

Exam Ref 70-765 Provisioning SQL
Databases

Joseph D’Antoni
Scott Klein

Exam Ref 70-765 Provisioning SQL Databases

Published with the authorization of Microsoft Corporation by: Pearson
Education, Inc.

Copyright © 2018 by Pearson Education

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with
respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-1-5093-0381-6
ISBN-10: 1-5093-0381-2

Library of Congress Control Number: 2017953262
1 17

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The authors, the publisher, and Microsoft Corporation
shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this
book or programs accompanying it.

http://www.pearsoned.com/permissions/
https://www.microsoft.com

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief Greg Wiegand
Acquisitions Editor Trina MacDonald
Development Editor Troy Mott
Managing Editor Sandra Schroeder
Senior Project Editor Tracey Croom
Editorial Production Backstop Media
Copy Editor Christina Rudloff
Indexer Julie Grady
Proofreader Christina Rudloff
Technical Editor Thomas LaRock
Cover Designer Twist Creative, Seattle

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a glance

Introduction

Important: How to use this book to study for
the exam

CHAPTER 1  Implement SQL in Azure
CHAPTER 2  Manage databases and instances
CHAPTER 3  Manage Storage

Index

Contents

Introduction
Organization of this book
Microsoft certifications
Acknowledgments
Microsoft Virtual Academy
Quick access to online references
Errata, updates, & book support
We want to hear from you
Stay in touch
Important: How to use this book to study for the exam

Chapter 1  Implement SQL in Azure
Skill 1:1: Deploy a Microsoft Azure SQL Database

Choose a service tier
Create servers and databases
Create a sysadmin account
Configure elastic pools

Skill 1:2: Plan for SQL Server installation
Plan for an IaaS or on-premises SQL Server deployment
Select the appropriate size for a virtual machine
Plan storage pools based on performance requirements
Evaluate best practices for installation
Design a storage layout for a SQL Server virtual machine

Skill 1:3: Deploy SQL Server instances
Deploy a SQL Server instance in IaaS and on-premises

Manually install SQL Server on an Azure Virtual Machine
Provision an Azure Virtual Machine to host a SQL Server
instance
Automate the deployment of SQL Server Databases
Deploy SQL Server by using templates

Skill 1:4: Deploy SQL Server databases to Azure virtual
machines

Migrate an on-premises SQL Server Database to an
Azure virtual machine
Generate benchmark data for performance needs
Perform performance tuning on Azure IaaS
Support availability sets in Azure

Thought experiment
Thought experiment answers
Chapter summary

Chapter 2  Manage databases and instances
Skill 2.1: Configure secure access to Microsoft Azure SQL
databases

Configure firewall rules
Configure Always Encrypted for Azure SQL Database
Configure Dynamic Data Masking
Configure Transparent Data Encryption

Skill 2.2: Configure SQL Server performance settings
Configure database performance settings
Configure max server memory
Configure the database scope
Configure operators and alerts

Skill 2.3: Manage SQL Server instances
Manage files and filegroups

Create databases
Manage system database files
Configure TempDB

Thought Experiment
Thought experiment answers
Chapter summary

Chapter 3  Manage Storage
Skill 3.1: Manage SQL Storage

Manage SMB file shares
Manage stretch databases
Configure Azure storage
Change service tiers
Review wait statistics
Manage storage pools
Recover from failed storage

Skill 3.2: Perform database maintenance
Monitor DMVs
Maintain indexes
Automate maintenance tasks
Update statistics
Verify database integrity
Recover from database corruption

Thought experiment
Thought experiment answers
Chapter summary

Index

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually
improve our
books and learning resources for you. To participate in a brief online
survey, please visit:

https://aka.ms/tellpress

https://aka.ms/tellpress

Introduction

This book contains three chapters to define and detail the objectives of the
Microsoft
70-765 exam. The content contained in this publication covers what you
should expect to see on the exam, but you should have a solid working
knowledge of SQL Server and Azure skills. It is recommended to concentrate
on one chapter at a time as you study the materials contained in this guide. At
the end of each chapter you will find a thought experiment that you should
complete. Complete the questions and review the answers for each
experiment to test your knowledge of the subject material.

The exam reference series covers a high level of knowledge that you are
expected to know in regards to the exam by covering why topics and “how
to” processes with tasks allowing you to fully understand a topic and its use
with the product in a working environment. The exam reference series makes
the assumption you have some practical experience in the subject material
through regular use of SQL Server, or possibly a previous version of the
product. To be successful in taking the exam, you should be able to plan and
architect Azure SQL Database, SQL Server in Azure IaaS, and SQL Server
on-premises based solutions.

There are specific walkthroughs in different areas of the book, especially in
new feature topic areas. There are numerous notes and links to external
material so you can deep dive into additional subjects that will enable you to
gain a more in depth understanding of features of SQL Server and allow you
to obtain a better understanding of the subject material.

This book covers all of the objectives of the exam, however it may not
cover every exam question. Only the Microsoft exam team knows the exam
questions. Exam questions are regularly updated, so this book should be
considered a supplement to real use experience of SQL Server, and not a
complete comprehensive guide to every exam question. This edition of the
book covers Azure and SQL Server as of mid-2017. As Azure SQL Database,
SQL Server and Azure IaaS evolve, be sure to check the exam objectives to
check for any changes or new version related information.

If you master the material in this book, coupled with the external links
provided, and use the product to gain real world experience, you should have
a recipe for success in your quest for Microsoft certification. Good luck on
your goal!

Organization of this book
This book is organized by the “Skills measured” list published for the exam.
The “Skills measured” list is available for each exam on the Microsoft
Learning website: https://aka.ms/examlist. Each chapter in this book
corresponds to a major topic area in the list, and the technical tasks in each
topic area determine a chapter’s organization. If an exam covers six major
topic areas, for example, the book will contain six chapters.

Microsoft certifications
Microsoft certifications distinguish you by proving your command of a broad
set of skills and experience with current Microsoft products and technologies.
The exams and corresponding certifications are developed to validate your
mastery of critical competencies as you design and develop, or implement
and support, solutions with Microsoft products and technologies both on-
premises and in the cloud. Certification brings a variety of benefits to the
individual and to employers and organizations.

More Info All Microsoft Certifications
For information about Microsoft certifications, including a full list of
available certifications, go to https://www.microsoft.com/learning.

Acknowledgments
Joseph D’Antoni I would like to thank my wife Kelly and my team at Denny
Cherry and Associates consulting (Denny, John, Kerry, and Monica) for their
help and patience with this project.

Scott Klein When writing the acknowledgments, I always struggle with who
to list first because there are a handful of people that have played a huge role
in this and they all deserve to be at the top of the list. However, having said

https://aka.ms/examlist
https://www.microsoft.com/learning

that, I would like to thank Joey D’Antoni for making the initial connection
and getting this whole thing started for me.

A very close second (and third) are the two individuals who not only
brought me on board for this project but were also very patient while I
jumped in; Trina MacDonald and Troy Mott. Thank you both for this
opportunity.

Next comes the always amazing Tom LaRock, a good friend of mine who
provided amazing and very appreciated technical feedback. Tom has
reviewed a couple of my other books so when I heard he was the technical
reviewer for this, there was an element of both excitement and “oh crap,”
because I knew Tom would keep me honest, but at the same time he’d have a
LOT of feedback, which I don’t mind at all.

Lastly, my family. Thank you for letting me disappear for a few weeks.

Microsoft Virtual Academy
Build your knowledge of Microsoft technologies with free expert-led online
training from Microsoft Virtual Academy (MVA). MVA offers a
comprehensive library of videos, live events, and more to help you learn the
latest technologies and prepare for certification exams. You’ll find what you
need here:

https://www.microsoftvirtualacademy.com

Quick access to online references
Throughout this book are addresses to webpages that the author has
recommended you visit for more information. Some of these addresses (also
known as URLs) can be painstaking to type into a web browser, so we’ve
compiled all of them into a single list that readers of the print edition can
refer to while they read.

Download the list at https://aka.ms/exam765sqldatabases/downloads.
The URLs are organized by chapter and heading. Every time you come

across a URL in the book, find the hyperlink in the list to go directly to the
webpage.

Errata, updates, & book support

https://www.microsoftvirtualacademy.com
https://aka.ms/exam765sqldatabases/downloads

We’ve made every effort to ensure the accuracy of this book and its
companion content. You can access updates to this book—in the form of a
list of submitted errata and their related corrections—at:

https://aka.ms/exam765sqldatabases/errata

If you discover an error that is not already listed, please submit it to us at
the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is
not offered through the previous addresses. For help with Microsoft software
or hardware, go to
https://support.microsoft.com.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback
our most valuable asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions.
Your answers go directly to the editors at Microsoft Press. (No personal
information will be requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

https://aka.ms/exam765sqldatabases/errata
mailto:mspinput@microsoft.com
https://support.microsoft.com
https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Important: How to use this book to
study for the exam
Certification exams validate your on-the-job experience and product
knowledge. To gauge your readiness to take an exam, use this Exam Ref to
help you check your understanding of the skills tested by the exam.
Determine the topics you know well and the areas in which you need more
experience. To help you refresh your skills in specific areas, we have also
provided “Need more review?” pointers, which direct you to more in-depth
information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not
designed to teach you new skills.

We recommend that you round out your exam preparation by using a
combination of available study materials and courses. Learn more about
available classroom training at https://www.microsoft.com/learning.
Microsoft Official Practice Tests are available for many exams at
https://aka.ms/practicetests. You can also find free online courses and live
events from Microsoft Virtual Academy at
https://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the
exam. The “Skills measured” list for each exam is available on the Microsoft
Learning website: https://aka.ms/examlist.

Note that this Exam Ref is based on publicly available information and the
author’s experience. To safeguard the integrity of the exam, authors do not
have access to the exam questions.

https://www.microsoft.com/learning
https://aka.ms/practicetests
https://www.microsoftvirtualacademy.com
https://aka.ms/examlist

Chapter 1 Implement SQL in Azure

Moving or provisioning new databases on the Azure platform requires a
different set of skills than managing traditional on-premises installations.
You need to have a broader understanding of cloud computing concepts and
technologies like platform as a service, infrastructure as a service, and
scripting.

Important: Have you read page xiii?
It contains valuable information regarding the skills you need to pass the
exam.

Skills in this chapter:
Skill 1.1: Deploy a Microsoft Azure SQL Database
Skill 1.2: Plan for SQL Server installation
Skill 1.3: Deploy SQL Server instances
Skill 1.4: Deploy SQL Server databases to Azure virtual machines

Skill 1:1: Deploy a Microsoft Azure SQL Database
This skill deals with the process of setting up an Azure SQL Database. Azure
SQL Database is a Platform as a Service (PaaS) offering that can be quite
different from a traditional on-premises implementation of SQL Server.

This skill covers how to:
Choose a service tier
Create servers and databases
Create a sysadmin account
Configure elastic pools

Choose a service tier
Unlike traditional on-premises architecture, or even Infrastructure as a
Service (IaaS) architecture, Azure SQL Database is not configured by
choosing CPU, RAM, and storage metrics. Microsoft has categorized several
different service tiers:

Basic
Standard
Premium
Premium-RS

Your service tier affects several critical factors about your database
including size, performance level, availability, and concurrency. Each tier of
service has limits on sizing and performance capacity, which is measure in
Database Transaction Units (DTUs). Let us examine each performance level
in detail.

Basic The basic service tier is best suited for small databases that are in
early stages of development. The size of this tier is limited to 2
gigabytes (GB) and computing resources are extremely limited.
Standard The standard tier offers a wide range of performance and is
good for applications with moderate performance needs and tolerance
for small amounts of latency. Your database can be up to 250 GB in
size.
Premium The premium tier is designed for low latency, high
throughput, mission critical databases. This service tier offers the
broadest range of performance, high input/output (I/O) performance, and
parallelism. This service tier offers databases up to 4 terabytes (TB) in
size.
Premium RS The premium RS service tier is designed for databases
that have I/O intensive workloads, but may not have the same
availability requirements of premium databases. This could be used for
performance testing of new applications, or analytical applications.

The fundamental concept of performance in Azure SQL Database is the
Database Transaction Unit or DTU (you are introduced to this concept when

you learn about elastic pools with the elastic Database Transaction Unit or
eDTU). As mentioned earlier, when sizing an Azure SQL Database, you do
not choose based on various hardware metrics, instead you choose a
performance level based on DTUs.

There is one other significant feature difference as it relates to standard and
basis tiers versus the premium performance tiers—in-memory features of
SQL Server. Both columnstore and in-memory OLTP, which are features that
are used for analytic and high throughput OLTP workloads are limited only
to the premium and premium RS tiers. This is mainly due to resource
limitations—at the lower service tiers there is simply not enough physical
memory available to take advantage of these features, which are RAM
intensive.

The basic performance level has a max DTU count as shown in Table 1-1.

Table 1-1 Basic performance level limits

Performance level Basic
Max DTUs 5
Max database size 2 GB
Max in-memory OLTP storage N/A
Max concurrent workers (requests) 30
Max concurrent logins 30
Max concurrent sessions 300

The standard performance level offers size increases, and increased DTU
counts and supports increased concurrency (see Table 1-2).

Table 1-2 Standard performance tier limits

Performance level S0 S1 S2 S3
Max DTUs 10 20 50 100

Max database size 250
GB

250
GB

250
GB

1024
GB

Max in-memory OLTP storage N/A N/A N/A N/A
Max concurrent workers
(requests) 60 90 120 200

Max concurrent logins 60 90 120 200
Max concurrent sessions 600 900 1200 2400

Recently, Microsoft made several additions to the standard database
performance offerings (Table 1-3), both increasing the size and performance
limits of the standard tier.

Table 1-3 Extended Standard Performance Tier Limits

Performance level S4 S6 S7 S9 S12
Max DTUs 200 400 800 1600 3000

Max Database Storage 1024
GB

1024
GB

1024
GB

1024
GB

1024
GB

Max in-memory OLTP
storage (GB) N/A N/A N/A N/A N/A

Max concurrent workers
(requests) 400 800 1600 3200 6000

Max concurrent logins 400 800 1600 3200 6000
Max concurrent sessions 4800 9600 19200 30000 30000

The Premium performance tier (see Table 1-4) offers larger capacity, and
greatly increased storage performance, making it ideal for I/O intensive
workloads.

Table 1-4 Premium Performance Tier Limits

Performance level P1 P2 P4 P6 P11 P15
Max DTUs 125 250 500 1000 1750 4000

Max database size 500
GB

500
GB

500
GB

500
GB

4096
GB

4096
GB

Max in-memory
OLTP storage 1 GB 2 GB 4 GB 8 GB 14

GB
32
GB

Max concurrent
workers (requests) 200 400 800 1600 2400 6400

Max concurrent
logins 200 400 800 1600 2400 6400

Max concurrent
sessions

30000 30000 30000 30000 30000 30000

The Premium RS tier (see Table 1-5) is similar to the Premium tier in
terms of performance, but with lower availability guarantees, making it ideal
for test environments.

Table 1-5 Premium RS performance tier limits

Performance level PRS1 PRS2 PRS4 PRS6
Max DTUs 125 250 500 1000

Max database size 500
GB

500
GB

500
GB

500
GB

Max in-memory OLTP storage 1 GB 2 GB 4 GB 8 GB
Max concurrent workers
(requests) 200 400 800 1600

Max concurrent logins 200 400 800 1600
Max concurrent sessions 30000 30000 30000 30000

 Exam Tip

It is important to understand the relative performance levels and costs of
each service tier. You do not need to memorize the entire table, but you
should have a decent understanding of relative performance and costs.

More Info Database Transaction Units
For a single database at a given performance level, Microsoft offers a
performance level based on a specific, predictable level of performance.
This amount of resources is a blended measure of CPU, memory, data,
and transaction log I/O. Microsoft built this metric based on an online
transaction processing benchmark workload. When your application
exceeds the amount of any of the allocated resources, your throughput
around that resource is throttled, resulting in slower overall
performance. For example, if your log writes exceed your DTU

capacity, you may experience slower write speeds, and your application
may begin to experience timeouts. In the Azure Portal you can see your
current and recent DTU utilization, shown in Figure 1-1.

Figure 1-1 A screen shot of the DTU percentage screen for an Azure SQL
Database from the Azure Portal

The Azure Portal offers a quick glance, but to better understand the
components of your application’s DTU consumption by taking advantage of
Query Performance Insight feature in the Azure Portal, you can click
Performance Overview from Support and Troubleshooting menu, which
shows you the individual resource consumption of each query in terms of
resources consumed (see Figure 1-2).

Figure 1-2 A screen shot of the DTU percentage screen for an Azure SQL
Database from the Azure Portal

The graphic in Figure 1-2 is built on top of the data collected by the Query
Store feature that is present in both Azure SQL Database and SQL Server.
This feature collects both runtime data like execution time, parallelism, and
execution plan information for your queries. The powerful part of the Query
Store is combining these two sets of data to make intelligent decisions about
query execution. This feature supports the Query Performance Insight blade
on the Azure Portal. As part of this feature you can enable the performance
recommendations feature, which creates and removes indexes based on the
runtime information in your database’s Query Store, and can changes query
execution plans based on regression of a given query’s execution time.

More Info About Query Performance Insight
You can learn more about query performance insight at:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
query-performance.

The concept of a DTU can be very confusing to a DBA or developer who
is used to choosing hardware based on specific requirements like amount of
RAM and number of CPU cores. Microsoft has built the DTU model to
abstract those hardware decisions away from the user. It is important to
understand that DTUs represent relative performance of your database—a
database with 200 DTUs is twice as powerful as one with 100 DTUs. The
DTUs are based on the Azure SQL Database benchmark, which is a model
that Microsoft has built to be a representative online transaction processing
(OLTP) application, which also scales with service tier, and runs for at least
one hour (see Table 1-6).

Table 1-6 Azure SQL Database Benchmark information

Class of
Service Throughput Measure Response Time

Requirement

Premium Transactions per
second 95th percentile at 0.5 seconds

Standard Transactions per
minute 90th percentile at 1.0 seconds

Basic Transactions per hour 80th percentile at 2.0 seconds

More Info About SQL Database Benchmark
You can learn more about SQL Database Benchmark insight at:
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
benchmark-overview.

Performance tuning
Before the Query Store and Query Performance Insight was available, a
database administrator would have had to either use a third-party monitoring
tool or build their own repositories to store information about the runtime
history of their database. With these features in conjunction with auto-tuning

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-query-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-benchmark-overview

features that have been released, the administrator can focus efforts on deeper
tuning, building more optimal data structures, and developing more robust
applications.

Automatic tuning
This is a feature that is unique to Azure SQL Database, and is only possible
because of the power of cloud computing and machine learning elements that
support Microsoft Azure. Proper index design and management is the key to
relational database performance, whether you are in an on-premises
environment or a platform as a service one. By monitoring your workloads
Azure SQL Database can teach itself to identify and create indexes that
should be added to your database.

In a traditional environment, this process consisted of the database
administrator trying to track many queries, write scripts that would
periodically collect data from various system views, and then take a best
guess effort at creating the right set of indexes. The Azure SQL Database
automated tuning model analyzes the workload proactively, and identifies
queries that could potentially be run faster with a new index, and identifies
indexes that may be unused or duplicated.

Azure also continually monitors your database after it builds new indexes
to ensure that the changes help the performance of your queries. Automatic
tuning also reverts any changes that do not help system performance. This
ensures that changes made by this tuning process have no negative impact
against your workloads. One set of relatively new automatic tuning features
came with the introduction of compatibility level 140 into Azure SQL
Database.

Even though Azure SQL Database does not have versions, it does allow
the administrator or developer to set the compatibility level of the database. It
does also support older compatibility levels for legacy applications.
Compatibility level does tie back to the level at which the database optimizer
operates, and has control over what T-SQL syntax is allowed. It is considered
a best practice to run at the current compatibility level.

Azure SQL Database currently supports compatibility levels from 100
(SQL Server 2008 equivalent) to 140 (SQL Server 2017 equivalent). It is
important to note that if you are dependent on an older compatibility level,

Microsoft could remove them as product versions go off support. You can
check and change the compatibility level of your database by using SQL
Server Management studio, or the T-SQL, as shown in Figure 1-3.

Figure 1-3 Options Windows from SQL Server Management Studio
showing compatibility level options

To determine the current compatibility levels of the database in T-SQL,
you can execute the following query:

Click here to view code image

SELECT compatibility_level

FROM sys.databases

WHERE [name] = 'Your Database Name';

To change the compatibility level of the database using T-SQL, you would
execute the following command replacing “database_name” with the name of
your database:
Click here to view code image

ALTER DATABASE database_name SET COMPATIBILITY_LEVEL = 140;

Performance enhancements in compatibility level 140
Compatibility level 140 introduces several new features into the query
optimization process that further improve the automated tuning process.
These features include:

Batch mode memory grant feedback
Batch mode adaptive join
Interleaved query execution
Plan change regression analysis

Let’s look at each of these features in detail.

Batch mode memory grant feedback
Each query in SQL database gets a specific amount of memory allocated to it
to manage operations like sorting and shuffling of pages to answer the query
results. Sometimes the optimizer grants too much or too little memory to the
query based on the current statistics it has on the data, which may affect the
performance of the query or even impact overall system throughput. This
feature monitors that allocation, and dynamically changes it based on
improving future executions of the query.

Batch mode adaptive join
This is a new query operator, which allows dynamic selection to choose the
most optimal join pattern based on the row counts for the queries at the time
the query is executed.

Interleaved Execution
This is designed to improve the performance of statements that use multi-

statement table valued functions (TVFs), which have traditionally had
optimization issues (in the past the optimizer had no way of knowing how
many rows were in one of these functions). This feature allows the optimizer
to take count of the rows in the individual TVF to use an optimal join
strategy.

Plan change regression analysis
This is probably the most interesting of these new features. As data changes,
and perhaps the underlying column statistics have not been updated, the
decisions the query optimizer makes may be based on bad information, and
lead to less than optimal execution plans. Because the Query Store is
maintaining runtime information for things like duration, it can monitor for
queries that have suddenly had execution plan changes, and had regression in
performance. If SQL Database determines that the plan has caused a
performance problem, it reverts to using the previously used plan.

More Info About Database Compatibility Levels
You can learn more about database compatibility levels at:
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-
transact-sql-compatibility-level.

Choosing an initial service tier
While Microsoft gives guidance for the type of application that should use
each database, there is a wide range of potential performance tiers and costs
associated with that decision. Given the importance of the database tier to
overall application performance, it is important to choose correctly.

The first part of making this decision is understanding the nature of your
application—is it an internet-facing application that will see large scale and
requires the database to store session state? Or is it a batch processing
application that needs to complete its work in an eight-hour window? The
former application requires extremely low levels of latency and would mostly
be placed in the premium storage tier, with adjustments to up the
performance curve for peak times to optimize cost. An example of this might
mean keeping the database at the P4 performance level during off-peak times,

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level

but using P11 for high loads like peak business hours, or holidays for
retailers. For the batch processing application, an S2 or S3 may be a good
starting point. The latency incurred does not matter so long as the batch
processing occurs within its eight-hour window.

For most applications, the S2 or S3 tiers are a good starting point. For
applications that rely on intensive CPU and I/O operations, the premium tier
is a better fit, offering more CPU and starting at 10x I/O performance over
the standard tier. The premium RS tier can be a good fit for performance
testing your application because it offers the same performance levels as the
premium tier, but with a reduced uptime service level agreement (SLA).

More Info About Azure SQL Database Performance
Tiers

You can learn more about Azure SQL Database service tiers at
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
service-tiers.

Changing service levels
Changing the service level of the database is always an option—you are not
locked into the initial size you chose at the time of creation. You review
elastic pools later in this chapter, which give more flexibility in terms of
scale. However, scaling an individual database is still an option.

When you change the scale of an individual database, it requires the
database to be copied on the Azure platform as a background operation. A
new replica of your database is created, and no data is lost. The only outage
that may occur is that in-flight transactions may be lost during the actual
switchover (should be under four seconds, and is under 30 seconds 99 percent
of the time). It is for this reason that it is important to build retry logic into
applications that use Azure SQL Database. During the rest of the resizing
process the original database is available. This change in service can last a
few minutes to several hours depending on the size of the database. The
duration of the process is dependent on the size of the database and its
original and target service tiers. For example, if your database is approaching
the max size for its service, the duration will be significantly longer than for

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers

an empty database. You can resize your database via the portal (Figure 1-4),
T-SQL, or PowerShell. Additional options for making these changes include
using the Azure Command Line Interface or the Rest API for Azure SQL
Database.

 Exam Tip

Remember how to choose the right service tier based on the application
workload and performance requirements.

Figure 1-4 Portal experience for changing the size of Azure SQL DB

You can also execute this change in T-SQL.
Click here to view code image

ALTER DATABASE [db1] MODIFY (EDITION = 'Premium', MAXSIZE = 1024

GB, SERVICE_OBJECTIVE =

'P15');

The only major limitation around resizing individual databases is size.
Performance level has some correlation with storage. For example, the
database that is being resized in the above T-SQL example is now a P15,
which supports up to 4 TB of data. If for example the database contained 2.5
TB of data, you would be limited to the P11 or P15 performance level
because those support 4 TB, whereas the P1-P6 databases only supports 500
GB.

Create servers and databases
When talking about Platform as a Service offerings there are always many
abstractions of things like hardware and operating systems. Remember,
nearly everything in Microsoft Azure is virtualized or containerized. So, what
does this mean for your Azure SQL Database? When you create a “server”
with multiple databases on it, those databases could exist in different virtual
machines than your “server.” The server in this example is simply a logical
container for your databases; it is not specific to any piece of hardware.

Now that you understand that your “server” is just a logical construct, you
can better understand some of the concepts around building a server (see
Figure 1-5). To create your server, you need a few things:

Server Name Any globally unique name.
Server admin login Any valid name.
Password Any valid password.
Subscription The Azure subscription you wish to create this server in.
If your account has access to multiple subscriptions, you are in the
correct place.
Resource Group The Azure resource group associated with this server
and databases. You may create a new resource group, or use an existing
resource group.

Location The server can only exist in one Azure region.

Figure 1-5 Creating an Azure SQL Database Server in the Azure Portal

In earlier editions of Azure SQL Database, you were required to use a
system-generated name; this is no longer the case; however, your name must
be globally unique. Remember, your server name will always be
servername.database.windows.net.

Other Options for creating a logical server
Like most services in Azure, Azure SQL Database offers extensive options
for scripting to allow for automated deployment. You can use the following

PowerShell command to create a new server:

Click here to view code image

PS C:\>New-AzureSqlDatabaseServer -Location "East US" -

AdministratorLogin "AdminLogin"

-AdministratorLoginPassword "Password1234!" -Version "12.0"

The Azure CLI is another option for creating your logical server. The
syntax of that command is:

Click here to view code image

az sql server create --name YourServer--resource-group DemoRG --

location $location \

 --admin-user "AdminLogin" --admin-password "Password1234!"

To run these demos you need Azure PowerShell. If you are on an older
version of Windows you may need to install Azure PowerShell. You can
download the installer at:
https://www.microsoft.com/web/handlers/webpi.ashx/getinstaller/WindowsAzurePowershellGet.3f.3f.3fnew.appids

You can also install using the following PowerShell cmdlet:
Click here to view code image

Install the Azure Resource Manager modules from the PowerShell

Gallery

Install-Module AzureRM

More Info About Azure CLI and SQL Database
You can learn more the Azure CLI and database creation at:
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-
started-cli.

Database and server firewall rules
One of the concepts of Azure SQL Database is that it is exposed over the
Internet via a TCP endpoint over port 1433. This can sound a little bit scary
—your database is open over the Internet? However, Microsoft provides you
with multiple levels of security to secure your data and databases. Figure 1-6
provides an overview of how this security process works. There are two sets

https://www.microsoft.com/web/handlers/webpi.ashx/getinstaller/WindowsAzurePowershellGet.3f.3f.3fnew.appids
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-cli

of firewall rules. The first is the database level firewall rule, which is the
more granular of these two rules. The database level rule is set within the
individual database where it can be viewed in the catalog view
sys.database_firewall_rules. You can set these database rules using T-SQL
within the database, however they may also be set using PowerShell, the
Azure CLI, or the REST API interface. These rules as mentioned are specific
to an individual database, if you need to replicate them across multiple
databases you need to include that as part of your deployment scripts. You
may also delete and update these firewall rules using all aforementioned
methods. An example of the T-SQL to create a database level firewall rule is
as follows:
Click here to view code image

EXECUTE sp_set_firewall_rule @name = N'ContosoFirewallRule',

 @start_ip_address = '192.168.1.1', @end_ip_address =

'192.168.1.10'

Server level firewall rules on the other hand, can only be set through the
Azure Portal, PowerShell, Azure CLI, the Rest API, or in the master database
of the logical server. You can view server level firewall rules from within
your Azure SQL Database by querying the catalog view sys.firewall_rules.

A server-level firewall rule is less granular than the database rule—an
example of where you might use these two features in conjunction would be a
Software as a Service application (SaaS) where you have a database for each
of your customers in a single logical server. You might whitelist your
corporate IP address with a server-level firewall rule so that you can easily
manage all your customer databases, whereas you would have an individual
database rule for each of your customers to gain access to their database.

Figure 1-6 Azure SQL Database firewall schematic

As mentioned, there are several ways to set a firewall rule at the server
level. Here is an example using PowerShell.
Click here to view code image

New-AzureRmSqlServerFirewallRule -ResourceGroupName "Group-8" '

-ServerName "servername" -FirewallRuleName "AllowSome" -

StartIpAddress "192.168.1.0"

-EndIpAddress "192.168.1.4"

Here is an example using the Azure CLI
Click here to view code image

az sql server firewall-rule create --resource-group

myResourceGroup \

 --server yourServer -n AllowYourIp --start-ip-address

192.168.1.0 --end-ip-address

192.168.1.4

In both examples, a range of four IP addresses is getting created. All
firewall rules can either be a range or a single IP address. Server level
firewall rules are cached within Azure to improve connection performance. If
you are having issues connecting to your Azure SQL Database after changing
firewall rules consider executing the DBCC FLUSHAUTHCACHE
command to remove any cached entries that may be causing problems, from a
machine that can successfully connect to your database.

 Exam Tip

Remember how to configure firewall settings using both PowerShell and
the Azure Portal.

Connecting to Azure SQL Database from inside of
Azure
You may have noticed that in Figure 1-5 there was a check box that says,
Allow Azure Services To Access This Server.” This creates a server level
firewall rule for the IP range of 0.0.0.0 to 0.0.0.0, which indicates internal
Azure services (for example Azure App Services) to connect to your database
server. Unfortunately, this means all of Azure can connect to your database,
not just your subscription. When you select this option, which may be
required for some use cases, you need to ensure that the security within your
database(s) is properly configured, and that you are auditing traffic to look

for anomalous logins.

Auditing in Azure SQL Database
One of the benefits of Azure SQL Database is its auditing functionality. In an
on-premises SQL Server, auditing was commonly associated with large
amounts of performance overhead, and was used rarely in heavily regulated
organizations. With Azure SQL Database, auditing runs external to the
database, and audit information is stored on your Azure Storage account,
eliminating most concerns about space management and performance.

Auditing does not guarantee your regulatory compliance; however, it can
help you maintain a record of what changes occurred in your environment,
who accessed your environment, and from where, and allow you to have
visibility into suspected security violations. There are two types of auditing
using different types of Azure storage—blob and table. The use of table
storage for auditing purposes has been deprecated, and blob should be used
going forward. Blob storage offers greater performance and supports object-
level auditing, so even without the deprecation, it is the better option.

More Info About Azure Compliance
You can learn more about Azure compliance practices at the Azure
Trust Center: https://azure.microsoft.com/support/trust-
center/compliance/.

Much like with firewall rules, auditing can be configured at the server or
the database level. There are some inheritance rules that apply here. An
auditing policy that is created on the logical server level applies to all existing
and newly created databases on the server. However, if you enable blob
auditing on the database level, it will not override and change any of the
settings of the server blob auditing. In this scenario, the database would be
audited twice, in parallel (once by the server policy, and then again by the
database policy). Your blob auditing logs are stored in your Azure Storage
account in a container named “sqldbauditlogs.”

More Info About Azure SQL Db Audit File Formats

https://azure.microsoft.com/support/trust-center/compliance/

You can learn more about Azure SQL Database Auditing here:
https://go.microsoft.com/fwlink/?linkid=829599.

You have several options for consuming these log files from Azure SQL
Database. You can view them within the Azure Portal, as seen in Figure 1-7.
Or you can consume them using the Sys.fn_get_audit_file system function
within your database, which will return them in tabular format. Other options
include using SSMS to save the audit logs into an XEL or CSV file, or even a
SQL Database table, or using the Power BI template created by Microsoft to
access your audit log files.

Figure 1-7 View Audit Log option in Azure SQL Database Blade in Azure
Portal

Much like the rest of the Azure SQL Database platform, auditing can be
configured using PowerShell or the Rest API, depending on your automation
needs.

More Info About Azure SQL Db Audit Data
Analysis

Learn more about auditing, and automation options for configuring
auditing here: https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-auditing.

SQL Database Threat Detection
Unlike auditing, which is mostly replicating the behavior of auditing in an
on-premises SQL Server, Threat Detection is a feature that was born in

https://go.microsoft.com/fwlink/?linkid=829599
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-auditing

Azure, and is very dependent on background Azure compute resources to
provide higher levels of security for your databases and applications. SQL
Threat Detection uses more advanced methodology to protect your database
from common security threats like SQL Injection, suspicious database
activities, and anomalous login patterns.

SQL Injection is one of the most common vulnerabilities among web
applications. This occurs when a hacker determines that a website is passing
unchecked SQL into its database, and takes advantage of this by generating
URLs that would escalate the privileges of an account, or get a list of users,
and then change one of their passwords.

Threat detection gives you several types of threats to monitor and alert on:
All
SQL Injection
SQL Injection Vulnerability
Anomalous client login

The best practice recommendation is just to enable all threat types for your
threat detection so you are broadly protected. You can also supply an email
address to notify in the event of a detected threat. A sample email from a
SQL Injection vulnerability is in Figure 1-8.

Figure 1-8 SQL Injection Vulnerability email

Microsoft will link to the event that triggered the alert to allow you to
quickly assess the threat that is presented. Threat detection is an additional
cost option to your Azure SQL Database, and integrates tightly with Azure
Security Center. By taking advantage of machine learning in the Azure
Platform, Threat Detection will become smarter and more reactive to threats
over time.

Backup in Azure SQL Database
One of the benefits of Azure SQL Database is that your backup process is
fully automated.
As soon as your database is provisioned it is backed up, and the portal allows
for easy point in time recovery with no manual intervention. Azure SQL
Database also uses Azure read-access geo-redundant storage (RA-GRS) to
provide redundancy across regions. Much like you might configure in an on-
premises SQL Server environment Azure SQL Database takes full,

differential, and transaction log backups of your database. The log backups
take place based on the amount of activity in the database, or at a fixed time
interval. You can restore a database to any point-in-time within its retention
period. You may also restore a database that was deleted, if you are within
the retention period for that database.

It is important to note that the service tier of your database determines your
backup retention (the basic tier has a five-day retention period, standard and
premium have 35 days). In many regulated industries backups are required to
be retained for much longer periods—including up to seven years for some
financial and medical systems. So, what is the solution? Microsoft has a
solution that is used in conjunction with the Azure Recovery Services
component that allows you to retain weekly copies of your Azure SQL
Database backups for up to 10 years (see Figure 1-9).

Figure 1-9 Azure Portal Long-Term Backup Retention configuration

To take advantage of the long-term retention feature, you need to create an
Azure Recovery Vault in the same Azure region as your Azure SQL
Database. You will then define a retention policy based on the number of
years you need to retain your backups. Because this feature uses the Azure
Backup services infrastructure, pricing is charged at those rates. There is a
limit of 1000 databases per vault. Additionally, there is a limit of enabling
200 databases per vault in any 24-hour period. It is considered a best practice

to use a separate vault for each Azure SQL Database server to simplify your
management.

Restoring a database from long-term storage involves connecting to the
backup vault where your database backups are retained and restoring the
database to its server, much like the normal Azure SQL Database restore
process.

More Info About Restoring Long-Term Azure SQL
Database Backups

Restoring from long-term backup involves a different process than
normal restores—learn more here: https://docs.microsoft.com/en-
us/azure/sql-database/sql-database-long-term-backup-retention-
configure.

Azure SQL Database pricing includes up to 200 percent of your maximum
provisioned database storage for your backups. For example, a standard tier
database would have 500 GB of backup associated with it. If your database
exceeds that 200 percent threshold, you can either choose to have Microsoft
support reduce your retention period, or pay extra for additional backup
storage, which is priced at the standard RA-GRS pricing tier. Reasons why
your database may exceed the 200 percent threshold are databases that are
close to the maximal size of the service tier that have a lot of activity
increasing the size of transaction log and differential backups.

Azure SQL Database backups are encrypted if the underlying database is
using transparent data encryption (TDE). As of early 2017, Microsoft has
automatically enabled TDE for all new Azure SQL Databases. If you created
your database before then, you may want to ensure that TDE is enabled, if
you have a requirement for encrypted backups.

 Exam Tip

Remember how to configure long-term backup retention and how to
restore an Azure SQL Database to a point-in-time.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-long-term-backup-retention-configure

High availability and disaster recovery in Azure SQL
Database
One of the benefits of using the platform as a service offering is that many
things are done for you. One of those includes high availability—local high
availability is configured automatically for you. There are always three
copies of your database to manage things like patching and transient
hardware failures. This protects you in the event of any failures that happen
within a local Azure region. However, to protect your database and
application against broader regional failures or to give your application global
read-scale, you will want to take advantage of the Active Geo-Replication
feature in Azure SQL Database.

Active geo-replication allows you to have up to four readable secondary
replicas of your database in the region of your choosing (see Figure 1-10).
These secondary replicas can be used strictly for disaster recovery or can be
used for active querying. This protects your application against larger
regional failures, and provides resiliency to allow you to perform operations
like rolling application upgrades and schema changes. Azure makes
recommendations as to the best region for your geo-replica—this is based on
the paired region concept in Azure. This paired region concept is not a limiter
—you can build your replicas in any supported region in Azure. Many
organizations do this to provide global read-scale for applications that are
distributed globally. You can put a replica of the database much closer to
your users reducing latency and improving overall performance.

More Info About Azure Paired Regions
Azure uses paired regions as a key DR concept that respects geo-
political boundaries, learn more about this concept here:
https://docs.microsoft.com/en-us/azure/best-practices-availability-
paired-regions.

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

Figure 1-10 Geo-Replication for Azure SQL Database from Azure Portal

Configuring geo-replication requires you to have a logical server in each
region you want to geo-replicate to. Configuring a second logical server is the
only configuration that is required; no network or other infrastructure
components are required. Your secondary database can run at a lower DTU
level than your primary to reduce costs, however it is recommended to run
with no less than half of the DTUs of the primary so that the replication
process can keep up. The important metric to monitor for this is log IO
percentage. For example if your primary database is an S3 (with 100 DTUs)
and its log IO percentage was at 75 percent, your secondary would need to
have at least 75 DTUs. Since there is no performance level with 75 DTUs,
you would need an S3 as your secondary. Azure SQL Database requires that
your secondary be on the same performance tier as the primary, for example
it would not be supported to have a P1 primary and an S0 secondary, but you
could have a S3 primary and an S0 secondary.

The administrator typically manages the failover process under normal
circumstances, however in the event of an unplanned outage, Azure
automatically moves the primary to one of the secondary copies. If after the
failure, the administrator would like to be moved back to the preferred region,
the administrator would need to perform a manual failover.

Automatic failover with failover groups
Failover groups increase the utility of geo-replicas by supporting group level
replication for databases and automated failover processing. More
importantly this feature allows applications to use a single connection string
after failover. There are few key components to failover groups:

Failover Group Unit of failover can be one or many databases per
server, which are recovered as a single unit. A failover group must
consist of two logical servers.
Primary Server The logical server for the primary databases.
Secondary Server The logical server, which hosts the secondary
databases. This server cannot be in the same region as the primary
server.

There are a few things to keep in mind with failover groups—because data
replication is an asynchronous process, there may be some data loss at the
time of failure. This is configurable using the
GracePeriodWithDataLossHours parameter. There are also two types of
listener endpoints: read-write and read-only to route traffic to either the
primary (for write activity) or to a group of secondary replicas (for read
activities). These are DNS CNAME records that are
FailoverGroupName.database.windows.net.

Geo-replication and failover groups can be configured in the Azure Portal,
using PowerShell (see below example), or the REST API.
Click here to view code image

Establish Active Geo-Replication

$database = Get-AzureRmSqlDatabase -DatabaseName mydb -

ResourceGroupName ResourceGroup1

 -ServerName server1

$database | New-AzureRmSqlDatabaseSecondary -

PartnerResourceGroupName ResourceGroup2

-PartnerServerName server2 -AllowConnections "All"

Create a sysadmin account
Unlike SQL Server, where many users can be assigned the System Admin
role, in Azure SQL Database there is only one account that can be assigned

server admin. If your Azure subscription is configured with Azure Active
Directory, this account can be an Azure Active Directory (AAD) group (not
to be confused with on-premises Active Directory). Using an AAD group is
the best practice for this admin account, because it allows multiple members
of a team to share server admin access without having to use a shared
password.

You can set the Active Directory admin for a logical server using the
Azure Portal as seen in Figure 1-11. The only requirement for implementing
this configuration is that an Azure Active Directory must be configured as
part of the subscription.

Figure 1-11 Azure Portal Azure Active Directory Admin configuration
screen

Azure Active Directory and Azure SQL Database
Azure Active Directory gives a much more robust and complete security
model for Azure SQL Database than merely using SQL logins for
authentication. Azure AD allows you to stop the spread of identities across
your database platform. The biggest benefit of this solution is the
combination of your on-premises Active Directory being federated to your

Azure Active Directory and offering your users a single-sign on experience.
In configurations with Active Directory Federation Services (ADFS), users

can have a very similar pass-through authentication experience to using a
Windows Authentication model with SQL Server. One important thing to
note with ADFS versus non-ADFS implementations of hybrid Active
Directory—in non-ADFS implementations the hashed values of on-premises
user passwords are stored in the Azure AD because authentication is
performed within Azure. In the example shown in Figure 1-12, where the
customer is using ADFS, the authentication first routes to the nearest ADFS
server, which is behind the customer’s firewall. You may notice the
ADALSQL in that diagram which is the Active Directory Authentication
Library for SQL Server, which you can use to allow your custom applications
to connect to Azure SQL Database using Azure Active Directory
authentication.

Azure Active Directory offers additional benefits, including easy
configuration for multi-factor authentication, which can allow verification
using phone calls, text messages, or mobile application notification. Multi-
factor authentication is part of the Azure Active Directory premium offering.

Figure 1-12 Azure AD Authentication Model for Azure SQL Database

Configuring logins and users with Azure AD is similar to using Windows
Authentication in SQL Server. There is one major difference concerning

groups—even though you can create a login from an on-premises Active
Directory user, you cannot create one from an on-premises Active Directory
group. Group logins must be created based on Azure Active Directory
groups. In most cases, where you will want to replicate the on-premises
group structure, you can just create holding groups in your Azure AD that
have a single member, the on-premises Active Directory group. There are
several options for authentication to your Azure SQL Database, as shown in
Figure 1-13.

Figure 1-13 SQL Server Management Studio Options for Authentication

Windows Authentication Not supported for Azure SQL Database.
SQL Server Authentication Traditional authentication model where
the hashed credentials are stored in the database.
Active Directory Universal Authentication This model is used when
multi-factor authentication is in place, and generates a browser-based
login experience that is similar to logging into the Azure Portal.
Active Directory Password Authentication This model has the user
enter their username in user@domain.com format with their Azure
Active Directory password. If MFA is enabled this will generate an
error.

Active Directory Integrated This model is used when ADFS is in
place, and the user is on a domain joined machine. If ADFS is not in
place, connecting with this option will generate an error.

Some other recommendations from Microsoft for this include setting
timeout values to 30 seconds because the initial authentication could be
delayed. You also want to ensure that you are using newer versions of tools
like SQL Server Management Studio, SQL Server Data Tools, and even bcp
and sqlcmd command line tools because older versions do not support the
Azure Active Directory authentication model.

 Exam Tip

Remember how to configure Azure Active Directory authentication for
Azure SQL Database.

Configure elastic pools
All the topics you have read about so far refer to single database activities.
Each database must be sized, tuned, and monitored individually. As you can
imagine, in a larger organization or SaaS application that supports many
customers it can be problematic to manage each database individually, and it
may lead to overprovisioning of resources and additional costs associated
with meeting performance needs. Elastic pools resolve this problem by
provisioning a shared pool of resources that is shared by a group; like
individual databases, elastic pools use a concept of eDTUs, which is simply
the concept of DTUs applied to a group of databases. This concept allows
databases to better share resources and manage peak processing loads. An
easy thought comparison is that of a traditional SQL Server instance housing
multiple databases from multiple applications.

Within a given pool a set eDTU is allocated and shared among all of the
databases in the pool. The administrator can choose to set a minimum and
maximum eDTU quota to prevent one database from consuming all the
eDTUs in the pool and impacting overall system performance.

When to choose an elastic pool

Pools are a well suited to application patterns like Software as a Service
(SaaS) where your application has many (more than 10) databases. The
performance pattern that you are looking for is where DTU consumption Is
relatively low with some spikes. This pattern can lead to cost savings even
with as few as two S3 databases in a single pool. There are some common
elements you want to analyze when deciding whether or not to put databases
in a pool:

Size of the databases Pools do not have a large amount of storage. If
your databases are near the max size of their service tier, you may not
get enough density to be cost effective.
Timing of peak workloads Elastic pools are ideal for databases that
have different peak workloads. If all of your databases have the same
peak workload time, you may need to allocate too many eDTUs.
Average and peak utilization For databases that have minimal
difference between their average and peak workloads, pools may not be
a good architectural fit. An ideal scenario is where the peak workload is
1.5x its average utilization.

Figure 1-14 shows an example of four databases that are a good fit for an
elastic pool. While each database has a maximum utilization of 90 percent,
the average utilization of the pool is quite low, and each of the databases has
their peak workloads at different times.

Figure 1-14 Image showing DTU workload for four databases

In Figure 1-15 you can see the workload utilization of 20 databases. The
black line represents aggregate DTU usage for all databases; it never exceeds
100 DTUs. Cost and management are the key inputs into this decision—
while eDTUs costs 1.5x more than DTUs used by single databases, they are
shared across databases in the pool. In the scenario in Figure 1-15, the 20
databases could share 100 eDTUs versus each database having to be allocated
100 DTUs, which would reduce cost by 20x (this relies on S3 performance
level for individual databases).

Figure 1-15 Chart showing the DTU workload for twenty databases

 Exam Tip

Understand when to choose an elastic pool versus a standalone database,
both from the perspective of management and cost.

Sizing elastic pools
Sizing your elastic pool can be challenging, however elastic pools are flexible
and can be changed dynamically. As a rule of thumb, you want a minimum of
10-15 databases in your pool, however in some scenarios, like the S3
databases mentioned earlier, it can be cost effective with as few as two
databases. The formula for this is if the sum of the DTUs for the single
databases is more than 1.5x the eDTUs needed for the pool, the elastic pool
will be a cost benefit (this relating to the cost difference per eDTU versus
DTUs). There is fixed upper limit to the number of databases you can include
in a pool (shown in Table 1-7), based on the performance tier of the pool.
This relates to the number of databases that reach peak utilization at the same
time, which sets the eDTU number for your pool. For example, if you had a

pool with four S3 databases (which would have a max of 100 DTUs as
standalone) that all have a peak workload at the same time, you would need
to allocate 400 eDTUs, as each database is consuming 100 eDTUs at exactly
the same time. If as in Figure 1-14, they all had their peak at different times
(each database was consuming 100 eDTUs, while the other 3 databases were
idle), you could allocate 100 eDTUs and not experience throttled
performance.

Table 1-7 Elastic Pool Limits

Tier Max
DBs

Max Storage Per Pool
(GB)

Max DTUs per
Pool

Basic 500 156 1600
Standard 500 1536 3000
Premium 100 4096 4000
Premium-
RS 100 1024 1000

Configuring elastic pools
Building an elastic pool is easy—you allocate the number of eDTUs and
storage, and then set a minimum and maximum eDTU count for each
database. Depending on how many eDTUs you allocate, the number of
databases you can place in the elastic pool will decrease (see Figure 1-16).
Premium pools are less dense than standard pools, as shown by the maximum
number of databases shown in Table 1-7.

Figure 1-16 Elastic Pool Configuration Screen from the Azure Portal

You can also build elastic pools using PowerShell and the Azure CLI as
shown in the next two examples.
Click here to view code image

Login-AzureRmAccount

New-AzureRmSqlElasticPool -ResourceGroupName "ResourceGroup01" -

ServerName "Server01"

-ElasticPoolName "ElasticPool01" -Edition "Standard" -Dtu 400 -

DatabaseDtuMin 10

-DatabaseDtuMax 100

az sql elastic-pool create ñname "ElasticPool01" --resource-group

"RG01" \

 --server "Server01" --db-dtu-max 100 --db-dtu-min 100 --

dtu 1000 --edition

"Standard" --max-size 2048

The process for creating an elastic pool is to create the pool on an existing
logical server, then to either add existing databases to the pool, or create new
databases within the pool (see Figure 1-17). You can only add databases to
the pool that are in the same logical server. If you are working with existing
databases the Azure Portal makes recommendations for service tier, pool
eDTUs, minimum, and maximum eDTUs based on the telemetry data from
your existing databases. You should note that these recommendations are
based on the last 30 days of data. There is a requirement for a database to

have existed for at least seven days to appear in these recommendations.

Figure 1-17 Elastic Pool Configuration Screen from the Azure Portal

Managing and monitoring an elastic pool is like managing an individual
database. The best place to go for pool information is the Azure Portal, which
shows pool eDTU utilization and enables you to identify databases that may
be negatively impacting the performance of the pool. By default, the portal
shows you storage and eDTU utilization for the last hour, but you can
configure this to show more historical data. You can also use the portal to
create alerts and notifications on various performance metrics. You may also
move a database out of an elastic pool, if after monitoring it is not a good fit
for the profile of the pool.

More Info About Azure SQL Database Elastic Pool
Limits

The elastic pool limits and resources are changing regularly. You can
learn more about the limits and sizing of elastic pools here:
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
elastic-pool.

It is important to know that the limits of the pools are changing frequently
as Microsoft makes updates to the Azure platform, so you should refer to
books online and the portal before making decisions around designing your
architecture.

If all the eDTUs in the elastic pool are consumed, performance in the pool
is throttled. Each database receives an equal amount of resources for
processing. The Azure SQL Database service ensures that each database has
equal amounts of compute time. The easiest comparison to how this works is
the use of the resource governor feature in an on-premises or IaaS SQL
Server environment.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool

Changing pool sizing
There are two tiers of changing sizes in an elastic pool—one is changing the
minimum and maximum eDTU settings for individual databases. These
changes typically take less than five minutes. Changing the size of the elastic
pool takes longer, and is dependent on the size of the databases in the pool,
but in general a rule of thumb is that changing pool eDTUs takes around 90
minutes per 100 GB of data in your pool. It is important to keep this in mind
if planning to dynamically alter the size of your pools for varying workloads
—you may need to do this far in advance for larger pools.

Elastic jobs
One of the challenges to Azure SQL Database has been the inability to
perform cross-database transactions. If we use the SaaS example, where each
customer has a database, if you need to update master data, or issue a schema
change across all customer databases, your deployment process would
require a query to be issued against each individual database. While this
process could be automated, it is still messy. Elastic pools allow for the
concept of elastic jobs you can execute SQL across a group of databases in an
elastic pool, and manage the results in a single place (see Figure 1-18).

Figure 1-18 Elastic Database Jobs workflow

Running elastic jobs as a few requirements—you need to install elastic
jobs components in your Azure environment, and your jobs must be
idempotent, which means for the script to succeed and run again it must have
the same result. For example, if you were creating a new stored procedure,
you would want to use the CREATE OR ALTER PROCEDURE syntax
versus simply using the CREATE PROCEDURE option, which would fail
the second time the script was executed.

Elastic jobs do require an additional database, which is designated a
control database to store all metadata and state data. In an elastic pool
scenario, this database would have minimal additional cost. The job service
talks to the control database and launches and tracks jobs. If you are using
elastic pools, you can access the elastic jobs interface through the portal,
however if you wish to use this feature for group of standalone databases,
you need to use PowerShell or the Azure CLI.

Elastic pools and geo-replication
Databases that are in an Elastic pools do have the same architecture as
standalone databases, so features like backup and high availability are already
in place. Just like standalone databases, you have the option to configure
active geo-replication for databases in an elastic pool. The geo-replication is
quite flexible because you do not have to include every database in the pool
in your geo-replication set, and you may geo-replicate either to a standalone
database, or an elastic pool. The only hard requirement is that the service tiers
of the pools be the same.

Skill 1:2: Plan for SQL Server installation
This skill deals with planning for SQL Server installation. This includes
choosing the right infrastructure, whether you are on-premises or in the
cloud, configuring storage to meet your performance needs, and
understanding best practices for installation.

This skill covers how to:

Plan for an IaaS or on-premises SQL Server deployment
Select the appropriate size for a virtual machine

Plan storage pools based on performance requirements
Evaluate best practices for installation
Design a storage layout for a virtual machine

Plan for an IaaS or on-premises SQL Server
deployment
Planning is needed for any SQL Server deployment, whether it is in the cloud
or on-premises. It can be quite a challenge to gather the information you need
to properly size and build out your environment. There are many questions
you want to ask before beginning any deployment project:

What is your licensing situation?
What edition are you licensed for, and for how many cores?
If Azure, are you renting the license or bringing your own?
Do you have Software Assurance?

Are you migrating an existing application?
Are you upgrading versions of SQL Server?
Are you able to capture workload from the existing application?

What are the availability needs of the application?
Do you need a multiple data center solution?
Do you need high availability?
How long can the application be down?
What are the performance needs of the application?
Is this a customer facing latency-sensitive application?

Or is it a batch processing application that only needs to complete its
jobs in a large time window?

How much data are you going to have to store?
How much data is accessed regularly?
How many concurrent sessions are you expecting?

Licensing
Licensing is not the most interesting topic; however, it is very important to
many architectural discussions. You do not need to be a licensing expert;
however, you do need to understand the basic rules and how they work. An
important change Microsoft made with SQL Server 2016 is that all non-
production environments (development, QA, test) only need to be licensed
with developer edition. They also made developer edition free—this
combination can greatly reduce license costs. Express Edition is also free for
production use, but is limited to database sizes of 10 GB.

Standard Edition is licensed by either a Server/Client Access License
(CAL) model or a core based licensing model. The server/CAL model is best
suited for smaller organizations who do not have a lot of users (the “users”
here refer to users of the application and not database users), where the core
model is best suited for Internet facing applications that effectively have an
unlimited number of users. One important thing to note is as of Service Pack
1 of SQL Server 2016, Standard Edition has the same programming surface
area as Enterprise Edition.

Enterprise Edition is licensed in the core model only. Enterprise Edition is
designed for applications that need scaling. It supports unlimited memory,
larger scale-out farms, and the support needed for tier-1 workloads.

Software Assurance is effectively an annual support contract with
Microsoft that entitles you to upgrades and more importantly grants you the
right to have a second idle server for either high availability or disaster
recovery. For example, if you have a license of Enterprise Edition for 16
cores, and you ran your production application with that, you would be
entitled to have a second server (as part of an Availability Groups, Log
Shipping Partner, Failover Cluster Instance, etc.) with no additional licensing
charge. You may not use that server for any operations like backups, integrity
checks, or restores, otherwise a license is required.

More Info About SQL Server Editions and Features
You can learn about each edition of SQL Server and what the
differences are in this post: https://docs.microsoft.com/en-us/sql/sql-
server/editions-and-components-of-sql-server-2017.

https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017

Azure VMs have two options for licensing SQL Server—you can rent the
license as part of your monthly Azure cost, or you can bring your own license
(BYOL), which lowers your monthly cost (see Figure 1-19).

Figure 1-19 Bring Your Own License SQL Server VMs in Azure Portal

You do need to have Software Assurance to choose this option.
It is important to choose a BYOL image if you are using an existing

license; otherwise, you will be charged for the cost of the SQL Server
licensing and a support ticket will be required to switch to your own license.
Additionally, you can bring your own Windows license; this is a different
process that you can see in Figure 1-20 that happens at VM deployment.
Similarly, this option must be configured at deployment, or you will be
charged the cost of the Windows license as part of your monthly bill. A
support ticket can also resolve this issue, if you need to change after the fact.

 Exam Tip

Have a good understanding of the comparative costs associated with
running SQL Server on Azure including infrastructure (compute and
storage) and licensing. Understand the licensing rules as they relate to high
availability and disaster recovery.

Figure 1-20 Bring Your Own License for WINDOWS VMs in Azure Portal

More Info About SQL Server Licensing
To learn more about the costs of SQL Server licensing by edition and
software assurance visit: https://www.microsoft.com/en-us/sql-
server/sql-server-2016-pricing.

Existing application
If you are migrating an existing application to a new SQL Server, you can
bypass a lot of assessment. Whether as part of a migration to an Azure VM or
a new on-premises server, you have access to all the working data you need.
The first thing you want to do is use performance monitor to gather a
performance profile of the source system. To do that, you can execute the
following steps:

1. Launch Performance Monitor from the Windows menu.

2. If you are running this remotely, select Action > Connect To Another
Computer and enter the name of the server in the Select Compute dialog
box. (Note: you will need permission to run Perfmon on a remote server)

3. Click Data Collector Sets.
4. Right click User Defined and select New > Data Collector Set as shown

in Figure 1-21.

https://www.microsoft.com/en-us/sql-server/sql-server-2016-pricing

Figure 1-21 New Data Collector Set Performance Monitor

5. Name your collection set SQL Server Baseline and click the radio button
to create manually.

6. On the screen that says, What Kind Of Data Do You Want To Include?
click the radio button next to Performance Counters.

7. On the next screen click, Add, and you should then see the screen in
Figure 1-22.

Figure 1-22 Performance Monitor counter add screen

8. Add the following counters:
Click here to view code image

Processor Information

Processor(*)% Processor Time

Process(sqlservr)% Processor Time

Processor(*)% Privileged Time

Process(sqlservr)% Privileged Time

Memory

Available Mbytes

Memory Pages/sec

Process(sqlservr)Private Bytes

Process(sqlservr)Working Set

SQLServer: Memory Manager Total Server Memory

SQLServer: Memory Manager Target Server Memory

Physical Disk

PhysicalDisk(*)Avg. Disk sec/Read

PhysicalDisk(*)Avg. Disk sec/Write

PhysicalDisk Avg. Disk Queue Length

Disk Bytes/sec

Avg Disk Bytes/Transfer

Process(sqlservr)IO Data Operations/sec

Network

Network InterfaceBytes Received/sec

Network InterfaceBytes Sent/sec

Network Interface(*)Output Queue Length

SQL Server: SQL Statistics Batch Requests/sec

SQL Server: SQL Statistics SQL Compilations/sec

SQL Server: SQL Statistics SQL Recompilations/sec

SQL Server: Wait Statistics

Latch Waits > 15 sec

Locks > 30 sec

IO Latch Timeouts

Typically, when assessing a server workload you want to capture this
performance monitor data over a period of at least a week, or even a month
for systems that have heavy month end processing. Once you have completed
your data capture you can use the performance analysis of logs (PAL) tool,

an open-source project to analyze and format your logs. You can use this
analysis to help you design your target environment.

More Info About Pal Tool
The Performance Analysis of Logs tool is a Microsoft created open-
source tool which allows for easier analysis of Performance Monitor
input: https://github.com/clinthuffman/PAL.

Managing availability
You need to plan your SQL Server deployment for high availability and
disaster recovery. If your application is critical to the business you need to
design your underlying infrastructure to reflect that criticality. SQL Server
offers many features for that high availability and disaster recovery in the
form of AlwaysOn Availability Groups and Failover Cluster Instances. Or
you can choose to deploy a more manual solution like log shipping either by
itself or in conjunction with another option. Both of these options are
dependent on Windows Server Failover Cluster (WSFC), though starting
with SQL Server 2017, Availability Groups may be deployed for migration
purposes only, without an underlying WSFC. These techniques all protect
against machine and operating system failure, and allow you to minimize
downtime during maintenance operations like patching Windows and SQL
Server.

Failover Cluster Instances are an option that provides local high
availability. This option depends on shared storage, where a single copy of
your instance floats between two or more nodes running SQL Server.
Failover cluster instances require a dedicated cluster installation of SQL
Server. Most installations of failover cluster instance are in one location;
however, they may be combined with storage replication to provide disaster
recovery. To implement failover cluster instances in Azure, you need
Windows Server 2016 Storage Spaces Direct to provide shared storage. A
failover cluster instance has a single point of failure at the shared storage
layer, so you need to use an additional technique like Availability Groups if
you need additional data protection.

A failover cluster instance encompasses your while instance. This means

https://github.com/clinthuffman/PAL

things like logins and SQL Agent jobs are always on all nodes where your
instance is installed. There is no process required to sync because the instance
contains a single copy of that master data. The unit of failover is at the
instance level.

Availability Groups are an option that can provide a level of high
availability locally and disaster recovery in a remote data center. Like
Failover Cluster Instances, Availability Groups (AGs) are built on top of a
WSFC. However, AGs use standalone instances of SQL Server, and do not
encompass the entire instance. The AG is a group of databases that are
organized together to send transaction data to one or more secondary replicas.
An AG can have up to eight replicas for a total of nine nodes. These replicas
can be used for reading and backups to offload work from the primary
replica. An AG provides an additional measure of protection over a failover
cluster instance because there are inherently multiple copies of the data in the
environment. Additionally, there is automatic page repair for any data page
that is deemed corrupt from the primary replica.

Each AG has its own listener, which serves as a virtual IP address for the
group. By default, the listener always routes a connection to the primary
instance, however if used in conjunction with read-only routing and the
application intent flag in a SQL Server connection string, connections can be
routed to a secondary for read offload. An AG offers two types of replicas,
synchronous and asynchronous, which are typically used for local and remote
copies respectively. If you are using synchronous mode, you should be aware
that a write transaction will not complete on the primary replica until it
reaches the transaction log on the secondary replica, so it is important to
ensure that there is minimal latency between the replicas. Additionally, you
can only have automatic failover between nodes that are synchronous.
Asynchronous replicas require manual failover due to the potential data loss
of in-flight transactions.

One challenge with AGs is keeping users and jobs in sync between replicas
—because the feature uses standalone instances there is nothing to keep the
jobs or users in sync. For users, the solution is relatively straightforward—
you can use contained database users, which are local to the database in
question, rather than stored in the master database.

More Info Contained Database Users

You can learn about creating contained database users and the security
requirements around them here: https://docs.microsoft.com/en-
us/sql/relational-databases/security/contained-database-users-making-
your-database-portable.

Agent jobs are a little bit more challenging because you would need to
build some intelligence into the job to determine which node is currently
primary. One solution is to regularly copy the agent jobs from the primary to
the secondary server(s), and to add logic to the job to ensure that it only
operates on the primary replica.

As shown in Figure 1-23, these two technologies (FCIs and AGs) can be
combined to provide higher levels of data protection. The one caveat to
combining the techniques is that automatic failover can no longer be used
within the AG due to the presence of the FCI. It should be noted that the
WSFC is using a file share for quorum. This is common configuration for
multi-subnet distributed clusters. Another option if you are using Windows
Server 2016 is to use Azure Blob Storage for your cloud quorum option. You
should always try to use the latest supported version of Windows for your
SQL Server installations because enhancements to the failover clustering
software stack have been numerous in recent releases.

Choosing the right high availability solution comes down to budget and the
needs of your business for your application. You should have an
understanding from your business of what the availability needs for each
application are, and design your architecture appropriately.

https://docs.microsoft.com/en-us/sql/relational-databases/security/contained-database-users-making-your-database-portable

Figure 1-23 Availability Group and Failover Cluster Instance Combined
Architecture

Managing performance
Performance is one of the more challenging components in developing new
deployments. Whether you are in Azure or on-premises, or on physical
hardware or virtual hardware, all database systems have differing
performance requirements, based on both available hardware resources,
workload of the application, and business requirements of the application.

For example, a database that paints web pages for a customer facing
application needs to have extremely low latency, whereas an application that
does overnight back office processing typically just needs to have enough
resources to finish its batch within an eight-hour timeframe.

The official requirements for installing SQL Server are as follows.

Table 1-8 SQL Server Installation Requirements

Component Requirement

MEMORY Minimum:
Express Editions: 512 MB
All other editions: 1 GB
Recommended:
Express Editions: 1 GB
All other editions: At least 4 GB and should be increased
as database size increases to ensure optimal
performance.

PROCESSOR
SPEED Minimum: x64 Processor: 1.4 GHz

PROCESSOR
TYPE

Recommended: 2.0 GHz or faster
x64 Processor: AMD Opteron, AMD Athlon 64, Intel
Xeon with Intel EM64T support, Intel Pentium IV with
EM64T support

STORAGE A minimum of 6 GB is required to install SQL Server

Table 1-8 shows the minimum hardware requirements as specified by
Microsoft for SQL Server 2016. It is important to note that these are absolute
minimum supported values, especially when talking about memory—4 GB is
required just to get SQL Server up and running. In a production environment,
you should use at least 16 GB, and adjust depending on your workload.

Storage
You will notice the only disk requirement is the 6 GB required to install SQL
Server. You learn more about proper disk layout for SQL Server on Azure
later in this section, however there are two other important metrics around
disk to know about—I/O Operations Per Second (IOPs) and latency. IOPs are
a measure of how fast your disk can read and write data, while latency is a
measure of how long it takes the data to be read from disk. Latency will be
reduced greatly when using solid state drives—in fact in Azure, it is
effectively a requirement to use Premium Storage (which is SSD based) with
SQL Server workloads. More and more on-premises SQL Server workloads
are using SSD based storage due to the reduced latency and higher IOPs that
the SSDs offer. Storage performance is critical to database performance, so it

is important to properly design your storage subsystem.

More Info About SQL Server Storage Configuration
You can learn more about SQL Server storage performance at:
https://technet.microsoft.com/en-us/library/cc298801.aspx.

Storage architecture is complex, especially given the number of different
storage options on the market. The important thing is to perform testing of
your storage configuration to ensure that it meets the expected needs of your
application. Microsoft supplies a tool named DiskSpeed, which is a
benchmarking tool to help you understand the performance of your storage
subsystem, and lets you assess any changes. If you are migrating an existing
application, you can use the following Performance Monitor (Performance
Monitor) counters from SQL Server to get an assessment of your current
IOPs:

SQL Server Resource Pool Stats: Disk Read IO/Sec
SQL Server Resource Pool Stats: Disk Write IO/Sec

Those two counters will get the number of IOPs performed by your SQL
Server instance. If you want latency metrics you can also use Performance
Monitor to get that data:

Physical Disk/Logical Disk->Avg. Disk Sec/Read
Physical Disk/Logical Disk->Avg. Disk Sec/Write

You can also get this data from the SQL Server dynamic management
views and functions (DMVs and DMFs) including
sys.dm_io_virtual_file_stats, however, that DMF is not resettable (its stats
exist for the life of the instance) so using Performance Monitor gives you
more real-time information.

Memory
One of the biggest keys to database performance is having enough available
memory so that the working set of data does not have to be read from disk.
As fast as modern disk is, it is still orders of magnitude slower than reading
and writing from memory. It is a common myth that database servers are

https://technet.microsoft.com/en-us/library/cc298801.aspx

memory hogs, while a SQL Server instance will use all the memory allocated
to it, which is by design as opposed to any runaway processing. Memory does
tend to be a little bit of a black box, however there is a Performance Monitor
metric from SQL Server that can give you a good idea of memory utilization.

So how do you decide how much memory to include in your SQL Server?
If you are running in Azure, this is relatively straightforward. Choose what
you think is best and then adjust the size of your server up or down to better
suit the needs of your application. If you are running the standard edition of
SQL Server you are limited to 128 GB, however, with Enterprise Edition
having unlimited memory, this can be a tough decision. There are a few
inputs you can use to guide this:

What is your largest table?
Are you using in-memory features like OLTP and columnstore?
Are you using data compression?

There is no hard and fast rule for how much memory your SQL Server
instance needs. There are a couple things you will want to monitor: disk
usage and page life expectancy (PLE) in SQL Server (how long a page is
expected to last in the buffer pool). If you do not have enough RAM, you will
see significantly more disk activity as the database needs to reach out to the
storage to bring pages into memory. Additionally, you will see PLE decease
rapidly when you do not have enough memory. If you are using data
compression, that can give you better utilization of RAM, by allowing your
largest tables in indexes to fit into fewer data pages. If you are using features
like in-memory OLTP or columnstore, you need to account for that in your
calculation. Sizing your system’s memory is challenging and does require
changing over time, however, buying additional RAM tends to be cheaper
than buying additional storage IOPs, and can mask a lot of bad development
practice, so it is best to err on the high side of RAM.

More Info About SQL Server Memory Utilization
SQL Server memory utilization can be complicated; here are some
examples of how to monitor SQL Server’s memory internals:
https://docs.microsoft.com/en-us/sql/relational-
databases/performance-monitor/monitor-memory-usage.

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/monitor-memory-usage

CPU
Like memory, CPU for a new application tends to be a black box. Unlike
memory, due to the way SQL Server is licensed, increasing the amount of
CPU allocated to your SQL Server can carry a very expensive cost beyond
the hardware involved. If you are migrating an existing workload, you can
look at the output from your Performance Monitor around processor
utilization, and adjust up or down based on current processor utilization. As a
rule of thumb for adequate throughput, you would like to see your database
servers running at under 70-80 percent processor utilization during normal
operation. There will be spikes during heavy processing, but if your server is
constantly running at 80-90 percent, your throughput will be limited and
latency may increase.

If helps to understand the nature of your application as well—most online
analytical processing databases (OLAP) benefit from a higher CPU count,
due to the parallel nature of reporting. On the other hand, OLTP systems
benefit from pure CPU speed, so when building your servers, you may want
to go with a lower core count, but with faster individual cores. Also, on some
virtual platforms over allocating CPU can lead to poorer performance
because of scheduling operations. So, do not needlessly over allocate CPU in
virtualized environments.

Select the appropriate size for a virtual machine
One of the differences between using a cloud platform like Azure, and
working in a traditional on-premises model, is that the cost for cloud platform
is right in front you, giving a clear indication on spend for a given a system.
This tends to make administrators conservative because they have an
opportunity to save their organization money by choosing the right size VM.
A very undersized VM can lead to a very poor user experience, however, so
it is important to find a proper balance between cost and performance.

Table 1-9 shows the guidance for VMs running SQL Server. Microsoft
recommends using a DS2 or higher VM for Standard Edition, and a DS3 or
higher for Enterprise Edition. You may also notice that in the disks section,
P30 disks are mentioned. It is implied that premium storage should be used
for SQL Server production workloads. You learn more about properly
configuring storage later in this section.

Table 1-9 Microsoft Guidance for SQL Server on Azure VMs

Area Optimizations
VM SIZE DS3 or higher for SQL Enterprise edition.

DS2 or higher for SQL Standard and Web editions.

STORAGE Use Premium Storage. Standard storage is only
recommended for dev/test.
Keep the storage account and SQL Server VM in the same
region.
Disable Azure geo-redundant storage (geo-replication) on
the storage account.

DISKS Use a minimum of 2 P30 disks (1 for log files; 1 for data
files and TempDB).
Avoid using operating system or temporary disks for
database storage or logging.
Enable read caching on the disk(s) hosting the data files and
TempDB.
Do not enable caching on disk(s) hosting the log file.
Important: Stop the SQL Server service when changing the
cache settings for an Azure VM disk.
Stripe multiple Azure data disks to get increased IO
throughput.
Format with documented allocation sizes.

Types of Azure VMs
Azure offers several types of VM including general purpose, compute
optimized, storage optimized, GPU (graphic processing unit optimized), and
memory optimized. Given the memory intensive nature of database servers,
we will focus on the memory optimized VMs here. However, it helps to be
aware of the other types of VMs that may meet the needs of unusual
workloads. Also, the range of VMs offered by Microsoft is constantly
changing and evolving, so it helps to stay up to date on the offerings that are
available in the Azure marketplace.

More Info Microsoft Azure VM Sizes and Types
The sizes of Azure Virtual Machine offerings are constantly changing,
visit books online to see what is current: https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sizes.

Memory optimized VMs have a high memory to CPU ratio, which is a
good fit for the nature of relational databases and their needs for large
amounts of RAM to buffer data. Let’s talk about the components that make
up a given Azure VM:

vCPU The number of cores or hyperthreads that are available to a VM.
Hyperthreads are a recently added concept and are not in all VM types.
They offer slightly lower performance at a lower cost versus dedicated
cores.
Memory This is simply the amount of RAM allocated to your virtual
machine. This memory is fully allocated, there is no oversubscription in
Azure.
Temp Storage (SSD) This is local SSD storage that is directly attached
to the physical host running your VM. It has extremely low latency for
writes, but in most cases, is temporary. When the VM reboots, whatever
is on the volume is lost. It can still have use cases for transient data like
tempdb and caches.
Max Data Disks Depending on the size of your VM, you can have a
maximum number of data disks. If you have a particularly large
database, this can lead you to choosing a larger VM than you may
otherwise need. It may also limit your options for down scaling during
idle times.
IOPs/Storage Throughput In addition to limiting the number of disks,
the amount of bandwidth to them is also controlled. This means your
latency and IOPs should be predictable.
Network Bandwidth The network bandwidth is correlated to the size of
the VM.

Azure Compute Units

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes

Like DTUs in Azure SQL Database, Azure VMs have a measurement to
compare system performance based on CPU and relative performance. This
number is called the Azure Compute Unit or ACU (see Table 1-10). ACUs
allow you to easily compare CPU performance across the various tiers of
compute within Azure. The ACU is standardized on the standard A1 VM
being 100 ACUs. The ACUs are per CPU, so a machine with 32 vCPUs and
an ACU of 100 would have a total of 3200 ACUs.

Table 1-10 ACU Chart for Azure VM families

SKU Family ACU \ vCPU
A0 50
A1-A4 100

100
100
100
225*
160
210 - 250*
160
210-250*
160-190* **
160-190* **
160-190* **
160-190* **
210-250*
210-250*
180 - 240*
180 - 240*
290 - 300*
180 - 240*
160-180**

* Use Intel® Turbo technology to increase CPU frequency and provide a
performance boost. The amount of the boost can vary based on the VM size,
workload, and other workloads running on the same host.
** Indicate virtual cores that are hyperthreaded.

Azure VMs for SQL Server
As mentioned, you should focus on the memory optimized VMs for SQL
Server, but you should also focus on the VMs that have “S” in the name
(DS_v3, GS5) because they support premium storage. If you do not choose
an S VM, you cannot change to a premium storage VM without a migration.
In this section, you learn about all the premium storage VM options.

ES_V3 series
The ES_v3 instances use the 2.3 GHZ Intel XEON E5-2673 v4 processor,
which is in the Broadwell family and can achieve up to 3.5 Ghz with Intel
Turbo Boost (see Table 1-11).

Table 1-11 Es-V3 Series VMs

Size vCPU Memory

Temp
storage
(SSD)
GiB

Max
data
disks

Max cached
and temp
storage
throughput:
IOPS /
MBps (cache
size in GiB)

Standard_E2s_v3 2 16 32 4 4,000 / 32
(50)

Standard_E4s_v3 4 32 64 8 8,000 / 64
(100)

Standard_E8s_v3 8 64 128 16 16,000 / 128
(200)

Standard_E16s_v3 16 128 256 32 32,000 / 256
(400)

Standard_E32s_v3 32 256 512 32 64,000 / 512

(800)

Standard_E64s_v3 64 432 864 32 128,000/1024
(1600)

The Es-V3 VM series is relatively new, but offers some of the largest
memory and the highest amounts of CPU in all of Azure. It can handle your
largest workloads. The Es-V3 series has an ACU of 160-190.

DS Series
Before the introduction of the DSv2 and EsV3 series of VMs, these VMs
were the core VMs for running mid-tier SQL Server workloads, which made
up the bulk of Azure workloads (see Table 1-12).

Table 1-12 DS Series VMs

Size vCPU Memory

Temp
storage
(SSD)
GiB

Max
data
disks

Max cached
and temp
storage
throughput:
IOPS /
MBps
(cache size
in GiB)

Max
uncached
disk
throughput:
IOPS /
MBps

Standard_DS11 2 14 28 4 8,000 / 64
(72) 6,400 / 64

Standard_DS12 4 28 56 8 16,000 / 128
(144) 12,800 / 128

Standard_DS13 8 56 112 16 32,000 / 256
(288) 25,600 / 256

Standard_DS14 16 112 224 32 64,000 / 512
(576) 51,200 / 512

The DS series has an ACU of 160, and while it was the core of SQL Server
VMs, going forward workloads should move DSv2 and newer VM types with
faster vCPUs.

DS_V2 series
The DS_V2 series is now the current core of VMs for SQL Server workloads.
These VMs have a good memory to CPU ratio, and range from 14 to 140 GB
of memory, which is extremely well suited to most mid-tier SQL Server
workloads. These VMs have a good amount of temp SSD storage, which can
be used for tempdb or buffer pool extensions to improve performance without
added cost (see Table 1-13). The VMs can also support storage up to 40 TB
with 80,000 IOPs offering the high levels of I/O performance required at an
affordable cost.

Table 1-13 DS_V2 VM Sizes

Size vCPU Memory

Temp
storage
(SSD)
GiB

Max
data
disks

Max cached
and temp
storage
throughput:
IOPS /
MBps
(cache size
in GiB)*

Standard_DS11_v2 2 14 28 4 8,000 / 64
(72)

Standard_DS12_v2 4 28 56 8 16,000 / 128
(144)

Standard_DS13_v2 8 56 112 16 32,000 / 256
(288)

Standard_DS14_v2 16 112 224 32 64,000 / 512
(576)

Standard DS15_v2 20 140 290 40 80,000/
640 (720)

*The maximum disk throughput (IOPS or MBps) possible with a DSv2 series
VM may be limited by the number, size, and striping of the attached disk(s).
**Instance is an isolated node that guarantees that your VM is the only VM
on our Intel Haswell node.
***25000 Mbps with Accelerated Networking.

The DS_V2 VMs have an ACU of 210-250, and the largest VM the
DS15_V2 offers dedicated hardware so that there is no chance of any other
workloads causing contention.

GS Series
While the DS and DS_V2 series of VMs are the bulk of SQL Server
workloads, the largest workloads require the memory and dedicated
processing power of the GS series of VMs (see Table 1-14).

Table 1-14 GS Series VM Sizes

Size vCPU Memory

Temp
storage
(SSD)
GiB

Max
data
disks

Max cached
and temp
storage
throughput:
IOPS /
MBps
(cache size
in GiB)

Max
uncached
disk
throughput:
IOPS /
MBps

Standard_GS1 2 28 56 4 10,000 / 100
(264) 5,000 / 125

Standard_GS2 4 56 112 8 20,000 / 200
(528) 10,000 / 250

Standard_GS3 8 112 224 16 40,000 / 400
(1,056) 20,000 / 500

Standard_GS4 16 224 448 32 80,000 / 800
(2,112)

40,000 /
1,000

Standard_GS5* 32 448 896 64
160,000 /
1,600
(4,224)

80,000 /
2,000

*Instance is isolated to hardware dedicated to a single customer.

The GS series of VMs has an ACU 180-240. While the lower end VMs in
the GS series are comparable to some of the other tiers, the CPU and memory
in the GS4 and GS5 represent some of the largest VMs in all of Azure and in
all the public cloud. The GS5 is a dedicated machine that can perform

160,000 IOPs with the maximum disk configuration.
Choosing your VM size in Azure is a little bit easier than buying physical

hardware on-premises because it is possible to change after the fact. The first
decision you want to make is how much data you need to store, followed by
how much memory you need. This should narrow down your selection to two
to three VM options, and you can pick what matches your workload best
from there.

 Exam Tip

It is not a requirement to have the individual VM’s sizes memorized,
however you should know the families and their relative sizes in case you
are asked to size a solution on the exam. You should also know which
VMs support premium storage.

Plan storage pools based on performance requirements
When Azure began many years ago, there were two things that administrators
working in Azure managed quite differently—storage and networking. As
classic Azure was replaced by Azure Resource Manager (ARM) networking
became relatively close to what exists in most on-premises environments.
However, storage is still managed differently mainly due to the Azure
Infrastructure and the way storage is deployed. Azure uses what is known as
Object Based Storage, which means that all storage objects are managed as
files. When you attach “disks” to a virtual machine they are simple VHD
(Hyper-V file format) files that are presented to the guest virtual machine.
This is different from the traditional on-premises approach of using block-
based storage, which manages data as sectors and tracks of data. Some newer
on-premises storage subsystems are built using object based storage as well,
so some of these concepts are common across Azure and on-premises.

What this object-based storage model does is abstract the physical layer
away from the actual disks and allow them to be managed by the
virtualization hypervisor, which allows more flexibility in management. One
of the other elements that is built into the Azure storage infrastructure is
RAID (Redundant Array of Independent Disks)—RAID is typically used on-

premises to provide data protection amongst disk. The general assumption is
that disks will always fail so they must use striping or mirroring to protect
against data loss. Azure takes a similar approach, but it maintains three copies
of all data within the same region using its own software defined RAID. In
the event of disk failure, one of the secondary copies of storage is promoted
to the new primary. What does this mean for you? It means your data is
protected on the back end, so when you present disks to your VM you can
pool them without introducing any RAID that would limit your performance
and your capacity. In the view of your VM, you are using RAID 0, because
the Azure storage infrastructure is protecting your data. This is executed by
using Storage Spaces in Windows Server with simple recovery.

In Figure 1-24 you can see a representation of what RAID 0 would like if
we were writing directly to disk. The values are split across the three disks,
and the loss of any one disk would result in complete data loss. However,
because in Azure our data is protected by the infrastructure, you can use
RAID Windows Storage Space in your VMs.

Figure 1-24 RAID 0 Example

Disks in Azure
There is a focus in premium storage for SQL Server VMs, however we also
discuss standard storage because it can be used for backups and perhaps the
O/S drive on your systems.

Table 1-15 Premium Storage Disk Options

Premium Disks
Type

P4 P6 P10 P20 P30 P40

DISK SIZE 32 GB 64 GB 128
GB

512
GB

1024
GB
(1 TB)

2048
GB
(2 TB)

IOPS PER
DISK 120 240 500 2300 5000 7500

THROUGHPUT
PER DISK

25
MB
per
second

50
MB
per
second

100
MB
per
second

150
MB
per
second

200
MB
per
second

250
MB
per
second

There is no service level agreement (SLA) for standard storage, however
disks on basic VMs can have up to 300 IOPs and disks on standard VMs can
have up to 500 IOPs per disk. As you can see from Table 13, the P30 disk
balances performance and capacity (and cost) nicely, offering 5000 IOPs per
disk. To get more IOPs for your SQL Server workloads, you need to pool
disks together. To do this in Windows you need to use the Storage Spaces
feature to pool the disks to get the total IOPs and capacity of the disks.

It is also recommended that you use managed disks for your SQL Server
workloads; managed disks have higher levels of availability, and removes the
limits on IOPs to a given storage account that were present with unmanaged
disks in Azure.

More Info Microsoft Azure Premium Storage
You can learn more about the differences between managed and
unmanaged storage and the different types of premium storage options
here: https://docs.microsoft.com/en-us/azure/storage/common/storage-
premium-storage.

Premium storage only offers resiliency within a single data center by
providing its three copies of your data. You can also use geo-redundant
storage (GRS) and read-access geo-redundant storage (RA-GRS) to store
your backup files. GRS and RA-GRS use standard storage, which is
replicated to a paired region; however, this model is not supported for

https://docs.microsoft.com/en-us/azure/storage/common/storage-premium-storage

database data and log files because there is no guarantee of consistency
across regions.

Storage spaces
After you have allocated disks to your VM, you need to use storage spaces to
pool them. If you are using a SQL Server template (which you learn more
about in the next section) this may be done for you, however these guidelines
presume that you are doing this manually.

To begin, go to the Azure Portal and add disks to your VM:

1. Click Disks on the Blade for your VM (Figure 1-25).

Figure 1-25 Add Disk to VM Screen in Azure Portal

2. In the data disks area, click the pull down under Name and click Create
Disk. You need to assign a name to each disk. If you are not using
managed disks, you may need to assign a storage account. You repeat
this process for each disk that you want to assign to your VM. For this
example, there are four disks. Click Save in the disk screen and wait
until the operation completes (this could take up to a couple of minutes).

3. Log into your VM using Remote Desktop.
4. Open Server Manager and click File And Storage Services (Figure 1-

26).

Figure 1-26 The Server Manager Screen from Windows Server 2016

5. From there, click Storage Pools. In the bottom right, you should see the
four physical disks you created that are ready for assignment.

6. In the top right of the screen, click Tasks and select New Storage Pool
(Figure 1-27).

Figure 1-27 Server Manage Storage Pool Screen

7. The New Storage Pool pops up. Assign a name to your storage pool. For
this demo, the pool is named Data Pool (Figure 1-28).

Figure 1-28 The New Storage Pool Wizard

8. Click next to continue.
9. Next you add your disks to the pool. Click the check boxes next to each

of your disks, and then click Next (Figure 1-29).

Figure 1-29 Storage Pool Wizard - Select Disks

10. On the Confirmation screen, click Create.
11. On the Progress screen check the box next to Create A Virtual Disk

When This Wizard Closes, and click Close after the storage pool is
completed (Figure 1-30).

Figure 1-30 Completed Storage Pool Wizard

12. After the wizard launches you will select the pool you just created for
your virtual disk, as shown in Figure 1-31.

Figure 1-31 Select the storage pool from the Volume Wizard

13. You will assign a disk name to your new Virtual Disk, for this demo,
you can use the name Data Disk.

14. You will then select a storage layout. Because you are using Azure
storage, you can use the simple layout (Figure 1-32).

Figure 1-32 Storage Layout screen from the Virtual Disk Wizard

15. Click Next. On the next screen, you can choose a size for your disk.
Click the button next to Maximum Size, and Click Next.

16. On the Confirmation screen click Create, and click the check box next to
Create A Volume When This Wizard Closes.

17. The new Volume Wizard will launch. Click Next on the first two
screens for server and disk, and size (Figure 1-33). You then choose a
drive letter. Please note that you cannot use the letter E: in Azure
because it is reserved.

Figure 1-33 The The Assign To A Drive Letter Or Folder screen from
the New Volume Wizard

18. Click Next. On the File System Settings screen (Figure 1-34), accept the
default for NTFS, change the allocation unit size to 64k (which is best
practice recommendation for SQL Server), and assign a label to your
volume. The label used here is a DataVolume.

Figure 1-34 The Select File System Settings screen... Screen in the
New Volume Wizard

Your process of creating a storage pool is now complete. If you open
Windows Explorer (see Figure 1-35) you should see your new disk with its
full storage allocation.

Figure 1-35 Screen shot of Windows Explorer after disk creation

In this example, you created a storage pool that can perform 20,000 IOPs
and has a capacity of 4 TB. There are two major inputs into creating a storage
system for your SQL Server the first being the total amount of data, and

second being the number of IOPs. You can adjust both capacity and IOPs by
adding more disks to an existing pool, however be warned that when adding
new disks to the pool your data will not automatically be balanced across all
the disks. You need to run the optimize-storagepool PowerShell cmdlet to
rebalance your data. This command may take a long time to complete. This is
an I/O intensive operation, so performance may be degraded during the
process, however your disks are available during the process.

One other thing to note is that you should set the interleave (stripe size) to
64 KB (65536 bytes) for OLTP workloads and 256 KB (262144 bytes) for
data warehousing workloads to avoid performance impact due to partition
misalignment. You will learn more about optimal storage configuration for
SQL Server later in this section.

More Info About Optimizing Storage Spaces Pools
Storage pools are the key to designing proper storage solutions in Azure
VMs. It is important to understand them. Learn more here:
https://technet.microsoft.com/en-
us/itpro/powershell/windows/storage/optimize-storagepool.

Evaluate best practices for installation
A default SQL Server installation does not necessarily contain all the best
practices for all workloads. Microsoft has worked to improve this particularly
with the releases of SQL Server 2016 and 2017, which have some of the
settings that many SQL Server experts used to apply after installation, built
into the product. There are still many settings that should be changed before
releasing your database server into production. Some settings are workload
dependent, and some of the settings you learn about are specific to running in
Azure VMs.

SQL Server settings
While SQL Server is the same product whether you install on-premises or in
Azure VM there are some recommendations, due to the nature of Azure, to
optimize your installation. It is recommended to install your binary files to C
drive—there is no real benefit to installing them anywhere else. You should

https://technet.microsoft.com/en-us/itpro/powershell/windows/storage/optimize-storagepool

also only install the SQL Server components you need for your installation. If
you are installing Analysis Services, Reporting Services, or Integration
Services alongside your database engine, you should be aware that those
processes running can take memory and resources away from the database
engine, impacting your overall performance. For production configurations, it
is a best practice to install one component per VM.

Disk Caching The default caching policy on your operating system (C:\
drive) disk is read/write. It is not recommended to put database or
transaction log files on the C:\ drive. It is recommended to use read
caching on the disks hosting your data files and TempDB files, but not
your transaction logs. Do not use read/write caching on any SQL Server
data disk, as it can potentially lead to data loss. Additionally, stop your
SQL Server service before changing any cache settings to avoid the
possibility of database corruption.
NTFS Allocation Unit Size The best practice for all SQL Server
databases is to use the 64-KB allocation unit size.
Data Compression It is recommended to use data compression (page)
on your larger indexes and tables in SQL Server when running on
Azure. There is no fixed guideline fr what size tables to compress,
however a good way to evaluate is to review your largest 10 tables, and
start from there. While it may increase CPU consumption, it will greatly
reduce the number of I/Os required to service a query. For workloads
that are analytic in nature you should consider using clustered
columnstore indexes, which offer an even bigger reduction in I/O.
Instant File Initialization This option is part of the SQL Server 2016
installer, and is a check box, which should be checked. If you are
running an older version of SQL Server, you can enable this by granting
the service account running SQL Server the Perform Volume
Maintenance Tasks permission in Windows security policy. This feature
enables SQL Server to grow data (but not transaction log) files without
zeroing them out, making data file growth less costly to your I/O
performance.
Data File Management Proactively grow your database and transaction
log files to what you expect them to be. Do not rely on autogrowth,
because growing those files (especially transaction logs) will be

detrimental to performance.
Shrink You should almost never shrink a database. This is an I/O
intensive operation, and fragments the database extensively. It is ok to
shrink a transaction log, after runaway growth, but you should use
backups and proper transaction management to manage the size of your
transaction log.
Log and Trace Files You should move the errorlog and trace files for
SQL Server to one of your data drives. This can be performed by editing
the startup parameters of SQL Server using configuration manager, as
seen in Figure 1-36.

Figure 1-36 SQL Server Configuration Manager Log and Trace File
Settings

Set Default Backup and Database File Location These should be set
to one of your data file volumes. It is important that your backup volume
exist, even if you are backing up to an Azure URL. The SQL Server
service may not start after patching if the backup location does not exist.

Figure 1-37 Server Properties screen

Patching It is important to apply all Service Packs and Cumulative
updates to your SQL Server instance. In addition to security patches,
there are performance enhancements and new management features that
are frequently built-in to these patches.
Locked Pages in Memory Enable locked pages in memory to reduce
I/O and paging activities. This is a Windows level setting.

More Info About Locked Pages in Memory
The locked pages in memory setting is somewhat complicated to
configure, learn more about it here: https://docs.microsoft.com/en-
us/sql/database-engine/configure-windows/enable-the-lock-pages-in-

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows

memory-option-windows.

You learn more about other database configuration options in Chapter 2,
“Manage databases and instances.”

Design a storage layout for a SQL Server virtual
machine
In the previous section, you learned how to create a disk pool using Storage
Spaces to aggregate IOPs and storage capacity. Now you are going to learn
about the best practices for configuring storage for SQL Server running on an
Azure VM. Given the important of I/O performance to overall database
performance you should follow these guidelines closely.

First let’s examine the disks that come with an Azure VM:
O/S Disk This disk can be either a HDD or SSD because its
performance will have minimal impact on the overall performance of the
server. If you are trying to reduce cost, consider using an HDD for this
volume. You should enable read/write caching.
Temporary Disk This will be the D drive on your Windows VMs. Data
is not persisted on this drive, so you should never store data files or
transaction log files there. For D, Dv2, Ev3, and G series VMs this disk
is solid state and direct attached. This disk can be used for very write
intensive TempDB workloads, as TempDB is recreated every time SQL
Server starts. You need to write a startup script to create a folder to put
TempDB on the D drive.

More Info Using the D Drive on Azure VMS for
Tempdb

Configuring the D drive for SQL Server use, requires some startup
scripts and configuration:
https://blogs.technet.microsoft.com/dataplatforminsider/2014/09/25/using-
ssds-in-azure-vms-to-store-sql-server-tempdb-and-buffer-pool-
extensions/.

https://blogs.technet.microsoft.com/dataplatforminsider/2014/09/25/using-ssds-in-azure-vms-to-store-sql-server-tempdb-and-buffer-pool-extensions/

Data and Log Volumes At a minimum you should use two premium
storage P30 disks where one disk contains the data and log files. If you
have a good understanding of your IOPs required, you should pool as
many disks as required to reach your IOPs requirements. If your
workload is not IOPs intensive you can put both logs and data in the
same storage pool. Otherwise create one storage pool for the data files
and one storage pool for the transaction log files. You can include
TempDB on the data file pool, if your TempDB workload is not write
intensive, otherwise consider placing it on the D drive.
Caching Policy You should enable read caching for the data disks
hosting your data files. This is performed at the portal under Disks.
Before changing cache settings stop your SQL Server service to avoid
any possible disk corruption.
Backup to Azure Storage Because the number of volumes that are
assigned to a given VM are limited based on your VM size, one of the
ways you can reduce space utilized in those volumes is by backing up
directly to Azure Blob storage. Starting with SQL Server 2012 SP1 CU2
this feature has been available and allows for native SQL Server
backups to blob storage. This storage account can be running in standard
storage. Many customers use RA-GRS storage for their backups to
provide some level of disaster recovery.

More Info Backup to URL in SQL Server
Setting backup to Azure storage requires some information from your
Azure storage account. Learn more here:
https://msdn.microsoft.com/library/dn435916.aspx.

SQL Server Data Files in Azure This is another option to potentially
reduce the number of disks associated with your Azure VM running
SQL Server. This feature allows you to attach your data and transaction
log files as Azure blobs and offers comparable performance to that of
regular storage. However, your data files are limited in size to 1 TB
when using this model.

Skill 1:3: Deploy SQL Server instances

https://msdn.microsoft.com/library/dn435916.aspx

This skill deals with deployment of your SQL Server instances and databases,
you learn about how to perform command line installation, strategies for
deployment, and the use of ARM templates to deploy new SQL Server VMs.

This skill covers how to:

Deploy a SQL Server instance in IaaS and on-premises
Manually install SQL Server on an Azure Virtual Machine
Provision an Azure Virtual Machine to host a SQL Server instance
Automate the deployment of SQL Server databases
Deploy SQL Server by using templates

Deploy a SQL Server instance in IaaS and on-premises
There are several approaches you can take to deploying SQL Server instances
either in Azure on IaaS or in your own on-premises environments. Many
organizations have moved to a private cloud model where machines are
templated and cloned to rapidly deploy new environments to development
teams and business units. Azure can simplify this process by providing
templates and the Azure Resource Manager (ARM) framework for
automation and deployment. However, many organizations like to manage
their own templates to manage custom settings and configurations.

Building your own SQL Server template
There is a basic process to creating a SQL Server VM template for
deployment. While the specific operations depend on which toolset you are
using, there are some common patterns that apply. The first is that you will
want the SQL Server binaries installed as part of your template. This may
seem counterintuitive, however trying to install SQL Server at deployment
time delays your deployments and may lead to network timeouts.

There is no harm in having SQL Server installed on your template. At
deployment time your Windows administrator needs to execute sysprep.

More Info Using Sysprep in VM Deployments and

Creating VM Templates with System
Center

Sysprep is used to remove the server name from the registry and other
places. Learn more here: https://technet.microsoft.com/en-
us/library/hh427282(v=sc.12).aspx.

The minor issue you will encounter is that SQL Server will initially have
the wrong name listed in the sys.servers catalog view. You learn how to
address this later in this section.

When you deploy your template, there are many other settings based on the
server name and physical setting you may want to configure, as showing in
the following SQL script. This code sets best practices on a SQL Server
installation based on the current hardware, which means it should be run as a
post deployment task in your environment.

Click here to view code image

/****** BEST PRACTICES ******/

 --Trace Flag 3226 Suppress the backup transaction log

entries from the SQL

Server Log

 USE MASTER

 GO

 CREATE OR ALTER PROCEDURE dbo.enable_trace_flags

 AS

 DBCC TRACEON (3226, -1);

 DBCC TRACEON (1222, -1);

 GO

EXEC sp_procoption @ProcName = 'enable_trace_flags', @OptionName

= 'startup',

 @OptionValue = 'true';

 EXEC enable_trace_flags;

 /* Disable SA Login */

 ALTER LOGIN [sa] DISABLE;

GO

 --modify model database

 ALTER DATABASE model SET RECOVERY SIMPLE;

 GO

 ALTER DATABASE model MODIFY FILE (NAME = modeldev,

FILEGROWTH = 100MB);

 GO

 ALTER DATABASE model MODIFY FILE (NAME = modellog,

https://technet.microsoft.com/en-us/library/hh427282(v=sc.12).aspx

FILEGROWTH = 100MB);

 GO

 --modify msdb database

 ALTER DATABASE msdb SET RECOVERY SIMPLE;

 GO

 ALTER DATABASE msdb MODIFY FILE (NAME = msdbdata, FILEGROWTH

= 100MB);

 GO

 ALTER DATABASE msdb MODIFY FILE (NAME = msdblog, FILEGROWTH

= 100MB);

 GO

 --modify master database

 ALTER DATABASE master SET RECOVERY SIMPLE;

 GO

 ALTER DATABASE master MODIFY FILE (NAME = master, FILEGROWTH

= 100MB);

 GO

 ALTER DATABASE master MODIFY FILE (NAME = mastlog,

FILEGROWTH = 100MB);

 GO

 sp_configure 'set advanced options', 1

 GO

 RECONFIGURE WITH OVERRIDE

 GO

 /****** CONFIGURE TEMPDB DATA FILES ******/

 DECLARE @sql_statement NVARCHAR(4000) ,

 @data_file_path NVARCHAR(100) ,

 @drive_size_gb INT ,

 @individ_file_size INT ,

 @number_of_files INT

 SELECT @data_file_path = (SELECT DISTINCT

 (LEFT(physical_name,

LEN(physical_name) - CHARINDEX('\',

REVERSE(physical

_name))

 + 1))

 FROM sys.master_files mf

 INNER JOIN sys.

[databases] d ON mf.[database_

id] = d.[database_id]

 WHERE d.name = 'tempdb'

 AND type = 0

);

 --Input size of drive holding temp DB files here

 SELECT @DRIVE_SIZE_GB=total_bytes/1024/1024/1024 from

sys.dm_os_volume_stats (2,1)

 SELECT @number_of_files = COUNT(*)

 FROM sys.master_files

 WHERE database_id = 2

 AND type = 0;

 SELECT @individ_file_size = (@drive_size_gb * 1024 * .2)

 / (@number_of_files);

 /*

 PRINT '-- TEMP DB Configuration --'

 PRINT 'Temp DB Data Path: ' + @data_file_path

 PRINT 'File Size in MB: '

+convert(nvarchar(25),@individ_file_size)

 PRINT 'Number of files: '+convert(nvarchar(25),

@number_of_files)

 */

 WHILE @number_of_files > 0

 BEGIN

 IF @number_of_files = 1 -- main tempdb file, move

and re-size

 BEGIN

 SELECT @sql_statement = 'ALTER DATABASE

tempdb MODIFY FILE (NAME =

tempdev, SIZE = '

 + CONVERT(NVARCHAR(25),

@individ_file_size)

 + ', filename = ' + NCHAR(39) +

@data_file_path

 + 'tempdb.mdf' + NCHAR(39)

 + ', FILEGROWTH = 100MB);';

 END;

 ELSE -- numbered tempdb file, add and re-size

 BEGIN

 SELECT @sql_statement = 'ALTER DATABASE

tempdb MODIFY FILE (NAME =

temp'

 + CONVERT(NVARCHAR(25),

@number_of_files)

 + ',filename = ' + NCHAR(39) +

@data_file_path

 + 'tempdb_mssql_'

 + CONVERT(NVARCHAR(25),

@number_of_files) + '.ndf'

 + NCHAR(39) + ', SIZE = '

 + CONVERT(VARCHAR(25),

@individ_file_size)

 + ', FILEGROWTH = 100MB);';

 END;

 EXEC sp_executesql @statement = @sql_statement;

 PRINT @sql_statement;

 SELECT @number_of_files = @number_of_files - 1;

 END;

 -- TODO: Consider type

 DECLARE @sqlmemory INT

 ;with physical_mem (physical_memory_mb) as

 (

 select physical_memory_kb / 1024

 from sys.dm_os_sys_info

)

 select @sqlmemory =

 -- Reserve 1 GB for OS

 -- TODO: Handling of < 1 GB RAM

 physical_memory_mb - 1024 -

 (

 case

 -- If 16 GB or more, reserve an additional 4 GB

 when physical_memory_mb >= 16384 then 4092

 -- If between 4 and 16 GB, reserve 1 GB for every 4 GB

 -- TODO: Clarify if 4 GB is inclusive or exclusive minimum.

This is exclusive.

 -- TODO: Clarify if 16 GB is inclusive or exclusive

maximum. This is inclusive.

 when physical_memory_mb > 4092 and physical_memory_mb <

16384 then physical_

memory_mb / 4

 else 0 end

)

 -

 (

 case

 -- Reserve 1 GB for every 8 GB above 16 GB

 -- TODO: Clarify if 16 GB is inclusive or exclusive

minimum. This is exclusive.

 when physical_memory_mb > 16384 then (physical_memory_mb -

16384)/ 8

 else 0

 end

)

 from physical_mem

 EXEC sp_configure 'max server memory', @sqlmemory;

 -- change to #GB * 1024, leave 2 GB per system for OS, 4GB

if over 16GB RAM

 RECONFIGURE WITH OVERRIDE;

 /*SELECT MaxDOP for Server Based on CPU Count */

 BEGIN

 DECLARE @cpu_Countdop INT;

 SELECT @cpu_Countdop = cpu_count

 FROM sys.dm_os_sys_info dosi;

 EXEC sp_configure 'max degree of parallelism',

@cpu_Countdop;

 RECONFIGURE WITH OVERRIDE;

 END;

 EXEC sp_configure 'xp_cmdshell', 0;

 GO

 RECONFIGURE;

 GO

 EXEC sp_configure 'remote admin connections', 1;

 GO

 RECONFIGURE;

 GO

 EXEC sp_configure 'backup compression default', 1;

 RECONFIGURE WITH OVERRIDE;

 GO

 RECONFIGURE WITH OVERRIDE;

 GO

 sp_configure 'Database Mail XPs', 1;

 GO

 RECONFIGURE;

 GO

 RECONFIGURE;

 GO

 EXEC sp_configure 'cost threshold for parallelism', 35;

 GO

 RECONFIGURE;

 GO

You may wish to customize some of these settings. You learn about their
proper configuration values in Chapter 2.

Changing your SQL Server name
If your server admin has changed the name of your Windows Server in
template deployment, you may need to change the name of your SQL Server
instance. Having the wrong name for your server will not stop SQL Server
from running, however you will experience connection failures and features

such as replication will not function properly. Fortunately, you can include
the following T-SQL in your post deployment scripts to rename SQL Server.
Click here to view code image

use master

declare @old varchar(50)

declare @oldsql nvarchar(4000)

select @old=@@servername;

select @oldsql='exec sp_dropserver '''+@old+''';'

exec sp_executesql @oldsql

declare @new varchar(50)

declare @newsql nvarchar(4000)

select @new=convert(sysname,serverproperty('servername'));

select @newsql='exec sp_addserver '''+@new+''',local;'

exec sp_executesql @newsql

This code uses dynamic SQL to reset your server name. You also need to
restart the SQL Server service to complete the renaming process. You can
verify that you have the correct server name by executing the select
@@Servername T-SQL command.

Manually install SQL Server on an Azure Virtual
Machine
The process of installing SQL Server on an Azure IaaS is the same as you
would do on-premises. You can use the setup GUI, however many
organizations use a command line installation process with a configuration
file, and a post-installation configuration script as shown earlier in this
section. This allows the installation process to be automated, and more
importantly to be done consistently and with best practices across your SQL
Server environments. In the following steps, you learn how to generate a
configuration file (and see a sample configuration) using the GUI, and then
how to install SQL Server from the command line.

1. Launch setup.exe from the SQL Server installation media. Click New
SQL Server stand-alone installation or add features to an existing
installation.

2. SQL Server will run a rules check, and check the box for Microsoft
updates.

3. Select Perform a New Installation and choose the edition you will be
using. Click Next

4. Accept the License Terms and click next.

5. You should be on the feature selection screen as shown in Figure 1-40.
Carefully select only the features you want to include in your installation
to limit the surface area installed.

It is important to note that if you are installing R or Python as part of your
installation, your server either needs to be on the Internet, or you will need
follow the installation directions at: https://docs.microsoft.com/en-
us/sql/advanced-analytics/r/installing-ml-components-without-internet-
access.

Another note about this setup screen—starting with SQL Server 2017,
SQL Server Reporting Services has been decoupled from the SQL Server
installation, so you need to download and install it separately from the
Database Engine and Analysis Services.

1. After selecting your features and clicking Next twice, you should be on
the Instance configuration screen. Accept the default setting of a default
instance, and click next.

2. On the next screen, you can either change your service accounts or
accept the defaults. Many customers choose to use Active Directory
accounts for their service accounts Additionally, you should click the
check box next to Grant Perform Volume Maintenance Task Privilege
To SQL Server Service, as seen in Figure 1-38.

https://docs.microsoft.com/en-us/sql/advanced-analytics/r/installing-ml-components-without-internet-access

Figure 1-38 Service Account configuration SQL Server setup

3. On the Server Configuration screen, click the Add Current User button
to make your account an admin. You may wish to add other users or
groups here, and if you wish to enable Mixed Mode authentication, set
the SA password here.

4. On the Server Configuration screen click the TempDB tab. You will
note that SQL Server has configured multiple files based on the number
of CPUs in your server. You can choose to adjust the size and location
of your TempDB files in this screen, in accordance with best practices
and your preferred configuration. Click next after this configuration.
You can also change the location of TempDB (such as locating it on the
D: drive) on this screen (Figure 1-39).

Figure 1-39 TempDB Configuration screen

5. The feature configuration rules will run and you will be on the Ready to
Install screen.

6. On the Ready To Install screen you see, on the bottom, a configuration
file location (Figure 1-40).

Figure 1-40 Configuration File Location

7. Navigate to that file location and make a copy of the configuration file.
In Figure 1-43 it has been copied to C:\temp. Cancel out of SQL Server
Setup. You can only run one copy of setup.exe at a time, so your
command line install will fail if both are running.

8. Open your configuration file in notepad. Remove the line that begins
with UIMODE and change the value of QUIETSIMPLE from False to
True.

9. Launch a PowerShell window in Administrative mode.
10. Change to the drive where your SQL Server iso is located and issue the

following command:

Click here to view code image

./setup.exe /IacceptSQLServerLicenseTerms /SAPwd=P@ssw0rd!

/ConfigurationFile=C:\temp\ConfigurationFile.ini

/Action=Install

Your installation should complete in a few minutes. You should note that
tools such as SQL Server Management Studio are not installed as part of the
SQL Server installation process, and must be installed separately, starting
with SQL Server 2016.

A sample configuration file is as follows:
Click here to view code image

;SQL Server 2017 RC2 Configuration File

[OPTIONS]

; By specifying this parameter and accepting Microsoft R Open and

Microsoft R Server

 terms, you acknowledge that you have read and understood the

terms of use.

IACCEPTPYTHONLICENSETERMS="False"

; Specifies a Setup work flow, like INSTALL, UNINSTALL, or

UPGRADE. This is a required

 parameter.

ACTION="Install"

; Specifies that SQL Server Setup should not display the privacy

statement when ran

 from the command line.

SUPPRESSPRIVACYSTATEMENTNOTICE="False"

; By specifying this parameter and accepting Microsoft R Open and

Microsoft R Server

 terms, you acknowledge that you have read and understood the

terms of use.

IACCEPTROPENLICENSETERMS="False"

; Use the /ENU parameter to install the English version of SQL

Server on your localized

 Windows operating system.

ENU="True"

; Setup will not display any user interface.

QUIET="False"

; Setup will display progress only, without any user interaction.

QUIETSIMPLE="True"

; Specify whether SQL Server Setup should discover and include

product updates.

The valid values are True and False or 1 and 0. By default SQL

Server Setup will

 include updates that are found.

UpdateEnabled="True"

; If this parameter is provided, then this computer will use

Microsoft Update

to check for updates.

USEMICROSOFTUPDATE="True"

; Specify the location where SQL Server Setup will obtain product

updates. The

valid values are "MU" to search Microsoft Update, a valid folder

path, a relative

 path such as .\MyUpdates or a UNC share. By default SQL Server

Setup will search

 Microsoft Update or a Windows Update service through the Window

Server Update Services.

UpdateSource="MU"

; Specifies features to install, uninstall, or upgrade. The list

of top-level

 features include SQL, AS, IS, MDS, and Tools. The SQL feature

will install the

Database Engine, Replication, Full-Text, and Data Quality

Services (DQS) server.

The Tools feature will install shared components.

FEATURES=SQLENGINE,REPLICATION,CONN,BC,SDK

; Displays the command line parameters usage

HELP="False"

; Specifies that the detailed Setup log should be piped to the

console.

INDICATEPROGRESS="False"

; Specifies that Setup should install into WOW64. This command

line argument is not

 supported on an IA64 or a 32-bit system.

X86="False"

; Specify a default or named instance. MSSQLSERVER is the default

instance for

non-Express editions and SQLExpress for Express editions. This

parameter is required

 when installing the SQL Server Database Engine (SQL), or

Analysis Services (AS).

INSTANCENAME="MSSQLSERVER"

; Specify the root installation directory for shared components.

This directory remains

 unchanged after shared components are already installed.

INSTALLSHAREDDIR="C:\Program Files\Microsoft SQL Server"

; Specify the root installation directory for the WOW64 shared

components. This

 directory remains unchanged after WOW64 shared components are

already installed.

INSTALLSHAREDWOWDIR="C:\Program Files (x86)\Microsoft SQL Server"

; Specify the Instance ID for the SQL Server features you have

specified. SQL Server

 directory structure, registry structure, and service names will

incorporate the

 instance ID of the SQL Server instance.

INSTANCEID="MSSQLSERVER"

; TelemetryUserNameConfigDescription

SQLTELSVCACCT="NT Service\SQLTELEMETRY"

; TelemetryStartupConfigDescription

SQLTELSVCSTARTUPTYPE="Automatic"

; Specify the installation directory.

INSTANCEDIR="C:\Program Files\Microsoft SQL Server"

; Agent account name

AGTSVCACCOUNT="NT Service\SQLSERVERAGENT"

; Auto-start service after installation.

AGTSVCSTARTUPTYPE="Manual"

; CM brick TCP communication port

COMMFABRICPORT="0"

; How matrix will use private networks

COMMFABRICNETWORKLEVEL="0"

; How inter brick communication will be protected

COMMFABRICENCRYPTION="0"

; TCP port used by the CM brick

MATRIXCMBRICKCOMMPORT="0"

; Startup type for the SQL Server service.

SQLSVCSTARTUPTYPE="Automatic"

; Level to enable FILESTREAM feature at (0, 1, 2 or 3).

FILESTREAMLEVEL="0"

; Set to "1" to enable RANU for SQL Server Express.

ENABLERANU="False"

; Specifies a Windows collation or an SQL collation to use for

the Database Engine.

SQLCOLLATION="SQL_Latin1_General_CP1_CI_AS"

; Account for SQL Server service: Domain\User or system account.

SQLSVCACCOUNT="NT Service\MSSQLSERVER"

; Set to "True" to enable instant file initialization for SQL

Server service. If

 enabled, Setup will grant Perform Volume Maintenance Task

privilege to the Database

 Engine Service SID. This may lead to information disclosure as

it could allow

deleted content to be accessed by an unauthorized principal.

SQLSVCINSTANTFILEINIT="True"

; Windows account(s) to provision as SQL Server system

administrators.

SQLSYSADMINACCOUNTS="DOMAIN\joey"

; The default is Windows Authentication. Use "SQL" for Mixed Mode

Authentication.

SECURITYMODE="SQL"

; The number of Database Engine TempDB files.

SQLTEMPDBFILECOUNT="4"

; Specifies the initial size of a Database Engine TempDB data

file in MB.

SQLTEMPDBFILESIZE="8"

; Specifies the automatic growth increment of each Database

Engine TempDB data

file in MB.

SQLTEMPDBFILEGROWTH="64"

; Specifies the initial size of the Database Engine TempDB log

file in MB.

SQLTEMPDBLOGFILESIZE="8"

; Specifies the automatic growth increment of the Database Engine

TempDB log file in MB.

SQLTEMPDBLOGFILEGROWTH="64"

; Provision current user as a Database Engine system

administrator for

 %SQL_PRODUCT_SHORT_NAME% Express.

ADDCURRENTUSERASSQLADMIN="True"

; Specify 0 to disable or 1 to enable the TCP/IP protocol.

TCPENABLED="1"

; Specify 0 to disable or 1 to enable the Named Pipes protocol.

NPENABLED="0"

; Startup type for Browser Service.

BROWSERSVCSTARTUPTYPE="Disabled"

More Info Using Configuration Files for SQL Server
Installations

Using configuration files is good way to automate your SQL Server
installs, you can learn more about the options around using them here:
https://docs.microsoft.com/en-us/sql/database-engine/install-
windows/install-sql-server-2016-using-a-configuration-file.

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-2016-using-a-configuration-file

Provision an Azure Virtual Machine to host a SQL
Server instance
There are several ways to provision a virtual machine for deploying SQL
Server. In this section, you learn how to do it both in the Azure Portal and via
PowerShell.

Build a Virtual Machine using the portal

1. To deploy a new VM from the portal first login to the portal as a user
who has permissions to create a VM. You will need to be a contributor
in the resource group where you are creating this VM.

2. From the portal click the + New in the top left (as highlighted in Figure
1-41).

Figure 1-41 Azure Portal Open Screen

3. On the next screen, type Windows Server 2016 in the New box. It will
start to auto-populate.

4. Select Windows Server 2016 Datacenter, and click it (see Figure 1-42).

Figure 1-42 Selecting Windows Server 2016 Datacenter

5. Accept the default of resource manager and click Create.
6. On the next screen (Figure 1-43), you need to enter a few values for

your VM including server name, admin user, admin password,
subscription, resource group, and location. Your password is at least 12
characters. Click Next.

Figure 1-43 VM Configuration Screen

7. On the next screen choose the size of your VM. For the purposes of this
demo a D4S_v3 is chosen, but feel to choose any size.

8. On the Configure Optional Features screen, accept all of the defaults and
click OK.

9. On the final screen click Purchase, and your VM will deploy in
approximately five to 10 minutes.

Your VM is now ready for adding disks. You can go back to the
configuring Storage Spaces section and add disks for your data files and
transaction logs.

Deploying an Azure VM with PowerShell
One of the most powerful parts of cloud computing is the ability to transform
building infrastructure, which in the past was a time consuming physical
process, into repeatable use parameterized code. This process was part of the
shift to Azure Resource Manager, which transforms each infrastructure
component into objects, with dependencies on each other. ARM also includes
a common framework for scripting and automation. This enables you to
rapidly deploy large-scale infrastructures like an AlwaysOn Availability
Group with minimal effort. One of the things Microsoft has done to make this
easier for you is that you can build components using the Azure Portal and
then download the template at the end of the process, like you did earlier.

 Exam Tip

Having an understanding of concepts around Azure Resource Manager
helps you better understand PowerShell, automation, and other concepts
you may be tested on.

After you install Azure PowerShell execute the following steps to deploy
your VM.

1. Launch the PowerShell integrated scripting environment by launching
the Windows run diaglog (Win+R) and typing powershell_ise.

2. On the Powershell_ise, click View, and check the box next to script
pane. You will have an interactive scripting window.

3. Paste the following code into the ISE:
Click here to view code image

Login-AzureRmAccount

New-AzureRmResourceGroup -Name myResourceGroup -Location

EastUS

Create a subnet configuration

$subnetConfig = New-AzureRmVirtualNetworkSubnetConfig -Name

mySubnet

-AddressPrefix 192.168.1.0/24

Create a virtual network

$vnet = New-AzureRmVirtualNetwork -ResourceGroupName

myResourceGroup

-Location EastUS `

 -Name MYvNET -AddressPrefix 192.168.0.0/16 -Subnet

$subnetConfig

Create a public IP address and specify a DNS name

$pip = New-AzureRmPublicIpAddress -ResourceGroupName

myResourceGroup

-Location EastUS `

 -AllocationMethod Static -IdleTimeoutInMinutes 4 -Name

"mypublicdns$(Get-Random)"

 # Create an inbound network security group rule for port

3389

$nsgRuleRDP = New-AzureRmNetworkSecurityRuleConfig

-Name myNetworkSecurityGroupRuleRDP -Protocol Tcp `

 -Direction Inbound -Priority 1000 -SourceAddressPrefix *

-SourcePortRange

* -DestinationAddressPrefix * `

 -DestinationPortRange 3389 -Access Allow

Create an inbound network security group rule for port 80

$nsgRuleWeb = New-AzureRmNetworkSecurityRuleConfig

-Name myNetworkSecurityGroupRuleWWW -Protocol Tcp `

 -Direction Inbound -Priority 1001 -SourceAddressPrefix *

-SourcePortRange

* -DestinationAddressPrefix * `

 -DestinationPortRange 80 -Access Allow

Create a network security group

$nsg = New-AzureRmNetworkSecurityGroup -ResourceGroupName

myResourceGroup

-Location EastUS `

 -Name myNetworkSecurityGroup -SecurityRules

$nsgRuleRDP,$nsgRuleWeb

 # Create a virtual network card and associate with

public IP address and

 NSG$nic = New-AzureRmNetworkInterface -Name myNic -

ResourceGroupName

 myResourceGroup -Location EastUS `

 -SubnetId $vnet.Subnets[0].Id -PublicIpAddressId $pip.Id

-NetworkSecurityGroupId $nsg.Id

Define a credential object

$cred = Get-Credential

Create a virtual machine configuration

$vmConfig = New-AzureRmVMConfig -VMName myVM -VMSize

Standard_DS2 | `

 Set-AzureRmVMOperatingSystem -Windows -ComputerName myVM

-Credential $cred | `

 Set-AzureRmVMSourceImage -PublisherName

MicrosoftWindowsServer -Offer

WindowsServer `

 -Skus 2016-Datacenter -Version latest | Add-

AzureRmVMNetworkInterface

-Id $nic.Id

#Build the VM

New-AzureRmVM -ResourceGroupName myResourceGroup -Location

EastUS -VM $vmConfig

Get-AzureRmPublicIpAddress -ResourceGroupName

myResourceGroup | Select IpAddress

When you execute this, you will be prompted twice, the first time will be
to login to your Azure account, and then a second time to enter credentials for
the virtual machine in your environment. This script will also give you the
public IP address at the end. You can then launch a remote desktop session to
connect to that IP address with the credentials you created at the second
prompt.

You should note the way the VM is created in the resource manager model
—the resource group and the network are created first, then the IP addresses
and the network security group, and then finally the virtual machine is
created. Each of these resources has built-in dependencies and that is the
reason for that order. This gives you a quick introduction of what it’s like to
use PowerShell in Azure. Microsoft has a lot of additional templates on
GitHub that you can explore, and in many cases one-click deploy.

More Info Templates for Azure Features
Azure offers a wide variety of templates to meet your needs. You can
review some of the offerings from Microsoft at Github:
https://github.com/Azure/azure-quickstart-templates.

Automate the deployment of SQL Server Databases
One of the most prominent programming methodologies in recent years has
been the widespread adoption of the Agile methodology, and continuous
deployment and continuous integration. This trend has been enhanced by the
automation framework that is built into cloud computing—not only can you
generate code for your application, you can generate all its underlying
infrastructure, and potentially even build out scale-out logic for your
application tiers. However, database developers have been slow to adopt
these methods, due to the rigorous requirements of databases to ensure and
protect production data. There has traditionally been friction between the
development and operations teams because the developers wish to push out
more changes, and faster, while operations wants to protect the integrity of
the data.

Databases can be the bottleneck
It is relatively easy to deploy new code for the front end of a website, for
example. The application is still interfacing with the same libraries and
classes, and is just calling some new graphic files or style sheets. Changing
the database can be significantly more challenging. The challenge with
deploying database is that data cannot be dropped in-place, unlike application
code which is easily replaced in a deployment. So any changes to the
database backend must incorporate and reflect any schema or application
changes, while at the same time not having any downtime.

Introducing DACPAC
There are several database version control tools on the market, including
many from third-party vendors. However, Microsoft makes a freely available
tool called SQL Server Data Tools, which includes a shell version of Visual

https://github.com/Azure/azure-quickstart-templates

Studio, and a feature called Data-Tier Application Package or DACPAC. A
DACPAC is a single file that contains all the data definition language (DDL)
for the schemas in your database. You may also hear of the term BACPAC,
which is similar, but includes all the data in the database. You can download
SQL Server Data Tools at https://docs.microsoft.com/en-
us/sql/ssdt/download-sql-server-data-tools-ssdt.

To take advantage of these features, you need to create a Database Project
within SQL Server Data Tools. You can create a new project from an existing
database, as you’ll see in the following example. For this demo, you need
SQL Server installed and the AdventureWorks2014 database restored. You
can get the database at https://github.com/Microsoft/sql-server-
samples/releases/download/adventureworks2014/adventure-works-2014-
oltp-full-database-backup.zip. Instructions for restoring the database are at
https://github.com/Microsoft/sql-server-
samples/releases/download/adventureworks2014/adventure-works-2014-
readme.txt. If you are using Visual Studio 2017, you also want to make sure
you have the latest updates. Visual Studio will update as part of Windows
Update, you extensions can be updated by clicking the flag next to the
“Quick Launch” box in Visual Studio.

1. Launch SQL Server Data Tools.

2. Select File > New Project > SQL Server Database Project.
3. Right-click the Project Name, and Click Import > Database.
4. You will be presented with the dialog box shown in Figure 1-44.

https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks2014/adventure-works-2014-oltp-full-database-backup.zip
https://github.com/Microsoft/sql-server-samples/releases/download/adventureworks2014/adventure-works-2014-readme.txt

Figure 1-44 Import Database Screen from a SQL Server Project

Click the Select Connection Box. You will be directed to a dialog to
connect to your SQL Server. Choose the AdventureWorks2014 database and
login. Accept the default settings, and click Start. Your database schema (and
not your data) will import shortly.

1. In your project in Solution Explorer, click to expand Human Resources
> Stored Procedures. Right-click and select Add > New Item (Figure 1-
45).

Figure 1-45 Add New Item in SQL Server Data Tools

2. Enter the following T-SQL to create a new stored procedure.
Click here to view code image

CREATE PROCEDURE [dbo].[uspGetDate]

AS SELECT GETDATE()

RETURN 0

3. Click the Save icon.

4. Right-click the project Database1 and click publish (Figure 1-46).

Figure 1-46 The Data Tools Operation screen

5. Launch SQL Server Management Studio and connect to your database
(Figure 1-47).

Figure 1-47 Object Explorer View from SQL Server Management
Studio

In this example, you have learned how to create a DACPAC from an
existing database and add an object in deployment, and then deploy it. This is
a small effort, however it helps you understand the process for automating
your deployments. You can use this same methodology to deploy objects and
data to your Azure SQL Database and your SQL Server.

Deploy SQL Server by using templates
Earlier in this chapter you learned about building your own Azure VM for
SQL Server, and the process of adding disks, configuring Storage Spaces,
and optimizing your settings. In this section you learn about deploying a new
SQL Server using the Azure provided templates. Microsoft has added some
built-in features to automate some aspects of SQL Server management that
you can only take advantage of by using the template. You might ask why
would you choose building your own VM versus using a template, if the
template has these benefits. Well, much like any other aspect of cloud
computing, you are trading control for automation. You make similar
decisions when choosing between Platform as a Service offerings where you
have less control, versus Infrastructure as a Service offerings where you have
more control.

1. Login to the Azure Portal and click +New in the top left corner.

2. In the search box (see Figure 1-48), type SQL Server 2016 SP1
Developer.

Figure 1-48 Search Screen from within Azure Portal

3. You will be taken to the screen to fill in the details of your VM. Enter a
name, an admin account and password, a resource group, and a location
(Figure 1-49).

Figure 1-49 The Server Name screen in the Azure Portal

Note that it is important to create a VM Disk Type of SSD for the purposes
of this demo.

1. Next, you choose a size for your VM (see Figure 1-50). Click the View
All button, as shown in figure 1-52. It is also important to choose the
correct size here; you should choose DS3_V2.

2. On the Settings > Configure Optional Features blade, click OK to accept
the defaults and continue.

Figure 1-50 “Choose a Size Screen” from Azure Portal

3. On the SQL Server Settings Blade, click Enable SQL Authentication.
Your username and password from the server should auto populate the
field. You should note that logins such as SA and admin are reserved,
and cannot be used from this screen.

4. Next, click the Storage Configuration button. This is a cool feature that
allows your Storage Spaces volumes to be automatically configured
based on the IOPs and Capacity you need (see Figure 1-51). If you have
that data from an existing server you can use it here, or just adjust the
sliders and watch the number of disks change. You should note that the
max IOPs and capacity are correlated to the size of your VM, so if you
need more space, you may need a larger VM. You may also choose
General, Transaction Processing, or Data Warehousing as the Storage
Optimization type. This affects the stripe size of your storage spaces
environment.

Figure 1-51 Storage Configuration Screen for SQL Server VMs

5. Click OK.
6. Click the Automatic Patching button. Click the Enable button and set a

time window for when you would like your VM to be patched. Note that
if you make this selection, you will incur downtime when the server is
patched, so exercise with care in production environments.

7. Click the Automated Backup button. From the blade click Enable.
Adjust the retention period slider to meet your requirements (see Figure
1-52). Click Enable on the Encryption button, and supply a password (a

minimum of 12 characters is required). You may also wish to configure
a custom backup schedule or accept the default value of automated.

Figure 1-52 SQL Automated Backup Blade from the Azure Portal

8. The next button is Key Vault. You can use this to store your keys for
encryption if you are using a key vault.

9. Click OK on the SQL Server Settings screen, and click Purchase on the
confirmation screen. You VM should deploy in four to five minutes.

Using the Microsoft supplied templates give you more automation and
consistent configuration in your Azure deployments. Additionally, you can
take advantage of more complex deployment templates like the AlwaysOn

Availability Group template to quickly deploy complex environments.

More Info Azure Key Vault
Azure Key Vault is highly secured service to store certificates, keys, and
secrets: https://azure.microsoft.com/en-us/services/key-vault/.

Skill 1:4: Deploy SQL Server databases to Azure virtual
machines
This skill deals with migrating your existing data to Azure, and then
supporting your new environment once your workloads are running in the
cloud.

This skill covers how to:

Migrate an on-premises SQL Server database to an Azure virtual
machine
Generate benchmark data for performance needs
Perform performance tuning on Azure IaaS
Support availability sets in Azure

Migrate an on-premises SQL Server Database to an
Azure virtual machine
There are several approaches you can take for migrating on-premises
workloads into Azure virtual machines. Surprisingly, one of the key
components is your network configuration to Azure. Latency and bandwidth
and your tolerance for downtime determine your strategy. In this section, you
learn about the following approaches:

Backup and restore to Azure
Log shipping
AlwaysOn Availability Groups

https://azure.microsoft.com/en-us/services/key-vault/

Azure site recovery

Backup and restore to Azure
Of all the options you are going to learn about it, this is the most
straightforward. Since SQL Server 2012 SP1 CU2, SQL Server has supported
a backup to URL feature that allows you to backup and restore databases
directly into an Azure blob storage account. This feature uses HTTPS
endpoints, so there is no need for a VPN or any advanced networking
configuration like the other options. To get started with this service, you need
a storage account in Azure, and a SQL Server instance running either on-
premises or in an Azure VM.

1. Login to the Azure Portal and navigate to your storage account. If you
do not have a storage account create one. Once your storage account is
created, click Blobs in the overview screen, as shown in Figure 1-53.

Figure 1-53 Azure Storage Account overview screen

2. In the Blob Service screen click the +Container button to create a new
container, as shown in Figure 1-54. You should note that both your
storage account and your container names must be lower case and not
contain spaces or special characters.

Figure 1-54 Add Container Screen

You may notice the access level in this screenshot. It is set to Private,
which is what you should use for storing backups.

3. Next, you need to generate a shared access signature for your storage
account. Navigate back to the overview of your storage account, and
then click the Shared Access Signature button, as highlighted in blue in
Figure 1-55.

Figure 1-55 Shared Access Signature generation screen

A couple of things to note here—you may want to limit the allowed
services to blob storage, because that is all SQL Server needs, and the
allowed resource types to just containers. You may also want to extend
the time on the shared access signature. By default, the expiration is set
to eight hours, but for backups it is recommended to set it for much
longer. Azure will not remind when your SAS is going to expire, so
make note of the date. In this instance, the expiration is set for two
years. When you click the blue Generate SAS button, you should copy
the SAS token that is first on the screen.

NOTE: SAS TOKENS
When you copy your SAS token from the portal there is a question
mark that proceeds the SAS token. You need to remove it before
creating your SQL Server credential in T-SQL.

4. Launch SQL Server Management Studio and connect to your instance.

Launch a new query window. Execute the following T-SQL to create
your credential.
Click here to view code image

CREATE CREDENTIAL

[https://$yourstorageaccount.blob.core.windows.net/$yourcontainer

 WITH IDENTITY

 = ‘shared access signature’,

SECRET=’$yourSASToken’

You need to replace the $yourstorageaccount with the name of your
storage account, and $yourcontainer with the name of your storage container,
and then $yourSASToken with the value of your SAS token. This credential
will be used when you backup your database in the next step.

1. Now you can backup your database to Azure. Execute the following T-
SQL to run this backup.

Click here to view code image

BACKUP DATABASE AdventureWorks2014

TO URL =

‘https://$yourstorageaccount.blob.core.windows.net/$yourcontainer/aw2014.bak

WITH COMPRESSION, STATS=5

You need to replace $yourstorageaccount and $yourcontainer in the T-
SQL with the correct names for your storage account and containers. It
is necessary to use the COMPRESSION option when backing up to
Azure to reduce network traffic.

2. You are now ready to restore your database to a new VM in Azure.
Repeat step 1 to create your credential on your target instance. In order
to do that, login to your new SQL Server instance, and execute the
following T-SQL:
Click here to view code image

RESTORE DATABASE AdventureWorks2014

FROM URL =

‘https://$yourstorageaccount.blob.core.windows.net/$yourcontainer/aw2014.bak

https://$yourstorageaccount.blob.core.windows.net/$yourcontainer
https://$yourstorageaccount.blob.core.windows.net/$yourcontainer/aw2014.bak
https://$yourstorageaccount.blob.core.windows.net/$yourcontainer/aw2014.bak

WITH REPLACE, STATS=5

That is the process of backup and restore to and from Azure. It is a very
easy method with the only negative being some amount of downtime for the
backup and restore process.

Hybrid network connections
This may seem slightly off-topic, but is a requirement for what you are going
to learn about next. Azure supports three types of network connections
between your on-premises and cloud environments. For features like
AlwaysOn Availability Groups, and Azure Site Recovery having a direct
connection to Azure is a necessity.

Point to Site VPN Point to Site VPNs are a single machine to network
VPN using a certificate based VPN. These are best reserved for test and
demo systems, and should not be used for a production environment.
Site to Site VPN This is a dedicated VPN device that connects an on-
premises site to Azure. These are best used for smaller migrations with
small to medium data footprints.
ExpressRoute This is an enterprise class, dedicated network connection
between your on-premises site and one or more Azure regions. This
should be used for large-scale migrations and real-time migrations using
Azure Site Recovery.

More Info Azure Hybrid Networking
You can learn more about Azure networking and the various
architectures here: https://docs.microsoft.com/en-
us/azure/architecture/reference-architectures/hybrid-networking/.

AlwaysOn Availability Groups
Many organizations choose to take advantage of AlwaysOn Availability
Groups for their migrations into the cloud, or even to new hardware. As you
read earlier, Availability Groups use Windows Server Failover cluster to
orchestrate failover. Many organizations have extended into Azure for

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/

Disaster Recovery using Availability Groups. The most important thing in
this scenario is to have a very reliable connection to Azure either via a site-to-
site VPN or ExpressRoute. In this scenario, you learn about extended an on-
premises AG into Azure, with a few mouse clicks. The only prerequisite is
that you have an on-premises Availability Group (even if it’s one node).

1. From SQL Server Management Studio Connect to your instance, expand
AlwaysOn High Availability > Availability Groups, then right-click the
name of your Availability Group. Select Add Another Replica.

2. The Add Replica To Availability Group Wizard will then launch. Click
Next on the splash screen, then on the next screen click the Connect
button to connect to your existing replica(s).

3. On the Add Replica screen, click the button that reads Add Azure
Replica as shown in Figure 1-56.

Figure 1-56 Add Availability Group Wizard--Add Azure Replica

4. In the next step, you need your subscription ID. You can get your
subscription ID by running the PowerShell cmdlet login-azurermaccount
and logging in with your credentials. You should paste your subscription
ID in the subscription field as shown in Figure 1-57.

Figure 1-57 Add Azure Replica Wizard

5. Once you have authenticated to your subscription, you will be able to
populate the other fields. The options are standard for a VM, like you
have created earlier, but do require the name of your On-Premises
domain.

6. When you have completed this, legal terms will be displayed, and you
need to click OK. The Add Replica to Availability Group screen will
again be displayed. Click OK.

7. The next screen has you select a data synchronization option. You
should select Full Synchronization. Note that if you are working with
very large databases (> 1 TB) this performs a full backup and restore

and may take an extended period.

One other thing you need to do differently for your Availability Group in
Azure is to use an Internal Load Balancer in Azure to provide the IP address
for your listener. If you are creating a hybrid availability group you still need
to do this step.

More Info Availability Group Listeners in Azure
Creating an Availability Group listener requires creating an Internal
Load Balancer. You can learn more about that here:
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sqlclassic/virtual-machines-windows-classic-ps-
sql-int-listener.

Azure Site Recovery and SQL Server
Azure Site Recovery (ASR) is a fully featured disaster recovery system. It
allows you to do full scale disaster recovery testing with no impact to your
production environment. One approach many customers have taken is to use
ASR to perform an on-premises to Azure migration. Azure Site Recovery can
run with an agent on physical servers and VMWare virtual machines, and
natively with Hyper-V virtual machines.

To perform a migration using ASR, you would need to have an Express
Route connection, as it replicates block level changes across all of your
machines. In terms of SQL Server you can use the following HA/DR options
in conjunction with site recovery:

AlwaysOn Availability Group
Failover Cluster Instances with Shared Storage
Database Mirroring
Standalone instances

Using ASR for migration is good approach for many customers, especially
enterprises who still support back versions of SQL Server due to its variety of
support. Additionally, ASR offers the ability to migrate all of your
infrastructure in one group, versus attempting to do it piecemeal.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-ps-sql-int-listener

More Info Azure Site Recovery and SQL Server
Using SQL Server in conjunction with Azure Site Recovery requires
some specialized configuration. You can learn about that here:
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-sql.

Generate benchmark data for performance needs
Trying to size your VMs for SQL Server workloads can be quite challenging.
Earlier in this chapter you learned about using Windows Performance
Monitor to capture data from existing applications. The other workload
capture and replay tool that you will learn about is Distributed Replay in SQL
Server.

Distributed Replay
Distributed Replay (see Figure 1-58) is a tool that was introduced in SQL
Server 2012 that allows you to capture and replay workloads to test
performance of your target environment.

Figure 1-58 Distributed Replay architecture

You need to install the distributed replay controller and between 1 and 16
distributed replay clients. You need to add this to your installation of SQL
Server, as shown in Figure 1-59.

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-sql

Figure 1-59 SQL Server Setup Screen

From there you need to configure both your server and clients. The
components install is as follows:

Distributed Replay administration tool A console application,
DReplay.exe, used to communicate with the distributed replay
controller. Use the administration tool to control the distributed replay.
Distributed Replay controller A computer running the Windows
service named SQL Server Distributed Replay controller. The
Distributed Replay manages the distributed replay clients. There is only
one controller instance in each Distributed Replay environment.
Distributed Replay clients One or more computers (physical or virtual)
running the Windows service named SQL Server Distributed Replay
client. The Distributed Replay clients work together to simulate
workloads against an instance of SQL Server. This client simulates a
client application.
Target server An instance of SQL Server that the Distributed Replay
clients can use to replay trace data. In this case this would be your Azure
environment.

More Info SQL Server and Distributed Replay
Distributed replay is a fairly complex feature with a large number of
configuration options. It does a very good job of simulating the
workload against a database server, however it does not measure
everything—for example it does not address network throughput:
https://docs.microsoft.com/en-us/sql/tools/distributed-replay/sql-
server-distributed-replay.

Perform performance tuning on Azure IaaS
Azure Virtual Machines are somewhat like on-premises virtual machines, in
that you are not locked into a specific hardware platform, and you can enact
changes in your hardware with minimal downtime. What this means is that
you can balance performance and cost, and if your initial sizing estimate is
off the mark, you can quickly change to a new hardware platform. Most of
your performances tuning opportunities lie within storage, however you
should try to tune SQL Server first.

Tuning SQL Server on Azure IaaS
Fundamentally, there is no difference to tuning SQL Server on Azure IaaS
versus any other environment. The one major difference is that I/O
performance tends to be more of a focus. The move to premium storage has
reduced this, however you should still take advantage of features like data
compression to reduce the I/O workload and improve memory utilization on
your machine. You should follow other best practices like not using auto
shrink and actively managing your data and log file growth. Another I/O
issue you may adjust is TempDB—this you can consider moving tempdb to
the D: drive to take advantage of its lower latency. You may also wish to take
advantage of SQL Server’s wait statistics to understand what the database
engine is waiting on.

More Info SQL Server Wait Statistics
SQL Server tracks everything any operation is waiting on. This can help
you tune the system based on what resources are causing the delays:

https://docs.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-distributed-replay

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/07/03/what-
are-you-waiting-for-introducing-wait-stats-support-in-query-store/.

Another pattern you want to follow in Azure VMs (and Azure SQL
Database) is to be more aggressive with indexes than you ordinarily might be
in an on-premises environment. If you are on SQL Server 2016 or 2017, you
can take advantage of the Query Store feature to identify missing indexes for
you.

Using the query store
The Query Store is a feature that was introduced in SQL Server 2016, and
captures query compilation information and runtime execution statistics. This
gives you a powerful history of performance in your environment, and
highlights execution plan changes, query regressions (executions that are
suddenly slower than past executions), and high resource consuming queries.

You need to enable the Query Store (see Figure 1-60) for your database(s),
which you can do by executing the following T-SQL:
Click here to view code image

ALTER DATABASE YourdatabaseName SET QUERY_STORE = ON

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/07/03/what-are-you-waiting-for-introducing-wait-stats-support-in-query-store/

Figure 1-60 Top Resource Consumer View from Query Store

You can use the following query to pull missing index requests out of the
Query Store data in your database.

Click here to view code image

SELECT SUM(qrs.count_executions) *

AVG(qrs.avg_logical_io_reads) AS

est_logical_reads ,

 SUM(qrs.count_executions) AS sum_executions ,

 AVG(qrs.avg_logical_io_reads) AS

avg_avg_logical_io_reads ,

 SUM(qsq.count_compiles) AS sum_compiles ,

 (SELECT TOP 1 qsqt.query_sql_text

 FROM sys.query_store_query_text qsqt

 WHERE qsqt.query_text_id = MAX(qsq.query_text_id))

AS query_text ,

 TRY_CONVERT(XML, (SELECT TOP 1 qsp2.query_plan

 FROM sys.query_store_plan qsp2

 WHERE qsp2.query_id =

qsq.query_id

 ORDER BY qsp2.plan_id DESC)) AS

query_plan ,

 qsq.query_id ,

 qsq.query_hash

FROM sys.query_store_query qsq

 JOIN sys.query_store_plan qsp ON qsq.query_id =

qsp.query_id

 CROSS APPLY (SELECT TRY_CONVERT(XML, qsp.query_plan) AS

query_plan_xml)

 AS qpx

 JOIN sys.query_store_runtime_stats qrs ON qsp.plan_id =

qrs.plan_id

 JOIN sys.query_store_runtime_stats_interval qsrsi ON

qrs.runtime_stats_interval_id = qsrsi.runtime_stats_interval_id

WHERE qsp.query_plan LIKE N'%<MissingIndexes>%'

 AND qsrsi.start_time >= DATEADD(HH, -24, SYSDATETIME())

GROUP BY qsq.query_id ,

 qsq.query_hash

ORDER BY est_logical_reads DESC;

GO

The Query Store is a powerful new feature that can supply you with
important data about your environment and help you tune the performance of
your SQL Server quickly.

Support availability sets in Azure
The Azure cloud has a lot of automation and availability options built into it.
However, Microsoft has to perform the same sort of maintenance operations
like patching hardware and software that you would do in your on-premises
environment. You have learned about building availability into your SQL
Server environment, and now you learn about adding availability into your
Azure environment. Availability Sets protect your Azure workloads from
both unplanned outages due to things like hardware maintenance or physical
infrastructure problems, and planned outages to software updates.

You do this in Azure by using the Availability Set construct. For example,
you would put all the members of your AlwaysOn Availability Group into an
Availablity Set (see Figure 1-61). It is important to note that you must create
the availability set at the time you create your VMs. This means you can’t
add an existing VM to an availability set after the fact.

Figure 1-61 Availablity Set Diagram

The basic concepts of an availability set are update domains and fault
domains. Update domains ensure that your VMs are spread across multiple
physical hosts to protect against downtime for planned updates. Fault
domains share a common power source and network source. Availability sets
spread your virtual machines across three fault domains and up to five update

domains. Availability sets also work with managed disks to protect your
disks as part of your availability set.

Thought experiment
In this thought experiment, apply what you’ve learned in this Chapter. You
can find answers to this thought experiment in the next section.

You are a consultant to the Contoso Corporation. Contoso is a mid-sized
wholesaler, which currently has a customer facing ordering system where
each customer has their own set of tables, and a backend business intelligence
system that is 10 TB. Business users search the business intelligence system
using full text search for product name sales. Contoso has around 100
customers, with each customer averaging about 4 GB of data.

Contoso’s CIO is trying to shut down their on-premises data center, due to
concerns about PCI compliance and two recent power outages that resulted in
days of downtime. Contoso is looking for guidance around a migration path
to Azure. Contoso is also looking to provide increased availability for the
customer facing systems. With this information in mind answer the following
questions.

1. What should be the solution for the business intelligence system?
2. How should Contoso approach building a new customer facing system?

3. How should Contoso address the availability concern?
4. How should Contoso migrate the customer data?

Thought experiment answers
This section contains the solution to the thought experiment. Each answer
explains why the answer choice is correct.

1. Contoso should migrate the business intelligence system to SQL Server
running in an Azure VM. The size makes it prohibitive to move to SQL
DB, and the full text search options limits the use of SQL DW.

2. Contoso should split out each customer into their own database, and
migrate the platform to Azure SQL Database using elastic pools to
optimize cost and management.

3. Contoso can use active geo-replication in conjunction with the elastic
pools in Azure SQL Database

4. Constoso should build BACPACs for each customer’s data, and migrate
into their new database.

Chapter summary
You Azure SQL Database Server name must be globally unique.
Choosing a service tier for your Azure SQL Database is important.
Azure SQL Database offers automatic tuning via adding and removing
indexes automatically.
Compatibility level 140 offers advanced performance enhancements to
both Azure SQL Database and SQL Server 2017.
Changing service levels for Azure SQL Database may be a time-
consuming operation for a large database.
You can create an Azure SQL Server using the portal, PowerShell, the
Azure CLI, or the Rest API.
You need to open firewall rules for your application to talk to Azure
SQL Database.
Azure SQL Database provides high availability inherently, but you must
configure multi-region availability.
Long term backup retention is available and configured with Azure
Backup Vaults.
Your Azure SQL Database sysadmin account should be an Azure Active
Directory Group.
Elastic pools are a very good fit for many small databases.
Pools have similar sizing characteristics to individual databases, but
simplify management.
Elastic jobs allow to run scripts across all your databases.
Elastics jobs can use geo-replication for databases or across multiple
databases.
It is important to understand the SQL Server licensing rules when

planning your architecture.
Migrating existing applications is easier than building for a new
application because you can capture performance data from the existing
environment.
Capturing data from performance monitoring is a good way to size your
architecture.
Balancing CPU, memory, and storage performance are the keys to good
SQL Server performance.
Choosing the size for your Azure VM is a balance of cost and
performance.
Azure Compute Units offer a way to compare relative performance of
given Azure VM tiers.
The G series of VMs offer premium performance for your heaviest
workloads.
Use Storage Spaces in Windows Server to add disk storage and IOPs
capacity.
Use Premium Storage exclusively for your production workloads.
Consider using the temporary D drive for high write TempDB
workloads.
SQL Server on Azure IaaS should use Instant File Initialization.
Properly size your data files to avoid auto-growth events on your SQL
Server on Azure.
Using DACPACs can help you automate the deployment of schema and
DDL to your Azure SQL Databases and SQL Server instances.
Migration to Azure can take advantage of built-in features like
AlwaysOn Availability Groups, or take advantage of Azure Site
Recovery.
Distributed Replay is an excellent way to capture and replay a workload
for testing purposes.
The Query Store is an excellent way to easily capture performance
information from either your SQL Server instance or your Azure SQL
Database.

Use Availability Sets to protect your workloads from Azure outages.

Chapter 2 Manage databases and
instances

Managing relational databases on the Azure platform requires the
understanding of several key concepts and technologies that are crucial to a
successful cloud implementation. While several of these concepts apply to
both on-premises as well as the cloud, a more comprehensive understanding
of effectively configuring security, monitoring database performance, and
managing server instances in a PaaS offering is necessary.

Skills in this chapter:
Skill 2.1: Configure secure access to Microsoft Azure SQL databases
Skill 2.2: Configure SQL Server performance settings
Skill 2.3: Manage SQL Server instances

Skill 2.1: Configure secure access to Microsoft Azure
SQL databases
Azure SQL Database secures your data at multiple layers to provide
enterprise-level security and to meet industry security standards. SQL
Database provides encryption for data in motion using Transport Layer
Security, for data at rest using TDE (Transparent Data Encryption), and for
data in use using Always Encrypted.

This skill focuses on the approach and steps necessary to effectively secure
your relational databases and appropriately implement key security features
in Azure SQL Database. Some of these steps can be quite different from an
on-premises implementation of SQL Server.

This skill covers how to:

Configure firewall rules

Configure Always Encrypted for Azure SQL Database
Configure cell level encryption
Configure Dynamic Data Masking
Configure Transparent Data Encryption

Configure firewall rules
As explained in Chapter 1, “Implement SQL in Azure,” one of the key
concepts and benefits of Azure SQL Database is that it is accessible from
nearly anywhere by exposing it over the internet with a TCP endpoint via
port 1433., Microsoft provides multiple layers and levels of security to ensure
that your database and data is secure and protected. One of those layers is
firewall rules. The firewall is the means by which access is granted to a
server and or database based on the originating IP address of the incoming
request.

By default, all Transact-SQL (T-SQL) access (incoming requests) to your
Azure SQL server is blocked by the firewall, and in order to allow incoming
requests at least one server-level firewall rule is needed. Firewall rules
specify which IP address ranges from the internet are allowed and can be
applied at both the server and database levels.

Chapter 1 also provides an overview of how the firewall rules process
works. Incoming connection attempts must pass through the firewall in order
to access the specified database or server. The firewall first checks that the IP
address of the incoming client request falls in the range of any of the
specified firewall rules specified at the database-level of the database the
client is trying to connect to (as specified in the connection string). If there is
a match, the connection is allowed only on the specified database. If there is
no match, the firewall makes the same request to the rules specified at the
server-level. If there is still no match, the connection fails. If there is a match
at the server level (the logical instance level), the client has access to all the
databases on the Azure SQL server.

Server-level firewall rules
Server-level firewall rules grant access to all the databases within the same

logical server. Server-level firewall rules are stored in the master database
and can be created and configured through the following methods:

Azure Portal
T-SQL
Azure PowerShell
Azure CLI
REST API

Portal
Server-level firewall rules can be created and updated via the Azure portal
through the Firewall Settings page, which can be accessed from either the
Server Overview page shown in Figure 2-1, or the Database Overview page
show in Figure 2-2.

From the Server Overview page, you can access the Firewall Settings page
by either clicking Firewall in the left-hand menu under Settings, or by
clicking the Show Firewall Settings link in the Server Overview page, as
shown in Figure 2-1.

Figure 2-1 Accessing the Firewall Settings page via the Server Overview
page

From the Database Overview page, you can access the Firewall Settings
page by clicking Set Server Firewall on the toolbar, as shown in Figure 2-2.

Figure 2-2 Accessing the Firewall Settings page via the Database Overview
page

Regardless of whether you go through the Server Overview page or the
Database Overview page, either option will open the Firewall Settings page,
shown in Figure 2-3. The Firewall Settings page is where firewall rules are
managed at the server-level. By default, when a server and database are first
created, no firewall rules exist and therefore at least one server-level firewall
rule must be created, even before adding any database-level firewall rules.

Figure 2-3 Configuring Server-level firewall rules

The Firewall Settings page will automatically list your client IP address,
and clicking the Add Client IP button on the toolbar will add a single firewall
rule using the client IP address as the Start IP and End IP (don’t forget to
click Save). In order to create server-level firewall rules via the Azure portal,
you must be the subscription owner or a subscription contributor.

The Allow Access To Azure Services option, when enabled, allows
applications and connections from Azure to connect to the Azure SQL server.
Using this option, an internal firewall rule with a starting and ending IP
address of 0.0.0.0 is created, indicating that connections from within Azure
are allowed, such as from Azure App Services. It is important to understand
that enabling this option allows connections from Azure, including
connections from other subscriptions. Thus, care and best practices should be
implemented to make sure login and user permissions are only allowed to

authorized users.
Azure SQL Database supports a maximum of 128 server-level firewall

rules, but creating a large number of server-level firewall rules is not
recommended. Uses for server-level firewall rules will be discussed shortly.

The Firewall Settings page only allows one operation per save action. For
example, adding multiple IP address ranges, or adding an IP address range
and deleting another range before saving the changes is not permitted. A
single create/delete/edit operation is permitted per save action.

Server-level firewall rule names must be unique. When adding a firewall
rule via the portal, and the name of the new firewall rule matches the name of
an existing rule, you will be informed that firewall rule names must be unique
and you will not be allowed to create the new rule as shown in Figure 2-4.
Existing rules can be edited simply by clicking in the appropriate field.

It is a best practice to name the firewall rule so it will help you remember
what the server-level firewall setting is for.

Figure 2-4 Unique firewall rule names

T-SQL
Server-level firewall rules can be managed and maintained using T-SQL
through a set of system stored procedures and catalog views, including:

sp_set_firewall_rule System stored procedure to create a new or update
an existing server-level firewall rule.
sp_delete_firewall_rule System stored procedure to delete server-level
firewall rules.
sys.firewall_rules Catalog view that lists the current server-level
firewall rules.

The following code example uses the sp_set_firewall_rule system stored
procedure to create a new firewall rule with the name “accting,” a starting IP

address of 192.168.1.11, and an ending IP address of 192.168.1.30. The
sp_set_firewall_rule system stored procedure must be run in the master
database.
Click here to view code image

EXECUTE sp_set_firewall_rule @name = N'accting',

@start_ip_address = '192.168.1.11',

 @end_ip_address = '192.168.1.30'

Figure 2-5 shows the results of the T-SQL execution. First, the
sys.firewall_rules catalog view is called to display the existing firewall rules,
followed by the execution of sp_set_firewall_rule system stored procedure to
create the new firewall rule. The procedure sys.firewall_rules is again called
to show the creation of the new firewall rule.

Figure 2-5 Creating a new server-level firewall rule in T-SQL

Both system stored procedures and the catalog view is available only in the
master database to the server-level principal login or Azure Active Directory
principal.

Unlike the Azure portal, when creating a new firewall rule via T-SQL and
specifying an existing firewall rule name as a parameter to
sp_set_firewall_rule system stored procedure, Azure will update the existing
firewall rule and not generate an error. It should also be noted that the very
first server-level firewall rule cannot be created using T-SQL, but all
subsequent rules can be. Initial server-level firewall rules must be created
using the Azure portal, the Azure PowerShell, the Azure CLI, or the REST
API.

When creating server-level firewall rules via T-SQL, you must connect to

the SQL Database instance as a server-level principal or an Active Directory
Administrator.

Azure Powershell
Azure PowerShell provides a set of cmdlets in which to manage server-level
firewall rules, including:

Get-AzureRmSqlServerFirewallRule Returns a list of the existing
server-level firewall rules.
New-AzureRmSqlServerFirewallRule Creates a new server-level
firewall rule.
Set-AzureRmSqlServerFirewallRule Updates an existing server-level
firewall rule.
Remove-AzureRmSqlServerFirewallRule Deletes the specified
server-level firewall rule.

Microsoft provides two ways to execute these PowerShell cmdlets; through
the PowerShell IDE or through the Azure Cloud Shell in the Azure Portal.
The Azure Cloud Shell brings the PowerShell experience into the Azure
Portal and allows you to easily discover and work with all Azure resources.
The above PowerShell cmdlets work seamlessly in both, but the example
below uses the Azure Cloud Shell.

The following code example creates a new server-level firewall rule named
“engineering” on the server “demo908” in the RG-WestUS resource group
with a starting IP address of 192.168.1.31 and an ending IP address of
192.168.1.40. Be sure to replace the resource group name with the
appropriate name for your resource group.
Click here to view code image

New-AzureRmSqlServerFirewallRule -ResourceGroupName "RG-WestUS" -

ServerName "demo908"

-FirewallRuleName "engineering" -StartIpAddress "192.168.1.31" -

EndIpAddress

"192.168.1.40"

Figure 2-6 shows the execution of the New-
AzureRmSqlServerFirewallRule PowerShell cmdlet to create a new firewall
rule. The cmdlet was executed in the Azure Cloud Shell which creates a

Cloud Shell and a PowerShell environment. The benefit to this is that because
you are authenticated in the portal already, you can execute cmdlets such as
New-AzureRmSqlServerFirewallRule without the necessity of executing
additional cmdlets to authenticate and obtain other Azure environment and
subscription information. In addition, the Azure Cloud Shell maintains the
latest version of the Azure PowerShell cmdlets, thus you can be confident
that you are working with the latest version in every Cloud Shell session.

Figure 2-6 also shows the Firewall Settings page with the newly created
server-level firewall rule. The takeaway here is that PowerShell makes it easy
to manage server-level firewall rules through a small set of cmdlets.

Figure 2-6 Creating a new Server-level firewall rule in PowerShell

You’ll notice that there are differences in creating and managing firewall
rules when using T-SQL versus PowerShell. For example, PowerShell
provides individual cmdlets to create, update, and delete firewall rules,
whereas T-SQL uses a single system stored procedure to create and update a
firewall rule. Items such as these are good to keep in mind when navigating
between the technologies.

Azure CLI

The Azure CLI 2.0 is Azure’s new command-line interface for working with
and managing Azure resources. It is optimized to work with Azure resources
via the command line that work against the Azure Resource Manager. The
following commands are used with the Azure CLI to manage server-level
firewall rules:

az sql server firewall create Creates a server-level firewall rule.
az sql server firewall delete Deletes a server-level firewall rule.
az sql server firewall list Lists current server-level firewall rules.
az sql server firewall rule show Shows the details of a server-level
firewall rule.
az sql server firewall rule update Updates an existing server-level
firewall rule.

Similar to PowerShell, there are two ways in which to work with the Azure
CLI. The first is to download and install the Azure CLI installer, which
provides the command-line experience through a command window. This
client can be installed on Windows, Linux, and the macOS.

You can either run the Azure CLI through the Bash Shell or through a
normal Windows command window. If using a command window, open a
command prompt as an administrator and execute the following to log in with
your default subscription:

az login

You will be prompted to log in and enter an authentication code. Once
authenticated, you can execute commands simply and easily. The following
code example uses the Azure CLI to create a new server-level firewall rule
directly within the command prompt window. Be sure to replace the resource
group name with the appropriate name for your resource group.
Click here to view code image

az sql server firewall-rule create --resource-group RG-WestUS --

server demo908 -n mrking

 --start-ip-address 192.168.1.41

--end-ip-address 192.168.1.50

Figure 2-7 shows the execution of the Azure CLI command and the new
firewall rule in the Firewall Settings page in the Azure portal as the result of

the Azure CLI command execution.

Figure 2-7 Creating a new Server-level firewall rule with the Azure CLI 2.0

Similar to PowerShell, the Azure CLI can be accessed through the Azure
portal via the Azure Cloud Shell. Launch the Cloud shell from the top
navigation bar in the Azure portal, then select the Bash option from the shell
drop-down list, as shown in Figure 2-8.

Figure 2-8 Using the Azure CLI in the Azure Cloud Shell

The Azure CLI via the Azure Cloud Shell provides a streamlined
experience similar to the PowerShell experience. The Azure CLI is best used
for building automation scripts to work with the Azure Resource Manager.

Here are some closing thoughts on server-level firewall rules. As firewall
rules are temporarily cached, it is recommended that you execute DBCC
FLUSHAUTHCACHE on occasion, which will remove any cached entries
and clean up the firewall rule list, thus improving connection performance.

Server-level firewall rules should be used sparingly. Consider the
following for using server-level firewall rules:

For administrative functions
Multiple databases have the same access requirements
Amount of time spent configuring each database individually

It is highly recommended that no firewall rules be created with a starting
IP address of 0.0.0.0 and an ending IP address of 255.255.255.255.

Database-level firewall rules
Database-level firewall rules provide a more granular level of security by
allowing access only to a specified database. Unlike server-level firewall
rules, database-level firewall rules can only be created using T-SQL.

The following T-SQL system stored procedures and catalog views are used
to manage database-level firewall rules:

sys.database_firewall_rules Catalog view which lists the current
database-level firewall rules.
sp_set_database_firewall_rule System stored procedure to create a
new or update an existing database-level firewall rule.
sp_delete_database_firewall_rule System stored procedure to delete
database-level firewall rules.

The following code example uses the sp_set_database_firewall_rule
system stored procedure to create a new firewall rule with the name
“accting,” a starting IP address of 192.168.1.11, and an ending IP address of
192.168.1.30.
Click here to view code image

EXECUTE sp_set_database_firewall_rule @name = N'accting',

@start_ip_address =

'192.168.1.1',

@end_ip_address = '192.168.1.10'

Figure 2-9 shows the results of the T-SQL execution. First, the
sys.database_firewall_rules catalog view is called to display the existing
firewall rules for the selected database, followed by the execution of

sp_set_database_firewall_rule system stored to create the new firewall rule.
The catalog view sys.database_firewall_rules is again called to show the
creation of the new firewall rule.

Figure 2-9 Creating a database-level firewall rule with T-SQL

Similar to server-level firewall rules, you can have a maximum of 128
database-level firewall rules. It is also recommended that database-level
firewall rules be used whenever possible to help ensure the portability of your
database.

As a reminder, the order in which the incoming connection checks the
firewall rules is important. The firewall first checks the incoming IP against
the ranges specified at the database-level. If the incoming IP address is within
one of the ranges, the connection is allowed to the SQL Database. If the
incoming IP does not match one of the specified ranges at the database-level,
the server-level firewall rules are then checked. If there is still no match, the
connection request fails. If there is a match at the server-level, the connection
is granted and the connection is granted to all databases on the logical server.

Troubleshooting the database firewall
Even though you may have your firewall rules configured correctly, there
may still be times when you cannot connect, and the connections experience
does not behave as you would expect. As such, the following points can help
you pinpoint the connection issue.

Local firewall configuration Azure SQL Database operates over TCP
endpoint 1433. If this port is not opened and enabled on your computer
or company firewall, you will not be able to connect.
Login and Password issues Many times the connections issues are
login and password related. For example, perhaps the user name and

password are not typed correctly, or the login does not have permissions
on the Azure SQL Database or server.
NAT (Network address translation) There will be times when the IP
address displayed on the Firewall Settings page is different from the IP
address being used to connect to Azure. You can see an example of this
in Figure 2-10. This typically happens when your computer is behind a
company firewall due to NAT. An example of this can be seen in Figure
2-10. The IP address that should be used is the external (NAT) IP
address, shown in Figure 2-10, is the one specified from the SQL Server
login dialog.

Figure 2-10 Different IP address due to NAT

Microsoft states that it may take up to five minutes for the new firewall
rules to take effect. Additionally, if your IP address is a dynamic IP (for
example, your network provider changes your IP address every few days),
this could also be a symptom.

A key takeaway from these points is that the firewall rules only provide
clients with an opportunity to attempt to connect to the server and database.
Appropriate and necessary credentials must still be provided to connect.

Configure Always Encrypted for Azure SQL Database
SQL Database provides encryption for data in use using Always Encrypted, a
featured designed specifically to protect and safe-guard sensitive data such as
social security numbers, national identification numbers, credit card numbers,

and phone numbers, just to name a few.
One of the main benefits of Always Encrypted is that it provides client

applications to safely and securely encrypt and decrypt data without ever
revealing the encryption keys to the database engine. Thus, by providing a
necessary separation between those who can view the data and those who
manage the data, Always Encrypted ensures that no unauthorized users have
access to the encrypted data.

Always Encrypted is achieved by installing an Always Encrypted enabled
driver on the client machine (for example, .NET Framework 4.6 or later,
JDBC, or Windows ODBC), making encryption completely transparent to the
application. The driver has the responsibility of automatically encrypting and
decrypting sensitive data at the client within the application. When data is
generated at the client, the driver encrypts the data before sending it to the
database engine. Likewise, the driver transparently decrypts incoming data
from query results retrieved from encrypted database columns.

As mentioned earlier, Always Encrypted uses keys to encrypt and decrypt
data. Two types of keys are used; a column encryption key (CEK) and a
column master key (CMK). Column encryption keys are used to encrypt data
in an encrypted column. Column master keys are key-protecting “keys,” in
that they encrypt one or more column encryption keys. It is up to you to
specify the information about the encryption algorithm and cryptographic
keys to be used when configuring column encryption.

The database engine never stores or uses the keys of either type, but it does
store information about the location of the column master keys. Always
Encrypted can use external trusted key stores such as Azure Key Value,
Windows Certificate Store on a client machine, or a third-party hardware
security module. Since this skill focuses on Azure SQL Database, the
example will use Azure Key Vault.

Whenever the client driver needs to encrypt and decrypt data, the driver
will contact the specified key store, which contains the column master key. It
then uses the plaintext column encryption key to encrypt the parameters. The
retrieved key is cached to reduce the number of trips to the key store and
improve performance. The driver substitutes the plaintext values of the
parameters for the encrypted columns with their encrypted values, which it
then sends to the entire query for processing.

To enable Always Encrypted within the application, you must first set up

the required authentication for the Azure Key Vault (for this example), or
whatever key store you are using. When the application requests the key from
the key store, it needs authentication to do so. Thus, the first step is to set up
a user that will be used to authenticate the application.

In the Azure portal, select the Azure Active Directory option from the left
navigation pane. In the App registrations pane, click the New application
registration button on the toolbar, which will open the Create pane, shown in
Figure 2-11. In the Create pane, provide a Name and Sign-on URL. The
Sign-on URL can be anything as long as it is a valid URL. For example, in
Figure 2-11 the Name is myClientApp and the Sign-On URL is
http://myClientApp. Leave the Application type as Web App / API. Click
Create.

Figure 2-11 Registering a new Azure active directory application

Back in the App registrations pane, click on your newly created app, which
will open the Settings pane. In the Settings pane, click on the Required
Permissions option, which will open the Required Permissions pane, shown
in Figure 2-12.

http://myClientApp

Figure 2-12 Adding application permissions

In the Required Permissions pane, click on the Add button on the toolbar,
which will open the Add API access pane. In the API access pane, select the
Select API option, which will open the Select an API pane shown in Figure
2-13.

Figure 2-13 Selecting the Windows Azure Service Management API

In the Select an API pane, select Windows Azure Service Management
API option, then click Select to close the Select an API pane. The Enable
Access pane will automatically open, shown in Figure 2-14. Check the box in
the Delegated Permission section for Access Azure Service Management as
organization users (preview), then click Select.

Figure 2-14 Enabling delegated permissions to the API

Back on the Add API access pane, ensure that there are green checkmarks
for items 1 and 2, then click Done. The Required Permission pane should
now list two APIs: the Windows Azure Service Management API which you
just added, and the Windows Azure Active Directory API. Close the
Required Permissions pane.

Back on the App registrations settings pane for the client application, click
the Keys option which will open the Keys pane, shown in Figure 2-15.

Figure 2-15 Creating the Application Key

In the Keys pane you need to create a new key. Enter a description and set
the expiration date. Your options for the expiration date are 1 year, 2 years, or
Never Expires. The key value will be assigned with the key that is saved.
Select 1 year, then click the Save button. As shown in Figure 2-16, the key is
automatically generated.

Figure 2-16 Copying the new Application key

You will need this key in your application, so copy this key and save it
somewhere, then close the Keys blade. You also need the Application ID for
this application, so back on the Settings blade, click the Properties option and
copy the Application ID from the Properties pane, shown in Figure 2-17.
Save this value somewhere as you will use it shortly as well.

Figure 2-17 Getting the Application ID

The next step is to create the Azure Key Value in which to store the

Always Encrypted keys. In the Azure portal, click New, then select Security
+ Identity, then select the Key Vault option shown in Figure 2-18.

Figure 2-18 Creating a new Azure Key Vault

The Create key vault pane will open, shown in Figure 2-19. In this pane,
provide a Name, select the appropriate Resource Group (or leave the Create
new option selected if a Resource Group does not exists), accept the default
values for the Pricing Tier Access Policies, and Advanced Access Policies,
ensure the Pin to dashboard option is checked, then click Create.

Figure 2-19 Configuring the Azure Key Vault

When the Key Vault is created, open the Key Vault by clicking on the tile
on the dashboard. In the Key Vault Properties pane, click the Access Policies
tile, which will open the Access Policies pane. One user should be listed,
which should be you, becauseyou are the creator and owner of the Key Vault.

However, the client application needs to authenticate to the Key Vault via
a user that has permissions to the Key Vault. That could be you and your user
listed, but that is not best practice. This is the reason you went through the
steps of creating a new Active Directory application for authenticating to the
Key Vault.

Click Add New in the Access Policies pane, then in the Add Access Policy
pane, expand the Select principal option that opens the Principal pane, shown
in figure 2-20.

Figure 2-20 Adding a new user access policy

In the Principal pane, start typing the name of the application you created
in Azure Active Directory. In this example, the application was named
myClientApp, so as I started to type “myc,, the myClientApp was displayed.
Click on the appropriate principal and click Select.

In the Add access policy pane, click on the dropdown arrow for the Key
permissions. Select the following Key permissions as shown in Figure 2-21:

Get
List
Create
Unwrap Key
Wrap Key
Verify
Sign

The above list are the minimal permissions needed for the principal to
access and use the keys for Always Encrypted. You may choose more, but
the list above is the minimum needed.

The Wrap Key permission uses the associated key to protect a symmetric
key, while the Unwrap Key permission uses the associated key to unprotect
the wrapped symmetric keys.

Figure 2-21 Configuring access policy permissions

Click OK on the Add access policy pane. The Access policies pane should
now look like Figure 2-22.

Figure 2-22 Newly added User Access Policy

So far you have used the portal to configure the Azure Key Vault, but this
configuration can also be done via PowerShell. PowerShell contains two
cmdlets that allow you to create the Azure Key Vault and set the access
policy. Again, in your code be sure to replace the name of the Resource
Group with the name of your Resource Group. If you already have an Azure
Key Vault with the name specified below, be sure to supply a different name
in the code.

Click here to view code image

New-AzureRmKeyVault -VaultName 'aekeyvault' -ResourceGroupName

'RG-WestUS' -Location

 'West US'

Set-AzureRmKeyVaultAccessPolicy -VaultName 'aekeyvault' -

ResourceGroupName 'RG-WestUS'

-ServicePricipleName 'myClientApp' -PermissionsTokeys

 get,wrapkey,unwrapkey,sign,verify,list,get,create

At this point you are ready to implement and configure Always Encrypted.
First, create a database in which you can work with. You can do that via the
Azure portal or via T-SQL.
Click here to view code image

CREATE DATABASE [database1] (EDITION = 'Basic',

SERVICE_OBJECTIVE = 'Basic', MAXSIZE =

2 GB);

GO

With the database created, use the following T-SQL to create a table.
Click here to view code image

CREATE TABLE [dbo].[Customer](

 [CustomerId] [int] IDENTITY(1,1),

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [MiddleName] [nvarchar](50) NULL,

 [StreetAddress] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [ZipCode] [char](5) NULL,

 [State] [char](2) NULL,

 [Phone] [char](10) NULL,

 [CCN] [nvarchar](16) NOT NULL,

 [BirthDate] [date] NOT NULL

 PRIMARY KEY CLUSTERED ([CustomerId] ASC) ON [PRIMARY]);

 GO

The created table has several columns in which sensitive data is gathered,
such as credit card number (CCN) and birth date. This example will use those
columns to implement and configure Always Encrypted.

Once the table is created, right-mouse click on the table in the Object
Explorer window in SQL Server Management Studio and select Encrypt
Columns, as shown in Figure 2-23.

Figure 2-23 Starting the Always Encrypted wizard

The Always Encrypted Wizard opens with the Introduction page. Click
Next to move to the Column Selection page, shown in Figure 2-24. The
Column Selection page is where you select the columns you want to encrypt,
the type of encryption, and what column encryption key to use. Select the
CCN and Birthdate columns as shown in Figure 2-24.

Once those columns are selected, you now need to select the encryption
type. Click the encryption type dropdown arrow for each column. Notice that
you have two options for the encryption type: Deterministic and Randomized.

Deterministic encryption uses a method that always generates the same
encrypted value for any given plain text value. Deterministic also allows you
to group, filter, join tables, and do equity searches on encrypted values.

Randomized encryption uses a method that encrypts data in a less
predictable manner. This encryption is more secure, but does not allow
grouping, indexing, joining, or equity searches.

Notice that the Encryption Key value defaults to CEK_Auto1 (New),
meaning that since you have yet to create any keys, the wizard will create a
new column encryption key for you.

Figure 2-24 Selecting the columns to be encrypted

Also notice in Figure 2-24 that there is a warning on the CCN column.
This is just for informational purposes, alerting how it will change collation
of the column to binary collation. Always Encrypted only supports binary
collations, so the wizard will be changing the collation for that column so that
it can encrypt the column. You should take note of what the current collation
of the column is in case you need to roll it back. The wizard has no
knowledge of the columns prior state.

Also note that indexed columns encrypted using randomized encryption is
not supported. Additionally, the following column characteristics are not
supported:

Columns that are keys for nonclustered indices using a randomized
encrypted column as a key column.

Columns that are keys for clustered indices using a randomized
encrypted column as a key column.
Primary key columns when using randomized encryption.

Click Next to take you to the Master Key Configuration page of the
wizard, shown in Figure 2-25. Since a column master key has not been
created previously, the default value is to auto generate a column master key,
which is what is needed.

By default, the wizard selects to store the column master key in a Windows
certificate store, so change the option to store the key in Azure Key Vault.
When selecting the Azure Key Vault option, you will be asked to authenticate
and sign in to Microsoft Azure, at which point the wizard will retrieve your
Azure Key Vault names. If you have multiple Azure subscriptions, select the
appropriate subscription in which you created the Azure Key Vault.

Select the appropriate Azure Key Vault from the dropdown and then click
Next.

Figure 2-25 Master Key configuration

The Run Settings page of the wizard simply gives you a couple of options
of proceeding. One of the options will generate a PowerShell script that you
can then run later to set up and configure Always Encrypted, and the other
option is to proceed and finish now.

Also on this page is several warnings. The first warning states that while
the encryption/decryption is taking place, no write operations should be
performed on the table. Any write operations that are performed during the
encryption/decryption process may cause a loss of data.

The other warning simply states that depending on the SQL Database
performance SKU (Basic, Standard, Premium), the performance may vary. In
this case, it’s a small table with no data so it does not take too long. Click
Next on the Run Settings wizard to kick off the process and take you to the

Results page, shown in Figure 2-26.
There are three steps in the process. The first step creates the column

master key, the next step creates the column encryption key, and the last step
performs the actual encryption. Again, since there is no data to encrypt, the
process is quite fast. Depending on how much data exists in the table and the
type of data, the last step in the process could take some time.

Figure 2-26 Always Encrypted process completion

When the encryption process is complete, click Close. At this point,
Always Encrypted for Azure SQL Database has been configured. The
following code snippets show how to implement Always Encrypted in your
application. The full code can be downloaded from this book’s homepage.

First, you will need the database connection string, which you can get from
the Azure portal. You will then need the ClientId and Secret key. The

ClientId is the ApplicationId you copied in Figure 2-17. The Secret is the key
value you copied in Figure 2-17.
Click here to view code image

static string connectionString = @"<connection string from

portal>";

static string clientId = @"";

static string clientSecret = "";

The following code snippet is the critical piece of code that enables
Always Encrypted in your database connection string. You can either use the
SqlConnectionStringBuilder class as shown in the code snipped below, or
you can simply add the keywords “Column Encryption Setting=Enabled”
manually to your connection string. Either is fine, but to enable Always
Encrypted, you must use one of these methods.

Click here to view code image

SqlConnectionStringBuilder connStringBuilder = new

SqlConnectionStringBuilder(connectionString);

connStringBuilder.ColumnEncryptionSetting =

SqlConnectionColumnEncryptionSetting.Enabled;

connectionString = connStringBuilder.ConnectionString;

The code below registers the Azure Key Vault as the application’s key
provider and uses the ClientId and Secret to authenticate to the Azure Key
Vault.
Click here to view code image

_clientCredential = new ClientCredential(clientId, clientSecret);

SqlColumnEncryptionAzureKeyVaultProvider azureKeyVaultProvider =

new SqlColumnEncryptionAzureKeyVaultProvider(GetToken);

Dictionary<string, SqlColumnEncryptionKeyStoreProvider> providers

=

new Dictionary<string, SqlColumnEncryptionKeyStoreProvider>();

providers.Add(SqlColumnEncryptionAzureKeyVaultProvider.ProviderName,

 azureKeyVaultProvider);

SqlConnection.RegisterColumnEncryptionKeyStoreProviders(providers);

As discussed previously, client applications must use SqlParameter objects
when passing plaintext data. Passing literal values without using the
SqlParameter object will generate an exception. Thus, the following code

shows how to use parameterized queries to insert data into the encrypted
columns. Using SQL parameters allows the underlying data provider to detect
data targeted encrypted columns.
Click here to view code image

string sqlCmdText = @"INSERT INTO [dbo].[Customer] ([CCN],

[FirstName], [LastName],

[BirthDate])

VALUES (@CCN, @FirstName, @LastName, @BirthDate);";

SqlCommand sqlCmd = new SqlCommand(sqlCmdText);

SqlParameter paramCCN = new SqlParameter(@"@CCN",

newCustomer.CCN);

paramCCN.DbType = DbType.String;

paramCCN.Direction = ParameterDirection.Input;

paramCCN.Size = 19;

sqlCmd.ExecuteNonQuery();

When running the full application code, the encrypted data is decrypted at
the client and displayed in clear text as seen in Figure 2-27.

Figure 2-27 Viewing decrypted data via an application

However, as seen in Figure 2-28, querying the data directly from within
SQL Server Management Studio shows the data encrypted, as it should be.

Figure 2-28 Viewing encrypted data in the database

To test this further, right mouse click in the query window in SQL Server
Management Studio and select Connection > Change Connection from the

context menu, opening up the SQL Server connection dialog, shown in
Figure 2-29. In the connection dialog, click the Options button to display the
connection properties. Click the Additional Connection Parameters tab and
add the following (as shown in Figure 2-29):

Column Encryption Settings=Enabled

Click the Login tab and type in your authentication password, then click
Connect. Once authenticated, re-execute the SELECT statement to query the
table, and you will see that the encrypted data now comes back as clear text,
as shown in Figure 2-30.

Figure 2-29 Setting the Always Encrypted additional connection string
parameter in SSMS

The data comes back as clear text because the same client driver used in

the client application was also called and used when the query was executed
in the query window. When the SELECT statement was issued, the Column
Encryption Setting=Enabled connection string parameter was added to the
query connection string, at which point the data was encrypted.

Figure 2-30 Viewing decrypted data in the database

The principal objective of Always Encrypted is to ensure that sensitive
data is safe and secure, regardless of where your data resides (on-premises or
in the cloud). A key value-proposition of Always Encrypted is that it assures
users that sensitive data can be stored in the cloud safely and securely.

To further ensure proper security, there are a few key management
considerations to keep in mind.

Never generate column master keys or column encryption keys on a
computer that is hosting your database. Use a separate computer to
generate the keys which should be dedicated for key management.
Implement a key management process. Identify roles of who should and
should not have access to keys. A DBA, for example, may not generate
keys, but may manage the key metadata in the database since the
metadata does not contain plaintext keys.
Periodically replace existing keys with new keys, either due to
compliance regulations or if your keys have been compromised.

Always Encrypted can be configured either using SQL Server
Management Studio, PowerShell, or T-SQL. T-SQL has a limitation in that
you cannot provision column master or column encryption keys, nor can you
encrypt existing data in selected database columns. The following table
details what tasks can be accomplished with SSMS, PowerShell, and T-SQL.

Table 2-1 Always Encrypted functionality with the different tools

Task SSMS PowerShell T-
SQL

Provision CMK and CEK Yes Yes No
Create key metadata in the database Yes Yes Yes
Create new tables with encrypted columns Yes Yes Yes
Encrypt existing data in selected database
columns Yes Yes No

Configure cell level encryption
Another method for encrypting your data is via cell-level encryption (CLE) to
help protect and secure your data at the data tier. Similar to Always
Encrypted, in which specific columns are encrypted, cell-level encryption is
used to encrypt specific columns or cells. Cell-level encryption uses a
symmetric encryption and is often referred to or called column-level
encryption. A key benefit of cell-level encryption, like Always Encrypted, is
that you can encrypt individual cells/columns with different keys. Cell-level
encryption is also quite fast and is a great option when working with large
amounts of data.

With Cell-level Encryption, encryption and decryption is done by
explicitly calling the ENCRYPTBYKEY or DECRYPTBYKEY functions.
These functions require the use of a symmetric key, which must be opened to
be used. Both ENCRYPTBYKEY or DECRYPTBYKEY return a varbinary
type, thus when storing CLE-encrypted data, the column type must be
varbinary with a maximum size of 8000 bytes.

Cell-level encryption uses a database master key for its encryption, which
is a symmetric key used to protect private keys and asymmetric keys within
the database. When created, the database master key is encrypted using the
AES_256 algorithm along with a user-supplied password. A database master
key is created by issuing the following T-SQL statement:
Click here to view code image

CREATE DATABASE [database2] (EDITION = 'Basic',

SERVICE_OBJECTIVE = 'Basic', MAXSIZE =

2 GB);

GO

USE database2

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'AwesomeP@ssw0rd'

GO

In order to create the database master key and any certificates, you need
the following permisions:

CONTROL permission on the database
CREATE CERTIFICATE permission on the database
ALTER permission on the table

With the master key created, you need to create a certificate and symmetric
key, which can be done via the following T-SQL:
Click here to view code image

CREATE CERTIFICATE CreditCardCert01

 WITH SUBJECT = 'Customer Credit Card Numbers';

GO

CREATE SYMMETRIC KEY CreditCards_Key01

 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE CreditCardCert01;

GO

The Create Certificate statement creates a database-level securable that
follows the X.509 standards. Because the certificate was created with the
database master key, the ENCRYPTION BY PASSWORD option is not
required.

The certificate can be time-based, meaning, by supplying a START_DATE
and EXPIRY_DATE parameter you can specify when the certificate becomes
valid and when it expires. By default, if the START_DATE parameter is not
specified it becomes valid when the certificate is created. Likewise, if the
EXPIRY_DATE parameter is not specified, the certificate expires one year
from when after the START_DATE.

The Create Symmetric statement creates a symmetric key in the database
and is encrypted using the certificate created above. A symmetric key must
be encrypted using either a certificate, password, another symmetric key, or
asymmetric key. A single symmetric key actually be encrypted using multiple
encryption types.

In this example, the key was encrypted with the AES_256 algorithm.

Starting with SQL Server 2016, all algorithms other than AES_128,
AES_192, and AES_256 are no longer supported.

To be cell-level encryption to work, execute the following T-SQL to create
a table and insert records into the table.

Click here to view code image

CREATE TABLE [dbo].[Customer](

 [CustomerId] [int] IDENTITY(1,1),

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [MiddleName] [nvarchar](50) NULL,

 [StreetAddress] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [ZipCode] [char](5) NULL,

 [State] [char](2) NULL,

 [Phone] [char](10) NULL,

 [CCN] [nvarchar](19) NOT NULL,

 [BirthDate] [date] NOT NULL

 PRIMARY KEY CLUSTERED ([CustomerId] ASC) ON [PRIMARY]);

 GO

INSERT INTO Customer (FirstName, LastName, CCN, BirthDate)

VALUES ('Brady', 'Hunter', '1234-5678-1234-5678', '01/04/1964')

INSERT INTO Customer (FirstName, LastName, CCN, BirthDate)

VALUES ('Scott', 'Gaster', '5678-1234-5678-1234', '06/20/1976')

INSERT INTO Customer (FirstName, LastName, CCN, BirthDate)

VALUES ('Phillip', 'Green', '7890-1234-7890-1234', '09/02/1973')

INSERT INTO Customer (FirstName, LastName, CCN, BirthDate)

VALUES ('Joey', 'Klein', '3456-7890-3456-7890', '08/31/1985')

INSERT INTO Customer (FirstName, LastName, CCN, BirthDate)

VALUES ('Robert', 'DAntoni', '6789-4321-6789-4321', '05/06/1991')

GO

Next, execute the following T-SQL, which will modify the table and add a
column in which to store the encrypted credit card numbers. As mentioned
earlier, the EncryptByKey and DecryptByKey functions return a varbinary
type and since the encrypted data will be stored in this new column, the data
type will be varbinary.
Click here to view code image

ALTER TABLE Customer

 ADD CCN_Encrypted varbinary(128);

GO

In order to use the EncryptByKey function, the symmetric key must first
be opened to encrypted data. The next statement encrypts the values in the
CCN column using the EncryptByKey function (which uses the symmetric
key) and saves the results in the CCN_Encrypted column.
Click here to view code image

OPEN SYMMETRIC KEY CreditCards_Key01

 DECRYPTION BY CERTIFICATE CreditCardCert01;

UPDATE Customer

SET CCN_Encrypted = EncryptByKey(Key_GUID('CreditCards_Key01')

 , CCN, 1, HashBytes('SHA1', CONVERT(varbinary

 , CustomerId)));

GO

You can view the results of the encryption by executing a simple SELECT
statement. The encrypted data is shown in Figure 2-31.

Click here to view code image

SELECT FirstName, LastName, CCN, BirthDate, CCN_Encrypted FROM

Customer

GO

Figure 2-31 Viewing encrypted data with Cell-level Encryption

To verify that the encryption, reopen the symmetric key and then issue the
following T-SQL which uses the DecryptByKey function to decrypt the
values in the CCN_Encrypted column. If the decryption was successful, the
original number will match the decrypted number, as shown in Figure 2-32.
Click here to view code image

SELECT CCN, CCN_Encrypted

 AS 'Encrypted card number', CONVERT(nvarchar,

 DecryptByKey(CCN_Encrypted, 1 ,

 HashBytes('SHA1', CONVERT(varbinary, CustomerID))))

 AS 'Decrypted card number' FROM Customer;

GO

Figure 2-32 Using symmetric keys to decrypt data

In this example, the HashBytes function was used to hash the input. When
using the HashBytes function, algorithms of MD2, MD4, MD5, SHA, SHA1,
and SHA2 can be used. Also, in this example an authenticator was used.
Authenticators are additional data that gets encrypted along with the data to
be stored encrypted. When the data is decrypted, the authenticator is also
specified. If the incorrect authenticator is not specified, the data is not
decrypted and a NULL is returned. In this example, the column CreditCardID
is used as the authenticator.

You likewise could encrypt data using simple symmetric encryption. For
example:

Click here to view code image

UPDATE Customer

SET CCN_Encrypted = EncryptByKey(Key_GUID('CreditCards_Key01'),

CCN);

GO

While a case for using TDE and CLE together could be made, they are
typically used for different purposes. CLE has advantages over TDE when
encrypting small amounts of data, but when performance is not too much of a
concern, then CLE should be considered. With CLE, the data is still
encrypted when it is loaded into memory and allows for a higher degree of

customization.
On the other hand, TDE can be very simple to deploy with no changes to

the application or database and the performance is better over CLE.

Configure Dynamic Data Masking
Dynamic Data Masking (DDM) is a security feature that limits data exposure
by masking it to non-privileged users. It provides the ability to designate how
much of the sensitive data should be readable with minimal impact on the
application layer. Dynamic data masking simply hides the sensitive data in
the result set of a query, while keeping the database unchanged. Masks are
applied at query time when the results are returned.

Dynamic data masking can be applied to any data deemed as sensitive data
by you, such as credit card numbers, social security or national identification
numbers, email address, or phone numbers. Dynamic data masking includes
several built-in masking functions, but also provides the ability to create a
custom mask.

The following example will walk through implementing Dynamic Data
Masking. To begin, create a new Azure SQL Database either via SQL Server
Management Studio or the Azure portal. Once created, connect to that
database with SQL Server Management studio and execute the following T-
SQL which creates a Customer table with several columns that will contain
sensitive data (such as email, credit card number, and social security
number). The script then inserts five rows of data.

Click here to view code image

CREATE TABLE [dbo].[Customer](

 [CustomerId] [int] IDENTITY(1,1),

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [MiddleName] [nvarchar](50) NULL,

 [StreetAddress] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [ZipCode] [char](5) NULL,

 [State] [char](2) NULL,

 [Phone] [char](10) NULL,

 [Email] [nvarchar] (50) NULL,

 [SSN] [char] (11) NOT NULL,

 [CCN] [nvarchar](19) NOT NULL,

 [BirthDate] [date] NOT NULL

 PRIMARY KEY CLUSTERED ([CustomerId] ASC) ON [PRIMARY]);

 GO

INSERT INTO Customer (FirstName, LastName, Email, SSN, CCN,

BirthDate)

VALUES ('Brady', 'Hunter', 'bhunter@live.com', '999-99-0001',

'4833-1200-7350-8070',

 '01/04/1964')

INSERT INTO Customer (FirstName, LastName, Email, SSN, CCN,

BirthDate)

VALUES ('Scott', 'Gaster', 'sgaster@gmail.com', '999-99-0002',

'5145-1800-0184-8667',

 '06/20/1976')

INSERT INTO Customer (FirstName, LastName, Email, SSN, CCN,

BirthDate)

VALUES ('Phillip', 'Green', 'pgreen@hotmail.com', '999-99-0003',

'3767-6401-5782-0031',

 '09/02/1973')

INSERT INTO Customer (FirstName, LastName, Email, SSN, CCN,

BirthDate)

VALUES ('Joey', 'Klein', 'jklein@fastfreddies.com', '999-99-

0004',

'3797-0931-5791-0032', '08/31/1985')

INSERT INTO Customer (FirstName, LastName, Email, SSN, CCN,

BirthDate)

VALUES ('Robert', 'DAntoni', 'rdantoni@urawesome.com', '999-99-

0005',

'4854-1299-2820-4506', '05/06/1991')

GO

Once the script executes, log in to the Azure Portal and go to the database
you created and click on the Dynamic Data Masking option that will open the
Masking Rules pane, shown in Figure 2-33.

Figure 2-33 Selecting the columns to mask

No masking rules have been created, but the pane does show
recommended columns to mask. You can click on the Add Mask button for
the specific column, or you can click on the Add Mask button on the toolbar.

Clicking the Add Mask button next to the recommended field is a quick
way to add the mask. Many times the portal is smart enough to recognize
what type of field it is and apply the appropriate mask. However, it is not
guaranteed, so the quickest and most efficient way to add the column mask is
to click the Add Mask button on the top toolbar that opens the Add masking
rule pane, shown in Figure 2-34. This pane will also open if the portal can’t
appropriately apply the mask when clicking the Add Mask button next to the
recommended field.

In the Add masking rule pane, simply select the column you want to mask
and then select the appropriate mask. In Figure 2-34, the credit card number
column is select and thus the credit card mask is selected.

Figure 2-34 Configuring a column mask

Notice the different types of default masks, including:
Default Full masking according to the data types of the designated
fields.
Credit Card Exposes the last four digits of the credit card number and
adds a constant string as a prefix in the form of a credit card.
Email Exposes the first letter, then replaces the domain with XXX.com.
Random Number Generates a random number based on the supplied
upper and lower boundaries.

Custom Text Exposes the first and last characters based on the supplied
Prefix and Suffix, then adds a custom padding string in the middle.

The custom text masking function can be used to mask a social security
number. Figure 2-35 shows how to use the Prefix and Suffix and padded
string to mask all but the last four numbers of a social security number.

Figure 2-35 Creating a custom data mask

Be sure to click the Add button on the Add masking rule pane once the
masking rule is configured. After all the masks are applied, click the Save
button back on the Masking rules pane. If you don’t click Save, the masking
rules will not be applied.

Querying the data shows data unmasked, as shown in Figure 2-36. Even
though the masking rules have been applied, the data is returned in clear text
because the user that is logged in is an administrator.

Figure 2-36 Query data with unmasked results

To test the masking, a new user can be created, which simply has SELECT
permissions on the table. The following T-SQL creates a new user called
TestUser and grants SELECT permission on the Customer table.
Click here to view code image

CREATE USER TestUser WITHOUT LOGIN;

GRANT SELECT ON Customer TO TestUser;

To test masking, the execution context of the current session can be
changed to the TestUser, as shown in the following T-SQL. Once the session
execution context is changed, the SELECT statement can be reissued, which
will be executed in the context of the TestUser.

Click here to view code image

Execute AS USER = 'TestUser'

SELECT FirstName, LastName, Email, SSN, CCN FROM Customer

As shown in Figure 2-37, the Email, SSN, and CCN columns are displayed
with their appropriate masks. It should be noted that the data in the
underlying table is not masked, but rather the data is displayed with the
corresponding mask.

Figure 2-37 Querying data with masked results

The session execution context can be switched back simply be executing
the following T-SQL statement:

REVERT;

Dynamic Data Masking policies are made up of three components:
Users excluded from masking These are either SQL users or Azure
Active Directory identities that get automatically unmasked data.
Masking rules Rules that define the designated fields to be masked and
their corresponding masking functions.
Masking functions The methods/functions that control the data
exposure.

Figure 2-33 shows these three components on the Masking rules blade.
The top portion of that blade lists any defined masking rules. Once a masking
rule is defined, such as the ones defined in Figures 2-34 and 2-35, it will be
listed in the Masking Rules section.

Directly below that section is a section on the blade titled SQL Users
Excluded From Masking. This is where you can specify a semicolon-
separated list of users (either SQL users or Azure Active Directory identities)
in which data masking will not apply.

Lastly, the masking functions are the built-in functions used to mask the
data, which you can see in Figure 2-34. Together, these three components
help define the data masking policies.

Managing DDM using T-SQL

Dynamic Data Masking can also be configured using T-SQL. The following
T-SQL creates a table called Customer2 and defines built-in masking
functions applied during table creation.
Click here to view code image

CREATE TABLE [dbo].[Customer2](

 [CustomerId] [int] IDENTITY(1,1),

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [MiddleName] [nvarchar](50) NULL,

 [StreetAddress] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [ZipCode] [char](5) NULL,

 [State] [char](2) NULL,

 [Phone] [char](10) NULL,

 [Email] [nvarchar] (50) MASKED WITH (FUNCTION = 'email()')

NULL,

 [SSN] [char] (11) MASKED WITH (FUNCTION = 'partial(0, "XXX-XX-

", 4)') NOT NULL,

 [CCN] [nvarchar](19) MASKED WITH (FUNCTION = 'partial(0, "xxxx-

xxxx-xxxx-", 4)')

NOT NULL,

 [BirthDate] [date] NOT NULL

PRIMARY KEY CLUSTERED ([CustomerId] ASC) ON [PRIMARY]);

A mask can be removed from a column by using the DROP MASKED
statement. For example:

Click here to view code image

ALTER TABLE Customer

ALTER COLUMN Email DROP MASKED;

Managing DDM using PowerShell
Dynamic data masking can be configured using PowerShell cmdlets. Azure
PowerShell comes with six cmdlets to create and configure masking rules and
policies.

Get-AzureRmSqlDatabaseDataMaskingPolicy Gets the data masking
policy for a database.
Get-AzureRmSqlDatabaseDaaMaskingRule Gets the data masking
rules from a database.

New-AzureRmSqlDatabaseDataMaskingRule Creates a data masking
rule for a database.
Remove-AzureRmSqlDatabaseDataMaskingRule Removes a data
masking rule from a database.
Set-AzureRmSqlDatabaseDataMaskingRule Sets the properties of a
data masking rule for a database.
Set-AzureRmSqlDatabaseDataMaskingPolicy Sets data masking for a
database.

A masking policy is simply the combination of the set of rules that define
the columns to be masked, the SQL or AAD users that get unmasked data in
the query results, and the masking functions that control the exposure of data
for the different scenarios. Thus, by creating a rule that applies the credit card
mask to a CCN column, and optionally specifying the SQL or AAD users, a
policy has been created. The PowerShell cmdlets allow the creation,
modification, and retrieval of the rules and policies.

For example, you can create a new masking rule by executing the
following (replacing the appropriate resource group and server names to
match your names):

Click here to view code image

New-AzureRmSqlDatabaseDataMaskingRule -ResourceGroupName "RG-

WestUS" -ServerName

 "demo908"

-DatabaseName "database3" -SchemaName "dbo" -TableName

"Customer2"

-ColumnName "Email" -MaskingFunction "Email"

It should be clear that dynamic data masking should be used in conjunction
with other security features to better secure sensitive data. Dynamic data
masking can be used and is a complimentary security feature along with
Always Encrypted, Row Level Security, and other security features. The
purpose of dynamic data masking exists to limit the exposure of sensitive
data to those who should not have access to it.

Creating a mask on a column does not prevent updates to that column.
Meaning, even though a user many see the data as masked, that same user
can update the data if they have permissions to do so. This means that a
proper access control policy should be implemented to limit update

permissions.
When using the SELECT INTO or INSERT INTO statements to copy data,

if the source data has a masked column, the destination table will result in
masked data in the target table. Also, Dynamic Data Masking is applied when
running an import or export. Any database that contains masked columns will
result in a backup file with masked data.

The system view sys.masked_columns can be queried to see what columns
have a mask applied to them and what masking function is used. This view
inherits from the sys.columns view that contains an is_masked column and
masking_functions column. The following T-SQL returns a good summary
view into the columns that are masked and their corresponding masking
functions.
Click here to view code image

SELECT c.name, tbl.name as table_name, c.is_masked,

c.masking_function

FROM sys.masked_columns AS c

JOIN sys.tables AS tbl

 ON c.[object_id] = tbl.[object_id]

WHERE is_masked = 1;

For some final notes, a masking rule cannot be defined on the following
column types:

A column encrypted with Always Encrypted
FILESTREAM
COLUMN_SET or a sparse column that is part of a column set
A computed column

There are a couple of caveats. If a computed column depends on a column
with a MASK, then the computed column will return the masked data. Also,
a column with data masking applied cannot be part of a FULLTEXT index.

Configure Transparent Data Encryption
Similar to cell-level encryption, Transparent Data Encryption (TDE) is used
to encrypt data at rest. There are several differences between cell-level
encryption (CLE) and TDE, one of which is that TDE will automatically
encrypt and decrypt the data when it reads and writes the data to/from disk,

whereas CLE required the use of the EncryptByKey and DecryptByKey
functions. Transparent data encryption also differs from cell-level encryption
by encrypting the storage of an entire database, not just a single cell or
column. Other differences between CLE and TDE were discussed at the
conclusion of the CLE section.

Transparent data encryption helps secure and protect your data by
performing database encryption real-time without requiring changes to an
application. Encryption is accomplished through a symmetric key called a
database encryption key (DEK). The DEK key is protected by the transparent
data encryption protector, which is either a service-managed certificate or an
asymmetric key stored in Azure Key Vault. The transparent data encryption
protector is set at the server level.

When the database starts up, the encrypted DEK is decrypted and then
used for the encryption and decryption of the database files. Transparent data
encryption performs real-time I/O encryption and decryption of the data at
the page level, thus each page is encrypted before it is written to disk, and
decrypted when read from disk and into memory.

For Azure SQL Database, TDE is enabled by default at the database level,
as shown in Figure 2-38. At this level, TDE can either be turned on or off.

Figure 2-38 Configuring TDE

At the server level, the default setting for TDE in Azure SQL Database is
for the database encryption key to be protected by a built-in server
certificated. This certificate is unique for each server, but if geo-replication is
enabled and a database is participating in a geo-replication relationship, the
geo-secondary database will be protected by the primary server key. As a best
practice, Microsoft rotates these certificates every 90 days. As shown in
Figure 2-39, the Use Your Own Key option is disabled by default, thus the
database encryption key is protected by a built-in certificate.

Figure 2-39 configuring bring your own key encryption

As mentioned previously, Azure SQL Database also supports Bring Your
Own Key (BYOK), which provides the ability to have control over the TDE
encryption keys and stores them in Azure Key Vault. To turn on BYOK,
simply select Yes for the Use Your Own Key option for TDE at the server
level, as shown in Figure 2-40.

Figure 2-40 selecting the key for bring your own encryption key

When selecting the option to Use Your Own Key, you will be prompted to
select the Azure Key Vault and the symmetric key from that vault. When
selecting the key, an existing key can be selected, or you have the option to
create a new key, as shown in Figure 2-41.

Figure 2-41 creating a new encryption key

Once a key is selected or a new key is created, click Save back on the TDE

pane.

Figure 2-42 saving the new encryption key

Clicking save will save the Transparent Data Encryption settings for the
server, which is essentially setting the appropriate permissions, ensuring that
the database encryption key is protected by the asymmetric key stored in the
key vault.

When TDE is configured to use a key from the Azure Key Vault, the
server sends the database encryption key of each TDE-enabled database to
the Key Vault for a wrapkey request. Key Vault returns the encrypted
database encryption key, which is stored in the user database. It is vital to
remember that once a key is stored in the Key Vault, that key never leaves the
Key Vault. The server can only send key operation requests to the TDE
protector material with Key Vault.

The benefits of using Azure Key Vault are many, including:
Support for key rotation.
Key Vault is designed such that no one sees or extracts any encryption
keys.
Central management of TDE encryption keys.

More granular control and increased transparency to self-manage the
TDE protector.
Separation of keys and data management.

Managing TDE using T-SQL
Transparent Data Encryption can be managed with T-SQL at the database
level through a small handful of T-SQL statements and DMVs (dynamic
management views). TDE can be enabled and disabled at the database level
through the ALTER DATABASE command as follows:

ALTER DATABASE Database1

SET ENCRYPTION OFF

The sys.dm_database_encryption_encryption_keys DMV shows
information about the database encryption state and associated encryption
keys. A corresponding DMV for the SQL Data Warehouse exists that
provides the same information:
sysdm_pdw_nodes_database_encryption_keys.

Currently there are no T-SQL statements that allow you to manage TDE at
the server level.

Managing TDE using PowerShell
PowerShell provides a nice set of cmdlets with which to configure TDE. In
order to use these cmdlets, you must be connected as an Azure owner,
contributor, or SQL Security manager.

Set-AzureRmSqlDatabaseTransparentDataEncryption Enables or
disables TDE for a database.
Get-AzureRmSqlDatabaseTransparentDataEncryption Gets the
TDE state for as the database.
Get-AzureRmSqlDatabaseTransparentDataEncryptionActivity
Checks the encryption progress for a database.
Add-AzureRmSqlServerKeyVaultKey Adds an Azure Key Vault key
to a SQL server.
Get-AzureRmSqlServerKeyVaultKey Gets a SQL server’s Azure Key

Vault keys.
Set-AzureRmSqlServerTransparentDataEncryptionProtector Sets
the TDE Protector for a SQL server.
Get-AzureRmSqlServerTransparentDataEncryptionProtector Gets
the TDE protector.
Remove-AzurermSqlServerKeyVaultKey Removes an Azure Key
Vault key from a SQL server.

The following code snipped uses the Set-
AzureRmSqlDatabaseTransparentDataEncryption cmdlet to enable TDE on
database on server demo908 and database database4. When executing, be
sure to replace the resources with the appropriate names in your environment.
Click here to view code image

Set-AzureRmSqlDatabaseTransparentDataEncryption -

ResourceGroupName "RG-WestUS"

-ServerName "demo908" -DatabaseName "database4" -State Enabled

Skill 2.2: Configure SQL Server performance settings
The most recent releases of SQL Server have come with significant built-in
performance enhancements to ensure databases perform well. However,
simply installing SQL Server is not enough, and there is not a built-in “make
it go faster switch.” There are several post-installation steps to ensure SQL
Server itself, as well as the databases, perform appropriately and effectively.

The knowledge and skill necessary to effectively optimize and improve
database performance whether you are on-premises and in the cloud, and the
skills in this section focus on the approach and steps necessary to monitor and
configure your database for optimum database performance.

This skill covers how to:

Configure database performance settings
Configure max server memory
Configure the database scope
Configure operators and alerts

Configure database performance settings
This section will focus primarily on the common configuration steps and
tasks necessary to improve overall database performance. While the majority
of the configuration settings can be done at the database level, there is one or
two which are configured at the server level and should not be overlooked.
The server and database level performance configuration settings include:

Power Plan (Server)
Trace Flags
Parallelism
Query Plan

Many of these performance configuration settings can be done with very
little effort but can have a significant performance impact overall, but left
unchecked (and improperly configured) can cause your SQL Server to
unnecessarily slow down and work harder than it needs to.

Power Plan
Windows Power Plan is a Control Panel configuration setting that was
introduced in Windows 2008. A “Power Plan” is a collection of hardware and
software settings with the responsibility of managing how your computer
manages power. The goal with Power Plan is two-fold; save energy and
maximize performance. Thus, the idea behind the “Power Plan” is that
Windows may, and does, throttle power to the CPUs to save energy.

The idea and concept behind the Windows Power Plan is good and for the
most part, Windows Power Plan does a great job. However, it can wreak
havoc on SQL Server. Power Plan throttles CPUs down when they are idle,
and throttles them back up when the server is busy, essentially running your
server, and SQL Server, at anywhere between 50-70% power.

The reality of this is that CPU-throttling does not respond well to CPU
pressure, because in order to get the CPUs back up to 100% utilization, the
CPUs need a sustained period of high CPU utilization (of the existing 50-
70%) in order to trigger the throttle-up back up to 100% CPU utilization.
This does not bode well for SQL Server because overall SQL Server
performance will suffer. Queries will take longer to run, transactions will take

longer, and on down the line. This applies to both on-premises environments
as well as cloud-based IaaS environments.

By default, Windows sets the Power Plan to Balanced, meaning, that
Windows will manage the hardware and software and come up with a plan to
save energy and maximize performance. Luckily, there are two ways to check
the throttling of your CPUs. The first is a third-party tool called CPU-Z
(https://www.cpuid.com), and the other is through a Windows performance
counter.

Figure 2-43 show the output from the CPU pressure on a real SQL Server
box. The Specification is the speed that the processor is rated for, and the
Core Speed is the actual running speed of the CPU. Here, the rated speed is
4.00 GHz, but the Core Speed is well below that.

In this case there is not a lot of activity on the server so the CPU was
fluctuating quite a bit, and would fluctuate as low as 20-25% for the Core
Speed.

Figure 2-43 Comparing rated CPU speed with actual CPU speed

Similar CPU performance information can be obtained through the

https://www.cpuid.com

Windows performance counter Processor Information\% of Maximum
Frequency which shows current power level of the CPUs of the maximum
frequency. As seen in Figure 2-44, the blue graph bar is tracking the % of
Maximum Frequency, and while there are occasional spikes, the average
level is around 20%.

Figure 2-44 Using Performance Monitor to track actual CPU utilization

While the Windows Power Plan is not a SQL Server configuration setting,
nor is it a setting that is configured at the database level, it is something that
needs to be addressed when configuring performance for SQL Server.

This configuration setting can be changed either through the Power
Settings option in the Control Panel, or through the BIOS. Depending on the
server model, and if the configuration is via the BIOS, power throttling might
need to be disable in the BIOS.

To configure the Power Plan in the Control Panel, open the Control Panel
and search for Power Options. In the search results, select Power Options,
which should show that the Balanced power option is selected. Click the

Change plan settings option, then select the Change advanced power settings
option, which opens the Power Options dialog.

Figure 2-45 shows the Power Options dialog and the Balanced power plan
selected by default. To change the plan, select the drop down, and select High
performance to make that power plan the active plan.

Figure 2-45 Configuring Windows Power Plan

With no other changes to the system, either Windows or SQL Server,
simply changing this setting alone can improve SQL Server and database
performance.

While in the Advanced Settings dialog, also change the setting to Turn off
hard disks. By default, the value for this setting is 20 minutes. Set this value
to 0.

For Microsoft Azure virtual machines that are created from the Azure
portal, both of these settings (Power Plan and Disk sleep setting) are
configured appropriately and do not need to be changed. This applies to

Windows VMs and SQL Server VMs.

Parallelism
Parallelism is both a server-level and database-level configuration setting that
affects the database performance and applies to scenarios where SQL Server
runs on a server that has more than one CPU.

Parallelism is the number of processors used to run a single T-SQL
statement for each parallel plan execution. When SQL Server is installed on a
multi-CPU system, SQL Server does its best to detect the best degree of
parallelism.

Parallelism is configured by setting the Maximum Degree of Parallelism,
or MaxDOP, value. There is both a server-level configuration value and a
database configuration value for MaxDOP. Setting the server-level
configuration value sets MaxDOP for all databases on the server. Setting
MaxDOP at the database level configures MaxDOP and overrides the server-
level configuration value for that database. This section will discuss
configuring the setting at the server level.

By default, SQL Server sets the value to 0, which tells SQL Server to
determine the degree of parallelism that essentially tells SQL Server to use all
the available processors up to 64 processors.

Most PCs today that SQL Server is installed on are NUMA (Non-Uniform
Memory Access), meaning that the CPUs are clustered in a way in which
they can share memory locally, thus improving performance. Typically, a
cluster will consist of four CPUs that are interconnected on a local bus to
shared memory.

The easiest way to tell how many NUMA nodes you have is to open Task
Manager and select the Performance tab. On the Performance tab, click on
the CPU graph that displays a graph on the right. Right-click the graph on the
right and select Change Graph To from the context menu. You should see a
NUMA node option. If the NUMA node option is grayed out, you have one
NUMA node. If it isn’t grayed out, then select that option. The number of
graphs you see on the right hand side is how many NUMA nodes the
computer has.

Knowing the number of NUMA nodes is important to appropriately
configuring the MaxDOP setting. Best practice states that for NUMA

computers, MaxDOP should be set at the number of CPUs per NUMA node,
or eight, whichever is less. Put simply, the proper setting comes down to
whether or not you have eight logical cores inside a NUMA node. For a
single NUMA node with less than eight logical processors, keep the
MaxDOP at or below the number of logical processors. If more than eight, set
it to eight. The same thing applies to Multiple NUMA nodes.

Configuring MaxDOP appropriately can have a significant performance
implication. Setting the value too high can decrease concurrency, causing
queries to back up on worker threads, thus awaiting time to be executed on a
CPU. When the number of parallel threads is high, SQL Server will take the
path of keeping parallelized tasks within a single NUMA node. Often times
this will cause threads of the same query to share CPU time with other
threads of the same query. This can cause an imbalance if some CPU threads
are handling parallel threads and other threads are handling single threads,
resulting in some threads finishing much more quickly than others.

It is recommended that Maximum Degree of Parallelism, or MaxDOP, not
be set to a value of one, because this will suppress parallel plan generation.

Another parallelism setting that should be looked at is Cost Threshold for
Parallelism, which is an estimate of how much work SQL Server will do to
complete a particular query plan task. The default value is five, which may or
may not be good because at this value, queries do not need to be particularly
large to be a considered for parallelism.

Cost Threshold for Parallelism is a server-level configuration setting.
There is no database-level configuration setting for Cost Threshold for
Parallelism.

Best practice states that this value be larger, which will prevent smaller
queries being parallelized, thus freeing up threads on the CPU to concentrate
on larger queries. Smaller queries might take a bit more time to complete, but
it will increase concurrency without reducing MaxDOP for larger queries.

While the default value for this configuration setting is five, this is known
to be low in most environments. Best practice states that this value be
configured with a higher value depending on your workload, with suggested
starting values ranging from 25 to 50 and adjusting appropriately.

Cost Threshold for Parallelism does not apply if your computer has only
one logical processor, or if your MaxDOP is configured with a value of one.

Both of these settings can be configured through the Advanced page in the
Server Properties page in SQL Server Management Studio, as shown in
Figure 2-46. In this example, Maximum Degree of Parallelism has been set to
a value of four and the Cost Threshold for Parallelism has been configured
with a value of 30 for all the databases on the server.

Figure 2-46 Configuring Max Degree of Parallelism

Cost Threshold for Parallelism can also be configured in SQL Server using
T-SQL as follows:

Click here to view code image

USE master

GO

EXEC sp_configure 'show advanced options', 1 ;

GO

RECONFIGURE

GO

EXEC sp_configure 'cost threshold for parallelism', 30 ;

EXEC sp_configure 'max degree of parallelism', 4;

GO

RECONFIGURE

GO

The Cost Threshold for Parallelism cannot be configured in Azure SQL
Database, because this is a server-level setting. Configuring MaxDOP at the
database level will be discussed later in this chapter.

Query Store
The SQL Server Query Store is a feature introduced in SQL Server 2016 that
provides real-time insights into query performance proactively. The idea and
goal with Query Store is that it aims to simplify performance troubleshooting
of queries by providing detailed look at query plan changes quickly and
efficiently to identify poor performing queries.

Query store does this by capturing a history of all executed queries, their
plans, and associated runtime statistics. This information is then available for
you to examine through a nice user interface. The data is viewable via time
slices so that you can see over a given period of time what changed and when
and obtain detailed information about the usage patterns of each query.

It is commonly known that query execution plans can change over time for
a variety of reasons. The most common reason is due to the change in
statistics, but other reasons can include the modification of indexes or schema
changes. Regardless of the reason, the problem has been that the cache where
the cache plans are stored only stores the most recent execution plan.
Additionally, plans can also be removed from the cache for a number of
reasons as well, such as memory pressure. Add these all up and it makes
troubleshooting query performance a problem.

The query store solves these problems by capturing and storing vital
information about the query and their plans and keeps the history so you can
track over time what happened and why that caused the performance issues.
The benefit of keeping multiple plan information is that allows you to enforce
a particular plan for a given query. This is similar to use the USE PLAN

query hint, but because it is done through the query store, no application or
code changes are needed.

The query store actually is a combination of three separate stores:
Plan store Contains the execution plan information
Runtime stats store Contains the execution statistics information
Wait stats store Contains the wait statistics information

To improve query store performance, plan execution information is written
to all three stores asynchronously, and you can view the information in these
stores via the query store catalog views.

By default, Query Store is not enabled and must be enabled either via SQL
Server Management Studio or via T-SQL. The reasoning behind this is due to
the fact that the capture of the query data requires storage space within the
database, and while the amount of data is minimal, the option to take up disk
space for this purpose is up to the administrator.

The query store can be enabled either via SQL Server Management Studio,
or through T-SQL. To enable query store via SSMS, right mouse click on the
database for which you want to enable the query store, and select Properties
from the context menu. Select the Query Store page, and change the
Operation Mode (Request) value from Off to Read Write, as shown in Figure
2-47.

Figure 2-47 Enabling Query Store

To enable query store via T-SQL, simply execute the following T-SQL
statement in a query window on the database for which you want to enable
query store. This statement works for both on-premises SQL Server, SQL
Server in an Azure VM, and Azure SQL Database. Replace the database
name with the name of your database.
Click here to view code image

ALTER DATABASE database1 SET QUERY_STORE = ON;

Once query store is enabled, a new Query Store folder will appear in the
Object Explorer windows for the database you have enabled query store. As

shown in Figure 2-48, this folder contains a number of built-in views in
which to troubleshoot query performance.

Figure 2-48 SQL Server Database Query Store

The built-in views provide the real-time insight into query performance
within your database. For example, double-clicking the Regressed Queries
view displays the top 25 regressed queries and associated plans, as shown in
Figure 2-49. Other views include:

Overall Resource Consumption Identifies resource utilization patterns
to help optimized overall database consumption.
Top Resource Consuming Queries shows most relevant queries that
have biggest resource consumption impact.
Queries with Forced Plans Shows all queries which currently have
forced plans.
Queries with High Variation Identifies queries with a wide
performance variant.
Tracked Queries Use this view to track the execution of your most
important queries real-time.

The Tracked Queries view is a great resource to use when you have queries
for forced plans and you want to make sure the query performance of each
query is where it should be.

Figure 2-49 Query Store Regressed Query View

Given all of this information, simply turning on query store provides a lot
of benefit and information. However, to get the most out of query store,
ensure that it is properly configured. The Query Store page in the Database
Properties dialog allows you to configure the following query store options:

Data Flush Interval The frequency, in minutes, in which the query
store data is flushed and persisted to disk. The default value is 15
minutes.
Statistics Collection Interval The granularity in which runtime
statistics are aggregated. Available values:

1 Minute
5 Minutes
10 Minutes
15 Minutes
30 Minutes
1 Hour

1 Day
Max Size The maximum size in MB to allocate to the query store within
the host database. The default size is 100 MB.
Query Store Capture Mode Indicates the how queries are captures.
The default value is All. Available values:

All Captures all queries
Auto Captures queries based on resource consumption
None Stops the query capture process

Size Based Cleanup Mode Data Cleanup mode when the amount of
data reaches maximum size. The default value is Auto. Available values:

Auto Automatically performs the cleanup.
Off Data cleanup does not take place

Stale Query Threshold The duration, in days, to retain query store
runtime statistics. The default value is 30 days.

However, these and additional query store configuration options that can
be configured through T-SQL, including the following Max plans per query.
The following T-SQL statement sets the max plans per query to a value of
five. This statement works for both on-premises SQL Server, SQL Server in
an Azure VM, and Azure SQL Database. Be sure to replace the database
name with the name of your database.
Click here to view code image

ALTER DATABASE database1 SET QUERY_STORE (MAX_PLANS_PER_QUERY =

5)

By default, the Max plans per query option value is 200. Once that value is
reached, query store stops capturing new plans. Setting the value to zero
removes the limitation with regards to the number of plans captured.

Query store also contains a number of catalog views which represent
information about the query store. These catalog views are what the user-
interface pull their information from. These catalog views include:

sys.database_query_store_options Displays the configuration options
of the query store.
sys.query_store_plan Displays query plan execution information.

sys.query_store_query_text Shows the actual T-SQL and the SQL
handle of the query.
sys.query_store_wait_stats Shows wait stat information for the query.
sys.query_context_settings Shows information about the semantics
affecting context settings associated with a query.
sys.query_store_query Shows query information and associated
aggregated runtime execution statistics.
sys.query_store_stats Shows query runtime execution statistics.

The key takeaway from the query store is that simply enabling query store
provides a wealth of information to help troubleshoot and diagnose query
performance problems. However, properly configuring the query store to
ensure the right amount of information is also critical.

As eluded to a few times, Query Store is supported in Azure SQL Database
as a fully managed feature that continuously collects and displays historical
information about all queries. Query Store has been available in Azure SQL
Database since late 2015 in nearly half a million databases in Azure,
collecting query performance related data without interruption.

There are minimal differences between the Query Store in Azure SQL
Database and on-premises SQL Server. Most, if not all, of the best-practice
configuration settings are the same including MAX_STORAGE_SIZE
(100MB), QUERY_CAPTURE, MODE (AUTO),
STALE_QUERY_THRESHOLD_DAYS (30), AND
INTERVAL_LENGTH_MINUTES (60). As such, migrating from on-
premises to Azure becomes a lot easier.

Missing Index DMVs
One could technical think of identifying missing table indexes as
“configuring database performance settings.” While working with indexes
isn’t a configuration setting in and of itself, indexes do play a vital role in
database and query performance.

When a query is submitted for execution, it is routed to the query
optimizer. The query optimizer has the responsibility of finding or creating a
query plan. As part of this process, it analyzes what are the best indexes for
the query based on several factors, including particular filter conditions. If the

optimal index does not exist, SQL Server does its best to generate a good
query plan, but the plan generated will be a suboptimal plan.

To help troubleshoot query performance problems, Microsoft introduced a
number of dynamic management views (DMVs) which assist in identifying
possible index candidates based on query history. The DMVs that are specific
to missing indexes are the following:

sys.dm_db_missing_index_details Shows detailed information about
missing indexes.
sys.dm_db_missing_index_columns Shows information about table
columns that are missing an index.
sys.dm_db_missing_index_groups Shows information about what
missing indexes that are contained in a specific missing index group.
sys.dm_db_missing_index_group_stats Shows information about
groups of missing indexes.

Lets’ see these in action. In the WideWorldImports database, the following
query selects a few columns from the Sales.Order table filtering on the
CustomerID column.

Click here to view code image

USE WideWorldImporters

GO

SELECT OrderDate, CustomerPurchaseOrderNumber,

ExpectedDeliveryDate

FROM sales.orders

WHERE CustomerID = 556

As shown in Figure 2-50, the sys.dm_db_missing_index_details and
sys.dm_db_missing_index_group_stats DMVs are queried. The first query
only returns 99 rows (filtering on CustomerID 556), but the important point is
the two results that follow. The sys.dm_db_missing_index_details DMV
results show that CustomerID was used in the WHERE clause with an equals
operator, so the CustomerID is listed in the equity_columns column. Thus,
SQL Server is suggesting that CustomerID would be a good index. The
inequality_columns column would have data if other operators had been
used, such as not equal. Since our filter was an equal operator, no value is
listed in this column. The included_columns field is suggesting other
columns that could be used when creating the index.

Figure 2-50 Using DMVs to find missing indexes

The sys.dm_db_missing_index_group_stats DMV provides additional
insight and important information that is useful, including the
unique_compiles, user_seeks, and user_scans columns. With this information
it is possible to determine how many times the query has been called, and
whether a seek or scan performed when the query was executed. The more
times this query is run, these numbers should increase.

This information can be nicely laid out by combining the
sys.dm_db_missing_index_details and sys.dm_db_missing_index_columns
DMVs, as shown in Figure 2-51.

Figure 2-51 Joining missing index DMVs

The missing nonclustered index can be applied using the following T-SQL.
Click here to view code image

CREATE NONCLUSTERED INDEX [FK_Sales_Orders_CustomerID]

ON [Sales].[Orders](

[CustomerID] ASC

)

GO

With the index applied, the same query can be executed followed by
querying the sys.dm_db_missing_index_details DMV, and as shown in
Figure 2-52, the query optimizer has found or generated an optimal query
plan and therefore does not recommend any indexes.

Figure 2-52 Missing index query results

The following DMVs are not specific to missing indexes, but are useful in
helping identify how indexes are used and if they are providing any value.

sys.dm_db_index_usage_stats Shows different types of index
operations and the time each type was last performed.
sys.dm_db_index_operation_stats Shows low-level I/O, locking,
latching, and access activity for each partition of a table in index.
sys.dm_db_index_physical_stats Shows data and index size and
fragmentation.
sys.dm_db_column_store_row_group_physical_stats Shows
clustered columnstore index rowgroup-level information.

Information stored in the sys.dm_db_missing_index_* DMVs are stored
until SQL Server is restarted and not persisted to disk.

Configure max server memory
Probably one of the most misunderstood configuration options in SQL Server
is the memory configuration option max server memory. The Maximum
server memory option specifies the maximum amount of memory SQL
Server can allocate to itself during operation. During operation, SQL Server
will continue to use memory as needed, up until the point where it has
reached the maximum server memory setting.

As SQL Server runs it will intermittently reach out to the operating system
to determine how much free memory is left. The problem with this setting is
that if you don’t allocate enough memory to the operating system, the
operating system will start paging and not enough memory is available to the
OS and other applications. SQL Server is designed to release memory back to
the operating system if needed, but SQL Server tends to hang on to the
memory it already has.

Something else to consider here is the effect that Locked Pages In Memory
has on this setting. Locked Pages In Memory is a Windows policy that
determines which accounts can use a process to keep data in physical
memory and not page it to virtual memory on disk. This policy is disabled by
default, and best practice states that this be enabled for SQL Server service
accounts. The reason for this is that setting this option can increase SQL
Server performance when running in a virtual environment where disk paging
is expected. As such, Windows will ensure that the amount of memory
committed by SQL Server will be less than, or equal to, the installed physical
memory, plus age file capacity.

Leaving the default value in the Maximum server memory configuration
setting potentially allows SQL Server to take too much memory and not leave
enough for the operating system and other application and resources. SQL
Server will, by default, change its memory requirements dynamically as
needed, and the documentation recommends that SQL Server be allowed to
do that by keeping the Maximum server memory default configuration value.

Depending on the server environment this may not be the best setting. If
you need to change the max server memory value, best practice states that

you first determine the amount of memory needed by the operating system
and other resources, then subtract that number from the total physical
memory. The remaining number is the value with which to set the max server
memory configuration setting.

If you are unsure of what the best value is for max server memory, a
general rule of thumb has been to set it much lower than you think it needs to
be and monitor system performance. From there you can increase or lower
the value based on analysis. A good way to analyze the available free
memory is to monitor the Memory\Available Mbytes performance counter.
This counter will tell you how much memory is available to processes
running on the machine. After monitoring this information for a period of
time, you should know how much memory to dedicate to SQL Server, and
this value becomes the value for the max server memory setting.

If you are unsure of the workloads and not sure what value to specify for
max server memory, a general practice is to configure as follows based on the
amount of physical memory and number of CPUs:

4 GB memory with up to 2 CPUs At least 1 GB RAM
8 GB memory with up to 4 CPUs At least 2 GB RAM
16 GB memory with up to 8 CPUs At least 4 GB RAM
32 GB memory with up to 16 CPUs At least 6 GB RAM
64 GB memory with up to 32 CPUs At least 10 GB RAM

SQL Server uses the memory specified in the max server memory setting
to control SQL Server memory allocation for resources, including the buffer
pool, clr memory, all caches, and compile memory. Memory for memory
heaps, thread stacks, and linked server providers are not allocated or
controlled from max server memory. When planning maximum memory
though, you should account for these settings. Essentially, take the totally
physical memory, subtract memory for the OS itself (rule of thumb is 1GB
for every 8GB of RM), then subtract memory needed for the additional
settings, such as thread stack size (number of worker threads multiplied by
thread size). What remains is what you can allocate for SQL Server.

Max server memory can be configured through the Server Properties page
in SQL Server Management Studio, or through T-SQL. To configure through
SSMS, right mouse click the server in Object Explorer and select Properties

from the context menu. In the Server Properties dialog, select the Memory
page on the left. Enter the appropriate memory amount in the Maximum
server memory field.

Figure 2-53 Configuring Maximum Server Memory

Likewise, max server memory can be configured with T-SQL using the
advanced configuration options, as shown in the following code.

Click here to view code image

sp_configure 'show advanced options', 1;

GO

RECONFIGURE;

GO

sp_configure 'max server memory', 6144;

GO

RECONFIGURE;

GO

For multiple SQL Server instances running on a single server, configure
max server memory for each instance, ensuring that the total memory
allowance across the instances is not more than the total physical memory of
the machine based upon the memory criteria discussed earlier.

Keep in mind that setting the maximum server memory only applies to on-
premises SQL Server or to SQL Server running in an Azure virtual machine.
You cannot set the maximum server memory in Azure SQL Database,
because this is a server-level configuration setting.

Configure the database scope
Earlier in this chapter, several performance configuration settings were
discussed to help improve the performance of SQL Server and databases.
There are similar settings at the database level, which also pertain to
performance, but also help define the overall behavior of a database. The
database-scoped configuration settings that will be discussed are the
following:

Max Dop
Query Optimizer Fixes
Parameter Sniffing
Legacy Cardinality Estimation

Max DOP
The Max DOP configuration setting is the similar to the server-level Max
Degree of Parallelism configuration setting, but Max DOP is a database-level
configuration setting. As a refresher, Parallelism is the number of processors
used to run a single T-SQL statement for each parallel plan execution.

Setting MaxDOP at the database level overrides the server-level
configuration value for that database. The same best practices and guidelines
that apply at the server-level also apply to the Max DOP setting at the
database level. Once configured the setting takes effect immediately without

restarting the server.
When using MaxDOP, SQL Server using parallel execution plans when

executing queries, index DDL operations, parallel inserts, online alter column
statements, and more.

To configure Max DOP, open the Database Properties dialog and select the
Options page on the left, then enter the appropriate Max DOP value as shown
in Figure 2-54.

Figure 2-54 Configuring Max DOP at the database level

Likewise, Max DOP can be configured at the database level using T-SQL
as follows:

Click here to view code image

USE Database1

GO

ALTER DATABASE SCOPED CONFIGURATION SET MAXCOP = 4;

GO

Something to keep in mind is that the MaxDOP value can be overridden in
queries by specifying the MAXDOP query hint in the query statement.

Query Optimizer Fixes
Prior to SQL Server 2016, whenever a hotfix or CU (Cumulative Update)
was released that contained query optimizer improvements, those
improvements were not automatically turned on or enabled. This makes sense
because of the possibility of the change in query behavior. While you want to
assume that optimizer changes were indeed positive, there is always the small
chance that the affect could be a negative one. In order to enable the
optimizer changes, trace flag 4199 needed to be turned on. This is of course
assuming that you installed and tested the hotfix or CU on a test box.

Beginning with SQL Server 2016, query optimizer improvements are now
based on the database compatibility level. What this means is that any and all
improvements to the query optimizer will be released and turned on by
default under consecutive database compatibility levels.

The Query Optimizer Fixes configuration setting, added in SQL Server
2016, enables or disables query optimization hotfixes regardless of the
compatibility level of the database, which is equivalent to trace flag 4199.
What this means is that with SQL Server 2016 and later, you can safely
ignore this setting, which is why by default it is OFF. However, if you are
using SQL Server 2016, but have databases that have a previous version
compatibility setting, you can consider turning this setting on.

Figure 2-55 shows the Query Optimizer Fixes configuration setting for a
database with compatibility level 130 (SQL Server 2016) disabling query
optimization hotfixes for the database Database1.

Likewise, this configuration setting can be configured via T-SQL as
follows:
Click here to view code image

ALTER DATABASE SCOPED CONFIGURATION SET

QUERY_OPTIMIZER_HOTFIXES=ON ;

Figure 2-55 Configuring Query Optimizer fixes

Parameter sniffing
Parameter sniffing takes place when SQL Server interrogates, or, “sniffs,”
query parameter values during query compilation and passes the parameters
to the query optimizer for the purpose of generating a more efficient query
execution plan. Parameter sniffing is used during the compilation, or
recompilation, of stored procedures, queries submitted via sp_executesql, and

prepare queries.
By default, this configuration is enabled, as shown in Figure 2-56. In

earlier versions of SQL Server parameter sniffing was disabled by turning on
trace flag 4136.

Figure 2-56 Configuring Parameter Sniffing

To illustrate how parameter sniffing works and the effect it has on the
query plan, the following query as shown in figure 2-57 was run against the
AdventureWorks database. The two queries are similar but use different
values listed in the WHERE clause. As you can see, different execution plans
were generated. The first query performs a clustered index scan while the
second query uses a key lookup with a non-clustered index scan. The

AdventureWorks database can be downloaded from here:
https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks2014.

Figure 2-57 Different query parameters with different execution plans

As stated earlier, parameter sniffing works when executing stored
procedures, so the following code creates a stored procedure which passes in
the city name as a parameter.
Click here to view code image

CREATE PROCEDURE sp_GetAddressByCity (@city nvarchar(50))

AS

SELECT AddressLine1, AddressLine2

FROM Person.Address

WHERE City = @city

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014

GO

Once the stored procedure is created it can then be called twice passing in
the two cities from the queries earlier as parameters. The execution plans of
both queries are now the same.

Figure 2-58 Using a stored procedure and parameters with similar
execution plans

Stored procedures are precompiled on the initial execution along with the
execution plan, and therefore the stored procedure will use the same plan for
each execution thereafter notwithstanding the parameter being passed in.

Turning parameter sniffing off will tell SQL Server to ignore parameters
and generate different execution plans for each execution of the stored
procedure. Best practice states that unless you want more control of the
execution plans, leave the Parameter Sniffing configuration setting to ON and
don’t enable the trace flag.

Legacy Cardinality Estimation

Simply put, cardinality estimation is used to predict how many rows your
query is most likely to return. This prediction is used by the query optimizer
to generate a more optimal query plan. The better the estimation, the better
the query plan.

By default, the Legacy Cardinality Estimation configuration setting is set
to OFF because starting with SQL 2014, major updates and improvements
were made to the cardinality estimator that incorporated better algorithms and
assumptions that are more efficient with the larger OLTP workloads and
todays modern data warehouses.

Thus, the Legacy Cardinality Estimation configuration setting exists to
allow you to set the cardinality estimation model to SQL Server 2012 and
earlier independent of the database compatibility level. Leaving the value to
OFF sets the cardinality estimation model based on the database
compatibility level of the database.

Figure 2-59 Configuring Legacy Cardinality Estimation

Unless you are running SQL Server 2012 or earlier, the recommendation is
to leave this value to OFF simply due to the fact that the latest cardinality
estimator is the most accurate.

The Legacy Cardinality Estimation configuration setting is equivalent to
trace flag 9481.

Configure operators and alerts
A lot of the information covered so far in this chapter, and especially here in
this skill, has to do with being proactive when it comes to working with and
troubleshooting SQL Server. As a database administrator, you will want to

know as soon as possible when something goes wrong and what the problem
is without too much digging.

SQL Server makes that possible through the SQL Server Agent and the
Alerts and Operators, which can be configured to provide proactive insight
necessary regarding all aspects of SQL Server, including performance
problems. Figure 2-60 shows the Alerts and Operators nodes within the SQL
Server Agent in which Operators and Alerts will be created and configured.

Figure 2-60 SQL Server agent alerts and operators

Alerts and Operators are a case of what gets configured first. Alerts are
created and assigned to operators. But Operators can be assigned Alerts. So,
which do you create first? It doesn’t matter really, so Operators will be
discussed first because it is easier from a configuration standpoint.

Operators
SQL Server Operators are aliases for people, or groups, which can receive
notifications in the form of emails or pages when an alert has been generated.

Creating and defining an operator is quite simple. To create an operator,
expand the SQL Server Agent node and right mouse click on the Operators
node, and select New Operator from the context menu. In the New Operator
dialog, enter an operator name and contact information and make sure the
Enabled checkbox is checked. The name must be unique within the SQL
Server instance and be no longer than 128 characters. For the contact
information, either provide an email address or pager email name, or both.
The Pager on duty schedule defines work schedule when the operator can be
notified.

In Figure 2-61, the operator has been given a name of Perf_Alerts and an
email name of Perf_Alerts@outlook.com. The pager on duty schedule is set

mailto:Perf_Alerts@outlook.com

for Monday-Saturday from 8am to 6pm. In this example, if an alert is
generated on Wednesday after 6pm, the Perf_Alert operator will not be
notified via the pager, but will receive an email if an email address is
specified.

The Notifications page is where Alerts can be assigned to an Operator.
However, since no Alerts have yet been created, we’ll come back to this step.
Once the Operator has been configured, click OK.

Figure 2-61 Creating a new Operator

Best practice for Operators states that pager and net send options not be
used as this functionality will be removed in future version of SQL Server.

Operators can also be created with T-SQL as follows (if the Perf_Alerts

alert already exists, change the name of the alert in the code below):
Click here to view code image

USE [msdb]

GO

EXEC msdb.dbo.sp_update_operator @name=N'Perf_Alerts',

@enabled=1,

@weekday_pager_start_time=80000,

@weekday_pager_end_time=180000,

@saturday_pager_start_time=80000,

@saturday_pager_end_time=180000,

@pager_days=126,

@email_address=N'Perf_Alerts@outlook.com',

@pager_address=N''

GO

Alerts
During SQL Server operation, events are generated by SQL Server and saved
into the Windows application log. The SQL Server Agent reads the
application log and compares the events to defined and configured alerts. If
and when SQL Server finds a match, it kicks off an alert. Alerts are
automated responses to the events found in the application log. These alerts
are then sent via email or pager to defined operators who can then take action
on the alert.

Creating and defining an alert has a few more steps than create an operator,
but it’s still not rocket science. To create an alert, expand the SQL Server
Agent node and right mouse click on the Alert node, and select New Alert
from the context menu. In the New Alert dialog, enter an Alert name and
make sure the Enabled checkbox is checked. The name must be unique
within the SQL Server instance and be no longer than 128 characters.

There are three types of events from which to generate an alert:
SQL Server events
SQL Server Performance conditions
WMI events

SQL Server events occur in response to one or more events such as a SQL

syntax error or syntax error. There are 25 severity codes as shown in Figure
2-62. The error level describes the importance of the error. For example,
Severity 10 is information, and 19-25 are fatal. You will definitely want to be
notified if a fatal error occurs. A good example of this is severity 23, which
suggests that you probably have a corrupted database, or a corruption in one
of your databases.

Along with specifying the severity, you also need to select the database
name for which this alert is being monitored. You can monitor all database,
as shown in Figure 2-62, or a specific database by selecting it from the list.

The Message text allows you to add granularity to the alert by having the
alert fire if the event contains certain words or string in the event message.

Figure 2-62 Selecting the Alert Severity and Alert Type for a new Alert

Instead of raising an alert by severity, you can raise it by Error Number in
which case the alert will fire when a specific error occurs. There are too many
error messages and their associated numbers to list here, but this link is a
good place to start: https://technet.microsoft.com/en-
us/library/cc645603(v=sql.105).aspx

DBAs are very interested in the performance of their server and databases,
and SQL Server Performance Conditions event type allows you to specify
alerts which occur in response to a specific performance condition.

For performance conditions, you specify the performance counter to
monitor, a threshold for the alert, and the behavior the counter must exhibit
for the alert to fire. As shown in Figure 2-63, performance conditions need
the following to be configured:

Object The performance counter to be monitored.
Counter The attribute of the object area to be monitored.
Instance The SQL Server instance or database to be monitored.
Alert counter One of the following:

falls below
becomes equal to
rises above

Value A number which describes the performance condition.
In Figure 2-63, the Query Store object has been selected to be monitored

with the Query Store CPU usage counter area to be monitored. A specific
database has been selected to be monitored (Database 1 in this example), and
if the counter rises above a value of 75, then the alert will fire.

https://technet.microsoft.com/en-us/library/cc645603(v=sql.105).aspx

Figure 2-63 Select the Alert Type and Performance Conditions for a new
Alert

There are over 45 performance condition objects to monitor, each one with
their corresponding counters. Another interesting one is the Transactions
object and the corresponding Free space in tempdb (KB) counter, which will
alert you if the space in TempDB falls below a specific size. These objects
are similar to counters you would monitor in Performance Monitor, so if you
are planning on working with Alerts, it is recommended that you become
familiar with the different objects and their associated counters.

Once the alert type has been defined, the Response page is where the alert
is associated to an operator. In Figure 2-64, the alert currently being created
is being assigned to the operator Perf_Alert which was created earlier.

Figure 6-64 Selecting the Operator for a new Alert

It is possible to create a new operator or view existing operators.
The Options page of the New Alert dialog is where additional information

is configured for the alert. As shown in Figure 2-65, you have the ability to
include the alert error text in the message sent either by email or pager, as
well as include additional information.

Figure 2-65 Configuring Alert options on a new Alert

Similar to the Operator, Alerts can be created with T-SQL. Using T-SQL is
much easier to reuse and include as part of a build script. The following is the
T-SQL for the Alert created using the UI above.
Click here to view code image

USE [msdb]

GO

EXEC msdb.dbo.sp_add_alert @name=N'QueryStoreCPUAlert',

@enabled=1,

@delay_between_responses=0,

@include_event_description_in=1,

@performance_condition=N'Query Store|Query Store CPU

usage|Database1|>|75',

@job_id=N'00000000-0000-0000-0000-000000000000'

GO

EXEC msdb.dbo.sp_add_notification

@alert_name=N'QueryStoreCPUAlert',

@operator_name=N'Perf_Alerts', @notification_method = 1

GO

As mentioned, Alerts are a great way to proactively know what is going on
in your database and SQL Server. However, it is possible to “over alert,” and
there is a need to find the right balance between being notified when a
response is required and not getting notified when a response isn’t required.

To help with this you will want to define an alerting strategy, which
defines severity categories that alerts fall in to. For example, you might
consider categorizing the alerts into three or four buckets of severity such as
Critical, High, Medium, and Low, or a subset of these. A critical response is
something that requires a response and needs attention immediately. High
might be something that is not quite as urgent. For example, the alert can
happen overnight, or on the weekend, and can wait until the next day or
weekday to address. Medium alerts are good to see on occasion and you
might route those to a daily or weekly report. Low alerts are information only
and might rarely be looked at.

While the above is an example, the idea is to create a strategy and
approach that works best for you and doesn’t get into an “over alerting”
situation.

Skill 2.3: Manage SQL Server instances
DBAs have the responsibility of configuring and managing each SQL Server
instance to meet the needs and the SLA (Service Level Agreement) demands
appropriate for the database and workloads planned for the instance.

This skill covers the management of SQL Server instances and the
associated databases in order to affectively meet appropriate performance and
availability requirements.

This skill covers how to:
Manage files and filegroups

Create databases
Manage system database files
Configure TempDB

Manage files and filegroups
SQL Server uses files and filegroups that contain the data and objects
necessary to provide the performance and availability of an enterprise
database system. This section will discuss both files and filegroups.

Database Files
SQL Server databases have, at a minimum, two file types, but can have up to
three types. The database file types are the following:

Primary Data Contains the startup information for the database and
contains pointers to other files in the database. Every database has one
primary data file. File extension is .mdf. User data and objects are stored
in this database.
Secondary Data Optional, user-defined data files. Secondary files can
be spread across multiple disks. The recommended file extension is .ndf.
Transaction Log Holds the log information that is used in database
recovery. At least one log file is required for each database. The
recommended file extension is .ldf.

When creating a database in SQL Server Management Studio using the
Create New Database dialog, the General page automatically fills in the
Database files with a single data file on the PRIMARY file group and a
single log file, as shown in Figure 2-66. Transaction log files are never part
of any filegroups.

Figure 2-66 Data file and transaction log file for a new database

A secondary data file can be added to the database by clicking the Add
button on the New Database dialog, as shown in Figure 2-67, and a logical
file name is provided.

Figure 2-67 Adding an additional data file

SQL Server files have two names: a logical file name, and an operating
system file name. The logical file name is the name used to refer to the
physical file in all of the T-SQL statements, and must be unique among the
logical file names in the database. The operating system file name is the name
of the physical file in the operating system, including the directory path.

Figure 2-68 shows both the logical file given to the secondary data file as
DemoDBData2, and a physical file of Data2.ndf. If a physical file name is
not supplied, the physical file name will be derived from the logical file
name.

It is recommended that when supplying physical file names that they are
given names to make it easy to identify which database the files belong. The
same can be said about logical file names as well.

Figure 2-68 Specifying a physical file name

Once the database is created the physical file names can be verified by
navigating to the Data directory as shown in Figure 2-69. Notice the Primary

data file and transaction log as well as the secondary data file named Data2.

Figure 2-69 Viewing the physical database files

SQL Server files, both data and transaction log, can and will automatically
grow from the original size specified at the time of creation. More about
databases and file growth will be discussed later in the “Create Database”
section.

Included in every database is a DMV called sys.database_files, which
contains a row per file of a database. Querying this view returns information
about each database file, including database logical and physical file name
(and path), file state (online or not), current size and file growth, and more.

For example, a popular query used to determine current database size and
the amount of empty space in database, which uses the sys.database_files
view is the following:
Click here to view code image

SELECT name, size/128.0 FileSizeInMB,

size/128.0 - CAST(FILEPROPERTY(name, 'SpaceUsed') AS int)/128.0

AS EmptySpaceInMB

FROM sys.database_files;

The basic, yet fundamental, unit of storage in SQL Server is a page. The
disk space assigned to a data file in a database, whether it is a .mdf or .ndf, is
logically divided into pages numbered contiguously 0 to n. When SQL Server
reads and writes data, these operations are done at the page level. In other
words, SQL Server reads and writes entire, whole, data pages. Each file in a
database has a unique file ID number, and you can see this by querying the

sys.database_files view and by looking at the file_guid column.
Pages in SQL Server are 8K in size, which means that a database has 128

pages per MB. Each begins with a small header that contains information
about the specific page, which includes the page number and the amount of
free space on the page. When SQL Server writes to the page, data rows are
added to the page serially. Data rows cannot span pages but portions of a row
may be moved off the row’s page.

While a deep understanding of data file pages are outside the scope of this
skill, it helps to understand the makeup of database files and how SQL Server
uses them to store data.

With the foundation of database files, we now turn our attention to
database filegroups.

Filegroups
Filegroups are used to group data files together for multiple purposes.
Besides administrative reasons, creating different databases and filegroups
and locating those file groups on different disks provides a necessary and
needed performance improvement.

There are two types of file groups: Primary and User-defined. The primary
filegroup contains all of the system tables and is where user objects are
created by default. User-defined filegroups are specifically created by the
user during database creation.

Every database contains a default PRIMARY filegroup. As seen in Figure
2-66, when creating a database, the primary data file is placed by default on
the primary filegroup. This filegroup cannot be deleted. Subsequent, user-
defined filegroups can be created and added to the database to help distribute
the database files for the reasons previously explained.

When objects are created in the database, they are added to the primary file
group by default unless a different filegroup is specified. The PRIMARY
filegroup is the default filegroup unless it is changed by the ALTER
DATABASE statement.

Filegroups can be created and added during initial database creation, and
can be added to the database post-database creation. To add filegroups during
database creation, click on the Filegroups page in the New Database dialog
and click the Add Filegroup button as seen in Figure 2-70. Provide a name

for the new filegroup and make sure the Read Only checkbox is unchecked.

Figure 2-70 Creating new Filegroups

Next, click on the General page and as you did with Figure 2-67, add new
database files to the database. With additional filegroups created you can now
select the new filegroups on which to add the database files, as seen in Figure
2-71.

Figure 2-71 Specifying the Filegroups for new database files

Once the database is created the physical file names can be verified by
navigating to the Data directory as shown in Figure 2-72. Notice the Primary
data file and transaction log as well as the secondary data files and additional
transaction log.

Figure 2-72 Viewing the physical files of a new database using Filegroups

You might think that creating databases with additional files and filegroups
is difficult, but it is quite the contrary. The following T-SQL statement shows
how to create the above database with additional filegroups and database
files. When running this script, change the file location to the appropriate
drive letter and folder destination that matches your environment.

Click here to view code image

USE [master]

GO

CREATE DATABASE [DemoDB]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'DemoDB',

FILENAME = N'D:\Program Files\Microsoft SQL

Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoDB.mdf' ,

SIZE = 8192KB ,

MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [Data1]

(NAME = N'DemoData1',

FILENAME = N'D:\Program Files\Microsoft SQL

Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoData1.ndf' ,

SIZE = 8192KB ,

MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB),

 FILEGROUP [Data2]

(NAME = N'DemoData2',

FILENAME = N'D:\Program Files\Microsoft SQL

Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoData2.ndf' ,

SIZE = 8192KB ,

MAXSIZE = UNLIMITED,

FILEGROWTH = 65536KB)

 LOG ON

(NAME = N'DemoDB_log',

FILENAME = N'D:\Program Files\Microsoft SQL

Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoDB_log.ldf' ,

SIZE = 8192KB ,

MAXSIZE = 2048GB ,

FILEGROWTH = 65536KB)

GO

ALTER DATABASE [DemoDB] SET COMPATIBILITY_LEVEL = 140

GO

Using filegroups with database files is a great way to improve
performance, because it lets a database be created across multiple disks, disk
controllers, or RADI systems. For example, if the machine in which SQL
Server is installed has four disks, consider creating a database that is made up
of three data files (each on a separate filegroup), one file on each disk, and
then the transaction log on the fourth disk. Thus, I/O is spread across the
disks and can be accessed in parallel.

Additionally, files and filegroups helps with data and object placement,
again increasing performance. For example, an I/O heavy table can be placed
in a separate filegroup, which is then placed on a different disk.

Create databases
The last section spent some time on database creation as part of talking about
database files, so this section will focus on best practices for creating
databases and some of the important database properties to set during
database creation.

One of the critical things overlooked when creating a database is the file
growth and max size. Beginning with SQL Server 2016, the default
autogrowth for both the data file and transaction log file is 64 MB. When
creating the database, it is recommended that you make the data files as large
as possible, based on the maximum amount of data you initially expect in the
database.

It is also recommended to specify a maximum file size so that the database
does not take up the entire disk space, especially if the data file is on the OS
disk. Best practice states to put the data and transaction log files on separate
disks than the OS disk, but sometime this is not possible. Regardless of where
the data files reside, put a limit on the growth by specifying a maximum
growth file size so that space is left on the hard disk. You should also make
certain that the sum total for all databases is less than available disk space.

It is OK to let the data files grown automatically, but this can cause
fragmentation. Whenever possible, create the files or filegroups on as many
different physical disks. As recommended above, put space and resource
intensive objects in different filegroups. While this is a best practice, it still
will not solve the issue of fragmentation due to growth events, thus following
standard maintenance plans to address fragmentation is needed.

Figure 2-73 shows how to set the autogrowth and maximum file size via
SQL Server Management Studio. The UI sets these values in terms of MB, so
if the value you need to specify is in GB or larger, you’ll need to do that
math. For example, in Figure 2-73, the file growth is set to 1GB, or 1,024
MB. The maximum file size is set to 100 GB, or 102,400 MB.

Figure 2-73 Configuring database File Growth and Maximum File Size

Setting the file growth size and maximum file size is easier to do in T-SQL
when creating databases because you can specify the file growth in terms of
MB, GB, TB, and so on, and not have to worry about doing the math for the
UI. Again, when running this script, change the file location to the
appropriate drive letter and folder destination that matches your environment.

Click here to view code image

CREATE DATABASE [DemoDB]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = DemoDB, FILENAME = N'D:\Program Files\Microsoft SQL

Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoDB.mdf' , SIZE = 8192KB

, FILEGROWTH = 1GB)

 LOG ON

(NAME = N'DemoDB_log', FILENAME = N'D:\Program Files\Microsoft

SQL Server\MSSQL14.MSSQLSERVER\MSSQL\DATA\DemoDB_log.ldf' , SIZE

= 8192KB , FILEGROWTH = 1GB)

GO

While on the topic of user databases and transaction logs, a concept worth
discussing is that of VLFs, or Virtual Log Files. VLFs split physical database
log files into smaller segments, which are required for how log files work in
the background. VLFs are created automatically, but you still need to keep an
eye on them.

Virtual log files have no fixed size and there is no fixed number of virtual
log files for a physical log file. The database engine chooses the size of the
virtual log files dynamically when it is creating or extending the log files. The
size or number of virtual log files cannot be configured or set by an
administrator.

VLFs affect performance based on whether the log files are defined by
small size and growth_increment values. If these log files grow to a large size
because of many small increments they will have lots of virtual log files,
slowing down the database startup and log backup/restore operations. The
recommended approach is to assign the log file size to the final size required
and have a relatively large growth_increment value.

The model database is a template for all new databases, and SQL Server
uses a copy of the model database when creating and initializing new
databases and its metadata. All user-defined objects in the model database are
copied to newly created databases. You can add any objects to the model
database, such as tables, stored procedures, and data types. Thus, when
creating a new database, these objects are then applied to the new database.
The entire contents of the model database, including options, are copied to
the new database.

It is therefore recommended to set the initial database size, filegrowth, and
max size in the model database for all new databases created on the server,
along with other user-defined objects that are wanted in the new database.

A few more words about the model database. Tempdb is created every
time SQL Server is started, and some of the settings of the model database
are used when creating tempdb, so the model database must always be

present and exist on every SQL Server system. A recommended method is to
set the model database to what you want for tempdb and only allow new
databases to be created with specified file and filegrowth options.

We’ll close this section talking about some of database configuration
settings that can be set when creating a database. Some of the configuration
settings were discussed in Skill 2.2, including the settings found in the
Database Scoped Configurations section of the Database Properties dialog,
such as Max DOP, Query Optimizer Fixes, and Parameter Sniffing. These
configuration settings have an effect on the database performance, and it is
recommended that you review Skill 2.2 to understand how these settings
work and affect the performance of your database.

Figure 2-74 shows a few more database configuration settings, from which
we will discuss a few. In the Miscellaneous section:

Delayed Durability Applies to SQL Server transaction commits that
can either be fully durable (the default), or delayed durable which is also
known as a lazy commit. Fully durable transaction commits are
synchronous and are reported as committed only after the log records are
written to disk. Delayed durable transactions are asynchronous are
report a commit before the transaction log records are written to disk.
Is Read Committed Snapshot On Controls the locking and row
versioning behavior of T-SQL statements via connections to SQL
Server.

In the Recovery section:
Page Verify This setting pertains to data-file integrity. When this value
is set to CHECKSUM, the SQL Server engine calculate the checksum
over the contents of the whole page and stores the value in the page
header when the page is written to disk. When the page is run, the
checksum is recomputed and compared to the checksum value stored in
the page.

In the State section:
Database Read-Only Specifies whether the database is read-only.
When the value is true, users can only read data, they cannot modify
data or database objects.
Restrict Access Specifies which users may access the database. Values

include Multiple, Single, and Restricted. Normal is the default setting,
which allows multiple users to connect. Single is for maintenance and
allows a single user to connect at any given time. Restricted allows only
members of the db_owner, dbcreator, or sysadmin roles to use the
database.

Figure 2-74 New Database properties dialog

Turning our attention to the Page Header of the database properties dialog,
there are a couple of options to point out there.

Recovery Model Specifies one of the models for recovering the

database: Full, Bulk-Logged, or Simple.
Compatibility Level Specifies the version of SQL Server that the
database supports.

An example of both Recovery Model and Compatibility Level. In Figure
2-75, the AdventureWorks2014 database has been restored to a computer
running SQL Server 2017. The recovery model is Simple and the
Combability level is set to SQL Server 2014.

Figure 2-75 Compatibility level of a restored SQL Server 2014 database

Similarly, the WideWoldImports sample database was downloaded and
restored to the same SQL Server 2017 instance. When restored, the recover
model is also Simple and the Compatibility level is set to that for SQL Server
2016.

Figure 2-76 Compatibility level of a restored SQL Server 2016 database

Database recovery models are designed to control transaction log
maintenance. In SQL Server, all transactions are logged, and the Recovery
Model database property controls how the transactions are logged and
whether the log allows backing up and what kind of restore operations are
available. When creating and managing a database, the recovery model can
be switched at any time.

With Simple, there are no log backups. With Full, log backups are required
and no work is lost due to a lost or damaged data file, Full allows data
recovery from an arbitrary point in time.

Manage system database files
When installed, SQL Server includes, and maintains, a set of system-level
databases often called system databases. These databases control the overall
operation of a single server instance and vigilant care must be taken to ensure
they are not compromised.

Depending on your installation options, you will see a list of system
databases within the System Databases node in the Object Explorer window
in SQL Server Management Studio. A typical installation of a SQL Server
instance will show the four common system databases as shown in Figure 2-
77.

Figure 2-77 SQL SERVER SYSTEM DATABASES

A complete list of system databases is summarized in Table 2-2.

Table 2-2 Backup best practices of the System Databases

System
Database Description Backup

master Contains all system-level information for SQL
Server Yes

model Template for all databases created on the SQL
Server instance Yes

Used by the SQL Server Agent for scheduling

msdb alerts and jobs. Also contains backup and restore
history tables.

Yes

tempdb
Holds temporary or intermediate result sets.
Created when SQL Server starts, deleted when
SQL Server shuts down.

No

distribution
Exists only if SQL Server is configured as a
Replication Distributor. Stores all history and
metadata for replication transactions.

Yes

resource
Read-only database that resides in the
mssqlsystemresource.mdf file, which contains
copies of all system objects.

No

The Backup column in Table 2-2 provides the suggested option for
whether the system database should be backed up. The master database
should be backed up quite frequently in order to protect the data and instance
environment sufficiently. It is recommended that the master database be
included in a regularly scheduled backup plan. It should also be backed up
after any system update.

The model database should be backed up only as needed for business
needs. For example, after adding user customization options to the model
database, you should back it up.

The msdb database should be backed up whenever it is updated, such as
creating alerts or jobs. A simple recovery model and back up is recommended
for the msdb database as well.

Configure TempDB
TempDB is a system database that is a global resource to all user connected
to a SQL Server instance.

TempDB is used by SQL Server to do and hold many things among which
is the following:

Temporary user objects Objects that are specifically created by a user,
including local or global temporary tables, table variables, cursors, and
temporary stored procedures.
Internal objects Objects that are created by the SQL Server engine such

as work tables to store intermediate results for sorting or spooling.
Row versions Items that are generated by data modification transactions
in a database that uses read-committed row versioning isolation or
snapshot isolation transactions. Row versions are also generated by data
modification transactions for features, including online index operations.

Configuring tempdb is crucial for optimal SQL Server database
performance. Prior to SQL Server 2016, the SQL Server installation would
create a single tempdb file and associated log. However, starting with SQL
Server 2016, the SQL Server installation allows you to configure the number
of tempdb files, as shown in Figure 2-78.

The recommended practice for tempdb is to create multiple database files,
one per logical CPU processor, but not more than eight. By default, the SQL
Server installation does this for you and sets the number of tempdb files the
number of logic processors. If the machine has more than eight logical
processors, this should still default to eight. If the number of logical
processors is greater than eight, set the number to eight to begin.

Having tempdb configured during installation is preferred because it
prevents the additional, post-installation steps of configuring multiple tempdb
files and setting the size and growth for each file.

The TempDB tab also allows the configuration initial size and growth
configuration for all tempdb data and log files, as well as their location.
These files should be equal in size with the same autogrowth settings.

Figure 2-78 Configuring TempDB during SQL Server installation

While the SQL Server installation wizard is smart enough to figure out the
number of cores and logical processors the machine has, you can find the
number of cores and logical processors from Task Manager, as shown in
Figure 2-79.

You probably won’t need to change anything in the SQL Server setup, but
this information is good to know and verify in case you do want to make any
configuration changes to tempdb during installation.

Figure 2-79 Determining the logical process count

When the database is created, the physical and logical tempdb
configuration is shown in Figure 2-80.

Figure 2-80 Tempdb database files

For backward compatibility, the primary tempdb data logical name file is
called tempdev, but the physical file name is tempdb. Secondary tempdb
logical file names follow the temp# naming pattern, and the physical file
names follow the tempdb_mssql_# naming pattern. You can see this in both
Figure 2-80 and Figure 2-81.

Figure 2-81 Tempdb physical files

Best practice recommends to set the recovery model of tempdb to
SIMPLE, allowing tempdb to recover and reclaim log space requirements
small. It is also recommended to set the file growth increment to a reasonable
size. If set too small, tempdb will need to frequently expand which will have
a negative impact on performance. Best practice also states to place tempdb
on different disks from those where the user database is placed.

Thought experiment
In this thought experiment test your skills covered in this chapter. You will
find the answers to this in the next section.

You are a consultant to the Contoso Corporation. Contoso is a mid-sized
wholesaler, which currently has an internal customer management and
ordering system. Contoso has around 100 customers to track, and different
departments within Contoso manage different customer segments and at the
rate Contoso is growing, performance is important to keep pace with demand
and their expected workload.

Contoso’s CIO has made the decision to move their on-premises data
center to Azure, but has concerns about PCI compliance, security, and
performance. Contoso is looking for guidance around securing their data in
Azure to ensure their data and their customers sensitive data is safe-guarded.
Contoso is also looking to ensure that their application performance is just as
good or better than on-premises. For the most part, the security and
performance solutions should work both on-premises and in Azure as they

work to migrate.
With this information in mind answer the following questions.

1. What security feature should they consider to ensure data security that
works in both environments, requires minimal changes to the
application, and secures data in both in motion and at rest?

2. How should Contoso secure their data environment in Azure to ensure
only those who are allowed have access to the data?

3. What SQL Server feature should Contoso implement to be able to
troubleshoot query performance and query plans to help them with their
planned growth?

4. What SQL Server insights can Contoso use to get query improvement
information?

Thought experiment answers
This section provides the solution to the thought experiment. Each answer
explains why the answer is correct.

1. Contoso should implement Always Encrypted, which provides
encryption for data use, is supported in SQL Server and Azure SQL
Database, and requires little changes to the application.

2. Once the database and application has been migrated to Azure, Contoso
should implement firewall rules at both the server and database levels to
ensure that only those who are within the specified environment can
access the data. Additionally, with the logins migrated, Contoso should
implement Azure Active Directory to centrally manage the identities of
the database users.

3. Contoso should use Query Store to provide real-time insight into query
performance and provide easier troubleshooting of poor performing
queries. Query store is support in both SQL Server and Azure SQL
Database, so Contoso can use this feature as they plan for their move to
Azure.

4. Contoso should look at using existing missing index DMVs.

Chapter summary
Azure SQL Server firewall rules can be configured using T-SQL, the
Azure Portal, PowerShell, the Azure CLI, and a REST API.
Azure SQL Database firewall rules can only be configured using T-
SQL.
Azure firewall rules must be unique within the subscription.
NAT (Network address translation) issues could be a reason your
connection to Azure SQL Database is failing.
Always Encrypted is a must feature either in SQL Server or Azure SQL
Database to protect and safe-guard sensitive data.
If you are using Azure SQL Database, use Azure Key Vault for the
Always Encrypted key store provider.
Consider using Dynamic Data Masking to limit data exposure of
sensitive data to non-privileged users for both on-premises and in Azure
SQL Database.
Transparent Data Encryption (TDE) is similar to cell-level encryption,
but TDE will automatically encrypt and decrypt the data when it reads
and writes data to/from disk. CLE (cell-level encryption) does not.
TDE requires no changes to your application code.
TDE supports Bring Your Own Key.
Instant SQL Server performance can be obtained by changing the
Windows Power Option from Balanced to High Performance.
Use Performance Monitor and the % of Maximum Frequency counter to
track the current power level of the CPUs maximum frequency.
Consider configuring MaxDOP to improve database performance and
not leave it at its default configuration setting of 0.
MaxDOP can be configured at both the server level and the database
level. The database-level setting overrides the server-level setting for
that database.
The Query Store is an excellent way to easily capture performance
information from your SQL Server instance.

Consider using the missing index DMVs to identify potential missing
indexes to improve performance.
Change the Maximum server memory configuration option.
Configure Operators and Alerts to proactively be alerted to SQL Server
performance issues.
Configure tempdb appropriately to improve performance.

Chapter 3 Manage Storage

Managing storage and performing data maintenance on a regular schedule is
a critical aspect of ensuring proper performance and availability of SQL
Server, both on-premises and in the cloud. A comprehensive understanding
of the concepts and technologies is necessary to a successfully running SQL
Server environment, and thoughtful and appropriate care must be taken to
ensure an appropriate SLA is achieved.

Skills in this chapter:
Skill 3.1: Manage SQL Storage
Skill 3.2: Perform database maintenance

Skill 3.1: Manage SQL Storage
Storage is one of the key performance and availability aspects of SQL Server
regardless of the size of the instance and environment, and this applies to
both on-premises as well as the cloud. At the rate that server processing
power is increasing, storage can easily become a bottleneck. These
bottlenecks can be avoided with proper understanding of how SQL Server
uses storage, and this skill looks at the different storage options for SQL
Server and how to properly manage them for performance and availability.

This skill covers how to:
Manage SMB file shares
Manage stretch databases
Configure Azure storage
Change service tiers
Review wait statistics
Manage storage pools
Recover from failed storage

Manage SMB file shares
The SMB (Server Message Block) protocol is a network file sharing protocol
that provides the ability to access files or resources on a remote server or file
share and read/write to files on a network computer. For SQL Server, this
means that SQL Server can store use database files on SMB file shares
starting with SQL Server 2008 R2. Starting with SQL Server 2008 R2,
support for SMB supports SMB for stand-alone SQL Servers, but later
releases of SQL Server support SMB for clustered SQL Servers and system
databases.

Windows Server 2012 introduced version 3.0 of the SMB protocol, which
included significant performance optimizations. One of those optimizations
included improvements for small random read/write I/O operations, which is
idea for SQL Server. Another optimization is that it turns on MTU
(Maximum Transmission Units), which significantly increases performance
for large sequential transfers that SQL Server can again take advantage of
with SQL Server data warehouse and backup/restore operations.

The addition of the SMB 3.0 protocol in Windows Server 2012 also
includes a few performance and availability improvements, such as:

SMB Scale Out Administrators can create file shares that provide
concurrent direct access to data files on all nodes in a file server cluster
using Cluster Shared Volumes, allowing for improved load balancing
and network bandwidth.
SMB Transport Failover Clients can transparently reconnect to
another cluster node without interrupting applications writing data to the
file shares.
SMB Direct Provides high performance network transport via network
adapters that use Remote Direct Memory Access (RDMA). For SQL
Server, this enables a remote file server to resemble local storage.
SMB Multichannel Enables server applications to take advantage of all
available network bandwidth as well as be resilient to a network failure
through the aggregation of network bandwidth and fault tolerance
capabilities.

With the improvements to the SMB protocol, this means that SQL Server
environments running on Windows Server 2012 or higher (and with SQL
Server 2012 or higher) can now place their system database and create user
database data files placed on the SMB file shares, knowing it is backed by
network performance and integrity.

In order for SQL Server to use the SMB file shares, the SQL Server needs
to have the FULL CONTROL permissions and NTFS permissions on the file
SMB file share folders. The best practice is that you use a domain account as
the SQL Server services account, otherwise you simply need to grant the
appropriate permission to the share folder.

To use an SMB file share in SQL Server, simply specify the file path in the
form of a UNC path format, such as \\ServerName\ShareName\ or
\\ServerName\ShareName. Again, you need to be using SQL Server 2012 or
higher, and the SQL Server service and the SQL Agent service accounts need
to have FULL CONTROL and NTFS share permissions.

To create a database on an SMB share you can use SQL Server
Management Studio or T-SQL. As shown in Figure 3-1, in the New Database
dialog box, the primary data file and log file is placed on the default path, and
a secondary file is specified with a UNC path to an SMB share.

Figure 3-1 Creating a database with a secondary data file on an SMB file
share

There are a few limitations when using SMB file shares, including the
following, which is not supported:

Mapped network drives
Incorrect UNC path formats, such as \\...\z$, or \\localhost\...\
Admin shares, such as \\serername\F$

Likewise, this can be done in Azure using Azure Files, which create SMB
3.0 protocol file shares. The following example uses an Azure Virtual

Machine running SQL Server 2016 and an Azure storage account, both of
which have already been created. Another section in this chapter discusses
Azure storage and walks through creating a storage account.

Once the storage account has been created, open it up in the Azure portal
and click the Overview option, which shows the Overview pane, shown in
Figure 3-2.

Figure 3-2 Azure storage services

The Overview pane shows the available storage services, one of which is
the Files service, as shown and highlighted in Figure 3-2. More about this
service is discussed later in this chapter. Clicking the File service opens the
File service pane, shown in Figure 3-3.

Figure 3-3 The File Service pane

The File Service pane shows details about the file service and any file
shares that have been created. In this case, no files shares have been created
so the list is empty. Therefore, click the + File Share button on the top toolbar
to create a new file share, which opens the New File Share pane, shown in
Figure 3-4.

Creating a new file share is as simple as providing a file share name and
the disk size quota. The quota is specified in GB with a value up to 5120 GB,
and in this example a value of 100 GB was specified. Click OK when done,
which takes you back to the File Service blade that now displays the newly
created file share.

Once the file shares are created they can be mounted in Windows and
Windows Server, both in an Azure VM as well as on-premises. They can be
mounted using the Windows File Explorer UI, PowerShell, or via the
Command Prompt.

When mounting the drive, the operating system must support the SMB 3.0
protocol, and most recent operating systems do. Windows 7 and Windows
Server 2008 R2 support SMB 2.1, but both Windows Server 2012 and higher,
as well as Windows 8.1 and higher, all include SMB 3.0, although Windows

Server 2012 R2 as well as Server Core contain version 3.2, as does Windows
Server 2016.

Figure 3-4 Configuring a new file share

As previously mentioned, Azure file shares can be mounted in Windows
using the Windows File Explorer UI, PowerShell, or via the Command
Prompt. Regardless of the option, the Storage Account Name and the Storage
Account Key are needed. Additionally, the SMB protocol communicates over
TCP port 445, and you need to ensure your firewall is not blocking that port.

The storage account name and key can be obtained from the Access keys
option in your Azure storage account. For the storage key, either the primary
or secondary key will work.

Probably the easiest way to mount the drive is by using the Windows
Command Prompt and the Net Use command and specifying the drive letter,
account name, and account key, as shown in the code below. To execute,
replace the <account name> with the name of your storage account name, and
replace the <storage account key> with the primary key for the storage
account.
Click here to view code image

net use Z: \\< account name>.file.core.windows.net\datadisk1

/u:AZURE\<account name>

<storage account key>

Figure 3-5 shows the execution of the Net Use command to mount the
SMB file share as drive Z, specifying the account name and account key. You
will get an error if port 445 is not open on your firewall. Some ISPs block
port 445 so you will need to check with your provider.

Figure 3-5 Mounting the new file share with command prompt

Once the file share is mounted, you can view the new mounted drive in
Windows Explorer as a Network location, as shown in Figure 3-6.

Figure 3-6 The new file share in Windows Explorer

With the new SMB file share mounted and ready to use, files and folders
can be created on it, including SQL Server data files. For this example, a
folder on the file share called Data is created to add SQL Server secondary
data files.

Figure 3-7 shows how to create a new database on-premises with a data
file on a SMB file share. When creating a new database in SQL Server
Management Studio, in the New Database dialog box, the primary data file
and log file are placed on the default path, and a secondary file is specified

with a UNC path to the Azure file share.

Figure 3-7 Creating a database with a secondary data file on an Azure File
share with SMB

Similar to on-premises SMB file shares, the same permissions and security
requirements apply when using Azure Files. The SQL Server services still
needs FULL CONTROL permissions to the share, as well as NTFS. Once
this is configured, you are able to create databases using SMB file shares.

It used to be that using file shares as a storage option for data files was
unthinkable. The risks were too high; file shares were too slow causing
performance issues, data integrity was an issue, and the SMB protocol was
not kind to the likes of applications such as SQL Server, which had rigorous
I/O workloads.

However, this changed with the release of version 3.0 of the SMB
protocol, which addresses these issues by implementing the features and
capabilities discussed earlier, allowing SQL Server to be a prime target for
using SMB file shares.

Manage stretch databases
Stretch Database is a feature added to SQL Server 2016 with the goal of
providing cost efficient storage for your cold data. Hot data refers to data that
is frequently accessed on fast storage, warm data is data that is less-
frequently accessed data preferably stored on less-performant storage, and
cold data refers to rarely accessed data that is hopefully stored on slow
storage.

In the SQL Server environment, hot, warm, and cold data is typically
stored on the same storage devices for easy access, even though cold data is,

as mentioned, rarely accessed. The result of storing cold data causes the
database to fill up with unused data, and increases storage costs as the
hot/warm data becomes cold data.

Stretch Database aims to address these issues by allowing you to
dynamically “stretch” cold transactional data to the cloud where storage is
less expensive thus freeing up disk space locally. There are several benefits to
using Stretch Database:

Low cost By moving cold data from on-premises to the cloud, storage
costs can be up to 40 percent less.
No application changes Even though data is moved to the cloud, there
are no application change requirements to access the data.
Security Existing security features such as Always Encrypted and Row-
Level Security (RLS) can still be implemented.
Data maintenance On-premises database maintenance, including
backups, can now be done faster and easier.

One of the main keys to understand with Stretch Database is the second
bullet point; no application changes are required. How does this work? When
a table is “stretched” to Azure and the cold data moved into Azure SQL
Database, the application still sees the table as a single table, letting SQL
Server manage the data processing.

For example, let’s say you have an Orders table with orders that date back
five years or more. When stretching the Orders table, you specify a filter that
specifies what data you want moved to Azure. When querying the Orders
table, SQL Server knows which data is on-premises and which has been
moved to the cloud, and handles the retrieval of data for you. Even if you
execute a SELECT * FROM Orders statement, it retrieves the data from on-
premises as well as retrieves the data from Azure, aggregates the results, and
returns the data. Thus, there is no need to change the application.

Understand, though, that there is some latency when querying cold data.
The latency depends really on how much data you are querying. If you are
querying very little, the latency is very small. If you are executing SELECT
*, you might need to wait a bit more. Thus, the amount of data you determine
as “cold” should be an educated decision.

Another key point is that Stretch Database allows you to store your cold

data in Azure SQL Database, which is always online and available, thus
providing a much more robust retention period for the cold data. And, with
the cold data stored in Azure SQL Database, Azure also manages the storage
in a high-performance, reliable, and secure database.

Stretch Database must be enabled at the instance level prior to enabling
Stretch at the database or table level. Enabling Stretch Database at the
instance level is done by setting the remote data archive advanced SQL
Server option via sp_configure.

Click here to view code image

EXEC sp_configure 'remote data archive, '1';

GO

RECONFIGURE

GO

At the database level, enabling Stretch Database can be done one of two
ways; through T-SQL or through the Stretch Database Wizard, and Stretch
must be enabled at the database level before stretching a table. The easiest
way to enable stretch at the database level is through the Stretch Database
Wizard within SQL Server Management Studio. You can either right mouse
click the database for which you want to enable Stretch (Tasks > Stretch >
Enable), or right mouse click the specific table you want to stretch (Stretch >
Enable), as shown in Figure 3-8.

Either option starts the Stretch Database Wizard and enables stretch, the
only difference being that right-clicking on the table will automatically select
the table in the Wizard, whereas right-clicking on the database will not select
any tables and asks you which tables to stretch.

Figure 3-8 Launching the Stretch Database Wizard

The first page of the Stretch Wizard is the Introduction page, which
provides important information as to what you need in order to complete the
wizard. Click Next on this page of the wizard, and then the Select Tables
page appears, shown in Figure 3-9.

Figure 3-9 Selecting the tables to stretch to Azure

In the Select Tables page, select the tables you want to stretch to Azure by
checking the check box. Each row in the list of tables specifies whether the
tables has been stretched, how much of the table has been stretched, how
many rows are currently in the table, and the approximate size of the data.

Figure 3-9 shows that the Orders table has not been stretched, and that the
entire table, all 50,000 rows, will be stretched to Azure. A warning is also
given, so let’s address the warning first. The structure of the Orders table
looks like this:
Click here to view code image

CREATE TABLE [dbo].[Orders](

[OrderID] [int] IDENTITY(1,1) NOT NULL,

[CustomerID] [int] NOT NULL,

[SalespersonPersonID] [int] NOT NULL,

[PickedByPersonID] [int] NULL,

[ContactPersonID] [int] NOT NULL,

[BackorderOrderID] [int] NULL,

[OrderDate] [date] NOT NULL,

[ExpectedDeliveryDate] [date] NOT NULL,

[CustomerPurchaseOrderNumber] [nvarchar](20) NULL,

[IsUndersupplyBackordered] [bit] NOT NULL,

[Comments] [nvarchar](max) NULL,

[DeliveryInstructions] [nvarchar](max) NULL,

[InternalComments] [nvarchar](max) NULL,

[PickingCompletedWhen] [datetime2](7) NULL,

[LastEditedBy] [int] NOT NULL,

[LastEditedWhen] [datetime2](7) NOT NULL,

CONSTRAINT [PK_Sales_Orders] PRIMARY KEY CLUSTERED

(

[OrderID] ASC

) ON [PRIMARY]

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

Not very exciting, but the thing to point out is that the Orders table does
contain a Primary Key on the OrderID column. The warning is therefore
informing you that primary keys or unique keys are only enforced on the
rows in the local table and not on the table in Azure. Fair enough, so we can
move on from that.

The next item of importance is the Migrate column. By default, all the
rows of a selected table, the entire table, are set to be migrated to Azure. This
is not what we want, recalling from the earlier hot data/cold data discussion.
The goal with Stretch Database is to migrate only cold data to Azure; things
like closed orders, or orders passed a certain data (order history), for
example.

To fix this, click the Entire Table link, which opens the dialog shown in
Figure 3-10. This dialog allows you to apply a filter to specify which rows
are to be migrated to Azure. To do this, select the Choose Rows option, and
then provide a name for the filter function. This function does not need to
already exists. Next, define the WHERE clause filter by picking a column
from the table on which to filter, specifying the operator, and then providing
a value.

Figure 3-10 Configuring the rows to migrate to zure

In this example, the OrderDate column is being used as the filter for the
WHERE clause, specifying that any order older than January 1, 2017 should
be migrated to Azure. To test the query, click the Check button, which checks
the function by running a sample query that is displayed in the text box below
the filter. This text box is read only and not editable. It is for display purposes
only. If the sample query returns rows, the test is reported as successful and
you can click Close.

The Migrate column back, the Select tables page of the wizard now shows
the name of the function it will use to migrate the data to Azure, as shown in
Figure 3-11.

Figure 3-11 Configured Select Tables page of the Stretch Database Wizard

Click Next to continue with the wizard, which shows the Configure Azure
page, shown in Figure 3-12. The Configure Azure page is where you specify
the region in which to either create a new Azure SQL server or select an
existing one and in which region, and then supply the credentials for the new
or existing server.

Figure 3-12 Selecting and configuring the Azure server

The wizard asks you to sign in to your Azure account in order to access the
necessary information, such as existing servers if you have selected that
option, such as this example. Once the Configure Azure page is configured,

click Next, which displays the Secure credentials page, shown in Figure 3-13.

Figure 3-13 Providing a database master key password

Enter, and confirm, a password on the Confirm Credentials page. As part
of the Stretch migration, the wizard creates a database master key. This key is
used to secure the credentials that Stretch Database uses to connect to the
remote database in Azure.

If the wizard detects an existing database master key, it only prompts you
for the existing password. Otherwise it creates a new key and the wizard
prompts you to enter and confirm a password. Click Next to move to the
Select IP address page of the wizard, shown in figure 3-14.

Figure 3-14 Providing the IP address for the database-level firewall rule

As reviewed in Chapter 2, access to an Azure SQL Database is restricted to
a set of known IP addresses through a set of firewall rules. Firewall rules
grant access to a database or databases based on the originating IP address of

each request. As such, the Select IP Address page of the wizard provides the
option to use the public IP address of your SQL Server, or a manually
specified IP address range. The recommended option is to manually specify
the IP address. The wizard creates the appropriate database-level firewall rule
in Azure to allow SQL Server to communicate with the SQL Database in
Azure.

Click Next to go to the Summary page, review the details, and then click
Next to begin the migration and view the Results page, shown in Figure 3-15.

Figure 3-15 Completed Stretch Database migration

As you can see in Figure 3-15, there are quite a number of steps. The target
database was created on the specified Azure SQL server, the database master
key created, the firewall rule created, the function created on the local SQL
Server, and then the migration began.

What is interesting to note is that this wizard completed before the
migration was 100 percent complete; you’ll see that shortly. However, the
key point is that Stretch was configured on both ends, on-premises and the
cloud, and the migration kicked off. To verify the migration process, connect
to the Azure SQL server in SQL Server Management Studio and expand the
databases node, wherein you see a Stretch Database-named Orders table, as
shown in Figure 3-16.

Figure 3-16 Stretched table in Azure within SQL Server Management
Studio

The stretched Orders table is like any other database. By default, a
Standard-tier SQL Database is created, but you can change the service tier to
get better performance if you plan on querying the data frequently. However,
querying the data frequently sort of defeats the purpose of Stretch Database
and cold storage. Thus, you need to decide what the appropriate performance
level you need is, and if the default is too much or too little. Service tiers are
discussed later in this chapter.

However, because it is a normal database, you can connect to it via SQL
Server Management Studio and query the data and see how much data is in
there. Because the Stretch Wizard completed prior to 100 percent data
migration (which is by design), the data is migrated to Azure over a period of
time. Depending on how much data is being migrated, the migration process
could be quick, or it could take a while.

There is a better way to see what is going on with the Stretch environment,
including the number of rows in each table, the status, and troubleshoot each
stretch-enabled database. The Stretch Database Monitor is built into SQL
Server Management Studio, and you can get to it by right-clicking the
database that has been stretched, and selecting Tasks -> Stretch -> Monitor
from the context menu, as shown in Figure 3-17.

Figure 3-17 Opening the Stretch Database monitor

The Stretch Database Monitor, shown in Figure 3-18, has two sections.
The upper section of the page displays general information both of the on-
premises SQL Server and the remote Azure SQL database. The lower portion
of the monitor page displays the status data migration for each stretch-
enabled table in the database.

Figure 3-18 The Stretch Database Monitor

The monitor page refreshes every 60 seconds, thus if you watch the
monitor page long enough you see the Local Rows number decrease and the
Rows In Azure number increase, until all the rows that match the filter
criteria have been migrated to Azure.

Stretch Database can be disabled either through SQL Server Management
Studio or via T-SQL. There are two options when disabling stretch, bringing
the data in Azure back to on-premises, or leaving the data in Azure. Leaving
the data in Azure abandons the remote data and disables stretch completely.
In this scenario, you have data in two locations but not stretched
environment. Meaning, you now have to execute a second query to access the
cold data.

Bringing the data back to on-premises copies, not moves, the data from
Azure back to on-premises and disables stretch. Again, you now have data in
two locations, but in this case, you have the same data in two locations. In
addition, this option incurs data transfer costs because now you have data
leaving the data center.

You should gather from these two scenarios that disabling stretch does not
delete the remote table or database in Azure. Thus, if you want to
permanently disable stretch for a table, you need to manually delete the
remote table.

To disable Stretch, right-click the table you want to stop stretching and
select Stretch -> Disable, then select the appropriate option. The Recover
Data And Disable Stretch dialog, shown in figure 3-19, shows that Stretch
has been disabled successfully.

Figure 3-19 Disabling Stretch Database

However, if you selected the option to bring data back from Azure, the
migration of data back to on-premises is so the actual disabling of Stretch
might take a bit depending on how much data is in Azure.

It was mentioned earlier about the difference between hot, warm, and cold
data, with cold data typically stored on a slower storage option. One of the
great things about Stretch Database is that as a storage option, part of
managing Stretch Database is selecting the performance level of the remote
storage, which in this case, is an Azure SQL database. The different service
tiers and performance levels are discussed later in this chapter.

Identifying databases and tables for Stretch Database
One of the main goals of Stretch Database is to provide cost efficient storage
for your cold data. The question then becomes how to identify tables that
would make good Stretch Database candidates. While there is no hard, fast
rule, the general rule of thumb is any transactional table with large amounts
of cold data. For example, the table used in this chapter contains an
OrderDate column, and stored orders that date back many years. This
example simply says “any order with an order date older than 1/1/2017” is
considered cold data. Another approach would have been to include an
OrderStatus column, with values of “open,” “closed,” “Pending,” and so on.
In this situation we could have defined the filter as any order with an order
status of “closed” as cold and migrated to Azure.

Any “history” table is a good candidate for stretch. SQL Server also

introduced a feature called Temporal tables, which is a system-versioned
temporal table designed to keep a full history of data changes for each point-
in-time analysis. These tables are excellent candidates for stretch as you can
migrate all or part of the associated history to Azure.

Stretch Database limitations
Stretch Database does have a few limitations that prevents a table from being
stretched. They are:

Tables
Tables that have more than 1,023 columns or 998 indexes
FileTables or tables that contain FILESTREAM data
Replicated tables, or tables that use Change Tracking or Change
Data Capture
Memory-optimized tables

Indexes
Full text
XML
Spatial
Indexed Views

Data types
sql_variant
XML
CLR
Text, ntext, image
timestamp
Computed columns

Constraints
Default constraints
Foreign key constraints that reference the table

Likewise, remote tables have limitations. As reviewed earlier, stretch-

enabled tables do not enforce primary keys or unique constraints. You also
cannot update or delete rows that have been migrated, or rows that are
eligible for migration.

Configure Azure storage
Azure storage is a managed service providing enterprise-ready storage
capabilities. Azure storage is comprised of three storage services; Blob, File,
and Queue. Until recently, Table storage was also a part of Azure storage, but
Azure Table storage is now part of Azure Cosmos DB.

The goal with Azure storage is to provide an array of storage options that
are highly available, scalable, secure, and redundant. Azure storage provides
this by implementing an architecture that allows for the storage and access of
immense amounts of data. Figure 3-20 shows the Azure storage architecture
at a high level.

Figure 3-20 Windows Azure Storage architecture

As shown in Figure 3-20, Azure storage consists of several components:
Storage Stamps A cluster of N racks of storage nodes, each rack is built
out as a separate fault domain. Clusters range from 10 to 20 racks.

Stream Layer Stores the bits on disk and is responsible for distributing
and replicating the data across multiple servers for data durability with
the stamp.
Partition Layer Provides scalability by partitioning data within the
stamp. Also provides transaction ordering and caching data to reduce
disk I/O.
Front-Ends Comprised of a number of stateless servers, is responsible
for handling incoming requests. Is also responsible for authenticating
and authorizing the request.
Location Service Manages all of the storage stamps, and the account
namespace across the stamps. This layer also allocates accounts to
storage stamps and manages them across the stamp for disaster recovery
and load balancing.

The Location Service tracks and manages the resources used by each
storage stamp. When a request for a new storage request comes in, that
request contains the location (region) in which to create the account. Based
on this information, the Location Service selects the storage stamp within that
location best equipped to handle the account and selects that stamp as the
primary stamp (based on load across stamps and other criteria).

The Location Service stores the account metadata in the selected stamp,
informing the stamp that it is ready to receive requests for that account. The
Location Service then updates the DNS, allowing incoming requests to be
routed from that account name to that storage stamps VIP (Virtual IP). The
VIP is an IP address that the storage stamp exposes for external traffic.

Thus, to use any of the storage services of Azure Storage you must first
create an Azure Storage account. Azure Storage accounts can be created
using the Azure portal, or by using PowerShell or the Azure CLI.

The New-AzureRmStorageAccount PowerShell cmdlet is used to create a
general-purpose storage account that can be used across all the services. For
example, it can be used as shown in the code snippet below. Be sure to
replace <storageaccountname> and <resourcegroupname> with a valid and
available storage account name and resource group in your subscription.
Click here to view code image

New-AzureRmStorageAccount

-ResourceGroupName "<resourcegroupname>"

-Name "<storageaccountname>"

-Location "West US"

-SkuName Standard_LRS

-Kind Storage -EnableEncryptionService Blob

The Azure CLI is similar (replacing <storageaccountname> and
<resourcegroupname> with a valid and available storage account name and
resource group in your subscription):
Click here to view code image

az storage account create --name <storageaccountname> --resource-

group <resourcegroupname> --location eastus --sku Standard_LRS --

encryption blob

Both PowerShell and the Azure CLI can be executed directly from within
the Azure Portal. However, this example shows how to create the Storage
account in the Azure portal. Within the portal, select New -> Storage, and
then select the Storage account option, which opens the Create Storage
Account blade, shown in Figure 3-21.

Figure 3-21 Creating and configuring an Azure storage account

Configuring Azure storage appropriately is important because there are

several options, which can help with performance and availability.
Name The name of the storage account. Must be unique across all
existing account names in Azure, and be 3 to 24 characters in length of
lowercase letters and numbers.
Deployment Model Use Resource Manager for all new accounts and
latest Azure features. Use Classic if you have existing applications in a
Classic virtual network.
Account Kind General purpose account provides storage services for
blob, files, tables, and queues in a unified account. The other account
option, Blob Storage, are specialized for storing blob data.
Performance Standard accounts are backed by magnetic drives and
provide the lower cost per GB, and are best used where data is accessed
infrequently. Premium storage is backed by SSD (solid state drives) and
provide consistent, low-latency performance. Premium storage can only
be used with Azure virtual machine disks for I/O intensive applications.
Replication Data in Azure storage is always replicated to ensure
durability and high availability. This option selects the type of
replication strategy.
Secure Transfer Required When enabled, only allows requests to the
storage account via secure connections.

When selecting the Blob Storage Account kind, the additional
configuration option of the Access tier is available, with the options of
choosing Cool or Hot, which specifies the access pattern for the data, or how
frequently the data is accessed.

The Virtual network option is in Preview; thus, it is left disabled for this
example. However, this configuration setting grants exclusive access to the
storage account from the specified virtual network and subnets.

It should be noted that the Performance and Replication configuration
settings cannot be changed once the storage account has been created. As
mentioned, unless you are using storage as virtual machine disks, choosing
the Standard option is sufficient.

Focusing the Replication configuration option, there are four replication
options:

Locally Redundant Replicates your data three times within the same

datacenter in the region in which you created the storage account.
Zone-Redundant Replicates your data asynchronously across
datacenters with your region in addition to storing three replicas per
local redundant storage.
Geo-Redundant Replicates your data to a secondary region that is at
least hundreds of miles away from the primary region.
Read-Access Geo-Redundant Provides read-only access to the data in
the secondary location in addition to the replication across regions
provided by geo-redundant.

In 2014, Azure released the Resource Manager deployment model, which
added the concept of a resource group which is essentially a mechanism for
grouping resources that share a common lifecycle. The recommended best
practice is to use Resource Manager for all new Azure services.

Once the Create storage account page is configured, click Create. It doesn’t
take long for the account to be created, so the storage account properties and
overview panes, shown in Figure 3-22, will open.

The Overview pane contains three sections; the top section is the Essentials
section that displays information about the storage account, the middle
section shows the services in the storage account (Blobs, Files, Tables, and
Queues), and the lower section displays a few graphs to monitor what is
happening within the storage account, including total requests, amount of
outgoing data, and average latency.

Figure 3-22 Azure storage account overview

When the account is created, a set of access keys is generated, a primary
and secondary key. Each storage account contains a set of keys, and they can
be regenerated if ever compromised. These keys are used to authenticate
applications when making requests to the corresponding storage account.
These keys should be stored in Azure Key Vault for improved security, and
best practice states that the keys be regenerated on a regular basis. Two keys
are provided so that you can maintain connections using one key while
regenerating the other.

Figure 3-23 shows the Access Keys pane, which shows the two access
keys and their corresponding connection strings. When regenerating keys, the
corresponding connection strings are also regenerated with the new keys.
These keys are used to connect to any of the Azure storage services.

Figure 3-23 Retrieving the Azure storage account keys and connection
strings

As shown in Figure 3-22, creating an Azure storage account comes with
storages services for Blobs, Files, and Queues. Tables is also listed but it is
recommended that the new premium Azure table experience be used through
Azure Cosmos DB.

Blobs
The Azure Blob service is aimed at storing large amounts of unstructured
data and accessed from anywhere. The types of files that can be stored
include text files, images, videos, and documents, as well as others. The Blob
service is comprised of the following components:

Storage Account The name of the storage account.
Container Groups a set of blobs. All blobs must be in a container.
Blob A file of any time and size.

Thus, a storage account can have one or more containers, and a container
can have one or more blobs. An account can contain an unlimited number of
containers, and a container can contain an unlimited number of blobs. Think
of the structure much like that of Windows Explorer, a folders and files
structure with the operating system representing the account.

Because blobs must be in containers, let’s look at containers first. Back in
the Overview pane for the storage account, shown in Figure 3-22, click the
Blobs tile, which opens the Blob service pane, shown in Figure 3-24. The
Blob service pane displays information about the storage account and blob
service and lists any containers that exist within that storage account. In this

example, the storage account has recently been created so no containers have
been created yet. To create a container, click the + Container button on the
top toolbar in the Blob service pane, shown in Figure 3-24, which opens the
New Container dialog shown in Figure 3-25.

Figure 3-24 The Azure blob service pane

Adding and configuring a new container is as simple as providing a
container name and specifying a public access level, as you can see in Figure
3-25.

Figure 3-25 Adding a new blob service container

Container names must be lower case and begin with a letter or number, and
can only contain letters, numbers, and the dash character. Container names
must be between three and 63 characters long, and each dash must be
immediately preceded by and followed by a letter or number.

As you can see in Figure 3-25, there are three public access level types.
The public access level specifies if the data in the container is accessible to
the public and how it is accessible.

Private The default value that specifies that the data within the
container is available only to the account owner.
Blob Allows public read access for the blobs within the container.
Container Allows public read and list access to the contents of the
entire container.

The public access level setting you choose therefore depends on the
security requirements of the container and the data within the container. Click
OK on the New Container dialog, which returns you to the Blob service pane
now showing the newly added container, as shown in Figure 3-26.

Figure 3-26 The blob service pane listing a container

Clicking anywhere on the newly created blob opens the container pane for
that particular blob. In Figure 3-27, clicking the Videos container opens the
container pane for the Videos container.

Figure 3-27 Listing the contents of the container

The container pane allows you to upload files to the container, delete the
container, view the container properties, and more importantly, define access
policies. In the container pane, click the Access policy button on the toolbar,
which opens the Access policy pane.

The Access policy pane shows defined access policies and if needed,
changes the public access level of the container. Leaving the public access
level where it is, there should be no policies defined, so click the Add Policy
button that opens the Add Policy dialog, shown in Figure 3-28.

Figure 3-28 Defining an access policy on a container

An access policy is defined on a resource, such as in this case, on a
container. The policy is used to provide a finer-grained access to the object.
When an access policy is applied to a shared access signature (SAS), the
shared access signature inherits the constraints of the policy.

For example, in Figure 3-28 the policy is defined with an identifier, with
all four permissions selected. The four permissions are Read, Write, Delete,
and List. A time limit has also been specified of one month, from 10/1 to
10/31.

A shared access signature provides delegated access to any resource in the
storage account without sharing your account keys. This is the point of shared
access signatures; it is a secure way to share storage resources without
compromising your account keys.

Shared access signatures cannot be created in the Azure portal, but can be
created using PowerShell or any of the Azure SDKs including .NET. The
idea is that you define the access policy in the portal (as you did in Figure 3-
28), and then apply the access policy to a shared access signature to define
the level of access.

A few words on blobs before moving on. Azure storage offers three types
of blobs:

Block Ideal for storing text or binary files such as documents, videos, or
other media files.
Append Similar to block blobs but are optimized for append operations,
thus useful for logging scenarios.
Page More efficient for I/O operations, which is why Azure virtual
machines use page blogs as operating system and data disks.

Page blobs can be up to 8 TB in size, whereas a single block blob can be
made up of up to 50,000 blocks with each block being 100 MB, totaling a bit
more than 4.75 TB in total size. A single append block can be made up of up
to 50,000 blocks with each block being 4 MB, totaling a little over 195 GB in
total size.

Blob naming conventions differ slightly from that of containers, in that a
blob name can contain any combination of characters but must be between
one and 1024 characters, and are case sensitive.

Files
Azure files provide the ability to create fully managed, cloud-based file
shares that are accessible with the industry standard SMB (Server Message
Block) protocol. We reviewed the SMB protocol earlier in this chapter, but as
a refresher, the SMB protocol is a network sharing protocol implemented in
Windows that provides the ability to access files or resources on a remote
server or file share and read/write to files on a network computer.

One of the major benefits of Azure files is that the file share can be
mounted concurrently both in the cloud as well as on-premises, on Windows,
Linux, or macOS. Azure files provide the additional benefit of having
additional disk space without the necessity of managing physical servers or
other devices and hardware.

Azure File shares are useful when you need to replace, complement, or
provide additional storage space to on-premises file servers. Azure file shares
can be directly mounted from anywhere in the world, making them highly
accessible. Azure Files also enable “lift and shift” scenarios where you want
to migrate an on-premises application to the cloud and the application has the
requirement of access to a specific folder or file share.

Earlier in this chapter you walked through how to create an Azure File, as
seen in Figure 3-4. In the Azure storage overview pane, click the Files tile,
which opens the File service pane, shown in Figure 3-29. Earlier you created
a file share so that share is listed in the list of file shares.

Figure 3-29 Azure storage file share

Clicking the file share, open the File Share pane, shown in Figure 3-30.
Via the File Share pane you can upload files to the share, add directories,
delete the share, update the quota, and obtain the connection information for
both Windows and Linux by clicking the Connect button.

Figure 3-30 Adding a folder to the Azure file share

In this example, we added a Data directory that was used earlier to add
secondary SQL Server data files. Clicking the directory provides the ability to
upload files to that directory, add subdirectories, and delete the directory.

The question then becomes one of when to use what service. When do you
decide to use Azure blobs, files, or even disks? Use the following points as a
guide.

Azure Blobs Your application needs streaming support or has
infrequent access scenarios to unstructured data, which needs to be
stored and accessed at scale, plus you need access to your data from
anywhere.
Azure Files You have a “lift and shift” scenario and you want minimal
to no application changes, or you need to replace or complement
existing storage.

Azure Disks apply to Azure IaaS virtual machines by allowing you to add
additional disk space through the use of Azure storage. To use Azure Disks,
you simply need to specify the performance type and the size of disk you
need and Azure creates and manages the disks for you.

Change service tiers
Azure SQL Database is a general-purpose, managed relational database in
Microsoft Azure that shares its code base with the SQL Server database
engine. As a managed service in Azure, the goal is to deliver predictable
performance with dynamic scalability and no downtime.

To achieve the predictable performance, each database is isolated from
each other with its defined set of resources. These resources are defined in a
service tier that are differentiated by a set of SLA options, including storage
size, uptime availability, performance, and price, as detailed in Table 3-1.

Table 3-1 Choosing a service tier

Basic Standard Premium Premium
RS

Target
workload

Development
and
Production

Development
and
Production

Development
and
Production

*Workloads
that can
stand data
loss

Max. DB
Size 2GB 1 TB 4 TB 1 TB

Max DTUs 5 3000 4000 1000
Uptime SLA 99.99% 99.99% 99.99% **N/A
Backup

retention 7 days 35 days 35 days 35 days

CPU Low
Low,
Medium,
High

Medium,
High Medium

IO
throughput Low Medium

Significantly
higher than
Standard

Same as
Premium

IO Latency Higher than
Premium

Higher than
Premium

Lower than
Basic
and Standard

Same as
Premium

Columnstore
indexing and
in-memory
OLTP

N/A N/A Supported Supported

* Data loss is up to 5 minutes due to service failures
** Not available while Premium RS tier is in preview

Choosing a service tier for our database depends primarily on the storage,
uptime, and performance requirements.

DTU
To understand performance in Azure SQL Database is to understand DTUs.
DTU, or Database Transaction Unit, is a blended measure of CPU, memory,
and I/O. The amount of resources determined per DTU was defined by an
OLTP benchmark workload designed and optimized for typical, real-world
OLTP workloads. When a performance tier is selected, the DTUs are set
aside and dedicated to your database and are not available to any other
database, thus the workload of another database does not impact your
database or the resources of your database, and likewise your workload does
not impact the resources or performance of another database. When your
workload exceeds the amount of resources defined by the DTU, your
throughput is throttled, resulting in a slower performance and timeouts.

Within each service tier is a set of different performance levels. The
following tables (Table 3-2 to Table 3-6) detail the different service tiers and
their performance levels.

Table 3-2 Basic Service Tier

Performance Level Basic
Max DTUs 5
Max concurrent logins 30
Max concurrent sessions 300

Table 3-3 Standard Service Tier

Performance Level S0 S1 S2 S3
Max DTUs 10 20 50 100
Max concurrent logins 60 90 120 200
Max concurrent sessions 600 900 1200 2400

Table 3-4 Continued Standard Service Tier

Performance Level S4 S6 S7 S9 S12
Max DTUs 200 400 800 1600 3000
Max concurrent logins 400 800 1600 3200 6000

Max concurrent sessions 4800 9600 19200 30000 30000

Table 3-5 Premium Service Tier

Performance Level P1 P2 P4 P6 P11 P13
Max DTUs 125 250 500 1000 1750 4000
Max concurrent
logins 200 400 800 1600 2400 6400

Max concurrent
sessions 30000 30000 30000 30000 30000 30000

Table 3-6 Premium RS Service Tier

Performance Level PRS1 PRS2 PRS4 PRS6
Max DTUs 125 250 500 1000
Max concurrent logins 200 400 800 1600
Max concurrent sessions 30000 30000 30000 30000

The Premium RS service Tier was announced and added in early 2017. It
is currently in preview and as such the specifics of the tier may change. The
Premium RS service tier was specifically designed for I/O intensive
workloads that need the premium performance but do not require the highest
availability guarantees.

It helps to understand the relative amount of resources between the
different performance level and service tiers, and the impact they have on the
database performance. The math is quite easy, in that, changing a service tier
for a database from a Premium P1 to a Premium P2 doubles the DTUs and
increases the performance level of the database by doubling the amount of
resources to the database.

As such, as you begin to gain insight into the performance implications a
specific service tier has for your database, you should begin to understand the
proper service tier your specific database needs and the potential affect that
will take place, either positive or negative, as you change between service
tiers.

Based on the above information, it should be obvious that you can change
service tiers for your database at any time. Setting the initial performance
level at database creation time is a good baseline, but workload demand
dictates the proper service tier and performance level for your database and
thus you can change it as needed.

In fact, a standard practice is to scale the database up during normal
business operating hours, and then scale it down during off hours, saving
costs dramatically. Changing service tiers has minimal downtime, typically
only a few seconds. Thus, scaling a database should be done at proper times
when it does not affect users.

Changing a service tier can be done via several methods, including via the
Azure portal, T-SQL, and PowerShell. In the Azure portal, select the database
for which you want to change the service tier, and in the Overview pane,
select the Pricing tier option, as shown in Figure 3-31.

Figure 3-31 Configuting the pricing tier for a database

The Configure Performance pane opens, shown in Figure 3-32, which
opens showing the current service tier for the database. The top section of the
Configure Performance displays the different service tiers via four tabs. The
tabs contain a description of the service tier and a start cost for the minimum
performance level of that service tier.

In this example, the current service tier is Basic with a maximum storage
of 2 GB. Using the slider, we can scale the storage from a maximum of 2 GB
to a minimum of 100 MB. For the DTU, the only option is 5 for the Basic
service tier so there is no option to change it. Given this configuration, we are
then presented with a cost for each item, plus a total monthly cost for the
database.

Figure 3-32 Configuring performance for a database

To change the service tier and configure a new performance level, simply
select the appropriate service tier on the top tabs, and then using the sliders,
select the performance tier (DTUs) and storage amount, as shown in Figure
3-33.

Figure 3-33 Changing the performance configuration for a database

Once you have configured your database with the new service tier and
performance level, click Apply. Changing the service tier can take anywhere
from several minutes to an hour or more depending on the size of the
database. Regardless on the length of time, the database will remain online
during the change.

A great way to monitor DTU usage for the database is via the DTU usage

graph on the Overview pane of the database in the Azure portal. By default,
the graph displays the DTU percentage, which shows the percentage of the
maximum DTUs being used over a period of time. Clicking on the graph
allows you to add additional metrics to the graph, including CPU percentage,
Data IO percentage, and more.

The service tier and performance level can also be changed via T-SQL, as
shown in the following statement below. You will need ALTER
DATABASE permissions to execute the statement. Ensure the database name
is correct if you named the database something different.

Click here to view code image

ALTER DATABASE [db1] MODIFY (EDITION = 'Premium', MAXSIZE = 1024

GB,

SERVICE_OBJECTIVE = 'P15');

In this example, the database performance tier is changed to the Premium
tier with a performance level of P15 and maximum storage of 1 TB.

Review wait statistics
When executing a query, SQL Server requests resources from the system to
execute the query. In a heavy workload environment where the database
system is extremely busy, these requests might compete for resources and
therefore the request might need to wait before proceeding. For example,
query B might need to wait for query A to release a lock on a resource it
needs.

As reviewed in Chapter 1, “Implement SQL in Azure,” SQL Server tracks
everything that any operation is waiting on. Thus, SQL Server tracks wait
information as wait statistics and summarizes and categorizes this wait
information across all connections in order to troubleshoot and monitor
performance issues and problems.

SQL Server includes to DMVs (Dynamic Management Views) through
which wait statistics are exposed:

sys.dm_os_wait_stats Aggregated, historical look at the wait statistics
for all wait types that have been encountered.
sys.dm_os_waiting_tasks Wait statistics for currently executing
requests that are experiencing resource waits.

sys.dm_exec_session_wait_status Returns information about all the
waits by threads that executed for each session. This view returns the
same information that is aggregated in the sys.dm_os_wait_status but
for the current session and includes the session_id.

There are more than 900 wait types in SQL Server, all of them important,
but some are more important than others. Luckily, this section does not
discuss all 900, but review the important and oft-looked at wait stats that can
help narrow down performance problems.

Common wait types
The most commonly encountered wait types are listed below. Let’s look at
what they are and why you might be seeing them listed, and how to address
them in some cases.

LCK_* This wait type means that one query is holding locks on an
object while another query is waiting to get locks on that same object.
For example, one query might be trying to update rows in a table while
another query is trying to read them. Blocking is occurring in the system
and sessions are waiting to acquire a lock.
CXPACKET While CXPACKET waits are not necessarily an
indication of a problem, they may be a symptom of a different problem.
The CXPACKET wait type has to do with parallel query execution and
typically is an indication that a SPID is waiting on a parallel query
process to start or finish.
PAGEIOLATCH_* These wait types are commonly associated with
disk I/O bottlenecks. Typically, this means that SQL Server is waiting to
read data pages from storage. If these pages were not cached in memory,
SQL Server has to get them from disk. A common root cause of this is a
poor performing query or the system not having enough memory.
ASYNC_NETWORK_IO Often incorrectly attributed to network
bottlenecks, this wait simply means that SQL Server has the results of a
query and is waiting for the application to consume the results. Or in
other words, SQL Server is waiting for the client application to consume
the results faster because the client app is not processing the results fast
enough. The fix for this is usually on the client (application) side.

SOS_SCHEDULER_YIELD This wait signifies that an individual task
needs more CPU time. The query could finish faster if it could get more
CPU power and the query needs more CPU resources; it does not mean
your server needs more CPU. If this wait type appears frequently, look
for reasons why the CPU is under pressure. Addressing this issue
involves relieving CPU pressure by upgrading the hardware and/or
removing existing CPU pressure.
OLEDB Means that the SPID has made a call to an OLEDB provider
and is waiting for the data to be returned. Addressing this wait type
includes checking Disk secs/Read and Disk secs/Write for bandwidth
bottlenecks and adding additional I/O bandwidth if necessary. Also,
inspect the T-SQL for RPC and linked server calls which can sometimes
cause bottlenecks.
WRITELOG Similar to the PAGEIOLATCH, this is a disk I/O
bottleneck for the transaction log. As insert/update/delete operations
take place, SQL Server writes those transactions to the transaction log
and is waiting for an acknowledgement from the transaction log of the
write request. This wait means that the transaction log is having a hard
time keeping up for several reasons, including a high VLF count or a
high frequency of commits.
PAGELATCH_* This wait pertains to non-IO waits for latches on data
pages in the buffer pool. Frequently associated with allocation
contention issues, this commonly occurs in tempdb when a large number
of objects are being created and destroyed in tempdb and the system
experiences contention.
THREADPOOL This thread is specific to the internal thread
scheduling mechanism within SQL Server, and means that there are no
available threads in the server’s thread pool, which can lead to queries
not being run.

There are a few more DMVs that can help in understanding these waits and
why you might be seeing these wait.

sys.dm_exec_requests Returns information about each request that is
currently executing within SQL Server
sys.dm_exec_sql_text Returns the text of the SQL batch that is
identified by the specified SQL_handle.

sys.dm_exec_text_query_plan Returns the Showplan in text format for
a T-SQL batch or for a specific statement within the batch.

Let’s put this to the test. The following query loops 500 times and executes
several select statements and executes a couple of stored procedures each
loop. It generates random numbers so that different plans are potentially
generated each execution. The following block of code is executed against
the WideWorldImporters database for SQL Server 2016.
Click here to view code image

DECLARE @counter int, @id int, @id2 int, @date_from DATETIME,

@date_to DATETIME;

SET @counter = 1;

WHILE @counter < 501

 BEGIN

 SET @id = (SELECT CAST(RAND() * 1000 AS INT))

 SET @id2 = (SELECT CAST(RAND() * 100 AS INT))

 SET @date_from = '2013-01-01';

 SET @date_to = '2016-05-31';

 SELECT * FROM sales.orders where OrderID = @id

 SELECT * FROM sales.Invoices where OrderID = @id

 SELECT * FROM sales.Invoices where CustomerID = @id2

 SET @date_from = ((@date_from + (ABS(CAST(CAST(NewID() AS

BINARY(8)) AS INT)) % CAST((@date_to - @date_from) AS INT))))

 SET @date_to = DATEADD(m, 1, @date_from)

 EXEC [Integration].[GetOrderUpdates] @date_from, @date_to

 EXEC [Website].[SearchForCustomers] 'GU', 100

 SET @counter = @counter + 1

 END;

GO

Before running this code, open a second query window in SQL Server
Management Studio and execute the following query. This query is a simple
query that shows current session waits and the T-SQL that is causing the
wait.

Click here to view code image

SELECT ws.*, t.text

FROM sys.dm_exec_session_wait_stats ws

INNER JOIN sys.dm_exec_requests er ON ws.session_id =

er.session_id

CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) t

You should only see a small handful of rows that should be of no concern,
so now you can execute the big block of code. Once this code is executing, it
runs for several minutes. While it is running, go back to the second query
window and execute the DMV query again, and this time you should see a
few more rows returned showing new waits and that the cause of the wait is
the execution of the stored procedure GetOrderUpdates, as shown in Figure
3-34.

Figure 3-34 Using Dynamic Management vVew to view wait statistics

Notice that the waits returned are many of the ones listed above, with the
biggest culprit being the ASYNC_NETWORK_IO wait, due to the fact that it
returns the results of each statement to the SSMS and the UI can’t keep up.
By letting it run longer and rerunning the DMV query, you’ll see that the
ASYNC_NETWORK_IO wait is still high, but the
SOS_SCHEDULER_YIELD wait is starting to creep up, as shown in Figure
3-35.

Figure 3-35 Monitoring waits using Dynamic Management View

We also see the WRITELOG wait appear in the second execution of the
DMVs, but the numbers are low so it is not a concern. The
SOS_SCHEDULER_YIELD wait might be a concern depending on the

application and workload, so this one would need to continue to be
monitored.

Simply monitoring waits for a few seconds does not yield a true measure
of what is going on, but it is a baseline and the idea is to continue to monitor
these waits over a period of time, even a week or more depending on the
scenario.

These waits apply to both on-premises SQL Server as well as SQL Server
in an Azure VM in Azure IaaS. As pointed out in Chapter 1, the one major
difference is that I/O performance tends to be more of a focus, thus the I/O
waits should be monitored frequently.

Azure SQL Database has a similar DMV called sys.dm_db_wait_stats that
returns information about all the waits encountered by threads during
execution at the database level. This DMV shows the waits that have
completed and does not show current waits. The majority of the same wait
types that exist in SQL Server also exist in Azure SQL Database and are
grouped by the type of waits.

Resource Waits Occur when a work requests access to a resource that is
not available because it is in use by another worker. For example, locks,
latches, and disk I/O waits.
Queue Waits Occurs when a worker is idle and waiting to be assigned.
External Waits Occurs when SQL Server is waiting for an external
event, such as a linked server query or an extended stored procedure to
complete.

Manage storage pools
Windows Server 2012 introduced a concept and functionality called storage
pools, which is the ability to group physical disks together to form a pool of
resource storage. The idea is that a pool is created and empty disks are added
to the pool. Once the pool is created, virtual disks can then be created called
storage spaces from the available capacity in the storage pools.

This can be done both on-premises as well as in an Azure IaaS virtual
machine, and the following example demonstrates how to create and manage
a pool in an Azure virtual machine running Windows Server.

To begin with, we use a Windows Server virtual machine that was

previously created. In the Azure portal, in the Overview pane, click the Disks
option, which lists the default operating system disk, but no additional data
disks have been added, as seen in Figure 3-36.

Figure 3-36 The managed disks blade in the Azure portal

To add additional data disks, click the Add Data Disk link at the bottom of
the Disks pane in the blue bar, which provides the option to create a disk, as
shown in Figure 3-37.

Figure 3-37 Creating a new managed disk in the Azure portal

Click the Create Disk link and the Create Managed Disk pane will display,
as shown in Figure 3-38. In the Create Managed Disk dialog, enter a disk
name, and provide the Resource Group, Account Type, Source Type, and
Disk Size.

Figure 3-38 Configuring a managed disk

The Account Type lets you select between premium SSD disks or standard
HDD disks. Because these are used as drives in virtual machines, the best
option is to select premium SSD for better performance. The Source Type
gives the option to create the disk from an existing source, including a
snapshot of another disk, a blob in a storage account, or just to create an
empty disk from no source. Select the None option to create an empty disk.
Leave the default size set to 1,023 GB, or 1 TB, and then click Create. This
adds the disk to the list of Data disks in the Data Disks pane.

Repeat this process to add a few more disks, as shown in Figure 3-39, and
then click Save on the Disks blade to save the disks to the virtual machine.

Figure 3-39 Saving managed disks

At this point, the focus is now on creating and managing the storage pool,
which is done within the virtual machine. Close the Disks blade in the portal
and click the Connect button on the toolbar in the Overview pane, which
downloads an RDP file for the VM and prompts you to log into the virtual
machine. Be sure that the VM is started, or start it if it has not been started.

Log into the virtual machine and the Server Manager dashboard
automatically opens, with the File And Storage Services option in the upper
left of the dashboard, as seen in Figure 3-40.

Figure 3-40 Windows Server Manager dashboard

The File and Storage Services is one of the many roles within Windows
Server and requires nothing but a full and working installation of the
operating system. The File and Storage Services within the dashboard lists all
disks and volumes currently on the machine. Click File And Storage
Services, and the Storage Pools option is presented in the upper left of the
dashboard, as shown in Figure 3-41.

Figure 3-41 Working with storage pools in Windows Server Manager

The Storage Pools page of the dashboard shows three windows: the list of
available virtual disks, the available physical disks, and the existing storage
pools, as shown in Figure 3-42.

Figure 3-42 Adding physical disks to a storage pool

The physical disks section of the Storage Pools page shows the four disks
created in the Azure portal, which are deemed “primordial,” meaning the
physical disks have been added to the server, but not yet added to a storage
space. Notice the disks show up as physical disks in the storage dashboard,
but they do not show up as disks in Windows Explorer, as seen in Figure 3-
43. This is because they have been added to the storage space and a new
volume has not been created.

Figure 3-43 Local drives in Windows Explorer

The first step is to create a storage pool by clicking Tasks in the upper right
of the Storage Pools window, and selecting New Storage Pool, shown in
Figure 3-44.

Figure 3-44 Adding a new storage pool

In the New Storage Pool Wizard, click Next on the Before You Begin
page, and then on the Storage Pool Name page, provide a name for the new
storage pool, as shown in Figure 3-45. The page also lists the initial
primordial pool from which the storage pools and storage spaces can be
created.

Figure 3-45 Specifying a storage pool name

Click next to select the physical disks to add to the storage pool. The four
disks created earlier are listed. Select them all, as shown in Figure 3-46.

Figure 3-46 Selecting the physical drives to add to the storage pool

The Allocation option, when selecting the physical disks, provides three
options: Automatic, Hot Spare, and Manual. The allocation options are the
default, and the disk space is allocated automatically. If you want to designate
a disk as a hot spare, select Hot Spare. A hot spare disk is a disk or group of
disks used to automatically or manually replace a failing, or failed, disk.

Click next to go to the Confirmation page of the wizard, and click Create
on the Confirmation page. After a minute or so the storage pool is created
containing the four physical disks, and the wizard displays the Results page.
Click Close on the New Storage Pool Wizard. At this point all that exists is a
storage pool containing the four disks, but it is not useful, so the next task is
to create a new virtual disk from the storage pool resources.

Thus, right-click the New Storage Pool, and select New Virtual Disk, as
shown in Figure 3-47.

Figure 3-47 Creating a new virtual disk from the storage pool

You are first prompted to select the storage pool from which to create the
virtual disk. Select the Storage Pool you just created, and click OK. The New
Virtual Disk Wizard begins with the Before You Begin page explaining what
a virtual disk is and what the wizard does. Click next to take you to the
Virtual Disk Name page, and supply a name for the virtual disk and an
optional description, and click Next.

The next step of the New Virtual Disk Wizard is the Enclosure Awareness
page. Enclosure awareness in storage spaces store copies of your data on
separate storage enclosures to ensure resiliency to the entire closure if it fails.
The Enclosure Awareness page of the wizard prompts you to enable
enclosure awareness, but this option is only enabled if your server has at least
three enclosures and the physical disks in each enclosure must have
automatic allocation. If this option is disabled in the wizard, click Next.

The Storage Layout page defines the resiliency of the data and this page of
the wizard prompts you to select the storage layout by selecting one of three
options: Simple, Mirror, or Parity.

Simple Data is striped across physical disks, maximizing capacity and
throughput, but has decreased reliability. Requires at least one disk and
does not protect from disk failure.
Mirror Data is striped across physical disks, creating multiple copies of
your data which increases reliability. Use at least two disks to protect

against single disk failure, and use at least five disks to protect against
two disk failures.
Parity Data and parity information are striped across physical disks,
increasing reliability but reducing capacity and performance to a degree.
Use at least three disks to protect against single disk failure, and use at
least seven disks to protect against two disk failures.

Figure 3-48 shows the Mirror option selected to ensure data reliability.
Click Next.

Figure 3-48 Selecting the storage layout type for the virtual disk

The Provisioning page of the wizard prompts you to select the provisioning
type. The provisioning type has to do with how the disk is provisioned and
the space on the disk allocated. The two options are Fixed and Thin.

Fixed The volume uses all the storage resources from the storage pool
equal to the volume size (specified on the next page of the wizard).

Thin The volume uses storage resources from the storage pool as
needed, up to the volume size (specified on the next page of the wizard).

This provisioning optimizes the utilization of available storage by over-
subscribing capacity with “just-in-time” allocation, meaning, the pool size
used by the virtual disk is the size of the files on the disk. This helps reduce
fragmentation tremendously. Fixed, on the other hand, acquires the specified
capacity at disk creation time for the best performance, but is more apt to
fragmentation.

Figure 3-49 Configuring the provisioning type for the virtual disk

Depending on the selection made on this page of the wizard determines the
options available on the Size page of the wizard. Selecting Thin on the
Provisioning page does not allow you to specify the Maximum size on
following page of the wizard.

Selecting the Maximum provisioning type allows you to either specify the
Maximum size of the disk, or allow you to specify a size up to the available

free space. In Figure 3-49 the Thin option is specified, and the Specify size
option is selected in the Size page of the wizard, as shown in Figure 3-50.
This allows the volume to use the storage pool resources as needed until the 2
TB is used (the value specified in the Specify size option).

Figure 3-50 Specifying the available disk space for the virtual disk

Click Next on the Size page of the New Virtual Disk Wizard, taking you to
the Confirmation page. Click Create on the Confirmation page to create the
virtual disk, which should take a few seconds. Once the virtual disk is
created, the Results page appears displaying the status of the virtual disk
creation.

At this point the virtual disk has been created based on the disk resources
in the storage pool, but it is not usable yet because a volume needs to be
created from the virtual disk.

At the bottom of the Results page, the check box Create A Volume When
This Wizard Closes should automatically be checked. Leave it checked and

click Close for the New Virtual Disk Wizard. The New Volume Wizard
automatically begins, and just like the previous two wizards, begins with a
Before You Begin page. Click Next on this page to take you to the Server
And Disk selection page, shown in Figure 3-51.

On the Server And Disk selection page, ensure the proper server and disk
is selected, and then click Next. The disk should be the virtual disk just
created and the server should be the server to which you are adding the
volume.

Figure 3-51 Creating a new volume from the virtual disk

On the Size page, specify the size of the volume being created. The
Volume size defaults to the maximum space available on the virtual disk but
you can change the size and the size type (TB, GB, or MB). Click Next.

On the Drive Letter page, specify a drive letter or whether you want to use
this volume as a mount point in an empty NTFS folder on another volume.
For this example, select Drive Letter and select an available drive letter, and

then click next.
On the File System Settings page, select the File System type, which

defines the format of the file system. Available options are NTFS and
Resilient File System. Select NTFS, and then select the appropriate allocation
unit size, and specify the volume label. For SQL Server, the format should be
NTFS and supports sizes of 512, 1024, 2048, 4096, 8192, 16K, 32K, and
64K. The allocation unit is the smallest amount of space that a file can
consume, and for SQL Server, the best setting for the allocation unit size
should be at least 64K for OLTP workloads, and 256K for data warehouse
workloads. SQL Server does I/O in extents, which is 8x8 pages, thus, 64K.

Provide a name for the volume (the Volume label), and then click Next.
On the Confirmation page, make sure the configuration settings are correct

and click OK to create the new volume. The new volume is now available, as
shown in both Windows Explorer and the Server Manager Dashboard, as
shown in Figure 3-52.

Figure 3-52 The new volume created from the storage pool and virtual disk

We can add and remove physical disks to an existing pool, and we can
remove the virtual disk if needed without messing with the storage in the
pool. However, the pool cannot be deleted until the virtual disk is removed.

Using storage pools instead of a traditional operating system striping
brings many advantages in terms of manageability and performance. It is
recommended that you use storage pools in both on-premises and Azure

virtual machines.

Recover from failed storage
Hardware reliability has drastically improved over the last decade or so. With
the improvements in drive, storage, and memory technologies, among others,
not only has performance increased significantly, but their dependability has
provided the needed confidence to run enterprise-level applications.

However, hardware is not perfect and will eventually fail. Reasons for
failure range from anything between normal wear and tear to environmental
factors and malicious behavior. As such, applications must be able to recover
from such failures, including applications such as SQL Server.

And while hardware reliability and dependability have improved, and SQL
Server continues to make improvements and enhancements, data loss is
unacceptable, regardless of the layer it is caused by. As such, proper
strategies need to be in place to be able to recover from the unexpected
failure of hardware, especially disk and storage, and insure data integrity
within SQL Server.

Recovering from failed storage constitutes a two-phase approach; first, the
recovery of the storage system and bringing it back online, and second, the
restoration of SQL Server and bringing its databases back online in a
transactionally consistent state. This section discusses the second phase of
recovering from failed storage, which focuses on ensuring that SQL Server
and its database can recover from any failure.

Checking database corruption
A huge part of database recovery is proactively checking for database
corruption long before corruption happens. Database corruption at a high
level is defined as a problem associated with the storage of the actual data at
the disk or IO sub-system level. In the majority of cases, corruption is due to
problems due to hardware failures, either with the drives, controllers, or even
software drivers.

A key tool in a proper recovery strategy is the DBCC CHECKDB function,
which checks the logical and physical integrity of all the objects in a
specified database. When recovering from any type of failure, including
corruption caused by failed storage, you need to know where the corruption is

in the database in order to fix it. Running CHECKDB returns a detailed
report as to the overall health and integrity and highlight issues. Review it
thoroughly to understand what the issues are and where the corruption is.
CHECKDB provides the necessary information as to what the problem is,
and in what object the corruption exists. A more detailed look at CHECKDB
can be found later in Skill 3.2.

Database backups
The biggest part of recovering from failed storage is the ability to restore the
databases to a proper functioning state with as little data loss as possible. This
means having an appropriate backup and restore strategy that is frequently
tested to ensure a recovery that is as smooth and painless as possible. The last
thing you want is to find out in the middle of a production recovery situation
that you have no backups or that your backups are worthless.

Backup and restore strategies should be customized to each particular
environment, taking into consideration including available resources, and
server and database workloads. A well-designed backup and restore strategy
maximizes data availability while minimizing data loss.

A backup strategy defines the type and frequency of backups, taking into
account the nature and speed of the hardware, how the backups are to be
tested, and where and how the backups are to be stored.

As a rule of thumb, database backups should follow these best practices:
Full backups In most cases, a full database backup should be performed
weekly. These can be performed online.
Differential Based on the most recent, previous full backup, a
differential backup captures only the data that has changed since that full
back.
Transaction log backups Transaction logs contain all of the recent
activity and can be used to restore a database back to a specific point in
time. They also can be performed online
System databases System databases contain important details about
logins, jobs, and, depending on your installation, SSIS and other critical
information. As such, you might consider backing system databases up
nightly or every other night.

A backup strategy is incomplete without backing up the system databases.
The system databases contain a lot of information, such as system
configuration and SQL Server job information. Depending on how frequent
your database changes are, you might consider a daily or weekly backup
frequency.

An optimal backup strategy depends on many factors that are specific to
each environment, but at the minimum the following aspects should be
considered:

The frequency at which data changes.
Size of the database and the amount of disk space a full backup takes.
Are database changes concentrated on a small subset of tables or a
broader part of the database?
Your RPO/RTO requirements.

The frequency at which a database ought to be backed up should be based
on your RPO and RTO requirements. RPO (Recovery Point Objective) is the
point in time to which you can recover data, meaning, it is the acceptable
amount of data loss. RTO (Recovery Time Objective) is how much time you
have to bring up a system form the time a disaster occurs.

Your backups will depend on what your RPO is. For example, if your RPO
is 15 minutes, you should take backups every 15 minutes or less.
Determining your RPO will come down to where your business can restart
and carry on. This information becomes the key component of your
organization’s risk appetite and helps in determining the amount of money
your organization is willing to spend on resilience. Every backup strategy and
recovery plan should be comprised of both a RPO and RTO.

An effective backup and restore strategy includes proper planning,
implementation, and testing. A backup strategy is not effective unless you
have successfully restored the databases and tested them in a restore
situation.

An old IT adage states: “A DBA is only as good as their last backup.” In
order to recover from any failure, especially hardware, a good backup, and
restore strategy is necessary, if not required. Once the storage is brought back
online, following your restore strategy should get you back up and running.

The section “Verify Database Integrity” in Skill 3.2 discusses both the

CHECKDB function and restoring a database to recover from corruption in
more detail.

Skill 3.2: Perform database maintenance
Database maintenance is a critical aspect in keeping a database running and
performing properly and smoothly. Regular data maintenance consists of
performing a set of tasks with the intent of ensuring proper data performance,
database availability, and resilience is maintained, appropriate security is in
place to ensure the integrity of the data, and more. This skill deals with the
performance maintenance aspects of a database and the tasks necessary to
ensure proper database performance.

This skill covers how to:
Monitor DMVs
Maintain indexes
Automate maintenance tasks
Update statistics
Verify database integrity
Recover from database corruption

Monitor DMVs
SQL Server comes with a set of DMVs (dynamic management views) to
diagnose and troubleshoot performance problems. Technically, they are
called DMOs (Dynamic Management Objects), which are either views or
functions. In this section, the DMO views that focus on performance are
categorized as follows:

Database
Execution
Index and IO
Transaction

Index and IO DMVs can be broken out into their own category, as seen in

the Microsoft documentation, but for purposes here they are combined for
simplicity. The following sections discuss the more commonly used DMVs.

Database
There are 10 DMVs that are specifically related to database performance
information, plus another five that are specific to Azure SQL Database and
SQL Data Warehouse. The three most commonly used DMVs to assist in
database performance are listed here.

sys.dm_db_file_space_usage Returns information about the space used
for each file in the database.
sys.dm_db_partition_stats Returns page and row count information for
each partition in the selected database.
sys.dm_db_session_space_usage Returns the number of pages
allocated and deallocated by each session for the database. This is
applicable only to the tempdb database.

The following query uses the sys.dm_db_partition_stats DMV to return the
size of the database in MB.
Click here to view code image

SELECT SUM(reserved_page_count)*8.0/1024 AS DBSize

FROM sys.dm_db_partition_stats;

GO

The sys.dm_db_partition_stats DMV provides information about the space
used to store and manage row data and is therefore useful for also providing
information on the size used by individual objects within the database. This
information can be used to determine how quickly the database is growing
and specifically how quickly objects are growing to determine if we have
further partitions that need to be created to improve performance.

As mentioned, there are a few DMVs unique to Azure SQL Database and
Data Warehouse, and the most commonly used three are listed below.

sys.dm_db_wait_stats Returns information about all the waits
encountered.
sys.dm_db_resources_stats Returns CPU, I/O, and memory
consumption information for an Azure SQL Database, one row for every

16 seconds.
sys.dm_db_operation_stats Returns information about operations
performed on the database.

An interesting piece of information is that the SQL Database monitoring
graph in the Azure portal obtains much of its information from these DMVs.
One of the graphs in the portal shows DTU utilization, and DTUs are based
on CPU, I/O, and memory. Thus, the DTU utilization metric in the
monitoring graph uses the sys.dm_db_resources_stats DMV for much of its
information.

Likewise, the information in the sys.dm_db_resources_stats DMV could
be used to determine the percentage of DTU usage for the selected database.

Click here to view code image

SELECT end_time,

(SELECT Max(v)

FROM (VALUES (avg_cpu_percent), (avg_data_io_percent),

(avg_log_write_percent)) AS

value(v)) AS [avg_DTU_percent]

FROM sys.dm_db_resource_stats;

Execution
There are over 40 DMVs that provide insight into execution-related activity
within the database. However, only a handful are commonly used to
troubleshoot database performance, which focus primarily on query
execution and are listed below.

sys.dm_exec_query_stats Provides aggregated performance statistics
for cached query plans.
sys.dm_exec_session_wait_stats Provides information about all the
waits encountered by threads that executed for each session.
sys.dm_exec_sql_text Shows the plain text of the SQL batch identified
by the SQL_handle.
sys.dm_exec_query_plan Shows the Showplan in XML format for the
SQL batch provided in the sql_handle.
sys.dm_exec_requests Returns information about every request
currently executing within the SQL Server.

sys.dm_exec_sessions Shows one row per authenticated session on SQL
Server. This is a server-scoped view containing information about all
active user connections and tasks.
sys.dm_exec_text_query_plan Returns the query plan in text format for
a T-SQL batch or a specific statement within the batch.
sys.dm_exec_connections Displays detailed connection information for
each established connection to the instance of SQL Server.

A couple of these can be put to use by using a query shown in Skill 3.1 that
loops a few hundred times executing several SELECT statements and
executing a couple of stored procedures.
Click here to view code image

DECLARE @counter int, @id int, @id2 int, @date_from DATETIME,

@date_to DATETIME;

SET @counter = 1;

WHILE @counter < 501

 BEGIN

 SET @id = (SELECT CAST(RAND() * 1000 AS INT))

 SET @id2 = (SELECT CAST(RAND() * 100 AS INT))

 SET @date_from = '2013-01-01';

 SET @date_to = '2016-05-31';

 SELECT * FROM sales.orders where OrderID = @id

 SELECT * FROM sales.Invoices where OrderID = @id

 SELECT * FROM sales.Invoices where CustomerID = @id2

 SET @date_from = ((@date_from + (ABS(CAST(CAST(NewID() AS

BINARY(8)) AS INT))

% CAST((@date_to - @date_from) AS INT))))

 SET @date_to = DATEADD(m, 1, @date_from)

 EXEC [Integration].[GetOrderUpdates] @date_from, @date_to

 EXEC [Website].[SearchForCustomers] 'GU', 100

 SET @counter = @counter + 1

 END;

GO

With the above query running in SQL Server Management Studio against
the WideWorldImporters database, open another query window and execute
the following T-SQL, which queries the sys.dm_exec_requests DMV to look
for any pending requests that are pending. The DMV is joined to the

sys.dm_exec_sql_text to find out the exact T-SQL statement that is awaiting
execution.
Click here to view code image

SELECT er.session_id, er.status, er.blocking_session_id,

er.wait_type, er.wait_time, er.wait_resource,

er.transaction_id, dest.text

FROM sys.dm_exec_requests er

CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) AS dest

WHERE er.status = N'suspended'

Executing this query shows that there is one request pending, as shown in
Figure 3-53.

Figure 3-53 Using Dynamic Management View to show pending requests

What is also returned in the query results is the wait type that provides
additional information as to why the statement is pending.

In addition to knowing what is being run in the database, it is good to
know who is connected and what they are doing. To find this information out
you can use the sys.dm_exec_session and sys.dm_exec_connections DMVs,
as shown in the following query.
Click here to view code image

SELECT

ec.client_net_address,

es.program_name,

es.host_name,

COUNT(ec.session_id) AS connection_count

FROM sys.dm_exec_sessions AS es

INNER JOIN sys.dm_exec_connections AS ec ON es.session_id =

ec.session_id

GROUP BY ec.client_net_address , es.program_name , es.host_name

ORDER BY es.program_name, ec.client_net_address;

Executing this query returns the location from where the connection is
coming from, the program name, and machine name, and the number of
connections coming from the host machine, as shown in Figure 3-54.

Figure 3-54 Viewing connections using Dynamic Management Views

Index and I/O
With a total of 13 index-related and I/O-related DMVs, it is not as many as
the number of execution DMVs, but the 13 still provide great insight into
database performance and how to address issues.

These index DMVs provide the insight into helping you provide the right
balance between too many and too few indexes and finding the sweet spot for
index performance. Fine-tuning indexes is an art and a delicate balance, and
thus the reason that the index-related DMVs, along with the wait stat DMVs,
are typically the most-used DMVs of any category.

Index-related DMVs help provide insight into creating and maintaining a
proper indexing strategy, as well as answer critical indexing and performance
tuning questions, such as what indexes exist but are never used or are no
longer in use, and the opposite, what indexes are missing that would improve

performance? These DMVs can also provide insight into how the current
indexes are being used.

I/O-related indexes provide pivotal information into the physical reads and
writes of the system, which is an expensive operation. SQL Server does not
manage the read and writes directly but instead passes that responsibility off
to the Windows I/O manager. While minimal physical I/O is unavoidable, the
less, the better. Thus, the most effective way to minimize I/O is to write
proper code and compliment it with the appropriate column indexes. Thus,
utilizing the appropriate I/O and index DMVs helps provide the insight into
how to tune the database.

The list below explains the commonly used index and I/O related DMVs to
troubleshoot database performance.

sys.dm_db_index_usage_stats Returns counts of the different types of
index operations and the time each type of operation was last performed.
sys.dm_db_missing_index_details Displays detailed information about
missing indexes.
sys.dm_db_missing_index_columns Shows information about table
columns that are missing an index.
sys.dm_db_index_physical_stats Returns size and fragmentation
information about the data and indexes of the specified table or view.
sys.dm_io_virtual_file_stats Shows I/O statistics for the data and log
files.
sys.dm_io_pending_io_requests Returns a row for each pending I/O
request.

The following examples show how to use a few of these DMs. The
following SQL statement queries a few columns from the Person.Person table
in the AdventureWorks database, filtering one of the columns in the SELECT
statement.
Click here to view code image

SELECT City, StateProvinceID, PostalCode

FROM Person.Address

WHERE StateProvinceID = 9;

GO

Once the above statement is executed, we can then run the following query
that combines some of the DMVs listed above;
sys.dm_db_missing_index_details, sys.dm_db_missing_index_columns, and
one more called sys.dm_db_missing_index_groups. When a query is
optimized by the query optimizer, missing index information is obtained and
returned when querying the missing index DMVs.
Click here to view code image

SELECT mig.*, statement AS table_name, column_id, column_name,

column_usage

FROM sys.dm_db_missing_index_details AS mid

CROSS APPLY sys.dm_db_missing_index_columns (mid.index_handle)

INNER JOIN sys.dm_db_missing_index_groups AS mig ON

mig.index_handle = mid.index_handle

ORDER BY mig.index_group_handle, mig.index_handle, column_id;

GO

Running the above query shows that query performance could be improved
by adding the missing indexes shown in Figure 3-55.

Figure 3-55 Finding missing indexes using Dynamic Management View

Now, it should be mentioned that every index recommended by the
missing index DMVs does not have to be added. In fact, best practice states
that they should not be added without doing some level of investigation.
Remember, over-indexing is also bad and can lead to bad performance
because too many indexes can be just as bad as not enough indexes, or even

worse. You’ll find that SQL Server is a bit enthusiastic about suggesting
“INCLUDE” columns, so the responsibility falls upon you to look at the
results and apply those that pertain to your consistent workload. Also, don’t
be afraid to remove an index if you don’t see the performance gains after
applying it.

Transaction
SQL Server provides 11 DMVs aimed at locating and identifying the
transactions that are causing locking and blocking issues and the sessions to
which they belong. The most commonly used DMVs are listed below.

sys.dm_tran_locks Shows information about currently active lock
manager resources.
sys.dm_tran_database_transactions Displays information about
transactions at the database level.
sys.dm_tran_session_transactions Shows related information for
transactions and their associated sessions.
sys.dm_tran_active_transactions Shows information about instance-
level transactions.
sys.dm_tran_current_transactions Displays a single row of state
information of the transaction in the current session.

An easy demo to show the dm_tran_locks in action is simply create a
locking situation. For example, in the tempdb database, create the following
table with a few rows of data.
Click here to view code image

CREATE TABLE table_lock

(

 c1 int, c2 int

);

GO

CREATE INDEX table_lock_ci on table_lock(c1);

GO

INSERT INTO table_lock VALUES (1,1);

INSERT INTO table_lock VALUES (2,2);

INSERT INTO table_lock VALUES (3,3);

INSERT INTO table_lock VALUES (4,4);

INSERT INTO table_lock VALUES (5,5);

INSERT INTO table_lock VALUES (6,6);

GO

Next, in the same query window, execute the following T-SQL.
Click here to view code image

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

SELECT c1 FROM table_lock WITH(holdlock, rowlock);

While the query is executing, open a second query window, type and
execute the following:

Click here to view code image

BEGIN TRAN

UPDATE table_lock SET c1 = 5

What happens is that the UPDATE is locked from executing because the
first session in the first query window has not been committed or rolled back.
To see this, execute the following query in a third query windows:
Click here to view code image

SELECT resource_type, resource_associated_entity_id,

request_status, request_mode,request_session_id,

resource_description

FROM sys.dm_tran_locks

--WHERE resource_database_id = 2

ORDER BY request_session_id

Figure 3-56 shows the results of the query in which we can see a lock by
the first session. This is signified by the request_mode type X, which means
the holding session has an exclusive lock and access to the resource, in this
case table_lock, and session 2 is waiting for the release of the lock.

Figure 3-56 Viewing locks using Dynamic Management Views

Maintain indexes
Index maintenance is vital for the welfare of your database and for the
wellbeing of a smooth-performing database. Ignoring index maintenance or
applying improper maintenance can significantly cripple database
performance and lead to maintenance headaches down the road.

There are several aspects of maintaining indexes and several tools in which
to perform the necessary maintenance tasks. The primary maintenance tasks
include:

Identifying and removing index fragmentation
Identifying and creating missing indexes
Identifying and removing unused indexes
Identifying and updating outdated indexes and column statistics

It would be nice if there was a single tool that could accomplish everything
in the list above, but there is not. Therefore, the above-mentioned tasks

require the use of two main tools; the Maintenance Plan Wizard and the
Database Engine Tuning Advisor. We’ll begin with the Maintenance Plan
Wizard.

Maintenance plan
The SQL Server Maintenance Plan Wizard creates and configures a
maintenance plan that the SQL Server Agent can run either singly or on a
regular schedule. These maintenance plans provide the ability to perform
needed maintenance on a number of tasks, including performing database
backups, index checks and rebuilds, database integrity checks, and more.

For indexes, the Maintenance Plan Wizard provides the ability to
reorganize and rebuild indexes that address the issue of index fragmentation.
Reorganizing indexes defragments the leaf level of clustered and non-
clustered indexes on tables by physically reordering the pages to match the
left-to-right order of the leaf nodes, and does this using minimal system
resources.

Rebuilding the index drops and recreates the index, removing
fragmentation and reclaiming disk space by compacting the pages, and then
reorders the index rows in contiguous pages. Rebuilding an index can be
done online or offline. Reorganizing an index is always done offline.

The question then becomes which method of defragmentation to use
(reorganize or rebuild), and the answer depends on the results returned by the
sys.dm_db_index_physical_stats system function. This function returns a
column called avg_fragmentation_in_percent, and the basic rule of thumb
suggests that if the value in this column is between five and 30, you can
reorganize the index. Anything over a value of 30 necessitates a rebuild.
Rebuilding indexes can be done online or offline, and reorganizing indexes is
always executed online. It is recommended that index rebuilds be done online
to achieve similar availability to that of index reorganization.

Very low levels of fragmentation (anything less than five percent) need not
be addressed because the benefit of removing the fragmentation typically
outweighs the cost of the reorganization or building of the index. However,
five percent of a billion rows is still a lot, so statistics will come in to play in
scenarios such as this to determine if a rebuild or reorg of an index is
necessary.

For example, the following query calls the
sys.dm_db_index_physical_stats system function, which takes a database and
table name as parameters. In this example the WideWorldImports database
and Sales.Invoice table is being passed to the function, as shown in the
following code.
Click here to view code image

DECLARE @db_id SMALLINT;

DECLARE @object_id INT;

SET @db_id = DB_ID(N'WideWorldImporters');

SET @object_id = OBJECT_ID(N'WideWorldImporters.Sales.Invoices');

SELECT object_id, index_id, index_type_desc, index_depth,

avg_fragmentation_in_percent,

fragment_count, avg_fragment_size_in_pages, page_count

FROM sys.dm_db_index_physical_stats(@db_id, @object_id, NULL,

NULL , 'LIMITED')

ORDER BY avg_fragmentation_in_percent DESC;

Figure 3-57 shows the results of this query, which shows 10 indexes that
exist on the table, eight of which have an average fragmentation count of
over 85 percent, possibly making good candidates for an index rebuild or
reorganization.

Figure 3-57 Reviewing index fragmentation using Dynamic Management
Views

The Maintenance Plan Wizard is used to rebuild and reorganize indexes on
this table. To begin, open SQL Server Management Studio and expand the
Management node, and then right-click the Maintenance Plan Wizard node,
and select the Maintenance Plan Wizard option from the Context Menu, as
shown in Figure 3-58.

Figure 3-58 Starting the Maintenance Plan Wizard

On the Welcome page of the Maintenance Plan Wizard, click Next. The
Welcome page simply summarizes the capabilities of the wizard. On the
Select Plan Properties page of the wizard, enter a name for the maintenance
plan and a description if you would like. Leave the other options as
configured. The Run As option specifies what service account to run the
maintenance plan. By default this is the SQL Server Agent account, and
unless a specific account has been created for this purpose, there is no reason
to change it.

We define the schedule later on, so leave this as is. The option to schedule
a single schedule or separate schedules for the tasks is kind of out of place
because at this point no tasks have been selected. So for now, leave it
checked to run as a single schedule for the entire plan, and click Next.

The Select Maintenance Task page is used to select which tasks will be
performed by the wizard. The Maintenance Plan Wizard provides the ability
to reorganize and rebuild indexes, so select both of those, as shown in Figure
3-59, and then click next.

Figure 3-59 Selecting the maintenance tasks to include in the maintenance
plan

The Maintenance Task Order page provides the option to change the order
in which the tasks are executed. For these two tasks, this should not be
ignored and the order in which these two tasks is executed is important.

Recall from the information above that the decision on whether to rebuild
or reorganize is based on the percentage of the fragmentation, and the basic
rule of thumb is that if the value in this column is between five and 30, you
can reorganize the index. Anything over a value of 30 necessitates a rebuild.
Thus, you will want to rebuild first as any index with a fragmentation with a
percentage of over 30 percent will be caught and addressed first. Then, those
indexes over five percent fragmentation are then addressed by the reorganize
task, ignoring the other indexes that have just been rebuilt by the rebuild task,
because their index fragmentation is now below the threshold.

Make sure the Rebuild Index task is listed first, as shown in Figure 3-60,
and then click Next.

Figure 3-60 Setting the order of the maintenance tasks

The next two pages in the wizard are the configuration pages for the
rebuild task and the reorganize task. Figure 3-61 shows the Rebuilt Index
Task configuration page. On this page, select the databases you want this task
to check, whether you want it to check tables, views, or both, and the specific
table views to check.

The Default Free Space Per Page option drops the indexes on the tables in
the database and re-creates them with the fill factor that was specified when
the index was created. The Change Free Space Per Page option drops the
indexes on the table and recreates them with a new, automatically calculated
fill factor that reserves the specified amount of free space on the index pages.
The higher the percentage, the more free space is reserved.

The Keep Index Online option allows users to access the underlying table

or indexed data during the index operations, and the Sort Results In Tempdb
option determines where the intermediate sort results are stored, which are
generated during the index creation.

As discussed, leave the fragmentation and page count values where they
are, and click Next.

Figure 3-61 Configuring the rebuild index task

For the Reorganize task, shown in Figure 3-62, configure the databases and
objects similar to the Rebuild task, and then configure the other options as
needed. The Scan type defines how the system consumes resources while it

gathers index statistics. You can choose between consuming less resources
(Fast), or more resources (Detailed), depending on how much precision is
needed for index statistics. The Optimize Index options are similar to the
Rebuild tasks, but be sure to change the Fragmentation percentage to a value
around 10, but no less than five, and then click Next.

Figure 3-62 Configuring the reorganize index task

The Select Report Options page simply specifies the options for saving or
distributing a report that details the results of the maintenance plan actions.
The two options allow the report to be saved to a local file or to be emailed.

The Complete The Wizard page summarizes the configuration. Click
Finish, which creates the maintenance plan, and add the tasks to the plan, and
add any scheduling options. Because no recurring schedule was defined, you
can right-click the maintenance plan and click Execute to run the plan.

Creating a recurring schedule for the maintenance plans is discussed later in
this skill.

There is one more point to mention before moving on. The values for the
fragmentation percent and the page count thresholds are a starting point and
these numbers should vary depending on your environment.

Database Engine Tuning Advisor
The Database Engine Tuning Advisor provides insight into the performance
of your database by analyzing a workload and the physical implementation of
one or more databases. Through a workload analysis, the tuning advisor
selects and suggests optimal indexes, indexed views, and partitions without
needing to understand the structure of the database.

The workload that the tuning advisor uses is a set of T-SQL statements that
the tuning advisor executes against the specified databases you want to
analyze and tune. Given the analytical capabilities of the Database Engine
Tuning Advisor, it fills some of the gaps that the Maintenance Plan cannot
do, such as find missing indexes and recommending indexes that should be
removed.

The Database Engine Tuning Advisor can be started from either SQL
Server Profiler or from SQL Server Management Studio. In either tool, it is
available from the Tools menu by selecting the Database Engine Tuning
Advisor menu option.

When the tuning advisor starts, it shows two tabs; the General and Tuning
Options tabs. On the General tab, provide a session name, and then select the
File option for the workload and browse to the location of a .sql for workload
testing. Select the database for workload analysis, then select the database
and tables you want to tune, as shown in Figure 3-63.

Figure 3-63 Configuring the General tab of the Database Engine Tuning
Advisor

The .sql file selected for the workload analysis should contain one or more
SELECT statements, which would represent a decent database workload.

The Tuning Options tab is used to configure the general tuning options.
Typically, you won’t need to change much on this page, depending on your
SQL environment. For example, do you want the tuning advisor to check
both indexes and indexed views, just indexes, or non-clustered indexes? Also,
what partitioning strategy do you want to employ during analysis? Most
times you won’t need to make any changes, and in this example we just want
to analyze the indexes, which is the default configuration setting, shown in
Figure 3-64.

The Partitioning Strategy and Physical Design Structures section tell the
Tuning Advisor to also look at, ecommend, and change characteristics of the
database when looking at tuning options.

The Partitioning Strategy options tell the tuning advisor if and how to look
at partitions when performing the analysis. If no partitioning is selected, it
will not look at or recommend the use of partitions, whereas Full partitioning
will provide recommendations for the use of partitions. The Aligned
partitions will recommend partitions that are aligned with existing partitions

of underlying tables or view.
The Physical Design Structures section tells the Tuning Advisor whether

or not to keep or drop specific structures during analysis.

3-64 Configuring the Tuning Options tab of the Database Engine Tuning
Advisor

Once the tuning session has been configured, click the Start Analysis
button on the toolbar and the tuning advisor runs the script provided on the
General tab to generate a workload and run an analysis of the indexes. By
default, the Limit tuning time is checked and the amount of time the analysis
runs is one hour. As the analysis is running, a Progress tab appears showing
the progress of the analysis.

Once the analysis is complete, two additional tabs appear:
Recommendations and Reports, as shown in Figure 3-65.

Figure 3-65 Reviewing the recommendations results

As you can see in Figure 3-65, the tuning analysis revealed that a missing

index was identified on the Sales.Invoices table with a recommendation to
create the missing index. Likewise, had an index been identified as unused or
causing poor performance, that index would have been listed with a value of
Drop in the Recommendation column of the results.

The Recommendations tab contains two grids, one for Partition
recommendations and another for Index recommendations. The grids do not
expand if there are no recommendations.

Given the deep analysis of the Database Engine Tuning Advisor, it solves
several of the index maintenance problems identified above including
identifying and creating missing indexes, and identifying and removing
unused indexes. Updating statistics is addressed later in this skill.

Automate maintenance tasks
Performing regular database maintenance can be a time-consuming process.
The skills discussed so far require vigilant watch to ensure that the database
runs smoothly and proper database performance is maintained. The skills
discussed have focused on indexes and monitoring DMVs, but there are
many other tasks that can and should be automated to ensure a well-operating
database with proper performance, reliability, and availability.

Database administrators look at automating tasks that they typically repeat
on a frequent basis, including:

Database backups
Maintaining indexes
Checking database integrity
Managing database and disk space
Updating statistics

There are several ways to automate many of these tasks, and the following
sections discuss two of the more popular approaches: SQL Server
Maintenance Plans and PowerShell.

Maintenance plans
SQL Server Maintenance Plans create a workflow of tasks aimed at keeping
your database well maintained and optimized. Many of the tasks are grouped

together based on functionality to improve task maintenance.
Maintenance plans can be created either by using the user interface in SQL

Server Management Studio or via T-SQL. The user interface in SQL Server
Management Studio provides the ability to create maintenance plans two
ways:

Maintenance Plan Wizard
Maintenance Plan Design Surface

The Maintenance Plan Wizard provides a step-by-step, guided walk-
through to create a plan that the SQL Server Agent can run manually or on
scheduled basis. You have seen an example of this in this skill when creating
a plan to rebuild and reorganize indexes.

The Maintenance Plan Design Surface also creates a maintenance plan but
provides the ability to utilize an enhanced workflow and control the
workflow steps.

To create a maintenance plan using the design surface, right-click the
Maintenance Plans node in the Object Explorer Window in SQL Server
Management Studio, and select New Maintenance Plan from the Context
menu. In the New Maintenance Plan dialog, provide a name for the
maintenance plan, and click OK.

A maintenance plan tab opens in the details section of SQL Server
Management Studio, displaying the name and a subplan. A subplan is used
where the tasks of the plan are defined, with each subplan able to hold a
collection of tasks.

The design surface is similar to SQL Server Integration Services, where
tasks are dragged onto the design surface from a toolbox. From the View
menu in SQL Server Management Studio, select Toolbox to display the
toolbox window that contains all of the maintenance plan tasks. From the
Toolbox window, drag the Check Database Integrity Task and Back Up
Database Task onto the design surface, as shown in Figure 3-66.

Figure 3-66 Configuring a maintenance plan in the design surface

Each task can be configured by double-clicking the specific task, and
configuring the Task Configuration dialog. For example, double-clicking the
Database Integrity Task displays the Check Database Integrity Task dialog
through which the specific database you want to check is selected and
integrity check options are selected. Configure both tasks by double-clicking
each task and configuring as appropriate.

As mentioned, the Maintenance Plan Design Surface provides an enhanced
workflow and more control over the steps in the workflow, which is not
capable to do in the Maintenance Plan Wizard. Thus, additional workflow
and decision tree options can be applied, as shown in Figure 3-67. In this
example, if the Check Database Integrity Task fails, we don’t want to back up
the database, we only want it backed up if the integrity check succeeds.
Rather, we would prefer another action be taken if the integrity check fails.
As such, as shown in Figure 3-67, we can add another task to the design
surface, such as the Notify Operator Task or Execute T-SQL Statement Task,
and route to that task given the failure of the database integrity check.

Figure 3-67 Configuring detailed task workflow

To schedule the maintenance plan, click the Job Schedule Properties button
on the subplan and configure the frequency in which the plan will run in the
Job Schedule Properties dialog. Click OK on the dialog, and then save the
maintenance plan.

Once the maintenance plan is saved it appears underneath the Maintenance
Plans node. Additionally, each subplan created appears in the Jobs node
underneath the SQL Server Agent node, as shown in Figure 3-68.

Figure 3-68 The maintenance plan and correlated job in object explorer

Keep in mind that each maintenance plan can have multiple subplans, and
each subplan shows up as a job within the Jobs node.

PowerShell
Windows PowerShell is a Windows command-line, interactive prompt and
scripting environment built on top of the .NET Framework and has quickly
become a great tool for automating tasks of all kinds, including operating
system as well as SQL Server.

PowerShell is very powerful and there are many ways to use PowerShell to
automate SQL tasks. As versatile as it is, it can be very verbose, meaning that
it sometimes can take a lot of code to accomplish some tasks. As such, only
code-snippets are supplied and links to full source code samples are provided.

You can find a sample PowerShell script that uses the Standard .NET
Framework classes to connect to a specific database instance to rebuild and
reorganize indexes at https://gallery.technet.microsoft.com/scriptcenter/SQL-
Optimization-In-95d12ce6.

Many of the examples you find online use the SQL Server Management
Objects (SMO) because it makes it easy to navigate and iterate through the
databases of a SQL Server instance and their objects, and then use the SMO
index object like this:

$index.Rebuild()

$index.Reorganize()

The following code snipped provides a high-level sample of iterating the

https://gallery.technet.microsoft.com/scriptcenter/SQL-Optimization-In-95d12ce6

objects, checking their fragmentation level, and either rebuilding or re-
indexing based on the results.
Click here to view code image

$v = [System.Reflection.Assembly]::LoadWithPartialName(

'Microsoft.SqlServer.SMO')

$smo = new-object ('Microsoft.SqlServer.Management.Smo.Server')

$inst

$dbs = $smo.Databases

foreach ($db in $dbs) {

$tbs = $db.Tables

foreach ($tb in $tbs) {

$ixs = $tb.Indexes

foreach ($ix in $ixs) {

Get the Fragmentation and page count information

$q = @"

SELECT avg_fragmentation_in_percent, page_count FROM

sys.dm_db_index_physical_stats($dbid, $tbid, $ixid, NULL, NULL)

"@

$res = invoke-sqlcmd -ServerInstance $inst -Database $dbname -

Query $q

$frval = $res.avg_fragmentation_in_percent

$pgcnt = $res.page_count

if ($frval -gt 30 -and $pgcnt -gt 1000) {

$ix.Rebuild()

}

elseif ($frval -gt 10 -and $pgcnt -gt 1000) {

$ix.Reorganize()

}

}

}

}

Obviously this code snippet is not complete, but it provides insight on how
you can use PowerShell to accomplish many of the maintenance tasks
discussed. Once the PowerShell script is tested appropriately, it can be
scheduled several ways, such as using the Windows scheduler, or through a
SQL Server job.

Update statistics

The query optimizer uses statistics to create query plans to improve query
performance. Most of the time, the query optimizer has already generated the
necessary statistics for an optimal query plan, but there are times where
additional statistics are necessary or the existing statistics need updating for a
better query plan.

For the query optimizer, statistics contain information about the
distribution of values in one or more columns of a table or indexed view. The
query optimizer uses these statistics to estimate the cardinality, or number of
rows, in the query result. The cardinality estimates are generated by the
cardinality estimator and are used to create a high-quality query plan. If the
cardinality estimates are off, resulting in poor statistics, the result could be
the difference between a poor performing and resource-intensive index scan
versus the better performing index seek.

Statistics can be updated several ways. In many environments, statistics are
updated via a maintenance plan that provides a proactive approach to
updating statistics. When creating a maintenance plan using the Maintenance
Plan Wizard, select the Update Statistics option on the Select Maintenance
Tasks page. The Define Update Statistics Task page then allows you to
configure the maintenance task, shown in Figure 3-69.

Figure 3-69 Configuring the update statistics task

Index statistics are created automatically when the index is created.
Column statistics are created manually using the CREATE STATISTICS
statement, or they are created automatically if the Auto Create Statistics
option is set to True.

The Scan type defines the amount of data used to determine the statistic.
The Full scan option costs more resource time, but ensures that the statistics
are accurate. The Sample By option uses the percentage of the rows specified
and extrapolates the rest, resulting in a faster update of the statistics but the
statistics may not be accurate. As such, the Full scan is recommended, but
updating statistics should be done off hours.

The query optimizer is quite smart. It determines when the statistics might
be out of date and updates them as needed for a query plan. This option is on
by default via a database-level setting, the Auto Update Statistics
configuration setting, shown in Figure 3-70.

Figure 3-70 The auto update statics option in the Database Properties dialog

The question then becomes when to update statistics. If the query
optimizer is so smart, why do statistics need to be updated via a DBA? As
smart as the query optimizer is, it is not perfect. It does its best, but there are
times when query plans can be improved, thus improving query performance,
by updating statistics more frequently than the Auto Update Statistics setting
dictates. Statistics become out of date after INSERT, UPDATE, DELETE,
and MERGE operations change the data distribution in the table or indexed
view, and the query optimizer determines their out of date by counting the
number of data modifications since the latest statistics update, and comparing
the number of modifications to the number of rows in the table or indexed
view.

A great way to determine when statistics were last updated is by looking at
the last_updated column in the sys.dm_db_stats_properties DMV, as shown
in Figure 3-71.

Figure 3-71 Checking when statistics were last updated

The STATS_DATE function is also useful as it returns similar
information, but broken out by index.

Updating statistics causes queries to recompile, so it is recommended to
not update statistics too frequently due to the performance tradeoff between
improving query plans and query recompile time.

Therefore, consider the following when deciding when to update statistics:
Slow query performance If queries have a slow or unpredictable
response time over a period of time, look at the statistics.
After maintenance operations Some maintenance operations change
the distribution of data, such as table truncations or bulk inserts.
Insert operations on ascending or descending columns Appending
new rows to ascending or descending columns, such as IDENTITY
columns, might be too small to trigger an automatic statistics update.

Updating statistics can also be updated using T-SQL. The following T-
SQL statement updates the statistics for all the indexes on the Sales.Invoices
table in the WideWorldImporters database.
Click here to view code image

UPDATE STATISTICS Sales.Invoices;

The following T-SQL statement updates the statistics for all the
FK_Sales_Invoices_OrderID index on the Sales.Invoices table in the
WideWorldImporters database.

Click here to view code image

UPDATE STATISTICS Sales.Invoices AK_Sales_Invoices_OrderID;

Updating statistics should not be overlooked. It should be a regular part of
your maintenance plan strategy, simply because issues like bad parameter
sniffing can be alleviated with better statistics

Verify database integrity
A few years ago a member of the Microsoft SQL Server product support
team published a blog post and it stated that more than 95 percent of all
corruption cases turned out to be caused by a platform issue, the layer below
SQL Server. The primary cause was a firmware bug, or third-party driver,
with the second most common cause being actual hardware failure. The idea
is that many things can cause database corruption, such as damage to the hard
drive, environmental factors and influences, normal hardware wear and tear,
or bad data in general.

The question isn’t if database corruption will happen, it’s when. Database
corruption will happen at some point. The focus is on the things you should
be doing to proactively monitor for database corruption and how to address it
when it does happen.

The following two sections discuss the options available to proactively
monitor for database corruption and to check and verify database integrity.

Maintenance plan
This skill has covered SQL Server Maintenance plans quite a bit, and for
good reason. They provide a proactive and quick way to get insight into the
status of your database. Checking the integrity of your database is no
different because a maintenance plan task exists that checks the integrity of
your database.

The Check Database Integrity Task checks the allocation and structural
integrity of all the objects in a specified database, or multiple database.
Additionally, the task can check the integrity of all the index and table data
pages.

When creating a maintenance plan using the Maintenance Plan Wizard,

select the Check Database Integrity option on the Select Maintenance Tasks
page. The Define Database Check Integrity Task page then allows you to
configure the maintenance task, shown before in Figure 3-72.

Figure 3-72 Configuring the Database Check Integrity task

Behind the scenes, the Check Database Integrity Task encapsulates the
DBCC CHECKDB statement, providing a user-interface to configure,
schedule, and run the DBCC CHECKDB statement.

The benefit of using a maintenance plan is that, as you learned earlier, you
can include this plan as part of an overall workflow and take action based on
the outcome of the task.

DBCC CHECKDB
The DBCC CHECKDB statement accomplishes the same functionality as the
maintenance plan, with the difference being that you are running a T-SQL
statement with the output being returned in the output window. The DBCC

CHECKDB statement checks the logical and physical integrity of all the
objects. It does this by also executing additional DBCC statements:

DBCC CHECKALLOC Checks the consistency of disk space
allocation.
DBCC CHECKTABLE Checks the integrity of all the pages and
structures that make up the table or indexed view.
DBCC CHECKCATALOG Checks the catalog consistency.

DBCC CHECKDB also validates the contents of every indexed view in the
database and validates link-level consistency between table metadata and file
system directories.

To run DBCC CHECKDB, execute the statement in a query window, as
shown in Figure 3-73. As you can see, CHECKDB found 0 allocation errors
and 0 consistency checks in the database. Also notice that the scrollbar in the
results window is scrolled quite a ways down to the end of the output, so the
amount of output is significant.

Figure 3-73 Running DBCC CHECKDB in a query window

The example above runs DBCC CHECKDB for the current database, but
you can also specify the database to check:

DBCC CHECKDB ([WideWorldImporters])

There are certain benefits to checking database integrity using the DBCC
CHECKDB statement because there are several parameters you can pass to
the statement, such as the REPAIR_REBUILD parameter, which performs

repairs that have no possibility of data loss, including repairing missing rows
in non-clustered indexes, and rebuilding indexes.

One of the parameters that is available to use with DBCC CHECKDB is
called REPAIR_ALLOW_DATA_LOSS. This option tells DBCC
CHECKDB to try and repair all reported errors, even if it means data loss. As
such, it is recommended that this be used only in a “worst case” scenario. The
recommended approach is to restore the database from the last known good
backup and not use this parameter.

The idea behind verifying database integrity is to detect database
correction as early as possible. If database corruption goes undetected long
enough it could, and probably will, lead to data loss. There is nothing you can
do to prevent database corruption. As stated earlier, it’s not a matter of if, but
when. The goal is to detect it as soon as possible so corrective action can be
taken, and DBCC CHECKDB is the best way to detect it, whether you run it
via T-SQL or a maintenance plan.

The question you should be asking yourself is: How often should you
validate database integrity and run consistency checks? To answer that
question, you need to look at your environment. Is your I/O subsystem pretty
flaky or is it the most reliable thing on the planet? Do you have solid backup
strategy or no backup strategy at all? If you do take regular backups, how
confident are you that you can recover from corruption with little to no
downtime?

The answers to these questions depends on how often you should verify
database integrity. You might be comfortable running consistency checks
weekly if you have faith in your environment and are a rock star with your
backups and backup strategy. If you are on the opposite end of the spectrum,
you might want to consider changing your ways.

The good thing is that, regardless of whether or not you use T-SQL or the
maintenance plan, you can schedule the consistency check easily to run on a
regular schedule, and you should do so.

Recover from database corruption
Database corruption is inevitable. As mentioned previously, it is not a matter
of if, but when. You have done your best to monitor and prevent database
corruption, but it happened. They say that the best offense is a good defense,

and this absolutely applies here. Recovering from database corruption is all
about applying a defensive strategy to make recovery a winning situation.

Before discussing recovery, let’s take a moment to talk about a good
backup plan and strategy. The last thing you want is to find out in the middle
of a production recovery situation that you have no backups or your backups
are worthless.

As a rule of thumb, database backups should follow these best practices:
Full backups In most cases, a full database backup should be performed
weekly. These can be performed online.
Differential backups Captures only the data that has changed since the
most recent, full backup.
Transaction log backups Transaction logs contain all the recent
activity and can be used to restore a database back to a specific point in
time. They also can be performed online. Backup frequency depends on
activity.
System databases Weekly for stable installations.

A backup strategy is incomplete without backing up the system databases.
The system databases contain a lot of information, such as system
configuration and SQL Server job information. Depending on how frequent
your database changes are, you might consider a daily or weekly backup
frequency.

Transaction log backups depend on how active your database is. A
database with heavy transactions might look at backing up the transaction log
every 10, 15, or 30 minutes. Less active database might look at backing up
the transaction log every one or two hours.

Additionally, when backing up, consider using advanced features such as
checksum to detect problems with the backup media itself. Checksum
specifies that the backup operation verifies each page for checksum and torn
page and generates a checksum for the entire backup.

Part of having a good backup strategy also consists of knowing where to
back them up to. Make sure you are not storing your backups in the same
physical location as the database files. If the physical drive goes bad, you can
use other drives or remote locations that stored the backups to perform a
restore.

Now that you have your backup strategy in place, the next step is to
practice recovery operations. Just because backups were taken and the
backup process succeeded doesn’t mean that all is well. Without practicing
and walking through the recovery process in its entirety you cannot be
entirely sure of the integrity of the backups.

Therefore, have a test server on hand, or in the cloud, to frequently test
your backups and your restore strategy, and follow a restore process that you
would follow in a production, real-life situation. This minimizes any
problems that occur during an actual corruption issue.

With all of that as a foundation, our attention should now focus on the
steps necessary to recovery from a corrupted database.

The first step is to run CHECKDB and review the output results because
you need to know where the corruption is. If you used a maintenance plan to
run CHECKDB, write the output to a file so you have a copy. Review it
thoroughly to understand what the issues are and where the corruption is.
CHECKDB provides the necessary information to what the problem is, and
in what object the corruption exists.

Depending where the corruption is will depend on what the steps are to
recover. If the corruption exists in a non-clustered index for example,
rebuilding the index just might solve the problem and you’re on your way. To
fix the index, you need to disable the index by running the ALTER INDEX
statement. For example:

Click here to view code image

ALTER INDEX IX_Sales_OrderID ON Sales.Invoices DISABLE;

Next, rebuild the index by again using the ALTER INDEX statement, this
time specifying to rebuild online.:
Click here to view code image

ALTER INDEX IX_Sales_OrderID ON Sales.Invoices REBUILD WITH

ONLINE=ON;

This will go through the process of recreating the index and fix any
corruption issues. Rerun the CHECKDB again to see if the corruption has
been fixed.

If the corruption exists in a data table or other object, you will most likely

be looking at restoring the database. You could potentially be looking at
repairing the database, but at the cost of losing data, so a repair option should
not be considered at this point in the recovery process.

To recover through a database restore, the first step is to make a tail-log
backup. A tail-log backup captures any transaction log records that were
written to the transaction log since the last time it was backed up.

To back up the tail of the transaction log, right-click the corrupted database
and from the context menu select Tasks -> Back Up. In the Back Up
Database dialog, set the Backup type to Transaction Log, then on the Media
Options page in the Reliability section make sure the Verify Backup When
Finished And Perform Checksum Before Writing Media options are checked.
Then in the Transaction log section, check the Back Up The Tail Of The Log,
as shown in Figure 3-74.

Figure 3-74 Configuration options for restoring the tail of the transaction
log

If you have followed a best-practices backup strategy and have full and
transaction log backups, the next step is to review your backups to identify
when the corruption occurred. Again, this is where a best-practices restore
strategy, and a test server, comes into play.

Take the most recent full backup and restore it on the test server, running
CheckDB on it, and then repeating the process with the next previous full
backup until you find the backup that was made before the corruption
occurred. At this point, depending on the error returned by CHECKDB and
the object on which the corruption exists, the option might exist to restore a
page or filegroup which will be faster and in a lot of cases be performed
while the database is still online.

Page and File/Filegroup objects can be restored by right-clicking the

corrupted database and select Restore > Page or File And FileGroups, as
shown in Figure 3-75.

Figure 3-75 The menu option to restore a specific data page

The goal of the page restore is to restore one or more damaged pages
without restoring the whole database. Pages that are candidates for restore
have been marked as “suspect” and the Restore Page dialog helps restore
those from backupsets. SQL Server maintains an internal table called the
Suspect_Pages table, which is used for maintaining information about suspect
pages, and provides information that helps decide whether a restore is
necessary. This table resides in the msdb database.

If the corruption is beyond the ability to restore a page or filegroup, a full
database restore is needed. Again, on a test server, review your backups to
identify when the corruption occurred and find the backup that was made
before the corruption occurred. Then, restore all of the transaction log
backups, then finally the tail-log backup.

Run CHECKDB again to ensure the corruption does not exist and the
problem has been properly and efficiently solved. Again, the CHECKDB
repair option should be used as a last option if the restore process was not
successful. However, when following database back up best practices and an
appropriate backup and restore strategy have been implemented and
practiced, restoring the database as discussed has high success rates.

Once you are confident in the process and the resolution, perform the same
restore options on the production server, preferably not during production
hours.

With the database back online and operating normally, it would be
beneficial to take some time to explore potential reasons of what initially
caused the corruption. Could the corruption have been avoided, and if so,
how? Take this time to do a thorough inspection of both hardware and
software to uncover the reason for the corruption. For example, you can look

at the page with a hex editor and possibly fix the problem, or hack-attach the
suspect database, which is re-attaching a damaged database if it has been
accidentally detached.

The point to take away here is that database corruption happens but it can
be reduced greatly by having a solid back up strategy along with regular
overall health monitoring.

Thought experiment
In this thought experiment, apply what you’ve learned about in this

Chapter. You will find the answers to these questions in the next section.
You are a consultant to the Contoso Corporation. Contoso is an enterprise-

level company that has a customer facing ordering system. The number of
orders continues to grow and the size of the database is growing
exponentially. The size of the database is reaching 400 GB, and much of that
is old historical data, but the amount of new data grows rapidly on a daily
basis and users have reported slower response times in the application.

Company policy states that records should be kept for a period of time, but
Contoso’s CIO states that storage cost is becoming an issue. In addition, the
CIO has asked the DBAs to look at the performance issue and they have
applied several indexes without any change in performance. The CIO has
also reported that their current hardware is getting old and several hardware
issues on the SQL Server box has appeared and he is unsure if they have a
proper recovery plan in place.

1. What can Contoso due to address the storage cost issue while still
keeping their cold data?

2. How should Contoso address their application performance problems?
3. What should Contoso’s recovery approach be?
4. How should Contoso approach be in defining a maintenance strategy?

Thought experiment answers
This section provides the solution to the thought experiment. Each answer
explains why the answer is correct.

1. Contoso should use Stretch Database to migrate all their historical data
to Azure. This will require no application changes, free up disk space
locally, and still meet security and company policy.

2. In addition to reviewing existing code, Contoso should use many of the
dynamic management views as well as the Database Engine Tuning
Advisor to help identify missing indexes and remove unused indexes.
Contoso should also look at query statistics. Contoso should also look at
and validate existing hardware infrastructure.

3. Contoso should ensure that an appropriate backup and recovery strategy
is in place for their environment. Contoso should regularly test this
strategy in a test environment to ensure a successful strategy.

4. Contoso should define and implement a maintenance schedule which
includes verifying database integrity and performing index maintenance
and updating statistics.

Chapter summary
The SMB 3.0 protocol included optimizations that SQL Server can take
advantage of, including significant performance enhancements and
improvements.
The SMB 3.0 protocol comes with Windows Server 2012 and later
versions.
The Stretch Database feature was added to SQL Server 2016 to provide
cost efficient storage of cold data.
Stretch Database can be implemented without any changes to the
application.
The remote table for Stretch Database can be optimized with a
performance tier like any other Azure SQL database.
An Azure storage account comes with blob, table, queue, and file
storage services.
The Azure file share service, part of an Azure storage account, provide
the ability to create fully managed file shares that are accessible via the
SMB protocol.
Azure file shares can be mounted both on-premises and in the cloud.

Azure SQL Database service tiers provide flexibility in changing
performance and storage levels based on database workload.
Azure SQL Database service tiers can be changed to meet the workload
demands with little to no downtime.
SQL Server includes many dynamic management views through which
to track and review wait statistics.
SQL Server tracks wait for information to help troubleshoot and track
down performance issues.
Storage pools, introduced in Windows Server 2012, allow the grouping
of physical disks into a resource pool.
Virtual disks, called storage spaces, can be created from the resources
within a storage pool.
Index maintenance is a critical part of database maintenance to ensure a
well-performing database.
Index maintenance includes removing index fragmentation, identifying
missing indexes, and removing unused indexes.
Maintenance tasks can be used to monitor and maintain many aspects of
SQL Server, including indexes, statistics, and database integrity.
Database integrity should be performed often on a regular schedule.
A proper backup and restore strategy should be created, maintained, and
tested to be able to recover from database corruption.

Index

A
AAD. See Azure Active Directory
access policies 215–216
Active Directory Federation Services (ADFS) 23
Active Directory Integrated 25
Active Directory Password Authentication 25
Active Directory Universal Authentication 25
ACUs. See Azure Compute Units
adaptive joins

batch mode 9
Add-AzureRmSqlServerKeyVaultKey cmdlet 139
ADFS. See Active Directory Federation Services
agent jobs 37
Agile methodology 72–73
alerts 163–164, 166–171

associating with operators 169–170
creating 166, 170
events generating 166
severity of 166–167, 171
strategy for 171

Alerts and Operators nodes 163–164
ALTER DATABASE statement 138, 174
ALTER INDEX statement 271
Always Encrypted

benefits of 106
configuration of 106–123
implementing 120–124
keys 106, 110–112, 116, 119, 123
management considerations 123–124

permissions 113–114
AlwaysOn Availability Groups 36, 70, 85–87
application logs 166
application permissions 107
ARM. See Azure Resource Manager
ASR. See Azure Site Recovery
ASYNC_NETWORK_IO wait type 224
auditing

in Azure SQL Database 16–17
authentication 23

Always Encrypted 107
multi-factor 23
Windows Authentication 24, 25

authenticators 127
automatic failover 22–23
automatic tuning 7–9
automation

of database maintenance tasks 258–263
availability

management of 36–38
Availability Groups (AGs) 36–38

AlwaysOn 36, 70, 85–87
availability sets 91–92
Azure

availability sets in 91–92
backup and restore of 81–84
disks in 48–49
storage account 81–82
virtual machines. See virtual machines (VMs)

Azure Active Directory (AAD) 22–25
Azure Blob service 212–216
Azure Command Line Interface (CLI) 11, 13, 208

firewall rules 102–103

setting firewall rules using 15
Azure Compute Units (ACUs) 43
Azure Files 191
Azure Key Vault 80, 107, 111–112, 115, 118, 120
Azure Portal 5, 29, 208

firewall rules 97–99
Azure PowerShell

firewall rules 100–101
installation 14–15

Azure Recovery Services 19
Azure Recovery Vault 19
Azure Resource Manager (ARM) 47–48, 70–71
Azure Site Recovery (ASR) 87
Azure SLQ Database

deployment of
elastic pool configuration 25–31

Azure SQL Database
auditing in 16–17
automatic tuning 7–9
Azure Active Directory and 23–25
backups 18–20
benchmark information 7
changing service levels 10–11
compatibility levels 8–11
connecting to, from inside Azure 16
deployment of 1–31

choosing service tier 2–12
creating servers and databases 12–22
sysadmin role 22–25

disaster recovery in 20–21
high availability in 20–21
performance tuning 7–9
secure access to 95–137

Always Encrypted configuration 106–123
cell-level encryption 123–127
Dynamic Data Masking 127–133
firewall rules 96–105
transparent data encryption 135–139

service tiers 218–223
sizing 2
Threat Detection 17–18

Azure storage
access keys 211
account overview 211
architecture 207–208
blobs 212–216
components 207–208
configuration 207–218
creating 209
files 216–217
overview of 207–208

B
backups 18–20

automated 79–80
Azure 81–84
database 239–240, 270–271
differential 239, 270
frequency of 240
full 239, 270
location 56
restoring 19
storage 20
strategy for 239–240, 270
system databases 270
to Azure Blob storage 58

transaction log 239, 270
Bash Shell 102
basic service tier 2, 3, 219
batch mode adaptive join 9
batch mode memory grant feedback 9
benchmark data 87–89
binary collations 117
binary files 55
blobs 212–216
Blob Service 82
Blob Storage Account 210
Bring Your Own Key (BYOK) 136–137
bring your own license (BYOL) 33–34
BYOK. See Bring Your Own Key

C
caching policy 58
cardinality estimation 162–163
catalog views

Query Store 150
CEK. See column encryption key
cell-level encryption (CLE) 123–127
central processing unit (CPU) 41
certificates 136

creation of 124
Check Database Integrity Task 267–268
CHECKDB function 239, 268–270, 272
checksum 270
CLE. See cell-level encryption
cloud computing 72
CMK. See column master key
cold data 195, 196, 205
collations 117

column encryption key (CEK) 106
column master key (CMK) 106
column statistics 264
compatibility level 140 8–11
Compatibility Level setting 180
compliance practices 16
configuration

Always Encrypted 106–123
Azure storage 207–218
cell-level encryption 123–127
databases 179–181
database scope 157–163
Dynamic Data Masking 127–133
elastic pools 25–31
file shares 193
max server memory 154–156
operators and alerts 163–171
Power Plan 142
Query Store 149–150
tempdb 183–186
transparent data encryption 135–139

configuration files 68
contained database users 37
continued standard service tier 219
core based licensing model 32
corruption, database 239, 269–272
Cost Threshold for Parallelism 144–146
CPU 41
CPU performance 140–142
Create Certificate statement 124
Create New Database dialog 172
CREATE STATISTICS statement 264
credit card masking 130

Cumulative Update (CU) 158
custom text masking 130–131
CXPACKET wait type 223

D
DACPAC. See Data-Tier Application Package
database encryption key (DEK) 135
Database Engine Tuning Advisor 249, 256–259
database files 171–174
database-level firewall rules 104–105
database maintenance 241–273

automation of 258–263
Database Engine Tuning Advisor 256–259
indexes 249–258
maintenance plans 259–261, 267–268
Maintenance Plan Wizard 249–255
monitor DMVs 241–249
PowerShell for 262–263
recovery from database corruption 269–272
update statistics 263–266
verifying database integrity 266–269

database master key 124–125
Database Overview page 97
database performance settings 140–154

missing index DMVs 151–153
parallelism 143–146
Power Plan 140–142
Query Store 146–151

Database Read-Only setting 179
databases. See also Azure SQL Database

automated deployment of 73–77
backups 56, 84, 239–240, 270–271
bottlenecks 73

changing service levels 11–12
compatibility levels 8–11
configuration 179–181
corruption 239, 269–272
creating 12–22, 177–181
firewall rules 14–16, 96–105
integrity of, verifying 266–269
isolation of 218
recovery models 180–181
shrinking 56
size of 11, 26
stretch 195–205
system database files 181–182
workload utilization 26

database scope
configuration 157–163
Legacy Cardinality Estimation configuration setting 162–163
Max DOP 157–158
parameter sniffing 160–162
Query Optimized Fixes configuration setting 158–159

Database Transaction Units (DTUs) 2, 4–7, 219–223
data compression 55
data definition language (DDL) 73
data disks

maximum number of 42
data encryption. See encryption
data file management 56
data files 58
Data-Tier Application Package (DACPAC) 73–76
DBCC CHECKDB function 239, 268–270, 271, 272
DecryptByKey function 126
default masks 130
defragmentation 250–251

delayed durable transactions 179
deterministic encryption 116
developer edition 32
differential backups 239, 270
disaster recovery 20, 36–38

Azure Site Recovery 87
disk caching 55
DiskSpeed 39–40
disk usage 40
Distributed Replay 87–89
DMFs. See dynamic management functions
DMVs. See dynamic management views
DS series 44–45
DS_V2 series 45
DTUs. See Database Transaction Units
Dynamic Data Masking (DDM)

components 132
configuration 127–133
using PowerShell 133–134
using T-SQL 133

dynamic management functions (DMFs) 40
dynamic management views (DMVs) 40, 223, 224–226

database 241–242
execution 242–245
index and I/O 245–247
missing index 151–153
monitoring 241–249
transaction 247–249

E
elastic Database Transaction Unit (eDTU) 2, 25
elastic jobs 30–31
elastic pools

changing sizes of 30
configuration 25–31
geo-replication and 31
sizing 27–28
when to choose 26–27

email masking 130
enclosure awareness 233
EncryptByKey function 125
encryption

Always Encrypted 106–123
Bring Your Own Key 136–137
cell-level 123–127
deterministic 116
randomized 116, 117
symmetric 127–128
transparent data 127, 135–139

Enterprise Edition 32, 40
error messages 166–167
ES_v3 series 44
existing applications

migration of 34–36
Express Edition 32
ExpressRoute 84

F
failed storage

recovery from 238–240
failover

automatic 22–23
Availability Groups 85
groups 22, 22–23
process 21

Failover Cluster Instances 36–38

fatal errors 166
File and Storage Services 229
filegroups 174–176, 177
files 171–174, 177–178

Azure 191, 216–217
primary data 172
secondary data 172
system database 181–182
virtual log 178

file shares
configuration 193
creating 193
mounting 193–194
viewing 194

file size 177–178
firewalls

rules 14–16, 96–105
database-level 104–105
server-level 96–103

troubleshooting 105–106
fixed provisioning 234
fragmentation 177, 235, 250–251
Free space in tempdb (KB) counter 168
Front-Ends 207
full backups 239, 270
FULL CONTROL permissions 191, 195

G
geo-redundant storage (GRS) 48
geo-replication 20–21, 22, 135–136

elastic pools and 31
Get-AzureRmSqlDatabaseDaaMaskingRule cmdlet 133
Get-AzureRmSqlDatabaseDataMaskingPolicy cmdlet 133

Get-AzureRmSqlDatabaseTransparentDataEncryptionActivity cmdlet 139
Get-AzureRmSqlDatabaseTransparentDataEncryption cmdlet 138
Get-AzureRmSqlServerFirewallRule cmdlet 100
Get-AzureRmSqlServerKeyVaultKey cmdlet 139
Get-AzureRmSqlServerTransparentDataEncryptionProtector cmdlet 139
GitHub 72
GracePeriodWithDataLossHours parameter 22
GS series 46

H
hardware reliability 238
HashBytes function 127
high availability 20

management of 36–38
hot data 195
hotfixes 158
hybrid network connections 84–85

I
IaaS. See Infrastructure as a Service
indexes 7, 90–91

analysis of 257–258
DMVs 245–247
fragmentation 250–251
maintaining 249–258
missing 151–153
rebuilding 252–255
reorganization of 252, 255

index statistics 264
Infrastructure as a Service (IaaS) 2

installation of SQL Server on 63–68
performance tuning 89–91

INSERT INTO statement 134

instances. See SQL Server instances
instant file initialization 56
interleaved execution 9
Internal Load Balancer 86
internal objects 183
I/O Operations Per Second (IOPs) 39
I/O-related indexes 245
IP addresses 105
Is Read Committed Snapshot On setting 179

J
“just-in-time” allocation 235

L
latency 39
LCK_* wait type 223
Legacy Cardinality Estimation configuration setting 162–163
licensing 32–34
Location Service 207–208
locked pages in memory 57
Locked Pages In Memory 154
log files 17, 56, 58, 178
logical file names 172
logical servers 13–14
login-azurermaccount cmdlet 86
login issues 105
logins 24

M
maintenance plans 259–261, 267–268
Maintenance Plan Wizard 249–254, 259, 267
managed disks 48, 227–228
masking functions 132

masking policy 133–134
masking rules 128–130, 132, 134
master keys 118, 119, 124–125
Maximum Degree of Parallelism (MaxDOP) 143–146, 157–158
maximum file size 177–178
Max plans per query option 150
max server memory

configuration 154–156
memory 40–41

batch mode memory grant feedback 9
locked pages in 57
max server memory 154–156
VM 42

missing indexes 151–153
multi-factor authentication 23

N
Net Use command 193
network address translation (NAT) 105
network bandwidth 43
network connections

hybrid 84–85
New-AzureRmSqlDatabaseDataMaskingRule cmdlet 133
New-AzureRmSqlServerFirewallRule cmdlet 100, 101
New-AzureRmStorageAccount cmdlet 208
NTFS allocation unit size 55
NTFS permissions 191, 195
NUMA (Non-Uniform Memory Access) 143

O
object-based storage 47
OLEDB wait type 224
online analytical processing databases (OLAP) 41

online transaction processing (OLTP) 7
on-premises environments

deployment of SQL Server instances in 59–63
operating system file names 172
operators

associating alerts with 169–170
configuration 163–165
creating 164–165

optimize-storagepool cmdlet 54
O/S disks 58
Overall Resource Consumption view 148
over-indexing 247

P
PaaS. See Platform as a Service
PAGEIOLATCH_* wait type 223
PAGELATCH_* wait type 224
page life expectancy (PLE) 40
pages 174
Page Verify setting 179
paired regions 20
parallelism 143–146
parameter sniffing 160–162
Partition Layer 207
pass-through authentication 23
password issues 105
peak workloads 26
performance

benchmark data 87–89
CPU 140–142
DTUs and 219–223
Query Store and 90–91
settings 139–170

database scope 157–163
max server memory 154–156
missing index DMVs 151–153
operators and alerts 163–171
parallelism 143–146
Power Plan 140–142
Query Store 146–151

tuning, on Azure IaaS 89–91
performance analysis of logs (PAL) tool 36
performance conditions 167–168
performance levels 2–4
performance management 38–39
Performance Monitor 34–36, 40, 87, 141, 168
performance tuning 7–9
permissions

Always Encrypted 113–114
application 107
cell-level encryption 124
FULL CONTROL 191, 195
NTFS 191, 195
SELECT 131

physical file names 173
plan change regression analysis 10–11
Platform as a Service (PaaS) 1, 12
PLE. See page life expectancy
Point to Site VPNs 84
portals

building VM using 68–70
Power Plan 140–142
PowerShell

Azure Key Vault configuration with 115
DDM using 133–134
deploying Azure VM using 70–72

firewall rules 100–101
maintenance automation using 262–263
setting firewall rules using 15
TDE using 138–139

premium RS service tier 2, 4
premium service tier 2, 3, 220
premium storage 39, 48, 89
primary data files 172
primary filegroups 174
primary servers 22
provisioning types 234–235

Q
Queries with Forced Plans view 148
Queries with High Variation view 148
query execution plans 146
Query Optimized Fixes configuration setting 158–159
query optimizer 151, 153

statistics 263–266
Query Performance Insight 6, 7
query plans 151, 153
Query Store 6, 7, 10, 90–91, 146–151

built-in views 148–149
catalog views 150
configuration 149–150
enabling 146–147
folders 148–149

R
RAID (Redundant Array of Independent Disks) 47
randomized encryption 116, 117
random number masking 130
read-access geo-redundant storage (RA-GRS) 18, 48

recovery
from database corruption 269–272
from failed storage 238–240

Recovery Model setting 180
regression analysis 10–11
Remove-AzureRmSqlDatabaseDataMaskingRule cmdlet 133
Remove-AzureRmSqlServerFirewallRule cmdlet 100
Remove-AzurermSqlServerKeyVaultKey cmdlet 139
REPAIR_ALLOW_DATA_LOSS parameter 269
replicas 37
replication options 210
Resource Manager deployment model 210
resource manager model 72
Rest API 11
Restrict Access setting 179
retention policy 19
row versions 183

S
SaaS. See Software as a Service
SAS tokens 83, 84
secondary data files 172
secondary servers 22
security. See also encryption

Dynamic Data Masking 127–133
firewall rules 14–16
Threat Detection 17–18

security patches 57
SELECT INTO statement 134
SELECT permissions 131
SELECT statement 243, 246
Server/Client Access License (CAL) model 32
server-level firewall rules 96–103

Server Management Objects (SMOs) 262
Server Manager 229
Server Overview page 97
servers

creating 12–22
firewall rules 14–16
logical 13–14
max server memory 154–156
primary 22
secondary 22

service level agreement (SLA) 10
service tiers 2–12

changing 11–12, 218–223
choosing 218
choosing initial 10
Database Transaction Units 4–7
DTUs and 219–223
performance levels 2–4, 219–223

Set-AzureRmSqlDatabaseDataMaskingPolicy cmdlet 133
Set-AzureRmSqlDatabaseDataMaskingRule cmdlet 133
Set-AzureRmSqlDatabaseTransparentDataEncryption cmdlet 138, 139
Set-AzureRmSqlServerFirewallRule cmdlet 100
Set-AzureRmSqlServerTransparentDataEncryptionProtector cmdlet 139
severity 23, 166
shared access signatures 83
shared access signatures (SAS) 215
Sign-On URLs 107
Site to Site VPNs 84
SMB files shares 190–195
SMB (Server Message Block) protocol 190–195
social security number masking 130
Software as a Service (SaaS) 14, 26
Software Assurance 32

SOS_SCHEDULER_YIELD wait type 224
sp_delete_database_firewall_rule 104
sp_delete_firewall_rule 99
sp_set_database_firewall_rule 104
sp_set_firewall_rule 99
SqlConnectionStringBuilder class 120
SQL Database Benchmark 7
SQL Injection 17–18
SqlParameter objects 120
SQL Server

availability management 36–38
Azure Site Recovery and 87
Azure VMs for 44–45
databases

bottlenecks 73
deployment of 72–76
deployment to VMs 81–92
migrating to VMs 81–87

deployment planning 31–41
editions 32
events 166
installation 31–59

best practices for 55–57
manual, on Azure VMs 63–68
requirements 38–39

instances
changing name of 63
database creation 177–181
deployment 59–81
files and filegroups 171–176
in IaaS and on-premises 59–63
managing 171–186
provisioning VM to host 68–72

system database files 181–182
tempdb 183–186

licensing 32–34
memory 40–41
migration of existing applications to 34–36
performance settings 139–170

database 140–154
database scope 157–163
max server memory 154–156
missing index DMVs 151–153
operators and alerts 163–171
parallelism 143–146
Power Plan 140–142
Query Store 146–151

performance tuning 89–91
Query Store 146–151
settings 55–57
size selection 41–46
SMB file shares 190–195
storage pools 47–55
storage requirements 39–40
templates

building 59–63
deployment using 76–80

wait statistics 89, 223–227
SQL Server Agent 163–164
SQL Server Authentication 25
SQL Server Data Tools 73
SQL Server Management Studio 66, 83, 172

max server memory configuration in 155
SQL Server Reporting Services 64
Standard Edition 32
standard performance tier 3

standard service tier 2, 219
statistics

column 264
index 264
update 263–266

STATS_DATE function 266
storage

Azure storage account 81–82
backups 20
configuration 78–79
failed 238–240
geo-redundant 48
layout 57–58, 233–234
management 189–238

Azure 207–218
changing service tiers 218–223
pools 227–238
SMB file shares 190–195
stretch databases 195–205
wait statistics 223–227

object-based 47
premium 48, 89
read-access geo-redundant 48
requirements 39–40
size 12
spaces 48–54, 78
standard 48–49

storage pools 227–238
planning, based on performance requirements 47–55

Storage Stamps 207
stored procedures

parameter sniffing and 161–162
Stream Layer 207

Stretch Database
benefits of 195
disabling 204–205
enabling 196
identifying databases and tables for 205
limitations of 206–207
management of 195–204

Stretch Database Monitor 203–204
symmetric encryption 127–128
symmetric keys 135

creation of 124
sysadmin role 22–25
sys.database_files 173
sys.database_firewall_rules 104
sys.database_query_store_options 150
sys.dm_db_column_store_row_group_physical_stats 154
sys.dm_db_file_space_usag 241
sys.dm_db_index_operation_stats 154
sys.dm_db_index_physical_stats 154, 246
sys.dm_db_index_physical_stats system function 250
sys.dm_db_index_usage_stats 154, 246
sys.dm_db_missing_index_columns 151, 152, 246
sys.dm_db_missing_index_details 151, 152, 153, 246
sys.dm_db_missing_index_groups 151
sys.dm_db_missing_index_group_stats 151, 152
sys.dm_db_operation_stats 242
sys.dm_db_partition_stats 242
sys.dm_db_resources_stats 242
sys.dm_db_session_space_usage 242
sys.dm_db_stats_properties 265
sys.dm_db_wait_stats 227, 242
sys.dm_exec_connections 243, 244
sys.dm_exec_query_plan 243

sys.dm_exec_query_stats 243
sys.dm_exec_requests 224, 243, 244
sys.dm_exec_session 244
sys.dm_exec_sessions 243
sys.dm_exec_session_wait_stats 243
sys.dm_exec_session_wait_status 223
sys.dm_exec_sql_text 224, 243, 244
sys.dm_exec_text_query_plan 225, 243
sys.dm_io_pending_io_requests 246
sys.dm_io_virtual_file_stats 246
sys.dm_os_waiting_tasks 223
sys.dm_os_wait_stats 223
sys.dm_tran_active_transactions 247
sys.dm_tran_current_transactions 247
sys.dm_tran_database_transactions 247
sys.dm_tran_locks 247–248
sys.dm_tran_session_transactions 247
sys.firewall_rules 99
sysprep 59
sys.query_context_settings 150
sys.query_store_plan 150
sys.query_store_query 150
sys.query_store_query_text 150
sys.query_store_stats 150
sys.query_store_wait_stats 150
System Admin role 22–25
system backups 270
system database files 181–182

T
table valued functions (TVFs) 9
TDE. See transaction data encryption
tempdb 179, 183–186

TempDB workloads 58
templates

for Azure features 72
SQL

building 59–63
deployment using 76–80

temporary disks 58
temporary user objects 183
temp storage 42
thin provisioning 234–235
THREADPOOL wait type 224
Threat Detection 17–18
Top Resource Consuming Queries view 148
trace files 56
Tracked Queries view 148
transaction DMVs 247–249
transaction log backups 239, 270
transaction log files 172
Transactions object 168
Transact-SQL (T-SQL) 96

creating alerts with 170
DDM using 133
enabling Query Store via 147
firewall rules 99–100, 104–105
max server memory configuration in 156–157
operator creation with 165
Query Store configuration 150
TDE using 138

transparent data encryption (TDE) 127
configuration 135–139
using PowerShell 138–139
using T-SQL 138

troubleshooting

database firewall 105–106
SQL Server 163–164

TVFs. See table values functions

U
Unwrap Key permission 113
update statistics 263–266
USE PLAN query hint 146
user-defined filegroups 174

V
vCPU 42
virtual disks

creating 233–234
provisioning types 234–235
selecting 236–237
size of 236
storage layout 233–234

Virtual Log Files (VLFs) 178
virtual machines (VMs)

adding disks to 49–50
building, using portal 68–70
components 42–43
compute units 43
deployment

SQL Server databases to 81–92
using PowerShell 70–72

for SQL Server 44–45
manual installation of SQL Server on 63–68
migration of on-premises SQL Server database to 81–87
performance tuning 89–91
provisioning to host SQL Server instances 68–72
sizing 41–46, 87

storage layout for 57–58
types of 42–43

W
wait statistics 89, 223–227
wait types 223–227
warm data 195
Windows Authentication 24, 25
Windows Azure Service Management API 108
Windows Power Plan 140–142
Windows Server Failover Cluster (WSFC) 36
Wrap Key permission 113
WRITELOG wait type 224

About the authors

JOSEPH D’ANTONI is a Senior Consultant and Microsoft Data Platform
MVP with over 20 years of experience working in both Fortune 500 and
smaller firms. He is a Principal Consultant for Denny Cherry & Associates
and lives in Malvern, PA. He is a frequent speaker at major tech events like
Microsoft Ignite, PASS Summit, and Enterprise Data World. He blogs about
all topics technology at joeydantoni.com. He holds a BS in Computer
Information Systems from Louisiana Tech Univers

SCOTT KLEIN CTO of Cloud and Devices with nearly two decades of
experience working with Microsoft SQL Server. Prior to becoming CTO,
Scott spent six years at Microsoft, traveling the globe as a technical
evangelist training and speaking about SQL Server and Microsoft’s Azure
data services. Scott’s recent focus has been on advanced analytics, including
big data and IoT, providing real-world training to help bring intelligence to
your data. Scott has authored several books, his latest focuses on using
Microsoft’s IoT suite to process and analyze data. Scott is continuously
striving and looking for ways to help developers and companies grok the

wonderful world of data.

Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Important: How to use this book to study for the exam

	Chapter 1 Implement SQL in Azure
	Skill 1:1: Deploy a Microsoft Azure SQL Database
	Skill 1:2: Plan for SQL Server installation
	Skill 1:3: Deploy SQL Server instances
	Skill 1:4: Deploy SQL Server databases to Azure virtual machines
	Thought experiment
	Thought experiment answers
	Chapter summary

	Chapter 2 Manage databases and instances
	Skill 2.1: Configure secure access to Microsoft Azure SQL databases
	Skill 2.2: Configure SQL Server performance settings
	Skill 2.3: Manage SQL Server instances
	Thought Experiment
	Thought experiment answers
	Chapter summary

	Chapter 3 Manage Storage
	Skill 3.1: Manage SQL Storage
	Skill 3.2: Perform database maintenance
	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	Code Snippets

