

Excel
®

 VBA
Programming

6th Edition

by Dick Kusleika

Excel® VBA Programming For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Microsoft and Excel are trademarks or registered trademarks of Microsoft Corporation in the United
States and other countries. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc.
is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2021951691

ISBN 978-1-119-84307-8 (pbk); ISBN 978-1-119-84308-5 (ebk); ISBN 978-1-119-84309-2 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Starting Excel VBA Programming . 7
CHAPTER 1: Getting to Know VBA . 9
CHAPTER 2: Building Simple Macros . 17

Part 2: Employing VBA with Excel . 29
CHAPTER 3: Working in the Visual Basic Editor . 31
CHAPTER 4: Introducing the Excel Object Model . 51
CHAPTER 5: VBA Sub and Function Procedures . 67
CHAPTER 6: Using the Excel Macro Recorder . 83

Part 3: Programming Concepts . 97
CHAPTER 7: Essential VBA Language Elements . 99
CHAPTER 8: Working with Range Objects . 119
CHAPTER 9: Using VBA and Worksheet Functions . 135
CHAPTER 10: Controlling Program Flow and Making Decisions 151
CHAPTER 11: Automatic Procedures and Events . 171
CHAPTER 12: Error-Handling Techniques . 193
CHAPTER 13: Bug Extermination Techniques . 205
CHAPTER 14: VBA Programming Examples . 219

Part 4: Communicating with Your Users . 243
CHAPTER 15: Simple Dialog Boxes . 245
CHAPTER 16: UserForm Basics . 263
CHAPTER 17: Using UserForm Controls . 281
CHAPTER 18: UserForm Techniques and Tricks . 301
CHAPTER 19: Accessing Your Macros through the User Interface 329

Part 5: Putting It All Together . 343
CHAPTER 20: Creating Worksheet Functions . 345
CHAPTER 21: Creating Excel Add-Ins . 365

Part 6: The Part of Tens . 377
CHAPTER 22: Ten Handy Visual Basic Editor Tips . 379
CHAPTER 23: Resources for VBA Help . 389
CHAPTER 24: Ten VBA Do’s and Don’ts . 395

Index . 401

Table of Contents v

Table of Contents
INTRODUCTION . 1

About This Book .1
Typographical conventions .2
Macro security .3

Foolish Assumptions .5
Icons Used in This Book .5
Beyond the Book .6
Where to Go from Here .6

PART 1: STARTING EXCEL VBA PROGRAMMING 7

CHAPTER 1: Getting to Know VBA . 9
Understanding VBA Basics .9
Knowing What VBA Can Do .10

Inserting a bunch of text .11
Automating a task you perform frequently .11
Automating repetitive operations .11
Creating a custom command . .11
Creating a custom button .12
Developing new worksheet functions .12
Creating custom add-ins for Excel .12

Getting the Most from VBA .12
Knowing what VBA does best .12
Recognizing the disadvantages of using VBA 13

Understanding VBA Concepts .14
Ensuring Excel Compatibility .16

CHAPTER 2: Building Simple Macros . 17
Displaying the Developer Tab .17
Creating a Macro .18
Preparing the Environment .18
Recording a Macro .19
Running the Macro .21
Viewing a Macro in the Visual Basic Editor .22
Modifying the Macro .24
Saving Workbooks That Contain Macros .25
Understanding Macro Security .25

vi Excel VBA Programming For Dummies

PART 2: EMPLOYING VBA WITH EXCEL . 29

CHAPTER 3: Working in the Visual Basic Editor . 31
Getting to Know the Visual Basic Editor .31

Activating the VBE .32
Exploring VBE components .32

Working with the Project Explorer .34
Adding a new VBA module .35

Working with a Code Pane .36
Minimizing and maximizing windows .36
Looking at the parts of a module .37
Getting VBA code into a module .38
Entering code directly .38
Using the macro recorder .41
Copying VBA code .44

Customizing the VBE .44
Using the Editor tab .44
Using the Editor Format tab .47
Using the General tab .48
Using the Docking tab .48

CHAPTER 4: Introducing the Excel Object Model 51
Working with the Excel Object Model .51

Understanding the object hierarchy .52
Referring to objects .53

Diving into Object Properties and Methods .57
Setting object properties .58
Taking action with object methods .60
Triggering actions with object events .61

Finding Out More from VBA Resources .62
Using VBA’s Help system .62
Using the Object Browser .63
Automatically listing properties and methods 64

CHAPTER 5: VBA Sub and Function Procedures 67
Understanding Subs versus Functions .67

Looking at Sub procedures .68
Looking at Function procedures .68

Naming Subs and Functions .69
Executing Sub procedures .70

Executing the Sub procedure directly .72
Executing the procedure from the Macro dialog box 73
Executing a macro by using a shortcut key .74
Executing the procedure from a button or shape 75
Executing the procedure from another procedure 77
Executing the procedure from the Immediate window 77

Table of Contents vii

Executing Function Procedures .78
Calling the function from a Sub procedure .78
Calling a function from the Immediate window 79
Calling a function from a worksheet formula 80

CHAPTER 6: Using the Excel Macro Recorder . 83
Recording Basics .84
Preparing to Record .85
Choosing Between Relative and Absolute Mode 86

Recording in absolute mode .86
Recording in relative mode .87

Watching the Macro Recorder in Action .89
Specifying Recording Options for Your Macro .91
Streamlining Code Generated by the Macro Recorder 92

PART 3: PROGRAMMING CONCEPTS . 97

CHAPTER 7: Essential VBA Language Elements . 99
Using Comments in Your VBA Code .99
Using Variables, Constants, and Data Types .101

Understanding variables .101
What are VBA’s data types? .103
Declaring and scoping variables .103
Working with constants .110
Using premade constants .110
Working with strings .111
Working with dates .112

Using Assignment Statements .113
Assignment statement examples .113
About that equal sign .114
Smooth operators .114

Working with Arrays .116
Declaring arrays .116
Multidimensional arrays .117
Dynamic arrays .117

Using Labels .118

CHAPTER 8: Working with Range Objects . 119
Referring to Range Objects .119
Referring to a Range Using Properties .121

The Cells property .122
The Offset property .122
The Resize property .123

viii Excel VBA Programming For Dummies

Working with Range Object Properties .124
The Value property .124
The Text property .125
The Count property .126
The Column and Row properties .126
The Address property .126
The HasFormula property .127
The Font property .128
The Interior property .128
The Formula property .130
The NumberFormat property .131

Taking Action with Range Object Methods .131
The Select method .132
The Copy and Paste methods .132
The Clear method .133
The Delete method .133

CHAPTER 9: Using VBA and Worksheet Functions 135
Understanding Functions .135
Using Built-In VBA Functions .136

Working with dates and times .136
Manipulating strings .138
Identifying objects and data . .139
VBA functions that do more than return a value 140
Discovering VBA functions .141

Using Worksheet Functions in VBA .144
Worksheet function examples .144
Entering worksheet functions .147
More about using worksheet functions .148

Using Custom Functions .148

CHAPTER 10: Controlling Program Flow and
Making Decisions . 151
Going with the Flow, Dude .151
The GoTo Statement .152
Decisions, Decisions .154

The If-Then structure .154
The Select Case structure .158

Knocking Your Code for a Loop .162
For-Next loops .162
Do-While loop . .167
Do-Until loop .168

Using For Each-Next Loops with Collections .168

Table of Contents ix

CHAPTER 11: Automatic Procedures and Events 171
Preparing for the Big Event .171

Learning when to use event procedures .173
Programming event-handler procedures .174

Knowing Where to Put the Event Code .174
Writing an Event-Handler Procedure .175
Triggering Workbook Events .177

The Open event for a workbook .177
The BeforeClose event for a workbook .179
The BeforeSave event for a workbook .180

Using Activation Events .181
Activate and deactivate events in a sheet .181
Activate and deactivate events in a workbook 182
Workbook activation events .184

Programming Worksheet-Related Events .185
The BeforeDoubleClick event .185
The BeforeRightClick event .185
The Change event .186

Understanding Events Not Associated with Objects 188
The OnTime event .188
Keypress events .190

CHAPTER 12: Error-Handling Techniques . 193
Types of Errors .193
An Erroneous Macro Example .194

Not-quite-perfect macros .195
Perfecting the macro .196
Giving up on perfection .198

Alternate Ways of Handling Errors .198
Revisiting the EnterSquareRoot procedure 198
Trapping errors with the On Error statement 200

Handling Errors: The Details .200
Resuming after an error .200
Error handling in a nutshell .202

An Intentional Error . .203

CHAPTER 13: Bug Extermination Techniques . 205
Species of Bugs .205
Identifying Bugs .207
Debugging Techniques .208

Examining your code . .208
Using the MsgBox function .208
Inserting Debug .Print statements .210
Using the VBA debugger .210

x Excel VBA Programming For Dummies

Using the Debugger’s Tools .211
Setting breakpoints in your code .211
Using the Watches window .214
Using the Locals window .216

Bug Reduction Tips .217

CHAPTER 14: VBA Programming Examples . 219
Working with Ranges .220

Copying a range .220
Copying a variable-size range .221
Selecting to the end of a row or column .223
Selecting a row or column .224
Moving a range .224
Looping through a range efficiently .225
Looping through a range efficiently (Part II) 227
Prompting for a cell value .227
Determining the selection type .228
Identifying a multiple selection .229

Changing Excel Settings .230
Changing Boolean settings .230
Changing non-Boolean settings .231

Working with Charts .231
AddChart versus AddChart2 .232
Modifying the chart type .234
Looping through the ChartObjects collection 234
Modifying chart properties .235
Applying chart formatting .235

VBA Speed Tips .237
Turning off screen updating .237
Turning off automatic calculation .238
Eliminating those pesky alert messages .239
Simplifying object references .240
Declaring variable types .241
Using the With-End With structure .242

PART 4: COMMUNICATING WITH YOUR USERS 243

CHAPTER 15: Simple Dialog Boxes . 245
Interacting with the User in VBA .246
Displaying Messages with the MsgBox Function 247

Displaying a simple message box .247
Getting a response from a message box .248
Customizing message boxes .250

Getting Data with an Input Box .252

Table of Contents xi

Understanding the InputBox syntax .253
Using the InputBox function .253
Using the InputBox method .255

Allowing the User to Select a File or Folder .256
Constructing a GetOpenFilename statement 256
Selecting a file with GetOpenFilename .256
Picking a file with GetSaveAsFilename .259
Getting a folder name .259

Displaying Excel’s Built-In Dialog Boxes .260

CHAPTER 16: UserForm Basics . 263
Knowing When to Use a UserForm .263
Creating UserForms: An Overview .265
Working with UserForms .266

Inserting a new UserForm .266
Adding controls to a UserForm .267
Changing properties for a UserForm control 268
Viewing the UserForm Code pane .269
Displaying a UserForm .269
Using information from a UserForm .270

A UserForm Example .271
Creating the UserForm .271
Adding the CommandButtons .272
Adding the OptionButtons .272
Adding event-handler procedures .275
Creating a macro to display the dialog box 277
Making the macro available .277
Testing the macro .278

CHAPTER 17: Using UserForm Controls . 281
Getting Started with Dialog Box Controls .281

Adding controls .282
Introducing control properties .283

Learning Dialog Box Controls Details .285
CheckBox control .285
ComboBox control .286
CommandButton control .287
Frame control .288
Image control .288
Label control . .289
ListBox control .289
MultiPage control .291
OptionButton control .292
RefEdit control .292

xii Excel VBA Programming For Dummies

ScrollBar control .293
SpinButton control .294
TabStrip control .295
TextBox control .295
ToggleButton control .296

Working with Dialog Box Controls .296
Moving and resizing controls .297
Aligning and spacing controls .297
Accommodating keyboard users .297
Testing a UserForm .300

Dialog Box Aesthetics .300

CHAPTER 18: UserForm Techniques and Tricks . 301
Using Dialog Boxes .302
A UserForm Example .302

Creating the dialog box . .302
Writing code to display the dialog box .305
Making the macro available .305
Trying out your dialog box .306
Adding event-handler procedures .307
Validating the data .309
Now the dialog box works .309

A ListBox Control Example .309
Filling a ListBox Control .310
Determining the selected item .312
Determining multiple selections .313

Selecting a Range .314
Using Multiple Sets of Option Buttons .316
Using a Spin Button and a Text Box .317
Using a UserForm as a Progress Indicator . .319

Creating the progress-indicator dialog box 320
The procedures .321
How this example works .322

Creating a Modeless Tabbed Dialog Box .323
Displaying a Chart in a UserForm .325
A Dialog Box Checklist .326

CHAPTER 19: Accessing Your Macros through
the User Interface . 329
Customizing the Ribbon .329

Customizing the Ribbon manually .330
Adding a macro to the Ribbon .332
Customizing the Ribbon with XML .333

Customizing the Excel UI with VBA .337

Table of Contents xiii

Adding commands to the Add-ins Ribbon tab 338
Adding a new item to the Cell shortcut menu 339
Adding customizations automatically .340
Understanding shortcut menus and the single
document interface .341

PART 5: PUTTING IT ALL TOGETHER . 343

CHAPTER 20: Creating Worksheet Functions . 345
Create Custom Functions to Simplify Your Work 345
Understanding VBA Function Basics .347
Writing Functions .347
Working with Function Arguments .348

A function with no argument .349
A function with one argument .349
A function with two arguments .351
A function with a range argument .352
A function with an optional argument .354

Introducing Wrapper Functions .356
The NumberFormat function .356
The ExtractElement function .357
The SayIt function .358
The IsLike function .358

Working with Functions That Return an Array 359
Returning an array of month names .359
Returning a sorted list .360

Using the Insert Function Dialog Box .362
Displaying the function’s description .362
Adding argument descriptions .364

CHAPTER 21: Creating Excel Add-Ins . 365
Add-Ins Defined .365
Reasons to Create Add-Ins .366
Working with Add-Ins .367
Understanding Add-In Basics .368
Looking at an Add-In Example .369

Setting up the workbook .369
Testing the workbook .372
Adding descriptive information .372
Protecting the VBA code .373
Creating the add-in .374
Opening the add-in .374
Distributing the add-in .375
Modifying the add-in .375

xiv Excel VBA Programming For Dummies

PART 6: THE PART OF TENS . 377

CHAPTER 22: Ten Handy Visual Basic Editor Tips 379
Applying Block Comments .380
Copying Multiple Lines of Code at Once .381
Jumping between Modules and Procedures .382
Teleporting to Your Functions .382
Staying in the Right Procedure .383
Stepping through Your Code .383
Stepping to a Specific Line in Your Code .384
Stopping Your Code at a Predefined Point .385
Seeing the Beginning and End of Variable Values 386
Turning Off Auto Syntax Check .387

CHAPTER 23: Resources for VBA Help . 389
Letting Excel Write Code for You .390
Referencing the Help System .390
Pilfering Code from the Internet .390
Leveraging User Forums . .391
Visiting Expert Blogs .392
Mining YouTube for Video Training .393
Attending Live and Online Training Classes .393
Learning from the Microsoft Office Dev Center 393
Dissecting the Other Excel Files in Your Organization 394
Asking Your Local Excel Guru .394

CHAPTER 24: Ten VBA Do’s and Don’ts . 395
Do Declare All Variables .395
Don’t Confuse Passwords with Security .396
Do Clean Up Your Code .396
Don’t Put Everything in One Procedure .397
Do Consider Other Software .397
Don’t Assume That Everyone Enables Macros 397
Do Get in the Habit of Experimenting .398
Don’t Assume That Your Code Will Work with Other
Excel Versions .398
Do Keep Your Users in Mind .399
Don’t Forget about Backups . .399

INDEX . 401

Introduction 1

Introduction

G

reetings, prospective Excel programmer. . .

You no doubt have your reasons for picking up a book on VBA programming.
Maybe you got a new job (congratulations). Maybe you’re trying to automate some
of the repetitive data crunching tasks you have to do. Maybe you’re just a nerd at
heart. Whatever the reason, thank you for choosing this book.

Inside, you find everything you need to get up and running with VBA fast. Even if
you don’t have the foggiest idea of what programming is all about, this book can
help. Unlike most programming books, this one is filled with information designed
to include just what you need to know to quickly ramp your VBA programming
skillset.

About This Book
Go to any large bookstore (in person or online), and you’ll find many Excel books.
A quick overview can help you decide whether this book is really right for you.
This book

 » Is designed for intermediate to advanced Excel users who want to get up to
speed with Visual Basic for Applications (VBA) programming.

 » Requires no previous programming experience.

 » Covers the most commonly used commands.

 » Is appropriate for recent versions of Excel.

 » Just might make you crack a smile occasionally.

If you’re using an older version of Excel, this book might be okay, but some things
have changed. You’d probably be better off with the preceding edition.

2 Excel VBA Programming For Dummies

Oh, yeah — this is not an introductory Excel book. If you’re looking for a general-
purpose Excel book, check out either of the following books, which are both pub-
lished by Wiley:

 » Excel 2019 For Dummies, by Greg Harvey

 » Excel Bible, by Michael Alexander and Dick Kusleika

These books are also available in editions for earlier versions of Excel.

Notice that the title of this book isn’t The Complete Guide to Excel VBA Programming
For Dummies. This book doesn’t cover all aspects of Excel programming — but
then again, you probably don’t want to know everything about this topic.

If you consume this book and find that you’re hungry for a more comprehensive
Excel programming book, you might try Microsoft Excel 2019 Power Programming
with VBA, also published by Wiley. And yes, editions for older versions of Excel are
also available.

To make the content more accessible, I divided this book into six parts:

 » Part 1, Starting with Excel VBA Programming

 » Part 2, Employing VBA with Excel

 » Part 3, Programming Concepts

 » Part 4, Communicating with Your Users

 » Part 5, Putting It All Together

 » Part 6, The Part of Tens

Typographical conventions
Sometimes, I refer to key combinations — which means you hold down one key
while you press another. For example, Ctrl+Z means you hold down the Ctrl key
while you press Z.

For menu commands, I use a distinctive character to separate items on the Ribbon
or menu. For example, you use the following command to create a named range in
a worksheet:

Formulas ➪  Defined Names ➪  Define Name

Introduction 3

Formulas is the tab at the top of the Ribbon, Defined Names is the Ribbon group,
and Define Name is the Ribbon tool you click.

The Visual Basic Editor still uses old-fashioned menus and toolbars. So Tools ➪
Options means choose the Tools menu and then choose the Options menu item.

Excel programming involves developing code — that is, the instructions VBA
 follows. All code in this book appears in a monospace font, like this:

Range("A1:A12").Select

Some long lines of code don’t fit between the margins in this book. In such cases,
I use the standard VBA line-continuation character sequence: a space followed by
an underscore character. Here’s an example:

Selection.PasteSpecial Paste:=xlValues, _

 Operation:=xlNone, SkipBlanks:=False, _

 Transpose:=False

When you enter this code, you can type it as written or place it on a single line
(omitting the space and underscore combination).

Macro security
It’s a cruel world out there. It seems that some scam artist is always trying to take
advantage of you or cause some type of problem. The world of computing is
equally cruel. You probably know about computer viruses, which can cause some
nasty things to happen to your system. But did you know that computer viruses
can also reside in an Excel file? It’s true. In fact, it’s relatively easy to write a com-
puter virus by using VBA. An unknowing user can open an Excel file and spread the
virus to other Excel workbooks and to other systems.

Over the years, Microsoft has become increasingly concerned about security
issues. This is a good thing, but it also means that Excel users need to understand
how things work. You can check Excel’s security settings by choosing File ➪
Options ➪ Trust Center ➪ Trust Center Settings. There is a plethora of options in
there, and people have been known to open that dialog box and never be heard
from again.

4 Excel VBA Programming For Dummies

If you click the Macro Settings tab (on the left side of the Trust Center dialog box),
your options are as follows:

 » Disable VBA macros without notification. Macros will not work, regardless
of what you do.

 » Disable VBA macros with notification. When you open a workbook with
macros, you see the Message Bar open with an option you can click to enable
macros, or (if the Visual Basic Editor window is open) you get a message
asking if you want to enable macros.

 » Disable VBA macros except digitally signed macros. Only macros with a
digital signature are allowed to run (but even for those signatures you haven’t
marked as trusted, you still get the security warning).

 » Enable VBA macros. All macros run with no warnings. This option is not
recommended because potentially dangerous code can be executed.

Consider this scenario: You spend a week writing a killer VBA program that will
revolutionize your company. You test it thoroughly and then send it to your boss.
They call you into their office and claim that your macro doesn’t do anything at
all. What’s going on? Chances are, your boss’s security setting doesn’t allow mac-
ros to run. Or maybe they chose to go along with Microsoft’s default suggestion
and disable the macros when they opened the file.

Bottom line? Just because an Excel workbook contains a macro does not guarantee
that the macro will ever be executed. It all depends on the security setting and
whether the user chooses to enable or disable macros for that file.

To work with this book, you need to enable macros for the files you work with. My
advice is to use the second security level. Then, when you open a file that you’ve
created, you can simply enable the macros. If you open a file from someone you
don’t know, you should disable the macros and check the VBA code to ensure that
it doesn’t contain anything destructive or malicious. Usually, it’s pretty easy to
identify suspicious VBA code.

Another option is to designate a trusted folder. Choose File ➪ Options ➪ Trust
Center ➪ Trust Center Settings. Select the Trusted Locations option and then des-
ignate a particular folder as a trusted location. Store your trusted workbooks there,
and Excel won’t bug you about enabling macros. For example, if you download the
sample files for this book, you can put them in a trusted location.

Introduction 5

Foolish Assumptions
People who write books usually have a target reader in mind. The following points
more or less describe the hypothetical target reader for this book:

 » You have access to a PC at work — and probably at home. And those comput-
ers are connected to the internet.

 » You’re running a fairly recent version of Excel.

 » You’ve been using computers for several years.

 » You use Excel frequently in your work, and you consider yourself to be more
knowledgeable about Excel than the average bear.

 » You need to make Excel do some things that you currently can’t make it do.

 » You have little or no programming experience.

 » You understand that the Help system in Excel can actually be useful. Face
it — this book doesn’t cover everything. If you get on good speaking terms
with the Help system, you’ll be able to fill in some of the missing pieces.

 » You need to accomplish some work, and you have a low tolerance for thick,
boring computer books.

Icons Used in This Book
Throughout this book, icons in the margins highlight certain types of valuable
information that call out for your attention. Here are the icons you’ll encounter
and a brief description of each.

The Tip icon marks tips and shortcuts that can save you a great deal of time (and
maybe even allow you to leave the office at a reasonable hour).

Remember icons mark the information that’s especially important to know. To
siphon off the most important information in each chapter, just skim through
these icons.

The Technical Stuff icon marks information of a highly technical nature that you
can normally skip over.

6 Excel VBA Programming For Dummies

The Warning icon tells you to watch out! It marks important information that may
save you from losing data and ruining your whole day.

Beyond the Book
This book has its very own website where you can download the sample files.
To get these files, point your web browser to

https://www.dummies.com/go/excelvbaprogrammingfd6e

Having the sample files will save you a lot of typing. Better yet, you can play
around with them and experiment with various changes. In fact, experimentation
is the best way to master VBA.

In addition, this book comes with a free access-anywhere Cheat Sheet that
includes keyboard shortcuts related to Excel VBA programming. To get this Cheat
Sheet, simply go to www.dummies.com and type VBA Excel Programming For
Dummies Cheat Sheet in the Search box and click on the Cheat Sheets tab.

Where to Go from Here
This book contains everything you need to learn VBA programming at a mid-
advanced level. The book starts off with the basics of recording macros and builds,
chapter by chapter.

If you’re completely new to Excel macros, start with Part 1 to get a refresher on
the fundamentals of recording macros. If you have experience recording macros,
but want to better understand the VBA behind them, read to Parts 2 and 3. There,
you gain a concise understanding of how VBA works, along with the basic founda-
tion you need to implement your own code.

Finally, if you’re familiar with programming concepts and just want to get a quick
run-through of some of the more advanced techniques like creating your custom
functions and add-ins, feel free to jump to Part 4.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com

1Starting
Excel VBA
Programming

IN THIS PART . . .

Get to know Visual Basic for Applications.

Work through a real-live Excel programming session.

CHAPTER 1 Getting to Know VBA 9

Chapter 1
Getting to Know VBA

If you’re eager to jump into VBA programming, hold your horses. This chapter is
completely devoid of any hands-on training material. It does, however, contain
some essential background information that assists you in becoming an Excel

programmer. Just like a great heart surgeon has to take freshman biology, you
must learn some basic concepts and terminology so that the more practical aspects
you do later make sense.

Understanding VBA Basics
VBA, which stands for Visual Basic for Applications, is a programming language
developed by Microsoft — you know, the company that tries to get you to buy a
new version of Windows every few years. Excel, along with the other members of
Microsoft Office, includes the VBA language (at no extra charge). In a nutshell,
VBA is the tool that people use to write programs that automate Excel, such as a
program to format a spreadsheet into a monthly report. In the next section, I dis-
cuss in more detail the types of tasks you can automate with VBA.

Imagine a robot that knows all about Excel. This robot can read instructions, and
it can also operate Excel quickly and accurately. When you want the robot to do
something in Excel, you write a set of robot instructions by using special codes.
Then you tell the robot to follow your instructions while you sit back and drink a
glass of lemonade. With VBA, you don’t need the extra chair at your desk for an
actual robot. Just feed the special codes into VBA and it does the work.

IN THIS CHAPTER

 » Getting a conceptual overview of VBA

 » Finding out what you can do with VBA

 » Discovering the advantages and
disadvantages of using VBA

 » Getting the lowdown on what VBA is

 » Staying Excel compatible

10 PART 1 Starting Excel VBA Programming

Knowing What VBA Can Do
You’re probably aware that people use Excel for thousands of different tasks. Here
are just a few examples:

 » Analyzing scientific data

 » Budgeting and forecasting

 » Creating invoices and other forms

 » Building charts from data

 » Keeping lists of things such as customers’ names, students’ grades, or holiday
gift ideas (a nice fruitcake would be lovely)

The list could go on and on, but you get the idea. The point is simply that Excel is
used for a wide variety of tasks, and everyone reading this book has different
needs and expectations regarding Excel. One thing virtually every reader has in
common is the need to automate some aspect of Excel. That, dear reader, is what VBA
is all about.

For example, you might create a VBA program to import some numbers and then
format and print your month-end sales report. After writing and testing the pro-
gram, you can execute the macro with a single command, causing Excel to

A FEW WORDS ABOUT TERMINOLOGY
Excel programming terminology can be a bit confusing. For example, VBA is a program-
ming language, but it also serves as a macro language. In this context, a macro is a set of
instructions Excel performs to imitate keystrokes and mouse actions. What do you call
something written in VBA and executed in Excel? Is it a macro, or is it a program? Excel’s
Help system often refers to VBA procedures as macros, so that terminology is used in
this book. But you can also call this stuff a program.

You’ll see the term automate throughout this book. This term means that a series of
steps are completed automatically. For example, if you write a macro that adds color to
some cells, prints the worksheet, and then removes the color, you have automated
those three steps.

By the way, macro doesn’t stand for Messy And Confusing Repeated Operation. Rather,
it comes from the Greek makros, which means large — which also describes your pay-
check after you become an expert macro programmer.

CHAPTER 1 Getting to Know VBA 11

automatically perform many time-consuming procedures. Rather than struggle
through a tedious sequence of commands, you can simply click a button and then
hop on over to TikTok and kill some time while your macro does the work.

The following sections briefly describe some common uses for VBA macros. One or
two of these may push your button.

Inserting a bunch of text
If you often need to enter your company name, address, and phone number in
your worksheets, you can create a macro to do the typing for you. You can extend
this concept as far as you like. For example, you might develop a macro that auto-
matically enters a list of all salespeople who work for your company.

Automating a task you perform frequently
Assume you’re a sales manager and you need to prepare a month-end sales report
to keep your boss happy. If the task is straightforward, you can develop a VBA
program to do it for you. Your boss will be impressed by the consistently high
quality of your reports, and you’ll be promoted to a new job for which you are
highly unqualified.

Automating repetitive operations
If you need to perform the same action on, say, 12 different Excel workbooks, you
can record a macro while you perform the task on the first workbook, and then let
the macro repeat your action on the other workbooks. The nice thing about this is
that Excel never complains about being bored. Excel’s macro recorder is similar to
recording live action on a video recorder. However, it doesn’t require a camera,
and the battery never needs to be recharged.

Creating a custom command
Do you often issue the same sequence of Excel commands? If so, save yourself a
few seconds by developing a macro that combines these commands into a single
custom command, which you can execute with a single keystroke or button click.
You probably won’t save that much time, but you’ll probably be more accurate.
And the guy sitting in the next cubicle will be really impressed.

12 PART 1 Starting Excel VBA Programming

Creating a custom button
You can customize your Quick Access toolbar with your own buttons that execute
the macros you write. Office workers tend to be very impressed by buttons that
perform magic. And if you really want to impress your fellow employees, you can
even add new buttons to the Ribbon.

Developing new worksheet functions
Although Excel includes hundreds of built-in functions (such as SUM and AVER-
AGE), you can create custom worksheet functions that can greatly simplify your
formulas. You’ll be surprised by how easy this is. (You can explore how to do this
in Chapter 20.) Even better, the Insert Function dialog box displays your custom
functions, making them appear built-in. Very snazzy stuff.

Creating custom add-ins for Excel
You might be familiar with some of the add-ins that ship with Excel. For example,
the Analysis ToolPak is a popular add-in. You can use VBA to develop your own
special-purpose add-ins. Add-ins are just like regular Excel workbooks except
they don’t have any worksheets the users can see. They’re all VBA and they usu-
ally automate tasks on other workbooks.

Getting the Most from VBA
VBA provides a ton of benefits that are tempered with a few disadvantages you’ll
want to keep in mind. One advantage of VBA, for example, is that you can use it to
automate almost anything you do in Excel. All you have to do is write instructions
in VBA, and Excel carries out those instructions when instructed to do so. The
previous section, “Knowing What VBA Can Do,” describes some specific tasks you
can accomplish by using VBA. The following sections helps you decide whether
VBA is the best tool to achieve the results you want.

Knowing what VBA does best
Here are some benefits of automating a task by using VBA:

 » Excel always executes the task in exactly the same way. (In most cases,
consistency is a good thing.)

CHAPTER 1 Getting to Know VBA 13

 » Excel performs the task much faster than you can do it manually. (Unless, of
course, you’re Clark Kent.)

 » If you’re a good macro programmer, Excel always performs the task
without errors (which probably can’t be said about you, no matter how
careful you are).

 » If you set up things properly, someone who doesn’t know anything about
Excel can perform the task by running the macro.

 » You can do things in Excel that are otherwise impossible — which can make
you a very popular person around the office.

 » For long, time-consuming tasks, you don’t have to sit in front of your
computer and get bored. Excel does the work while you hang out at the
water cooler.

Recognizing the disadvantages of using VBA
Using VBA can present some disadvantages (or potential disadvantages). Under-
standing these limitations upfront helps you avoid running down rabbit trails to
nowhere. Most people use VBA to save time, not waste it!

Keep the following points in mind when deciding whether to use VBA:

 » Other people who need to use your VBA programs must have their own
copies of Excel. It would be nice if you could press a button that transforms
your Excel/VBA application into a stand-alone program, but that isn’t possible.
(And probably never will be.)

 » Sometimes, things go wrong. In other words, you can’t blindly assume that
your VBA program will always work correctly under all circumstances.
Welcome to the world of debugging (fixing errors) and, if others are using your
macros, providing technical support.

 » VBA is a moving target. As you know, Microsoft is continually upgrading Excel.
Even though Microsoft puts great effort into compatibility between versions,
you might discover that the VBA code you’ve written doesn’t work properly
with older versions or with a future version of Excel. For more information
on the importance of Excel compatibility, see the section “Ensuring Excel
Compatibility,” later in this chapter.

14 PART 1 Starting Excel VBA Programming

Understanding VBA Concepts
Just to let you know what you’re in for, here’s a quick-and-dirty summary of
what VBA is all about.

 » You perform actions in VBA by writing (or recording) code in a VBA
module. You view and edit VBA modules by using the Visual Basic
Editor (VBE).

 » A VBA module consists of Sub procedures. A Sub procedure has nothing
to do with underwater vessels or tasty sandwiches. Rather, it’s a chunk of
computer code that performs some action on or with objects (discussed in
a moment). The following example shows a simple Sub procedure called
AddEmUp. This amazing program, when executed, displays the result
of 1 plus 1:

Sub AddEmUp()
 Sum = 1 + 1
 MsgBox "The answer is " & Sum
End Sub

A Sub procedure that doesn’t perform properly is said to be substandard.

 » A VBA module can also have Function procedures. A Function procedure
returns a single value. You can call it from another VBA procedure or even use
it as a function in a worksheet formula. An example of a Function procedure
(named AddTwo) follows. This Function accepts two numbers (called argu-
ments) and returns the sum of those values:

Function AddTwo(arg1, arg2)
 AddTwo = arg1 + arg2
End Function

A Function procedure that doesn’t work correctly is said to be dysfunctional.

 » VBA manipulates objects. Excel provides dozens and dozens of objects that
you can manipulate. Examples of objects include a workbook, a worksheet, a
cell range, a chart, and a shape. You have many more objects at your disposal,
and you can manipulate them by using VBA code.

 » Objects are arranged in a hierarchy. Objects can act as containers for other
objects. At the top of the object hierarchy is Excel. Excel itself is an object
called Application. The Application object contains other objects, such as
Workbook objects and Add-In objects. The Workbook object can contain other
objects, such as Worksheet objects and Chart objects. A Worksheet object can
contain objects such as Range objects and PivotTable objects. The term object
model refers to the arrangement of these objects. (Object-model mavens can
find out more in Chapter 4.)

CHAPTER 1 Getting to Know VBA 15

 » Collection Objects hold other objects of the same type. For example, the
Worksheets collection consists of all the worksheets in a particular workbook.
The Charts collection consists of all Chart objects in a workbook. Collections
are themselves objects.

 » You refer to an object by specifying its position in the object hierarchy,
using a dot (entered as a period) as a separator. For example, you can
refer to the workbook Book1.xlsx as

Application.Workbooks("Book1.xlsx")

This refers to the workbook Book1.xlsx in the Workbooks collection. The
Workbooks collection is contained in the Application object (that is, Excel).
Extending this to another level, you can refer to Sheet1 in Book1.xlsx as

Application.Workbooks("Book1.xlsx").Worksheets("Sheet1")

You can take this to still another level and refer to a specific cell (in this case,
cell A1):

Application.Workbooks("Book1.xlsx").Worksheets("Sheet1").
Range("A1")

 » If you omit specific references, Excel uses the active objects. If Book1.
xlsx is the active workbook, you can simplify the preceding reference as
follows:

Worksheets("Sheet1").Range("A1")

If you know that Sheet1 is the active sheet, you can simplify the reference
even more:

Range("A1")

 » Objects have properties. You can think of a property as a characteristic of an
object. For example, a Range object has such properties as Value and Address.
A Chart object has such properties as HasTitle and Type. You can use VBA to
read object properties and also to change properties.

 » You refer to a property of an object by combining the object name with
the property name, separated by a dot. For example, you can refer to the
Value property in cell A1 on Sheet1 as follows:

Worksheets("Sheet1").Range("A1").Value

 » You can assign values to variables. A variable is a named element that
stores information. You can use variables in your VBA code to store such
things as numbers, text, and properties. To assign the value in cell A1 on
Sheet1 to a variable called Interest, use the following VBA statement:

Interest = Worksheets("Sheet1").Range("A1").Value

16 PART 1 Starting Excel VBA Programming

 » Objects have methods. A method is an action Excel performs with an object.
For example, one of the methods for a Range object is ClearContents. This
aptly named method clears the contents of the range.

 » You specify a method by combining the object with the method, sepa-
rated by a dot. For example, the following statement deletes the value in cell
A1 using the ClearContents method:

Worksheets("Sheet1").Range("A1").ClearContents

 » VBA includes all the constructs of modern programming languages,
including variables, arrays, and looping. In other words, if you’re willing to
spend a little time learning the ropes, you can write code that does some
incredible things.

Believe it or not, the preceding list pretty much describes VBA. Now you just have
to discover the details by reading the rest of the book.

Ensuring Excel Compatibility
This book is written for the desktop versions of Excel 2019 and Excel 2021. If you
don’t have one of those versions, there’s a slight risk you’ll get confused in a few
places, but mostly it will just work.

If you plan to distribute your Excel/VBA files to other users, it’s vitally important
that you understand which versions of Excel they use. People using older versions
won’t be able to take advantage of features introduced in later versions. For exam-
ple, if you write VBA code that references cell XFD1048576 (the last cell in a work-
book), those who use a version prior to Excel 2007 will receive an error because
those pre-Excel 2007 worksheets had only 65,536 rows and 255 columns (the last
cell is IV65536).

Excel 2010 and later also have some new objects, methods, and properties. If you
use these in your code, users with an older version of Excel will receive an error
when they run your macro — and you’ll get the blame.

CHAPTER 2 Building Simple Macros 17

Chapter 2
Building Simple Macros

The best way to get into a cold body of water is to jump right in — no sense
prolonging the agony. By wading through this chapter, you can get your feet
wet immediately but avoid getting in over your head.

By the time you reach the end of this chapter, you’ll start feeling better about this
Excel programming business, and you’ll be glad you took the plunge. This chapter
provides a step-by-step demonstration of how to develop a simple but useful
VBA macro.

Displaying the Developer Tab
Before you can call yourself an Excel programmer, you need to learn the secret
handshake. That means you need to make a small change so that Excel will display
a new tab at the top of the screen: Developer. Getting Excel to display the Devel-
oper tab is easy (and you only have to do it once). Just follow these steps:

1. Right-click any part of the Ribbon and choose Customize the Ribbon from
the shortcut menu.

2. In the Customize Ribbon tab of the Excel Options dialog box, locate
Developer in the box on the right.

IN THIS CHAPTER

 » Developing a useful VBA macro: A
hands-on, step-by-step example

 » Recording your actions by using
Excel’s macro recorder

 » Examining and running
recorded code

 » Changing a recorded macro

 » Dealing with macro security issues

18 PART 1 Starting Excel VBA Programming

3. Put a check mark next to Developer.

4. Click OK.

You’re back to Excel with a brand-new tab: Developer.

When you click the Developer tab, the Ribbon displays information that is of
interest to programmers (that’s you!). Figure 2-1 shows how the Ribbon looks
when the Developer tab is selected.

Creating a Macro
In this chapter, you create your first macro. The macro that you create does the
following:

 » Types your name in a cell

 » Enters the current date and time in the cell below

 » Formats both cells to display bold

 » Changes the font size of both cells to 16 point

This macro won’t be winning any prizes for Most Complicated Macro of the Year,
but everyone must start somewhere. (And here’s a secret: The macros you use the
most are the simplest ones.) This macro accomplishes all these steps in a single
action. As I describe in the following sections, you start by recording your actions
as you go through these steps. Then you test the macro to see whether it works.
Finally, you edit the macro to add some finishing touches.

Preparing the Environment
This section describes the steps you take prior to recording the macro. In other
words, you need to make a few preparations before the fun begins:

FIGURE 2-1:
The Developer
tab is normally
hidden, but it’s
easy to unhide.

CHAPTER 2 Building Simple Macros 19

1. Start Excel, if it’s not already running.

2. If necessary, create a new, empty workbook.

Pressing Ctrl+N is a quick way to do that.

3. Click the Developer tab, and then take a look at the Use Relative
References button in the Code group.

If the color of that button is different from the other buttons, you’re in good
shape. If the Use Relative References button is the same color as the other
buttons, you need to click it to enable this option.

You explore the Relative References button in Chapter 6. For now, just make sure
that the option is turned on. When it’s turned on, the Use Relative References but-
ton is a different color from the other buttons in the group.

Recording a Macro
Here comes the hands-on part. Follow these instructions carefully:

1. Select a cell.

Any cell will do.

2. Choose Developer ➪  Code ➪  Record Macro, or click the Macro Recording
button on the status bar.

The Record Macro dialog box appears, as shown in Figure 2-2.

FIGURE 2-2:
The Record

Macro dialog box
appears when

you’re about to
record a macro.

20 PART 1 Starting Excel VBA Programming

3. Enter a name for the macro.

Excel provides a default name (something like Macro1), but it’s better to use a
more descriptive name. NameAndTime (with no spaces) is a good name for this
macro.

4. Click the Shortcut Key box, and enter Shift+N (for an uppercase N) as the
shortcut key.

Specifying a shortcut key is optional. If you do specify one, you can execute the
macro by pressing a key combination — in this case, Ctrl+Shift+N. Be aware
that if you assign a common shortcut key (for instance, Ctrl+C), you lose the
normal functionality for that shortcut key; Excel will trigger your macro instead.

5. Verify that the Store Macro In setting is This Workbook.

6. (Optional) Enter some text in the Description box.

Some people like to describe what the macro does (or is supposed to do).

Figure 2-3 shows the Record Macro dialog box filled in with a name, optional
shortcut, and optional description.

7. Click OK.

The Record Macro dialog box closes, Excel’s macro recorder is turned on, and
the Record Macro button’s caption is changed to Stop Recording. From this
point, Excel monitors everything you do and converts it to VBA code.

8. Type your name in the active cell.

9. Select the cell below and enter this formula:

=NOW()

The formula displays the current date and time.

FIGURE 2-3:
The completed
Record Macro

dialog box.

CHAPTER 2 Building Simple Macros 21

10. Select the formula cell, and press Ctrl+C to copy that cell to the Clipboard.

11. Choose Home ➪  Clipboard ➪  Paste ➪  Values (V).

This command converts the formula to its value.

12. Select both the cell with your name and the one with the date and time.

13. Use the controls in the Home  ➪   Font group to change the formatting to
Bold and make the font size 16 point.

14. Choose Developer  ➪   Code  ➪   Stop Recording.

The macro recorder is turned off.

Congratulations! You just recorded your first Excel VBA macro. You might want to
phone your mother and tell her the good news.

Running the Macro
Once you’ve finished writing your macro, it’s time to see if it actually works. The
following are some of the ways to run a macro:

 » Press the shortcut key. If you created a shortcut key sequence for your macro,
you can run it by press those keys. For example, in the previous section you
assigned Ctrl+Shift+N in the Macro Options dialog. If you hold down Ctrl and
Shift, and press N, your macro will insert your name and the date and
format them.

 » Choose Developer ➪  Code ➪  Macros. This shows the Macro dialog where you
can select your macro and click Run.

 » Run it from the VBE. Open the VBE, place the cursor anywhere within your
macro, and choose Run ➪  Run Sub/UserForm from the menu (or press F5).

 » Assign the macro to the Quick Access toolbar. Right-click on the Quick Access
toolbar and choose Customize Quick Access Toolbar to show the Excel
Options dialog. Choose Macros from the Choose commands from the
drop-down dialog box and add your macro. Click OK to close the dialog. Now
you can click the tool on the Quick Access toolbar to run the macro.

For your macro to run, the workbook that contains it must be open. If it’s closed,
the macro won’t show up in the dialog box or in the VBE. The workbook doesn’t
have to be active, however. You can activate a workbook and run code that’s con-
tained in a different workbook. You can also store your macro in the Personal
Macro Workbook (see Chapter 6) or in an add-in (see Chapter 21). Those are both
types of files that are open in the background.

22 PART 1 Starting Excel VBA Programming

The NameAndTime macro you recorded in the previous section does not warn you
if there is already data in the cells you are about to write data to. It’s not what you
would call production-quality code.

Whatever way you choose to run your macro, run it and make sure it does what
you expect it to. If it doesn’t, read on to see how to view and edit it.

Viewing a Macro in the Visual Basic Editor
After you record and run a macro, you may be curious to see what the macro looks
like. You might even wonder where it’s stored.

Excel stores macros in the workbook you indicate when creating the macro. So for
the example used in this chapter, the macro is stored in This Workbook. To view
macros, however, you need to activate the Visual Basic Editor (VBE, for short).

Follow these steps to see the macro used as an example throughout this chapter:

1. Choose Developer  ➪   Code  ➪   Visual Basic (or press Alt+F11).

The Visual Basic Editor program window appears, as shown in Figure 2-4. This
window is highly customizable, so your VBE window may look a bit different.
The VBE window contains several other windows, which can be intimidating.
Don’t fret; you’ll get used to it.

2. In the VBE window, locate the Project Explorer.

The Project Explorer contains a list of all workbooks and add-ins that are
currently open. Each project is arranged as a tree and can be expanded (to
show more information) or contracted (to show less information).

The VBE uses quite a few different windows, any of which can be open or
closed. If a window isn’t immediately visible in the VBE, you can choose an
option from the View menu to display the window. For instance, if the Project
Explorer is not visible, you can choose View  ➪   Project Explorer (or press
Ctrl+R) to display it. You can display any other VBE window in a similar manner.
Chapter 3 covers the components of the VBE.

3. If necessary, expand the project that corresponds to the workbook in
which you recorded the macro by clicking the plus sign next to it.

If you haven’t saved the workbook, the project is probably called VBAProject
(Book1).

CHAPTER 2 Building Simple Macros 23

4. Click the plus sign (+) to the left of the folder named Modules.

The tree expands to show Module1, which is the only module in the project.

5. Double-click Module1.

The VBA code in that module is displayed in a Code pane (refer to Figure 2-4).
Your screen may not look exactly the same as Figure 2-4. The code that’s
recorded depends on the specific actions you made while recording the macro.

At this point, the macro probably might look a bit mysterious. Don’t worry. Travel
a few chapters down the road, and all will be crystal clear.

The NameAndTime macro consists of several statements. Excel executes the
statements one by one, from top to bottom. A statement that’s preceded by an
apostrophe (′) is a comment. Comments are included only for your information
and are ignored by Excel. In other words, Excel skips right over comments.

The first VBA statement (which begins with the word Sub) identifies the macro as
a Sub procedure and gives its name; you provided this name before you started
recording the macro. If you read through the code, you might be able to make
sense of some of it. You see your name, the formula you entered, and lots of addi-
tional code that changes the font. The Sub procedure ends with the End Sub
statement.

FIGURE 2-4:
The VBE displays
the VBA code in

Module1 of
Book1.

24 PART 1 Starting Excel VBA Programming

Modifying the Macro
As you might expect, you not only can view your macro in the VBE, you can change
it. You can edit a macro directly in the Code pane like the one you opened in the
previous section by double-clicking Module1.

You modify a macro by typing new statements or modifying existing statements
between the Sub and End Sub statements. For example, in the NameAndTime
macro you recorded earlier in this chapter, you could change it to make the font
size 18 instead of 16. Find the line .Size = 16 and change it to:

.Size = 18

When you use the macro recorder, you don’t have to know a lot of VBA language
to be able to find the line you want to change and change it. However, if it’s not as
straightforward as the font size example and you’re not sure what to change, you
can record a new macro to see what the recorder will generate when you do what
you want. Then compare the new macro to the old one, manually edit the old one
to look like the new one, and delete what you just recorded.

Working in a VBA code module is much like working in a word-processing docu-
ment (except there’s no word wrap, and you can’t format the text). On second
thought, it’s more like working in Windows Notepad. You can press Enter to start
a new line, and the familiar editing keys work as expected.

HEY, I DIDN’T RECORD THAT!
Reviewing the actions you recorded with the macro recorder has the same effect as lis-
tening to a voice memo you recorded on your phone. When you play back the voice
memo and listen to your own voice, you probably say, “I don’t sound like that.” And
when you look at your recorded macro, you might see some actions that you didn’t
think you recorded.

For example, if you change only one aspect of the font, such as the font size, the
recorded code will show all sorts of font-changing statements (Strikethrough,
Superscript, Shadow, and so on). Don’t worry; it happens all the time. Excel often
records lots of seemingly useless code. In later chapters, you find out how to remove
the extra stuff from a recorded macro.

CHAPTER 2 Building Simple Macros 25

After you make your changes, jump back to Excel and try the revised macro to see
how it works. Just as you can press Alt+F11 in Excel to display the VBE, you can
press Alt+F11 in the VBE to switch back to Excel.

Saving Workbooks That Contain Macros
If you store one or more macros in a workbook, the file must be saved as a macro-
enabled file type. In other words, the file must be saved with an XLSM extension
rather than the normal XLSX extension.

When you save a workbook that contains a macro, the Excel might try to save it as
Excel Workbook (*.xlsx), a format that cannot contain macros. Unless you change
the file format to Excel Macro-Enabled Workbook (*.xlsm), Excel displays the
warning shown in Figure 2-5. You need to click No and change the file type to
Excel Macro-Enabled Workbook (*.xlsm).

Understanding Macro Security
Macro security is a key feature in Excel. The reason is that VBA is a powerful
language — so powerful that it’s possible to create a macro that can do serious
damage to your computer. A macro can delete files, send information to other
computers, and even destroy Windows so that you can’t start your system.

Figure 2-6 shows the Macro Settings section of the Trust Center dialog box. To
display this dialog box, choose Developer ➪ Code ➪ Macro Security.

FIGURE 2-5:
If your workbook
contains macros,
and you attempt

to save it in a
macro-free file

format, Excel
warns you.

26 PART 1 Starting Excel VBA Programming

By default, Excel uses the Disable All Macros with Notification option. With this
setting in effect, if you open a workbook that contains macros (and the file is not
digitally “signed” or stored in a trusted location), Excel displays a warning like
the one shown in Figure 2-7. If you are certain that the workbook comes from a
trusted source, click Enable Macros, and Excel enables the macros.

You see the pop-up box in Figure 2-7 only when the VBE is open. Otherwise, Excel
displays an eye-catching Security Warning above the Formula bar, as shown in
Figure 2-8. If you know the workbook is safe, click the Enable Content button to
enable the macros. To use the workbook without macros, click the X to dismiss the
warning.

Excel remembers when you designate a workbook to be safe. So the next time you
open the workbook, you won’t see the Security Warning.

FIGURE 2-6:
The Macro

Settings section
of the Trust

Center
dialog box.

FIGURE 2-7:
Excel’s warning

that the file to be
opened contains

macros.

CHAPTER 2 Building Simple Macros 27

Perhaps the best way to handle macro security is to designate one or more folders
as trusted locations. All the workbooks in a trusted location are opened without a
macro warning. You designate trusted folders in the Trusted Locations section of
the Trust Center dialog box.

If you want to find out what the other macro security settings mean, press F1
while the Macro Settings section of the Trust Center dialog box is in view and
review the Help screen that appears.

FIGURE 2-8:
Excel’s warning

that the
workbook just

opened contains
macros. You see

this warning
when the VBE

isn’t open.

2Employing VBA
with Excel

IN THIS PART . . .

See how to access the important parts of the Visual Basic
Editor.

Discover VBA code modules (where you store your
VBA code).

Obtain an overview of the Excel object model.

Get a crash course in using the Excel macro recorder.

CHAPTER 3 Working in the Visual Basic Editor 31

Chapter 3
Working in the Visual
Basic Editor

The Visual Basic Editor (VBE) is the main tool for programming in VBA. It’s
where you view and edit recorded code and write code from scratch. In this
chapter, you find out how to work with the VBE, and you get down to the

nitty-gritty of writing some VBA code.

Getting to Know the Visual Basic Editor
The Visual Basic Editor (often referred to as the VBE) is a separate application where
you write and edit your VBA macros. Beginning with Excel 2013, when you open
multiple workbooks, each opens in a separate window. However, the VBE only
ever has one window, and from this window you can write, edit, and view macros
for any open workbook.

You can’t run the VBE separately; Excel must be running for the VBE to run.

IN THIS CHAPTER

 » Accessing the Visual Basic Editor

 » Discovering the Visual Basic Editor
parts

 » Knowing what goes into a VBA
module

 » Getting VBA code into a module

 » Customizing the VBA environment

32 PART 2 Employing VBA with Excel

Activating the VBE
The quickest way to activate the VBE is to press Alt+F11 from an Excel window. To
return to Excel, press Alt+F11 again. Or you can simply click the Close button on
the VBE’s title bar. When the VBE window closes, Excel becomes the active window.

You can also activate the VBE by choosing Developer ➪ Code ➪ Visual Basic. If you
don’t have a Developer tab at the top of your Excel window, refer to Chapter 2,
which shows how to get that handy Developer tab to show up.

Exploring VBE components
The VBE contains several windows and is highly customizable. You can hide
windows, rearrange windows, dock windows, and more. Figure 3-1 shows the VBE
program, with some key parts identified. Your VBE program window probably
won’t look exactly like what is shown in Figure 3-1, but from the figure, you can
at least get a feel for the basic appearance of the VBE.

FIGURE 3-1:
The VBE is your

customizable
friend.

CHAPTER 3 Working in the Visual Basic Editor 33

Menu bar
The VBE menu bar contains commands you can use to do things with the various
components in the VBE. Many of the menu commands have shortcut keys associ-
ated with them.

The VBE also features shortcut menus. You can right-click virtually anything in
the VBE and get a shortcut menu of common commands.

Toolbar
The Standard toolbar, which is directly below the menu bar by default (refer to
Figure 3-1), is one of the four VBE toolbars. You can customize the toolbars, move
them around, display other toolbars, and more. To do so, choose View ➪ Toolbars,
and customize as you see fit. Most people just leave them as they are.

Project Explorer
The Project Explorer displays a tree diagram that shows every workbook currently
open in Excel (including add-ins and hidden workbooks). Double-click items to
expand or contract them within the outline. See the upcoming “Working with the
Project Explorer” section for more detail.

If the Project Explorer is not visible, press Ctrl+R or choose View ➪ Project Explorer.
To hide the Project Explorer, click the Close button on its title bar. Or right-click
anywhere in the Project Explorer and choose Hide from the shortcut menu.

Code pane
A Code pane is where you put your VBA code. Every object in a project has an asso-
ciated Code pane. To view an object’s Code pane, double-click the object in the
Project Explorer. For example, to view the Code pane for the Sheet1 object in
Book1, double-click Sheet1 in the VBAProject for Book1. Unless you’ve added some
VBA code, the Code pane is empty.

You find out more about Code panes later in this chapter’s “Working with a Code
Pane” section.

Immediate window
The Immediate window may or may not be visible. If it isn’t visible, press Ctrl+G
or choose View ➪ Immediate Window. To close the Immediate window, click the
Close button on its title bar (or right-click anywhere in the Immediate window
and choose Hide from the shortcut menu).

34 PART 2 Employing VBA with Excel

The Immediate window is most useful for executing VBA statements directly and
for debugging your code. If you’re just starting out with VBA, this window won’t
be all that useful, so feel free to hide it and free up some screen space for other
things.

Chapter 13 covers the Immediate window in detail. It may just become your good
friend!

Working with the Project Explorer
In the VBE, workbooks are called projects. Every workbook contains exactly one
project, and every project is associated with exactly one workbook. A project holds
all the modules and keeps them neatly in folders that tell you what kind of module
it is. There are four kinds of modules, each kind in its own folder:

 » Microsoft Excel Objects: These are modules that are linked to user interface
elements like workbooks and worksheets. See Chapter 11 for more about
these types of modules.

 » Modules: Excel calls these simply modules, but everyone else refers to them
as standard modules or VBA modules. These contain the code that doesn’t go
in any of the other three module types.

 » Forms: These are modules that have a form user-interface. Chapter 16
provides an introduction to UserForms.

 » Class Modules: These are modules where you create your own objects. Class
modules are beyond the scope of this book.

You can expand a project by clicking the plus sign (+) at the left of the project’s
name in the Project Explorer. Collapse a project by clicking the minus sign (–) to
the left of a project’s name. Or you can double-click a project’s name to expand
and collapse it.

GETTING HELP IN THE VBE
Beginning with Excel 2013, all VBA help information is on the internet and is displayed in
your web browser. In other words, you must be connected to the internet to access the
Help system. You can, however, download your very own copy of the Help system from
Microsoft’s site. Do a web search for download excel VBA documentation, and you’ll find it.
Pick the link at microsoft.com and don’t worry if the version they have is a few versions
older than yours — they don’t update it all that often.

CHAPTER 3 Working in the Visual Basic Editor 35

If a project is password-protected, the VBE prompts for its password when you
double-click the project’s name. If you don’t know the password, you can’t expand
the project — which means that you can’t view or modify any part of the project.

Figure 3-2 shows a Project Explorer with four projects listed: an add-in named
UIHelpers.xlam, a workbook named Book1, a workbook named NumbersToWords.
xlsm, and the Personal Macro Workbook (which is always named PERSONAL.
XLSB). Of the four, only the NumbersToWords.xlsm project is expanded to show
all of its modules.

Every project expands to show at least one folder called Microsoft Excel Objects. This
folder expands to show an item for each sheet in the workbook (each sheet is con-
sidered an object) and another object called ThisWorkbook (which represents the
Workbook the module lives in). If the project has any VBA modules, the project
listing also shows a Modules folder. And as you’ll find out in Part 4, a project may
also contain a folder called Forms, which contains UserForm objects (that hold
custom dialog boxes).

The concept of objects may be a bit fuzzy for you, but don’t worry. Things become
much clearer in subsequent chapters. Don’t be too concerned if you don’t under-
stand what’s going on at this point.

Adding a new VBA module
Follow these steps to add a new VBA module to a project:

1. In the VBE, select the project’s name in the Project window.

2. Choose Insert ➪  Module.

FIGURE 3-2:
This Project

Explorer lists
projects that can
be expanded to
show modules.

36 PART 2 Employing VBA with Excel

Or

1. Right-click the project’s name.

2. Choose Insert ➪  Module from the shortcut menu.

When you record a macro, Excel automatically inserts a VBA module to hold the
recorded code. Which workbook holds the module for the recorded macro depends
on where you chose to store the recorded macro, just before you started recording.

3. Choose File ➪  Import File or press Ctrl+M.

A dialog box appears that asks for a file.

4. Locate the file, and click Open.

You should import modules only if you know the person who exported them.
Otherwise, you risk introducing macros that perform malicious actions. If you’re
not sure, open it in a text editor to review it first.

Working with a Code Pane
A code pane is where you write and edit the code that lives in the module. As you
become proficient with VBA, you spend an increasing amount of time working in
code panes. To open a code pane and view what’s in a module, double-click the
module’s name in the Project Explorer.

Minimizing and maximizing windows
If you have several projects open, the VBE may have lots of code panes showing at
any given time. Figure 3-3 shows an example of the VBE overloaded with code
panes.

Code panes are much like workbook windows in Excel. You can minimize them,
maximize them, resize them, hide them, rearrange them, and more. Most people
find it much easiest to maximize the code pane that they’re working on. Doing so
lets you see more code and keeps you from getting distracted.

For some tasks, you might want to have two or more code panes visible. For exam-
ple, you might want to compare the code in two modules, or copy code from one
module to another. You can arrange the panes manually, or choose Window ➪ Tile
Horizontally or Window ➪ Tile Vertically to arrange them automatically.

CHAPTER 3 Working in the Visual Basic Editor 37

You can quickly switch among code panes by pressing Ctrl+Tab. If you repeat that
key combination, you keep cycling through all the open code panes. Pressing
Ctrl+Shift+Tab cycles through the panes in reverse order.

Minimizing a code pane gets it out of the way. You can also click the window’s
Close button (which displays X) on a code pane’s title bar to close its window.
(Closing a window just hides it; you won’t lose anything.) To reopen the code
pane, double-click the appropriate module in the Project Explorer. By the way,
working with these code panes sounds more difficult than it really is.

Looking at the parts of a module
In general, a VBA module can hold three types of code:

 » Declarations: One or more information statements that you provide to
VBA. For example, you can declare the data type for variables you plan to
use or set some other module-wide options. Declarations are basically
housekeeping statements. They aren’t actually executed.

 » Sub procedures: A set of programming instructions that, when executed,
performs some action.

 » Function procedures: A set of programming instructions that returns a single
value (similar in concept to a worksheet function, such as SUM).

A single VBA module can store any number of Sub procedures, Function proce-
dures, and declarations. Well, there is a limit — about 64,000 characters per mod-
ule. It’s unlikely you’ll even get close to reaching the 64,000-character limit. But
if you did, the solution is simple: Just insert a new module.

FIGURE 3-3:
Code pane

overload isn’t a
pretty sight.

38 PART 2 Employing VBA with Excel

How you organize a VBA module is completely up to you. Some people prefer to
keep all their VBA code for an application in a single VBA module; others like to
split the code into several modules. The best practice is to store related procedures
in their own modules. For example, you might keep all the procedures that deal
with importing and exporting data in a module called ImportExport, all the pro-
cedures that deal with formatting cells in a module called Formatting, and all the
procedures that deal with printing in a module called Printing. Organizing your
code in this manner makes it easier for you and others to understand and, if nec-
essary, modify the code.

Getting VBA code into a module
An empty VBA module is like the fake food you see in the windows of some res-
taurants; it looks good, but it doesn’t really do much for you. Before you can do
anything meaningful, you must have some VBA code in the VBA module. You can
get VBA code into a VBA module in three ways:

 » Enter the code directly.

 » Use the Excel macro recorder to record your actions and convert those
actions to VBA code (see Chapter 6).

 » Copy the code from one module and paste it into another.

Entering code directly
Sometimes, the best route is the most direct one. Entering code directly
involves . . . well, typing the code using your keyboard. Entering and editing text
in a VBA module works as you might expect. You can select, copy, cut, paste, and
drag-and-drop.

PAUSE FOR A TERMINOLOGY BREAK
Throughout this book, you’ll see the terms Sub procedure, routine, program, procedure,
and macro. These terms can be a bit confusing. Programming folks usually use the word
procedure to describe an automated task. Technically, a procedure can be a Sub proce-
dure or a Function procedure — both of which are sometimes called routines — or even
programs. All these terms can be used interchangeably. As detailed in later chapters,
however, an important distinction exists between Sub and Function procedures. For
now, don’t worry about the programming terminology. Just try to understand the
concepts.

CHAPTER 3 Working in the Visual Basic Editor 39

Use the Tab key to indent some of the lines to make your code easier to read.
Indenting isn’t necessary, but it’s a good habit to acquire. As you study the code
in this book, you’ll understand why indenting code lines is helpful.

A single line of VBA code can be as long as you need it to be. However, you might
want to use the line-continuation characters to break up lengthy lines of code. To
continue a single line of code (also known as a statement) from one line to the
next, end the first line with a space followed by an underscore (_). Then continue
the statement on the next line. And don’t forget the space. An underscore charac-
ter that’s not preceded by a space won’t do the job.

Here’s an example of a single statement split into three lines:

Selection.Sort Key1:=Range("A1"), _
 Order1:=xlAscending, Header:=xlGuess, _
 Orientation:=xlTopToBottom

This statement would perform exactly the same way if it were entered in a single
line (with no line-continuation characters). Notice that the second and third lines
of this statement are indented. Indenting is optional, but it helps you see that
these lines are not separate statements.

The white-coated engineers who designed the VBE anticipated that people like us
would make mistakes. Therefore, the VBE has multiple levels of undo and redo
buttons. If you deleted a statement that you shouldn’t have, click the Undo button
on the toolbar (or press Ctrl+Z) until the statement shows up again. After undoing,
you can click the Redo button to perform the changes you’ve undone. Are you
ready to enter some real-live code? Try the following steps:

1. Create a new workbook in Excel.

2. Press Alt+F11 to activate the VBE.

3. Click the new workbook’s name in the Project Explorer.

4. Choose Insert ➪ Module to insert a VBA module into the project.

5. Type the following code in the module:

Sub GuessName()
 Msg = "Is your name " & Application.UserName & "?"
 Ans = MsgBox(Msg, vbYesNo)
 If Ans = vbNo Then MsgBox "Oh, never mind."
 If Ans = vbYes Then MsgBox "I must be psychic!"
End Sub

40 PART 2 Employing VBA with Excel

6. Position the cursor anywhere within the text you typed and press F5 to
execute the procedure.

F5 is a shortcut for Run ➪  Run Sub/UserForm. If you entered the code correctly,
Excel executes the procedure, and you can respond to the simple dialog box
shown in Figure 3-4. The text in the dialog box that appears on your screen will
differ, of course, from the text shown in the figure.

When you enter the code listed in Step 5, you might notice that the VBE makes
some adjustments to the text you enter. For example, after you type the Sub state-
ment, the VBE automatically inserts the End Sub statement. And if you omit the
space before or after an equal sign, the VBE inserts the space for you. Also, the VBE
changes the color and capitalization of some text. This is all perfectly normal. It’s
just the VBE’s way of keeping things neat and readable.

FIGURE 3-4:
The GuessName

procedure
displays this

dialog box.

COMPILE ERROR?
There’s a chance that the GuessName macro won’t work. When you try to run it, Excel
may complain and pop up an error message: Compile Error: Variable Not
Defined. Don’t worry; there’s an easy fix for that.

If you receive that error, look at the top of your module, and you’ll see this text: Option
Explicit. Just delete that line, and the macro should work. That line, when present at
the top of a module, means that you must “declare” all your variables. (See Chapter 7
for more about variables.) If that line was added, it means that your VBE is set up to add
the line automatically. For now, don’t worry about it. Delete the line, and forget about
the rude interruption.

CHAPTER 3 Working in the Visual Basic Editor 41

If you followed the previous steps, you just wrote a VBA Sub procedure, also known
as a macro. When you press F5, Excel executes the code and follows the instruc-
tions. In other words, Excel evaluates each statement and does what you told it to
do. (Don’t let this newfound power go to your head.) You can execute this macro
any number of times — although it tends to lose its appeal after a few dozen times.

For the record, the following concepts were used to create this simple macro, all
of which are covered later in this book:

 » Defining a Sub procedure (the first line)

 » Assigning values to variables (Msg and Ans)

 » Concatenating (joining) a string (using the & operator)

 » Using a built-in VBA function (MsgBox)

 » Using built-in VBA constants (vbYesNo, vbNo, and vbYes)

 » Using an If-Then construct (twice)

 » Ending a Sub procedure (the last line)

Not bad for a beginner, eh?

Using the macro recorder
Another way you can get code into a VBA module is by recording your actions,
using the Excel macro recorder. If you worked through the hands-on exercise in
Chapter 2, you already have some experience with this technique.

By the way, there is absolutely no way you can record the GuessName procedure
shown in the preceding section. You can record only things that you can do directly
in Excel. Displaying a message box is not in Excel’s normal repertoire. (It’s a VBA
thing.) The macro recorder is useful, but in many cases, you’ll probably need to
enter at least some code manually.

Here’s a step-by-step example that shows how to record a macro that inserts a
new worksheet and hides all but the first 10 rows and all but the first 10 columns.
If you want to try this example, follow these steps:

1. Open a new, blank workbook.

2. Click the Developer tab, and make sure that Use Relative References is
not highlighted.

This macro is recorded using Absolute References.

42 PART 2 Employing VBA with Excel

3. Choose Developer ➪  Code ➪  Record Macro, or click the icon next to the
Ready indicator on the left end of the status bar.

Excel displays its Record Macro dialog box.

4. In the Record Macro dialog box, name the macro TenByTen, specify that
you want the macro stored in This Workbook, and press Shift+T for the
shortcut key.

The macro can be executed when you press Ctrl+Shift+T.

5. Click OK to start recording.

Excel automatically inserts a new VBA module into the project that corre-
sponds to the active workbook. From this point on, Excel converts your actions
to VBA code. While you’re recording, the icon in the status bar turns into a
small square, which is a reminder that the macro recorder is running. You can
also click that icon to stop the macro recorder.

6. Click the New Sheet icon to the right of the last sheet tab.

Excel inserts a new worksheet.

7. Select the entire Column K (the 11th column) and press Ctrl+Shift+right
arrow; then right-click any selected column and choose Hide from the
shortcut menu.

Excel hides all the selected columns.

8. Select the entire Row 11 and press Ctrl+Shift+down arrow; then right-
click any selected row and choose Hide from the shortcut menu.

Excel hides all the selected rows.

9. Select cell A1.

10. Choose Developer ➪ Code ➪  Stop Recording, or click the Stop Recording
button on the status bar (the small square).

Excel stops recording your actions.

To view this newly recorded macro, press Alt+F11 to activate the VBE. Locate the
workbook’s name in the Project Explorer. You see that the project has a new mod-
ule listed. The name of the module depends on whether you had any other
modules in the workbook when you started recording the macro. If you didn’t, the
module is named Module1. You can double-click the module to view the code.

CHAPTER 3 Working in the Visual Basic Editor 43

Here’s the code generated by your actions:

Sub TenByTen()
'
' TenByTen Macro
'
' Keyboard Shortcut: Ctrl+Shift+T
'
 Sheets.Add After:=ActiveSheet
 Columns("K:K").Select
 Range(Selection, Selection.End(xlToRight)).Select
 Selection.EntireColumn.Hidden = True
 Rows("11:11").Select
 Range(Selection, Selection.End(xlDown)).Select
 Selection.EntireRow.Hidden = True
 Range("A1").Select
End Sub

To try this macro, activate any worksheet and press the shortcut key that you
assigned in Step 4: Ctrl+Shift+T.

If you didn’t assign a shortcut key to the macro, don’t worry. Here’s how to dis-
play a list of all macros available and run the one you want:

1. Choose Developer ➪  Code ➪  Macros.

Keyboard fans can press Alt+F8. Either of these methods displays a dialog box
that lists all the available macros.

2. Select the macro in the list (in this case, TenByTen).

3. Click the Run button.

Excel executes the macro, and you get a new worksheet with 10 visible rows
and 10 visible columns.

You can execute any number of commands and perform any number of actions
while the macro recorder is running. Excel dutifully translates your mouse actions
and keystrokes to VBA code.

And, of course, you can also edit the macro after you record it. To test your new
skills, try editing the macro so that it inserts a worksheet with nine visible rows
and columns — perfect for a Sudoku puzzle.

44 PART 2 Employing VBA with Excel

Copying VBA code
The final method for getting code into a VBA module is to copy it from another
module or from some other place (such as a website). For example, a Sub or
Function procedure that you write for one project might also be useful in another
project. Instead of wasting time reentering the code, you can activate the module
and use the normal Clipboard copy-and-paste procedures. (You can use the key-
board shortcuts Ctrl+C to copy and Ctrl+V to paste.) After pasting the code into a
VBA module, you can modify the code if necessary.

By the way, you can find lots of VBA code examples on the web. If you want to try
them, select the code in your browser and press Ctrl+C to copy it. Then activate a
module and press Ctrl+V to paste it.

When you copy code from a website, it sometimes requires some fixing. For
example, quote characters may be “smart quotes” and they must be converted to
simple quote characters. And sometimes, long lines wrap around. Erroneous
statements are easy to spot in the VBE because they appear in red.

Customizing the VBE
If you’re serious about becoming an Excel programmer, you’ll spend a lot of time
with VBA modules on your screen. To help make things as comfortable as possible
(no, please keep your shoes on), the VBE provides quite a few customization
options.

When the VBE is active, choose Tools ➪ Options. You’ll see a dialog box with four
tabs: Editor, Editor Format, General, and Docking. The sections that follow dis-
cuss the most useful options of those contained in each tab.

Using the Editor tab
Figure 3-5 shows the options you can access by clicking the Editor tab of the
Options dialog box. Use the following options in the Editor tab to control how cer-
tain things work in the VBE.

 » Auto Syntax Check option: The Auto Syntax Check setting determines
whether the VBE pops up a dialog box if it discovers a syntax error while
you’re entering your VBA code. The dialog box tells roughly what the problem
is. If you don’t choose this setting, the VBE flags syntax errors by displaying
them in a different color from the rest of the code, and you don’t have to deal
with any dialog boxes popping up on your screen.

CHAPTER 3 Working in the Visual Basic Editor 45

 » Require Variable Declaration option: If the Require Variable Declaration
option is set, VBE inserts the following statement at the beginning of each new
VBA module you insert:

Option Explicit

Changing this setting affects only new modules, not existing modules. If this
statement appears in your module, you must explicitly define each variable
you use. Chapter 7 goes into the details why you should develop this habit.

 » Auto List Members option: If the Auto List Members option is set, the VBE
provides some help when you’re entering your VBA code. It displays a list that
would logically complete the statement you’re typing. This bit of magic is
sometimes called IntelliSense. It helps you write code more quickly and
accurately, making it one of the best features of the VBE. Figure 3-6 shows an
example (which will make lots more sense when you start writing VBA code).

FIGURE 3-5:
The Editor tab of

the Options
dialog box.

FIGURE 3-6:
An example of

Auto List
Members.

46 PART 2 Employing VBA with Excel

 » Auto Quick Info option: If the Auto Quick Info option is set, the VBE displays
information about functions and their arguments as you type, which can be
very helpful. Figure 3-7 shows this feature in action, telling you about the
arguments for the MsgBox function.

 » Auto Data Tips option: If the Auto Data Tips option is set, the VBE displays
the value of the variable over which your cursor is placed when you’re
debugging code. When you enter the wonderful world of debugging, as
described in Chapter 13, you’ll appreciate this option.

 » Auto Indent setting: The Auto Indent setting determines whether the VBE
automatically indents each new line of code the same as the previous line.

Use the Tab key to indent your code, not the spacebar. Also, you can press
Shift+Tab to “unindent” a line of code. If you want to indent more than just
one line, select all the lines you want to indent. Then press the Tab key.

The VBE’s Edit toolbar (which is hidden by default) contains two useful
buttons: Indent and Outdent. These buttons let you quickly indent or
“unindent” a block of code. Select the code and click one of these buttons
to change the block’s indenting.

 » Tab Width: Determines how wide your tab characters are in the equivalent
number of spaces.

 » Drag-and-Drop Text Editing option: The Drag-and-Drop Text Editing option,
when enabled, lets you move or copy and paste text by dragging and drop-
ping with your mouse.

 » Default to Full Module View option: The Default to Full Module View option
sets the default state for new modules. (It doesn’t affect existing modules.) If
this option is set, procedures in the code pane appear as a single scrollable
list. If this option is turned off, you can see only one procedure at a time.

FIGURE 3-7:
Auto Quick Info

offers help about
the MsgBox

function.

CHAPTER 3 Working in the Visual Basic Editor 47

 » Procedure Separator option: When the Procedure Separator option is
turned on, separator bars appear between procedures in a code pane.

Using the Editor Format tab
Figure 3-8 shows the Editor Format tab of the Options dialog box. With this tab,
you can customize the way the VBE looks.

 » Code Colors option: The Code Colors option lets you set the text color and
background color displayed for various elements of VBA code. This is largely a
matter of personal preference.

 » Font option: The Font option lets you select the font that’s used in your VBA
modules. For best results, stick with a fixed-width font such as Courier New.
In a fixed-width font, all characters are exactly the same width. This makes your
code more readable because the characters are nicely aligned vertically, and
you can easily distinguish multiple spaces (which is sometimes useful).

 » Size setting: The Size setting specifies the point size of the font in the VBA
modules. This setting is a matter of personal preference determined by your
video display resolution and how many carrots you’ve been eating.

 » Margin Indicator Bar option: This option controls the display of the vertical
margin indicator bar in your modules. You should keep this turned on;
otherwise, you won’t be able to see the helpful graphical indicators when
you’re debugging your code.

FIGURE 3-8:
Change how the

VBE looks with
the Editor

Format tab.

48 PART 2 Employing VBA with Excel

Using the General tab
Figure 3-9 shows the options available on the General tab of the Options dialog
box. In almost every case, the default settings are just fine.

The most important setting is Error Trapping. It’s considered a best practice not
to use the Break on All Errors setting. If you use this setting, your error-handling
code won’t work. You can read more about this in Chapter 12.

If you’re really interested in these options, click the Help button for details.

Using the Docking tab
Figure 3-10 shows the Docking tab. These options determine how the various
windows in the VBE behave. When a window is docked, it’s fixed in place along one
of the edges of the VBE program window. This makes it much easier to identify
and locate a particular window. If you turn off all docking, you have a big, confus-
ing mess of windows. Generally, the default settings work fine.

Sometimes, the VBE seems to have a mind of its own when you’re trying to dock
a window. If docking doesn’t seem to work correctly, try double-clicking the title
bar of the window.

FIGURE 3-9:
The General tab

of the Options
dialog box.

CHAPTER 3 Working in the Visual Basic Editor 49

FIGURE 3-10:
The Docking tab

of the Options
dialog box.

CHAPTER 4 Introducing the Excel Object Model 51

Chapter 4
Introducing the Excel
Object Model

The purpose of Excel VBA is to manipulate Excel. Some of the code you write
will be VBA language constructs — aspects of the language that are com-
mon to all programming languages. The rest of the code you write will be

specific to Excel. In this chapter, you learn about the Excel Object Model. The
object model is the gateway into all the objects that make up Excel. Manipulating
these objects is what Excel VBA programming is all about.

Working with the Excel Object Model
The Excel Object Model is computer code that Microsoft wrote that defines how
VBA interacts with Excel. In it, Microsoft has defined hundreds of objects whose
names you would recognize as elements of the Excel user interface, like Work-
book, Worksheet, or PivotTable. An object is nothing more than computer code
that defines properties, methods, and events. It is the unique combination of
properties, methods, and events that defines an object. Properties and methods
are discussed later in this chapter and events are discussed in Chapter 11.

IN THIS CHAPTER

 » Learning the Excel Object Model and
its hierarchy

 » Understanding how to access
properties and methods

 » Discovering resources to help
you code

52 PART 2 Employing VBA with Excel

A car is an object. It has properties like color and number of pistons. If you change
the color or the number of pistons, you have a different car, but it’s still a car. Cars
have methods like accelerate and brake. Excel objects are a little more abstract.
For example, a Worksheet is an object. It has properties like Name and Visible that
you can change to rename or hide the worksheet. It has methods like Activate that
you can invoke to make it the active worksheet. You can change the properties of
a Worksheet object to make it the Worksheet you want, but it’s still a Worksheet
because it has that unique set of properties and methods.

Excel’s object model is arranged as a hierarchy. That is, every object is organiza-
tionally a parent or a child of another object, like a family tree. There’s no magic
to the hierarchy; it’s just how Microsoft designed it. But you won’t be surprised to
learn that it mostly mirrors what you see in the user interface. Worksheet objects
are children of a Workbook object just like how workbook hold worksheets in
Excel. A Worksheet object is the parent of a PivotTable object because PivotTables
exist on sheets in Excel.

Understanding the object hierarchy
The Application object is at the very top of the hierarchy in the object model.
It represents Excel itself and every other object is a child or grandchild of the
Application object. The following are some of the more useful objects contained
just below Application in the hierarchy:

 » Addin

 » Window

 » Workbook

 » WorksheetFunction

Each object contained in the Application object can contain other objects. For
example, the following are some objects that can be contained in a Workbook
object:

 » Chart (which is a chart sheet)

 » Name

 » VBProject

 » Window

 » Worksheet

CHAPTER 4 Introducing the Excel Object Model 53

In turn, each of these objects can contain still other objects. Consider a Worksheet
object, which is contained in a Workbook object, that is contained in the Applica-
tion object. Some of the objects that can be contained in a Worksheet object are

 » Comment

 » Hyperlink

 » Name

 » PageSetup

 » PivotTable

 » Range

If you want to do something with a range on a particular worksheet, you might
find it helpful to visualize that range in the following manner:

Range ➪  contained in Worksheet ➪  contained in Workbook ➪  contained in Excel

Excel has more objects than you can shake a stick at. Even power users would get
overwhelmed if they tried to learn every object in the object model. The good news
is that you don’t have to do anything with most of these objects. You could go your
whole VBA programming life and never need to use the Excel4MacroSheet object.
You only need to know the objects for the problem your working on and most of
the time the macro recorder tells you everything you need.

Referring to objects
Referring to an object is important because you must identify the object with
which you want to work. After all, VBA can’t read your mind — yet. The Applica-
tion object, being the top dog, is easy. Just type Application and a period (called a
dot operator) to get to its properties and methods. For example, if you wanted to
change Excel’s behavior so that the cursor doesn’t move when you press Enter,
you could write the following code:

Application.MoveAfterReturn = False

Some of the Application object’s properties return other objects. Just like the
MoveAfterReturn property return a value (either True or False), a property can
also return an object. AutoCorrect is an object in the object model that’s just below
the Application object. The way you refer to the AutoCorrect object is by using the
AutoCorrect property. Yes, the property and the object it returns have the same

54 PART 2 Employing VBA with Excel

name. If you want to tell Excel to fix your typing when you leave Caps Lock on, you
would do so with the following code:

Application.AutoCorrect.CorrectCapsLock = True

In this case, CorrectCapsLock is a property of the AutoCorrect object and you are
able to address that object via the AutoCorrect property of the Application object.

In the previous section, I wrote that cars are similar to Excel objects because they
have properties like color and number of pistons. Cars also have steering wheels
and steering wheels are objects, too. They’re just one rung down the car object
hierarchy. If a car were a computer program, it would have a property called
SteeringWheel that you would use to access the SteeringWheel object.

Workbook names also have a dot to separate the filename from the extension
(for example, Book1.xlsx). That’s just a coincidence. The dot in a filename has
nothing at all to do with the dot operator referred to a few paragraphs ago.

Using Collection objects
Now you can work with the Application object and any object that’s just below it
via one of its properties. To get another level below that you need collection
objects.

Collection objects are objects that give you access to single objects contained
inside them. In many cases, the collection object’s name is the plural of the single
object’s name. For example, if you want to work with a specific Workbook object,
you need to go through the Workbooks collection object to get there.

Here are a few examples of commonly used collections:

 » Workbooks: A collection of all currently open Workbook objects

 » Worksheets: A collection of all Worksheet objects contained in a particular
Workbook object

 » Charts: A collection of all Chart objects (chart sheets) contained in a particular
Workbook object

 » Sheets: A collection of all sheets (regardless of their type) contained in a
particular Workbook object. To get to a Workbook object, you can start with
the Application object like in the following code:

Application.Workbooks.Item("Book1").Path

CHAPTER 4 Introducing the Excel Object Model 55

Just like Application had an AutoCorrect property to get to the AutoCorrect object,
it has a Workbooks property to get to the Workbooks collection object. All collec-
tion objects have an Item property to get to a singular instance of an object they
collect. In this example, the Item property returns a Workbook object because
that’s the type of object in the Workbook collection.

A collection’s Item property takes one argument. That argument can be a string
(enclosed in double quotes) or an integer. If you provide a string argument, Item
returns an object whose name matches the string. In the example above, Book1 is
the name of the workbook returned. If you provide an integer argument, Item
returns the object whose position in the collection matches that number. The fol-
lowing code returns the first worksheet of the second workbook:

Application.Workbooks.Item(2).Worksheets.Item(1)

You might not always know how the objects are ordered in the collection. With
worksheets, they are ordered the same way as in Excel. The left-most worksheet
is the first worksheet in the collection. But workbooks aren’t so straightforward.
There are hidden workbooks like Add-Ins and the Personal Macro Workbook that
are in the collection but not visible in Excel.

Considering generic collection objects
The Workbooks object contains Workbook objects and the Worksheets object con-
tains Worksheet objects. It all seems very clean and simple. But there also collec-
tion objects that contain objects that are similar but not exactly the same. The
example of this type of object that you’ll see most often is the Sheets collection
object. The Sheets object contains both Worksheet objects and Chart objects.
Sometimes you want to work with every sheet in a workbook regardless of its type.
In that case, you would use the Sheets object to get at both types of sheets. The
following example demonstrates how to access a worksheet named Sheet1 using
either the Worksheets object or the Sheets object:

Application.Workbooks.Item(1).Worksheets.Item("Sheet1")
Application.Workbooks.Item(1).Sheets.Item("Sheet1")

Simplifying object references
All the examples in this section so far have been fully qualified references. A fully
qualified reference starts with the Application object and traverses the hierarchy
all the way down to the object you want. They are unambiguous, but if you were
required to fully qualify every object reference you make, your code would be quite
long, more difficult to read, and your keyboard would wear out too fast. Fortu-
nately, Excel provides some shortcuts that can improve the readability and save
you some typing.

56 PART 2 Employing VBA with Excel

For starters, objects have default properties. If you want to use the default prop-
erty, you don’t have to type and VBA will know what you mean. The star of the
default property show is the Item property. Item is the default property for every
collection object making the following code equivalent:

Application.Workbooks.Item("Book1.xlsx").Worksheets.Item(2).Range("A1").Value

Application.Workbooks("Book1.xlsx").Worksheets(2).Range("A1").Value

While it’s important to understand the object hierarchy and how the Item prop-
erty works, you almost never see Item used in code.

The next shortcut is that the Application object is always assumed. There are only
a few cases when it makes sense to type it. Omitting the Application object refer-
ence shortens the example from the previous section to

Workbooks("Book1.xlsx").Worksheets(2).Range("A1").Value

That’s a pretty good improvement. But wait, there’s more. If you’re sure that
Book1.xlsx is the active workbook, you can omit that reference, too. Now you’re
down to

Worksheets(2).Range("A1").Value

Finally, you’re getting somewhere. Have you guessed the next shortcut? That’s
right. If you know the second worksheet is the currently active worksheet, Excel
assumes that reference and allows you to just type

Range("A1").Value

Contrary to what some people may think, Excel does not have a Cell object. A cell
is simply a Range object that consists of just one element.

The shortcuts described here are great, but they can be dangerous. What if you
only think Book1.xlsx is the active workbook? You could get an error, or worse, you
could get the wrong value and not even realize it’s wrong. For that reason, it’s
often best to qualify your object references enough to be safe. You almost never
need the Application object in your reference, but you may need the Workbook
object.

Chapter 14 discusses the With-End With structure, which helps you fully qualify
your references but also helps to make the code more readable and cuts down on
the typing. The best of both worlds!

CHAPTER 4 Introducing the Excel Object Model 57

Diving into Object Properties and Methods
Although knowing how to refer to objects is important, you can’t do anything
useful by simply referring to an object (as in the examples in the preceding
 sections). To accomplish anything meaningful, you must do one of two things:

 » Read or modify an object’s properties.

 » Call a method of action to be used with an object.

A FAST-FOOD TAKE ON OBJECTS,
PROPERTIES, AND METHODS
Here’s an analogy comparing Excel to a fast-food chain that may help you understand
the relationships among objects, properties, and methods in VBA.

The basic unit of Excel is a Workbook object. In a fast-food chain, the basic unit is an
individual restaurant. With Excel, you can add a workbook and close a workbook, and
all the open workbooks are known as Workbooks (a collection of Workbook objects).
Similarly, the management of a fast-food chain can add a restaurant and close a
 restaurant, and all the restaurants in the chain can be viewed as the Restaurants
 collection (a collection of Restaurant objects).

An Excel workbook is an object, but it also contains other objects such as worksheets,
chart sheets, VBA modules, and so on. Furthermore, each object in a workbook can
contain its own objects. For example, a Worksheet object can contain Range objects,
PivotTable objects, Shape objects, and so on.

Continuing with the analogy, a fast-food restaurant (like a workbook) contains objects
such as the Kitchen, DiningArea, and Tables (a collection). Furthermore, management
can add or remove objects from the Restaurant object. For example, management
may add more tables to the Tables collection. Each of these objects can contain other
objects. For example, the Kitchen object has a Stove object, VentilationFan object,
Chef object, Sink object, and so on.

So far, so good. This analogy seems to work.

Excel’s objects have properties. For example, a Range object has properties such as
Value and Address, and a Shape object has properties such as Width, Height, and so on.
Not surprisingly, objects in a fast-food restaurant also have properties. The Stove object,

(continued)

58 PART 2 Employing VBA with Excel

Setting object properties
Every object has properties. You can think of properties as characteristics that
describe the object. An object’s properties determine how it looks, how it behaves,
and even whether it’s visible. Using VBA, you can do two things with an object’s
properties:

 » Examine the current setting for a property.

 » Change the property’s setting.

For example, a single-cell Range object has a property called Value. The Value
property stores the value contained in the cell. You can write VBA code to display
the Value property, or you can write VBA code to set the Value property to a spe-
cific value. The following macro uses the VBA built-in MsgBox function to bring
up a box that displays the value in cell A1 on Sheet1 of the active workbook (see
Figure 4-1):

for example, has properties such as Temperature and NumberofBurners. The
VentilationFan has its own set of properties (TurnedOn, RPM, and so on).

Besides properties, Excel’s objects also have methods, which perform an operation
on an object. For example, the ClearContents method erases the contents of a Range
object. An object in a fast-food restaurant also has methods. You can easily envision a
ChangeThermostat method for a Stove object or a SwitchOn method for a VentilationFan
object.

In Excel, methods sometimes change an object’s properties. The ClearContents method
for a Range changes the Range’s Value property. Similarly, the ChangeThermostat
method on a Stove object affects its Temperature property. With VBA, you can write
procedures to manipulate Excel’s objects. In a fast-food restaurant, the management
can give orders to manipulate the objects in the restaurants (“Turn the stove on and
switch the ventilation fan to high”).

The next time you visit your favorite fast-food joint, just say, “Use the Grill method on a
Burger object with the Onion property set to False.”

(continued)

CHAPTER 4 Introducing the Excel Object Model 59

Sub ShowValue()
 Contents = Worksheets("Sheet1").Range("A1").Value
 MsgBox Contents
End Sub

MsgBox is a very useful function. You can use the MsgBox function, for example,
to display results while Excel executes your VBA code. You find out more about
this function in Chapter 15, so be patient (or flip ahead and read all about it).

The code in the preceding example displays the current setting of a cell’s Value
property. What if you want to change the setting for that property? The following
macro changes the value in cell A1 by changing the cell’s Value property:

Sub ChangeValue()
 Worksheets("Sheet1").Range("A1").Value = 994.92
End Sub

After Excel executes this procedure, cell A1 on Sheet1 of the active workbook con-
tains the value 994.92. If the active workbook doesn’t have a sheet named Sheet1,
the result of executing that macro is an error message. VBA just follows instruc-
tions, and it can’t work with a sheet that doesn’t exist.

Each object has its own set of properties, although some properties are common
to many objects. For example, many (but not all) objects have a Visible property.
Most objects also have a Name property.

Some object properties are read-only properties, which means that your code can
get the property’s value, but it can’t change it. For example, a Workbook object
has a Name property that returns the workbook’s name. You can’t change the
Name property directly because it’s read-only. To change a workbook’s name, you
must use the Save or SaveAs methods.

FIGURE 4-1:
This message box

displays a Range
object’s Value

property.

60 PART 2 Employing VBA with Excel

A collection is also an object. This means that a collection also has properties. For
example, you can determine how many workbooks are open by accessing the
Count property of the Workbooks collection. The following VBA procedure dis-
plays a message box that tells you how many workbooks are open:

Sub CountBooks()
 MsgBox Workbooks.Count
End Sub

For more about collections, see the previous section, “Referring to objects.”

Taking action with object methods
In addition to properties, objects have methods. A method is an action you perform
with an object. A method can change an object’s properties or make the object do
something.

This simple example uses the ClearContents method on a Range object to erase the
contents of 12 cells on the active sheet:

Sub ClearRange()
 Range("A1:A12").ClearContents
End Sub

Some methods take one or more arguments. An argument is a value that further
specifies the action to perform. You place the arguments for a method after the
method, separated by a space. Multiple arguments are separated by a comma.

The following example activates Sheet1 (in the active workbook) and then copies
the contents of cell A1 to cell B1 by using the Range object’s Copy method. In this
example, the Copy method has one argument, which is the destination range for
the copy operation:

Sub CopyOne()
 Worksheets("Sheet1").Activate
 Range("A1").Copy Range("B1")
End Sub

Notice that the worksheet reference is omitted when referring to the Range
objects. You can do this safely due to the statement to activate Sheet1 (using the
Activate method).

CHAPTER 4 Introducing the Excel Object Model 61

Another way to specify an argument for a method is to use the official name of the
argument followed by a colon and an equal sign. Using named arguments is
optional, but doing so can often make your code easier to understand, particularly
if the method takes many parameters. The second statement in the CopyOne pro-
cedure could be written like this:

Range("A1").Copy Destination:=Range("B1")

Figure 4-2 shows the little prompt that appears as I type a statement. That prompt
indicates the official name of the argument.

Because a collection is also an object, collections have methods. The following
macro uses the Add method for the Workbooks collection:

Sub AddAWorkbook()
 Workbooks.Add
End Sub

As you might expect, this statement creates a new workbook. In other words, it
adds a new workbook to the Workbooks collection. After you execute this macro, a
fresh workbook is the active workbook.

Triggering actions with object events
This section briefly touches on one more topic that you need to know about:
events. Events are specific things that you do inside Excel that Excel is constantly
listening for (such as switching sheets or changing cells). For example, when you
type a value into a cell, a Worksheet Change event occurs. You could, for example,
have a VBA macro that is designed to execute whenever someone changes the
value of a particular cell.

FIGURE 4-2:
The VBE

displays a
list of

arguments
while you type.

62 PART 2 Employing VBA with Excel

A lot of objects have events, but not all objects do. Some objects have a ton of
events to listen for, while others have just a few. The only events you can use are
those made available by the programmers of Microsoft Excel. Events are a very
cool feature of the Excel object model, and I dig into them in Chapter 11 and also
in Part 4.

Finding Out More from VBA Resources
This chapter introduces the wonderful world of objects, properties, methods, and
events. You find out more about these concepts in the chapters that follow. If you
just can’t get enough, you might also be interested in these three excellent tools:

 » VBA’s Help system

 » The Object Browser

 » Auto List Members

Using VBA’s Help system
The VBA Help system describes every object, property, and method available to
you, and also provides sample code. This is an excellent resource for finding out
about VBA, and it’s more comprehensive than any book on the market. But it’s
also very boring to read.

If you’re using Excel 2013 or later, you must be connected to the internet to use
the VBA Help system (previous versions don’t have this requirement). You can,
however, download the VBA Help system from Microsoft’s website. Do a web
search for download excel VBA documentation, and you’ll find it.

If you’re working in a VBA module and want information about a particular object,
method, or property, move the cursor to the word you’re interested in and press
F1. In a few seconds, you’ll see the appropriate Help topic displayed in your web
browser, complete with cross-references, and perhaps even an example or two.

Figure 4-3 shows part of a screen from the VBA Help system — in this case, for
the Copy method of the Range object.

CHAPTER 4 Introducing the Excel Object Model 63

Using the Object Browser
The VBE includes another tool known as the Object Browser. As the name implies,
this tool lets you browse through the objects available to you. To access the Object
Browser, press F2 when the VBE is active (or choose View ➪ Object Browser). You
see a window like the one shown in Figure 4-4.

The drop-down list at the top contains a list of all currently available object librar-
ies. Figure 4-4 shows All Libraries. If you want to browse through Excel’s objects,
select Excel from the drop-down list.

The second drop-down list is where you enter a search string. For example, if you
want to look at all Excel objects that deal with borders, type border in the second
field and click the Search button. (It has a pair of binoculars on it.) The Search
Results window displays everything in the object library that contains the text
border. If you see something that looks like it might be of interest, select it and
press F1 for more information online.

FIGURE 4-3:
An example
from VBA’s

Help system.

64 PART 2 Employing VBA with Excel

Automatically listing properties
and methods
Chapter 3 introduces you to a handy feature called Auto List Members. This fea-
ture provides a list of properties and methods as you type. Figure 4-5 shows an
example for the Workbooks collection.

FIGURE 4-5:
The Auto List

Members feature
helps you identify

properties and
methods for an

object.

FIGURE 4-4:
Browsing for

objects with the
Object Browser.

CHAPTER 4 Introducing the Excel Object Model 65

After typing the dot after workbooks, the VBE volunteers to help by displaying a list
of properties and methods for that collection. Typing the letter (like the letter c)
narrows the list to items that begin with that letter. With each letter you type, the
VBE further narrows the list of choices. Highlight the item you need, press Tab,
and voilà! You’ve eliminated some typing — and also ensured that the property or
method was spelled correctly.

CHAPTER 5 VBA Sub and Function Procedures 67

Chapter 5
VBA Sub and Function
Procedures

In previous chapters, I use the terms Sub procedures and Function procedures with-
out going into much explanation about what these procedures do or how to use
them. This chapter fills in those gaps. It explains the differences between Sub

and Function procedures, and shows the various ways to execute each type of
procedure.

Understanding Subs versus Functions
The VBA code that you write in the VBE is known as a procedure. The two most
common types of procedures are Sub procedures and Function procedures.

 » A Sub procedure is a group of VBA statements that performs an action (or a
sequence of actions) with Excel.

 » A Function procedure is a group of VBA statements that performs a calculation
and returns a single value (or, sometimes, something slightly more compli-
cated like a single object).

IN THIS CHAPTER

 » Understanding the difference
between Sub procedures and
Function procedures

 » Executing Sub procedures (many
ways)

 » Executing Function procedures (three
ways)

68 PART 2 Employing VBA with Excel

Most of the macros you write in VBA are Sub procedures. You can think of a Sub
procedure as being like a command: Execute the Sub procedure, and something
happens. (Of course, exactly what happens depends on the Sub procedure’s VBA
code.)

A Function is also a procedure, but it’s quite different from a Sub. You’re already
familiar with the concept of a function. Excel includes many worksheet functions
that you use every day (well, at least every weekday). Examples include SUM,
PMT, and VLOOKUP. You use these worksheet functions in formulas. Each func-
tion takes one or more arguments (although a few functions don’t use any argu-
ments). The function does some behind-the-scenes calculations using those
arguments and then returns a single value. Function procedures that you develop
with VBA work the same way.

Looking at Sub procedures
Every Sub procedure starts with the keyword Sub and ends with an End Sub state-
ment. Here’s an example:

Sub ShowMessage()
 MsgBox "That's all folks!"
End Sub

This example shows a procedure named ShowMessage. A set of parentheses fol-
lows the procedure’s name. In most cases, these parentheses are empty. However,
you can pass arguments to Sub procedures from other procedures. If your Sub uses
arguments, list them between the parentheses, as in the following example:

Sub ShowMessage(MyMessage)
 MsgBox MyMessage
End Sub

When you record a macro with the Excel macro recorder, the result is always a Sub
procedure that takes no arguments.

As you see in “Naming Subs and Functions” later in this chapter, Excel provides
quite a few ways to execute a VBA Sub procedure.

Looking at Function procedures
Every Function procedure starts with the keyword Function and ends with an End
Function statement. Here’s a simple example:

CHAPTER 5 VBA Sub and Function Procedures 69

Function CubeRoot(number)
 CubeRoot = number ^ (1 / 3)
End Function

This function, named CubeRoot, takes one argument (a variable named number),
which is enclosed in parentheses. Functions can have as many as 255 arguments
or none at all. When you execute this function, it returns a single value — the cube
root of the argument passed to the function.

VBA allows you to specify what type of information (also known as data type) is
returned by a Function procedure. For example, a value can be a number, a date,
or a text string. Chapter 7 contains more information on specifying data types.

You can execute a Function procedure in three ways: You can call it from another
procedure (a Sub or another Function procedure), use it in a worksheet formula,
or execute it in the Immediate window by typing a question mark followed by the
function name and any arguments.

No matter how hard you try, you can’t use the Excel macro recorder to record a
Function procedure. You must manually enter every Function procedure that you
create.

Naming Subs and Functions
Like humans, pets, and hurricanes, every Sub and Function procedure must have
a name. Although it’s perfectly acceptable to name your dog Hairball Harris, it’s
usually not a good idea to use such a freewheeling attitude when naming proce-
dures. When naming procedures, you must follow a few rules:

 » You can use letters, numbers, and some punctuation characters, but the first
character must be a letter.

 » You can’t use spaces or periods in the name.

 » VBA does not distinguish between uppercase and lowercase letters.

 » You can’t use any of the following characters in a procedure name: #, $, %, &,
@, ^, *, or !. In other words, your procedure name can’t look like comic-strip
curse words.

 » If you write a Function procedure for use in a formula, avoid using a name
that looks like a cell address (for example, A1 or B52). Actually, Excel allows
such function names, but why make things more confusing than they are
already?

70 PART 2 Employing VBA with Excel

 » Procedure names can’t be VBA keywords like Open, Dim, or Input. You can,
however, name them the same as object names in the object model, but you
probably shouldn’t as it would be confusing to anyone maintaining your code.

 » Procedure names can be no longer than 255 characters. (Of course, you
would never make a procedure name this long.)

Ideally, a procedure’s name describes the routine’s purpose. A good practice is
to create a name by combining a verb and a noun — for example, ProcessData,
PrintReport, Sort_Array, or CheckFilename.

Some programmers prefer using sentence-like names that provide a complete
description of the procedure. Some examples include WriteReportToTextFile and
Get_Print_Options_and_Print_Report. The use of such lengthy names has pros
and cons. On the one hand, such names are descriptive and usually unambiguous.
On the other hand, they take longer to type.

Everyone develops a naming style, but if your macro isn’t just a quick-and-dirty
temporary macro, it’s a good idea to be descriptive and to avoid meaningless
names such as DoIt, Update, Fix, and the ever-popular Macro1.

Executing Sub procedures
Although you might not know much about developing Sub procedures at this
point, it’s important to know how to execute these procedures. A Sub procedure is
worthless unless you know how to execute it, like having the best omelet recipe in
the world and no stove.

Executing a Sub procedure means the same thing as running or calling a Sub proce-
dure. You can use whatever terminology you like.

You can execute a VBA Sub in many ways; that’s one reason you can do so many
useful things with Sub procedures. Here’s an exhaustive list of the ways to execute
a Sub procedure:

 » Choose Run  ➪   Run Sub/UserForm (in the VBE). Excel executes the Sub
procedure in which the cursor is located. This menu command has two
alternatives: the F5 key and the Run Sub/UserForm button on the Standard
toolbar in the VBE. These methods don’t work if the procedure requires one
or more arguments.

CHAPTER 5 VBA Sub and Function Procedures 71

 » Use Excel’s Macro dialog box. You open this box by choosing Developer  ➪  
Code  ➪   Macros or by choosing View  ➪   Macros  ➪   Macros. Or you can
bypass the Ribbon and just press Alt+F8. When the Macro dialog box appears,
select the Sub procedure you want and click Run. This dialog box lists only the
procedures that don’t require an argument.

 » Press Ctrl+key (or Ctrl+Shift+key) assigned to the Sub procedure (assuming
you assigned one).

 » Click a button or a shape on a worksheet. The button or shape must have a
Sub procedure assigned to it — which is very easy to do.

 » From another Sub procedure that you write.

 » Click a button that you’ve added to the Quick Access toolbar. (See Chapter 19.)

 » From a custom item you’ve added to the Ribbon. (See Chapter 19.)

 » When an event occurs. As I explain in Chapter 11, these events include
opening the workbook, closing the workbook, saving the workbook, making a
change to a cell, activating a sheet, and other things.

 » From the Immediate window in the VBE. Just type the name of the Sub
procedure and press Enter.

Some of these techniques are covered in the following sections. To follow along,
you need to enter a Sub procedure in a VBA module:

1. Start with a new workbook.

2. Press Alt+F11 to activate the VBE.

3. Select the workbook in the Project Explorer.

4. Choose Insert  ➪   Module to insert a new module.

5. Enter the following in the module:

Sub ShowCubeRoot()
 Num = InputBox("Enter a positive number")
 MsgBox Num ^ (1/3) & " is the cube root."

End Sub

This procedure asks the user for a number and then displays that number’s cube
root in a message box. Figures 5-1 and 5-2 show what happens when you execute
this procedure.

72 PART 2 Employing VBA with Excel

By the way, ShowCubeRoot is not an example of a good macro. It doesn’t check for
errors, so it fails easily. Try clicking the Cancel button in the input box or entering
a negative number. Either action results in an error message. Chapter 12 describes
how to deal with these types of errors.

Executing the Sub procedure directly
One way to execute this procedure is by doing so directly from the VBA module in
which you defined it. Follow these steps:

1. Activate the VBE, and select the VBA module that contains the procedure.

2. Move the cursor anywhere in the procedure’s code.

3. Press F5 (or choose Run  ➪   Run Sub/UserForm).

4. Respond to the input box, and click OK.

The procedure displays the cube root of the number you entered.

FIGURE 5-1:
Using the built-in

VBA InputBox
function to get a

number.

FIGURE 5-2:
Displaying the
cube root of a

number via the
MsgBox function.

CHAPTER 5 VBA Sub and Function Procedures 73

You can’t use Run ➪ Run Sub/UserForm to execute a Sub procedure that uses
arguments, because you have no way to pass the arguments to the procedure. If
the procedure contains one or more arguments, the only way to execute it is to call
it from another procedure or from the Immediate window — both of which must
supply the argument(s).

Executing the procedure from
the Macro dialog box
Most of the time, you execute Sub procedures from Excel, not from the VBE. The
following steps describe how to execute a macro by using Excel’s Macro dia-
log box:

1. If you’re working in the VBE, activate Excel.

Pressing Alt+F11 is the express route.

2. Choose Developer  ➪   Code  ➪   Macros (or press Alt+F8).

Excel displays the dialog box shown in Figure 5-3.

3. Select the macro.

4. Click Run (or double-click the macro’s name in the list box).

The Macro dialog box doesn’t display Sub procedures that use arguments. That’s
because there is no way for you to specify the arguments.

FIGURE 5-3:
The Macro dialog

box lists all
available Sub

procedures.

74 PART 2 Employing VBA with Excel

Executing a macro by using a shortcut key
Another way to execute a macro is to press its shortcut key. But before you can use
this method, you must assign a shortcut key to the macro.

You have the opportunity to assign a shortcut key in the Record Macro dialog box
when you begin recording a macro. If you create the procedure without using the
macro recorder, you can assign a shortcut key (or change an existing shortcut key)
by using the following steps:

1. Choose Developer  ➪   Code  ➪   Macros.

2. Select the Sub procedure name from the list box.

In this example, the procedure is named ShowCubeRoot.

3. Click the Options button.

Excel displays the Macro Options dialog box shown in Figure 5-4.

4. Click the Shortcut Key option and enter a letter in the box labeled Ctrl.

The letter you enter corresponds to the key combination you want to use for
executing the macro. For example, if you enter the lowercase letter k, you can
execute the macro by pressing Ctrl+K. If you enter an uppercase letter, you
need to add the Shift key to the key combination. For example, if you enter K,
you can execute the macro by pressing Ctrl+Shift+K.

5. Click OK to close the Macro Options dialog box and then click Cancel to
close the Macro dialog box.

After you assign a shortcut key, you can press that key combination to execute the
macro. A shortcut key doesn’t work if it’s assigned to a macro that uses an
argument.

FIGURE 5-4:
The Macro

Options dialog
box lets you set
options for your

macros.

CHAPTER 5 VBA Sub and Function Procedures 75

The shortcut keys you assign to macros override Excel’s built-in shortcut keys.
For example, Ctrl+C is the standard shortcut key to copy data. If you assign Ctrl+C
to a macro, you can’t use Ctrl+C to copy. Try to avoid overriding the common
shortcut keys.

Executing the procedure from a
button or shape
Sometimes, you might like the idea of assigning the macro to a button (or any
other shape) on a worksheet. To assign the macro to a button, follow these steps:

1. Activate a worksheet.

2. Add a button from the Form Controls group.

To display the Form Controls group, choose Developer  ➪   Controls  ➪   Insert
(see Figure 5-5).

3. Click the Button tool in the Form Controls group.

It’s the first button in the first row of controls.

4. Drag in the worksheet to create the button.

After you add the button to your worksheet, Excel reads your mind and
displays the Assign Macro dialog box shown in Figure 5-6.

5. Select the macro you want to assign to the button.

6. Click OK.

FIGURE 5-5:
The Ribbon,
showing the

controls available
when you click

Insert on the
Developer tab.

76 PART 2 Employing VBA with Excel

After you make the assignment, click anywhere else in the spreadsheet to deselect
the button, then you can click the button to execute the macro — just like magic.

When you add a button, the drop-down box shows two sets of controls: Form
Controls and ActiveX Controls. These two groups of controls look similar, but they
are actually very different. In practice, the Form Controls are easier to use.

You can also assign a macro to any other shape or object. For example, assume
you’d like to execute a macro when the user clicks a Rectangle object. Follow these
steps:

1. Add the rectangle to the worksheet.

Insert a rectangle by choosing Insert  ➪   Illustrations  ➪   Shapes.

2. Right-click the rectangle.

3. Choose Assign Macro from its shortcut menu.

4. Select the macro in the Assign Macro dialog box.

5. Click OK.

After you’ve performed these steps, clicking the rectangle executes the assigned
macro.

FIGURE 5-6:
When you add a

button to a
worksheet, Excel

automatically
displays the

Assign Macro
dialog box.

CHAPTER 5 VBA Sub and Function Procedures 77

Executing the procedure from
another procedure
You can execute a procedure from another procedure. Follow these steps if you
want to give this a try:

1. Activate the VBA module that holds the ShowCubeRoot routine.

2. Enter this new procedure (either above or below ShowCubeRoot code —
it makes no difference):

Sub NewSub()
 ShowCubeRoot
End Sub

3. Execute the NewSub macro.

The easiest way to do this is to move the cursor anywhere within the NewSub
code and press F5. Notice that this NewSub procedure simply executes the
ShowCubeRoot procedure.

Typing the name of your procedure in another procedure is all you have to do to
execute it from that procedure. Executing one procedure from another is known as
“calling” the procedure. That term comes from the fact that you could also use the
Call keyword as shown:

Call ShowCubeRoot

The Call keyword is kind of old-fashioned and not many people use it anymore.

Executing the procedure from
the Immediate window
Executing a procedure from the Immediate window is just like calling it from
another procedure. Simply type the name of the procedure in the Immediate win-
dow and press Enter. If the procedure takes arguments, type a space after the
procedure name and separate arguments with a comma. The following example is
how you would execute a procedure called AddTwo that accepts two numeric
arguments:

AddTwo 10, 20

78 PART 2 Employing VBA with Excel

Executing Function Procedures
Functions, unlike Sub procedures, can be executed in only three ways:

 » By calling the function from another Sub procedure or Function procedure

 » By calling it from the Immediate Window in the VBE

 » By using the function in a worksheet formula

Try this simple function. Enter it in a VBA module:

Function CubeRoot(number)
 CubeRoot = number ^ (1 / 3)
End Function

This function is pretty wimpy; it merely calculates the cube root of the number
passed to it as its argument. It does, however, provide a starting point for under-
standing functions. It also illustrates an important concept about functions: how
to return the value. (You do remember that a function returns a value, right?)

Notice that the single line of code that makes up this Function procedure performs
a calculation. The result of the math (number to the power of 1⁄3) is assigned to the
variable CubeRoot. Not coincidentally, CubeRoot is also the name of the function.
To tell the function what value to return, you assign that value to the name of the
function.

Calling the function from a Sub procedure
Because you can’t execute a function directly, you must call it from another pro-
cedure. Enter the following simple procedure in the same VBA module that con-
tains the CubeRoot function:

Sub CallerSub()
 Ans = CubeRoot(125)
 MsgBox Ans
End Sub

When you execute the CallerSub procedure (using any of the methods described
earlier in this chapter), Excel displays a message box that contains the value of the
Ans variable, which is 5.

CHAPTER 5 VBA Sub and Function Procedures 79

Here’s what’s going on: The CubeRoot function is executed, and it receives an
argument of 125. The calculation is performed by the function’s code (using the
value passed as an argument), and the function’s returned value is assigned to the
Ans variable. The MsgBox function then displays the value of the Ans variable.

Try changing the argument that’s passed to the CubeRoot function and run the
CallerSub macro again. It works just like it should — assuming that you give the
function a valid argument (non-negative number).

By the way, the CallerSub procedure could be simplified a bit. The Ans variable is
not really required unless your code will use that variable later. You could use this
single statement to obtain the same result:

MsgBox CubeRoot(125)

Calling a function from the
Immediate window
The Immediate window is a place where you can execute Sub and Function proce-
dures to make sure they work right. As its name suggests, whatever you type in
the Immediate window is executed immediately (well, immediately after you
press Enter).

Open the VBE, and if the Immediate window isn’t visible, choose View ➪ Immedi-
ate Window or press Ctrl+G. In the Immediate window, the question mark is the
shortcut for print. Type the following:

?cuberoot(125)

When you press Enter, the answer appears in the line below the code you typed
(see Figure 5-7).

After you press Enter to the get the result, your cursor appears on the line below
the answer, ready for another command. Notice that the capitalization in the
example isn’t the same as the function name. VBA doesn’t care about upper- or
lowercase, so you don’t have to either.

80 PART 2 Employing VBA with Excel

Calling a function from a
worksheet formula
Now it’s time to call this VBA Function procedure from a worksheet formula. Acti-
vate a worksheet in the same workbook that holds the CubeRoot function defini-
tion. Then enter the following formula in any cell:

=CubeRoot(1728)

The cell displays 12, which is indeed the cube root of 1,728.

As you might expect, you can use a cell reference as the argument for the CubeRoot
function. For example, if cell A1 contains a value, you can enter =CubeRoot(A1).
In this case, the function returns the number obtained by calculating the cube root
of the value in A1.

You can use this function any number of times in the worksheet. Like Excel’s
built-in functions, your custom functions appear in the Insert Function dialog
box. Click the Insert Function toolbar button, and choose the User Defined cate-
gory. As shown in Figure 5-8, the Insert Function dialog box lists your very own
function.

FIGURE 5-7:
Executing a

Function in the
Immediate

window returns
the answer

immediately.

CHAPTER 5 VBA Sub and Function Procedures 81

If you want the Insert Function dialog box to display a description of the function,
follow these steps:

1. Choose Developer  ➪   Code  ➪   Macros.

Excel displays the Macro dialog box, but CubeRoot doesn’t appear in the list.
(CubeRoot is a Function procedure, and this list shows only Sub procedures.)
Don’t fret.

2. Type the word CubeRoot in the Macro Name box.

3. Click the Options button.

4. Enter a description of the function in the Description box.

5. Click OK to close the Macro Options dialog box.

6. Close the Macro dialog box by clicking the Cancel button.

This descriptive text now appears in the Insert Function dialog box.

Figure 5-9 shows the CubeRoot function being used in worksheet formulas.

FIGURE 5-8:
The CubeRoot

function appears
in the User

Defined category
of the Insert

Function
dialog box.

FIGURE 5-9:
Using the
CubeRoot

function in
formulas.

CHAPTER 6 Using the Excel Macro Recorder 83

Chapter 6
Using the Excel Macro
Recorder

Y

ou can use two methods to create an Excel macro:

 » Record it by using the Excel macro recorder.

 » Write it manually.

This chapter deals specifically with the ins and outs of using the Excel macro
recorder. Recording a macro isn’t always the best approach, and some macros
simply can’t be recorded, no matter how hard you try. You’ll see, however, that
the Excel macro recorder is very useful. Even if your recorded macro isn’t quite
what you want, the macro recorder can almost always lead you in the right
direction.

IN THIS CHAPTER

 » Recording your actions by using the
Excel built-in macro recorder

 » Understanding the types of macros
you can record

 » Setting the appropriate options for
macro recording

 » Evaluating the efficiency of recorded
macros

84 PART 2 Employing VBA with Excel

Recording Basics
You take the following basic steps when recording a macro.

1. Determine what you want the macro to do.

2. Get things set up properly.

This step determines how well your macro works.

3. Determine whether you want cell references in your macro to be relative
or absolute.

4. Click the Record Macro button on the left side of the status bar
(or choose Developer  ➪   Code  ➪   Record Macro).

Excel displays its Record Macro dialog box.

5. Enter a name, shortcut key, macro location, and description.

Each of these items — with the exception of the name — is optional.

6. Click OK in the Record Macro dialog box.

Excel automatically inserts a VBA module in the workbook specified in the
Store Macro In box. From this point, Excel converts your actions to VBA code.
It also displays a square Stop Recording button on your status bar.

7. Perform the actions you want to record by using the mouse or the
keyboard.

8. When you finish, click the Stop Recording button on the status bar (or
choose Developer  ➪   Code  ➪   Stop Recording).

Excel stops recording your actions.

9. Test the macro to make sure it works correctly.

10. (Optional) Clean up the code by removing extraneous statements or
adding some comments to your code to explain what it does.

The macro recorder is best suited for simple, straightforward macros. For exam-
ple, you might want a macro that applies formatting to a selected range of cells or
that sets up row and column headings for a new worksheet.

The macro recorder is for Sub procedures only. You can’t use the macro recorder
to create Function procedures.

You might also find the macro recorder helpful for developing more complex
macros. That is to say, you can record some actions and then copy the recorded
code into another, more complex macro. In most cases, you need to edit the
recorded code and add some new VBA statements.

CHAPTER 6 Using the Excel Macro Recorder 85

The macro recorder cannot generate code for any of the following tasks, which are
described later in the book:

 » Performing any type of repetitive looping

 » Performing any type of conditional actions (using an If-Then statement)

 » Assigning values to variables

 » Specifying data types

 » Displaying pop-up messages

 » Displaying custom dialog boxes

The macro recorder’s limited capability certainly doesn’t diminish its importance.
Recording your actions is perhaps the best way to master VBA. When in doubt,
try recording. Although the result may not be exactly what you want, viewing the
recorded code may reveal some objects, properties, and methods that you weren’t
aware of and steer you in the right direction.

Preparing to Record
Before you take the big step and turn on the macro recorder, spend a minute or
two thinking about what you’re going to do. You record a macro so that Excel can
automatically repeat the actions you record, so you’ll want those actions to be
accurate.

Ultimately, the success of a recorded macro depends on five factors:

 » How the workbook is set up while you record the macro

 » What is selected when you start recording

 » Whether you use absolute or relative recording mode

 » The accuracy of your recorded actions

 » The context in which you play back the recorded macro

The importance of these factors becomes more clear as you go through the record-
ing process.

86 PART 2 Employing VBA with Excel

Choosing Between Relative
and Absolute Mode

When recording your actions, Excel, by default, records absolute references to
cells. That is, if you enter a value in cell B10, Excel will record that you entered a
cell in B10. When you execute the macro, the value will be entered in B10 regard-
less of which cell is active. The reference to B10 is unchanging. If you use relative
recording, Excel records your actions starting in the active cell. If B10 is the active cell
and you record entering a value in relative mode, Excel records that you entered
value in the active cell. When you execute that macro and the active cell is, say,
C15, then the value is entered in C15.

Whether you record in absolute or relative mode depends on what you’re trying to
accomplish with your code. One mode is not better than the other, just more appro-
priate for the situation. For example, if you want to record a macro that bolds,
underlines, italizes whatever cell you’re on, you have to use relative mode. If you
use absolute mode in the case, you would always be formatting the same cell.

Recording in absolute mode
Open a new workbook and follow these steps to record a simple macro in absolute
mode. This macro simply enters three month names in a worksheet:

1. Make sure that the Developer  ➪   Code  ➪   Use Relative References button
is not highlighted and then choose Developer  ➪   Code  ➪   Record Macro.

2. Enter Absolute as the name for this macro.

3. Click OK to begin recording.

4. Select cell B1, and type Jan in that cell.

5. Move to cell C1, and type Feb.

6. Move to cell D1, and type Mar.

7. Click cell B1 to activate it again.

8. Stop the macro recorder.

9. Press Alt+F11 to activate the VBE.

10. Examine the Module1 module.

CHAPTER 6 Using the Excel Macro Recorder 87

Excel generates the following code:

Sub Absolute()
'
' Absolute Macro
'
 Range("B1").Select
 ActiveCell.FormulaR1C1 = "Jan"
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "Feb"
 Range("D1").Select
 ActiveCell.FormulaR1C1 = "Mar"
 Range("B1").Select

End Sub

When executed, this macro selects cell B1 and inserts the three month names
into the range B1:D1. Then the macro reactivates cell B1.

These same actions occur regardless of which cell is active when you execute the
macro. A macro recorded by using absolute references always produces the same
results when it’s executed. In this case, the macro always enters the names of the
first three months in the range B1:D1 on the active worksheet.

Absolute mode is appropriate when you want the same actions to happen to the
same cells every time. For example, if you create a monthly sales report and you
want to record a macro to apply the same formatting to the report every month,
you would choose absolute mode. A monthly report is likely to occupy the same
cells each time it’s created.

When you first open Excel, absolute mode is selected. If you change it to relative
mode, it will remain in that mode until you change it back or close Excel.

Recording in relative mode
Recording macros in relative mode is useful when you want a macro to perform an
action beginning in the active cell (as opposed to an “absolute” cell that you spec-
ified when recording the macro). For example, you might want the macro to enter
month names in the cell that is active when you’re designing an annual summary
report.

When designing such a report, you know you’ll need a list of month names, but
until you’ve established what the header will look like, you won’t know where you
want the month names to start. Once you know, you can select the cell where you

88 PART 2 Employing VBA with Excel

want them to start and execute the macro. And the next annual report you design
may have month names starting in a completely different cell.

You can change the manner in which Excel records your actions by clicking the
Use Relative References button in the Code group of the Developer tab. This button
is a toggle button. When the button appears highlighted in a different color, the
recording mode is relative. When the button appears normally, you’re recording in
absolute mode.

You can change the recording method at any time, even in the middle of recording.

To see how relative mode recording works, delete the contents of range B1:D1 and
then perform the following steps:

1. Activate cell B1.

2. Choose Developer  ➪   Code  ➪   Record Macro.

3. Enter Relative as the name for this macro.

4. Click OK to begin recording.

5. Click the Use Relative References button to change the recording mode
to relative.

When you click this button, it changes to a different color from the rest of the
ribbon.

6. Type Jan in cell B1.

7. Move to cell C1, and type Feb.

8. Move to cell D1, and type Mar.

9. Select cell B1.

10. Stop the macro recorder.

Notice that this procedure differs slightly from the previous example. In this
example, you activate the beginning cell before you start recording. This is an
important step when you record macros that use the active cell as a base.

This macro always starts entering text in the active cell. Try it. Move the cell
pointer to any cell and then execute the Relative macro. The month names are
always entered beginning at the active cell.

CHAPTER 6 Using the Excel Macro Recorder 89

With the recording mode set to relative, the code that Excel generates is quite dif-
ferent from the code generated in absolute mode:

Sub Relative()
'
' Relative Macro
'
 ActiveCell.FormulaR1C1 = "Jan"
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Feb"
 ActiveCell.Offset(0, 1).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Mar"
 ActiveCell.Offset(0, -2).Range("A1").Select
End Sub

To test this macro, select any cell except B1 and run the macro. The month names
are entered in three cells, beginning with the cell that you selected.

Did you notice that you clicked Use Relative References after you started record-
ing? That’s right, you can record parts of your macro using relative and parts
using absolute.

Notice that the code generated by the macro recorder refers to cell A1. This may
seem strange because you never used cell A1 during the recording of the macro.
This is simply a byproduct of the way the macro recorder works. (Chapter 8 dis-
cusses this aspect of using the macro recorder in more detail, in the section that
explores the Offset property.)

Watching the Macro Recorder in Action
When you turn on the macro recorder, Excel converts your mouse and keyboard
actions to valid VBA code. The best way to understand the process is to watch the
macro recorder in action. Figure 6-1 shows both Excel and the VBE halfway
through recording the Relative Sub procedure.

Follow these steps:

1. Start with a blank workbook.

2. Make sure that the Excel window is not maximized.

3. Press Alt+F11 to activate the VBE (and make sure that this program
window is not maximized).

90 PART 2 Employing VBA with Excel

4. Resize and arrange the Excel window and the VBE window so that both
are visible.

For best results, position the Excel window above the VBE window and
minimize any other applications that are running.

5. Activate Excel, and choose Developer  ➪   Code  ➪   Record Macro.

6. Click OK to start the macro recorder.

Excel inserts a new module (named Module1) and starts recording in that
module.

7. Activate the VBE program window.

8. In the Project Explorer, double-click Module1 to display that module in
the Code window.

Jump back to Excel and play around for a while. Choose various Excel commands
and watch the code being generated in the VBE. Select cells, enter data, format
cells, use the Ribbon commands, create a chart, change column widths, manipu-
late graphics objects, and more — go crazy! You’ll be enlightened as you watch
Excel spit out the VBA code before your eyes.

FIGURE 6-1:
A convenient

window
arrangement for

watching the
macro recorder

do its thing.

CHAPTER 6 Using the Excel Macro Recorder 91

If you have a system with dual monitors, you might find it helpful to keep Excel
on one monitor and the VBE window on the other one.

Specifying Recording Options
for Your Macro

When click the Record Macro Ribbon control, you can use the options in the Record
Macro dialog box to specify various aspects of the macro you’re about to record,
including what the macro is called and how it works.

Recall that Developer ➪ Code ➪ Record Macro displays the Record Macro dialog
box before recording begins, as shown in Figure 6-2.

Here are the options the Record Macro dialog box provides:

 » Macro name: You can enter a name for the Sub procedure that you’re
recording. By default, Excel uses the names Macro1, Macro2, and so on for
each macro you record. Don’t worry if you don’t give your macro a friendly
name in Record Macro dialog box. You can always give it a more descriptive
name later by editing the recorded code in the VBE.

FIGURE 6-2:
The Record

Macro dialog box
provides several

options.

92 PART 2 Employing VBA with Excel

 » Shortcut key: The Shortcut key option allows you to execute the macro by
pressing a shortcut key combination. For example, if you enter w (lowercase),
you can execute the macro by pressing Ctrl+W. If you enter W (uppercase), the
macro comes alive when you press Ctrl+Shift+W.

You can add or change a shortcut key at any time, so there’s no real reason
to set this option when recording a macro. For instructions on assigning a
shortcut key to an existing macro, see Chapter 5.

 » Store Macro In: The Store Macro In option tells Excel where to store the
macro that it’s recording. By default, Excel puts the recorded macro in a
module in the active workbook. If you prefer, you can record it in a new
workbook (Excel opens a blank workbook), or in your Personal Macro
Workbook.

Your Personal Macro Workbook is a hidden workbook that opens automati-
cally when Excel starts. This is a good place to store macros that you’ll use with
multiple workbooks. The Personal Macro Workbook is named PERSONAL.
XLSB. This file doesn’t exist until you specify it as the location for a recorded
macro. If you’ve made any changes to this file, Excel prompts you to save it
when you exit.

 » Description: You can add descriptive comments for your macro in the
Description box. You can put anything you like here, or nothing at all.

Streamlining Code Generated
by the Macro Recorder

You might think that recording a macro would generate some award-winning VBA
code — better than you could ever write manually. Think again. Because the macro
recorder has to be generic enough to record virtually every combination of actions,
it often generates extra code that works, but is less than efficient.

To demonstrate just how inefficient the macro recorder’s code can be, try this:

1. Turn on the macro recorder.

2. Choose Page Layout  ➪   Page Setup  ➪   Orientation  ➪   Landscape.

3. Turn off the macro recorder.

CHAPTER 6 Using the Excel Macro Recorder 93

To take a look at the macro, activate the Module1 sheet. This single (very simple)
command generates the following code:

Sub Macro1()
'
' Macro1 Macro
'

'
 Application.PrintCommunication = False
 With ActiveSheet.PageSetup
 .PrintTitleRows = ""
 .PrintTitleColumns = ""
 End With
 Application.PrintCommunication = True
 ActiveSheet.PageSetup.PrintArea = ""
 Application.PrintCommunication = False
 With ActiveSheet.PageSetup
 .LeftHeader = ""
 .CenterHeader = ""
 .RightHeader = ""
 .LeftFooter = ""
 .CenterFooter = ""
 .RightFooter = ""
 .LeftMargin = Application.InchesToPoints(0.7)
 .RightMargin = Application.InchesToPoints(0.7)
 .TopMargin = Application.InchesToPoints(0.75)
 .BottomMargin = Application.InchesToPoints(0.75)
 .HeaderMargin = Application.InchesToPoints(0.3)
 .FooterMargin = Application.InchesToPoints(0.3)
 .PrintHeadings = False
 .PrintGridlines = False
 .PrintComments = xlPrintNoComments
 .PrintQuality = 600
 .CenterHorizontally = False
 .CenterVertically = False
 .Orientation = xlLandscape
 .Draft = False
 .PaperSize = xlPaperLetter
 .FirstPageNumber = xlAutomatic
 .Order = xlDownThenOver
 .BlackAndWhite = False
 .Zoom = 100
 .PrintErrors = xlPrintErrorsDisplayed

94 PART 2 Employing VBA with Excel

 .OddAndEvenPagesHeaderFooter = False
 .DifferentFirstPageHeaderFooter = False
 .ScaleWithDocHeaderFooter = True
 .AlignMarginsHeaderFooter = True
 .EvenPage.LeftHeader.Text = ""
 .EvenPage.CenterHeader.Text = ""
 .EvenPage.RightHeader.Text = ""
 .EvenPage.LeftFooter.Text = ""
 .EvenPage.CenterFooter.Text = ""
 .EvenPage.RightFooter.Text = ""
 .FirstPage.LeftHeader.Text = ""
 .FirstPage.CenterHeader.Text = ""
 .FirstPage.RightHeader.Text = ""
 .FirstPage.LeftFooter.Text = ""
 .FirstPage.CenterFooter.Text = ""
 .FirstPage.RightFooter.Text = ""
 End With
 Application.PrintCommunication = TrueEnd Sub

You might be surprised by the amount of code generated by this single command.
Although you changed only one print setting, Excel generated code that set many
other print-related properties.

This is a good example of macro-recording overkill. If you want a macro that just
switches the page setup to landscape mode, you can simplify this macro consider-
ably by deleting the unneeded code. This makes the macro a bit faster and a lot
easier to read. Here’s how the macro looks after deleting the irrelevant lines:

Sub Macro1()
 With ActiveSheet.PageSetup
 .Orientation = xlLandscape
 End With
End Sub

The only line necessary is the one that sets the Orientation property. Actually, you
can simplify this macro even more because you don’t really need the With-End
With construct (you find out more about this construct in Chapter 14):

Sub Macro1()
 ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

CHAPTER 6 Using the Excel Macro Recorder 95

In this case, the macro changes the Orientation property of the PageSetup object
on the active sheet. All other properties are unchanged. By the way, xlLandscape
is a built-in constant that makes your code easier to read. This constant has
a value of 2, so the following statement works exactly the same (but isn’t as easy
to read):

ActiveSheet.PageSetup.Orientation = 2

Stay tuned for the built-in constants explanations in Chapter 7.

Rather than record this macro, you can enter it directly in a VBA module. To do so,
you have to know which objects, properties, and methods to use. Although the
recorded macro isn’t all that great, by recording it, you realize that the PageSetup
object is contained in a Worksheet object and that the PageSetup object has an
Orientation property. Armed with this knowledge and a quick trip to the Help sys-
tem (and probably some experimentation), you can write the macro manually.

This chapter nearly sums it up when it comes to using the macro recorder. The
only thing missing is experience. Eventually, you discover which recorded state-
ments you can safely delete. Better yet, you discover how to modify a recorded
macro to make it more useful.

3Programming
Concepts

IN THIS PART . . .

Discover the essential elements of Excel programming:
variables, constants, data types, operators, arrays, and
so on.

Get acquainted with Range objects; you’ll be glad
you did.

Find out why VBA functions (and also Excel worksheet
functions) are important.

Discover the essence of programming: decision-
making and looping.

See how to run code automatically when certain
things occur.

Find out about the different types of errors and why
error handling is important.

Know what to do when good code does bad things:
Get initiated into the bug extermination club.

CHAPTER 7 Essential VBA Language Elements 99

Chapter 7
Essential VBA Language
Elements

Because VBA is a real, live programming language, it uses many elements
common to all programming languages. In this chapter, you’re introduced
to several of these elements: comments, variables, constants, data types,

arrays, and a few other goodies. If you’ve programmed with other languages,
some of this material will be familiar. If you’re a programming newbie, it’s time
to roll up your sleeves and get busy.

Using Comments in Your VBA Code
A comment is the simplest type of VBA statement. Because VBA ignores these
statements, they can consist of anything you want. You can insert a comment to
remind yourself why you did something or to clarify some particularly elegant
code you wrote.

Use comments liberally and extensively to describe what the code does (which
isn’t always obvious from reading the code itself). Often, code that makes perfect
sense today mystifies you tomorrow. Been there. Done that.

IN THIS CHAPTER

 » Knowing when, why, and how to use
comments in your code

 » Using variables and constants

 » Telling VBA what type of data you’re
using

 » Getting familiar with arrays

 » Knowing why you might need to use
labels in your procedures

100 PART 3 Programming Concepts

You begin a comment with an apostrophe ('). VBA ignores any text that follows an
apostrophe in a line of code. You can use a complete line for your comment or
insert your comment at the end of a line of code. The following example shows a
VBA procedure with four comments:

Sub FormatCells()
' Exit if a range is not selected
 If TypeName(Selection) <> "Range" Then
 MsgBox "Select a range."
 Exit Sub
 End If
' Format the cells
 With Selection
 .HorizontalAlignment = xlRight
 .WrapText = False ' wrapped text ruins the layout
 .MergeCells = False ' merged cells break other code
 End With
End Sub

The “apostrophe indicates a comment” rule has one exception: VBA doesn’t inter-
pret an apostrophe inside a set of quotation marks as a comment indicator. For
example, the following statement doesn’t contain a comment, even though it has
an apostrophe:

Msg = "Can't continue"

When you’re writing code, you might want to test a procedure by excluding a par-
ticular statement or group of statements. You could delete the statements and then
retype them later. But that’s a waste of time. A better solution is to simply turn
those statements into comments by inserting apostrophes. VBA ignores state-
ments beginning with apostrophes when executing a routine. To reactivate those
“commented” statements, just remove the apostrophes.

Here’s a quick way to convert a block of statements to comments. In the VBE,
choose View ➪ Toolbars ➪ Edit to display the Edit toolbar. To convert a block of
statements to comments, select the statements and click the Comment Block but-
ton. To remove the apostrophes, select the statements and click the Uncomment
Block button.

Everyone develops their own style of commenting. To be useful, however, com-
ments should convey information that’s not immediately obvious from reading
the code.

CHAPTER 7 Essential VBA Language Elements 101

The following tips can help you make effective use of comments:

 » Identify yourself as the author. This can be useful when you get promoted and
the person who takes over your job has questions.

 » Briefly describe the purpose of each Sub or Function procedure you write.

 » Use comments to keep track of changes you make to a procedure.

 » Use a comment to indicate that you’re using a function or a construct in an
unusual or nonstandard manner.

 » Use comments to describe the variables you use, especially if your variable
names would be too long if they were completely self-explanatory.

 » Use a comment to describe any workarounds you develop to overcome bugs
in Excel.

 » Write comments as you develop code instead of saving the task for a final
step.

 » Depending on your work environment, consider adding a joke or two as a
comment. The person who takes over your job when you get promoted might
appreciate the humor.

Using Variables, Constants,
and Data Types

VBA’s main purpose is to manipulate data. VBA stores the data in your computer’s
memory, and the data may or may not end up on disk. Some data, such as work-
sheet ranges, resides in objects. Other data is stored in variables that you create.

Understanding variables
A variable is simply a named storage location in your computer’s memory that’s
used by a program. You have lots of flexibility in naming your variables, so make
the variable names as descriptive as possible. You assign a value to a variable by
using the equal-sign operator. (You can find out more about assigning values to
variables in the “Using Assignment Statements” section.)

Here are some examples of variables being assigned values. Note that the last
example uses two variables.

102 PART 3 Programming Concepts

x = 1
InterestRate = 0.075
LoanPayoffAmount = 243089
DataEntered = False
x = x + 1
UserName = "Bob Johnson"
Date_Started = #3/14/2019#
MyNum = YourNum * 1.25

VBA enforces a few rules regarding variable names:

 » You can use letters, numbers, and some punctuation characters, but the first
character must be a letter.

 » VBA doesn’t distinguish between uppercase and lowercase letters.

 » You can’t use spaces, periods, or mathematical operators in a variable name.

 » You can’t use the following characters in a variable name: #, $, %, &, or !.

 » Variable names can be no longer than 255 characters. However, nobody even
gets close to that limit.

To make variable names more readable, programmers often use mixed case (for
example, InterestRate) or the underscore character (interest_rate).

VBA has many reserved words that you can’t use for variable or procedure names.
These include words such as Sub, Dim, With, End, Next, and For. If you attempt to
use one of these words as a variable, you might get a compile error (which means
your code won’t run). So if an assignment statement produces an error message,
double-check to make sure that the variable name isn’t a reserved word. An easy
way to do that is to select the variable name and press F1. If your variable name is
a reserved word, it will have an entry in the Help system.

VBA does allow you to create variables with names that match names in Excel’s
object model, such as Workbook and Range. But obviously, using names like that
just increases the possibility of getting confused. Here’s a perfectly valid (but very
confusing) macro that declares Range as a variable name and works with a cell
named Range in a worksheet named Range:

Sub RangeConfusion()
 Dim Range As Double
 Range = Sheets("Range").Range("Range").Value
 MsgBox Range
End Sub

CHAPTER 7 Essential VBA Language Elements 103

Resist the urge to use a variable named Workbook or Range, and use something
like SourceWorkbook or InputRange instead.

What are VBA’s data types?
When discussing programming languages, the term data type refers to the manner
in which a program stores data in memory — for example, as integers, real num-
bers, or strings. Although VBA can take care of these details automatically, it does
so at a cost. (There’s no free lunch.) Letting VBA handle your data typing results
in slower execution and inefficient memory use, but for most applications, the
speed difference isn’t noticeable. The real benefit to data types is finding errors in
your code. If you think something is supposed to be a number and you get a string,
you’ll get an error that’s much easier to find if you use data types.

VBA can automatically handle all the data details, which makes writing code easier
for programmers. Not all programming languages provide this luxury. For exam-
ple, some languages are strictly typed, which means the programmer must explic-
itly define the data type for every variable used.

VBA doesn’t require that you declare the variables that you use, but it’s definitely
a good practice. You see why later in this chapter.

VBA has a variety of built-in data types. Table 7-1 lists the most common types of
data that VBA can handle.

In general, choose the data type that uses the smallest number of bytes but can
still handle all the data you want to store in the variable.

An exception to the “smallest number of bytes” rule is Long. Most VBA program-
mers use Long instead of Integer because doing so offers a slight performance
increase. But for small procedures, you would never notice any difference between
Integer and Long data types.

Declaring and scoping variables
If you read the preceding sections, you know a bit about variables and data types.
In this section, you discover how to declare a variable as a certain data type.

If you don’t declare the data type for a variable you use in a VBA routine, VBA uses
the default data type: Variant. Data stored as a variant acts like a chameleon; it
changes type depending on what you do with it. For example, if a variable is a Var-
iant data type and contains a text string that looks like a number (such as “143”),
you can use this variable for string manipulations as well as numeric calculations.

104 PART 3 Programming Concepts

VBA automatically handles the conversion. Letting VBA handle data types may
seem like an easy way out — but remember that you make it harder to find errors.

Before you use variables in a procedure, it’s an excellent practice to declare your
variables — that is, tell VBA each variable’s data type. Declaring your variables
makes your macro run faster and use memory more efficiently. The default data
type, Variant, causes VBA to repeatedly perform time-consuming checks and
reserve more memory than necessary. If VBA knows a variable’s data type, it
doesn’t have to investigate and can reserve just enough memory to store the data.

To force yourself to declare all the variables you use, include these two words as
the first statement in your VBA module:

Option Explicit

TABLE 7-1 VBA’s Built-In Data Types
Data Type Bytes Used Range of Values

Byte 1 0 to 255

Boolean 2 True or False

Integer 2 –32,768 to 32,767

Long 4 –2,147,483,648 to 2,147,483,647

LongLong 8 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Single 4 –3.40E38 to –1.40E-45 for negative values;

1.40E-45 to 3.40E38 for positive values

Double 8 –1.79E308 to –4.94E-324 for negative values;

4.94E-324 to 1.79E308 for positive values

Currency 8 –922,337,203,685,477 to 922,337,203,685,477

Date 8 1/1/0100 to 12/31/9999

Object 4 Any object reference

String 1 per character Varies

Variant Varies Varies

CHAPTER 7 Essential VBA Language Elements 105

When this statement is present, you won’t be able to run your code if it contains
any undeclared variables.

You need to use Option Explicit only once: at the beginning of your module, above
any procedures in the module. Keep in mind that the Option Explicit statement
applies only to the module in which it resides. If you have more than one VBA
module in a project, you need an Option Explicit statement for each module.

Suppose that you use an undeclared variable (that is, a Variant) named CurrentRate.
At some point in your routine, you insert the following statement:

CurentRate = .075

The variable name is misspelled (missing an r) and can be very difficult to spot. If
you don’t notice it, Excel interprets it as a different variable, and it will probably
cause your routine to give incorrect results. If you use Option Explicit at the begin-
ning of your module (forcing you to declare the CurrentRate variable), Excel
 generates an error if it encounters a misspelled variation of that variable.

To ensure that the Option Explicit statement is inserted automatically whenever
you insert a new VBA module, turn on the Require Variable Definition option. You
find it on the Editor tab of the Options dialog box (in the VBE, choose Tools ➪
Options).

Declaring your variables also allows you to take advantage of a shortcut that can
save you some typing. Just type the first two or three characters of the variable
name, then press Ctrl+spacebar. The VBE either completes the entry for you or —
if the choice is ambiguous — shows you a list of matching words to choose among.
In fact, this slick trick works with reserved words and functions, too. Figure 7-1
shows an example of how this works.

FIGURE 7-1:
Pressing

Ctrl+spacebar
displays a list of
variable names,
reserved words,

and functions.

106 PART 3 Programming Concepts

You now know the advantages of declaring variables, but how do you do it? The
most common way is to use a Dim statement. Here are some examples of variables
being declared:

Dim YourName As String
Dim Mar_Inv As Double
Dim AmountDue As Double
Dim RowNumber As Long
Dim X

The first four variables are declared as a specific data type. The last variable, X, is
not declared as a specific data type, so it’s treated as a Variant (it can be anything).

Besides Dim, VBA has three keywords that are used to declare variables:

 » Static

 » Public

 » Private

The Dim, Static, Public, and Private keywords are discussed later, but first, two
other topics are relevant here: a variable’s scope and life.

A workbook can have any number of VBA modules, and a VBA module can have
any number of Sub and Function procedures. A variable’s scope determines which
modules and procedures can use the variable. Table 7-2 has the details.

Confused? Keep turning the pages; some examples make this stuff crystal clear.

Procedure-only variables
The smallest scope for a variable is at the procedure level. (A procedure is either a
Sub or a Function procedure.) Variables declared with this scope can be used only
in the procedure in which they’re declared. When the procedure ends, the variable

TABLE 7-2 Variable’s Scope
Scope How the Variable Is Declared

Procedure only By using Dim or Static inside the procedure that uses the variable

Module only By using Dim or Private before the first Sub or Function statement
in the module

All procedures in
all modules

By using Public before the first Sub or Function statement in any
module

CHAPTER 7 Essential VBA Language Elements 107

no longer exists, and Excel frees up its memory. If you execute the procedure
again, the variable comes back to life, but its previous value is lost.

The most common way to declare a procedure-only variable is with a Dim state-
ment. Dim doesn’t refer to the mental capacity of the VBA designers. Rather, it’s
an old programming term that’s short for dimension, which simply means you’re
setting aside memory for a particular variable. You usually place Dim statements
immediately after the Sub or Function statement and before the procedure’s code.

The following example shows some procedure-only variables declared by using
Dim statements:

Sub MySub()
 Dim x As Double
 Dim First As Long
 Dim InterestRate As Single
 Dim TodaysDate As Date
 Dim UserName As String
 Dim MyValue
' ... [The procedure's code goes here] ...
End Sub

Notice that the last Dim statement in the preceding example doesn’t declare a data
type for the MyValue variable; it declares only the variable itself. The effect is that
the variable MyValue is a Variant data type.

Unlike some languages, VBA doesn’t allow you to declare a group of variables to be
a particular data type by separating the variables with commas. For example,
though valid, the following statement does not declare all the variables as Longs:

Dim i, j, k As Long

In this example, only k is declared to be a Long; the other variables default to the
Variant data type.

If you declare a variable with procedure-only scope, other procedures in the same
module can use the same variable name, but each variable instance is unique to its
own procedure. In general, variables declared at the procedure level are the most
efficient because VBA frees up the memory they use when the procedure ends.

Module-only variables
Sometimes, you want a variable to be available to all procedures in a module. If so,
just declare the variable (using Dim or Private) before the module’s first Sub or
Function statement — outside any procedures. You do this in the Declarations

108 PART 3 Programming Concepts

section, at the beginning of your module. (This is also where the Option Explicit
statement is located.)

Figure 7-2 shows how you know when you’re working with the Declarations sec-
tion. Use the drop-down menu on the right, and go directly to the Declarations
section. Do not pass Go, and do not collect $200.

Suppose that you want to declare the CurrentValue variable so that it’s available to
all the procedures in your module. All you need to do is use the Dim statement in
the Declarations section:

Dim CurrentValue As Double

With this declaration in place — and in the proper place — the CurrentValue vari-
able can be used from any other procedure within the module, and it retains its
value from one procedure to another.

Public variables
If you need to make a variable available to all the procedures in all your VBA mod-
ules in a workbook, declare the variable at the module level (in the Declarations
section) by using the Public keyword. Here’s an example:

Public CurrentRate As Double

The Public keyword makes the CurrentRate variable available to any procedure in
the workbook — even those in other VBA modules. You must insert this statement
before the first Sub or Function statement in a module.

Static variables
Normally, when a procedure ends, all the procedure’s variables are reset. Static
variables are special cases because they retain their value even after the procedure
ends. You declare a static variable at the procedure level. A static variable may be
useful if you need to track the number of times you execute a procedure. You can
declare a static variable and increment it each time you run the procedure.

FIGURE 7-2:
Each VBA

module has a
Declarations

section, which
appears before

any Sub or
Function

procedures.

CHAPTER 7 Essential VBA Language Elements 109

As shown in the following example, you declare static variables by using the Static
keyword:

Sub MySub()
 Static Counter As Long
 Dim Msg As String
 Counter = Counter + 1
 Msg = "Number of executions: " & Counter
 MsgBox Msg
End Sub

The code keeps track of the number of times the procedure was executed and dis-
plays the number in a message box. The value of the Counter variable isn’t reset
when the procedure ends, but it’s reset when you close and reopen the workbook.

Even though the value of a variable declared as Static is retained after a variable
ends, that variable is unavailable to other procedures. In the preceding MySub
procedure example, the Counter variable and its value are available only within
the MySub procedure. In other words, it’s a procedure-level variable.

Life of variables
Nothing lives forever, including variables. The scope of a variable not only deter-
mines where that variable may be used, but also affects the circumstances under
which the variable is removed from memory.

You can purge all variables from memory by using three methods:

 » Click the Reset toolbar button (the little blue square button on the Standard
toolbar in the VBE).

 » Click End when a runtime error message dialog box shows up.

 » Include an End statement anywhere in your code. This is not the same as an
End Sub or End Function statement.

Otherwise, only procedure-level variables will be removed from memory when
the macro code has completed running. Static variables, module-level variables,
and global (public) variables all retain their values in between runs of your code.

If you use module-level or global-level variables, make sure they have the values
you expect them to have. You never know whether one of the situations just men-
tioned may have caused your variables to lose their content!

110 PART 3 Programming Concepts

Working with constants
A variable’s value may (and usually does) change while your procedure is execut-
ing. That’s why they call it a variable. Sometimes, you need to refer to a value or
string that never changes. In such a case, you need a constant — a named element
whose value doesn’t change.

As shown in the following examples, you declare constants by using the Const
statement. The declaration statement also gives the constant its value:

Const NumQuarters As Long = 4
Const Rate = .0725, Period = 12
Const ModName As String = "Budget Macros"
Public Const AppName As String = "Budget Application"

Using constants in place of hard-coded values or strings is an excellent program-
ming practice. For example, if your procedure needs to refer to a specific value
(such as an interest rate) several times, it’s better to declare the value as a con-
stant and refer to its name rather than the value. This makes your code more
readable and easier to change. And if the interest rate changes, you have to change
only one statement rather than several.

Like variables, constants have a scope. Keep these points in mind:

 » To make a constant available within only a single procedure, declare the
constant after the procedure’s Sub or Function statement.

 » To make a constant available to all procedures in a module, declare the
constant in the Declarations section for the module.

 » To make a constant available to all modules in the workbook, use the Public
keyword and declare the constant in the Declarations section of any module.

Unlike a variable, the value of a constant doesn’t vary. If you attempt to change
the value of a constant in a VBA routine, you get an error. This isn’t too surprising
because the value of a constant must remain constant. If you need to change the
value of a constant while your code is running, what you really need is a variable.

Using premade constants
Excel and VBA contain many predefined constants, which you can use without the
need to declare them yourself. The macro recorder usually uses constants rather
than actual values. In general, you don’t need to know the value of these constants
to use them. The following simple procedure uses a built-in constant (xlCalcula-
tionManual) to change the Calculation property of the Application object (in other
words, to change the Excel recalculation mode to manual):

CHAPTER 7 Essential VBA Language Elements 111

Sub CalcManual()
 Application.Calculation = xlCalculationManual
End Sub

If you look in Excel’s Help system for calculation modes, you’ll find this:

Name Value Description

xlCalculationAutomatic –4105 Excel controls recalculation.

xlCalculationManual –4135 Calculation is done when the user requests it.

xlCalculationSemiauto-
matic

2 Excel controls recalculation but ignores changes in
tables.

So the actual value of the built-in xlCalculationManual constant is –4135. Obvi-
ously, it’s easier to use the constant’s name than try to remember such an odd
value. As you can see, many of the built-in constants are just arbitrary numbers
that have special meaning to VBA.

To find the actual value of a built-in constant, use the Immediate window in the
VBE and execute a VBA statement such as the following:

? xlCalculationAutomatic

If the Immediate window isn’t visible, press Ctrl+G. The question mark is a short-
cut for typing Print.

Working with strings
Excel can work with both numbers and text, so it should come as no surprise that
VBA has this same power. Text is often referred to as a string. You can work with
two types of strings in VBA:

 » Fixed-length strings are declared with a specified number of characters.
The maximum length is 65,526 characters, which is a lot of characters! As a
point of reference, this chapter contains about half that many characters.

 » Variable-length strings theoretically can hold as many as 2 billion
characters. If you type 5 characters per second, it would take you about
760 days to bang out 2 billion characters — assuming you don’t take any
breaks to eat or sleep.

When declaring a string variable with a Dim statement, you can specify the maxi-
mum length if you know it (it’s a fixed-length string) or let VBA handle it

112 PART 3 Programming Concepts

dynamically (it’s a variable-length string). The following example declares the
MyString variable as a string with a maximum length of 50 characters. (Use an
asterisk to specify the number of characters, up to the 65,526-character limit.)
YourString is also declared as a string, but its length is unspecified:

Dim MyString As String * 50
Dim YourString As String

You won’t see a lot of fixed-length string variables in the wild. Back when com-
puter memory was scarce and valuable, they made programs take up less space.
Today, they’re generally not necessary.

When declaring a fixed-length string that exceeds 999, don’t use a comma in the
number that specifies the string size. In fact, never use commas when entering a
numeric value in VBA. VBA doesn’t like that.

Working with dates
Another data type you might find useful is Date. You can use a string variable to
store dates, but then you can’t perform date calculations. Using the Date data type
gives your routines greater flexibility. For example, you might need to calculate
the number of days between two dates. This would be impossible (or at least
extremely challenging) if you used strings to hold your dates.

A variable defined as a Date can hold dates ranging from January 1, 0100, to
December 31, 9999. That’s a span of nearly 10,000 years and more than enough
for even the most aggressive financial forecast. You can also use the Date data type
to work with time data. (VBA lacks a Time data type.)

These examples declare variables and constants as a Date data type:

Dim Today As Date
Dim StartTime As Date
Const FirstDay As Date = #1/1/2019#
Const Noon = #12:00:00#

In VBA, place dates and times between two hash marks, as shown in the preceding
examples.

Date variables display dates according to your system’s short date format, and
they display times according to your system’s time format (either 12- or 24-hour
formatting). The Windows Registry stores these settings, and you can modify
them via the Regional Settings in the Windows Control Panel. Therefore, the VBA-
displayed date or time format may vary, depending on the settings for the system
on which the application is running.

CHAPTER 7 Essential VBA Language Elements 113

When writing VBA code, however, you must use one of the US date formats (such
as mm/dd/yyyy). So, the following statement assigns a day in October (not
November) to the MyDate variable (even if your system is set to use dd/mm/yyyy
for dates):

MyDate = #10/11/2019#

When you display the variable (with the MsgBox function, for example), VBA
shows MyDate using your system settings. So if your system uses the dd/mm/yyyy
date format, MyDate is displayed as 11/10/2019.

Using Assignment Statements
An assignment statement is a VBA statement that assigns the result of an expres-
sion to a variable or an object. Excel’s Help system defines the term expression as

. . . a combination of keywords, operators, variables, and constants that yields a
string, number, or object. An expression can be used to perform a calculation,
manipulate characters, or test data.

Much of your work in VBA involves developing (and debugging) expressions. If
you know how to create formulas in Excel, you’ll have no trouble creating expres-
sions. With a worksheet formula, Excel displays the result in a cell. A VBA expres-
sion, on the other hand, can be assigned to a variable.

Assignment statement examples
In the assignment statement examples that follow, the expressions are to the
right of the equal sign:

x = 1
x = x + 1
x = (y * 2) / (z * 2)
HouseCost = 375000
FileOpen = True
Range("TheYear").Value = 2019

Expressions can be as complex as you need them to be; use the line continuation
character (a space followed by an underscore) to make lengthy expressions easier
to read.

114 PART 3 Programming Concepts

Often, expressions use functions: VBA’s built-in functions, Excel’s worksheet
functions, or functions that you develop with VBA. Functions are discussed in
Chapter 9.

About that equal sign
As you can see in the preceding example, VBA uses the equal sign as its assign-
ment operator. You’re probably accustomed to using an equal sign as a mathe-
matical symbol for equality. Therefore, an assignment statement like the following
may cause you to raise your eyebrows:

z = z + 1

In what crazy universe is z equal to itself plus 1? Answer: No known universe. In
this case, the assignment statement (when executed) increases the value of z by 1.
So if z is 12, executing the statement makes z equal to 13. Just remember that an
assignment uses the equal sign as an operator, not a symbol of equality.

Smooth operators
Operators play major roles in VBA. Besides the equal-sign operator (discussed in
the previous section), VBA provides several operators. Table 7-3 lists these opera-
tors. These should be familiar to you because they’re the same operators used in
worksheet formulas (except for the Mod operator).

TABLE 7-3 VBA’s Operators
Function Operator Symbol

Addition +

Multiplication *

Division /

Subtraction –

Exponentiation ^

String concatenation &

Integer division (the result is always an integer) \

Modulo arithmetic (returns the remainder of a
division operation)

Mod

CHAPTER 7 Essential VBA Language Elements 115

When you’re writing an Excel formula, you do modulo arithmetic by using the
MOD function. For example, the following formula returns 2 (the remainder when
you divide 12 by 5):

=MOD(12,5)

In VBA, the Mod operator is used like this (and z has a value of 2):

z = 12 Mod 5

The term concatenation is programmer speak for “join together.” Thus, if you con-
catenate strings, you’re combining strings to make a new and improved string.

As shown in Table 7-4, VBA also provides a full set of logical operators.

The precedence order for operators in VBA is exactly the same as in Excel formu-
las. Exponentiation has the highest precedence. Multiplication and division come
next, followed by addition and subtraction. You can use parentheses to change the
natural precedence order, making whatever’s sandwiched in parentheses come
before any operator. Take a look at this code:

x = 3
y = 2
z = x + 5 * y

When the preceding code is executed, what’s the value of z? If you answered 13,
you get a gold star that proves you understand the concept of operator precedence.
If you answered 16, read this: The multiplication operation (5 * y) is performed
first, and that result is added to x.

TABLE 7-4 VBA’s Logical Operators
Operator What It Does

Not Turns TRUE or FALSE into its opposite

And Returns TRUE only if both expressions return TRUE

Or Returns TRUE if either expression returns TRUE

Xor Short for exclusive or, returns TRUE if one expression is TRUE and the
other FALSE

116 PART 3 Programming Concepts

If you have trouble remembering the correct operator precedence, add parenthe-
ses around the parts that get calculated first. For example, the previous assign-
ment statement looks like this with parentheses:

z = x + (5 * y)

Don’t be shy about using parentheses even when they aren’t required —
especially if doing so makes your code easier to understand. VBA doesn’t care if
you use extra parentheses.

Working with Arrays
Like most programming languages, VBA supports arrays. An array is a group of
variables that share a name. You refer to a specific variable in the array by using
the array name and an index number in parentheses. For example, you can define
an array of 12 string variables to hold the names of the months of the year. If you
name the array MonthNames, you can refer to the first element of the array as
MonthNames (1), the second element as MonthNames (2), and so on.

Declaring arrays
Before you can use an array, you must declare it. No exceptions. Unlike with nor-
mal variables, VBA is very strict about this rule. You declare an array with a Dim
statement, just as you declare a regular variable. However, you also need to specify
the number of elements in the array. You do this by specifying the first index
number, the keyword To, and the last index number — all inside parentheses. The
following example shows how to declare an array of 100 integers:

Dim MyArray(1 To 100) As Integer

When you declare an array, you can choose to specify only the upper index. If you
omit the lower index, VBA assumes that it’s 0. Therefore, both of the following
statements declare the same 101-element array:

Dim MyArray (0 To 100) As Integer
Dim MyArray (100) As Integer

If you want VBA to assume that 1 (rather than 0) is the lower index for your arrays,
include the following statement in the Declarations section at the top of your
module:

Option Base 1

CHAPTER 7 Essential VBA Language Elements 117

This statement forces VBA to use 1 as the first index number for arrays that declare
only the upper index. If this statement is present, the following statements are
identical, both declaring a 100-element array:

Dim MyArray (1 To 100) As Integer
Dim MyArray (100) As Integer

Multidimensional arrays
The arrays created in the previous examples are all one-dimensional arrays. Think
of one-dimensional arrays as a single line of values. Arrays you create in VBA can
have as many as 60 dimensions — although you rarely need more than two or
three dimensions in an array. The following example declares an 81-number array
with two dimensions:

Dim MyArray (1 To 9, 1 To 9) As Long

You can think of this array as occupying a 9 × 9 matrix — perfect for storing all
numbers in a Sudoku puzzle.

To refer to a specific element in this array, you need to specify two index numbers
(similar to its “row” and its “column” in the matrix). The following example
shows how you can assign a value to an element in this array:

MyArray(3, 4) = 125

This statement assigns a value to a single element in the array. If you’re thinking
of the array in terms of a 9 × 9 matrix, this assigns 125 to the element located in
the third row and fourth column of the matrix.

Here’s how to declare a three-dimensional array, with 1,000 elements:

Dim My3DArray(1 To 10, 1 To 10, 1 To 10) As Long

You can think of a three-dimensional array as a cube. Visualizing an array of more
than three dimensions is more difficult.

Dynamic arrays
You can also create dynamic arrays. A dynamic array doesn’t have a preset number
of elements. Declare a dynamic array with an empty set of parentheses:

Dim MyArray() As String

118 PART 3 Programming Concepts

Before you can use this array, you must use the ReDim statement to tell VBA how
many elements the array has (for example, to redimension the array). Usually, the
number of elements in the array is determined while your code is running. You
can use the ReDim statement any number of times, changing the array’s size as
often as needed. The following example demonstrates how to change the number
of elements in a dynamic array. It assumes that the NumElements variable con-
tains a value, which your code calculated.

ReDim MyArray(1 To NumElements)

When you redimension an array by using ReDim, you wipe out any values cur-
rently stored in the array elements. You can avoid destroying the old values by
using the Preserve keyword. The following example shows how you can preserve
an array’s values when you redimension the array:

ReDim Preserve MyArray(1 To NumElements)

If MyArray currently has ten elements, and you execute the preceding statement
with NumElements equaling 12, the first ten elements remain intact, and the array
has room for two additional elements (up to the number contained in the variable
NumElements). If NumElements equals 7, however, the first seven elements are
retained, but the remaining three elements meet their demise.

The topic of arrays comes up again in Chapter 10, when you explore the concept of
looping.

Using Labels
In early versions of BASIC, every line of code required a line number. For example,
if you had written a BASIC program in the ’70s (dressed, of course, in your bell
bottoms), it may have looked something like this:

010: LET X=5
020: LET Y=3
030: LET Z=X*Y
040: PRINT Z
050: END

VBA permits the use of such line numbers, and it even permits text labels. You don’t
typically use a label for each line, but you may occasionally need to use a label. For
example, insert a label if you use a GoTo statement (discussed in Chapter 10). A label
must begin with the first nonblank character in a line and end with a colon.

CHAPTER 8 Working with Range Objects 119

Chapter 8
Working with Range
Objects

This chapter digs a bit deeper into Excel’s dungeons and takes a closer look
at Range objects. Excel is all about cells, and the Range object is a container
for cells. Much of the programming work you do in Excel focuses on Range

objects, such as assigning values to cells, putting formulas in cells, and format-
ting cells.

Referring to Range Objects
A Range object represents a range contained in a Worksheet object. Range objects,
like all other objects, have properties (which you can examine and sometimes
change) and methods (which perform actions on the object).

A Range object can be as small as a single cell (for example, B4) or as large as
every one of the 17,179,869,184 cells in a worksheet (A1:XFD1048576).

IN THIS CHAPTER

 » Finding out why Range objects are so
important

 » Understanding the various ways of
referring to ranges

 » Discovering some of the most useful
Range object properties

 » Uncovering some of the most useful
Range object methods

120 PART 3 Programming Concepts

When you refer to a Range object, the address is always surrounded by double
quotes, like this:

Range("A1:C5")

If the range consists of one cell, you still need the quotes:

Range("K9")

If the range happens to have a name (created with Formulas ➪   Defined Names  ➪
Define Name), you can refer to the range by its name (which is also in quotes):

Range("PriceList")

Unless you tell Excel otherwise by qualifying the range reference, it assumes that
you’re referring to a range on the active worksheet. If anything other than a work-
sheet is active (such as a chart sheet), the range reference fails, and your macro
displays an error message and grinds to a screeching halt.

As shown in the following example, you can refer to a range outside the active
sheet by qualifying the range reference with a worksheet name from the active
workbook:

Worksheets("Sheet1").Range("A1:C5")

If you need to refer to a range in a different workbook (that is, any workbook other 
than the active workbook), you can use a statement like this:

Workbooks("Budget.xlsx").Worksheets("Sheet1").Range("A1:C5")

A Range object can consist of one or more entire rows or columns. You can refer to
an entire row (in this case, row 3) by using syntax like this:

Range("3:3")

You can refer to an entire column (the fourth column in this example) like this:

Range("D:D")

In Excel, you select noncontiguous ranges by holding down Ctrl while selecting
various ranges with your mouse. Figure 8-1 shows a noncontiguous range selec-
tion. You shouldn’t be surprised that VBA also allows you to work with

CHAPTER 8 Working with Range Objects 121

noncontiguous  ranges.  To  refer  to  the  range  in  Figure 8-1,  use  the  following 
expression. Notice that a comma separates the two areas.

Range("B2:D8,C11:G12")

Be aware that some methods and properties cause havoc with noncontiguous
ranges. Copy-and-paste won’t work with noncontiguous ranges unless all the
cells are in the same rows and columns. And when it does work, it ignores the
empty cells in between and pastes a contiguous range. If it doesn’t do what you
want, you might have to process each area separately by using a loop.

Referring to a Range Using Properties
The more you work with VBA, the more you realize that it’s a fairly well-conceived
language and is usually quite logical (despite what you might be thinking right
now). Often, VBA provides multiple ways to perform an action. You can choose the
most appropriate solution for your problem. This section discusses some of the
other ways to refer to a range.

This chapter barely scratches the surface for the Range object’s properties and
methods. As you work with VBA, you’ll probably need to access other properties
and methods. The Help system is the best place to find out about them, but it’s 
also a good idea to record your actions and examine the code Excel generates.
You’re probably getting tired of hearing that advice by now, but it really is good
advice.

FIGURE 8-1:
A noncontiguous
range selection.

122 PART 3 Programming Concepts

The Cells property
Rather than use the VBA Range keyword, you can refer to a range via the Cells
property.

Although Cells may seem like an object (or a collection), it’s really not. Rather,
Cells is a property that VBA evaluates. VBA then returns an object (more specifi-
cally, a Range object). If this seems strange, don’t worry. Even Microsoft appears
to be confused about this issue. In some earlier versions of Excel, the Cells prop-
erty was known as the Cells method. Regardless of what it is, just understand that
Cells is a handy way to refer to a range.

The Cells property takes two arguments: a row number and a column number.
Both of these arguments are numbers, even though you usually refer to columns
by using letters. For example, the following expression refers to cell C2 on Sheet2:

Worksheets("Sheet2").Cells(2, 3)

You can also use the Cells property to refer to a multicell range. The following
example demonstrates the syntax you use:

Range(Cells(1, 1), Cells(10, 8))

This expression refers to an 80-cell range that extends from cell A1 (row 1, column
1) to cell H10 (row 10, column 8).

The following statements both produce the same result; they enter a value of 99
into a 10-by-8 range of cells. More specifically,  these statements set  the Value 
property of the Range object:

Range("A1:H10").Value = 99
Range(Cells(1, 1), Cells(10, 8)).Value = 99

The advantage of using the Cells property to refer to ranges becomes apparent
when you use variables rather than actual numbers as the Cells arguments. Things
also really start to click when you understand looping, which is in Chapter 10.

The Offset property
The Offset property provides another handy means for referring to ranges. This 
property, which operates on a Range object and returns another Range object,
allows you to refer to a cell that is a particular number of rows and columns away
from another cell.

CHAPTER 8 Working with Range Objects 123

Like the Cells property, the Offset property takes two arguments. The first argu-
ment represents the number of rows to offset; the second represents the number 
of columns to offset.

The following expression refers to a cell one row below cell A1 and two columns to
the right of cell A1. In other words, this refers to the cell commonly known as C2:

Range("A1").Offset(1, 2)

The Offset property can also use negative arguments. A negative row offset refers 
to a row above the range. A negative column offset refers to a column to the left of 
the range. The following example refers to cell A1:

Range("C2").Offset(-1, -2)

And as you may expect, you can use 0 as one or both of the arguments for Offset. 
The following expression refers to cell A1:

Range("A1").Offset(0, 0)

Here’s a statement that inserts the time of day into the cell to the right of the
active cell:

ActiveCell.Offset(0,1) = Time

When you record a macro in relative mode, Excel uses the Offset property quite a 
bit. Refer to Chapter 6 for an example.

The Resize property
When you want to refer to a bigger or smaller range, look no further than the
Resize property. This property extends or shrinks whatever range you start with
by a certain number of rows and columns. The first of Resize’s arguments is how 
many rows you want the new range to be. The second argument is how many
columns.

The following expression selects a 10 × 12 range of cells with C10 as the top-left
cell:

Range("C10").Resize(10,12).Select

124 PART 3 Programming Concepts

Resize’s arguments have to be greater than zero, or you’ll create a black hole (or
maybe just get an error). You can also shrink a range as shown in this example:

RowCnt = 20
Range("A1:A1000").Resize(RowCnt,1)

In that expression, a variable named RowCnt is used to shrink a 1,000-cell range
down to 20 cells.

Working with Range Object Properties
A Range object has dozens of properties. You can write VBA programs nonstop for
the next 12 months and never use them all. This section briefly describes some of 
the most commonly used Range properties. For complete details, consult the Help
system in the VBE.

Some Range properties are read-only properties, which means that your code can
look at their values but can’t change them (“Look, but don’t touch”). For example,
every Range object has an Address property, which holds the range’s address. You
can access this read-only property, but you can’t change it — which makes per-
fect sense when you think about it.

By the way, the examples that follow are typically statements rather than com-
plete procedures. If you’d like to try any of these (and you should), create a Sub
procedure to do so. Also, many of these statements work properly only if a work-
sheet is the active sheet.

The Value property
The Value property represents the value contained in a cell. It’s a read-write
property, so your VBA code can either read or change the value.

The following statement displays a message box that shows the value in cell A1 on
Sheet1:

MsgBox Worksheets("Sheet1").Range("A1").Value

It stands to reason that you can read the Value property only for a single-cell
Range object. For example, the following statement generates an error:

MsgBox Worksheets("Sheet1").Range("A1:C3").Value

CHAPTER 8 Working with Range Objects 125

You can, however, change the Value property for a range of any size. The following
statement enters the number 123 into each cell in a range:

Worksheets("Sheet1").Range("A1:C3").Value = 123

Value is the default property for a Range object. In other words, if you omit a
property for a Range, Excel uses its Value property. The following statements both
enter a value of 75 into cell A1 of the active worksheet:

Range("A1").Value = 75
Range("A1") = 75

The Text property
The Text property returns a string that represents the text as it’s displayed in a
cell — the formatted value. The Text property is read-only — to change it you 
have to change other properties, such as Value or NumberFormat. Suppose that 
cell A1 contains the value 12.3 and is formatted to display two decimals and a dol-
lar sign ($12.30). The following statement displays a message box containing
$12.30:

MsgBox Worksheets("Sheet1").Range("A1").Text

But the next statement displays a message box containing 12.3:

MsgBox Worksheets("Sheet1").Range("A1").Value

ASSIGNING THE VALUES IN A MULTICELL
RANGE TO A VARIABLE
Even though you can read the Value property only for a single-cell Range object, you can
assign the values in a multicell range to a variable, as long as the variable is a variant.
That’s because a variant can act like an array. Here’s an example:

Dim x As Variant
x = Range("A1:C3").Value

Then you can treat the x variable as though it were an array. This statement, for exam-
ple, returns the value in cell B1:

MsgBox x(1, 2)

126 PART 3 Programming Concepts

If the cell contains a formula, the Text property returns the result of the formula.
If a cell contains text, the Text property and the Value property always return the
same thing, because text (unlike a number) can’t be formatted to display
differently.

The Count property
The Count property returns the number of cells in a range. It counts all cells, not
just the nonblank cells. Count is a read-only property, just as you would expect.
The following statement accesses a range’s Count property and displays the
result (9) in a message box:

MsgBox Range("A1:C3").Count

The Column and Row properties
The Column property returns the column number of a single-cell range. Its side-
kick, the Row property, returns the row number of a single-cell range. Both are
read-only properties. For example, the following statement displays 6 because
cell F3 is in the sixth column:

MsgBox Sheets("Sheet1").Range("F3").Column

The next expression displays 3 because cell F3 is in the third row:

MsgBox Sheets("Sheet1").Range("F3").Row

If the Range object consists of more than one cell, the Column property returns
the column number of the first column in the range, and the Row property returns 
the row number of the first row in the range.

The Address property
Address, a read-only property, displays the cell address for a Range object as an
absolute reference (a dollar sign before the column letter and before the row num-
ber). The following statement displays the message box shown in Figure 8-2:

MsgBox Range(Cells(1, 1), Cells(5, 5)).Address

CHAPTER 8 Working with Range Objects 127

The HasFormula property
The HasFormula property (which is read-only) returns True if the single-cell
range contains a formula. It returns False if the cell contains something other
than a formula (or is empty). If the range consists of more than one cell, VBA
returns True only if all cells in the range contain a formula or False if all cells in
the range don’t have a formula. The property returns Null if the range contains a 
mixture  of  formulas  and  nonformulas.  Null  is  kind  of  a  no-man’s  land:  The 
answer is neither True nor False, and any cell in the range may or may not have a
formula.

You need to be careful when you work with properties that can return Null. More 
specifically, the only data type that can deal with Null is Variant.

For example, assume that cell A1 contains a value and cell A2 contains a formula.
The following statements generate an error because the range doesn’t consist of
all formulas or all nonformulas:

Dim FormulaTest As Boolean
FormulaTest = Range("A1:A2").HasFormula

The Boolean data type can handle only True or False. Null causes Excel to com-
plain and display an error message. To fix this type of situation, the best thing to 
do is make sure that the FormulaTest variable is declared as a Variant rather than
as a Boolean. The following example uses VBA’s handy TypeName function (along 
with an If-Then-Else construct) to determine the data type of the FormulaTest
variable. If the range has a mixture of formulas and nonformulas, the message
box displays Mixed! Otherwise, it displays True or False.

Sub CheckForFormulas()
 Dim FormulaTest As Variant
 FormulaTest = Range("A1:A2").HasFormula

FIGURE 8-2:
This message box

displays the
Address property

of a 5 × 5 range.

128 PART 3 Programming Concepts

 If TypeName(FormulaTest) = "Null" Then
 MsgBox "Mixed!"
 Else
 MsgBox FormulaTest
 End If
End Sub

See Chapter 10 for more about using the If-Then-Else construct.

The Font property
As noted earlier in this chapter (see the “The Cells property” section), a property
can return an object. The Font property of a Range object is another example of
that concept at work. The Font property returns a Font object.

A Font object, as you may expect, has many accessible properties. To change some
aspect of a range’s font, you must first access the range’s Font object and then 
manipulate the properties of that object. This may be confusing, but perhaps this
example will help.

The following statement uses the Font property of the Range object to return a
Font object. Then the Bold property of the Font object is set to True. In plain Eng-
lish, this statement makes the cell display in boldface:

Range("A1").Font.Bold = True

Truth is, you don’t really need to know that you’re working with a special Font
object that’s contained in a Range object. As long as you use the proper syntax, it
works just fine. Often, recording your actions with the macro recorder tells you 
everything you need to know about the proper syntax.

See Chapter 6 for more information about recording macros.

The Interior property
Here’s yet another example of a property that returns an object. A Range object’s
Interior property returns an Interior object (strange name, but that’s what it’s
called). This type of object referencing works the same way as the Font property
(described in the preceding section).

For example, the following statement changes the Color property of the Interior
object contained in the Range object:

Range("A1").Interior.Color = 8421504

CHAPTER 8 Working with Range Objects 129

A QUICK-AND-DIRTY COLOR PRIMER
Before Excel 2007, Microsoft tried to convince us that 56 colors were good enough for a
spreadsheet. But things have changed, and we can use more than 16 million colors in a
workbook — 16,777,216 colors, to be exact.

Many objects have a Color property, and that property accepts color values that range
from 0 to 16777215. Nobody can remember that many color values, so (fortunately)
there’s an easier way to specify colors: VBA’s RGB function. This function takes advantage
of the fact that any of these 16 million colors can be represented by various levels of red,
green, and blue. The three arguments in the RGB function correspond to the color’s red,
green, and blue components, and each of these arguments can range from 0 to 255.

Note that 256 × 256 × 256 = 16,777,216 — which happens to be the number of colors.
Don’t you just love it when the math works out?

Here’s a statement that changes a cell’s background color to a random color:

Range("A1").Interior.Color = Int(16777216 * Rnd)

Following are a few examples that use the RGB function to change a cell’s background color:

Range("A1").Interior.Color = RGB(0, 0, 0) 'black

Range("A1").Interior.Color = RGB(255, 0, 0) ' pure red

Range("A1").Interior.Color = RGB(0, 0, 255) ' pure blue

Range("A1").Interior.Color = RGB(198, 212, 60) ' ugly green

Range("A1").Interior.Color = RGB(128, 128, 128) ' middle gray

What’s the exact value of RGB(128, 128, 128)? This statement tells you that it’s 8421504:

MsgBox RGB(128, 128, 128)

If you need to use standard colors, you might prefer to use one of the built-in color con-
stants: vbBlack, vbRed, vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan, or vbWhite. For
example, the following statement makes cell A1 yellow:

Range("A1").Interior.Color = vbYellow

(continued)

130 PART 3 Programming Concepts

In other words, this statement changes the cell’s background to middle gray. What’s
that? You didn’t know that 8421504 is middle gray? For some insights into Excel’s
wonderful world of color, see the sidebar, “A Quick-and-Dirty Color Primer.”

The Formula property
The Formula property represents the formula in a cell. This is a read-write prop-
erty, so you can access it to either view the formula in a cell, or to insert a formula
into a cell. For example, the following statement enters a SUM formula into cell A13:

Range("A13").Formula = "=SUM(A1:A12)"

Notice that the formula is a text string and is enclosed in quotation marks. Also 
notice that the formula begins with an equal sign, as all formulas do.

If the formula itself contains quotation marks, things get a bit tricky. Say that you
want to insert this formula by using VBA:

=SUM(A1:A12)&" Stores"

This formula displays a value followed by the word Stores. To make this formula
acceptable, you need to replace every quotation mark in the formula with two quota-
tion marks. Otherwise, VBA gets confused and claims that there’s a syntax error
(because there is!). So, here’s a statement that enters a formula that contains quotes:

Range("A13").Formula = "=SUM(A1:A12)&"" Stores"""

Excel 2007 also introduced theme colors. These colors appear when you use color con-
trol such as the Fill Color control in the Font group of the Home tab. Try recording a
macro while you change colors, and you’ll get something like this:

Range("A1").Interior.ThemeColor = xlThemeColorAccent4

Range("A1").Interior.TintAndShade = 0.399975585192419

Yep, two more color-related properties to deal with. Here, you have a theme color (the
basic color, specified as a built-in constant), plus a “tint and shade” value that represents
how dark or light the color is. TintAndShade values range from –1.0 to +1.0. Positive val-
ues of the TintAndShade property make the color lighter, and negative values make the
color darker. When you set a color by using the ThemeColor property, the color changes
if you apply a different document theme (by choosing Page Layout  ➪   Themes  ➪  
Themes).

(continued)

CHAPTER 8 Working with Range Objects 131

By the way, you can access a cell’s Formula property even if the cell doesn’t have
a formula. If a cell has no formula, the Formula property returns the same as its
Value property.

If you need to know whether a cell has a formula, use the HasFormula property
(discussed earlier in this chapter, in the aptly named section, “The HasFormula
property”).

Be aware that VBA “speaks” US English. This means that to put a formula in a cell,
you must use the US syntax. If you use a non-English version of Excel, read up on
the FormulaLocal property in the Help system.

The NumberFormat property
The NumberFormat property represents the number format (expressed as a text 
string) of the Range object. This is a read-write property, so your VBA code can
either examine the number format or change it. The following statement changes
the number format of column A to a percentage with two decimal places:

Columns("A:A").NumberFormat = "0.00%"

Follow these steps to see a list of other number formats (better yet, turn on the
macro recorder while you do this):

1. Activate a worksheet.

2. Press Ctrl+1 to access the Format Cells dialog box.

3. Click the Number tab.

4. Select the Custom category to view and apply some additional number
format strings.

Taking Action with Range Object Methods
As you know, a VBA method performs an action. A Range object has dozens of
methods but, again, you won’t need most of these. In this section, you explore
some of the most commonly used Range object methods.

132 PART 3 Programming Concepts

The Select method
Use the Select method to select a range of cells. The following statement selects a
range in the active worksheet:

Range("A1:C12").Select

Before selecting a range, it’s often a good idea to use one additional statement to
ensure that the correct worksheet is active. For example, if Sheet1 contains the
range you want to select, use the following statements to select the range:

Sheets("Sheet1").Activate
Range("A1:C12").Select

Contrary to what you might expect, the following statement generates an error if
Sheet1 is not already the active sheet. In other words, you must use two state-
ments rather than just one: one to activate the sheet and another to select the
range.

Sheets("Sheet1").Range("A1:C12").Select

If you use the GoTo method of the Application object to select a range, you can
forget about selecting the correct worksheet first. This statement activates Sheet1 
and then selects the range:

Application.Goto Sheets("Sheet1").Range("A1:C12")

The GoTo method is the VBA equivalent of pressing F5 in Excel, which displays the 
GoTo dialog box.

The Copy and Paste methods
You can perform copy and paste operations in VBA by using the Copy and Paste
methods. Note that two objects come into play. The Copy method is applicable to 
the Range object, and the Paste method applies to the Worksheet object. It actually
makes sense: You copy a range and paste it into a worksheet.

This short macro (courtesy of the macro recorder) copies range A1:A12 and pastes
it into the same worksheet, beginning at cell C1:

Sub CopyRange()
 Range("A1:A12").Select
 Selection.Copy

CHAPTER 8 Working with Range Objects 133

 Range("C1").Select
 ActiveSheet.Paste
End Sub

Notice that in the preceding example, the ActiveSheet object is used with the Paste 
method. This is a special version of the Worksheet object that refers to the cur-
rently active worksheet. Also notice that the macro selects the range before copy-
ing it. However, you don’t have to select a range before doing something with it.
In fact, the following procedure accomplishes the same task as the preceding
example by using a single statement:

Sub CopyRange2()
 Range("A1:A12").Copy Range("C1")
End Sub

This procedure takes advantage of the fact that the Copy method can use an argu-
ment that corresponds to the destination range for the copy operation. That’s
something that you can find out by checking with the Help system.

The Clear method
The Clear method deletes the contents of a range, plus all the cell formatting. For
example, if you want to zap everything in column D, the following statement does
the trick:

Columns("D:D").Clear

You should be aware of two related methods. The ClearContents method deletes
the contents of the range but leaves the formatting intact. The ClearFormats
method deletes the formatting in the range but not the cell contents.

The Delete method
Clearing a  range differs  from deleting a  range. When you delete a range, Excel
shifts the remaining cells around to fill up the range you deleted.

The following example uses the Delete method to delete row 6:

Rows("6:6").Delete

When you delete a range that’s not a complete row or column, Excel needs to
know how to shift the cells. (To see how this works, experiment with Home ➪
Cells ➪ Delete ➪ Delete Cells in Excel.)

134 PART 3 Programming Concepts

The following statement deletes a range and then fills the resulting gap by shift-
ing the other cells to the left:

Range("C6:C10").Delete xlToLeft

The Delete method uses an argument that indicates how Excel should shift the
remaining cells. In this case, the built-in constant (xlToLeft) is used for the
argument.

CHAPTER 9 Using VBA and Worksheet Functions 135

Chapter 9
Using VBA and
Worksheet Functions

There are three function types: those built into VBA, those built into Excel,
and other functions written in VBA. Previous chapters mention how you can
use functions in your VBA expressions, and this chapter provides a full

explanation. Functions can make your VBA code perform some powerful feats,
with little or no programming effort required. If you like that idea, this chapter’s
for you.

Understanding Functions
Except for a few people who think Excel is a word processor, all Excel users incor-
porate worksheet functions in their formulas. The most common worksheet func-
tion is the SUM function, and you have more than 500 others at your disposal.

A function essentially performs a calculation and returns a single value. The SUM
function, of course, returns the sum of a range of values. The same holds true for
functions used in your VBA expressions: Each function does its thing and returns
a single value.

IN THIS CHAPTER

 » Using functions to make your VBA
expressions more powerful

 » Utilizing the VBA built-in functions

 » Applying Excel worksheet functions
in your VBA code

 » Writing custom functions

136 PART 3 Programming Concepts

The functions you use in VBA can come from three sources:

 » Built-in functions provided by VBA

 » Worksheet functions provided by Excel

 » Custom functions that you (or someone else) write, using VBA

The rest of this chapter clarifies the differences between functions that come from
these three sources.

Using Built-In VBA Functions
VBA provides numerous built-in functions. Some take arguments, and some do
not. The following sections present a few examples of using VBA functions in
code. In many of these examples, the MsgBox function displays a value in a mes-
sage box. Yes, MsgBox is a VBA function — a rather unusual one, but a function
nonetheless. This useful function displays a message in a dialog box and also
returns a value. For more details about the MsgBox function, see Chapter 15.

A workbook that contains all the examples is available at this book’s website
(https://www.dummies.com/go/excelvbaprogrammingfd6e).

Working with dates and times
Dates are an interesting data type because they are stored as numbers but most
often displayed as strings (see Chapter 7 for more on the Date data type). For
example, October 5, 2022 is stored as the number 44839. That number bears very
little resemblance the way it is written out. You can’t tell just by looking at it that
it’s in October or that it’s the fifth day. VBA provides several date related functions
that makes working with dates much easier.

Displaying the system date or time
The first example uses VBA’s Date function to display the current system date in
a message box:

Sub ShowDate()
 MsgBox "Today is: " & Date
End Sub

https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 9 Using VBA and Worksheet Functions 137

Notice that the Date function doesn’t use an argument. Unlike worksheet func-
tions, a VBA function with no argument doesn’t require an empty set of parenthe-
ses. In fact, if you type an empty set of parentheses, the VBE promptly removes
them.

To get the system time, use the Time function. And if you want it all, use the Now
function to return both the date and the time. Like the Date function, neither Time
nor Now takes an argument.

Getting a part of a date or time
VBA provides the Year, Month, Day, Hour, Minute, and Second functions for when
you need only one part of a date or time. Each of these functions takes a date or
time and returns the part that is the function’s name. The Day function returns
the day of the month. To return the day of the week, there is a Weekday function.
This example shows how to use WeekDay and Hour:

Sub DayAndHour()
 Dim DayName As String
 Dim TimeName As String
 DayName = Weekday(Date)
 TimeName = Hour(Time)
 MsgBox "It's day " & DayName & " after " & TimeName & "

hundred"
End Sub

Displaying the name of a month
The following procedure uses the MonthName function, which returns the name
of a month. MonthName uses one argument: an integer between 1 and 12.

Sub ShowMonthName()
 Dim ThisMonth As Long
 ThisMonth = Month(Date)
 MsgBox MonthName(ThisMonth)
End Sub

This procedure uses the Month function to get the current month (as a value), and
this value is assigned to the ThisMonth variable. The MonthName function then
converts the value to text. So if you run this procedure in April, the message box
displays the text April.

138 PART 3 Programming Concepts

Actually, the ThisMonth variable isn’t required. You can get the same effect with
this expression, which uses three VBA functions:

MonthName(Month(Date))

Here, the current date is passed as an argument to the Month function, which
returns a value that’s passed as an argument to the MonthName function. VBA
also has a WeekDayName function for converting a WeekDay into a text. For
example, WeekDayName(5) returns Thursday.

Manipulating strings
If you have a variable that’s not a date and you don’t want to do math with it, then
you probably have a string. Strings are arrays of letters in memory. If you could
see them in memory, it would look like a bunch of characters strung together,
which is why we call them strings. VBA has many built-in functions for working
with strings.

Finding a string length
The following procedure uses the VBA Len function, which returns the length of a
text string. The Len function takes one argument: the string. When you execute
this procedure, the message box displays your name, and the number of charac-
ters in your name (see Figure 9-1).

Sub GetLength()

 Dim MyName As String

 Dim StringLength As Long

 MyName = Application.UserName

 StringLength = Len(MyName)

 MsgBox MyName & " has " & StringLength & " characters."

End Sub

FIGURE 9-1:
Calculating the
length of your

name.

CHAPTER 9 Using VBA and Worksheet Functions 139

Excel also has a LEN function, which you can use in your worksheet formulas. The
Excel version and the VBA function work the same.

Getting a part of a string
The Left, Right, and Mid function are used to return only a part of a string. The
Left and Right functions take two arguments: a string and the number of charac-
ters you want. The Mid function takes three: a string, the starting point, and the
number of characters you want. This procedure returns four characters of the
active sheet’s name, starting with the second character:

Sub MiddleOfSheetName()
 MsgBox Mid(ActiveSheet.Name, 2, 4)
End Sub

If the last argument of Mid is longer than the rest of the string, you just get the
rest of the string.

Replacing part of a string
The Replace function works like the SUBSTITUTE function in Excel. It replaces one
text string with another. The Replace function has three required arguments: the
string, the part you want to find, and the part you want to replace it with. For
example, this procedure shows you what your workbook name would look like if
it were a CSV file by replacing the .xlsm file extension with .csv:

Sub ThisWorkbookAsACSV()
 MsgBox Replace(ThisWorkbook.Name, ".xlsm", ".csv")
End Sub

Identifying objects and data
There’s data and there’s metadata. Metadata is not the content itself, but some
other aspect that describes or identifies the data. For example, a date is the month,
day, and year that comprise the date. That’s the content. The fact that it is a date
(and not a string or another kind of number) is metadata that describes the data.
VBA provides functions for determining what kind of object or data you’re work-
ing with.

140 PART 3 Programming Concepts

Identifying the type of a selected object
The following procedure uses the TypeName function, which returns the type of
the selection on the worksheet (as a string):

Sub ShowSelectionType()
 Dim SelType As String
 SelType = TypeName(Selection)
 MsgBox SelType
End Sub

The selection could be a Range, a Picture, a Rectangle, a ChartArea, or any other
type of object that can be selected.

The TypeName function is very versatile. You can also use this function to deter-
mine the data type of a variable.

Validating data
VBA has several functions that start with Is, like IsDate, IsError, and IsNumeric.
They all take on argument, an expression, and return True or False. If you want to
make sure you’re working with a date before you do something, you can check it
with the IsDate function, like in this procedure:

Sub ShowTheYear()
 Dim MyValue As Variant
 MyValue = Range("A1").Value
 If IsDate(MyValue) Then
 MsgBox Year(MyValue)
 Else
 MsgBox "Not a date"
 End If
End Sub

Chapter 10 has more information on the If statement.

VBA functions that do more than
return a value
A few VBA functions go above and beyond the call of duty. Rather than simply
return a value, these functions have some useful side effects. Table 9-1 lists them.

CHAPTER 9 Using VBA and Worksheet Functions 141

Discovering VBA functions
How do you find out which functions VBA provides? Good question. The best
source is the Excel VBA system. Another way is to type VBA, followed by a period.
You get a list of items, as shown in Figure 9-2. Those with a green icon are func-
tions. If this feature isn’t working, choose VBE’s Tools ➪ Options, click the Editor
tab, and place a check next to Auto List Members.

Over 140 different functions are available in VBA. Some are so specialized and
obscure that you’ll never need them. Others, however, are quite useful for many
applications. Table 9-2 lists some of the more useful functions.

For complete details on a particular function, type the function name in a VBA
module, move the cursor anywhere in the text, and press F1.

TABLE 9-1 VBA Functions with Useful Side Benefits
Function What It Does

MsgBox Displays a handy dialog box containing a message and buttons. The function returns a code that
identifies which button the user clicks. See Chapter 15 for details.

InputBox Displays a simple dialog box that asks the user for some input. The function returns whatever
the user enters in the dialog box. Chapter 15 explores the InputBox function.

Shell Executes another program. The function returns the task ID (a unique identifier) of the other
program (or an error if the function can’t start the other program).

FIGURE 9-2:
A way to display a

list of VBA
functions.

142 PART 3 Programming Concepts

TABLE 9-2 VBA’s Most Useful Built-In Functions
Function What It Does

Abs Returns a number’s absolute value

Array Returns a variant containing an array

Choose Returns a value from a list of items

Chr Converts an ANSI value to a string

CurDir Returns the current path

Date Returns the current system date

DateAdd Returns a date to which a specified time interval has been added — for example, one month
from a particular date

DateDiff Returns an integer showing the number of specified time intervals between two dates — for
example, the number of months between now and your birthday

DatePart Returns an integer containing the specified part of a given date — for example, a date’s day
of the year

DateSerial Converts a date to a serial number

DateValue Converts a string to a date

Day Returns the day of the month from a date value

Dir Returns the name of a file or directory that matches a pattern

Err Returns the error number of an error condition

Error Returns the error message that corresponds to an error number

Exp Returns the base of the natural logarithm (e) raised to a power

FileLen Returns the number of bytes in a file

Fix Returns a number’s integer portion

Format Displays an expression in a particular format

GetSetting Returns a value from the Windows registry

Hour Returns the hour portion of a time

InputBox Displays a box to prompt a user for input

InStr Returns the position of a string within another string (counting from the start)

InStrRev Returns the position of a string within another string (counting from the end)

Int Returns the integer portion of a number

IsArray Returns True if a variable is an array

IsDate Returns True if an expression is a date

CHAPTER 9 Using VBA and Worksheet Functions 143

Function What It Does

IsEmpty Returns True if a variable has not been initialized

IsError Returns True if an expression is an error value

IsMissing Returns True if an optional argument was not passed to a procedure

IsNull Returns True if an expression contains no valid data

IsNumeric Returns True if an expression can be evaluated as a number

LBound Returns the smallest subscript for a dimension of an array

LCase Returns a string converted to lowercase

Left Returns a specified number of characters from the left of a string

Len Returns the number of characters in a string

Mid Returns a specified number of characters from a string

Minute Returns the minutes portion of a time value

Month Returns the month from a date value

MsgBox Displays a message box and (optionally) returns a value

Now Returns the current system date and time

Replace Replaces a substring in a string with another substring

RGB Returns a numeric RGB value representing a color

Right Returns a specified number of characters from the right of a string

Rnd Returns a random number between 0 and 1

Second Returns the seconds portion of a time value

Shell Runs an executable program

Space Returns a string with a specified number of spaces

Split Splits a string into parts, using a delimiting character

Sqr Returns a number’s square root

String Returns a repeating character or string

Time Returns the current system time

Timer Returns the number of seconds since midnight

TimeSerial Returns the time for a specified hour, minute, and second

TimeValue Converts a string to a time serial number

(continued)

144 PART 3 Programming Concepts

Using Worksheet Functions in VBA
Although VBA offers a decent assortment of built-in functions, you might not
always find exactly what you need. Fortunately, you can also use most of Excel’s
worksheet functions in your VBA procedures. The only worksheet functions that
you can’t use are those that have an equivalent VBA function. For example, you
can’t use Excel’s RAND function (which generates a random number) because VBA
has an equivalent function: Rnd.

VBA makes Excel’s worksheet functions available through the WorksheetFunction
object, which is contained in the Application object. Here’s an example of how you
can use Excel’s SUM function in a VBA statement:

Total = Application.WorksheetFunction.Sum(Range("A1:A12"))

You can omit either the Application part or the WorksheetFunction part of the
expression. In either case, VBA figures out what you’re doing. In other words,
these three expressions all work exactly the same:

Total = Application.WorksheetFunction.Sum(Range("A1:A12"))

Total = WorksheetFunction.Sum(Range("A1:A12"))

Total = Application.Sum(Range("A1:A12"))

Worksheet function examples
Many of Excel’s worksheet functions can be used in your VBA expressions. Think
of worksheet functions as plug-ins you can use to extend the utility of your own
procedures. In this section, you discover how to incorporate Excel worksheet
functions into your VBA code.

TABLE 9-2 (continued)

Function What It Does

Trim Returns a string without leading or trailing spaces

TypeName Returns a string that describes a variable’s data type

UBound Returns the largest available subscript for an array’s dimension

UCase Converts a string to uppercase

Val Returns the numbers contained in a string

Weekday Returns a number representing a day of the week

Year Returns the year from a date value

CHAPTER 9 Using VBA and Worksheet Functions 145

Finding the maximum value in a range
Here’s an example that shows how to use Excel’s MAX worksheet function in a
VBA procedure. This procedure displays the maximum value in column A of the
active worksheet (see Figure 9-3):

Sub ShowMax()
 Dim TheMax As Double
 TheMax = WorksheetFunction.Max(Range("A:A"))
 MsgBox TheMax
End Sub

You can use the MIN function to get the smallest value in a range. And as you
might expect, you can use other worksheet functions in a similar manner. For
example, you can use the LARGE function to determine the kth-largest value in a
range. The following expression demonstrates this:

SecondHighest = WorksheetFunction.Large(Range("A:A"),2)

Notice that the LARGE function uses two arguments. The second argument repre-
sents the kth part — 2, in this case (the second-largest value).

Calculating a mortgage payment
The next example uses the PMT worksheet function to calculate a mortgage pay-
ment. This procedure uses three variables to store the data that’s passed to the
PMT function as arguments. A message box displays the calculated payment.

Sub PmtCalc()

 Dim IntRate As Double

 Dim LoanAmt As Double

 Dim Periods As Long

FIGURE 9-3:
Using a

 worksheet
function in your

VBA code.

146 PART 3 Programming Concepts

 IntRate = 0.0625 / 12

 Periods = 30 * 12

 LoanAmt = 150000

 MsgBox WorksheetFunction.Pmt(IntRate, Periods, -LoanAmt)

End Sub

As the following statement shows, you can also insert the values directly as the
function arguments:

MsgBox WorksheetFunction.PMT(0.0625 /12, 360, -150000)

However, using variables to store the parameters makes the code easier to read
and modify, if necessary.

Using a lookup function
The following example uses VBA’s InputBox and MsgBox functions, plus Excel’s
VLOOKUP function. It prompts for a part number and then gets the price from a
lookup table. In Figure 9-4, range A1:B13 is named PriceList.

Sub GetPrice()

 Dim PartNum As Variant

 Dim Price As Double

 PartNum = InputBox("Enter the Part Number")

 Sheets("Prices").Activate

 Price = WorksheetFunction.VLookup(PartNum, Range("PriceList"), 2, False)

 MsgBox PartNum & " costs " & Price

End Sub

FIGURE 9-4:
The range,

named PriceList,
contains prices

for parts.

CHAPTER 9 Using VBA and Worksheet Functions 147

You can download this workbook from the book’s website (https://www.
dummies.com/go/excelvbaprogrammingfd6e).

Here’s how the GetPrice procedure works:

1. VBA’s InputBox function asks the user for a part number.

2. The part number the user enters is assigned to the PartNum variable.

3. The next statement activates the Prices worksheet, just in case it’s not already
the active sheet.

4. The code uses the VLOOKUP function to find the part number in the table.

Notice that the arguments you use in this statement are the same as those you
would use with the function in a worksheet formula. This statement assigns
the result of the function to the Price variable.

5. The code displays the price for the part via the MsgBox function.

This procedure doesn’t have any error handling, and it fails miserably if you enter
a nonexistent part number. (Try it.) If this were an actual application that’s used
in an actual business, you would want to add some statements that deal with
errors more gracefully. Chapter 12 discusses error handling.

Entering worksheet functions
You can’t use the Excel Paste Function dialog box to insert a worksheet function
into a VBA module. Instead, enter such functions the old-fashioned way: by hand.
However, you can use the Paste Function dialog box to identify the function you
want to use and find out about its arguments.

You can also take advantage of the VBE’s Auto List Members option, which dis-
plays a drop-down list of all worksheet functions. Just type Application.Work-
sheetFunction, followed by a period. Then you see a list of the functions you can
use, as shown in Figure 9-5. If this feature isn’t working, choose the VBE’s
Tools ➪ Options, click the Editor tab, and place a check next to Auto List
Members.

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

148 PART 3 Programming Concepts

More about using worksheet functions
Newcomers to VBA often confuse VBA’s built-in functions and Excel’s workbook
functions. A good rule to remember is that VBA doesn’t try to reinvent the wheel.
For the most part, VBA doesn’t duplicate Excel worksheet functions.

For most worksheet functions that are unavailable as methods of the Worksheet-
Function object, you can use an equivalent VBA built-in operator or function. For
example, the MOD worksheet function is not available in the WorksheetFunction
object because VBA has an equivalent: its built-in Mod operator.

Bottom line? If you need to use a function, first determine whether VBA has some-
thing that meets your needs. If not, check out the worksheet functions. If all else
fails, you may be able to write a custom function by using VBA.

Using Custom Functions
After you know how to handle VBA functions and Excel worksheet functions, you
can dive into the third category of functions you can use in your VBA procedures:
custom functions. A custom function (also known as a User Defined Function, or
UDF) is one you develop yourself by using (what else?) VBA. To use a custom func-
tion, you must define it in the workbook in which you use it — or else define the
functions in an add-in (see Chapter 21).

Here’s an example of defining a simple Function procedure (MultiplyTwo) and
then using it in a VBA Sub procedure (ShowResult):

FIGURE 9-5:
Getting a list of

worksheet
functions that
you can use in

your VBA code.

CHAPTER 9 Using VBA and Worksheet Functions 149

Function MultiplyTwo(num1, num2) As Double
 MultiplyTwo = num1 * num2
End Function

Sub ShowResult()
 Dim n1 As Double, n2 As Double
 Dim Result As Double
 n1 = 123
 n2 = 544
 Result = MultiplyTwo(n1, n2)
 MsgBox Result
End Sub

The custom function MultiplyTwo has two arguments. The ShowResult Sub pro-
cedure uses this Function procedure by passing two arguments to it (in parenthe-
ses). The ShowResult procedure then displays a message box showing the value
returned by the MultiplyTwo function.

Of course, most custom functions aren’t as trivial as the MultiplyTwo function.
But this example should give you an idea of how a Sub procedure can make use of
a custom function.

You can also use custom functions in your worksheet formulas. For example, if
MultiplyTwo is defined in your workbook, you can write a formula such as this one:

=MultiplyTwo(A1,A2)

This formula returns the product of the values in cells A1 and A2.

Creating custom worksheet functions is an important (and very useful) topic. So
important (and useful) that Chapter 20 includes many examples of customer
worksheet functions.

CHAPTER 10 Controlling Program Flow and Making Decisions 151

Chapter 10
Controlling Program
Flow and Making
Decisions

Some VBA procedures start at the code’s beginning and progress line by line
to the end, never deviating from this top-to-bottom program flow. Macros
that you record always work like this. In many cases, however, you need to

control the flow of your code by skipping some statements, executing some state-
ments multiple times, and testing conditions to determine what the procedure
does next. Hang on to your hat and enjoy the ride, because you’re about to dis-
cover the essence of programming.

Going with the Flow, Dude
Some programming newbies can’t understand how a dumb computer can make
intelligent decisions. The secret is in several programming constructs that most
programming languages support. Table 10-1 provides a sneak preview of these
constructs. (These are explained later in this chapter.)

IN THIS CHAPTER

 » Discovering methods for controlling
the flow of your VBA procedures

 » Finding out about the dreaded GoTo
statement

 » Using If-Then and Select Case
structures

 » Performing looping in your
procedures

152 PART 3 Programming Concepts

The GoTo Statement
A GoTo statement offers the most straightforward means for changing a pro-
gram’s flow. The GoTo statement simply transfers program execution to a new
statement, which is preceded by a label.

Your VBA procedures can contain as many labels as you like. A label is just a text
string followed by a colon.

The following procedure shows how a GoTo statement works:

Sub CheckUser()
 UserName = InputBox("Enter Your Name: ")
 If UserName <> "Satya Nadella" Then GoTo WrongName
 MsgBox ("Welcome Satya...")
' ...[More code here] ...
 Exit Sub
WrongName:
 MsgBox "Sorry. Only Satya Nadella can run this."
End Sub

The procedure uses the InputBox function to get the user’s name. Then a decision
is made: If the user enters a name other than Satya Nadella, the program flow
jumps to the WrongName label, displays an apologetic message, and the proce-
dure ends. On the other hand, if Mr. Nadella runs this macro and uses his real
name, the procedure displays a welcome message and then executes some addi-
tional code (not shown in the example).

TABLE 10-1 Programming Constructs for Making Decisions
Construct How It Works

GoTo statement Jumps to a particular statement

If-Then structure Does something if something else is true

Select Case Does any of several things, depending on something’s value

For-Next loop Executes a series of statements a specified number of times

Do-While loop Does something as long as something else remains true

Do-Until loop Does something until something else becomes true

CHAPTER 10 Controlling Program Flow and Making Decisions 153

Notice that the Exit Sub statement ends the procedure before the second MsgBox
function has a chance to work. Without that Exit Sub statement, both MsgBox
statements would be executed.

This simple procedure works, but VBA provides several better (and more struc-
tured) alternatives than GoTo. In general, you should use GoTo only when you
have no other way to perform an action. In real life, the only time you must use a
GoTo statement is for trapping errors. (You can find a detailed review of error
handling in Chapter 12.)

By the way, the CheckUser procedure simply demonstrates the GoTo statement.
It’s not intended to demonstrate an effective security technique!

Many hard-core programmers have a deep-seated hatred for GoTo statements
because using them tends to result in difficult-to-read (and difficult-to-maintain)
“spaghetti code,” so called because you can’t tell where a path starts and ends in a
code like you can’t tell where a noodle starts and ends in a bowl of spaghetti.
Therefore, you should never admit that you use GoTo statements when talking
with other programmers.

USING STRUCTURED PROGRAMMING
TO WRITE BETTER CODE
If you hang around with programmers, sooner or later you’ll hear the term structured
programming. This term has been around for decades, and programmers generally
agree that structured programs are superior to unstructured programs.

The basic premise of structured programming is that a procedure or code segment
should have only one entry point and one exit point. In other words, a block of code
should be a stand-alone unit. A program cannot jump into the middle of this unit; nei-
ther can it exit at any point except at the single exit point. When you write structured
code, your program progresses in an orderly manner and is easy to follow — unlike a
program that jumps around in a haphazard fashion. This pretty much rules out using
the GoTo statement.

In general, a structured program is easier to read and understand. More important, it’s
also easier to modify when the need arises.

VBA is indeed a structured language. It offers standard structured constructs, such as
If-Then-Else, For-Next loops, Do-Until loops, Do-While loops, and Select Case structures.
Furthermore, it fully supports module code constructions. If you’re new to program-
ming, you should try to develop good structure-programming habits early on.

154 PART 3 Programming Concepts

Decisions, Decisions
As in many other aspects of life, effective decision-making is the key to success in
writing Excel macros. This section reviews two programming structures that can
empower your VBA procedures with some impressive decision-making capabili-
ties: the If-Then and Select Case structures.

The If-Then structure
The If-Then structure is VBA’s most important control structure. You’ll probably
use this command on a daily basis.

Use the If-Then structure when you want to execute one or more statements con-
ditionally. The optional Else clause, if included, lets you execute one or more
statements if the condition you’re testing is not true. Here’s the simple CheckUser
procedure presented earlier in this chapter, recoded to use the If-Then-Else
structure:

Sub CheckUser2()

 UserName = InputBox("Enter Your Name: ")

 If UserName = "Satya Nadella" Then

 MsgBox ("Welcome Satya...")

' ...[More code here] ...

 Else

 MsgBox "Sorry. Only Satya Nadella can run this."

 End If

End Sub

You would probably agree that this version is much easier to follow.

A workbook that contains this section’s examples can be downloaded from this
book’s website (https://www.dummies.com/go/excelvbaprogrammingfd6e).

If-Then examples
The following procedure demonstrates the If-Then structure without the optional
Else clause:

Sub GreetMe()
 If Time < 0.5 Then MsgBox "Good Morning"
End Sub

https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 10 Controlling Program Flow and Making Decisions 155

The GreetMe procedure uses VBA’s Time function to get the system time. If the
current time is less than .5 (in other words, before noon), the procedure displays
a friendly greeting. If Time is greater than or equal to .5, the procedure ends, and
nothing happens.

To display a different greeting if Time is greater than or equal to .5, you can add
another If-Then statement after the first one:

Sub GreetMe2()
 If Time < 0.5 Then MsgBox "Good Morning"
 If Time >= 0.5 Then MsgBox "Good Afternoon"
End Sub

Notice that the second If-Then statement uses >= (greater than or equal to). This
ensures that the entire day is covered. Had it used > (greater than), no message
would appear if this procedure were executed at precisely 12:00 noon. That’s
pretty unlikely, but with an important program like this, you don’t want to take
any chances.

An If-Then-Else example
Another approach to the preceding problem uses the Else clause. Here’s the same
procedure recoded to use the If-Then-Else structure:

Sub GreetMe3()
 If Time < 0.5 Then MsgBox "Good Morning" Else _
 MsgBox "Good Afternoon"
End Sub

Notice the line continuation character (underscore) in the preceding example. The
If-Then-Else statement is actually a single statement. VBA provides a slightly dif-
ferent way of coding If-Then-Else constructs that use an End If statement. There-
fore, the GreetMe procedure can be rewritten as

Sub GreetMe4()
 If Time < 0.5 Then
 MsgBox "Good Morning"
 Else
 MsgBox "Good Afternoon"
 End If
End Sub

In fact, you can insert any number of statements under the If part and any number
of statements under the Else part. This syntax is easier to read and makes the
statements shorter.

156 PART 3 Programming Concepts

When If-Then or If-Then-Else is on one line, it’s called a single-line If, and when
it takes multiple lines, it’s called a block If.

What if you need to expand the GreetMe procedure to handle three conditions:
morning, afternoon, and evening? You have two options: Use three If-Then state-
ments or use a nested If-Then-Else structure. Nesting means placing an If-Then-
Else structure within another If-Then-Else structure. The first approach, using
three If-Then statements, is simpler:

Sub GreetMe5()
 Dim Msg As String
 If Time < 0.5 Then Msg = "Morning"
 If Time >= 0.5 And Time < 0.75 Then Msg = "Afternoon"
 If Time >= 0.75 Then Msg = "Evening"
 MsgBox "Good " & Msg
End Sub

Now, you can get fancy by using a variable. The Msg variable gets a different text
value, depending on the time of day. The MsgBox statement displays the greeting:
Good Morning, Good Afternoon, or Good Evening.

The following procedure performs the same action, but uses a nested If-Then-
Else structure:

Sub GreetMe6()
 Dim Msg As String
 If Time < 0.5 Then
 Msg = "Morning"
 Else
 If Time >= 0.5 And Time < 0.75 Then
 Msg = "Afternoon"
 Else
 Msg = "Evening"
 End If
 End If
 MsgBox "Good " & Msg
End Sub

The indenting in the code gives away the structure. You can see that the If block
for afternoon and evening is completely contained in the Else part of the If block
for morning. One advantage of nesting If statements is that the program doesn’t
waste time evaluating a bunch of statements that it doesn’t need to. For example,
if it’s before noon, once the program hits the Else line, it jumps down to the End
If and ignores everything in between. For a program this small, it doesn’t make
much difference. But for larger programs, nesting can make the code run faster.

CHAPTER 10 Controlling Program Flow and Making Decisions 157

Using ElseIf
Another twist to the If block is ElseIf. ElseIf lets you evaluate a bunch of state-
ments all in one If block, and it’s a little easier to read than nested If blocks. But
just like nested If blocks, once it hits a line that’s true, it jumps to the end.

Here’s how you can rewrite the GreetMe procedure by using this syntax:

Sub GreetMe7()
 Dim Msg As String
 If Time < 0.5 Then
 Msg = "Morning"
 ElseIf Time >= 0.5 And Time < 0.75 Then
 Msg = "Afternoon"
 Else
 Msg = "Evening"
 End If
 MsgBox "Good " & Msg
End Sub

You can have as many ElseIf lines as you need. Note, you can’t use ElseIf in a
single-line If statement, though.

Another If-Then example
Here’s another example that uses the simple form of the If-Then structure. This
procedure prompts the user for a quantity and then displays the appropriate dis-
count, based on the quantity the user enters:

Sub ShowDiscount()
 Dim Quantity As Long
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity:")
 If Quantity > 0 Then Discount = 0.1
 If Quantity >= 25 Then Discount = 0.15
 If Quantity >= 50 Then Discount = 0.2
 If Quantity >= 75 Then Discount = 0.25
 MsgBox "Discount: " & Discount
End Sub

Notice that each If-Then statement in this procedure is executed, and the value
for Discount can change as the statements are executed. However, the procedure
ultimately displays the correct value for Discount because the If-Then statements
are set in order of ascending Discount values.

158 PART 3 Programming Concepts

The following procedure performs the same tasks by using the alternative ElseIf
syntax. In this case, the procedure ends immediately after executing the state-
ments for a true condition:

Sub ShowDiscount2()
 Dim Quantity As Long
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 If Quantity > 0 And Quantity < 25 Then
 Discount = 0.1
 ElseIf Quantity >= 25 And Quantity < 50 Then
 Discount = 0.15
 ElseIf Quantity >= 50 And Quantity < 75 Then
 Discount = 0.2
 ElseIf Quantity >= 75 Then
 Discount = 0.25
 End If
 MsgBox "Discount: " & Discount
End Sub

As important as the If-Then structure is to VBA, they become cumbersome when
a decision involves three or more choices. Fortunately, the Select Case structure,
discussed in the next section, offers a simpler and more efficient approach.

The Select Case structure
The Select Case structure is useful for decisions involving three or more options
(although it also works with two options, providing an alternative to the If-Then-
Else structure).

The examples in this section are available at this book’s website (https://www.
dummies.com/go/excelvbaprogrammingfd6e).

A Select Case example
The following example shows how to use the Select Case structure. This also
shows another way to code the examples presented in the previous section:

Sub ShowDiscount3()
 Dim Quantity As Long
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 10 Controlling Program Flow and Making Decisions 159

 Select Case Quantity
 Case 0 To 24
 Discount = 0.1
 Case 25 To 49
 Discount = 0.15
 Case 50 To 74
 Discount = 0.2
 Case Is >= 75
 Discount = 0.25
 End Select
 MsgBox "Discount: " & Discount
End Sub

In this example, the Quantity variable is being evaluated. The procedure checks for
four different cases (0–24, 25–49, 50–74, and 75 or greater).

Any number of statements can follow each Case statement, and they all are exe-
cuted if the case is true. If you use only one statement, as in this example, you can
put the statement on the same line as the Case keyword, preceded by a colon —
the VBA statement separator character. This tends to make your code more com-
pact and you might find it more readable. Here’s how the procedure looks in this
format:

Sub ShowDiscount4 ()
 Dim Quantity As Long
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 Select Case Quantity
 Case 0 To 24: Discount = 0.1
 Case 25 To 49: Discount = 0.15
 Case 50 To 74: Discount = 0.2
 Case Is >= 75: Discount = 0.25
 End Select
 MsgBox "Discount: " & Discount
End Sub

When VBA executes a Select Case structure, the structure is exited as soon as VBA
finds a true case and executes the statements for that case.

A nested Select Case example
As demonstrated in the following example, you can nest Select Case structures.
This procedure examines the active cell and displays a message describing the

160 PART 3 Programming Concepts

cell’s contents. Notice that the procedure has three Select Case structures, and
each has its own End Select statement:

Sub CheckCell()
 Dim Msg As String
 Select Case IsEmpty(ActiveCell)
 Case True
 Msg = "is blank."
 Case Else
 Select Case ActiveCell.HasFormula
 Case True
 Msg = "has a formula"
 Case Else
 Select Case IsNumeric(ActiveCell)
 Case True
 Msg = "has a number"
 Case Else
 Msg = "has text"
 End Select
 End Select
 End Select
 MsgBox "Cell " & ActiveCell.Address & " " & Msg
End Sub

The logic goes something like this:

1. Find out whether the cell is empty.

2. If it’s not empty, see whether it contains a formula.

3. If there’s no formula, find out whether it contains a numeric value or text.

When the procedure ends, the Msg variable contains a string that describes the
cell’s contents. As shown in Figure 10-1, the MsgBox function displays that
message.

You can nest Select Case structures as deeply as you need to, but make sure that
each Select Case statement has a corresponding End Select statement.

If you’re still not convinced that indenting code is worth the effort, the previous
listing serves as a good example. The indentations really make the nesting levels
clear. Take a look at the same procedure without any indentation:

CHAPTER 10 Controlling Program Flow and Making Decisions 161

Sub CheckCell()
Dim Msg As String
Select Case IsEmpty(ActiveCell)
Case True
Msg = "is blank."
Case Else
Select Case ActiveCell.HasFormula
Case True
Msg = "has a formula"
Case Else
Select Case IsNumeric(ActiveCell)
Case True
Msg = "has a number"
Case Else
Msg = "has text"
End Select
End Select
End Select
MsgBox "Cell " & ActiveCell.Address & " " & Msg
End Sub

Fairly incomprehensible, eh?

FIGURE 10-1:
A message

displayed by the
CheckCell

procedure.

162 PART 3 Programming Concepts

Knocking Your Code for a Loop
The term looping refers to repeating a block of VBA statements numerous times.
With loops, your code can

 » Loop through a range of cells, working with each cell individually.

 » Loop through all open workbooks (the Workbooks collection) and do some-
thing with each one.

 » Loop through all worksheets in a workbook (the Worksheets collection) and
do something with each one.

 » Loop through all the elements in an array.

 » Loop through all characters in a cell.

 » Loop through all charts on a worksheet (the ChartObjects collection) and do
something with each chart.

VBA supports several types of loops, and the examples that follow demonstrate a
few ways that you can use them.

For-Next loops
The examples in this section are all available at this book’s website (https://
www.dummies.com/go/excelvbaprogrammingfd6e).

The simplest type of loop is a For-Next loop. The looping is controlled by a counter
variable, which starts at one value and stops at another value. The statements
between the For statement and the Next statement are the statements that get
repeated in the loop. To see how this works, keep reading.

A For-Next example
The following example uses a For-Next loop to sum the first 1,000 positive num-
bers. The Total variable starts out as zero. Then the looping occurs. The variable
Cnt is the loop counter. It starts out as 1 and is incremented by 1 each time it
passes through the loop. The loop ends when Cnt is 1,000.

This example has only one statement inside the loop. This statement adds the
value of Cnt to the Total variable. When the loop finishes, a MsgBox displays the
sum of the numbers.

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 10 Controlling Program Flow and Making Decisions 163

Sub AddNumbers()
 Dim Total As Long
 Dim Cnt As Long
 Total = 0
 For Cnt = 1 To 1000
 Total = Total + Cnt
 Next Cnt
 MsgBox Total
End Sub

Because the loop counter is a normal variable, you can write code to change its
value within the block of code between the For and the Next statements. This,
however, is a very bad practice. Changing the counter within the loop can have
unpredictable results. Take special precautions to ensure that your code doesn’t
change the value of the loop counter.

For-Next examples with a Step
You can use a Step value to skip some counter values in a For-Next loop. Here’s the
previous example, rewritten to sum only the odd numbers between 1 and 1,000:

Sub AddOddNumbers()
 Dim Total As Long
 Dim Cnt As Long
 Total = 0
 For Cnt = 1 To 1000 Step 2
 Total = Total + Cnt
 Next Cnt
 MsgBox Total
End Sub

This time, Cnt starts out as 1 and then takes on values of 3, 5, 7, and so on. The
Step value determines how the counter is incremented. Notice that the upper loop
value (1000) is not actually used because the highest value of Cnt will be 999.

Here’s another example that uses a Step value of 3. This procedure works with the
active sheet and applies light gray shading to every third row, from row 1 to row 100.

Sub ShadeEveryThirdRow()
 Dim i As Long
 For i = 1 To 100 Step 3
 Rows(i).Interior.Color = RGB(200, 200, 200)
 Next i
End Sub

164 PART 3 Programming Concepts

Figure 10-2 shows the result of running this macro.

It’s a good practice to give all your variables descriptive, meaningful names. Loop
counter variables are the exception. It’s a common convention to use the single
letters i, j, and k for For Next loop counter variables.

A For-Next example with an Exit For statement
A For-Next loop can also include one or more Exit For statements within the loop.
When VBA encounters this statement, the loop terminates immediately.

The following example, available on this book’s website (https://www.dummies.
com/go/excelvbaprogrammingfd6e), demonstrates the Exit For statement. This
procedure is a Function procedure, intended to be used in a worksheet formula.
The function accepts one argument (a variable named Str) and returns the char-
acters to the left of the first numeric digit. For example, if the argument is
“KBR98Z,” the function returns “KBR.”

Function TextPart(Str)

 Dim i As Long

 TextPart = ""

 For i = 1 To Len(Str)

 If IsNumeric(Mid(Str, i, 1)) Then

 Exit For

 Else

 TextPart = TextPart & Mid(Str, i, 1)

 End If

 Next i

End Function

FIGURE 10-2:
Using a loop to

apply background
shading to rows.

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 10 Controlling Program Flow and Making Decisions 165

The For-Next loop starts with 1 and ends with the number that represents the
number of characters in the string. The code uses VBA’s Mid function to extract a
single character within the loop. If a numeric character is found, the Exit For
statement is executed, and the loop ends prematurely. If the character is not
numeric, it’s appended to the returned value (which is the same as the function’s
name). The only time the loop will examine every character is if the string passed
as the argument contains no numeric characters.

Now, you might shout, “Hey, but you said something about always using a single
point of exit!” Well, you’re right, and obviously, you’re getting the hang of this
structured programming business. But in some cases, ignoring that rule is a wise
decision. In this example, it greatly speeds up your code because there’s no reason
to continue the loop after the first numeric digit is found.

A nested For-Next example
So far, all this chapter’s examples use relatively simple loops. However, you can
have any number of statements in the loop and nest For-Next loops inside other
For-Next loops.

The following example uses a nested For-Next loop to insert random numbers
into a 12-row-by-5-column range of cells, as shown in Figure 10-3. Notice that
the procedure executes the inner loop (the loop with the Row counter) once for
each iteration of the outer loop (the loop with the Col counter). In other words, the
procedure executes the Cells(Row, Col) = Rnd statement 60 times.

Sub FillRange()
 Dim Col As Long
 Dim Row As Long
 For Col = 1 To 5
 For Row = 1 To 12
 Cells(Row, Col) = Rnd
 Next Row
 Next Col
End Sub

The next example uses nested For-Next loops to initialize a three-dimensional
array with the value 100. This procedure executes the statement in the middle of
all the loops (the assignment statement) 1,000 times (10 * 10 * 10), each time with
a different combination of values for i, j, and k:

Sub NestedLoops()
 Dim MyArray(10, 10, 10)
 Dim i As Long

166 PART 3 Programming Concepts

 Dim j As Long
 Dim k As Long
 For i = 1 To 10
 For j = 1 To 10
 For k = 1 To 10
 MyArray(i, j, k) = 100
 Next k
 Next j
 Next i
 ' Other statements go here
End Sub

Refer to Chapter 7 for information about arrays.

Here’s a final example that uses nested For-Next loops, with a Step value. This
procedure creates a checkerboard (or chessboard, if you prefer) by changing the
background color of alternating cells (see Figure 10-4).

The Row counter loops from 1 to 8. An If-Then construct determines which nested
For-Next structure to use. For odd-numbered rows, the Col counter begins with 2.
For even-numbered rows, the Col counter begins with 1. Both loops use a Step
value of 2, so alternate cells are affected. Two additional statements make the cells
square (just like a real checkerboard).

Sub MakeCheckerboard()

 Dim R As Long, C As Long

 For R = 1 To 8

 If WorksheetFunction.IsOdd(R) Then

 For C = 2 To 8 Step 2

 Cells(R, C).Interior.Color = 255

FIGURE 10-3:
These cells
were filled

using a nested
For-Next loop.

CHAPTER 10 Controlling Program Flow and Making Decisions 167

 Next C

 Else

 For C = 1 To 8 Step 2

 Cells(R, C).Interior.Color = 255

 Next C

 End If

 Next R

 Rows("1:8").RowHeight = 35

 Columns("A:H").ColumnWidth = 6.5

End Sub

Do-While loop
VBA supports another type of looping structure known as a Do-While loop. A For-
Next loop executes a specified number of times. A Do-While loop executes an
unspecified number of times. That is, it keeps going until a condition is met.

The following example uses a Do-While loop. This procedure uses the active cell
as a starting point and then travels down the column, multiplying each cell’s
value by 2. The loop continues until the procedure encounters an empty cell.

Sub DoWhileDemo()
 Do While ActiveCell.Value <> Empty
 ActiveCell.Value = ActiveCell.Value * 2
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

FIGURE 10-4:
Using loops to

create a
checkerboard

pattern.

168 PART 3 Programming Concepts

When the loop starts, the program doesn’t know how many times it will loop. It
just keeps moving to the next cell and evaluating the Do While statement. Once
it’s false, it exits the loop.

Do-Until loop
The Do-Until loop structure is similar to the Do-While structure. The two struc-
tures differ in their handling of the tested condition. A program continues to exe-
cute a Do-While loop while the condition remains true. In a Do-Until loop, the
program executes the loop until the condition is true.

The following example is the same one presented for the Do-While loop but
recoded to use a Do-Until loop:

Sub DoUntilDemo()
 Do Until IsEmpty(ActiveCell.Value)
 ActiveCell.Value = ActiveCell.Value * 2
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

Using For Each-Next Loops
with Collections

VBA supports yet another type of looping: looping through each object in a collec-
tion of objects. A collection, as you might know, consists of a number of objects
of the same type. For example, Excel has a collection of all open workbooks (the
Workbooks collection), and each workbook has a collection of worksheets
(the Worksheets collection).

When you need to loop through each object in a collection, use the For Each-Next
structure. The following example loops through each worksheet in the active
workbook and deletes the worksheet if it’s empty:

CHAPTER 10 Controlling Program Flow and Making Decisions 169

Sub DeleteEmptySheets()
 Dim WkSht As Worksheet
 Application.DisplayAlerts = False
 For Each WkSht In ActiveWorkbook.Worksheets
 If WorksheetFunction.CountA(WkSht.Cells) = 0 Then
 WkSht.Delete
 End If
 Next WkSht
 Application.DisplayAlerts = True
End Sub

In this example, the variable WkSht is an object variable that represents each
worksheet in the workbook. Nothing is special about the variable name WkSht;
you can use any variable name that you like.

The code loops through each worksheet and determines an empty sheet by count-
ing the nonblank cells. If that count is zero, the sheet is empty, and it’s deleted.
Notice that the DisplayAlerts setting is turned off while the loop is doing its thing.
Without that statement, Excel displays a warning every time a sheet is about to be
deleted.

If all the worksheets in the workbook are empty, you get an error when Excel
attempts to delete the only sheet. Normally, you would write code to handle that
situation.

Here’s another For Each-Next example. This procedure uses a loop to hide all
worksheets in the active workbook except the active sheet.

Sub HideSheets()
 Dim Sht As Worksheet
 For Each Sht In ActiveWorkbook.Worksheets
 If Sht.Name <> ActiveSheet.Name Then
 Sht.Visible = xlSheetHidden
 End If
 Next Sht
End Sub

The HideSheets procedure checks the sheet name. If it’s not the same as the active
sheet’s name, the sheet is hidden. Notice that the Visible property isn’t Boolean.
This property can actually take on any of three values, and Excel provides three
built-in constants. If you’re curious about the third possibility (xlVeryHidden),
check the Help system.

170 PART 3 Programming Concepts

What gets hidden must eventually get unhidden, so here’s a macro that unhides
all worksheets in the active workbook:

Sub UnhideSheets()
 Dim Sht As Worksheet
 For Each Sht In ActiveWorkbook.Worksheets
 Sht.Visible = xlSheetVisible
 Next Sht
End Sub

Not surprisingly, you can create nested For Each-Next loops. The CountBold pro-
cedure loops through every cell in the used range on each worksheet in every open
workbook and displays a count of the number of cells that are formatted as bold:

Sub CountBold()
 Dim WBook As Workbook
 Dim WSheet As Worksheet
 Dim Cell As Range
 Dim Cnt As Long
 For Each WBook In Workbooks
 For Each WSheet In WBook.Worksheets
 For Each Cell In WSheet.UsedRange
 If Cell.Font.Bold = True Then Cnt = Cnt + 1
 Next Cell
 Next WSheet
 Next WBook
 MsgBox Cnt & " bold cells found"
End Sub

CHAPTER 11 Automatic Procedures and Events 171

Chapter 11
Automatic Procedures
and Events

You have a number of ways to execute a VBA Sub procedure. One way is to
arrange for the Sub to be executed automatically. In this chapter, you
explore the ins and outs of this potentially useful feature, learning how to

set things up so that a macro is executed automatically when a particular event
occurs.

Preparing for the Big Event
An event is basically something that happens in Excel. Following are a few exam-
ples of the types of events that Excel can recognize:

 » A workbook is opened or closed.

 » A window is activated or deactivated.

 » A worksheet is activated or deactivated.

 » Data in a cell is entered or changed.

IN THIS CHAPTER

 » Knowing the event types that can
trigger an execution

 » Finding out where to place your
event-handler VBA code

 » Executing a macro when a workbook
is opened or closed

 » Executing a macro when a workbook
or worksheet is activated

172 PART 3 Programming Concepts

 » A workbook is saved.

 » An object, such as a button, is clicked.

 » A particular key or key combination is pressed.

 » A particular time of day occurs.

 » An error occurs.

Dozens of different types of events are associated with all kinds of Excel objects,
such as workbooks, worksheets, pivotTables, and even charts. To simplify things,
you can use two other more common types of events: workbook events and work-
sheet events.

Table 11-1 lists some useful workbook-related events. If, for some reason, you
need to see the complete list of workbook-related events, check out the Help
system.

TABLE 11-1 Workbook Events
Event When It’s Triggered

Activate The workbook is activated.

BeforeClose The command to close the workbook is given.

BeforePrint The command to print is given.

BeforeSave The command to save the workbook is given.

Deactivate The workbook is deactivated.

NewSheet A new sheet is added to the workbook.

Open The workbook is opened.

SheetActivate A sheet in the workbook is activated.

SheetBeforeDoubleClick A cell in the workbook is double-clicked.

SheetBeforeRightClick A cell in the workbook is right-clicked.

SheetChange A change is made to a cell in the workbook.

SheetDeactivate A sheet in the workbook is deactivated.

SheetSelectionChange Cells are selected in the workbook.

WindowActivate The workbook window is activated.

WindowDeactivate The workbook window is deactivated.

CHAPTER 11 Automatic Procedures and Events 173

Table 11-2 lists some useful worksheet-related events.

Learning when to use event procedures
At this point, you might be wondering how these events can be useful. Here’s a
quick example.

Suppose that you have a workbook in which you enter values in column A. Your
boss, a very compulsive person, tells you that they need to know exactly when
each number was entered. Entering data is an event: a WorksheetChange event.
You can write a macro that responds to this event. That macro kicks in whenever
the worksheet is changed. If the change was made in column A, the macro places
the date and time in column B, next to the data point that was entered.

In case you’re curious, here’s what such a macro would look like. (Probably a lot
simpler than you thought it would be, eh?)

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Column = 1 Then
 Target.Offset(0, 1) = Now
 End If
End Sub

By the way, macros that respond to events are very picky about where they are
stored. For example, this Worksheet_Change macro must be in the module for
that worksheet. Put it somewhere else, and it won’t work. More about this later
(see the section titled “Knowing Where to Put the Event Code”).

TABLE 11-2 Worksheet Events
Event When It’s Triggered

Activate The worksheet is activated.

BeforeDoubleClick A cell in the worksheet is double-clicked.

BeforeRightClick A cell in the worksheet is right-clicked.

Change A change is made to a cell in the worksheet.

Deactivate The worksheet is deactivated.

SelectionChange Cells are selected in the worksheet.

174 PART 3 Programming Concepts

Just because your workbook contains procedures that respond to events doesn’t
guarantee that those procedures will actually run. As you know, it’s possible to
open a workbook with macros disabled. In such a case, all macros (even proce-
dures that respond to events) are turned off. Keep this fact in mind when you
create workbooks that rely on event-handler procedures.

Programming event-handler procedures
A VBA procedure that executes in response to an event is called an event-handler
procedure. These are always Sub procedures (as opposed to Function procedures).
Writing these event-handlers is relatively straightforward after you understand
how the process works.

Creating event-handler procedures boils down to a few steps:

1. Identify the event you want to trigger the procedure.

2. Press Alt+F11 to activate the Visual Basic Editor.

3. In the VBE Project window, double-click the appropriate object listed
under Microsoft Excel Objects.

For workbook-related events, the object is ThisWorkbook. For a worksheet-
related event, the object is a Worksheet object (such as Sheet1).

4. In the code pane for the object, write the event-handler procedure that is
executed when the event occurs.

This procedure will have a special name that identifies it as an event-handler
procedure.

These steps become clearer as you progress through the chapter.

Knowing Where to Put the Event Code
It’s very important to understand where your event-handler procedures go. They
must reside in the module for their object. They do not go in a standard VBA mod-
ule. If you put your event-handler procedure in the wrong place, it simply won’t
work, and you won’t see any error messages indicating it, either.

Figure 11-1 shows the VBE window with one project displayed in the Project
Explorer. (Refer to Chapter 3 for some background on the VBE.) Notice that the
VBA project for Book1 is fully expanded and consists of several objects:

CHAPTER 11 Automatic Procedures and Events 175

 » One object for each worksheet in the workbook (in this case, three
Sheet objects)

 » An object labeled ThisWorkbook

 » A VBA module inserted manually (choose Insert  ➪   Module)

Double-clicking any of these objects displays the code associated with the item,
if any.

The event-handler procedures that you write go into the ThisWorkbook module
(for workbook-related events) or one of the Sheet modules (for worksheet-related
events).

In Figure 11-1, the code pane for the Sheet1 module is displayed, and it happens to
have a single event-handler procedure defined. Notice the two drop-down con-
trols at the top of the code pane? Keep reading to find out why those are useful.

Writing an Event-Handler Procedure
The VBE helps you out when you’re ready to write an event-handler procedure; it
displays a list of all events for the selected object.

At the top of each code pane, you find two drop-down lists:

 » The Object drop-down list (the one on the left)

 » The Procedure drop-down list (the one on the right)

By default, the Object drop-down list in the code pane displays General.

FIGURE 11-1:
The Project

window displays
items for a single

project.

176 PART 3 Programming Concepts

If you’re writing an event-handler for the ThisWorkbook object, you need to click
ThisWorkbook in the Project window and then choose Workbook from the Object
drop-down (it’s the only other choice).

If you’re writing an event-handler for a Sheet object, you need to click the specific
Sheet in the Project window and then choose Worksheet from the Object drop-
down list (again, it’s the only other choice).

After you’ve made your choice from the Object drop-down list, you can choose the
event from the Procedure drop-down list. Figure 11-2 shows some of the choices
for a workbook-related event.

When you select an event from the list, the VBE automatically starts creating an
event-handler procedure for you. This is a very useful feature, because it tells you
exactly what the proper arguments are.

Here’s a little quirk. When you first select Workbook from the Object list, the VBE
always assumes that you want to create an event-handler procedure for the Open
event and creates it for you. If you’re actually creating a Workbook_Open proce-
dure, that’s fine. But if you’re creating a different event-procedure, you need to
delete the empty Workbook_Open Sub that was created.

The VBE’s help goes only so far, however. It writes the Sub statement and the End
Sub statement. Writing the VBA code that goes between these two statements is
your job.

You don’t really have to use those two drop-down lists, but doing so makes your
job easier because the name of the event-handler procedure is critically impor-
tant. If you don’t get the name exactly right, the procedure won’t work. Also,
some event-handler procedures use one or more arguments in the Sub statement.
There’s no way you can remember what those arguments are. For example, if you
select SheetActivate from the event list for a Workbook object, the VBE writes the
following Sub statement:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

FIGURE 11-2:
Choosing an
event in the

ThisWorkbook
object’s module.

CHAPTER 11 Automatic Procedures and Events 177

In this case, Sh is the argument passed to the procedure and is a variable that
represents the sheet that was activated in the workbook. Examples found through-
out the rest of this chapter clarify this point.

Triggering Workbook Events
In this section, you find a few examples so that you can get the hang of this event-
handling business.

The Open event for a workbook
One of the most commonly used events is the Workbook Open event. Assume that
you have a workbook that you use every day. The Workbook_Open procedure in
this example is executed every time the workbook is opened. The procedure checks
the day of the week; if it’s Friday, the code displays a reminder message for you.

To create the procedure that is executed whenever the Workbook Open event
occurs, follow these steps:

1. Open the workbook.

Any workbook will do.

2. Press Alt+F11 to activate the VBE.

3. Locate the workbook in the Project window.

4. Double-click the project name to display its items, if necessary.

5. Double-click the ThisWorkbook item.

The VBE displays an empty code pane for the ThisWorkbook object.

6. In the code pane, select Workbook from the Object (left) drop-down list.

The VBE enters the beginning and ending statements for a Workbook_Open
procedure.

7. Enter the following statements, so the complete event-procedure looks
like this:

Private Sub Workbook_Open()
 Dim Msg As String
 If Weekday(Now) = 6 Then

178 PART 3 Programming Concepts

 Msg = "Today is Friday. Don't forget to "
 Msg = Msg & "submit the TPS Report!"
 MsgBox Msg
 End If

End Sub

The code pane should look like Figure 11-3.

Workbook_Open is executed automatically whenever the workbook is opened. It
uses VBA’s WeekDay function to determine the day of the week. If it’s Friday
(day 6), a message box reminds the user to submit a report. If it’s not Friday,
nothing happens.

If today isn’t Friday, you might have a hard time testing this procedure. You can
just change the 6 to correspond to today’s actual day number.

And of course, you can modify this procedure any way you like. For example, the
following version displays a message every time the workbook is opened. This
gets annoying after a while.

Private Sub Workbook_Open()
 Msg = "This is Frank's cool workbook!"
 MsgBox Msg
End Sub

A Workbook_Open procedure can do almost anything. These event-handlers are
often used for the following:

 » Displaying welcome messages (such as in Frank’s cool workbook)

 » Opening other workbooks

 » Activating a particular worksheet in the workbook

 » Setting up custom shortcut menus

FIGURE 11-3:
This event-

handler
procedure is

executed when
the workbook

is opened.

CHAPTER 11 Automatic Procedures and Events 179

Here’s a final example of a Workbook_Open procedure that uses the GetSetting
and SaveSetting functions to keep track of how many times the workbook has
been opened. The SaveSetting function writes a value to the Windows registry, and
the GetSetting function retrieves that value (see the Help system for details).

The following example retrieves the count from the registry, increments it, and
then saves it back to the registry. It also tells the user the value of Cnt that corre-
sponds to the number of times the workbook has been opened (see Figure 11-4).

Private Sub Workbook_Open()

 Dim Cnt As Long

 Cnt = GetSetting("MyApp", "Settings", "Open", 0)

 Cnt = Cnt + 1
 SaveSetting "MyApp", "Settings", "Open", Cnt

 MsgBox "This workbook has been opened " & Cnt & " times."

End Sub

The BeforeClose event for a workbook
Here’s an example of the Workbook_BeforeClose event-handler procedure, which
is executed automatically immediately before the workbook is closed. This proce-
dure is located in the ThisWorkbook module:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Dim Msg As String
 Dim Ans As Long
 Dim FName As String
 Msg = "Would you like to make a backup of this file?"
 Ans = MsgBox(Msg, vbYesNo)

FIGURE 11-4:
Using a

 Workbook_Open
event-handler to

keep track of how
many times a

workbook has
been opened.

180 PART 3 Programming Concepts

 If Ans = vbYes Then
 FName = "F:\BACKUP\" & ThisWorkbook.Name
 ThisWorkbook.SaveCopyAs FName
 End If
End Sub

This routine uses a message box to ask the user whether they would like to make
a backup copy of the workbook. If the answer is yes, the code uses the SaveCopyAs
method to save a backup copy of the file on drive F. If you adapt this procedure for
your own use, you need to change the drive and path.

Excel programmers often use a Workbook_BeforeClose procedure to clean up
after themselves. For example, if you use a Workbook_Open procedure to change
some settings when you open a workbook (hiding the status bar, for example), it’s
only appropriate that you return the settings to their original state when you close
the workbook. You can perform this electronic housekeeping with a Workbook_
BeforeClose procedure.

When using the Workbook_BeforeClose event, keep this in mind: If you close
Excel and any open file has been changed since the last save, Excel shows its usual
“Do you want to save your changes” message box. Clicking the Cancel button
cancels the entire closing process. But the Workbook_BeforeClose event will have
been executed by that point, anyway.

The BeforeSave event for a workbook
The BeforeSave event, as its name implies, is triggered before a workbook is saved.
This event occurs when you choose File ➪ Save or File ➪ Save As.

The following procedure, which is in the ThisWorkbook module, demonstrates the
BeforeSave event. The routine updates the value in a cell (cell A1 on Sheet1) every
time the workbook is saved. In other words, cell A1 serves as a counter to keep
track of the number of times the file was saved.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI _

 As Boolean, Cancel As Boolean)

 Dim Counter As Range

 Set Counter = Sheets("Sheet1").Range("A1")

 Counter.Value = Counter.Value + 1
End Sub

CHAPTER 11 Automatic Procedures and Events 181

Notice that the Workbook_BeforeSave procedure has two arguments: SaveAsUI
and Cancel. To demonstrate how these arguments work, examine the following
macro, which is executed before the workbook is saved. This procedure attempts
to prevent the user from saving the workbook with a different name. If the user
chooses File ➪ Save As, the SaveAsUI argument is True.

When the code executes, it checks the SaveAsUI value. If this variable is True, the
procedure displays a message and sets Cancel to True, which cancels the Save
operation.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI _

 As Boolean, Cancel As Boolean)

 If SaveAsUI Then

 MsgBox "You cannot save a copy of this workbook!"

 Cancel = True

 End If

End Sub

Note that this procedure won’t really prevent anyone from saving a copy with a
different name. If someone really wants to do it, they can just open the workbook
with macros disabled. When macros are disabled, event-handler procedures are
also disabled, which makes sense because they are, after all, macros.

Using Activation Events
Another category of events consists of activating and deactivating objects —
specifically, sheets and workbooks.

Activate and deactivate events in a sheet
Excel can detect when a particular sheet is activated or deactivated and execute a
macro when either of these events occurs. These event-handler procedures go in
the sheet’s module.

You can quickly access a sheet’s module by right-clicking the sheet’s tab and
selecting View Code.

182 PART 3 Programming Concepts

The following example shows a simple procedure that is executed whenever a
particular sheet is activated. This code simply pops up an annoying message box
that displays the name of the active sheet:

Private Sub Worksheet_Activate()
 MsgBox "You just activated " & ActiveSheet.Name
End Sub

Here’s another example that activates cell A1 whenever the sheet is activated:

Private Sub Worksheet_Activate()
 Range("A1").Activate
End Sub

Although the code in these two procedures is about as simple as it gets, event-
handler procedures can be as complex as you like.

The following procedure (which is stored in the Sheet1 module) uses the Deacti-
vate event to prevent a user from activating any other sheet in the workbook. If
Sheet1 is deactivated (that is, another sheet is activated), the user gets a message
and Sheet1 is activated.

Private Sub Worksheet_Deactivate()
 MsgBox "You must stay on Sheet1"
 Sheets("Sheet1").Activate
End Sub

By the way, it’s not a great idea to use VBA procedures, such as this one, to attempt
to take over Excel. These so-called “dictator” applications can be very frustrating
and confusing for the user. And of course, they can be defeated easily by disabling
macros.

Activate and deactivate events
in a workbook
The previous examples use events associated with a specific worksheet. The This-
Workbook object also handles events that deal with sheet activation and deactiva-
tion. The following procedure, which is stored in the ThisWorkbook module, is
executed when any sheet in the workbook is activated. The code displays a mes-
sage with the name of the activated sheet.

CHAPTER 11 Automatic Procedures and Events 183

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 MsgBox Sh.Name
End Sub

The Workbook_SheetActivate procedure uses the Sh argument. Sh is a variable
that represents the sheet that was activated. The message box displays the name
of the sheet.

The next example is contained in the ThisWorkbook module. It consists of two
event-handler procedures:

 » Workbook_SheetDeactivate: Executed when any sheet in the workbook is
deactivated. It stores the sheet that is deactivated in an object variable — but
only if the sheet is a worksheet. The Set keyword creates an object variable,
which is available to all procedures in the module.

 » Workbook_SheetActivate: Executed when any sheet in the workbook
is activated. It checks the type of sheet that is activated (using the
TypeName function). If the sheet is a chart sheet, the user gets a
 message (see Figure 11-5). When the OK button in the message box is
clicked, the previous worksheet (which is stored in the OldSheet variable)
is reactivated.

FIGURE 11-5:
When a chart

sheet is activated,
the user sees a

message like this.

184 PART 3 Programming Concepts

A workbook that contains this code is available at this book’s website (https://
www.dummies.com/go/excelvbaprogrammingfd6e).

Dim OldSheet As Object

Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)

 If TypeName(Sh) = "Worksheet" Then Set OldSheet = Sh

End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

 Dim Msg As String

 If TypeName(Sh) = "Chart" Then

 Msg = "This chart contains "

 Msg = Msg & ActiveChart.SeriesCollection(1).Points.Count

 Msg = Msg & " data points." & vbNewLine

 Msg = Msg & "Click OK to return to " & OldSheet.Name

 MsgBox Msg

 OldSheet.Activate

 End If

End Sub

Workbook activation events
Excel also recognizes the event that occurs when you activate or deactivate a par-
ticular workbook. The following code, which is contained in the ThisWorkbook
module, is executed whenever the workbook is activated. The procedure simply
maximizes the workbook’s window.

Private Sub Workbook_Activate()
 ActiveWindow.WindowState = xlMaximized
End Sub

An example of Workbook_Deactivate code appears next. This procedure is exe-
cuted when a workbook is deactivated. This procedure copies the selected range
whenever the workbook is deactivated. It might be useful if you’re copying data
from lots of areas and pasting them into a different workbook. When this event-
procedure is in place, you can select the range to be copied, activate the other
workbook, select the destination, and press Ctrl+V (or Enter) to paste the copied
data.

Private Sub Workbook_Deactivate()
 ThisWorkbook.Windows(1).RangeSelection.Copy
End Sub

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 11 Automatic Procedures and Events 185

Programming Worksheet-Related Events
The preceding section illustrated examples for worksheet activation and deactiva-
tion events. In this section, you find additional events that occur in worksheets:
double-clicking a cell, right-clicking a cell, and changing a cell.

The BeforeDoubleClick event
You can set up a VBA procedure to be executed when the user double-clicks a cell.
In the following example (which is stored in a sheet’s module), double-clicking a
cell in that sheet makes the cell bold (if it’s not bold) or not bold (if it is bold):

Private Sub Worksheet_BeforeDoubleClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)
 Target.Font.Bold = Not Target.Font.Bold
 Cancel = True
End Sub

The Worksheet_BeforeDoubleClick procedure has two arguments: Target and
Cancel. Target represents the cell (a Range object) that was double-clicked. If
Cancel is set to True, the default double-click action doesn’t occur.

The default action for double-clicking a cell is to put Excel in cell edit mode. In
this case, you don’t necessarily want to edit the cell when double-clicking the
cells, so set Cancel to True.

The BeforeRightClick event
The BeforeRightClick event is similar to the BeforeDoubleClick event except that it
consists of right-clicking a cell. The following procedure checks to see whether
the cell that was right-clicked contains a numeric value. If so, the code displays
the Format Number dialog box and sets the Cancel argument to True (avoiding the
normal shortcut menu display). If the cell doesn’t contain a numeric value, noth-
ing special happens; the shortcut menu is displayed as usual.

Private Sub Worksheet_BeforeRightClick _

 (ByVal Target As Excel.Range, Cancel As Boolean)

 If IsNumeric(Target) And Not IsEmpty(Target) Then

 Application.CommandBars.ExecuteMso ("NumberFormatsDialog")

 Cancel = True

 End If

End Sub

186 PART 3 Programming Concepts

Notice that the code, which is available on this book’s website (https://www.
dummies.com/go/excelvbaprogrammingfd6e), makes an additional check to see
if the cell isn’t empty. This is because VBA considers empty cells to be numeric.

The Change event
The Change event occurs whenever any cell in the worksheet is changed. In the
following example, the Worksheet_Change procedure effectively prevents a user
from entering a nonnumeric value in cell A1. This code is stored in a sheet’s
module.

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Address = "A1" Then
 If Not IsNumeric(Target) Then
 MsgBox "Enter a number in cell A1."
 Range("A1").ClearContents
 Range("A1").Activate
 End If
 End If
End Sub

The single argument for the Worksheet_Change procedure (Target) represents
the range that was changed. The first statement checks whether the cell’s address
is A1. If so, the code uses the IsNumeric function to determine whether the cell
contains a numeric value. If not, a message appears, and the cell’s value is erased.
Cell A1 is then activated — useful if the cell pointer moved to a different cell after
the entry was made. If the change occurs in any cell except A1, nothing happens.

Why not use data validation?
You might be familiar with Data ➪ Data Tools ➪ Data Validation. This handy
feature makes it easy to ensure that only data of the proper type is entered into a
particular cell or range. Although Data ➪ Data Tools ➪ Data Validation is useful,
it’s definitely not foolproof.

Try adding data validation to a cell. For example, you can set it up so the cell
accepts only a numerical value. It works fine — until you copy another cell and
paste it to the data validation cell. Pasting removes the data validation. It’s as if it
was never there. The severity of this flaw depends on your application.

Pasting wipes out data validation because Excel considers validation to be a format
for a cell. Therefore, it’s in the same classification as font size, color, or other
similar attributes. When you paste a cell, you’re replacing the formats in the tar-
get cell with those of the source cell. Unfortunately, those formats also include
your validation rules.

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 11 Automatic Procedures and Events 187

Preventing data validation from being destroyed
The procedure in this section demonstrates how to prevent users from copying
data and wiping out data validation rules. This example assumes that the work-
sheet has a range named InputArea, and this input area contains data validation
rules (set up by choosing Data ➪ Data Tools ➪ Data Validation). The range can
have any validation rules you want.

A workbook that contains this code is available at this book’s website (https://
www.dummies.com/go/excelvbaprogrammingfd6e):

Private Sub Worksheet_Change(ByVal Target As Range)

 Dim VT As Long

 'Do all cells in the validation range

 'still have validation?

 On Error Resume Next

 VT = Range("InputRange").Validation.Type

 If Err.Number <> 0 Then

 Application.Undo

 MsgBox "Your last operation was canceled. " & _

 "It would have deleted data validation rules.", vbCritical

 End If

End Sub

The procedure is executed whenever a cell is changed. It checks the validation type
of the range (named InputRange) that is supposed to contain the data validation
rules. If the VT variable contains an error, one or more cells in the InputRange no
longer have data validation. (The user probably copied some data over it.) If that’s
the case, the code executes the Undo method of the Application object and reverses
the user’s action. Then it displays a message box, as shown in Figure 11-6. See
Chapter 12 for more information about using On Error Resume Next.

The net effect? It’s impossible to wipe out the validation rules by copying data.
When Excel is broken, sometimes you can use VBA to fix it.

FIGURE 11-6:
Performing data

validation with an
event procedure.

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

188 PART 3 Programming Concepts

Understanding Events Not
Associated with Objects

The events discussed previously in this chapter are associated with either a work-
book object or a worksheet object. This section focuses on two types of events that
aren’t associated with objects: time and keypresses.

Because time and keypresses aren’t associated with a particular object such as a
workbook or a worksheet, you program these events in a normal VBA module
(unlike the other events discussed in this chapter).

The OnTime event
The OnTime event occurs when a particular time of day occurs. The following
example demonstrates how to get Excel to execute a procedure at 3 p.m. In this
case, a robot voice tells you to wake up, accompanied by a message box:

Sub SetAlarm()
 Application.OnTime 0.625, "DisplayAlarm"
End Sub
Sub DisplayAlarm()
 Application.Speech.Speak ("Hey, wake up")
 MsgBox " It's time for your afternoon break!"
End Sub

In this example, you use the OnTime method of the Application object. This
method takes two arguments: the time (0.625, which is 3:00 p.m.) and the name
of the Sub procedure to execute when the time event occurs (DisplayAlarm).

This procedure is quite useful if you tend to get so wrapped up in your work that
you forget about meetings and appointments. Just set an OnTime event to remind
yourself.

Most people find it difficult to think of time in terms of the Excel numbering sys-
tem. Therefore, you might want to use the VBA TimeValue function to represent
the time. TimeValue converts a string that looks like a time into a value that Excel
can handle. The following statement shows an easier way to program an event for
3 p.m.:

Application.OnTime TimeValue("3:00:00 pm"), "DisplayAlarm"

CHAPTER 11 Automatic Procedures and Events 189

If you want to schedule an event relative to the current time (for example,
20 minutes from now), you can use a statement like this:

Application.OnTime Now + TimeValue("00:20:00"), "DisplayAlarm"

You can also use the OnTime method to run a VBA procedure on a particular day.
You must make sure that your computer keeps running and that the workbook
with the procedure is kept open. The following statement runs the DisplayAlarm
procedure at 5 p.m. on December 31, 2022:

Application.OnTime DateValue("12/31/2022 5:00 pm"), "DisplayAlarm"

This particular code line could come in handy to warn you that you need to go
home and get ready for the New Year’s Eve festivities.

Here’s another example that uses the OnTime event. Executing the UpdateClock
procedures writes the time to cell A1 and also programs another event 5 seconds
later. This event reruns the UpdateClock procedure. The net effect is that cell A1 is
updated with the current time every 5 seconds. To stop the events, execute the
StopClock procedure (which cancels the event). Note that NextTick is a module-
level variable that stores the time for the next event.

Dim NextTick As Date

Sub UpdateClock()

' Updates cell A1 with the current time

 ThisWorkbook.Sheets(1).Range("A1") = Time

' Set up the next event five seconds from now

 NextTick = Now + TimeValue("00:00:05")
 Application.OnTime NextTick, "UpdateClock"

End Sub

Sub StopClock()

' Cancels the OnTime event (stops the clock)

 On Error Resume Next

 Application.OnTime NextTick, "UpdateClock", , False

End Sub

The OnTime event persists even after the workbook is closed. In other words, if
you close the workbook without running the StopClock procedure, the workbook
reopens itself in 5 seconds (assuming that Excel is still running). To prevent this,
use the following Workbook_BeforeClose event procedure:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 StopClock
End Sub

190 PART 3 Programming Concepts

The OnTime method has two additional arguments. If you plan to use this method,
you should refer to the Help system for complete details.

Another use for OnTime is conducting a timed test or survey. In the following
code, StartTest unprotects the worksheet allowing the user to enter values into
cells and starts a timer. After 20 minutes, the user is informed the test is over and
the worksheet is protected.

Sub StartTest()
 MsgBox "You have 20 minutes to complete the test"
 Sheet1.Unprotect
 Application.OnTime Now + TimeSerial(0, 20, 0), "EndTest"
End Sub

Sub EndTest()
 MsgBox "The test has ended"
 Sheet1.Protect
End Sub

This example uses the TimeSerial VBA function to add 20 minutes to the current
time.

Keypress events
While you work, Excel constantly monitors what you type. Because of this, you can
set up things so a keystroke or a key combination executes a procedure.

Here’s an example that reassigns the PgDn and PgUp keys:

Sub Setup_OnKey()
 Application.OnKey "{PgDn}", "PgDn_Sub"
 Application.OnKey "{PgUp}", "PgUp_Sub"
End Sub

Sub PgDn_Sub()
 On Error Resume Next
 ActiveCell.Offset(1, 0).Activate
End Sub

Sub PgUp_Sub()
 On Error Resume Next
 ActiveCell.Offset(-1, 0).Activate
End Sub

CHAPTER 11 Automatic Procedures and Events 191

After setting up the OnKey events by executing the Setup_OnKey procedure,
pressing PgDn moves you down one row. Pressing PgUp moves you up one row.

Notice that the key codes are enclosed in braces, not in parentheses. For a com-
plete list of keyboard codes, consult the Help system. Search for OnKey.

In this example, On Error Resume Next ignores any errors that are generated. For
example, if the active cell is in the first row, trying to move up one row causes
an error that can safely be ignored. And if a chart sheet is active, there is no
active cell.

By executing the following routine, you cancel the OnKey events:

Sub Cancel_OnKey()
 Application.OnKey "{PgDn}"
 Application.OnKey "{PgUp}"
End Sub

Using an empty string as the second argument for the OnKey method does not
cancel the OnKey event. Rather, it causes Excel to simply ignore the keystroke. For
example, the following statement tells Excel to ignore Alt+F4. The percent sign
represents the Alt key:

Application.OnKey "%{F4}", ""

Although you can use the OnKey method to assign a shortcut key for executing a
macro, you should use the Macro Options dialog box for this task. For more details,
see Chapter 5.

If you close the workbook that contains the code and leave Excel open, the OnKey
method doesn’t reset. As a consequence, pressing the shortcut key causes Excel to
automatically open the file with the macro. To prevent this from happening, you
should include code in your Workbook_BeforeClose event code (shown earlier in
this chapter) to reset the OnKey event.

CHAPTER 12 Error-Handling Techniques 193

Chapter 12
Error-Handling
Techniques

To err is human. To anticipate errors is divine. When working with VBA, you
must be aware of two broad classes of errors: programming errors and run-
time errors. This chapter is all about runtime errors.

A well-written program handles errors the way Fred Astaire danced: gracefully.
Fortunately, VBA includes several tools to help you identify errors and then handle
them gracefully.

Types of Errors
If you’ve tried any of the examples in this book, you have probably encountered
one or more error messages. Some were a result of bad VBA code. For example, you
might have misspelled a keyword or typed a statement using the wrong syntax. If
you make such an error, you won’t even be able to execute the procedure until you
correct it.

IN THIS CHAPTER

 » Understanding the difference
between programming errors and
runtime errors

 » Trapping and handling runtime
errors

 » Using On Error and Resume
statements

 » Finding out how you can use an error
to your advantage

194 PART 3 Programming Concepts

This chapter doesn’t deal with those types of errors, however. Instead, it focuses
on runtime errors — the errors that occur while Excel executes your VBA code.
More specifically, this chapter covers the following fascinating topics:

 » Identifying errors

 » Correcting or ignoring the errors that occur

 » Recovering from errors

 » Creating intentional errors (Yes, sometimes an error can be a good thing.)

The ultimate goal of error handling is to write code that doesn’t result in Excel’s
error messages as much as possible. In other words, you want to anticipate poten-
tial errors and deal with them before Excel has a chance to notify you with a
(usually) less-than-informative error message.

An Erroneous Macro Example
To get things started, let’s take a look at the following macro. A macro this simple
shouldn’t produce any errors, right?

Activate the VBE, insert a module, and enter the following code:

Sub EnterSquareRoot()
 Dim Num As Double
' Prompt for a value
 Num = InputBox("Enter a value")
' Insert the square root
 ActiveCell.Value = Sqr(Num)
End Sub

As shown in Figure 12-1, this procedure asks the user for a value. It then performs
a magical calculation and enters the square root of that value into the active cell.

FIGURE 12-1:
The InputBox

function displays
a dialog box

asking the user
for a value.

CHAPTER 12 Error-Handling Techniques 195

You can execute this procedure directly from the VBE by pressing F5. Alterna-
tively, you might want to add a button to a worksheet (choose Developer ➪
Controls ➪ Insert and select the button in the Form Controls group to do this), and
then assign the macro to the button. (Excel prompts you for the macro to assign.)
Then you can run the procedure by simply clicking the button you assigned to the
macro previously.

Not-quite-perfect macros
Try out the macro by executing the code a few times. It works pretty well, doesn’t
it? Now try entering a negative number when you’re prompted for a value. Oops!
Trying to calculate the square root of a negative number is illegal on this planet.

Excel responds to the request to calculate the square root of a negative number by
displaying the runtime error message shown in Figure 12-2. For now, simply click
the End button. If you click the Debug button, Excel suspends the macro so that
you can use the debugging tools to help track down the error. (Note, debugging
tools are covered in Chapter 13.)

Most Excel error messages (for example, Invalid procedure call or argument) aren’t
particularly helpful. To improve this procedure, you must anticipate this error and
handle it more gracefully. In other words, you need to add some error-handling
code.

Here’s a modified version of EnterSquareRoot:

Sub EnterSquareRoot2()
 Dim Num As Double
' Prompt for a value
 Num = InputBox("Enter a value")
' Make sure the number is nonnegative

FIGURE 12-2:
Excel displays this

error message
when the

procedure
attempts to

calculate the
square root of a

negative number.

196 PART 3 Programming Concepts

 If Num < 0 Then
 MsgBox "You must enter a positive number."
 Else
 ' Insert the square root
 ActiveCell.Value = Sqr(Num)
 End If
End Sub

In this code, an If-Then structure checks the value contained in the Num variable.
If Num is less than 0, the procedure displays a message box containing informa-
tion that can be actually understood. If not, the square root calculation is per-
formed as in the previous version.

Perfecting the macro
If the modified EnterSquareRoot procedure still isn’t perfect, try entering text
rather than a value, or click the Cancel button in the input box. Both of these
actions generate an error (Type mismatch), meaning this procedure needs still
more error-handling code added.

The following modified code uses the IsNumeric function to ensure that Num
contains a numeric value. If the user doesn’t enter a number, the procedure dis-
plays a message and then stops. Also, notice that the Num variable is now declared
as a Variant. If it were declared as a Double, the code would generate an unhandled
error if the user entered a nonnumeric value into the input box.

Sub EnterSquareRoot3()
 Dim Num As String
' Prompt for a value
 Num = InputBox("Enter a value")

' Make sure Num is a number
 If Not IsNumeric(Num) Then
 MsgBox "You must enter a number."
 Exit Sub
 End If

' Make sure the number is nonnegative
 If Num < 0 Then
 MsgBox "You must enter a positive number."
 Exit Sub
 End If

CHAPTER 12 Error-Handling Techniques 197

' Insert the square root
 ActiveCell.Value = Sqr(Num)
End Sub

Now is this code absolutely perfect? Not quite. Try running the procedure while
the active sheet is a chart sheet. Yikes — it results in another runtime error: This
time the dreaded Number 91 (see Figure 12-3). This error occurs because there is
no active cell when a chart sheet is active, or when something other than a range
is selected.

The following procedure uses the TypeName function to ensure that the selection
is a range. If anything other than a range is selected, this procedure displays a
message and then exits:

Sub EnterSquareRoot4()
 Dim Num As String
' Make sure a worksheet is active
 If TypeName(Selection) <> "Range" Then
 MsgBox "Select a cell for the result."
 Exit Sub
 End If

' Prompt for a value
 Num = InputBox("Enter a value")
' Make sure Num is a number
 If Not IsNumeric(Num) Then
 MsgBox "You must enter a number."
 Exit Sub
 End If

' Make sure the number is nonnegative
 If Num < 0 Then
 MsgBox "You must enter a positive number."
 Exit Sub

FIGURE 12-3:
Running the

procedure when
a chart is selected

generates
this error.

198 PART 3 Programming Concepts

 End If
' Insert the square root
 ActiveCell.Value = Sqr(Num)
End Sub

Giving up on perfection
By now, this procedure simply must be perfect. Think again, pal.

Protect the worksheet (choose Review ➪ Changes ➪ Protect Sheet) and then run
the code. Yep, attempting to write to a protected worksheet generates yet another
error. And, there are at least another half-dozen errors that are impossible to pre-
dict. Keep reading for another way to deal with errors — even those you can’t
anticipate.

Alternate Ways of Handling Errors
How can you identify and handle every possible error? Often, you can’t. Fortu-
nately, VBA provides another way to deal with errors.

Revisiting the EnterSquareRoot procedure
The following code is a modified version of the procedure from the previous
section. Here, an all-purpose On Error statement traps all the errors and then
checks to see whether the InputBox was canceled.

Sub EnterSquareRoot5()
 Dim Num As String
 Dim Msg As String

' Set up error handling
 On Error GoTo BadEntry
' Prompt for a value
 Num = InputBox("Enter a value")
' Exit if cancelled
 If Num = "" Then Exit Sub

CHAPTER 12 Error-Handling Techniques 199

' Insert the square root
 ActiveCell.Value = Sqr(Num)
 Exit Sub

BadEntry:
 Msg = "An error occurred." & vbNewLine & vbNewLine
 Msg = Msg & "Make sure a range is selected, "
 Msg = Msg & "the sheet is not protected, "
 Msg = Msg & "and you enter a nonnegative number."
 MsgBox Msg, vbCritical
End Sub

This routine traps any type of runtime error. After trapping a runtime error, the
revised EnterSquareRoot procedure displays the message box shown in Figure 12-4.
This message box describes the most likely causes of the error.

FIGURE 12-4:
A runtime error in

the procedure
generates this

semi-helpful
error message.

ON ERROR NOT WORKING?
If an On Error statement isn’t working as advertised, you need to change one of your
settings:

1. Activate the VBE.

2. Choose Tools  ➪   Options.

3. Click the General tab of the Options dialog box.

4. Make sure that the Break on All Errors setting is deselected.

If this setting is selected, Excel essentially ignores any On Error statements. You nor-
mally want to keep the Error Trapping options set to Break on Unhandled Errors.

200 PART 3 Programming Concepts

Trapping errors with the
On Error statement
Using an On Error statement in your VBA code allows you to bypass Excel’s built-
in error handling and use your own error-handling code. In the EnterSquareRoot5
example from the previous section, a runtime error causes the macro execution to
jump to the statement labeled BadEntry. As a result, you avoid Excel’s unfriendly
error messages and can display your own message to the user.

Notice that the example uses an Exit Sub statement right before the BadEntry
label. This statement is necessary because you don’t want to execute the error-
handling code if an error does not occur.

Handling Errors: The Details
You can use the On Error statement in three ways, as shown in Table 12-1.

Resuming after an error
In some cases, you simply want the routine to end gracefully when an error occurs.
For example, you might display a message describing the error and then exit the
procedure. (The EnterSquareRoot5 example shown earlier uses this technique, for
example.) In other cases, you want to recover from the error, if possible.

To recover from an error, you must use a Resume statement. This clears the error
condition and allows you to continue execution at some location. You can use the
Resume statement in three ways, as shown in Table 12-2.

TABLE 12-1 Using the On Error Statement
Syntax What It Does

On Error GoTo label After executing this statement, VBA resumes execution at the statement following
the specified label. You must include a colon after the label so that VBA recognizes
it as a label.

On Error GoTo 0 After executing this statement, VBA resumes its normal error-checking behavior.
Use this statement after using one of the other On Error statements to remove
error handling in your procedure.

On Error Resume Next After executing this statement, VBA simply ignores all errors and resumes execu-
tion with the next statement.

CHAPTER 12 Error-Handling Techniques 201

The following example uses a Resume statement after an error occurs:

Sub EnterSquareRoot6()
 Dim Num As String
 Dim Msg As String
 Dim Ans As Integer
TryAgain:
' Set up error handling
 On Error GoTo BadEntry

' Prompt for a value
 Num = InputBox("Enter a value")
 If Num = "" Then Exit Sub

' Insert the square root
 ActiveCell.Value = Sqr(Num)

 Exit Sub

BadEntry:
 Msg = Err.Number & ": " & Error(Err.Number)
 Msg = Msg & vbNewLine & vbNewLine
 Msg = Msg & "Make sure a range is selected, "
 Msg = Msg & "the sheet is not protected, "
 Msg = Msg & "and you enter a nonnegative number."
 Msg = Msg & vbNewLine & vbNewLine & "Try again?"
 Ans = MsgBox(Msg, vbYesNo + vbCritical)
 If Ans = vbYes Then Resume TryAgain
End Sub

This procedure has another label: TryAgain. If an error occurs, execution contin-
ues at the BadEntry label, and the code displays the message shown in Figure 12-5.
If the user responds by clicking Yes, the Resume statement kicks in, and execution
jumps back to the TryAgain label. If the user clicks No, the procedure ends.

TABLE 12-2 Using the Resume Statement
Syntax What It Does

Resume Execution resumes with the statement that caused the error. Use this if your error-handling
code corrects the problem, and it’s okay to continue.

Resume Next Execution resumes with the statement immediately following the statement that caused the
error. This essentially ignores the error.

Resume label Execution resumes at the label you specify.

202 PART 3 Programming Concepts

Notice that the error message also includes the error number, along with the
“official” error description.

The Resume statement clears the error condition before continuing. To under-
stand what this means, try substituting the following statement for the second-
to-last statement in the preceding example:

If Ans = vbYes Then GoTo TryAgain

The code doesn’t work correctly if you use GoTo rather than Resume. To demon-
strate, enter a negative number. You get the error prompt. Click Yes to try again
and then enter another negative number. This second error is not trapped because
the original error condition was not cleared.

This example is available on this book’s website.

Error handling in a nutshell
To help you keep all this error-handling business straight, here’s a quick-and-
dirty summary. A block of error-handling code has the following characteristics:

 » It begins immediately after the label specified in the On Error statement.

 » It should be reached by your macro only if an error occurs. This means that
you must use a statement such as Exit Sub or Exit Function immediately
before the label.

 » It may require a Resume statement. If you choose not to abort the procedure
when an error occurs, you must execute a Resume statement before return-
ing to the main code.

When a runtime error occurs, execution jumps to the code beginning at the
ErrorHandler label. The Select Case structure (discussed in Chapter 10) tests for
three common error numbers. If the error number is 5, 13, or 1004, a custom error
message is displayed and execution resumes at the next statement. (In other
words, the error is ignored.) The last case, a catch-all for unanticipated errors,
traps all other errors and displays the built-in error message.

FIGURE 12-5:
If an error occurs,

the user can
decide whether

to try again.

CHAPTER 12 Error-Handling Techniques 203

An Intentional Error
Sometimes, you can use an error to your advantage. Suppose that you have a
macro that works only if a particular workbook is open. How can you determine
whether that workbook is open? One way is to write code that loops through the
Workbooks collection, checking to determine whether the workbook you’re
interested in is contained in that collection.

Here’s an easier way: using a general-purpose function that accepts one argu-
ment (a workbook name) and returns True if the workbook is open or False if
it’s not.

Here’s the function:

Function WorkbookIsOpen(book As String) As Boolean
 Dim WBName As String
 On Error GoTo NotOpen
 WBName = Workbooks(book).Name
 WorkbookIsOpen = True
 Exit Function
NotOpen:
 WorkbookIsOpen = False
End Function

This function takes advantage of the fact that Excel generates an error if you refer
to a workbook that isn’t open. For example, the following statement generates an
error if a workbook named MyBook.xlsx isn’t open:

WBName = Workbooks("MyBook.xlsx").Name

In the WorkbookIsOpen function, the On Error statement tells VBA to continue the
macro at the NotOpen statement if an error occurs. Therefore, an error means that
the workbook isn’t open, and the function returns False. If the workbook is open,
no error occurs, and the function returns True.

Here’s another variation on the WorkbookIsOpen function. This version uses On
Error Resume Next to ignore the error. But the code checks Err’s Number
property. If Err.Number is 0, no error occurred, and the workbook is open. If
Err.Number is anything else, it means that an error occurred (and the workbook
isn’t open).

204 PART 3 Programming Concepts

Function WorkbookIsOpen(book) As Boolean
 Dim WBName As String
 On Error Resume Next
 WBName = Workbooks(book).Name
 If Err.Number = 0 Then WorkbookIsOpen = True _
 Else WorkbookIsOpen = False
End Function

The following example demonstrates how to use this function in a Sub
procedure:

Sub UpdatePrices()

 If WorkbookIsOpen("Prices.xlsx") Then

' [Other code that uses the workbook goes here]

 Else

 MsgBox "Please open the Prices workbook first!"

 End If

End Sub

The UpdatePrices procedure (which must be in the same workbook as Work-
bookIsOpen) calls the WorkbookIsOpen function and passes the workbook name
(Prices.xlsx) as an argument. The WorkbookIsOpen function returns either True
or False. Therefore, if the workbook is not open, the procedure informs the user of
that fact. If the workbook is open, the other code is executed.

Error handling can be a tricky proposition. After all, many errors can occur, and
you can’t anticipate all of them. In general, you should trap errors and correct the
situation before Excel intervenes, if possible. Writing effective error-trapping
code requires a thorough knowledge of Excel and a clear understanding of how
VBA error handling works. Subsequent chapters contain more examples of error
handling.

CHAPTER 13 Bug Extermination Techniques 205

Chapter 13
Bug Extermination
Techniques

If the term bugs conjures up an image of a creepy crawly, this chapter can set you
straight. Simply put, a bug is an error in your programming. This chapter details
programming bugs — how to identify them and how to wipe them off your

module.

Species of Bugs
In programming, the term bug, as you probably know, refers to a software prob-
lem. In other words, if software doesn’t perform as expected, it has a bug. Fact is,
all major software programs have bugs — lots of bugs. Excel itself has hundreds
(if not thousands) of bugs. Fortunately, the vast majority of these bugs are rela-
tively obscure and appear in only very specific circumstances.

IN THIS CHAPTER

 » Defining a bug and knowing why you
should squash it

 » Recognizing types of bugs you might
encounter

 » Using techniques for debugging
your code

 » Using the VBE’s built-in debugging
tools

 » Presenting a handy list of bug
reduction tips

206 PART 3 Programming Concepts

When you write large enough VBA programs, your code probably will have bugs.
Simply put, bugs are fact of life and not necessarily a reflection of your program-
ming ability. These bugs may fall into any of the following categories:

 » Logic flaws in your code: You can often avoid these bugs by carefully
thinking through the problem your program addresses and testing your code
when it’s written.

 » Incorrect context bugs: This bug type surfaces when you attempt to do
something at the wrong time. For example, your code might try to write data
to cells in the active sheet when the active sheet is actually a chart sheet
(which has no cells).

 » Extreme-case bugs: These bugs rear their ugly heads when you encounter
data you didn’t anticipate, such as very large or very small numbers.

 » Wrong data-type bugs: This bug type occurs when you try to process data of
the wrong type, such as attempting to take the square root of a text string.

 » Wrong version bugs: This bug type involves incompatibilities between
different Excel versions. For example, you might develop a workbook with the
latest version of Excel and then find out that the workbook doesn’t work with
Excel 2003. You can usually avoid such problems by not using version-specific
features. Often, the easiest approach is to develop your program by using the
lowest version number of Excel that users might have. In all cases, however,
you should test your work on all versions of Excel you expect will be used to
run your program.

 » Beyond-your-control bugs: These bugs are the most frustrating. An example
of such a bug is when Microsoft upgrades Excel and makes a minor, undocu-
mented change that causes your macro to bomb. Even security updates have
been known to cause problems.

Debugging is the process of identifying and correcting bugs in your program.
Developing debugging skills takes time, so don’t be discouraged if this process is
difficult at first.

It’s important to understand the distinction between bugs and syntax errors. A syn-
tax error is a language error. For example, you might misspell a keyword, omit the
Next statement in a For-Next loop, or have a mismatched parenthesis. Before you
can even execute the procedure, you must correct these syntax errors. A program
bug is a much subtler issue. You can execute the routine, but your program won’t
perform as expected due to the bug’s inclusion.

CHAPTER 13 Bug Extermination Techniques 207

Identifying Bugs
Before you can do any debugging, you must determine whether a bug actually
exists. You can tell that your macro contains a bug if it doesn’t work the way it
should. For some types of bugs, this is easily discernable. For others, it can be
tricky.

The easiest bugs to identify are the ones that cause Excel to display a runtime
error message when you run the macro. Figure 13-1 shows such an example.
Notice that this error message includes a button labeled Debug. More about can be
found later in the “Debugging Techniques” section.

Bugs that don’t result in a runtime error, but that simply produce incorrect results,
are a little harder to find. The best way to find those bugs is to test your code thor-
oughly under a variety of real-life conditions.

Changes made by your VBA code can’t be undone, so it’s a good idea to use a
backup copy of the workbook for testing.

Try to test your code with at least three types of data:

 » Simplified data: Start with simple data whose output you can predict. For a
macro that creates an invoice, selling one unit at $1 produces a predictable
invoice total of $1.

 » Extreme data: Create fake data at the extremes of what you macro should
see. Try selling zero units, a million units, or even a negative number of units.
Using extreme data shows you the limits of your macro.

 » Real-life data: After you test your code using simple and extreme data, find
some real-life data to test with. Often real-life data is too complicated or just
too big to precisely predict the output, but it still provides the best test of your
macro.

FIGURE 13-1:
An error message

like this often
means that your

VBA code
contains a bug.

208 PART 3 Programming Concepts

Debugging Techniques
In this section, you explore the four most common methods for debugging Excel
VBA code:

 » Examining the code

 » Inserting MsgBox functions at various locations in your code

 » Inserting Debug.Print statements

 » Using the Excel built-in debugging tools

Examining your code
Perhaps the most straightforward debugging technique is simply taking a closer
look at your code to discern whether you can find the problem. This method, of
course, requires knowledge and experience. In other words, you must know what
you’re doing. If you’re lucky, the error jumps right out, and you slap your fore-
head and exclaim, “D’oh!” But oftentimes, you discover errors when you have
been working on your program for eight hours straight — it’s 2 a.m., and you’re
running on caffeine and willpower. During such times, you’re lucky if you can
even see your code, let alone find the bugs hiding in it. Don’t be surprised if simply
examining your code isn’t enough to help you find and expunge all the bugs it
contains.

Using the MsgBox function
One common problem in many programs involves one or more variables not tak-
ing on the values you expect. In such cases, monitoring the variable(s) while your
code runs is a helpful debugging technique. One way to do this is by inserting
temporary MsgBox functions into your routine. For example, if you have a variable
named CellCount, you can insert the following statement:

MsgBox CellCount

When you execute the routine, the MsgBox function displays CellCount’s value.

It’s often helpful to display the values of two or more variables in the message
box. The following statement displays the current value of two variables: LoopIn-
dex and CellCount, separated by a space.

MsgBox LoopIndex & " " & CellCount

CHAPTER 13 Bug Extermination Techniques 209

Notice that the two variables are combined with the concatenation operator (&)
and a space character inserted between them. Otherwise, the message box strings
the two values together, making them look like a single value. You can also use the
built-in constant, vbNewLine, in place of the space character. vbNewLine inserts
a line-feed break, which displays the text on a new line. The following statement
displays three variables, each on a separate line (see Figure 13-2):

MsgBox LoopIndex & vbNewLine & CellCount & vbNewLine & MyVal

This technique isn’t limited to monitoring variables. You can use a message box to
display all sorts of useful information while your code is running. For example, if
your code loops through a series of sheets, the following statement displays the
name and type of the active sheet:

MsgBox ActiveSheet.Name & " " & TypeName(ActiveSheet)

If your message box shows something unexpected, press Ctrl+Break, and you
should see a dialog box that tells you Code execution has been interrupted; as
shown in Figure 13-3, you have four choices:

 » Click the Continue button. The code continues executing.

 » Click the End button. Execution stops.

 » Click the Debug button. The VBE goes into Debug mode (this is explained
more later in the section “Using the Debugger’s Tools”).

 » Click the Help button. A help web page tells you that you pressed Ctrl+Break.
In other words, it’s not very helpful.

If your keyboard doesn’t have a Break key, try pressing Ctrl+ScrollLock.

FIGURE 13-2:
Using a message

box to display the
value of three

variables.

210 PART 3 Programming Concepts

Feel free to use MsgBox functions frequently when you debug your code. Just
make sure that you remove them after you identify and correct the problem.

Inserting Debug.Print statements
As an alternative to using MsgBox functions in your code, you can insert one or
more temporary Debug.Print statements. Use these statements to print the value
of one or more variables in the Immediate window. Here’s an example that dis-
plays the values of three variables:

Debug.Print LoopIndex, CellCount, MyVal

Notice that the variables are separated with commas. You can display as many
variables as you like with a single Debug.Print statement.

Debug.Print sends output to the Immediate window even if that window is hidden.
If VBE’s Immediate window is not visible, press Ctrl+G (or choose View ➪ Imme-
diate Window). Figure 13-4 shows some output in the Immediate window.

Unlike MsgBox, Debug.Print statements don’t halt your code. So, you must keep
an eye on the Immediate window to see what’s going on.

After you debug your code, be sure to remove or comment out all the Debug.Print
statements. Even big companies like Microsoft occasionally forget to remove their
Debug.Print statements. In several previous Excel versions, every time the Analy-
sis ToolPak add-in was opened, you’d see several strange messages in the Imme-
diate window. That problem was finally fixed in Excel 2007.

Using the VBA debugger
The Excel designers are intimately familiar with the concept of bugs. Conse-
quently, Excel includes a set of debugging tools that can help you correct problems
in your VBA code. The VBA debugger is the topic of the next section.

FIGURE 13-3:
Pressing

Ctrl+Break halts
execution of your

code and gives
you some

choices.

CHAPTER 13 Bug Extermination Techniques 211

Using the Debugger’s Tools
This section discusses the gory details of using the Excel debugging tools. These
tools are much more powerful than the techniques discussed in the previous sec-
tion. However, along with power comes responsibility. Using these debugging
tools takes a bit of setup work on your part.

Setting breakpoints in your code
A breakpoint is a flag that you set on a line of code that tells VBA to stop. That is,
to enter break mode when it reaches that line. Unlike using a MsgBox, you can
examine any variable in break mode. You can set a breakpoint in your VBA code in
several ways:

 » Move the cursor to the statement at which you want execution to stop;
then press F9.

 » Click the gray margin to the left of the statement at which you want execution
to stop.

 » Position the insertion point in the statement at which you want execution to
stop. Then choose Debug  ➪   Toggle Breakpoint.

 » Right-click a statement and choose Toggle  ➪   Breakpoint from the shortcut
menu.

FIGURE 13-4:
A Debug.Print

statement sends
output to the

Immediate
window.

212 PART 3 Programming Concepts

The results of setting a breakpoint are shown in Figure 13-5. Excel highlights the
line to remind you that you set a breakpoint there; it also inserts a large dot in the
margin as an indicator.

When you execute the procedure, Excel goes into Break mode before the line with
the breakpoint is executed. Think of Break mode as a state of suspended anima-
tion. In this mode, your VBA code stops running, and the current statement is
highlighted in bright yellow. In Break mode, you can

 » Type VBA statements in the Immediate window. (See the next section
for details.)

 » Press F8 to step through your code one line at a time to check various things
while the program is paused.

 » Move the mouse pointer over a variable to display its value in a small pop-up
window.

 » Skip the next statement(s) and continue execution there (or even go back a
couple of statements).

 » Edit a statement and then continue.

FIGURE 13-5:
The highlighted

statement marks
a breakpoint in
this procedure.

CHAPTER 13 Bug Extermination Techniques 213

In Break mode, the word [break] is displayed in the VBE’s title bar. To get out of
Break mode and continue execution, press F5 or click the Run Sub/UserForm but-
ton on the VBE’s toolbar. See the section “Stepping through your code,” later in
this chapter, to find out more.

To quickly remove a breakpoint, click the large dot in the gray margin or move the
cursor to the highlighted line and press F9. To remove all breakpoints in the mod-
ule, press Ctrl+Shift+F9.

VBA also has the following keyword, which you can insert as a statement, that
forces Break mode:

Stop

When your code reaches this Stop keyword, VBA then enters Break mode.

Figure 13-6 shows some debugging action. A breakpoint is set (notice the big dot),
and the F8 key is used to step through the code line by line (notice the arrow that
points to the current statement).

FIGURE 13-6:
A typical scene in

Break mode.

214 PART 3 Programming Concepts

Using the Immediate window
The Immediate window may not be visible in the VBE. You can display the VBE’s
Immediate window at any time by pressing Ctrl+G.

In Break mode, the Immediate window is particularly useful for finding the cur-
rent value of any variable in your program. For example, if you want to know the
current value of a variable named CellCount, enter the following in the Immediate
window and press Enter:

Print CellCount

You can save a few milliseconds by using a question mark in place of the word
Print, like this:

? CellCount

The Immediate window allows you to do other things besides check variable val-
ues. For example, you can change the value of a variable, activate a different sheet,
or even open a new workbook. Just make sure that the command you enter is a
valid VBA statement.

You can also use the Immediate window when Excel is not in Break mode. The
Immediate window is a handy place to test small code snippets before incorporat-
ing them into your procedures.

Stepping through your code
While in Break mode, you can also step through your code line by line to review
each coding part. One statement is executed each time you press F8. Throughout
this line-by-line execution of your code, you can activate the Immediate window
at any time to check the status of your variables.

You can use your mouse to change which statement VBA executes next. If you
place your mouse pointer in the margin to the left of the currently highlighted
statement (which is usually yellow), your pointer changes to a right-pointing
arrow. Simply drag your mouse to the statement you want to execute next and
watch that statement turn yellow. You can also right-click on the statement and
choose Set Next Statement or press Ctrl+F9.

Using the Watches window
Sometimes, you need to know whether a certain variable or expression takes on a
particular value. Suppose that a procedure loops through 1,000 cells. Along the

CHAPTER 13 Bug Extermination Techniques 215

way, you notice that a problem occurs during the 900th iteration of the loop. Well,
you could insert a breakpoint into the loop, but that would mean responding to
899 prompts before the code finally arrives at the iteration you want to see (and
that gets boring real fast, trust me). A more efficient solution involves setting a
watch expression.

For example, you can create a watch expression that places the procedure into
Break mode whenever a certain variable takes on a specific value — for example,
Counter=900. To create a watch expression, choose Debug ➪ Add Watch to dis-
play the Add Watch dialog box (see Figure 13-7).

The Add Watch dialog box has three parts:

 » Expression: Enter a valid VBA expression or a variable here — for example,
Counter=900 or just Counter.

 » Context: Select the procedure and the module you want to watch. Note that
you can select All Procedures and All Modules.

 » Watch Type: Select the type of watch by clicking an option button. Your
choice here depends on the expression you enter. The first choice, Watch
Expression, doesn’t cause a break; it simply displays the expression’s value
when a break occurs.

FIGURE 13-7:
The Add Watch
dialog box lets

you specify a
condition that

causes a break.

216 PART 3 Programming Concepts

Execute your procedure after setting up your watch expression(s). Things run
normally until your watch expression is satisfied (based on the Watch Type you
specified). When that happens, Excel enters Break mode (you did set the Watch
Type to Break When Value Is True, didn’t you?). From there, you can step through
the code or use the Immediate window to debug your code.

When you create a watch, the VBE displays the Watches window, shown in
Figure 13-8. This window displays the value of all watches that you’ve defined. In
this figure, the value of the Counter variable hit 900, which caused Excel to enter
Break mode.

To remove a watch, right-click it in the Watches window, and choose Delete Watch
from the shortcut menu.

The best way to understand how this Watch business works is to use it and
try various options. Before long, you’ll probably wonder how you ever got along
without it.

Using the Locals window
Another useful debugging aid is the Locals window. You can show this window by
choosing View ➪ Locals Window in the VBE. When you are in Break mode, this
window shows a list of all variables that are local to the current procedure (see
Figure 13-9). The nice thing about this window is that you don’t have to add a load
of watches manually if you want to look at the content of many variables. The VBE
does all the hard work for you.

FIGURE 13-8:
The Watches

window displays
all watches.

CHAPTER 13 Bug Extermination Techniques 217

Bug Reduction Tips
There is no surefire way to completely eliminate bugs in your VBA programs. But
here are a few tips to help you keep those bugs to a minimum:

 » Use an Option Explicit statement at the beginning of your modules. This
statement requires you to define the data type for every variable you use. It
creates a bit more work for you, but you do avoid the common error of
misspelling a variable name. Plus, it has a nice side benefit: Your routines run
a bit faster.

 » Format your code with indentation. Using indentations helps delineate
different code segments. If your program has several nested For-Next loops,
for example, consistent indentation helps you keep track of them all.

 » Be careful with the On Error Resume Next statement. This statement
causes Excel to ignore any errors and continue executing the routine. In some
cases, using this statement causes Excel to ignore errors that it shouldn’t
ignore. Your code may have bugs, and you might not even realize it.

 » Use comments. Nothing is more frustrating than revisiting code you wrote
six months ago and not having a clue as to how it works. By adding a few
comments to describe your logic, you can save lots of time down the road.

 » Keep your Sub and Function procedures simple. By writing your code in
small modules, each of which has a single, well-defined purpose, you simplify
the debugging process.

 » Use the macro recorder to help identify properties and methods. When
you can’t remember the name or the syntax of a property or method, simply
record a macro and look at the recorded code.

 » Understand VBA’s debugger. Although it can be a bit daunting at first, the
VBA debugger is a useful tool. Invest some time and get to know it.

FIGURE 13-9:
The Locals

window displays
all local variables

and their content.

CHAPTER 14 VBA Programming Examples 219

Chapter 14
VBA Programming
Examples

A good example often communicates a concept much better than a lengthy
description of the underlying theory. In that spirit, this chapter presents
several examples to demonstrate common VBA techniques.

These examples are organized into the following categories:

 » Working with ranges

 » Changing Excel settings

 » Working with charts

 » Speeding up your VBA code

Although you might be able to use some of the examples directly, in most cases
you must adapt them to your own needs.

IN THIS CHAPTER

 » Working with ranges in your
VBA code

 » Changing Boolean and non-Boolean
settings

 » Manipulating charts with VBA

 » Making your VBA code run as fast as
possible

220 PART 3 Programming Concepts

Working with Ranges
Most of your VBA programming probably involves worksheet ranges. (For some
background on Range objects, refer to Chapter 8.) When working with Range
objects, keep the following points in mind:

 » Your VBA doesn’t need to select a range to work with it.

 » If your code does select a range, its worksheet must be active.

 » The macro recorder doesn’t always generate the best code. Often, you can
create your macro by using the recorder and then editing the code to make
it better.

 » It’s often a good idea to use named ranges in your VBA code. For example,
using Range(“Total”) is better than using Range(“D45”). In the latter case, if
you add a row above row 45, you need to modify the macro so that it uses the
correct range address (D46). Note that you name a range of cells by choosing
Formulas  ➪   Defined Names  ➪   Define Name.

 » When running a macro that works on the current range selection, the user
might select entire columns or rows. In most cases, you don’t want to loop
through every cell in the selection; that could take a long time. Your macro
should create a subset of the selection consisting of only the nonblank cells.

 » Excel allows for multiple selections. For example, you can select a range, press
Ctrl, and select another range with your mouse. Your code should test for a
multiple selection and take appropriate actions.

The examples in this section, which are available at this book’s website (https://
www.dummies.com/go/excelvbaprogrammingfd6e), demonstrate these points.

If you prefer to enter these examples yourself, press Alt+F11 to activate the
VBE. Then insert a VBA module and type the code. Make sure that the workbook is
set up properly. For example, if the example uses two sheets named Sheet1 and
Sheet2, make sure that the workbook has sheets with those names.

Copying a range
Copying a range ranks right up there as one of the favorite Excel activities of all
time. When you turn on the macro recorder and copy a range from A1:A5 to B1:B5,
you get this VBA macro:

https://www.dummies.com/go/excelvbaprogrammingfd6e
https://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 14 VBA Programming Examples 221

Sub CopyRange()
 Range("A1:A5").Select
 Selection.Copy
 Range("B1").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
End Sub

Notice the last statement. This statement was generated by pressing Esc, which
cancels the dotted-line outline that appears in the worksheet when you copy a
range.

Although this macro works fine, you can copy a range more efficiently. You can
produce the same result with the following one-line macro, which doesn’t select
any cells (and also doesn’t require setting CutCopyMode to False):

Sub CopyRange2()
 Range("A1:A5").Copy Range("B1")
End Sub

This procedure takes advantage that the Copy method can use an argument speci-
fying the destination.

Alternatively, you also have the option of including the Destination argument by
name to make your code easier to read. For example:

Sub CopyRange2()
 Range("A1:A5").Copy Destination:=Range("B1")
End Sub

Copying a variable-size range
In many cases, you need to copy a range of cells but don’t know the exact row and
column dimensions. For example, you might have a workbook that tracks weekly
sales, and the number of rows changes as you add new data.

Figure 14-1 shows a range in a worksheet. This range consists of several rows, and
the number of rows changes from day to day. Because you don’t know the exact
range address at any given time, you need a way to write code that doesn’t use a
range address.

222 PART 3 Programming Concepts

The following macro demonstrates how to copy this range from the active work-
sheet to Sheet2 (beginning at cell A1). It uses the CurrentRegion property, which
returns a Range object that corresponds to the block of cells around a particular
cell. In this case, that cell is A1.

Sub CopyCurrentRegion()
 Dim sh As Worksheet

 Set sh = ActiveSheet
 Range("A1").CurrentRegion.Copy
 Sheets("Sheet2").Select
 Range("A1").Select
 ActiveSheet.Paste
 sh.Select
 Application.CutCopyMode = False
End Sub

Using the CurrentRegion property is equivalent to choosing Home ➪ Editing ➪
Find & Select ➪ GoTo Special (which displays the GoTo Special dialog box) and
choosing the Current Region option. To see how this works, record your actions
while issuing that command. Generally, the CurrentRegion consists of a rectangu-
lar block of cells surrounded by one or more blank rows or columns.

You can make this macro even more efficient by not selecting the destination. The
following macro takes advantage of the fact that the Copy method can use an
argument for the destination range:

Sub CopyCurrentRegion2()

 Range("A1").CurrentRegion.Copy Sheets("Sheet2").Range("A1")

End Sub

FIGURE 14-1:
This range can
consist of any

number of rows.

CHAPTER 14 VBA Programming Examples 223

It’s even a bit easier if the data is in the form of a table (created in Excel; choose
Insert ➪ Tables ➪ Table). The table has a name (such as Table1) and expands
automatically when new data is added.

Sub CopyTable()
 Range("Table1").Copy Sheets("Sheet2").Range("A1")
End Sub

If you try this, you’ll find that the header row in the table is not copied because the
name Table1 doesn’t include that row. If you need to include the header row,
change the table reference to the following:

Range("Table1[#All]")

Tables are the one of the best features added to Excel in recent memory. In VBA,
tables are called ListObjects. A ListObject has a few properties that point to ranges
like Range, DataBodyRange, and HeaderRowRange. The CopyTable procedure
could also use a ListObject to get to the range:

Sub CopyTable2()

 ActiveSheet.ListObjects("Table1").Range.Copy Sheets("Sheet2").Range("A1")

End Sub

Selecting to the end of a row or column
You’re probably in the habit of using key combinations, such as Ctrl+Shift+right
arrow and Ctrl+Shift+down arrow, to select a range that consists of everything
from the active cell to the end of a row or a column. Not surprisingly, you can
write macros that perform these types of selections.

You can use the CurrentRegion property to select an entire block of cells. But what
if you want to select, say, one column from a block of cells? Fortunately, VBA can
accommodate this type of action. The following VBA procedure selects the range
beginning at the active cell and extending down to the cell just above the first
blank cell in the column. After selecting the range, you can do whatever you want
with it — copy it, move it, format it, and so on:

Sub SelectDown()
 Range(ActiveCell, ActiveCell.End(xlDown)).Select
End Sub

You can make this type of selection manually: Select the first cell, hold down the
Shift key, press End, and then press the down-arrow key.

224 PART 3 Programming Concepts

This example uses the End method of the ActiveCell object, which returns a Range
object. The End method takes one argument, which can be any of the following
constants:

 » xlUp

 » xlDown

 » xlToLeft

 » xlToRight

Keep in mind that it’s not necessary to select a range before doing something with
it. The following macro applies bold formatting to a variable-size (single-column)
range without selecting the range:

Sub MakeBold()

 Range(ActiveCell, ActiveCell.End(xlDown)).Font.Bold = True

End Sub

Selecting a row or column
The following procedure demonstrates how to select the column that contains the
active cell. It uses the EntireColumn property, which returns a Range object con-
sisting of a full column:

Sub SelectColumn()
 ActiveCell.EntireColumn.Select
End Sub

As you might expect, VBA also offers an EntireRow property, which returns a
Range object consisting of an entire row.

Moving a range
You move a range by cutting it to the Clipboard and then pasting it in another area.
If you record your actions while performing a move operation, the macro recorder
generates code like the following:

Sub MoveRange()
 Range("A1:C6").Select
 Selection.Cut

CHAPTER 14 VBA Programming Examples 225

 Range("A10").Select
 ActiveSheet.Paste
End Sub

As with the copying example located earlier in this chapter, this is not the best
way to move a range of cells. In fact, you can move a range with a single VBA
statement, as follows:

Sub MoveRange2()
 Range("A1:C6").Cut Range("A10")
End Sub

This macro takes advantage of the fact that the Cut method can use an argument
that specifies the destination. Notice also that the active cell didn’t change.
Using the Cut method’s argument means the cell pointer remains in its original
position.

Looping through a range efficiently
Many macros perform an operation on each cell in a range, or they perform
selected actions based on each cell’s content. These macros usually include a For-
Next loop that processes each cell in the range.

The following example demonstrates how to loop through a range of cells. In this
case, the range is the current selection. An object variable named Cell refers to the
cell being processed. Within the For Each-Next loop, the single statement evalu-
ates the cell and applies bold formatting if the cell contains a positive value.

Sub ProcessCells()
 Dim Cell As Range
 For Each Cell In Selection
 If Cell.Value > 0 Then Cell.Font.Bold = True
 Next Cell
End Sub

This example works, but what if the user’s selection consists of an entire column
or row? This is not uncommon because Excel lets you perform operations on entire
columns or rows. In such a case, the macro seems to take forever because it
loops through all cells (all 1,048,576 of them) in the column — even the blank
cells. To make the macro more efficient, you need a way to process only the non-
blank cells.

226 PART 3 Programming Concepts

The following routine does just that by using the SpecialCells method. (Type
SpecialCells in any code pane or in the Immediate window and press F1 for spe-
cific details about its arguments.) This routine uses the Set keyword to create two
new Range objects: the selection’s subset that consists of cells with constants, and
the selection’s subset that consists of cells with formulas. The routine processes
each of these subsets, with the net effect of skipping all blank cells. Pretty slick, eh?

Sub SkipBlanks()

 Dim ConstantCells As Range

 Dim FormulaCells As Range

 Dim cell As Range

' Ignore errors

 On Error Resume Next

' Process the constants

 Set ConstantCells = Selection.SpecialCells(xlConstants)

 For Each cell In ConstantCells

 If cell.Value > 0 Then

 cell.Font.Bold = True

 End If

 Next cell

' Process the formulas

 Set FormulaCells = Selection.SpecialCells(xlFormulas)

 For Each cell In FormulaCells

 If cell.Value > 0 Then

 cell.Font.Bold = True

 End If

 Next cell

End Sub

The SkipBlanks procedure works equally fast, regardless of what you select. For
example, you can select the range, all columns in the range, all rows in the range,
or even the entire worksheet. It’s a vast improvement over the ProcessCells pro-
cedure presented earlier in this section.

Notice the use of the following statement in this code:

On Error Resume Next

This statement tells Excel to ignore any errors that occur and simply process the
next statement. (See Chapter 12 for a discussion of error handling.) This statement
is necessary because the SpecialCells method produces an error if no cells qualify.

CHAPTER 14 VBA Programming Examples 227

Using the SpecialCells method is equivalent to choosing Home ➪ Editing ➪ Find &
Select ➪ GoTo Special and selecting the Constants option or the Formulas option.
To get a feel for how this works, record your actions while you issue that com-
mand and select various options.

Looping through a range efficiently (Part II)
And now, the sequel. This section demonstrates another way to process cells in an
efficient manner. This method takes advantage of the UsedRange property —
which returns a Range object that consists only of the used area of the worksheet.
It also uses the Intersect method, which returns a Range object that consists of
cells that two ranges have in common.

Here’s a variation of the SkipBlanks procedure from the previous section:

Sub SkipBlanks2()

 Dim WorkRange As Range

 Dim cell As Range

 Set WorkRange = Intersect(Selection, ActiveSheet.UsedRange)

 For Each cell In WorkRange

 If cell.Value > 0 Then

 cell.Font.Bold = True

 End If

 Next cell

End Sub

The WorkRange object variable consists of cells that are common to the user’s
selection and the worksheet’s used range. Therefore, if an entire column is
selected, WorkRange contains only the cells that are in that column and also
within the used area of the worksheet. It’s fast and efficient, with no time wasted
on processing cells that are outside the worksheet’s used area.

Prompting for a cell value
As shown in Figure 14-2, you can use VBA’s InputBox function to get a value from
the user. Then you can insert that value into a cell. The following procedure dem-
onstrates how to ask the user for a value and place the value in cell A1 of the active
worksheet, using only one statement:

Sub GetValue()
 Range("A1").Value = InputBox(_
 "Enter the value for cell A1")
End Sub

228 PART 3 Programming Concepts

If you try this example, you’ll find that clicking the Cancel button in the InputBox
erases the current value in cell A1. Erasing the user’s data isn’t very good pro-
gramming practice. In fact, clicking Cancel should do nothing at all.

The following macro demonstrates a better approach: using a variable (x) to store
the value entered by the user. If the value is not empty (that is, the user didn’t
click Cancel), the value of x is placed in cell A1. Otherwise, nothing happens.

Sub GetValue2()
 Dim x as String
 x = InputBox("Enter the value for cell A1")
 If x <> "" Then Range("A1").Value = x
End Sub

The variable x is defined as a String data type because InputBox always returns a
string. If the user clicks Cancel, it returns an empty string.

Determining the selection type
If you design your macro to work with a range selection, the macro must be able
to determine whether a range is actually selected. If something other than a range
is selected (such as a chart or a shape), the macro will probably bomb. The follow-
ing statement uses the VBA TypeName function to display the type of object that
is currently selected:

MsgBox TypeName(Selection)

If a Range object is selected, the MsgBox displays Range. If your macro works only
with ranges, you can use an If statement to ensure that a range is selected. This
example displays a message and exits the procedure if the current selection is not
a Range object:

FIGURE 14-2:
Use the VBA

InputBox function
to get a value

from the user.

CHAPTER 14 VBA Programming Examples 229

Sub CheckSelection()
 If TypeName(Selection) <> "Range" Then
 MsgBox "Select a range."
 Exit Sub
 End If
' ... [Other statements go here]
End Sub

Identifying a multiple selection
As you know, Excel allows multiple selections by pressing Ctrl while choosing
objects or ranges. This can cause problems with some macros. For example, you
can’t copy a multiple selection that doesn’t have the same number of rows and
columns. If you attempt to do so, Excel scolds you with the message shown in
Figure 14-3.

The following macro demonstrates how to determine whether the user made a
multiple selection so your macro can take appropriate action:

Sub MultipleSelection()
 If Selection.Areas.Count > 1 Then
 MsgBox "Multiple selections not allowed."
 Exit Sub
 End If
' ... [Other statements go here]
End Sub

This example uses the Areas method, which returns a collection of all ranges in
the selection. The Count property returns the number of objects in the Areas
collection.

FIGURE 14-3:
Excel doesn’t like

it when you try to
copy a multiple

selection.

230 PART 3 Programming Concepts

Changing Excel Settings
Some of the most useful macros are simple procedures that change one or more of
Excel’s settings. For example, if you find yourself making frequent trips to the
Excel Options dialog box to change a setting, that’s a good candidate for a simple
time-saving macro.

This section presents two examples that show you how to change settings in
Excel. You can apply the general principles demonstrated by these examples to
other operations that change settings.

Changing Boolean settings
Like a light switch, a Boolean setting is either on or off. For example, you might
want to create a macro that turns the worksheet page break display on and off.
After you print or preview a worksheet, Excel displays dashed lines to indicate the
page breaks. Some people find these dashed lines very annoying. Unfortunately,
the only way to get rid of the page break display is to open the Excel Options dialog
box, click the Advanced tab, and scroll down until you find the Show Page Breaks
check box. If you turn on the macro recorder when you change that option, Excel
generates the following code:

ActiveSheet.DisplayPageBreaks = False

On the other hand, if page breaks aren’t visible when you record the macro, Excel
generates the following code:

ActiveSheet.DisplayPageBreaks = True

This may lead you to conclude that you need two macros: one to turn on the page
break display, and one to turn it off. Not true. The following procedure uses the
Not operator, which turns True to False and False to True. Executing the ToggleP-
ageBreaks procedure is a simple way to toggle the page break display from True to
False and from False to True:

Sub TogglePageBreaks()
 On Error Resume Next
 ActiveSheet.DisplayPageBreaks = Not _
 ActiveSheet.DisplayPageBreaks
End Sub

CHAPTER 14 VBA Programming Examples 231

The first statement tells Excel to ignore any errors. For example, a chart sheet
doesn’t display page breaks, so if you execute the macro when a chart sheet is
active, you won’t see an error message.

You can use this technique to toggle any settings that have Boolean (True or False)
values.

Changing non-Boolean settings
You can use a Select Case structure for non-Boolean settings. This example tog-
gles the calculation mode between manual and automatic and displays a message
indicating the current mode:

Sub ToggleCalcMode()

 Select Case Application.Calculation

 Case xlManual

 Application.Calculation = xlCalculationAutomatic

 MsgBox "Automatic Calculation Mode"

 Case xlAutomatic

 Application.Calculation = xlCalculationManual

 MsgBox "Manual Calculation Mode"

 End Select

End Sub

You can adapt this technique for changing other non-Boolean settings.

Working with Charts
Charts are jam-packed with different objects, so manipulating charts with VBA
can be a bit of a challenge due to some differences between versions of Excel.

For instance, imagine you were to record a macro in Excel 2013 or newer while you
created a basic column chart. While still recording, you decide to delete the chart’s
gridlines and change the chart’s title. Your recorded macro would look similar to
this:

Sub Macro1()

 ActiveSheet.Shapes.AddChart2(201, xlColumnClustered).Select

 ActiveChart.SetSourceData Source:=Range("Sheet1!A1:A3")

 ActiveChart.SetElement msoElementPrimaryValueGridLinesNone

232 PART 3 Programming Concepts

 ActiveChart.ChartTitle.Select

 ActiveChart.ChartTitle.Text = "This is my chart"

End Sub

Note the use of the AddChart2 method (in the first line of code). The AddChart2
method was introduced in Excel 2013.

Now, if you were to record that same macro in Excel 2010, you get this code:

Sub Macro1()

 ActiveSheet.Shapes.AddChart.Select

 ActiveChart.ChartType = xlColumnClustered

 ActiveChart.SetSourceData Source:=Range("Sheet1!A1:A3")

 ActiveChart.Axes(xlValue).MajorGridlines.Select

 Selection.Delete

 ActiveChart.SetElement msoElementChartTitleAboveChart

 ActiveChart.ChartTitle.Text = "This is my chart"

End Sub

What does it all mean? It means that the macro recorded in Excel 2013 or later
versions won’t work in Excel 2010. But the macro recorded in Excel 2010 will work
in Excel 2013 and later. In other words, the Excel 2010 macro exhibits forward
compatibility. The Excel 2013 (and later) macro is not backward-compatible.

A typical Excel user would probably know nothing about macro compatibility as it
relates to chart creation. But if you share your macro with someone who uses an
earlier version, you’ll find out about it quickly. Bottom line? If you rely on the
macro recorder for chart-related macros, make sure that you test the macros with
all versions of Excel that will be running the macros.

AddChart versus AddChart2
Here’s the official syntax of the AddChart method (which is compatible with Excel
2007 and later):

.AddChart(Type, Left, Top, Width, Height)

Here’s the syntax of the AddChart2 method (which is compatible only with Excel
2013 and later versions):

.AddChart2 (Style, XlChartType, Left, Top, Width, Height, NewLayout)

As you can see, the AddChart2 method takes several additional arguments —
arguments that specify the style, chart type, and layout. The AddChart method, on

CHAPTER 14 VBA Programming Examples 233

the other hand, simply creates an empty chart. The specifics for the chart must be
provided in additional statements.

Examining the recorded code does reveal a few things that may be helpful in writ-
ing your own chart-related macros. If you’re curious, here’s a handcrafted version
of that macro that creates a chart from the selected range:

Sub CreateAChart()
 Dim ChartData As Range
 Dim ChartShape As Shape
 Dim NewChart As Chart

' Create object variables
 Set ChartData = ActiveWindow.RangeSelection
 Set ChartShape = ActiveSheet.Shapes.AddChart
 Set NewChart = ChartShape.Chart
 With NewChart
 .ChartType = xlColumnClustered
 .SetSourceData Source:=Range(ChartData.Address)
 .SetElement msoElementLegendRight
 .SetElement msoElementChartTitleAboveChart
 .ChartTitle.Text = "This is my chart"
 End With
End Sub

This macro is compatible with Excel 2007 and later. The chart that’s created is a
clustered column chart with a legend and a title. This basic chart-creating macro
can be customized easily. One way to do it is to record your actions while you
modify the chart and then use the recorded code to guide you.

By the way, have a look at the With End-With construct later in this chapter. It’s
a handy way to save some typing and make your code easier to read.

If you need to write VBA macros that manipulate charts, you must understand
some terminology. An embedded chart on a worksheet is an object called a ChartO-
bject. You can activate a ChartObject much like you activate a sheet. The following
statement activates the ChartObject named Chart 1:

ActiveSheet.ChartObjects("Chart 1").Activate

After you activate the chart, you can refer to it in your VBA code as the ActiveChart.
If the chart is on a separate chart sheet, it becomes the active chart as soon as you
activate that chart sheet.

234 PART 3 Programming Concepts

A ChartObject is also a Shape, which can be a bit confusing. In fact, when your VBA
code creates a chart, it starts by adding a new Shape. You can also activate a chart
by selecting the Shape object that holds the chart:

ActiveSheet.Shapes("Chart 1").Select

When you click an embedded chart, Excel actually selects an object inside the
ChartObject object. You can select the ChartObject itself by pressing Ctrl while
clicking the embedded chart.

Modifying the chart type
Here’s a confusing statement for you: A ChartObject object acts as a container for
a Chart object. Read that a few times, and it might actually make sense.

To modify a chart with VBA, you don’t have to activate the chart. Rather, the Chart
method can return the chart contained in the ChartObject. Are you thoroughly
confused yet? The following two procedures have the same effect: They change
the chart named Chart 1 to an area chart. The first procedure activates the chart
first and then works with the active chart. The second procedure doesn’t activate
the chart. Rather, it uses the Chart property to return the Chart object contained
in the ChartObject object.

Sub ModifyChart1()

 ActiveSheet.ChartObjects("Chart 1").Activate

 ActiveChart.Type = xlArea

End Sub

Sub ModifyChart2()

 ActiveSheet.ChartObjects("Chart 1").Chart.Type = xlArea

End Sub

Looping through the ChartObjects
collection
This example changes the chart type of every embedded chart in the active sheet.
The procedure uses a For Each-Next loop to cycle through each object in the
ChartObjects collection, access the Chart object in each, and change its Type
property.

CHAPTER 14 VBA Programming Examples 235

Sub ChartType()
 Dim cht As ChartObject
 For Each cht In ActiveSheet.ChartObjects
 cht.Chart.Type = xlArea
 Next cht
End Sub

The following macro performs the same function but works on all the chart sheets
in the active workbook:

Sub ChartType2()
 Dim cht As Chart
 For Each cht In ActiveWorkbook.Charts
 cht.Type = xlArea
 Next cht
End Sub

Modifying chart properties
The following example changes the Legend font for all charts on the active sheet.
It uses a For-Next loop to process all ChartObject objects:

Sub LegendMod()
 Dim chtObj As ChartObject
 For Each chtObj In ActiveSheet.ChartObjects
 With chtObj.Chart.Legend.Font
 .Name = "Calibri"
 .FontStyle = "Bold"
 .Size = 12
 End With
 Next chtObj
End Sub

Note that the Font object is contained in the Legend object, which is contained in
the Chart object, which is contained in the ChartObjects collection. Now do you
understand why it’s called an object hierarchy?

Applying chart formatting
This example applies several types of formatting to the active chart. Again, you
don’t have to magically know all the syntax to use. This particular procedure was

236 PART 3 Programming Concepts

created by recording a macro, then cleaning the code to remove all the extraneous
syntax put in by the macro recorder.

Sub ChartMods()

 ActiveChart.Type = xlArea

 ActiveChart.ChartArea.Font.Name = "Calibri"

 ActiveChart.ChartArea.Font.FontStyle = "Regular"

 ActiveChart.ChartArea.Font.Size = 9

 ActiveChart.PlotArea.Interior.ColorIndex = xlNone

 ActiveChart.Axes(xlValue).TickLabels.Font.Bold = True

 ActiveChart.Axes(xlCategory).TickLabels.Font.Bold = True

 ActiveChart.Legend.Position = xlBottom

End Sub

You must activate a chart before executing the ChartMods macro. Activate an
embedded chart by clicking it. To activate a chart in a chart sheet, activate the
chart sheet.

To ensure that a chart is selected, you can add a statement to determine whether
a chart is active. Here’s the modified macro, which displays a message (and ends)
if a chart isn’t activated:

Sub ChartMods2()

 If ActiveChart Is Nothing Then

 MsgBox "Activate a chart."

 Exit Sub

 End If

 ActiveChart.Type = xlArea

 ActiveChart.ChartArea.Font.Name = "Calibri"

 ActiveChart.ChartArea.Font.FontStyle = "Regular"

 ActiveChart.ChartArea.Font.Size = 9

 ActiveChart.PlotArea.Interior.ColorIndex = xlNone

 ActiveChart.Axes(xlValue).TickLabels.Font.Bold = True

 ActiveChart.Axes(xlCategory).TickLabels.Font.Bold = True

 ActiveChart.Legend.Position = xlBottom

End Sub

Here’s another version that uses the With-End With construct to save some
typing and make the code a bit clearer. Flip ahead a few pages to read about the
With End-With structure. It also uses an error handler (see Chapter 12) instead of
an If statement to determine if a chart is active.

CHAPTER 14 VBA Programming Examples 237

Sub ChartMods3()

 On Error GoTo ErrorHandler

 With ActiveChart

 .Type = xlArea

 .ChartArea.Font.Name = "Calibri"

 .ChartArea.Font.FontStyle = "Regular"

 .ChartArea.Font.Size = 9

 .PlotArea.Interior.ColorIndex = xlNone

 .Axes(xlValue).TickLabels.Font.Bold = True

 .Axes(xlCategory).TickLabels.Font.Bold = True

 .Legend.Position = xlBottom

 End With

 Exit Sub

ErrorHandler:

 MsgBox "Activate a chart first."

End Sub

When it comes to using VBA to work with charts, this short section barely scratches
the surface. There’s a lot more to it, of course, but at least this basic introduction
can get you headed in the right direction.

VBA Speed Tips
VBA is fast, but it’s not always fast enough. (Computer programs are never fast
enough.) This section presents some programming examples you can use to speed
up your macros.

Turning off screen updating
When executing a macro, you can sit back and watch all the onscreen action that
occurs in the macro. Although doing this can be instructive, after you get the
macro working properly, it’s often annoying and can slow the performance of
your macro considerably. Fortunately, you can disable the screen updating that
normally occurs when you execute a macro. To turn off screen updating, use the
following statement:

Application.ScreenUpdating = False

If you want the user to see what’s happening at any point during the macro, use
the following statement to turn screen updating back on:

Application.ScreenUpdating = True

238 PART 3 Programming Concepts

To demonstrate the difference in speed, execute this simple macro, which fills a
range with numbers:

Sub FillRange()
 Dim r as Long, c As Long
 Dim Number as Long
 Number = 0
 For r = 1 To 50
 For c = 1 To 50
 Number = Number + 1
 Cells(r, c).Select
 Cells(r, c).Value = Number
 Next c
 Next r
End Sub

You see each cell being selected and the value being entered in the cells. Now
insert the following statement at the beginning of the procedure and execute it
again:

Application.ScreenUpdating = False

The range fills much faster, and you don’t see the result until the macro is fin-
ished running and screen updating is (automatically) set to True.

When you’re debugging code, program execution sometimes ends somewhere in
the middle without your having turned Screen updating back on. This sometimes
causes Excel’s application window to become totally unresponsive. The way out of
this frozen state is simple: Go back to the VBE, and execute the following state-
ment in the Immediate window:

Application.ScreenUpdating = True

Turning off automatic calculation
If you have a worksheet with many complex formulas, you might find that you can
speed up things considerably by setting the calculation mode to manual while
your macro is executing. When the macro finishes, set the calculation mode back
to automatic.

The following statement sets the Excel calculation mode to manual:

Application.Calculation = xlCalculationManual

CHAPTER 14 VBA Programming Examples 239

Execute the next statement to set the calculation mode to automatic:

Application.Calculation = xlCalculationAutomatic

If your code uses cells with formula results, turning off calculation means that the
cells aren’t recalculated unless you explicitly tell Excel to do so.

Eliminating those pesky alert messages
As you know, a macro can automatically perform a series of actions. In many
cases, you can start a macro and then go hang out in the break room while Excel
does its thing. Some Excel operations, however, display messages that require a
human response. For example, if your macro deletes a nonempty sheet, your code
comes to a screeching halt while Excel waits for your response to the message
shown in Figure 14-4. These types of messages mean that you can’t leave Excel
unattended while it executes your macro — unless you know the secret trick.

The secret trick to avoiding these alert messages is inserting the following VBA
statement into your macro:

Application.DisplayAlerts = False

Excel executes the default operation for these types of messages. In the case of
deleting a sheet, the default operation is Delete (which is just what you want to
happen). If you’re not sure what the default operation is, perform a test to see
what happens.

When the procedure ends, Excel automatically resets the DisplayAlerts property to
True (its normal state). If you need to turn the alerts back on before the procedure
ends, use this statement:

Application.DisplayAlerts = True

FIGURE 14-4:
You can instruct

Excel to not
display these

types of alerts
while running a

macro.

240 PART 3 Programming Concepts

If you change application settings, be sure to change them back — even if you
encounter an error. Fortunately, you can use error handling (see Chapter 12 to set
them back to the default value in your error handling code. This example uses two
labels: ErrorExit that sets all the properties back to their defaults, and ErrorHan-
dler that displays the error and calls ErrorExit.

Sub ErrorHandlerResetValues()

 On Error GoTo ErrorHandler

 Application.Calculation = xlCalculationManual
 Application.DisplayAlerts = False
 Application.ScreenUpdating = False

 'This code generates an error
 Debug.Print 1 / 0

ErrorExit:
 'turn off error handing and set the
 'properties back to their default
 On Error Resume Next
 Application.Calculation = xlCalculationAutomatic
 Application.DisplayAlerts = True
 Application.ScreenUpdating = True
 Exit Sub

ErrorHandler:
 MsgBox Err.Description
 'if there is an error, this calls
 'the clean up part of the macro
 Resume ErrorExit

End Sub

Simplifying object references
As you probably already know, references to objects can become very lengthy. For
example, a fully qualified reference to a Range object may look like this:

Workbooks("MyBook.xlsx").Worksheets("Sheet1") _
 .Range("InterestRate")

CHAPTER 14 VBA Programming Examples 241

If your macro frequently uses this range, you might want to create an object vari-
able by using the Set command. For example, the following statement assigns this
Range object to an object variable named InterestRate:

Set Rate = Workbooks("MyBook.xlsx") _
 .Worksheets("Sheet1").Range("InterestRate")

After defining this object variable, you can use the variable Rate rather than the
lengthy reference. For example, you can change the value of the cell named
InterestRate:

Rate.Value = 0.085

This is much easier to type (and understand) than the following statement:

Workbooks("MyBook.xlsx").Worksheets("Sheet1"). _
 Range("InterestRate") = 0.085

In addition to simplifying your coding, using object variables speeds up your mac-
ros considerably; sometimes twice as fast.

Declaring variable types
You usually don’t have to worry about the type of data you assign to a variable.
Excel handles all the details for you behind the scenes. For example, if you have a
variable named MyVar, you can assign a number of any type to that variable. You
can even assign a text string to it later in the procedure.

If you want your procedures to execute as fast as possible (and avoid some poten-
tially nasty problems), tell Excel what type of data to assigned to each of your
variables. This is known as declaring a variable’s type. (Refer to Chapter 7 for com-
plete details.) Get into the habit of declaring all variables that you use.

In general, you should use the data type that requires the smallest number of
bytes yet can still handle all the data assigned to it. When VBA works with data,
execution speed depends on the number of bytes VBA has at its disposal. In other
words, the fewer bytes data uses, the faster VBA can access and manipulate the
data. An exception to this is the Integer data type. If speed is critical, use the Long
data type instead.

242 PART 3 Programming Concepts

If you use an object variable (as described in the preceding section), you can
declare the variable as a particular object type. Here’s an example:

Dim Rate as Range
Set Rate = Workbooks("MyBook.xlsx") _
 .Worksheets("Sheet1").Range("InterestRate")

Using the With-End With structure
Do you need to set a number of properties for an object? Your code runs faster if
you use the With-End With structure. An additional benefit is that your code may
be easier to read.

The following code doesn’t use With-End With:

Selection.HorizontalAlignment = xlCenter
Selection.VerticalAlignment = xlCenter
Selection.WrapText = True
Selection.Orientation = 0
Selection.ShrinkToFit = False
Selection.MergeCells = False

Here’s the same code, rewritten to use With-End With:

With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlCenter
 .WrapText = True
 .Orientation = 0
 .ShrinkToFit = False
 .MergeCells = False
End With

As you can see, this code tells tell Excel that the next few statements apply to the
Selection object. This is why all the statements inside the With-End With struc-
ture begin with a dot. You’re simply avoiding the need to reference the same object
over and over (in this case, the Selection object). This not only means less typing
for you, but it means less processing for Excel.

4Communicating
with Your Users

IN THIS PART . . .

Save time in various ways by using built-in custom dialog
box alternatives.

Discover how to develop custom dialog boxes (also
known as UserForms).

Work with dialog box controls, such as command
buttons, list boxes, and check boxes.

Find out lots of useful tips and tricks for creating custom
dialog boxes.

Modify Excel’s user interface to make running your
macros easier.

CHAPTER 15 Simple Dialog Boxes 245

Chapter 15
Simple Dialog Boxes

You can’t use Excel very long without being exposed to dialog boxes. They
seem to pop up all the time. Like most Windows programs, Excel uses
 dialog boxes to obtain information, clarify commands, and display

 messages. If you develop VBA macros, you can create your own dialog boxes that
work just like those built into Excel. Those custom dialog boxes are called
UserForms in VBA.

This chapter doesn’t tell you anything about creating UserForms. Rather, it
describes some useful techniques you might be able to use in place of UserForms.
If you can get the information you need without the trouble of designing and
building a UserForm, you’ll save time and have simpler code (which usually means
fewer bugs). Sometimes you can’t or you just want more control over the user
interface. For those cases, see Chapters 16 through 18, which cover UserForms.

IN THIS CHAPTER

 » Saving time by using any of several
alternatives to UserForms

 » Using the InputBox and MsgBox
functions to get information from
the user

 » Getting a filename and path from
the user

 » Getting a folder name from the user

 » Writing VBA code to execute Ribbon
commands that display Excel built-in
dialog boxes

246 PART 4 Communicating with Your Users

Interacting with the User in VBA
Some of the VBA macros you create behave the same every time you execute them.
For example, you might develop a macro that enters a list of your employees into
a worksheet range. This macro always produces the same result and requires no
additional user input.

You might develop other macros, however, that require the user to supply a piece
of information for the macro to work. If you write a macro that lists all the
employees for a particular department, you might need to get the department
name from the user first. Macros also might need to display a message to the user.
Whether your macro asks the user for information or displays information to the
user, a custom dialog box, known as a UserForm, gives you the most control of how
you interact with your users.

Creating UserForms takes time and adds complexity to your code. Before delving
into the topic of creating UserForms in the next chapter, you must know about
some potentially time-saving alternatives.

VBA allows you to display several types of dialog boxes that you can sometimes
use in place of a handcrafted UserForm. You can customize these built-in dialog
boxes in some ways, but they certainly don’t offer the all the options available in
a UserForm. In some cases, however, they’re just what the doctor ordered.

In this chapter, you read about

 » The MsgBox function

 » The InputBox function

 » The GetOpenFilename method

 » The GetSaveAsFilename method

 » The FileDialog method

You also discover how to use VBA to display some of Excel’s built-in dialog boxes,
which are the dialog boxes that Excel uses to get information from you, such as
cell formatting options or data validation settings.

CHAPTER 15 Simple Dialog Boxes 247

Displaying Messages with the
MsgBox Function

By now, you’re probably familiar with the VBA MsgBox function; several of the
examples in the preceding chapters made use of the MsgBox function. The
MsgBox function, whose main arguments are shown in Table 15-1, is handy for
displaying information and getting simple user input. It’s able to accept user
input because it’s a function. A function, as you probably know, returns a value. In
the case of the MsgBox function, it uses a dialog box to get the value that it returns.
Keep reading to see exactly how it works.

Here’s a simplified version of the syntax of the MsgBox function:

MsgBox(prompt[, buttons][, title])

In syntax descriptions, arguments inside of square brackets are optional. For the
MsgBox function, only the prompt argument is required.

Displaying a simple message box
You can use the MsgBox function in two ways:

 » To simply show a message to the user: In this case, you don’t care about
the result returned by the function.

 » To get a response from the user: In this case, you do care about the
result returned by the function. The result depends on the button that the
user clicks.

TABLE 15-1 MsgBox Function Arguments
Argument What It Affects

Prompt The text Excel displays in the message box

Buttons A number that specifies which buttons (along with what icon) appear in
the message box (optional)

Title The text that appears in the message box’s title bar (optional)

248 PART 4 Communicating with Your Users

If you use the MsgBox function by itself, don’t include parentheses around the
arguments. The following example simply displays a message and doesn’t return
a result. When the message is displayed, the code stops until the user clicks OK.

Sub MsgBoxDemo()
 MsgBox "Click OK to begin printing."
 Sheets("Results").PrintOut
End Sub

Figure 15-1 shows how this message box looks. In this case, printing commences
when the user clicks OK. Did you notice that there is no way to cancel the printing?
The next section describes how to fix that.

Getting a response from a message box
If you display a message box that has more than just an OK button, you’ll probably
want to know which button the user clicks. You’re in luck. The MsgBox function
returns a value that represents which button is clicked. You can then assign the
result of the MsgBox function to a variable.

The following code uses some of the built-in constants (outlined in Table 15-2)
that make it easy to work with the values returned by MsgBox:

Sub GetAnswer()
 Dim Ans As Long
 Ans = MsgBox("Start printing?", vbYesNo)
 Select Case Ans
 Case vbYes
 ActiveSheet.PrintOut
 Case vbNo
 MsgBox "Printing canceled"
 End Select
End Sub

FIGURE 15-1:
A simple

message box.

CHAPTER 15 Simple Dialog Boxes 249

Figure 15-2 shows how the dialog box from the preceding example looks. When
you execute this procedure, the Ans variable is assigned a value of either vbYes or
vbNo, depending on which button the user clicks. The Select Case statement uses
the Ans value to determine which action the code should perform.

TABLE 15-2 Constants Used in the MsgBox Function
Constant Value What It Does

vbOKOnly 0 Displays OK button only.

vbOKCancel 1 Displays OK and Cancel buttons.

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

vbYesNo 4 Displays Yes and No buttons.

vbRetryCancel 5 Displays Retry and Cancel buttons.

vbCritical 16 Displays Critical Message icon.

vbQuestion 32 Displays Warning Query icon.

vbExclamation 48 Displays Warning Message icon.

vbInformation 64 Displays Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

FIGURE 15-2:
A simple message

box, with two
buttons.

250 PART 4 Communicating with Your Users

You can also use the MsgBox function result without using a variable, as the fol-
lowing example demonstrates:

Sub GetAnswer2()
 If MsgBox("Start printing?", vbYesNo) = vbYes Then
' ...[code if Yes is clicked]...
 Else
' ...[code if Yes is not clicked]...
 End If
End Sub

Customizing message boxes
The flexibility of the buttons argument makes it easy to customize your message
boxes. You can choose which buttons to display, determine whether an icon
appears, and decide which button is the default (the default button is “clicked” if
the user presses Enter).

To use more than one of these constants as an argument, just connect them with
a + operator. For example, to display a message box with Yes and No buttons and
an exclamation icon, use the following expression as the second MsgBox argument:

vbYesNo + vbExclamation

Or, if you prefer to make your code less understandable, use a value of 52 (that is,
4 + 48).

The following example uses a combination of constants to display a message box
with a Yes button and a No button (vbYesNo), as well as a question-mark icon
(vbQuestion). The constant vbDefaultButton2 designates the second button (No)
as the default button — that is, the button that is clicked if the user presses Enter.
For simplicity, you can assign these constants to the Config variable and then use
Config as the second argument in the MsgBox function:

Sub GetAnswer3()
 Dim Config As Long
 Dim Ans As Integer
 Config = vbYesNo + vbQuestion + vbDefaultButton2
 Ans = MsgBox("Process the monthly report?", Config)
 If Ans = vbYes Then RunReport
End Sub

CHAPTER 15 Simple Dialog Boxes 251

Figure 15-3 shows the message box Excel displays when you execute the
GetAnswer3 procedure. If the user clicks the Yes button, the routine executes the
procedure named RunReport (which is not shown). If the user clicks the No button
(or presses Enter), the routine ends with no action. Because the procedure omits
the title argument in the MsgBox function, Excel uses the default title, Microsoft
Excel.

The following routine provides another example of using the MsgBox function:

Sub GetAnswer4()
 Dim Msg As String, Title As String
 Dim Config As Long, Ans As Long
 Msg = "Do you want to process the monthly report?"
 Msg = Msg & vbNewLine & vbNewLine
 Msg = Msg & "Processing the monthly report will "
 Msg = Msg & "take approximately 15 minutes. It "
 Msg = Msg & "will generate a 30-page report for "
 Msg = Msg & "all sales offices for the current "
 Msg = Msg & "month."
 Title = "XYZ Marketing Company"
 Config = vbYesNo + vbQuestion
 Ans = MsgBox(Msg, Config, Title)
 If Ans = vbYes Then RunReport
End Sub

This example demonstrates a way to specify a longer message in a message box.
Here, the variable (Msg) and the concatenation operator (&) build the message in
a series of statements. The vbNewLine constant inserts a line-break character
that starts a new line (use it twice to insert a blank line). The Title argument
replaces the message box’s default title.

Figure 15-4 shows the message box Excel displays when you execute this
procedure.

FIGURE 15-3:
The MsgBox

function’s buttons
argument

determines what
appears in the
message box.

252 PART 4 Communicating with Your Users

Previous examples use constants (such as vbYes and vbNo) for the return value of
a MsgBox function. Table 15-3 lists a few other constants.

And that’s pretty much all you need to know about the MsgBox function. Use mes-
sage boxes with caution, though. There’s usually no reason to display message
boxes that serve no purpose. For example, people tend to get annoyed when they
see a message box every day that reads Good morning. Thanks for loading the
Budget Projection workbook.

Getting Data with an Input Box
An input box is a dialog box useful for obtaining a single piece of information typed
by the user. That information could be a number, a text string, or even a range
address. This is a good alternative to developing a UserForm when you need to get
only one value. In VBA, you can use the InputBox function to display an input box.

FIGURE 15-4:
This dialog box,

displayed by the
MsgBox function,
displays a title, an

icon, a message,
and two buttons.

TABLE 15-3 Constants Used as Return Values for the MsgBox Function
Constant Value What It Means

vbOK 1 User clicked OK.

vbCancel 2 User clicked Cancel.

vbAbort 3 User clicked Abort.

vbRetry 4 User clicked Retry.

vbIgnore 5 User clicked Ignore.

vbYes 6 User clicked Yes.

vbNo 7 User clicked No.

CHAPTER 15 Simple Dialog Boxes 253

Understanding the InputBox syntax
Here’s a simplified version of the syntax of the InputBox function:

InputBox(prompt[, title][, default])

Table 15-4 shows the key arguments for the InputBox function.

Using the InputBox function
Here’s a statement that shows how you can use the InputBox function:

TheName = InputBox("What is your name?", "Greetings")

When you execute this VBA statement, Excel displays the dialog box shown in
Figure 15-5. Notice that this example uses only the first two arguments and
doesn’t supply a default value. When the user enters a value and clicks OK, the
code assigns the value to the variable TheName.

The following example uses the third argument and provides a default value. The
default value is the username stored by Excel (the Application object’s UserName
property).

TABLE 15-4 InputBox Function Arguments
Argument What It Affects

Prompt The text displayed above the input area of the input box

Title The text displayed in the input box’s title bar (optional)

Default The default value for the user’s input (optional)

FIGURE 15-5:
The InputBox

function displays
this dialog box.

254 PART 4 Communicating with Your Users

Sub GetName()
 Dim TheName As String
 TheName = InputBox("What is your name?", _
 "Greetings", Application.UserName)
End Sub

The input box always displays a Cancel button. If the user clicks Cancel, the Input-
Box function returns an empty string.

The VBA InputBox function always returns a string, so if you need to get a num-
ber, your code needs to do some additional checking. The following example uses
the InputBox function to get a number. It uses the IsNumeric function to check
whether the string is a number. If the string does contain a number, all is fine. If
the user’s entry cannot be interpreted as a number, the code displays a mes-
sage box.

Sub AddSheets()
 Dim Prompt As String
 Dim Caption As String
 Dim DefValue As Long
 Dim NumSheets As String
 Prompt = "How many sheets do you want to add?"
 Caption = "Tell me..."
 DefValue = 1
 NumSheets = InputBox(Prompt, Caption, DefValue)

 If NumSheets = "" Then Exit Sub 'Canceled
 If IsNumeric(NumSheets) Then
 If NumSheets > 0 Then Sheets.Add Count:=NumSheets
 Else
 MsgBox "Invalid number"
 End If
End Sub

Figure 15-6 shows the input box that this routine produces.

FIGURE 15-6:
Another example

of using the
InputBox
function.

CHAPTER 15 Simple Dialog Boxes 255

Using the InputBox method
Microsoft seems to love confusion, so in addition to a function named InputBox
you also have access to a method with the same name.

One big advantage of using the Application.InputBox method is that your code can
prompt for a range selection. The user can then select the range in the worksheet
by highlighting the cells. Here’s a quick example that prompts the user to select a
range:

Sub GetRange()
 Dim Rng As Range
 On Error Resume Next
 Set Rng = Application.InputBox _
 (prompt:="Specify a range:", Type:=8)
 If Rng Is Nothing Then Exit Sub
 MsgBox "You selected range " & Rng.Address
End Sub

Figure 15-7 shows how it looks.

In this simple example, the code tells the user the address of the range that was
selected. In real life, your code would actually do something useful with the
selected range. A nice thing about this example is that Excel takes care of the error
handling. If you enter something that’s not a range, Excel tells you about it and
lets you try again.

FIGURE 15-7:
Using the

Application.
InputBox method

to get a range.

256 PART 4 Communicating with Your Users

The Application.InputBox method is similar to the VBA InputBox function, but it
also has some differences. Check the Help system for complete details (see
Chapter 23 for more information on the Help system).

Allowing the User to Select a File or Folder
If your VBA procedure needs to ask the user for a filename, you could use the
InputBox function and have the user do some typing. An input box usually isn’t
the best tool for this job, however, because most users find it difficult to remem-
ber paths, backslashes, filenames, and file extensions. In other words, it’s far too
easy to mess up when typing a filename.

For a better solution to this problem, use the GetOpenFilename method of the
Application object, which ensures that your code gets its hands on a valid file-
name, including its complete path. The GetOpenFilename method displays the
familiar Open dialog box (a dead ringer for the dialog box Excel displays when you
choose File ➪ Open ➪ Browse).

The GetOpenFilename method doesn’t actually open the specified file. This
method simply returns the user-selected filename as a string. Then you can write
code to do whatever you want with the filename.

Constructing a GetOpenFilename
statement
The official syntax of the GetOpenFilename method is as follows:

object.GetOpenFilename ([fileFilter][, filterIndex]
 [, title][, buttonText][, multiSelect])

The GetOpenFilename method takes the optional arguments shown in Table 15-5.

Selecting a file with GetOpenFilename
The FileFilter argument determines what appears in the dialog box’s Files of Type
drop-down list. This argument consists of pairs of file filter strings followed by
the wildcard file filter specification, with commas separating each part and pair.
If omitted, this argument defaults to the following:

All Files (*.*), *.*

CHAPTER 15 Simple Dialog Boxes 257

Notice that this string consists of two parts, separated by a comma:

All Files (*.*)

and

.

The first part of this string is the text displayed in the Files of Type drop-down
list. The second part determines which files the dialog box displays. For example,
. means all files.

The code in the following example opens a dialog box that asks the user for a
filename. The procedure defines five file filters. Notice that the VBA line-
continuation sequence sets up the FInfo variable; doing so helps simplify this
rather complicated argument.

Sub GetImportFileName()
 Dim Finfo As String
 Dim FilterIndex As Long
 Dim Title As String
 Dim FileName As Variant

' Set up list of file filters
 FInfo = "Text Files (*.txt),*.txt," & _
 "Lotus Files (*.prn),*.prn," & _
 "Comma Separated Files (*.csv),*.csv," & _
 "ASCII Files (*.asc),*.asc," & _
 "All Files (*.*),*.*"

' Display *.* by default
 FilterIndex = 5

TABLE 15-5 GetOpenFilename Method Arguments
Argument What It Does

FileFilter Determines the types of files that appear in the dialog box (for example, *.TXT). You can
specify several filters for the user to choose from.

FilterIndex Determines which of the file filters the dialog box displays by default.

Title Specifies the caption for the dialog box’s title bar.

ButtonText Ignored (used only for the Macintosh version of Excel).

MultiSelect If True, the user can select multiple files.

258 PART 4 Communicating with Your Users

' Set the dialog box caption
 Title = "Select a File to Import"

' Get the filename
 FileName = Application.GetOpenFilename (FInfo, _
 FilterIndex, Title)

' Handle return info from dialog box
 If FileName = False Then
 MsgBox "No file was selected."
 Else
 MsgBox "You selected " & FileName
 End If
End Sub

Figure 15-8 shows the dialog box Excel displays when you execute this procedure.
The appearance may vary, depending on the version of Windows you use and the
display options you’ve set.

In a real application, you would do something more meaningful with the filename.
For example, you might want to open it by using a statement such as this:

Workbooks.Open FileName

FIGURE 15-8:
The GetOpenFile-

name method
displays a

customizable
dialog box and

returns the
selected file’s

path and name.

CHAPTER 15 Simple Dialog Boxes 259

Notice that the FileName variable is declared as a Variant data type. If the user
clicks Cancel, that variable contains a Boolean value (False). Otherwise, FileName
is a string. Therefore, using a Variant data type handles both possibilities.

Picking a file with GetSaveAsFilename
The Excel GetSaveAsFilename method works just like the GetOpenFilename
method, but it displays the Excel Save As dialog box rather than its Open dialog
box. The GetSaveAsFilename method gets a path and filename from the user but
doesn’t do anything with that information. It’s up to you to write code that actu-
ally saves the file.

The syntax of this method follows:

object.GetSaveAsFilename ([InitialFilename][, FileFilter]

 [, FilterIndex][, Title][, ButtonText])

The GetSaveAsFilename method takes the arguments described in Table 15-6, all
of which are optional.

Getting a folder name
Sometimes you don’t need to get a filename; you just need to get a folder name. If
that’s the case, the FileDialog object is just what the doctor ordered.

The following procedure displays a dialog box that allows the user to select a
directory. The selected directory name (or “Canceled”) is displayed by the MsgBox
function.

TABLE 15-6 GetSaveAsFilename Method Arguments
Argument What It Does

InitialFileName Specifies a default filename that appears in the File Name box.

FileFilter Determines the types of files Excel displays in the dialog box (for example, *.TXT). You can
specify several filters for the user to choose among.

FilterIndex Determines which of the file filters Excel displays by default.

Title Defines a caption for the dialog box’s title bar.

260 PART 4 Communicating with Your Users

Sub GetAFolder()
 With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = Application.DefaultFilePath & "\"
 .Title = "Please select a location for the backup"
 .Show
 If .SelectedItems.Count = 0 Then
 MsgBox "Canceled"
 Else
 MsgBox .SelectedItems(1)
 End If
 End With
End Sub

The FileDialog object lets you specify the starting directory by specifying a value
for the InitialFileName property. In this case, the code uses Excel’s default file
path as the starting directory.

Displaying Excel’s Built-In Dialog Boxes
One way to look at VBA is that it’s a tool that lets you mimic Excel commands. For
example, consider this VBA statement:

Range("A1:A12").Name = "MonthNames"

Executing this VBA statement has the same effect as choosing Formulas ➪ Defined
Names ➪ Define Name to display the New Name dialog box, typing MonthNames
in the Name box and A1:A12 in the Refers to box, and clicking OK.

When you execute the VBA statement, the New Name dialog box doesn’t appear.
This is almost always what you want to happen; you don’t want dialog boxes
flashing across the screen while your macro executes.

In some cases, however, you might want your code to display one of Excel’s many
built-in dialog boxes and let the user make the choices in the dialog box. You can
do this by using VBA to execute a Ribbon command. Here’s an example that dis-
plays the New Name dialog box. The address in the Refers To box represents the
range that’s selected when the command is executed (see Figure 15-9).

Application.CommandBars.ExecuteMso "NameDefine"

CHAPTER 15 Simple Dialog Boxes 261

Your VBA code can’t get any information from the dialog box. For example, if you
execute the code to display the New Name dialog box, your code can’t get the
name entered by the user or the range that’s being named.

ExecuteMso is a method of the CommandBars object and accepts one argument:
an idMso parameter that represents a Ribbon control. Unfortunately, these
parameters aren’t listed in the Help system.

Here’s another example of using the ExecuteMso method. This statement, when
executed, displays the Font tab of the Format Cells dialog box:

Application.CommandBars.ExecuteMso "FormatCellsFontDialog"

If you try to display a built-in dialog box in an incorrect context, Excel displays an
error message. For example, here’s a statement that displays the Format Number
dialog box:

Application.CommandBars.ExecuteMso "NumberFormatsDialog"

If you execute this statement when it’s not appropriate (for example, when a
Shape is selected), Excel displays an error message because that dialog box is
appropriate only for worksheet cells.

Excel has thousands of commands. How do you find the name of the one you
need? One way is to use the Customize Ribbon tab of the Excel Options dialog box.
The quick way to get there is to right-click any Ribbon control and choose Cus-
tomize the Ribbon from the shortcut menu. Virtually every command available in
Excel is listed in the left panel. Find the command you need and hover your mouse
over it, and you see its secret command name in the tooltip (it’s the part in paren-
theses). Figure 15-10 shows an example.

FIGURE 15-9:
Displaying one of

Excel’s dialog
boxes by

using VBA.

262 PART 4 Communicating with Your Users

FIGURE 15-10:
Using the

Customize
Ribbon tab to

identify a
command name.

CHAPTER 16 UserForm Basics 263

Chapter 16
UserForm Basics

A UserForm is useful if your VBA macro must pause and get some informa-
tion from a user. For example, your macro may have some options that can
be specified in a UserForm. If only a few pieces of information are required

(for example, a Yes/No answer or a text string), one of the techniques discussed in
Chapter 15 may do the job. But if you need to obtain more information, you must
create a UserForm, which is what this chapter is all about.

Knowing When to Use a UserForm
You use a UserForm when a simpler method won’t work, such as if you need to
gather more information than an input box can provide or you need more control
over how the user provides that information. For example, if you want to provide
a quick way for a user to change the case of text in a cell, you might find a User-
Form to be a better option than an input box.

In this example, you want to allow the user to change the text in a cell among
lowercase, uppercase, and proper case.Technically you only need one piece of
information — the case to change to. You could use an input box and have the user
type “lower,” “upper,” or “proper” and change the case based on the user’s input.
But that method requires the user to spell the words correctly and for you to
include a long message about what are valid values to input.

IN THIS CHAPTER

 » Finding out when to use UserForms

 » Understanding UserForm objects

 » Displaying a UserForm

 » Creating a UserForm that works with
a useful macro

264 PART 4 Communicating with Your Users

This is a case where more control over the user’s input makes for a better user
experience. With a UserForm, you can include controls other than the text box
that’s on an input box and avoid the problem of misspelled cases and overly long
prompts.

The following macro changes the text in each cell in the Selection to uppercase
letters. It does this by using the VBA built-in UCase function:

Sub ChangeCase()
 Dim WorkRange As Range, cell As Range

' Exit if a range is not selected
 If TypeName(Selection) <> "Range" Then Exit Sub
' Process only text cells, no formulas
 On Error Resume Next
 Set WorkRange = Selection.SpecialCells _
 (xlCellTypeConstants, xlCellTypeConstants)
 For Each cell In WorkRange
 cell.Value = UCase(cell.Value)
 Next cell
End Sub

Because this macro only does one thing — change the case to upper — it doesn’t
require user input. If it could also change the text in the cells to either lowercase
or proper case (that is, capitalizing the first letter in each word), it would be more
useful. One approach is to create two additional macros — one for lowercase and
one for proper case. Another approach is to modify the macro to handle these
other options. If you use the second approach, you need some method of asking
the user which type of change to make to the cells.

The solution is to display a dialog box like the one shown in Figure 16-1. You cre-
ate this dialog box on a UserForm in the VBE and display it by using a VBA macro.
The next section offers step-by-step instructions for creating this dialog box.

In VBA, the official name for a dialog box is a UserForm. But a UserForm is really
an object that contains what’s commonly known as a dialog box. This distinction
isn’t important, so you’ll often hear these terms used interchangeably.

CHAPTER 16 UserForm Basics 265

Creating UserForms: An Overview
When creating a UserForm, you usually take the following general steps:

1. Determine how the dialog box will be used and at what point it will be
displayed in your VBA macro.

2. Press Alt+F11 to activate the VBE and to insert a new UserForm object.

A UserForm object holds a single UserForm.

3. Add controls to the UserForm.

Controls include items such as text boxes, buttons, check boxes, and list boxes.

4. Use the Properties window to modify the properties for the controls or
for the UserForm itself.

5. Write event-handler procedures for the controls (for example, a macro
that executes when the user clicks a button in the dialog box).

These procedures are stored in the Code window for the UserForm object.

6. Write a procedure (stored in a VBA module) that displays the dialog box
to the user.

Don’t worry if some of these steps seem foreign. The following sections provide
more details, along with step-by-step instructions for creating a UserForm.

When you’re designing a UserForm, you’re creating what developers call the
Graphical User Interface (GUI) to your application.

FIGURE 16-1:
You can get

information from
the user by

displaying a
UserForm.

266 PART 4 Communicating with Your Users

Take some time before designing your UserForm to consider what it should look
like and how your users are likely to want to interact with the elements on it. Try
to guide them through the steps they need to take on the form by carefully con-
sidering the arrangement and wording of the controls. Like most things VBA-
related, the more you do it, the easier it gets.

Working with UserForms
Each dialog box that you create is stored in its own UserForm object — one dialog
box per UserForm. You create and access these UserForms in the Visual Basic
Editor.

Inserting a new UserForm
Insert a UserForm object by following these steps:

1. Activate the VBE by pressing Alt+F11.

2. Select the workbook that will hold the UserForm in the Project Explorer.

3. Choose Insert  ➪   UserForm.

The VBE inserts a new UserForm object, which contains an empty dialog box.

Figure 16-2 shows a UserForm — an empty dialog box. Your job, if you choose to
accept it, is to add some controls to this UserForm.

FIGURE 16-2:
A new UserForm

object.

CHAPTER 16 UserForm Basics 267

Adding controls to a UserForm
When you activate a UserForm, the VBE displays the Toolbox in a floating window
(refer to Figure 16-2). You use the tools in the Toolbox to add controls to your
UserForm. If, for some reason, the Toolbox doesn’t appear when you activate your
UserForm, choose View ➪ Toolbox.

To add a control, just click the desired control in the Toolbox and drag it into the
dialog box to create the control. After you add a control, you can move and resize
it by using standard techniques.

Table 16-1 lists the various tools, as well as their capabilities. To determine which
tool is which, hover your mouse pointer over the control and read the small pop-
up description.

TABLE 16-1 Toolbox Controls
Control What It Does

Label Shows text

TextBox Allows the user to enter text

ComboBox Displays a drop-down list

ListBox Displays a list of items

CheckBox Provides options such as on/off or yes/no

OptionButton Allows the user to select one of several options; used in groups
of two or more

ToggleButton Enables the user to switch a button on or off

Frame Contains other controls

CommandButton Adds a clickable button

TabStrip Displays tabs

MultiPage Creates a tabbed container for other objects

ScrollBar Enables the user to drag a bar to establish a setting

SpinButton Enables the user to click a button to change a value

Image Holds an image

RefEdit Allows the user to select a range

268 PART 4 Communicating with Your Users

Changing properties for a UserForm control
Every control you add to a UserForm has properties that determine how the con-
trol looks or behaves. In addition, the UserForm itself has its own set of proper-
ties. You can change these properties with the aptly named Properties window.
Figure 16-3 shows the Properties window when a CommandButton control is
selected.

The Properties window appears when you press F4. Alternatively, you can choose
View ➪ Properties Window. The properties shown in this window depend on what
is selected. If you select a different control, the properties change to those appro-
priate for that control. To hide the Properties window and get it out of the way,
click the Close button in its title bar. Pressing F4 always brings it back when you
need it.

Properties for controls include the following:

 » Name

 » Width

 » Height

 » Value

 » Caption

FIGURE 16-3:
Use the Proper-
ties windows to

change the
properties of

UserForm
controls.

CHAPTER 16 UserForm Basics 269

Each control has its own set of properties (although many controls have some
common properties). To change a property using the Properties window, follow
these steps:

1. Make sure that the correct control is selected in the UserForm.

2. Make sure the Properties window is visible. (Press F4 if it’s not.)

3. In the Properties window, click the property that you want to change.

4. Make the change in the right column of the Properties window.

If you select the UserForm itself (not a control on the UserForm), you can use the
Properties window to adjust UserForm properties.

Chapter 17 contains more information about working with dialog box controls.

Some of the UserForm properties serve as default settings for new controls you
drag onto the UserForm. For example, if you change the Font property for the
UserForm itself, controls that you subsequently add use that same font. Controls
that are already on the UserForm aren’t affected.

Viewing the UserForm Code pane
A UserForm consists of a UserForm object and a module. The module contains a
code pane that holds the VBA code (that is, the event-handler procedures), which
is executed when the user works with the dialog box (see Chapter 3 to learn about
the relationship between modules and code panes). To view the module’s code
pane, choose Code from the View menu or press F7. The code pane is empty until
you add some procedures. Choose Object from the View menu, or press Shift+F7 to
return to the UserForm.

Another way to switch between the code pane and the UserForm display is to use
the View Code and View Object buttons in the Project Explorer’s title bar. In addi-
tion, you can also right-click the UserForm and choose View Code. If you’re view-
ing code, double-click the UserForm name in the Project window to return to the
UserForm.

Displaying a UserForm
You display a UserForm by using the UserForm’s Show method in a VBA
procedure.

270 PART 4 Communicating with Your Users

The macro that displays the dialog box must be in a VBA module — not in the
UserForm’s module.

The following procedure displays the dialog box named UserForm1:

Sub ShowDialogBox()
 UserForm1.Show
' Other statements can go here
End Sub

When Excel displays the dialog box, the ShowDialogBox macro halts until the user
closes the dialog box. Then VBA executes any remaining statements in the proce-
dure. Most of the time, you won’t have any more code in the procedure. As you
later see, you put your event-handler procedures in the UserForm’s module. These
procedures run in response to events that occur when the user works with the
controls on the UserForm.

Using information from a UserForm
The VBE provides a name for each control you add to a UserForm. The control’s
name corresponds to its Name property. Use this name to refer to a particular
control in your code. For example, if you add a CheckBox control to a UserForm
named UserForm1, the CheckBox control is named CheckBox1 by default. You can
use the Properties box to make this control appear with a check mark, or you can
write code to do it:

UserForm1.CheckBox1.Value = True

Most of the time, you write the code for a UserForm in the UserForm’s module. If
that’s the case, you can omit the UserForm object qualifier and write the state-
ment like this:

CheckBox1.Value = True

Your VBA code can also check various properties of the controls and take appro-
priate actions. The following statement executes a macro named PrintReport if
the check box (named CheckBox1) is checked:

If CheckBox1.Value = True Then PrintReport

It’s usually a good idea to change the default name the VBE gives to your controls
to something more meaningful. You might consider naming the check box some-
thing like chkPrintReport. Note the three-letter prefix (chk). There is no technical
reason for using chk as the prefix. This is just one example of using a naming

CHAPTER 16 UserForm Basics 271

convention to differentiate objects in VBA. Using a naming convention like this
makes your code easier to read. In the end, the convention you choose is a matter
of what you’re comfortable with.

A UserForm Example
This section’s UserForm example is an enhanced version of the ChangeCase macro
from the beginning of the chapter. The original version of this macro changes the
text in the selected cells to uppercase. This modified version uses a UserForm to
ask the user which type of change to make: uppercase, lowercase, or proper case.

This dialog box needs to obtain one piece of information from the user: the type of
change to make to the text. Because the user has three choices, your best bet is a
dialog box with three OptionButton controls. The dialog box also needs two more
buttons: an OK button and a Cancel button. Clicking the OK button runs the code
that does the work. Clicking the Cancel button causes the macro to finish without
doing anything.

This workbook is available at the book’s website, https://www.dummies.com/go/
excelvbaprogrammingfd6e. However, you will get more out of this exercise if you
follow the steps provided here and create it yourself.

Creating the UserForm
These steps create the UserForm. Start with an empty workbook, and follow these
steps:

1. Press Alt+F11 to activate the VBE.

2. If multiple projects are in the Project window, select the project that
corresponds to the workbook you’re using.

3. Choose Insert  ➪   UserForm.

The VBE inserts a new UserForm object with an empty dialog box.

4. Press F4 to display the Properties window.

5. In the Properties window, change the dialog box’s Caption property to
Change Case and its Name property to UChangeCase.

6. (Optional) The dialog box is a bit too large, so you might want to click it
and use the handles (on the right and bottom sides) to make it smaller.

You can do Step 6 after you position all the controls in the dialog box.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

272 PART 4 Communicating with Your Users

Adding the CommandButtons
Next add two CommandButtons — OK and Cancel — to the dialog box. Follow
along:

1. Make sure that the Toolbox is displayed; if it isn’t, choose View  ➪  
Toolbox.

2. If the Properties window isn’t visible, press F4 to display it.

3. In the Toolbox, drag a CommandButton into the dialog box to create a
button.

As you see in the Properties box, the button has a default name and caption:
CommandButton1.

4. Make sure that the CommandButton is selected; then activate the
Properties window and change the following properties:

Property Change To

Name cmdOK

Caption OK

Default True

5. Add a second CommandButton object to the UserForm and change the
following properties:

Property Change To

Name cmdCancel

Caption Cancel

Cancel True

6. Adjust the size and position of the controls so your dialog box looks
something like Figure 16-4.

Adding the OptionButtons
In this section, you add three OptionButtons to the dialog box. Before adding the
OptionButtons, you add a Frame object that contains the OptionButtons. The

CHAPTER 16 UserForm Basics 273

Frame isn’t necessary, but it makes the dialog box look a bit more professional so
users won’t think it was designed by an amateur.

To add the OptionButtons, follow these steps:

1. In the Toolbox, click the Frame tool and drag it into the dialog box.

This step creates a frame to hold the options buttons.

2. Use the Properties window to change the frame’s name to frmOptions
and its caption to Options.

3. In the Toolbox, click the OptionButton tool and drag it into the dialog box
(within the Frame).

Doing this creates an OptionButton control.

4. Select the OptionButton and use the Properties window to change the
following properties:

Property Change To

Name optUpper

Caption Upper Case

Accelerator U

Value True

Setting the Value property to True makes this OptionButton the default.

FIGURE 16-4:
The UserForm

with two
CommandButton

controls.

274 PART 4 Communicating with Your Users

5. Add another OptionButton and use the Properties window to change the
following properties:

Property Change To

Name optLower

Caption Lower Case

Accelerator L

6. Add a third OptionButton and use the Properties window to change the
following properties:

Property Change To

Name optProper

Caption Proper Case

Accelerator P

7. Adjust the size and position of the OptionButtons, Frame, and dialog box.

Your UserForm should look something like Figure 16-5.

If you’d like a sneak preview to see what the UserForm looks like when it’s dis-
played, press F5. None of the controls work yet, so you need to click the red X in
the title bar to close the dialog box.

FIGURE 16-5:
This is the

UserForm after
adding three

OptionButton
controls inside a

Frame control.

CHAPTER 16 UserForm Basics 275

The Accelerator property determines which letter in the caption is underlined —
and more importantly, it determines what Alt+key combination selects that con-
trol. For example, you can select the Lower Case option by pressing Alt+L because
the L is underlined. Accelerator keys are optional, but some users prefer to use the
keyboard to navigate dialog boxes.

You might wonder why the OptionButtons have accelerator keys but the Com-
mandButtons don’t. Generally, OK and Cancel buttons don’t have accelerator keys
because they can already be accessed from the keyboard. Pressing Enter is the
same as clicking OK because the control’s Default property is True. Pressing Esc is
the same clicking Cancel because the control’s Cancel property is True.

Adding event-handler procedures
Now it’s time to make the UserForm actually do something. Here’s how to add an
event-handler procedure for the Cancel and OK buttons:

1. Double-click the Cancel button.

The VBE activates the Code window for the UserForm and inserts an empty
procedure:

Private Sub cmdCancel_Click()

End Sub

The procedure named cmdCancel_Click is executed when the Cancel button is
clicked, but only when the dialog box is displayed. In other words, clicking the
Cancel button when you’re designing the dialog box won’t execute the
procedure. Because the Cancel button’s Cancel property is set to True, pressing
Esc also triggers the cmdCancel_Click procedure.

2. Insert the following statement inside the procedure (before the End Sub
statement):

Unload Me

This statement closes the UserForm when the Cancel button is clicked.

When you’re in a UserForm’s module, the Me keyword refers to the UserForm
itself. This keyword provides a bit of shortcut so you don’t have to type out the
UserForm’s name. It also allows you to copy this procedure to another
UserForm with a button named cmdCancel — something you wouldn’t be able
to do if you used the UserForm’s name like:

Unload Userform1

276 PART 4 Communicating with Your Users

3. Press Shift+F7 to return to the UserForm.

4. Double-click the OK button.

The VBE activates the UserForm’s module and inserts an empty Sub procedure
called cmdOK_Click.

When the UserForm is displayed, clicking OK executes this procedure. Because
this button has its Default property set to True, pressing Enter also executes
the cmdOK_Click procedure.

5. Enter the following code so the procedure looks like this:

Private Sub cmdOK_Click()
 Dim WorkRange As Range
 Dim cell As Range

' Process only text cells, no formulas
 On Error Resume Next
 Set WorkRange = Selection.SpecialCells _
 (xlCellTypeConstants, xlCellTypeConstants)

 If Me.optUpper.Value Then 'Upper case
 For Each cell In WorkRange
 cell.Value = UCase(cell.Value)
 Next cell
 ElseIf Me.optLower.Value Then 'Lower case
 For Each cell In WorkRange
 cell.Value = LCase(cell.Value)
 Next cell
 ElseIf Me.optProper.Value Then
 For Each cell In WorkRange
 cell.Value = StrConv(cell.Value, vbProperCase)
 Next cell
 End If

 Unload Me

End Sub

The preceding code is an enhanced version of the original ChangeCase macro pre-
sented at the beginning of the chapter. The macro checks to see which of the
options was selected using an If-ElseIf-EndIf structure, then loops through the
cells, changing their cases, using a For Each-Next loop. The last statement closes
the dialog box using the same Unload keyword you used in the cmdCancel_
Click procedure.

CHAPTER 16 UserForm Basics 277

Creating a macro to display the dialog box
You’re almost finished with this project. The only thing missing is a way to dis-
play the dialog box. Follow these steps to create the procedure that makes the
dialog box appear:

1. In the VBE window, choose Insert  ➪   Module.

The VBE adds an empty VBA module (named Module1) to the project.

2. Enter the following code:

Sub ChangeCase()
 If TypeName(Selection) = "Range" Then
 UChangeCase.Show
 Else
 MsgBox "Select a range.", vbCritical
 End If

End Sub

This procedure is pretty simple. It checks to make sure that a range is selected. If
so, the dialog box is displayed (using the Show method). The user then interacts
with the dialog box, and the code stored in the UserForm’s Code pane is executed.
If a range is not selected, the user sees a MsgBox with the text Select a range.

Making the macro available
At this point, everything should be working properly. But you still need an easy
way to execute the macro. Assign a shortcut key (Ctrl+Shift+C) that executes the
ChangeCase macro by following these steps:

1. Activate the Excel window by pressing Alt+F11.

2. Choose Developer  ➪   Code  ➪   Macros, or press Alt+F8.

3. In the Macros dialog box, select the ChangeCase macro.

4. Click the Options button.

Excel displays its Macro Options dialog box.

5. Enter C for the Shortcut key (see Figure 16-6).

6. Enter a description of the macro in the Description field.

7. Click OK.

8. Click Cancel when you return to the Macro dialog box.

278 PART 4 Communicating with Your Users

After you perform this operation, pressing Ctrl+Shift+C executes the ChangeCase
macro, which displays the UserForm if a range is selected.

You can also make this macro available from the Quick Access toolbar. Right-click
the Quick Access toolbar and choose Customize Quick Access Toolbar. The Excel
Options dialog box appears, and the ChangeCase macro is listed below Macros (see
Figure 16-7).

Testing the macro
Finally, you need to test the macro and dialog box to make sure they work prop-
erly, as follows:

FIGURE 16-7:
Adding the

ChangeChase
macro to the
Quick Access

toolbar.

FIGURE 16-6:
Assign a shortcut

key to execute
the ChangeCase

macro.

CHAPTER 16 UserForm Basics 279

1. Activate a worksheet (any worksheet in any workbook).

2. Select some cells that contain text.

You can even select entire rows or columns.

3. Press Ctrl+Shift+C.

The UserForm appears. Figure 16-8 shows how it should look.

4. Make your choice, and click OK.

If you did everything correctly, the macro makes the specified change to the
text in the selected cells.

If you test this procedure when only one cell is selected, you’ll find that all the
cells on the worksheet are processed. That behavior is a byproduct of using the
SpecialCells method. If you prefer to be able to process just one cell, change the
first block of code in the cmdOK_Click event handler to this:

If Selection.Count > 1 Then
 Set WorkRange = Selection.SpecialCells _
 (xlCellTypeConstants, xlCellTypeConstants)
Else 'only one cell selected
 If Not Selection.HasFormula Then
 Set WorkRange = Selection
 End If
End If

FIGURE 16-8:
The UserForm is

in action.

280 PART 4 Communicating with Your Users

Figure 16-9 shows the worksheet after converting the text to uppercase. The
macro works only with cells that contain text. It did not work on cell B16 because
it contains a formula, not text. Nor did it work on cell B17 because it contains a
date, not text.

As long as the workbook is open, you can execute the macro from any other work-
book. If you close the workbook that contains your macro, Ctrl+Shift+C no longer
has any function.

If the macro doesn’t work properly, double-check the preceding steps to locate
and correct the error. Don’t be alarmed; debugging is a normal part of developing
macros. As a last resort, download the completed workbook from this book’s
website and try to figure out where you went wrong.

FIGURE 16-9:
The text has been

converted to
uppercase.

CHAPTER 17 Using UserForm Controls 281

Chapter 17
Using UserForm Controls

A user responds to a custom dialog box (also known as a UserForm) by using
the various controls (buttons, text boxes, option buttons, and so on) that
the dialog box contains. Your VBA code then uses of these responses to

determine which actions to take. You have quite a few controls at your disposal
and this chapter tells you about them.

If you worked through the hands-on example in Chapter 16, you already have
some experience with UserForm controls. This chapter fills in some of the gaps.

Getting Started with Dialog Box Controls
In this section, you explore how to add controls to a UserForm, give them mean-
ingful names, and adjust some of their properties.

Before you can do any of these things, you need a UserForm. Add a UserForm to
your project by selecting the project in the Project Explorer and choosing Insert ➪
UserForm in the VBE.

IN THIS CHAPTER

 » Understanding each type of dialog
box control

 » Changing each control’s properties

 » Manipulating dialog box controls in
your UserForm object

282 PART 4 Communicating with Your Users

Adding controls
Oddly enough, the VBE doesn’t have menu commands that allow you to add con-
trols to a dialog box. You use the floating Toolbox (described in Chapter 16) to add
controls. Normally, the Toolbox pops up automatically when you activate a User-
Form in the VBE. If it doesn’t, you can display the Toolbox by choosing View ➪
Toolbox. If the Toolbox menu item is grayed out, make sure you have a UserForm
activated.

Follow along to add a control to the UserForm:

1. Click the Toolbox tool that corresponds to the control you want to add.

2. Click in the UserForm and drag to size and position the control.

Alternatively, you can simply drag a control from the Toolbox to the UserForm
to create a control with the default dimensions. Figure 17-1 shows a UserForm
that contains a few controls: two option buttons (inside a frame), a combo box,
a check box, a scroll bar, and a command button.

A UserForm may contain a vertical and horizontal grid, which help align the con-
trols you add. When you add or move a control, the VBE aligns your controls to the
closest dots on the grid. If you don’t like this feature, you can turn off the grids by
following these steps:

1. Choose Tools  ➪   Options in the VBE.

2. In the Options dialog box, select the General tab.

3. Set your desired options in the Form Grid Settings section.

FIGURE 17-1:
A UserForm in
the VBE, with a

few controls
added.

CHAPTER 17 Using UserForm Controls 283

Introducing control properties
Every control that you add to a UserForm has properties that determine how the
control looks and behaves. You can change a control’s properties at the following
two times:

 » At design time — when you’re designing the UserForm. You do so manually
using the Properties window.

 » At runtime — while your macro is running. You do so by writing VBA code.
Changes made at runtime are always temporary; they’re made to the copy of
the dialog box you’re showing, not to the actual UserForm object you
designed.

When you add a control to a UserForm, you almost always need to make some
design-time adjustments to its properties. You make these changes in the Proper-
ties window. (To display the Properties window, press F4.) Figure 17-2 shows the
Properties window, which displays properties for the object selected in the
UserForm — which happens to be a CheckBox control.

To change a control’s properties at runtime, you must write VBA code. For exam-
ple, you might want to hide a particular control when the user clicks a check box.
In such a case, you write code to change the control’s Visible property.

FIGURE 17-2:
Use the

Properties
window to make

design-time
changes to a

control’s
properties.

284 PART 4 Communicating with Your Users

Each control has its own set of properties. All controls, however, have some com-
mon properties, such as Name, Width, and Height. Table 17-1 lists some of the
common properties available for several controls.

When you select a control, that control’s properties appear in the Properties win-
dow. To change a property, just select it in the Properties window and make the
change. Some properties give you some help. For example, if you need to change
the TextAlign property, the Properties window displays a drop-down list that
contains all valid property values, as shown in Figure 17-3.

For properties with a drop-down list, you can double-click the property value to
cycle through all the possible values.

TABLE 17-1 Common Control Properties
Property What It Affects

Accelerator The letter underlined in the control’s caption. The user presses this key
in conjunction with the Alt key to select the control.

AutoSize If True, the control resizes itself automatically based on the text in its
caption.

BackColor The control’s background color.

BackStyle The background style (transparent or opaque).

Caption The text that appears on the control.

Enabled If True, the user can interact with the control. Otherwise the control is
displayed, but the user is unable to use it.

Left and Top Values that determine the control’s position.

Name The control’s name. By default, a control’s name is based on the control
type. You can change the name to any valid name, but each control’s
name must be unique within the dialog box.

Picture A graphics image to display. The image can be from a graphics file, or
you can select the Picture property and paste an image that you copied
to the Clipboard.

Value The control’s value.

Visible If False, the control is hidden.

Width and
Height

Values that determine the control’s size.

CHAPTER 17 Using UserForm Controls 285

Learning Dialog Box Controls Details
The following sections introduce each type of control you can use in custom dialog
boxes and discuss some of the most useful properties. Not every property for every
control is included because that would require a book that’s about four times as
thick (and very boring).

The Help system for controls and properties is thorough. To find complete details
for a particular property, select the property in the Properties window and press F1.

All the examples in this section are available on this book’s website at https://
www.dummies.com/go/excelvbaprogrammingfd6e.

CheckBox control
A CheckBox control is useful for getting a binary choice: yes or no, true or false, on
or off, and so on. Figure 17-4 shows some examples of CheckBox controls.

FIGURE 17-3:
Change some
properties by

selecting from a
drop-down list of

valid property
values.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

286 PART 4 Communicating with Your Users

Following are a CheckBox control’s most useful properties:

 » Accelerator: A character that lets the user change the value of the control by
using the keyboard. For example, if the accelerator is A, pressing Alt+A
changes the value of the CheckBox control (from checked to unchecked, or
from unchecked to checked). In the example shown in Figure 17-4, numbers
are the accelerators (Alt+1, Alt+2, and so on).

 » ControlSource: The address of a worksheet cell that’s linked to the check box.
The cell displays TRUE if the control is checked and FALSE if the control is not
checked. This is optional. Most of the time, a check box is not linked to a cell.

 » Value: If True, the check box has a check mark. If False, the check box doesn’t
have a check mark.

Don’t confuse CheckBox controls with OptionButton controls. They can look sim-
ilar, but they’re used for different purposes.

ComboBox control
A ComboBox control is a combination of a TextBox control and a ListBox control.
It acts like a text box because it allows the user to type directly in the control. It
acts like a list box because it allows the user to select from a list. Both text boxes
and list boxes are discussed later in this section. Unlike a list box, the list of values
the user can select from a combo box are in a drop-down box. Figure 17-5 shows
two ComboBox controls. The control on the right (for the year) is being used, so it
has dropped down to display its list of options.

FIGURE 17-4:
CheckBox

Controls in a
UserForm.

FIGURE 17-5:
ComboBox

controls in a
UserForm.

CHAPTER 17 Using UserForm Controls 287

Following are some useful ComboBox control properties:

 » ControlSource: A cell that stores the value selected in the combo box.

 » ListRows: The number of items to display when the list drops down.

 » ListStyle: The appearance of the list items.

 » RowSource: A range address that contains the list of items displayed in the
combo box.

 » Style: Determines whether the control acts like a drop-down list or a combo
box. A drop-down list doesn’t allow the user to enter a new value.

 » Value: The text of the item selected by the user and displayed in the
combo box.

If your list of items isn’t in a worksheet, you can add items to a ComboBox control
by using the AddItem method. More information on this method can be found in
Chapter 18.

CommandButton control
A CommandButton control is a common clickable button, which is of no use unless
you provide an event-handler procedure to execute when the button is clicked.
Figure 17-6 shows a dialog box with nine command buttons. Two of these buttons
feature clip-art images, which are added by copying the clip art and then pasting
it into the Picture field in the Properties window.

When a command button is clicked, it executes an event-handler procedure with
a name that consists of the command button’s name, an underscore, and the word
Click. For example, if a command button is named MyButton, clicking it executes
the macro named MyButton_Click. This macro is stored in the UserForm’s
module.

FIGURE 17-6:
CommandButton

controls.

288 PART 4 Communicating with Your Users

Following are two useful CommandButton control properties:

 » Cancel: If True, pressing Esc executes the macro attached to the button. Only
one of the form’s buttons can have this option set to True.

 » Default: If True, pressing Enter executes the macro attached to the button.
Again: Just one button can have this option set to True.

Frame control
A Frame control encloses other controls. You use it either for aesthetic purposes or
to logically group a set of controls. A frame is particularly useful when the dialog
box contains more than one set of OptionButton controls (see the section “Option-
Button control” later in this chapter).

The following list describes some useful Frame control properties:

 » BorderStyle: The frame’s appearance.

 » Caption: The text displayed at the top of the frame. The caption can be an
empty string if you don’t want the control to display a caption.

Image control
An Image control displays an image. You might want to use an Image control to
display your company’s logo in a dialog box. Figure 17-7 shows a dialog box with
an Image control that displays a photo of a cute little kitten.

FIGURE 17-7:
An Image control
displays a photo.

CHAPTER 17 Using UserForm Controls 289

The following list describes the most useful Image control properties:

 » Picture: The graphics image that is displayed

 » PictureSizeMode: How the picture is displayed if the control size doesn’t
match the image size

When you click the Picture property, you’re prompted for a filename. However,
the graphics image (after it’s retrieved) is stored in the workbook. That way, if you
distribute your workbook to someone else, you don’t have to include a copy of the
graphics file.

Rather than retrieve the image from a file, you can copy and paste. To search the
web for images, activate Excel and choose Insert ➪ Illustrations ➪ Pictures ➪
Online Pictures, and search for an image to place in your worksheet. Insert the
image on to a worksheet. Then select the image, and press Ctrl+C to copy it to
the Clipboard. Next, activate your UserForm, click the Image control, and select
the Picture property in the Properties box. Press Ctrl+V to paste the copied image.
You can then delete the image from the worksheet.

Some graphics images are very large and can make your workbook size increase
dramatically. For the best results, use the smallest image as possible.

Label control
A Label control simply displays text in your dialog box. Figure 17-8 shows a few
Label controls. As you can see, you have a great deal of control of the formatting
of a Label control.

The Caption property is the star of the show when it comes to Label controls. It
holds the text that is displayed in the label. Other properties, like Font and Fore-
Color, are useful for changing the control’s appearance.

ListBox control
The ListBox control presents a list of items from which the user can choose one or
more. Figure 17-9 shows a dialog box with two ListBox controls.

ListBox controls are very flexible. For example, you can specify a worksheet range
that holds the list box items, and the range can consist of multiple columns. You
can also fill the list box with items by using VBA code.

290 PART 4 Communicating with Your Users

If a list box isn’t tall enough to display all the items in the list, a scrollbar appears
so the user can scroll down to see more items.

The following list is a description of the most useful ListBox control properties:

 » ControlSource: A cell that stores the value selected in the list box.

 » IntegralHeight: This is True if the list box height adjusts automatically to
display full lines of text when the list is scrolled vertically. If False, the list box
may display partial lines of text when it is scrolled vertically. Note that when
this property is True, the actual height of your list box may be slightly differ-
ent, when your UserForm is shown, from what you had set it originally. In
other words, the height may adjust to ensure that the last entry is entirely
visible.

 » ListStyle: Determines whether an option button is displayed for each list
item.

FIGURE 17-9:
ListBox controls.

FIGURE 17-8:
Label controls

can take on many
different looks.

CHAPTER 17 Using UserForm Controls 291

 » MultiSelect: Determines whether the user can select multiple items from the
list.

 » RowSource: A range address that contains the list of items displayed in the
list box.

 » Value: The text of the selected item in the list box.

If the list box has its MultiSelect property set to 1 or 2, the user can select multiple
items in the list box. In such a case, you can’t specify a ControlSource; you need to
write a macro that determines which items are selected. Chapter 18 demonstrates
how to do so.

MultiPage control
A MultiPage control allows you to create tabbed dialog boxes, like the Format Cells
dialog box (the one that appears when you press Ctrl+1 in Excel). Figure 17-10
shows an example of a custom dialog box that uses a MultiPage control. This par-
ticular control has three pages, or tabs.

Descriptions of the most useful MultiPage control properties follow:

 » Style: Determines the appearance of the control. The tabs can appear
normally (on the top), on the left, as buttons, or hidden (no tabs — your VBA
code determines which page is displayed).

 » Value: Determines which page or tab is displayed. A Value of 0 displays the
first page, a Value of 1 displays the second page, and so on.

By default, a MultiPage control has two pages. To add pages, right-click a tab and
select New Page from the shortcut menu. You add controls to a MultiPage con-
trol’s pages by dragging the control inside the MultiPage control’s border. Click
on the page’s tab to switch pages before adding a control to that page.

FIGURE 17-10:
Use a MultiPage
control to create

a tabbed
dialog box.

292 PART 4 Communicating with Your Users

OptionButton control
OptionButton controls are useful when the user needs to choose from a small
number of mutually exclusive items. Option buttons are always used in groups of
at least two. Figure 17-11 shows two sets of option buttons, and each set is con-
tained in a frame.

The following is a description of the most useful OptionButton control
properties:

 » GroupName: A name that identifies an option button as being associated
with other option buttons with the same GroupName property.

 » ControlSource: The worksheet cell that’s linked to the option button. The cell
displays TRUE if the control is selected or FALSE if the control is not selected.

 » Value: If True, the option button is selected. If False, the option button is not
selected.

If your dialog box contains more than one set of option buttons, you must change
the GroupName property for all option buttons in a particular set. Otherwise, all
option buttons become part of the same set. Alternatively, you can enclose each
set of option buttons in a Frame control, which automatically groups the option
buttons in the frame.

RefEdit control
In some cases, you might need the user to select a range of cells in order to pass a
valid range to your VBA code. Your procedures can then use the selected range for
some specific task. The RefEdit control is used when you need to let the user select
a range in a worksheet. Figure 17-12 shows a UserForm with two RefEdit controls.
Its Value property holds the address of the selected range (as a text string).

FIGURE 17-11:
Two sets of

OptionButton
controls, each
contained in a
Frame control.

CHAPTER 17 Using UserForm Controls 293

The RefEdit control sometimes causes trouble in more complex UserForms. For
best results, don’t place a RefEdit control inside a Frame control or MultiPage
control. There are known bugs in VBA that cause RefEdit controls to behave
unpredictable when they are inside Frame controls or MultiPage controls.

ScrollBar control
When you add a ScrollBar control, you can make it horizontal or vertical. The
ScrollBar control is similar to a SpinButton control (described in the next section).
The difference is that the user can drag the scroll bar’s scrollbox to change the
control’s value in larger increments. Another difference is that when you click the
up button on a vertical scrollbar, the value decreases — which is a bit counterin-
tuitive. So, a scrollbar is not always a good substitute for a spin button.

Figure 17-13 shows a ScrollBar control with a horizontal orientation. Its Value
property is displayed in a Label control placed below the ScrollBar control.

Following are the most useful properties of a ScrollBar control:

 » Value: The control’s current value.

 » Min: The control’s minimum value.

 » Max: The control’s maximum value.

 » ControlSource: The worksheet cell that displays the control’s value.

FIGURE 17-12:
Two RefEdit

controls.

FIGURE 17-13:
A ScrollBar

control with a
Label control

below it.

294 PART 4 Communicating with Your Users

 » SmallChange: The amount that the control’s value is changed by click an
arrow button.

 » LargeChange: The amount that the control’s value is changed by clicking
inside of the scrollbar.

The ScrollBar control is most useful for specifying a value that extends across a
wide range of possible values.

SpinButton control
The SpinButton control lets the user select a value by clicking the control, which
has two arrows (one to increase the value, and the other to decrease the value).
Like a ScrollBar control, a SpinButton control can be oriented either horizontally
or vertically. Figure 17-14 shows a dialog box that uses two vertically oriented
SpinButton controls. Each control is linked to the Label control on the right (by
using VBA procedures).

The following descriptions explain the most useful properties of a SpinButton
control:

 » Value: The control’s current value.

 » Min: The control’s minimum value.

 » Max: The control’s maximum value.

 » ControlSource: The worksheet cell that displays the control’s value.

 » SmallChange: The amount that the control’s value is changed by a click.
Usually, this property is set to 1, but you can make it any value.

If you use a ControlSource for a spin button, you should understand that the
worksheet is recalculated every time the control’s value is changed. Therefore, if
the user changes the value from 0 to 12, the worksheet is calculated 12 times. If
your worksheet takes a long time to calculate, you might want to avoid using a
ControlSource to store the value.

FIGURE 17-14:
SpinButton

controls.

CHAPTER 17 Using UserForm Controls 295

TabStrip control
A TabStrip control is designed to navigate different sets of values using a single
page with the same set of controls. This control is rarely used, as the MultiPage
control provides a much easier way to achieve the same functionality. You can
effectively ignore it and use the MultiPage control instead.

TextBox control
A TextBox control lets the user enter text. Figure 17-15 shows a dialog box with
two TextBox controls.

Following are the most useful TextBox control properties:

 » AutoSize: If True, the control adjusts its size automatically, depending on the
amount of text.

 » ControlSource: The address of a cell that contains the text in the text box.

 » IntegralHeight: If True, the text box height adjusts automatically to display
full lines of text when the list is scrolled vertically. If False, the text box may
display partial lines of text when it is scrolled vertically.

 » MaxLength: The maximum number of characters allowed in the text box. If 0,
the number of characters is unlimited.

 » MultiLine: If True, the text box can display more than one line of text.

 » TextAlign: Determines if the text is aligned to the left, right, or center.

FIGURE 17-15:
TextBox controls.

296 PART 4 Communicating with Your Users

 » WordWrap: Determines whether text that is too wide for the control wraps to
a new line.

 » ScrollBars: Determines whether horizontal or vertical scrollbars are
displayed.

When you add a TextBox control, its WordWrap property is set to True, and its
MultiLine property is set to False. The net effect? Word wrap doesn’t work! So if
you want the words to wrap in a TextBox control, make sure that you set the Mul-
tiLine property to True.

ToggleButton control
A ToggleButton control has two states: on and off. Clicking the button toggles
between these two states, and the button changes its appearance when clicked. Its
value is either True (pressed) or False (not pressed). Figure 17-16 shows a dialog
box with four ToggleButton controls. The top one is pressed.

In general, use a toggle button when the effects of the change are immediate —
that is, when you want make a change as soon as the toggle button is changed. Use
a check box when the user should confirm the change before it takes effect. Typi-
cally, the user will check one or more check boxes and click a button to confirm.

Working with Dialog Box Controls
This section offers a few pointers on moving, resizing, and aligning dialog box
controls to get your UserForms looking just right by aligning your controls and
providing consistent spacing between controls.

FIGURE 17-16:
ToggleButton

controls.

CHAPTER 17 Using UserForm Controls 297

Moving and resizing controls
After you place a control in a dialog box, you can move and resize it by using stan-
dard mouse techniques. For more precise control, use the Properties window to
enter a value for the control’s Height, Width, Left, or Top property.

You can select multiple controls by Ctrl+clicking the controls. Or you can click and
drag to “lasso” a group of controls. When multiple controls are selected, the
Properties window displays only the properties common to all selected controls.
You can change those common properties, and the change is made to all controls
you select, which is much quicker than doing them one at a time.

A control can hide another control; in other words, you can stack one control on
top of another. Unless you have a good reason for doing so, make sure that you
don’t overlap controls. Properly aligned and spaced controls make the UserForm
look more professional and provide a better experience for the user.

Aligning and spacing controls
The Format menu in the VBE window provides several commands to help you pre-
cisely align and space the controls in a dialog box. Before you use these com-
mands, select the controls with which you want to work. These commands are
fairly self-explanatory.

Figure 17-17 shows a dialog box with several CheckBox controls that are about to
be aligned.

When you select multiple controls, the last selected control appears with white
handles rather than the normal black handles. The control with the white handles
is the basis for aligning or resizing the other selected controls when you use the
Format menu.

Accommodating keyboard users
Many users prefer to navigate through a dialog box by using the keyboard: Press-
ing Tab or Shift+Tab cycles through the controls, while pressing a hot key instantly
activates a particular control.

298 PART 4 Communicating with Your Users

To make sure that your dialog box works properly for keyboard users, be mindful
of two issues:

 » Tab order

 » Accelerator keys

Changing the tab order
The tab order determines the order in which the controls are activated when the
user presses Tab or Shift+Tab. It also determines which control has the initial
focus — that is, which control is the active control when the dialog box first
appears. For example, if a user is entering text in a text box, the text box has the
focus. If the user clicks an option button, the option button has the focus. The first
control in the tab order has the focus when Excel first displays a dialog box.

To set the control tab order, choose View ➪ Tab Order. You can also right-click
the dialog box and choose Tab Order from the shortcut menu. In either case, Excel
displays the Tab Order dialog box, shown in Figure 17-18.

The Tab Order dialog box lists all the controls in the UserForm. The tab order in
the UserForm corresponds to the order of the items in the list. To change the tab
order of a control, select it in the list and then click the Move Up or Move Down
button. You can choose more than one control (click while pressing Shift or Ctrl)
and move them all at one time.

FIGURE 17-17:
Choose Format  ➪  

Align to change
the alignment of

UserForm
controls.

CHAPTER 17 Using UserForm Controls 299

Rather than use the Tab Order dialog box, you can set a control’s position in the
tab order by using the Properties window. The first control in the tab order has a
TabIndex property of 0. If you want to remove a control from the tab order, set its
TabStop property to False.

Some controls (such as Frame controls or MultiPage controls) act as containers for
other controls. The controls inside a container control have their own tab order.
To set the tab order for a group of option buttons inside a Frame control, select the
Frame control before you choose the View ➪ Tab Order command.

Setting hot keys
Normally, you want to assign an accelerator key, or hot key, to dialog box controls. You
do so by entering a letter for the Accelerator property in the Properties window. If a
control doesn’t have an Accelerator property (a text box, for example), you can still
allow direct keyboard access to it by using a Label control. That is, assign an accelera-
tor key to the label and put the label directly before the text box in the tab order.

Figure 17-19 shows a UserForm with three text boxes. The labels that describe the
text boxes have accelerator keys, and each label precedes its corresponding text
box in the tab order. Pressing Alt+D, for example, activates the text box next to the
Department label.

FIGURE 17-18:
The Tab Order

dialog box.

FIGURE 17-19:
Use labels to

provide direct
access to controls

that don’t have
accelerator keys.

300 PART 4 Communicating with Your Users

Testing a UserForm
The VBE offers three ways to test a UserForm without calling it from a VBA
procedure:

 » Choose Run  ➪   Run Sub/UserForm.

 » Press F5.

 » Click the Run Sub/UserForm button on the Standard toolbar.

When a dialog box is displayed in this test mode, you can try the tab order and the
accelerator keys.

Dialog Box Aesthetics
Dialog boxes can look good, bad, or somewhere in between. A good-looking dialog
box is easy on the eye, has nicely sized and aligned controls, and its function is
perfectly clear to the user. Bad-looking dialog boxes confuse the user, have mis-
aligned controls, and give the impression that the developer didn’t have a plan (or
a clue).

If you have too many controls on a form, it can be hard for the user to easily
understand the purpose of or to navigate the form. Try to limit the number of
controls on your form. If you do need several controls — generally more than
ten — consider using a MultiPage control to split the task the user has to do into
logical (and smaller) steps. You can also group controls into Frame controls. The
visual separation of the controls makes it easier for the user to understand the
relationships between them, which means you can get away with putting a few
more controls on a UserForm than you might otherwise.

A good rule to follow is to try to make your dialog boxes look like the Excel built-in
dialog boxes. As you gain more experience with dialog box construction, you can
duplicate almost all the features of the Excel dialog boxes.

CHAPTER 18 UserForm Techniques and Tricks 301

Chapter 18
UserForm Techniques
and Tricks

The previous chapters show you how to insert a UserForm (which contains a
custom dialog box), add controls to the UserForm, and adjust some of the
control’s properties. These skills, however, won’t do you much good unless

you understand how to make use of UserForms and controls in your VBA code.
This chapter provides these missing details and presents some useful techniques
and tricks in the process.

IN THIS CHAPTER

 » Creating a dialog box: A hands-on
example

 » Working with ListBox controls

 » Letting the user select a range from a
UserForm

 » Showing a progress indicator for
lengthy operations

 » Creating a stay-on-top dialog box

 » Displaying a chart in a UserForm

 » Presenting a handy checklist for
creating dialog boxes

302 PART 4 Communicating with Your Users

Using Dialog Boxes
When you use a custom dialog box in your application, you normally write VBA
code that does the following:

 » Initializes the UserForm controls. For example, you might write code that sets
the default values for the controls.

 » Displays the dialog box by using the UserForm object’s Show method.

 » Responds to the events that occur for the various controls — such as clicking a
command button.

 » Validates the information provided by the user (if the user didn’t cancel the
dialog box). This step is not always necessary.

 » Takes some action with the information provided by the user (if the informa-
tion is valid).

 » Closes the UserForm by using the Unload method.

A UserForm Example
This example demonstrates the six points described in the preceding section. In
this example, you use a dialog box to get two pieces of information for a dinner
event: a guest’s name and their dinner choice. The dialog box uses a TextBox con-
trol to get the name, and it uses three option buttons to get the dinner choice
(beef, chicken, or fish). The information collected in the dialog box is then sent to
the next blank row in a worksheet.

Creating the dialog box
The fist step is to design the dialog box. Figure 18-1 shows the finished UserForm
for this example. For best results, start with a new workbook with only one work-
sheet in it. Then follow these steps:

1. Press Alt+F11 to activate the VBE.

2. In the Project window, select the empty workbook and choose Insert  ➪  
UserForm.

An empty UserForm is added to the project.

CHAPTER 18 UserForm Techniques and Tricks 303

3. Change the UserForm’s properties.

If the Properties window isn’t visible, press F4. Change the Name property to
UDinnerEvent, and the Caption property to Dinner Event.

This dialog box has eight controls with properties that were adjusted:

 » Label

Property Value

Accelerator N

Caption Name

TabIndex 0

 » TextBox

Property Value

Name tbxGuest

TabIndex 1

 » Frame

Property Value

Caption Dinner

TabIndex 2

FIGURE 18-1:
This dialog box

logs dinner
choices for

guests.

304 PART 4 Communicating with Your Users

 » OptionButton

Property Value

Accelerator B

Caption Beef

Name optBeef

Value True

TabIndex 0

 » Another OptionButton

Property Value

Accelerator C

Caption Chicken

Name optChicken

TabIndex 1

 » Another OptionButton

Property Value

Accelerator F

Caption Fish

Name optFish

TabIndex 2

 » CommandButton

Property Value

Caption Enter

Default True

Name cmdEnter

TabIndex 3

CHAPTER 18 UserForm Techniques and Tricks 305

 » CommandButton

Property Value

Caption Close

Cancel True

Name cmdClose

TabIndex 4

If you’re following along on your computer (and you should be), take a few min-
utes to create this UserForm by using the preceding information. Be sure to create
the Frame control before adding the option buttons to it.

In some cases, you might find copying an existing control easier than creating a
new one. To copy a control, press Ctrl while you drag the control.

If you prefer to cut to the chase, you can download the example from this book’s
website at https://www.dummies.com/go/excelvbaprogrammingfd6e.

Writing code to display the dialog box
After you add the controls to the UserForm, your next step is to develop some VBA
code to display this dialog box:

1. In the VBE window, choose Insert  ➪   Module to insert a VBA module.

2. Enter the following macro:

Sub LogDinnerGuest()
 UDinnerEvent.Show
End Sub

This short procedure uses the UserForm object’s Show method to display the
dialog box.

Making the macro available
The next set of steps gives the user an easy way to execute the procedure:

1. Activate Excel.

2. Choose Developer  ➪   Controls  ➪   Insert, and click the Button icon in the
Form Controls section.

http://www.dummies.com/go/excelvbaprogrammingfd6e

306 PART 4 Communicating with Your Users

3. Drag in the worksheet to create the button.

The Assign Macro dialog box appears.

4. Assign the LogDinnerGuest macro to the button.

5. Edit the button’s caption so that it reads Create Entry.

If you want to get really fancy, you can add an icon to your Quick Access toolbar.
Then click the icon to run the LogDinnerGuest macro. To set this up, right-click
your Quick Access toolbar and choose Customize Quick Access Toolbar, which dis-
plays the Quick Access Toolbar tab of the Excel Options dialog box. From the
Choose Commands From drop-down menu, select Macros. Then select the Log-
DinnerGuest macro and click Add. If you like, you can click the Modify button and
change the icon. You can also make the Quick Access Toolbar icon visible only
when the appropriate workbook is activated. Before you add the macro, use the
drop-down control at the top-right of the Excel Options dialog box to specify the
workbook name, rather than For All Documents (Default).

Trying out your dialog box
Follow these steps to test your dialog box:

1. Click the Create Entry button on the worksheet, or click the Quick Access
Toolbar icon if you set one up.

The dialog box appears, as shown in Figure 18-2.

2. Enter some text in the edit box.

3. Click Enter or Close.

Nothing happens — which is understandable because you haven’t created any
procedures yet.

4. Click the X button on the dialog box’s title bar to dismiss the dialog box.

FIGURE 18-2:
Executing the

LogDinnerGuest
procedure

displays the
dialog box.

CHAPTER 18 UserForm Techniques and Tricks 307

Adding event-handler procedures
You’ll often want certain procedures to trigger when certain events occur with
your dialog boxes. For example, you might want to run a procedure when a dialog
box opens. Or maybe you want to force Excel to save the workbook each time the
dialog box closes.

This section walks you through an example of writing procedures that handle dia-
log box events.

Start by following these steps:

1. Press Alt+F11 to activate the VBE and then ensure that the UserForm is
displayed.

2. Double-click the Close button on the UserForm.

The VBE activates the Code window for the UserForm and provides an empty
procedure named cmdClose_Click.

3. Modify the procedure as follows:

Private Sub cmdClose_Click()
 Unload Me
End Sub

This procedure, which is executed when the user clicks the Close button,
simply unloads the dialog box from memory.

4. Press Shift+F7 to redisplay UserForm1.

5. Double-click the Enter button, and enter the following procedure:

Private Sub cmdEnter_Click()

 Dim NextRow As Long

' Make sure Sheet1 is active

 Sheets("Sheet1").Activate

' Determine the next empty row

 NextRow = Application.WorksheetFunction. _

 CountA(Range("A:A")) + 1

' Transfer the name

 Cells(NextRow, 1) = Me.tbxGuest.Text

' Transfer the choice

 If Me.optBeef.Value Then Cells(NextRow, 2) = Me.optBeef.Caption

 If Me.optChicken.Value Then Cells(NextRow, 2) = Me.optChicken.Caption

308 PART 4 Communicating with Your Users

 If Me.optFish.Value Then Cells(NextRow, 2) = Me.optFish.Caption

' Clear the controls for the next entry

 Me.tbxGuest.Text = ""

 Me.optBeef.Value = True

 Me.tbxGuest.SetFocus

End Sub

6. Activate Excel and run the procedure again by clicking the Data Entry
button.

The dialog box works just fine. Figure 18-3 shows how this looks in action.
While the figure shows column headers in row 1, that step is not necessary.

Here’s how the cmdEnter_Click procedure works:

1. The code makes sure that the proper worksheet (Sheet1) is active.

2. It then uses the Excel COUNTA function to count the number of entries in
column A and to determine the next blank cell in the column.

3. The procedure transfers the text from the text box to column A.

4. It uses a series of If statements to determine which option button was selected
and writes that option button’s caption to column B.

5. The dialog box is reset to make it ready for the next entry.

Notice that clicking the Enter button doesn’t close the dialog box, as the user will
probably want to enter more data. To end data entry, click the Close button.

FIGURE 18-3:
Use the custom

dialog box for
data entry.

CHAPTER 18 UserForm Techniques and Tricks 309

Validating the data
Play around with this routine some more, and you’ll find that the macro has a
small problem: It doesn’t ensure that the user actually enters a name in the text
box. The following code — which is inserted into the EnterButton_Click proce-
dure before the text is transferred to the worksheet — ensures that the user enters
some text in the text box. If the text box is empty, a message appears, and the
routine stops. The dialog box remains open, however, so the user can correct the
problem.

' Make sure a name is entered
 If Len(Me.tbxGuest.Text) = 0 Then
 MsgBox "You must enter a name."
 Exit Sub
 End If

Now the dialog box works
After making these modifications, the dialog box works flawlessly. In real life,
you’d probably need to collect more information than just name and a dinner
choice. However, the same basic principles apply. You just have to deal with more
UserForm controls.

One more thing to remember: If the data doesn’t begin in row 1 or if the data area
contains any blank rows, the counting for the NextRow variable will be wrong.
The COUNTA function is counting the number of cells in column A, and the
assumption is that there are no blank cells above the last name in the column.
Here’s another way of determining the next empty row:

NextRow = Cells(Rows.Count, 1).End(xlUp).Row + 1

The statement simulates activating the last cell in column A, pressing End, press-
ing the up-arrow key, and then moving down one row. If you do that manually,
the cell pointer will be in the next empty cell in column A — even if the data area
doesn’t begin in row 1 and contains blank rows.

A ListBox Control Example
List boxes are useful controls, but working with them can be a bit tricky. Before
displaying a dialog box that uses a list box, you need to fill the list box with items.
Then, when the dialog box is closed, you need to determine which item(s) the user
selected.

310 PART 4 Communicating with Your Users

When dealing with list boxes, you need to know about the following properties
and methods:

 » AddItem: You use this method to add an item to a list box.

 » ListCount: This property returns the number of items in the list box.

 » ListIndex: This property returns the index number of the selected item or
sets the item that’s selected (single selections only). The first item has a
ListIndex of 0 (not 1).

 » MultiSelect: This property determines whether the user can select more than
one item from the list box.

 » RemoveAllItems: Use this method to remove all items from a list box.

 » Selected: This property returns an array indicating selected items (applicable
only when multiple selections are allowed).

 » Value: This property returns the selected item in a list box.

Most of the methods and properties that work with list boxes also work with
combo boxes (see Chapter 17 for more on ComboBox controls). So after you’ve fig-
ured out how to handle list boxes, you can transfer that knowledge to your work
with combo boxes.

Filling a ListBox Control
To keep things simple, start with an empty workbook. The example in this section
assumes the following:

 » You’ve added a UserForm and named it UMonths.

 » The UserForm contains a ListBox control named lbxMonths.

 » The UserForm has a CommandButton control named cmdOK.

 » The UserForm has a CommandButton control named cmdCancel, which has
the following event-handler procedure:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

CHAPTER 18 UserForm Techniques and Tricks 311

The following procedure is stored in the Initialize procedure for the UserForm.
Follow these steps:

1. Select your UserForm, and press F7 to activate its Code pane.

The VBE displays the Code pane for your UserForm and is ready for you to
input the code for the Initialize event.

2. From the Procedure drop-down list at the top of the Code pane, choose
Initialize.

3. Add the initialization code for the UserForm:

Sub UserForm_Initialize()
' Fill the list box
 With Me.lbxMonths
 .AddItem "January"
 .AddItem "February"
 .AddItem "March"
 .AddItem "April"
 .AddItem "May"
 .AddItem "June"
 .AddItem "July"
 .AddItem "August"
 .AddItem "September"
 .AddItem "October"
 .AddItem "November"
 .AddItem "December"
 End With

' Select the first list item
 Me.lbxMonths.ListIndex = 0
End Sub

This initialization routine runs automatically whenever your UserForm is
loaded. So when you use the Show method for the UserForm, the code is
executed, and your list box is populated with 12 items, each added via the
AddItem method.

4. Insert a VBA module, and type this short Sub procedure to display the
dialog box:

Sub ShowList()
 UMonths.Show

End Sub

312 PART 4 Communicating with Your Users

Determining the selected item
The preceding code merely displays a dialog box with a list box filled with month
names. What’s missing is a procedure to determine which item in the list box is
selected.

Double-click the OK button, and add the following cmdOK_Click procedure:

Private Sub cmdOK_Click()
 Dim Msg As String
 Msg = "You selected item # "
 Msg = Msg & Me.lbxMonths.ListIndex
 Msg = Msg & vbNewLine
 Msg = Msg & Me.lbxMonths.Value
 MsgBox Msg
 Unload Me
End Sub

This procedure displays a message box with the selected item number and the
selected item.

If no item in the list box is selected, the ListIndex property returns –1. However,
this will never be the case for this particular list box, because code in the User-
Form_Initialize procedure selected the first item. It’s impossible to unselect an
item without selecting another item; there will always be a selected item.

Figure 18-4 shows how this looks.

FIGURE 18-4:
Determining

which item in a
list box is
selected.

CHAPTER 18 UserForm Techniques and Tricks 313

The first item in a list box has a ListIndex of 0, not 1 (as you might expect). This
is always the case, even if you use an Option Base 1 statement to change the default
lower bound for arrays.

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e.

Determining multiple selections
If your list box is set up so that the user can select more than one item, you find
that the ListIndex property returns only the last item selected. To determine all
selected items, you need to use the Selected property, which contains an array.

To allow multiple selections in a list box, set the MultiSelect property to either
1 or 2. You can do so at design time by using the Properties window or at runtime
by using a VBA statement such as this:

UMonths.lbxMonths.MultiSelect = 1

The MultiSelect property has three possible settings. The meaning of each is
shown in Table 18-1.

The following procedure displays a message box that lists all selected items in a
list box. Figure 18-5 shows an example.

Private Sub cmdOK_Click()
 Dim Msg As String
 Dim i As Long
 Dim Counter As Long
 Msg = "You selected:" & vbNewLine
 For i = 0 To Me.lbxMonths.ListCount - 1
 If Me.lbxMonths.Selected(i) Then

TABLE 18-1 Settings for the MultiSelect Property
Value VBA Constant Meaning

0 fmMultiSelectSingle Only a single item can be selected.

1 fmMultiSelectMulti Clicking an item or pressing the space bar selects
or deselects an item in the list.

2 fmMultiSelect
Extended

Items are added to or removed from the selection set
by holding down the Shift or Ctrl key as you click items.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

314 PART 4 Communicating with Your Users

 Counter = Counter + 1
 Msg = Msg & Me.lbxMonths.List(i) & vbNewLine
 End If
 Next i
 If Counter = 0 Then Msg = Msg & "(nothing)"
 MsgBox Msg
 Unload Me
End Sub

This routine uses a For-Next loop to cycle through each item in the list box. Notice
that the loop starts with item 0 (the first item) and ends with the last item (deter-
mined by the value of the ListCount property minus 1). If an item’s Selected prop-
erty is True, it means that the list item was selected. The code also uses a variable
(Counter) to keep track of how many items are selected. An If-Then statement
modifies the message if nothing is selected.

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e.

Selecting a Range
In some cases, you might want the user to select a range while a dialog box is
displayed. An example of this type of range selection occurs in the Create Table
dialog box, which is displayed when you choose Insert ➪ Tables ➪ Table. The
Create Table dialog box has a range selector control that contains Excel’s guess
regarding the range to be converted — but you can use this control to change the
range by selecting cells in the worksheet.

FIGURE 18-5:
Determining the
selected items in

a list box that
allows multiple

selections.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 18 UserForm Techniques and Tricks 315

To allow a range selection in your dialog box, add a RefEdit control. The following
example displays a dialog box with the current region’s range address displayed
in a RefEdit control, as shown in Figure 18-6. The current region is the block of
nonempty cells that contains the active cell. The user can accept or change this
range. When the user clicks OK, the procedure makes the range bold.

This example assumes the following:

 » You have a UserForm named UBold.

 » The UserForm contains a CommandButton control named cmdOK.

 » The UserForm contains a CommandButton control named cmdCancel.

 » The UserForm contains a RefEdit control named refBold.

The code is stored in a VBA module and shown here. This code does two things:
initializes the dialog box by assigning the current region’s address to the RefEdit
control and displays the UserForm.

FIGURE 18-6:
This dialog box

lets the user
select a range.

316 PART 4 Communicating with Your Users

Sub BoldCells()
' Exit if worksheet is not active
 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub

' Select the current region
 ActiveCell.CurrentRegion.Select

' Initialize RefEdit control
 UBold.refBold.Text = Selection.Address

' Show dialog
 UBold.Show
End Sub

The following procedure is executed when the OK button is clicked. This procedure
does some simple error checking to make sure that the range specified in the
RefEdit control is valid.

Private Sub cmdOK_Click()
 On Error GoTo BadRange
 Range(Me.refBold.Text).Font.Bold = True
 Unload Me
 Exit Sub
BadRange:
 MsgBox "The specified range is not valid."
End Sub

If an error occurs (most likely an invalid range specification in the RefEdit con-
trol), the code jumps to the BadRange label, and a message box is displayed. The
dialog box remains open so the user can select another range.

If getting a user selected range is the only function performed by your UserForm,
you can simplify things by using the Application InputBox method (see
Chapter 15).

Using Multiple Sets of Option Buttons
Figure 18-7 shows a custom dialog box with three sets of option buttons. If your
UserForm contains more than one set of option buttons, make sure that each set
of option buttons works as a group. You can do so in either of two ways:

CHAPTER 18 UserForm Techniques and Tricks 317

 » Enclose each set of option buttons in a Frame control. This approach is easier
and also makes the dialog box look more organized. It’s easier to add the
frame before adding the option buttons. You can, however, also drag existing
option buttons into a frame.

 » Make sure that each set of option buttons has a unique GroupName property
(which you specify in the Properties box). If the option buttons are in a frame,
you don’t have to be concerned with the GroupName property.

Only one option button in a group can have a value of True. To specify a default
option for a set of option buttons, just set the Value property for the default item
to True. You can do this directly in the Properties box or by using VBA code:

UOptions.optMusicBlues.Value = True

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e. It also has code that displays the selected options
when the user clicks OK.

Using a Spin Button and a Text Box
A SpinButton control lets the user specify a number by clicking arrows. This con-
trol consists only of arrows (no text), so you usually want a method to display the
selected number. One option is to use a Label control, but this has a disadvantage:
The user can’t type text in a label. A better choice is to use a text box.

FIGURE 18-7:
This dialog box
contains three

sets of
 OptionButton

controls.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

318 PART 4 Communicating with Your Users

A SpinButton control and TextBox control form a natural pair, and Excel uses them
frequently. For example, check out Excel’s Page Setup dialog box for a few exam-
ples. Ideally, the spin button and its text box are always in sync: If the user clicks
the spin button, the spin button’s value should appear in the text box. And if the
user enters a value directly into the text box, the spin button should take on that
value. Figure 18-8 shows a custom dialog box with a spin button and a text box.

This UserForm contains the following controls:

 » A spin button named SpinButton1, with its Min property set to 1 and its Max
property set to 100

 » A text box named TextBox1, positioned to the left of the spin button

 » A command button named cmdOK

The event-handler procedure for the spin button follows. This procedure handles
the Change event, which is triggered whenever the spin button value is changed.
When the spin button’s value changes (when it’s clicked), this procedure assigns
the spin button’s value to the text box. To create this procedure, double-click the
spin button to activate the Code pane for the UserForm. Then enter this code:

Private Sub SpinButton1_Change()
 Me.TextBox1.Text = Me.SpinButton1.Value
End Sub

The event-handler for the text box, which is listed next, is a bit more complicated.
To create this procedure, double-click the text box to activate the Code pane for
the UserForm. This procedure is executed whenever the user changes the text in
the text box.

Private Sub TextBox1_Change()
 Dim NewVal As Long

 NewVal = Val(Me.TextBox1.Text)
 If NewVal >= Me.SpinButton1.Min And _
 NewVal <= Me.SpinButton1.Max Then _
 Me.SpinButton1.Value = NewVal
End Sub

FIGURE 18-8:
A UserForm with

a spin button and
a companion

text box.

CHAPTER 18 UserForm Techniques and Tricks 319

This procedure uses a variable, which stores the text in the text box (converted to
a value with the Val function). It then checks to ensure that the value is within the
proper range. If so, the spin button is set to the value in the text box. The net effect
is that the spin button’s value is always equal to the value in the text box (assum-
ing that the spin button’s value is in the proper range).

When the line Me.SpinButton1.Value = NewVal is executed, the change event of the
spin button immediately fires. In turn, the SpinButton1_Change event sets the
value of TextBox1. Because its value is not actually changed by the SpinButton1_
Change event, luckily, the TextBox1_Change event doesn’t fire. But you can imag-
ine a scenario where this effect can cause an endless loop of changing controls.
Confused? Just remember that if your code changes the Value of a control, the
Change event of that control will fire.

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e. It also has a few other bells and whistles you
might find useful.

Using a UserForm as a Progress Indicator
If you have a macro that takes a long time to run, you might want to display a
progress meter so people won’t think Excel has crashed. You can use a UserForm
to create an attractive progress indicator, as shown in Figure 18-9. Such a use of
dialog boxes does, however, require a few tricks.

FIGURE 18-9:
This UserForm
functions as a

progress
indicator for a

lengthy macro.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

320 PART 4 Communicating with Your Users

Creating the progress-indicator dialog box
The first step is to create your UserForm. In this example, the dialog box displays
the progress while a macro inserts random numbers into 100 columns and 1,000
rows of the active worksheet. To create the dialog box, follow these steps:

1. Activate the VBE, and insert a new UserForm named UProgress.

2. Change the UserForm’s caption to Progress.

3. Add a Frame control, and set the following properties:

Property Value

Caption 0%

Name frmProgress

SpecialEffect 2 — fmSpecialEffectSunken

Width 204

Height 28

4. Add a Label control inside the frame, and set the following properties:

Property Value

Name lblProgress

BackColor &H0000C000& (green)

Caption (no caption)

SpecialEffect 1 — fmSpecial
EffectRaised

Width 20

Height 13

Top 5

Left 2

5. Add another label above the frame, and change its caption to Entering
random numbers. . .

The UserForm should resemble Figure 18-10.

CHAPTER 18 UserForm Techniques and Tricks 321

The procedures
This example uses two procedures and two module-level variables:

 » The module-level variables: Located in a VBA module, the first variable holds
the copy of the UserForm and the second stops the code from running
multiple times:

Dim ufProgress As UProgress

Dim IsRunning As Boolean

 » EnterRandomNumbers: This procedure does all the work and is executed
when the UserForm is shown. Notice that it calls the UpdateProgress proce-
dure, which updates the progress indicator in the dialog box:

Sub EnterRandomNumbers()
' Inserts random numbers on the active worksheet
 Dim Counter As Long
 Dim RowMax As Long, ColMax As Long
 Dim r As Long, c As Long
 Dim PctDone As Single

 If Not IsRunning Then
 IsRunning = True

 If TypeName(ActiveSheet) = "Worksheet" Then
 ' Create a copy of the form in a variable
 Set ufProgress = New UProgress

 ' Show form in modeless state
 ufProgress.Show vbModeless

FIGURE 18-10:
The progress-

indicator
UserForm.

322 PART 4 Communicating with Your Users

 Cells.Clear
 Counter = 1
 RowMax = 1000
 ColMax = 100
 For r = 1 To RowMax
 For c = 1 To ColMax
 Cells(r, c) = Int(Rnd * 1000)
 Counter = Counter + 1
 Next c
 PctDone = Counter / (RowMax * ColMax)
 UpdateProgress PctDone
 Next r
 Unload ufProgress
 Set ufProgress = Nothing
 End If
 IsRunning = False
 End IfEnd Sub

 » UpdateProgress: This procedure accepts one argument and updates the
progress indicator in the dialog box:

Sub UpdateProgress(pct)

 With ufProgress

 .frmProgress.Caption = Format(pct, "0%")

 .lblProgress.Width = pct * (.frmProgress _

 .Width - 10)

 End With

' The DoEvents statement is responsible for the form updating

 DoEvents

End Sub

How this example works
When the EnterRandomNumbers procedure is executed, it loads a copy of the
UserForm into the module variable named ufProgress. Then it sets the width of
the lblProgress label to 0 and displays the UserForm in modeless state (so the code
will continue to run).

The EnterRandomNumber procedure checks the active sheet. If it’s not a work-
sheet, the UserForm is closed, and the procedure ends with no action. If the active
sheet is a worksheet, the procedure does the following:

1. Erases all cells on the active worksheet.

CHAPTER 18 UserForm Techniques and Tricks 323

2. Loops through the rows and columns (specified by the RowMax and ColMax
variables) and inserts a random number in each cell.

3. Increments the Counter variable and calculates the percentage completed
(which is stored in the PctDone variable).

4. Calls the UpdateProgress procedure, which displays the percentage completed
by changing the width of the lblProgress label and updating the caption of the
Frame control.

5. Unloads the UserForm.

Using a progress indicator will, of course, make your macro run a bit slower
because the code is doing additional work updating the UserForm. If speed is
absolutely critical, think twice about using a progress indicator.

If you adapt this technique for your own use, you need to figure out how to deter-
mine the macro’s progress, which varies depending on your macro. Then call the
UpdateProgress procedure at periodic intervals while your macro is executing.

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e.

Creating a Modeless Tabbed Dialog Box
Tabbed dialog boxes are useful because they let you present information in small,
organized chunks. Excel’s Format Cells dialog box (which is displayed when you
right-click a cell and choose Format Cells) is a good example. The dialog box in
this example uses three tabs to help organize some of Excel’s display options.

Creating your own tabbed dialog boxes is relatively easy, thanks to the MultiPage
control. Figure 18-11 shows a custom dialog box that uses a MultiPage control with
three pages, or tabs. When the user clicks a tab, a new page is activated, and only
the controls on that page are displayed.

Notice that this is a modeless dialog box. In other words, the user can keep it dis-
played while working. Each of the controls has an immediate effect, so there is no
need to have an OK button. Here’s the procedure that displays the UserForm so it
stays on top:

Sub ShowDialog()
 USettings.Show vbModeless
End Sub

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

324 PART 4 Communicating with Your Users

Keep the following points in mind when using the MultiPage control to create a
tabbed dialog box:

 » Use only one MultiPage control per dialog box. You can have more than one
MultiPage control, but it tends to make the UserForm look cluttered and users
may find it confusing.

 » To make some controls (such as OK, Cancel, and Close buttons) visible at all
times, place these controls outside the MultiPage control.

 » Right-click a tab on the MultiPage control to display a shortcut menu that lets
you add, remove, rename, or move a tab.

 » At design time, click a tab to activate the page. After it’s activated, add other
controls to the page by using normal procedures.

 » To select the MultiPage control itself (rather than a page on the control), click
the border of the MultiPage control. Keep your eye on the Properties window,
which displays the name and type of the selected control. You can also select
the MultiPage control by selecting its name from the drop-down list in the
Properties window.

 » You can change the look of the MultiPage control by changing the Style and
TabOrientation properties.

 » The Value property of a MultiPage control determines which page is displayed.
For example, if you write code to set the Value property to 0, the first page of
the MultiPage control is displayed.

FIGURE 18-11:
The three tabs of

a MultiPage
control.

CHAPTER 18 UserForm Techniques and Tricks 325

This example is available at this book’s website at https://www.dummies.com/
go/excelvbaprogrammingfd6e.

Displaying a Chart in a UserForm
If you need to display a chart in a UserForm, you find that Excel doesn’t provide
any direct way to do so. Therefore, you need to get creative. This section describes
a technique that allows you to display one or more charts in a UserForm.

Figure 18-12 shows an example that displays three charts. The UserForm has an
Image control. The trick is to use VBA code to save the chart as a GIF file and then
specify that file as the Image control’s Picture property (which loads the image
from your disk). The Previous and Next buttons switch the displayed chart.

In this example, which is also available on this book’s website (https://www.
dummies.com/go/excelvbaprogrammingfd6e), the three charts are on a sheet
named Charts. The Previous and Next buttons determine which chart to display,
and this chart number is stored as a variable named ChartNum, which is accessi-
ble to all procedures in the module. A procedure named UpdateChart, which is
listed here, does the actual work.

Private Sub UpdateChart()
 Dim CurrentChart As Chart
 Dim Fname As String

 Set CurrentChart = _
 Sheets("Charts").ChartObjects(ChartNum).Chart

FIGURE 18-12:
Displaying a chart

in a UserForm.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

326 PART 4 Communicating with Your Users

 CurrentChart.Parent.Width = 300
 CurrentChart.Parent.Height = 150

' Save chart as GIF
 Fname = ThisWorkbook.Path & "\temp.gif"
 CurrentChart.Export FileName:=Fname, FilterName:="GIF"

' Show the chart
 Me.imgChart.Picture = LoadPicture(Fname)
End Sub

This procedure determines a name for the saved chart, and then uses the Export
method to export the GIF file. Finally, it uses the VBA LoadPicture function to
specify the Picture property of the Image control.

A Dialog Box Checklist
Remember that a dialog box is an important way to communicate with your end
user. As you start designing you own user interfaces, run down this checklist to
ensure you’re building dialog boxes that are both functional and intuitive:

 » Are the controls aligned with one another?

 » Are similar controls the same size?

 » Are the controls evenly spaced?

 » Does the dialog box have an appropriate caption?

 » Is the dialog box overwhelming? If so, you might want to use a series of dialog
boxes or divide them over a MultiPage control.

 » Can the user access every control with an accelerator key?

 » Are any accelerator keys duplicated?

 » Are the controls grouped logically by function?

 » Is the tab order set correctly? The user should be able to tab through the
dialog box and access the controls sequentially.

 » Will your VBA code take appropriate action if the user cancels the dialog box,
presses Esc, or uses the Close button?

 » Does the text contain any misspellings? Unfortunately, the Excel spell checker
doesn’t work with UserForms, so you’re on your own when it comes to
spelling.

CHAPTER 18 UserForm Techniques and Tricks 327

 » Will your dialog box fit on the screen in the lowest resolution to be used
(usually, 1024 × 768 mode)? In other words, if you develop your dialog box by
using a high-resolution video mode, your dialog box may be too big to fit on a
lower-resolution screen.

 » Do all TextBox controls have the appropriate validation code?

 » If you intend to use the WordWrap property, is the MultiLine property also set
to True?

 » Do all scroll bars and spin buttons allow valid values only?

 » Do all list boxes have their MultiSelect property set properly?

Start simply and experiment with the controls and their properties. And don’t for-
get about the Help system; it’s your best source for details about every control and
property.

CHAPTER 19 Accessing Your Macros through the User Interface 329

Chapter 19
Accessing Your Macros
through the User
Interface

The Ribbon is the primary user interface (UI) for Microsoft Office
applications — and for that matter, it’s the primary UI for Window’s File
Explorer. Its feature-rich set of controls make it an excellent UI. You can

use those same controls to launch your macros.

You might expect to be able to create custom Ribbon commands using VBA. The
bad news is that you can’t use VBA to modify the Ribbon. The good news is that
you’re not completely out of luck, as this chapter describes some of the ways to
work with Excel’s UI.

Customizing the Ribbon
This section describes ways to customize the Ribbon. You can modify the Ribbon
manually, but you can’t make changes to the Ribbon using VBA. It’s sad, but true.
For example, if you write an application and you’d like to add a few new buttons

IN THIS CHAPTER

 » Discovering how to customize the
Ribbon

 » Adding icons to the Quick Access
toolbar

 » Modifying shortcut menus

330 PART 4 Communicating with Your Users

to the Ribbon, you need to program those changes outside Excel, using a tool
called RibbonX.

Customizing the Ribbon manually
It’s very easy to make changes to the Ribbon manually, but you must be using
Excel 2010 or later. If you use Excel 2007, you should just skip this section because
it doesn’t apply to you.

You can customize the Ribbon in these ways:

 » Tabs

• Add a new custom tab.

• Delete custom tabs.

• Add a new group to a tab.

• Change the order of the tabs.

• Change the name of a tab.

• Hide built-in tabs.

 » Groups

• Add new custom groups.

• Add commands to a custom group.

• Remove commands from custom groups.

• Remove groups from a tab.

• Move a group to a different tab.

• Change the order of the groups within a tab.

• Change the name of a group.

That’s a fairly comprehensive list of customization options, but there are some
actions that you can’t do (no matter how hard you try):

 » Remove built-in tabs — but you can hide them.

 » Remove commands from built-in groups.

 » Change the order of commands in a built-in group.

CHAPTER 19 Accessing Your Macros through the User Interface 331

You make manual changes to the Ribbon in the Customize Ribbon pane of the
Excel Options dialog box (see Figure 19-1). The quickest way to display this dialog
box is to right-click anywhere in the Ribbon and choose Customize the Ribbon
from the shortcut menu.

The process of customizing the Ribbon is similar to customizing the Quick Access
toolbar, which is described later in this chapter. The only difference is that you
need to decide where to put the command within the Ribbon. Follow this general
procedure:

1. Use the drop-down list on the left (labeled Choose Commands From) to
display various groups of commands.

2. Locate the command in the list box on the left and select it.

3. Use the drop-down list on the right (labeled Customize the Ribbon) to
choose a group of tabs.

Main tabs refer to the tabs that are always visible; Tool tabs refer to the context
tabs that appear when a particular object is selected.

FIGURE 19-1:
The Customize

Ribbon tab of the
Excel Options

dialog box.

332 PART 4 Communicating with Your Users

4. In the list box on the right, select the tab and the group where you would
like to put the command.

You need to click the plus-sign controls to expand the hierarchical lists.

5. Click the Add button in the middle to add the selected command from
the left to the group on the right.

Keep in mind that you can click the New Tab button to create a new tab and the
New Group button to create a new group within a tab. New tabs and groups are
given generic names, so you probably want to give them more meaningful names.
Use the Rename button to rename the selected tab or group. You can also rename
built-in tabs and groups or rearrange them using the up and down buttons to the
right of the list.

Figure 19-2 shows a custom group, named Text To Speech, that I added to the
View tab (to the right of the Macros group). I added four commands to the new
group; Speak Cells, By Columns, By Rows, and On Enter.

Although you can’t remove a built-in tab, you can hide the tab by clearing the
check box next to its name on the Customize Ribbon tab.

Adding a macro to the Ribbon
Fortunately, you can also add macros to the Ribbon. Follow the instructions in the
previous section, but in Step 1, choose Macros from the drop-down list on the left.
All the currently available macros are listed, ready to be added to the Ribbon. You
just need to decide on a tab and group for the macro.

If you customize the Ribbon to include a macro, the macro command on the Rib-
bon is visible even when the workbook that contains the macro is not open. Click-
ing the command opens the workbook that contains the macro and then executes
the macro.

If you add a button to the Ribbon that executes a macro, that Ribbon modification
applies to your copy of Excel only. The Ribbon modifications are not part of the
workbook. In other words, if you give your workbook to a colleague, the Ribbon
customizations you made won’t appear on the colleague’s system.

FIGURE 19-2:
The View tab with

a new group
named Text To

Speech.

CHAPTER 19 Accessing Your Macros through the User Interface 333

Customizing the Ribbon with XML
In some situations, you might want to automatically modify the Ribbon when a
workbook or add-in is opened. Doing so makes it easy for the user to access your
macro. It also eliminates the need for the user to modify the Ribbon manually by
using the Excel Options dialog box.

You can make automatic changes to the Ribbon with Excel 2007 and later versions,
but it’s not a simple task. Modifying the Ribbon involves writing XML code in a
text editor, copying that XML file into the workbook file, editing a bunch of XML
files that also are stashed away inside the workbook file (which in reality is noth-
ing more than a zipped container of individual files), and then writing VBA proce-
dures to handle the clicking of the controls you put in the XML file.

Fortunately, software is available to assist you with customizing the Ribbon — but
you still need to be on familiar terms with XML.

You can download a sample file from this book’s website (https://www.dummies.
com/go/excelvbaprogrammingfd6e), which contains this customization. If you’d
like to create it yourself, follow these steps exactly:

1. Create a new Excel workbook.

2. Save the workbook, and name it ribbon modification.xlsm.

3. Close the workbook.

GETTING THE SOFTWARE
If you’d like to follow along with the Ribbon customization example, you need to down-
load a small program called Custom UI Editor for Microsoft Office. This free program
greatly simplifies the process of customizing the Ribbon in Microsoft Office applications.
Using this software still requires a lot of work, but it’s a lot easier than doing it manually.

The download location tends to change, so search the web for “Custom UI Editor for
Microsoft Office” to find the software. It’s a small, free download.

Explaining all the intricate details involved in customizing the Ribbon is well beyond the
scope of this book. However, this chapter does walk you through a quick example that
demonstrates the steps required to add a new Ribbon group to the Home tab. The new
Ribbon group is named Excel VBA For Dummies, and it contains one button, labeled
Click Me. Clicking that button runs a VBA macro named ShowMessage.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

334 PART 4 Communicating with Your Users

4. Launch the Custom UI Editor for Microsoft Office.

If you don’t have this software, you need to find it and install it. Refer to the
nearby sidebar “Getting the software.”

5. In the Custom UI Editor, choose File  ➪   Open and find the workbook you
saved in Step 2.

6. Choose Insert  ➪   Office 2007 Custom UI Part.

Choose this command even if you’re using Excel 2010 or a later version.

7. Type the following code in the code panel (named customUI.xml) dis-
played in the Custom UI Editor (see Figure 19-3):

<customUI xmlns='http://schemas.microsoft.com/office/2006/01/customui'>

<ribbon>

<tabs>

<tab idMso='TabHome'>

 <group id='Group1' label='Excel VBA For Dummies'>

 <button id='Button1'

 label='Click Me'

 size='large'

 onAction='ShowMessage'

 imageMso='FileStartWorkflow'/>

 </group>

</tab>

</tabs>

</ribbon>

</customUI>

8. Click the Validate button on the toolbar.

If the code has any syntax errors, you get a message that describes the
problem. If any errors are identified, you must correct them.

9. Click the Generate Callback button.

The Custom UI Editor creates a VBA Sub procedure that is executed when the
button is clicked (see Figure 19-4). This procedure is not actually inserted into
the workbook, so you need to copy it for later use (or memorize it, if you have a
good memory).

10. Go back to the customUI.xml module and choose File  ➪   Save (or click the
Save icon on the toolbar).

CHAPTER 19 Accessing Your Macros through the User Interface 335

11. Close the file by choosing File  ➪   Close.

12. Open the workbook in Excel, and click the Home tab.

You should see the new Ribbon group and Ribbon button. But it doesn’t
work yet.

13. Press Alt+F11 to activate the VBE.

FIGURE 19-3:
RibbonX code

displayed in the
Custom UI Editor.

FIGURE 19-4:
The VBA callback
procedure that is

executed by
clicking the

Ribbon button.

336 PART 4 Communicating with Your Users

14. Insert a new VBA module; paste (or type) the callback procedure that was
generated in Step 9; and add a MsgBox statement, so you’ll know
whether the procedure is actually being executed.

The procedure is

Sub ShowMessage(control As IRibbonControl)

 MsgBox "Congrats. You found the new Ribbon command."

End Sub

15. Press Alt+F11 to jump back to Excel, and click the new button on the
Ribbon.

If all goes well, you see the MsgBox shown in Figure 19-5.

In the Custom UI Editor, when you choose Insert ➪ Office 2007 Custom UI Part,
you insert a UI part for Excel 2007. The Custom UI Editor also has an option to
insert a UI part for Excel 2010. (Note, this software hasn’t been updated for sub-
sequent versions of Office.) For maximum compatibility, use the Excel 2007 Cus-
tom UI Part.

When you add XML to modify the Ribbon to a workbook, it only displays when the
workbook is open. And if you send the workbook to someone else, the Ribbon
change goes with it.

You probably realize that modifying the Ribbon using XML is not exactly intuitive.
Even with a good tool to help (such as the Custom UI Editor), you still need to
understand XML. If that sounds appealing to you, search the web or find a book
devoted exclusively to customizing the Ribbon interface in Microsoft Office.
Unfortunately, this book isn’t one of them.

FIGURE 19-5:
Proof that adding

a new Ribbon
command using

XML is actually
possible.

CHAPTER 19 Accessing Your Macros through the User Interface 337

Customizing the Excel UI with VBA
If you’re not ready to dive into the world of RibbonX, you can still use VBA to make
some modifications. Your results using VBA won’t be as polished as those you get
using RibbonX, but using VBA is easier and still provides quick access to your
macros.

ADDING A BUTTON TO THE QUICK
ACCESS TOOLBAR
If you create a macro that you use frequently, you might want to add a new button to
the Quick Access toolbar. Doing so is easy, but you must do it manually. The Quick
Access toolbar is intended to be customized by end users only — not programmers.
Here’s how to do it:

1. Right-click the Quick Access toolbar and select Customize Quick Access
Toolbar from the shortcut menu to display the Quick Access toolbar tab of
the Excel Options dialog box.

2. From the drop-down list labeled Choose Commands From, select Macros.

3. Select your macro from the list.

4. Click the Add button to add the macro to the Quick Access toolbar list on
the right.

5. If you like, click the Modify button to change the icon and (optionally) the
display name.

When you click a macro button on the Quick Access toolbar, the workbook that contains
the macro is opened (if it’s not already open). And the macro can be executed when any
workbook is open.

You’ll also find an option to display the Quick Access Toolbar button only when a particu-
lar workbook is open. Before you add the macro, use the drop-down control at the top-
right of the Excel Options dialog box and specify the workbook name rather than For All
Documents (Default).

If you have macros that are useful for many workbooks, storing them in your Personal
Macro Workbook is a good idea (see Chapter 6 for more about the Personal Macro
Workbook).

338 PART 4 Communicating with Your Users

Before Excel 2007, VBA programmers used the CommandBar object for creating
custom menus, custom toolbars, and custom shortcut (right-click) menus. If you
write code to customize a menu or a toolbar, Excel displays your UI changes on a
catch-all Ribbon tab named Add-Ins.

Adding commands to the Add-ins
 Ribbon tab
To add a button to the Add-ins Ribbon tab, you need to manipulate two objects:
CommandBar and CommandBarButton. The following code adds a button cap-
tioned Change Case that you can see in Figure 19-6:

Sub AddToAddins()
 Dim Bar As CommandBar
 Dim NewControl As CommandBarButton
 DeleteFromAddin
 Set Bar = Application.CommandBars.Add("MyBar")
 Bar.Visible = True
 Set NewControl = Bar.Controls.Add _
 (Type:=msoControlButton, _
 ID:=2, _
 temporary:=True)
 With NewControl
 .Caption = "&Change Case"
 .OnAction = "ChangeCase"
 .Style = msoButtonIconAndCaption
 End With
End Sub

This example is available at this book’s website, https://www.dummies.com/go/
excelvbaprogrammingfd6e. The first thing this procedure does is try to delete a
CommandBar named MyBar. You can’t have two custom toolbars with the same
name. Next, it creates a custom toolbar named MyBar and makes it visible. You
have to set the Visible property to True — it’s not True by default.

FIGURE 19-6:
A control on the
Add-in tab isn’t

flashy, but it gets
the job done.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 19 Accessing Your Macros through the User Interface 339

Next, the procedure creates a new control to the custom toolbar. The ID argument
can be any number you want; it just can’t be the same ID as any other control on
the toolbar. The OnAction property is set to the name of the macro you want to run
when it’s clicked (which must be in a VBA module). The procedure to delete an
existing toolbar is as follows:

Sub DeleteFromAddin()
 On Error Resume Next
 Application.CommandBars("MyBar").Delete
End Sub

Adding a new item to the Cell
 shortcut menu
In addition to creating a custom toolbar, you can modify an existing toolbar. The
only existing toolbars that are visible in Excel are called shortcut menus or right-
click menus — those menus that appear when you right-click on something. The
AddToShortcut procedure adds a new menu item to the Cell shortcut menu. You
can adapt it to point to your own macros by changing the Caption and OnAction
properties of the object named NewControl.

Sub AddToShortCut()
 Dim Bar As CommandBar
 Dim NewControl As CommandBarButton
 DeleteFromShortcut
 Set Bar = Application.CommandBars("Cell")
 Set NewControl = Bar.Controls.Add _
 (Type:=msoControlButton, ID:=1, _
 temporary:=True)
 With NewControl
 .Caption = "&Change Case"
 .OnAction = "ChangeCase"
 .Style = msoButtonIconAndCaption
 End With
End Sub

When you modify a shortcut menu, that modification remains in effect until you
restart Excel. In other words, modified shortcut menus don’t reset themselves
when you close the workbook containing the VBA code. Therefore, if you write
code to modify a shortcut menu, you almost always write code to reverse the effect
of your modification.

340 PART 4 Communicating with Your Users

The DeleteFromShortcut procedure removes the new menu item from the Cell
shortcut menu:

Sub DeleteFromShortcut()
 On Error Resume Next
 Application.CommandBars("Cell").Controls _
 ("&Change Case").Delete
End Sub

Figure 19-7 shows the new menu item displayed after you right-click a cell.

You probably noticed a lot of similarities between customizing an existing toolbar
and creating a new custom toolbar. Rather than using the Add method of the
CommandBar object, the code simply sets the Bar variable to the Cell toolbar. The
procedure to delete the customization differs in that the entire custom toolbar is
deleted versus just the added control being deleted from the built-in toolbar.

Adding customizations automatically
You need a way to create the custom toolbar or to add the shortcut menu item
when the workbook is opened, and to delete it when the workbook is closed. Doing
this is easy . . . if you’ve read Chapter 11. Just add these two event procedures to the
ThisWorkbook code module:

FIGURE 19-7:
The Cell shortcut
menu showing a

custom menu
item: Change

Case.

CHAPTER 19 Accessing Your Macros through the User Interface 341

Private Sub Workbook_Open()
 AddToAddin
 AddToShortCut
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 DeleteFromAddin
 DeleteFromShortcut
End Sub

The Workbook_Open procedure is executed when the workbook is opened, and
the Workbook_BeforeClose procedure is executed before the workbook is closed.
Just what the doctor ordered.

Understanding shortcut menus and the
single document interface
Before Excel adopted the single document interface, if your code modified a short-
cut menu, that modification was in effect for all workbooks. For example, if you
added a new item to the Cell right-click menu, that new item would appear when
you right-clicked a cell in any workbook (plus other workbooks that you open later
on). In other words, shortcut menu modifications were made at the application
level.

Since the single document interface, changes that you make to shortcut menus
only affect the active workbook window. When you execute the code that modifies
the shortcut menu, the shortcut menu for windows other than the active window
aren’t changed. This is a radical departure from how things used to work.

Another twist: If the user opens a workbook (or creates a new workbook) when the
active window displays the modified shortcut menu, the new workbook also dis-
plays the modified shortcut menu. In other words, new windows display the same
shortcut menus as the window that was active when the new windows were
opened.

Bottom line: In the past, if you opened a workbook or add-in that modified short-
cut menus, you could be assured that the modified shortcut menus would be
available in all workbooks. You no longer have that assurance.

5Putting It All
Together

IN THIS PART . . .

Find out why you might want to create custom
worksheet functions.

Make your custom functions work just like Excel’s
built-in functions.

Discover Excel add-ins.

Create simple add-ins.

CHAPTER 20 Creating Worksheet Functions 345

Chapter 20
Creating Worksheet
Functions

For many macro mavens, VBA’s main attraction is the capability to create cus-
tom worksheet functions — functions that look, work, and feel just like those
that Microsoft built into Excel. A custom function offers the added advantage

of working exactly how you want it to (because you wrote it). Chapter 5 introduces
the concept of custom functions. In this chapter, you take a deeper dive with some
real-world examples.

Create Custom Functions to
Simplify Your Work

You’re undoubtedly familiar with Excel’s worksheet functions; even Excel novices
know how to use common worksheet functions such as SUM, AVERAGE, and

IN THIS CHAPTER

 » Knowing why custom worksheet
functions are so useful

 » Understanding the basics of custom
worksheet functions

 » Writing your own functions

 » Exploring functions that use various
types of arguments

 » Examining function examples

 » Understanding the Insert Function
dialog box

346 PART 5 Putting It All Together

IF. Excel contains more than 450 predefined worksheet functions. And if that’s
not enough, you can create functions by using VBA.

With all the functions available in Excel and VBA, you might wonder why you
would ever need to create functions. The answer: to simplify your work. With a bit
of planning, custom functions are very useful in worksheet formulas and VBA
procedures. Often, for example, you can significantly shorten a formula by creat-
ing a custom function. After all, shorter formulas are more readable and easier to
work with.

WHAT CUSTOM WORKSHEET
FUNCTIONS CAN’T DO
As you develop custom functions for use in your worksheet formulas, it’s important that
you understand a key point. VBA worksheet Function procedures are essentially passive.
For example, code within a Function procedure cannot manipulate ranges, change for-
matting, or do many of the other things that are possible with a Sub procedure. An
example may help.

It might be useful to create a function that changes the color of text in a cell based on
the cell’s value. Try as you might, however, you can’t write such a function. It always
returns an error value.

Just remember this: A function used in a worksheet formula returns a value. It doesn’t
perform actions with objects.

That said, this rule has a few exceptions. For example, here’s a Function procedure that
changes the text in a cell comment:

Function ChangeComment(cell, NewText)
 cell.Comment.Text NewText
End Function

And here’’s a formula that uses the function. It works only if cell A1 already has a com-
ment. When the formula is calculated, the comment is changed.

=ChangeComment(A1,"I changed the comment!")

It’s unclear whether this is an oversight or a feature. But it’s a rare example of a VBA
function that changes something in a worksheet.

CHAPTER 20 Creating Worksheet Functions 347

Understanding VBA Function Basics
A VBA function is a procedure that’s stored in a VBA module and returns a value.
You can use these functions in other VBA procedures or in your worksheet formu-
las. Custom functions can’t be created with the macro recorder, although the
macro recorder can help you identify relevant properties and methods.

A module can contain any number of functions. You can use a custom function in
a formula just as though it were a built-in function. If the function is defined in a
different workbook, however, you must precede the function name with the work-
book name. Suppose that you develop a function called DiscountPrice (which takes
one argument), and the function is stored in a workbook named pricing.xlsm.

To use this function in the pricing.xlsm workbook, enter a formula such as this:

=DiscountPrice(A1)

If you want to use this function in a different workbook, enter a formula such as
this (and make sure the pricing.xlsm file is open):

=pricing.xlsm!discountprice(A1)

If the custom function is stored in an add-in, you don’t need to precede the func-
tion name with the workbook name. Chapter 21 provides an overview of add-ins.

Custom functions appear in the Insert Function dialog box, in the User Defined
category. Pressing Shift+F3 is one way to display the Insert Function dialog box.

Writing Functions
Remember, a function’s name acts like a variable. The final value assigned to the
function’s name is the value returned by the function. To demonstrate, examine
the following function, which returns the user’s first name:

Function FirstName()
 Dim FullName As String
 Dim FirstSpace As Long
 FullName = Application.UserName
 FirstSpace = InStr(FullName, " ")
 If FirstSpace = 0 Then
 FirstName = FullName

348 PART 5 Putting It All Together

 Else
 FirstName = Left(FullName, FirstSpace - 1)
 End If
End Function

This function starts by assigning the UserName property of the Application object
to a variable named FullName. Next, it uses the VBA InStr function to locate the
position of the first space in the name. If there is no space, FirstSpace is equal to
0, and FirstName is equal to the entire name. If FullName does have a space, the
Left function extracts the text to the left of the space and assigns it to FirstName.

Notice that FirstName is the name of the function and is also used as a variable
name in the function. The final value of FirstName is the value that’s returned by
the function. Several intermediate calculations may be going on in the function,
but the function always returns the last value assigned to the function’s name.

All the examples in this chapter are available at this book’s website at https://
www.dummies.com/go/excelvbaprogrammingfd6e.

Working with Function Arguments
To work with functions, you need to understand how to work with arguments. An
argument is not a disagreement between variables. Rather, it’s information that is
passed to the function and then used by the function to do its thing.

The following points apply to the arguments for Excel worksheet functions and
custom VBA functions:

 » Arguments can be cell references, variables (including arrays), constants, literal
values, or expressions.

 » Some functions have no arguments.

 » Some functions have one or more required arguments.

 » Some functions have one or more optional arguments.

 » Some functions have a combination of required and optional arguments.

The examples in this section demonstrate how to work with various types of
arguments.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

CHAPTER 20 Creating Worksheet Functions 349

A function with no argument
Some functions don’t use any arguments. For example, Excel has a few built-in
worksheet functions that don’t use arguments. These include RAND, TODAY,
and NOW.

Here’s an example of a custom function with no arguments. The following func-
tion returns the UserName property of the Application object. This name appears
in the General tab of the Excel Options dialog box. This simple but useful example
shows the only way you can get the user’s name to appear in a worksheet cell:

Function User()
' Returns the name of the current user
 User = Application.UserName
End Function

When you enter the following formula into a worksheet cell, the cell displays the
current user’s name:

=User()

As with the Excel built-in functions, you must include a set of empty parentheses
when using a function with no arguments. Otherwise, Excel tries to interpret the
function as a named range.

A function with one argument
The single-argument function in this section is designed for sales managers who
need to calculate the commissions earned by their salespeople. The commission
rate depends on the monthly sales volume; those who sell more earn a higher
commission rate. The function returns the commission amount based on the
monthly sales (which is the function’s only argument — a required argument).
The calculations in this example are based on Table 20-1.

TABLE 20-1 Commission Rates by Sales
Monthly Sales Commission Rate

$0–$9,999 8.0%

$10,000–$19,999 10.5%

$20,000–$39,999 12.0%

$40,000+ 14.0%

350 PART 5 Putting It All Together

You can use several approaches to calculate commissions for sales amounts
entered into a worksheet. You could write a lengthy worksheet formula like this:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,IF(AND(A1>=10000,
A1<=19999.99),A1*0.105,IF(AND(A1>=20000,A1<=39999.99),
A1*0.12,IF(A1>=40000,A1*0.14,0))))

We’ve all dealt with long formulas and the tedium of matching up parentheses —
or worse, trying to figure out why they don’t match. Formulas like this are diffi-
cult to edit, which makes it easy to introduce errors.

A better approach is to create a table of commission values and look up the rate to
compute the commissions:

=VLOOKUP(A1,Table,2)*A1

Another approach, which doesn’t require a table of commissions, is to create a
custom function:

Function Commission(Sales)

' Calculates sales commissions

 Const Tier1 As Double = 0.08

 Const Tier2 As Double = 0.105

 Const Tier3 As Double = 0.12

 Const Tier4 As Double = 0.14

 Select Case Sales

 Case 0 To 9999.99: Commission = Sales * Tier1

 Case 10000 To 19999.99: Commission = Sales * Tier2

 Case 20000 To 39999.99: Commission = Sales * Tier3

 Case Is >= 40000: Commission = Sales * Tier4

 End Select

 Commission = Round(Commission, 2)

End Function

Notice that the four commission rates are declared as constants rather than hard-
coded in the statements. This makes it very easy to modify the function if the
commission rates change.

After you define this function in a VBA module, you can use it in a worksheet for-
mula. Entering the following formula into a cell produces a result of 3,000. The
amount of 25,000 qualifies for a commission rate of 12 percent:

=Commission(25000)

Figure 20-1 shows a worksheet that uses the Commission function in formulas in
column C.

CHAPTER 20 Creating Worksheet Functions 351

A function with two arguments
The next example builds on the preceding one. Imagine that the sales manager
implements a new policy to reward long-term employees: The total commission
paid increases by 1% for every year the salesperson has been with the company.

You can modify the Commission function (defined in the preceding section) so
that it takes two arguments, both of which are required arguments. Call this new
function Commission2:

Function Commission2(Sales, Years)

' Calculates sales commissions based on years in service

 Const Tier1 As Double = 0.08

 Const Tier2 As Double = 0.105

 Const Tier3 As Double = 0.12

 Const Tier4 As Double = 0.14

 Select Case Sales

 Case 0 To 9999.99: Commission2 = Sales * Tier1

 Case 10000 To 19999.99: Commission2 = Sales * Tier2

 Case 20000 To 39999.99: Commission2 = Sales * Tier3

 Case Is >= 40000: Commission2 = Sales * Tier4

 End Select

 Commission2 = Commission2 + (Commission2 * Years / 100)
 Commission2 = Round(Commission2, 2)

End Function

FIGURE 20-1:
Using the

Commission
function in a

worksheet.

352 PART 5 Putting It All Together

The procedure simply adds the second argument (Years) to the Function state-
ment and includes an additional computation that adjusts the commission before
exiting the function. This additional computation multiplies the original commis-
sion by the number of years in services, divides by 100, and then adds the result to
the original computation.

Here’s an example of how you can write a formula by using this function. (It
assumes that the sales amount is in cell A1; cell B1 specifies the number of years
the salesperson has worked.)

=Commission2(A1,B1)

Figure 20-2 shows a worksheet that uses the Commission2 function.

A function with a range argument
Using a worksheet range as an argument is not at all tricky; Excel takes care of the
behind-the-scenes details. Here’s a simple function that sums only the odd num-
bers in a range.

Function SumOdd(Values)
 Dim cell As Range
 For Each cell In Values.Cells
 If cell.Value Mod 2 = 1 Then
 SumOdd = SumOdd + cell.Value
 End If
 Next cell
End Function

FIGURE 20-2:
Using the

Commission2
function, which

takes two
arguments.

CHAPTER 20 Creating Worksheet Functions 353

It uses a For Each-Next construct to loop through each cell in the range. It then
uses the Mod operator to determine if the number is odd. The Mod operator
returns the remainder after you divide by the second number. Any number that
has a remainder of 1 after dividing by 2 is odd. If the number is odd, it’s added to
SumOdd, the function name and return variable.

Figure 20-3 shows an example. The odd numbers are in a larger font so they’re
easier to identify.

Here’s another example of a function that uses a range argument. Assume that
you want to calculate the average of the five largest values in a range named Data.
Excel doesn’t have a function that can do this, so you would probably write a
formula:

=(LARGE(Data,1)+LARGE(Data,2)+LARGE(Data,3)+
LARGE(Data,4)+LARGE(Data,5))/5

This formula uses Excel’s LARGE function, which returns the nth largest value in
a range. The formula adds the five largest values in the range named Data and
then divides the result by 5. The formula works fine, but it’s rather unwieldy. And
what if you decide that you need to compute the average of the top six values? You
would need to rewrite the formula — and make sure that you update all copies of
the formula.

Wouldn’t this be easier if Excel had a function named TopAvg? Then you could
compute the average by using the following (nonexistent) function:

=TopAvg(Data,5)

FIGURE 20-3:
Using a custom
function to sum

only odd
numbers.

354 PART 5 Putting It All Together

This example shows a case in which a custom function can make things much
easier for you. The following custom VBA function, named TopAvg, returns the
average of the N largest values in a range:

Function TopAvg(InRange, N)

' Returns the average of the highest N values in InRange

 Dim Sum As Double

 Dim i As Long

 Sum = 0

 For i = 1 To N

 Sum = Sum + WorksheetFunction.Large(InRange, i)
 Next i

 TopAvg = Sum / N

End Function

This function takes two arguments: InRange (which is a worksheet range) and N
(the number of values to average). It starts by initializing the Sum variable to 0. It
then uses a For-Next loop to calculate the sum of the N largest values in the range.
Note the Excel LARGE function within the loop. Finally, TopAvg is assigned the
value of the Sum divided by N.

You can use all Excel worksheet functions in your VBA procedures except those that
have equivalents in VBA. For example, VBA has a Rnd function that returns a ran-
dom number. Therefore, you can’t use the Excel RAND function in a VBA
procedure.

A function with an optional argument
Many Excel built-in worksheet functions use optional arguments. An example is
the LEFT function, which returns characters from the left side of a string. Its offi-
cial syntax follows:

LEFT(text[,num_chars])

The first argument is required, but the second (in square brackets) is optional. If
you omit the optional argument, Excel assumes a value of 1. Therefore, the follow-
ing formulas return the same result:

=LEFT(A1,1)
=LEFT(A1)

The custom functions you develop in VBA also can have optional arguments. You
specify an optional argument by preceding the argument’s name with the

CHAPTER 20 Creating Worksheet Functions 355

keyword Optional. The argument’s name is then followed by an equal sign and the
default value. If the optional argument is missing, the code uses the default value.

One caveat: If you use optional arguments, they must always come after all
required arguments in the argument list.

The following example shows a custom function that uses an optional argument:

Function DrawOne(InRange, Optional Recalc = False)
' Chooses one cell at random from a range

 Randomize
' Make function volatile if Recalc is 1
 If Recalc Then Application.Volatile True

' Determine a random cell
 DrawOne = InRange(Int((InRange.Count) * Rnd + 1))
End Function

DEBUGGING CUSTOM FUNCTIONS
Debugging a Function procedure can be a bit more challenging than debugging a Sub
procedure. If you develop a function for use in worksheet formulas, you find that an
error in the Function procedure simply results in an error display in the formula cell
(usually, #VALUE!). In other words, you don’t receive the normal runtime error message
that helps you locate the offending statement.

You can choose among three methods for debugging custom functions:

• Place MsgBox functions or Debug.Print statements at strategic locations to monitor
the value of specific variables. Fortunately, message boxes in Function procedures
pop up when you execute the procedure. Make sure that only one formula in the
worksheet uses your function. Otherwise, the message boxes appear for each for-
mula that’s evaluated — which could get very annoying.

• Test the procedure by calling it from a Sub procedure. Runtime errors normally
appear in a pop-up window, and you can either correct the problem (if you know it)
or jump right into the debugger.

• Set a breakpoint in the function and then use the Excel debugger to step through
the function. You can then access all the usual debugging tools. Refer to Chapter 13
to find out about the debugger.

356 PART 5 Putting It All Together

This function randomly chooses one cell from an input range. If the second argu-
ment is 1, the selected value changes whenever the worksheet is recalculated. (The
function is made volatile.) If the second argument is 0 (or is omitted), the function
is not recalculated unless one of the cells in the input range is modified.

The Randomize statement ensures that a different random number “seed” is cho-
sen each time the function executes. Without this statement, the same random
numbers are generated each time the workbook is opened.

You can use this function for choosing lottery numbers, selecting a winner from a
list of names, and so on.

Introducing Wrapper Functions
This section contains some relatively simple wrapper functions that can be useful
in a wide array of tasks. Wrapper functions consist of code that’s wrapped around
intrinsic VBA elements. In other words, they allow you to use VBA functions in
worksheet formulas.

The earlier section in this chapter, “A function with no argument,” shows an
example of a wrapper function:

Function User()
' Returns the name of the current user
 User = Application.UserName
End Function

This function, in essence, lets your formulas access the UserName property of the
Application object.

The remainder of this section contains some additional wrapper functions.

The NumberFormat function
This function simply displays the number format for a cell. It can be useful if you
need to ensure that a group of cells all have the same number format.

Function NumberFormat(Cell)
' Returns the cell's number format
 NumberFormat = Cell(1).NumberFormat
End Function

CHAPTER 20 Creating Worksheet Functions 357

Notice the use of Cell(1)? If a multi-cell range is used as an argument, only the
first cell is used.

You can easily write similar functions that return a cell’s text color, background
color, font, and so on.

The ExtractElement function
This wrapper function returns a substring from a text string that contains mul-
tiple elements, separated by a separator character. For example, this formula
returns cow, which is the third element in a string that uses a space as a separator.
The arguments, of course, could be cell references.

=ExtractElement("dog horse cow cat", 3, " ")

Here’s the code, which is a wrapper for VBA’s Split function:

Function ExtractElement(Txt, n, Sep)

' Returns the nth element of a text string, where the

' elements are separated by a specified separator character

 ExtractElement = Split(Application.Trim(Txt), Sep)(n - 1)

End Function

Figure 20-4 shows the ExtractElement function used in worksheet formulas. Col-
umn A contains the text string, Column B contains the element number to be
extracted, and Column C contains the delimiter (cells that appear to be blank con-
tain a space character).

FIGURE 20-4:
Using the

ExtractElement
function to return
an element from

a string.

358 PART 5 Putting It All Together

The SayIt function
This simple function is a wrapper for the Speak method of the Application.Speech
object. It uses a synthesized voice to “speak” the argument.

Function SayIt(txt)
' Speaks the argument
 Application.Speech.Speak txt, True
End Function

Here’s an example:

=IF(C10>10000,SayIt("Over budget"),"OK")

The formula checks cell C10. If the value is greater than 10,000, the function
speaks the text: “Over budget.” If the value is less than 10,000, the function dis-
plays the text OK (and doesn’t say anything).

Use sparingly. If you use this function more than one time, it can be very confus-
ing. Also, remember that this function is evaluated each time the worksheet is
calculated, so the voice may get very annoying if you’re making many changes.
This function is probably more suited for amusement purposes.

The IsLike function
VBA’s Like operator is a very flexible way to compare text strings. With the Like
operator, you can use wildcards in your comparisons. This function brings that
power to your worksheet formulas:

Function IsLike(text, pattern)
' Returns true if the first argument is like the second
 IsLike = text Like pattern
End Function

You can use the following wildcards in the pattern of the Like operator:

 » Question mark (?): A placeholder for a single character of any type.

 » Asterisk (*): A placeholder for zero or more characters of any type.

 » Pound (#): A placeholder for a single character, numeric only.

CHAPTER 20 Creating Worksheet Functions 359

 » Brackets ([]): A placeholder for a single character that matches a character
inside the brackets.

 » Exclamation (!): When used as the first character inside brackets, it’s a
placeholder for a single character that doesn’t match a character inside the
brackets.

For example, =IsLike("guitar","g*") returns TRUE because guitar is a word that
starts with a g followed by zero or more characters. In contrast,
=IsLike("guitar","g[a-e]*) returns FALSE because the second character isn’t in
the range a through e. See the Help system for more information on the wildcards
and a lot more examples.

Working with Functions That
Return an Array

Array formulas are one of Excel’s most powerful features. If you’re familiar with
array formulas, you’ll be happy to know that you can create VBA functions that
return an array.

Returning an array of month names
A simple example of an array is the MonthNames function. It returns a 12-element
array of — you guessed it — month names.

Function MonthNames()
 MonthNames = Array("January", "February", "March", _
 "April", "May", "June", "July", "August", _
 "September", "October", "November", "December")
End Function

To use the MonthNames function in a worksheet, you must enter it as a 12-cell
array formula. For example, select range A2:L2 and enter =MonthNames(). Then
press Ctrl+Shift+Enter to enter the array formula in all 12 selected cells. Figure 20-5
shows the result.

FIGURE 20-5:
Using the

MonthNames
function to return

a 12-element
array.

360 PART 5 Putting It All Together

If you want the month names to display in a column, select 12 cells in a column
and use this array formula. (Don’t forget to enter it by pressing Ctrl+Shift+Enter.)

=TRANSPOSE(MonthNames())

You can also pick out a single month from the array. Here’s a formula (not an
array formula) that displays the fourth element of the array: April.

=INDEX(MonthNames(),4)

Returning a sorted list
Suppose that you have a list of names you want to show in sorted order in another
range of cells. The latest version of Excel has a SORT worksheet function. But if
you’re on a previous version, that won’t be available to you until you upgrade.

The custom function in this section does just that: It takes a single-column range
of cells as its argument and then returns an array of those cells sorted. Figure 20-6
shows how it works. Range A2:A13 contains some names. Range C2:C13 contains
this multi-cell array formula. (Remember, you must enter the formula by pressing
Ctrl+Shift+Enter.)

=Sorted(A2:A13)

FIGURE 20-6:
Using a custom

function to return
a sorted range.

CHAPTER 20 Creating Worksheet Functions 361

Here’s the code for the Sorted function:

Function Sorted(Rng As Range)
 Dim SortedData() As Variant
 Dim Cell As Range
 Dim Temp As Variant, i As Long, j As Long
 Dim NonEmpty As Long

' Transfer data to SortedData
 For Each Cell In Rng
 If Not IsEmpty(Cell) Then
 NonEmpty = NonEmpty + 1
 ReDim Preserve SortedData(1 To NonEmpty)
 SortedData(NonEmpty) = Cell.Value
 End If
 Next Cell
' Sort the array
 For i = 1 To NonEmpty
 For j = i + 1 To NonEmpty
 If SortedData(i) > SortedData(j) Then
 Temp = SortedData(j)
 SortedData(j) = SortedData(i)
 SortedData(i) = Temp
 End If
 Next j
 Next i

' Transpose the array and return it
 Sorted = Application.Transpose(SortedData)
End Function

The Sorted function starts by creating an array named SortedData. This array con-
tains all the nonblank values in the argument range. Next, the SortedData array is
sorted, using a bubble-sort algorithm. Because the array is a horizontal array, it
must be transposed before it’s returned by the function.

The Sorted Function works with a range of any size, as long as it’s in a single col-
umn or row. If the unsorted data is in a row, your formula needs to use Excel’s
TRANSPOSE function to display the sorted data horizontally. For example:

=TRANSPOSE(Sorted(A16:L16))

362 PART 5 Putting It All Together

Using the Insert Function Dialog Box
The Excel Insert Function dialog box is a handy tool that allows you to choose a
worksheet function from a list and prompts you for the function’s arguments. As
noted earlier in this chapter, your custom worksheet functions also appear in the
Insert Function dialog box. Custom functions appear in the User Defined
category.

Function procedures defined with the Private keyword don’t appear in the Insert
Function dialog box. Therefore, if you write a Function procedure that’s designed
to be used only by other VBA procedures (but not in formulas), you should declare
the function as Private.

Displaying the function’s description
The Insert Function dialog box displays a description of each built-in function.
But as shown in Figure 20-7, a custom function displays the following text as its
description: No help available.

To display a meaningful description of your custom function in the Insert Func-
tion dialog box, perform a few additional (nonintuitive) steps:

1. Activate a worksheet in the workbook that contains the custom function.

2. Choose Developer  ➪   Code  ➪   Macros (or press Alt+F8).

The Macro dialog box appears.

FIGURE 20-7:
By default, the

Insert Function
dialog box

doesn’t provide a
description for

custom functions.

CHAPTER 20 Creating Worksheet Functions 363

3. In the Macro Name field, type the function’s name.

Note that the function doesn’t appear in the list of macros; you must type the
name.

4. Click the Options button.

The Macro Options dialog box appears.

5. In the Description field, type a description of the function.

6. Click OK.

7. Click Cancel.

Now the Insert Function dialog box displays the description of your function (see
Figure 20-8).

Custom functions, by default, are listed in the User Defined category. To add a
function to a different category, you need to use VBA. This statement, when exe-
cuted, adds the TopAvg function to the Math & Trig category (which is category 3):

Application.MacroOptions Macro:="TopAvg", Category:=3

Check the Help system for other category numbers. See Chapter 4 for how to
access the Help system.

You need to execute this statement only one time. After you execute it (and save
the workbook), the category number is permanently assigned to the function.

FIGURE 20-8:
The custom

function now
displays a

description.

364 PART 5 Putting It All Together

Adding argument descriptions
When you access a built-in function from the Insert Function dialog box, the
Function Arguments dialog box displays descriptions of the arguments (see
Figure 20-9).

In the past, it was not possible to add argument descriptions. But beginning with
Excel 2010, Microsoft finally implemented this feature. You provide argument
descriptions by using the MacroOptions method. Here’s an example that adds
descriptions for the arguments used by the TopAvg function:

Sub AddArgumentDescriptions()
 Application.MacroOptions Macro:="TopAvg", _
 ArgumentDescriptions:= _
 Array("Range that contains the values", _
 "Number of values to average")
End Sub

You need to execute this procedure only one time. After you execute it, the argu-
ment descriptions are stored in the workbook and are associated with the function.

Notice that the argument descriptions appear as arguments for the Array function.
You must use the Array function even if you’re assigning a description for a func-
tion that has only one argument.

This chapter provides lots of information about creating custom worksheet func-
tions. Use these examples as models when you create functions for your own
work. As usual, the online help provides additional details. Turn to Chapter 21 if
you want to find out how to make your custom functions more accessible by stor-
ing them in an add-in.

FIGURE 20-9:
By default, the

Function
Arguments dialog

box displays
Function

argument
descriptions

for built-in
functions only.

CHAPTER 21 Creating Excel Add-Ins 365

Chapter 21
Creating Excel Add-Ins

One of the slickest features of Excel is the capability to create add-ins.
Excel add-ins make it possible for you to package up your VBA proce-
dures, and make them part of the Excel user interface. Best of all, you can

share these packages with others so that they gain the benefit of your VBA prowess.

In this chapter, you explore how to create add-ins by using only the tools built
into Excel.

Add-Ins Defined
An Excel add-in is a normal macro-enabled workbook file with the following
differences:

 » The IsAddin property of the Workbook object is True.

 » The workbook window is hidden and can’t be unhidden by choosing View  ➪  
Window  ➪   Unhide.

 » The workbook isn’t a member of the Workbooks collection. Rather, it’s in the
AddIns collection.

Excel ships with several add-ins, including the Analysis ToolPak and Solver. You
can also get Excel add-ins from third-party suppliers or as shareware.

IN THIS CHAPTER

 » Using add-ins: What a concept!

 » Knowing why you might want to
create your own add-ins

 » Creating custom add-ins

 » Reviewing an add-in example

366 PART 5 Putting It All Together

You can convert any workbook file to an add-in, but not all workbooks are good
candidates. Because add-ins are always hidden, you can’t display worksheets or
chart sheets contained in an add-in. However, you can access an add-in’s VBA Sub
and Function procedures and display dialog boxes contained on UserForms.

Excel add-ins have an XLAM file extension, not the typical XLSM extension for
macro-enabled workbooks.

Reasons to Create Add-Ins
You might decide to convert your Excel application to an add-in for any of the fol-
lowing reasons:

 » Keep your code separate from your data. When you distribute VBA to other
people, it’s a good practice to keep all your code in an add-in, all your data in
some other file like an XLSX workbook or a text file, and all your templates in
separate XLST files. That way if you need to update your code or a template,
you won’t destroy the user’s data.

 » Make it more difficult to access your code. When you distribute an
application as an add-in (and you protect its VBA project), casual users can’t
view the sheets in the workbook. If you use proprietary techniques in your
VBA code, you can make it more difficult for others to copy the code. Excel’s
protection features aren’t perfect, though, and password-cracking utilities are
available.

 » Avoid confusion. If a user loads your application as an add-in, the file is
invisible and therefore less likely to confuse novice users or get in the way.
Unlike a hidden workbook, the contents of an add-in can’t be revealed.

 » Simplify access to worksheet functions. Custom worksheet functions that
you store in an add-in don’t require the workbook name qualifier. For
example, if you store a custom function named MOVAVG in a workbook
named NEWFUNC.XLSM, you must use syntax like the following to use this
function in a different workbook:

=NEWFUNC.XLSM!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can use much
simpler syntax because you don’t need to include the file reference:

=MOVAVG(A1:A50)

 » Provide easier access for users. After you identify the location of your
add-in, it appears in the Add-Ins dialog box, with a friendly name and a
description of what it does. The user can easily enable or disable your add-in.

CHAPTER 21 Creating Excel Add-Ins 367

 » Gain better control over loading. Add-ins can be opened automatically
when Excel starts, regardless of the directory in which they’re stored.

 » Avoid displaying prompts when unloading. When an add-in is closed, the
user never sees the dialog box prompt asking whether to save changes in
the file.

Working with Add-Ins
You load and unload add-ins by using the Add-Ins dialog box. To display this dia-
log box, choose File ➪ Options ➪ Add-Ins. Then select Excel Add-Ins from the
drop-down list at the bottom of this dialog box and click Go. Or take the fast track
and choose Developer ➪ Add-Ins ➪ Excel Add-Ins. But the easiest method is to
just press Alt+TI (the old Excel 2003 keyboard shortcut).

Any of these methods displays the Add-Ins dialog box, shown in Figure 21-1. The
list box contains the names of all add-ins that Excel knows about. In this list,
check marks identify any currently open add-ins. You can open and close add-ins
from the Add-Ins dialog box by selecting or deselecting the check boxes.

FIGURE 21-1:
The Add-Ins

dialog box lists all
the add-ins

known to Excel.

368 PART 5 Putting It All Together

To add a new add-in to the list, click Browse and then locate the XLAM file.

You can also open most add-in files (as though they were workbook files) by
choosing File ➪ Open ➪ Browse. An add-in opened in this manner doesn’t appear
in the Add-Ins dialog box. In addition, if you open the add-in by choosing the Open
command, you can’t close it by choosing File ➪ Close. You can remove the add-in
only by exiting and restarting Excel or by writing a macro to close the add-in.

When you open an add-in, you may or may not notice anything different. In many
cases, however, the Ribbon changes in some way; Excel displays a new tab or one
or more new groups on an existing tab. For example, opening the Analysis Tool-
Pak add-in gives you a new item on the Data tab: Analysis ➪ Data Analysis. If the
add-in contains only custom worksheet functions, the new functions appear in
the Insert Function dialog box, and you see no change in Excel’s user interface.

Understanding Add-In Basics
Although you can convert any workbook to an add-in, not all workbooks benefit
from this conversion. A workbook with no macros makes a useless add-in. In fact,
the only types of workbooks that benefit from being converted to an add-in are
those with macros. For example, a workbook that consists of general-purpose
macros (Sub and Function procedures) makes an ideal add-in.

Creating an add-in isn’t difficult, but it does require a bit of extra work. Follow
these steps to create an add-in from a normal workbook file:

1. Develop your application, and make sure that everything works properly.

Don’t forget to include a method for executing the macro or macros. You might
want to define a shortcut key or customize the user interface in some way (see
Chapter 19). If the add-in consists only of functions, there’s no need to include
a method to execute them because they appear in the Insert Function
dialog box.

2. Test the application by executing it when a different workbook is active.

Doing so simulates the application’s behavior when it’s used as an add-in
because an add-in is never the active workbook.

3. Activate the VBE and select the workbook in the Project window; choose
Tools  ➪   VBAProject Properties and click the Protection tab; select the
Lock Project for Viewing check box and enter a password (twice); then
click OK.

This step is necessary only if you want to prevent others from viewing or
modifying your macros or UserForms.

CHAPTER 21 Creating Excel Add-Ins 369

4. Back in Excel, choose File  ➪   Info, and select Show All Properties at the
bottom of the right panel.

Excel expands the list of properties displayed.

5. Enter a brief descriptive title in the Title field and a longer description in
the Comments field.

Steps 4 and 5 aren’t required but make the add-in easier to use, because the
descriptions you enter appear in the Add-Ins dialog box when your add-in is
selected.

6. Still in Backstage, click Save As in the left pane.

7. Click Browse on the Save As screen. In the Save As dialog box, select Excel
Add-in (*.xlam) from the Save as Type drop-down list.

8. Specify the folder that will store the add-in.

Excel proposes its default add-ins folder (named AddIns), but you can save the
file in any folder you like.

9. Click Save.

A copy of your workbook is converted to an add-in and saved with an XLAM exten-
sion. Your original workbook remains open.

Looking at an Add-In Example
This section discusses the basic steps involved in creating a useful add-in. The
example is based on the Change Case text conversion utility described in
Chapter 16.

The XLSM version of this example is available at this book’s website (https://
www.dummies.com/go/excelvbaprogrammingfd6e). You can create an add-in
from this workbook.

Setting up the workbook
The workbook consists of one blank worksheet, a VBA module, and a UserForm.
Chapter 19 shows how to implement code that adds a new item to the Cell shortcut
menu.

http://www.dummies.com/go/excelvbaprogrammingfd6e
http://www.dummies.com/go/excelvbaprogrammingfd6e

370 PART 5 Putting It All Together

The original version of the utility includes options for uppercase, lowercase, and
proper case. The add-in version includes two options to the UserForm so it has the
same options as the built-in tool in Microsoft Word:

 » Sentence Case: Makes the first letter uppercase and all other letters
lowercase.

 » Toggle Case: All uppercase characters are converted to lowercase, and vice
versa.

Figure 21-2 shows UserForm1. The five OptionButton controls are inside a Frame
control. In addition, the UserForm has a Cancel button (named CancelButton) and
an OK button (named OKButton).

The code executed when the Cancel button is clicked is very simple. This proce-
dure unloads the UserForm with no action:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

The code that’s executed when the OK button is clicked follows. This code does all
the work:

Sub cmdOK_Click()

 Dim TextCells As Range

 Dim cell As Range

 Dim Text As String

 Dim i As Long

' Create an object with just text constants

 On Error Resume Next

FIGURE 21-2:
The UserForm for
the Change Case

add-in.

CHAPTER 21 Creating Excel Add-Ins 371

 Set TextCells = Selection.SpecialCells(xlConstants, _

 xlTextValues)

' Turn off screen updating

 Application.ScreenUpdating = False

' Loop through the cells

 For Each cell In TextCells.Cells

 Text = cell.Value

 Select Case True

 Case OptLower.Value 'lowercase

 cell.Value = LCase(cell.Value)

 Case OptUpper.Value 'UPPERCASE

 cell.Value = UCase(cell.Value)

 Case OptProper.Value 'Proper Case

 cell.Value = StrConv(cell.Value, vbProperCase)

 Case OptSentence.Value 'Sentence case

 Text = UCase(Left(cell.Value, 1))

 Text = Text & LCase(Mid(cell.Value, 2, Len(cell.Value)))

 cell.Value = Text

 Case OptToggle.Value 'tOGGLE CASE

 For i = 1 To Len(Text)

 If Mid(Text, i, 1) Like "[A-Z]" Then

 Mid(Text, i, 1) = LCase(Mid(Text, i, 1))

 Else

 Mid(Text, i, 1) = UCase(Mid(Text, i, 1))

 End If

 Next i

 cell.Value = Text

 End Select

 Next cell

 Unload Me

End Sub

In addition to the two new options, this version of the Change Case utility differs
from the version in Chapter 16 in two other ways:

 » The SpecialCells method creates an object variable that consists of the cells in
the selection that contain a text constant (not a formula). This technique
makes the routine run a bit faster if the selection contains many formula cells.
See Chapter 14 for more information on this technique.

372 PART 5 Putting It All Together

 » The AddToShortCut subroutine in the new workbook adds the Change Case
menu item to the Cell, Row, and Column shortcut menus so you can now
execute the utility by right-clicking a range selection, a complete row selection,
or a complete column selection. Each of these actions displays the Change
Case item on the shortcut menu.

Testing the workbook
Test the add-in before converting this workbook. To simulate what happens when
the workbook is an add-in, you should test the workbook when a different work-
book is active. Because an add-in is never the active sheet or workbook, testing it
when a different workbook is open may help you identify some potential errors.

1. Open a new workbook and enter information in some cells.

For testing purposes, enter various types of information, including text, values,
and formulas. Or just open an existing workbook and use it for your tests.
Remember that any changes to the workbook cannot be undone, so you may
want to use a copy.

2. Select one or more cells (or entire rows and columns).

3. Execute the ChangeCase macro by choosing the new Change Case
command from your Cell (or Row or Column) shortcut menu.

If the Change Case command doesn’t appear on your shortcut menu, there are two
likely reasons. First, you might not have enabled macros when you opened the
change case.xlsm workbook. Close the workbook and then reopen it — then make
sure that you enable macros. Second, when you use shortcut menus as your user
interface, only workbooks opened after the workbook that modifies the shortcut
menu will show that change. Once your code is in an add-in, it will open when
Excel starts so that won’t be an issue.

Adding descriptive information
Although not required, it’s considered to be a best practice to enter a description
of your add-in. Follow these steps to add a description:

1. Activate the change case.xlsm workbook.

2. Choose File  ➪   Info, and click Show All Properties at the bottom right.

Excel expands the Properties list.

3. Enter a title for the add-in in the Title field.

This text appears in the list of add-ins in the Add-Ins dialog box. For this
example, enter Change Case.

CHAPTER 21 Creating Excel Add-Ins 373

4. In the Comments field, enter a description.

This information appears at the bottom of the Add-Ins dialog box when the
add-in is selected. For this example, enter Changes the case of text in
selected cells. Access this utility by using the shortcut menu.

Figure 21-3 shows the Properties section with the Title and Comments fields
filled out.

Protecting the VBA code
If you want to add a password to prevent others from viewing the VBA code, follow
these steps:

1. Activate the VBE, and select the change case.xlsm workbook in the
Project window.

2. Choose Tools  ➪   VBAProject Properties, and click the Protection tab on
the dialog box that appears.

3. Select the Lock Project for Viewing check box, and enter a password
(twice).

4. Click OK.

5. Save the workbook by choosing File  ➪   Save in the VBE or by going back
to the Excel window and choosing File  ➪   Save.

FIGURE 21-3:
Use the Proper-

ties section to
enter descriptive

information
about your

add-in.

374 PART 5 Putting It All Together

Creating the add-in
At this point, you’ve tested the change case.xlsm file, and it’s working correctly.
The next step is creating the add-in. Follow these steps:

1. If needed, reactivate Excel.

2. Activate the change case.xlsm workbook, and choose File  ➪   Save As  ➪  
Browse.

Excel displays its Save As dialog box.

3. From the Save as Type drop-down menu, choose Excel Add-In (*.xlam).

4. Specify the location, and click Save.

A new add-in file (with an .xlam extension) is created, and the original XLSM
version remains open.

Opening the add-in
To avoid confusion, close the XLSM workbook before opening the add-in that you
created from that workbook.

Open the add-in by following these steps:

1. Choose Developer  ➪   Add-Ins  ➪   Excel Add-Ins (or press Alt+TI).

Excel displays the Add-Ins dialog box.

2. Click the Browse button.

3. Locate and select the add-in you just created.

4. Click OK to close the Browse dialog box.

After you find your new add-in, the Add-Ins dialog box lists the add-in. As
shown in Figure 21-4, the Add-Ins dialog box also displays the descriptive
information you provided in the Document Properties panel.

5. Make sure that your new add-in is selected in the Add-Ins dialog box.

6. Click OK to close the dialog box.

Excel opens the add-in. Now you can use it with all your workbooks. As long as
it remains selected in the Add-Ins dialog box, the add-in opens every time you
start Excel.

CHAPTER 21 Creating Excel Add-Ins 375

Distributing the add-in
If you’re in a generous mood, you can distribute this add-in to other Excel users
simply by giving them a copy of the XLAM file. (They don’t need the XLSM ver-
sion.) When they open the add-in, the new Change Case command appears on the
shortcut menu when they select a range, one or more rows, or one or more col-
umns. If you lock the VBA project with a password, others cannot view your macro
code unless they know the password.

Modifying the add-in
An add-in can be edited just like any other workbook. You can edit the XLAM file
directly (you don’t need to work with the original XLSM version) by following
these steps:

1. Open your XLAM file, if it’s not already open.

2. Activate the VBE.

3. Double-click the project’s name in the Project window.

If you protected the code, you’re prompted for the password.

4. Enter your password, and click OK.

5. Make your changes to the code.

6. Save the file by choosing File  ➪   Save.

FIGURE 21-4:
The Add-Ins

dialog box has
the new add-in

selected.

376 PART 5 Putting It All Together

If you create an add-in that stores information in a worksheet, you must set the
workbook’s IsAddIn property to False to view the workbook. You do this in the
Properties window when the ThisWorkbook object is selected (see Figure 21-5).
After you’ve made your changes to the workbook, make sure that you set the
IsAddIn property back to True before you save the file.

FIGURE 21-5:
Making an add-in

not an add-in.

6The Part of Tens

IN THIS PART . . .

Discover tips on using the VBE.

Expand your knowledge with Excel resources.

Find out what you should and shouldn’t do in
Excel VBA.

CHAPTER 22 Ten Handy Visual Basic Editor Tips 379

Chapter 22
Ten Handy Visual Basic
Editor Tips

If you’re going to be spending time working the Visual Basic Editor, you should
take advantage of a few of the built-in tools that can make your job easier.
Whether you’re a fresh-faced analyst new to programming, or a jaded veteran

living on Mountain Dew and sunflower seeds, these tips can greatly improve your
macro programming experience.

IN THIS CHAPTER

 » Applying block comments

 » Copying multiple lines of code at once

 » Jumping between modules and
procedures

 » Teleporting to your functions

 » Staying in the right procedure

 » Stepping through your code

 » Stepping to a specific line in
your code

 » Stopping your code at a predefined
point

 » Seeing the beginning and end of
variable values

 » Turning off auto syntax check

380 PART 6 The Part of Tens

Applying Block Comments
Placing a single apostrophe in front of any statement effectively tells Excel to skip
that statement. This is called commenting out code. You can use the single apostro-
phe to also create comments or notes in your code (see Figure 22-1).

It’s sometimes beneficial to comment out multiple lines of code. This way, you
can test certain lines of code while telling Excel to ignore the commented lines.
For example, you might have code that manipulates some data and writes it to a
text file. If you want to test the data manipulation part without creating the text
file, you have to comment out that part of the code.

Instead of spending time commenting out one line at a time, you can use the Edit
toolbar to comment out whole blocks of code.

You can activate the Edit toolbar by choosing View ➪ Toolbars ➪ Edit.

Select the lines of code you want commented out and then click the Comment
Block icon on the Edit toolbar (see Figure 22-2).

You can ensure the Edit toolbar is always visible by dragging it up to the VBE menu
bar. It anchors itself to the location you choose.

FIGURE 22-1:
A single

 apostrophe in
front of any line

turns that line
into a comment.

CHAPTER 22 Ten Handy Visual Basic Editor Tips 381

Copying Multiple Lines of Code at Once
You can copy entire blocks of code by highlighting the lines you need and then
holding down the Ctrl key on your keyboard while dragging the block where you
need it. This is an old Windows trick that works even when you drag across
modules.

You know you’re dragging a copy when your mouse pointer shows a plus symbol
next to it, as shown in Figure 22-3.

FIGURE 22-2:
The Edit toolbar

allows you to
select entire

blocks of code
and apply

comments to all
the lines at once.

FIGURE 22-3:
Holding down the

Ctrl key while
dragging code

creates a copy of
that code.

382 PART 6 The Part of Tens

Jumping between Modules and Procedures
After your cache of macro code starts to grow, it can be a pain to quickly move
between modules and procedures. You can ease the pain by using a few shortcuts:

 » Press Ctrl+Tab to quickly move between modules.

 » Press Ctrl+Page Up and Ctrl+Page Down to move between procedures within
a module.

 » Press Ctrl+R to select the current module in the Project Explorer and use the
arrow keys to move to another module.

Teleporting to Your Functions
When reviewing a macro, you might sometimes encounter a variable or function
name that’s obviously pointing to some other piece of code. Instead of scouring
through all the modules to find where that function or variable name comes from,
you can simply place your cursor on that function/variable name, right-click, and
choose Definition (or press Shift+F2).

As Figure 22-4 shows, you’re instantly teleported to the origin of that function or
variable name.

FIGURE 22-4:
Pressing Shift+F2
with your cursor
on a function or

variable name
takes you to it.

CHAPTER 22 Ten Handy Visual Basic Editor Tips 383

Right-click and choose Last Position (or press Ctrl+Shift+F2) to go back to where
you started.

Staying in the Right Procedure
When your modules contain multiple procedures, you may find it less distracting
to only work with one procedure at a time. The VBE provides two modes in which
to work, the Procedure View mode and the Full Module View mode.

In Full Module View mode, all the procedures in the module are displayed in the
code pane and you scroll through the code pane to find the procedure you want. In
Procedure View mode, the code pane displays only one procedure at a time (as
shown in Figure 22-5). To switch procedures in this Procedure View mode, you can
use the drop-down lists at the top of the code pane or Ctrl+PgUp and Ctrl+PgDown.
Use the two buttons at the bottom-left of the code pane to switch modes.

Stepping through Your Code
VBA offers several tools to help you “debug” your code. In programming, debug-
ging means finding and correcting errors in code.

One of the more useful debugging tools is the ability to step through your code one
line at a time. When you step through code, you’re literally watching as each line
executes.

FIGURE 22-5:
Click the

Procedure View
button to show
only the active

procedure.

384 PART 6 The Part of Tens

To step through your code, place your cursor anywhere within your macro and
press F8. Your macro goes into debug mode.

The first line of code is highlighted and a small arrow appears in the Code win-
dow’s left margin (see Figure 22-6). Press F8 again to execute the highlighted line
of code and move to the next line. You can keep pressing F8 to watch each line be
executed until the end of the macro.

As a bonus, while stepping through the code, you can hover over any string or
numeric variable to see the current value of that variable.

To get out of debug mode, choose Debug ➪ Step Out.

Turn to Chapter 13 for a detailed look at the ins and outs of debugging your VBA
code.

Stepping to a Specific Line in Your Code
The last section showed how you can step through your code by placing your cur-
sor anywhere within your macro and pressing F8.

This is great, but what if you want to start stepping through your code at a specific
line? Well, you can do just that by simply moving the arrow!

When a line of code is highlighted in debug mode, you can click and drag the arrow
in the left margin of the Code window upward or downward, dropping it at which-
ever line of code you want to execute next. (See Figure 22-7.)

FIGURE 22-6:
Press F8 key to

step through
each line of your

macro at your
own pace.

CHAPTER 22 Ten Handy Visual Basic Editor Tips 385

VBA executes your code from top to bottom, one line at a time. If you skip lines
using this method, you might not get the results you expect.

Stopping Your Code at a Predefined Point
Another useful debugging tool is the ability to set a breakpoint in your code. When
you set a breakpoint, your code runs as normal and then halts at the line of code
where you defined the breakpoint.

This debugging technique comes in handy when you want to run tests on small
blocks of code at a time. For example, if you suspect there is an error in your
macro but you know that the majority of the macro runs without any problems,
you can set a breakpoint starting at the suspect line of code and then run the
macro. When the macros reaches your breakpoint, execution halts. At this point,
you can then press F8 to watch as the macro runs one line at a time.

To set a breakpoint in your code, place your cursor where you want the breakpoint
to start, and press F9. As Figure 22-8 shows, VBA clearly marks the breakpoint
with a dot in the Code window’s left margin, and the code line itself is shaded.

When your macro hits a breakpoint, it’s effectively in debug mode. To get out of
debug mode, choose Debug ➪ Step Out.

FIGURE 22-7:
You can click and

drag the yellow
arrow while

stepping through
your code.

386 PART 6 The Part of Tens

Seeing the Beginning and
End of Variable Values

If you hover over a string or numeric variable in VBA while in debug mode, you can
see the value of that variable in a tooltip. You can then see the values that are
being passed in and out of variables — very useful.

However, these tooltips can only hold 77 characters (including the variable name).
This basically means if the value in your variable is too long, it gets cut off.

To see the last 77 characters, hold down the Ctrl key while you hover.

Figure 22-9 shows what the tooltip looks like when holding down Ctrl and hover-
ing over a variable in debug mode.

FIGURE 22-8:
A breakpoint is

marked by a dot
in the left margin

along with
shaded text.

FIGURE 22-9:
Showing the

ending characters
in a variable

tooltip.

CHAPTER 22 Ten Handy Visual Basic Editor Tips 387

Turning Off Auto Syntax Check
Oftentimes, while working on some code, you find that you need to go to another
line to copy something. You’re not done with the line — you just need to leave it
for a second. But the VBE immediately stops you in your tracks with an error mes-
sage, similar to the one shown in Figure 22-10, warning you about something you
already know.

These message boxes force you to stop what you’re doing to acknowledge the
error by clicking OK. After a half day of these abrupt message boxes, you’ll be
ready to throw your computer against the wall.

Well, you can save your computer and your sanity by turning off Auto Syntax
Checkby choosing Tools ➪ Options.

On the Editor tab of the Options dialog box, uncheck the Auto Syntax Check option
to stop these annoying error messages. See Figure 22-11.

Don’t worry about missing a legitimate mistake. Your code still turns red if you
make a mistake, providing a visual indication that something is wrong.

FIGURE 22-10:
Leaving an

unfinished line of
code, even for a

second, results in
a jarring error

message.

388 PART 6 The Part of Tens

FIGURE 22-11:
Uncheck the Auto

Syntax Check
option to prevent

warning
messages while

coding.

CHAPTER 23 Resources for VBA Help 389

Chapter 23
Resources for VBA Help

No one is going to become a VBA expert in one day. VBA is a journey of time
and practice. The good news is that plenty of resources are out there that
can help you on your path. In this chapter, you discover ten of the most

useful places to turn to when you need an extra push in the right direction.

IN THIS CHAPTER

 » Letting Excel write code for you

 » Using the VBA help files

 » Pilfering code from the internet

 » Leverageing user forums

 » Visiting expert blogs

 » Mining YouTube for video training

 » Attending live and online training
classes

 » Learning from the Microsoft Office
Dev Center

 » Dissecting the other Excel files in
your organization

 » Asking your local Excel Guru

390 PART 6 The Part of Tens

Letting Excel Write Code for You
One of the best places to get macro help is the macro recorder in Excel. When you
record a macro with the macro recorder, Excel writes the underlying VBA for you.
After recording, you can review the code, see what the recorder did, and then try
to turn the code it creates into something more suited to your needs.

For example, say you need a macro that refreshes all the pivot tables in your
workbook and clears all the filters in each pivot table. Writing this macro from a
blank canvas would be a daunting task. Instead, you can start the macro recorder
and record yourself refreshing all the pivot tables and clearing all the filters. After
you stop recording, you can review the macro and make any changes you deem
necessary.

Need a refresher on using the macro recorder? Pop over to Chapter 6, where you
can find a detailed overview.

Referencing the Help System
The Help system for Microsoft Office (Excel included) has improved immensely
over the last few versions. And because it is either online or pulls from an online
source, the Help system is generally up to date.

You need to remember two basic tenets of the Excel Help system:

 » Location matters when asking for help. If you press F1 in Excel to show the
Help task pane and type in some VBA search terms, you won’t get any useful
results. When searching for VBA help, start from the VBE.

 » VBA help moved online. Pressing F1 in the VBE now opens a browser
window (assuming you’re connected) and takes you to the VBA language
reference website hosted by Microsoft. If your cursor happens to be on a
keyword, object name, or property or method name, it might take you right to
the relevant page.

Pilfering Code from the Internet
The dirty secret about programming in the internet-age is that there is no original
code anymore. All the macro syntax that will ever be needed has been documented
somewhere on the internet. In many ways, programming has become less about

CHAPTER 23 Resources for VBA Help 391

the code you can create from scratch, and more about how to take existing code
and apply it creatively to a particular scenario.

If you’re stuck trying to create a macro for a particular task, describe the task
you’re trying to accomplish via your favorite search engine. For the best results,
enter “Excel VBA” before your description.

For example, if you’re trying to write a macro that deletes all blank rows in a
worksheet, search for “Excel VBA delete blank rows in a worksheet.” You can bet
two months’ salary that someone has tackled the same problem and posted exam-
ple code that gives you the nugget of information you need to build your own
macro.

Leveraging User Forums
If you find yourself in a bind, post your question in a forum to get customized
guidance based on your scenario.

User forums are online communities that revolve around a particular topic. In
these forums, you can post questions and have experts offer advice on how to solve
particular problems. The folks answering the questions are typically volunteers
who have a passion for helping the community solve real-world challenges.

Many forums are dedicated to all things Excel. To find an Excel Forum, type “Excel
Forum” in your favorite search engine.

Here are a few tips for getting the most out of user forums:

 » Always read and follow the forum rules before you get started. These
rules often include advice on posting question and community etiquette
guidelines.

 » Check whether your question has already been asked and answered.
Save time by leveraging the forum’s archive of questions. Take a moment to
search the forum to see whether your question has been asked before.

 » Use concise and accurate subject titles for your questions. Don’t create
forum questions with abstract titles like: Need Advice or Please Help.

 » Keep the scope of your questions as narrow as possible. Don’t ask
questions like: How do I build an invoicing macro in Excel?

392 PART 6 The Part of Tens

 » Be patient. Remember the folks answering your questions are volunteers
who typically have day jobs. Give the community some time to answer your
question.

 » Check back often. After posting your question, you might receive requests
for more details about your scenario. Do everyone a favor and return to your
posting to either review the answers or respond to follow-up questions.

 » Thank the expert who answered your question. If you receive an answer
that helps you, take a moment to post a thank-you to the expert who helped
you out.

Visiting Expert Blogs
There are a few dedicated Excel Gurus that share their knowledge through blogs.
These blogs are often treasure troves of tips and tricks, offering nuggets that can
help build your skills. Best of all, they’re free!

Although these blogs won’t necessarily speak to your particular needs, they offer
articles that advance your knowledge of Excel and can even provide general guid-
ance on how to apply Excel in practical business situations.

Here is a list of a few of the best Excel blogs today:

 » ExcelGuru: Ken Puls is a Microsoft Excel MVP who shares knowledge at his
blog, https://www.excelguru.ca/blog. In addition to his blog, Ken offers
several learning resources for advancing your knowledge in Excel.

 » Chandoo.org: Purna “Chandoo” Duggirala is a Microsoft Excel MVP out of
India, who burst on the scene in 2007. His innovative blog (https://
chandoo.org) offers many free templates and articles aimed at “making you
awesome in Excel.”

 » Contextures: Debra Dalgleish is a Microsft Excel MVP and the owner of a
popular Excel site, https://www.contextures.com. With an alphabetized list
of over 350 Excel topics, you’re sure to find something that will interest you.

 » DailyDose: Yours truly is the owner of the longest running Excel blog, www.
dailydoseofexcel.com. Although I don’t actively post anymore, there is over
ten years’ worth of articles and examples.

 » MrExcel: Bill Jelen is the larger-than-life ambassador of Excel. This long-time
Excel MVP offers over a thousand free videos and a huge library of training
resources on his site, https://www.mrexcel.com.

https://www.excelguru.ca/blog
https://chandoo.org
https://chandoo.org
https://www.contextures.com/
http://www.dailydoseofexcel.com
http://www.dailydoseofexcel.com
https://www.mrexcel.com

CHAPTER 23 Resources for VBA Help 393

Mining YouTube for Video Training
If you find that you absorb video training better than articles, consider mining
YouTube. Dozens of channels are run by amazing folks who have a passion for
sharing knowledge. You’ll be surprised at how many free high-quality video tuto-
rials you can find.

Go to www.youtube.com and search for “Excel VBA.”

Attending Live and Online Training Classes
Live and online training events are an awesome way to absorb Excel knowledge
from a diverse group of people. Not only is the instructor feeding you techniques,
but the lively discussions during the class are a wealth of ideas and new tips you
might never even have thought of. If you thrive in the energy of live training
events, then consider searching for Excel classes.

Here are a few sites that provide excellent instructor-led Excel courses:

 » http://academy.excelhero.com/excel-hero-academy-tuition

 » https://chandoo.org/wp/vba-classes

 » https://exceljet.net

Learning from the Microsoft Office
Dev Center

The Microsoft Office Dev Center is dedicated to helping new developers get a quick
start in programming Office products. You can get to the Excel portion of this site
by going to https://docs.microsoft.com/en-us/office/client-developer/
excel/excel-home.

http://www.YouTube.com
http://academy.excelhero.com/excel-hero-academy-tuition
https://chandoo.org/wp/vba-classes
https://exceljet.net
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-home
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-home

394 PART 6 The Part of Tens

Dissecting the Other Excel Files
in Your Organization

Like finding gold in your backyard, the existing files in your organization are
often a treasure trove for learning. Consider opening Excel files that contain mac-
ros, and have a look under the covers. See how others in your organization use
macros. Try to go through the macros line-by-line and see if you can spot new
techniques.

You could find a few new tricks you never thought of. You might even stumble
upon entire chunks of useful code you can copy and implement in your own
workbooks.

Asking Your Local Excel Guru
Do you have an Excel genius in your company, department, organization, or com-
munity? Make friends with that person today. What you have there is your own
personal Excel forum.

Most Excel experts love sharing their knowledge. So don’t be afraid to approach
your local Excel Guru to ask questions or seek advice on how to tackle certain
macro problems.

CHAPTER 24 Ten VBA Do’s and Don’ts 395

Chapter 24
Ten VBA Do’s and Don’ts

If you’re reading this final chapter, you’ve probably read most of the content of
this book and are familiar with Excel VBA. Or maybe you just skipped to the end
because you wanted to see whether the butler actually did it.

This chapter gives you some advice you should take into account when you start
developing your own VBA solutions. Following these guidelines is no panacea to
keep you out of (programming) trouble, but following them can help you avoid
pitfalls that others have stumbled over.

Do Declare All Variables
How convenient it is: Simply start typing your VBA code without having to go
through the tedious chore of declaring each and every variable you want to use.
Although Excel allows you to use undeclared variables, doing so is simply asking
for trouble.

The first commandment of VBA programming should be this:

Thou shalt declare every variable.

To force yourself to obey that commandment, add an “Option Explicit” statement
at the top of your modules. That way, your code won’t even run if it includes one

IN THIS CHAPTER

 » Discovering five VBA-related things
you should do

 » Discovering five VBA-related things
you should not do

396 PART 6 The Part of Tens

or more undeclared variables. Not declaring all variables has only one advantage:
You save a few seconds. But using undeclared variables will eventually come back
to haunt you. And it will take you more than a few seconds to figure out the
problem.

Don’t Confuse Passwords with Security
You spent months creating a killer Excel app, with some amazing macros. You’re
ready to release it to the world, but you don’t want others to see your incredible
macro programming. Just password-protect the VBA project, and you’re safe,
right? Wrong.

Using a VBA password can keep most casual users from viewing your code. But if
someone really wants to check it, they’ll figure out how to crack the password.

Bottom line? If you absolutely, positively need to keep your code a secret, Excel
isn’t the best choice for a development platform.

Do Clean Up Your Code
After your app is working to your satisfaction, you should clean it up. Code house-
keeping tasks include the following:

 » Make sure every variable is declared.

 » Make sure all the lines are indented properly so the code structure is
apparent.

 » Remove any debugging aids, such as MsgBox statements or Debug.Print
statements.

 » Rename any poorly named variables. For example, if you use the variable
MyVariable, there’s a pretty good chance that you can make the variable name
more descriptive. You’ll thank yourself later.

 » Your modules probably have a few “test” procedures that you wrote while
trying to figure something out. They’ve served their purpose, so delete them.

 » Add comments so you’ll understand how the code works when you revisit it
6 months from now.

CHAPTER 24 Ten VBA Do’s and Don’ts 397

 » Make sure everything is spelled correctly — especially text in UserForms and
message boxes.

 » Check for redundant code. If you have two or more procedures that have
identical blocks of code, consider creating a new procedure that other
procedures can call.

Don’t Put Everything in One Procedure
Want to make an unintelligible program? An efficient way to accomplish that is to
put all your code inside one nice big procedure. If you ever revisit this program
again to make changes, you’re bound to make mistakes and introduce some fine-
looking bugs.

The solution is modular code. Split your program into smaller chunks, with each
chunk designed to perform a specific task. After you pick up this habit, you’ll find
that writing bug-free code is easier than ever.

Do Consider Other Software
Excel is an amazingly versatile program, but it’s not suitable for everything. When
you’re ready to undertake a new project, take some time to consider all your
options. To paraphrase an old saying, “When all you know is Excel VBA, every-
thing looks like a VBA macro.”

Don’t Assume That Everyone
Enables Macros

As you know, Excel allows you to open a workbook with its macros disabled. In
fact, it’s almost as though the designers of recent versions of Excel want users to
disable macros.

Enabling macros when you open a workbook from an unknown source is not a
good idea, of course. So, you need to know your users. In some corporate environ-
ments, all Microsoft Office macros are disabled, and the user has no choice in the
matter.

398 PART 6 The Part of Tens

One thing to consider is adding a digital signature to the workbooks that you dis-
tribute to others. That way, the user can be assured that the workbooks actually
come from you and that they haven’t been altered. Consult the Help system for
more information about digital signatures.

Do Get in the Habit of Experimenting
When working on a large-scale Excel project, spend time writing small VBA
“experiments.” For example, if you’re trying to find out about a new object,
method, or property, write a simple Sub procedure and play around with it until
you’re satisfied that you have a thorough understanding of how it works — and
the potential problems.

Setting up simple experiments is almost always much more efficient than incor-
porating a new idea into your existing code without understanding what those
experiments bring.

Don’t Assume That Your Code Will Work
with Other Excel Versions

When you create an Excel app, you have absolutely no guarantee that it will work
flawlessly in older versions of Excel (or in future versions for that matter). In
some cases, the incompatibilities will be obvious. For example, if your code refers
to a new feature introduced in the latest version of Excel, you know that it won’t
work in prior versions. But you’ll also find that things that should work with an
earlier version don’t work.

Excel includes a handy compatibility checker (choose File ➪ Info ➪ Check For
Issues ➪ Check Compatibility), but it only checks the workbook and ignores the
VBA code. The only way to be sure that your application works with versions other
than the one you created it with is to test it in those versions.

CHAPTER 24 Ten VBA Do’s and Don’ts 399

Do Keep Your Users in Mind
Excel apps fall into two main categories: those that you develop for yourself and
those that you develop for others to use. If you develop apps for others, your job is
much more difficult because you can’t make the same types of assumptions. For
example, you can be more lax with error handling if you’re the only user. If an
error crops up, you’ll have a pretty good idea where to look so you can fix it. If
someone else is using your app and the same error appears, they will be out of
luck. And when you’re working with your own application, you can usually get by
without instructions.

You need to understand the skill level of those who will be using your workbooks
and try to anticipate problems that they might have. Try to picture yourself as a
new user of your application, and identify all areas that may cause confusion or
problems.

Don’t Forget about Backups
Nothing is more discouraging than a hard drive crash without a backup. If you’re
working on an important project, ask yourself a simple question: “If my computer
dies tonight, what will I have lost?” If your answer is more than a few hours of
work, you need to take a close look at your data backup procedure. You do have a
data backup procedure, right?

Index 401

A
Abs function, 142
absolute mode, macro recorder,

86–87
Accelerator property, UserForm

controls, 284
Activate event, 173
activation events, 181–184
active objects, 15
Add Watch dialog box, 215
add-ins

adding description, 372–373
creating, 374
customizing with macros, 12
defined, 365–366
distributing, 375
modifying, 375–376
opening, 374–375
overview, 368–369
protecting VBA code, 373
reasons to create, 366–367
setting up workbook,

369–372
testing workbook, 372
working with, 367–368

Add-ins Ribbon tab, adding
commands to, 338–339

AddItem method, ListBox
control, 310

Addition operator, 114
Address property, Range

objects, 126–127
And operator, 115
Application object,

53–56

arguments
defined, 60
GetOpenFilename

statement, 257
GetSaveAsFilename

method, 259
worksheet functions

no-argument functions, 349
optional arguments, 354–356
overview, 348
range argument, 352–354
single-argument function,

349–351
two-argument function,

351–352
Array function, 142
arrays

declaring, 116–117
defined, 116
dynamic, 117–118
MonthNames function,

359–360
multidimensional, 117
SORT function, 360–361

assignment statements
equal sign operator, 114
logical operators, 115
operator precedence, 114–115
overview, 113–114
smooth operators, 114–116

Auto Data Tips option, VBE
Editor tab, 46

Auto Indent setting, VBE Editor
tab, 46

Auto List Members feature, VBE,
45, 64–65

Auto Quick Info option, VBE, 46
Auto Syntax Check, VBE, 44,

387–388
automatic event procedures. See

events
AutoSize property, UserForm

controls, 284

B
BackColor property, UserForm

controls, 284
BackStyle property, UserForm

controls, 284
backups, 399
BeforeClose event, 172, 179–180
BeforeDoubleClick event,

173, 185
BeforePrint event, 172
BeforeRightClick event, 173,

185–186
BeforeSave event, 172, 180–181
beyond-your-control bugs, 206
Boolean data type, 103
BorderStyle property, Frame

control, 288
breakpoints, setting, 211–214
bugs. See also debugging

beyond-your-control bugs, 206
extreme-case bugs, 206
identifying, 207
incorrect context bugs, 206
logic flaws in code, 206
preventative measures, 217
wrong data-type bugs, 206
wrong version bugs, 206

Index

402 Excel VBA Programming For Dummies

built-in dialog boxes, 260–262
built-in functions, 136–144

Abs function, 142
Array function, 142
Choose function, 142
Chr function, 142
CurDir function, 142
Date function, 142
DateAdd function, 142
DateDiff function, 142
DatePart function, 142
dates and times, 136–138
DateSerial function, 142
DateValue function, 142
Day function, 142
Dir function, 142
Err function, 142
Error function, 142
Exp function, 142
FileLen function, 142
Fix function, 142
Format function, 142
GetSetting function, 142
Hour function, 142
identifying objects and data,

139–140
InputBox function, 141, 142
InStr function, 142
InStrRev function, 142
Int function, 142
IsArray function, 142
IsDate function, 142
IsEmpty function, 143
IsError function, 143
IsMissing function, 143
IsNull function, 143
IsNumeric function, 143
LBound function, 143
LCase function, 143
Left function, 143
Len function, 143
manipulating strings, 138–139
Mid function, 143

Minute function, 143
Month function, 143
MsgBox function, 141, 143
Now function, 143
overview, 141–143
Replace function, 143
RGB function, 143
Right function, 143
Rnd function, 143
Second function, 143
Shell function, 141, 143
side benefits, 140–141
Space function, 143
Split function, 143
Sqr function, 143
String function, 143
Time function, 143
Timer function, 143
TimeSerial function, 143
TimeValue function, 143
Trim function, 144
TypeName function, 144
UBound function, 144
UCase function, 144
Val function, 144
Weekday function, 144
Year function, 144

buttons, customizing, 12
Buttons argument, MsgBox

function, 247
ButtonText argument,

GetOpenFilename
statement, 257

Byte data type, 103

C
calculation modes, 111
calling procedures

Function procedures
from Immediate window,

79–80
from Sub procedure, 78–79

from worksheet formula,
80–81

Sub procedures
from another procedure, 77
from button or shape, 75–76
directly, 72–73
from Immediate window, 77
from Macro dialog box, 73
overview, 70–72
with shortcut key, 74–75

Cancel property,
CommandButton
control, 288

Caption property
Frame control, 288
Label control, 289
UserForm controls, 284

Cell shortcut menu, adding new
item to, 339–340

Cells property, Range
objects, 122

Chandoo.org blog, 392
Change event, 173, 186–187
ChangeCase macro, 277–278
charts, displaying in UserForms,

325–326
Charts object, 54
Cheat Sheet, 6
CheckBox control, 267, 285–286
Choose function, 142
Chr function, 142
class modules, 34
Clear method, Range

objects, 133
ClearContents method, Range

objects, 133
ClearFormats method, Range

objects, 133
cmdOK_Click procedure, ListBox

control, 312–313
code. See also VBA code

cleaning up, 396–397
commenting out, 380–381
copying blocks of, 381

Index 403

formatting with
indentation, 217

logic flaws in, 206
modular code, 397
testing, 207

Code Colors option, VBE Editor
Format tab, 47

Code pane, VBE
declarations, 37
entering code into module,

38–44
function procedures, 37
minimizing and maximizing

windows, 36–37
overview, 33, 36
sub procedures, 37

collections (collection objects),
54–55

charts, 54
defined, 15
sheets, 54
workbooks, 54
worksheets, 54

color values, 129–130
Column property, Range

objects, 126
ComboBox control, 267,

286–287
CommandButton control, 267,

272, 287–288
commands, customizing, 11
comments

overview, 99–101
using to minimize bug

issues, 217
Commission function, 351
compatibility checker, 398
concatenation

defined, 115
String concatenation

operator, 114
constants

MsgBox function, 249, 252
premade, 110–111
scope of, 110

Contextures blog, 392
controls, UserForm

adding, 267, 282
aesthetics, 300
aligning and spacing, 297
CheckBox control, 267,

285–286
ComboBox control, 267,

286–287
CommandButton control, 267,

287–288
Frame control, 267, 288
Image control, 267, 288–289
keyboard, 297–300
Label control, 267, 289
ListBox control, 267, 289–291
moving and resizing, 297
MultiPage control, 267, 291
OptionButton control, 267, 292
overview, 281
properties

Accelerator property, 284
AutoSize property, 284
BackColor property, 284
BackStyle property, 284
Caption property, 284
Enabled property, 284
Height property, 284
Left property, 284
Name property, 284
Picture property, 284
Top property, 284
Value property, 284
Visible property, 284
Width property, 284

RefEdit control, 267, 292–293
ScrollBar control, 267, 293–294
SpinButton control, 267, 294
TabStrip control, 267, 295
testing, 300
TextBox control, 267, 295–296
ToggleButton control, 267, 296

ControlSource property

ComboBox control, 287
OptionButton control, 292
ScrollBar control, 293
SpinButton control, 294

Copy method, Range objects,
132–133

Count property, Range
objects, 126

CubeRoot function, 69, 72,
78–79

CurDir function, 142
Currency data type, 103
custom functions

debugging, 355
overview, 148–149

Custom UI Editor program, 333,
335–336

customizing
add-ins, 12
buttons, 12
commands, 11
Quick Access toolbar, 337
Ribbon

adding macro to, 332
manually, 330–332
overview, 329–330
with XML, 333–336

user interface
adding commands to Add-ins

Ribbon tab, 338–339
adding new item to Cell

shortcut menu, 339–340
automatically adding

customizations, 340–341
overview, 337–338
shortcut menus, 341
single document

interface, 341
VBE

Docking tab, 48–49
Editor Format tab, 47
Editor tab, 44–47
General tab, 48

worksheet functions, 12

404 Excel VBA Programming For Dummies

D
DailyDose blog, 392
Dalgleish, Debra, 392
data types

Boolean data type, 103
Byte data type, 103
Currency data type, 103
Date data type, 103
defined, 69
Double data type, 103
Integer data type, 103
Long data type, 103
Long data type, 103
Object data type, 103
Single data type, 103
String data type, 103
Variant data type, 103

Date data type, 103
Date function, 142
DateAdd function, 142
DateDiff function, 142
DatePart function, 142
dates, 112–113
DateSerial function, 142
DateValue function, 142
Day function, 142
Deactivate event, 172, 173
debugging

beyond-your-control bugs, 206
custom functions, 355
Debug.Print statements, 210
defined, 206
examining code, 208
extreme-case bugs, 206
identifying, 207
incorrect context bugs, 206
logic flaws in code, 206
with MsgBox function,

208–210
preventative measures, 217
tools, 210–216

breakpoints, 211–214,
385–386

Locals window, 216
overview, 210–211, 383–384
skipping to specific line of

code, 384–385
Watches window, 214–216

wrong data-type bugs, 206
wrong version bugs, 206

Debug.Print statements, 210
decision-making

Do-Until loop, 152
Do-While loop, 152
For-Next loop, 152
GoTo statement, 152–153
If-Then structure

ElseIf statement, 157–158
If-Then-Else statement,

155–156
overview, 154–155

overview, 151–152
Select Case structure, 152,

158–161
declarations, defined, 37
declaring

arrays, 116–117
variables, 103–106, 395–396

Default property,
CommandButton
control, 288

Default to Full Module View
option, VBE, 46

Delete method, Range objects,
133–134

Description option, Record
Macro dialog box, 92

Developer Tab
displaying, 17–18
Relative References button, 19

dialog boxes
built-in, 260–262
FileDialog method, 259–260
Frame controls, 292, 300,

305, 317
GetOpenFilename statement,

256–259
GetSaveAsFilename

method, 259

InputBox function, 252–256
MsgBox function

Buttons argument, 247
constants used as return

values for, 252
constants used in, 249
customizing message boxes,

250–252
displaying simple message

box, 247–248
getting response from

message box, 248–250
Prompt argument, 247
Title argument, 247

overview, 245–246
UserForms

adding
CommandButtons, 272

adding controls to, 267, 282
adding event-handler

procedures, 275–276,
307–308

adding OptionButtons,
272–275

aesthetics, 300
aligning and spacing, 297
ChangeCase macro, 277–278
changing properties for,

268–269
CheckBox control, 267,

285–286
ComboBox control, 267,

286–287
CommandButton control,

267, 287–288
creating, 302–305
determining selected item,

312–313
displaying, 269–270, 277
displaying chart in, 325–326
ensuring functionability,

326–327
Frame control, 267, 288
Image control, 267, 288–289
inserting new, 266
keyboard, 297–300

Index 405

Label control, 267, 289
ListBox control, 267,

289–291, 309–311
modeless tabbed dialog

boxes, 323–325
moving and resizing, 297
MultiPage control, 267, 291
MultiSelect property,

313–314
option buttons, 316–317
OptionButton control,

267, 292
overview, 263–266, 281,

301–302
progress indicator dialog

box, 319–323
properties, 283–285
range selection, 314–316
RefEdit control, 267, 292–293
ScrollBar control, 267,

293–294
SpinButton control, 267, 294,

317–319
TabStrip control, 267, 295
testing, 300, 306
testing macro, 278–280
TextBox control, 267,

295–296, 317–319
ToggleButton control,

267, 296
UserForm Code pane, 269
using information from,

270–271
validating data, 309

digital signatures, 398
Dir function, 142
Disable VBA macros except

digitally signed macros
option, 4

Disable VBA macros with
notification option, 4, 26

Disable VBA macros without
notification option, 4

Division operator, 114
Docking tab, VBE, 48–49
dot operator, 53
Double data type, 103

Do-Until loop, 152
Do-While loop, 152
Drag-and-Drop Text Editing

option, VBE, 46
Duggirala, Purna, 392
dynamic arrays, 117–118

E
Editor Format tab, VBE, 47
Editor tab, VBE, 44–47

Auto Data Tips option, 46
Auto Indent setting, 46
Auto List Members

option, 45
Auto Quick Info option, 46
Auto Syntax Check option, 44
Default to Full Module View

option, 46
Drag-and-Drop Text Editing

option, 46
Procedure Separator

option, 46
Require Variable Declaration

option, 45
Tab Width setting, 46

ElseIf statement, 157–158
Enable VBA macros option, 4
Enabled property, UserForm

controls, 284
EnterRandomNumbers

procedure, 321–322
EnterSquareRoot procedure,

198–199
equal sign operator, 114
Err function, 142
Error function, 142
errors

EnterSquareRoot procedure,
198–199

erroneous macro example,
194–198

On Error statement, 200
intentional errors, 203–204
overview, 193–194
Resume Statement, 200–202

event-handler procedures,
174–177

adding to UserForms, 275–276,
307–308

overview, 174–175
writing, 175–177

events
defined, 171–172
event-handler procedures,

174–177, 275–276, 307–308
learning when to use, 173–174
not associated with objects

Keypress events, 190–191
OnTime event, 188–190

object, 61–62
workbook events

Activate, 172
activation events, 181–184
BeforeClose event, 172,

179–180
BeforePrint event, 172
BeforeSave event, 172,

180–181
Deactivate event, 172
NewSheet event, 172
Open event, 172, 177–179
SheetActivate event, 172
SheetBeforeDoubleClick

event, 172
SheetBeforeRightClick

event, 172
SheetChange event, 172
SheetDeactivate event, 172
SheetSelectionChange

event, 172
WindowActivate event, 172
WindowDeactivate event, 172

worksheet events
Activate event, 173
BeforeDoubleClick event,

173, 185
BeforeRightClick event, 173,

185–186
Change event, 173, 186–187
Deactivate event, 173
SelectionChange event, 173

406 Excel VBA Programming For Dummies

Excel add-ins
adding description, 372–373
creating, 374
customizing with macros, 12
defined, 365–366
distributing, 375
modifying, 375–376
opening, 374–375
overview, 368–369
protecting VBA code, 373
reasons to create, 366–367
setting up workbook, 369–372
testing workbook, 372
working with, 367–368

Excel object model
collections, 15, 54–55
events, 61–62
methods, 60–61
object hierarchy, 52–53
overview, 51–52
properties, 58–60
referring to objects, 53–54
simplifying object references,

55–56
VBA resources

Auto List Members feature,
64–65

Object Browser, 63–64
VBA Help system, 62–63

Excel Options dialog box,
customizing Ribbon with,
331–332

ExcelGuru blog, 392
executing

Function procedures
from Immediate window,

79–80
from Sub procedure, 78–79
from worksheet formula,

80–81
Sub procedures

from another procedure, 77
from button or e, 75–76
directly, 72–73

from Immediate window, 77
from Macro dialog box, 73
overview, 70–72
with shortcut key, 74–75

Exit For statement, For-Next
loops, 164–165

Exp function, 142
expert blogs, 392
Exponentiation operator, 114
ExtractElement function, 357
extreme data, testing code

with, 207
extreme-case bugs, 206

F
FileDialog method, 259–260
FileFilter argument

GetOpenFilename
statement, 257

GetSaveAsFilename
method, 259

FileLen function, 142
FilterIndex argument

GetOpenFilename
statement, 257

GetSaveAsFilename
method, 259

Fix function, 142
fixed-length strings, 111–112
Font option, VBE, 47
Font property

Label control, 289
Range objects, 128

ForeColor property, Label
control, 289

Format function, 142
forms, 34–35
Formula property, Range

objects, 130–131
For-Next loops

defined, 152
Exit For statement, 164–165
nested, 165–167
overview, 162–163

Step value, 163–164
Frame control, 267, 292, 300,

305, 317
BorderStyle property, 288
Caption property, 288

Full Module View mode,
VBE, 383

Function procedures
defined, 14, 37
executing

from Immediate window,
79–80

from Sub procedure, 78–79
from worksheet formula,

80–81
naming, 69–70
overview, 67–69

functions
built-in

Abs function, 142
Array function, 142
Choose function, 142
Chr function, 142
CurDir function, 142
Date function, 142
DateAdd function, 142
DateDiff function, 142
DatePart function, 142
dates and times, 136–138
DateSerial function, 142
DateValue function, 142
Day function, 142
Dir function, 142
Err function, 142
Error function, 142
Exp function, 142
FileLen function, 142
Fix function, 142
Format function, 142
GetSetting function, 142
Hour function, 142
identifying objects and data,

139–140
InputBox function, 141, 142

Index 407

InStr function, 142
InStrRev function, 142
Int function, 142
IsArray function, 142
IsDate function, 142
IsEmpty function, 143
IsError function, 143
IsMissing function, 143
IsNull function, 143
IsNumeric function, 143
LBound function, 143
LCase function, 143
Left function, 143
Len function, 143
manipulating strings,

138–139
Mid function, 143
Minute function, 143
Month function, 143
MsgBox function, 141, 143
Now function, 143
overview, 141–143
Replace function, 143
RGB function, 143
Right function, 143
Rnd function, 143
Second function, 143
Shell function, 141, 143
side benefits, 140–141
Space function, 143
Split function, 143
Sqr function, 143
String function, 143
Time function, 143
Timer function, 143
TimeSerial function, 143
TimeValue function, 143
Trim function, 144
TypeName function, 144
UBound function, 144
UCase function, 144
Val function, 144

Weekday function, 144
Year function, 144

custom functions, 148–149
overview, 135–136
worksheet functions

arguments, 348–356
arrays, 359–361
calculating mortgage

payment, 145–146
customizing with macros, 12
entering, 147
finding maximum value in

range, 145
Insert Function dialog box

and, 362–364
overview, 144, 345–346
VBA function, 347
VBA functions, 347
VLOOKUP function, 146–147
wrapper functions, 356–359
writing, 347–348

G
General tab, VBE, 48
GetOpenFilename statement

constructing, 256
selecting file with, 256–258

GetSaveAsFilename method,
259–260

GetSetting function, 142
GoTo method, Range

objects, 132
GoTo statement, 152–153
Graphical User Interface

(GUI), 265
GroupName property,

OptionButton control, 292

H
HasFormula property, Range

objects, 127–128
Height property, UserForm

controls, 284

Help system, 111, 390
hot keys, setting, 299
Hour function, 142

I
If-Then structure

decision-making
ElseIf statement, 157–158
If-Then-Else statement,

155–156
overview, 154–155

defined, 152
Image control, 267, 288–289
Immediate window

breakpoints and, 214
executing Function procedures

from, 79–80
executing Sub procedures

from, 77
VBE, 33–34

incorrect context bugs, 206
indentation, formatting code

with, 217
InitialFileName argument,

GetSaveAsFilename
method, 259

InputBox function, 141, 142,
203–204, 252–256

Insert Function dialog box,
80–81

adding argument
description, 364

displaying function
description, 362–363

InStr function, 142
InStrRev function, 142
Int function, 142
Integer data type, 103
Integer division operator, 114
intentional errors, 203–204
Interior property, Range objects,

128, 130
IsArray function, 142
IsDate function, 142

408 Excel VBA Programming For Dummies

IsEmpty function, 143
IsError function, 143
IsLike function, 358–359
IsMissing function, 143
IsNull function, 143
IsNumeric function, 143

J
Jelen, Bill, 392

K
keyboard controls, UserForms

changing tab order, 298–299
overview, 297–298
setting hot keys, 299

Keypress events, 190–191

L
Label control, 267, 289
labels, 118
LargeChange property, ScrollBar

control, 294
LBound function, 143
LCase function, 143
Left function, 143
Left property, UserForm

controls, 284
Len function, 143
line continuation character, 113
list boxes, 309–311
ListBox control, 267, 289–291

AddItem method, 310
cmdOK_Click procedure,

ListBox control, 312–313
filling, 310–311
ListCount property, 310
ListIndex property, 310
MultiSelect property, 310,

313–314
RemoveAllItems method, 310
Selected property, 310
Value property, 310

ListCount property, ListBox
control, 310

ListIndex property, ListBox
control, 310

ListRows property, ComboBox
control, 287

ListStyle property, ComboBox
control, 287

live and online training
events, 393

Locals window, VBA
debugger, 216

logic flaws in code, 206
logical operators, 115
Long data type, 103
Long data type, 103
looping, 162–170

Do-Until loop, 168
Do-While loop, 167–168
For Each-Next loops, 168–170
For-Next loops

Exit For statement,
164–165

nested, 165–167
overview, 162–163
Step value, 163–164

through ranges, 225–227

M
Macro dialog box,

executing Sub procedures
from, 73

Macro name option, Record
Macro dialog box, 91

macro recorder
absolute mode, 86–87
overview, 83–85
preparing to record, 85
recording process, 89–91
relative mode, 87–89
specifying recording options,

91–92
streamlining code generated

by, 92–95
as VBA resource, 390

macro-enabled file type, 25
macros

adding to Ribbon, 332
automating repetitive

operations with, 11
automating tasks with, 11
creating custom add-ins

with, 12
creating custom buttons

with, 12
creating custom commands

with, 11
creating custom worksheet

functions with, 12
defined, 10
Developer Tab, 17–18
enabling, 397
erroneous macro example,

194–198
inserting text with, 11
modifying, 24–25
preparing environment, 18–19
recording, 19–21
running, 21–22
saving workbooks that

contain, 25
security, 25–27
viewing in VBE, 22–23

Margin Indicator Bar option,
VBE, 47

Max property
ScrollBar control, 293
SpinButton control, 294

menu bar, VBE, 33
methods

defined, 16
Fast-food analogy, 57–58
FileDialog method, 259–260
GetSaveAsFilename

method, 259
ListBox control, 310
Range objects

Clear method, 133
ClearContents method, 133
ClearFormats method, 133

Index 409

Copy method, 132–133
Delete method, 133–134
GoTo method, 132
Paste method, 132–133
Select method, 132

specifying, 16
taking action with, 60–61

Microsoft Excel Objects, 34, 35
Microsoft Office Dev Center, 393
Mid function, 143
Min property

ScrollBar control, 293
SpinButton control, 294

Minute function, 143
modeless tabbed dialog boxes,

323–325
modifying

add-ins, 375–376
macros, 24–25

module-level variables
overview, 107–108
UserForms, 321–322

modules
class modules, 34
forms, 34–35
Microsoft Excel Objects, 34, 35
VBA modules

adding to project, 35–36
copying code into, 44
defined, 34
entering code directly, 38–41
macro recorder, 41–43

Modulo arithmetic operator, 114
Month function, 143
MonthNames function, 359–360
MrExcel blog, 392
MsgBox function, 141, 143,

208–210
Buttons argument, 247
constants, 249, 252
customizing message boxes,

250–252

displaying simple message
box, 247–248

getting response from
message box, 248–250

Prompt argument, 247
Title argument, 247

multidimensional arrays, 117
MultiPage control, 267, 291, 324
Multiplication operator, 114
MultiSelect argument,

GetOpenFilename
statement, 257

MultiSelect property
ListBox control, 310, 313–314
UserForms, 313–314

N
Name property, UserForm

controls, 284
nested For-Next loops, 165–167
NewSheet event, 172
no-argument worksheet

functions, 349
Not operator, 115
Now function, 143
NumberFormat function,

356–357
NumberFormat property, Range

objects, 131

O
Object Browser, 63–64
Object data type, 103
Object drop-down list, VBE,

175–176
object model

collections, 15, 54–55
events, 61–62
methods, 60–61
object hierarchy, 52–53
overview, 51–52
properties, 58–60

referring to objects, 53–54
simplifying object references,

55–56
VBA resources

Auto List Members feature,
64–65

Object Browser, 63–64
VBA Help system, 62–63

objects
active objects, 15
Fast-food analogy, 57–58
identifying with built-in

functions, 139–140
methods, 16
object model, 14
properties of, 15
Range objects

Address property, 126–127
assigning values in multicell

range to variable, 125
Cells property, 122
Clear method, 133
ClearContents method, 133
ClearFormats method, 133
Column property, 126
Copy method, 132–133
Count property, 126
defined, 119
Delete method, 133–134
Font property, 128
Formula property, 130–131
GoTo method, 132
HasFormula property,

127–128
Interior property, 128, 130
methods, 131–134
NumberFormat property, 131
Offset property, 122–123
overview, 119–121
Paste method, 132–133
properties, 122–131
referring to, 121–123

410 Excel VBA Programming For Dummies

objects (continued)
Resize property, 123–124
Row property, 126
Select method, 132
Text property, 125–126
Value property, 124–125

specifying position in object
hierarchy, 15

Offset property, Range objects,
122–123

On Error Resume Next
statement, 217

On Error statement, 200
online resources

Cheat Sheet, 6
expert blogs, 392
Help system, 390
live and online training

events, 393
Microsoft Office Dev

Center, 393
user forums, 391–392
YouTube, 393

OnTime event, 188–190
Open event, 172, 177–179
operator precedence, 114–115
operators

Addition, 114
Division, 114
dot operator, 53
equal sign, 114
Exponentiation, 114
Integer division, 114
logical, 115
Modulo arithmetic, 114
Multiplication, 114
Not operator, 115
operator precedence, 114–115
Or operator, 115
smooth, 114–116
String concatenation, 114
Subtraction, 114
Xor operator, 115

Option Explicit statement, 217
optional arguments, worksheet

functions, 354–356
OptionButton controls, 267, 292
OptionButtons, adding to

UserForms, 272–275
Or operator, 115

P
Paste method, Range objects,

132–133
Picture property

Image control, 289
UserForm controls, 284

PictureSizeMode property,
Image control, 289

premade constants, 110–111
Procedure drop-down list, VBE,

175–176
Procedure Separator option,

VBE, 46
Procedure View mode, VBE, 383
procedure-only variables,

106–107
procedures

event-handler procedures,
174–177, 275–276, 307–308

Function procedures
executing, 78–81
naming, 69–70
overview, 67–69

Sub procedures
defined, 14, 37
executing, 70–77
naming, 69–70
overview, 67–68

UserForms
EnterRandomNumbers

procedure, 321–323
UpdateProgress

procedure, 322
programming for users, 399
programs, defined, 10

progress indicator dialog box,
319–323

overview, 319–321
procedures, 321–323

Project Explorer
VBE

class modules, 34
forms, 34
Microsoft Excel Objects,

34, 35
overview, 33
VBA modules, 34, 35–36

Prompt argument, 247
properties

ComboBox control
ControlSource property, 287
ListRows property, 287
ListStyle property, 287
RowSource property, 287
Style property, 287
Value property, 287

CommandButton control
Cancel property, 288
Default property, 288

Frame control
BorderStyle property, 288
Caption property, 288

Image control
Picture property, 289
PictureSizeMode

property, 289
Label control

Caption property, 289
Font property, 289
ForeColor property, 289

ListBox control
ControlSource

property, 290
IntegralHeight property, 290
ListStyle property, 290
MultiSelect property, 291
RowSource property, 291
Value property, 291

Index 411

MultiPage control
Style property, 291
Value property, 291

object
Fast-food analogy, 57–58
setting, 58–60

OptionButton control
ControlSource property, 292
GroupName property, 292
Value property, 292

Range objects
Address property, 126–127
Cells property, 122
Column property, 126
Count property, 126
Font property, 128
Formula property, 130–131
HasFormula property,

127–128
Interior property, 128, 130
NumberFormat property, 131
Offset property, 122–123
Resize property, 123–124
Row property, 126
Text property, 125–126
Value property, 124–125

ScrollBar control
ControlSource property, 293
LargeChange property, 294
Max property, 293
Min property, 293
SmallChange property, 294
Value property, 293

SpinButton control
ControlSource property, 294
Max property, 294
Min property, 294
SmallChange property, 294
Value property, 294

TextBox control
AutoSize property, 295
ControlSource property, 295

IntegralHeight property, 295
MaxLength property, 295
MultiLine property, 295
ScrollBars property, 296
TextAlign property, 295
WordWrap property, 296

UserForm controls
Accelerator property, 284
AutoSize property, 284
BackColor property, 284
BackStyle property, 284
Caption property, 284
Enabled property, 284
Height property, 284
Left property, 284
Name property, 284
Picture property, 284
Top property, 284
Value property, 284
Visible property, 284
Width property, 284

public variables, 108
Puls, Ken, 392

Q
Quick Access toolbar, 337

R
range argument, worksheet

functions, 352–354
Range objects

assigning values in multicell
range to variable, 125

defined, 119
methods

Clear method, 133
ClearContents method, 133
ClearFormats method, 133
Copy method, 132–133
Delete method, 133–134
GoTo method, 132

Paste method, 132–133
Select method, 132

overview, 119–121
properties

Address property, 126–127
Cells property, 122
Column property, 126
Count property, 126
Font property, 128
Formula property,

130–131
HasFormula property,

127–128
Interior property,

128, 130
NumberFormat property, 131
Offset property, 122–123
Resize property, 123–124
Row property, 126
Text property, 125–126
Value property, 124–125

referring to, 121–123
ranges

copying, 220–223
looping through,

225–227
moving, 224–225
prompting for cell value,

227–228
selecting row or column, 224
selecting to end of row or

column, 223–224
selecting while dialog box is

displayed, 314–316
read-only properties, Range

objects
Address property, 124,

126–127
Column property, 126
Count property, 126
HasFormula property, 127
Row property, 126
Text property, 125

412 Excel VBA Programming For Dummies

read-write properties, Range
objects

Formula property, 130
NumberFormat property, 131
Value property, 124

real-life data, testing code
with, 207

recording macros, 19–21. See
also macro recorder

RefEdit control, 267, 292–293,
315–316

referring to objects, 53–54,
121–123

relative mode, macro recorder,
87–89

Relative References button,
Developer Tab, 19

Remember icon, 5
RemoveAllItems method,

ListBox control, 310
repetitive operations,

automating, 11
Replace function, 143
Require Variable Declaration

option, VBE, 45
Resize property, Range objects,

123–124
resources

Auto List Members feature,
64–65

Object Browser, 63–64
online resources

Cheat Sheet, 6
expert blogs, 392
Help system, 390
live and online training

events, 393
Microsoft Office Dev

Center, 393
user forums, 391–392
YouTube, 393

VBA Help system, 62–63
Resume Statement, 200–202
RGB function, 143

Ribbon
adding macro to, 332
customizing with XML,

333–336
manually customizing,

330–332
overview, 329–330

Right function, 143
Rnd function, 143
Row property, Range

objects, 126
RowSource property, ComboBox

control, 287
running macros, 21–22
running procedures

Function procedures
from Immediate window,

79–80
from Sub procedure, 78–79
from worksheet formula,

80–81
Sub procedures

from another procedure, 77
from button or e, 75–76
directly, 72–73
from Immediate window, 77
from Macro dialog box, 73
overview, 70–72
with shortcut key, 74–75

runtime errors, 194, 207. See
also errors

S
SayIt function, 358
scoping variables, 106
ScrollBar control, 267, 293–294
security

Excel Security Warnings, 26–27
Macro settings, 3–4, 25–27

Disable VBA macros except
digitally signed macros
option, 4

Disable VBA macros with
notification option, 4, 26

Disable VBA macros without
notification option, 4

Enable VBA macros option, 4
passwords vs., 396
trusted locations, 27
Trusted Locations option, 4

Select Case structure, 152,
158–161

Select method, Range
objects, 132

Selected property, ListBox
control, 310

SelectionChange event, 173
SheetActivate event, 172
SheetBeforeDoubleClick

event, 172
SheetBeforeRightClick

event, 172
SheetChange event, 172
SheetDeactivate event, 172
Sheets object, 54
SheetSelectionChange

event, 172
Shell function, 141, 143
Shortcut key option, Record

Macro dialog box, 74–75, 92
shortcut menus, 341
simplified data, testing code

with, 207
simplifying object references,

55–56
Single data type, 103
single document interface, 341
single-argument function,

worksheet functions,
349–351

Size setting, VBE, 47
SmallChange property

ScrollBar control, 294
SpinButton control, 294

smooth operators, 114–116
SORT function, 360–361

Index 413

Space function, 143
SpinButton control, 267, 294,

317–319
Split function, 143
Sqr function, 143
Standard toolbar, VBE, 33
statements

assignment statements
equal sign operator, 114
logical operators, 115
operator precedence,

114–115
overview, 113–114
smooth operators, 114–116

Debug.Print statements, 210
ElseIf statement, 157–158
On Error Resume Next

statement, 217
On Error statement, 200
Exit For statement, 164–165
GetOpenFilename statement

constructing, 256
selecting file with, 256–258

GoTo statement, 152–153
If-Then-Else statement,

155–156
Option Explicit statement, 217
Resume Statement, 200–202

static variables, 108–109
Step value, For-Next loops,

163–164
Store Macro In option, Record

Macro dialog box, 92
String concatenation

operator, 114
String data type, 103
String function, 143
strings

fixed-length, 111–112
manipulating with built-in

functions, 138–139
variable-length, 111–112

Style property
ComboBox control, 287
MultiPage control, 291

Sub procedures
defined, 14, 37
executing

from another procedure, 77
from button or shape, 143
from button or shape, 75–76
directly, 72–73
from Immediate window, 77
from Macro dialog box, 73
overview, 70–72
with shortcut key, 74–75

executing Function procedures
from, 78–79

naming, 69–70
overview, 67–68

substandard Sub procedures, 14
Subtraction operator, 114

T
Tab Width setting, VBE, 46
tabbed dialog boxes, 323–325
TabStrip control, 267, 295
tasks, automating, 11
Technical Stuff icon, 5
testing

code, 207
UserForms, 300, 306

text, inserting, 11
Text property, Range objects,

125–126
TextBox control, 267, 295–296,

317–319
Time function, 143
Timer function, 143
TimeSerial function, 143
TimeValue function, 143
Tip icon, 5
Title argument, 247

GetOpenFilename
statement, 257

GetSaveAsFilename
method, 259

ToggleButton control, 267, 296

toolbars
Quick Access toolbar, 337
VBE Standard toolbar, 33

Top property, UserForm
controls, 284

Trim function, 144
Trust Center dialog box, 25–26
trusted locations, 27
two-argument worksheet

function, 351–352
TypeName function, 144
typographical conventions

code, 3
key combinations, 2
menu commands, 2–3

U
UBound function, 144
UCase function, 144
UDFs (User Defined Functions)

debugging, 355
overview, 148–149

UI (user interface)
customizing Ribbon

adding macro to, 332
manually, 330–332
overview, 329–330
with XML, 333–336

customizing with VBA
adding commands to

Add-ins Ribbon tab,
338–339

adding new item to Cell
shortcut menu, 339–340

automatically adding
customizations, 340–341

overview, 337–338
shortcut menus, 341
single document

interface, 341
UpdateProgress procedure,

UserForms, 322
Use Relative References, macro

recorder, 89

414 Excel VBA Programming For Dummies

User Defined Functions (UDFs)
debugging, 355
overview, 148–149

user forums, 391–392
user interface. See UI
UserForm Code pane, 269
UserForms. See also dialog

boxes
adding CommandButtons, 272
adding event-handler

procedures, 275–276,
307–308

adding OptionButtons,
272–275

ChangeCase macro, 277–278
changing properties for,

268–269
controls

adding, 267, 282
aesthetics, 300
aligning and spacing, 297
CheckBox control, 267,

285–286
ComboBox control, 267,

286–287
CommandButton control,

267, 287–288
Frame control, 267, 288
Image control, 267, 288–289
keyboard, 297–300
Label control, 267, 289
ListBox control, 267, 289–

291, 309–311
moving and resizing, 297
MultiPage control, 267, 291
OptionButton control, 267
OptionButton controls, 292
overview, 281
properties, 283–285
RefEdit control, 267, 292–293
ScrollBar control, 267,

293–294
SpinButton control, 267, 294
TabStrip control, 267, 295

testing, 300
TextBox control, 267,

295–296
ToggleButton control,

267, 296
creating, 302–305
determining selected item,

312–313
displaying, 269–270, 277
displaying chart in, 325–326
ensuring functionability,

326–327
inserting new, 266
ListBox control

AddItem method, 310
cmdOK_Click procedure,

ListBox control, 312–313
filling, 310–311
ListCount property, 310
ListIndex property, 310
MultiSelect property, 310,

313–314
RemoveAllItems

method, 310
Selected property, 310
Value property, 310

modeless tabbed dialog boxes,
323–325

MultiSelect property,
313–314

option buttons, 316–317
overview, 263–266, 301–302
progress indicator dialog box

overview, 319–321
procedures, 321–323

range selection, 314–316
SpinButton control, 317–319
testing, 306
testing macro, 278–280
TextBox control, 317–319
UserForm Code pane, 269
using information from,

270–271
validating data, 309

V
Val function, 144
Value property

ComboBox control, 287
ListBox control, 310
MultiPage control, 291
OptionButton control, 292
Range objects, 124–125
ScrollBar control, 293
SpinButton control, 294
UserForm controls, 284

values
assigning to variables, 15
color values, 129–130

variable-length strings, 111–112
variables

assigning values to, 15
declaring, 103–106, 395–396
defined, 15
module-level, 107–108,

321–322
overview, 101–103
procedure-only, 106–107
public, 108
removing from memory, 109
scoping, 106
static, 108–109

variable-size ranges, 221–223
Variant data type, 103
VBA

advantages of, 12–13
arrays

declaring, 116–117
dynamic, 117–118
multidimensional, 117

assignment statements
equal sign operator, 114
logical operators, 115
operator precedence,

114–115
overview, 113–114
smooth operators, 114–116

Index 415

comments, 99–101
constants, 110–111
customizing Excel UI with

adding commands to Add-ins
Ribbon tab, 338–339

adding new item to Cell
shortcut menu, 339–340

automatically adding
customizations, 340–341

overview, 337–338
shortcut menus, 341
single document

interface, 341
data types, 103
dates, 112–113
defined, 9
disadvantages of, 13
ensuring Excel

compatibility, 16
general discussion, 14–16
labels, 118
macros

automating repetitive
operations with, 11

automating tasks with, 11
creating custom add-ins

with, 12
creating custom buttons

with, 12
creating custom commands

with, 11
creating custom worksheet

functions with, 12
inserting text with, 11

overview, 10–11
resources

Auto List Members feature,
64–65

Object Browser, 63–64
VBA Help system, 62–63

strings, 111–112
variables

declaring, 103–106
life of, 109
module-only, 107–108
overview, 101–103

procedure-only, 106–107
public, 108
scoping, 106
static, 108–109

VBA code
event-handler procedures,

174–177, 275–276, 307–308
Function procedures

executing, 78–81
naming, 69–70
overview, 67–69

Sub procedures
defined, 14, 37
executing, 70–77
naming, 69–70
overview, 67–68

UserForms
EnterRandomNumbers

procedure, 321–323
UpdateProgress

procedure, 322
VBA debugger

breakpoints
Immediate window, 214
overview, 211–213
stepping through code, 214

Locals window, 216
overview, 210–211
Watches window, 214–216

VBA Help system, 62–63
VBA modules

adding to project, 35–36
copying code into, 44
declarations, 37
defined, 34
entering code directly, 38–41
function procedures, 37
macro recorder, 41–43
sub procedures, 37

VBE (Visual Basic Editor)
activating, 32
Auto Syntax Check, 387–388
Code pane

declarations, 37

entering code into module,
38–44

function procedures, 37
minimizing and maximizing

windows, 36–37
overview, 33, 36
sub procedures, 37

commenting out code,
380–381

copying blocks of code, 381
customizing

Docking tab, 48–49
Editor Format tab, 47
Editor tab, 44–47
General tab, 48

debugging tools
breakpoints and, 385–386
overview, 383–384
skipping to specific line of

code, 384–385
editing macros in, 24–25
Full Module View mode, 383
Immediate window, 33–34
jumping to function, 382–383
menu bar, 33
moving between modules and

procedures, 382
Object drop-down list, 175–176
overview, 31
Procedure drop-down list,

175–176
Procedure View mode, 383
Project Explorer

class modules, 34
forms, 34
Microsoft Excel Objects,

34, 35
overview, 33
VBA modules, 34, 35–36

seeing variable values, 386
Standard toolbar, 33
viewing macros in, 22–23

Visible property, UserForm
controls, 284

Visual Basic Editor. See VBE

416 Excel VBA Programming For Dummies

Visual Basic for Applications.
See VBA

VLOOKUP function, 146–147

W
Warning icon, 6
Watches window, VBA debugger,

214–216
Weekday function, 144
Width property, UserForm

controls, 284
WindowActivate event, 172
WindowDeactivate event, 172
With-End With structure, 56, 94
workbook events

activation events, 172, 181–184
BeforeClose event, 172,

179–180
BeforePrint event, 172
BeforeSave event, 172,

180–181
Deactivate event, 172
NewSheet event, 172
Open event, 172, 177–179
SheetActivate event, 172
SheetBeforeDoubleClick

event, 172
SheetBeforeRightClick

event, 172
SheetChange event, 172
SheetDeactivate event, 172
SheetSelectionChange

event, 172
WindowActivate event, 172
WindowDeactivate event, 172

Workbook_SheetActivate event-
handler procedure, 183

Workbook_SheetDeactivate
event-handler
procedure, 183

worksheet events
Activate event, 173
BeforeDoubleClick event,

173, 185
BeforeRightClick event, 173,

185–186
Change event, 173, 186–187
Deactivate event, 173
overview, 173
SelectionChange event, 173

worksheet functions
arguments

no-argument functions, 349
optional arguments, 354–356
overview, 348
range argument, 352–354
single-argument function,

349–351
two-argument function,

351–352
arrays

MonthNames function,
359–360

SORT function, 360–361
calculating mortgage payment,

145–146
customizing with macros, 12
entering, 147
finding maximum value in

range, 145
Insert Function dialog box and

adding argument
description, 364

displaying function
description, 362–363

overview, 144, 345–346
VBA functions, 347
VLOOKUP function, 146–147
wrapper functions, 356–359
writing, 347–348

wrapper functions
ExtractElement function, 357
IsLike function, 358–359
NumberFormat function,

356–357
SayIt function, 358

wrong data-type bugs, 206
wrong version bugs, 206

X
xlCalculationAutomatic

calculation mode, 111
xlCalculationManual calculation

mode, 111
xlCalculationSemiautomatic

calculation mode, 111
XLSM extension, 25
XML, customizing Ribbon with,

333–336
Xor operator, 115

Y
Year function, 144
YouTube, as VBA resource, 393

About the Author
Dick Kusleika has been working with Microsoft Office for more than 20 years. He
was formerly a Microsoft MVP, having been awarded 12 consecutive years. Dick
has written several books about Excel and Access.

Dedication
To Nancy.

Author’s Acknowledgments
Thanks to the team at Wiley for their tireless efforts in completing this book. And
thanks also to Rod Stephens for catching errors and providing valuable
suggestions.

Publisher’s Acknowledgments

Acquisitions Editor: Elizabeth Stilwell

Project Editor: Jan Lynn Neal

Development Editor: Jan Lynn Neal

Copy Editor: Colleen Diamond

Technical Editor: Rod Stephens

Proofreader: Debbye Butler

Production Editor: Mohammed Zafar Ali

Cover Image: © BEST-BACKGROUNDS/
Shutterstock

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Typographical conventions
	Macro security

	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Starting Excel VBA Programming
	Chapter 1 Getting to Know VBA
	Understanding VBA Basics
	Knowing What VBA Can Do
	Inserting a bunch of text
	Automating a task you perform frequently
	Automating repetitive operations
	Creating a custom command
	Creating a custom button
	Developing new worksheet functions
	Creating custom add-ins for Excel

	Getting the Most from VBA
	Knowing what VBA does best
	Recognizing the disadvantages of using VBA

	Understanding VBA Concepts
	Ensuring Excel Compatibility

	Chapter 2 Building Simple Macros
	Displaying the Developer Tab
	Creating a Macro
	Preparing the Environment
	Recording a Macro
	Running the Macro
	Viewing a Macro in the Visual Basic Editor
	Modifying the Macro
	Saving Workbooks That Contain Macros
	Understanding Macro Security

	Part 2 Employing VBA with Excel
	Chapter 3 Working in the Visual Basic Editor
	Getting to Know the Visual Basic Editor
	Activating the VBE
	Exploring VBE components

	Working with the Project Explorer
	Adding a new VBA module

	Working with a Code Pane
	Minimizing and maximizing windows
	Looking at the parts of a module
	Getting VBA code into a module
	Entering code directly
	Using the macro recorder
	Copying VBA code

	Customizing the VBE
	Using the Editor tab
	Using the Editor Format tab
	Using the General tab
	Using the Docking tab

	Chapter 4 Introducing the Excel Object Model
	Working with the Excel Object Model
	Understanding the object hierarchy
	Referring to objects

	Diving into Object Properties and Methods
	Setting object properties
	Taking action with object methods
	Triggering actions with object events

	Finding Out More from VBA Resources
	Using VBA’s Help system
	Using the Object Browser
	Automatically listing properties and methods

	Chapter 5 VBA Sub and Function Procedures
	Understanding Subs versus Functions
	Looking at Sub procedures
	Looking at Function procedures

	Naming Subs and Functions
	Executing Sub procedures
	Executing the Sub procedure directly
	Executing the procedure from the Macro dialog box
	Executing a macro by using a shortcut key
	Executing the procedure from a button or shape
	Executing the procedure from another procedure
	Executing the procedure from the Immediate window

	Executing Function Procedures
	Calling the function from a Sub procedure
	Calling a function from the Immediate window
	Calling a function from a worksheet formula

	Chapter 6 Using the Excel Macro Recorder
	Recording Basics
	Preparing to Record
	Choosing Between Relative and Absolute Mode
	Recording in absolute mode
	Recording in relative mode

	Watching the Macro Recorder in Action
	Specifying Recording Options for Your Macro
	Streamlining Code Generated by the Macro Recorder

	Part 3 Programming Concepts
	Chapter 7 Essential VBA Language Elements
	Using Comments in Your VBA Code
	Using Variables, Constants, and Data Types
	Understanding variables
	What are VBA’s data types?
	Declaring and scoping variables
	Working with constants
	Using premade constants
	Working with strings
	Working with dates

	Using Assignment Statements
	Assignment statement examples
	About that equal sign
	Smooth operators

	Working with Arrays
	Declaring arrays
	Multidimensional arrays
	Dynamic arrays

	Using Labels

	Chapter 8 Working with Range Objects
	Referring to Range Objects
	Referring to a Range Using Properties
	The Cells property
	The Offset property
	The Resize property

	Working with Range Object Properties
	The Value property
	The Text property
	The Count property
	The Column and Row properties
	The Address property
	The HasFormula property
	The Font property
	The Interior property
	The Formula property
	The NumberFormat property

	Taking Action with Range Object Methods
	The Select method
	The Copy and Paste methods
	The Clear method
	The Delete method

	Chapter 9 Using VBA and Worksheet Functions
	Understanding Functions
	Using Built-In VBA Functions
	Working with dates and times
	Manipulating strings
	Identifying objects and data
	VBA functions that do more than return a value
	Discovering VBA functions

	Using Worksheet Functions in VBA
	Worksheet function examples
	Entering worksheet functions
	More about using worksheet functions

	Using Custom Functions

	Chapter 10 Controlling Program Flow and Making Decisions
	Going with the Flow, Dude
	The GoTo Statement
	Decisions, Decisions
	The If-Then structure
	The Select Case structure

	Knocking Your Code for a Loop
	For-Next loops
	Do-While loop
	Do-Until loop

	Using For Each-Next Loops with Collections

	Chapter 11 Automatic Procedures and Events
	Preparing for the Big Event
	Learning when to use event procedures
	Programming event-handler procedures

	Knowing Where to Put the Event Code
	Writing an Event-Handler Procedure
	Triggering Workbook Events
	The Open event for a workbook
	The BeforeClose event for a workbook
	The BeforeSave event for a workbook

	Using Activation Events
	Activate and deactivate events in a sheet
	Activate and deactivate events in a workbook
	Workbook activation events

	Programming Worksheet-Related Events
	The BeforeDoubleClick event
	The BeforeRightClick event
	The Change event

	Understanding Events Not Associated with Objects
	The OnTime event
	Keypress events

	Chapter 12 Error-Handling Techniques
	Types of Errors
	An Erroneous Macro Example
	Not-quite-perfect macros
	Perfecting the macro
	Giving up on perfection

	Alternate Ways of Handling Errors
	Revisiting the EnterSquareRoot procedure
	Trapping errors with the On Error statement

	Handling Errors: The Details
	Resuming after an error
	Error handling in a nutshell

	An Intentional Error

	Chapter 13 Bug Extermination Techniques
	Species of Bugs
	Identifying Bugs
	Debugging Techniques
	Examining your code
	Using the MsgBox function
	Inserting Debug.Print statements
	Using the VBA debugger

	Using the Debugger’s Tools
	Setting breakpoints in your code
	Using the Watches window
	Using the Locals window

	Bug Reduction Tips

	Chapter 14 VBA Programming Examples
	Working with Ranges
	Copying a range
	Copying a variable-size range
	Selecting to the end of a row or column
	Selecting a row or column
	Moving a range
	Looping through a range efficiently
	Looping through a range efficiently (Part II)
	Prompting for a cell value
	Determining the selection type
	Identifying a multiple selection

	Changing Excel Settings
	Changing Boolean settings
	Changing non-Boolean settings

	Working with Charts
	AddChart versus AddChart2
	Modifying the chart type
	Looping through the ChartObjects collection
	Modifying chart properties
	Applying chart formatting

	VBA Speed Tips
	Turning off screen updating
	Turning off automatic calculation
	Eliminating those pesky alert messages
	Simplifying object references
	Declaring variable types
	Using the With-End With structure

	Part 4 Communicating with Your Users
	Chapter 15 Simple Dialog Boxes
	Interacting with the User in VBA
	Displaying Messages with the MsgBox Function
	Displaying a simple message box
	Getting a response from a message box
	Customizing message boxes

	Getting Data with an Input Box
	Understanding the InputBox syntax
	Using the InputBox function
	Using the InputBox method

	Allowing the User to Select a File or Folder
	Constructing a GetOpenFilename statement
	Selecting a file with GetOpenFilename
	Picking a file with GetSaveAsFilename
	Getting a folder name

	Displaying Excel’s Built-In Dialog Boxes

	Chapter 16 UserForm Basics
	Knowing When to Use a UserForm
	Creating UserForms: An Overview
	Working with UserForms
	Inserting a new UserForm
	Adding controls to a UserForm
	Changing properties for a UserForm control
	Viewing the UserForm Code pane
	Displaying a UserForm
	Using information from a UserForm

	A UserForm Example
	Creating the UserForm
	Adding the CommandButtons
	Adding the OptionButtons
	Adding event-handler procedures
	Creating a macro to display the dialog box
	Making the macro available
	Testing the macro

	Chapter 17 Using UserForm Controls
	Getting Started with Dialog Box Controls
	Adding controls
	Introducing control properties

	Learning Dialog Box Controls Details
	CheckBox control
	ComboBox control
	CommandButton control
	Frame control
	Image control
	Label control
	ListBox control
	MultiPage control
	OptionButton control
	RefEdit control
	ScrollBar control
	SpinButton control
	TabStrip control
	TextBox control
	ToggleButton control

	Working with Dialog Box Controls
	Moving and resizing controls
	Aligning and spacing controls
	Accommodating keyboard users
	Changing the tab order
	Setting hot keys

	Testing a UserForm

	Dialog Box Aesthetics

	Chapter 18 UserForm Techniques and Tricks
	Using Dialog Boxes
	A UserForm Example
	Creating the dialog box
	Writing code to display the dialog box
	Making the macro available
	Trying out your dialog box
	Adding event-handler procedures
	Validating the data
	Now the dialog box works

	A ListBox Control Example
	Filling a ListBox Control
	Determining the selected item
	Determining multiple selections

	Selecting a Range
	Using Multiple Sets of Option Buttons
	Using a Spin Button and a Text Box
	Using a UserForm as a Progress Indicator
	Creating the progress-indicator dialog box
	The procedures
	How this example works

	Creating a Modeless Tabbed Dialog Box
	Displaying a Chart in a UserForm
	A Dialog Box Checklist

	Chapter 19 Accessing Your Macros through the User Interface
	Customizing the Ribbon
	Customizing the Ribbon manually
	Adding a macro to the Ribbon
	Customizing the Ribbon with XML

	Customizing the Excel UI with VBA
	Adding commands to the Add-ins Ribbon tab
	Adding a new item to the Cell shortcut menu
	Adding customizations automatically
	Understanding shortcut menus and the single document interface

	Part 5 Putting It All Together
	Chapter 20 Creating Worksheet Functions
	Create Custom Functions to Simplify Your Work
	Understanding VBA Function Basics
	Writing Functions
	Working with Function Arguments
	A function with no argument
	A function with one argument
	A function with two arguments
	A function with a range argument
	A function with an optional argument

	Introducing Wrapper Functions
	The NumberFormat function
	The ExtractElement function
	The SayIt function
	The IsLike function

	Working with Functions That Return an Array
	Returning an array of month names
	Returning a sorted list

	Using the Insert Function Dialog Box
	Displaying the function’s description
	Adding argument descriptions

	Chapter 21 Creating Excel Add-Ins
	Add-Ins Defined
	Reasons to Create Add-Ins
	Working with Add-Ins
	Understanding Add-In Basics
	Looking at an Add-In Example
	Setting up the workbook
	Testing the workbook
	Adding descriptive information
	Protecting the VBA code
	Creating the add-in
	Opening the add-in
	Distributing the add-in
	Modifying the add-in

	Part 6 The Part of Tens
	Chapter 22 Ten Handy Visual Basic Editor Tips
	Applying Block Comments
	Copying Multiple Lines of Code at Once
	Jumping between Modules and Procedures
	Teleporting to Your Functions
	Staying in the Right Procedure
	Stepping through Your Code
	Stepping to a Specific Line in Your Code
	Stopping Your Code at a Predefined Point
	Seeing the Beginning and End of Variable Values
	Turning Off Auto Syntax Check

	Chapter 23 Resources for VBA Help
	Letting Excel Write Code for You
	Referencing the Help System
	Pilfering Code from the Internet
	Leveraging User Forums
	Visiting Expert Blogs
	Mining YouTube for Video Training
	Attending Live and Online Training Classes
	Learning from the Microsoft Office Dev Center
	Dissecting the Other Excel Files in Your Organization
	Asking Your Local Excel Guru

	Chapter 24 Ten VBA Do’s and Don’ts
	Do Declare All Variables
	Don’t Confuse Passwords with Security
	Do Clean Up Your Code
	Don’t Put Everything in One Procedure
	Do Consider Other Software
	Don’t Assume That Everyone Enables Macros
	Do Get in the Habit of Experimenting
	Don’t Assume That Your Code Will Work with Other Excel Versions
	Do Keep Your Users in Mind
	Don’t Forget about Backups

	Index
	EULA

