit are collected. The

metagenomic fragment is then classified by com-

puting the LCA of all species in this set. One of the

reasons for the improved classification accuracy of

this approach is that fragments with ambiguous

hits are assigned at higher taxonomic levels.

The SOrt-ITEMS method (Haque et al. 2009)

extends the LCA approach and uses additional

techniques to reduce the number of false-positive

predictions. One approach is the reduction of the

number of hits by using a reciprocal BLAST

search step. Another technique used is the adap-

tation of the taxonomic assignment level for all

hits, based on different alignment parameters like

sequence similarity between the metagenomic

fragment and the aligned database sequence.

Inspired by these techniques, in particular the

reciprocal search step of SOrt-ITEMS, CARMA3

(Gerlach and Stoye 2011) was developed to fur-

ther improve the accuracy of the taxonomic clas-

sification. It makes explicit use of the assumption

of a model of evolution where different gene fam-

ilies have different rates of mutation, but within

each family this rate does not change too much.

Methods

The first step in CARMA3 consists of a BLASTx

search of the metagenomic DNA sequence
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against the NCBI NR protein database. All pro-

tein fragments in the database that have an align-

ment with the metagenomic sequence are

extracted. These sequences, as well as the protein

translation of the metagenomic DNA sequence,

as given by the BLAST alignment between the

metagenomic query and the best database hit, are

used to create a small protein BLAST database.

In the second step of CARMA3, the reciprocal

BLAST search, the extracted protein fragment

that corresponds to the best BLAST hit is

searched against this database using BLASTp.

Since the protein fragment that is searched

against the database is included in the database,

this database sequence produces a perfect align-

ment and yields the best BLAST bit score.

Let ti be the taxonomic affiliation of the ith
best BLAST hit in the reciprocal search, and let

x be the (unknown) species of the metagenomic

sequence. Clearly t1, which is also the taxonomic

affiliation of the best BLAST hit in the first

BLAST search, is the phylogenetically closest

known relative of x. Since the taxonomy assign-

ment t1 is usually located at taxonomic rank spe-

cies, strain, or substrain, and metagenomic

sequences mostly come from species that are

phylogenetically more distantly related, using t1
as taxonomic classification for x would be an

overprediction. Therefore, the purpose of this

method is to approximate the lowest common

ancestor of t1 and x, which would be the best

possible taxonomic classification.

The reciprocal search provides similarity

scores in terms of BLAST bit scores between t1
and all other database sequences. Since the taxo-

nomic affiliations of the other database

sequences, except the metagenomic sequence,

are known, the reciprocal search provides means

to correlate BLAST bit scores with phylogenetic

distances. Database sequences that are more

closely related to t1 tend also to have higher

reciprocal bit scores than the less closely related

sequences. A toy example for this is given in

Fig. 1a.

Each ti is projected onto the lowest common

ancestor of ti and t1, a taxon within the lineage of
t1. For each taxon in the lineage of t1 that gets

projections from a subset of ti, an interval is

defined by the minimum and the maximal recip-

rocal bit scores from the BLAST hits in this

subset. Intervals for the reciprocal search exam-

ple are depicted in Fig. 1b. These intervals can be

used to assign a metagenomic sequence to a taxon

in the lineage of t1 based on its reciprocal score.

In general (case a) this method tries to assign the

metagenomic sequence to the lowest taxonomic

rank at which its reciprocal score is still within

the borders of the interval at that rank. If such an

interval does not exists (case b), the lowest taxo-

nomic rank is chosen for which all bit scores are

still lower than the bit score of the metagenomic

sequence.

Two examples for the taxonomic classifica-

tion are given in Fig. 1b. Metagenomic read

Taxonomic Classification of Metagenomic Shotgun
Sequences with CARMA3, Fig. 1 (a) Projections of

BLAST hits obtained from reciprocal search onto the

lineage of t1. The dashed edges represent projections of

unknown phylogenetic affiliations x and x0 of

metagenomic sequences q and q0, respectively. (b) Inter-
vals given by reciprocal bit scores for each taxonomic

rank and level assignments of x and x0 based on their score
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q with unknown phylogenetic affiliation x has

a reciprocal score of 90. Since the bit score of

q is higher than the bit score of the single hit in the
interval at rank family (t5 ¼ 80), but smaller than

any hit in the interval at taxonomic rank genus

(t4¼ 95 and t2¼ 120), x gets assigned to the rank
family (case b). The second metagenomic read q0

with reciprocal score of 105 is within the borders

of the interval at rank genus and thus x’ gets

assigned to the rank genus (case a).

Real data often does not show the properties as

assumed in this model, and sometimes reciprocal

scores are missing for a taxonomic rank. To

accommodate for this, CARMA3 additionally

employs techniques like polishing, linear inter-

polation, and a fallback method, described in

detail in the original publication (Gerlach and

Stoye 2011). CARMA3 is also available in

a variant that is based on HMMER3 homology

searches against the Pfam (Finn et al. 2010) data-

base. In this variant the metagenomic sequences

are aligned against Pfam family alignments from

which reciprocal scores can be computed that are

required for the taxonomic classification. Both

the BLAST and the HMMER variants of

CARMA3 can also be used for the taxonomic

classification of amino acid sequences.

Results and Discussion

CARMA3 is available via the WebCARMA

pipeline that takes metagenomic reads as input

and output taxonomic and functional classifica-

tions. The pipeline runs on the compute cluster

of the Bielefeld University Bioinformatics

Resource Facility at the Center for Biotechnology

(CeBiTec) and is freely accessible at http://

webcarma.cebitec.uni-bielefeld.de. The com-

plete source code of CARMA3 (C/C++) has

been released under the GPL and is available for

download from the WebCARMA homepage.

CARMA3 has been evaluated in various exper-

iments including simulated and realmetagenomes.

In the following the results of two of these

experiments are shown. The first experiment is

a qualitative comparison of CARMA3 with

SOrt-ITEMS and MEGAN using simulated data.

The simulated metagenome consists of 25 ran-

domly chosen bacterial genomes from the NCBI

ftp site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/).

N ¼ 25 000 metagenomic reads were simulated

using MetaSim (Richter et al. 2008) with the

default 454 sequencing error model resulting in

an average read length of 265 bp. The second

experiment is an example of the applicability of

CARMA3 in the case of very large metagenomes

that can be produced, for example, by the Illumina

sequencing technology. In this experiment the real

data set consists of 3.3 million nonredundant

microbial genes of the gene catalogue of the

human gut microbiome (Qin et al. 2010). Fecal

samples from different individuals were

sequenced with the Illumina Genome Analyzer

(GA) which yielded in 576.7 Gb of sequence.

The reads were assembled into longer contigs,

and a gene finder was used to detect open reading

frames (ORFs). Similar ORFs were clustered to

obtain the final nonredundant gene set. This gene

set was downloaded and the ORFs were translated

into protein sequences using the NCBI Genetic

Code 11.

Comparison with Other Methods Using

Simulated Data

To evaluate the different BLAST-based methods

regarding their ability to classify sequences of

unknown source organism, three BLAST NR

protein databases were created: “order-filtered,”

without sequences from species that share the

same order as any of the species from the simu-

lated metagenome; “species-filtered,” without

sequences from species in the simulated

metagenome; and “All,” the complete NR

database.

The BLASTx runs for CARMA3, SOrt-

ITEMS, and MEGAN against these three data-

bases were performed with default E-value

threshold (-e 10), soft sequence masking

(-F “mS”), and frameshift penalty 15 (-w 15).

To ensure comparability, CARMA3 used the

same thresholds as SOrt-ITEMS regarding the

BLASTx hits, a minimal bit score of 35, and

a minimal alignment length of 25. The parameter
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for the minimal number of reads that are required

to report a taxon in SOrt-ITEMS and MEGAN

was set to 1 in all experiments. To ensure com-

parability of MEGAN with the other two

BLAST-based methods, the top percent parame-

terwas increased from ten (default) to 15 resulting

in more conservative predictions. Although

CARMA3 is a parameter-free method, an artifi-

cial parameter p was introduced to slightly

increase the sensitivity at the cost of decreased

specificity, in order to yield a sensitivity compa-

rable to that of the other two methods. This

allowed for evaluating each of the methods

based on their number of false positives. The

values of p were 1.024 for order-filtered, 1.033

for species-filtered, and 1.15 for the unfiltered

database.

The taxonomic classification methods assign

to a metagenomic read one taxon and therefore

also one taxonomic rank. This taxon implicitly

provides a taxonomic classification also for the

higher taxonomic ranks. For example, the taxon

Gammaproteobacteria at the taxonomic rank

class implicitly provides the taxonomic classifi-

cation Bacteria at the taxonomic rank

superkingdom. The taxonomic ranks below the

predicted taxon can be considered to be classified

as “unknown.” Therefore, for each taxonomic

rank, a metagenomic read can either be correctly

classified and counts as a true positive (TP), can

be wrongly classified and counts as a false posi-

tive (FP), or it is not classified and counts as

unknown (U). As for each taxonomic rank the

numbers TP, FP, and U sum up to the total num-

ber N of reads used in the evaluation and U equals

N � TP � FP, U is not explicitly given in the

results.

The complete table for all results can be found

in the original publication. Table 1 below shows

the results for the evaluation on the order-filtered

database. While CARMA3 performs better than

SOrt-ITEMS at rank class, since it has the same

number of true positives but fewer false positives,

for the ranks superkingdom and phylum, it is not

clear which method is better. At the taxonomic

ranks order to genus, where the metagenomic

sequences have been filtered away, CARMA3

has much fewer (�37–74 %) false positives

than SOrt-ITEMS. CARMA3 has better results

thanMEGAN at all taxonomic ranks, while SOrt-

ITEMS has better results than MEGAN at all

taxonomic ranks below superkingdom. The

results for the species-filtered and the complete

NR database, where closely related or identical

reference species are available in the database,

show that in such a setting CARMA3 performs

similar to the other two methods.

Taxonomic Classification of the Human Gut

Microbiome with CARMA3

A taxonomic classification based on BLAST has

the advantage of a high sensitivity, which is in

particular important if no closely related refer-

ence species are available. The main bottleneck

of this approach is the computation time required

for the BLAST search. Over 98 % of the total

Taxonomic Classification of Metagenomic Shotgun Sequences with CARMA3, Table 1 Comparison of the

taxonomic classification accuracy of the different BLASTx-based methods CARMA3, SOrt-ITEMS, and MEGAN

using the order-filtered database

CARMA3 SOrt-ITEMS MEGAN

TP FP TP FP TP FP

Superkingdom 12,696 861 12,576 786 12,626 1,849

Phylum 8,989 1,224 9,254 1,736 8,079 1,985

Class 4,066 1,495 4,062 1,937 3,649 2,479

Order – 2,507 – 4,011 – 4,975

Family – 1,186 – 2,565 – 4,087

Genus – 210 – 798 – 4,041

Species – 23 – 0 – 3,544
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running time of a CARMA3 analysis is due to the

initial BLASTx search against the NR database.

While a BLASTx analysis of a complete 454 run

is feasible on a compute cluster in the order of

hours or a few days, this approach seems to be

less practical for the analysis of all unassembled

reads produced by a complete run of an Illumina

sequencing machine that produces one to two

orders of magnitude more bases in total than

a 454 sequencing machine in a single run.

One way to overcome this limitation is the

usage of data reduction techniques. This is

a common strategy to handle the amount of data

produced by Illumina sequencing machines (Qin

et al. 2010; Hess et al. 2011). Typical steps

involve the assembly of reads into longer frag-

ments, gene detection with a gene finder to detect

open reading frames (ORFs), clustering of highly

similar ORFs, and translation of the

nonredundant ORFs into protein sequences.

Such a metaproteome has, in contrast to the full

set of unassembled Illumina reads, a size that

makes the analysis with the BLASTp variant of

CARMA3 possible on a compute cluster in the

order of hours or a few days. To evaluate the

applicability of CARMA3 on amino acid

sequences derived from assembled Illumina

reads, the BLASTp variant of CARMA3 was

used to analyze the gene catalogue of the human

gut microbiome (Qin et al. 2010). The results

were compared to the taxonomic classification

of another study of the human intestinal micro-

bial flora based on 13,355 prokaryotic 16S

ribosomal RNA gene sequences (Eckburg

et al. 2005).

Both methods, the 16S rDNA analysis and

CARMA3, identify Firmicutes and Bacteroidetes

as the most abundant phyla, followed by

Proteobacteria, Actinobacteria, Verrucomicrobia,

and Fusobacteria. Also, in both analyses, the

phylum Firmicutes consists mainly of the class

Clostridia. Nearly all genera of the Clostridia

that have been predicted by the 16S rDNA analy-

sis, like Eubacterium, Ruminococcus, Dorea,

Butyrivibrio, and Coprococcus, have also been

predicted by CARMA3. Also most of the species

of Clostridia like E. rectale, E. hallii, R. torques,

R. gnavus, F. prausnitzii, D. formicigenerans, and

D. longicatena that are found by the 16S rDNA

analysis could be confirmed by CARMA3. How-

ever, the species E. hadrum and R. callidus that
have been found by 16S rDNA were not found by

CARMA3. The genus Clostridium which is the

taxon found by CARMA3 to have the highest

abundance in the class Clostridia is not reported

by the 16S rDNA analysis. The reason for this

might be that the 16S rDNA sequence of Clostrid-
ium bartlettii, which mostly contributes to the

genus Clostridium and is known to be found in

human feces, might not have been available at the

time of the 16S rDNA analysis (Song et al. 2004).

Also the species R. inulinivorans and

R. intestinalis of the genus Roseburia, which are

found by CARMA3 but not by the 16S rDNA

analysis, are known to occur in human feces

(Duncan et al. 2002; Scott et al. 2011). For the

second most abundant phylum, the Bacteroidetes,

the authors of the 16S rDNA analysis report a high

variability in the distribution of phylotypes in

samples from different subjects. Nevertheless, all

phylotypes reported by the authors of the 16S

rDNA analysis, B. vulgatus, Prevotellaceae,

B. thetaiotaomicron, B. caccae, and B. fragilis,

were among the 11 or, in case of B. putredinis,

among the 22 most abundant taxa predicted by

CARMA3 (Gerlach et al. 2011, Supplementary

Figs. S22–S25).

The comparison of the taxonomic predictions

of the 16S rDNA analysis and CARMA3 has

revealed a high consistency in the results of

both methods. This shows that CARMA3 can

also be used for the taxonomic classification of

amino acid sequences obtained from assembled

Illumina reads.

Summary

CARMA3 is a method for the taxonomic classi-

fication of assembled and unassembled

metagenomic sequences that can be used in com-

bination with BLAST- and HMMER-based

homology searches. Except for the homology

search and the fallback scenario, this method is

parameter-free. In addition, for the HMMER-

based variant, it also provides a functional
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classification of the metagenomic sequence.

Typically, a metagenomic sample contains

many novel species that have not been sequenced

before. Such a scenario has been simulated with

the order-filtered database, and it also has been

shown that in most cases CARMA3 not only

performs better than existing BLAST-based

methods, but most strikingly, it is better at

avoiding FP predictions on lower taxonomic

ranks when only remote homologues are avail-

able for the classification of novel species.

One reason for the high accuracy of CARMA3

is because reciprocal hits provide a reasonable

estimation of the last common ancestor of the

metagenomic sequence and its best hit in the

sequence database. In contrast to the other

BLAST-based methods, this method is not

based on the LCA and therefore does not discard

reciprocal hits that can provide valuable informa-

tion for the taxonomic classification.

A drawback of using BLASTx is its running

time. The computational bottleneck of the

CARMA3 pipeline is the homology search, in

particular the BLAST search. In the evaluation

the initial BLAST search accounted for over

98 % of the total running time. However, this is

a problem shared with all BLAST-based

approaches. Furthermore, it has been shown in

the evaluation that this problem can be dealt with

by the use of data reduction strategies which

include assembly and gene detection steps.

Currently available biological sequence data-

bases are known to be biased because they mainly

contain sequences of species that are culturable.

Although the authors have tried to minimize the

effect of this bias on the results of their evaluation

by creating the order-filtered database, this bias

has to be kept in mind when generalizing the

evaluation results to metagenomic reads from

unculturable species.

Cross-References

▶MEtaGenome ANalyzer (MEGAN):

Metagenomic Expert Resource

▶ PhyloPythia(S)
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Definition of the Human Vaginal
Microbiome

The full collection of microbial genomes

(bacterial, viral, fungal, etc.) in the human

vagina.

Introduction

The resident microbial flora of the healthy vagina

provides protection from infection by a number

of different mechanisms. Until recently, our

knowledge of the composition of the vaginal

microbial flora came from qualitative/semiquan-

titative descriptive studies using culture-

dependent techniques. Following the develop-

ment and introduction of culture-independent

molecular-based techniques, new information

with respect to the composition of normal vaginal

flora in health and disease has expanded our

knowledge (Lamont et al. 2011). Most studies,

whether culture dependent or independent, give

the impression that the composition of vaginal

flora is static and do not reflect the fact that such

communities undergo shifts in their relative rep-

resentation, abundance, and virulence between

individuals and over time (Costello et al. 2009),

all of which are affected by many factors. In this

way, there may be a relatively stable “core” vag-

inal microbiome together with a “variable”

microbiome that is affected inter alia by transient

members of the community as well as by host

factors such as environment, lifestyle, genotype,

and immune response (Turnbaugh et al. 2007).

Normal Vaginal Flora

Culture andmicroscopy of “normal” vaginal flora

typically demonstrates a predominance of Lacto-

bacillus species, which are believed to promote

a healthy vaginal milieu by providing numerical

dominance but also by producing lactic acid to

maintain an acid environment that is inhospitable

to many bacteria. Lactobacilli also produce

hydrogen peroxide (H2O2), antibiotic hydroxyl

radicals, bacteriocins, and probiotics. Most of

the data on the vaginal microbiome published to

date have been derived from healthy asymptom-

atic women of reproductive age (Zhou et al. 2007;

Srinivasan et al. 2010; Ravel et al. 2011; Gajer

et al. 2012). Using culture-independent tech-

niques, it can be demonstrated that a significant

proportion (7–33 %) of healthy women lack

appreciable numbers of Lactobacillus species in
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the vagina that may be replaced by other lactic

acid-producing bacteria such as Atopobium vagi-

nae, Megasphaera, and Leptotrichia species.

Although the structure of the communities may

differ between populations, this demonstrates

that vaginal health can be maintained, provided

the function of these communities (lactic acid

production) continues. Consequently, the

absence of lactobacilli or the presence of certain

organisms such as Gardnerella vaginalis or spe-

cies of Peptostreptococcus, Prevotella, Pseudo-

monas, and/or Streptococcus does not constitute
an abnormal state.

The Role of Lactobacilli from

Culture-Independent Studies

Culture-based techniques, because they fail to

detect fastidious organisms, underestimate the

diversity of vaginal microbial flora, but because

of deficiencies in the phenotypic identification of

lactobacilli, they overestimate the diversity of

Lactobacillus species in the vagina. Some

20 years ago, using culture-based phenotypic

techniques, Redondo-Lopez et al. concluded

that no two women were colonized by the same

two Lactobacillus species (Redondo-Lopez

et al. 1990). Using culture-independent tech-

niques, we now know this is inaccurate, and

because of their significant role in health and

disease, much attention has been given to the

identification of lactobacilli using genotypic

means. Culture-independent studies using

molecular-based techniques have been carried

out in different populations from different geo-

graphic locations (Lamont et al. 2011). Racial

variation and geographical area are important,

and different racial groups within the same geo-

graphical region have significant differences in

what is the dominant vaginal organism. In most

populations, Lactobacillus crispatus is the most

common dominant isolate, and White women are

more likely to be dominated by L. crispatus
and/or Lactobacillus jensenii than any other spe-

cies of Lactobacillus. A number of genetic as

well as environmental factors might explain at

least part of this observation. Alternatively, diet

might influence the Lactobacillus species resi-

dent in the gastrointestinal tract and hence the

vagina, as the lactobacilli of the gut vary between

Japanese and Western women.

Over 120 species of Lactobacillus have been

identified, and more than 20 species have been

detected in the vagina. Using molecular-based

techniques and in contrast to the assertion of

Redondo-Lopez et al., outlined above

(Redondo-Lopez et al. 1990), we now know that

healthy vaginal flora does not contain high num-

bers of many different species of Lactobacillus.

At least six subtypes or community state types

(CSTs) of vaginal microbiome exist (Zhou

et al. 2007; Zhou et al. 2010; Ravel et al. 2011;

Gajer et al. 2012). Four of these CSTs are mainly

dominated by one or two lactobacilli from a range

of four species (L. crispatus, L. jensenii, Lacto-

bacillus iners, and Lactobacillus gasseri). The

remaining two CSTs lack substantial numbers

of different species of lactobacilli and are com-

posed of a diverse array of anaerobic bacteria

including species associated with bacterial vagi-

nosis (BV) such as Prevotella, Megasphaera,

G. vaginalis, Sneathia, and A. vaginae

(Fredricks et al. 2005). In Lactobacillus-
dominated CSTs, other species are rare,

are lower in titer, and tend to be novel phylotypes.

The exclusion of other species is in keeping with

the theory of “competitive exclusion” and the

superior ability of microorganisms such as

L. crispatus to compete with other bacteria for

vaginal resources, a survival strategy known as

“bacterial interference.” Alternatively, the rare

coexistence of multiple dominant species of

Lactobacillus could result from preemptive

colonization by a particular species or from host

factors that strongly influence the choice of

species to colonize the vagina.

Lactobacillus iners: Under-detected and

Underappreciated

The existence of L. iners was unknown prior to

1999, but due to molecular-based studies, it is

now known to play a significant role in the vag-

inal microbial flora. Culture-independent

methods have identified L. iners, a lactic acid-

producing bacterium, as one of the organisms

most frequently isolated from the vagina of

healthy women. In contrast to L. crispatus,
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which is rarely dominant in bacterial vaginosis

(BV), L. iners can be detected at high levels in

most subjects with and without BV, and in many

studies it is the only Lactobacillus species

detected in women with BV. It has been postu-

lated that this may be because L. iners may be

better adapted to the conditions associated with

BV, i.e., the polymicrobial state of the vaginal

flora and elevated pH. Alternatively, it could be

the relative resistance of L. iners to unknown

factors that led to the demise of other Lactoba-

cillus species during the onset of BV or to

a relative lack of antagonism of L. iners to

BV-associated anaerobes, so that their domi-

nance predisposes the individual to the acquisi-

tion of BV.

Community Group Variations Among

Different Ethnic Groups

The vaginal microbiome and pH in asymptom-

atic, sexually active women who were fairly

equally represented according to self-reported

ethnic group (Hispanic, Black, Asian, White)

has been studied (Ravel et al. 2011). The propor-

tion of each community group and pH among the

four ethnic groups varied significantly. Bacterial

communities dominated by lactobacilli were

found significantly more commonly in Asian

and White women (80.2 % and 89.7 %, respec-

tively) compared to only 59.6 % and 61.9 % in

Hispanic and Black women, respectively. Simi-

larly, median pH values were significantly higher

in Black and Hispanic women compared to Asian

and White women.

Abnormal Vaginal Flora

Abnormal vaginal flora may occur because of

a sexually transmitted infection (STI), e.g.,

trichomoniasis, or through colonization by an

organism that is not part of the normal vaginal

community. Alternatively, abnormal vaginal

flora may result from overgrowth or increased

virulence of an organism that is a constituent

part of normal vaginal flora such as Escherichia

coli. Alterations in vaginal flora do not necessar-

ily imply disease or result in symptoms. Disease

results from the interplay between microbial vir-

ulence, numerical dominance, and the innate and

adaptive immune response of the host (Smith

1934). The most common disorder of vaginal

flora is BV, which is a polymicrobial condition

characterized by a decrease in the quality or

quantity of lactobacilli and by a 1000-fold

increase in the number of other organisms, deter-

mined by culture-dependent techniques, particu-

larly anaerobes such as Mycoplasma hominis,

G. vaginalis, and Mobiluncus species. BV is

increasingly associated with adverse outcomes

in gynecology such as pelvic inflammatory

disease, postabortal sepsis, infertility, post-

hysterectomy vaginal cuff infections, and the

acquisition of STIs such as gonorrhea, Chla-

mydia, trichomoniasis, and HIV. In pregnancy,

BV has been associated with early and late mis-

carriage, recurrent abortion, postpartum endome-

tritis, and preterm birth.

Atopobium vaginae: Under-detected and

Underappreciated

The genus Atopobium is a member of the family

Coriobacteriaceae and forms a distinct branch

within the phylum Actinobacteria. Following

sequence analysis, three species formerly desig-

nated Lactobacillus minutus, Lactobacillus rimae,

and Streptococcus parvulus, within the lactic acid-

producing group of bacteria, have been

reclassified as the genus Atopobium. In 1999, an

organism similar but not identical to these three

species was isolated from the vagina of a healthy

woman in Sweden, and the organism was named

Atopobium vaginae (Rodriguez et al. 1999). Since

that time, using molecular-based techniques,

A. vaginae has frequently been detected in the

vagina and is found much more commonly in

women with BV than in those with normal flora

(Lamont et al. 2011). A. vaginae is strictly anaer-

obic and is very sensitive to clindamycin in vitro,

but is highly resistant to nitroimidazoles such as

metronidazole and secnidazole.

High Diversity of Flora in Bacterial Vaginosis

Compared with Normal Flora

Using various molecular-based techniques and

the Amsel clinical criteria, or Nugent score to
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classify normal or abnormal flora, a number of

studies have demonstrated a high diversity of

organisms in women with BV compared to

women with normal flora. Collectively, these

studies demonstrate the presence of species such

as A. vaginae, Porphyromonas asaccharolytica,
bacterial vaginosis-associated bacteria

(BVAB)-1, BVAB-2, and BVAB-3 in the order

Clostridiales and species of Megasphaera,
Leptotrichia, Dialister, Chloroflexi, Eggerthella,

Olsenella, Streptobacillus, and Shuttleworthia

which are either novel or unfamiliar to clinicians

(Lamont et al. 2011). For many of these

undetected or under-detected organisms, there is

evidence of disease association. The renamed

Atopobium parvulum, Atopobium minutum, and

Atopobium rimae have been associated with oral

infections, dental and tubo-ovarian abscesses,

and abdominal wound infections, supporting the

view that these organisms can be pathogenic to

the host. Leptotrichia sanguinegens/amnionii has
been reported in association with postpartum

endometritis, adnexal masses, and fetal death

and has been detected in the amniotic fluid of

women with preterm labor, preterm prelabor rup-

ture of the membranes, and preeclampsia. Also,

in a study of 45 women with salpingitis and

44 controls (women seeking tubal ligation), bac-

terial 16S rDNA sequences were found in the

fallopian tube specimens of 24 % of cases, but

in none of the controls. Bacterial phylotypes

closely related to Leptotrichia species and

A. vaginae were among those identified in the

cases. In addition, Dialister pneumosintes was

found as the sole agent in the blood culture from

a woman with suppurative postpartum ovarian

thrombosis.

It has also been demonstrated that many of

these organisms have specificity for BV and that

the number of phylotypes found in association

with BV is statistically significantly greater than

the number detected in the presence of interme-

diate flora (a distinct entity in its own right)

(Taylor-Robinson et al. 2003) or normal flora.

This statistic largely results from the extreme

dominance of lactobacilli in healthy women,

which makes detection of other species unlikely,

even when they are present at levels of 100,000 or

more cells/sample. In summary, these studies

have demonstrated that different subjects with

BV have different microbial profiles, indicating

heterogeneity in the composition of bacterial taxa

in women with BV. Women without BV had

bacterial communities dominated by Lactobacil-
lus species, accounting for 86 % of all sequences.

In contrast, women with BV did not possess

a single dominant phylotype, but instead had

a diverse array of vaginal bacteria, often at

relatively low abundances.

The Diagnosis of Bacterial Vaginosis

Bacterial vaginosis can be diagnosed clinically,

microscopically, enzymatically, and chromato-

graphically, using qualitative or semiquantitative

culture methods or using composite clinical

criteria. Currently, the gold standard is the

Nugent score (Nugent et al. 1991), but the num-

ber of diagnostic methods testifies to the fact that

no single test is ideal and that they can all provide

false-positive and false-negative results.

Confounding Factors

Findings from molecular-based studies are now

highlighting possible explanations for why diag-

nosis by microscopy may be inconsistent and

why molecular methods may replace them:

1. Mobiluncus: One of the three organisms quan-

tified as part of the Nugent score is

Mobiluncus. Several cloning and sequencing

studies have only rarely identified

Mobiluncus. Fluorescence in situ hybridiza-

tion (FISH) technology has demonstrated that

BVAB-1 has curved-rod morphology, similar

toMobiluncus morphotypes, and it is possible

that during microscopic examination of vagi-

nal smears, Mobiluncus species may have

been overrepresented and mistaken for

BVAB-1. Alternatively, as species-specific

PCR agrees with the Nugent score,

Mobiluncus may be missed in universal PCR

studies because it frequently falls below

a threshold titer where it can be detected.

2. Atopobium: The urea produced by Atopobium
species is associated with halitosis, and simi-

larly, species of Megasphaera cause beer

spoilage by producing turbidity, off-flavors
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and off-colors. Accordingly, if two genera

associated with malodorous metabolites can

be found in the vagina of healthy women and

amines can be found in women without BV,

then diagnostic techniques to diagnose BV,

based on amine production and odor forma-

tion, may need to be reconsidered. Microscop-

ically, Atopobium species are gram-positive,

elliptical cocci, or rod-shaped organisms that

occur singly, in pairs, or in short chains. The

variable cell morphology of Atopobium ren-

ders it well camouflaged among the mixture of

other species present in bacterial communities

where the Nugent score is �4. A. vaginae is

fastidious, grows anaerobically, and forms

small pinhead colonies on culture that are eas-

ily missed. Although phylogenetically differ-

ent from other lactic acid-producing bacteria,

they are not phenotypically exceptional, and it

is not difficult to see why the significance of

this organism based on culture, microscopy,

and phenotype may be overlooked and

underappreciated.

3. Symptomatic relationships: Using species-

specific primers, the relationships between

five fastidious organisms associated with BV

were compared with BV diagnosed by Amsel

and/or Nugent scores, and also with the indi-

vidual Amsel clinical criteria (Haggerty

et al. 2009). The two biovars of Ureaplasma

urealyticum (Ureaplasma parvum and

Ureaplasma urealyticum – biovar 2) were

associated with vaginal discharge and raised

pH, but not with BV by either Amsel or

Nugent criteria or any of the individual

Amsel clinical criteria. In contrast, with

Leptotrichia sanguinegens/amnionii, A. vagi-
nae, and BVAB-1, an elevated pH >4.5 was

a universal feature, and they were all associ-

ated with BV by both Amsel and Nugent

criteria and with the finding of >20 % of

epithelial cells as clue cells, a feature that has

already been reported. A positive test for

amine odor upon the addition of 10 % solution

of potassium hydroxide was significantly

more likely in women testing positive for

BVAB-1. Douching is a recognized risk factor

for BV, and the detection of Leptotrichia and

A. vaginae was three times more likely, and

BVAB-1 twice as likely, when women

reported douching.

Diagnosis of BV Using Qualitative and

Quantitative Molecular Techniques

Some organisms or combinations of organisms

have high sensitivities or specificities for the

diagnosis of BV using the Amsel criteria and

the Nugent score (Fredricks et al. 2005; Fredricks

et al. 2007). Using quantitative real-time PCR,

the association of individual organisms with BV

diagnosed by Nugent score was examined quali-

tatively. At a threshold of �108 DNA copies/ml,

Lactobacillus species was predictive of normal

flora (sensitivity 44 %; specificity 100 %).

BVAB-1, BVAB-2, and BVAB-3 alone, or in

combination, had high specificity for BV diag-

nosed by Amsel criteria.

Since A. vaginae and G. vaginalis are fre-

quently detected in association with BV,

a number of authors using molecular-based tech-

niques have examined the possibility of combin-

ing these two organisms as a means of diagnosing

BV. Using DNA quantitation, 19 out of 20 BV

samples had either a DNA level for A. vaginae

�108 copies/ml or G. vaginalis �109 copies/ml,

and nine out of 20 had both. The combination of

an A. vaginae DNA level �108 copies/ml and

a G. vaginalis DNA level �109 copies/ml dem-

onstrated the best predictive criteria for the diag-

nosis of BV with excellent sensitivity (95 %),

specificity (99 %), negative predictive value

(NPV, 99 %), and positive predictive value

(PPV, 95 %) (Menard et al. 2008).

Culture-Independent Studies in
Pregnancy

Culture-independent techniques have been used

to measure prevalence, diversity, and abundance

of organisms, particularly ureaplasmas in amni-

otic fluid, in association with suspected

cervical insufficiency, preterm labor, preterm

prelabor rupture of membranes (PPROM),
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small-for-gestational-age babies, preeclampsia,

and the potential for bacteria from the oral cavity

to colonize amniotic fluid. However, apart from

combining pregnant women with nonpregnant

women to increase sample numbers, the informa-

tion with respect to the vaginal microbiome in

pregnant women is limited, particularly with

respect to the outcome of pregnancy, especially

preterm birth. Using species-specific primers,

Wilks et al. quantified the production of H2O2 by

lactobacilli from swabs taken at 20 weeks of ges-

tation from the vagina of 73 women considered to

be at high risk of preterm birth (Wilks et al. 2004).

The levels of H2O2 production varied between

species of Lactobacillus. The presence of

lactobacilli producing high levels of H2O2 was

associated with a reduced incidence of BV at

20 weeks of gestation and subsequent chorioam-

nionitis. The authors postulated that H2O2-

producing lactobacilli reduced the incidence of

ascending genital tract colonization in pregnancy,

which leads to infection and preterm birth. In

a longitudinal study of 100 pregnant women, vag-

inal swabs were obtained at mean gestational ages

of 8.6, 21.2, and 32.4 weeks, respectively

(Verstraelen et al. 2009). In the first trimester,

77women had normal orLactobacillus-dominated

flora, 13 of whom developed abnormal flora in the

second or third trimester. When the first-trimester

normal flora was dominated by L. gasseri or

L. iners, there was a tenfold risk of conversion to

abnormal flora. In contrast, normal flora compris-

ing L. crispatus had a fivefold decreased risk of

conversion to abnormal flora. Thismay be because

only a small percentage of L. gasseri and L. iners

strains produce H2O2.

Knowledge of the vaginal microbiome in

pregnancy is limited to only a few studies

(Verstraelen et al. 2009; Hernández-Rodriguez

et al. 2011; Aagaard et al. 2012), none of which

analyzed samples collected longitudinally.

Recently, using 16S rDNA sequencing in normal

pregnant women sampled longitudinally, the

vaginal microbiome was found to be different

from that of nonpregnant women; also the vaginal

microbiome during pregnancy is more stable than

in the nonpregnant state (Romero et al. 2014).

Conclusions

Stability and resilience of the vaginal ecosystem

is now recognized to be of importance in the

health of a bacterial community as well as the

response to perturbations. The relative abun-

dance of certain phylotypes correlates well with

low or high Nugent scores, which is used for the

diagnosis of normal flora or BV. The inherent

difference within and between women in differ-

ent ethnic groups strongly argues for a more

refined definition of the subtypes of bacterial

communities normally found in healthy women

and the need to appreciate differences between

individuals so they can be taken into account in

risk assessment and diagnosis of disease.
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Synonyms

tRNA; tRNADB-CE; Taxonomic assignment

using tRNA genes

Definition

The tRNA gene database curated manually by

experts (“tRNADB-CE”) (http://trna.ie.niigata-

u.ac.jp) has been constructed and annually

updated by analyzing all available complete and

draft genomes of Bacteria and Archaea, virus

genomes, chloroplast genomes, and eukaryote

genomes plus fragment sequences obtained

from metagenome analyses of environmental

samples. By compiling tRNAs from known pro-

karyotes that had identical sequences, we found

high phylogenetic preservation of tRNA

sequences, especially at the phylum level. Fur-

thermore, a large number of tRNAs obtained by

metagenome analyses of environmental samples

had sequences identical to those found in known

prokaryotes. The identical sequence group, there-

fore, can be used as molecular phylogenetic

markers to clarify microbial community struc-

tures in environmental ecosystems as well as in

clinical samples.
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Introduction

In accord with the remarkable progress of DNA

sequencing technology, a vast quantity of

metagenomic sequences obtained from a wide

variety of environmental and clinical samples

have been decoded and released by DDBJ/

EMBL/GenBank. A massive number of

metagenomic sequences, including short

sequences obtained with new-generation

sequencers, should contain a large number of

complete tRNA sequences because the lengths

of tRNA sequences are short. However, practi-

cally no information on tRNA genes has been

annotated for metagenomic sequences in DDBJ/

EMBL/GenBank. The search for tRNA genes in

metagenomic sequences can provide a new strat-

egy to clarify microbial community structures in

environmental samples. Thus, we included a vast

number of tRNA genes found in metagenomic

sequences in the tRNADB-CE (Abe et al. 2009,

2011).

When we focused on a group of tRNAs with

an identical sequence, we found tRNAs only in

a particular lineage of phylogenetic groups. Nota-

bly, such phylotype-specific tRNA sequences

were also found in many species-unknown geno-

mic fragments obtained by metagenome ana-

lyses. This fact shows that tRNA is a good

phylogenetic marker for discovering the

phylotype composition and microbial community

structure in an environmental sample.

Search for tRNA Genes

In order to enhance the completeness and accu-

racy of searching for tRNA genes, three computer

programs, tRNAscan-SE (Lowe and Eddy 1997),

ARAGORN (Laslett and Canback 2004), and

tRNAfinder (Kinouchi and Kurokawa 2006),

were used in combination since their algorithms

were partially different and rendered somewhat

different results. First, we checked to what degree

the predicted regions and the anticodons of indi-

vidual tRNA genes were consistent with each

other. The tRNA genes concordantly found by

the three programs were stored in the database.

Second, three experts in the tRNA experimental

field manually checked the discordant cases

(approximately 3 % of the total of bacterial

gene candidates) independently and included

reliable cases in the database.

For fragment sequences obtained from

metagenome analyses, only tRNA genes concor-

dantly found by the three programs and those that

had sequences identical to tRNAs already

included in the database were stored. A large

number of tRNA genes were detected in various

environmental samples, and their numbers were

separately listed by category of environment.

This enabled us to clarify microbial community

structures in environmental samples using tRNAs

as phylogenetic markers. Because a significant

portion of environmental DNA sequences are

thought to be from unculturable microbes,

tRNA genes of novel species should be included.

Functions of tRNADB-CE and Data
Access

The tRNADB-CE allows browsing of the stored

data and search for the database with user-

specified input as described previously in detail

(Abe et al. 2009, 2011). A browse page is

presented in Fig. 1. First, a list of tRNA genes

and anticodons can be browsed depending on the

numbering of genomes (i.e., genome ID) or DNA

fragments of environmental samples stored in the

database. The statistical information for copy

numbers of tRNA genes in each phylotype/

species and the anticodon type in each amino

acid group can also be browsed (Fig. 1a). By

clicking the sequence ID of each tRNA gene,

detailed information on the selected tRNA

genes can be browsed, including tRNA gene

sequences, their upstream and downstream

sequences (10 nt), information on the secondary

structures of the tRNA, and curation comments

on the tRNA.

A “keyword search” can also be conducted

using retrieved items such as species name,

amino acid, anticodon, sequence ID, and genome

ID. This function can be performed by using

multiple keywords in combination. The database
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supports two types of sequence search: sequence

similarity search “BLASTN” and pattern search.

In pattern search (i.e., oligonucleotide sequence

search), we can focus the search area on the

stems/loops of cloverleaf structures and combine

the areas in various patterns. After selecting

tRNA genes of interest using the sequence search

procedures, multiple alignments with ClustalW

and downloads of aligned sequences and

obtained dendrograms are available (Fig. 1b).

Identical Sequence Groups and Their
Use as Phylogenetic Markers for
EnvironmentalMetagenomic Sequences

When we conducted the clustering of tRNA gene

sequences, except the 30 CCA terminal sequence,

from complete and draft genomes of Bacteria and

Archaea by sequence alignment using the

CD-HIT (Li and Godzik 2006), we found high

phylogenetic preservation of tRNA genes;

a particular tRNA sequence was found only in

a particular lineage of phylogenetic groups. We

designated here the tRNA group with an identical

sequence as “identical sequence group: ISG”

(Fig. 2a) and listed the numbers of ISGs for

each phylotype (Fig. 2b) and for each anticodon

(Fig. 2c). tRNAs with one anticodon type were

classified and listed according to the ISG along

with the phylotype information of each tRNA

(Fig. 2d), and thus, the range of phylotypes

found for each ISG could be examined. If we

focused on ISGs composed of more than five

sequences, approximately 95 % of ISGs were

conserved at a phylum level, showing most

tRNAs to be good phylogenetic markers at least

at the phylum level. The ISGs could provide

tRNA Gene Database Curated Manually by Experts, Fig. 1 Basic functions of tRNADB-CE
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a strategy for selecting reliable phylogenetic

markers. In addition, approximately 65 % of

ISGs were conserved even at the genus level,

showing the possible existence of good genus-

specific markers. By combining the data provided

by this database with other detailed knowledge of

a particular tRNA obtained by experiments or

from literature, users may obtain useful phyloge-

netic markers (e.g., genus-specific markers) by

themselves.

Interestingly, among tRNA genes found in

metagenomic sequences derived from environ-

mental samples, approximately 25 % of tRNA

genes were identical in sequence to genes from

species-known prokaryotes. Using tRNAs found

in an environment sample that were assigned to

ISGs, we could predict the microbial community

structure in an environmental ecosystem at least at

the phylum level (Fig. 2e). The database also has

a function for searching for sequences with 97 %

or 95 % sequence identity (2- or 3-nt difference,

respectively) (Fig. 2a). By using tools in the data-

base and specific markers found by users (e.g.,

genus-specific markers), users can clarify micro-

bial populations in an ecosystem by themselves.

The present strategy can be applied even to

data of short sequences obtained with

new-generation sequencers, such as Sequence

Read Archive (SRA), in NCBI. In metagenomic

analyses using new-generation sequencers, the

phylogenetic characterization of short sequences

with existing bioinformatics methods was partic-

ularly difficult, except for sequences unambigu-

ously mapped on a known sequenced genome.

Because complete tRNA genes can be found

even from short genomic fragments of around

100 bases, tRNA genes should become one of

the most effective means for identifying

tRNA Gene Database Curated Manually by Experts, Fig. 2 List and search for identical sequence group (ISG)
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microbial populations in an ecosystem in the case

of metagenome studies conducted with next-

generation sequencers.

Whenwe consider the rapid growth of genomic

and metagenomic sequences accumulated in

DDBJ/EMBL/GenBank, our present strategy to

search for reliable tRNAs, including manual

curation by experts, may be inadequate. Our

group previously developed BLSOM (Batch-

Learning Self-Organizing Map) for oligonucleo-

tide composition, which clustered (self-organized)

genomic sequence fragments according to the

phylogenic group (Abe et al. 2003). The oligonu-

cleotide BLSOM was successfully applied to

the phylogenetic classification of a large quantity

of metagenomic sequences (Abe et al. 2005).

When we conducted BLSOM for the tetra- and

pentanucleotide compositions of bacterial tRNAs,

tRNAs were accurately separated according to the

amino acid, showing the BLSOM to be an addi-

tional informatics strategy for the assignment of

reliable tRNAs. When we focused on tRNAs with

the same anticodon, tRNAs were separated

according to the phylotype on BLSOM, showing

that the BLSOM is also applicable to the

phylogenetic assignment of tRNAs present in

metagenomic sequences.

Summary

By compiling the tRNAs of known prokaryotes

with identical sequences, we found high phylo-

genetic preservation of tRNA sequences, espe-

cially at the phylum level. Furthermore, a large

number of tRNAs obtained by metagenome ana-

lyses had sequences identical to those found for

known prokaryotes. The identical sequence

group, therefore, can be used as molecular phy-

logenetic markers to clarify microbial commu-

nity structures of environmental ecosystems.

The tRNADB-CE allows users to obtain

phylotype-specific markers (e.g., genus-specific

markers) by themselves and to clarify microbial

community structures in ecosystems in detail.

tRNADB-CE can be accessed freely at http://

trna.ie.niigata-u.ac.jp.
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Synonyms

Environmental genomic libraries; Metagenomic

libraries; Metagenomic studies

Definition

Cloning of large metagenomic DNA fragments

using bacterial artificial chromosome (BAC) vec-

tors provides an opportunity to study the func-

tional diversity and to harness the metabolic

potential of diverse microorganisms in various

microbiomes. This technology is especially rele-

vant to the study of biosynthetic pathways

encoded by large gene clusters that would not

be cloned as contiguous regions using other

cloning vectors.

Introduction

Despite progress in culturing a greater diversity of

the members of microbial assemblages, the vast

majority of prokaryotic taxa is not readily cultured

in laboratory and remains largely unknown.

Because of this “great plate count anomaly,”

microbiologists are forced to use cultivation-

independent alternative approaches to access and

study the functional diversity in microbiomes.

Direct cloning of metagenomic DNA fragments

into BAC clone libraries and subsequent analyses

provide opportunities to investigate the genetic

makeup and potential of a microbiome.

Metagenomic DNA fragments can be cloned into

plasmid, cosmid, or fosmid (a low-copy-number

cosmid that is based on the F-factor replicon of

Escherichia coli) vectors, but these cloning vec-

tors can only carry relatively small DNA frag-

ments: plasmids, <20 kb; cosmids, 37–52 kb;

and fosmids, <42 kb. On the other hand, a BAC

vector can carry a much longer DNA fragment

(up to 300 kb). Although BAC libraries are tech-

nically more difficult to construct than other types

of clone libraries, BAC clone libraries have sev-

eral advantages. First, to clone a certain amount of

metagenomic DNA, a smaller number of BAC

clones are needed compared to libraries

constructed using other cloning vectors. Second,

the production of many bioactive compounds

(e.g., antibiotics, multimodular polyketide, or

nonribosomal peptide) is encoded by a gene clus-

ter whose length typically exceeds what can be

carried by a plasmid, cosmid, or fosmid vector

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
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(Piel 2011). Third, a cis-regulatory element is

often required for the expression of a gene or

operon. However, the inserts cloned into

a plasmid, cosmid, or fosmid vector might not

allow for the cloning of both a gene or operon

and its cis-regulatory element into the same

clone. The lack of a cis-regulatory element can

prevent the metabolic phenotype of interest from

being detected during activity-based screening of

clone libraries. Fourth, cloned metagenomic DNA

fragments are less stable in a plasmid or a cosmid

vector than in a BAC vector. Therefore, BAC

libraries have unique utility in metagenomic stud-

ies of microbiomes. In this entry, the construction,

screening, bioinformatic and biochemical analy-

sis, and utilization of BAC clone libraries are

overviewed.

Isolation of High Molecular Weight DNA

Because the purpose of BAC cloning is to recover

contiguous regions of microbial genomes, the

DNA fragments recovered from a microbiome

sample should be significantly longer than that

required for fosmid or other cloning vectors.

Many studies have compared DNA extraction

methods suitable for metagenomic applications

(Delmont et al. 2011), and this section will

review those methods that are appropriate for

BAC cloning.

Extraction of high molecular weight (HMW)

DNA from microbiome is always a significant

issue due to the inherent conflict between the

need to recover DNA from diverse microorgan-

isms while preserving DNA integrity. Direct

DNA extraction methods, by which DNA is

recovered directly from an environmental sam-

ple, provide high DNA yields from phylogeneti-

cally diverse microorganisms; yet the vast

majority of the DNA is sheared and likely less

than 100 kb. In contrast, indirect DNA extraction

methods, in which microbial cells are first iso-

lated from sample matrices prior to DNA extrac-

tion, result in a lower DNA yield, but the resultant

DNA is of significantly greater molecular

weight compared to direct extraction methods.

However, indirect DNA extraction can produce

less representative metagenomic DNA because

some microbial cells can be difficult to isolate

from the sample matrices. The choice of a direct

or an indirect extraction method depends on the

nature of the environmental sample. For exam-

ple, for a sample with high levels of contami-

nants, such as soils and sediments, there may be

an advantage in using indirect extraction to sig-

nificantly reduce humic acid levels co-extracted

with the DNA. However, indirect extraction

methods may not yield sufficient DNA from

samples with lower cellular abundance, such as

sediments and aquifer. Therefore, it is important

to use an empirical approach and evaluate mul-

tiple methods for HMW DNA extraction.

Several protocols have been developed to

overcome the difficulties in extracting HMW

DNA for metagenomic studies. Stein et al.

(1996) introduced an innovative technique that

embeds microbial cells in agarose gel matrix.

These embedded cells are lysed in situ to prevent

mechanical shearing of the microbial DNA. The

Nycodenz extraction technique is another tech-

nique that is used to avoid mechanical shearing of

HMW DNA (Berry et al. 2003). This technique

prevents physical damage to bacterial cells by

cushioning them during the high-speed centrifu-

gation step. Some environmental contaminants

are also removed during the centrifugation.

The use of multiple extraction methods for

a single sample may increase the ultimate yield

and phylogenetic representation of the recovered

metagenomic DNA. The adoption of a particular

DNA extraction method should be evaluated by

the DNA yield and the representation of diverse

microbial genomes within the recovered DNA.

The diversity represented in the recovered DNA

can be assessed by molecular phylogenetic

analysis based on sequencing of the universally

conserved 16S rRNA gene. Although phyloge-

netic diversity analysis can be influenced by

many factors, including biases inherent in PCR,

it is a rapid analysis to assess the phylogenetic

composition of samples and libraries. Next-

generation sequencing (NGS) of 16S rRNA

gene amplicons permits a greater depth of
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sequencing coverage compared to traditional

Sanger sequencing technology.

Subsequent to extraction, the metagenomic

DNA may need to be purified to achieve efficient

cloning. Purification is especially needed to

remove contaminants from metagenomic DNA

extracted from soil samples because soil samples

can contain high levels of humic acids and other

phenolic compounds that tend to be co-extracted

with the DNA and hamper downstream processes

(e.g., restriction digestion and cloning of the

DNA). Multiple approaches have been developed

to purify metagenomic DNA, including the use of

CTAB, hydroxyapatite column purification, or

formamide denaturation. Formamide can be

more effective in removing some contaminants

from HMW DNA due to its inherent capability to

denature DNA and remove contaminants that are

tightly intercalated between the DNA bases and

strands (Liles et al. 2008). Formamide or

polyvinylpolypyrrolidone (PVPP) can also help

remove nuclease contaminant. Hydroxyapatite

chromatography has advantages over other purifi-

cation approaches as this method can efficiently

fractionate nucleic acids with different conforma-

tions (i.e., dsDNA, ssDNA, dsRNA, and ssRNA)

while helping remove sample contaminants

(Andrews-Pfannkoch et al. 2010). This differential

elution of nucleic acids can easily be accom-

plished by changing the phosphate concentrations

at a constant temperature or a combination of

increasing temperatures and phosphate concentra-

tions of the elution buffers.

Fragmentation and Size Selection of
Metagenomic DNA

Fragments of metagenomic DNA with uniform

length about 150 kb are prepared either enzymati-

cally or mechanically. Enzymatic fragmentation

relies upon partial restriction digestion. However,

the extent of partial digestion is difficult to control.

Additionally, partial restriction digestion can result

in nonrandomDNA fragmentation and a significant

reduction in DNA size. An alternative to partial

restriction digestion is mechanical shearing, which

results in random fragmentation of metagenomic

DNA. This method has been demonstrated with

multiple eukaryotic genomes and recently applied

to construction of soil BAC libraries studies

(Kakirde and Nasrin et al., unpublished data).

A major challenge in constructing high-quality

BAC libraries is to retain large DNA fragments

while removing small ones that can be preferen-

tially cloned. Multiple strategies are available to

recover and clone large metagenomic DNA frag-

ments. Pulsed field gel electrophoresis (PFGE) is

the most frequently used method for size selection

of partially digested or sheared metagenomic

DNA. Alternatively, agarose gel electrophoresis

can be used as it can provide better resolution of

HMWDNA. Because sucrose gradient centrifuga-

tion can only resolve DNA fragments of 5–60 kb,

it is not a suitable method to separate HMWDNA

fragments for BAC library construction.

Construction of BAC Clone Libraries

Several BAC vectors have been developed for

metagenomic cloning that enable transfer and

expression of cloned DNA in multiple heterolo-

gous hosts. The initial development of the

pBELOBAC11 vector (Kim et al. 1996) was

instrumental in permitting BAC cloning of envi-

ronmental DNA (Rondon et al. 2000). However,

the inherent restriction of the pBELOBAC11 vec-

tor to single-copy within an E. coli host cell was

a severe limitation for downstream analysis of the

resultant BAC libraries. The development of

inducible-copy control BAC vectors by inclusion

of an RK2 origin of replication enabled more

facile BAC library construction (Wild et al.

2002), and different derivatives of these vectors

were constructed and commercially available

(Lucigen, Middleton, WI; Epicentre, Madison,

WI). The inducible-copy control BAC vectors

were further modified by including the complete

mini-RK2 replicon within the BAC vector to

enable shuttling of BAC clones into multiple het-

erologous hosts (Kakirde et al. 2011), greatly

expanding the host range for heterologous expres-

sional analysis of BAC libraries.
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The size-selected metagenomic DNA frag-

ments are ligated into an appropriate BAC vector

using a DNA ligase. DNA fragments prepared by

partial restriction digestion can be directly ligated

to the chosen BAC vector that has been linearized

with the same restriction enzyme. If randomly

shared DNA fragments are cloned, however,

both ends of each fragment need to be repaired

to blunt ends. To increase cloning efficiency,

adaptors of an appropriate restriction enzyme

can also be ligated to the repaired ends. After

ligation, the insert-carrying BAC vector is

transformed into highly competent E. coli cells

typically using electroporation. It should be noted

that even if a shuttle vector capable of transfer to

other hosts is used, it is advisable to first use

E. coli for BAC library construction to take

advantage of high transformation efficiency,

even if the ultimate expression host is not

E. coli. It should also be noted that this is the

most difficult step in BAC cloning and that

the larger number of fosmid libraries reported in

the literature compared to BAC libraries is merely

a reflection of the more facile fosmid cloning.

Once transformants are isolated on respective

antibiotic selection plates, a representative

number of colonies should be evaluated for the

percentage of BAC clones with insert the average

insert size.

If the library statistics are satisfactory for fur-

ther analysis, then colonies can be archived. The

archiving of a BAC library, which typically con-

sists of a vast number of clones, is an important

step since researchers frequently need to access

clones for confirmation, verification, screening,

and other analyses. BAC clones are usually

suspended in a cryoprotectant medium, which is

usually 10–15 % glycerol or 8 % dimethyl sulf-

oxide (DMSO) in the original growth medium of

the bacterial host. The BAC clones are usually

grown in 96-well or 384-well format for high

throughput handling and screening.

Screening of BAC Libraries

Unlike shotgun metagenomic sequencing, BAC

libraries provide the opportunity to identify and

access the functional diversity that can be deter-

mined phenotypically. The strategies for activity-

based screening of BAC libraries depend on the

nature of the compounds or enzymes of interest

and should be designed carefully (Taupp et al.

2011). The advent of new technologies has

enabled the application of high throughput

screening (HTS) approaches to identify clones

with the desired phenotypes (producing certain

compounds or enzymes) from a large number of

BAC clones. The analysis of cell lysates, DNA,

or supernatants from BAC clones can be

performed with a great diversity of screening

targets to identify the clones carrying the desired

activities or genetic targets (Lakhdari et al. 2010).

For example, BAC clones expressing the desired

activity can be identified by applying an indicator

substrate of the enzymes of interest into the

growth medium. Depending on the nature of the

assay, the active clones may be detected by visual

inspection of an indicator agar plate, flow

cytometry, a spectrophotometer, or fluorescent

microtiter plate reader (Taupp et al. 2011).

One of the first proof-of-concept studies for

identifying a functional natural product from

a BAC library was accomplished via sequence-

based screening. In the seminal paper of Béjà

et al. (2000), the first bacterial proteorhodopsin,

a light-driven proton pump, was discovered by

identifying specific BAC clones that contained

a 16S rRNA gene sequence and then identifying

the other linked functional genes contained

within the same clone. While this study used

a fosmid library, this approach is equally appli-

cable to BAC libraries and has been used to

describe some of the functional diversity associ-

ated with as-yet-uncultured bacteria (Liles

et al. 2008). This approach is inherently limited

by the metagenomic DNA sequences that are

immediately adjacent to an rRNA operons, but

was nonetheless a useful method in the initial

exploration of BAC libraries.

Enzymatic activities expressed from BAC

clones may be identified via many different

methods, including colorimetric or fluorescent

assays, as well as indicator media

(Taupp et al. 2011). For example, lipase-

producing BAC clones can be detected on LB
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agar plates supplemented with 1.0 % tributyrin by

formation of a halo around individual clones due

to tributyrin hydrolysis. Cellulases and xylanases

can be detected using agar plates supplemented

with carboxymethyl cellulose (CMC) and soluble

xylan, respectively. Other enzymatic activities

identified using a BAC approach include but

are not limited to esterase, alcohol dehydroge-

nase, amidase, amylase, protease, chitinase,

dehydratase, and b-lactamase (Lorenz and Eck

2005).

Identification of secondary metabolites

expressed from a heterologous host is dependent

upon having large-insert BAC clones, along with

suitable transcriptional and translational machin-

ery. The best examples of a functional

metagenomic approach to identify antimicrobial

activities were the isolation of turbomycin A and

B (Gillespie et al. 2002), the identification of

antibacterial activities expressed in cosmid

libraries in different proteobacterial hosts (Craig

et al. 2010), and identification of gene clusters

involved in synthesis of antifungal activities

(Chung et al. 2008).

In addition to activity-based screening,

sequence-based screening is a widely used

approach to find genes or gene clusters involved

in particular functions within a BAC library. For

example, an alternative to functional expression

of libraries to identify antibacterial-active clones

is to first identify clones that contain known

pathways involved in secondary metabolite syn-

thesis and then to express these pathways in

a related host, permitting isolation of novel ana-

logs of known metabolites. This has been dem-

onstrated previously in the case of polyketide

synthases (PKS) and nonribosomal peptide

synthetases (NRPS). Feng et al. first identified

the type II PKS biosynthetic system in two dif-

ferent cosmid clones by sequence-based homol-

ogy screening of a cosmid library (Feng et al.

2010). Their sequence-based screening followed

by heterologous expression of a type II PKS

biosynthetic gene cluster identified three new

fluostatins that were previously uncharacterized

in cultured species (Feng et al. 2010). This

approach can be equally applicable to screening

BAC libraries.

Sequencing and Bioinformatic
Analysis of BAC Libraries

The inserts of BAC clones that exhibit certain

metabolic activities can be sequenced to deter-

mine the coding sequence, structural and regula-

tory features of the gene(s), and potential

phylogenetic markers. Three different common

sequencing strategies are typically used.

Subcloning and Sequencing of Individual

BAC Clones

The insert of a BAC clone is first fragmented

mechanically or enzymatically using

a restriction enzyme. The resultant smaller inserts

can be cloned into a plasmid vector (e.g., pUC

vector) and then sequenced individually using the

Sanger sequencing technology (see the

“Subcloning” section below). The full length of

the BAC insert can be assembled from the

sequenced subclones (see “Sequence Assembly”

section below). Because it is time-consuming to

subclone and sequence a large number of BAC

clones, this approach is primarily used to

sequence one or a few of BAC clones of interest.

End Sequencing

Both ends of a BAC clone insert can be

sequenced using the Sanger sequencing technol-

ogy and the primers that specifically anneal to the

vector regions that flank the insert (Pope and

Patel 2008). This approach only allows sequenc-

ing a short region at both ends of a BAC clone,

and thus only limited sequence information can

be determined. In contemporary studies, end

sequencing is primarily used to match a BAC

clone with its corresponding sequence that is

determined using shotgun sequencing of pooled

BAC clones (see the “Shotgun Sequencing” sec-

tion below). The genetic information of each

BAC clone can then be analyzed with respect to

its phenotypic activities observed during activity

screening.

Shotgun Sequencing of Pooled Select

BAC Clones

Recent advancement in DNA sequencing tech-

nologies, especially the NGS technologies, made
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it more cost-effective and efficient to sequence

pooled BAC clones of interest in a shotgun man-

ner. The 454 FLX Platinum (Roche) is the most

suitable NGS currently available to achieve

effective shotgun sequencing of pools of BAC

clones because it can generate relatively long

sequence reads (average 500 bp). The Illumina

systems (Illumina) have also been used even

though they produce shorter (150 bp) sequence

reads. Ion Torrent (Life Technologies) is a new

NGS that can generate 260 bp reads and should

be another suitable NGS technology for the afore-

mentioned shotgun sequencing.

Pooled BAC clones are first randomly

fragmented to small fragments, with the length

of the fragments depending on the specific NGS

technology used. Adapters (short oligonucleo-

tides) may need to be ligated to the ends of

each fragment to facilitate sequencing. Unique

barcodes (short oligonucleotides) can be incor-

porated into the adaptor for each BAC clone. In

that case, sequence reads for individual BAC

clones can be separated based on the unique

barcodes. However, it is often cost-prohibitive

to barcode individual BAC clones when a large

number of them are sequenced. Therefore,

pooled BAC clones are typically sequenced in

a shotgun manner. However, be aware that

assembly of complete BAC inserts may be prob-

lematic using a pooled BAC clone format

depending on the degree of coverage and

sequence similarity among the BAC clone

DNA inserts. Details on these NGS can be

found in respective entries of this encyclopedia.

It should be pointed out that except for the

454 FLX Platinum system, the other aforemen-

tioned NGS technologies produce short read.

Very high (50� or greater) coverage is needed

to assemble the individual NGS reads into long

contigs and the full-length inserts. Alignment

analysis of the end sequences (see End sequenc-

ing above) and the assembled BAC insert

sequences can help match individual BAC

clones with their respective sequences. To ensure

high-quality sequences, BAC clones need to be

prepared free of E. coli chromosomal DNA.

Sequence Assembly

Individual sequence reads from the same BAC

insert are linked together using de novo sequence

assembly, a bioinformatic process, to form

contigs and to reconstruct the BAC insert

sequence without reference to any genome

sequence. Most software tools used in de novo

sequence assembly (referred to sequence assem-

blers) seek overlapping sequences among indi-

vidual sequence reads and then merge them

together based on the overlapping sequences.

A number of sequence assemblers are available

that use different strategies. Sequence reads gen-

erated by subcloning and the Sanger technology

are relatively long (500 bp or longer) and only

low coverage (�10�) is needed to assemble

complete BAC inserts. Such long reads can be

assembled by alignment against each other and

merged based on overlapping sequences using

programs such as Phrap (Gordon 2004) and

CAP3 (Huang and Madan 1999). Assembling

short sequence reads generated by NGS technol-

ogies requires different strategies because it is

computing intensive to align large numbers of

short sequence reads required to assemble long

contigs or full-length BAC inserts. Moreover,

high sequencing coverage (at least 50�,

depending on the read length) is needed to com-

pensate for the short sequence reads. One alter-

native approach is to use a graph-based algorithm

(e.g., the K-mers for de Bruijn graph) to detect

certain short fragments to facilitate assembling

short sequence reads. Velvet (Zerbino and Birney

2008) is one bioinformatic program that uses the

de Bruijn graph to assemble short sequence reads.

Other popular sequence assemblers used to

assemble NGS reads include SSAKE,

SHARCGS, VCAKE, Euler, SOAPdenovo,

ABySS, ALLPATHS (Miller et al. 2010).

Sequence reads generated by the 454 FLX

Titanium system on average reach 500 bp in

length. Such a read length approaches that of

Sanger sequencing reads. Two bioinformatic pro-

grams, Newbler (www.454.com) and Arachne

(Batzoglou et al. 2002), are designed to assemble

sequence reads generated by 454 systems.
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Because each of these two sequence assemblers

has its own preference and the assembly is some-

what different, contigs generated from each of

them can be reassembled using an overlap-

based algorithm, such as Minimus of the AMOS

package (Sommer et al. 2007), to further improve

the accuracy and extend the lengths of the contigs

assembled.

Comparative sequence assembly involves

alignment of sequence reads against reference

genome(s). It is rarely applied to assembling of

shotgun BAC sequence reads because few refer-

ence genomes are available in most cases. How-

ever, as more and more microbial genomes and

metagenomes are sequenced in some habitats,

such as human gut, comparative sequence assem-

bly may be used to facilitate assembling shotgun

BAC sequence reads. The Reference Mapper

from Roche (www.roche.com), Eland from

Illumina (www.illumina.com), Corona from

ABI (www.appliedbiosystems.com), and some

shareware bioinformatic programs (e.g., SOAP,

MAQ, and segemehl) can be used in comparative

sequence assembling (Kunin et al. 2008).

Prediction and Annotation of Open
Reading Frame (ORF)

The contigs assembled provide the opportunity

to determine the putative genes, their structure

and organization, and putative function. Putative

genes are defined by open reading frames (ORF)

that encode proteins of minimal molecular

weight (>50 amino acids). The early bioinfor-

matic programs developed were intended to

predict ORFs from sequenced genomes by

either recognizing specific genome signals or

comparing them to protein or cDNA databases.

These specific genome signals are usually

species specific. Hence, these bioinformatic

programs have limited utility when applied

to metagenomic sequence data. In recent

years, several programs and database environ-

ments have been developed to specifically pre-

dict ORFs from metagenomic sequence data.

The commonly used ones include GeneMark.

hmm, Metagene annotator (MGA, http://

metagenomics.anl.gov/), and Orphelia (Yok and

Rosen 2011). Orphelia differs from the other two

ab initio bioinformatic programs in combining

a similarity-based algorithm with a composition-

based method. However, the specificity and sen-

sitivity of these programs remain to be improved.

Furthermore, sequencing and assembly errors

significantly affect the accuracy of gene predic-

tion. For instance, GeneMark.hmm is very sen-

sitive to insertion and deletion, which are the

main types of sequencing error of the 454 FLX

system, thus producing false-positive and false-

negative predictions caused by frame shifts. As

the logarithms of ORF-finding programs con-

tinue to improve, future bioinformatic tools

should improve in sensitivity and accuracy in

finding ORFs in BAC clone libraries and other

metagenomic sequence data.

A predicted ORF can then be annotated by

comparing to databases, most of which maintain

a publically accessible online server. The tenta-

tive function of an ORF is typically inferred

using in silico bioinformatic analysis by compar-

ing to comprehensive databases, such as

GenBank (www.ncbi.nlm.nih.gov/), the EMBL

Nucleotide Sequence Database (EMBL-bank,

www.ebi.ac.uk/embl/), and the DNA Database

of Japan (DDBJ, www.ddbj.nig.ac.jp/). Certain

functional and structural features of ORFs can

also be identified using specialty databases, such

as KEGG (www.genome.jp/kegg/) for prediction

of metabolic functions, SignalP (www.cbs.dtu.

dk/services/SignalP/) for prediction of presence

of signal peptides, and TransMembrane Protein

DataBase (pdbtm.enzim.hu/) for presence of

transmembrane domains. It should be noted that

although annotation of ORFs has significantly

improved over the past 10 years owing to the

development of software tools and databases

and the accumulation of sequenced and annotated

genomes and metagenomes, the gene function

predicted by in silico analysis sometimes does

not really represent its actual biological charac-

teristics. Moreover, inaccurate annotations can
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be cascaded and amplified in databases.

Researchers should always keep in mind such

potential discrepancy when annotating ORFs

identified in BAC libraries and other

metagenomic sequence data.

Phylogenetic Analysis

Unlike BAC libraries constructed from pure cul-

tures, BAC libraries from microbiome samples

are constructed from hundreds or even thousands

of species of diverse microbes. Thus, one of the

primary analyses to be performed on BAC librar-

ies is evaluating the microbiome composition. It

is straightforward to infer the taxon from which

a BAC sequence is derived if a phylogenetic

marker, such as a SSU or LSU rRNA gene, can

be found. However, most BAC clones lack such

a phylogenetic marker. Alternative methods are

available to taxonomically predict the origin of

BAC clones based on a number of features, such

as sequence composition or homology (Kunin

et al. 2008). Composition-based software focuses

on the sequence composition signatures, primar-

ily oligonucleotide frequencies to distinguish

contigs from each other. Phymm (www.cbcb.

umd.edu/software/phymm/) and TETRA (www.

megx.net/tetra/) are commonly used bioinfor-

matic programs of this category. On the other

hand, homology-based methods predict the taxo-

nomic origin of BAC clones by searching for

homologous sequence available in databases.

Representative homology-based bioinformatic

programs include BLAST (blast.ncbi.nlm.nih.

gov/), MEGAN (ab.inf.uni-tuebingen.de/soft-

ware/megan/), and SIGNATURE (www.cmbi.

ru.nl/signature/). Some hybrid classifiers, such

as PhymmBL that is a combination of Phymm

and BLAST (Brady and Salzberg 2009), are also

available that can improve taxonomic assignment

accuracy. It should be cautioned that although

short sequences can be accurately classified,

accurate and reliable prediction requires long

reads or contigs. Therefore, precise and accurate

taxonomic classification of BAC clones depends

on a delicate selection of sequences and assembly

strategy.

Biochemical Characterization of Gene
Functions of Interest

Subcloning

The proteins or enzymes encoded by a gene or gene

cluster of a particular BAC clone can be biochem-

ically characterized following subcloning and

overexpression. Subcloning entails cloning the

gene(s) of interest from the selected BAC clone

into another vector, mostly an expression vector

(e.g., a pET vector). The gene(s) can either be

excised out of the BAC clone using an appropriate

restriction enzyme or amplified using PCR amplifi-

cation. In the latter case, a pair of primers are

needed that anneal to the sequences flanking the

target gene(s). However, neithermethodmay not be

suitable in some cases, for example,when no appro-

priate restriction enzyme is available that does not

cut within the target gene(s) or when the target

gene(s) is too long to be PCR amplified. Recently,

a homologous recombination-based subcloning

approach, referred to as BAC recombineering

(Warming et al. 2005), is used to overcome the

aforementioned subcloning obstacles.

Over Expression and Characterization of
Expressed Gene Products

The enzyme encoded by the gene of interest can

be biochemically characterized if overexpressed

and purified. Briefly, a subcloned gene is

transformed into an appropriate host, which is

typically E. coli, or another expression system,

depending on the characteristics of the protein to

be expressed. It should be noted that some genes

in BAC clones might not be expressed success-

fully because the chosen expression system lacks

the suitable transcription or translation systems.

Another expression host may be evaluated for its

ability to express the gene(s) of interest using

a shuttle vector. In addition, the expressed protein

may be toxic to the expression host. Recently,

fusion proteins and co-expression systems have

been incorporated into the expression strategies

to overcome some of the limitations mentioned

above. A fusion protein can aid in solubilization
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and/or purification of the overexpressed proteins.

Commonly used fusion proteins include glutathi-

one S-transferase (GST), maltose-binding protein

(MBP), and histidine tags.

In some cases, a protein can be expressed but

cannot be correctly folded due to the lack of an

appropriate chaperon protein in the heterologous

host. To overcome this obstacle, a co-expression

vector that allows coexistence of multiple expres-

sion vectors and expression of a chaperon protein

can be used to help the correct folding of heter-

ologous proteins. The Duet vectors (Novagen)

are among the systems used to co-express genes

of interest from BAC clones. Upon induction,

sufficient quantities of the expressed protein can

be obtained to determine its characteristics, such

as substrate range, product, optimum of temper-

ature and pH, kinetics, and stability.

Prediction of Protein Structure

The three-dimensional (3D) structure of a protein

provides invaluable insights into the molecular

basis of its functions. Additionally, the detailed

knowledge of the spatial arrangement of key

amino acid residues within the overall 3D struc-

ture also helps design experiments to characterize

the protein and understand the molecular mecha-

nisms of functions. The structure of a purified

protein can be determined experimentally using

X-ray crystallography, high-resolution electron

microscopy, or nuclear magnetic resonance

(NMR) spectroscopy. Detailed information on

these types of characterization is beyond the

scope of this entry but can be found in other

entries of this encyclopedia. Although experi-

mental methods can help determine the actual

3D structure of a protein, they are expensive,

time-consuming, and not always applicable.

Thus, alterative bioinformatic programs are

often used to predict the structure of a protein

from its amino acid sequence. Some of the com-

monly used programs/servers include I-TASSER

(zhanglab.ccmb.med.umich.edu/I-TASSER/),

Modeller (salilab.org/modeller/), and Phyre2

(www.sbg.bio.ic.ac.uk/phyre2/).

Functions and Bioactive Compounds
Identified by BAC

A variety of enzymes and other bioactive com-

pounds have been identified through BAC librar-

ies. These include xylanases, cellulases, lipases,

proteases, amylases, esterases, and type II poly-

ketide synthases. Examples of bioactive com-

pounds discovered from BAC libraries include

antibiotics, patellamide D, and ascidiacyclamide.

New antibiotic resistance genes have also been

found from BAC libraries. Future applications of

BAC libraries will probably lead to discovery of

novel compounds or enzymes useful to medical

or technological purposes.

Summary

Metagenomic studies using BAC clone libraries

allow access to metabolic activities and

biocatalysts from uncultured microbes. Unlike

shotgun deep sequencing, BAC libraries provide

a unique opportunity to gain access to metabolic

activities and the underpinning enzymes

involved in synthesis or biodegradation of

many useful compounds and biocatalysts. Func-

tional diversity archived in BAC libraries can

also be accessed repeatedly for various studies

including detailed characterization of the

enzymes and metabolic activities. Furthermore,

BAC libraries also enable access and capture of

large gene clusters that exceeds the capacity of

fosmid vectors. Thus, BAC libraries comple-

ment both shotgun deep DNA sequencing and

fosmid libraries in metagenomic studies of

microbiomes.

Cross-References

▶A De Novo Metagenomic Assembly Program

for Shotgun DNA Reads

▶ Fosmid System

▶KEGG and GenomeNet, New Developments,

Metagenomic Analysis

▶ Phylogenetics, Overview

Use of Bacterial Artificial Chromosomes in Metagenomics Studies, Overview 679 U

U

http://www.sbg.bio.ic.ac.uk/phyre2/
http://dx.doi.org/10.1007/978-1-4899-7478-5_726
http://dx.doi.org/10.1007/978-1-4899-7478-5_726
http://dx.doi.org/10.1007/978-1-4899-7478-5_115
http://dx.doi.org/10.1007/978-1-4899-7478-5_694
http://dx.doi.org/10.1007/978-1-4899-7478-5_694
http://dx.doi.org/10.1007/978-1-4899-7478-5_708


References

Andrews-Pfannkoch C, Fadrosh DW, Thorpe J,

Williamson SJ. Hydroxyapatite-mediated separation

of double-stranded DNA, single-stranded DNA, and

RNA genomes from natural viral assemblages. Appl

Environ Microbiol. 2010;76:5039–45.

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S,

Mauceli E, Berger B, Mesirov JP, Lander

ES. ARACHNE: a whole-genome shotgun assembler.

Genome Res. 2002;12:177–89.
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Use of Viral Metagenomes from
Yellowstone Hot Springs to Study
Phylogenetic Relationships and
Evolution

Thomas W. Schoenfeld and David Mead

Lucigen Corporation, Middleton, WI, USA

Introduction

High-temperature subterrestrial aquifers are vast

ecosystems fueled solely by chemical reducing

potential rather than solar radiation as is the case

for surface life (Fournier 2005). The volume of

the global thermal aquifer has been estimated as

high as 1019 L (Gold 1992), with microbial and

viral abundances approaching those of the oceans

(Breitbart et al. 2004b). This study, previously

reported in Pride and Schoenfeld (2008),

Schoenfeld et al. (2008), and Heidelberg

et al. (2009), examined planktonic viruses

directly isolated from two mildly alkaline sili-

ceous hot springs in Yellowstone National Park

(YNP). With temperatures of 74 �C and 93 �C,
life in these springs is comprised exclusively of

bacterial and archaeal cells and viruses, all

uniquely adapted to the temperature and chemis-

try extremes of the environment (Reysenbach

et al. 2002). The springs in these water-driven

systems are direct outflows of the thermal aquifer

and not secondarily heated surface water, as is the

case for vapor-driven systems (Fournier 2005).

In this respect they are distinct from acidic

springs, mud pots, and other thermal features

that have provided many of the published ther-

mophilic virus samples. Because the springs are

direct outflows of the aquifers, conceivably,

viruses in these springs may proliferate not only

at the surface but deeper in the vent as well,

where increased pressures and temperatures as

high as 180–270 �C are found at depths of

100–550 m throughout the caldera of YNP

(Fournier 2005). If viruses proliferate in the sub-

surface aquifer, hot springs separated by kilome-

ter distances that share common water sources

may also share viral populations.

The roles of viruses in the ecology of hydro-

thermal environments have not been studied in

detail, although they appear to play a role in host

mortality and carbon cycling (Breitbart et al.

2004b) and are probably the only predators. In

better studied marine environments, an estimated

1030 viruses in the world’s oceans (Suttle 2007)

may comprise several hundred thousand different

types (Angly et al. 2006) and are responsible for

a significant proportion of microbial mortality

and thus have a profound influence on carbon

and other nutrient cycles (Suttle 2007). Viruses

also may be important vehicles for lateral gene

transfer via lysogeny and transduction and prob-

ably promote diversity by preferentially lysing

the most abundant species (Weinbauer and

Rassoulzadegan 2004). Analyses of viral

metagenomes (Cann et al. 2005; Angly 2006;

Bench et al. 2007) and cultured viral genomes

(Pedulla et al. 2003; Kwan et al. 2005) have

consistently shown that a minority of these

sequences have detectable similarity to

sequences in GenBank and very few are similar

to known viruses. In spite of extensive sequenc-

ing of marine virus metapopulations, only a few

small RNA genomes of 5–10 kb have been

assembled (Culley et al. 2007), presumably due

to the extreme viral diversity that confounds

the assembly of viral genomes (see

Chaps. 2–10, Vol. I).

Enrichment cultivation has provided most of

the knowledge of thermophilic viruses (defined

here as those growing at >70 �C). Since the first
reports of thermophilic viruses (Sakaki and

Oshima 1975; Martin et al. 1984), hundreds of

bacteriophages (Yu et al. 2006), dozens of

crenarchaeal viruses (reviewed in Snyder

et al. 2003; Prangishvili and Garrett 2005), and

one euryarchaeal virus (Geslin et al. 2003) have

been isolated from thermal springs and vents

around the world. Cultivated Thermus bacterio-

phages belong to four morphological families:
Myoviridae, Siphoviridae, Tectiviridae, and

Inoviridae (Yu 2006). Their morphologies and

the available genomic sequences (Naryshkina

et al. 2006) suggest similarity to mesophilic bac-

teriophages. Most known thermophilic bacterio-

phages appear to be lytic, although this could be
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biased by the method of their discovery

(Yu 2006). Cultivated thermophilic crenarchaeal

viruses infect the genera Sulfolobus, Acidianus,
Pyrobaculum, and Thermoproteus. Morphol-

ogies and genome content suggest crenarchaeal

viruses are unrelated to viruses of Euryarchaeota,
Bacteria, or Eukarya (Prangishvili et al. 2006a).

All of the cultivated crenarchaeal viruses prolif-

erate as chronic, nonlytic infections.

While enrichment cultures have been highly

informative in the study of thermophilic viruses,

important contextual information such as relative

abundance, diversity, and distribution is lost. Fur-

thermore, these analyses exclude the majority of

viruses that are not readily cultivated (Snyder

et al. 2004). No viral cultivation study fully rep-

licates the temperature and pressure extremes and

the chemistries that characterize the subsurface

vents, which limits cultivation of not only viruses

but hosts, as well. Unlike cellular life, no univer-

sal genetic marker (e.g., rDNA) exists for viruses.

Direct metagenomic analysis of viruses from

environmental samples circumvents these limita-

tions and provides insight into biology, evolution,

and adaptations to the environment and compo-

sition of viral assemblages through studies of

their genomic sequences. No metagenomic anal-

ysis of waterborne viral populations in geother-

mal environments has been reported. In fact,

planktonic life in thermal environments is

under-explored in general, with microbial diver-

sity studies of hot spring environments focused

almost exclusively on sediments (Barns

et al. 1994; Hugenholtz et al. 1998; Blank

et al. 2002), adherent filaments (Reysenbach

et al. 1994), or mats (Ward et al. 1998). The

goal of this study was to profile the diversity,

composition, and adaptations of viral assem-

blages in two hot springs of YNP based on

metagenomic analysis of viruses inhabiting

these environments.

Materials and Methods

Site Description and Sampling

Viral particles were isolated from Bear

Paw (an unofficial name for LRNN374)

(N 44.5560955 W110.8347866) and Octopus

(N44.5340836 W110.7978895) hot springs

(Stoner et al. 2001). The temperatures of the hot

springs are based on direct measurement on the

day of the sampling. The pH values were deter-

mined by the USGS (McCleskey et al. 2004).

Thermal water (400–600 L) was filtered using

a 100 kD MWCO tangential flow filter

(GE Healthcare). Viral particles were concen-

trated to 2 L, filtered through a 0.2 mm filter and

further concentrated to 100 ml using a 100 kD

filter. Viral concentrates were imaged by trans-

mission electron microscopy (TEM) (Leo 912AB

operating at 80KV). Direct viral enumeration was

performed by epifluorescencemicroscopy (Noble

and Fuhrman 1998). As recommended (Wen

et al. 2004), samples were unfixed and were

stained with SYBR Gold. The samples were

stored at 4 �C for no more than 24 h before

counting. Immediate freezing of samples in liq-

uid nitrogen was not possible, so viral abun-

dances may be somewhat underestimated.

Viral DNA Processing and Extraction

Viral concentrates were centrifuged at 12 K rpm

for 20 min, syringe-filtered using a 0.2 mm
Acrodisc filter (Gelman), and further concen-

trated to 400 ml by filtration using a 30 kD

MWCO Centricon spin filter (Millipore). Those

judged by epifluorescence microscopy to be sub-

stantially free of microbial cells were used for

library construction. Viral concentrates were

transferred to SM buffer (0.1 M NaCl, 8 mM

MgSO4, 50 mM Tris-HCl pH 7.5) using a 30 kD

MWCO spin filter. Benzonase endonuclease

(Sigma, 10 U) was added, and the reactions

were incubated for 30 min. at 23 ºC. EDTA

(20 mM), SDS (0.5 %), and Proteinase

K (100 U) were added, and the reactions were

incubated for 3 h at 56 �C. NaCl (0.7 M) and

CTAB (1%) were added, and DNAwas extracted

with phenol/chloroform and ethanol precipitated.

Library Construction and Sequencing

Viral DNA was physically sheared to 3–6 kb

using a HydroShear device (Genomic Solutions,

MI). The ends were made blunt using the

DNATerminator end repair kit (Lucigen, WI),
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and the fragments were ligated to a

double-stranded asymmetrical linker comprised

of one phosphorylated blunt end

(50-GATGCGGCCGCTTGTATCTGATACTG-
CT-30, Linker 1) and one non-phosphorylated

staggered end (50-GGAGCAGTATCAGATA
CAAGCGGCCGCATC-30, Linker 2) to fix the

primer in a defined orientation relative to the

genomic DNA. Gel fractionation was used to

remove unligated linkers and to isolate 3–6 kb

fragments. These fragments were PCR amplified

using Vent DNA polymerase (New England

Biolabs, MA) and a primer targeted to Linker 1

(50-AGCAGTATCAGATACAAGCGGCCGCA
TC-30). Amplification products were gel purified

again, inserted into the cloning site of the

transcription-free pSMART vector (Lucigen),

and used to transform E. coli 10G cells

(Lucigen). Libraries were sequenced by the

Department of Energy’s Joint Genome Institute

(Walnut Creek, CA). The sequences were depos-

ited in the GenBank trace archive and are retriev-

able using CENTER_NAME ¼ “JGI” and

SEQ_LIB_ID ¼ “AOIX” for Bear Paw

sequences and SEQ_LIB_ID ¼ “APNO” and

SEQ_LIB_ID ¼ “ATYB” for octopus

sequences.

Bioinformatics

Viral metagenome sequencing reads were com-

pared to the nonredundant (nr) protein database

(GenBank) using BLASTx (Altschul et al. 1997).

The 50 most significant BLASTx scores

(E < 10�3) were recorded. The first occurrences

of keywords in the output of the BLASTx were

counted using PERL scripts written for this pro-

ject, and the sequences were categorized by func-

tion. Sequences were assembled using the

SeqMan® program (DNASTAR, WI) at

a minimum of 50 % or 95 % identity over a min-

imum of 20 nt. Metagenome sequence libraries

were compared to each other and to all the

sequences in GenBank using tBLASTx (NBCI)

with a cutoff of E < 10�3. Where indicated, the

apparent open reading frames were identified and

translated using the Gene Mark program

(Lukashin and Borodovsky 1998). These trans-

lations were compared to the nr protein database

using the BLASTp program. The rank abun-

dances were calculated using the PHAge Com-

munity from Contig Spectrum (PHACCS) web

utility located at http://phage.sdsu.edu/research/

tools/phaccs/ (Angly et al. 2005) based on an

average genome length of 50 kb.

Results and Discussion

Sampling Sites, Viral Abundance, and

Morphologies

The two hot springs that provided samples are

listed in Table 1. Bear Paw hot spring is in the

river group of the lower geyser basin of YNP,

while Octopus is about 5 km away in the White

Creek area. Although the pH values of these hot

springs are both circumneutral, the temperatures

and apparent microflora differ widely. Bear Paw

is significantly cooler and is characterized by

orange sedentary microbial growth in the pool.

Octopus water emerges at the boiling point at the

local elevation of 2,300 m, with none of the

orange growth. Octopus hot spring is well

documented to support prolific microbial life

(Brock and Brock 1968), and its geochemistry

(McCleskey 2004) is suitable for chemotrophic

metabolism. Reported analyses based on rDNA

sequences from filaments and sediments

(Reysenbach et al. 1994; Blank et al. 2002)

show that microbial diversity is relatively limited

compared to moderate-temperature environ-

ments. These studies and others comparing lipid

and isotope composition (Jahnke et al. 2001) sug-

gest the microbes in the filaments and the sedi-

ments, close in proximity and temperature to the

sample site in this study, are primarily Bacteria,

with Aquificales and Thermotogales most highly

represented. No detailed study of the planktonic

life from Octopus or the chemical composition or

life in Bear Paw has been published.

Virus-enriched fractions were isolated from

400 to 600 L of hot spring water for library

construction and sequence analysis. Viral abun-

dances (Table 1) were at the lower end of the

range of 104–109 reported for thermal springs in

Long Valley, California (Breitbart et al. 2004b),

and moderate-temperature aquatic environments
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(Wommack and Colwell 2000). The virus/

microbe ratios (VMRs) in the hot springs were

much lower than in moderate-temperature envi-

ronments (typically 3–10). These low VMRsmay

be related to the observation that none of the

cultured thermophilic crenarchaeal viruses pro-

liferate via lytic infections, a lifestyle that would

result in large burst sizes at the same time as the

microbial population is reduced. Actual yields of

viruses were significantly below theoretical

yields (Table 1) for both two hot springs. It is

not known if this loss was systematic and, there-

fore, biased the metagenomic analysis. Tailed,

rod-shaped, and filamentous morphologies were

observed in the concentrates (Fig. 1).

Morphologies of viral particles in the concen-

trates represent most morphological families of

known thermophilic viruses. Tailed morphol-

ogies are commonly associated with bacterio-

phages and euryarchaeotal viruses (Geslin

et al. 2003; Yu et al. 2006); rod-shaped and fila-

mentous morphologies are more commonly asso-

ciated with crenarchaeal viruses (Prangishvili

and Garrett 2004).

Library Construction and Sequencing

Advances in sequencing capacity make analyses

of large numbers of clones feasible; however,

Use of Viral Metagenomes from Yellowstone Hot Springs to Study Phylogenetic Relationships and Evolu-
tion, Table 1 Sample sites and abundance of viral and microbial counts

Hot

spring Temp pH Cells/mL Viruses/mL

Virus:

microbe ratio

Virus/mL in

concentrate

Virus/mL

theoreticala Efficiency

Bear

paw

74 7.34 4.3 � 106 1.44 � 106 0.33 1.48 � 108 7.21 � 109 2.1 %

Octopus 93 8.14 9.0 � 105 3.07 � 105 0.34 2.18 � 108 1.53 � 109 14.2 %

aBased on a concentration factor of 5,000 � (500 L to 100 mL)

Use of Viral
Metagenomes from
Yellowstone Hot Springs
to Study Phylogenetic
Relationships and
Evolution, Fig. 1 TEM

images of viruslike

particles directly isolated

from YNP hot springs.

Images from Bear Paw

(Panels a and b) and
Octopus (Panels c and d)
hot springs are shown. The

bar in each figure is 200 nm

(Images are courtesy of Sue

Brumfield and Mark

Young, Montana State

University. Reproduced

with permission from

Schoenfeld et al. (2008))
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challenges in sampling and library construction

have prevented the widespread use of

metagenomic shotgun sequencing for studying

viral populations. At around 50 ag of DNA per

virus, abundances of 105–106 viruses per ml cor-

respond to 5–50 ng of viral DNA per liter. In

practice, processing of hundreds of liters of

spring water generally yielded no more than

100 ng of DNA, much lower than is normally

required for library construction. This low yield

of virus precluded cesium chloride purification

of the viral particles, as is commonly used for

marine viral metagenomic library construction.

Viral DNA also contains cytotoxic genes and

modified nucleotides that induce host restriction

systems. A linker-dependent, anonymous

method of DNA amplification was used to access

this diversity, allowing construction of 3–8 kb

insert libraries with none of the potential modi-

fied nucleotides. This library construction

method has been used in the analysis of several

cultivated and uncultivated viral genomes

(Breitbart et al. 2003, 2004a; Seguritan

et al. 2003; Lindell et al. 2004; Paul et al. 2005;

Bench et al. 2007) but never fully described.

Viral DNA was physically sheared, and short

(20 bp) linkers were ligated to the DNA frag-

ments to serve as priming sites for PCR. Ampli-

fied fragments were cloned into a transcription-

free pSMART vector to minimize cloning

bias due to cytotoxic sequences (Godiska

et al. 2005). The use of flanking synthetic linkers

provides identical primer annealing sites for

each viral template in the mixture, which signif-

icantly limits amplification bias. A noteworthy

characteristic of this approach is that it

selects exclusively for dsDNA viruses. All culti-

vated thermophilic bacteriophage and archaeal

viruses have dsDNA genomes except certain

Thermus-specific Inoviruses, which have ssDNA

genomes (Yu et al. 2006). Notably, several viral

nucleic acid preparations from these and other

springs sampled as part of this study had RNase-

digestible material (data not shown), suggesting

that RNA viruses inhabit these hot spring

environments.

A total of 28,883 Sanger sequence reads were

determined from Bear Paw (7,685 reads) and

Octopus (21,198 reads) hot springs. Paired-end

reads averaged 981 nucleotides each or nearly

30 Mb total. Assuming an average genome size

of 50 kb, which is supported by agarose gel elec-

trophoresis of the viral genomic DNA (data not

shown), this sequencing depth represents about

600 viral genomic equivalents. The quality of the

libraries is highly dependent on the amount of

DNA used in their construction. The sequence

reads of the Octopus library contained very few

anomalies that would suggest amplification bias

or cloning artifacts. Some of the reads from the

Bear Paw library were less random than the Octo-

pus library, as demonstrated by several cases of

sequence stacking.

Contaminating cellular DNA in viral DNA

preparations was greatly reduced by filtration

and nuclease treatment. Only viral preparations

substantially free of microbial cells as judged by

epifluorescence microscopy were used for library

construction. Detection of rDNA sequences (5S,

16S, and 23S) in the libraries was used to identify

contaminating cellular DNA. These sequences

are absent in known viral genomes but highly

conserved in microbial cells. A typical bacterial

genome contains 15 rRNA genes (Coenye 2003).

Most hyperthermophilic archaeal and bacterial

genomes contain three to six rRNA genes,

although the genomes of thermophilic

Geobacillus that grow in the temperature range

of Bear Paw contain up to 30 rRNA genes (Feng

et al. 2007). BLASTn analysis identified only

four rDNA sequences in the 10.4 microbial

genome equivalents sequenced from the Octopus

library (two 23S and two 16S) and eight in the 3.8

microbial genome equivalents from the Bear Paw

library, suggesting viral enrichment was quite

high, particularly for the Octopus library. This

inference is supported by a high similarity to

sequences of cultivated viruses (shown below)

and a large number of BLASTx similarities to

genes associated with viral functions. In particu-

lar, the hundreds of presumptive genes for viral

functions, such as replication, transcription,

translation, lysogeny, recombination, lysis, and

structural proteins (Table 2), are consistent only

with a predominately viral origin of the

sequences.
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Identification of Likely Gene Products
and Viral Lifestyles

BLASTx analysis of the individual reads was

used to identify coding sequences in the libraries.

While most reads revealed no significant similar-

ity to known proteins (i.e., no BLASTx similar-

ity; Table 2), a significant portion of the

sequences could be assigned an apparent function

based on BLASTx analysis. The majority of these

predicted functions fall into five of the 23 NCBI

Clusters of Orthologous Groups (COG) func-

tional categories (Tatusov et al. 1997) or are

virus-specific functions that have no assigned

COG function, e.g., lysin, packaging, capsid,

tail, or tape measure protein (Table 2). The five

COG categories are all nucleic acid metabolism-,

information processing-, and translation-related

functions, which are commonly associated with

phages and viruses.

Certain similarities were particularly informa-

tive. The 532 lysin-like genes among 600 viral

equivalents suggest lytic viruses are quite com-

mon in the hot springs, in contrast to the cultured

thermophilic crenarchaeal viruses, all of which

are nonlytic. Although lysin genes were highly

abundant and are typically proximal to holin

genes, no homologs for holins were seen, proba-

bly reflecting the high molecular diversity

observed in known holin genes (Young 1992).

The 86 apparent integrase genes imply that

lysogeny is also common in thermal aquifers,

consistent with previous studies that show

integrase homologs in six crenarchaeal viral

genomes (ATV, STSV1, and four SSV isolates)

(Wiedenheft et al. 2004; Xiang et al. 2005;

Prangishvili et al. 2006b), and induction of pro-

phage by mitomycin C in 1–9 % of hot spring

microbial cells (Breitbart et al. 2004b).

Viruses and Lateral Gene Transfer in
Thermal Environments

Viruses have been implicated in lateral gene

transfer and nonorthologous gene replacement

in cellular genomes (Villarreal and DeFilippis

2000; Daubin and Ochman 2004). Viruses also

may have played critical roles in the evolution of

DNA as a genetic material, DNA replication

mechanisms, the separation of the three domains

of life, and the origin of the eukaryotic nucleus,

reviewed in Forterre (2006). Gene similarities

seen in the metagenomic libraries support the

role of viruses in cellular evolution. The 13 appar-

ent reverse transcriptases were almost exclu-

sively related to the intron-associated maturase/

reverse transcriptases and retrotransposon

reverse transcriptases. These genes and the

recombinase, integrase, and transposase genes

represent 5.1 % and 3.4 % of the identifiable

reads in the Bear Paw and Octopus libraries,

Use of Viral Metagenomes from Yellowstone Hot Springs to Study Phylogenetic Relationships and Evolu-
tion, Table 2 Functional grouping of predicted genes in the viral metagenomes

Bear paw Octopus Bear paw Octopus

Total reads 7,685 21,198

No BLASTx similarity 2,545 8,469

COGs functional category Number of reads matching

a keyword

Percent with a keyword

match

F. Nucleotide transport and metabolism 1,445 2,130 35.09 % 37.81 %

J. Translation, ribosomal structure, and biogenesis 221 336 5.37 % 5.96 %

K. Transcription 278 325 6.75 % 5.77 %

L. Replication, recombination and repair 688 989 16.71 % 17.55 %

O. Posttranslational modification, protein turnover, chaperones 181 213 4.40 % 3.78 %

None virus specific 350 596 8.50 % 10.58 %

No match to a keyword 955 1,045 23.19 % 18.55 %
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respectively, suggesting that the appropriate

machinery for lateral gene transfer exists in hot

spring viral genomes (Canchaya et al. 2003).

Other sequence similarities provide evidence

of ongoing gene transfer within these

populations. Helicase genes shared among

viruses and cells from all domains have been

considered examples of nonorthologous replace-

ment of cellular genes by viral genes (Filee

et al. 2003). Hundreds of reads showed sequence

similarity to the superfamily II helicases of

a wide range of cells and viruses. For example,

the 2 kb Octopus contig 158 had significant sim-

ilarity to helicases of bacterial, archaeal, and

eukaryotic cells as well as to phage and archaeal

viruses (Table 3).

Also common in the metagenomic libraries

are presumptive ribonucleotide reductases

(14 and 50 in Bear Paw and Octopus springs,

respectively) and thymidylate synthase (seven

and 51, respectively) genes. The conservation of

these genes between viral and cellular genomes

of all domains and the biochemical activities of

the gene products imply that viral genes played

a key role in the transition from RNA-based to

DNA-based genomes (Forterre 2005). DNA

polymerase (pol) genes have also been proposed

as likely examples of nonorthologous replace-

ment by viral genes (Filee et al. 2002). 156 pol

gene homologs were identified in the two

metagenomic libraries, with all the polymerase

families represented. In contrast, only one pol

gene has been identified by BLASTx analysis of

the known crenarchaeal viral genomes (ABV),

and three pol genes are found in thermophilic

bacteriophage genomes (Hjörleifsdottir

et al. 2002); Naryshkina 2006). The high abun-

dance of both pol and lys genes in the

metagenomic libraries compared to cultured

genomes suggests that the current view of diver-

sity may be biased by the difficulty in culturing

certain types of viruses.

Sequence Assembly and Estimation of
Viral Diversity

The degree to which metagenomic reads assem-

ble has been used to assess the diversity of the

viral populations. Previous studies have used

>95 % identity over 20 nucleotides as the assem-

bly stringency (Breitbart et al. 2002, 2004a;

Breitbart 2003; Angly et al. 2006). Using this

criteria, the power law rank-abundance model

built into the Phages Communities from Contig

Spectrum tool (PHACCS, 5) predicted 1,400 and

1,310 viral types in Bear Paw and Octopus hot

springs, respectively, with no one viral type

representing more than about 2 % of the popula-

tion (Table 4). For reference, 1,650, 3,350, 7,180,

7,340, and 2,390 viral genotypes were reported in

estuarine, nearshore marine, open ocean, marine

sediments, and fecal viral assemblages, respec-

tively (Breitbart et al. 2002, 2003, 2004a; Angly

et al. 2006; Bench et al. 2007), with no single

viral species representing more than 2–3 % in

any case.

There are several limitations in assessing

actual numbers of viral species from

metagenomic libraries. First, these models

assume viral genomes evolve uniformly. How-

ever, different regions of viral genomes are

clearly more conserved than others (Lindell

et al. 2004). Genetic diversity outside the

Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Table 3 Sources of superfamily II helicase

similarities to Octopus contig 158 and strength of similar-

ity by BLASTx

Source of similarity Domain E-value

Staphylococcus phage Twort Bacteriophage 2E-16

Myxococcus xanthus Bacteria 1E-15

Sulfolobus islandicus
filamentous virus

Archaeal

virus

8E-15

Lactobacillus plantarum
bacteriophage

Bacteriophage 3E-14

Pyrococcus abyssi Archaea 4E-08

Sulfolobus solfataricus Archaea 1.E-06

Eremothecium gossypii
(a fungus)

Eukarya 9.E-05

Tribolium castaneum
(an insect)

Eukarya 4.E-04

Homo sapiens Eukarya 6.E-03
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conserved regions is probably higher than these

models indicate. Second, the generation of new

viral species bymosaicism, modular evolution, or

lateral gene transfer (Villarreal and DeFilippis

2000; Canchaya et al. 2003; Weinbauer and

Rassoulzadegan 2004) would not be detected

using assembly of <1 kb sequence reads. On the

other hand, given the dynamic nature of viral

genomes, this approach is well suited to a view

of the diversity and evolution of viruses that

considers genes or groups of genes rather than

whole genomes. Finally, assembly at >95 %

nucleotide identity fails to account for molecular

diversity among related viral types, which is

higher than that of cellular species. In fact such

stringency would fail to associate viruses that,

based on classical criteria (host range, morphol-

ogy, replication lineages, and physicochemical

and antigenic properties), are considered to be

related (LucchiniS and Brussow 1999; Hatfull

et al. 2006; Kwan et al. 2006) although they

may share as little as 50 % nucleotide identity

over much of their genomes.

Lower Stringency Assemblies Reveal
Population Heterogeneity

To accommodate genomic heterogeneity inher-

ent to viral populations, sequences were also

assembled at 50 % identity (Table 4). As

expected, the numbers of viral types decreased

to 548 and 283 in Bear Paw and Octopus,

respectively. These lower stringency assemblies

proved quite useful for associating sequences of

related, but not identical, viral types and for

studying diversity among these related viruses.

At 95 % identity, the largest contigs were 3.5 and

4.6 kb for Bear Paw and Octopus, respectively

(Table 4). At 50% identity, Octopus reads assem-

bled into 17 contigs of greater than 10 kb, includ-

ing contigs of 35 kb and 19 kb, comprised of

>1,000 reads each. In each case, reads were

evenly distributed across the contigs. The

17 > 10 kb contigs comprise a total of 7.04

Mbp (33 % of total metagenomic sequence) or

about 140 viral equivalents. The four strongest

BLASTx hits to the 35 kb contig belonged to

thermophilic crenarchaeal viruses Acidianus
Rod-shaped virus (ARV), Sulfolobus islandicus

rod-shaped viruses 1 (SIRV1) and 2 (SIRV2),

and Sulfolobus islandicus filamentous viruses
(SIFV) (Table 5). The only significant similarity

for the 19 kb contig was to the thermophilic

crenarchaeal virus, Pyrobaculum spherical virus
(PSV). In the Bear Paw library, with roughly one

third as many reads, the largest contig that assem-

bled at 50 % identity was 8 kb. Five hundred

thirty four (7 %) of the reads assembled into

19 contigs >4 kb. These include 0.5 Mbp of

reads or ten viral equivalents.

The larger composite contigs allow associa-

tions that were impossible at standard stringency.

More than 200 million bases have been

sequenced frommarine viral metagenomic librar-

ies, but only one small phage genome has been

Use of Viral Metagenomes from Yellowstone Hot Springs to Study Phylogenetic Relationships and Evolu-
tion, Table 4 Sequence assembly data and estimation of viral diversity

Bear paw Octopus Totals

Sequence reads 7,685 21,198 28,883

Bear paw 95 % Octopus 95 % Bear paw 50 % Octopus 50 %

Contigs assembled 6,191 13,543 4,850 4,788

Avg. reads per contig 1.239 3.129 1.587 4.427

Largest contig (nt) 3,503 4,554 8,007 35,089

Power law richness 1,440 1,310 548 283

Evenness score 0.946 0.954 0.933 0.936

Most abundant virus 2.14 % 1.88 % 3.93 % 4.88 %

Shannon-Wiener score 6.88 6.85 5.88 5.29
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reconstructed (Angly et al. 2006). To validate the

low-stringency assemblies and to further study

the molecular biology of the viruses, the 4 kb

cognates of one contig of four reads that assem-

bled at 50 % NAID were PCR amplified, cloned,

and sequenced (Schoenfeld 2014). This confirms

that at least this assembly accurately reflects the

virome sequence. Furthermore, this contig

includes an apparent replisome, and amplifica-

tion based on the low-stringency assembly allows

study of an operon that, due to its size, could not

otherwise be recovered from the fragmentary

metagenomic data.

Certain contigs provide compelling evidence

that the 50 % assemblies associate genuine

orthologous sequences. An example is Bear Paw

contig 327 (Fig. 2). Eleven open reading frames

(ORFs) were identified by the GeneMark algo-

rithm (Lukashin 1998). BLASTp analysis of each

shows strongest similarity to the putative coding

sequences of PSV (Haring et al. 2004). Nucleo-

tide identities were as high as 88 %, gene order is

perfectly preserved relative to the cultured virus,

and gene overlap is identical between the com-

posite contig and the cultivated virus. Interest-

ingly, two different ORFs of the PSV genome, gp

4 and 5, are apparently related to each other, since

both had significant similarity to the same region

of the consensus contig. In both the cultured viral

genome and the consensus contig, the gp7 PSV

gene overlaps gp6 in the opposite orientation.

Contig 722 from the Octopus spring library

provided a unique opportunity to associate

population diversity of an assembled

metagenome with the biochemistry of the gene

products (Fig. 3). This 16.5 kb contig, assembled

at 50 % identity, includes 187 reads (average cov-

erage of 11 reads per nucleotide position).

GeneMark predicted 26 ORFs of greater than

100 nucleotides, including an apparent replication

operon. The genes with the strongest similarity to

four of these ORFs encode primase, uracil DNA

glycosylase, family B DNA polymerase, and

nucleotide excision repair nuclease (dnaG, udg,

polB, and ERCC4 genes, respectively). Homologs

of these ORFs belong to crenarchaeal DNA repli-

cation/repair complexes (Roberts andWhite 2003;

Dionne and Bell 2005; Barry and Bell 2006). The

predicted polB gene showed 28 % identity to

Pyrobaculum islandicus polB2 (Kahler and

Antranikian 2000) and has an archaeal codon pro-

file (data not shown). Sequences from three of the

discreet clones that comprise the polB gene in this

contig have been expressed in E. coli to produce

a functional thermostable DNA polymerase (data

not shown). This contig also contains apparent

homologs to a zinc fingerlike protein and

a transposon-like integrase/resolvase (tnp), func-

tions commonly associated with viruses and

phages. Another ORF with highest similarity to

the CRISPR-associated sequence cas4 (Haft

et al. 2005) is unlikely to be part of a functional

CRISPR system. Unlike authentic Cas sequences,

this one is virus-derived and is not proximal to

a CRISPR sequence or other typically associated

sequences. More likely this gene is a separate

member of the Cas4 COG, presumably a RecB-

like exonuclease (Haft et al. 2005).

To correlate the level of sequence divergence

with predicted gene function, SNP frequency

was aligned to the 50 % assembly consensus

sequence of the contig. Overall distribution of

SNPs in the contig was 0.705 per 10 bp.

Replication-associated genes showed noticeably

lower molecular diversity than the other ORFs.

SNP distribution in the dnaG, udg, polB, and

ERCC homologs was 0.565, 0.617, 0.569, and

0.548 per 10 bp, respectively, while the distribu-

tion in the Zn finger, cas4, and thyA homologs

was 0.979, 1.31, and 0.728, respectively.

Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Table 5 Numbers of 95 % contigs with

tBLASTx similarities (E < 0.001) to the respective cellu-

lar genomes

Bear Paw Octopus

Pyrobaculum 124 684

Archaea

Aeropyrum 62 626

Sulfolobus 38 326

Acidianus 25 185

Bacteria

Aquifex 474 1,138
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Similarities to Known Viral and
Microbial Genomes Imply Phylogeny

tBLASTx analysis was used to infer phylogenetic

origin of the 95 % assembled contig sequences.

A majority of the contigs (41 % from Bear Paw

and 63 % from Octopus) had no tBLASTx simi-

larity (E < 0.001) to any sequence in GenBank

(Fig. 4). Although it is typical for viral

metagenomic libraries analyzed in this way to

have a high proportion of sequences without

identifiable homologs, these libraries contained

1000
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Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Fig. 2 Genes and gene order are highly con-

served between a cultured crenarchaeal virus and

a consensus contig from the Bear Paw library. Contig

372 (5,492 bp, 71 reads) was assembled at 50 % identity

from the Bear Paw library. Open reading frames identified

by GeneMark algorithm were compared by BLASTp to

proteins in GenBank. Similarities to Pyrobaculum spher-
ical virus proteins are shown with percent coding identity.
The gene names are based on the annotation in GenBank

and are named in order of their location on the viral

chromosome. Direction of transcription is indicated by

the arrows (Reproduced with permission from Schoenfeld

et al. (2008))
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Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Fig. 3 Alignment of nucleotide polymor-

phisms with coding sequences in a 16.5 kb consensus

contig from Octopus hot spring. Contig 722 was assem-

bled at�50% identity from the Octopus library. Sequence

coverage is shown on the top, with each line representing

a separate read. Single-nucleotide polymorphisms per ten

base pairs were normalized to the number of reads cover-

ing the respective nucleotide (middle) and are aligned with
predicted open reading frames from the consensus

sequence in the contig and the gene name of the strongest

BLASTx similarity (bottom). Direction of transcription is
shown by the arrows. Similarities to known genes were

identified by BLASTp (Reproduced with permission from

Schoenfeld et al. (2008))
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the highest frequency of novel sequence reported

to date using long read Sanger chemistry. This

trend likely reflects the lack of sequence data

from microorganisms in high-temperature envi-

ronments as well as high diversity.

Interestingly, the libraries contained a sizable

number of sequences with homology to eukary-

otic genes, 16.5 % for Octopus Spring and 8.3 %

for Bear Paw, which may reflect the commonly

observed overlap in gene sequence homology

between Archaea and Eukarya (Brown and Doo-

little 1997). Almost all known crenarchaeal

viruses were cultivated on three archaeal genera,

Pyrobaculum, Sulfolobus, and Acidianus. Inter-

estingly, these genera were three of the four most

common archaeal sources of the sequence simi-

larities to the two libraries, the other being

Aeropyrum (Table 5). Genetic similarities to

Sulfolobus and Acidianus are surprising because

these two genera have been found exclusively in

highly acidic environments. Nearly half the bac-

terial similarities were to Aquifex. Apparently no

attempts have been made to cultivate phage on

any strain in the Aquificales order.

Genome Signature Sequences to
Associate Host/Virus Sequences

The ability to determine phylogenetic relation-

ships in viral metapopulations is important to

the current understanding of their community

composition and function. In the absence of uni-

versal signature genes like 16S sequences,

BLASTx and tBLASTx alignments have been

the primary tools to determine phylogeny of

viral metagenomic sequences and to correlate

them with their respective hosts. BLASTx and

tBLASTx focus on amino acid sequence similar-

ities and ignore differences in codon usage and

other patterns of nucleotide content, which can be

highly informative.

Sequence signature-based methods, indepen-

dent of nucleotide or amino acid alignment, are

being developed to classify the phylogenies of

viral metagenomes and their hosts. Phylopythia

is an approach designed for cellular

metagenomes (McHardy et al. 2007; see also

Chap. 47, Vol. I) that classifies based on oligonu-

cleotide composition differences. Alternative
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Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Fig. 4 Broad classification of viral

metagenomic contigs based on tBLASTx similarities.

Contigs assembled at 95 % identity from Bear Paw and

Octopus reads (Panel a and b, respectively) were

compared to sequences in GenBank to infer phylogeny.

Shown are frequencies of contigs with no significant

sequence similarity in GenBank (E < 0.001) and those

with sequence similarity to Bacteria, Archaea, Eukarya,
and their respective viruses (Reproduced with permission

from Schoenfeld et al. (2008))
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approaches use differences in codon usage, which

are generally conserved between hosts and

viruses (Lucks et al. 2008). Genome signature-

based phylogenetic classification (GSPC) ana-

lyzes differences in di-, tri-, and tetranucleotide

utilization patterns to associate phylogenetic

relationships, which are influenced by codon

usage bias, as a basis for correlating hosts and

viruses (Pride et al. 2006; Yooseph and Sutton

2008).

A GSPC study based on tetranucleotide utili-

zation in the Yellowstone viral metagenomes

from Bear Paw and Octopus hot springs was

reported in Pride and Schoenfeld (2008), which

includes the details of the analysis and the statis-

tical support. To be statistically significant, the

analysis used only contigs >1.9 kb (3.8 kb when

analyzing both strands) assembled at 95 % iden-

tity. Contigs of this size should include 95 % of

tetranucleotide combinations at least 7.5 times.

Approximately 19.3 % and 39.0 % of the Bear

Paw and Octopus metagenomic contigs, respec-

tively, representing the more abundant viruses,

conformed to these criteria. The GSPC analysis

classified 20 of 22 Bear Paw contigs and 69 of

70 Octopus contigs, a much higher proportion of

the reads than either BLASTx or Phylopythia

with significantly stronger statistical support

(see Pride and Schoenfeld 2008). The method is

useful to group contigs by relatedness, which

might assist assembly, and to infer phylogenies

and hosts. The GSPC analysis suggests that Octo-

pus viruses belong primarily to archaeal families

Globuloviridae and Fuselloviridae (56 of 69)

while Bear Paw members belong primarily to

the bacteriophage family Caudoviridae
(includes Myoviridae, Podoviridae, and

Siphoviridae) (17 of 20). The analysis also esti-

mates that 80 % of the Octopus contigs have

archaeal signatures, while 77 % of Bear Paw

contigs had bacterial signatures, a finding consis-

tent with BLASTx analysis.

The apparent predominance of archaeal

viruses seems inconsistent with the reported

dominance of Octopus sediments and filaments

by Bacteria (Blank et al. 2002; Rachel

et al. 2002). Furthermore, the viral populations

appear much more diverse than would be

predicted based on the low diversity of microbes

in the sediments and filaments. The BLASTx,

GSPC, and diversity data all suggest that the

viruses are infecting hosts other than the seden-

tary surface bacteria, implying significant prolif-

eration either in the pool or in the vent. The

viruses used in this study were planktonic isolates

collected close to the outflow source immediately

after emergence, making it more unlikely that the

hosts were surface microbes in the filament, sed-

iments, or water column.

Alignment of the Metagenome to
Cultivated Viral Genomes

Overall, only 3.4 % of the high stringency (95 %

assembly) contigs from the two libraries showed

similarity to known viral sequences. Most of

these similarities were to cultivated thermophilic

crenarchaeal viruses (Table 6). Similarity to the

only non-thermophilic virus, phage Twort (Kwan

et al. 2005), was limited to the helicase gene,

which shares similarity with that of SIFV (see

above). The two libraries shared comparable fre-

quencies of sequence similarity to archaeal

viruses and bacteriophage. Notable exceptions

were Acidianus rod-shaped virus and Sulfolobus

islandicus rod-shaped virus 1 and 2 where the

Octopus library demonstrated a higher frequency

of homology than the Bear Paw library and

the S. tengchongensis spindle-shaped virus 1

homology, less common in Octopus than in

Bear Paw.

Alignment of the metagenomes to whole

genome sequences of six cultivated thermophilic

viruses revealed striking conservation of certain

sequences (Fig. 5). Almost the entire genome of

Pyrobaculum spherical virus (PSV) has similar-

ity to sequences in both metagenomic libraries,

with median identities of 60 % and 51 % to the

Bear Paw and Octopus, respectively. Sequence

similarities to the other crenarchaeal viruses and

to bacteriophage YS40 were limited to a few

specific ORFs, but the degree of similarity was

relatively high in those regions. Interestingly,

nearly all of the ORFs showing high levels of

homology are among the few thermophilic
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crenarchaeal virus genes for which a function has

been assigned or inferred (Fig. 5 and references

therein). These regions of high conservation are

genes associated with virion components, DNA

replication, transposition, recombination, or

nucleic acid metabolism.

The degree of alignment to cultivated viruses

was surprising. PSV was isolated from Obsidian

hot spring (74 �C, pH 5.6), about 30 km away

from both Octopus and Bear Paw. The geochem-

istry of this thermal feature is distinct from the

springs in this study (Shock et al. 2005), and life

within includes a highly diverse population of

Archaea and Bacteria (Barns et al. 1994;

Hugenholtz et al. 1998), most of which have not

been detected in Octopus hot spring (Reysenbach

et al. 1994; Blank et al. 2002) or elsewhere. In

contrast, Thermoproteus tenax spherical virus,
which is quite similar to PSV in terms of

sequence, morphology, and habitat (Ahn

et al. 2006), had very limited similarity to the

YNP viral metagenomic sequences (not shown).

The other viruses showing high similarity to the

metagenomic sequences were isolated on differ-

ent continents and, with the exception of YS40,

occurred in highly acidic springs. This observa-

tion is more remarkable because the microbial

populations of acidic and neutral hot springs are

quite distinct (Reysenbach et al. 2002). The one

other virus cultivated from Yellowstone,

SSV-RH (Wiedenheft et al. 2004), had no signif-

icant tBLASTx similarity to any of the

metagenomic samples.

Identification of CRISPR Spacer Cognate
Sequences in the Octopus Viral
Metagenome

Evidence has been accumulating recently associ-

ating CRISPR (clustered regularly interspaced

short palindromic repeats) systems with acquired

resistance to lateral gene transfer from viruses

and episomal elements (reviewed by van der

Oost et al. 2009). CRISPRs were first discovered

as repetitive sequences found in most bacte-

rial and virtually all archaeal genomes.

These systems are functionally analogous, but

nonhomologous, with eukaryotic RNA interfer-

ence and appear to limit the lateral transfer of

genes by targeting them for nucleolytic degrada-

tion prior to their integration into the genome.

The emerging view is that sequences in the repeat

region of the CRISPR system correspond to

sequences in viral or episomal genes and are

transcribed in the host cell as part of a targeting

system to neutralize viral infections. However,

little direct evidence of conservation between

the CRISPR spacer sequences and viral genomes

has been found in natural environments. The first

Use of Viral Metagenomes from Yellowstone Hot Springs to Study Phylogenetic Relationships and Evolu-
tion, Table 6 Numbers of 95 % contigs with tBLASTx similarities to cultured viral sequences

Virus References Accession

Number of

tBLASTx

similarities

Bear paw Octopus

ARV, Acidianus rod-shaped virus (Vestergaard et al. 2005) AJ875026 36 228

SIRV 1 and 2, Sulfolobus islandicus rod-shaped
virus 1and 2

(Blum et al. 2001; Peng

et al. 2001)

AJ344259,

AJ414696

30 217

PSV, Pyrobaculum spherical virus (Haring et al. 2004) AJ635161 44 152

SIFV, S. islandicus filamentous virus (Arnold et al. 2000) AF440571 7 46

STSV1, S. tengchongensis spindle-shaped
virus 1

(Xiang et al. 2005) AJ783769 26 22

ATV, Acidianus two-tailed virus (Prangishvili et al. 2006b) AJ888457 8 17

YS40, Thermus thermophilus YS40 phage (Naryshkina et al.2006) DQ997624 15 41

TTSV1, Thermoproteus tenax spherical virus 1 (Ahn et al. 2006) AY722806 6 12

Twort, Staphylococcus phage Twort (KwanT et al. 2005) AY954970 4 21
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demonstration of a correspondence between

CRISPR spacers and viral sequences was in

dairy bacteria and their associated phages

(Horvath et al. 2008) and, by inference, in acid

mine drainages (Andersson and Banfield 2008).

In these and other cases, the lack of viral

metagenomes limited insight into the coevolution

of these genes in microbial and viral populations.

Furthermore, since the CRISPR spacer sequences

are generally only 20–50 nucleotides in length, it

has been difficult to assign function of the

targeted genes by BLASTx or other means.

The Octopus viral metagenome, in conjunc-

tion with a microbial metagenome and two
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Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Fig. 5 Alignment of Octopus and Bear Paw

viral metagenomic library contigs with six cultured virus

genomes. Contigs assembled at >95 % identity from the

viral metagenomic libraries were compared by tBLASTx

to the genomes of PSV, SIRV1, ARV, ATV, STSV, and

YS40. Each bar represents the alignment of a unique

metagenomic sequence to the indicated location on the

cultivated viral genome, shown on the horizontal axis.

Percent coding sequence identities are shown in the verti-

cal axis. The threshold for inclusion is E-value <10�3.

Red bars indicate Bear Paw alignments; blue bars indicate

Octopus alignments. Also shown are the known or

predicted functions of the conserved coding sequences

(rep replication related, vir virion component, gt glycosyl-
transferase, tnp transposase, cp coat protein, dam adenine

DNA methylase, ts thymidylate synthase, dut dUTPase,
dcm cytosine DNA methylase, hel helicase, rec
recombinase, rnr ribonucleotide reductase (Arnold

et al. 2000; Blum et al. 2001; Peng et al. 2001; Haring

2004; Kessler et al. 2004; Vestergaard et al. 2005; Xiang

2005; Ahn et al. 2006; Naryshkina 2006; Prangishvili

2006b) (Reproduced with permission from (Schoenfeld

et al. 2008)
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Synechococcus genomes isolated from the same

hot spring within 2 years of one another, provided

a unique opportunity to identify the genes

targeted by a CRISPR system and observe coevo-

lution of a CRISPR system and its target in host

and viral genomes (Heidelberg et al. 2009). The

two Synechococcus strains contained sequences

with the hallmarks of a CRISPR system. Like

other such sequences, the CRISPR spacers had

no BLASTn or tBLASTx similarity to any

sequences in GenBank. When compared to the

microbial metagenome, 180 elements had simi-

larity to CRISPR spacer sequences. Of these, four

shared similarity with 23 sequences in the Octo-

pus viral metagenome.

Interestingly, two CRISPR spacer sequences

shared by the isolates and the microbial and viral

metagenomes had similarity to different regions

of one gene in the viral metagenome. The assem-

bly of 23 reads covering this single gene indicates

that this was one of the most abundant and con-

served element in the entire metagenome, which,

by itself, would seem to make it an attractive

target for a presumed antiviral system. The data

provided by the viral metagenome reveal the

target of the spacers was a likely lysozyme

gene, the conservation of which may be

explained by evolutionary constraints due to the

interaction with a host cell wall. Inspection of the

lys gene assembly revealed the apparent coevo-

lution of the CRISPR system and its viral target

(Table 7). Of the 23 viral metagenome reads,

only five had detectable nucleic acid identities

(NAID).

The sequence of one CRISPR spacer is shown

in Line 1. Shown below are sequences from the

Use of Viral Metagenomes from Yellowstone Hot Springs to Study Phylogenetic Relationships and Evolu-
tion, Table 7 Octopus virome sequences showing silent or conservative changes compared to the CRISPR spacer

sequences of the Synechococcus genome

Sequence %NAID

Predicated AA

sequence

% AASIM/

AAID

AGTTTACCCTCAAGTGGGAAGGCGGCTTTGTCCACCATCC FTLKWEGGFVHH

..........T...........T................. 95 ............ 100/100

..........T...........T................. 95 ............ 100/100

.......T..T...........T................. 92 ............ 100/100

.......T..T...........T................. 92 ............ 100/100

..........T...........T....A............ 92 ........Y. . . 100/91

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

....C.....G..A........G..G...........C.. 86 ............ 100/100

.A.................G.....G.AC..AA.T..... 80 ........Y.N. 100/83

.A.................G.....G.AC..AA.T..... 80 ........Y.N. 100/83

.A.................G.....G.AC..AA.T..... 80 ........Y.N. 100/83

.A.................G.....G.AC..AA.T..... 80 ........Y.N. 100/83

.A.................G.....G.AC..AA.T..... 80 ........Y.N. 100/83

.C.....A..A..A........T..T.AC..AA....C.. 75 ........Y.N. 100/83

.C.....A..A..A.....G..T..G.AC..AA....C.. 73 ........Y.N. 100/83

.C.....A..A..A.....G..T..G.AC..AA....C.. 73 ........Y.N. 100/83

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

........T. GCGC.....G..T....AC..GA....C.. 70 . . .R....Y.N. 100/75

Use of Viral Metagenomes from Yellowstone Hot Springs 695 U

U



virome with similarity to this CRISPR spacer or

the same region in reads identified by similarity

to a second independent CRISPR spacer or

a translation of one of these. Conserved nucleo-

tides are shown as dots; those that diverge from

the CRISPR 1 spacer are shown as letters. The

percent nucleic acid identities (%NAID) to

CRISPR 1 and the percent amino acid similarity

and identity (% AASIM and % AAID, respec-

tively) to the predicted translation of CRISPR1

are also shown. (adapted from Heidelberg

et al. 2009). The remainder had sequence vari-

ances that reduced NAID to as low as 70 %;

however, all of these nucleotide variations were

silent or conservative with respect to the amino

acid sequence, which would likely allow the

sequence to evade targeting by the CRISPR sys-

tem, but not affect the enzymatic function of the

gene product. This data suggests a high rate of

coevolution or “germ warfare” between the

viruses and their hosts in this extreme

environment.

Similarities Between the Two Hot
Springs’ Viral Populations

The two libraries were compared to one another

to determine any variation between the viral

populations in the two very different thermal

environments. Contigs assembled at 95 % from

the two libraries were compared to each other by

tBLASTx and BLASTn (Table 8). The differ-

ences between the two analyses should be the

result of noncoding nucleotides. Since gene den-

sities are high in viral genomes and there is very

little intergenic sequence, these differences are

mainly due to silent codon variations, which

should be largely free of selective pressure.

Most remarkable is the similarity between the

two libraries by either analysis. By tBLASTx,

5,843 of the Octopus contigs (43 %) and 1,593

of the Bear Paw contigs (26%) shared amino acid

coding similarity. By BLASTn, 2,876 (21 %) and

1,339 (21 %) of the respective contigs shared

nucleotide similarity. The average percent iden-

tities were 74 % and 87 % and the expect values

were 1.38E-05 and 3.00E-05, although the

average length of sequence alignment (298 and

175 bp) was modest in both cases. This level of

similarity did not allow extensive assembly of

contigs from the two libraries, even at 50 % iden-

tity, presumably due to the short lengths of align-

ment (not shown). Taken together, these data

suggest a mosaiclike pattern of overlap of much

of the coding content in the two hot springs,

although entire viral genomes or even entire

genes are not necessarily fully conserved. The

fact that the degrees of identity at the nucleotide

level and at the translational level were relatively

close suggests that this overlap is not due solely to

selective pressure on the coding sequence, but

must be explained by other mechanisms. This

extensive conservation of viral sequences between

the two hot springs in this study is surprising,

given that microbial populations are highly tem-

perature dependent (Reysenbach et al. 2002) and

the surface temperatures of these hot springs differ

by 19 �C (74 �C vs. 93 �C).

Conservation and Distribution of
Viruses in Thermal Environments

Taken together, the above analyses suggest that

(1) viral populations in the water columns are

largely independent of microbial populations

reported in the pools and (2) viral genomes, par-

ticularly certain genes, are more conserved both

Use of Viral Metagenomes from Yellowstone Hot
Springs to Study Phylogenetic Relationships and
Evolution, Table 8 Nucleotide and coding similarities

between the viral populations of Octopus and Bear Paw

hot springs

tBLASTx BLASTn

Frequency (number) of

Octopus contigs with

similarity to Bear Paw contigs

43 %

(5,843)

21 %

(2,876)

Frequency (number) of Bear

Paw contigs with similarity to

Octopus contigs

26 %

(1,593)

21 %

(1,339)

Average length of similarity

(nucleotides)

298 175

Average identity 74 % 87 %

Average expect value 1.38E–05 3.00E–05
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regionally and globally than might have been

predicted. The regional and global conservation

of viral sequences is an intriguing area for further

study. There are examples of globally distributed

genes among marine viral assemblages (Breitbart

and Rohwer 2005; Short and Suttle 2005). Since

the oceans are contiguous across the earth, an

obvious distribution mechanism exists. Groups

of highly similar Sulfolobus viruses (Wiedenheft

2004) and Thermus phages (Yu 2006) have been

isolated from thermal springs on different conti-

nents. In these cases, viruses were isolated from

environments of similar pH and temperature and

were cultivated on the same host under similar

laboratory conditions. Gene homologs to these

viruses were detected despite the absence of

these selective conditions. Conversely, most

crenarchaeal virus morphotypes have been

detected in enrichments from YNP (Rice

et al. 2001; Rachel et al. 2002; Wiedenheft

et al. 2004); however, little is known about con-

servation of genes in these enrichments.

The mechanism and basis of this conservation

of viral sequence is open to speculation. It is

possible that viruses sharing common genes

adapt to the different host populations of the

environment. Alternatively, hot springs may be

inoculated by airborne viruses from other springs.

It is also possible that the viruses acquire genes

from mesophilic viruses, although this explana-

tion has no support in this study. Lineages of

conserved viral genes may be older than the sep-

aration of the continents. Another explanation is

proliferation of the viruses deeper in the vent.

Thermophilic Bacteria and Archaea, potential

hosts for viruses, have been detected in thermal

aquifers several km beneath the earth’s surface at

abundances similar to those measured in this

study (Moser et al. 2005) and many are distrib-

uted worldwide. While it is impossible to sepa-

rate the contribution of the subsurface viruses

from any proliferation at the surface in the two

pools in this study, samples from thermal springs

with no pool at all, collected within seconds of

their emergence, have similar or somewhat

higher viral abundances to those measured in

this report (Breitbart et al. 2004b), suggesting

subsurface proliferation is at least a significant

contributor to viral populations at the surface.

Subsurface proliferation of viruses would also

explain the apparent disconnect between the

planktonic viral populations in the pool and the

reported sedentary microbial populations,

described above. An implication of subsurface

proliferation of viruses is that the habitable por-

tion of the subterranean aquifer could be contin-

uous across much of the Yellowstone caldera or

even much larger areas. A second implication is

that, given the higher pressures in the vents, the

temperature limit of life in the subterrestrial aqui-

fers could significantly exceed the temperatures

measured at the surface.

Computer Analysis

Availability of computer programs is described in

the original publications (Schoenfeld et al. 2008;

Heidelberg et al. 2009; Pride and Schoenfeld

2008).
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Introduction

Metagenomics is the study of DNA extracted from

the microbial communities in an environment, in

comparison to traditional genomics, which studies

the nucleic acids from single organisms (Wooley

et al. 2010). In a metagenomic study, a sample is

collected directly from the environment, which

can be a gram of soil (Rousk et al. 2010; Bowers

et al. 2011), milliliter of ocean (Williamson

et al. 2008), swab from an object (Caporaso

et al. 2011), or a sample of themicrobes associated

with a host organism, such as humans (Caporaso

et al. 2011; Costello et al. 2009). The microbial

content of an environmental sample is termed its

“microbiome.” There are several questions that

are of particular importance when the microbiome

is being examined. In particular, who is there, how

much of each species is there, and what are they

doing overall? Some of these questions can be

addressed using DNA/RNA sequencing followed

by homology and taxonomic classification; how-

ever, usually hypotheses focus on answering:

which organisms and/or their functions (e.g.,

metabolisms) best differentiate multiple pheno-

types in a collection of samples? Consider

a collection of gut microbiome samples that were

collected from patients with inflammatory bowel

disease (IBD) and a control set that do not have

IBD. A natural question to ask when examining

the differences between the gut microbiomes of

the two phenotypes is what organisms or genes

can distinguish patients with IBD and healthy

controls? Knowing the answers to such question

can be useful in developing a better understanding

about a disease and aid in developing medicines to

target a disease cause.

The question of finding differentiating fea-

tures, or variables of interest, has been deeply

studied in the machine learning community (see

Guyon et al. 2006; Saeys et al. 2007), which is

commonly referred to as feature selection. Fea-

ture selection is the process of finding a subset of

features that best differentiate between multiple

classes or, in our case, phenotypes in a data set.

The process of selecting features is typically

achieved by maximizing some objective function

(e.g., mutual information) in a greedy fashion.

The central motivation for feature selection is to

find a smaller subset of features that can be used

to differentiate between the multiple phenotypes,

which in turn can reduce the computational com-

plexity of the classification algorithm tailored to

K.E. Nelson (ed.), Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools,
DOI 10.1007/978-1-4899-7478-5, # Springer Science+Business Media New York 2015



do such a task. Furthermore, regression could be

used instead of classification in the case of

continuous-environmental variables; however,

for this entry, we assume that phenotypes take

on discrete states, and therefore, classification is

the primary focus. Previously, feature selection

has been shown useful to reduce the complexity

of metagenome classification (Ditzler

et al. 2012); however, in this article, its use is

expanded to determine relevance of biological

features to associated phenotypes, thus aiding

researchers in drawing conclusions from

metagenomic data.

Feature selection can be applied to a variety of

metagenomic data (e.g., 16S rRNA, whole

genome shotgun, taxonomic annotations, gene

annotations). In addition to selecting species

which differentiate microbiomes, many studies

wish to map DNA/RNA sequences to functional

categories and address enriched/depleted func-

tions between samples. Depending on the type

of question being asked and the nature of the

data, there are a variety of functional databases

to choose from. Table 1 highlights some of the

most widely used databases. Large reference

sequence databases with a variety of functional

descriptions are preferred because they provide

detailed annotation of diverse data set. This

raw-labeling of sequences can provide much

information; however, it cannot be used to ana-

lyze hierarchical functional structure in a data set,

such as what high-level functions (e.g., reproduc-

tion/cellular transport) are upregulated in my

sample. Instead, sequence labeling can answer

what genes exist in my sample or which sample

is functionally more diverse, because they pro-

vide better annotation coverage in the sample

than higher-level databases. However, if it is

required to annotate with well-defined vocabular-

ies, which is needed to make biological inference

and associations, then one wishes to use

a standardized ontology database. For example,

researchers can use Gene Ontology annotation to

examine what functions are enriched in the sam-

ple compared to others. In some cases,

researchers wish to annotate the function of

a gene that appears in multiple organisms rather

than just one. In other words, the focus is to

accurately assign homologous genes associated

with multiple species, which is especially impor-

tant in metagenomics due to the complex mixture

of organisms in a sample. Therefore, orthologous

group databases are useful for annotating homol-

ogous function of orthologs. For studying

a microbiome’s metabolism rather than molecu-

lar functions, such as asking the questions what

Variable Selection to Improve Classification of Metagenomes, Table 1 Functional databases mostly used for

creating functional profiles

Large collection of
reference sequences

RefSeq Around 18 million proteins from 18 k organisms, annotations are available

for a subset of the database, well-annotated for human sequences

UniProtKB/

Swiss-Prot

Manually curated annotations for 500,000+ sequences, covering 12,930

organisms

Standardized ontologies Gene

Ontology

Well-controlled vocabulary, primarily for eukaryotes

Gene orthologous
groups

COG Gene groups classified into 23 functional categories, inferred from

66 prokaryote and unicellular eukaryote genomes

KOG Eukaryote version of COG containing 7 eukaryotic genomes

eggNOG Automated annotation of orthologs in 1,133 species

Metabolism KEGG

pathway

400+ manually drawn pathways, based on reactions from multiple species

BioCyc/

Metacyc

2,000+ single-organism, experimentally derived pathways

SEED Subsystems that describe metabolic machinery with expert curation

Protein domains and
families

Pfam A large collection of protein families that share the same domain

FIGfam Protein families that share domains and pairwise align for their full length

sequences, resulting in less sequences per family
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biological processes are enriched/missing from

a diseased microbiome or should photosynthesis

activity be enhanced in surface soil compared to

deeper layer soil samples, several metabolic path-

way databases can be used. Finally, protein fam-

ily databases search for conserved domains and

motifs of protein sequences and are important

when considering the origin and evolution of pro-

teins. For example, protein motifs that character-

ize pathogenicity may be used as potential targets

for diagnosis and treatment.

Since the diversity of functional databases

serves a variety of research questions, it is impor-

tant to note that many studies would adopt several

databases for annotation. Therefore, the optimal

feature selection technique may depend on the

database choice and the nature of taxonomic or

functional data, such as the dimension of feature

space, data sparsity, and the possible range of fold

change between samples.

This entry is organized as follows: section

“Feature Selection” highlights the components

of a general feature selection algorithm and how

to design such an algorithm. Section “A Descrip-

tion of theMetaHit Database” presents the bench-

mark MetaHit data set, followed by an empirical

analysis of feature selection algorithms tested on

the MetaHit data set in section “Data Analysis.”

Finally, section “Conclusion” draws concluding

remarks for feature selection applied to

metagenomic data.

Feature Selection

Feature selection can provide a unique insight

about the variables that provide discriminating

information about populations, or phenotypes,

typically contained in the metadata. This metadata

could be as simple as two populations, such as

healthy or unhealthy, or significantly more com-

plex by containing many different populations

within a data sample. It is natural during the anal-

ysis of a biological data set to ask the question:

which variables provide the most differentiation

betweenmultiple populations? The answer to such

questions can be answered using feature selection

(Guyon and Elisseeff 2003). There are several

items to consider before applying a feature selec-

tion to a (biological) data set. First, how many

features should be selected?Most feature selection

algorithms assume that the end-user must select

this parameter, and the quality of the results will

most likely be highly dependent on the value of

this parameter. Inmany situations, cross validation

can be used to search for an acceptable value.

Second, what is the primary objective for features

selection? Is it the goal of the end-user to perform

classification, or are they simply looking for the

top k features in the data set? The design of the

objective function, J (.), for feature selection can

be used to emphasize and address these questions.

Let J (.) be a function of the features Xj (for j
2 f1; . . . ;Qg), the label variables Y, and the

current relevant feature set F. Note that the col-

lection of variables (e.g., operational taxonomic

units, Pfams, etc.) is denoted by X. The objective

function can be designed in a way, such that it

reflects the task at hand. For example, if

a biologist is interested in the top ranking features

that carry the most mutual information between

Xj and Y, then the objective function should

reflect this goal. In this situation, using a mutual

information maximization (MIM) method is suffi-

cient to achieve this goal (Lewis 1992). MIM can

be implemented as follows: (a) compute I(Xj;Y)

for all j (I(Xj;Y) is the mutual information between

Xj and Y), (b) rank the mutual informations

in descending order, and (c) select the top

k variables with the largest mutual information

and place them in F.
However, many times we seek to classify data

based on Y, and in such situations designing

a more complex objective function is required.

For example, it may be more advantageous to

select F in such a way that the features contained

in F are informative about Y; however, they are

not redundant (i.e., one or more features provide

the same amount of information about Y). An

example of such an objective function is given by

J Xj,Y,F
� � ¼ I Xj; Y

� ��
Xs

I Xj;Xs

� �

where the first term maximizes the mutual infor-

mation between the features, Xj, and metadata, Y,

Variable Selection to Improve Classification of Metagenomes 703 V
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while the second term is penalizing Xj for being
redundant with the current relevant feature set inF.

The design of the objective function is quite impor-

tant to the application to which feature selection

is being applied. There are several works that

highlight such results on bioinformatics data

(Saeys et al. 2007), information theory methods

(Brown et al. 2012), and general feature selection

techniques (Guyon and Elisseeff 2003).

A simple algorithm for feature selection is the

forward selection search, which is shown in

Fig. 1. The method begins by initializing the

relevant feature set F to the empty set. Then for

k cycles, equation (1) is maximized, and the fea-

ture that maximizes the expression is added to the

relevant feature set, F, and removed from the

feature set, X. The forward selection search is

used with several feature selection objective

functions in the section on “Data Analysis.”

A Description of the MetaHit Database

As mentioned in Introduction, feature selection

can allow researchers in metagenomics to inter-

pret the differentiating features in a data set. The

interpretation can be insightful and allow the

researchers to determine the functional differ-

ences between multiple phenotypes. As a case

study, let us examine a metagenome data set

collected by Qin et al. (2010), which is widely

referred to as the MetaHit data set. The data are

collected from Illumina-based metagenomic

sequencing of 124 fecal samples of 124 Euro-

pean individuals from Spain and Denmark.

The MetaHit data set represents one of the

most comprehensive studies of the human gut

microbiome. Among the 124 individuals in the

database, 25 are from patients who have inflam-

matory bowel disease (IBD), and 42 patients are

also obese. It is interesting to note that only

three of the individuals who have IBD are also

obese. Let us consider two different labeling

schemes for the data: IBD and obesity, both of

which are binary prediction problems. The

sequences from each individual are functionally

annotated using the Pfam database (Finn

et al. 2010), in a recent study that utilized the

MetaHit data set for feature selection on patient

age (Lan et al. 2013). There are a total of 6,343

unique functional features detected in the data

set, and Fig. 2 shows the log10 of the total

abundance for each of the 6,343 functional fea-

tures over the 124 observations in the data set.

One way to (loosely) access the separability of

the IBD and no IBD patients (or obese and not

obese) in the data is to examine the principal

coordinate analysis (PCoA) plots of the patients’

Pfam data (Gower 1967). Figure 3 shows the

PCoA scatter plots of the two sample labeling

schemes using PCoA implemented with the

Euclidean distance. From these plots we observe

that there is a significant amount of overlap

between the classes for both labeling schemes.

Data Analysis

In this section, the classification accuracy and area

under the receiver operating characteristic (auROC)

Variable Selection to
Improve Classification of
Metagenomes,
Fig. 1 Generic forward

feature selection algorithm

for a filter-based method
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curve for the MetaHit data set are examined

when feature selection is applied. The accuracy

is measured using the standard 1–0 loss, and the

auROC is interpreted as the probability of rank-

ing a target data instance higher than a randomly

selected nontarget data instance (Fawcett 2006).

The IBD/obese class label is identified as

the target for the calculation of the auROC.

The joint-mutual information feature selection

algorithm (JMI) is implemented with a forward

selection search, and the na¨ıve Bayes classifier

is implemented with a multinomial model. The

FEAST feature selection toolbox implements

the JMI algorithm (Brown et al. 2012). All

statistics are presented as averages from tenfold

cross validation using stratified sampling. Strat-

ified sampling assures that instances from

each class will be in each cross-validation

data set. Note that completely random cross-

validation data set partitions do not guarantee

this property.

The auROC and loss for the multinomial n€aıve

Bayes classifier are measured using the two label-

ing schemes described in section “A Description

of the MetaHit Database” (i.e., IBD and obese).

Table 2 contains the classification assessments

from the different labeling schemes as well as

a variation in the number of features that are

selected via JMI. From Table 2, it is clear that

feature selection can have a significant outcome

in the classification results. This is best shown in

Fig. 4 which shows the number of features

selected by the MIM algorithm versus the loss

(Fig. 4b) and the auROC (Fig. 4a). Note that these

results are generated using the mutual informa-

tion maximization approach; however, similar

results/trends are observed for other feature

selection methods.

Figure 5a presents a visualization of the

MetaHit data set before and after MIM feature

Variable Selection to Improve Classification of
Metagenomes, Fig. 2 Logarithm of the total abundance

of each feature detected by the Pfam database for Qin

et al. (2010)’s human gut microbiome data set. The

x-axis represents rank of each feature corresponding with

the number of detections sorted in descending order. From

the plot, it is obvious that there are few Pfams with a large

abundance and many Pfams with a very low abundance

count. For example, there are 2,572 Pfams with 10 or

fewer occurrences across the 124 observations

Variable Selection to Improve Classification of
Metagenomes, Fig. 3 (a) IBD (b) Obese. Multi-

dimensional scaling of the MetaHit data set with the IBD

and obese labeling of the samples. There appears to be

a significant amount of overlap between the controls and

targets for both prediction problems
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selection is applied. The features are sorted from

high to low in terms of overall abundance, and the

patients are represented such that samples 1–99

do not have IBD and samples 99–124 have IBD.

Clearly, this shows a large amount of sparsity that

is inherent in the data, which would also be evi-

dent if taxonomic abundances were used over

Pfams. Figure 5b shows that most of the features

being selected by MIM are relatively abundant

features; however, simply because a feature is

abundant does not imply that the feature is rele-

vant. This can be observed near the 44th feature

in Fig. 5b. Note that the features in Fig. 5b are

order by the time they were selected by the for-

ward search.

The top Pfams that maximize the mutual infor-

mation for the MetaHit data set are shown in

Table 3. It is known in IBD patients that the

expression of ABC transporter protein

(PF00005, the first feature MIM selected for clas-

sifying IBD versus no IBD samples) is decreased

which limits the protection against various lumi-

nal threats (Deuring et al. 2011). The feature

selection for IBD also identified glycosyl-

transferase (PF00535), whose alternation is

hypothesized to result in recruitment of bacteria

to the gut mucosa and increased inflammation

(Campbell et al. 2001). And the genotype of

acetyltransferase (PF00583) plays an important

role in the pathogenesis of IBD, which is useful in

the diagnostics and treatment of IBD (Baranska

et al. 2011). It is not surprising that ABC trans-

porter (PF00005) is also selected for obesity,

which is known to mediate fatty acid transport

that is associated with obesity and insulin-

resistant states (Ashrafi 2007) and ATPases

(PF02518) that catalyze dephosphorylation reac-

tions to release energy.

Conclusion

This entry has presented a broad overview about

how feature selection algorithms can be used to

facilitate and interpret data in the field of

metagenomics. Recall that metagenomic abun-

dance data can be of very large dimension (e.g.,

MetaHit), and feature selection reduces the

Variable Selection to Improve Classification of
Metagenomes, Table 2 Area under the ROC

(auROC) curves and classification error for a n€aıve
Bayes classifier tested using tenfold cross validation

auROC

(IBD)

Error

(IBD)

auROC

(obese)

Error

(obese)

10 0.706 0.233 0.640 0.395

15 0.624 0.290 0.672 0.352

25 0.616 0.292 0.660 0.403

50 0.750 0.223 0.649 0.422

100 0.660 0.249 0.659 0.397

200 0.654 0.257 0.643 0.389

500 0.635 0.277 0.641 0.378

All 0.665 0.238 0.622 0.240

Variable Selection to Improve Classification of
Metagenomes, Fig. 4 (a) Loss of n€aıve Bayes. (b)
auROC of n€aıve Bayes. The effect of the number of

features selected by the MIM algorithm versus the loss

(left) and the auROC (right). The number of features being

selected has a larger effect on the auROC (i.e., detection of

target population examples) than the accuracy of the sys-

tem. Similar results are observed with JMI and other

feature selection methods
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dimensionality of the space to allow for a quick

interoperation of the data. Furthermore, feature

selection is also useful for classification because

it allows us to remove potentially irrelevant fea-

tures from the data set, which allows the classier

to focus on learning from the relevant informa-

tion rather than attempt to decipher what is or is

not relevant.
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Introduction

Viruses are the most abundant and diverse organ-

isms on Earth, yet only a small fraction of the

viral genome sequence space has been decoded.

Based on analyses of environmental viral com-

munities, it is estimated that only 1 % of the

existent viral diversity has been explored. During

more than a century, cultivation of viruses has

remained the gold standard for virus discovery

and characterization. One major limitation of this

approach is that for most viral species, their hosts

(predominantly microbes) are either unknown or

cannot be grown in culture. Viral metagenomics

(VM) circumvents this limitation by sequencing

viral genetic material isolated directly from the

environment. A typical viral metagenomics

workflow is depicted in Fig. 1. Viral

metagenomic methods have evolved significantly

since their beginnings. Initially, they involved

viral particle purification and enrichment from

environmental samples, sharing of isolated

nucleic acids followed by an optional cDNA syn-

thesis step in the case of RNA viruses, cloning

into shotgun libraries, and direct sequencing of

the total DNA content by Sanger. This

low-throughput approach has been used in the

past for the characterization of viral communities

from many different environments (Steward and

Preston 2011; Bench et al. 2007). During the last

decade, the advent of high-throughput sequenc-

ing technologies and the development of novel

viral particle purification methods are revolution-

izing the field of VM facilitating the rapid expan-

sion of viral genome data and boosting the

number of associated metagenomics publications

in PubMed (Fig. 2). Among the many sequencing
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platforms currently available, Illumina and

454 FLX/titanium pyrosequencing have been

the most frequently used for the characterization

of VM samples. One Illumina sequencing lane

generates approximately 125–150 million reads

of up to 150 bp in length while one full-plate run

of 454 titanium produces ~1 million reads of

about 350–450 bp. A VM project usually

involves two or more Illumina/454 runs, and

therefore, the volume of sequence produced by

these studies is in the order of several gigabases.

This huge volume of sequencing data makes

downstream annotation and analyses methods

very challenging and computationally expensive.

Therefore, it is critical to preprocess sequencing

data whenever possible in order to reduce the

amount of sequence to be annotated.

Pre-annotation processing methods include

elimination of redundant and low-quality reads,

assemblage, and viral gene identification (Fig. 1).

How the sequencing data will be processed and

annotated will depend on the goals of the project

and characteristics of the viral community but

basically can be divided into two major annota-

tion strategies, read-based annotation (RBA) and

gene-based annotation (GBA). The former

approach is more straightforward and involves

the identification of similarities to protein

sequences or domains directly on the reads to

classify them into phylogenetic or functional

groups. Gene-based annotation, on the other

hand, requires an optional assemblage of

sequencing reads into contigs and/or scaffolds,

gene identification, and functional prediction of

predicted proteins. In this entry, we describe cur-

rent tools, databases, and methodologies that

have been developed in the past few years for

RBA and GBA of viral metagenomic datasets and

discuss their advantages and drawbacks.

Read-Based Annotation

Direct annotation of sequencing reads is fre-

quently used when the goal of the VM study is

to investigate and compare the type of species or

gene functions that are present in one or more

viral communities. In general, read-based anno-

tation assumes that each read encodes for a single

gene. Before proceeding with any annotation, it is

important to preprocess sequencing reads to elim-

inate regions with low-quality base calls and

duplicated reads. This is particularly important

when working with next generation sequencing

(NGS) data, since pyrosequencing and Illumina

technologies have a higher error rate compared

with Sanger. In particular, 454 pyrosequencing is

prone to the generation of artifactual indels in

regions containing homopolymers (Kunin

et al. 2010; Gilles et al. 2011) while Illumina

reads have a higher substitution error rate than

454 dealing better with homopolymeric regions

(Minoche et al. 2011). Also, NGS platforms have

a tendency to produce a significant number of

Viral Metagenome Annotation Pipeline,
Fig. 1 Schematic representation of a viral metagenomic

workflow
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duplicated reads, in particular when sequencing

libraries are constructed from very limited quan-

tities of starting RNA/DNA material (<10 ng).

There are several programs that can be used to

remove exact or near exact duplicated reads or

trimming low-quality bases and vector sequences

without requiring a large computer infrastructure.

Some examples are BIGpre (Zhang et al. 2011),

Bolger et al. 2014 (http://www.usadellab.org/

cms/index.php?page¼trimmomatic), PyroCleaner

(Jerome et al. 2011), CD-HIT (Huang et al. 2010),

NGS QC Toolkit (Patel and Jain 2012), LUCY

(Chou and Holmes 2001), and SeqClean (Chen

et al. 2007). For example, Trimmomatic is

a java-based program that can run in Linux,

Windows, and Mac OSX operating systems and

has several different options for trimming

low-quality bases and adaptor sequences from

Illumina reads. BIGpre is compatible with both

454 and Illumina platforms and detects and

removes redundant reads after taking sequenc-

ing errors into account and trimming low-quality

reads from raw data as well. BIGpre and NGS

QC Toolkit also output a number of quality stats

about NGS reads that are useful to assess the

presence of sequence bias and the correlation

between forward and reverse reads among

other tools.

Once raw sequencing reads have been

processed, it is possible to proceed with the

annotation stage. Because viruses have a fast evo-

lutionary rate, any comparison at the nucleotide

level is not sensitive enough to detect similarities

between reads from a studied metagenome and

nucleotide databases of characterized viral genes

or genomes. In consequence, all searches should

be done using translated sequences. The simplest

annotation approach is to compare the six-frame

translations of each read against a collection of

well-annotated protein databases using

TBLASTN or equivalent algorithms to identify

the types of viral species or functions encoded by

the viral metagenome. The main advantage of

RBA is that it does not involve previous gene

identification or assembly of reads, processes

that require some level of user expertise. Another

benefit is that translation-based similarity

searches are independent of gene structure and

therefore may prove to be more sensitive than

GBA at the time of studying viral communities

whose genomes are enriched in intron-containing

genes. However, RBA has several disadvantages.

First, sequence similarity searches using

TBLASTN or equivalent programs are computa-

tionally demanding and time consuming. Second,

many databases of conserved protein domains or

motifs cannot be queried using nucleotide

sequences or on the fly translations. Third, when

reads code for more than one gene, the molecular

functions associated with the most divergent

Viral Metagenome
Annotation Pipeline,
Fig. 2 Number of articles

in PubMed about viral

metagenomics during the

period 2004–2011
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genes on the read are usually masked by the gene

with the best (lowest) e-values and hence are

difficult to detect. Fourth, further characterization

and phylogenetic analysis of protein families are

complicated by the fact that it is difficult to gen-

erate multiple sequence alignments from

evolutionary-related genes that start at different

positions on their respective reads. Lastly, the

higher indels rate of NGS reads, in particular in

454-derived sequences, creates artifactual trans-

lation frameshifts that can lead to an

overestimation of gene family diversity and com-

plicates the interpretation of results from protein

database searches.

Gene-Based Annotation

A more thorough and efficient way to annotate

sequencing datasets from viral communities is to

identify protein-coding genes before carrying out

any comparison against protein databases. This

approach reduces considerably the amount of

sequencing data to be queried and hence comput-

ing time, expands the spectrum of databases that

can be searched, and simplifies the interpretation

of results and further evolutionary studies.

Although GBA may involve different bioin-

formatics tools, databases, and cutoffs, it is usu-

ally composed of the following consecutive

steps: (i) sequence assembly; (ii) protein-coding

gene identification; (iii) similarity searches of

predicted proteins against generic or specialized

databases of characterized proteins, conserved

protein domains or motifs; and (iv) functional

assignments of predicted proteins following

a series of predefined rules. Below, we will dis-

cuss each of these steps in more detail.

Assembling Viral Metagenomes

Metagenomic sequence assembly is

a fundamental way to improve metagenomic

annotation. For example, the sensitivity of both

phylogenetic assignment methods based on

nucleotide composition and metagenomic ab

initio gene finders increases with sequence length

(McHardy et al. 2007; Li 2009; Yok and Rosen

2010). Single-genome assemblers usually do not

perform well on metagenomic datasets because

they are not designed to handle a mixture of reads

derived from different strains and species with

distinct relative abundances. In this context,

sequences of highly abundant species are likely

misidentified as repeats in a single genome,

resulting in a number of small fragmented scaf-

folds. There are a number of programs and

websites specifically designed for generating de

novo contigs and scaffolds of overlapping

metagenomic NGS reads. The CAMERAwebsite

(Sun et al. 2011) offers a meta-assembly proce-

dure for 454 reads which consist of running

a number of single-genome assemblers with care-

fully optimized parameters on the metagenomic

dataset, then it collects all the resulting contigs

and assigns quality scores by consensus analysis,

and finally, it uses an adaptation of phrap (http://
www.phrap.org) to reassemble the contigs based

on computed quality scores. There are also

a number of metagenome-specific de novo

assemblers, such as MetaVelvet (Namiki

et al. 2012), Meta-IDBA (Peng et al. 2011),

IDBA-UD (Peng et al. 2012), and Genovo

(Laserson et al. 2011). These programs deal bet-

ter with a mixed population of species with dif-

ferent abundances compared to single-genome

de novo assemblers (Namiki et al. 2012) and

seem to reduce the number of chimeric contigs.

Also, depending on the species diversity of the

metagenome, some of these programs may per-

form differently (Namiki et al. 2012), and there-

fore, it is better to try a variety of assembly

programs before starting to work on the annota-

tion of a particular dataset.

Ab Initio Gene Identification

Gene features in viral genomes are strongly dic-

tated by the genetic characteristics of their host.

Thus, bacterial viruses, or bacteriophages, are

mostly composed of single-exon genes while

eukaryotic-infecting viruses may contain genes

with more than one exon. In spite of this property,

the majority of genes encoded by viral genomes

do not have introns. Therefore, there are

a number of gene finders that are suitable for the

ab initio identification of viral genes on either

NGS reads or assembled sequences, although
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none of them have been specifically developed

for viral metagenomic samples. Two of the most

widely used gene finders are MetaGeneAnnotator

(Noguchi et al. 2008) and FragGeneScan (Rho

et al. 2010). MetaGeneAnnotator integrates statis-

tical models from prophage, bacterial and archeal

genes, and ribosomal-binding sites, and it also uses

a self-training model from input sequences for

making predictions. FragGeneScan incorporates

sequencing error models and codon usage infor-

mation in a hidden Markov model (HMM) that

improves the prediction of protein-coding genes in

NGS reads and assemblies. FragGeneScan is able

to compensate for artifactual frameshifts in

pyrosequencing reads caused by the higher fre-

quency of indels at homopolymeric regions. An

alternative strategy to the identification of genes

with gene finders is using naı̈ve six-frame trans-

lations (NSFT) that identify each possible ORF of

at least 80 nt of length. In this case, 50 and 30 ends
of reads can be considered as start and stop codons,

respectively, to also incorporate partial genes trun-

cated by read ends. In those cases where there are

two or more overlapping ORFs, it is possible to

analyze all of them or select candidate genes based

on their properties: length, dn/ds ratio, similarity at

the protein level, etc. An alternative to this

approach is to combine the results of NSFT with

gene predictions from FragGeneScan or

MetaGeneAnnotator and pick the longest

predicted gene per region.

Functional Annotation of Predicted Genes

Functional predictions of protein sequences are

usually done in two consecutive steps:

(A) similarity searches against very well-curated

protein databases and (B) functional assignments

based on database hits. A fundamental problem

in functional annotation of viral genes is how to

assign functional roles to their encoding proteins

when viral sequences are highly divergent from

those already present in well-annotated protein

databases. To make the situation even more

complicated, proteins of viral origin represent

a tiny fraction of the proteins deposited in public

repositories (Fig. 3). In consequence, in a typical

VM project, only a very small proportion of

viral peptides give significant hits (e-value

�1 � 10�5) against protein databases. There-

fore, protein database searches have to be

complemented with other bioinformatics tools

to increase the number of functionally predicted

viral proteins. In this section we describe

a strategy for functional annotation of viral

metagenomic datasets as implemented in the

Viral MetaGenomic Annotation Pipeline

(VMGAP) at the J. Craig Venter Institute

(Lorenzi et al. 2011). This pipeline makes use

of databases of conserved protein domains,

mobile genetic elements, and environmental

peptides to improve the sensitivity and quality

of the annotation. The first step in the VMGAP

is to perform several similarity searches

Viral Metagenome
Annotation Pipeline,
Fig. 3 Relative number of

viral, bacterial, archaeal,

and eukaryotic proteins in

GenBank, UniProt/Swiss-

Prot, and UniProt/

TrEMBL. Numbers are

relative to the total number

of protein in each database
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between the VM peptides to be annotated and

the following databases:

(i) BLASTP searches against public
nonredundant protein databases

Several generic nonredundant protein

databases can be used for functional assign-

ment of viral proteins: GenBank NR,

UniProtKB (UniProt Consortium 2012), and

UniRef (Suzek et al. 2007). UniProtKB con-

sists of two databases, UniProtKB/Swiss-Prot

and UniProtKB/TrEMBL. Protein records in

UniProtKB/Swiss-Prot are annotated and

reviewed by a curator, while entries in

UniProtKB/TrEMBL are automatically anno-

tated and classified. UniRef is a group of

nonredundant protein databases derived from

clustering UniProtKB entries at different per-

centages of identity. Thus, UniRef100 com-

bines identical complete and fragmented

protein sequences from any organism into

a single UniRef entry. UniRef90 and

UniRef50 are built by clustering UniRef100

sequences at the 90 % or 50 % sequence

identity levels. One of the main advantages

of using a clustered protein database such as

UniRef90 and UniRef50 is that they signifi-

cantly reduce the time required for similarity

searches and improve detection of distant

relationships, since all closely related proteins

are collapsed in a single representative

sequence (Suzek et al. 2007).

(ii) BLASTP searches against the ACLAME

database
The ACLAME database is a repository of

mobile genetic elements such as bacterio-

phages, plasmids, and transposons (Leplae

et al. 2010). Entries in ACLAME are orga-

nized into families based on their sequence

similarity and function. Those families with

more than three members are manually anno-

tated with functional assignments using gene

ontology terms from GO (Shoop et al. 2004)

and MeGO (Toussaint et al. 2007). MeGO is

an ontology developed by ACLAME to

describe biological functions, processes, and

components specific to mobile genetic ele-

ments that are not present in the GO database

(for an example see Fig. 4).

(iii) BLASTP searches against GenBank envi-

ronmental nonredundant database
An intriguing aspect of VM is the fact

that the majority of viral predicted proteins

do not share similarity with any known

sequence. This collection of unknown pro-

teins, which are usually discarded as “junk”

sequences, may represent a formidable

source for the discovery of new viral spe-

cies. One way to exploit these protein

sequences is to compare them against the

proteins from other metagenomic datasets

to gain some insight about the viral entities

that are shared between them. GenBank

environmental nonredundant database

(env_nr) is a collection of all the protein

sequences derived from metagenomic pro-

jects deposited in GenBank.

(iv) HMM searches against PFAM database
PFAM is a database of hidden Markov

models of conserved protein domains

(Punta et al. 2012). Because these domains

are usually associated with a particular

molecular function or protein family and

evolve at a lower pace compared to other

protein regions, they are excellent tools for

identifying functional domains in highly

divergent protein sequences as the ones

from viruses. PFAM HMM searches can be

run with the HMMER2 suite of programs

(Eddy 2011) in two different modes, global

or local, allowing for total or partial align-

ments of the HMMs to the queried protein

sequences, respectively. If gene predictions

are done on reads, it is expected a high pro-

portion of partial (truncated) proteins. In that

case, local HMM searches are a more sensi-

tive approach. HMM searches using global

alignments are more specific than locals and

perform better on complete proteins. How-

ever, even in assembled VM datasets the

proportion of truncated genes is very high,

since assemblies tend to be very partitioned.

Recently, PFAM released a new generation

of HMM models compatible with a new

development of the HMMER package, the

HMMER3. These HMMs can only be run in

local mode but have similar specificity and
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sensitivity to those from the two PFAM

HMMER2 models (local and global) com-

bined. HMMER3 uses a faster algorithm and

hence is a better choice for performing

HMM searches on VM protein datasets.

(v) RPS-BLAST against NCBI-CDD database
The NCBI Conserved Domain Database

(CDD) (Marchler-Bauer et al. 2011) is

a compendium of position-specific scoring

matrices (PSSMs) representing conserved

protein domains, protein families, and super-

families gathered from SMART (Letunic

et al. 2012), COG database (Tatusov

et al. 2003), NCBI-curated protein domains

(Sayers et al. 2012), and PFAM. In spite of

having some overlap with PFAM HMMs,

PSSMs derived from PFAM domains do not

behave exactly the same as their HMMs

counterparts, and therefore, they complement

each other. CDD-PSSMs are usually associ-

ated with a molecular function or represent

signatures of protein families and therefore

provide useful functional information. Since

PSSMs are BLAST scoring matrices specific

of conserved protein domains or motifs, their

use gives better sensitivity than regular

BLASTP at the time of detecting these

domains on more divergent proteins.

(vi) Additional bioinformatic tools for func-

tional annotation
Because a significant proportion of the

proteins encoded by viral metagenomes are

unknown, it is useful to take advantage of in

silico protein-signal prediction tools that

could provide hints about their putative

function. An important first step toward

understanding the biological role of

unknown viral proteins is determining their

subcellular localization while infecting their

host. A set of popular protein localization

prediction programs has been developed for

the identification of protein signals that

Viral Metagenome Annotation Pipeline, Fig. 4 Example of MeGO terms as they appear in ACLAME using

AmiGO
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dictate the subcellular destination of pep-

tides: SignalP (Petersen et al. 2011),

ChloroP (Emanuelsson et al. 1999), TargetP

(Emanuelsson et al. 2000), and Krogh et al.

2001 (http://www.cbs.dtu.dk/services/

TMHMM/). None of these programs are spe-

cifically designed for viral genes. However,

once in the host, viruses can use prokaryotic/

eukaryotic signals to target their own pro-

teins to defined subcellular locations.

SignalP 4.0 uses a neural network-based

method to predict signal peptides from

gram positive, gram negative, and eukary-

otic peptides, and it has been recently

improved to distinguish between signal pep-

tides and transmembrane domains located

near the N-terminus of proteins. ChloroP

also uses a neural network approach to pre-

dict chloroplast transit peptides, and there-

fore, it might be useful for the functional

annotation of viruses that infect plants.

TargetP is a program that predicts the sub-

cellular location of eukaryotic proteins. The

location assignment is based on the presence

of any of the following N-terminal signals:

chloroplast transit peptide, mitochondrial

targeting peptide, or signal peptide.

TMHMM is a program that predicts trans-

membrane domains based on HMM

searches. Each of these programs outputs

a p-value that can be used to select highly

significant predictions.

Functional Assignments to VM Proteins

Based on Annotation Rules

The second stage of functional annotation is the

processing of the functional information pro-

duced from database searches to generate a file

containing a summary of the functional charac-

teristics (product names, GO/MeGO terms, EC

numbers, etc.) for each viral peptide. Each of the

evidences generated by the analyses described

above is more or less informative or accurate

depending on the origin of the VM, the queried

databases, and the programs used. Therefore, the

best approach is to apply a series of hierarchical

rules to prioritize the use of a certain piece of

evidence over another based on how trustful and

useful that evidence is. Figure 5 shows a potential

hierarchical scheme similar to the one used as

Viral Metagenome Annotation Pipeline, Fig. 5 Hierarchical scheme for functional annotation of viral proteins
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part of the VMGAP at the JCVI. Under this

scheme, hits against ACLAME database are the

highest ranked supporting evidence for func-

tional assignments. Hence, any viral protein that

hits an ACLAME entry with an e-value

�1 � 10�10, with at least 50 % identity spanning

80 % of the length of the shortest sequence, will

automatically inherit the functional annotation

associated with that particular ACLAME pep-

tide. The second, third, and fourth tiers of evi-

dence correspond respectively to highly

significant BLASTP hits against UniProt/Swiss-

Prot (US), UniProt/TrEMBL (UT), and GenBank

NR (GB). US has a higher hierarchy than UT

and GB because entries in US are manually

curated. BLASTP hits against UT have a higher

priority than GB hits because UT annotation is

usually more comprehensive compared with

GB. Ranked fifth and sixth are hits against almost

complete PFAM HMMs and CDD-PSSMs,

respectively. PFAM hits are more reliable than

CDD hits because they can be selected based on

their e-value but also using pre-calibrated

domain-specific bit score cutoffs named trusted

cutoff. Any protein that hits a PFAM HMM with

a bit score above its trusted cutoff is considered to

contain that particular domain with a very high

level of confidence. CDD domains, on the other

hand, are being selected just based on the e-value

of the RPS-BLAST hit and coverage of the CDD

domain, and hence, hits are less reliable com-

pared with tier five. Local hits against PFAM

HMM domains with e-values �1 � 10�5 are

ranked seventh below CDD hits. Because these

hits span just a portion of the HMM model, they

are solely selected by their e-value and not by

their bit score. Tiers eight to 11 look for less

reliable hits against ACLAME, US, UT, and GB

databases in that order using more permissive

cutoffs (e-value �1 � 10�5; coverage �70 %,

identity �30 %) compared to tiers 1–4 (e-value

�1 � 10�10; coverage �80 %, identity �50 %).

Ranked 12th are BLASTP hits against environ-

mental protein databases, such as GenBank

env_nr, with e-values of at least 1 � 10�5.

Entries in environmental protein databases are

likely to lack any functional annotation. How-

ever, associated metadata such as geographic

location, body site, type of disease, etc., may

still provide some clues about the biology of the

viruses present in the VM sample. Finally, if the

viral protein does not contain a database hit that

falls within any of the first 12 tiers, then it is

considered an unknown protein.

Note that the rules described above can be

further improved by, for example, the incorpora-

tion of results from subcellular localization

predictions (TargetP, SignalP, ChloroP, and

TMHMM) between tears 12 and 13 or any other

functional analysis.

Applying the rules described above, it is pos-

sible to assign product names, EC numbers, and

GO/MeGO terms to predicted proteins from the

VM sample. For example, if a viral predicted

protein has a hit against a peptide fromACLAME

database above the cutoffs from tier 1, then it can

inherit the product name as well as the GO or

MeGO terms associated with that particular

ACLAME entry. UniProt entries, in particular

from US, are also a very good source of product

names, EC numbers, and GO terms. However,

these assignments should be done from high con-

fidence hits only.

Web Resources for Functional
Annotation of VM Datasets

Currently, there are a number of publicly avail-

able bioinformatics tools that can be used for the

structural (gene identification) and functional

annotation of viral metagenomes. MG-RAST

(Glass et al. 2010; Meyer et al. 2008) is

a popular web resource able to perform structural

and functional annotations on both NGS reads

and assembled metagenomic data. One main

advantage is that all computes are run by the

MG-RAST server, and therefore, the user is not

required to have a big computer infrastructure. It

also handles Illumina and 454 reads and provides

several read preprocessing tools such as elimina-

tion of duplicated or contaminated reads and

deletion of low-quality sequences and short

reads. Structural annotation is carried out either

on reads or assemblies using FragGeneScan

while functional annotation is being done by
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similarity searches against a protein

nonredundant database that compiles the follow-

ing public protein databases: GenBank NR,

KEGG (Tanabe and Kanehisa 2012), IMG

(Markowitz et al. 2012), InterPro (Hunter

et al. 2012), PATRIC (Gillespie et al. 2011),

Dwivedi et al. 2012 (http://www.phantome.org/),

RefSeq (Pruitt et al. 2012), SEED (DeJongh

et al. 2007), UniProt/Swiss-Prot, UniProt/

TrEMBL, COG (Tatusov et al. 2003), GO, KO

(Mao et al. 2005), and eggNOG (Powell

et al. 2012). Among these databases is Phantome,

a protein database of complete phage genomes

manually curated by experts using a subsystem

approach (Overbeek et al. 2005). Another nice

feature of MG-RAST is that it allows the com-

parison among the annotated VM samples pro-

vided by the user and the more than 10,000

metagenomic datasets that are publicly available

at the MG-RAST server.

Another useful web resource is CAMERA

(Sun et al. 2011), which allows the construction

of customized workflows for the analysis of

external metagenomic data. Among the many

bioinformatic tools available are an assembly

pipeline for 454 reads, protein clustering with

CD-HIT, clustering of duplicated 454 reads,

gene predictions based on different gene finders,

and a general pipeline for annotation of

metagenomic datasets.
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Synonyms

Metagenomic detection of viral agents in clinical

samples

Definition

Viral pathogens in clinical samples here refer

to the human viruses isolated (or been discov-

ered) in clinical samples that associate with

known human diseases. Viruses from environ-

mental samples or nonhuman biological sam-

ples as well as the large amount of commensal

viruses in human virome are not discussed in

this entry.

Introduction

Viral diseases continue to threat public health and

medicine in the twenty-first century by causing

significant disease burden globally. Accurate

and rapid identification of the viral agents is the

key step towards better control and prevention of

the associate diseases. Traditional techniques for

virus discovery such as cultivation-, morphology-,

serology-, and immunology-based methods have

contributed significantly to the identification

of most important viral pathogens during the

last century. In addition, modern molecular

methods such as PCR and microarray also

play more and more important roles in clinical

virology practices in the past decade. The

newly emerged metagenomic-based method is

a particularly powerful approach for virus identi-

fication since genetic materials can be analyzed

directly from clinical samples, bypassing the

need for culturing, cloning, or a priori knowledge

of what viruses may be present. The recent advent

of next-generation sequencing technologies

(NGS), which have dramatically improved the

speed and cost-effectiveness of sequencing,

fueled the clinical application of metagenomic

method for viral diagnosis. Herein, we summa-

rized the most recent studies that have success-

fully identified viral pathogens from clinical

samples by using the NGS-based metagenomic

approach.

Viral Pathogens in Diseased Human
Tissues

The astonishing power of NGS-based

metagenomic approach for clinical diagnosis

was first illustrated by two remarkable studies

reported in 2008. Merkel cell carcinoma (MCC)

is a rare but aggressive human skin cancer that

typically affects elderly and immune-suppressed

individuals. By high-throughput metagenomic

sequencing of the cDNA library of tumor tissues

and digital subtraction of human transcriptome,

Feng et al. identified a novel polyomavirus that

may be a contributing factor in the pathogenesis

of MCC (Feng et al. 2008). Another study used

a similar strategy to discover a new arenavirus

that likely associated with a cluster of fatal

transplant-associated diseases, after many tradi-

tional and molecular assays including culture,

PCR, and oligonucleotide microarray had failed

to identify any potential infectious agents

(Palacios et al. 2008). The success of
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NGS-based metagenomic approach in clinical

diagnosis provided a new route for the identifica-

tion of pathogens from clinical samples and was

believed to be the herald of a breakthrough in the

field of pathogen discovery (MacConaill and

Meyerson 2008). Indeed, the metagenomic

approaches were further applied to screen post-

mortem tissues for potential viral agents by the

same group from Columbia University, and they

successively identified a new hemorrhagic fever-

associated arenavirus named Lujo virus from

Southern Africa and an astrovirus as a causative

agent for encephalitis in a patient with agamma-

globulinemia (Briese et al. 2009; Quan

et al. 2010).

Viral Pathogens in Fecal Samples

Due to the relatively feasible accessibility, stool

specimens are the most intensively investigated

clinical samples by using metagenomic

approaches to date (Table 1). Diarrhea is one of

the major infectious causes of death worldwide,

but about 40 % of the diarrhea cases are of

unknown etiology. Metagenomic approaches

were recently used by different groups to screen

stool samples from diarrhea patients, and many

known eukaryotic viruses as well as several new

viral species/genus were discovered, including

a novel gyrovirus species GyV3 and a potential

new parvovirus genus (Nakamura et al. 2009;

Phan et al. 2012a, b). The same group from

Blood Systems Research Institute also analyzed

fecal samples from 35 South Asian children with

nonpolio acute flaccid paralysis and identified

a large number of known enteric viruses as well

as several new viral species (Victoria et al. 2009).

But numerous viruses were also detectable in the

samples from six healthy contacts of the patients.

In addition, two groups dedicated to the unknown

etiology of gastrointestinal illness with the

metagenomic approach and revealed a new

astrovirus VA1 and a novel picornavirus named

klassevirus, respectively (Finkbeiner et al. 2009;

Greninger et al. 2009). But further studies are still

required to fully characterize these newly identi-

fied potential viral pathogens.

Viral Pathogens in Respiratory
Specimens

The respiratory tract is one of the most heavily

exposed organs in human body to microorgan-

isms. Therefore, the new NGS-based

metagenomic approaches were extensively used

by different studies to identify viral agents from

patients with respiratory infections (Table 1).

However, the quantities of samples from respira-

tory tract, either swabs or aspirates, are much

lower than those of fecal samples mentioned

above. Detection of potential viral agents from

the minute respiratory samples using the

metagenomic approach is therefore particularly

challenging and tricky. All of the aforementioned

studies targeting human tissues or stools employed

the Roche/454 platform for metagenomic

sequencing as it produced longer reads (but

lower overall throughput) than other NGS plat-

forms. Nevertheless, three of the five published

studies working on respiratory specimens tried

the Illumina platform instead. Actually, the

ultrahigh throughput of Illumina platform can

largely compensate the disadvantage in reads

length as compared to the Roche/454 platform

(Yang et al. 2011). In addition, a simulation

study showed that the Illumina technology was

more sensitive than the Roche/454 technology in

detection viruses from biological samples (Cheval

et al. 2011). Indeed, using only 36 bp reads, our

group identified seven known respiratory viral

agents from 16 clinical samples, including a case

of coinfection that would have been misdiagnosed

by conventional PCR assays (Yang et al. 2011).

Moreover, when utilizing the paired-end sequenc-

ing strategy, the novel enterovirus 109 was readily

identified from a case of acute respiratory illness in

a Nicaraguan child (Yozwiak et al. 2010), whereas

90 % of the viral genome of H1N1 influenza

A virus can even be assembled de novo

(Greninger et al. 2010).

Viral Pathogens in Blood Samples

Viral hemorrhagic fever (VHF) is a severe illness

characterized by high fever and bleeding, which
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may be caused by a number of viruses. Recently,

a group from the Centers for Disease Control and

Prevention dedicated to screen viral agents in

blood samples from VHF patients in Uganda

using the Roche/454-based metagenomic

approach. They successfully identified a new

Ebola virus likely responsible for a large hemor-

rhagic fever outbreak in western Uganda

Viral Pathogens in Clinical Samples by Use of a Metagenomic Approach, Table 1 Selected clinical viral

diagnosis reports using a metagenomic approach based on next-generation sequencing technologies

Sample types Related diseases Viral pathogens detected

Sequencing

platform Reference

Diseased

human

tissues

Tumor tissues Merkel cell carcinoma

(a type of human skin

cancer)

Merkel cell polyomavirus

(novel)

Roche/454 Feng

et al. 2008

Postmortem

tissues

Fatal transplant-associated

diseases

New arenavirus Roche/454 Palacios

et al. 2008

Postmortem

tissues and sera

Hemorrhagic fever Lujo virus (novel) Roche/454 Briese

et al. 2009

Biopsy and

postmortem

tissues

Encephalitis Astrovirus Roche/454 Quan

et al. 2010

Fecal

samples

Stools Diarrhea Norovirus Roche/454 Nakamura

et al. 2009

Stools Nonpolio acute flaccid

paralysis

Several known enteric

viruses and five novel

viruses

Sanger,

Roche/454

Victoria

et al. 2009

Stools Pediatric gastroenteritis Klassevirus (novel) Roche/454 Greninger

et al. 2009

Stools Acute gastroenteritis Astrovirus VA1(novel) Sanger,

Roche/454

Finkbeiner

et al. 2009

Stools Diarrhea Several known viruses and

one novel gyrovirus species

Roche/454 Phan

et al. 2012a

Stools Pediatric acute diarrhea Several known viruses and

one potential novel genus in

the Parvoviridae family

Roche/454 Phan

et al. 2012b

Respiratory

specimens

Nasopharyngeal

aspirates

Influenza Influenza virus Roche/454 Nakamura

et al. 2009

Nasopharyngeal

swabs

Acute pediatric respiratory

illness

Human enterovirus

109(novel)

Illumina Yozwiak

et al. 2010

Nasopharyngeal

swabs

Influenza 2009 pandemic H1N1

influenza A virus

Illumina Greninger

et al. 2010

Nasopharyngeal

aspirates

Acute lower respiratory

tract infections

Seven known respiratory

viral agents

Illumina Yang

et al. 2011

Nasopharyngeal

aspirates

Acute lower respiratory

tract infections

Several known respiratory

viruses and one novel type

of rhinovirus C

Roche/454 Lysholm

et al. 2012

Blood

samples

Blood Hemorrhagic fever Bundibugyo ebolavirus

(novel)

Roche/454 Towner

et al. 2008

Sera Fever, thrombocytopenia,

and leukopenia syndrome

Henan fever virus (novel) Illumina Xu

et al. 2011

Sera Hemorrhagic fever Yellow fever virus Roche/454 McMullan

et al. 2012

Sera Dengue-like disease Human herpesvirus 6 and

several other known viruses

Illumina Yozwiak

et al. 2012
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(Towner et al. 2008). In another study on the

suspected hemorrhagic fever endemic in northern

Uganda, using the same strategy, they not only

recognized yellow fever virus but also generated

98 % of the virus genome sequence, which facil-

itated the follow-up phylogenetic analyses

(McMullan et al. 2012). The Illumina platforms

are also employed for the detection of viral path-

ogens in blood samples by using a metagenomic

approach (Table 1). During a tick-transmitted-

like outbreak of fever, thrombocytopenia, and

leukopenia syndrome in China, most patients

are tested negative for the former-suspected

human granulocytic anaplasmosis. Hence,

a metagenomic approach based on paired-end

Illumina sequencing was applied to screen

potential viral agents from the sera of patients,

and a novel bunyavirus was successfully identi-

fied (Xu et al. 2011). In addition, the novel

virus was confirmed to present in 78 % of the

acute-phase serum samples by further RT-PCR

testing.

Summary

Since the first introduce in 2008, we have

witnessed the emergence and extensive applica-

tions of the NGS-based metagenomic approach

as a powerful tool in diagnostic virology. The

intrinsic properties of metagenomics provide the

method prominent advantages in speed and sen-

sitivity for parallel screening of known viral path-

ogens as well as detection of new unexpected

viral agents in clinical samples. With the contin-

uous development and improvement of high-

throughput sequencing technologies, the

metagenomic approach will probably become an

essential diagnostic method in clinical routines.

However, in current stage, several issues

should be kept in mind for the application of the

metagenomic approach in viral diagnostic prac-

tices. First, the selection of different NGS plat-

forms will be critical to both preceding sample

nucleotides preparation and further sequence data

analyses. Though the majority of published appli-

cations used Roche/454 platform, the Illumina

technology is increasingly employed in most

recent studies as the higher throughput do offers

greater sensitivity as compared with the former.

Second, differ from traditional methods the

metagenomic approach rely heavily on subse-

quent bioinformatics data analyses, which can

be very tricky particularly in case of detection

potential novel viruses. Lacking of standard pro-

tocols for metagenomic data analysis has ham-

pered the further extensive applications of

metagenomic approach in the future. Third,

results frommetagenomic approach only indicate

the presence of given viruses in the clinic samples

screened, and it cannot directly deduce that the

viruses identified are responsible for the human

diseases investigated. Hence, the biological and

medical interpretations of metagenomic results

may require further evidences from epidemiol-

ogy, morphology, immunology, etc.

Cross-References

▶ Functional Viral Metagenomics and the

Development of New Enzymes for DNA and
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