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Preface

The book presents Explainable Artificial Intelligence (XAI) in Medical Decision
Support Systems (MDSSs). The book presents well-structured chapters from
industry experts and researchers across the globe, resulting in diverse and high-
quality work for the readers. The book provides researchers and academicians with
new insights into the real-world scenarios of the deployment, application, man-
agement, and associated benefits of XAI in MDSS. The book critically examines
the limitations of the existing MDSS and proffers solutions to revamp the con-
ventional systems architecture. Specifically, the book examines the application of
XAI-driven solutions toward addressing critical issues in traditional MDSS sys-
tems. These solutions have been critically analyzed and compared in terms of the
required computational resources, design complexity, system performance, and
overall efficiency.

Also, the book presents the design of efficient and explainable learning models
for MDSS applications and discusses XAI-based analytics for patient-specific
MDSS. The book discusses the critical MDSS security and privacy issues affecting
all parties in the healthcare ecosystem and provides practical XAI-based solutions
to address these problems. The book is written in basic and easy-to-understand
English with several colored illustrations and tables for efficient reading and
understanding. Finally, the book comprises 18 chapters of experimental findings,
reviews, and case studies.

Chapter 1 introduces explainable artificial intelligence (XAI) in medical
decision systems (MDSS), focusing on healthcare systems. Chapter 2 considered
explainable artificial intelligence in medical decision support systems in the con-
text of its applicability, prospects, legal implications, and challenges. Chapter 3
torchlights explainable artificial intelligence-based frameworks for medical deci-
sion support systems. Chapter 4 presents a prototype interface for detecting mental
fatigue with EEG and XAI frameworks in Industry 4.0. In Chapter 5, the idea of
applying XAI for medical image segmentation in medical decision support systems
was discussed comprehensively.

In Chapter 6, XAI robot-assisted surgeries for future MDSS are discussed
extensively. Chapter 7 presents the prediction of erythemato squamous disease using
an ensemble learning framework. Chapter 8 examines security-based explainable
artificial intelligence in healthcare systems. The concept of explainable dimension-
ality reduction modeling with deep learning for diagnosing hypertensive retinopathy
was covered in Chapter 9. Chapter 10 dissects how to understand cancer patients with
diagnostically influential factors using high-dimensional data embedding. In



Chapter 11, explainable neural networks in diabetes mellitus prediction have been
presented.

Chapter 12 presents a KNN and ANN model for predicting heart diseases.
Chapter 13 X-rayed how artificial intelligence-enabled Internet of Medical Things
can be harvested for COVID-19 pandemic data management. Chapter 14 examines
deep neural networks for the identification of lead molecules in antibiotics dis-
covery. Chapter 15 conducted statistical tests with differential privacy for medical
decision support systems. Chapter 16 gives an automated decision support system
for diagnosing sleep diseases using machine intelligence techniques.
Chapter 17 gives XAI methods for precision medicine in medical decision support.
Finally, Chapter 18 provides an overview of the psychology of explanation in
medical decision support systems. The psychological perspectives on explanation
in healthcare systems with a binocular focus on MDSS are highlighted.

Bochum, North Rhine-Westphalia, Germany
Agbotiname Lucky Imoize
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Chapter 1

Explainable artificial intelligence (XAI) in
medical decision systems (MDSSs): healthcare

systems perspective
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Abstract

The healthcare sector is very interested in machine learning (ML) and artificial
intelligence (AI). Nevertheless, applying AI applications in scientific contexts is
difficult due to explainability issues. Explainable AI (XAI) has been studied as a
potential remedy for the problems with current AI methods. The usage of ML with
XAI may be capable of both explaining models and making judgments, in contrast
to AI techniques like deep learning. Computer applications called medical decision
support systems (MDSS) affect the decisions doctors make regarding certain
patients at a specific moment. MDSS has played a crucial role in systems’ attempts
to improve patient safety and the standard of care, particularly for non-
communicable illnesses. They have moreover been a crucial prerequisite for
effectively utilizing electronic healthcare (EHRs) data. This chapter offers a broad
overview of the application of XAI in MDSS toward various infectious diseases,
summarizes recent research on the use and effects of MDSS in healthcare with
regard to non-communicable diseases, and offers suggestions for users to keep in
mind as these systems are incorporated into healthcare systems and utilized outside
of contexts for research and development.
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1.1 Introduction

The healthcare industry is increasingly utilizing big data, cloud techniques, Internet
of Things (IoT), and artificial intelligence (AI)-based technology for a range of
applications, including clinical automatons, automated medical diagnostics, preci-
sion medicine, and individualized healthcare [1]. The application and usability of
these systems in the medical field are thought to be of greater interest to nurses,
hematologists, and other healthcare professionals than patients, despite the fact that
performance and accuracy metrics of these technologies and AI-based systems may
be of interest to recipient of the health facilities. Nevertheless, medical doctors and
other healthcare workers might not have the requisite training to fully understand
some of these technologies and other AI-based systems [2,3].

As a result, there is a situation that prevents the use of cutting-edge technology
that may automate labor-intensive repetitive analysis tasks, on the first hand, and
while, on the other hand, precludes the benefits of linked productivity. It also restricts
the quantity of information that may be utilized to assist the development, validation,
and iteration of AI-based systems for the delivery of healthcare solutions in con-
junction with particular healthcare activities. Medical decision support systems
(MDSSs) and the models that underpin them are the subject of a research area known
as explainable AI (XAI), which focuses on techniques and approaches that make it
simpler to understand and communicate how these technologies operate [4].

Researchers have contributed to the study in a variety of fields as a result of the
advancement and widespread usage of technology, with the majority of studies
focusing on how it is used in focused areas such as business, healthcare, and edu-
cation. In line with this, researchers must examine the link between the works
articulating these benefits and the reality of technology implementation in real-
world settings in order to assess the benefits of integrating new technologies in
healthcare [2–5].

The increasing use of various AI-based technologies and the resulting legal
constraints have increased interest in XAI research in the healthcare industry. The
shift from an information technology-based economy to a digital economy is a
subject that is actively being debated when looking at contemporary structural
management prototypes [6,7]. In a high-tech, astonishingly swift information
environment, a corporation is being formed to handle the issue of the digital
economy. This ecosystem enables the development of goods that may be perso-
nalized for customers and provide value for manufacturers. Information technology
addresses the information-based strategy for the present and upcoming operations
of the firm [8].

The development of novel resources like big data, the IoT, AI, and machine
learning (ML), as well as the possibility of their analysis and construction based on
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interpretation technologies and endwise business processes, are what is paramount
in this situation [8,9]. AI and big data examples include their capacity to classify
unrelated things utilizing a range of sign, classification, and explanatory systems,
change and exist in real time, as they come from several sources, etc. It is possible
to forecast seasonal diseases and establish prescription supply levels using data on
the patterns of explicit healthcare demand in online apothecaries. In order to
replace the conventional method of developing research-based medical information
systems, a new business model has been developed. This approach makes good use
of IT services. As a result, scientific research and medical decision-making are
linked to the usage of AI, ML, and big data in the healthcare industry [2,10,11].

Healthcare MDSS (HMDSS), often referred to as evidence-adaptive decision
support system (DSS), is one of the numerous examples of descriptive technologies
for decision making. HMDSS assist medical personnel with understanding medical
research and data so that they can draw conclusions from it [12,13]. These initia-
tives seek to enhance the way medical information is presented so that it can be
applied more effectively in a range of situations. They achieve this by focusing on
actual medical decisions and fusing the expertise of medical professionals with
computerized medical data. The center of interaction of hematologists, geneticists,
biomedical science, healthcare organizations, physicians, etc. is where a body of
knowledge concerning effective MDSSs (HMDSS) for healthcare is continually
growing [14].

Given that each individual has a different genetic makeup and set of physical
characteristics, it is evident that care must be given while selecting the right
treatments for both communicable and non-communicable diseases. The knowl-
edge base needs to be updated frequently because medical conditions, diagnosis,
recommendations, and treatment algorithms are always evolving. Furthermore, it is
undeniable that personalized medicine is on the increase and will improve as a
result of sophisticated information technology [15]. Instead of being a set of rules
in this case, the knowledge base with HMDSS is a particular software solution that
uses cloud and classified-explanatory technologies. The disparity between HMDSS
research, its relationship with other fields like XAI, its application by medical
personnel, and its beneficial contribution to the effectiveness of the healthcare
sector are all areas that have received little attention in healthcare settings not-
withstanding the depth of study on multi-criteria decision-making techniques,
healthcare procedures, and related domains [14–16].

Complete electronic medical record (EMR) systems with features and resour-
ces that facilitate outcome and sharing of information are crucial elements of
healthcare. When used properly, HMDSS can support patient-specific decisions
that are made in accordance with professional medical guidance [17]. After these
benefits and in spite of spending vast sums of money on technical deployment,
most of the African countries are still having problems embracing EMR, in contrast
to other developed nations. A key barrier to the introduction and adoption of the
HMDSS as a component of EMR in various African countries is the poor adoption
of EMR and personalized medicine as sources of medical data. How can the branch
succeed if the HMDSS source fails in its utilization? [18–20]
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Consequently, to support healthcare decision-makers in their future delibera-
tions over non-communicable disorders and delivering archived ready-made tran-
scriptions of HMDSS in the healthcare sector to academic academics, this chapter
presents an overview of healthcare MDSSs (HMDSS), XAI, and the usage of single
or combined HMDSS with the support of XAI.

1.2 Overview of HMDSSs

The majority of human acts are decided upon throughout the day. Optimal
decision-making is seen to be an art. According to studies, the majority of indivi-
duals act weaker than they should. One may argue that all human events and
activities, regardless of the area of life, are the outcome of decision-making pro-
cesses [19]. Today, decision-making is acknowledged as a problem-solving activity
since it is a process that is linked to problem-solving. In other words, a person
experiences mental difficulties when their desired situation departs from their
current reality. In such a case, the person first tries to alter the position or state they
are in, and then they are willing to modify the surroundings around them in order to
attain their goals [21,22].

Given the importance of making an informed decision at the right time, the
availability of a system to aid people in making judgments is highly significant.
DSSs are systems that take part in even the most fundamental corporate decision-
making processes in addition to providing information. DSS is a computer-based
information processing system that was primarily developed to address managerial
and commercial needs. Several authors claimed that DSSs may be used to any
system that supports decision-making [22,23]. DDSs may also be thought of as
information systems that assist with administrative, institutional, likewise corporate
processes that are somehow related to decision-making. In situations when things
are changing fast and it is challenging to forecast or foretell what will happen in the
future, DSSs are essential [13].

One of the main issues in public health is medical mistakes, which are seen as
dangers to the safety of patients. In healthcare, patient security plays a significant
role. Information technology advancements have been proposed by researchers as a
viable technique to enhance the caliber of healthcare services and patients’ health.
Medical decision support systems (HMDSSs) are among the most significant and
practical information systems. Medical decision-making is, in reality, a wonderful
area of DSS deployment [22–24].

Currently, the field of health encompasses a vast body of knowledge that
genuinely calls for expert advice and assistance, particularly in light of the ongoing
expansion of medical knowledge across various facets of the healthcare system. All
three phases of primary, secondary, and tertiary prevention are covered by these
features, which also encompass diagnosis, medication, treatment, and follow-up
[16]. Medical decision support system (HMDSS) is interactive software built on the
foundation of expert systems to help and support the decision-making of doctors,
healthcare professionals, and other staff members working in more generalized
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areas of health-care systems. It should be mentioned that HMDSS links health
observations with health information to enhance healthcare practitioners’ decision-
making. The use of AI in both public and private health-care systems is demon-
strated by the HMDSS [12,25].

HMDSSs are regarded as active systems of knowledge that produce patient-
specific medical recommendations utilizing two or more categorization orders.
This proves that HMDSS is a DSS that focuses on knowledge management in
health-care matters to arrive at a medical recommendation based on a limited
number of difficulties. The primary objective of developing modern HMDSSs is to
support medical professionals, including doctors, nurses, geneticist, at various
points throughout professional care systems. As a result, the healthcare profes-
sionals and personnel must actively interact with HMDSS to make the best possible
diagnosis and analysis based on patient data [25].

Earlier guidelines and convictions of HMDSS were based on using it to diag-
nose patients with a medical doctor. In the past, medical doctors would only act in
line with HMDSS results after giving it information and waiting for it to reach the
correct decision. The modern methodology for using HMDSS forces medical
doctors and healthcare professionals to interact with HMDSS and simultaneously
uses both knowledge to better analyze patient data and arrive at a more accurate
diagnosis and more accurate healthcare services, in contrast to earlier methods that
only used these two. Usually, HMDSS categorizes and provides doctors and
healthcare personnel with suggestions as well as a list of desired outputs. In this
vein, doctors and other healthcare professionals explicitly choose pertinent data and
reject unhelpful system recommendations [13].

Healthcare workers are only seen as a support for medical sciences experts,
healthcare services, healthcare personnel, diagnosis, and treatment in HMDSSs,
which are not intended to replace medical doctor. These technologies make it easier
to provide particular diagnoses, prescriptions, and treatment. They also eliminate
the need for expert consultation, which considerably lowers healthcare system costs
and improves the quality of healthcare services [26].

In light of this, the use of information technology, such as the HMDSS, will
surely help and support healthcare administrators, policy makers, staff members,
and medical professionals. Several components of the healthcare system are using
HMDSS to improve their services and cut down on medical error rates. This
chapter research’s goal is to spread awareness of HMDSS, its theoretical founda-
tions, and its health-related benefits.

1.2.1 MDSSs in healthcare system
Computerized tools called MDSSs were developed to help nurses, hematologists,
geneticists, doctors make decisions about their patients, such as those involving
diagnosis and treatment. HMDSSs, which are computer applications, are developed
to assist healthcare professionals in making scientific decisions regarding certain
patients [22,26,27]. In other words, MDSS are active knowledge systems that
provide suggestions for a given case based on at least two patient data points. These
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software programs help doctors make better decisions about things like pre-
ventative, acute, and chronic care, diagnostics, ordering specialist tests, and pre-
scribing procedures. They accomplish this by using pertinent medical and scientific
data, rules from a knowledge base, and applicable information [25].

A MDSS provides a clinician with advice, assessments, and prescriptions by
fusing information regarding baseline demographics with a reliable knowledge
base, or help that is tailored to the patient. Patient data can be manually entered into
computer systems by patients, healthcare providers, or clinic employees.
Alternately, you can query EMRs to get patient characteristics (EMR). Physicians
can discover and choose the optimal course of action with the aid of these decision-
support technologies [12]. The decision-support services offered are built on
sophisticated algorithms and outcomes evaluation methods that scour information
repositories for the most recent improvements in best practice. Whatever the defi-
nition of MDSS, it is critical to recognize that the field is unregulated and
expanding swiftly. Particularly in terms of the efficiency of medical personnel, the
standard of treatment, and patient outcomes, MDSS has a lot of potential to be
helpful. If systems are not adequately designed and tested, they run the danger of
being hazardous [14].

Different types of professionals must make medical decisions on patient data
with a hazy understanding of the patients’ state of health. Computer technologies
have been created to support both veterinary and human healthcare practitioners in
this decision-making process in order to help manage this ambiguity. These tech-
nologies were created for a number of reasons, which including enhanced infor-
mation retrieval, patient record analysis, and intelligent systems that directly
support decision-making via ML. Some computational techniques have been
developed since the 1950s. A 1979 evaluation that looked at the benefits and
drawbacks of the early clinical algorithms, databanks, and mathematical models
that allowed computer-based clinical decision support systems also contained
documentation of these early tests [17].

Since the historical book release titled “To Err Is Human” in 2000, MDSS and
computer-based physician order entry systems have been crucial in evaluating and
enhancing patient care. With MDSS, it has been discovered that patient outcomes
and healthcare expenses are both improved [18]. They have shown to decrease
analytical errors and their diagnostic procedures have shown to enable more
accurate diagnoses by warning the clinician of potentially dangerous prescription
combinations. MDSS may be used in a variety of ways in clinical settings [24].
Among the principal applications are the following:

(i) supporting the patient’s decision-making;
(ii) deciding on the best treatment plans for certain individuals;

(iii) assisting overall health strategies by calculating the clinical and financial
results of various therapy approaches;

(iv) calculating therapeutic effects in situations when unmethodical studies are
either not feasible or not possible.
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For instance, according to [23] as cited by [24], a study of 100 patient studies
was undertaken, and the results showed that MDSS improved diagnosis in 64% and
patient outcomes in 13% of the studies examined. In the same year, decision sup-
port systems considerably enhanced medical practice in 68% of all trials, according
to a thorough analysis of 70 separate instances undertaken by Duke University. The
success of the two analyses was due to the MDSS properties listed below:

(i) seamless incorporation into the clinical process;
(ii) nature of electronic medical reports;

(iii) not before or after the patient participation, but at the time and place of
therapy, decision assistance should be offered;

(iv) substitution of indicated care for care evaluation.

In two areas of healthcare, the pharmacy and diagnostic (out-patient depart-
ments – OPD) sectors, MDSS have had a particularly significant influence. Batch-
based order checking systems are being used more often by pharmacies to check
orders for potentially hazardous drug interactions and notify the patient’s ordering
physician about them. OPDs have used MDSS to evaluate both likely treatment
trajectories and common medicare conditions in order to develop treatment plans
that achieve the perfect balance among patient care, medication prescriptions, and
financial expenses.

1.2.2 Basis of HMDSS
Healthcare professionals, staff, patients, and other people can benefit from exper-
tise and skillfully selected facts about a single person and given at the right times to
enhance medical care and wellness. The Ministries of Health of various countries
has long expressed concerns about the quality of healthcare in African nations and
has long promoted the use of health information technology (IT), such as electronic
MDSS (e-health), to raise medical standards [28]. The governments of several
African nations have also supported the use of EMRs, and adoption of electronic
health records has been modest but growing (e-health). However, it is crucial to
keep in mind that these health IT systems are merely a tool, not a goal in and of
itself, to enhance the quality of treatment [28–30].

An alternative viewpoint on MDSS, commonly referred to as evidence-
adaptive DSSs, assists users in making selections informed on medical evidence
and research. These systems emphasize on medical judgments in real-world set-
tings by merging electronic medical data with physicians’ discretion, enhancing
how medical knowledge is presented so that it can be applied more effectively.
Even though decision-making technologies, its multi-criteria (MC) techniques, in
such domains, and medical approaches, the discrepancy between MDSS research
and the practical application of end users and its contribution to organizational
performance has received little attention [30].

In this instance, a number of MDSS strategies may have avoided the phar-
maceutical interaction. These instruments could include pop-up warnings about
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possible drug interactions when a new prescription is provided, risk assessment
standards for the patient’s painkiller, clinical recommendations for the treatment of
sickle cell disease (SCD), or requests for timely follow-up. This hypothetical
example demonstrates how EMRs are the foundation for raising patient safety and
the caliber of healthcare, but MDSS is necessary for completely achieving these
objectives [31,32].

1.2.3 Characterizing and categorizing HMDSS
MDSSs come in a very wide variety of styles across the healthcare industry.
Throughout the last 10 years, there has also been a substantial change in the funda-
mental principles of architecture and strategy. A variety of healthcare MDSS qualities
are linked to or directly impacted by the scientific effectiveness, functionality, error
avoidance, possibility of acceptability in the medical community, system portability,
cost-efficiency, and other characteristics of health sector. As a result, it is essential to
explain HMDSSs in a way that makes it easy for us to understand the range of
decision support systems. Understanding categorization and the earlier mentioned
common healthcare decision-making processes offer a powerful collection of foun-
dational assumptions that are beneficial to the creators and reviewers of HMDSSs. As
a result, having defined HMDSSs in varieties of phenomenon, this chapter will
attempt to categorize HMDSS by fusing a number of resources to produce a thorough
categorization that captures important aspects of HMDSS strategy and purpose with
regard to non-communicable illness in healthcare.

According to Figure 1.1, Refs. [33,34] asserted that the five axes of DSS –
context axes, knowledge axes, decision support axes, information delivery axes,

KNOWLEDGE/DATA SOURCE DECISION SUPPORT

INFORMATION DELIVERY

CONTEXT

WORKFLOW

• Clinical knowledge source [☺]

System user/

Target decision

maker☺

System user/Output

intermediary [☺]

Target decision

maker☺

• Data source [☺]

• Data source intermediary [☺]

• Degree of customization

• Reasoning method

• Clinical urgency

• Recommendation explicitness

• Logistical complexity

• Response requirement

• Delivery format

• Clinical setting

• Clinical task

• Unit of optimization

• Relation to point of care

• Potential external

   barriers to action

• Degree of workflow

   integration

• Delivery mode

• Action integration

• Delivery interactivity/explanation availability

OR

• Update mechanism

Figure 1.1 Outline of MDSS taxonomy axes
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and workflow – may be used to classify the HMDSS. Each of them has a unique
subpart that contributes to the system’s development. From the figure, the smileys
notations ☺ and |☺| symbols represent humans and possible human roles within
the systems, respectively. The following are thorough explanations of them.

1.2.3.1 Context axes
The generalized and relevance of a HMDSS are influenced by the environment in
which it is used and evaluated. These are their main areas of influence on the
healthcare industry:

(a) Clinical setting: The healthcare facilities’ inpatient and outpatient settings are
included in this. Here, the HMDSSs may be utilized in an inpatient or out-
patient context or independently of any healthcare organization (e.g., a web-
site for smoking termination). Medical students may participate in
educational settings of such.

(b) Clinical task: The target task of MDSSs, such as prevention or screening,
diagnosis, therapy, drug dosage or prescription, and test ordering, has con-
ventionally been the foundation for evaluation. This include chronic illness
management and health-related activities (like exercises) to these tasks since
MDSSs for chronic diseases may be more prone to failure. Under this cate-
gory, we have the following procedures:

(i) Diagnostic assistance: The HMDSS offers likely diagnoses depending
on the patient’s information and the system’s database of knowledge. It
is possible to combine complicated data retrieval systems, such as
electrocardiogram (ECG) with diagnostic aid. It aims to pinpoint “what
is true” with relation to a specific patient.

(ii) Therapy consultation and criticism: The order-entry process used by
medical doctors may contain this capability as an example. It evaluates
the course of treatment, checks for faults and inconsistencies, com-
pares possible drug interactions, and stops the prescription of allergic
medications. It has been demonstrated that the therapeutic significance
of HMDSSs is greatly increased by the need that a medical doctor
explains a valid justification for any deviation from the guidelines. The
HMDSS can offer an ideal treatment plan and support adhering to it
employing patient information acquired from the EMR together with
protocols and evidence-based recommendations. These HMDSSs
answer the issue “what to do” with a patient and often make recom-
mendations for more analytical analysis (i.e. which X-rays, CT scans,
to tests-order, and so on) [33]. With the help of such software, you may
ask more questions and give even more detailed recommendations for
subsequent therapy (and diagnosis).

(iii) Medication dosage or prescription: To guarantee that a prescription
conforms with guidelines and recommendations, HMDSS can lower the
number of dangerous pharmaceuticals in a prescription and shorten the
time it takes to maintain therapeutic control. If the system is linked to an
EMR, it can prevent the administration of drugs that have negative side
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effects. These systems are well accepted because they incorporate
automated order input forms, electronic transmission to pharmacies, and
effortless incorporation into the clinician’s routine practice. One of a
doctor’s most common behaviors is to prescribe medication, which is
also one of the clinical duties where HMDSSs are most frequently used.

(iv) Alerts and reminders: Real-time auditory, visual, or tactile warnings can
be sent by an expert system (e.g. e-mail, SMS, pager) that is incorpo-
rated with a monitoring equipment or healthcare information system
(such as a test center information system or EMR). Reminder systems
are made to prepare the medical practitioner to important chores that
must be completed before a certain occurrence (like not taking drug
therapy before to major surgery or fasting prior to actually endoscopy).

(v) Information gathering: Locating pertinent information in large
knowledge systems or on the Internet

(vi) Understanding and recognizing images: Today, a portion of the
interpretation of scientific pictures from CT scans, magnetic resource
imaging (MRI), angiograms, etc. may be done automatically. More
crucially, HMDSS can serve as a tool for mass screening in which
software identifies photos that need the clinicians’ specific attention.

(vii) Others are choosing testing procedures, preventing, detecting, using a
skilled laboratory system and treating lingering illnesses.

1.2.3.2 Knowledge axes
The sources, quality, and personalization of the information and data provided by
the HMDSS are the topical issues of this axes. They use knowledge base techniques
in relation to the following:

(a) Scientific sources of information: It may come from reputable sources
(including directives from national or professional societies, observational
studies, and randomized supervised investigations, or by involving medical
professionals who will ultimately use the software).

(b) Data source: An EMR, a medical device (such as blood pressure monitor), or
another data source can provide the patient-specific information. It is possible
that the information will be given by a person or a paper chart. The data must
then be fed through a data input intermediate into the system. This feature has
a considerable impact on the likelihood that HMDSS will be used in real-
world applications. It has been demonstrated that automatically sending data
to the system via computers is preferable (e.g., via an EMR). A doctor who
feeds data into a data source is referred to as a data source intermediate (see
above). Patients themselves might serve as intermediaries.

(c) Data coding: It is preferable to utilize a widely used coding scheme, such as
version 10 of the International Classification of Diseases (ICD-10) or
Systematized Nomenclature of Medicine (SNOMED), for a number of rea-
sons (including financing and epidemiology). Obviously, plain text might also
be used for the data.
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(d) Personalized data: HMDSS has a higher likelihood of being clinically rele-
vant and beneficial the more patient-specific targeted suggestions it generates,
according to age, gender, co-occurring diseases, etc.

(e) System updating: As already mentioned, the knowledge base needs to be
instantly created and contemporary. Both knowledge-based and knowledge-
free systems are included in HMDSS. A knowledge-based system’s knowl-
edge base, inference engine, and communication mechanism make up the
majority of its components. They can reason using the information they get
from the many sources mentioned above because they have professional
clinical knowledge of very particular facts and actions. These systems com-
monly employ probabilistic links between acquired knowledge and data.

The inference engine, which mixes and it links patient data to knowledge-
based standards, is the brain of AI in knowledge-based systems. In essence, the
inference engine makes inferences and comes to new inferences using the data. In
contrast, the non-knowledge-based systems rely on the concepts of ML, such as
neural networks or genetic algorithms, where computers acquire new abilities via
previous experience and/or search for patterns in a patient’s scientific data.

1.2.3.3 Decision support axes
The most crucial aspect of HMDSS is undoubtedly addressing an appropriate
decision-making process.

(a) Reasoning approach: HMDSS reasoning engines include, among others:
(i) Rule-based systems: Different expert knowledge bases are utilized by

rule-based systems in the form of expressions and it can be broken
down into IF–THEN rules (production rules). Such a system is an
illustration of an empirical technique, whereby distinct logical claims in
the form of production rules are acquired through professionals’
observation, interview, and debriefing, and then merged in an effort to
mimic knowledgeable thinking. This method was originally employed
in the MYCIN (an AI technology designed for DSS) to choose the best
antibiotic treatment for a patient.

(ii) Neural networks: A non-knowledge-based adaptive HMDSS called an
artificial neural network employs ML-based models to learn from
understandings and spot outlines in clinical data.

(iii) Bayesian network: The Bayesian network is a common example of a
knowledge-based decision-making system, referred to as a causal
probabilistic network or belief network at times. Using the Bayes the-
orem’s conditional probability, it shows probabilistic relationships
between groups of data, like disease and symptom data. In this network,
the causality of the linkages is needed explicitly. The fact that clinical
knowledge oftentimes struggles to express itself clearly A major barrier
is “what is the impact” and “what the cause” to this network’s capacity
to accurately forecast how an illness will progress over time and how
several diseases will interact.
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(b) Model-based systems: Patient-specific modeling is the most recent
accomplishment.

(c) Logical condition: Decisions are made using logic based on the value of a
specific variable. If the value is inside or outside of the predetermined para-
meters, the decision-making process will provide various results.

(d) ML and data mining procedures: The database of the system indicates that
these strategies are based on probabilistic decision-making. Large and well-
designed databases are desirable because they enable accurate retrieval of
patients who are comparable to the current patient. The optimum therapy for
the present patient is chosen based on an analysis of how those patients
responded to various therapies.

(e) Genetic algorithm: Iterative techniques are used by this non-knowledge-based
approach to reorganize itself and offer the best possible outcome depending
on patient data.

(f) Medical emergencies: The provision of decision assistance for hastily needed
choices. According to the dictum “cure first what kills first,” HMDSS should
devote its resources initially to problems with a clear clinical importance. Better
patient outcomes and medical doctor performance are the result of this trait.

(g) Emphasis on explicitness: In-depth instructions that clearly lay out a parti-
cular course of action are more likely to be followed by end users.

(h) Adequate prompt responses: It is possible to inquire about the utilizing phy-
sician’s response to the HMDSS’s suggestions. Numerous strategies can be
used to do this, such as acknowledging the advice, outlining any replacement
actions performed, and providing a justification for failure.

1.2.3.4 Information delivery axes
The goal of these axes is to give the user access to recently produced information.

They contain the following subsections:

(a) Delivery format: Using extra technical tools such as phone, pager, or e-mail,
or using paper-based, electronic (online or incorporated into an EMR), or
electronic methods.

(b) Delivery mode: Whether it is a notification, a prompt, or a request for opti-
mization, the ideas may be provided upon the decision-request maker’s
request or alternatively, they may be provided without the decision-agreement
maker’s request. The software is initially inactive since it requires the doctor
to make extra effort to obtain a diagnostic or therapeutic evaluation, recognize
when the advice would be beneficial, and “go to the program” to input data.
The so-called “push systems,” which provide solutions autonomously, might
be more advantageous, and extensively used. Because of their work in data
management, they actively assist decision-making (e.g., monitoring, EMR
supervision). The findings of the system’s decision analysis are provided
without the need for further work on the part of the physician since system
decision logic is in a sense incorporated inside the patient database that has
already been compiled from a variety of sources. How to minimize “alarm
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fatigue,” which occurs when a physician is too alerted to tiny anomalies that
are ordinarily observed and understood, is an important issue to think about in
this situation.

(c) Integration of actions: The HMDSS must give the decision-maker the tools
necessary to quickly implement the advised actions. For instance, the program
is able to offer direct connections to order entry forms and therapy planning
section of the EMR, as well as suggestions for therapeutic review. Similar to
verifying a mark, the therapy adjustment activity should be completed in a
few clicks. The utility and acceptance of HMDSS are clearly increased by
action integration.

(d) The availability of justification: In order to clarify its suggestions and give
evidence, the system offers links to books, articles, or knowledge base entries.

1.2.3.5 Workflow axes
Despite the fact that HMDSS is sometimes referred to as a procedure, it actually
functions more as a technology intervention at the point of care and may result in a
disruption. Systems that function in unison with the institution’s workflow are more
commonly used and more successful in improving practitioners’ performance.

1.3 Case study of XAI enabled with MDSSs in various
infectious diseases

1.3.1 SCD
Even though the “era of data” has access to improved computer and storage cap-
abilities, the challenges associated with understanding these enormous data sets
have risen significantly. Many industries, including those in education, health,
business, and organizations, are developing intelligent systems to address these
issues by utilizing relevant concepts and methods including data mining, data sci-
ence, ML, and even AI. One of the most active areas in computer science is AI. As
a result, it imparts insight and importance to the data [35,36].

Ref. [36] asserts that the daily growth in data velocity and the development of
digital technology result in the continuous generation of new data across a range of
data collecting tactics. In the area of AI, computers help people understand data in a
way that is comparable to a person. In this field of AI, computational learning and
pattern recognition are included. ML, a subfield of AI, is impacted by advances in
human knowledge technology. This has to do with changes made to systems that do
various AI-related tasks, such as robotics, planning, prediction, analysis, and
recognition [36,37].

The quantity of data and knowledge that our civilization is able to produce and
retain is growing exponentially every day, but our capacity to absorb it is not
keeping up [4]. It is crucial to employ current technology to balance the seemingly
incompatible aims of scalability and usability in data and information interpretation
in order to overcome these difficulties. According to [38], several data and infor-
mation analysis techniques have been developed and used all over the world with
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the intention of making them more complicated. Particularly in a number of orga-
nizational sectors, the most prominent of which is the healthcare sector, which
encompasses several subsections such as genetics, human genetics, and medical
genetics, humans must be involved in the early stages of data analysis and infor-
mation generation. A primary objective and top priority for many governmental
and commercial sector companies is to improve data analysis processes.

The need to provide new and appropriate services, as well as the need to
improve productivity and adhere to rules, all have an impact on the illumination of
medical data analysis. In the current digital era, healthcare systems are swamped
with data, yet having access to this data and expertise is insufficient to fully capi-
talize on improving patient health. The ability to combine, adjust, or anonymize
data from many sources, including EHRs, health surveys, administrative data,
physician notes, and consultant reports, to mention a few, is therefore required by
both private and public healthcare organizations. The patient would receive a
complete medical assessment of their condition as a result [39]. Various patient
data are combined, examined, and reported on using healthcare data analytic
technologies. Additionally, healthcare organizations make wiser clinical, adminis-
trative, and financial choices that improve patient care and engagement. The
importance of utilizing information and communication technology (ICT) to
change patient medical data with regard to their health cannot be overstated [40].

In order to improve healthcare diagnosis, management as well as appropriate
decision-making, the optimal framework for patient medical data analysis and
decision support systems must be effectively managed as IT in data analysis in the
health sector increases. When the healthcare industry transitions to a value-based
paradigm, medical consultants, hematologists, geneticists, and others may find
themselves in danger of not respecting patient decisions. As a result, reviewing
medical data to guide judgments is no longer a good idea but rather a need [41–43].

SCD is a red blood cell (RBC) disorder brought on by the deficiency of oxy-
gen. The end consequence is a group of diseases known as hemoglobinopathies, the
most prevalent of which are thalassemia and sickle cell anemia (SCA). There are no
additional treatment options for adults with SCD, a congenital abnormality of the
hemoglobin structure, which can only be treated in infants by bone marrow or cord
blood transplantation [44]. Hemoglobinopathies (abnormal Hb or anemia),
according to [44], are brought on by genes that affect around 5% of the world’s
population. The prevalence of sickle cell gene carriers is higher compared to the
prevalence of affected newborns because healthier individuals have thalassemia
than SCA (who acquire just one mutant gene from their parents). In Ref. [45] it is
said that among the diseases for which ML algorithms have been used to model,
forecast, and diagnose include SCD, cancer, and malaria. One of the most serious
medical illnesses in the world, SCD, has a variety of symptoms that can vary from
moderate to catastrophic.

SCD, for instance, is one of the most prevalent genetic RBC illnesses in
humans in Nigeria and affects people of all ages, resulting in hemolysis and vaso-
occlusive crises. Studies show that Nigeria, where over 150,000 births occur
annually, has the largest number of people with SC illness. The RBCs of patients
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with SCD exhibit aberrant hemoglobin, such as hemoglobin S or sickle hemoglobin
[46,47]. Hemoglobin, a protein that transports oxygen throughout the body, is
found in human RBCs. SCD is a genetically based non-communicable illness that is
passed on from parent to child [48]. Like Ebola, Zika, tuberculosis, or the typical
cold and flu, it is not contagious. Patients with SCD have long-term acute pain
[vaso-occlusive episodes (VOEs)], long-term suffering, multiple organ damage
(including kidney failure, heart failure, and others), a short lifespan, bone infec-
tions, and stroke, to name a few symptoms and problems [49,50].

Apparently, a single-point mutation (glutamic acid substitution) of valine at
position 6 in the hemoglobin component known as beta globin (-globin) causes
sickle hemoglobin (HbS) to deform or transform, according to [45,48]. According
to [48], those who have two copies of the HbS mutation are homozygous (HbSS)
and have the sickle cell phenotypic form of the disease, as opposed to those who
have one copy of the gene, who are heterozygous carriers (HbAS), who do not. In
order to lower the mortality rate and other issues that SCD patients face, it is crucial
to give medical officers, hematologists, and healthcare managers a platform to
strategize on how to make life meaningful and fulfilling for these patients by
integrating ML algorithms into the analysis of SCD medical datasets [51].

In order to address practical issues like significant variation, low accuracies,
the presence of feature noises and biases, as well as medical doctors’ decisions
based on the data gathered, the involvement of healthcare MDSSs with the support
of explanatory AI should be developed [52]. As a result, the availability of enor-
mous databases containing pertinent genomic data would enable researchers to
focus on developing new approaches for diagnosing and treating human genetic
diseases like SCD. Due to the size and diversity of the data, it may be challenging
to effectively employ genomic databases for SCD in this situation without the
proper development of advanced data analysis tools [53].

In order to provide proper management and follow-up on SCDs, this section
provides a review of SCD along with its correlation and the participation of
explicable AI in healthcare decision support systems. The effectiveness of these
explanatory AI technologies will reassure medical experts, other healthcare
workers, researchers, and patients who are suffering from this condition.

1.3.1.1 Historical perspective with SCD
Doctors have found it difficult and time-consuming to correctly diagnose SCD and
forecast the patient’s chances of survival and life expectancy over time. According
to studies, conventional or clinical tests take a long time to discover the presence of
SCD or its variants. As a result, explanatory AI technologies are being employed
more often to provide SCD patients with a non-clinical diagnosis. In 30–50% of
cases, SCD is regarded to be avoidable [36,44]. In order to provide accurate,
objective, and systematic forecasts of human blood cells, advanced computer
approaches such as XAI are needed [2].

One cannot overestimate the importance of medical data analysis and medical
decision support systems to any nation’s economy [39]. One of the challenges faced
the healthcare sector is decision-making and medical data analysis issues,
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particularly in the context of non-communicable disorders like SCD. When com-
pared to the inadequate local medical infrastructure that is appropriate for this
human genetic concern in the examination of medical data, the birth rate in Africa
continent is quite high and at a critical stage [54]. When learning from huge medical
histories and their datasets like SCD, difficulties including missing parameter values
(incompleteness), systematic or data random noise, and inappropriate parameter
selection have all arisen. It will be possible to handle the difficulties that medical
datasets like SCD bring using a HMDSS with support of XAI technologies [55].

1.3.1.2 Synopsis of SCD
A patient with SCD inherits mutant hemoglobin (Hb) genes from both parents and
has hematological abnormalities in RBCs. SCD is a non-communicable illness. SC
problems are brought on by the RBCs’ lack of oxygen [44]. In Figure 1.2, some of
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Figure 1.2 Sickle erythrocytes from single gene mutation (GAG–GTG and CTC–
CAC) resulting in a defective hemoglobin due to deoxygenation
exposure (1: mononuclear cells and platelets {light blue and dark blue};
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the pathophysiologic elements of the disease are shown in a streamlined manner.
The pathophysiology of the illness is described in depth in several researches. The
basic assumption that sickle cells are only responsible for creating vascular
blockage or vaso-occlusion is no longer correct after red cells assume the pathog-
nomonic sickle cell form after being subjected to deoxygenation. SCD is brought
on by a single gene mutation that results in complex physiologic abnormalities,
whereas vaso-occlusion is essential to understanding the illness and can bring about
localized hypoxia and inflammation. The illness manifests itself in many ways as a
result of these alterations. In addition to vaso-occlusion, anemia, and hemolysis, it
is now known that SCD is a disorder characterized by issues with arginine meta-
bolism, increased inflammation, hypercoagulability, and oxidative stress.

According to [45], SCD is one of the most hazardous diseases in the world,
with a wide spectrum of symptoms that can be anything from mild to fatal. SCD
affects people of all ages, is one of the most prevalent genetic RBC illnesses in
Nigeria, and causes hemolysis and vaso-occlusive crises. The sickled erythrocytes
and irregularities that develop as a result of low oxygen levels in RBCs are seen in
Figure 1.3. With approximately 150,000 parturitions (births) per year, African
continent especially Nigeria has the highest number of individuals living with SC
disease, according to studies. The survey found that hemoglobin S or sickled
hemoglobin was present in the RBCs of SCD patients, along with other hemoglobin
abnormalities [46,47]. Table 1.1 shows the fundamental medical signs of SCD in
both children and adults, along with the many possible symptoms.

1.3.1.3 Importance of XAI support in HMDSS for SCD
In areas including patient deterioration, readmissions, mortality, improved doc-
umentation, sickness diagnosis, patient relocation, and chronic care management,
predictive modeling in healthcare has been driven by digital transformation.
Thanks to advancements in big data, AI, cloud computing, and the IoTs, conse-
quently, mixing data from various sources, offer massive computing, and store
shared resources are made possible by the modern technologies. Hence, connect
data to one another through devices, sensors, software, and other technologies, and
exchange data with them [2]. AI’s success in a range of applications results in a
large number of autonomous systems and accurate projections for decision support.
In healthcare, predictive modeling encompasses forecasting illness states and their
trajectories, hospital readmission, adverse medication responses, and drug–drug
interactions, using the interrelatedness of organ dysfunctions to predict the survival
of sepsis patients, and finding off-label usage of pharmaceuticals.

Healthcare predictive modeling may be challenging, counterintuitive, and
frequently difficult to explain. Due to their opaque nature in the healthcare field,
these traits prevent predictive solutions from being adopted widely or having much
value in the clinical situation. In order to improve their capacity to be understood,
predictive solutions in healthcare require a successful strategy. A greater under-
standing of the model, enhanced value of its output, and improved patient care
outcomes may result from improving model explainability [5].
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In some functional areas of healthcare, like personalized medicine for SCD, AI
can help doctors make better clinical judgments or even take the role of human
judgment in some situations. With the use of pertinent clinical questions developed
in collaboration with healthcare experts, cutting-edge AI algorithms like XAI may
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uncover clinically pertinent information concealed in the vast amount of healthcare
data. Most clinical trials for medical research include well-defined hypotheses or
particular questions. Given a collection of characteristics, the AI algorithms are
taught to anticipate specific events, and via the prediction, insights may be gained
[3]. Recent developments in deep learning have attracted a lot of interest. Deep
learning is a neural network with numerous hidden layers that allow for the

Table 1.1 Medical indicators of children and adult SCD (adapted from [38,49])

Children
with SCD

The program is able to
offer direct connections
to order entry forms

Indications/
symptoms

Infants Children

Chest, stomach, and
limbs/joints pain ane-
mia, dactylitis, mild
cyanosis, fever, en-
larged spleen, upper
respiratory infections
that are common

Pain (acute or chronic),
severe anemia, in-
fections jaundice, in-
adequate nutrition
and metabolism,
failure in school, and
premature puberty

significant joint pain,
persistent leg ulcers,
retinal disease, throm-
boembolic side effects,
neurological problems,
drug tolerance/depen-
dence

Complications

● CNS
● Eye
● Lung
● Heart
● Spleen
● Liver
● Kidney
● Gall

bladder
● Genitals
● Bones/

joints
● Skin

● Stroke, retinopathy
caused by retinal
artery blockage, ACS,
and asthma

● hypertrophy of the
left ventricle,
Cardiomyopathy,
acute sequestration of
the spleen, reduced
immunity ( such is
sepsis or a viral
infection)

● Hyposthenia
Priapism, perivas-
cular necrosis,
proteinuria-renal neu-
rocognitive, chole-
lithiasis, persistent
sores, usually on
the ankles

● Hemorrhagic stroke
and recurrent ischemic
stroke Progressive ret-
inal disease, persistent
ACS, chronic pulmon-
ary illness, pulmonary
hypertension, an early
form of coronary
artery disease, heart
attack, Auto-
infarction, Asperenia
with function

● liver sequestration
liver failure brought on
by excessive transfu-
sions of iron
Nephropathy, Urinary
tract infections
frequently

● Chronic leg ulcers,
cholelithiasis, priap-
ism, avascular necro-
sis, and early loss of
bone density

Keys: CNS, central nervous system; ACS, acute chest syndrome.
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exploration of more intricate nonlinear patterns to enhance prediction accuracy.
Understanding forecasting outcomes and how AI systems function to produce
predictions are challenging tasks.

This portion of the chapter discusses the numerous data sources used to support
SCD predictive modeling in healthcare, along with its benefits and drawbacks.
Additionally, it would include some examples of predictive modeling in healthcare.
The necessity of explainability in AI for HMDSS is next discussed in order to win
the confidence of medical experts in predictive modeling for SCD. To explain
internal decisions, behaviors, and actions to the interacting humans, a smart AI
system must include an explanation model. Additionally, the information-based
and instance-based clarifications in XAI using HMDSS for SCD healthcare
prediction modeling will be covered.

1.3.2 Diabetes mellitus (DM)
Every year, emergency departments in hospitals serve millions of patients.
Although a sizable number of the patients are not emergencies, forcing hospitals to
assign medical staff where it is not absolutely necessary, making inefficient use of
personnel and handling genuine patient emergency situations [57,58]. In addition,
there is an increasing shortage of doctors in rural areas, which results in under-
served patients, in especially because of the changing demographics and an
increase in the number of elderly patients [59,60]. Future application of AI-based
models in healthcare as a proponent of systems medicine could be one way to solve
these issues [61].

One of the most prevalent non-communicable diseases and a leading cause of
morbidity and mortality worldwide is DM [62]. By 2030, diabetes is expected to
overtake heart disease as the seventh biggest cause of death worldwide, affecting an
estimated 422 million people [63,64]. In every nation, there are more persons with
type 2 DM (T2DM), the most prevalent kind of the disease [62]. Between 1990 and
2010, the prevalence of diabetes nearly tripled in the United States [65], moreover,
1.7 million new adult cases were detected in 2012 [66]. There are 26% more
Americans who have the condition than those who are 65 or older (4). For diabetic
patients, hypoglycemia (HG) is known as the primary limiting factor in effective
glycemic control [67,68]. Significantly detrimental consequences have been found on
cardiovascular safety and quality of life [69,70]. Additionally, it raises the economic
costs associated with managing HG and its effects through the use of healthcare
resources, and additionally from patient disengagement and lost output [71].

Many diabetic patients are uninformed when HG begins, specifically those
with recurrent bouts, notwithstanding the possibility of fatal and major adverse
consequences. Finding patients who are particularly at risk for HG may offer the
chance to take action and lower the frequency of occurrences [72]. It is difficult to
identify HG using computer-based techniques and EMRs, due to the inconsistent
use of HG diagnosis codes and the possibility of undercounting. Only an unstruc-
tured, narrative (text-based) style may be used to document the signs or symptoms
of a given episode of HG, especially if they are not severe.
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DM is diagnosed, treated, and monitored by physicians with relatively low rates
of adherence to guidelines [73]. Alternative approaches to real-time patient mon-
itoring are necessary due to time restraints, patient overcrowding, and complex
requirements. MDSSs and monitoring systems, which are rapidly developing, offer
an efficient answer to these issues. The goal of chronic illness means of combating is
no longer to cure the patient, but to improve the patient’s adherence to the treatment
regimen, and to enhance the quality of life through collaboration. Because of this,
the value of safeguarding, preserving, and enhancing health has been prioritized
over the treatment of symptoms, fostering the idea of “self-care” [74].

Diabetes is a persistent medical condition. Patients with diabetes frequently
experience difficulties during treatment, such as psychological issues and trouble
adjusting to lifestyle modifications. In addition to the normal discomfort brought on
by symptoms, consequences, and therapies. Future concerns for the patient have an
impact on his social, cognitive, and emotional health [75]. In people with health
issues like diabetes that require substantial treatment and support, self-efficacy
beliefs are crucial, adjusting one’s lifestyle and picking up new abilities to deal
with the disease progression. Diabetics are required to possess considerable self to
manage sophisticated diabetes treatment and management. By raising their levels
of self-efficacy, diabetics can enhance their self-care habits [76].

Substantial proof studies carried out by professionals at the national and
worldwide level serve as the foundation for the creation of DM standards and
guidelines. The criteria for diagnosis are laid out in DM management guidelines,
and the standards for diagnostic process are standardized [77]. The disease is then
categorized based on the patient’s medical history, physical assessment, and test
results. The recommendations make recommendations for which tests should be
run and which patient risk factors should be examined. Following diagnosis and
differential diagnosis, the doctor is given various treatments based on the pre-
scriptions provided by the evidence-based studies. These recommendations include
a methodical approach to therapy and follow-up in accordance with the diagnosis
and outlook [78].

Primary care physicians are crucial in the identification, management, and
control of DM illness. According to the World Health Organization, primary
healthcare is crucial in lowering chronic illness deaths and morbidity. All nations
are working to improve primary care to ensure the management of chronic condi-
tions. Therefore, adjusting the doctor’s strategy to the most recent DM management
recommendations and creating a consistent strategy will result in notable
improvements in blood sugar control. The patient’s life will be longer and of higher
quality if their diabetes is under management. Patient applications to primary
healthcare providers will decrease as a result of this. As a result, doctors will spend
more time on each patient.

For the management of chronic diseases, a number of computerized MDSSs
have been created [79]. The MDSS is used in primary care for a number of pur-
poses, including depression, hypertension, and drug reviews [80–82]. Additionally,
a number of AI-based and rule-based DSSs have been created for the diagnosis of
diabetes [83,84].
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According to research, measures started initially in pregnancy can lower the
rate of DM in expectant mothers who are overweight or obese [85–87]. Applying
remedies in every situation, meanwhile, can be expensive and time-consuming. A
ML-based MDSS can be useful in supplying a strong and impartial computerized
tool to support physicians in identifying women at risk of DM. By enabling focused
intervention, it would significantly cut down on time and expense. Clinical settings
offer significant promise for the MDSS, especially in light of the fact that many
doctors have used telemedicine to keep a distance from patients during the COVID-
19 pandemic [88].

Despite the literature on their effective deployment, MDSSs offer a potential to
significantly improve healthcare delivery. There is a lack of MDSS data, particularly
MDSSs that based on ML-based algorithms. In addition to system accuracy, authors
in [89] noted that for a MDSS to be adopted and implemented into healthcare setting,
efficiency and attractiveness are crucial. In order to easily get system outputs while
juggling a heavy clinical workload, a MDSS should be time-saving, intuitive, and
simple to operate. Additionally, they emphasized that black-boxes are unacceptable
for MDSSs. This is consistent with the findings of authors in [90], who said that
explainability is a crucial element for a MDSS to be successfully incorporated in
practical application. A ML-based system can mirror the pattern in the training data,
as demonstrated by a well-known example by authors in [91] but not transcend to
clinical practice since it is at odds with medical understanding.

According to their computer model, people with a history of asthma were less
likely than the general population to pass away from bronchitis. This is due to the
vigorous treatment that patients who had asthma and had pneumonia typically
received, which reduces their risk. Even if the system accurately recorded the
training data, using it in clinical settings without knowing why the model per-
formed this way would indeed be troublesome. AI-based model that is compre-
hensible and explainable can solve these issues and this is called XAI. The use of
XAI in MDSS has been shown to offer numerous advantages, including boosting
acceptability and credibility of the system, as well as raising the causality
hypothesis and decisions assurance. However, the published literature as a whole
clearly lacks the applicability and implementation of XAI in MDSSs [90].

1.3.3 Hypertensive retinopathy (HR)
Vision loss is a result of the retinal condition known as HR, which is brought on by
persistently high blood pressure (hypertension). Millions of people around the
world are afflicted with HR disease as a result of high blood pressure [92]. The
irregularities, such as tortuous retinal arteries, abscess formation, cotton wool pat-
ches, hemorrhages, and enlargement of the optic disc (OD), are brought on by
hypertension. Ophthalmologists can investigate these indicators of retinopathy
brought on by HR by taking digital pictures with a fundus camera [93]. There are
no early warning indications for this condition, and frequently, When the condition
results in blindness or vision loss, HR is discovered at a later stage. As a result,
hypertension people should often get their eyes examined. Figure 1.4 displays
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normal and HR pictures along with the fundamental fundus constituents and
alterations, which are visible on the fundus because HR is present.

Systems for computer-aided diagnosis are frequently employed in the health-
care sector. Various retinal disorders are detected with computerized diagnostic
techniques and are beneficial to both patients and ophthalmologists. These auto-
mated devices allow the ophthalmologists to adhere to the disease’s treatment
strategy. A form of computer-aided diagnostic system that can automatically detect
and grade HR using retinal fundus images must therefore be developed. HR is also
used as a marker for injury to certain target organs. Through HR indications, doc-
tors can foresee the likelihood of heart illness, stroke, and even mortality [94]. The
development of the HR signs and symptoms typically occurs in more established
phases of the illness. These indicators support clinical therapy and rules for patients
with hypertension [95,96]. There are various levels and grades in HR.
Arteriovenous ratio (AVR) is the foundation for HR phases [97], which is regarded
as a useful metric for the identification and evaluation of HR.

The evaluation of medical images is an essential tool for the computer-aided
diagnosis of many diseases. Due to their dependability and adaptability, DL-based
AL-based models are more prevalent in disease analysis than traditional image
processing methods [98]. Computer vision has a promising possibility to evaluate
these retinal disorders through image segmentation for early identification, diag-
nosis, and treatment of some retinal diseases that are linked to blindness or visual
loss [99]. For quicker screening and computer-aided analysis of numerous retinal
illnesses connected to retinal anatomy, DL-based technologies are widely
acknowledged [100]. Due to their intricate structure, retinal blood vessels serve as
crucial biomarkers for identifying and assessing various retinal dysregulation and

(a) (b)

Figure 1.4 (a) A basic fundus retinal image, including the arteries, veins, OD, and
macula. Additionally, smaller and larger venular branches and arteriole
branches are visible; (b) fundus retinal picture was damaged by HR,
and there were some hemorrhages, cotton wool spots, and OD edema
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associated disorders [101]. Medical image categorization, one of many deep
learning techniques, aids ophthalmologists and other medical professionals in
making many challenging diagnoses. Segmentation techniques lessen the need for
manual illness image recognition and DL-based semantic segmentation is a cutting-
edge method for classifying medical images pixel-by-pixel, whether for diagnosis
or symptom screening [102]. Due to the aberrant proliferation or deterioration of
these capillaries, diabetes and hypertension cause changes in the retinal vessels,
which can be found by precisely segmenting the retinal blood vessels [103].

There is a diagnostic load placed on medical specialists because to the labor-
ious and time-consuming manual investigation and identification of this retinal
vasculature; obviously, automated technologies could enable quicker diagnostics
[104]. The thickness, surface roughness, formation, and removal of these retinal
vessels can all be used as diagnostic cues [105]. A retinal condition known as HR is
linked to hypertension and gets worse with elevated blood pressure. A retinal
condition known as HR is linked to hypertension and gets worse with elevated
blood pressure, specifically, localized and arteriolar shortening [106]. Vascular
changes due to diabetes and hypertension can be subtle, necessitating a sharp eye
for detail in retrospective analysis to detect the important changes brought on by
the disease [107]. Deep learning has the ability to diagnose many illnesses and
assist medical professionals in various medical applications [108,109].

Similar to this, resilient architecture and DL-based classification techniques
can identify minute variations in the retinal blood vessels and can assist doctors in
identifying the associated changes to make quicker and more accurate diagnosis.
There are a number of deep feature-based techniques for detecting retinal blood
vessels [110]. The creation of low-cost, reliable techniques that can precisely detect
vasculature with slight alterations is nevertheless necessary. Additionally, current
segmentation-based approaches [111] solely concentrate on segmentation rather
than offering a comprehensive solution for the identification of HR.

1.3.4 Carcinoma
Non-melanoma skin cancers (NMSCs), which can afflict both sexes, are the fifth
most prevalent type of cancer globally. According to estimates, there are more than
a million new cases of NMSC each year, with squamous cell carcinoma (SCC)
accounting for about 20% of all skin cancers [112]. Each year, more than 1.8 mil-
lion new cases of NMSCs are recorded in the United States, and skin cancers are
common, with cutaneous SCC being the most common type [113,114]. SCC is
more common in Asian Indians and African Americans, and additionally, it is the
second most common among Asians of Chinese/Japanese descent and Hispanic
descent [115]. SCC has been identified as a keratinocyte-related cancer type. The
skin condition carcinoma-in-situ, commonly known as actinic keratosis (AK), has
been linked in multiple studies to the development of SCC. About 5–10% of all
high-risk SCC cases are extremely challenging to identify and treat, with radiation
or surgery being the preferred treatments in the majority of these situations.

Therapies for such high-risk metastatic skin cancer are less likely to be
effective, especially in an elderly population [116], demonstrating the urgent need
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for an effective but organized diagnosis and treatment plan for SCC [117]. The
amount of microarray data is increasing, and the knowledge it provides about the
genes that control for a point mutation is being employed for variation classifica-
tion and investigation, in addition to other possibilities. Microarrays are a relatively
new approach that analyzes gene expression in samples by placing hundreds of
DNA probes on a small chip that are matched to target genes. Comparing cancer
and healthy tissues was one of the approach’s main applications, among other
factors, diverse cancer subtypes, people with different prognostications [118]. In
terms of recognizing microarray samples, support vector machines (SVMs) [119],
ANNs [120], logistic regression, Naive Bayes [121], and other commonly used ML
techniques performed wonderfully [122].

Many research use metabolomic data to understand the metabolites that char-
acterize each organism state, and how those metabolites behave in different envir-
onments. Systems biology is incredibly dependent on the “omics” field. It has
recently been widely adopted in a range of sectors due to its concentration on small
molecules and relationships, such as the detection and acquisition of biomarkers, drug
development, and personalized healthcare, among others [123]. Pioneering omics
data investigations have produced tools for normalization like NOREVA [124–126],
and ANPELA, a combined approach for data label-free quantification (LFQ) [126].
Various areas of scientific research have benefited greatly from these techniques.

Using ML-based techniques, previous studies have identified vital biomarkers
in the search for genes with greater SCC risk prediction value, and this has helped
scientists find compounds that have better predictive value [127]. Scientists are
increasingly using AI-based and ML techniques to investigate the genetic diversity
of cancer. It can be used to increase the accuracy of diagnoses, generate efficient
biomarkers, as well as the success of cancer treatments [128]. AI refers to a robot’s
capacity to replicate human behavior, which is especially beneficial when working
with enormous amounts of data. ML-based is one of the most significant applica-
tions of AI models, which enables computers to acquire knowledge through
observation without explicit programming [129,130]. ML models can be viewed as
a modeling technique that relies on gaining expertise together with performance
improvement. These models are meant to assist in locating advantageous compo-
nents and their relationships [131].

Over the past several years, AI has improved, transitioning from a mainly
intellectual to a practical implementation condition. There are now strong prospects
for the use of AI in many different industries, ML has already been used to analyze
survival in cancer studies, in particular and predict models for advanced naso-
pharyngeal cancer, breast cancer, pancreatic cancer, and a number of other malig-
nancies [132]. While ML algorithms in particular seem to be effective in producing
results and predictions, and they suffer from opacity, which makes it difficult to
understand their fundamental workings. It exacerbates the issue since it offers
serious risks to entrusting crucial decisions to a system that is unable to adequately
defend itself.

To solve this problem, XAI proposes a paradigm change toward more trans-
parent and understandable AI. Its goal is to create a set of tactics that produce more
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comprehensible models while maintaining high accuracy and achievement. The
requirement to justify the model’s judgments or forecasts to users and experts led to
the creation of XA and it is attracting increasing amounts of interest in AI.
Numerous XAI techniques have been established with diverse methodologies, and
several classification schemes for XAI models have been presented by authors in
[133], based on the size, length of the information extraction process, or model AI.

1.3.5 COVID-19 pandemic
Governments all over the world have adopted policies for social isolation, quar-
antine, and ultimately lockdowns due to COVID-19’s extremely contagious exis-
tence [134]. Nigeria was not exempt from the significant health and economic
problems brought on by these occurrences [135]. To aid in decision-making on the
part of the federal and local governments, it is necessary to test the huge majority of
the population. COVID-19 tests are only available to healthcare experts and patients
with serious diseases due to a lack of resources. Consequently, it does not reach the
vast majority of people. Since the pandemic started, the digital health landscape has
captured everyone’s interest to offer potential health solutions in this period of
unprecedented medical crisis in order to lessen the effects of this epidemic [136].

Although AI techniques have previously been used to support clinical deci-
sions, “Emergency AI” is currently in demand. There are chances for Automation
decisions based on gathered vitals, test results, medication orders, and diagnoses
throughout the patient care route [137]. There are still crucial factors to take into
account while creating and verifying AI models in light of the continuously
expanding datasets. AI techniques can be used to comprehend patient categories,
direct clinical decision-making, and enhance both patient- and operation-centered
results. This viewpoint emphasizes the advantages of these tools as seen in many
therapeutic contexts and explains the importance of ML and AI techniques. When
thoughtfully constructed, they might be enhanced during the COVID-19 pandemic.

ML models have been shown to predict the presence of clinical factors from
medical imaging with remarkable accuracy. However, these complex models can be
difficult to interpret and are often criticized as “black boxes”. Prediction models that
provide no insight into how their predictions are obtained are difficult to trust for
making important clinical decisions, such as medical diagnoses or treatment.
Explainable ML (XML) methods, such as Shapley values, have made it possible to
explain the behavior of ML algorithms and to identify which predictors contribute
most to a prediction. Incorporating XML methods into medical software tools has the
potential to increase trust in ML-powered predictions and aid physicians in making
medical decisions. Specifically, in the field of medical imaging analysis, the most
used methods for explaining deep learning-based model predictions are saliency
maps that highlight important areas of an image. However, they do not provide a
straightforward interpretation of which qualities of an image area are important.

It has been demonstrated that ML-based models can accurately predict the
existence of clinical variables from medical imaging [138]. ML models can deliver
better predictions thanks to technologies that can capture intricate correlations
between features, which may lead to “black box” models that are challenging to
understand [138]. These techniques take patient MR images as inputs and output the
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patient’s projected likelihood of a particular result without revealing how the prog-
nosis was made. As a result, even if these techniques can surpass conventional pre-
dictive models, a possible deterrent to using these predictions in clinical decision-
making is the lack of openness in how they are made. Understanding what variables
affect a model’s prediction and gaining insight into these ML “black box” models is
important. The application of XML techniques is receiving a lot of attention.

Numerous research focus on the diagnosis of COVID-19 by chest imaging,
including radiography and computer tomography (CT). While precise in recog-
nizing occurrences that are positive, most of these instruments are unable to dis-
tinguish COVID-19 from other lung illnesses [139]. Additionally, studies
demonstrate implausible ideal outcomes, which are probably the result of issues
with data leakage and a lack of transparency in the experimentation process, thus,
making their work neither marketable nor replicable. By examining [140,141], it is
obvious that the majority of methods rely on advanced DL and computer vision
methods as well as image data. To assist doctors and field experts, model inter-
pretability and prediction explanations are, however, given little to no importance.

A straightforward and incredibly effective ML method for identifying the
COVID-19 utilizing basic features based on patient questionnaires was described
by authors in [142]. Age, symptoms including fever and sore throat, and proven
contact with an infected person were among the factors used. The test sets’ results
reveal an area under curve (AUC) measure of 0.9, which is regarded as a high
standard result in the medical industry. The most important variables, such as
cough, fever, and contact with an infected person, were discovered through Shapley
additive explanations. This method has two important drawbacks: the first one
cannot recognize patients without symptoms; additionally, the second is that it
might be biased toward negative cases. Since the authors note that patients with
negative test results may underestimate their symptoms, this tool can undoubtedly
aid field agents on early trials in better managing COVID-19 tests in limited supply
and guiding patient ward placement.

AI-based approaches should be encouraged and implemented as standard
practice in the implementation of DL techniques for multimedia categorization,
notably for issues with medical diagnosis. In actuality, when increasingly complex
neural network topologies emerge, their inability to be debugged and inability to
provide human-centered justification for their decisions continue to limit their
utility. One of the key instruments in overcoming what continues to be a significant
barrier for future AI is XAI, the “black-box technique,” which involves creating
easily interpretable models to deal with practical problems, to increase human
comprehension of AI-based models [143].

In terms of clinical trials and medication repositioning, AI should be an addi-
tion to human procedures, to ensure that ML/DL tactics are adapted to particular
contexts, it is carried out in multidisciplinary teams. Moreover, it is essential to
research and intensify the challenges of building innovative approaches for mole-
cular regeneration, recommended practices for data exchange are also mentioned
[144]. Clinical trials and medication repurposing are two topics. Although there are
commonalities between clinical research and computationally predicted drug
repurposing, notwithstanding the promised applications of AI in this area, we were
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unable to locate any specific proof that computational guidance was used to con-
duct clinical trials. As far as we are aware, the bulk of the research analyzed did not
follow DL predictions with clinical proof. The collections of possibilities produced
by computational approaches for possible pandemics should be encouraging, this
can later be put to the test in studies or inspections. However, there is additional
work to be done in this area of inquiry.

Regarding text modeling approaches, the majority of them integrated NLP
approaches with a specially honed strategy for COVID-19-related data and after
that displayed the conclusions drawn from such data. In our perspective, studies on
string patterns did not provide anything fresh to test analysis or clinical testing. In
terms of time series analysis, taking into account studies employing COVID-19
forecasts, the best model to utilize is not generally agreed upon. The anticipated
mortality toll from COVID-19 is fluctuating, and a wide range of forecasting var-
iances have been shown by all prediction models. Sadly, the paucity of information
on COVID-19, particularly at the start of the pandemic, and additionally, policy
changes have increased the significance of research that uses limited datasets or
enhances the precision of mathematical model (such as the SIR model) [145], that
anticipate smaller data. There is not an approach that consistently outperforms
others, and it depends on preparation and fine-tuning. Utilizing data fusion
approaches, as in [146,147], to combine time series from several data sources is a
correct approach that we recommend. During the COVID-19 pandemic, Figure 1.5
depicted various areas where AI-based models could be applied.

Decision and

Prediction
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Systems
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COVID-19

Monitoring
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Development

Diagnosis

Figure 1.5 Some fundamental functions of AI in combating COVID-19 pandemic
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Additionally, pattern identification, forecasting, describing, and classifying
medical data are all areas where AI is particularly helpful. Infections with
COVID-19 are projected, diagnosed, treated, be improved so that decision-making
by government officials, medical professionals, and other policymakers can pro-
duce useful results. AI can assist in COVID-19 patient discovery, prediction,
prevention, and monitoring of outbreaks, but it cannot replace scientific knowl-
edge. The AI-based model can be used for cleaning up the environment, helping to
make monoclonal antibodies and other treatments, managing health care, con-
ducting business and trade, increasing transparency, and formulating policy,
among other things.

1.4 XAI research trends and open issues

XAI intends to assist people in comprehending the reasoning behind a machine’s
choice and determining whether or not it is reliable. XAI is therefore unavoidably a
paradigm for bridging AI and human intelligence, with the intention of facilitating
and increasing human participants’ acceptability of AI systems [148]. XAI can be
thought of as “AI for citizens” in this context.

Although intelligent systems have a lot of potential, the concerns about pro-
viding such intelligent systems too much power without even being able to ade-
quately explain the decision-making process underlying such complex systems to
domain specialists are raised by the XAI research program (doctors, attorneys,
financial specialists, etc.) a language and a format that they can understand. This
not only clarifies the reasoning behind particular conclusions reached by such
technologies but also inspires the study and urges academics to develop more
humanistic (human-like) alternatives, and improved knowledge of the brain as
natural phenomena for cognitive processing. Furthermore, user rights must be
preserved because machines are increasingly replacing humans in making decisions
in many aspects of daily life. Machine intelligence still struggle to process complex
and deeper knowledge or abstract information unless it is first transformed into an
algorithmic format. (attributes, results, and labels).

In several AI application fields, the aforementioned crucial issue has taken on a
significant importance. For instance, a patient’s intervention may be influenced by
a decision made by a computerized diagnosis process; therefore, doctors must
comprehend the rationale behind the decision and assess the associated risks. If we
take autonomous drones for medical use, the reasons, circumstances, and locations
of automated treatment, management, or monitoring by drones must be known to
the doctors. Thus, a reliable XAI system becomes a crucial requirement before AI
can be used to solve almost any real-world issue. Currently, a lot of study is being
done on how to solve these kinds of issues.

Modern AI methods like DL have their origins in the simulation of the human
brain. Finding a way to match human intellect is the fundamental objective in order
to make DNNs understandable, to figure out a means to create a human-made
“brain” that can comprehend, at least at a higher degree of functionality, the
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neuronal activity in the human brain, connect the multilayered brain knowledge
stream processors to the deep structures.

The properties of contemporary orthodox DL and the human brain differ
significantly in two ways. First, the human brain lacks the ability to maintain very
precise characteristics, more resembling an analog circuit. Second, unlike the
meticulously “handcrafted” topologies of the contemporary standard DL, synapses
in the human brain are densely linked. Therefore, it is odd that the mainstream DL
literature has harsh criticism for supposedly “handcrafted” aspects [149], never-
theless is reluctant to acknowledge that the designs it is advancing are “hand-
crafted,” very problem-specific as well as a variety of contextual, including stride,
kernel sizes, the number of layers, and others.

Given the aforementioned issues, XAI can contribute to a mutually advanta-
geous bridge between DL and neurology. On the one hand, neurology and cognitive
science can assist in developing XAI models that are logical and easier for humans
to comprehend [150,151]. The mechanisms of intelligence in the human brain can
also be better understood using XAI models derived from DNNs, on the other hand
[152,153]. The quest of fully comprehending how human intellect derives from
neurons could be recast as the ultimate objective of XAI.

1.4.1 XAI perspective in healthcare
Putting more of an emphasis on prototype-based models is one possible avenue for
future study [154,155] rather than on deeply engrained, abstract frameworks.
Models based on prototypes are not new like the work of authors in [156] putting
the simplest first (and very effective kNN example), by using ANNs of the RBF
variety and IF...THEN criteria. Tibshiran recognized the potency of prototype-
based models in the study of authors in [156], but, however, these have not yet been
produced in the context of DL, where they can combine a more complex infra-
structure with a manner of representation that is easily comprehensible. Despite
being effective, the kNN method is not a learning method in the strictest sense
because it needs all the data to be present and stored. A certain amount of sparsity is
required, which might come from straightforward unsupervised learning methods
like clustering or more intricate end-to-end auto-encoders.

There is a widespread misperception that the only type of learning is para-
meterized learning achieved through cost (or loss) function reduction. In reality,
humans pick up prototypes from data samples utilizing resemblance to learn.
According to this reasoning, the position becomes the central focus of the learning
in prototype-based models. as opposed to the parameters/weights-centered
approach that predominates in the mainstream, and the characteristics of the pro-
totypes in the feature/data space. Additionally, there is a fundamental distinction
between statistical learning and similarity (i.e., two different methods for analyzing
the divergence and difference between two data items). While statistical measures
require a large number of data points or samples, similarity can be defined over two
(conceivably limitless) number of separate observations for the data.

The construction of Turing’s type-B random machines is another viable path
(or chaotic machinery) [157,158], additionally random Boltzmann machines, which
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might result in a generic AI. New cognitive neuroscience results will be included
into XAI models, which will legitimize XAI investigation, likewise, such cross-
disciplinary application will make XAI valuable for others outside of the field of
AI. but potentially assist in resolving century-old problems on how to comprehend
human intelligence. The following are open questions in this field: (a) how should
the network/model architecture be determined?; (b) how should features be
extracted and represented?; (c) what are the most accurate distance measurements,
and what are the consequences?; (d) which way of optimization works the best?;
and (e) how to select the group of prototypes that best capture the data (if an
approach based on prototypes is employed)?

1.5 Conclusion and future directions

XAI is a recent research area that emphasizes ML interpretability and seeks to
develop a more open AI. The main objective is to provide a set of interpretable
methods and frameworks that produce representations that are easier to compre-
hend while retaining superior prediction accuracy. Unfortunately, there is not a
standardized approach of what is explainable should accomplish. Although some
scholars discriminate between the terms interpretability and explainability, others
use them identically. The basic objective of XAI is to create a collection of
approaches that offer models that are easier to understand while still having highly
predicted accuracy. MDSS are computer programs created to influence physician
decisions on a range of patients as soon as necessary and, most often, in real-time.
The atmosphere for using XAI and MDSS innovation is rapidly changing, and
most researchers have tried to see how these innovations is applicable in health-
care systems so as to make their adoptions in healthcare environments acceptable.
Therefore, this chapter covers the current requirements and development issues for
XAI and MDSS. The summary of potential areas for open issues, and further study
comes towards the end of the chapter. The most recent statistics on the application
of and effects of MDSSs and XAI in practice were given, and offered recom-
mendations for users to take into account as these systems start to be integrated
into commercialized products, and put into practice outside of research and
development environments. Therefore, the chapter will provide wider knowledge
for both academic researchers and healthcare policy makers and give access to a
historical ready-made transcription of HMDSS in the healthcare sector, this can
assist them in their future decision-making processes with respect to non-
communicable diseases.
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Chapter 2

Explainable artificial intelligence (XAI) in
medical decision support systems (MDSS):
applicability, prospects, legal implications,

and challenges

Joseph Bamidele Awotunde1, Emmanuel Abidemi Adeniyi2,
Sunday Adeola Ajagbe3, Agbotiname Lucky Imoize4,5,

Olukayode Ayodele Oki6 and Sanjay Misra7

Abstract

The healthcare sector is very interested in machine learning (ML) and artificial
intelligence (AI). Nevertheless, applying AI applications in scientific contexts is
difficult because of the issues with explainability. Explainable AI (XAI) has been
studied as a possible remedy for the issues with current AI methods. The usage of
machine learning (ML) with XAI may be capable of both explaining models and
making judgments, in contrast to AI techniques like deep learning. Computer
applications called medical decision support systems (MDSS) affect the decisions
doctors make regarding certain patients at a specific moment. MDSS have played a
crucial role in systems’ attempts to advance patient wellbeing and the standard of
care, particularly for non-communicable illnesses. Moreover, they have been a
crucial prerequisite for the effective utilization of electronic healthcare (EHRs)
data. This chapter bargains a comprehensive impression of the application of AI
and XAI in MDSSs, summarizes recent research on the use and effects of MDSS in
healthcare, and offers suggestions for users to keep in mind as these systems are

1Department of Computer Science, Faculty of Information and Communication Sciences, University of
Ilorin, Nigeria
2Department of Computer Science, Precious Cornerstone University, Nigeria
3Department of Computer Engineering, Ladoke Akintola University of Technology LAUTECH, Nigeria
4Department of Electrical & Electronics Engineering, Faculty of Engineering, University of Lagos,
Nigeria
5Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
Ruhr University, Germany
6Information Technology Department, Walter Sisulu University, South Africa
7Department of Computer Science and Communication, Ostfold University, College, Norway



integrated into healthcare systems and utilized outside of contexts for research and
development.

Keywords: Machine learning; Explainable artificial intelligence; Healthcare
medical decision support systems; Artificial intelligence; Healthcare
diagnostics

2.1 Introduction

In traditional diagnostics, a practitioner examines potential lesions manually in a
medical environment [1]. This manual inspection takes time and requires the doc-
tor’s full concentration, who is required to look over countless patient data, X-rays,
and images from a single medical treatment [2]. However, in the past few years, in
areas including therapeutic diagnostics, business, forensics, scientific exploration,
and education, there is an increased interest in deep learning and artificial intelli-
gence (AI)-based information withdrawal from patient data and images [3]. In these
areas, it is frequently required to comprehend the rationale behind the model’s
choices so that a human can verify the consequence of the choice [4]. To avoid
unanticipated negative consequences on decision-making, rules and regulations are
pushing toward transparency standards for information sources [5]. Users have the
right to information on machine-generated choices thanks in specific to the General
Data Protection Regulations (GDPR) of the European Union [6]. Therefore, people
who are impacted by resolutions made by an AI-based system could try to com-
prehend the factors that led to the decision result.

The past few years have seen a significant increased interest in healthcare
diagnostics due to AI-based imaging information extraction. In order to help doc-
tors, make decisions that are transparent, intelligible, and explicable, the authors in
[7] stressed the significance of adopting explainable AI (XAI) in the medical
industry. They projected that the acceptance of AI-based systems in the medical
industry would be supported by the ability to explain AI-based decisions. The
authors in [7] speak to the significance of using XAI to make judgments simple and
understandable. In their investigation of the use of XAI in medical settings, the
authors in [8] reached the conclusion that in order to remove obstacles to ethical
standards, explainability must be included as a condition.

This can guarantee that the patient remains the focus of the treatment, and with
the assistance of medical experts, patients may make informed decisions about their
health that are their own. To reliably and understandably explain the classifier’s
predictions, the authors in [9] created the local interpretable model-agnostic
explanations (LIME) procedure. The inclusion of text and graphic explanations for
various models demonstrated the model’s adaptability. When choosing between
models, it assisted users of all skill levels and assessed their level of confidence and
upgraded unreliable models by giving information about their forecasts.
Additionally, authors in [4] address the impact of explainability on confidence in
AI and machine learning (ML) techniques through the enhanced understandability
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and certainty of AI-based judgments based on deep learning on diagnostic medical
datasets. Additionally, they investigate the usage of XAI to relate the recognition
methods of two DL prototypes, convolutional neural network (CNN) and multi-
layer perceptron.

The development of MDSSs in healthcare systems is to reduce medical errors,
increase real-time decision assistance, and lessen life-threatening events brought on
by delayed or incorrect medical judgments in order to improve the outcomes for
critically sick patients. Computer-assisted “dynamic information schemes” MDSSs
use two or more patient data points to produce case-specific recommendations [10].
There is compelling evidence that MDSSs can enhance a doctor’s decision-making
abilities [11]. The MDSS must be data-driven, quick, and knowledgeable for best
clinical decision-making. A MDSS is evidence based if it derives its information
from and continuously updates, the most recent data from mindfulness sources and
scholarly publications [12]. The IF–THEN rule is a general type of evidence in an
evidence-based MDSS. According to the rule, IF an antecedent (i.e., a collection of
circumstances) exists, THEN a result is anticipated or a course of action is required.

A MDSSs effectiveness and efficiency depend on how well the knowledge
base is developed, which makes sure that current information is stored and that
advice may be retrieved [13,14]. Using a knowledge base with two parts should
allow for the gradual expansion of domain knowledge and clinical records [15]. A
database with patient-related static and dynamic data, such as old electronic med-
ical records (EMRs), is one of the components. The other is a rule base with rules
that specify the relationship between input and output variables using an IF–THEN
structure.

Red blood cells that have sickle shapes are referred to as having sickle cell
disease (SCD). The most prevalent and frequently the most severe form of SCD is
called sickle cell anemia (SCA), corresponds to a monogenic, recessive genetic
disorder that affects different organs and disrupts the shape of red blood cells. Each
year, this illness affects about 300,000 children worldwide, among the group of
currently known genetic diseases, and is regarded as one of the most common
conditions [16–18]. Due to a significant advancement in SCD care during the past
few decades, a median survival of more than 60 years has been reported, indicating
a considerable increase in life expectancy [19,20]. More research on the experience
of looking in their respiratory function is required as there is an increasing number
of individuals living with SCA. The establishment of innovative medicines and
clinical care may be informed by knowledge of the processes behind lung injury.

Therefore, this chapter examines how XAI-enabled MDSSs may be used to
identify and forecast a variety of diseases, the prospects, challenges, and ethical
implications of XAI were also presented. The specific contributions of the chapter are:

(i) a broad overview of the application of AI-based and XAI in medical decision
support systems (MDSSs);

(ii) summarizes recent research on the use and effects of MDSS in healthcare
systems, and offers suggestions for users to keep in mind as these systems are
incorporated into healthcare systems;
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(iii) the challenges and prospects of explainable technologies for supporting
medical decisions using AI were also discussed; and

(iv) presents the ethical and implications of XAI in MDSS in healthcare systems
generally.

2.1.1 Chapter organization
Section 2.2 presents overview of MDSSs in healthcare systems. Section 2.3 dis-
cusses the AI in MDSS. Section 2.4 presents XAI. Section 2.5 discusses ethical
effects and implications of XAI for MDSSs in healthcare systems, while
Section 2.6 concludes the chapter with future direction and research gaps.

2.2 MDSS overview in healthcare systems

MDSS represents a paradigm transformation in modern healthcare. MDSS are
utilized by doctors to support their intricate decision-making strategies. Since they
were originally used in the 1980s, MDSS have advanced quickly [21]. They are
now frequently delivered via automated medical workflows such as EMRs, which
have been made possible by the rising global deployment of modern EMRs.
Despite these improvements, it is still unclear how MDSS will affect the doctors
who utilize them, outcomes for patients, and expenditures [22,23]. The successful
experiences of MDSS have been widely publicized during the past decade or more;
however, significant failures have also taught us that MDSS is not without dangers.

MDSS strives to improve medical judgments by giving them access to patient
data, targeted clinical expertise, and other health-related resources. A typical
MDSS is composed of program created to directly support healthcare decision-
making, where a computerized clinical knowledge base is used to compare the
characteristics of each specific patient, and the clinician is then given patient-
specific evaluations or suggestions for a determination [24]. In today’s world,
point-of-care MDSSs are mostly employed by the health professional to integrate
their expertise with that of others or recommendations made by the MDSS.
However, there are more and more MDSS being created with the capacity to use
data, and data that is normally unavailable to or incomprehensible to people.

The earliest computer-based MDSSs date back to the 1970s. They took a lot of
time, had poor system interoperability, and, at the same time, were typically limited
to intellectual activities [25,26]. Concerns about physician autonomy, the use of
computers in medicine, and other matters of ethics and law were also raised, and
individuals would be in error if they followed the advice of a flawed system’s
“explainability,” etc. [27]. Currently, MDSS frequently utilizes online applications
or computerized provider order entry (CPOE) systems’ connection with EMRs [28].
You may administer them either through a computer, tablet, or smartphone, but also
other technologies, like smart wearable equipment and biometric surveillance,
monitoring, and tracking devices technologies. These devices might or might not be
connected to EHR databases or create outcomes immediately on the device [29].

MDSSs have been categorized and grouped into a number of groups and types,
including the delivery method active or passive, and the timing of the interaction
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[30,31]. Expert systems that are knowledge-based or not are frequently used to
describe MDSS. The creation of rules (IF–THEN statements) originates in
knowledge-based systems, as the computer retrieves information to assess the rule,
creating a result or a result [31]; MDSSs rules can be created using evidence that is
based on the literature, practice, or patient-directed data. Even without knowledge,
MDSS still needs a data source; however, the choice uses statistical pattern
recognition, AI, or ML, instead of being designed to adhere to professional medical
expertise [30]. Ignoring the fact that the use of AI in healthcare is increasingly
rising, non-knowledge-based MDSSs are challenging to implement, such as having
trouble understanding the justifications used by AI to generate recommendations
(black boxes) [32], and the difficulties of accessing data [33]. They have not yet
been widely implemented. Both versions of MDSS share characteristics with slight
variations, as shown in Figure 2.1.

They are made up of: (i) base: the set of guidelines integrated into the framework
(knowledge-based), the process used to make decisions (non-knowledge based),
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Figure 2.1 Essential connections between knowledge-based and non-knowledge-
based MDSS
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in addition to the facts accessible; (ii) inference engine: consider the rules set by AI
or software, with data structures that employ patient medical data as an input to
generate output or take measures and present it to the user (such as a doctor); and (iii)
via the transmission medium: the entrance interface of an EHR, an application, or a
website that the end user uses to engage with the systems.

2.2.1 Importance and prospects of MDSSs
MDSSs are instruments that combine current patient data with known clinical
knowledge to improve patient treatment; they cover a wide range of tactics in favor
of numerous subjects [34]. MDSSs are intended to support the doctor–patient
relationship at many stages, including the first consultations, diagnosis, and follow-
up. It is anticipated that a properly outfitted MDSS will have a considerable sig-
nificant influence on patient care at all stages. The ever-increasing time pressures
on clinicians will be lessened with MDSS. Figure 2.2 displays the importance of
MDSSs in healthcare systems.

The followings are the major important and advantages of using MDSS.

2.2.1.1 Clinical management
According to investigations, MDSS can be integrated and consistent with clinical
recommendations [35]. Given that it has been established that traditional medical
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Figure 2.2 The important of MDSSs in healthcare industry
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practices and these treatment pathways have low clinician compliance and are
difficult to implement in practice [36,37]. It has not proven to be accurate for
doctors to learn, take in, and apply new guidelines [38]. However, MDSS may
actually have guidelines that mistakenly contain rules. Such MDSS could take the
form of alerts for specific processes, notifications for diagnostics, standard order
sets for a given case, among others. Additionally, MDSS can help with patient
management for research and therapy processes [39], monitoring and arranging
orders, following up on referrals, and making sure precautionary care is provided
[40].

Additionally, MDSS can notify doctors when a patient is due for follow-up
care or has not adhered to their treatment plan, and help support the identification
of patients who meet the requirements for research eligibility [41,42]. If a patient’s
medical record satisfies the criteria for a clinical investigation, doctors are informed
at the time of treatment by a Cleveland Clinic-developed and used MDSS [43]. The
message requires that the user complete a form so that their identity can be verified
and their consent to be contacted, sends the research coordinator the patient’s
medical record, and produces a patient records sheet for a clinical trial.

2.2.1.2 Cost reduction
For health systems, MDSS can be cost effective through intervention strategies
[44], reducing the length of stay for patients, CPOE-integrated systems recom-
mending less expensive drug substitutes [45], or cutting down on test duplication.
A CPOE-rule that restricted the scheduling of blood counts was put into place in a
pediatric cardiovascular critical care unit (ICU), panels for chemistry and coagu-
lation to a 24-h gap [46]. Without affecting length of stay (LOS) or death, this
lowered laboratory resource consumption at anticipated cost reductions of
$717,538 annually.

The MDSS may advise the user about cheaper pharmaceutical alternatives or
conditions that are covered by insurance. In Germany, majority of hospital patients
are switched to hospital-prescribed pharmaceuticals. A drug-switch algorithm was
developed by Heidelberg Hospital and added to their CPOE system after dis-
covering that one in five replacements were wrong [47]. By easily and successfully
transferring 91.6% of 202 medication appointments, the MDSS could improve
safety, lighten provider burden, and lower costs.

2.2.1.3 Administrative purposes
MDSS offers assistance with patient triage, ordering of treatments and testing, and
therapeutic and diagnostic classification. To assist doctors in selecting the most
relevant diagnosis code, simulation based can produce a streamlined list of clinical
features (s). A MDSS was created to remedy incorrect ICD-9 emergency depart-
ment (ED) entrance code [the International Classification of Diseases (ICD) is a
system of standardized codes for describing diseases and diagnoses] [48]. The
instrument has an anatomical user interface (visual, interactive human body
representation), ED doctors can more quickly and accurately locate diagnostic
admission codes when they are connected to ICD codes.
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Medical record quality can be directly improved by MDSS. An improved
alerting system was included in an obstetric MDSS, much better documentation of
labor induction indications compared to the control hospital and gestational weight
[49]. Due to its ability to substantially support diagnostic testing, accurate doc-
umentation is essential. For instance, to ensure that patients acquired the proper
immunizations following major surgery, an MDSS was created to reduce the threat
of infections (such are meningococcal, Haemophilus influenzae, and pneumo-
coccal), which follow spleen ectomy. Conversely, the study’s findings revealed that
71% of patients with the keyword “splenectomy” in their EHR did not include it in
their medical records complaint list (it was the event that caused the MDSS alert)
[50]. Then, to improve the splenectomy problem list paperwork, an additional
MDSS was created [51] and increase the usefulness of the initial MDSS for
immunization.

2.2.1.4 Patient safeguarding and their safety
MDSS is frequently used in strategies to decrease drug mistakes. Drug–drug
interaction (DDI) errors are described as frequent and avoidable. In a hospital
setting, up to 65% of patients are susceptible to one or more risky behaviors [52].
CPOE systems are commonly created with pharmacovigilance software that
includes dosage protections, repetition of treatments, and DDI verification [53].
One of the most widely used types of decision support is the warnings that these
systems produce [54]. However, studies have discovered a significant amount of
variation in the way DDI notifications are presented (for instance, disruptive or
active) [55,56]. Whichever methods are employed to identify DDIs are recom-
mended by the authors in [57]. There is no established protocol for carrying out
which notifications to providers in systems, and they frequently provide various
degrees of irrelevant alerts. The US Office of the National Coordinator for Health
Information Technology has compiled a list of “elevated” DDIs for CDS. It has
been deployed to various degrees in MDSSs from several nations, such as the
United Kingdom, Belgium, and Korea [58].

Additionally, MDSS enhances patient safety by providing systems for various
medical events reminders, and not simply problems brought on by taking medicine.
There are a lot of examples, the number of hypoglycemic incidents could be
reduced in the ICU by using a MDSS for blood glucose testing [59]. In accordance
with a local glucose monitoring procedure, this MDSS continuously reminded
nurses to take a glucose reading, which outlined the frequency of readings based on
the patient’s particular demographics and historical glucose thresholds [59]. In
general, MDSS uses CPOE to target patient safety. Although such autonomous
alarms, drug–event monitoring, and other technologies have generally been suc-
cessful in reducing medication and dosage errors, incompatibilities, and other
methods [60]. Patient safety may be regarded as a secondary goal, (or prerequisite)
of practically all MDSS variants, regardless of the main objective driving their
installation.

Electronic drug dispensing systems (EDDS) are among the other systems
aimed at improving patient safety and point-of-care (BPOC) bar-coded systems for
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administering medication [61]. These are frequently combined to form a “closed
loop,” in which each stage of the process is located (prescription, transcription,
distribution, and administration), is robotic, and takes place within an interacted
system. Radio-frequency identification (RFID) is used to automatically identify the
drug at administration or cross-checked with patient data and medicines using
barcodes. The tangible advantage is the decrease of medication carriage errors at
the “bedside,” which represents additional target for MDSS (contrasting to addi-
tional upstream). Due in part to expensive and complex technological constraints,
utilization is rather minimal [62]. Studies indicate that these strategies are effective
at reducing errors, though [63]. According to authors in [61], several of these
techniques can be combined with CPOE and MDSS at the same time. Thus, sig-
nificantly reduced rates of ordering errors, overdose, and medication allergy diag-
nosis in prescribing [61]. As with most MDSS, omission by providers can still
result in mistakes, or intentionally avoid the innovation [64].

2.2.1.5 Diagnostics assistance
MDSSs utilise diagnosing decision-support systems (DDSS). These techniques
have typically included a computerized “consultation” or assessment phase, when
they can be provided with user input or data and produce a list of plausible or likely
diagnoses [65]. Due to a number of variable needs, DSS has sadly not (yet) had as
much of an influence as other forms of MDSS, such as biased and unfavorable
clinician perceptions (frequently because of data availability gaps), with inadequate
system implementation that necessitates human data entry [66,67]. The latter is
getting a lot better thanks to improved EHR integration and uniform language like
Snomed Medical Concepts.

The MDSS developed by authors in [68] is a nice illustration of an efficient
DDSS for applying fuzzy approach in the diagnostics of peripheral neuropathy.
Through 24 input areas, including symptoms and results of diagnostic tests, when it
came to recognizing motor, sensory, mixed neuropathies, or normal instances, they
outperformed professionals by 93%. While this is quite helpful, especially in
locations where accessibility to seasoned clinical professionals is limited, and
systems that can support specialized diagnostics are also wanted. A probable
diagnosis is given by the electronic reference-based DDSS called DXplain based on
clinical symptoms [50]. In a randomised well-ordered investigation with 87 popu-
laces in emergency medicine, a standardized diagnosis clinical trial comprising the
patients who were randomly allocated to utilize the method displayed much better
accuracy for 30 clinical symptoms (84% versus 74%) [69].

Given the frequency of diagnostic mistakes, especially in patient healthcare
[70], there is a great deal of hope that MDSS and IT technologies would enhance
diagnosis [71]. Now, diagnostic systems are being created using methods like ML-
based models that are not knowledge-based, which can open the door to a diagnosis
that is more precise. A notable illustration of the possibilities is the Triage and
Diagnostic System powered by AI in the Babylonia United Kingdom, but also of
the tasks that must be completed before these technologies are prepared for
widespread use [72].
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2.2.2 The challenges and pitfalls of MDSS
Despite encouraging preliminary findings of the aforementioned important and
advantages of MDSSs in healthcare sectors, the beyond standard alerts, recalls,
overview displays, and automatic knowledge discovery systems, the bulk of MDSS
have not offered any more capabilities [73]. The significant proportion of hospitals
in the United States have not yet implemented MDSS in any way. EHR platforms
that contain decision support tools are referred to be “encompassing” (therapeutic
advice, clinical recollections, drug–allergy warnings, drug–drug interaction warn-
ings, pharmacological and toxicological warnings, and drug–dosing help); just
1.5% of the 2,952 hospitals investigated were classified as “complete” [74]. There
has not been much evidence of outcomes improvement in MDSS research, and any
such consequences have only been statistically significantly at low levels [73].
Only 20% of 148 clinical studies on MDSS adoption had an impact on clinical
results, according to a meta-analysis [75]. Increases in morbidity consequences,
such as the frequency of admissions, deep vein thrombosis, cardiovascular events,
and surgical site infections, nonetheless, mortality or pharmacologic adverse events
were not significantly affected [75]. That is to say, MDSS will need to be improved
before they can consistently deliver clinically useful information.

The vast majority of scientific and clinical data sets are stored in various
databases around the world in incredibly huge files (“data storage tower”). To
create forms that doctors and researchers may readily analyze from countless data
points and pertinent information, silos of information need to be interconnected. To
determine which sources of evidence might be pertinent to a certain query,
sophisticated machines must use established languages/phenotypes. If the massive
quantity of healthcare data presently housed in institutional EHR systems is viewed
as an additional evidence silo, afterward, how would interactions be made between
patient records and major works for use in both science and medicine? A genuinely
practical MDSS would integrate data opinions and knowledge derived from
countless years of investigation, clinical assays, blood tests, and follow-up infor-
mation are used to reach the scientific endpoint [76]. The concept of collaborations
in healthcare is embodied by the bridging of information between various fields.

The process of entering data, or how they really enter the system, is the first
problem. Some systems demand that the user manually enters patient data or query
the system. This “double data entry” not only delays the patient precaution proce-
dure but it also takes time, and time is precious in the outpatient context. If the
system is not accessible and/or requires a protracted logon, it takes considerably
longer. By linking the MDSS and integrating the EMR and healthcare information
service, much of this interruption can be reduced [77]. As was already indicated, a
number of commercial solutions provide embedded decision support features. This
means that the decision support system can act on the data if they have previously
been placed into the medical record, and in fact, various systems may be able to use
several supplementary systems simultaneously. Despite the fact that not all MDSSs
are integrated, this is positive, and such interconnections would be challenging
without industry standards for incorporation of supplementary systems [78,79].

54 XAI in MDSS



Additionally, there are a few standalone systems, such as some diagnosis and
drug interaction systems. As a result, patient information must be input twice: once
into the health records system and once more, into the system that supports deci-
sions. The double data entering can limit the effectiveness of such solutions for
numerous doctors [80,81]. Who is responsible for entering data into medical cen-
ters that are connected or even independent programs are a related query. Although
they frequently engage with hospital systems, doctors are not necessarily the pri-
mary selection [82]. The physician can get warnings and notices from decision
support systems (DSSs) considerably more effectively, which is one of the reasons
MDSS and physician order input are linked.

Not simply order entry but also notification procedures are at issue. In the case
study that was previously noted, the alert was disregarded by the medical provider
[83,84]. These systems may be beneficial, but without cooperation between the
computer science specialists and the physicians, their full potential cannot be rea-
lized. Vocabularies may not appear to be such a challenging subject, but frequently,
clinicians would not necessarily use a system until they give it a shot. A system
having a regulated vocabulary, such as a DSS, computerized patient record, they
are conscious of the fact that either the system does not comprehend what they are
attempting to communicate or, much worse, that it utilizes various words for the
same thought or the same words for completely different meanings. The issue is
that there are no standards for clinical terminology that are widely accepted.
Additionally, errors can have a significant effect because the majority of DSSs have
a controlled vocabulary.

The followings are some of the notable challenges of MDSSs in healthcare
systems.

2.2.2.1 Overlapping processes
Workflow for clinicians may be hampered by MDSS, particularly with standalone
systems. Several early MDSS were created as platforms that demanded the provider
to get information from sources other than their regular workstation or to preserve
knowledge. If MDSS are developed without considering how people interpret
information and behave, they might also interrupt workflow. As a result, MDSS
were created utilizing the “think-aloud” technique to simulate clinicians’ work-
flows, and design a more user-friendly system [85].

Workflow disruptions might result in longer task completion times and higher
cognitive strain, and spending less time in person with patients. Even when existing
information systems are fully connected with MDSS, there may be a gap between
engagements with a computer workstations and in-person encounters. According to
studies, clinicians who have more practical experience are less willing to employ
MDSS and more prone to overturn it [86].

2.2.2.2 Effect on user ability
Healthcare professionals, pharmacists, and nurses were the only ones used to
double-check orders prior to CPOE and MDSS. MDSS may provide the appearance
that checking an order’s accuracy is seamless or not essential [85]. Dispelling this
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notion is crucial. A MDSS’s prospective long-term impact on users must also be
taken into account. A MDSS can have a training effect over time, so that it might
not be necessary to use the MDSS anymore. The “carry-over effect” was first used
to describe MDSS that have an educational focus [87]. On the other hand, providers
could become overly dependent or trusting on a MDSS for a certain duty [88]. This
may be comparable to repeatedly utilizing a calculator for mathematical compu-
tations, and after which one’s mental math abilities decline. Due to the user’s
decreased individuality, it could be challenging, and if they move to a setting alone
without MDSS, they will be less prepared to perform that task.

2.2.2.3 Impact on operations of inaccurate content and poor
data quality

Due to their reliance on data from outside, dynamic systems, EHRs and MDSSs
may have previously undiscovered flaws [89]. Some MDSS modules, for instance,
might promote procurement even when the hospital is short on supplies. Several
specialists stated in a research by authors [90] that at their hospital, inventories of
pneumococcal vaccines or hemoccult testing soon deplete, however, the MDSS is
not informed of this. If they are not maintained or used properly, prescription and
issue lists might be troublesome. The prescription list at one location can be a list of
derogations, which indicates that they either be or not be used by patients (and
hence needs to be questioned directly) [90]. Only CPOE orders are used to establish
other drug lists, consequently, manual verification that patients are taking the
medication is still necessary. Technologies that make it simple to tell these apart
are desirable. It is a significant area where PHRs could provide a remedy, by get-
ting information about patient adherence to medication straight from them.

Users may create alternatives in improperly developed systems that endanger
data, such as inputting inaccurate or generic data [90]. A centralized, sizable clin-
ical data repository serves as the foundation for the MDSS existing knowledge.
Data quality can influence the effectiveness of decision assistance. If the system’s
data collection or input is not regulated, the data can actually be corrupted. A
system for usage at the area of concern could be created by you, however, when
used with data and surroundings from the actual world will not be used effectively.
It cannot be overstated how important it is to use informational standards like ICD,
SNOMED, and others.

2.2.2.4 Financial difficulties and challenges
Roughly 74% of those with an MDSS said that it is still challenging to preserve
economic stability [91]. Initial setup and integration costs for new systems might be
high. As new employees must be educated to utilize the system, ongoing expen-
ditures may always be a problem, and system changes are necessary to stay
informed with current knowledge. The findings of cost evaluations of MDSS
deployments are ambiguous, conflicting, and scant [92,93]. Numerous variables
affect how cost-effective an intervention is, incorporating environmental-specific
issues are both institutional and socioeconomic [92]. Cost–benefit analysis alone
has its limitations, with difficulties such a lack of uniform measures [93]. To
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increase our knowledge of the financial impacts of MDSS, additional work has to
be done in the developing topic of research and investigation.

2.2.2.5 Limitations of interconnectivity and portability
Despite more than three decades of continual research, MDSS, as well as EHRs in
general, have interoperability problems. Numerous MDSS are clumsy standalone
systems, might be a part of a system that is unable to efficiently communicate with
other systems. Why is it so difficult to develop transportability? In addition to
programming challenges that may make interoperability challenging, another issue
is the variety of clinical data sources [94,95]. Transferring private patient infor-
mation is frowned upon or seen as posing a risk. In a good way, interoperability
guidelines are continuously developed and improved, including Health Level 7
(HL7) and Fast Healthcare Interoperability Resources (FHIR). These have already
been used by for-profit EHR manufacturers [96]. Numerous government agencies,
healthcare institutions, and organizations that support informatics are actively
supporting and some countries even require that these interoperability guidelines be
used in healthcare systems [97,98].

Additionally, the cloud provides a potential remedy for interoperability (as
well as other EHR problems like data synchronization, software updates, etc.) [99].
Open architecture, more recent standards, and more adaptable system commu-
nication are all features of cloud EHRs [100]. Another widespread mis-
understanding is that data stored in the cloud seems to be more susceptible, but this
is not always the case. Web-based EHRs are utilized to keep data in sophisticated
warehouses with other security measures. National data security regulations must
be followed, for instance the Health Insurance Portability and Accountability Act
(HIPAA) in the United States and the General Data Privacy Regulation (GDPR) in
Europe, and the Personal Information Protection and Electronic Documents Act
(PIPEDA) in Canada, to mention just some [101]. They have the same potential for
safety (or vulnerability) as a conventional server-based design [101]. In contrast to
server-based records, there are frequently fewer users who have accessibility to
unprotected data and information in the cloud warehouses [101].

2.3 AI in MDSS

An expansive theoretical grouping of computer programs that aim to duplicate,
replicate, or enhance human decision-making is known as AI [102]. Expert systems
based on rules (ES) and ML technologies are the two main areas of AI. When
combined with one or more human operators, ES and ML systems can enhance the
total system’s quality, effectiveness, or safety. The ML system is frequently trained
by human operators as well, and the procedure is similar to training a pet. The
operator offers instances and encouragement for wise decisions, as well as instan-
ces and criticism for errors in judgment. A sufficiently big collection of instances
that fit (correct) or fail (incorrectly) can be used to teach or infer trends by the
machine. These examples may have already been graded or contributed by one or

XAI in MDSS: applicability, prospects, legal implications, and challenges 57



more specialists. Software for mammograms or an automated hematology labora-
tory system could be built using ML [103,104]. Other times, if and when the
machine is unable to, the human operator can take control successfully interpret the
data (for instance, in the event of confusion, a personality automobile may hand
over control to the driver, overloaded, or stipulated safety variables are out-
performed, or a bank’s credit card administrator may individually survey a poten-
tial customer if the software is unable to make a decision about whether to approve
credit).

The use of ML in diagnostic healthcare goods, including as tumor diagnosis,
medicine recommendations, and safety devices, was perhaps first broadly accepted
in those areas [105,106]. Substantial ML-based tools first appeared in pathology
and the lab, where skilled pathologists could oversee training and outcome con-
firmation. This reserved the “scholarly intermediary” (i.e., the certified technician
or licensed pathologist) “up to date” on the diagnostic items and services provided
by the labs. The Clinical Laboratory Improvement Amendments (CLIA) programs
of the 1988 CMS were created with the goal of ensuring that skilled human
operators adhered to specified quality assurance procedures so that computerized
laboratory equipment delivered reliable, accurate findings [107,108]. The goal of
CLIA procedures is to maintain the status of the domain brain as the authorized
expert in charge of the diagnostic tools [102].

For accurate and sensitive diagnosis, many newly developed and in-production
ML-based imagery analytic tools rely on expert human operator management and
judgment. Despite the fact that ML-based growth identification techniques may be
“close to faultless,” there is such a huge variety of physiology of the human body
and the morphology of disease that algorithms cannot always produce conclusive
choices [109]. However, the human expert may get tired. The ML technology can
help in verifying the work of the human operator while they are busy or pre-
occupied. Therapeutic applications have evolved as ML-based diagnostic systems
gain popularity. Smart infusion pump systems are now the go-to solution for
assuring the security of IV medications [110]. Although the majority of those
systems rely more on professional AI than ML, their dependability and resilience
have paved the way for more sophisticated ML-based solutions like inserted insulin
pumps and newly developed synthetic pancreas with restricted gadgets. It is
impossible to overestimate the importance of sealed ML technologies for vital
medicinal treatment. A restricted embedded defibrillator, pacemaker, or pancreas
gradually loses its “trained intermediary” or expert operator. To enable the release
of such products on the market, decades of policy and program alterations were
required. One might fairly anticipate that for the life-critical personal and business
applications like self-driving cars, ML-based “smart” is being developed for vehi-
cles that will ultimately strengthen society’s willingness to enable additional ML-
based, automated robots, barring any significant or catastrophic defeats healthcare
diagnostic and therapeutic devices. Every robotics and stability improvement that
can be made will be required to meet the favorable potential for increasing safety,
versatility, accessibility, and economy for continuously expanding, continuously
aging, and widely scattered populations of citizens and patients. There have been
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many good options in healthcare described above, and as a result of apps, ubiqui-
tous storage, and cloud computing infrastructure, technology in healthcare is
growing quickly. The broad categories of healthcare AI (HAI)

(i) pattern recognition and perception (malignancies, cracks, foreign particles,
abnormalities in the gait);

(ii) sound and language processing preparedness and prevention (vocal style
robotics, neurological diagnostic booths, self-service deficiency detection);

(iii) guidance from knowledgeable clinicians to help other careers or patients
(guidelines for medications, improve medical standards and procedures, and
testing and treatment of stroke);

(iv) self-operating surgical tools or improvements (automaton surgery, cardiac
surgery, and sensory enhancement);

(v) sealed medical technology (artificial pancreas, AED).

For a range of purposes, AI has been incorporated into the majority of elec-
tronic health records [111]. The majority of them are supplementary devices to
speed up medical choices, lessen or completely eradicate inaccuracies, and/or
enhance the standard of care, pricing, or patient pleasure. For instance, the majority
of smart intravenously pump systems now include modules and auxiliary equip-
ment scanners for RFID technology, barcode scanners, and support the enforce-
ment of the “Five Rights”: the patient’s identity, the correct drug, the proper
amounts, and the right place, at the right moment [112].

2.3.1 The basis of AI in healthcare systems
Nowadays, AI technologies have had a significant impact on the medical industry,
sparking an ongoing debate on whether AI practitioners would someday substitute
human surgeons [113,114]. Although AI can help doctors create good medical
judgment or perhaps require people judgment in some operational areas of medi-
cine, we do not in the near future anticipate that technology will replace human
physicians (e.g., radiology). The swift growth of big data analytical approaches and
the expanding availability of medical data have made recent practical deployments
of AI in healthcare possible [115]. Powerful AI approaches can uncover important
clinical facts concealed in the huge amount of data when directed by pertinent
clinical inquiries, which can help medical decision making.

2.3.1.1 Healthcare data
AI systems need to be “programmed” utilizing data before they can be employed in
telemedicine, collected from patient evaluation, including health checks, treatment
plan, treatment allocation, and so on. This will allow them to identify set of features
that are equivalent to one another and identify relationships between subject fea-
tures and desired outcomes. These clinical data frequently exist as demographic
information; medical records include, but are not limited to, digital records from
medical supplies, medical testing, diagnostic tests data, and photos. Particularly, a
sizable component of the AI literature analyzes data from electrodiagnosis, genetic
testing, and diagnostic imaging at the diagnosis stage.
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2.3.1.2 AI devices
The two main categories of intelligent machines are the following. The first cate-
gory includes ML methods that examine structured data, such as genetic, imaging,
and EP data. The ML techniques used in medical applications attempting to cate-
gorize individual traits or forecast the possibility that an illness might appear. The
second category consists of approaches for natural language processing (NLP) that
extracts data from unstructured origins, such as medical notes and medical journals
in order to supplement and enhance structured medical data. The NLP techniques
aim to turn texts into structured information that is machine readable and can be
analyzed by classification methods. The diagram shown in Figure 2.3 illustrates the
path from the collection of clinical data, through NLP data enhancement and ML
data processing, to medical decision making for improved communication. Despite
how potent AI approaches may be, their application must ultimately support
medical practice and be driven by medical symptoms.

2.3.2 The role of AI in MDSS
AI is the area of research and development that contributes more efficiently and
positively to the medical field. Many different automated diagnostic systems have
been created with AI’s help [116]. Nowadays, medical centers use these technol-
ogies on a large scale. Both patients and medical professionals have found them to
be quite effective in creating decisions. These systems are developed using a
variety of approaches. In different approaches, the methods for acquiring input data
and presenting result information are diverse. MDSS are any computer programs

Artificial intelligence

Medical
data 

Machine
learning 

Natural language
processing 

Medical
activities

Medical
notes 

Figure 2.3 The progression of healthcare records from its creation to NLP, data
enrichment, ML, and medical decision-making
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that aid professionals in medical decision-making. Being able to facilitate the
generation and use of medical knowledge is a key feature of AI. We can create
systems with the ability to learn and generate new medical experience using AI.

The use of AI is crucial in decision support systems. AI-based decision support
systems have the capacity to adapt to novel environments and learn over time
[117]. The information needed for decision-making in cognitive computing and
machine assistance programs is gathered using a variety of techniques. Neural
networks, knowledge-based processes, fuzzy rule-based strategies, genetic pro-
gramming, and statistical techniques, and others are some of these methodologies.
The choice of a specific methodology is influenced by a variety of elements, such
as the following:

(i) What is the area of concern?
(ii) What would the remedy be?

(iii) Data volume at hand.
(iv) Selection and goal of the scientist.

Medical technology requires computer-aided programs that can gather indivi-
dual health-related information and translate them into pain intensity for the eva-
luation of pain [118]. Patients’ quality of life is impacted by pain, and because there
are not adequate evaluation techniques, some patients cease requesting for more
medication when their pain worsens [119]. The vital surveillance of the individual
following surgery also requires proper assessment of the medication dosage, as
overdosing can occasionally pose a threat to life. It is significantly more effective,
efficient, and cost-effective to employ a MDSS to assess the degree of discomfort
and make a diagnosis.

Medical decision systems are frequently used during operations. Nowadays,
minimally invasive surgery is the favored approach. The ability to bring a laser
beam trans endoscopically inside bodily cavities will be made possible by the
creation of a dependable flexible fiber or wave guide. It creates a potent surgical
tool for operations by fusing the endoscopic approach with the beneficial laser
interaction with tissue. It has reduced costs, faster healing, and less postoperative
discomfort [120]. Different methodological branches of the MDSSs are represented
by the image in Figure 2.4. Systems that support medical decisions can be roughly
divided into two categories. MDSSs that are not knowledge-based and those that
are knowledge based.

2.3.2.1 Knowledge-based MDSS
Most of the principles in the knowledge-based MDSS are expressed as IF–Then
clauses. Generally, the data is connected to these rules. For instance, if the level of
pain intensity reaches a specific point, create a warning, etc. There are typically
three main components to knowledge-based systems: knowledge foundation,
inference guidelines, and a communication method. The rules are stored in the
knowledge base, the inference engine applies the rules to the patient data, and the
communication mechanism is used to show the results to the users and accept input
from them. When it comes to treating chest pain, for example, adaptive suggestions
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from a knowledge-based server are demonstrably much more successful than other
options [121].

They are the kind of MDSS that hospitals and clinics most frequently use.
They may even be able to use case-based reasoning if they have clinical expertise
on a specifically defined task. Expert systems typically represent their knowledge
as a collection of rules. Knowledge-based approaches are occasionally combined
with variation planning to effectively deliver high-quality medical services and
carry out patient care processes. Utilizing object-oriented analysis, UML meth-
odologies, and the creation of generalized fuzzy ECA (GFECA) rules, this
knowledge-based administration system handles variation.

2.3.2.2 Types of knowledge based
2.3.2.2.1 Fuzzy logic rule based
It is a type of knowledge base that has produced a number of crucial strategies and
procedures for diagnosing the illness and treating the patient’s discomfort. For
instance, the right ventricular mass (RVM) learning technique is used to reduce
pain in patients who are unable to verbally express themselves. The vector machine
approach, an evolution of object recognition, can help medical professionals mea-
sure the discomfort [122]. The classifier based on fuzzy logic rules is particularly
effective in terms of high levels of accurate diagnosis and positive predictive value.
For instance, a fuzzy logic rule-based classifier has an average accuracy rate of
95% when predicting outcomes for conditions like appendicitis [123].

2.3.2.2.2 Rule-based systems & evidence-based systems
They frequently translate the expertise of subject–matter specialists into phrases
that may be assessed as rules. The working knowledge will be compared to the rule
base by integrating rules until a consensus is drawn once a significant number of
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Figure 2.4 Methodological branches of MDSS
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rules have been assembled into a rule basis. For keeping a lot of data and knowl-
edge, it is useful. Experts find it challenging to translate their expertise into clear
standards, though. Scientific proof practice seemed to be the ideal method for
bridging the gap between doctors and MDSSs. It is demonstrated to be an extre-
mely effective tool for enhancing patient services and health experience. It might
decrease costs and raise standards of quality and safety [124].

2.3.2.3 Non-knowledge-based MDSS
Non-knowledge-based MDSS are MDSS without a knowledge base. Rather, these
systems made the use of a type of AI known as ML. The two primary groups of
non-knowledge-based MDSSs are then further separated.

2.3.2.3.1 Neural network
The nodes and weighted linkages in neural networks are used to determine the
association between the symptoms and the diagnosis. This satisfies the require-
ment that input rules not be written. However, the system is unable to specify why
a particular use of the data is being made of the data. Therefore, its dependability
and transparency may be the cause. It has been found that the self-organizing
procedure of training the neural network, in which it is not provided with any prior
knowledge about the subgroups, it is expected to recognize, is capable of obtaining
pertinent information from the input data in order to create subsets that correlate to
class. In addition, just a tiny fraction of the accessible data is needed to train the
model [125].

2.3.2.3.2 Genetic algorithms
They are found on the process of evolution. A selection algorithm assesses the
elements of a problem-solving strategy. When a proper solution is not seen, the
process is repeated using the top-performing solutions. The generic system employs
an iterative process to generate the best possible outcome for a task [126]. None of
the cases examined in this study included genetic algorithms, which indicates that
the researcher missed the chance to benefit from genetic algorithms. Additionally,
it describes the potential for applying genetic algorithms to construct MDSSs.

2.3.3 Related work of AI in MDSS
The authors in [127] a MDSS’s best usage of AI approaches was examined in the
study. These technologies are designed to aid doctors in their diagnostic processes
by enhancing decision-making, minimizing clinical mistakes, enhancing patient
comfort, and lowering costs. However, the efficiency and precision of these sys-
tems greatly rely on the core AI approach that was employed; the same clinically
relevant issue can be fixed using a variety of AI techniques, each of which may
result in a different set of results. In order to determine the fundamental require-
ments for the appropriate application of smart approaches inside such tools, the
paper evaluates a number of studies that used AI methods in clinical decision
support systems. A yes/no inquiry strategy was used in this study and is based on
evidence from earlier research projects. This investigation’s goal is to make it
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easier to choose the most advantageous and practical AI method to integrate into
the MDSS in order to produce the best results.

In [33], the authors in the Age of AI deliver medical decision support. Medical
experts have long dreamed of the day when technology might help with challenging
therapeutic choices. About six decades back, the first article on this topic emerged
in the scholarly literature, and since then, the idea of computer-based clinical
decision support has dominated informatics study. The potential of deep learning in
healthcare was underlined in two recent JAMA perspectives. Such innovative data
analysis techniques have a lot to offer in terms of deciphering huge and intricate
data sets. Regardless of the specific analytic approach that they employ, this per-
spective is concentrated on the subset of decision support systems that are intended
to be utilized dynamically by physicians as they seek to make decisions.

The authors in [102] worked on MDSSs and AI in hospital strategy. An
extensive theoretical group of software applications that aim to imitate, simulate, or
enhance human decision-making is known as AI. Expert systems based on rules
(ES) and ML systems are the two main areas of AI. ML AI is built on a diverse
foundation and plan, where the computer program is either trained to detect or
deduce preferred patterns or subjected to trial-and-error investigation to get inten-
ded outcome. ES and ML tools can also be merged into a distinct invention or a
collection of products, similar to the features found in the majority of modern
antivirus program.

The authors in [107] give a thorough analysis of computational and AI-based
T1D management decision support systems. The repositories IEEE Xplore,
ScienceDirect, and PubMed were used to find the documents. There were no time
limitations placed on the search. About 562 articles remained to be reviewed after
repetitions and off-topic materials were removed. Based on algorithm assessment
using actual human data, in silico experiments, or clinical investigations, we
selected 61 of those articles for thorough review. The paper discusses the effec-
tiveness and possible uses of each group of decision support system, as well as the
AI techniques utilized in these systems.

In [103], authors worked on a decision assistance system using AI for type 1
diabetes care. Insulin deficiency and dysfunctional pancreatic beta cells are hall-
marks of type 1 diabetes (T1D). In several medical professions, advanced analytics
is being included using ML AI techniques. Here, we present an approach that
recommends weekly insulin dosages for MDI-treated persons with T1D. In order to
use a set of 12 cases to train a k-nearest neighbours decision model (KNN-DSS) to
assess the causes of hyperglycemia or hypoglycemia and the necessary insulin
adjustments possible suggestions, we use a special virtual platform3 to produce
over 50,000 glucose samples. When tested on actual human data, the KNN-DSS
algorithm obtains an overall agreement with board-certified endocrinologists of
67.9% and generates safe suggestions, according to endocrinologist assessment.
According to the study, persons with T1D may use the KNN-DSS to enhance
glycaemic outcomes and avoid potentially fatal consequences by early identifying
risky insulin regiments.
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Similarly, in [128], the authors’ goal was to determine if computerized deci-
sion support systems based on AI are helpful in health and social care settings. To
find pertinent randomized control trials carried out between 2013 and 2018, a
comprehensive literature survey was carried out. Health Business Full-text Elite,
ProQuest Public Health, PsycINFO, Sciencedirect, Cochrane Library, ASSIA,
MEDLINE, EMBASE, CINAHL, and Emerald, and publications sites were among
the databases that were explored. Three categories of search phrases were con-
ceptualized: terms associated with AI, computerized decision support, and health
and social care. Since there is little evidence of the usefulness of data-driven AI in
supporting decision-making in healthcare setting, our work offers crucial insights
into how a substantial scientific basis in this developing subject needs to be
established moving forward.

In order to support intelligent decision making in the current unpredictable
environment by the authors in [129], the study identifies problems and future
research possibilities in forecasting and training, decision making, and optimiza-
tion. The results of this review demonstrate how AI has improved operations
research decision-making. Synergies, contrasts, and overlaps between AI, DSSs,
and OR are presented in this review. Along with the underlying theories, an
explanation of the literature based on the methods used to construct the DSS is also
provided. Theory-building and application-based techniques, as well as taxonomies
based on the AI, DSS, and OR fields, make up the bulk of the classification. In this
evaluation, previous studies were adjusted for prognostic potential, use of big data
sets, number of parameters taken into consideration, growth of training function-
ality, and confirmation in the decision-making paradigm.

2.3.4 AI weakness in healthcare system
The worlds of medicine and biological research are gradually altering as a result of
AI [130,131]. One of the most exciting fields for AI applications has long been
medicine [132]. Numerous clinical decision support systems have been proposed
and created by researchers since the middle of the twentieth century. The 1970s
saw a lot of success for rule-based techniques, which have been demonstrated to
interpret ECGs, diagnose diseases, select effective medications, provide inter-
pretations of clinical reasoning, and help doctors come up with diagnostic
hypotheses in challenging patient cases. However, because they demand explicit
representations like any literature, rule-based methods require the development of
decision trees and human-authored changes, are costly to implement, and can be
brittle [133]. The effectiveness of the methods is also constrained by the depth of
existing clinical experience, and elevated connections among diverse bits of
knowledge written by various specialists are challenging to encode. Furthermore, it
was challenging to put in place a system that combines deterministic and stochastic
reasoning to focus on the pertinent clinical context, rank diagnostic hypotheses, and
suggest treatment.

Although AI has the potential to change healthcare, there are still many tech-
nological obstacles to overcome. Care should be made to gather data that is typical
of the intended patient group because ML-based algorithms rely substantially on
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the accessibility of copious quantities of high training examples. For instance,
various healthcare settings’ data may have different kinds of skew and distortion,
which could prevent a model trained on one hospital’s data from generalizing to
another [134,135]. It has been shown that when the diagnostics activity has a low
inter-expert unanimity, agreement diagnosis might greatly increase the effective-
ness of the ML models trained on the data [136]. For processing heterogeneous
data, adequate data curation is required. Additionally, in order to acquire the global
standard of patients’ clinical status, professionals must personally evaluate each
patient’s scientific notes, which is unaffordable for the general public.
Subsequently, a gold benchmark that imputed the patients’ actual conditions using
NLP methods and diagnostic codes has been presented. The reliability of the pre-
diction models will be improved, increasing the safety of using them in life-and-
death decisions by using sophisticated algorithms that can address the quirks and
peculiarities of different datasets.

Numerous effective ML techniques produce outcomes that are challenging for
unaided humans to understand [137]. Even while these models are capable of
performing better than humans, it is difficult to communicate intuitive ideas that
underlie the models’ results, to spot model flaws, or to extrapolate new biological
insights from these computational “black boxes.” Use saliency maps to illustrate
the significance of each image region or show convolution filters that are recent
methods for explaining image classifier model. Nevertheless, for deep neural net-
work models trained on data other than images, model comprehension remains
significantly more difficult, and this is the subject of ongoing research efforts.

Modern AI solutions would not be able to fully realize their promise unless
they are included into clinical operations. But studies have shown that using AI to
healthcare is not a simple task [138]. It is well known that clinical information
systems have a number of unforeseen consequences, such as notify fatigue,
increased physician burdens, disturbance of interpersonal interactions (incorporat-
ing doctor–patient interaction), and the creation of particular risks that call for
heightened monitoring to identify. For instance, doctors are more likely to forgo the
diagnosis when a patient has a severe problem since the CAD tool used for mam-
mograms results in a false negative. It is difficult to pinpoint the ideal medical
workflow that will enhance the benefits of AI-assisted diagnostics, even though
many CAD models can be changed to stabilise the understanding and accuracy
required for each scientific use case. The perspective of healthcare professionals
and patients demonstrates the need for careful formulation and construction,
which are frequently absent when integrating digital technologies into clinical
environments.

2.4 XAI

The conventional doctor–patient connection may be harmed by the implementation
of AI-based technologies for MDSSs in healthcare situations, which is found on
trust and openness in medical recommendations and clinical choices. When a
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diagnosis or treatment decision is no longer decided purely by a doctor, yet judg-
ments made in a major way by a machine-utilizing algorithms to lose their trans-
parency [2]. The most typical use of ML-based techniques in healthcare decision-
making is skill learning. These algorithms belong to a class that is very broad
(artificial neural networks, classifiers, etc.), which are adjusted using examples to
improve how well they classify new, undiscovered cases. Asking for justification
for a decision is useless [139,140]. Experts in statistics or data science may be able
to comprehend an AI algorithm’s mathematical elements in great depth. However,
this “developer’s interpretation” falls short of expectations of the fate of naive users
or human beings [2].

The issue that AI-based medical decision-making offers to the information
rights of impacted people has been acknowledged by the European Union (EU) and
has written a seminal work emphasizing the necessity for automated decision
explanations so that they can be clearly explained to the impacted patients [141].
The paradigm of XAI, which is piqueing scientific curiosity, holds the key to the
problem [142]. This is in line with efforts made by the US military to create models
that can be explained, making judgments made by autonomously machines com-
prehensible [143]. Alchemists from the middle ages have been linked to ML-based
models since they rely on trial and error and lack a thorough grasp [144].
According to the same logic, this section concentrates on the need for XAI to be
able to fully explain to the domain expert the decisions taken by an AI in an MDSS
environment. A doctor, for instance, in the instance of AI-based medical choices
concerning a disease’s diagnostic, management, or prediction.

2.4.1 The basis of XAI
AI is based on the idea that it can mimic human intelligence by learning from the
collected data from diverse sources and performing tasks that humans can com-
plete, recognizing patterns, or predicting outcomes [145]. NLP, financial technol-
ogy, autonomous driving, recommender systems in social media and e-commerce,
and question-answering software all make extensive use of AI and ML methods.
Additionally, AI is gradually altering the landscape of medical research.

The field of XAI is not new and has been in existence for a while [146], and
1980–1990 saw a lot of research into AI systems. Predicate logic graphs and other
formal representations of human knowledge served as the foundation for these
systems. For instance, directed acyclic graphs (DAG) with an approximation
method like Bayes [147], Dempster-Shafer theory, and fuzzy reasoning [148]. The
GeneOntology knowledge base, for instance, is one of the most effective
knowledge-based platforms in the world [149]. The fact that the AI must first have
a knowledge representation developed manually is a key constraint of these
approaches. This issue appears to be resolved by algorithms that can train them-
selves to behave in an apparently intelligent manner. However, the majority of
ML-based algorithms in use today neither produce knowledge nor are they
knowledge-based. When viewed through the lens of knowledge-based AI, these
systems compromise performance for clarity and comprehensibility. Therefore,
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artificial skills-based systems (AS) would be a better moniker for the majority of
ML-based systems and several “AI” systems.

A transparency AI-based decision may ideally be reached when a reliable
scientific theory explaining how the fundamental ML system operates is provided.
The trustworthy system can then get its results by making logical deductions based
on this notion. In order to accurately predict the placements of planets in astron-
omy, this is comparable to knowing Kepler’s laws. The range and precision of a
forecast can be determined in systems based on a reliable scientific concept. A
justification (explain) for the outcome may also be provided [150]. For instance,
Newton’s law of gravity can be used to deduce Kepler’s three laws of astronomy.
These rules can be used to determine why a certain planet is in a given place.

For situations when a theory of evolution is not provided or even known, ML-
based techniques are frequently used. For instance, systems based on ML-based
models are created to diagnose patients using several measures of gene expression,
even when the precise biological mechanisms causing the disease are only vaguely
comprehended. In these circumstances, the ML research is happy to be a diagnostic
system’s “efficiency” that can be determined by examining the accuracy of its
forecasts on a little amount of data that was not utilized throughout the formation
(tuning, instruction, learning, and adaption) of the so-called “test data,” of the
system [151,152]. That is, the model is trained to do a certain task using a collec-
tion of carefully chosen training and test data, making a medical diagnosis, for
instance. The capacity to extrapolate to the novel, uncharted scenarios is assessed in
this way. A measure of performance on unobserved data is used in this methodol-
ogy to estimate trustworthiness. But generally speaking, and when the model was
created, these “unseen” data were already available.

It is clear what skill-based ML systems cannot do for data with a pattern that is
substantially close to the training data, the system will operate effectively. The
skill-based ML system will fall short of data with a different structure and could not
even be aware that such facts are outside the algorithm’s area of expertise. This is
comparable to the epicycle model of planetary motion in astronomy. One could
describe it as a planet move empirical Fourier series, with a succession of alter-
nately higher and lesser circles [153]. Under “normal” conditions, and for brief
intervals, the epicycle model can reasonably estimate a planet’s position [154]. It is
unknown, nevertheless, when the predictions are accurate or false.

Asking for an explanation of a decision is meaningless for skill-based ML
systems. For instance, “associative memory” systems keep a recollection of all
instances and their diagnosis (database). The majority of the diagnoses from the
most similar cases are assigned after looking for the cases that are the most similar
to the current case in question. The k-nearest neighbor classification technique is an
illustration of this kind of model [155]. The only thing that can be learned from
attempts to thoroughly evaluate skill-based models is the mathematical model that
underlies them. For instance, patient A’s analysis is D since A is most like patient X,
who previously had the same finding. Fairness and antidiscrimination against
minorities are also important, along with other moral obligations. In skill-based
systems, some behaviors, such not hurting people, cannot be guaranteed or enforced.
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2.4.2 The role of XAI in MDSSs
Whether explainability is a necessary property for MDSSs is a hotly contested
intellectual concern. This argument first appears to be dominated by two opposing
viewpoints, if one side contends that focusing on performance with strong valida-
tion is sufficient [156]. While the opposing side emphasizes the value of explain-
ability and even makes a case for philosophical grounds for adopting explainability
[157,158]. However, a third viewpoint that is becoming more prevalent does not
contest the significance of explainability, but instead emphasizes that only by using
interpretable techniques will the advantages of explainability be realized. This
viewpoint’s proponents contend that black-box explanations are found on ques-
tionable theoretical premises, as well as the fact that such post-hoc assumptions of
the fundamental models would not result in trustworthy explainability [159–161].

Developed from earlier works [161] and we contend that if properly confirmed
by both the current analyses’ findings and outcomes and with methodologically
solid explanations for a black-box system that are intuitive and simple for con-
sumers to understand, then there would not be any defense for excluding them. It is
clear that when faced with a black box, establishing trust in a system that is
intended to aid emergency responders in their decision-making is dis-
proportionately challenging, more so if, as in the case of the current use case, they
are legally and likely responsible for the choice made [162]. This could lead to
disregarding the black box system, as was the case in the first validating study of
the system, or even worse, by upsetting the users and degrading performance.
These factors, in our opinion, are relevant to MDSSs generally.

However, it is possible that those who support the idea of explainability will
ignore technological barriers while developing justifications for black-box algo-
rithms. Finding proven and technologically solid explanations for black-box mod-
els are not simple, specifically suited for the widely used applications of artificial
neural networks. In this situation, it is crucial to carefully assess the benefits and
drawbacks of various explanation-generating strategies, and the ability of these
strategies to be comprehended by end users should also be considered [163].
Regulators must also be familiar with the benefits and restrictions of comprehen-
sible and interpretable processes. However, regardless of the type of explainability
used for a MDSS, the authors of [160] contend that it is essential to involve end
users in the design process and customize the system to meet their demands, as well
as to educate them about the system’s functionality, the data and methods
employed, and pointing out any biases and restrictions in the training data that
could impact how well the machine performs when applied to a larger population.
These actions are advised for reliable AI [164] and, additionally, they are crucial in
our perspective for promoting MDSS user confidence. Moreover, adding justifi-
cations should not be used as an explanation for skipping crucial clinical con-
firmation and validation. Explainability implementation is a fresh stage of the
creative process, where it is guaranteed that all explanations and the clients can use
and comprehend their interpretations. It also aids in pointing out situations in which
they might not accurately represent the classification procedure used by the system.
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In the past 50 years, the rule-based strategy that depended on the curation of
healthcare information and the creation of strong decision rules has attracted con-
siderable interest in the diagnosis of diseases and clinical decision support. Medical
applications of AI techniques like ML and DL, which take into account compli-
cated interactions between features, have recently been proved to be promising
[165]. Recent advancements in AI have revolutionized several aspects of health-
care, including diagnosis and surgery. These methods have proven successful in
these sectors. Some diagnosis tasks based on deep learning are even more accurate
than those performed by human doctors. The black-box aspect of the DL model,
however, restricts the models’ ability to be explained and prevents their widespread
application in medicine. In the transdisciplinary fields of AI and medicine, there are
many researchers that have come to the conclusion that the explainability of the AI
model, not its accuracy, is the key to its deployment in the clinical setting. Before
being accepted and implemented into healthcare profession, medical AI applica-
tions should be described. Therefore, XAI is necessary for the acceptability of
medical AI applications, and research into medical XAI is motivated [166].

Basically, XAI plays a key role in medical diagnosis. Table 2.1 is the review of
the literature on the use of XAI in medicine for diagnosis. We surveyed 20 studies

Table 2.1 Examining the literature on the application of XAI in medicine for
diagnosis

Reference Goal XAI approach/types AI techniques Results

[167] Diagnosis of
allergies

Condition prediction (IF–
THEN). Rules based

kNN, SVM, Ada-
Bag MLP and
RF

Accuracy: 86.39%
Sensitivity: 75%

[168] Treatments for
breast cancer

Adaptive dimension reduc-
tion

Cluster analysis N/A

[169] Treatment of
spine

LIME (explanation by
simplification)

One-class SVM,
binary RF

F1: 80 � 12%
MCC: 57 � 23%
BSS: 33 � 28%

[170] Alzheimer’s
disease

SHAP, Fuzzy using feature
relevance, rule-based

Two-layer model
with RF

1st layer:
accuracy:
93.95%
F1-score:
93.94%

2nd layer:
87.08%
F1-score:
87.09%

[171] Hepatitis SHAP, LIME, partial
dependence plots (PDP)

LR, DT, kNN, RF,
SVM,

Accuracy of 91.9%

[172] Chronic injury LIME CNN-based tech-
nique: pre-
trained VGG-16

F1-score: 94%, Pre-
cision: 95%
Recall: 94%

[173] Fenestral oto-
sclerosis

CNN-based technique:
proposed otosclerosis
logical neural network
(LNN) technique

Displaying DL
representations

AUC: 99.5%,
Sensitivity: 96.4%
Specificity: 98.9%

(Continues)
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Table 2.1 (Continued)

Reference Goal XAI approach/types AI techniques Results

[174] Lymphedema
(Chinese
EMR)

Counterfactual multi-
granularity graph sup-
porting facts extraction
technique

Graph neural
network, coun-
terfactual
reasoning

F1-score: 99.02%,
Precision: 99.04%
Recall: 99.00%

[175] Clinical diagno-
sis

Entity-aware CNN Bayesian network
ensembles

Top-3 sensitivity:
88.8%

[176] Glioblastoma
multiforme
(GBM)
diagnosis

LIME VGG-16 Accuracy: 97%

[177] Diagnosis of pul-
monary nodule

Visually interpretable net-
work (VINet), CAM,
LRP and VBP

CNN Accuracy: 82.15%

[178] Diagnosis of
Alzheimer
disease

Context-free grammar Naı̈ve Bayes (NB),
grammatical
evolution

Accuracy: 81.5%;
Brier: 0.178; F1-
score: 85.9%;
ROC: 0.913

[179] Diagnosis of lung
cancer

LIME and natural language
explanation

Neural network
and RF

N/A

[180] Diagnosis of
COVID-19
using chest
X-ray

GSInquire CNN-based mod-
el: proposed
COVID-Net

Accuracy: 93.3%
Sensitivity: 91.0%

[181] Analysis of col-
orectal cancer

Explainable collective fuz-
zy class membership
measure

CNN Accuracy: 91.08%;
F1-score: 91.26%;
Precision: 91.44%
Recall: 91.04%

[182] Analysis of phe-
notyping psy-
chiatric disor-
ders

Explainable deep neural
network (EDNN) tech-
nique

DNN White matter accu-
racy: 90.22%
Sensitivity:
89.21%Specificity:
91.23%

[183] Post-stroke hos-
pital discharge
disposition

LR, LIME LR, RF, RF with
AdaBoost and
MLP

Accuracy: 71.0%
F1-score: 59.0%;
Precision: 64%;
Recall: 26.0%

[184] Choosing a diag-
nosis and
treatment for
breast cancer

Case-based reasoning
(CBR) approach

kNN, distance-
weighted kNN,
rainbow boxes-
inspired algo-
rithm

Accuracy: 80.3%

[185] Diagnosis of
Alzheimer’s

An interpretable ML ideal:
light high-order commu-
nication archetypal with
dismissal choice

DT, RF and SVM AUC: 0.81;Sensitiv-
ity: 84.0% Speci-
ficity: 67.0%

[186] Automatic recog-
nition of
instruments in
laparoscopy
videos

Activation maps CNN F1-score: 97.0%;
Precision: 96.0%;
Sensitivity: 86.0%
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on XAI in diagnostic. This section of the chapter included research that was
examined from the perspectives of study objectives, XAI approaches, XIA proce-
dures, and performances, as can be shown in Table 2.1. We discovered that CNNs
are the most widely used deep learning method, with 25% (5/20) of articles using
VGG-16 and other CNN-based models; additionally, the most prevalent XAI
method in these publications was LIME, with 30% (6/20) of the research that was
done in the published articles included in this study involved LIME. Most studies
using XAI approaches followed the pipeline and used post-hoc methods. They
developed the medical applications and helped the doctors make decisions by first
applying DL techniques like CNN-based techniques or complicated ML random
forest (RF) model, and then by explaining the AI model using post-hoc techniques
including XAI assessments employed in the studies covering 45% (9/20) of the
papers survey.

2.5 Ethical effects and implications

AI-powered technologies are becoming more prevalent in healthcare, the ethical
concerns related to this impending paradigm shift must be investigated. The
“Principles of Biomedical Ethics” by Beauchamp and Childress are a frequently
used and well-suited ethical foundation when evaluating biomedical ethical
dilemmas [187,188]. Introducing equity as well as independence, humanitarianism,
non-maleficence, and four fundamental concepts [187]. Although not all bioethical
approaches are principlist guideline obtainable, it is a very practical, fundamental
structure that is well-liked in both academic and clinical environments [189].
Therefore, in the sections that follow, we evaluate explainability in light of the
previously discussed principles.

Explainability has significance for both patients and doctors with regard to
autonomy [190]. Informed consent is one of the main safeguards for patients’
autonomy, which is an independent, typically written consent by which the patient
gives the doctor permission to carry out a certain medical act [191]. A thorough
understanding of the nature and hazards of a medical process is the foundation for
proper informed consent, and not unreasonably interfering with the patient’s reso-
lution to have the surgery. Currently, there is no ethically accepted position on
whether informed consent should entail disclosure of the employment of a mys-
terious medical AI algorithm. Currently, there is no ethically accepted position on
whether informed consent should entail disclosure of the employment of a mys-
terious medical AI algorithm, which could contravene the adherence to clinical
advice. If a patient afterwards learned that a clinician’s prescription came from a
mysterious AI system. This can prompt the patient to question the advice as well as
make a valid search for a clarification, which the physician, in the scenario of an
inaccessible system, would not be able to provide. Thus, opaque medical AI may be
a barrier to the delivery of accurate information and so might put explicit consent in
danger. Therefore, it is crucial to uphold ethically acceptable and explainability
criteria in order to protect the informed consent’s autonomy-preserving function.
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The potential for opaque AI to encourage authoritarianism by limiting patients’
ability to voice their interests and desires on medical practices should be taken into
consideration [191]. Complete patient autonomy is a prerequisite for shared
decision-making, Full autonomy, however, may only be attained if the patient is
given a variety of worthwhile alternatives from which to choose [192]. In this way,
as opaque AI becomes increasingly crucial to medical decision-making, patients’
capabilities to exercise their autonomy about medical procedures are diminished.
The difficulty with opaque MDSS, in particular, is that it is still unknown whether
and how patient opinions and desires are taken into consideration by the model.
The “Value-flexible” AI that offers the patient a variety of options could be used to
address this situation [193]. In addition, we contend that explainability is a pre-
requisite for value-flexible AI. In order to assess if the goals have been achieved,
the patient must be able to comprehend which variables are crucial to the AI sys-
tem’s inner workings, whether the AI system’s values and weighting are in line
with theirs. The assessment of patients, for whom a “lessening of distress” is more
significant, may not be aligned, for instance, with AI systems that are designed with
“survival” as the desired objective [193]. Last but not least, when a decision is
reached, patients must have confidence in the AI system and freedom to heed its
advice [194]. If the AI model is opaque, then this is not feasible. As a result,
explainability is a moral requirement for schemes supportive essential medical
decision making from both the perspective of the doctor and the patient.

Although there are connections between the concepts of kindness and non-
maleficence, they nevertheless shed light on various topics, including explain-
ability. Physicians are urged by beneficence to optimize patient advantages.
Clinicians are therefore expected to employ AI-based technologies in a way that
encourages the best possible outcome for the particular patient. However, in order
to give patients the best options for enhancing their health and wellness, the sys-
tem’s full capabilities must be available to doctors. This suggests that doctors are
familiar with the technology outside of its use for robotic tasks in a particular
clinical scenario, enabling them to consider the results of the system for doctors.
Instead than having to rely solely on an automated output, explainability in the
form of visuals or natural language explanations permits informed clinical deci-
sions. They can evaluate thoroughly the results produced by the system, and they
decide for themselves if the outcomes appear reliable or not. This enables them to,
if needed, modify predictions and advice to account for specific situations. As a
result, physicians can lessen the chance of inspiring false optimism or inspiring
false despair but can also use their clinical decision making to indicate possibly
improper procedures [195]. This is particularly crucial when we consider a scenario
in which a doctor and an AI system disagree, a difficult position to resolve [194].
This is ultimately a matter of intellectual competence, and furthermore, it is not
apparent how doctors should determine whether they can put their faith in a black
box model’s epistemic authority enough to accept its judgment [194]. According to
authors in [194], there is little epistemic evidence for deference in the situation of
opaque AI. Furthermore, they contend that when faced with a “black-box” system,
medical decision assistance may actually work against rather than in favor of
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doctors’ competence. In order to avoid being scrutinized or held responsible, doc-
tors may be compelled to use “defensive medicine” in this situation [194]. The
autonomy of doctors would be seriously threatened in such a circumstance.
Furthermore, doctors will infrequently have the opportunity to thoroughly examine
the reasons why their clinical judgment conflicts with the AI system. Therefore, in
the clinical context, focusing solely on a performance outcome is insufficient. Only
healthcare professionals who are capable of making well-informed decisions about
when to use an intelligence MDSS and how to comprehend its outcomes can be
expected to provide patients with the best possible outcomes. Thus, it is difficult to
see how any “black box” application might achieve beneficence in the context of
medical AI.

When considering the notion of non-maleficence in relation to medical AI, the
requirement for explainability becomes even more clear. According to non-
maleficence, doctors have a moral obligation to protect their patients from any
purposeful or unintentional injury, or by using medical procedures excessively or
inappropriately. Why does performance fall short? It has been suggested that a
black-box medical AI that only considers validated optimal performance is morally
acceptable, even if the physician cannot determine the exact causative mechanisms
underlying a particular AI-recommended intervention [196]. In fact, it is still fairly
usual in medicine to base conclusions about a treatment’s effectiveness only on
anecdotal or experiential data. However, this does not provide justification for
avoiding explanations, which are a crucial component of effective clinical judg-
ment when one is in fact feasible. Recent developments in defining at least the key
characteristics of AI models, while avoiding comprehensive mechanical justifica-
tions for AI judgments, a fundamental ethical responsibility to improve the inter-
pretability and transparency of medical AI. If this were not done, a doctor’s ability
to monitor for potential clinical case misclassifications would be purposefully
undermined, for instance, to training datasets with significant bias or variation.
Thus, we come to the conclusion that explainability is a required quality of clini-
cally applied AI systems, including with regard to beneficence and non-
maleficence.

According to the fairness principle, no one should be ethically acceptable in
discriminating against any selected individuals or social group in order to get the
benefits of medical advancement [197]. Unfortunately, several AI systems go
against this rule. For instance, authors in [198] recently reported on a medical AI
system that prejudiced people of color. Explainability can assist developers and
medical professionals in identifying and eliminating these biases, which are a sig-
nificant source of prospective injustice, preferable in the early stages of the creation
and validation of AI by, for instance, identifying significant traits that point to a
bias in the model. However, in order for explainability to achieve this goal, the
necessary participant parties must be made aware of the bias risk and what effects it
might have on people’s health and happiness. Sometimes, it could be tempting to
put accuracy first, and simply avoid devoting energy to creating understandable AI.
However, developers and doctors must be aware of the possible drawbacks and
restrictions of these new tools if they are to guarantee that AI-powered DSSs
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function effectively. Explainability thus becomes a moral need for the creation and
use of AI-based healthcare decision assistance, including from a just standpoint.

2.5.1 XAI weaknesses in medicine
Despite the impressive performance that many of these AI technologies may
achieve, it is frequently challenging for these technologies to be fully embraced in
real-world clinical settings since some of these algorithms are difficult to under-
stand. XAI is becoming more prevalent to help patients and healthcare providers
communicate internal decisions, behaviour, and activities. Clinicians may learn
how to use predictive modelling in real-world scenarios rather than just blindly
following the forecasts if XAI explains the prediction consequences, earning their
trust. Due to the complexity of medical knowledge, there are still numerous pos-
sibilities to investigate regarding ways to advance the productivity of XAI in
medical settings [199]. Predictive modelling has extensively exploited data from
numerous sources in the healthcare industry. While some healthcare data are pro-
duced by patients and caregivers, some are produced by drug testing and investi-
gation, and some are collected by sensor technology.

2.6 Conclusion and future directions

It has been demonstrated that MDSS can help healthcare professionals with a range
of decisions and patient care duties, and they now enthusiastically and widely
advocate the provision of high-quality healthcare. Some MDSS applications have
more supporting data, particularly those that use CPOE. As we move into the era of
the EMR, support for MDSS is growing, and there is nevertheless room for
development in interoperability, execution speed and convenience, and cost. While
doing so, we must continue to watch out for MDSS’s possible flaws, this can range
from just failing and losing resources to wearing down healthcare professionals and
lowering the standard of patient care. Construction, implementation, and main-
tenance of MDSS must be done with extra caution and thoughtful planning.
Therefore, in this chapter, the function of XAI in clinical decision support systems
was examined from the viewpoints of technology, ethics, medicine, and patients.
Thus, we have demonstrated that explainability is a complex idea with wide-
ranging ramifications for the many key stakeholders concerned. Because it calls for
a rethinking of roles and duties, medical AI presents difficulties for researchers,
physicians, and policymakers. Based on our investigation, we believe that
explainability is a prerequisite for addressing these issues in a lasting way that is
consistent with professional standards and values. The survey also revealed various
difficulties and restrictions. First off, it is unrealistic to utilize accuracy as the sole
ML evaluation parameter for assessing the performance of a techniques. It is
impossible to evaluate the ML algorithm objectively by using just one assessment
metric. Second, there are currently no standardized XAI evaluation techniques that
are widely acknowledged by researchers in the field. Because evaluation still
depends on human cognition, only qualitative evaluation of XAI techniques is

XAI in MDSS: applicability, prospects, legal implications, and challenges 75



possible. But the majority of the papers included in this survey merely gave XAI
methods, with no XAI evaluation. Only a small number of researchers offered XAI
assessments by doctors. Third, several experiments solely used XAI or existing ML
techniques. These XAI medicinal applications are deficient in creativity and earlier
information from the doctors because no medical professionals were involved in
the design of these AI techniques. As a result, they may not satisfy the actual
clinical needs of the doctors.
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Explainable Artificial Intelligence-based
framework for medical decision support systems
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Abstract

The rise in death tolls due to increased infectious diseases has become one of the
most severe health problems and the largest source of death globally. Artificial
Intelligence (AI)-based models have emerged and developed to assist medical
experts in decision-making, thus reducing the mortality and morbidity rate.
However, the most prominent weakness of these algorithms is the lack of inter-
pretations for their results. In other words, the end-user is unfamiliar with the
fundamental logic that supports the prediction. Hence, due to their black-box nat-
ure, physicians struggle to understand these models; thus, they often do not attract
the confidence of the medical practitioners and, in most cases, are not permitted in
medical practice. Therefore, this chapter reviews the most substantial reasons for
and against explainable AI (XAI) in medical Decision Support Systems (MDSS)
with future prospects. The chapter proposes a framework to address the above-
mentioned issue in AL-based models using a deep Shapley additive explanations
(DeepSHAP) for predicting various diseases. The framework relies on deep neural
network architecture enabled with a feature selection method for disease prediction
with an explanation. The proposed framework will provide medical experts with
more accurate and personalized results for disease prediction and facilitate
improved decision-making.
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3.1 Introduction

The emergence of modern technologies like machine learning (ML) and Artificial
Intelligence (AI) methods in medical decision support systems (MDSSs) has tre-
mendously increased to assist healthcare professionals in the diagnosis and pre-
diction of patients from various diseases [1,2]. The power of novel MDSSs has the
inherent ability to make quick suggestions even with vast medical data [3,4]. These
have created the prospective way for personalized treatments, reduced medical
costs, and improved patient diagnosis and treatments. The proof-of-concept of
MDSSs enabled with AI-based models shows promising performance in healthcare
laboratory settings [5–7]; however, in actual medical practice, MDSSs aided with
AI frequently resulted in limited or few improvements [8,9]. Therefore, the
explanation ascertained, where the results of the AI models are different from
standard clinical recommendations used to be rejected.

The famous AI algorithm artificial neural networks (ANN) among various AI-
based models are known as black-boxes since their inner processes and working
remain hidden and impervious to the user. Their results in this situation, not be
trusted by the medical experts, thus creating serious barriers to MDSSs adoption in
healthcare systems [10,11]. Hence, it is crucial to identify measures to enhance the
trust of medical practitioners in MDSSs so the models can be widely used and
adopted in medical practice [12–14].

Foster trust is often the most positioned approach to increase the transparency
of the systems [15,16], and the application of explainability is a significant part of
growing and rising systems’ transparency [17,18]. For example, in order to avoid
the development of unintended coincidences, it is essential to gather sufficient
knowledge of the system’s behavior in order to find previously unknown weak-
nesses and flaws. According to researchers, explainability is vital to evaluate true
ability of MDSSs. Studying the internal dynamics of an AI-based system is
essential, particularly from the design point of view of developers, and very crucial
to improve the algorithm by looking at the results. In other words, explainability
can help to enhance the results of the AI-based models. As a result, enhancement is
a secondary objective that can be accomplished utilizing XAI techniques.
Figure 3.1 depicts the general objectives of Explainable AI (XAI).

While ML-based models lack equivalent predefined understanding, the corre-
lations with linkages in data can be discovered using the inbuilt AI-based expla-
nations, for example. According to experts, the goal of XAI is to create deep
knowledge by learning from the operation and output of the algorithm [19]. AI is
being used more frequently in critical scenarios that could have disastrous con-
sequences for people. While numerous techniques explain the internal dynamics of
an AI system, each approach has its own set of benefits and drawbacks [20–22].
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Furthermore, what defines an excellent explanation depends on several elements,
including the intended audience and use case [23–25]. Researchers have disagreed
about whether explainability should be a requirement for AI-based models that
enable MDSSs. There are several compelling arguments against explainability as a
virtue that is useful, acceptable, desired, and even necessary [12,26–28], despite the
overwhelming evidence to the contrary. Additionally, there are strong reasons
against this prevailing viewpoint [29–31].

Transparency has been cited as one of the key requirements for reliable and
trustworthy AI-based algorithms by the High-Level Expert Group on AI of the
European Commission (AI HLEG). As a result, explainability is simply one of
several approaches used to gauge how transparent an AI-based model is. Additional
precautions include proper documentation of the datasets used and the algorithm
codes used, as well as practical discussions of the systems’ strengths and short-
comings and vulnerabilities [23,32]. Although the AI HLEG values explainability,
the AI-based experts do not believe that MDSSs should always be trusted.
However, AI HLEG asserts that steps should be taken to integrate and include more
transparency and accessibility elements into algorithms that lack this characteristic
[33,34].

Humans generally do not support processes that are not clear-cut, simple to
grasp, intuitive, interpretable, tractable, or trustworthy [35], which raises the need
for ethical AI [28]. Although it is a frequent misconception that concentrating just
on performance will produce better outcomes. Instead, this will only make the
systems more complicated. It should be noted that performance and transparency of
models are inversely correlated [36]. The shortcomings of a system might,
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nevertheless, be improved with a deeper understanding of it. The use of compre-
hensibility as a sophisticated design driver can improve the design and imple-
mentation of AL and ML-based models for three main reasons:

(a) Interpretability aids in ensuring objectivity in selection by detecting and
correcting distortion in the training dataset.

(b) Interpretability aids resilience by revealing potentially antagonistic dis-
turbances that could cause the prediction to shift.

(c) Interpretability might act as a safeguard to ensure that only pertinent variables
are used to determine the outcome or that the model explanation has genuine
underlying causation.

The system’s interpretation must either give an understanding of the model’s
processes and assumptions, a visual representation of the model’s discriminatory
practises rules, or suggestions as to what might cause the model to be perturbed in
order for the system to be considered practical for the reasons mentioned above
[37]. Therefore, this chapter covers the multiple research opportunities and chal-
lenges identified, in addition to how explainable AI in MDSSs can be employed in
medical procedures. Moreover, a framework has been proposed for the prediction
of various diseases using explainable AI.

3.1.1 Key contributions of the chapter
The following are the significant contributions of this chapter:

(i) The chapter examines some of the key XAI application areas, evaluating the
arguments for and against the explainability of MDSSs in the broader med-
ical sector.

(ii) The significant challenges and the prospects of XAI for MDSSs and
healthcare, in general, have been discussed.

(iii) For the early prediction of certain diseases, a framework based on explain-
able deep learning has been suggested, and a real-world medical dataset has
been utilized to assess the effectiveness of the proposed framework.

3.1.2 Chapter organization
Section 3.2 presents the applicability of XA in MDSSs. Section 3.3 presents the
challenges in the applicability of XAI in MDSSs. Section 3.4 presents proposed
DeepSHAP enabled with DNN Framework. Section 3.5 discusses the experimental
design for cancer prediction, Section 3.6 presents the experimental results and
discussion. Section 3.7 explains the future research direction of XAI in healthcare
systems, and finally, Section 3.8 concludes the chapter with future direction.

3.2 Applicability of XAI in MDSSs

Unfortunately, many terms are occasionally used without a detailed description
when discussing the many strategies used to attain explainability, especially across
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fields [27,29,38]. As a result, it is essential to specify how to use these expressions
in the MDSS application. The following section discusses the distinction between
interpretable and explainable algorithms. Although both explainable and
interpretable may share methodologies in common, as discussed by various experts
in their general narrative, there are some differences, to foster innovation used, they
are separate.

There are intrinsically interpretable methods embedded into the decision-
making process of the model, similar to interpretable algorithms, which make it
easier for the target user to comprehend. This category includes a variety of
methods, but the most popular ones are logistic and linear regression techniques,
which use the strengths of attributes to estimate the importance of features. Another
example is decision trees, which are easy for people to comprehend. On the other
hand, open-ended black-box models can be opened using explainable procedures.
These strategies frequently use interpretable computational frameworks that mimic
black-box methods. A black-box model can be given an interpretation by using an
interpretable approximation. Examples of such models include the SHapley
Additive exPlanations (SHAP) [39,40] and the Local Interpretable Model-Agnostic
Explanations (LIME) [41,42]. Figure 3.2 displays the general concepts of XAI,
which comprises of the concepts, methods and interactions.

When it comes to the acceptability of AI-based models in healthcare systems,
the utilization of explainability methodologies for MDSSs methods is vital.
A better understanding of the complexities of underlying AI systems can help
detect probable errors and identify the root reasons of failure [43]. Furthermore, the
explainability of the AI-based models would undoubtedly make it possible for
medical professionals to evaluate the dependability of the expected result [44].
Also, these will help explain to patients why AI-based systems ensure action by the
medical specialists when utilizing MDSSs techniques, which will develop trust in
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the connection between the physician and the patient [11,45]. Users can also use
explainability to ensure that the system is not depending on abnormalities or
interference in the learning algorithm. As a result, users can use explainability to
identify whether or not a training data set includes incomplete or biased informa-
tion in the dataset [46].

Additionally, AI-based systems can better be understandable using explana-
tions that will improve their learnings, goals and swap [47]. It has also been
demonstrated that offering medical experts a competent second opinion from an AI
system can improve diagnostic accuracy over the AI system or the medical spe-
cialists on their own [48,49]. Some authors even go so far as to say that explain-
ability is necessary for therapeutic diagnostics [50].

The first point to address from a medical standpoint is to distinguish between
AI-based MDSS and existing diagnostic technologies, such as various laboratory
testing. Especially since there are so many similarities: Both can produce results
that can be used in MDSSs, prioritize performance, and their outcomes are verifi-
able. Understand how clinical laboratories work because it frequently affects a
variety of other screening procedures. As a result, these should not be regarded as
black box methods, such as imaging. Similarly, we cannot explain each test’s
outcomes using these methodologies. This demonstrates the importance of identi-
fying two stages of explainability from a medical standpoint.

We can understand how the program arrives at plausible results thanks to the
first degree of understandability. In the same way that we know which physiolo-
gical and biochemical processes lead to the outcomes in laboratory tests, the same
happens in AI-based MDSSs, where the model may provide correlation-based
feature rankings that explain crucial inputs. We can ascertain exactly qualities
essential in formulating a certain prognosis thanks to second-level explainability.
Individual forecasts can be double-checked for similarities that could suggest a
mistake, in the case of an out-of-sample scenario with anomalous feature disper-
sion, for example. This second degree of explainability will be accessible for AI-
based CDSS on a regular basis, but not for other screening procedures.

This has implications for how explainability findings are communicated to
clinicians and even patients. First-level explanations may suffice based on the
therapeutic use and the risk associated with that application. However, alternate use
scenarios will frequently necessitate second-level explanations to protect patients.
Explainability is commonly considered only after further consideration. The
explanation appears obvious; MDSSs, in particular, are intelligent Healthcare sys-
tems. To meet regulatory requirements and obtain medical certification, all pro-
ducts, whether AI-powered or not, must undergo a thorough evaluation [51,52].

Once this step is accomplished, the system has demonstrated its ability to
perform in a highly diversified real-world clinical situation. It is essential to
understand how clinical confirmation is determined. Generalization ability, often
known as prediction accuracy, is a frequent progress measurement. There are var-
ious ways of measuring the accuracy of model prediction, each adapted to a spe-
cific use case, and however, they all have one thing in common: they indicate a
model’s prediction skill and, consequently its broad clinical use [53]. Therefore,

96 XAI in MDSS



improving predictive accuracy is one of the simulation model’s main objectives
and keeping the error rates low [54]. Likewise, the error rates of prediction have
become lower using AI-based techniques and demonstrated to more useful in the
area of reducing error rate of dataset prediction than conventional techniques
[55,56].

Early intervention in disease diagnosis and prognosis reduces mortality and
morbidity rates. Using countermeasures in every situation, on the other hand, can
be costly and time-consuming. By providing comprehensive and accurate compu-
tational technology, a machine-learning-based MDSS can assist clinicians in low-
ering global mortality and morbidity rates. It would drastically reduce the amount
of time and money spent if early prevention was provided. In clinical settings, the
MDSS has a bright future and enormous potential, especially since many clinicians
have used telemedicine to improve healthcare systems, particularly during the
COVID-19 outbreak, in order to maintain social distance [57,58].

MDSSs hold great promise for improving healthcare delivery quality, but there
is a paucity of literature on their effective implementation, particularly for AI and
ML-based MDSSs. According to the authors of [12], for an MDSS to be accepted
and integrated into healthcare workflow, its usability is very important in addition
to the system being accurate, efficient, and well-accepted. An MDSS should be
time-saving, straightforward, and simple to use in order to obtain system responses
while navigating a demanding clinical schedule. At the same time, the authors
stated that black-boxes should not be used in MDSSs. Their recommendations are
consistent with the authors of [59], who state that explainability is a fundamental
requirement for a CDSS to be successfully implemented for practical use. The
authors’ study in [60] demonstrates that while an ML-based model can detect a
pattern in a dataset, it is incompatible with clinical experience and thus has no
application in clinical settings. In a given population, asthmatic patients had a
lower risk of succumbing to pneumonia, according to their analysis. This is because
patients with allergies who develop pneumonia generally receive extensive treat-
ment, which reduces their risk. Even though the system successfully gathered the
training data, it would be troublesome if the model were to be used in clinical
settings without first comprehending why it responded the way it did. Hence, XAI-
based models can be used to easily resolve such problems in a medical setting.
Numerous advantages have been found when using XAI in MDSS, like increasing
decision confidence, creating causation hypotheses, and boosting the system’s
attractiveness, credibility, and acceptability. However, in the published research,
there is a significant paucity of XAI applicability in MDSSs [59].

3.3 The challenges in the applicability of XAI in MDSSs

In defense of the concept of explainability in general, it was stated that healthcare
practitioners prioritize accurate use of data from reliable sources over a thorough
understanding of how the evidence was obtained [24,30]. In this situation, a sys-
tem’s actual usability and efficacy are valued more than its ability to describe its
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outputs, so long as these outcomes are shown to be somewhat trustworthy and
verifiable [31,61]. In addition, research has shown that explainability does not
improve consumers’ predisposition to believe a judgment made by an intelligent
agent, making it extremely difficult to uncover false predictions [62]. In rare
instances, all healthcare specialists may not agree on a fundamental truth [63,64].
In such situations, the level of detail required of explanations is substantial, if not
unattainable.

There is also the possibility that consumers will misinterpret reasonable links
discovered by AI-based models. Despite the possibility that a ML MDSS may
potentially justify its predictions, physicians may make erroneous causal assump-
tions, this is a critical issue to remember. However, because explanations are
founded on correlations, due to random circumstances, they are prone to inaccu-
racy. As a result, clinical inference is investigated to establish causal factors, such
as imbalanced datasets and misleading correlation [65]. But use a straightforward
and understandable paradigm, contrary to popular belief, can reduce the possibility
of consumers spotting model mistakes rather than employing tools that are not
explainable. One explanation for this could be that the user is forced to excessively
analyze data to focus on mistake identification [66]. It is also feasible to create
deceptive explanations that appear reliable to the user and that, as a result, the user
believes. Although they truly describe the decision-making procedure of the model
on a technical level, elements of the explanation are omitted, leading to a decline in
system trustworthiness [67–69].

Another technological difficulty is that current DL-based models are not
intrinsically interpretable [70,71]. Approximations from explanation algorithms are
frequently used in existing methods for providing interpretations for these DL-
based models. As a result, there is a substantial risk that these approximations will
be incorrect, hence, the explanations provided for some inputs do not adequately
reflect the model. Additional reason for an erroneous portrayal of the initial for-
mulation is that approximation-based explanations are not guaranteed to employ
the same attributes as the initial formulation. The real risk of incorrect explanations
makes it more difficult for professionals to believe them. As a result, the model
they’re explaining is not what these explanations are supposed to be about [71,72].
What defines a good explanation also varies depending on who is communicating
with it [11,73] and there is no quantifiable way of predicting the most beneficial
encounter ahead of time [74–76].

Due to the limitations of current explanation generation systems, various
researchers [71,77] recommend using models that are transparent by nature, such as
decision trees, rule lists, or regression. Deep neural network (DNN) models, for
example, are more interpretable for end-users than conventional models, but those
representations can only be considered interpretable if they follow a set of rules.
For example, the number and nature of attribute values, or the model’s complexity,
makes one wonder whether any models are intrinsically transparent [78].

Others advocate using hypothetical explanations [79,80], which are descrip-
tions of the kind “if the input was this current input rather than this old input, a
different decision would have been made by the system” [81]. These explanations
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are easily understandable because they mimic the often metadiscourse style of
human explanations [82,83]. Finding significant and usable hypothetical instances,
on the other hand, can be challenging and costly to implement in reality [84,85].
Explainability, particularly in the medical field, might be deceptive and is not
always required. The inadequacy of human affection to comprehend XAI decision-
making description maps and the lack of a quantitative assessment of the expla-
nation map’s reliability and consistency are other problems of XAI in MDSSs in
healthcare systems. As a result, the employment of visualization methods for pur-
pose applications may need to be revisited in the future. It’s also worth thinking
about new ways to describe and communicate explanations. Figure 3.3 shows the
basic issues of XAI in healthcare systems generally.

Privacy concerns are explicitly addressed throughout the life cycle of AI-based
models, particularly when working with multiple data sources. This is especially
important when dealing with personal information because individuals’ privacy
rights must always be respected. The importance of data governance in terms of
privacy has been emphasized, as has ensuring the accuracy and consistency of the
data used [86]. It should also include a contextual specification as well as the ability
to process data securely.

Despite regulatory agencies’ clear concerns, DL approaches have been found
to harm privacy when no data fusion is performed. Even with image obfuscation, a
few photos can compromise users’ privacy [87], and a DNN’s explanatory vari-
ables can be accessed by running input requests on the model [88,89]. One method
for explaining lack of privacy is to use subjective privacy loss and intentional loss
scores. Based on the function of a face in the photograph, the former provides a
subjective assessment of the gravity of the invasion of privacy, while the latter
depicts the spectators’ desire to be included in the photograph. Such explanations
have prompted the development of trustworthy complementing cryptographic
algorithms to protect the privacy of photographers and witnesses [90–92].
Researchers strongly advocate for increased efforts in this area, particularly to
ensure that XAI techniques do not jeopardize the privacy of the data used to train
the AI-based model under consideration.
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End-to-end concepts have also been demonstrated for Trustworthy AI [93], but
those of Telefonica (a major Spanish ICT corporation with a global presence) are
more AI-focused [94]. For example, an AI-based system can ensure the privacy and
security of any interconnected IT system [95]. The same is true for privacy, even
though privacy is probably even more important in developing AI systems than in
normal IT processes. Because ML models require massive amounts of data and,
more importantly, maintaining the privacy of protected material is becoming more
difficult due to XAI capabilities and data fusion approaches.

3.4 The proposed DeepSHAP enabled with DNN
framework

This chapter proposes a DeepSHAP-enabled DNN framework model for perfor-
mance accuracy and explainable MDSS. The proposed framework consists of three
stages: (i) the data pre-processing, (ii) DNN prediction model, and (iii) the expla-
nation model for better understanding of the proposed model.

3.4.1 The pre-processing stage
Data pre-processing is an important step that prepares the dataset for training before
building prediction model. Various pre-processing techniques were performed on
the dataset to provide relevant data for the suggested model framework for model
optimization. The following are the actions that were taken to restructure the
dataset utilized in this study:

The normalization: The feature values are rescaled in the range of 0 to 1 using
normalizing in this pre-processing stage. Maximum and minimum values between
0 and 1 were used to standardize all predictive features. To convert the desired
feature, which is categorical by nature, to numerical, the transformation was used.
The normalization equation is generated by subtracting the minimal value from the
parameter to be standardized first [96]. After subtracting the minimum from the
maximum, the prior result is divided by the latter as follows in Eq. (3.1):

X
0 ¼ X � Xmin

Xmax � Xmin
(3.1)

Data cleaning: This eliminates incomplete values and outliers from data before
it can be analyzed. The issue of lost variables is widespread in data, and it occurs
when data values for attributes in an occurrence are not recorded. An outlier is a
statistician’s term for a value on the tails of a distribution that is abnormally far
away from other values. As a result, we reject lost data and outliers from our data
analysis process because they can create model estimation bias.

Dataset balanced: Synthetic minority oversampling technique (SMOTE) is a
mechanism for artificially producing instances for outnumbered classes. This class
is oversampled by assigning false instances to each outnumbered class instance
along line segments connecting any/all of the k overcrowded class’s nearest
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neighbors. This method eliminates overfitting and expands the decision zone of the
outnumbered class’s instances.

3.4.2 The hyper-parameters and DNN
The DNNs differ from traditional neural networks (NNs) in that they have far better
generalization features and can model any non-linear function or connection by
comparison [97]. This is partly due to the usage of many layers, which allows
various function classes to be approximated in diverse ways. A NN is a network of
interrelated neurons that work together to learn how to complete a specific task.
Three or more layers, namely input, hidden, and output, are commonly used in NN
configurations. The weighted nodes are contained in at minimum one hidden layer,
and interconnection exists between nodes in surrounding levels, but not between
nodes in the same layer. Therefore, the input and output mappings cannot learn
successfully if a network would not have enough hidden nodes. Eventually, the
output of hidden nodes is determined by the number of classes, and calculated by
the use of an activation function. Hence, make final judgments Y using optimal
weights to minimize the difference between predicted and actual values [98].

The selection of hyper-parameters has a strong influence on the DNN’s
effectiveness. An effective one-hidden-layer MLP can be used to learn NNs, and
learning with two or more hidden layers of perceptrons, on the other hand, can
generate significantly better results than learning with only one. Hence, the DNNs
are used to convert the {2-10} hidden layers in the suggested framework. The
performance of three activation functions was compared by varying the number of
nodes per hidden layer {3, 5, 10, 15, 20, 25}, namely: Sigmoid (sigm), Rectified
linear units (ReLU), and Tanh (tanh). The ideal hidden layers and their nodes in
terms of the highest classification performance were presented in the experimental
results. Additionally, Adam was used to optimize the models, and the learning rate
is set at 0.001 while keeping the rest of the hyper-parameters constant. To limit the
likelihood of over-fitting, regularization procedures are used.

3.4.3 The Shapley additive explainable (SHAP)
The SHAP as a post hoc explainability method to generate explanations is one of
the most widely utilized human evaluation user studies. Deep SHAP explainer was
investigated in the proposed approach, which incorporates concepts from the inte-
grated gradients (consequently, integrating requires the usage of a unique standard
value.), the SHAP and SmoothGrad (which receives an input image’s gradient
susceptibility maps combining them into a single equation for predicted value, then
averaging them to identify pixels of interest. The proposed framework used the
Kernel SHAP algorithm, it can be used to forecast SHAP quantities in any scenario
without regard to the model. Each and every approach is consistent with the SHAP
KernelExplainer. Nevertheless, it takes longer than other model kind of approa-
ches, since it does not assume anything about the kind of model. Although slower
than other explanations, it delivered the best performance, and giving an estimation
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of SHAP scores rather than actual values. Based on the open-source Shap library
developed by Lundberg and Lee in 2017 [99], the Kernel SHAP algorithm was
created. By analyzing the contribution of each characteristic to the prediction,
SHAP is used to explain the predictions of an instance x.

SHAP uses the game-theoretic Shapley value to explain individual predictions
[99,100]. To compute (as given in Eq. (3.2)), this method employs the concept of
coalitions, the black-box model’s features’ Shapley value ( f) prediction of instance
(x). The average marginal contribution is known as the Shapley value, and given as

∅m
j

� �
of feature (j) in any imaginable coalition. Eq. (3.3) is used to compute the

marginal contribution, where �f ∅m
þj

� �
and �f ∅m

�j

� �
are predictions made using

black-box f without and with the replacement of the jth characteristic of sample
instance x:

∅j xð Þ ¼ 1
M

XM

m¼1

∅m
j (3.2)

∅m
j ¼ �f ∅m

þj

� �
� �f ∅m

�j

� �
(3.3)

3.5 Experimental design for cancer prediction

All tests were carried out on a PC with a 3.50 GHz Intel Core i7-4500K processor
and 64GB RAM running Microsoft Windows 10 Operating Systems. The open
libraries and packages of the Python programming language are used in the
experimental analysis. The programming language have libraries and packages like
DNN package, DeepSHAP [99], Statsmodels, Pandas [101–103] among others.

3.5.1 The Wisconsin breast cancer (WBCD) dataset
The suggested framework is based on the WBCD dataset (original), which contains
699 occurrences, each of which is linked to a set of nine attributes. The WBCD
dataset contains about 66% benign and 34% cancerous records. The WBCD dataset
recorded nine basic features that related to diabetes mellitus illness including clump
thickness, cell size uniformity, normal nucleoli, size of single epithelial cells, Bare
nucleus, marginal adhesion, Bland chromatin, mitoses, and normal nucleoli. The
quantitative measure is given a value within 1 and 10 as an integer. The most
anaplastic cases are given a number of 10, while the most benign ones are given a
number of one. This WBCD dataset is the benchmark and is accessible in the
repository for ML at UCI because it is important in assessing a variety of breast
cancer tendencies. This WBCD information is also useful for accurately diagnosing
breast tumors that fall into the malignant and benign categories. The threshold
population compression factor and other parameters employed in the performance
of the recommended technique are decided via trial and error in order to enhance
effectiveness. The proposed DeepSHAP-enabled DNN architecture is displayed in
Figure 3.4.
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3.5.2 The performance evaluation metrics
For evaluating the proposed framework for the prediction of various diseases, the
commonly performance metrics are defined using four values to arrive at a con-
clusion, namely: true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). The total number of (TP+TN) that may understand correct and
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Figure 3.4 The proposed framework for XAI model in healthcare systems
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wrong predictions generated by the model is (FN+FP). The performance metrics
used for the evaluation of the proposed model are accuracy, recall, precision, spe-
cificity, F1-score, and, the area under curve, respectively. Eqs (3.4)–(3.8) represent
the measuring performance metrics using for the proposed system [104]:

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
(3.4)

Recall ¼ TP

TP þ FN
(3.5)

Precision ¼ TP

TP þ FP
(3.6)

Specificity ¼ TN

TN þ FP
(3.7)

F1 � Score ¼ precision:recall

precision þ recall
(3.8)

3.6 Experimental results

To verify the proposed model, the WDBC breast cancer dataset was predicted using
the DNN classifier. The dataset contains 341 benign and 228 malignant patients
totaling 569 instances. To verify the application of the suggested model, the dataset
was split into training and testing portions, each comprising 70% of the dataset. The
DNN was used to identify breast cancer cases from the dataset, which validated the
implementation of the classifier on the dataset. For the validation of the proposed
model, several performance measures, including F1-score, recall, sensitivity,
accuracy, and precision.

Table 3.1 displays the proposed framework’s effectiveness using various
metrics and WBCD datasets. The anticipated model is crucial and relevant in breast
cancer prediction and classification, as evidenced by the outcomes from numerous
measures. For example, among the 569 occurrences, the model accurately classifies
564 of them. This demonstrates the proposed model’s high level of accuracy. On a
bar graph, Figure 3.4 depicts the model’s performance.

Table 3.1 Proposed method evaluation

Dataset Accuracy
(%)

Precision
(%)

Recall
(%)

F-Measure
(%)

Support Class

WBCD 97.7 96.4 97.5 98.9 43 Benign
96.8 98.8 97.2 96.3 95 Malignant

Mean/total 97.25 97.60 97.35 97.60
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The performance of the proposed model is detailed in Table 3.1 after been
measured using various performance metrics. The result of the performance metrics
shows that the proposed DNN model generates an accuracy of 97.25%, recall of
97.35%, a specificity of 96.7%, the precision of 97.60%, and a F1-score of 97.2%,
respectively. These results show that the proposed classifier can diagnose the breast
cancer dataset correctly. The bar chart in Figure 3.5 displays the performance of the
proposed classifier.

3.6.1 The comparison of the proposed model with existing
methods

Table 3.2 examines the suggested strategy with several well-known strategies to
demonstrate how effective the presented model is. The accuracy results for the
proposed model and other algorithms utilizing the same WBCD dataset, are shown
in Table 3.2. The proposed method is more accurate than previous methods. For
example, the suggested method for diagnosing breast cancer is approximately given
97.25% accuracy. Compared to other approaches employing the compressed
WBCD dataset, the suggested method outperformed other systems in terms of
accuracy measures.
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Figure 3.5 The performance evaluation of the proposed model

Table 3.2 The comparison of proposed model with the state-of-the-art classifiers

Authors Model Accuracy (%)

[105] SVM, Naı̈ve Bayesian, KNN 97.13
[106] Decision trees 90.00
[107] Naı̈ve Bayesian 90.41
[108] Association rules AND neural network 95.60
[109] Ensemble method 89.20
[110] Random Forest 95.71
[111] Naive Bayes 81.30
[112] Bayes belief network 91.70
[113] RBF network 96.77
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The proposed model differs from others classifiers used for breast cancer
prediction since it uses the DNN with a hyper-parameter for classification effi-
ciency and effectiveness. Furthermore, because of the reduced hidden layer, the
model understands and investigates high-level functioning, effectively reducing the
dimensionality of the data, and effectively displays significant properties. As a
result, the suggested approach is best suited for real-time disease diagnosis and
categorization in healthcare businesses that deal with large amounts of unregulated
and unstructured data, such as medical data.

The model by the authors in [111] found four features very relevant for the
classification of breast cancer using PSO algorithm with NB, K-NNs, and RepTree
has classifiers, and the results reveal an accuracy of 81.3% for NB, 80% for
RepTree, and 75% for k-NNs, respectively. Furthermore, the model recorded
accuracy of 70% for NB, 96.3% for RepTree, and 66.3% for k-NNs, respectively
with the implementation of PSO algorithm. The author in [112] applied the gradient
boosting with some classifiers to improve the accuracy of the breast cancer pre-
diction, and the results revealed an accuracy of 91.7% for BBN, 91.7% for BAN,
and 94.11% for TAN, respectively. When comparing the accuracy with various
existing classifiers, it was discovered that the proposed model performed sig-
nificantly better than some of the start-of-the-art models.

3.6.2 The local explanation results
The model explanation is required to understand the predictive methods’ rationale
better. In the proposed model’s second layer, a conventional forward pass is applied
to DNN, and activation at each layer is integrated for the prediction model. The
DNN output score is then transmitted backwards in the DNN in the third layer. The
DeepSHAP approach’s propagation rule was used to improve the interpretability of
the breast cancer prediction model. The DeepSHAP technique allows for a human-
centered viewpoint. From a human-centered perspective, the model considers a
single individual’s conditional relationship between features and classes. As a
result, medical experts will be able to describe how effective DNNs work intern-
ally, and understand the key factors that contribute to the development of breast
cancer in the overall population and in each person.

Moreover, to give individualized healthcare recommendations, local explana-
tions are required. The XAI aids us in comprehending the key characteristics that
prompted the algorithm to reach the appropriate judgment and forecast. The
pictorial-based XAI also aids in visualizing the most relevant elements of a parti-
cular iteration, which aids in classification and decision-making.

3.7 The future research direction of XAI in healthcare
systems

One of the goals of this chapter was to demonstrate the unresolved challenges
surrounding the development of explainable models and make recommendations
for further research in various application areas and responsibilities. According to
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the assessment mentioned above, the fundamental shortcoming of the presented
approaches is the evaluation of the explanations. The studies used a variety of user
research and experimentation strategies to resolve this problem, hence, a generic
approach for evaluating explanations is still urgently needed. Additional obstacle
that has been identified is algorithm-specific techniques to increasing explain-
ability. It impedes explaining how entrenched systems are designed. A few
potential research directions are highlighted below, based on the practical limita-
tions of current explainable models:

(i) The dataset’s impact (especially the effect of dataset imbalance, attribute
complexity, and other factors), studies can be used to analyze the impact of
various forms of bias problems (in data gathering and datasets, for example)
on constructing an explainable model.

(ii) It was discovered that the majority of the work was done on NNs, and
explanations were provided at the local level using post hoc approaches.
Other models like ensemble and support vector machine (SVM) models have
shown similar results, since its interpretation method is still a mystery to
users. While various research has demonstrated methods for generating
global explanations by emulating model behavior, they are not very good at
performing. more studies can be conducted to generate a universal explana-
tion without jeopardizing the models’ effectiveness in the base task;

(iii) User studies were entreated to authenticate explanations constructed on
natural language, textual explanations in a nutshell. The use of autonomous
evaluation criteria for textual explanations is not yet widely used in research;

(iv) The most difficult aspect of appraising an explanation is devising a
mechanism that can handle users’ various degrees of competence and
knowledge. These two qualities of users, in general, differ between indivi-
duals. To build a good model for measuring explanations focused on the
competence and aptitude of the intended users, extensive study is required.

3.8 Conclusion and future scopes

The population growth globally has make disease diagnosis, prediction, monitor-
ing, and treatment an issue in healthcare systems, especially in developing coun-
tries. Hence, medical system automation has become a necessity and a primary
priority recently. The application of MDSSs and intelligent disease classification
and prediction can help medical experts diagnose various diseases in real-time even
in remote areas. Global population growth has made disease diagnosis, prediction,
monitoring, and treatment more difficult in healthcare systems, particularly in
developing countries. As a result, automation of medical systems has recently
become a necessity and a top priority. MDSSs and intelligent disease classification
and prediction can assist medical experts in diagnosing various diseases in real-
time, even in remote locations. This can lead to lower mortality rates, lower
healthcare costs, and more robust decision-making with high accuracy. The emer-
gence of modern technologies such as the Internet of Things, Cloud computing,
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edge computing, ML, and AI-based models has increased the automation of human
manual tasks, particularly in healthcare systems. The use of ML and AI-based
algorithms in healthcare has greatly aided in processing massive amounts of data
generated by various smart sensors and devices. However, the technologies are not
fully accepted because they are black-box in nature; medical experts and end-users
must well understand the outcomes of AI-based models. Especially in healthcare
systems where decisions must be made carefully so that they do not negatively
impact the patient. Several recent efforts have been made to explain the outcome of
using DL complexity models in MDSSs in the process and analysis of various data
involving disease diagnosis, classification, and monitoring. In this regard,
explainable AI has been useful in explaining the justification for the results of AL-
based models in various fields. As a result, this chapter discusses the use of XAI in
healthcare systems, particularly in MDSS applications. The problems and prospects
of XAI in MDSSs are also discussed. The chapter proposed a XAI-based frame-
work for predicting and classifying various diseases, with breast cancer as a case
study to demonstrate the model’s efficacy. For the human-centered perspective of
the DNN model, the model used SHAP, and the performance of the proposed
system was measured using various evaluation metrics. When the model’s results
were compared to recent state-of-the-art classifiers, the results performed reason-
ably well, with an accuracy of 97.23%. This chapter demonstrates how XAI
approaches improve model results comprehension in breast cancer prediction.
Future work will investigate the application of other XAI models, such as LIME, to
the explainer execution time to improve the model’s reproducibility. In the future,
various ensemble approaches, such as stacking and bagging, could be used and
developed to increase the significance of the proposed model. DNN cross-
validation could be used in future studies to obtain multiple training and testing
data folds. It can assist with imbalanced datasets and class instability problems and
increase computational costs. Although the current study focuses on breast cancer,
it could be expanded to other diseases in the future.
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Chapter 4

Prototype interface for detecting mental fatigue
with EEG and XAI frameworks in Industry 4.0

Martı́n Montes Rivera1, Luciano Martinez1,
Alberto Ochoa Zezzatti2, Alan Navarro2,

Jesús Rodarte2 and Néstor López2

Abstract

Mental fatigue correlates to prolonged cognitive activity. It stresses the brain of so
many ideas or thoughts that can translate into commitments, jobs, and to-do at
home—leaving a person exhausted and hindering productivity and overall cogni-
tive function. Moreover, extracranial electroencephalogram (EEG) signals are an
excellent indicator of the brain conditions of a person. Besides, mental fatigue
increases power in frontal theta (q) and parietal alpha (a) EEG rhythms. On the
other hand, artificial intelligence (AI) and EEG signals improved the classification
and regression results in different applications with new convolutional neural net-
works (CNNs), including EEGNet. Some of these results in the literature are
applications for disabled persons, detection of mental fatigue driving, mental
workload, and schizophrenia. Despite the benefits of applying CNNs to interpret
EEG signals, the final products’ applications are still limited due to the expertise
required for working with this model. Alternatively, explainable AI (XAI) refers to
the principle of AI operation and the presentation of the results obtained in the most
user-friendly way possible. Explainable models must provide a clear description of
their results without having to forget high learning efficiency. It must also be
possible for users to understand the emerging generation of artificial intelligence
mechanisms, place a certain degree of trust in it, and work with it and manage it
efficiently. The present chapter proposes a new application that brings the advan-
tages of using EEG signals together with the EEGNet structure, adding explainable
intelligent models simplifying the detection of mental fatigue and preventing
accidents in Industry 4.0. A study of various activities as a stimulus under a
workstation scenario is analyzed to determine criteria associated with preventing
accidents in the physical plant of an industrial building. Typically, it is difficult for

1Universidad Politécnica de Aguascalientes, Mexico
2Universidad Autónoma de Ciudad Juárez, Instituto de Ingenierı́a y Tecnologı́a, Departamento de
Ingenieria Electrica y Computación, México



the device to provide us with high-quality signals; there are invasive systems that
allow greater precision. In this project, we use a non-invasive device for this
purpose.

Keywords: Mental fatigue; EEG signals; Explained Artificial Intelligence

4.1 Introduction

Mental fatigue is associated with prolonged cognitive activity. It stresses the brain
of so many ideas or thoughts that can translate into commitments, jobs, and to-do at
home—leaving a person exhausted and reducing productivity and cognitive func-
tions. Symptoms of mental fatigue include mental block, lack of motivation, irrit-
ability, stress from eating or losing appetite, and insomnia. Mental exhaustion can
affect the short and long term [1,2].

In the industry, employees must perform manufacturing operations constantly
manipulating objects in the processes of some production line; this causes mental
fatigue or fatigue, which is the cause of human errors that manage to delay pro-
duction times and schedules already established by the company’s managers [3].
For example, the works in [4,5] claim that we have finite concentration periods and
must schedule breaks to improve retention of information, motivation, and effec-
tiveness even in sports, driving, and studying, among others.

These studies show that long working hours can lead to increased stress levels,
poor eating habits, lack of physical activity, and illness. Thus, it is essential to
recognize the mental fatigue symptoms of workers and their potential impact on the
safety and health of each worker and their co-workers. Moreover, some research
suggests that constant mental exhaustion can affect physical endurance [4,5].

Extracranial electroencephalogram (EEG) signals are an excellent indicator
of the brain conditions of a person. For example, when one is in the process of
drowsiness and tends to sleep, neural waves are measurable; some research
demonstrates and decodes images based on dreams trying to discover sleep pat-
terns [2]. Moreover, mental fatigue produces increasing power in frontal theta (q)
and parietal alpha (a) EEG rhythms [6]. Figure 4.1 shows the phases of an EEG
signal and its associated condition. Thus, with a wireless brain-machine interface,
one can perform measurements of a person’s fatigue and analyze them to make
decisions that help reduce human errors in the production processes caused by
fatigue.

Psychological care is another branch from which this proposal benefits
because it is functional for personalized attention to the operator. For example,
suppose it is possible for metal fatigue detection from the cranial cortex in a non-
invasive way with the analysis of the evoked potentials (EEG signals). In that case,
the production supervisor can estimate failures due to fatigue behaviors in his
staff. Then, he can adapt activities for keeping a person operating with consecutive
linear series, reducing errors in the process, thus adding a layer to the quality of the
products.
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4.1.1 Measurement of mental fatigue
Research on mental fatigue in the work environment considers different physiolo-
gical factors. For example, in [1], the construction industry followed an induction
process where the evaluated employees had to move loads between two places and
unload them after meditating and relaxing. Furthermore, as shown in Figure 4.2,
they conducted four trials, including activation of physical and mental fatigue with
personnel (nine subjects) previously evaluated in health factors to give reliability to
the EEG measurements.

4.1.2 EEG in mental fatigue
EEG consists of the electrical activity of neuronal populations that can be recorded
from the scalp or cranial cortex invasively by acquisition with tiny potential pro-
cessing devices. There are different frequency bands, designated as delta (0–4 Hz),
theta (5–8 Hz), alpha (9–12 Hz), beta (13–30 Hz), and gamma (31–100 Hz) as far
as neuronal signals are concerned, these are classified into these five groups
because they are of interest characteristics. The neural activity recorded depends on
the location of the electrode. Some examples of these recorders include inter-
cortical local field potential (LFP), intracranial electrocorticogram (ECoG), or
EEG [1,7].

The EEG signals recorded under a specific neuronal stimulation event are
known as ERP, from the acronym (event-related potentials), which indicates any
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Figure 4.1 Standard frequencies of EEG acquisitions
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electrophysiological response to an internal or external stimulus. In other words, any
measured brain response directly results from a thought process or perception [7].

The ERP allows the researcher to know patterns and discover what is hap-
pening in the human brain under stimulus based on their signal recordings
according to the general characteristics of signal processing, for example, fre-
quency, amplitude, and areas of most significant activity according to the posi-
tioning of selected electrodes. The ERP reading is detailed in [7], which mentions
the basic procedure of an EEG system with ERP reading, as shown in Figure 4.3.

The classification of signals is part of a pattern recognition system, which for
EEG signals as inputs corresponds to the procedure described in [8] and, in our
proposal, performs the classification of two classes of signals belonging to or not to
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Figure 4.2 Mental and physical fatigue experiment designed with four
independent trials in [1]
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Figure 4.3 ERP reading procedure with its stages as described in [7]
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mental fatigue. First, we acquire de EEG data. Then the preprocessing stage
includes attenuation of the signal and reduction of noise. After that, we select
characteristics based on the input signals and the classification quality obtained, as
shown in Figure 4.4.

The block diagram of a pattern recognition system in [8] is sufficient to
implement a classifier of EEG signals corresponding or not to a person with mental
fatigue.

4.1.3 Acquisition with brain–machine interface (BCI)
A BCI must have specifications for reading clear neural signals. In other words, an
acquisition only occurs when signals are readable and omit pure reading noise.
OpenBCI already provides the hardware with software integration to make acqui-
sition and transmission by WiFi of the signals. According to [9], the design of a
BCI system must include the elements shown in Figure 4.5 as blocks.

Many packages perform acquisition and preprocessing with amplification,
filtration, and noise elimination in EEG signals. For example, OpenBCI uses the
ADS1299 microchip package. Once recorded the signals, there are many ways to
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Figure 4.4 Block diagram of the proposed system for mental fatigue detection
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perform neural analysis with the ADS1299. Moreover, many BCI libraries are free
of use and supported by the scientific community. For example, Ref. [10] analyses
commercial BCI devices that detect drowsiness states. The OpenBCI library
implementation for working with the Cyton platform and LabVIEW used in this
work is in [11].

4.1.4 EEGNET
This artificial neural network architecture in [12] is a compact convolutional neural
network (CNN) compatible with different BCI paradigms, which can be entered
with minimal data and reproduce neurophysiologically interpretable attributes.
Figure 4.6 shows the visualization of the EEGNET model. To summarize, it starts
with a convolution so that the network learns the frequency filters, then performs
another convolution, but deeper to learn the special frequency-specific filters –
called parity convolution. The full description is in [12].

Each phase has a series of parameters established and adjustable according to
the needs and requirements in its use, Ref. [12] fundamentally explains the parts of
the deep neural network as follows:

● Block 1: Performs two convolutional steps in sequence. First, 2D F1 con-
volutional filters of size (1, 64), with the filter length assigned to half of the
sampling frequency of the data (here, 128 Hz), outputting F1 feature maps with
the EEG signal at different frequencies. Then, an average pooling layer of size
(1, 4) reduces the signal’s sampling frequency to 32 Hz. Finally, there is a
normalizer spatial filter using a maximum norm constraint of 1 on their
weights |w|2< 1.

Input Conv2D Depthwise Conv2D

Kernel Output Kernel Output

Separable Conv2D Classification

Kernel Output

Figure 4.6 EEGNet architecture [12]
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● Block 2: Uses a separable convolution with sizes (1, 16), representing 500 ms
of EEG activity at 32 Hz) followed by F2 (1, 1) convolutions. The authors first
learn a 500 ms “summary” of each feature map and then combine the results.
Finally includes a dimensionality reduction, with a layer of pooling averaging
size (1, 8).

● Classification block: The features raw pass to a SoftMax classification with N
units, where N is the number of classes in the data.

The present chapter introduces a solution for detecting mental fatigue in
Industry 4.0 with EEG signals and the EEGNet–CNNs designed for working with
brain activity inputs.

The novelty of our proposal is on three specific elements:

● Application of EEGNet with training data specifically for each user-generated
using non-invasive sensors so that workers can continue with their activities
while detecting mental fatigue.

● Include an XAI user interface for inspection and identifying the level of fatigue
so that relaxing activities be scheduled with mentally fatigued employees.

● We also generated a mental fatigue dataset, and here we introduce the schema
for adding new datasets, allowing training of new users for mental fatigue
detection.

Here we described the general introduction to EEG signals and their use with
artificial intelligence (AI) techniques like the EEGNet CNNs. In this section, we
also describe the schema of our proposal and the more relevant novelties of our
work. The rest of this chapter is organized as follows: Section 4.2 shows the more
recent work in state of the art using AI techniques to interpret EEG signals.
Section 4.3 describes the methods and materials used to implement our proposal.
Section 4.4 shows the results of this research and a brief about them.
Finally, Section 4.5 describes the conclusions from the research described in this
chapter.

4.2 Related work

Several works with EEG signals for different proposes have appeared in recent
years with remarkable results due to the improvements in AI algorithms, computer
power, and the new algorithms for working with them.

Ref. [13] claims that the EEG signals demand massive datasets for training
because of the variability of the characteristics of those signals. Nevertheless, they
found that working with smaller datasets focused on a specific task with specific
individuals is possible.

Previous works showed that conventional neural networks have difficulties
mapping the characteristics of EEG signals with time and space as inputs.
Moreover, this produces a negative effect on the accuracy of classification tasks.
However, new neural networks with structures designed explicitly for EEG signals
successfully tackle this situation and allow them to work directly with time and
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space inputs. Examples of these proposed in [12,14] new EEG neural networks are
EEGNet and S-EEGNet, based on CNNs.

Additionally, the new structures of CNNs are expanding approaches and
applications. For example, Ref. [15] applies the EEGNet structure with EEG sig-
nals captured from the ear, which has a low length in the visual potentials.
Similarly, Ref. [16] applies different basic algorithms with characteristics including
wavelet transforms and artificial neural networks to identify mental fatigue in dri-
vers. Likewise, the work in [17] also analyzes mental fatigue, but it does with
specific hardware that produces a signal they call a mental wave. Also, Ref. [18]
concentrates information of the several electrodes with autoencoders in a com-
pressed signal.

EEG and CNNs work together well in analyzing brain information, as descri-
bed in [19]. For example, Ref. [20] shows an application. Another application with
EEG and CNNs designed in [19] uses brain activity to detect alert levels, avoiding
accidents in drivers. Similarly, brain activity detected with EEG signals and CNNs
allows identifying schizophrenia [21]. Likewise, Ref. [22] allows detecting mental
workload with EEG signals and CNNs with adaptative learning.

4.3 Materials and methods

The hardware we decided to use for reading the EEG signals is the Cyton card, but
before purchasing this device, we evaluated other platforms considering the details
described in [10]. Then, we simulated the signal filtration phase. Figure 4.7 is the
structure used for acquiring the output of a single channel with the Cyton

Processing with

EEGNet and

XAI Interface with

LabView

Reading with

Cyton

Reporting

Mental Fatigue

Figure 4.7 Diagram of the EEG proposed system with XAI for EEGNet
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acquisition card, sending the preprocessed signals to the EEGNet classifier, and
finally presenting the XAI interface to the user reporting mental fatigue detection.

4.3.1 Selection of computer equipment for mental fatigue
detection

In the part of the deep neural network’s classification and training, GPUs in proces-
sing accelerate the training process. Additionally, fine adjustments require laboratory
equipment with the LabVIEW software for preprocessing stages. According to Ref.
[12], the hardware they used for training was an NVIDIA Quadro M6000 GPU gra-
phics card with CUDA 9 and cuDNN v7 in Tensorflow, using the Keras API.

However, the neural network could also train on the Google Colab platform by
executing the EEGNet code with the information acquired in CSV; the files
recorded the EEG signals with a time–voltage electrode structure (time, voltage).
After that, the python code using the TensorFlow library runs to train the model.
Then, we export the trained model to include it later in the XAI interface. Thus, the
design of the XAI interface and the reading of signals imply a computer with
LabVIEW to develop the graphical interface and Python programming language to
execute the EEGNet neural network and TensorFlow used in its architecture to train
and execute it.

Therefore, the minimum requirement for processing is a PC with LabView,
Python, Tensorflow, and Nvidia video card. Alternatively, one could use Google
Colab, an instance in the cloud that allows Google servers to train models faster.
The general process is in Figure 4.8.

 Mental Fatigue

Dataset

 Training Model

Dataset

 LabView Interface

with

Trained Model

Figure 4.8 Schema for training EEGNet and using it in mental fatigue detection
with LabView XAI interface
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4.3.2 Generation of the dataset for training
The generation of the dataset starts by assigning repetitive tasks to a person. Then
the person puts on the EEG device to record signals of mental fatigue. After that,
the person relaxes to record the signals of not mental fatigue, like in Figure 4.9.

The fatigue induction process (15 min) includes matrix filling in a printed
document, making this repetitive activity as it occurs in the industry. Figure 4.10
shows the pattern the subjects should follow, in which they must write a cross in
one box, not the next. The entire matrix has 31 by 32 squares. On the other hand,
the meditation process (15 min) changes the user to comfortable poses with con-
tinuous respiration. Finally, the measurement (15 min) includes putting on the
Cyton headset and recording the EEG signals, as stated in Figure 4.9.

After recording the signals, we preprocessed them to avoid noise and extract
interest characteristics for BCIs. The preprocessing includes a second-order digital
Butterworth filter high pass with a limit of 98 Hz, then a second-order digital
Butterworth filter low pass with a limit of 9.4 Hz. After that, we normalize the
information and generate three virtual channels performing independent component

15 min

Fatigue

Induction

Put on

EEG
device

Signal

acquiring

Relaxing and

breathing

Signal

acquiring

1–2 min 15 min 15 min 15 min

Figure 4.9 Timeline of the procedure

Figure 4.10 Pattern with squares to fill for induction of mental fatigue
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analysis (ICA). Finally, we applied discrete wavelet transform (DWT) in 6 levels
with the type of wavelet Haar-Daubechies with order fourth (db04 in LabVIEW
Advanced Signal Processing Toolkit), as recommended and included in OpenBCI
for LabVIEW in [11]. The interface for OpenBCI in LabVIEW is in Figure 4.11.

4.3.3 Training of EEGNet
Training EEGNet, as in any other artificial neural network, determines the
numerical parameters for success in performing its goal. However, before training,
the structure and training parameters must be defined. In this work’s case of the
EEGNet, we used the training algorithm and parameters recommended in [12] and
described in Section 4.1.4.

However, we changed the original EEGNet model that includes four classes in
the softmax activation function: LA: left auditive stimulation; RA: right auditive
stimulation; LV: left visual stimulation; and RV: proper visual stimulation; to work
with two classes, mental fatigue and not mental fatigue.

The input variables are the EEG virtual channel signals collected after the
preprocessing stage from the information recorded with a 16 kHz sampling fre-
quency in the 15 min acquisition stage with eight channels.

The inputs include the raw signal without filters, the processed signal with high
pass and low pass filters; the ICA filter; the alfa waves; and the potential in the
alpha waves—these last two are obtained with the wavelet transform described in
Section 4.3.2.

After that, we recommend training an EEG neural network specifically for the
user because training a single model for anyone implies collecting a massive
amount of data. Alternatively, one can train the system for a specific person and
then continually read to warn about metal fatigue.

Figure 4.11 Open BCI interface for LabVIEW
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Therefore, in this proposal, we recommend training the model for each user
using the Adam optimizer as in [12], a method extensively used for training CNN
proposed and described in [23].

4.3.4 Graphical interface and control of communication
with the trained model

Developing a graphical interface with LabVIEW achieves a breakdown of the results
in a manageable and user-friendly user interface. The graphical interface also controls
the communication process according to the state diagram in Figure 4.12.

The EEGNet output is the percentage of security that the neuron has that a
pattern belongs to a class, in this work, to classes mental fatigue or not. In this
research, we propose a LabVIEW interface showing a percentage from 0% to 100%
labeled as the quantity of mental fatigue, linking that value to the prediction
accuracy obtained in the output of the Softmax activation function. We recommend
this change because it is more straightforward to interpret a level of mental fatigue
for a regular user than security belonging to a class, as is commonly reported in the
output of a Softmax activation function for machine learning experts.

4.4 Results and discussions

4.4.1 Results
This section shows the obtained results after following the methods described in
Section 4.3.
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Figure 4.12 Communication process controlled by the graphical interface in
LabVIEW
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On the part of the software, we developed a LabVIEW program that allows
acquiring signals for 15 min directly from the Cyton with a sampling frequency of
128 kHz and saves them after preprocessing in a separate file per comma, giving us
eight columns dedicated to each channel, and each line is a sample, sampling 200
times per second for the CSV file (200 Hz).

The preprocessing results take the raw signals with a sampling frequency of
128 kHz and process them as described in Section 4.3.2. Figure 4.13 shows, for a
user of the device after induction of mental fatigue, the raw signals, the output of
the Butterworth filters, the outputs of virtual channels obtained with ICA, and the
alpha and power of alpha outputs obtained with the DWT of fourth-order and six
levels using Haar-Daubechies waves.

Similarly, Figure 4.14 shows, for a user of the device after relaxing to reduce
mental fatigue, the raw signals sampled at 128 kHz, the output of the Butterworth
filters, the outputs of virtual channels obtained with ICA, and the alpha and power
of alpha outputs obtained with the DWT of fourth-order and six levels using Haar-
Daubechies waves.

After that, we tested the EEGNet training and classifying data from event-
related potentials (ERP) from a four-class classification task (Figure 4.15) using the
sample dataset provided in the MNE package. The information used by the network
as input for training uses the file FIF (Fractal Image Format Bitmap file), but in
future work, we will implement another type of file with the raw signals after
preprocessing using the information we generated for the dataset. This test aims to
read the data and verify compatibility and the framework’s configuration for
working with the EEGNet. We proof this concept locally using the purchased
computer equipment described above. Although we do not show the results of
training the model with our dataset, this is not the goal of this work but to show an
XAI interface that delivers to the user a result easier to interpret associated with
detecting metal fatigue.

The graphical XAI interface we generated is in Figures 4.16–4.18. The inter-
action with the user begins in the main window (Figure 4.16), giving the selection
options in the communication port, selection of acquisition channels, and the per-
son’s name to classify or make a database for training, allowing the generation of a
model for each user (like we recommended in Section 4.3.3). Next, the acquisition
histogram window (Figure 4.17) provides the signal acquired by Cyton when
recording the database in real-time. Finally, the fatigue measurement window
(Figure 4.18) shows the spectra in time and frequency of the preprocessing and the
final result of the fatigue percentage based on the neural network’s accuracy.

4.4.2 Discussions of results
The first result we obtained is the communication and measuring system which
allows us to configure the essential characteristics of the EEG device and acquire
the signals for being shown and processed in the developed application. The system
produced accomplishes all the requirements stated in Section 4.3. In addition, it
allows controlling the communication port and the number of channels for
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measuring, including the name of whose the signals belong for later grouping in the
dataset generated. Moreover, it allows two modalities, one for dataset generation
and the other for measuring and classification with the trained system, as shown in
Figure 4.16 in Section 4.4.1.
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The system also includes plotting tools to see the acquired signals and their
different characteristics depending on the level of the processing—for example, the
raw acquired signals in the histogram acquisition tab in Figure 4.17, which we
detailed from the dataset saved in Figures 4.13 and 4.14. Similarly, after pre-
processing the filtered signals, the level of fatigue is perceived in the signals, as
shown in Figure 4.18 for the mental fatigue tab, where the EEGNet process the
filtered signals with the TensorFlow trained model with the results shown in
Figure 4.15 with the concept proof. Finally, Figure 4.18 shows the tab with the

Figure 4.15 Test of EEGNet framework with the MNE dataset of ERP signals

Figure 4.16 Main window of the proposed XAI mental fatigue interface
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Figure 4.18 Mental fatigue measurement window of the proposed XAI mental
fatigue interface

Figure 4.17 Histogram of acquisition window of the proposed XAI mental fatigue
interface
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mental fatigue final result, which the supervisor can verify intuitively due to the
XAI processing. The mental fatigue results are in a range from 0% to 100%.

4.5 Conclusions

In this work, we propose the use of an XAI interface to help inexpert users to
comprehend the output value of a Softmax activation function of an EEGNet–CNN
specialized in interpreting EEG signals. The proposal focuses on solving a problem
of interest in Industry 4.0, which measures mental fatigue in workers who perform
repetitive tasks.

We successfully acquired EEG signals at 128 kHz with the Cython platform.
Moreover, the device complied with the requirements to obtain information from
each channel.

After that, we preprocessed the signals in LabVIEW with Butterworth filters
and extracted virtual channels with ICA. Then, we obtained the alpha band signals
with a DWT of fourth-order and six levels using Haar-Daubechies waves for users
with mental fatigue induction and after relaxing from it.

Induction of mental fatigue was achieved with the proposed activity of filing
squares while changing to comfortable positions with continuous breathing allow
reduce mental fatigue.

The selected EEGNet architecture worked as a proof of concept because we
only tested the model and the framework for training it.

Our proposal is novel since it applies the EEGNet to a new application for
detecting mental fatigue in the presence of repetitive activities in industry 4.0. For
this purpose, we designed and acquired an interface that allows characteristic
extraction for the generation of datasets for subject training models to detect mental
fatigue for repetitive tasks in Industry 4.0 specific for each user. We did not find
similar approaches in the literature to our proposal for mental fatigue detection in
Industry 4.0. Moreover, we include an interface that simplifies the final result with
an XAI model that allows any supervisor to set and understand the system without
artificial intelligence experience or knowledge in convolutional neural networks.

Additionally, we generate a dataset and models for working with one user at a
time for a selected group of people who fulfilled the function of providing neural
information with the Cython interface. These datasets can be further applied to test
other models detecting mental fatigue in Industry 4.0. However, we considered that
the group of people was not representative enough; other works present more
extensive databases with information from up to 100 people.
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Chapter 5

XAI for medical image segmentation in medical
decision support systems
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Abstract

Medical image segmentation has contributed immensely to medical care delivery.
With the speedy development of deep learning (DL), medical image segmentation
processing based on deep convolutional neutral networks (CNNs) has become a
research interest. Explainable artificial intelligence (XAI) provides pathways for
useful MDSSs. The necessity for XAI in MDSSs is largely based on ethical, fair
decision making, strengthening means of chronological procedures, and unfairness
that should be revealed during medical image segmentation processes. Studies have
shown that an inaccurate diagnosis is as a result of not identifying the limits of a
pathological lesion or organ. It is clear that the likelihood of survival can be
improved if the tumor is identified and classified properly at its early stage. In this
study, we provide an enhanced application of fuzzy C-means and Artificial Neural
Network Algorithm for medical image segmentation. The paper intends to review
and contrast the techniques of automatic detection of brain tumor through magnetic
resonance imaging (MRI) by the application of fuzzy C-mean and artificial neural
network (ANN). Explanation given to these AI processes creates medical decision
confidence, trustworthiness, acceptability, and potentials for its incorporation in the
medical image segmentation workflow. Based on the discussions on human
pathological tissues and organs, the specificity between them and their classic
segmentation algorithms is revealed.

Keywords: Explainable artificial intelligence (XAI); Artificial neural net-
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5.1 Introduction

Explaining medical decisions to patients or users in artificial intelligence (AI)-
based predictive models is a necessity [1]. Segmentation processes with artificial
neural network (ANN) is the foundation of machine learning (ML) and deep
learning (DL). The algorithm is composed of levels of related points [2]. The input
data may be radiomic characteristics imported from the image files. The real carrier
of automated medical imaging is the visual recognition based on AI to derive lower
error rates than the human observation [3]. The aim of ML in medical imaging
includes detecting and classifying lesions, automated image segmentation, data
analysis, extraction of radiomic features, prioritizing reporting, studying triage, and
reconstructing medical images. ANN runs parallel with conventional statistical
analysis that provides insights into clinical data [4]. The resultant of the segmen-
tation affects medical image analysis processes, for example, image representation,
object definition, measuring object features, and classifying of medical objects.
Hence, image segmentation becomes a necessary process for assisting the deli-
neation, characterization, and visualization of regions of interest in any medical
image [5]. The physical segmentation is labor intensive, tiresome, lingering, and
imprecise, particularly with the modalities made up of a large amount of images
that need to be checked. Cheng et al. [6] posited that convolutional neutral net-
works (CNNs) are the basis of DL means for medical imaging, with multifaceted
ANNs made up of prejudiced links involving neurons that are accustomed and with
repetitive spotlight to training data. Modern AI systems have witnessed an increase
of obscure (black-box) decision systems, for example, deep neural networks
(DNNs) [7]. Regrettably, the majority of the AI representations designed for ML
and DL are tagged “black-box” by researchers since the fundamental composition
is difficult, non-linear, exceptionally complicated, and elucidated to medical
experts. This vagueness has made explainable AI (XAI) architectures to be a
necessity based on three reasons, as revealed by Ref. [8]:

● Claims to build interpretable models.
● Demand for methods that create human relationship.
● Requisite for reliability of assumptions.

However, there have been a lot of problems that are associated with mistrust as
a result of the cloudiness with un-XAI models. Some of these problems being
addressed are listed below:

● Un-explainable and incorrect diagnosis of images (in the case of brain tumor)
where loss of life may occur.

● The life span of patients affected by wrong medical image segmentation
techniques that are not good enough to enhance the image received from
magnetic resonance imaging (MRI), producing wrong result.

● Non-detection of brain tumor as its initial stage of early formation may result
to the failure of the brain.
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5.1.1 Contributions of the current study
The current study contributes to the followings:

● Integration of other segmentation techniques with fuzzy C-means to achieve a
better explainable results in the detection of brain tumor.

● An enhanced filtering technique that improves the quality of the MRI brain
image with specific explanation.

● The integration of fuzzy C-means with the ANN that combines with other
operation like morphological operation to produce a more accurate and
improved quality of MRI of the brain tumor detected and also inclusion of
three performance evaluation in percentages to determine accuracy, specifi-
city, and precision of the brain images.

5.1.2 Chapter organization
This chapter is presented in the following sections: Section 5.1 focuses on the
introduction of the XAI for medical image segmentation in medical decision sup-
port systems (MDSSs). Section 5.2 presents literatures of related works in XAI for
medical image segmentation in MDSSs. In Section 5.3, the methodology will be
discussed including system architecture, program flowcharts used for the medical
image detection purposes; comprising feature extraction, dimensionality reduction,
detection, segmentation, and classification. Section 5.4 will be for discussion.

5.2 Related work

5.2.1 Concept of XAI
An unclear method of AI does not promote confidence and acceptance in the midst
of medical experts. Transparency of AI methods becomes the best means in
AI-driven processes [9]. Explainability is a vital aspect of trust given that it
depends fully on the expert understanding of the algorithms or the outcomes.
Hence, AI (DNNs) processes should be human centered for justifications of its
outcomes [10]. Human-centered results clarifying a definite prediction on the
patient, by revealing the behavior of the clinical outcomes. In this study, we will
use terms such as, understandability, intelligibility, comprehensibility, interpret-
ability and transparency in discussing XAI [10]. Schoenborn and Althoff [11]
argued that XAI assist experts understand transparent, relevant, and justified
clinical outcomes. In the other hand, ML algorithms function by training raw
clinical data and present them as new data [12]. Barredo Arrieta [7,13,14] opined
that ML methods are linked with outcomes from biased clinical decisions. In this
study, we will use the definition of XAI as posited by [15], which means that XAI
is the collection of novel ML systems whose outcomes are explicable to enhance
experts understanding, definite trust, and efficient management of usable AI sys-
tems. The definition adopted shows the exact aim of the interpretability from the
expert viewpoint.
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5.2.2 Framework for XAI
XAI methods can be categorized in two ways: Transparent explainability—this method
of interpretability is through transparent methods and Post-hoc explainability—
its explanation employs exterior XAI methods. Additionally, the former can be splitted
into pre-modeling and during-modeling. Elshawi et al. [16] listed the objective of the
latter to be included to understand the methods and also describe clinical data used in
developing the representations. But the objectives for modeling interpretability create
intrinsic representations. The means for the classification of post-hoc interpretability
scheme is interpreting the global or local interpretations [7,16]. In this chapter, we
include XAI methods in the outcome as shown in Figure 5.1.

5.2.3 Explainability in healthcare
In healthcare delivery, models developed through AI methods will intermingle
with healthcare experts and patients [17]. Patients have a significant part to play in
AI applications; the patients’ data are affected by the realization of AI. According
to Ploug and Holm [18], patient-centered explanation involves the right to question
clinical outcomes based on the request for proper interpretation. This is known as
contestability. Hence, it is practical to adapt explainability based on suitable clin-
ical explanations. In such a medium, experts find ways of interpreting outcomes to
patients [19]. Therapeutic assessment trail-related process is adapted where pre-
eminent examination is chosen as a result of existing records. Hence, clinicians in
regular examination spotlight on the preeminent result that matches the data,
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highlighting the usefulness of the situation. In many situations, full interpretations
may not occur in the process [20]. A typical illustration is an anesthesia precise
process revealing trouncing of consciousness that was unidentified despite its fre-
quent usage [21]. Still, clinicians appreciate its usage and paybacks. Also, con-
servative antidepressants, like serotonin reuptake inhibitors, are regularly given,
even though accurate methods are not revealed [22]. Lack of full underlying
understanding seems to portray some of the clinician’s practice [23]. Hence, the
best part is to have enough to practically understand methods [24], as such, a
method to test malignancy traits of ovarian cysts applying imaging information that
discards feature like menopausal condition and family record [25]. Furthermore,
ML platform non-replicating of the local situation might be prejudiced [26]. Also,
elucidating the dangers of unfairness will result in the fundamental retention of
patients and dealing with the moral necessities of justice [27]. Wrist wearables are
used for determining heart rate but inaccurate on dim skin and give a phony result
on black patients [28]. Hence, in making explanation useful to clinicians, it
becomes doubtful that a sole clarification offers sufficient data to seize insinuations
of using AI in medical decision. Acceptability of lower levels of interpretation is
part of the vast medical examination for medical decision [29]. A typical example
is via AI supporting examination decisions [30]. Inference of the likelihood stating
how the method is understandable needs the sum of the collective standards as
shown in Figure 5.2.

In addition, a ML algorithm for forecasting pregnancy result that goes after
in vitro fertilization could accept satisfying less explainability standards than a ML
algorithm for breast cancer analysis.
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As shown in Figure 5.3, the explainability for healthcare is focused on the
clinical processes. In distinction, higher explanation is needed in risk forecasting
systems because of the high priority rating [31].

5.2.4 DL concept and applications
Currently, complex ANN-based structures exist in clinical task and categorization
issues are diverse. Here, DNNs are used to denote all models. The observed
achievement of DL models, for example, DNNs, result in a blend of proficient algo-
rithms with vast statistical space. This space-composed layer makes DNNs as com-
plicated “black-box” models [32,33]. Based on the use of ML methods, the lesion
detection techniques are automated with convincing precision and human effort [34].

5.2.5 Computer vision tasks
Cheng et al. [6] in Figure 5.4 listed various clinical tasks performed by a
computerized-based vision for which DL models are used in medical imaging as in
the following:

(i) Image categorization: This involves forecasting the labeling of the entire
binary image (two classes) or multiclass (more than two).

(ii) Object detection: This is the recognition and localization of precise unit of
the element of image.
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(iii) Semantic segmentation: It allocates individual picture element to exact
classes. A typical illustration is that individual picture element in lever can
be allocated to parenchyma, tumor, or blood vessel.

(iv) Instance segmentation: Refers to the picture element level recognition and
demarcation of several objects in the same class, for example, lung nodules
independently differentiated on a chest radiograph.

From Figure 5.4, Cheng et al. [6] argued that:

(a) The categorization of image is to allocate a label from a structure to a
known image.

(b) The detection of an object aims to identify human organs, lesions area,
structures like metastases that are in red, aorta in green, stomach in blue, and
the spleen in a yellow (all square size).

(c) The semantic segmentation allocates an object classification label to an indi-
vidual picture image, for example, liver metastases which have yellow color.

(d) The instance segmentation allocates labels to every picture element, for exam-
ple, each of the liver metastases is in sections (i.e., red, blue, purple, and yellow).

Classification: liver metastases

Semantic segmentation Instance segmentation

(a)

(c) (d)

(b)

Metastases

Metastasis 1 Metastasis 2 Metastasis 3 Metastasis 4Liver metastases No metastasis

Aorta Stomach Spleen

Object detection

Figure 5.4 Contrast-enhanced CT images showing computer vision tasks [6]
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5.2.6 Convolutional neural networks (CNNs)
CNN is a made up of heap of layers, individually handling a definite operation, for
example, convolution, pooling, and calculating loss. Each intermediate layer gets
the output of the former layer as its input. Layers get the input layer from the past
layer as the input. The starting layer becomes the input layer linked to the input
image with neurons that are equipment to the pixel numbers in the input image. The
next stage is the CNN layers showing outcomes of convolving quantities of filters
with input data to present feature extraction. The filters are called kernels, and of
smaller dimensions, based on the essential part. The neuron reacts to the exact
region of the former layer, termed the receptive field. The yield of each CNN layer
is called the activation map, emphasizing the consequence of using a precise filter
on the input. These stretched the idea by applying various imaging modalities, for
example, brain MRI, breast MRI, and cardiac computed tomography angiography
for segmentation process [38].

Activation

(ReLU)

Max-pooling

(2 × 2)

Convolutions

Input

Feature

maps

Activation

maps

Outputs

Figure 5.5 The structure of CNNs [6]
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However, showing 2D convolutions with an isotropic kernel on anisotropic 3D
images can be difficult [39]. In detecting, the information represents images
denoted with leaping box match up, demarcating traits of interest. Organizing
object data in ML algorithm process is difficult [34,35]. Even with inadequate
information, the model can be trained to forecast labels exactly [36]. The means to
increase the training dataset to avert over fitting is image augmentation. Figure 5.6
shows data augmentation process. This involves:

(i) Classic data augmentation: This involves applying a range of transforma-
tions, for example, translating randomly, rotating, flipping, scaling, cropping,
bighting, and contrasting adjustments to original CT images.

(ii) Artificial data augmentation: This employs a generative adversarial network
(GAN) creating extra artificial images with a numerical distribution.

The illustration in Figure 5.6 shows the CycleGAN training to switch contrast-
enhanced CT images to non-contrast images. The generator afterward supplements
early dataset for training on a task segmenting non-contrast images [37].

A similar process of raising the amount of preparing images involves trans-
lating randomly, rotating, flipping, scaling, cropping, brighting, and contrasting
adjustments. GANs can produce irregular images resembling exact images [21].

5.2.7 Medical image segmentation
Segmentation is an important aspect of processing image. Aarish and Devanand [5]
posited medical image segmentation as the practice of facilitating the delineation,
characterization, and visualization of regions of interest in any medical image.
Previous to denoising an image, it is segmented to recuperate the original image.
The major reason for segmentation is to decrease the information for effortless

Initial dataset

(a)

(b)

Initial dataset

Contrast-enhanced CT Artificial non-contrast CT

Trained generator

CycleGAN training

Affine transformations Augmented data

Synthetic augmented data

Rotation

Translate

Crop

Zoom

Additive
Noise

Figure 5.6 Demonstration of data augmentation [6]
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analysis. Numerous techniques for automated segmentation of computed tomo-
graphy (CT) and MRIs are used in transforming medical practices. Imaging experts
are engaged in image elucidation for patients with cancer, obesity, cardiovascular
disease, neurodegeneration, osteoporosis, arthritis, etc. These approaches will aid
in disease diagnosis, determining the prognosis, selecting the patients for therapy,
and to observe responses to treatment. Bensalah et al. [40] argued that in classi-
fying medical image segmentation, the following approaches should be mentioned.
These approaches are the following:

(i) Semi-automatic vs automatic segmentation: The object, for example, organ,
tissue, pathological lesion, or other structure, is used for the examination or
treatment of a particular disease.

(ii) Supervised and unsupervised segmentation: Supervised segmentation needs
prior training, such as intensity normalization and classification. While
unsupervised does not need training and is less accurate.

5.2.8 Medical image segmentation techniques
Dar and Padha [5] listed segmentation methodology to include the following:

(i) Thresholding: Local thresholding, Otsu’s method, Gaussian mixture
approach.

(ii) Region based: Region merging and splitting.
(iii) Edge based/boundary based: Edge detection, Prewitt filter, Sobel filter,

Canny filter, Laplacian of Gaussian LOG, Watershed.
(iv) Clustering methods: k-means/iso-data algorithm, Fuzzy C-means algorithm,

expectation maximization (EM) algorithm.
(v) Other methods: Level set method (LSM), ANNs, Atlas-guided approach,

generic algorithms.

Dar and Padha [5] compared segmentation methodologies by specifying
advantages and disadvantages as given in Table 5.1.

5.2.9 Medical imaging modality
In the diagnosis and treatment of patients, imaging assists radiologists to perform
diagnosis. A wide range of imaging modalities that are being used for diagnosis and
in effective treatment planning currently is in use. The widely used main modalities
are spitted into anatomical and functional. In this study, we discuss about the ana-
tomical modality. Digital images can be represented in 2D, 3D, and 4D systems. The
elements of an image in 2D are referred to as pixels, while as in 4D, they are referred
to as Voxels. In this study, specific medical imaging modalities are presented and
emphasis is mainly focused on ultrasound, MRI, CT, and X-ray. Table 5.2 shows
various imaging modalities, their application areas, and recommended methods.

(i) CT:
CT helps in capturing different sectional planes (tomography) which are
difficult to process otherwise. It visualizes small density gradients i.e., in
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Table 5.1 Difference in segmentation techniques

Methodologies Advantages Disadvantages

Local thresholding Ease of implementation
No need of prior information

Produces noisy and blurred edges

Otsu’s method Minimizes inter-class and
intra-class variations. No
particular histogram shape con-
sidered prior. Extendable to
multi-level thresholding

Formation of binary classes in
gray-level images. Enhance-
ment in density with increase
in levels of threshold. Regions
might get fused
or varied

Gaussian mixture
approach

Used for histogram-based problems
Decreases categorization error

probability
Favored for small size-classes
Iterative model

All histograms do not follow
Gaussian model

Resultant intensities are fixed and
non-negative

Region growing Its support is on similarity and
immune to noise

Costly method

Region merging
and splitting

Dividing an image on demand
resolution and calculating mean,
variance of segment
pixel value

May result in blocky segments

Edge detection Choose a huge region in an image.
It uses images with irregular
elucidation

Applicability for basic back-
grounds

Prewitt filter Calculates edges and their
orientations in 8 directions
of pixel

Less accuracy
Sensitive to noise

Sobel filter Calculates edges in
horizontal and vertical
orientations

Better noise suppression
Isotropical results

Expensive

Canny filter Calculates wide range of edges and
orientations

Adaptive

Difficulty in working effectively
at curves, corners

Laplacian of
Gaussian (LoG)

Detection of blurry edges
and sharp detail

Complexity in working at corners

Watershed Decreases over-segmentation
Division of overlapping

objects. Quick and dependable
output.

Time consuming and gradient
based

K-Means/iso-data
algorithm

Quick and easier to used Sensitive to variety and
initialization of centroids

(Continues)
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Table 5.1 (Continued)

Methodologies Advantages Disadvantages

Fuzzy C-means
algorithm

Unsupervised and considers
vagueness, uncertainty in
an image

Best solution is undefined
Initialization is susceptible
Slightest compatible for noisy

images

EM algorithm Unsupervised
Iterative and reduced sensitivity

Results in noise generation and
intensity-inhomogeneity.

Slow convergence rate
Gets stuck into local optima
High-computational cost

Level set method
(LSM)

It is efficient, versatile, robust and
accurate

Sensitive, requires considerable
design planning for level set
function

ANN Ease of implementation
Applicable to diverse problems

Selection of architecture
Black-box problem

Atlas-guided
approach

Computationally fast
Suited for structures that are con-

stant over populace of study
Labels are transferred during

segmentation

Difficulty in accurate segmenta-
tion of complex structures with
non-linear registration methods

Genetic algo-
rithms

Incremental segmentation
Adaptive to user access patterns
Computationally fast

Choosing number of generations,
population size

It does not always result in opti-
mal solution

Table 5.2 Medical imaging modalities and their application areas

Technique Recommended methods Application
area

Thresholding and
region-based segmen-
tation

Abdomen, appendix, bladder, brain, breast, chest,
cervix, kidney, lungs, pancreas,
esophagus

CT scan

Watershed and region-
growing (3D)

Clustering (2D)

Neuro-imaging, cardiovascular, musculoskeletal,
liver, gastro-intestinal, functional,
oncology, phase contrast

MRI

Thresholding based Transrectal, breast, Doppler, abdominal, transab-
dominal, cranial, gall-bladder, spleen

Ultrasound

Edge-based and wa-
tershed

Radiography, mammography, fluoroscopy,
contrast-radiography, anthography, discogra-
phy, dexa-scan, upper GI

X-ray
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case of the brain, it distinguishes between gray-matter, white-matter, and
cerebro-spinal-fluid (CSF).

(ii) Ultrasound:
It is a non-invasive imaging process using sound waves to produce compu-
terized images reflected by organs and interior organs of body. It can also be
used for interventional procedures. It does not have any known harmful
effects on human body in clinical imaging. It is inexpensive technique but it
cannot visualize the anatomical regions (i.e., brain).

(iii) MRI:
MRI uses magnetic fields and radio-frequencies to generate visualization
area of different body organs. The variation in reflected frequencies helps in
localization of different body organs with the help of magnetic field. This
method is employed to get fine details of organs i.e., brain, liver, chest,
pelvis, and abdomen.

(iv) X-ray:
X-ray is also a non-invasive imaging method and one of the oldest imaging
techniques that use ionizing radiations that are rapid and of shorter duration.
This imaging technique is inexpensive as compared to others. It can also be
used in interventional procedures for detecting fractures in bones.

5.2.10 Summary of related works
Table 5.3 shows related works on XAI models; the purpose, model used and
findings by various authors.

Table 5.3 Related XAI models

S.
no.

Citations Purpose Model used Findings

1. [41] The authors argued on
the determinant of
biochemical explain-
able ML

Metabolic allele classi-
fier

Post-hoc and visual
XAI methods and
techniques were
used

2. [42] This paper applied
interpretable ensemble
AI methods to classify
hemodialysis-patient

K-means R-group gradients XAI
method was used

3. [8] This paper built an
explainable QSAR
methods with ML
algorithms

SVM Visual XAI and post-
hoc methods were
used

4. [43] The authors presented
clinical explainable
DL method for
detecting glaucoma

CNN Visual XAI and post-
hoc methods were
used

5. [44] Authors used deep affi-
nity for explainable
DL and CNN

RNN and CNN Post-hoc, attention me-
chanism and visual
methods and techni-
ques were used

(Continues)
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Table 5.3 (Continued)

S.
no.

Citations Purpose Model used Findings

6. [45] Authors used deep affi-
nity for seriously ill
patients

RNN Post-hoc, attention me-
chanism and visual
methods and techni-
ques were used

7. [46] This paper assessed and
validated an explain-
able DL structure for
Alzheimer’s disease
classification

FCN Post-hoc and visual
XAI methods and
techniques were
used

8. [47] This paper classified ge-
netic patterns

Sequential rule map-
ping (SRM)

Transparent and visual
XAI methods and
techniques were
used

9. [48] This study interpreted AI
for breast cancer

Weighted K-nearest
neighbor (WkNN)

Transparent and visua-
lization XAI meth-
ods and techniques
were used

10. [49] The authors assessed DL
for RNA reports

Neural network (NN) Post-hoc, DeepLIFT
and visualization
XAI methods and
techniques were
used

11. [8] The authors predicted
avoidance of hypox-
aemia

XGBoost Post-hoc, local, SHAP,
and visualization
XAI methods and
techniques were
used

12. [8] This article discusses
Gaussian Process Re-
gression for ML inter-
pretability

GPR Transparent and global
were XAI methods
and techniques were
used

13. [50] This paper discusses
interpretable analysis
for COVID-19 from
chest CT

Decision tree (DT) Transparent and visual
XAI methods and
techniques were
used

14. [51] This paper agrees on
causal inference
interpretable ML

Generalized linear re-
gression model
(GLM)

Transparent and rule-
based XAI methods
and techniques were
used

15. [52] The authors presented
visually
interpretable DL for
the prediction of mor-
tality

Multi-scale CNN Post-hoc and visual
XAI methods and
techniques were
used

16. [16] This paper discusses ex-
plainable ML for hy-
pertension

Random forests ensem-
ble

Post-hoc, local-LIME,
and SHAP were used

(Continues)
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Table 5.3 (Continued)

S.
no.

Citations Purpose Model used Findings

17. [53] This paper discusses
interpretable DL for
survival analysis

DNN Post-hoc was used

18. [54] The authors argued on
3D DL on hyperspec-
tral images

Deep CNN (DCNN) Post-hoc was used

19. [8] This paper presented a
study on adverse drug
reactions with
interpretable DL
structure

DNN Post-hoc was used

20. [8] This paper presented
diabetic retinopathy
with ML algorithm

SVM Post-hoc and decision
tree XAI methods
and techniques were
used

21. [55] This paper presented
stimulated-based
structure in surgery

Linear SVM Transparent XAI
methods and techni-
ques were used

22. [56] The authors argued on
interpretable skin le-
sion classification
with DL models

CNN Post-hoc, LIME, and
local were used

23. [57] The authors evaluated
XAI on medical
imaging tasks

The modality-specific
feature importance
(MSFI) metric

The outcomes indi-
cated that recent
XAI algorithms are
inadequate

24. [58] The authors evaluate
XAI for X-ray image
analysis

Review was done on
Kitchenham and
Charters

No confidence in the
explanation

25. [59] The authors argued on
the application of
XAI in diagnosis and
surgery

XAI trends in diagnosis
and surgery

Summarizing the XAI
methods

26. [60] This paper presented
XAI for CNN-based
prostate tumor seg-
mentation in multi-
parametric MRI cor-
related to whole
mount histopathology

An explainable DL
model to understand
the predictions of a
CNN for prostate tu-
mor segmentation

The CNN achieved a
mean Dice Sorensen
Coefficient 0.62 and
0.31 for the prostate
gland and the tumor
lesions

27. [61] The paper proposed a
framework for eX-
plainable DL for pre-
diction of brain tumor

CNN, LIME, and
SHAP

Higher interpretability
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5.3 Analysis of the proposed system

The proposed system is the hybridization of enhanced fuzzy C-means and ANN in
medical image segmentation process to detect brain tumor at its initial stage of
formation. This system creates pathways for useful decisions. The system achieved
the following:

(i) Detection of tumor of the brain using enhanced fuzzy C-means and artificial
neural network.

(ii) Incorporate an enhanced image processing operators with a 5 � 5 template
used for digital image processing.

(iii) Incorporate high-pass filtering technique and Gaussian convolution on image
from MRI machine.

Figure 5.7 shows the single use case diagram for a user, while Figure 5.8 shows
the single use case diagram for the system using enhanced fuzzy C-means.

In Figure 5.7, the user logins before the access is granted.
In Figure 5.8, the system verifies and authenticates login detail supply by the

user before the access is granted for the system to invoke the enhanced fuzzy C-
means on selection by the user which will perform the following operations:

(i) Denoise image that was uploaded
(ii) Segment the image

(iii) Extract features
(iv) Detect tumor and indicate the type if it is mass or malignant type of tumor

The study further unravels the algorithmic operation as shown in Figure 5.9.

(i) Image preprocessing stage: Images of the brain are captured via the MRI
machine scanned, as a result, these images contain noise, so we will first of

Login

Supply false

login detail

User

Enter password

Upload the

image

Read MRI image from

database

Figure 5.7 Single use case diagram for a user
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all denoise the image by process filtering technique using Gaussian
convolution.

(ii) Segmentation stage: In this stage, we applied the region growing technique
which is an easy region-based image segmentation technique. It can be

System

Login

De-noise image

Segment image

Extract features

Detect tumor

Mass type

tumor

Malignant type

tumor

Verify and

authenticate user

Invoke enhanced

fuzzy C-means

Figure 5.8 Single use case diagram for a system using enhanced fuzzy C-means

System

Login

Verify and

authenticate user

Invoke enhanced
artificial neural

network

Image
preprocessing

Segment image

Tumor detected

No tumor
detected

Mass tumor
type

Malignant
tumor type

Label
component

Image

identification

Stage

identification

Figure 5.9 Single use case diagram for a system using enhanced ANN (EnANN)
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referred to as pixel-based image segmentation due to its name as it engage
the process of selecting initial seed point.

(iii) Label of connected component stage: This is the third stage after the recog-
nition of connected component of all the images, every set of connected pixel
having the same gray-level assigned the same unique region label.

(iv) Tumor identification: In this stage, we are having the dataset, previously
collected from the brain MRIs and it is in 3D representation and used of 3D
analyzer from which we are extracting features. A knowledge based will be
created for comparison.

(v) Stage identification: In this step, we will identify that patients who are suf-
fering from brain tumor, it is also necessary for us to find out which type of
tumor the patients is suffering from if it is mass or malignant types of tumor.

Figure 5.10 shows the hybridization of the enhanced fuzzy C-means and ANN
that is more robust used in detecting brain tumor.

5.3.1 Analysis of algorithm for proposed system
The below is the algorithm for an enhanced fuzzy C-means with Laplacian
operators of a 5 � 5 image and ANN that is used in the detection and segmentation
of brain tumors in patients:

Proposed algorithm for multiple kernel fuzzy C-means (MKFCM) with spatial
biasing

Step 1: Open the folder; load 3D representation from MRI machine scanned
(JPEG format)

Step 2: Ensure image is RGB, else change the image to gray image

Enhanced system

Login

Verify and

authenticate user

Invoke hybrid technique

(enhanced fuzzy C-Means +

enhanced ANN)

Image preprocessing

(median+Guassian

convolution filters)

Segment image

(region growing)

Extract features

Label

component

Image

identification

Stage
identification

Mss tumor
type

Malignant

tumor type

Tumor detected

No tumor

detected

User

Figure 5.10 Single use case diagram for enhanced system using hybrid technique
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Step 3: Change 3D representation twice pixels value
Step 4: For MKFCM, predefine the clusters center Ci (c= 3 clusters)
Step 5: Get the size of the whole image
Step 6: Perform feature extraction from segmented image of the brain
Step 7: To determine TP (true positive), TN (true negative), FP (false positive),

FN (false negative)
Step 8: Perform the calculation using the formula below:

Accuracy ¼ TPþ TN

TPþ FPþ FN þ FP
� 100; Sensitivity ¼ TP

TPþ FN
� 100

Specificity ¼ TN

FP þ TN
� 100;

Step 9: Convert the input matrix to a vector
Step 10: Compute the membership value by using

Uij ¼
ð 1� KM xj;Ci

� �� �þ ni 1� KM xj; ciÞ
� �� ��1= m�1ð Þ

Pc
i¼1 1� KM xj;Ci

� �� �þ ni �xj;Ci

� �Þ� ��1= m�1ð Þ ; i ¼ 1; 2; . . . . . .C

Step 11: Update the cluster center by using:

Ci ¼
Pn

j¼1 Um
ij KM xj;Ci

� �
xj þ niKM �xj;Ci

� �
�xj

� �
Pn

j¼1 Um
ij KM xj;Ci

� �
xj þ niKM �xj;Ci

� �� � ; i ¼ 1; 2 . . . ::C

Iteration Process Start:
Step 12: Update the membership value Uij by using:

OG
m U ;Cð Þ ¼

Xc

i¼1

Xn

j¼1

Um
ij ð1� KM xj;Ci

� �þ
Xc

i¼1

Xn

j¼1

niU
m
ij 1� KM �xj;Ci

� ��

where KM(xj, Ci) = K1(xj, Ci) x K2(xj, Ci), K1 xj;Ci

� � ¼ exp
�jjxj�Ci

jj2

s2
1

� �

K2 xj;Ci

� � ¼ exp
�jjxj�Ci

jj2

s2
2

� �

x is the mean for MKFCM_S1 and the median for MKFCM_S2 of the neighbor
pixels s2

1; s2
2 that are the variances.

Step 13: Update the cluster center Ci by using:

Uij ¼
ð 1� KM xj;Ci

� �� �þ ni 1� KM xj; ciÞ
� �� ��1= m�1ð Þ

Pc
i¼1 1� KM xj;Ci

� �� �þ ni �xj;Ci

� �Þ� ��1= m�1ð Þ ; i ¼ 1; 2; . . . . . .C
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Step 11: f | Cnew – Cold| > e; e ¼ 0:001ð Þ then go to Step 1
Else stop Assign each pixel to a specific cluster for which the membership is
maximal
Step 12: Display result: accuracy, precision, specificity, and sensitivity.

Detection stage
In this processing stage, the image under segmentation can be achieved by

means of binarization method (i.e., either 1 or 0). We denote the binary image by
summing up the total number of black and white pixels as given in the formula
below:

Image; I ¼
Xm

W¼0

Xm

H¼0
f 0ð Þ þ f 1ð Þ½ � (5.1)

Pixels = Height (H) � Width (W)
f (l) = black pixel (digit 1)
f (0) = white pixel (digit 0)

No of White; P ¼
Xm

w¼0

Xm

H¼0
f 0ð Þ½ � (5.2)

where m is the maximum image size; P is the total number of white pixels
(height � width)

1 Pixel = 0.264
The formula for area of tumor size

Size of Tumor S ¼
ffiffiffi
P
p� �

� 0:264
h i

mm2 (5.3)

A. Algorithm for detection
The steps used for brain tumor detection are shown:
Step 1: Apply .JPEG MRI images from a database.
Step 2: Confirm image format is specified, go to Step 3.
Step 3: Authenticate color is gray, then change to gray-scale using rgb to gray ( ).
Step 4: Locate the edge of the gray-scale image using binarization and thresh-

olding techniques.
Step 5: Compute the sum digit of white pixels (digit 0) in the image using:

No of White; P ¼
Xm

w¼0

Xm

H¼0
f 0ð Þ½ �

Step 6: Calculate the size of the tumor using:

Size of tumor S¼
ffiffiffi
P
p� �

� 0:264
h i

mm2
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Step 7: Test if tumor area > 6 mm2, then display message “Abnormal”
else display message “Normal”:

Test if Tumor = “Mass” then display message “Mass Type”
Else display message “Malignant Type”

Step 8: Stop the process.

B. Proposed algorithm for ANN
Step 1: Read image from database obtained from MRI-scanned machine
Step 2: Verify image is RGB else change the image to gray image
Step 3: Change 3D image representation twice the pixels value
Step 4: Denoise the image by applying improve high-pass filtering
Step 5: Perform segmentation of the image by using region-based growing
Step 6: Perform feature extraction from segmented image of the brain
Step 7: To determine TP, TN, FP, FN
Step 7: Perform classification by using EnANN
Step 8: Compute the sum of white pixels (digit 0) and size of the tumor using:

No of White; P ¼
Xm

w¼0

Xm

H¼0
f 0ð Þ½ �

Size of tumor S ¼
ffiffiffi
P
p� �

� 0:264
h i

mm2

Step 9: Perform calculation using the formula below:

Accuracy  TPþ TN

TPþ FPþ FN þ FP
� 100

Specificity TN

FPþ TN
� 100; Sensitivity  TP

TPþ FN

Step 10: Test if tumor area > 6 mm2, then display message “Abnormal”
else display message “Normal:”

Test if tumor = “Mass” then display message “Mass Type”
Else display message “Malignant Type”

Step 11: Display result: accuracy, precision, specificity, and sensitivity

C. Proposed hybrid technique algorithm
Step 1: Create the database of image in MATLAB�

Step 2: Browse and upload the image from the created database
Step 3: Convert the image to binarization

If image 6¼ gray_image then
Perform binarization and thresholding

Else
Compute: P Pm

w¼0

Pm
H¼0 f 0ð Þ½ �;S ffiffiffi

P
p� �� 0:264

	 

mm2
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Step 4: Apply the filtering techniques on the image using:

high-pass + Gaussian convolution + median filters

Step 5: Apply segmentation using the hybrid technique

Region growing + fuzzy C-means + ANN

Step 6: Extract the segmented image of tumor area
Step 7: To determine TP, TN, FP, FN
Step 8: Perform image classification by EnANN
Step 9: Perform calculation using the formula below:

Accuracy ¼ TPþ TN

TPþ FPþ FN þ FP
;

Specificity ¼ TN

FPþ TN
� 100; Sensitivity TP

TPþ FN

Step 10: Test if tumor area > 6 mm2, then display message “Abnormal”
else display message “Normal”:

Test if Tumor = “Mass” then display message “Mass Type”
Else display message “Malignant Type”

Step 11: Display result: accuracy, precision, specificity, and sensitivity.

D. Analysis of output
The system output is designed to include the user login details, the user enter

user-name, and password which serves as a means of data validation. Output back-end
of the system is the database that contains the records of images of the brain. Due to
this fact, the output interface is made interactive, very simple, and most of importantly
the ease of usability. The output model of the system is illustrated in Figure 5.11.

5.3.2 Advantages of the hybrid system
The anticipated hybrid technique which combines fuzzy C-means and ANN algo-
rithm has the following advantages:

(i) It is less expensive as it does not require any backup.
(ii) It gives better peak signal-to-noise ratio in medical image.

(iii) It has better mean square error.

5.3.3 Disadvantages of the system
The disadvantages of the hybrid system that combines the fuzzy C-means and ANN
are stated below:

(i) It can be more complex than other segmentation.
(ii) It potentially increased the complexity.

(iii) Applications and languages are not available after image deployment is
complete.
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START

Database of Images

of the Brain

Capture the Brain Image

Perform Pre-Processing of Brain Image

Apply Appropriate Segmentation Technique

Extract the features from

image to read TP, TN, FP, FN

Accuracy = (TP+TN)/(TP+FP+FN+FP)*100

Sensitivity = TP/(TP+FN)*100

Specificity = TN/(FP+TN) *100

Display image of tumor area

detected

Print Message “Tumor-detected” or 

“No Tumor-detected”

Display Result for Images:

Accuracy, Sensitivity Specificity

STOP

Figure 5.11 Output model of the proposed hybrid system
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5.3.4 Justification of the system
The anticipated system combines fuzzy C-means and ANN justifying the
following:

(i) The system will be able to detect brain tumor at any location in the brain. This
is made possible by the application of fuzzy C-means with spatial biasing and
ANN to classify images to obtain a more accurate result.

(ii) The system use hybrid filtering technique. This is made possible by the
combination of Gaussian convolution and median filters to denoise images.

5.4 Conclusion

This paper describes the XAI for medical image segmentation in medical decision
support systems, the algorithm for various stages, and the analysis of the resulting
data. This is based on the quantitative variables applied on the structures to give a
clear interpretation of tasks performed by the AI-driven models to the patients or
experts. The quantitative approach reveals the need for the design of AI algorithm
to be clear, precise, and interpretable. Explanation of medical decisions to patients
or experts in AI-based predictive models is important. In healthcare delivery,
models developed through AI methods must interact with healthcare experts and
patients for seamless flow of healthcare delivery [17]. In this paper, we have
developed XAI model approach by using a hybrid analysis (fuzzy C-means and
ANN) to denoise medical images (brain tumor) at its initial stage of formation with
an interactive module to aid explanation. Our approach was demonstrated using
case diagrams and flowcharts showing image segmentation stages with better peak
signal-to-noise ratio and a better mean square error. We find complexity and delays
forming part of its weaknesses. Nonetheless, in justifying the model based on the
hybrid analysis approach, the system was able to detect brain tumor at location with
clearer algorithmic interpretation for a better medical discussion support. Also, the
mechanisms for image filtering had high explainability rating, hence, creating a
means for useful medical decision support. The image segmentation techniques,
such as pre-existing, emerging techniques, and their applicability, were part of the
techniques used. Since the accuracy of segmentation remains a concern issue for
patients with complications, there is the need for explainability.

Conclusively, performing brain tumor detection using image segmentation
models was discovered to be a difficult task due to the fact that most images are noisy.
This is one of the major challenges which medical expert faces when it comes to
segmentation processes. The developed model can be used to achieve the following:

(i) A platform for fuzzy C-means use for medical image segmentation to detect
brain tumor and also do a performance evaluation to determine the percen-
tage in terms of accuracy, specificity, and precision.

(ii) A platform for ANN use for medical image segmentation to detect brain
tumor and also do a performance evaluation to determine the percentage in
terms of accuracy, specificity, and precision.
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(iii) A hybrid platform that integrates the fuzzy C-means with the ANN use for
medical image segmentation to detect brain tumor and also do a performance
evaluation to determine the percentage in terms of accuracy, specificity, and
precision.
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XAI robot-assisted surgeries in future medical
decision support systems
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Abstract

Artificial intelligence (AI) models are gaining widespread applications in various
areas such as the healthcare system, especially robotic surgeries. The output of
these models needs to be easily explained to surgeons and other stakeholders. These
explanations assist stakeholders or end-users of these AI models in establishing
trust and understanding the output of the model. However, there are identified
limitations in fully implementing these AI models, particularly in critical areas such
as robotic surgeries. This is mainly due to the complexity of its results, patient
safety, and growing security concerns. Thus, explainable AI (XAI) aims to bridge
the gap in understanding the results of AI models. Toward this end, this chapter
provides an overview of the current applications, importance, and limitations of
XAI robotic-assisted surgeries in the medical decision support system (MDSS).
The chapter discusses the privacy and security concerns of patients while utilizing
XAI techniques in robotic surgeries. The chapter also explores current trends and
issues regarding the future deployment of XAI robotic-assisted surgeries in sup-
porting medical decision-making systems. Finally, the chapter addresses the lim-
itations of machine learning (ML) tools used for robotic surgeries.
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6.1 Introduction

In recent times, there has been substantial growth in the use of artificial intelligence
(AI) systems, as evidenced by Ref. [1], where the global corporate investment
increased from $14.99 billion in 2015 to $176.47 billion in 2021. Also, these AI
models have been adopted in various fields such as the medical, financial, and agri-
cultural sectors. AI applications range from increasing productivity in businesses to
improving healthcare performance. The prevalence of these models has recently led
to the use of complex AI algorithms, particularly machine learning (ML) models, to
solve problems. Although these complex models generate ground-breaking results,
they use the “black-box model” concept where the decision-making process is unclear
to both AI users and developers [2]. This is a major concern, especially in healthcare
and the legal system, where human lives depend on AI results [3].

For this reason, AI systems have not been widely integrated into most
healthcare domains. In order to fully utilize the potential of these AI models, it is
crucial to understand the reasons behind the decisions of these AI systems to detect
irregularities or faults in the system [4]. The lack of interpretability of suitable AI
models led to a renewed interest in the explainable AI (XAI) field.

Scientists have always debated the explainability of AI decisions even though
XAI field has existed for over 40 years. Recently, AI researchers have discovered
various methods for achieving transparency in black-box models [5]. The concept
of explainability covers the ability of humans—specifically AI users to understand
the decision-making process of AI models [6]. While these AI algorithms may yield
accurate results, there is an offset between the performance(accuracy) and the
transparency [4]. For example, the neural network (NN) model is highly accurate
but lacks interpretability, whereas older models such as decision trees are
interpretable but lack accuracy [3,7]. For applications in the medical field, medical
practitioners must comprehend the processes of attaining the results of the system
regardless of its accuracy. For example, a survey among surgeons in 2021 indicated
that the major issues and concerns relating to implementing AI are lack of trust, risk
of bias, and loss of autonomy [8]. Other concerns in the healthcare sector include
the privacy and security of patients. Since healthcare professionals are saddled with
the responsibility of providing the best care for patients, the decision support sys-
tem in a clinical setting must be interpretable and explainable [9]. Therefore, the
increasing demand for explainability has resulted in developing rules and regula-
tions for AI models to achieve secure and reliable applications in the healthcare
domain and other applicable sectors.

In order to achieve the full potential of XAI, there are regulations in place that
require the implementation of XAI, such as the general data protection regulation
(GDPR) for European Union (EU) citizens and residents. The GDPR is a regulation
for data protection and privacy [10], stating that any model inferred from data must be
accountable. In other words, the GDPR, commonly acknowledged as “rights to an
explanation” allows users to acquire explanations about the decisions of a model that
can impact them physically, mentally, legally, and financially [11–13]. Thus, the
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privacy and security of users are also considered while using AI models. With these
regulations, more decision-making results will be governed by such regulations.
Current studies have shown that a model has to be explainable to its users. However,
these regulations are yet to attain their prospects since there are no specific require-
ments to be considered for explanations [14]. This explainability gives users assurance
and security, specifically regarding the medical decision support system (MDSS).

XAI could be a possible solution to the problems in the AI system. One of its
main goals is the model’s capability to explain itself so that humans can compre-
hend these algorithms. These explanations would foster research and lead to justi-
fication, management, and improvement of these AI models [15]. The goals of XAI
can be summarized in Figure 6.1.

There are a considerable number of studies on the measurement and evaluation
of XAI methods [11,14,16,17]. These studies highlighted different XAI approaches
and metrics used, but there are no standard ways to select and evaluate the appro-
priate XAI methods to use for a system.

We will discuss the following topics in the next section: current application of
AI in the healthcare system, concepts and related terms of explainability, history of
medical robots, applications of XAI in the medical field, application of XAI, and
different types of explanation methods for MDSS in robot-assisted surgeries.

6.2 Related work

In this section, we will review various literature on the current application and
limitations of AI in the healthcare sector-robotic surgery, XAI applications in the
medical field and robotic surgeries.

6.2.1 Current applications of AI in the healthcare systems
Artificial intelligence (AI) applications in healthcare have gradually increased
within the past 7 years. This is shown in Figure 6.2 from Google trends.

AI-based systems can be used in various areas in the healthcare system, such as
disease diagnostics and prediction, clinical decision making, drug interaction and
discovery, patient care, and robotic surgery [18–20]. Thus, the use of AI can help
transform various areas in the healthcare sector [21]. Some AI applications in the
medical field are discussed below.

Explainable artificial

intelligence (XAI) 

Trust Transparent Enhanced model

Figure 6.1 XAI system and its possible outcomes
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6.2.1.1 Drug interaction and discovery
Since drug discovery and development are time-consuming, AI assists pharma-
ceutical companies in expediting the drug discovery process [18,19]. Although
some researchers question the application of AI in the medical field, most agree
that AI in healthcare will be critical in the future [19]. Currently, researchers
encounter both benefits and challenges of AI, specifically when the methods are
integrated with automation [22].

6.2.1.2 Clinical decision-making
One of the most significant aspects of AI application in the healthcare system is the
MDSS. MDSS is synonymous with the clinical decision support system (CDSS).
MDSS is an AI-aided technology used to assist medical practitioners and/or
patients in improving decision-making in the medical field [23,24]. Studies indicate
that AI for MDSS can be mainly categorized into the knowledge-based system,
which is a rule-based expert system and the data-driven system [24–26]. For the
knowledge-based system, programming is used to determine the decisions.

In contrast, the data-driven system derives its decision by using ML techniques
to obtain insights from a large amount of data [24]. In addition, MDSS has various
uses in the medical domain, which are not limited to the following: diagnostics,
image interpretation, patient monitoring, postoperative care, outpatient care surgi-
cal devices, etc. Therefore, MDSS is intended to make the decision-making process
for medical practitioners faster, less prone to error, and more empirical [27].

6.2.1.3 Disease diagnostic and prediction
AI obtains insights from past patients’ data to diagnose diseases. In addition, AI
analyses medical images like X-rays, magnetic resonance imaging (MRI), and
ultrasounds by recognizing patterns for the early and accurate detection of diseases
such as cancer. The AI algorithms used for such analysis are NNs, decision trees,
support vector machines (SVMs), and Artificial NNs (ANNs) [18]. Another
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application of AI for disease prediction is IBM’s “Watson for Oncology” where the
patient’s data is inputted and assists medical staff in predicting the best treatment
based on various past data [28]. However, it has been reported that IBM’s Watson
has sparked criticisms from doctors globally, stating that its patient recommenda-
tions are unsuitable [29].

6.2.1.4 Robotic surgery
Recently, robot-assisted surgery has found applications in the following surgeries:
urological, colorectal, cardiothoracic, orthopedic, maxillofacial, and neurosurgery
[30]. Surgeons prefer robot-assisted surgeries because of their increased efficiency,
flexibility, and control [28]. Also, robot-assisted surgery is mostly used in complex
surgeries that surgeons find difficult to perform. A typical example is a smart tissue
autonomous robot (STAR) used to perform intestinal surgery in 2016. It makes use
of ML algorithms. Its features include real-time communication support and can
also be controlled by a distance monitoring system.

6.2.2 Limitations of AI in the medical field
The following are the problems that AI is currently facing in the medical field:

● Regulatory compliance: Regulations must be incorporated into AI algorithms
that will ensure patient’s privacy while being compatible with technical inno-
vations [21].

● Human–computer interaction (HCI): Studies have shown that medical research-
ers have suggested that the most likely reason for AI’s failure is the lack of HCI
considerations [23, 31]. Also, most AI-enabled technologies are not user-friendly.
That is, clinicians find it difficult to relate to and use such technologies.

● Automation bias: Research has indicated that most AI users, such as medical
professionals, rarely question the decision-making process of these models
[23]. Also, due to the black-box nature of these models for MDSS, it is difficult
for medical practitioners to question these models. This makes it challenging to
evaluate these models leading to automation bias. The implications of auto-
mation bias are the limits it imposes in the healthcare sector, which are the
inability to detect errors in the model and determine who is responsible
(medical practitioner or AI developer) for such errors.

● Ethical issues: Although the ethical implications of AI in the medical industry
have not received much attention. Few studies highlight the importance of ethical
principles for AI. According to [32], there is a need for the implementation of
these principles in health care, which should comprise of the following: the need
for human autonomy, explainability, patient privacy, fairness, and safeguarding
patients from harm. For human autonomy, humans must be able to choose and
evaluate AI decisions. Human autonomy has to do with humans having control
over AI decisions to prevent or reduce automation bias and being able to choose
other alternatives model [33]. The lack of proper implementation of these prin-
ciples has led to the current constraints of AI-based technologies in the healthcare
system. In other words, the proper implementation and integration of these
principles could lead to the successful adoption of AI in healthcare.
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In summary, the data quality of the trained model can also impact the accuracy
of its results and the unavailability of clinical data, thus making it difficult to obtain
accurate information from the model. For example, AI finds it challenging to adapt
the trained data to real-life clinical data [23]. Finally, the most prevalent problem
amongst medical practitioners is AI models’ lack of interpretability. This is because
it is crucial to understand the process for achieving particular results for medical
decision-making. For this reason, there has been a renewed interest in the XAI
field. Thus, further research and evaluation of XAI techniques are needed to adopt
AI in the medical field fully.

6.2.3 XAI
Although researchers are yet to agree on the definition of “XAI,” XAI can be
defined as a system that provides the reasons for a particular outcome by giving
understandable explanations to end-users and accurately reflecting the system’s
process by adhering to the specifications the system intends to meet [34,35]. These
explanations can primarily help to improve the interaction between the ML models
and humans, such as the clinicians, patients, and other stakeholders in the health-
care settings. Consequently, factors should be considered for an explanation, and
the AI system should be able to distinguish what to explain to an end-user and an
expert. For example, for medical diagnoses, XAI systems should be able to inform
the patient about their diagnosis. However, the AI models (i.e., processes) would
not be explained to the patients; the decision-making process will be explained to
the medical practitioner(s). Since the XAI field is still relatively young, there is a
need for more research on these methods and evaluation measures to justify the
results and determine their scope [5,36].

6.2.3.1 Concepts and terms of explainability
Although there is no specific definition for the term XAI, it encompasses the
concept of making AI models interpretable and trustworthy. In some cases, XAI
can also be referred to the following terms: responsible AI, interpretable AI, and
transparent AI, just to mention a few [2]. All these terms are closely related but
have different definitions. Also, interpretability and explainability are frequently
used interchangeably, but these terms have subtle differences. Some of these rela-
ted ML terms and their definitions are described in Table 6.1.

6.2.4 XAI in healthcare
AI methods can be one of the critical factors in determining the future of MDSS
[38]. AI applications in the healthcare systems range from prognosis and diagnosis
to patient-facing application, robotic surgery, drug development, and other ground-
breaking outcomes. AI models have become more complex, making it difficult to
interpret the results; the ambiguity of the AI decisions has led to physicians’ and
users’ distrust of the system [39]. This has increased interest in XAI techniques in
the medical sector.

172 XAI in MDSS



The history of XAI can be traced back to the origins of the AI system, where a
knowledge-based experts’ system was developed [40]. However, as time pro-
gressed, there was more emphasis on building more ML models based on the
performance of the models rather than the model’s interpretability. As a result, this
has led to several limitations for AI in different fields. For example, in robotic
surgeries, recent studies show that explainability improves pre-emptive manage-
ment of adverse effects of surgery [17,41,42]. The role of explainability can be
beneficial in surgery if the risks are discovered before surgery (such that the
necessary interventions can be done to reduce or prevent complications during and
after surgery) and the reasons behind the risks to prevent or mitigate them. For
example, ML techniques can be used to predict the occurrence of hypoxemia before
the surgery. However, this information is insufficient for a typical clinical setting
due to its lack of interpretability [43]. This means that the factors leading to pos-
sible hypoxemia have not been stated clearly. With the application of ML algo-
rithms before, during and after surgeries, it is important that the clinicians and all
other stakeholders understand the reasons for the model’s result to achieve an
improved outcome. Due to a lack of interpretability, ML techniques have not been
incorporated in most medical domains. Examples of these models are shown in
Figure 6.3 according to their interpretability:

The most interpretable model in Figure 6.2 is the classification model, while
the least interpretable model is the NN. In addition, the model’s accuracy is
inversely proportional to its interpretability, where the least interpretable model is
the most accurate and vice versa for the most interpretable model.

While several studies agree that XAI improves trust and understanding of AI
models for medical professionals [38,40,44,45], it is apparent that XAI hopes to
achieve other functions. These functions include fairness, security, privacy, ethics,
and confidence [40,44]. As discussed earlier, AI poses concerns about its lack of
interpretability in the medical sector. This is because the healthcare system is a
critical area where decisions or predictions made by an AI must be clear and
understandable. Also, in the medical field, the following are problems faced while
utilizing AI: lack of interpretability, bad quality of data, automation bias, poor
human–computer interaction, non-homogeneity, unpredictability, and high

Table 6.1 Terms of explainability

Terms Meaning

Interpretability The ability to convey meaning in an understandable human form [4]
Explainability It is the model’s ability to explain its internal process by providing an

accurate representation of the model and is still understandable by
humans [4,37]

Transparency A model is transparent if it is interpretable [4,16]
Understandability The ability of a model to make humans understand its function [4,11]
Responsible AI The application of AI models ensures that appropriate stakeholders

are held responsible for any error emanating from the model
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dimension data which leads to uncertainty [46–49]. Thus, XAI aims to bridge these
gaps by providing explanations to models. In this section, existing literature on XAI
in clinical settings is discussed.

6.2.5 How explainability works—bridging the AI gap
Since explainability is one of the major limitations of AI, this section explains the
reasons behind the explanation. In order to obtain an explanation, the following
questions need to be considered: who is the explanation intended for? Why is an
explanation needed? The answer to this former question is the users, which could
range from clinicians to AI developers to regulatory agencies, just to mention a few
[4]. Thus, such users will require various explanations depending on the context
and users’ needs [4].

In order to explain a model, the explanation model and explanation interface
are required. The explanation interface is where the human–computer interaction
(HCI) takes place, while the model is the technique used for explanation. As
mentioned earlier, healthcare scholars suggested that lack of HCI is one of the
major reasons for AI failure for MDSS [31]. As a result, there is a need for a proper
understanding of the user’s workflow to aid HCI which gives rise to the need for
XAI. Therefore, the human-centered approach to XAI is concerned with dis-
covering various approaches for explanation to humans (end-users), by iteratively
involving the users in the development process (e.g., through interviews, hypo-
thetical scenarios, focus groups, and questionnaires) [50]. For example, some
clinicians might require a type of explanation while others might not. Thus, this
subjective nature of explanations must be considered while designing the model.
Thus, the proper integration of HCI in a clinical environment can assist clinicians
by reducing tasks that could otherwise be difficult for humans to perform.

The successful integration of AI into MDSS will be useful in most medical
domains such as diagnosis and drug discovery [51]. However, Ref. [52] highlights
the need for a clear governance framework for MDSS to safeguard people from
harm, particularly from unethical practices. This government framework
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Figure 6.3 AI models according to their interpretability
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determines the system’s objectives, values, policies, culture, and accountabilities
[53]. In other words, XAI might be the vehicle for achieving these properties.
Consequently, XAI methods need to be evaluated to determine the accuracy and
effects of their results on human rights. Ref. [54] raised the following questions
“Are there specific conditions that all XAI must fulfill”? If true, are there limits for
discrepancies between the measures (e.g., accountability and accuracy), and how
can it be assessed? Thus, the ability to carry out a proper assessment (i.e., both
technical and ethical assessments) of XAI for MDSS will ensure patient safety,
privacy, and assurance of the system. The ethical aspect of XAI has covered most
of the limitations of AI for MDSS.

6.2.6 Benefits of XAI for the medical field
This section focuses on the characteristics of XAI and how they impact the users
(clinicians, patients, and others). This section discusses the applications and key
importance of XAI for clinical systems.

The following are the benefits of XAI for MDSS,

6.2.6.1 Obtaining insights from the system
AI algorithms are applied to a large amount of data to obtain meaningful insights
from the data. For example, the application of AI to electronic health records
(EHRs) will lead to obtaining predictions from this data. However, this prediction
lacks transparency, leading to limited use of these models in healthcare [55]. XAI is
recently used to get new scientific information from the data [56]. Therefore, XAI
methods can be applied to patients’ data to achieve transparency and interpret-
ability of the models’ predictions, unlike AI black box model. In addition, XAI
allows medical experts to review the performance of these AI models to improve
them. In addition, medical experts and scientists must discover new information in
these AI models [57]. Thus, XAI allows scientists to make new informed dis-
coveries and learn new information about the input data.

6.2.6.2 For evaluating the system
While there has been a significant progress in the adoption of AI systems in various
fields, the authors of [7] suggested that the application of AI methods will be most
likely limited in the healthcare systems provided that all the issues regarding the
full implementation of AI systems in the medical field are not resolved. These
issues are not limited to explainability, interpretability, etc. For example, one of the
difficulties researchers face—particularly in the medical sector, is the accessibility
of quality data. The available data might not fit the algorithms. Using such data
could lead to bias in the results. Some examples of possible bias in EHRs are
differences in patient populations, types of equipment, omission of some data,
imaging parameters used, and the lack of representation of rare diseases [5]. Hence,
it is important to assess the accuracy of AI algorithms based on the source of the
data in the medical field [57–59]. Since XAI allows experts to evaluate AI results
by verifying if the predictions are correct, this process will lead to the improvement
of the model.
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6.2.6.3 Following rules and regulations
Adopting AI models calls for serious safety concerns in the medical field, such as
patients’ privacy and security. The continuous accumulation of different data
types—such as patients’ information and medical history—makes it challenging to
ensure patient privacy and data security [60]. Therefore, patients’ data can be
anonymized to protect patient’s privacy, which causes the loss of some data leading
to a trade-off between privacy and usage [61].

Recently, there are security and privacy safeguards for patients’ such as
Health Insurance Portability and Accountability Act (HIPAA) and the Health
Information Technology for Economic and Clinical Health (HITECH) Act, com-
pliance to these acts is important to safeguard health information privacy, security,
and confidentiality [62]. Furthermore, XAI can assist the justice system in identi-
fying who(person) or what (AI system) is responsible for the decisions of
AI-enabled technology [63]. This is because the application of XAI makes the
decision-making process more interpretable, making it easier to figure out who is
liable for errors.

Since cybersecurity threats pose a risk to patients’ privacy and data security,
there is a need to address these threats faster and look for ways to mitigate such
threats. This calls for the expertise of a cybersecurity professional who must meet
the growing demands of the healthcare industry [64]. Therefore, the healthcare
system will need AI developers and/or cybersecurity experts to mitigate cyber
threats. Since XAI models provide the rationale for a particular decision, these can
help clinicians, cybersecurity experts, and AI developers detect possible threats to
patients’ privacy and safeguard patient data. Therefore, the AI model needs to be
explainable so that medical experts, computer scientists, cybersecurity experts, and
AI developers collaborate to protect patients’ data and privacy. In addition, for AI to
be considered in the medical field (e.g. AI-based MDSS), a clinical evaluation is
carried out where the model’s prediction performance is measured to determine its
application in a real-world scenario [65]. Since these models produce a low error,
XAI application is an absolute necessity for MDSS to understand the inner workings
of the models [14]. With the application of XAI, patients’ security and privacy
concerns are considered [66].

6.3 Medical robots

Recently, robots have supported humans in various settings such as schools, man-
ufacturing industries, businesses, and other sectors [67]. It has also seen moderate
application in the medical field. The concept of robots in the medical field can be
traced back to the late 1960s. While authors argue about the timeframe of the first
robotic surgery, the development of the first medical robots came into reality in
1978, and the first robotic-assisted surgery was implemented in 1985. Medical
robots have found various applications in the medical field and are as
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follows: patient care, rehabilitation, assistive, robotic surgery, and more. This
chapter was majorly concerned with robotic surgery or robot-assisted surgery.

Surgical robots can be used to assist surgeons and perform specific tasks that
are difficult and risky for surgeons. For example, in orthopedic surgery, surgeons
are exposed to radiation [68] and fatigue during surgery [69]. All these concerns in
traditional surgeries (i.e., surgeries performed without the help of robots) can be
limited with the aid of robotic surgeries. On the other hand, robotic surgery has its
limitations. For example, the size of the robotic arms makes it difficult to handle by
the surgeon, and since the robot lacks touch sensation, it is usually challenging for
the surgeons to detect how much depth to cut [52]. There is a need for a proper
evaluation of surgical skills for both traditional and robot-assisted surgeries.

Therefore, using surgical robots will aid clinicians and surgeons under chal-
lenging tasks and could lead to better surgical outcomes. The adoption of these
technologies will lead to an efficient healthcare system. Table 6.2 summarizes the
benefits and limitations of robotic surgery and traditional surgery.

Table 6.2 Difference between traditional and robotic surgery

Features Traditional surgery Robotic surgery

Accessibility ● More flexible ● Designed to work in
difficult positions

Surgical procedure ● Prone to tremor
● Surgeons perform surgery with hand

● No tremor
● Lacks sense of touch
● Can experience equip-

ment failure
Surgical

instruments
● Limited sterilization
● Limited vision

● Can be sterilized
and reused

● High-quality 3D vision
Radiation risk for

surgeons
● Surgeons are prone to radiation

risk
● Rare

Precision ● Precision depends on surgeon’s
skills

● High precision

Risk of infection
(patients)

● High ● Low

Risk of infection
(surgeons)

● Prone to infection ● Rare

Dexterity ● Prone to fatigue and tremor ● Improved dexterity,
flexibility

Decision-making ● Ability to make good judgments ● Robotic technology can
be improved

Cost ● Easy to get humans unlike expensive
machines that can only be in place

● More expensive to set up

Real-time data
usage

● Unable to use quantitative data ● Unable to use
qualitative data

Size ● Surgeons handle surgical instruments ● Heavy and difficult to
handle e.g. robotic arm
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6.3.1 History of robotic surgery
Robotic surgery can also be known as robot-assisted surgery. Robotic surgery can
be used to perform surgeries with the robotic arm, and they are majorly used for
minimally invasive surgeries (surgeries with little incisions). The concept of robots
in the medical field can be traced back to the late 1960s. However, the development
of the first medical robots came into reality in 1978 and was first implemented
in 1985.

In 1978, the Programmable Universal Manipulation Arm (PUMA) was
developed by Victor Scheinman and was the first robot used for surgery; the PUMA
560 had six degrees of freedom, and it was adaptable compared to human hands
[55]. The adaptability and flexibility of these medical robots can assist surgeons
during surgeries to perform challenging tasks for human—surgeons. In 1985, the
PUMA robot was first used to perform stereotactic brain biopsy surgery and by
1988, it was converted to a surgeon-assistant robot for prostatectomy [55,70]. The
SARP was used for prostate surgeries [71]. Therefore, the PUMA 560 gave rise to
the application of medical robots for surgeries in subsequent years.

In 1992, ROBODOC was designed to aid total hip replacement surgery [55].
This is the process where the hip joints are replaced by prosthesis [72]. This pro-
cedure was a far-reaching discovery in orthopedic surgery. The robodoc surgical
robot was the first approved by the food and drug administration (FDA) [73].

In 1993, Yulin Wang, founder of Computer Motion Inc., developed an auto-
mated endoscopic system for optimal positioning (AESOP) [71]. AESOP is widely
used in the following areas: laparoscopic cholecystectomy, hernioplasty, fundo-
plication, and colectomy and was approved by FDA [55,74,75]. The operation of
the AESOP is described below: the robotic arm is controlled by the surgeon’s voice
command by manipulating the endoscopic camera during surgery [76]. The use of
AESOP gave rise to several advancements in robots, leading to the development
of ZEUS.

In 1998, ZEUS was developed by Defense Advanced Research Projects
Agency (DARPA), ZEUS’s first application in a robotic surgical system was a
fallopian tube anastomosis, and was also implemented in 2001 as the first trans-
continental telesurgery [75,77]. Also, ZEUS was designed to replicate the sur-
geon’s arms movements, thereby incorporating arms and surgical instruments in the
design, which is operated and regulated by the surgeon [71,78].

The computer Motion Inc. company was obtained by Intuitive Surgical Inc.,
which stopped the production of the ZEUS system, replacing it with the da Vinci
surgical system. However, some parts of the ZEUS system were incorporated into
the da Vinci system, using the master–slave system [79]. The master–slave system
is a system where the surgeon controls the robot. The da Vinci robot is the pre-
valent surgical robot and was approved by the FDA in 2001 [73,75]. It has several
applications in surgical operations [73]. In addition, the Da Vinci robot eliminated
the problems of laparoscopic surgery. With technological advancements in these
robots, this robot is preferable for surgeons. These advancements are as follows:
improved 3D vision, precisely controlled endo wrist instruments, the seven degrees
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of freedom, and the preservation of natural eye and instruments alignment made of
robotic platforms [73].

With the use of da Vinci robots in different surgeries, other robots were also
developed, such as the Mako Rio robots, which were created in 2019 to perform
total knee surgery. The Mako Rio is the first approved robot for knee surgeries, and
it has sophisticated 3D devices which can be used for total or partial knee repla-
cement. Over the years, the da Vinci robot has been transformed for different
applications in surgery. Thus, the development of the da Vinci robot gave rise to
different technological innovations in robotic surgery.

6.3.2 Current and future use of medical robots and devices
With the increasing production of medical devices, these devices need to be
examined to be safe for users and patients to reduce errors, particularly in high-risk
devices such as robotic surgical systems. This brought about the need for regulating
medical devices. For example, in the USA, the FDA is responsible for approving
these medical devices. These devices are subdivided into different classes, Class I–
Class III. Class I is considered low risk, while Class III is a high risk. In such
circumstances, different processes are used for approval depending on the medical
device classes [80–82]. Thus, Class III medical devices go through a thorough
examination to ascertain their safety for users. Also, European regulations go
through a rigorous process regarding regulating medical robots, such as all
healthcare robots must undergo the confirming European mark according to the
European medical device’s directive. In this case, the robots are classified into
different classes, and regulations apply to each. Although the general data protec-
tion regulation (GDPR) has some regulations regarding the application of AI sys-
tems in Europe, these regulations have been limited [81]. Therefore, regulations
and implementation are important factors for robotic surgical systems’ future
application and development.

Some have suggested that the size of surgical robots be reduced. This is to
make handling of such systems in the operating theatre easy for the surgeon and the
surgical team. This has led to the growing research and development of smaller
surgical robots, making the robots easy to use [83]. For example, laparoscopic fiber
was used for checking the internal body parts. Currently, micro-robots are built for
this same purpose. In addition, this micro-robot can be used for internal repair
without the aid of external equipment [80]. Thus, technological innovations such as
AI in the medical sector will pave the way for future research and implementation
of medical robots, particularly for surgical robotic systems.

6.3.3 Robotic surgery and AI
While AI has significantly improved healthcare processes for physicians, it has yet
to achieve a similar breakthrough in MDSS or clinical results [84]. According to a
Harvard business review (HBR) analysis, robot-assisted surgery was among the
leading AI applications that are likely to change healthcare. Consequently, for
orthopedic surgery, AI-enabled robotic surgery performs real-time analysis of
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patients’ preoperative data to assist physicians during surgery. For example, in a
review of 379 orthopedic patients, Mazor Robotics’ AI-aided robotic surgery
method decreased surgery complications by five compared to the surgeon per-
forming the procedure alone [84,85]. This is because an AI-enabled robot surgery
performs real-time analysis of patient’s preoperative data to assist the physician
during surgery leading to a 21% decrease in patient’s post-op hospital stay and
reduced cost [84]. Thus, HBR predicted that AI robot-assisted surgery will reduce
annual spending by $40 billion by 2026.

In the following subsection, we will discuss the current use of AI in surgery,
limitations, roles of surgeons, ethical considerations, human-robot interaction,
various AI approaches, and future directions of robotic surgery.

6.3.4 Current application of AI in robotic surgery
AI consists of multiple fields for application in the healthcare sector. This section
will briefly discuss the most common subcategories of AI for the medical field.

The subdivisions are discussed as follows:
ML
A subset of AI that allows machines to learn from large data and discover patterns
humans cannot see from data. ML can also be categorized into the following
learning algorithms: supervised, unsupervised, semi-supervised, and reinforcement
learning [75,86].

For supervised learning, the computer learns from labeled data, and the
outcome of the data is known [87]. For instance, you can teach the computer how
to identify parts of a body such as eyes, hands, or stomach, this data is fed into
the algorithm, and the result of the prediction will either be eyes, hands, or
stomach. Thus the computer is trained to identify body parts, a new data set can
be fed into the algorithm, and the algorithm learns from experience to identify
the body parts.

The computer discovers patterns or clusters from unstructured or unlabeled
data for unsupervised learning. At the same time, semi-supervised learning is a
combination of both labeled and large unlabeled data—a combination of both
supervised and unsupervised learning. Reinforcement learning is used to perform
specific tasks where decision-making is essential while learning from its successes
and failures. Such tasks include driving cars, and robotics [86,87].

Computer vision (CV)
CV is an engineering field that allows the machine to see [88]. It has applications in
various fields, from robotics to medical imaging and self-driving cars. CV has also
led to the advancement of various sectors in the medical arena—particularly in the
operating room. Examples of such applications include surveillance of the operat-
ing room, endoscopic equipment, and surgical team activities (which can be used to
measure the performance and skills of the surgeon) [88]. Therefore, accumulating
all this information can help enhance the surgical robotic system, aid research, and
improve the development of autonomous surgical systems. The aid of AI and CV in
the medical sector has allowed for accurate detection and treatment of such
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diseases [89]. In addition, most successful CV techniques are developed with ML
techniques such as SVMs, k-nearest neighbor (KNN), and convolutional NNs
(CNN) [89].

Natural language processing (NLP)
NLP is the computer’s capacity to comprehend human language [75]. NLP extracts
information from large unstructured text data [90]. For instance, NLP has been used
to identify critical words and phrases in operative and progress reports that predict
postoperative complications (e.g., anastomotic leak after colorectal surgery) [84].
However, these predictions displayed simple clinical knowledge. Still, the algo-
rithm could modify the predictive factors of the phrases that depict patients’
emotions like irritated and tired with respect to the postoperative day to predict the
surgical complications (e.g. anastomotic leak) [91].

ANN and deep learning
The main concepts in ANNs research can be traced to the brain [92]. ANN is used
to accomplish tasks by detecting patterns through one or two layers of NNs. Deep
learning also recognizes patterns using multiple layers of NNs, identifying more
complex patterns, unlike ANN [84].

6.3.5 Current application of AI in emerging robotic systems
AI has various uses in surgery and can be used in both intraoperative and post-
operative stages. In this section, we discuss the current applications of AI in sur-
gery. For surgeries, studies have shown that AI has helped predict intraoperative,
postoperative complications and postoperative care for patients [93–95]. For robot-
assisted surgery (RAS), the subfields of AI discussed earlier form the basic building
blocks for surgical procedures. In addition, there are three main types of RAS,
namely [96].

The active system, also known as an autonomous system, performs tasks
independently (while remaining under the surgeon’s control). Examples of such
systems are PROBOT and ROBODOC platforms. A semi-active system is a
surgeon-driven element to complement the pre-programmed element of these robot
systems [96]. Master–slave or haptic system is a surgeon-guided procedure [97],
where the surgeon’s hand movement is replicated on the laparoscopic surgical
instruments, which imitates the surgeon’s hand activity. Examples include the da
Vinci and ZEUS systems [96]. As discussed earlier, ML can help RAS during
surgery by using computer vision to monitor and learn from the surgeons.

From studies in Table 6.3, ML techniques can assist RAS with collecting
information during surgery through computer vision, aiding MDSS [99]. Collection
and analysis of data using ML algorithms can be done efficiently with the help of
MDSS. On the other hand, AI also faces numerous challenges in surgery, including
poor data quality, human–robot interaction, etc. Thus, ML and RAS techniques
have a long way to go before incorporation into surgeries.

In the past, experts who observed various surgeries carried out skill assess-
ments for surgery. This method is prone to error and time-consuming, making it

XAI robot-assisted surgeries in future MDSSs 181



unreliable for assessment [99]. The aid of ML for surgeries allows for faster and
more accurate means of evaluating surgical skills. ML has also been used to
recognize surgical tasks (i.e., knot tying, suturing, and needle passing) in a simu-
lated lab setting [99].

ML can also be used in autonomous robotic surgery. Thus, the following tasks
need to be accomplished: autonomous camera positioning and other autonomous
surgical tasks such as suturing, knot tying, and tissue dissection using ML techniques.

Table 6.3 Summary of AI applications in surgery

Surgery
type

Surgery
stage

AI algorithms
mentioned used

Focus/results Limitations Ref.

Abdominal
surgery

Post-op SVM, KNN,
Logistic
regression

Prediction of post-
operative compli-
cations after
abdominal surgery

Data imbalance [94]

Various
surgeries

Post-op SVM and logis-
tic regression,
random for-
est, gradient
boosting tree
(GBT), and
deep NN
(DNN)

Predicting the risk of
postoperative com-
plications related to
pneumonia, acute
kidney injury, deep
vein thrombosis,
pulmonary embo-
lism, and delirium

Data imbalance [98]

Orthopedic
robotic
surgery

– CNN ● Use of (AI) for
MDSS for diag-
nosis and treatment
for orthopedic
surgery

● Use of robotic sur-
gery in surgical
treatment

● AI and robots’
helplessness
during
complications

● AI and robots’
non-liability

● Difficult to
incorporate
due to its
Complex
technology

[97]

Urologic
surgery

Intra-op Highlights recent
findings and appli-
cations of ML in
robotic-assisted ur-
ologic surgery

● ML techniques
not well-
established in
surgery

● Security of
high-volume
surgical data

[99]

Wide appli-
cation of
surgeries

Intra-op ● SVM
● ANN
● k-NN
● Recurrent

NN (RNN)

Gives surgeons addi-
tional information,
accelerating intrao-
perative pathology,
and recommending
surgical steps

Methodological
shortcoming

[100]

Note: Intra-op: intra-operative; Post-op: post-operative.
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A robot requires the use of computer vision to “see,” and ML algorithms to think (task
planning) and to do (task execution) to complete an autonomous task [99].

Therefore, digital surgery is one emerging field that could transform surgical
robotics systems for the future of surgery. However, it is still in its infancy. Digital
surgery (DS) hopes to introduce novel scientific practices and transparency to the
surgical system through machines that assist surgeons with better understanding
and good decision-making. DS hopes to contribute to the technical development of
surgeries, including robot-assisted and computer-assisted surgeries. Furthermore,
DS deals with several advanced technologies, which are not limited to the fol-
lowing: robotics, advanced instrumentation, connectivity, enhanced vision, data
analytics and ML algorithms. Such technologies are the building blocks of digital
surgery and will assist the surgical team in achieving a better outcome for surgical
procedures.

6.3.6 XAI robot-assisted surgeries for MDSS
One major problem AI and robotics face for MDSS is lack of transparency.
Although different technologies are underway to solve this issue, there is yet to be a
consensus between the stakeholders involved. Also, the lack of human–robot
interaction has made it difficult for surgical teams to adopt AI and robotic tech-
nologies into their procedures fully.

Studies have suggested that the prediction of complications is not sufficient.
Thus, the cause of the complication should be known. Researchers agree that XAI
in the operating room can help improve MDSS by detecting and preventing sur-
gical complications in real-time. For example, by monitoring vital signs, an XAI
tool, “Prescience” detects hypoxemia during surgery up to 5 min prior to occur-
rence [41]. XAI can assist the surgical team and predict in advance possible sur-
gical adverse events by updating surgeons periodically and giving reasons for its
predictions [41].

Thus, surgeons need to work with computer scientists to extract relevant
surgical data so that the computer scientist can obtain the right data and provide
accurate solutions for the surgical members.

6.3.7 Current limitations of XAI and robotic surgery
for MDSS

The current difficulties in applying XAI for robotic surgeries for MDSS include
data quality, surgeon trust, and a well-established framework for explanations.

During robotic surgery, a large accumulation of data is generated. This makes
real-time analysis of such data difficult, and this can result in using irrelevant data.
Thus, it is important to identify important data for analysis during surgery.
However, an efficient MDSS can aid in collecting and analyzing user data. Also,
surgeons find it difficult to trust an AI system since the decision-making process
lacks transparency. Medical practitioners will be more likely to trust a system with
interpretable decisions. In addition, incorporating these novel techniques (robotic
surgery and XAI) in the operating room can lead to a complicated work setting and
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increased operation time for surgical teams. Furthermore, there are no well-defined
techniques for XAI methods for robotic surgery. Therefore, there is need for more
research to be done to determine standard techniques for the healthcare sector.

6.4 Explanation methods

Several XAI methods are available for AI models, the most common methods will
be discussed in this section. This has brought about the classification of explana-
tions into two methods as follows [39,66,101]:

● Post-hoc explanations: explanations are provided after the results. Deep
learning models such as NNs are examples of models with such explanations.

● Ante-hoc explanations: the explanations are already embedded in the model
that is the AI model is self-interpretable. Examples of models with such
explanations are decision trees, and linear regression. This can also be called
the model-based explanation.

The post-hoc explanations can be further divided into:

● Model agnostic: this type of explanation can be applied to all types of models.
● Model specific: can only be applied to certain models.

Also, the scope of the explanation methods can be categorized into:

● Global explanations: here, the whole model is explained, these explanations
can apply to population-based decisions such as epidemic outbreak [44].

● Local explanations: individual predictions are explained. This type of expla-
nation can be used in surgery to obtain risk factors for complications in sur-
gery. Example of local explanation is the local interpretable model agnostic
explanations (LIME). LIME can describe a prediction by measuring the con-
tributing factors associated with obtaining the predictions [102].

In addition, there are other common methods of explanations used for deep
NNs (DNN) and are as follows, these methods have been used in the medical
domain:

● Sensitivity analysis: the most relevant input features are those to which the
output is sensitive [57].

● Layer wise relevance propagation explains predictions relative to the state of
maximum uncertainty [5].

It is noteworthy to mention that different explanation results can be in a
numerical, textual, pictorial, or hybrid format making it easy for stakeholders
(clinicians) to understand the results. Furthermore, the input data for the algorithms
can also be in any format (numerical, text, image). However, there is a need to
evaluate the various available methods to obtain suitable explanations for health-
care domains. Table 6.4 summarizes the different classifications of XAI methods
and different input and output data types.
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Different explainability methods can be applied to different types of AI mod-
els. Thus, it is essential to determine the accurate evaluation for different XAI
methods and check if the explanations are relevant to their various applications.
However, these evaluations are still under development [48].

6.4.1 Explanation methods in robotics
Robotics consists of different technologies working together to achieve an objec-
tive goal. The robot’s actions are sometimes informed by a ML model, some
planning algorithms or a reinforcement learning model. As such, for explainability
to be achieved, research areas of XAI, explainable AI planning (XAIP), and
explainable reinforcement learning (XRL) are important.

Our focus, XAI, focuses on systems finding interpretations for complex pattern
recognition models such as deep NNs. Such a model includes a “judgment basis”
factor that is not readable by a human, and this factor must be presented in a format
that is readable by a human. Such systems may play a role in close human contact
work only if humans accept the presented bases of their judgments. XAI research
raises questions about how humans perceive such models’ reliability and expands
the scope of ML applications by presenting the bases of judgments [103].

In day-to-day human activities, there has been the need to simplify the job and
other needs to make work easier in our day-to-day journey and routine. Owing to
the development of Al techniques, surgical robots can achieve superhuman per-
formance. Al helps boost the capability of surgical robotic systems in perceiving
complex in vivo environments, making decisions, and performing the desired tasks
with increased precision, safety, and efficiency. Common Al techniques used for
robotic systems include the following: perception and human–robot interactions.

Various methods have been used to achieve model explainability; however,
this chapter highlights three popular methods used in the industry:

1. Local interpretable model-agnostic explanations (LIME)
2. Layer-wise relevance propagation (LRP)
3. Shapley additive explanations (SHAP)

Table 6.4 A summary of all XAI methods and different input and output types

Methods Explanation types

1. Stage Ante-hoc: explanation within the model
Post-hoc: can further be classified into:

● Model agnostic:
● Model specific

2. Scope Global, local
3. Problem type Classification, regression
4. Input data Numerical/categorical, Image, Text, Time series
5. Output Numerical, image, text, hybrid
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6.4.2 SHAPs
Shapley values are the concept of the cooperative game theory field where the
objective is to measure each player’s contribution to the game.

Shapley values emerge from the context where “n” players participate collec-
tively, obtaining a reward “p,” which is intended to be fairly distributed to each one
of the “n” players according to the individual contribution, and such a contribution
is a Shapley value [104]

The SHAP method was introduced for ML model predictions interpretability,
and results are obtained through Shapely values. The key idea of SHAP is to cal-
culate the Shapley values for each feature of the sample to be interpreted, where
each Shapley value represents the impact that the feature to which it is associated
generates in the prediction.

For a model with a prediction function f(x) and M features, we can obtain
Shapley values as:

fi ¼
X

S�Nn if g

Sj j! M � Sj j � 1ð Þ!
M !

fx S[ if gð Þ � fx Sð Þ½ � (6.1)

We sum all possible subsets (S) of feature values in the formula, excluding the
ith feature value. |S|! represents the number of permutations of feature values that
appear before the ith feature value. (|M|�|S|�1)! represents the number of permuta-
tions of feature values that appear after the ith feature value and [ is the union of sets.

The different term is the marginal contribution of adding ith feature value to S.
There are different variants of SHAP applied today, and their applications are

dependent on the kind of problem posed. Some of the prevalent ones are:

1. Kernel SHAP: Kernel Shap is based on a weighted linear regression where the
coefficients of the solution are the Shapley values. It utilizes LIME for the
calculation of the shapley values.

2. Tree SHAP: The algorithm allows the computation of exact SHAP values for
decision trees-based models [105,106].

3. Deep SHAP: It is a version of the DeepLIFT algorithm (deep SHAP) similar to
Kernel SHAP, where the conditional expectations of SHAP values are
approximated using a selection of background samples [107].

6.4.3 Layer-wise relevance propagation
Layer-wise relevance propagation (LRP) aims to explain any NN’s output in its
input domain. This method does not interact with the network’s training, so you can
easily apply it to already trained classifiers. An example is if your network is aimed
at supporting a robot to predict objects captured by the attached cameras, then the
explanation given by LRP would be a map of which pixels in the original image
contribute to the output or decision.

Algorithmically, LRP uses the network weights and activations created during
the forward-pass to propagate the output back through the network up until the
input layer. This makes it possible to visualize the pixels that really contributed to

186 XAI in MDSS



the output. The magnitude of the contribution of each intermediate neuron (pixel)
“relevance” values is represented as R in the equation below.

Rj ¼
X

k

ajwjkP
0;jajwjk

Rj (6.2)

From the equation above, j and k are two neurons of any consecutive layers in
the NN. a is the activation for the neurons and w denotes the weight between two
neurons. With the relevance R in the output layer, new R’s are calculated back-
wards and iteratively for every neuron in the previous layers [104].

6.4.4 LIMEs
The LIMEs approach to model interpretability generates an explanation for a pre-
diction from the components of an interpretable model (e.g., the coefficients in a
linear regression model), which is similar to the black-box model at the area of the
point of interest and which is trained over a new data to ensure interpretability
[101,108].

There are three main ideas of LIME, which are as follows:

(a) Model-agnosticism: The LIME model is agnostic (model-independent) because
it can explain any model without making assumptions while providing expla-
nations. It treats the model as a black box, so it only has to understand its
behavior by perturbing the input and seeing how the predictions change.

(b) Interpretability: Explanations must be easy and intuitive to understand by the
user, which is not usually the case because the feature space used by the model
may use too many input variables or have very complex or artificial variables.
LIME can explain those classifiers in terms of interpretable representations
(words), even if that is not the representation used by the classifier.

(c) Locality: It produces an explanation by approximating the black-box model
by an interpretable model in the neighborhood of the instance to be explained
[109–111].

6.5 Conclusion

The utilization of computer vision, robotics, and ML technologies in the operating
room contributes significantly to improved healthcare delivery. By incorporating
ethical considerations in AI and robotic surgery, the need for interpretability,
explainability, patient security and safety become imperative. Interestingly, the XAI
field addresses all these issues. Thus, XAI in surgery aids surgeons’ work by pro-
viding real-time explanations to predictions. Since XAI is relatively young, there are
relatively few studies on XAI related to robotic surgery. Therefore, there is a need
for further studies on the future of XAI in robotic surgery. In addition, scientists
must develop proper evaluation methods suitable for different medical domains to
integrate XAI methods into robotic surgeries successfully. One of the limitations of
the current study is that the physical activity of the robotic system, surgical skill
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assessment, and simulation studies were not covered. Simulation studies of the
explanation methods must be conducted before clinical studies are implemented.
However, the chapter focuses more on AI algorithms and explanation methods.
Future work will determine surgical skills assessment and the proper incorporation
of all aspects of AI. Finally, since XAI and surgical robotics technologies require
interdisciplinary knowledge, there is a need for collaboration between surgeons and
other stakeholders in medicine, engineering, and computer science.
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Chapter 7

Prediction of erythemato squamous-disease
using ensemble learning framework

Efosa Charles Igodan1, Olumide Olayinka Obe2,
Aderonke Favour-Bethy Thompson3 and

Otasowie Owolafe3

Abstract

The erythemto-squamous (skin) disease is characterized by redundant and noisy
features. One of the biggest challenges in the artificial intelligence field has been
finding relevant features for the target concept. This is a result of similarities
among the six classes in the dataset. From the literature, most studies focus mainly
on building models on one-phase combined feature selection methods. This paper
assesses the performance of models derived from machine learning techniques
experimentally using ensemble feature selection techniques. The skin dataset was
evaluated using chi-squared, information gain, gain ratio, and relief F as the filter-
based features selection methods and RFE-, PRIFEB-, and MIFEB-based on SVMs
as the embedded feature selection methods in determining distinctive feature sub-
sets. Then, a variety of classification algorithms have been used to create models
that are then compared to seek the optimal feature combinations that produce
model performance. The experimenter results show that our proposed stacking
models outperform other models in terms of accuracy and applicability.

Keywords: Filter method; Embedded method; Ensemble method; SVMs,
Stacking ensemble, Skin disease

7.1 Introduction

The skin on a human body measures 1.85806 square meters (20 sq. ft. area). When
and where it is necessary, the skin controls body temperature and shields the body
from cold, heat, and sundry diseases. Skin disease is a condition that can affect the
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skin due to environmental or genetic factors. Though classified into six classes, its
identification and diagnosis can be challenging due to shared clinical character-
istics with minor variations inherent in all the classes [1–3]. It is important to
recognize skin disease at early stage [4] whether it is fungal, allergic, or viral in
order to stop the spread. To determine the parameters of skin disease, first, a der-
matologist examines 12 clinical features and if a symptom is present, 22 histo-
pathological features are then microscopically analyzed. Particularly,
dermatologists have a difficult time treating and diagnosing skin diseases because
the symptoms may overlap with each other [3]. Many times, different combinations
of these techniques are used for classification, prediction, and diagnosis of various
medical diseases since the advent of artificial intelligence and its subfields were
introduced to the field of medicine [5]. These learning algorithms have been used to
treat a variety of conditions irrespective of the data size, including skin disease,
kidney disease, lung cancer, breast cancer, and many more [6–11]. However, high
latitude data with redundant, irrelevant, and noisy features is one of the factors
limiting the quality of the data. Due to the fact that instances with numerous irre-
levant features provide very little information [10], these features can negatively
impact the performance of prediction models [12]. The need to choose the optimal
feature subsets for high performance is therefore driven by these constraints.

Ensemble and feature selection methods are the two most recent machine
learning research areas frequently adopted to enhance the generalization perfor-
mance of single machine learning [7,9,13,14]. The concept is that combining the
output of multiple experts is superior to the output of an expert [15]; also it increases
the accuracy and diversity of the base model. Bol’on-Canedo et al. [15,16] used
feature selection as a technique for creating diversity in classification ensembles.
Diversity was integrated into this case as an objective in the search for the best
feature subsets. Techniques for feature selection are categorized using two different
criteria: first categorized as supervised, unsupervised, or semi-supervised. Second,
divided into the filter, wrapper, embedded method [17–19], hybrid method [12,20],
and ensemble method [1] depending on how the modeling and selection algorithms
is combined. The ensemble multiple-filter-multiple-embedded feature selection
(EMFMEFS) method is presented as an ensemble framework in our work. The
technique combines the four filter-based methods; information gain (IG), gain ratio
(GR), Chi-square, and Relief F; and three embedded methods; Recursive Feature
Elimination for Support Vector Machine (RFE-SVM) [21], Prediction Risk-based
Feature Selection for Bagging (PRIFEB) of SVMs, and Mutual Information-based
Feature Selection for Bagging (MIFEB), to choose both descriptive and informative
features. While the filter methods leverage the descriptive information of the fea-
tures and are autonomous of the classifier, the embedded method uses the SVM
classifier to evaluate the feature subset importance. Based on distance, dependency,
and information measurements, the intrinsic attributes of features are examined and
graded [6,7,22]. In explainable artificial intelligence (XAI), the methods used to
explain these models are either local or global in scope. The global method seeks to
explain overall model predictions comprehensively from a top-to-bottom approach,
i.e., it provides an understanding of how the structures and parameters of the model
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make predictions. The local method explains how a specific sample is mapped to its
output by providing an understanding of how the model arrived at its prediction.
Furthermore, these methods are categorized in stages as pre-model, intrinsic, post-
hoc, and Specific/Model Agnostic when applied before, during, or after predictions.
The pre-models only apply to data, i.e., independent of the model. It follows that
they can only take place prior to model selection because it is crucial to investigate
and comprehend the data before considering a model. However, accuracy suffers
as a result of natural explainability. The intrinsic interpretability methods, such as
decision trees, generalized linear, logistic, and clustering models, are self-
explanatory models that take advantage of internal structure to provide natural
explainability. The post-hoc interpretability methods are a group of methods that
can be used with any trained black-box model without having to comprehend its
internal workings. By resolving relationships between input samples and predic-
tions, they offer explanations for the global or local behavior of models. They work
with intrinsic models as well. The majority of pre- and post-hoc (models) explain-
ability techniques are model-agnostic in the sense that they can be used with a
diverse range of models. Some, particularly deep neural networks, are model-
specific and only apply to a particular group of models (e.g., CNNs). Model-specific
methods are superior to model-agnostic methods because they make use of the
model’s unique properties or architecture to increase explainability in ways that
model-agnostic methods might not be able to. Some of the explainability techniques
used include principal component analysis (PCA), Shapley Adaptive Explanations
(SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and Partial
Dependence Plots (PDP) [23,24].

However, this study does focus on some of the models for XAI applications but
on the adoption of some of the intrinsic and complex models [23] only. The
objectives of feature selection are to decrease analysis time, eliminate redundant
features, decrease dimensionality, improve model interpretability, and increase
predictive accuracy [22,25–28]. In this study, Naive Bayes (NB), support
vector machines (SVMs), K-nearest neighbor (KNN), Decision trees (DT), and
Multilayer Perceptron (MLP), as well as a meta-classifier (logistic regression) as
some of the well-known machine learning algorithms [29] are adopted and stacked
ensemble classifiers. The performance of our proposed approach is assessed using
the benchmark dataset of erythemato-squamous (skin disease), with 34 features.

According to the literature, the combination of feature selection techniques
aids in the discovery of a stable feature subset that enhances the predictive accuracy
of the majority of classification models, making them easier to understand [30].
Few ensemble feature selection methods are used in the work of most authors, who
generally support ensemble methods because they outperform single classifiers.
This study aims to add to knowledge by developing an ensemble of multi-filter and
embedded feature selection methods (EMFE-FS). Following are the remaining
details of our study. Related work is presented in the second part. The third part
describes the proposed EMFMEFS method, and part four presents the classification
algorithms and benchmark dataset. The fifth part discusses the results of our
experiments while part six summarizes the work.
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7.2 Related literature review

Artificial Intelligence (AI) has lately involved abundant considerations and increas-
ingly being adopted to predict various medical-related diseases. Verma and Pal [2]
developed a predictive model for skin disease with three features selection techniques
using stacking ensemble methods to obtain 98.64% accuracy. Verma et al. [3] built a
classification model for skin disease using ensemble methods. In Ref. [12], a diagnosis
system for skin cancer using CNN-ensemble with random forest was designed by
applying three filtering methods to achieve 90.7% accuracy. Skin disease detection
using association rule-based a priori algorithms, fuzzy logic, and ensemble methods
was developed in Bose et al. [31]. Other related works are shown in Table 7.1.

Regardless of the methodology, the survey’s executive summary identifies
gaps in the methodologies used as feature selection approaches. Majority of the
literature applied either a single selection approach using filter-based, wrapper-
based, embedded-based methods, or combination of filter-embedded or filter-
wrapper approaches. However, to the best of our knowledge, none has applied the
filter-embedded ensemble of feature selection methods in layers as done in our
study. Also, the issue of overfitting in most of the works was not considered and
addressed. Lastly, some of the features selected were descriptive but not informa-
tive while some selected were informative but not descriptive. These limitations
noticed affected the performances of their works. This study combines the advan-
tages of both filter and embedded feature selection approach on six base classifiers
and stacking ensemble and applied the logistic regression to address the overfitting
problem in the ensemble learning framework.

7.3 Materials and methods

A description of the research’s methodology in four steps is contained in this sec-
tion. The block diagram in Figure 7.1 describes the proposed methodology. Data
gathering is the first step while attribute selection process in step two. The feature
selection method is broken down in two steps: the multi-embedded-based feature
selection method and the multi-filtering-based attribute selection [44]. Following
that, ensemble classifiers by bagging, boosting, and stacking are used to create
classification models using SVM, KNN, DT, NB, and MLP. The Theorem, “No
Free Lunch,” states that every algorithm performs well equally when its perfor-
mance is averaged across all potential problems [9]. Nevertheless, this does not
imply that all hope is lost because understanding the underlying issue, the available
data, and the surrounding circumstances can guide the development of more
effective solutions [24]. An ensemble model, which outperforms individual base
classifiers, reduces the variance of error estimation by combining multiple sets of
classifiers [45]. The models are evaluated using a dataset of skin diseases in the
final step, and the top ensembles are determined by comparing bagging, boosting,
and stacking methods. The best ensemble is selected based on prediction accuracy
after comparing the results of the ensemble methods. As a result, in this research,
we employed the feature ensemble and classifier ensemble learning techniques
referred to as the ensemble learning framework in this study.
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Table 7.1 Related literature review

S/N# Year Classifiers Feature selection methods Model accuracy
(%)

Limitation

[32] 2000 P A C, L D A, R N C, BNB, GNB, ETC
and Bagging, AdaBoost, and GBC.

Feature importance method (+DT) 99.68 Time complexity
No feature selection

method.
[33] 2011 SVM, EHO – 98.61–99.07 No feature selection
[4] 2014 Bagged tree ensemble, KNN, SVM,

ResNet50, VGG16, and GoogleNet
GLCM and its statistical information ML classifier:

83–93, DL
classifier:
58–69

No feature selection

[34] 2016 ABC, FELM – 99.57 Time complexity
[35] 2017 ResNet, InceptionV3, DenseNet, Inception

ResNetV2 and VGG-19 using TL
– 98–98.6 majority

and weighted
voting

No feature selection

[5] 2017 C5.0, CDT, CART, RF, Forest-PA
RF, RoF, GBC, XGB, C-Forest, AdaBoost.

DL, MLP, DNN with a SAEDNN,
LSVM.

RIP, PART & OneR

Multi-round cross-validation, sub-
sampling, and cross-validation

Improved perfor-
mance

No feature selection

[36] 2019 SVM, GNB, DT, LR, and stacking
ensemble

Chi-squared, decision importance, Heat
map

SVM: 97.3
Stacked ensemble

99.8

Increased time

[3] 2019 GNB, KNN, DT, SVM, RF and MLP Chi-squared, information gain, and a
principal component

Single classi-
fier—
97.3–96.0,
Ensemble:

95.94, 97.70
and 99.67

Filter-based feature
selection methods
affected modeling

[2] 2020 CART, SVM, DT, RF, and GBC (+DT),
and ensemble method

– 98.64 No feature selection

[37] 2021 Optimal path forest classifiers Pearson correlation coefficient, GR, in-
formation gain, re-lief F, PCA (+gree-
dy-stepwise, best-first search)

94.3–96.7 Computational com-
plexity

(Continues)



Table 7.1 (Continued)

S/N# Year Classifiers Feature selection methods Model accuracy
(%)

Limitation

[31] 2021 Association rule-based a priori algorithm,
FL, Real, Gentle, AdaBoost, SVM,
and modest boosting variants

99.3 Overfitting problem

[12] 2021 RF Chi-squared, information gain and
Pearson correlation coefficient

91 Only considered
filter-based feature
selection methods

[38] 2021 SVM-RFE, DT, KNN, NB, and neural
networks

Chi-square 96.70–100 One filter technique
No EA considered.

[39] 2021 SVM, RF, stacking ensemble, KNN
and NB

Info gain and NB as wrapper approach
(+Best first, Greedy stepwise, and Ran
k search)

93.8–100 One filter method

[40] 2021 Res Net50, Res NeXt50, Res NeXt101,
EfficientNet-B4, Mo bileNetV2, Mo
bileNetV3-Large and Minas Net

Image balancing, augmentation, and
normalization

Improved models Time complexity

[41] 2022 S V M, K NN, L R, R F, ET, G B DT,
X-GBoost, LightGB M, C atBoost, and
M L P. Stack ensemble

Embedded GBDT + Pearson correlation +
SHAP

89.86 Few dataset
Poor performance

[42] 2022 KNN, DT, LR, NB, SVM – 92.30 No feature selection
Poor performance

[43] 2022 NN, SVM and KNN Pearson correlation matrix 93 Only one feature
selection method
adopted

S/N#: serial number; PAC, passive-aggressive classifier; LDA, linear discriminant analysis; RNC, radius neighbor classifier; BNB, Bernoulli Naı̈ve Bayes; GNB,
Gaussian Naı̈ve Bayesian; ETC, extra tree classifier; GBC, gradient boosting classifier; SVM, support vector machine; EHO: elephant herding optimization algorithm;
KNN, k-nearest neighbor; DT, decision tree; GLCM, grey level co-occurrence matrix; ABC, artificial bee colony; FELM, fuzzy extreme learning machine; TL, transfer
learning; CDT, credal decision tree; RF, Random Forest; RoF, Rotation Forest; DNN, deep neural network; XGB: extreme gradient boosting machine; SAEDNN:
stacked auto-encoder deep neural network; RIP, requested incremental pruning; PART, partial decision tree; LR, logistic regression; MLP, multilayer perceptron; FL,
fuzzy logic; RFE, recursive feature elimination; NB, Naı̈ve Bayes; SHAP: SHarpley Additive exPlanation.



7.3.1 Data collection
The collection of the data from the UCI repository dataset [46] is the first step
of this study. The data description is given in [2,3,36,46]. The experimenter plat-
form configurations were done on a processor with 64 bit Operating System,
Windows 10 Pro, CoreTM i5, 1.9 GHz Intel�. Python 3.7 notebook was used as the
implementation language.

7.3.2 Dataset analysis
According to [2,3], the dataset for skin diseases contains 6 classes, 22 histopatho-
logical features, and 12 clinical features. Age is a nominal attribute used in clinical
terminology. The following terms define the feature set:

Family history f 11ð Þ ¼ 1 if disease is in family
0 otherwise

� �
(7.1)

Other attributes ¼
0 no disease found
1; 2 disease within limit
3 high value

8<
:

9=
; (7.2)

7.3.3 Feature selection
The attribute selection process, which is a crucial part of machine learning, is
typically a critical preprocessing activity toward high performance in modeling.
Because the optimal attributes aid inductive learners in enhancing their capacity for
better generalization, improved learning speed and induced model simplicity. If a
model is simple, it can be interpretable and explainable too [23]. However, while
only a few researchers focused on ensemble and hybrid methods, many others
concentrated their efforts either on the filter, wrapper, or embedded methods only.
In [25,47], the justification for using the hybrid and ensemble feature selection
methods is emphasized. Ensemble of multi-filter and embedded-based feature
selection methods is adopted in this study.
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Figure 7.1 A proposed methodology for ensemble data mining and feature
selection method
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7.3.4 Multi-filter-based feature selection approach
Using Algorithm 7.1, our proposed ensemble of multi-filter feature selection
methods is described in this section. These methods combine the output of the four
filter selection methods in formation gain, GR, Chi-squared, and Relief F. The
justification for using the four filter-based feature selection methods is found in
[7,10,47–49].

● Information gain: The top features are chosen by ranking based on the infor-
mation theory. When the feature is present, the entropy decreases. When the
feature is absent, the entropy increases. The information gained can be calcu-
lated as follows:

IG X jYð Þ ¼ H Xð Þ � H X jYð Þ (7.3)

H X jYð Þ ¼
X

j
P yj

� �X
i
P xijyið Þlog2P xijyið Þ (7.4)

H Xð Þ ¼ �
X

i
P xið Þlog2 P xið Þð Þ (7.5)

Note P xið Þ denotes the value of prior probabilities of X , P xijyið Þ is the posterior
probabilities of X given Y .

● GR: Due to the bias inherent in information gain toward attributes with larger
number of different values, the GR is used instead to calculate the ratio of the
information gain of a certain attribute to its split information (or intrinsic
value) [50]. Eqs (7.6) and (7.7) are used to compute the gain ratio of a given
feature x with class value of y:

GR y; xð Þ ¼ information gain y; xð Þ
intrinsic value xð Þ (7.6)

Intrinsic value xð Þ ¼ �
X Sij j

Sj j � log2
Sij j
S

(7.7)

Note jSj represents the number of possible values attributes x can take, while
jSij is the number of actual values of attribute x.

● Relief F: Based on the differences in feature values and target values between
neighboring instances, the score values of the features are calculated. The
Relief F decreases the features’ weight if a set of neighboring instances have
different values for a feature but the same target value. But, Relief F increases
the feature’s weight, if neighboring instances have different values for a fea-
ture and different target value. This process is repeated for a set of sampled
instances and their neighbors to calculate an overall score for each feature [51].
The weight is updated using E. (7.8):

W ¼
X

x � Missð Þ � x � Hitð Þð Þ (7.8)
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where x represents the feature value, Hit and Miss represents the feature value
of a nearest neighbor with the same class and the feature value of a nearest
neighbor with the opposite class value of x respectively.

● Chi-square (x2): The Chi-square x2 statistic measures feature significance
between the feature and the class label. High Chi-square scores are selected in
the new dataset. Eq. (7.9) is used to calculate the Chi-square score [52–55]:

x2 ¼
Xx

i¼1

Xy

j¼1

Aij � Eij

� �2

Eij
(7.9)

The observed and the expected values are represented in Aij and Eij whilst y is the
number of class labels, x is the attribute value.

However, each method has its limitations which can only be overcome by the
combination of two or more methods to maximize their ability to achieve higher
classification performance [56]. Algorithms 7.1 and 7.5 illustrate the logic flow of
the combined methods. The combination of the embedded methods improves the
diversity of individuals and creates an ensemble method that builds a more flexible
and robust model exhibiting accurate results using few feature subsets
[25,47,48,57]. Some of the merits and demerits of feature selection methods are
included in [47,48,56,57].

Algorithm 7.1 Multiple filter-based feature selection

Input: Training set T , nF ¼ Ing;Grat;Chs;ReFf g, Count Threshold = cT � 3, and
Rn ranking

Output: Final features Subset, sF
Procedure:

1. For each n from 1 to nF do
2. Obtain ranking Rn using (feature selection) method n
3. End
4. For each n from 1 to Rn do
5. Select two-third split Fsplit of each method
6. End
7. cF = Combine all selected Fsplit

8. sF = using majority vote, select final subset of features with cT � 3

7.3.5 Multi-embedded-based feature selection approach
The PREFEB, RFE-SVM, and MIFEB are embedded feature selection models. The
PREFEB and REF-SVM use the prediction risk criteria and recursive feature
elimination criteria, which combine feature selection with the bagging of SVMs, to
improve the overall performance of single learning algorithms. The MI-FEB uses
the mutual information criteria employed to the bagged SVM in order to demon-
strate that “many could be better than all.”
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● RFE-SVMs: In the SVM recursive feature selection method, the SVM classifier
is used to rank the features recursively and discard the least informative ones.
By reranking the features after each iteration according to their contribution to
the SVM classifier, this method recursively removes features [21,27,58]. The
classification boundary equation for linear SVMs is:

by xð Þ¼wT :xþb (7.10)

where sign[by xð Þ] is the expected class feature vector xð Þ, w is the weight vector, and
b is a constant.

The process of SVM training generates a set of Ntrainð Þ parameters, where Ntrainð Þ
is the number of training points, from a training set of feature vectors and the class
labels that correspond to them. The weight vector w in the classification boundary
equation (7.11) can be calculated using the parameters aif g ¼ a1; . . . ;aNtrainf g.

w¼
XNtrain

i¼1
aiyixi (7.11)

therefore, the ranking criterion is given as:

cj¼ðwiÞ2 (7.12)

After training an SVM with the entire set of features for each feature j, the
SVM-RFE uses Eqs. (7.11) and (7.12) to determine the ranking criterion values c j.
In the resulting ranked feature set, the feature with the lowest cj value is removed
from the training set and positioned at the bottom. The process is repeated until the
training list is devoid of any features, with the final training feature being used to
retrain the SVM. The entire feature set is now organized logically in the ranked
features list that follows. The top m features for classification are selected from an
ordered feature set that is the output of the SVM-RFE algorithm. The general
structure of the linear SVM-RFE is shown in Algorithm 7.2.

Algorithm 7.2 RFE-SVMs

Inputs: Training Samples fxi;yig
Output: Ranked features list R
Initialize: S ¼ 1; 2; . . . ;Df g; R ¼ ∅
While S is not e m p t y, do:

Restrict the features of Xj to the remaining S

Calculate weight vectors after training SVM

Compute the ranking criteria ck ¼ w2
k ; k ¼ 1; . . . ; jSj

Obtain features with the least value of ck ; referred to as feature p

Add feature p into R R ¼ pf gURð Þð
Remove feature p from S S ¼ S

p

� �
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● Prediction risk-based feature selection for bagging (PRIFEB): The prediction
risk criteria are used to rank and select features in the embedded feature
selection model known as PRIFEB. The PRIFEB was proposed by the authors
in [59], and it measures the prediction error of the datasets when the values of
all instances of a feature are replaced by their average values [57]. That is,
PRIFEB searches for the best subsets at each increasing cardinality using the
sequential forward search approach [60]. Algorithm 7.3 provides an overview
of the PRIFEB methodology.

Si¼ErrTest xi
� ��Errtrain (7.13)

where the training and testing errors are represented as ErrTrain and ErrTest and the
ith feature is defined as:

ErrTrain xi
� �¼ 1

l

X1

j¼1

yðx1
j ;. . .;x

1
j ;. . .;x

D
j Þ

� �
6¼yj (7.14)

where yð Þ is the prediction value of the jth example after the value of the ith
feature is replaced by its mean value and xi is the mean value of the ith feature. l
and D are the numbers of examples Si and feature respectively.

Algorithm 7.3 PRIFEB method

Input: Training set Tr x1;x2; . . .; xD; Cð Þ; number of individuals T , Trk is ¾ of
Tr, Individual model Lk , prediction risk value = Ri, optimal features =
Trk�optimal

Output: Ensemble model N ,
Procedure:
For k = 1: T
Bootstrap training set Tr to create subset Trk

Train Lk on Trk using Eq. (7.16) and compute ErrTrain.
Compute Ri using Eq. (7.11)
If Ri > 0, then

ith feature is selected as one of the optimal features.
Repeat until features in = Trk .
Create Trk�optimal features from Trk

Train the individual model Nk on the Trk�optimal using Eq. (7.16)
End
Apply majority voting to obtain Ensemble classifier.

● The mutual information-based feature for bagging (MIFEB): The MIFEB uses
the mutual information (MI) criteria with the bagging of SVMs, in contrast
to the previously mentioned embedded feature selection model, which relies on
the learning machine using the prediction risk criteria and the recursive feature
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elimination criteria. The information-theoretical measure (MI) is used to
describe how statistically two random features depend on how much infor-
mation each feature knows about the other. The MI between two features R
and S can be defined as follows:

I R:Sð Þ¼
X

r2R

X
s2S

P r;sglog
Pfr;sg

P rf g:P sf g
�

(7.15)

where P rf g and P sf g capture the individual probability distribution of inten-
sities; P r; sf g represents the combined probability distribution of intensities of
two features R and S. Algorithmic MIFEB is depicted in Algorithm 7.4 as
follows.

Algorithm 7.4 MI-FEB approach

Input: Training set Tr x1;x2; . . .; xD; Cð Þ; number of individuals T , Trk is ¾
of Tr.

Output: Ensemble model N
Procedure:
For k = 1: T
Bootstrap training set Tr to create subset Trk

Apply Eq. (7.1 3 ) on the training subset Trk and obtain the value vector
Rank the vector in descending order
Compute sum(MI)
Select all features greater than RMI* sum(MI), where RMI is a predefined ratio in
the range {0,1}
Generate optimal features Trk�optimal features from Trk according to the optimal
features obtained.
Train model Nk on the Trk�optimal features using Eq. (7.16)
End
Apply majority voting to obtain Ensemble classifier.

7.3.6 An ensemble multi-feature selection (EMFME-FS)
approach

The output of the multi-filter-based selection method described in Algorithm 7.1 is
used with the individual ensemble methods in Algorithms 7.2, 7.3, and 7.4,
respectively, in our suggested EMFME-FS approach. Before using the multi-
embedded methods, which ultimately choose the best optimal feature subsets prior
to using a learning algorithm, the multi-filter method is a first step pre-processing
phase. Prior to choosing a two-thirds split of the ranked features, the four filter
methods are used to rank the feature set of the original datasets to create a mutually
exclusive subset (i.e., 22 features). At this point, these features are regarded as high
descriptive features with respect to each filter method. Calculating the simple
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majority vote combining all filter methods yields the final single feature subset
output of the multi-filter methods. Following each embedded feature selection
algorithm, the feature subset obtained from the multi-filter methods is then used for
classification using the bagging, boosting, and stacking ensemble methods as
described in Algorithms 7.2, 7.3, and 7.4. Algorithm 7.5 provides an illustration of
the EMFME-FS strategy.

Algorithm 7.5 Ensemble multi-feature selection approach (EMFME-FS)

Input: Training set Srk x1; x2; . . . ; xk ;C
� �

, Em=REFSVM; PRIFEB; and MIFEB
Output: Ensemble classifier N with metrics performance
Procedure:
From Algorithm 7.1
For Em=REF SVM;PRIFEB; and MIFEB

Perform ensemble learning
Compute performance evaluation
Determine the best model

7.3.7 Machine learning classifiers
Five different machine learning classifiers, including logistic regression as a m
eta-classifier. Due to the various ensemble methods used in the study, the clas-
sifiers were chosen as a combination of homogeneous and heterogeneous
classifiers.

● SVMs: The SVM identifies hyperplane that can maximize the margin
between different classes in a case of binary (2) classification or multi-class
(>2) scenario using one-to-one or one-to-many approach. The hyperplane
is described in Eq. (7.8) above. Using the Lagrange multiplier techniques,
the dual problem of the objective is shown in Eqs. (7.16) and (7.17).

max
a

Xn

i¼1

ai� 1
2

Xn

i¼1

Xn

j¼1

aiajyiyjx
T
i xj (7.16)

s:t:
Xn

i¼1

aiyi¼0;ai�0;i¼1;2;. . .;n (7.17)

Once ai is calculated, w can be obtained using Eq. (7.9). The radial basis
function is used as the kernel function and the regularization parameters as C
and s which are set to 1 0 0 and 1 0, respectively.

● DT: DTs are tree like structure for decision deduction at the nodes and reach
some outcome at the leaf nodes. It is used for classification analysis where
each path is a set of decisions leading to a class. The trees are constructed
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based on entropy inputs that are high, constructed based on the divide and
conquer approach. The approach is illustrated in [13,23].

● NB: Naı̈ve Bayes learning model is a probabilistic classifier that works under
the principle of Bayes theorem with naı̈ve (strong) independent assumptions
between features [23,61,62].

● K-nearest neighbor (KNN): KNN is a non-parametric technique that is used to
classify data points based on the distance function stored by the algorithm on
the training dataset. The Euclidean distance is adopted in this study because it
is used by most instance-based learners [1,63,64]. To classify a new instance
using k-NNN, Eq. (7.18) is adopted:

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
xi � yið Þ2

� �r
(7.18)

where testing vector x ¼ x1; x2; . . . ; xn and training vector y ¼ y1; y2; . . . ; yn

in R
2 vector space.

● Multilayer perceptron (MLP): MLP is one popular “black box” neural network
model that learns by applying a backpropagation algorithm to adjust propa-
gated error to obtain an arbitrary level of accuracy [8,65]. In the MLP, the
input vector xi is multiplied by a weight vector wi, and added to a bias b to
produce an output by using the following Eqs. (7.19)–(7.22):

yi ¼ f
Xn

i¼1
wixi þ b

� �
(7.19)

where n represents input–output pairs, f represents an activation function
presented as:

f ¼ 1
1 þ exp�xi

(7.20)

E by; yð Þ ¼ 1
2

Xn

i¼1
by � yð Þ2 (7.21)

where E is the error function.

di ¼ dE

w
(7.22)

where di is the gradient descent, w represents weight. This study adopts one hidden
layer MLP as it gives the best accuracy.

7.3.8 Ensemble methods
The main goal of the ensemble methodology is to create a composite global
model with more accurate and reliable decision estimates than a single model
can. Each model in the ensemble set solves the same initial problem.
According to published research, combining the results of various classifiers
lowers the generalization error. There are two types of ensemble methods:
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homogeneous and heterogeneous. The boosting, bagging, and stacking
ensemble methods are used in this study to combine both categories [36].

● AdaBoost: AdaBoost combines weak classifiers into an effective strong
classifier by using the iterative ensemble method. The fundamental principle
of AdaBoost is to train data samples to predict a class target of a given data
instance with two classes by setting the classifier weights and using the
average majority vote [66–68] as shown in Eq. (7.23):

XT

t¼1

wtdt;j xð Þ ¼ maxC
j¼1

XT

t¼1

wtdt;j xð Þ (7.23)

where dt;j xð Þ represents support given by the tth classifier to the jth class for
the instance x, wt is the weight of classifier t and T is the total number of
classifiers.

Mutual Info

Features

200

175

150

125

100

S
co

re
s

75

50

25

0

b
an

d
-l

ik
e 

in
fi

lt
ra

te
p
er

if
o
li

cu
la

r 
p
ar

ak
er

at
o
si

s
fi

b
ro

si
s 

o
f 

th
e 

p
ap

il
la

ry
 d

er
m

is
sa

w
-t

o
o
th

 a
p
p
ea

ra
n
ce

 o
f 

re
te

s
v
ac

u
o
li

sa
ti

o
n
 a

n
d
 d

am
ag

e 
o
f 

b
as

al
 l

ay
er

p
o
ly

g
o
n
al

 p
ap

u
le

s
m

el
an

in
 i

n
co

n
ti

n
en

ce
fo

ll
ic

u
la

r 
h
o
rn

p
lu

g
fo

ll
ic

u
la

r 
p
ap

u
le

s
fo

ll
ic

u
la

r 
h
y
p
er

g
ra

n
u
lo

si
s

o
ra

l 
m

u
co

sa
l 

in
v
o
lv

em
en

t
cl

u
b
b
in

g
 o

f 
th

e 
re

te
 r

id
g
es

th
in

n
in

g
 o

f 
th

e 
su

p
ra

p
ap

il
la

ry
 e

p
id

er
m

is
el

o
n
g
at

io
n
 o

f 
th

e 
re

te
 r

id
g
es

k
n
ee

 a
n
d
 e

lb
o
w

 i
n
v
o
lv

em
en

t
sc

al
p
 i

n
v
o
lv

em
en

t
sp

o
n
g
io

si
s

m
u
n
ro

 m
ic

ro
ab

ce
ss

fa
m

il
y
 h

is
to

ry
ex

o
cy

to
si

s
sp

o
n
g
if

o
rm

 p
u
st

u
le

d
is

ap
p
ea

ra
n
ce

 o
f 

th
e 

g
ra

n
u
la

r 
la

y
er

P
N

L
 i

n
fi

lt
ra

te
K

o
eb

n
er

 p
h
en

o
m

en
o
n

eo
si

n
o
p
h
il

s 
in

 t
h
e 

in
fi

lt
ra

te

d
ef

in
it

e 
b
o
rd

er
s

p
ar

ak
er

at
o
si

s
h
y
p
er

k
er

at
o
si

s

er
y
th

em
a

ac
an

th
o
si

s
in

fl
am

m
at

o
ry

 m
o
n
o
n
u
cl

ea
r 

in
fi

lt
ra

te

sc
al

in
g

ag
e

it
ch

in
g

Figure 7.2 Information gain

Prediction of erythemato squamous-disease 211



● Bagging: The simplest but most effective independent ensemble method for
enhancing the accuracy of unstable learning algorithms is bagging [67,68],
which is derived from bootstrap aggregation. During the bagging process,
datasets are divided among various bootstrap replicates. The original dataset
is used to create each replicate, which contains, on average, 63.2% of the
original data. The process entails putting the slow learner through several
bootstraps on repeat. The weak learner’s classifier is combined into a strong
composite classifier with each iteration, producing higher accuracy than any
individual component classifier could manage. The total of all base learners
is then calculated using the majority voting system (or plurality voting)
represented in Eq. (7.24):

XT

t¼1

di;j ¼ maxC
j¼1

XT

t¼1

dt;j xð Þ (7.24)
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where the decision of the tth classifier is defined as dt;j 2 0; 1f g, t ¼ 1; . . . ;T
and j ¼ 1; . . . ;C: T represents the size of the classifiers, and C represents the
size of the classes. If tth chooses wj; then dt;j ¼ 1, otherwise 0.

● Stacking: With the aid of a meta-classifier, stacking [69] is used as an
ensemble technique to combine heterogeneous models. In order to get the final
outputs from the base classifier for prediction results, five base classifiers—
SVM, DT, NB, K-NN, and MLP—are trained, while the logistic regression is
then used as the meta-classifier to avoid the overfitting phenomenon generated
by the base models in the ensemble [41].

7.4 Experimental results and discussion

By combining several filter-based feature selection models, including Info Gain,
GR, Relief F, and Chi-square to produce various feature subsets, we created a
novel methodology for feature selection in this work. In each subset, 22 features
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Table 7.2 Metrics measurement.

Base classifiers Accuracies Sensitivity Specificity Precision Recall F1 score

SVM 98.5 85.1 98.2 83.9 85.0 88.8
DT 94.7 88.4 95.2 72.7 88.3 71.6
MLP 88.0 85.7 99.9 77.3 85.6 77.3
K-NN 94.7 86.3 98.0 84.6 86.3 85.4
NB 77.3 69.4 93.8 53.1 64.9 57.6
Bag (SVM) 80.9 85.1 98.2 88.9 85.0 80.8
Bag (DT) 98.6 83.3 97.8 73.2 83.3 80.2
Bag (MLP) 80.9 85.3 98.1 89.7 81.5 81.4
Bag (KNN) 94.7 88.7 97.0 89.9 88.6 80.1
Bag (NB) 71.7 72.8 95.5 79.0 72.7 65.0
Boost (SVM) 49.4 17.7 83.3 04.2 16.6 05.3
Boost (DT) 98.6 80.5 93.9 79.1 78.5 80.8
Boost (NB) 77.3 64.5 95.6 52.7 61.4 52.2
Stacking (Log Reg.) 98.6 87.8 98.2 90.2 90.7 88.5

Note: The bold values shown in Table 7.2 indicates that the ensemble learning methods (using both
feature selection and classifiers) demonstrate competitive results than the individual classifiers in
majorly all the metrics used. Therefore, it is important to note that the ensemble learning is suitable and
has the advantage regarding freeing users from making decision in choosing the best possible feature
selection method for any given problem.
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were chosen (i.e., two-thirds of the 34-original features). Then, only 13 features
were chosen for the embedded feature selection methods using the simple
majority voting technique. Finally, nine features for the base classifier ensemble
learning method—boosting, bagging, and stacking—were obtained using the
PRIFEB, MIFEB, and RFE based on the SVM model. The outcomes at each
stage are listed below. The various features obtained by the filtering techniques
are displayed in Figures 7.2–7.5. Two-thirds of the features with the highest
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scores were chosen. The accuracy results from the top features from the PRIFEB,
MIFEB, and RFE-SVM embedded selection models are shown in Table 7.2.

The accuracy and other measure scores after five iterations of each base model
are shown in Table 7.2. The individual and ensemble models perform well in terms
of accuracy, with the exception of the Boosted SVM, which had an accuracy rate of
49.4%. The selection of the obtained hyper-parameter values was poor, which is
why the boosted SVM performed poorly. The base SVM, bagged DT, boosted DT,
which uses majority and weighted majority voting techniques, and stacking of all
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models using logistic regression as the meta classifier, are the models that perform
the best in terms of accuracy. The accuracy of each model is shown in a single chart
in Figure 7.6. The SVM, bagged DT, boosted DT, and stacked ensemble model
generated the highest accuracies of 98.5–98.6%. The stacked ensemble has the
highest performances still in sensitivity, specificity, precision, recall, and F1 score
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of 87.8%, 98.2%, 90.2%, 90.7%, and 88,5% respectively. Table 7.2 demonstrates
that heterogeneously staking models can result in models with significantly
improved classification performance.

Figures 7.7–7.19 show the confusion matrices for the individual and ensemble
models. Figure 7.20 depicts the box plots of the models. The accuracy of each
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model used in this paper is shown in the box plots. The stacked ensemble learning
model, which combines all five models and a metaheuristic classifier to classify the
dataset, is clearly the best performing model, according to the box plot, while the
worst model is the boosted SVM, which exhibits signs of weak hyperparameter
values used for the SVM classification. In order to reduce the size of the original
features for the skin disease dataset obtained from the UCI machine learning
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repository, the study develops an ensemble of multi-feature selection approaches
using both the filter feature selection techniques and the embedded feature selec-
tion methods. Any large dataset for classification can be used with this method. The
focus of this study, however, is only the skin data set using three embedded models
and filters to choose the features, along with a few chosen classification learning
algorithms and an ensemble of them.
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7.5 Conclusion

The ability to classify skin diseases using an ensemble of multi-feature selection
algorithms is demonstrated in this paper. The algorithms’ time and space com-
plexity were both reduced by the multi-feature selection method’s feature reduc-
tion. The results of this study show the stacked ensemble of classifiers outperforms
others in terms of accuracy, specificity, sensitivity, recall, precision, and F1 score.
The black-box nature of some of the machine learning algorithms used in this study
limits the explainability of these models and their practical deployment in medi-
cine. This is due to the fact that the cardinal of AI deployment in the clinical
environment is not only for model accuracy, but the explainability of the models
hence the critical need for medical XAI for the diagnosis of erythemato-squamous
disease [23]. The XAI deals with the transparency, comprehensibility, interpret-
ability and understandability of the causality of the learned representations in the
decision-making process of the classifiers. This is a current challenge that is critical
to the medical personnel’s acceptability and adoption. As fantastic as our current
approaches seem, it is still considered black-box algorithms problems [11,23,70], in
that, while some models like DTs can learn the mappings of inputs to outputs,
others are next to impossible to how predictions are made [24]. In the future, we
hope to address some of the challenges of explainability in AI applications.
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Chapter 8

Security-based explainable artificial
intelligence (XAI) in healthcare system

Hüseyin Gürüler1, Naveed Islam2 and Alloud Din2

Abstract

Explainable Artificial Intelligence (XAI) is one of the most advanced research
areas of Artificial Intelligence (AI). To explain the deep learning (DL) model is the
main objective of XAI. It deals with artificial models which are understandable to
humans, including the users, developers, policymakers, etc. XAI is very important
in some critical domains like security, healthcare, etc. The purpose of XAI is only
to provide a clear answer to the question of how the model made its decision. The
explanation is very important before any system decision-making. As an example,
if a system responds to a decision, it is necessary to have inside knowledge of the
model about that decision. The decision can be positive or negative, but it is more
important to know the decision based on characteristics. The decision of the model
should be trusted when we know the internal structure of the DL model. Generally,
DL models come under the black box models. So for security purposes, it is very
necessary to explain a system internally for any decision-making. Security is very
crucial in healthcare as well as in any other domain. The objective of this research
is to provide a decision about security based on XAI which is a big challenge. We
can improve security systems based on XAI for the next level. For medical/
healthcare security, when we recognize human action using transfer learning
techniques, one pre-trained model is considered good for action and the same
action is not good in terms of accuracy using another pre-trained model. This is
called the black-box model problem, and it needs to know what is the internal
mechanism of both models for the same action. Why one model considers good for
action and why the same action is not very well using another model? Here need a
model-specific approach of post-hoc interpretability to know the internal structure
and characteristics of both models for the same action.

Keywords: Security in hospital; Abnormal action in healthcare; Security in
healthcare; Smart healthcare; Smart medical security system; Health monitoring
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8.1 Introduction

Development in the science of Artificial Intelligence (AI) has led to its widespread
use in a variety of fields, including finance, medical services, and security [1]. In
this regard, one of the numerous study fields in which AI-based systems have
achieved outstanding results or even outperform humans in computer vision, which
belongs to machine learning (ML) algorithms to extract information from pictures
[2]. For example, to recognize things. A neural network (NN) was able to outper-
form humans in identifying traffic signs early. The advancement of deep learning
(DL) algorithms has been the backbone of numerous discoveries in this area. This is
a famous field of ML that models the architecture of the human cerebral cortex and
trains and applies multi-layer neural networks (NNs) using huge data [3]. DL is
being studied more and more in the healthcare and security fields. It may be used
for medical imaging as well as security. A DL model is used to identify abnormal
activity in the healthcare system by surveillance [4]. Despite significant advances
and achievements in this field, one issue with DL algorithms is their “black-box”
nature. There is no intrinsically full knowledge of the underlying mechanisms of
DL-based techniques such as NNs due to their great degree of complexity [5]. AI
systems that suffer from this issue are frequently referred to as opaque. As a result,
there is a closed relation between performance and explainability: as model per-
formance improves, the explainability of these approaches reduces. Explainable
Artificial Intelligence (XAI) approaches have been created to increase transpar-
ency, open the black box, and generate explanations for AI system decisions [6].
XAI aims to create transparent and explainable models with strong learning per-
formance, or prediction accuracy, allowing human users to comprehend, fully trust,
and control a new generation of artificially intelligent companions [1]. This study
will concentrate on XAI and its possible effect on trust in healthcare security. Trust
is undertaken across multiple disciplines, including philosophy, psychology,
sociology, marketing, information systems (IS), and human–computer interface
(HCI). Because AI is becoming more powerful and is increasingly being employed
in crucial circumstances with potentially serious repercussions for people (e.g.,
auto driving, healthcare diagnosis), trust in such systems is becoming increasingly
important. There are various notions and definitions of trust in the various lines of
the trust literature review. We employ a paradigm to treat the trust as a formative
second-order entity [1].

Our main goal is to develop a security system based on computer vision to
detect abnormal actions from video frames (actions may be human fall, kick and
punch, etc.). Different pre-trained models will be considered for the actions
detection and recognition in healthcare for security purposes. The dataset
obtained for this research is the “HMDB51 human action dataset” which consists
of human 51 different human actions. The goal is then to develop explanations
using XAI approaches of pre-trained models and use them to compare different
actions in healthcare. We propose the following main question: using a pre-
trained model, one model consider good for action and why the same action is
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not good using another model? Using XAI approaches, we will compare and
explain the internal mechanism of the deep NNs for the same action [1]. Because
DL algorithms are often black box models, there is no acceptable explanation for
a given prediction, explaining them is challenging. This uncertainty impacts DL
in healthcare [7] since a clinical practitioner has to know the rationale for a DL
model’s prediction. The issue of explainability in DL models has been addressed
by a number of researchers [8]. Gradient-weighted Class Activation Mapping
was established by [9] to reveal input areas that are significant for predictions
(Grad-CAM). We can deduce where the ML model is concentrated when making
a forecast and, as a result, why such values exist. Explainability is important in
healthcare security because we need to be able to explain why a certain predic-
tion for an input sample is correct [10]. Automated image analysis has seen
breakthroughs because of DL. Previously, image analysis was mainly done with
systems designed entirely by experts. For more details, a classifier for statistics
that performs a job using handcrafted feature properties i.e. features. A system
for image analysis may incorporate the classifier. Low-level picture qualities
such as edges and corners, as well as high-level image aspects, contain on can-
cer’s speculated border and high-interest points, were among the features. These
characteristics are gained and learned through a deep NN (NN) in order to pro-
vide the optimal value or result after input data. A frame is passes through a
model for an action as input, as a result the DL model may create the output
result of the frame. Many nonlinear mixed interactions are frequently used to
connect multiple layers of NNs [11]. It is hard to completely understand how the
NN made its predictions even if all of these layers are investigated and their
interactions are detailed. DL is sometimes referred regarded as a “black box” as a
result of this. Concern has been expressed in a number of sectors and biased in
some methods. Generally, this bias is hard to notice and may go unread. This has
far-reaching implications, notably in medical and security applications.
A request has been made for ideas on how it is possible to understand the black
box clearly. The techniques which are followed as interpretable DL or XAI are
mentioned in [12,13]. We will use the word XAI because these names are
commonly used interchangeably. The US defense advanced research projects
agency (DARPA) and the Association for Computing Machinery’s Fairness,
Accountability, and Transparency conferences are two notable XAI efforts.
Decisions about healthcare security are often high-stakes affairs. Unexpectedly,
some of the healthcare domain experts felt the need for explainability and they
have raised concern about the black box of AI, which is the current state of the
art in computer vision applications [14]. In addition, laws such as the General
Data Protection Regulation of the European Union stipulate that a person has the
right to information when a decision was made. Researchers are using the XAI
techniques for healthcare security to get insight into their algorithms. The pur-
pose of this study is to compile a comprehensive list of works that employ XAI in
the medical computer vision domain. We narrowed our search to research that
applied DL-based security-based XAI in healthcare systems [11].
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8.1.1 XAI
In DL, we will present a quick introduction of XAI approaches for security in
healthcare in this part. See also [12,13] for comprehensive XAI surveys. People can
understand and explain how an AI system decides with XAI [7]. XAI is a set of
approaches and tactics that allow humans to evaluate and trust the outcomes of ML
algorithms. An AI model, its intended impact, and any biases are all referred to as
XAI. It has to do with how AI-powered decision-making defines model correctness,
fairness, transparency, and results. When it comes to putting AI models into pro-
duction, XAI is crucial in terms of building trust and confidence. AI explainability
also aids a company’s approach to AI development in a responsible manner. There
are many benefits to understanding how an AI-enabled system arrived at a parti-
cular decision. Explainability can assist developers in ensuring that the system is
operating as intended, may be required to meet regulatory requirements, or may be
essential in enabling individuals who will be impacted by the decision to contest or
amend the result. It will be crucial in marketing [15], healthcare, industrial,
security, and automobiles [10,16], according to recent research. The depth of the
explanation will be divided into three categories: model-based vs. post-hoc, model-
specific vs. model-agnostic, and global vs. local XAI techniques

8.1.2 Model-based explanation
Studied in and is defined as models that are simple to understand and consider good
enough to fit a connection between the output and input data. Linear regression and
SVM are examples of model-based explanations. In this context, traditional ML
methods are typically applied. Ref. [13] offers instances of model-based explana-
tions that require to have knowledge of the internal mechanism of the model, and
human can also know how the model make a decision. That is sparsity, or that only
allows some features which are very restricted and not enough to know the whole
decision-making process. The models that impose sparsity are not the most but the
least selection operator. As a consequence, the model’s inner construct is explained
by a subset of attributes that leads to output. Model-based explanation via man-
dated sparsity or simulatability is not possible because our study focuses on XAI
techniques. Deep NNs have hundreds and millions of weights that are neither
sparse nor appropriate for humans to explain the inside model whole mechanism.
Refs. [11,13] discussed the techniques of feature engineering using model-based
approach.

8.1.3 Post-hoc XAI
It is the process of analyzing a trained model, such as NN in DL, to gain an
understanding of acquired relationships [11]. Apart from model-based explanation,
the post-hoc explanation is that the latter caused the model to be explainable. After
training the NN and then explaining the internal behavior of the black-box model.
Post-hoc explanations can be found using approaches such as feature inspection,
feature significance, and feature interaction [17].
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8.1.4 Model-specific explanation
Only some types of models are suitable for model-specific explanation approaches.
Such a method can make advantage of characteristics peculiar to a certain kind of
NN. Finding a model-specific explanation limits our model choice and may be
leave out models that could more closely match to the output. According to the
research community, a model-specific explanation by definition is a model-based
explanation. Despite certain post-hoc saliency mapping approaches being unique to
a particular kind of CNN, they are not model-based explanation strategies [11,13].

8.1.5 Model-agnostic explanation
Regardless of the model used, model-agnostic explanations are fully dependent on
the given data. The explanation of this approach is based on the input and output
data of the model. By changing some input samples, the user can see the changes in
the output of the same model [11]. As a consequence, it is easy to figure out what
factors influence the model’s output. By definition, post-hoc and model-agnostic
explanation are very similar to each other.

8.1.6 Global explanation
The model’s general relationships are described in a global explanation, also known as
a dataset-level explanation. For example, at the dataset level, the global explanation
may include feature significance ratings, showing how much characteristics contribute
to the overall outcome [11]. The presentation of learned filters displays the extracted
characteristics using a NNs they are very important for the process.

8.1.7 Local explanation
The term “local explanation” refers to the explanation of a single input. A single
individual would be an input in the case of certain risks. Thus, a local explanation
would explain why action is significant for security and risk for an event, but a
global explanation would describe the relationship between an action and a threat
to security throughout the whole dataset. A saliency map locating a useful region or
features of action in a frame to explain which portion of the frame contributed the
most to the classifier output for action is another example of a local explanation.
This is a local explanation since it describes which element of the image causes the
classifier to report abnormal action for security [11].

The following is how the paper is organized: the literature on AI and ML
explanation, explanation of ML in healthcare, and explainable system research in
human–computer interface (HCI), etc. is given first. Following that, we go into our
study methodology, covering the transfer learning (TL) concepts and pre-trained
networks we used, as well as XAI visual explanation approaches. The outcomes of
our implemented NNs employing the TL techniques, as well as the generated
explanations, are presented, followed by a discussion of the importance of XAI in
terms of understandability, as well as consequences for study and experimentation.
A conclusion is included at the end of the paper.
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8.2 Literature review

This section discusses the current state of the explainable AI literature, with two
main goals: one is to create, improve, and merge AI/ML algorithms, while the
other is to identify and evaluate current infrastructure and models from a human
perspective.

8.2.1 XAI and AI
The user experience has been significantly enhanced by ML and AI over the past 20
years by making computer systems more intelligent and secure. In fact, a sig-
nificant number of ML and AI systems in use today have attained a level of relative
autonomy, meaning they are capable of making decisions and carrying out activ-
ities without the need for human supervision. The fact that the current systems are
black boxes and unable to explain why they made a certain choice is one of their
biggest limitations [18]. As a result, customers who interact with these self-driving
systems frequently struggle to trust and understand them, especially when making a
decision. As a result, there has been a rise in interest in constructing XAI systems,
in recent years. Good examples are XAI systems [19,20], classification systems
[21,22], and activity recognition systems [18,23]. Based on our prior research [18],
we focused our study on an explainable action recognition system for healthcare
security. Many ML/AI communities have examined explainability and interpret-
ability strategies in ML models and systems. For example, Ref. [24] provides a
survey of various interpretability techniques, such as post-hoc explanations where
the model is self-explanatory and designed to be interpreted globally or locally
[25,26], and intrinsic explanations, where explanations are drawn from the model
from local or global viewpoints, and model-specific/agnostic reasons [27]. Others
have looked into an explanation by example, which involves a model presenting
instances of important events from the training set for a specific input rather than
attempting to explain the model’s reasoning explicitly. For example, in the visual
domain, Ref. [28] identified and investigated two types of example-based expla-
nations, as well as their efficacy with humans: the first normative explanations
present training examples to assist users to understand classifications, while the
second comparative explanations display the most comparable cases which may be
of different classes from the training set to the input [18].

Researchers have described distinct types of focus on what is being explained
by various hypotheses. According to [29], transparency seeks to show how an AI
system works, whereas post-hoc interpretability focuses on the whys in the AI
system, providing a rationale for its results. Ref. [30] performs an in-depth analysis
of a significant number of deep NN visualization papers and divides the literature
into different categories based on how visualization may reveal different DNN
properties. The following are the categories: Why visualize DL models? What data,
features, etc. [31,32]. What data, features, etc. Article in ACM Trans. Comput.-
Hum. Interact. Is it possible to visualize their relationships? When is visualization
employed in DL? [33,34]. Who would benefit from and utilize DL visualization?
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How to display data, features, and relationships? [34] and Where has DL visuali-
zation been used? (see, e.g., [67,68]). While these categories are intended to aid in
the visualization of DL methodologies, the same problems apply to any AI system
that may be interpreted and explained [18]. Our explainable system in this research
adopts a similar strategy and concentrates on a crucial explainable system
(explainable action recognition system), but it is distinct from the majority of the
work in the ML community in that we employ explainable systems to assess and
comprehend user behaviors as well as to compare pre-trained networks for further
understandability. Then we will go through how to create ways for explaining to
human users, as well as how visual explanations are feasible.

8.2.2 Explanation meaningfulness and veracity
Various types of explanations include textual, confidence scores, prediction
accuracies [35], and saliency maps [27]. They can also deal with a variety of logic
and model operating circumstances. Global explanations [36] seek to provide a
high-level overview of how a model produces its output. Building models as global
explanations has been the subject of several explainable systems aimed at data
experts [18]. An interactive visual method for summarizing and illustrating DL
models, as well as demonstrating how much each layer and attribute was used to
make predictions. Global explanations are useful because they can reveal biases,
help in the detection of model defects, and allow for hyperparameter change [18].
Global explanations, especially for complicated or DL models, have the dis-
advantage of being more difficult to achieve in practice [36]. In contrast to global
explanation, local explanation attempts to justify particular outcomes based on
specific instances of input. Users can obtain a deeper understanding of the model
by engaging with it over time and examining multiple instances, but an individual
local explanation seldom gives a comprehensive overview of how the model works.
The instance-level explanation may be critical in improving the user’s under-
standing of system output, depending on the task. Our goal was to look at a system
and a scenario that did not require any unique data expertise. We employed post
hoc explanations to visually compare and illustrate certain key characteristics of
cases that were crucial to the conclusion. One drawback of local explanations is
how quickly they might alter a user’s perception of the system. According to [18], it
is easy to lose trust in automation, but it is more difficult to rebuild trust after it has
been lost. For that reason, poor or erroneous instance-level explanations might lead
to a sudden loss of confidence. As a result, the quality of these explanations is
extremely important. Researchers examine the quality of explanation from a variety
of perspectives. Ref. [37] studied how the existence and fidelity of explanations i.e.
how precisely the explanation represents the underlying model, as well as system
accuracy, impact user confidence. Using two degrees of high and low fidelity
explanations, they observed that system accuracy plays a vital role in establishing
user confidence, but low fidelity explanations may erode trust. Other studies have
looked into what is known as nonsensical explanations, or explanations that people
do not understand. After completing three behavioral field investigations and
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determining that individuals adhere to an explanation when it is more instructive
rather than meaningless. Mention in [18] recently developed a NN input reduction
technique that reduced explanations while maintaining accuracy by removing
extraneous material. The human assessment, on the other hand, demonstrated that
these shortened explanations and summaries confound humans since they are
meaningless, resulting in a decrease in task accuracy [18].

8.2.3 ML in healthcare
Some physiological movements are controlled by signals from some cognitive
diseases [10]. For example, a stroke may result in a shift in movement. Several
researchers have proposed utilizing wearable sensors to track users’ behaviors,
allowing for the recognition of various human physical functions [10,38].
Monitoring such activities can detect early warning signs of health problems. In
this context, ML and DL technologies have made tremendous progress in health-
care security. While such technologies are unlikely to completely replace health-
care volunteers, they have the potential to reshape the sector, benefiting both
patients and providers [10,39,40]. In addition to security in healthcare, ML and DL
are crucial when it comes to ECG analysis [41–43]. Several methods for categor-
izing ECGs into arrhythmia categories have been presented [44]. DL was utilized to
automate cardiac auscultation, which is the process of identifying aberrant heart
rates. They described a time–frequency heat map representation-based deep con-
volutional NN (CNN)-based automated heart sound classification algorithm. Their
CNN architecture is trained using a modified loss function, which directly
improves the sensitivity-specificity trade-off. Ref. [45] presented a method for
utilizing heart sounds to diagnose chronic heart failure. Traditional ML is used with
end-to-end DL models in this method. While the DL model learns from expert
features, the normal ML model learns from a spectro-temporal representation of the
signal. Ref. [46] has developed an intelligent ECG classifier that uses rapid com-
pression residual CNNs to give high-accuracy abnormality classification [10].

Although the study mentioned above appears promising, it may only be useful
in the real world because it relies on centralized data collection methods. Users and
data owners may get concerned about their privacy as a result of this. Typical
centralized healthcare apps have limited applicability due to privacy concerns
[47,48]. To address privacy problems in ML, researchers have been working on
federated learning (FL) and TL. FL trains a ML model using a distributed archi-
tecture in which individual devices generate their own ML model using local data
and a central global server aggregates all of the locally trained models before
sending the aggregated model to all network nodes. FL has many applications in
healthcare due to its privacy-preserving and efficient communication constraints.
Refs. [49,50] addressed basic statistical, system, and privacy considerations, as well
as the consequences and potentials of FL’s application in healthcare. They
demonstrate that training the model in a FL framework yields results comparable to
those achieved in a traditional centralized learning environment. TL is the process
of transferring knowledge from one trained model to another. The fundamental idea
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is to reduce disparities in distributions across various models. Instance re-weighting
[51] and feature matching [52] are the two main approaches. Deep TL algorithms
have shown a lot of success recently in a variety of domains. To address concerns
about privacy and security. FedHealth, the first federated TL platform for wearable
healthcare, was introduced by [53]. FedHealth uses FL to acquire data before using
TL to create reasonably personalized models. FedHealth enables deep TL without
requiring access to raw user data in the FL architecture [10]. To put it another way,
as previously said, a lot of promising work has been done in the field of ML and DL
healthcare. However, several of these efforts are prone to privacy problems.
Fedhealth is a research project that uses FL and TL architecture to overcome
privacy problems. Nonetheless, as previously mentioned, works like fedhealth have
the limitations of explainability [10]. As a result, research is required to solve these
issues. Also, security in healthcare is very important these days, the proposed
research will look forward to security-based XAI in the healthcare system.

8.2.4 Intelligibility and explainable systems research in HCI
Researchers in the field of HCI are concentrating on how users engage with intel-
ligent systems, and one important topic is the explanation. Researchers in HCI are
particularly interested in the interaction between AI systems and users, and they
have done a lot of work in this area. How a camera can monitor the patient and
other person’s abnormal actions? The strict notions of AI systems have been
heavily criticized as being incompatible with human behavior patterns [54].
Context awareness, cognitive psychology, and software learnability are among the
subjects covered by XAI in HCI. Context awareness is a technique for identifying
user emotions and behaviors. With the introduction of mobile devices and sensors
in the early 2000s, context awareness raised a lot of concerns [55,56]. People
should be able to recognize what is being observed and what actions are being done
in a particular frame. Users should be able to know “what they know, how they
know it, and what they are going to do next” when using a context-aware system.
Explainable AI requires simplified representations of the context to make for
people to understand what is gained and what action will be taken by systems [54].
Theoretical explanations are the focus of cognitive psychology. Ref. [54] looked at
cognitive explanations and discovered that they are closely linked to causality
thinking. Furthermore, XAI focuses not only on human cognitive psychology but
also on social context understanding. The capacity of software learnability to be
learned is an essential aspect of usability. It focuses on how to utilize complicated
software programs via demos or in-context videos [19] and assesses the system’s
ease of use [54]. Users require not only outcomes but also an account of their
actions from systems. Furthermore, according to [54], research has been conducted
on a customized interface that gives a visual or textual explanation for context-
aware rules researchers also looked at interaction design methods and how to
employ feedforward to assist users to predict system behavior [54]. A key devel-
opment is how users understand and operate ML systems, which contributes to
debuggable and understandable ML. In AI applications such as driverless cars,
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understandability and predictability are critical. Data visualization is a stream from
the computational standpoint of HCI, which appears to be separated from what ML
researchers perform in addition to algorithmic accountability, transparency, and
fairness [54].

8.3 Methodology

8.3.1 Explainable video action recognition system
Our procedures were carried out with a video-based explainable action recognition
system that we created ourselves. Because of the various real-world uses that it may
have. For example, activity recognition is an excellent test bed for XAI research in
fire detection [44], airport security [57], smart hospitals [58,59], and assisted living
[59]. Our objective is to look at system understanding and efficacy in a non-specialist
audience, i.e. people who have no prior familiarity with the subject or AI skills. That
is why we decided to create a system for human abnormal action recognition for
healthcare security [18]. Using a pre-trained architecture with different TL techni-
ques, we used new trained layers on top of a deep uninterpretable layer, our system
generates human-understandable explanations.

8.3.2 TL
In ML, the process of transferring previously acquired knowledge to a new task is
known as TL or information transfer [60]. With tiny datasets, CNNs are prone to
overfitting, hence TL with deep CNNs is a good option for training the model. Yet,
increasing the size of the training data can prevent overfitting; however, giving a
large amount of annotated data is time-consuming and costly. TL is advantageous
in this context because it solves the problem by using a pre-trained deep repre-
sentation as a source architecture for constructing the new model [61]. In this study,
we compare pre-trained networks as a core architectural design to address the
challenge of human action recognition using XAI. Generally, pre-trained models
were trained on the ImageNet dataset and can use a 224 � 224 pixel RGB image as
an input to classify a 224 � 224 pixel RGB image into the proper class. These
networks, as shown in Figure 8.2, consist of multiple convolutional layers (conv1–
conv5) as well as some fully interconnected layers (Fc1–Fc3). Due to the millions
of parameters in this network design, learning all of them for a small training
sample of a new task is difficult and time-consuming. As a consequence, we added
several fully connected layers for training purposes and used the base framework as
a feature extractor. This TL concept is called the freezing model. If the accuracy is
increased by backpropagation, then we can call it fine-tune model approach. The
proposed method is creative and fascinating to recognize human actions using DL
models with a TL approach, freezing or fine-tuning the pre-trained model can
easily improve the accuracy of human actions for security. The outcomes of the
experiments confirm the proposed work’s efficacy. Furthermore, rather than
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building a new model from scratch, our studies indicate that using a TL pre-trained
model enhances the classification and recognition system’s accuracy. Figure 8.1
depicts a block diagram of the proposed methodology.

The followings make up the structure of the proposed approach for security-
based XAI human action recognition.

1. Preprocessing module. 2. Model architecture. 3. Freeze model. 4. Fine-tune
model. 5. The pre-trained model is followed by a new classifier.

8.3.3 Model architecture
After preprocessing module, the data are fed into the model to extract high-level
features from video frames, the proposed method employs the pre-trained VGG19
[62] model. Figure 8.2 depicts the VGG19 structure diagram. The simplicity of this
model and its demonstrated high descriptive potential for human action recognition
[63] were the primary reasons for its selection. For image classification, VGG19
was trained on the ImageNet dataset. Its architecture is straightforward, with five
convolutional and three fully connected layers. This model is used to extract fea-
tures from the dataset we are working with. In this example, activating the first
fully connected layer for classification generates a feature vector. It is worth
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mentioning that some pre-trained models, such as GoogleNet [64] and ResNet [65],
allow various types of low, medium, and high-level feature descriptors. Depending
on the nature of the problem, different feature descriptors have advantages and
disadvantages that must be evaluated. Figure 8.2 shows the proposed pre-trained
VGG19 model architecture.

8.3.4 Freeze model
Pre-trained architecture is well defined and has five blocks of convolutional layers.
The convolutional layers work as a feature extractor machine. In TL, there are two
ways to train the target model: freeze the model and fine-tune the model. Using pre-
trained models, the researchers only freeze the convolutional blocks for feature
extraction. In the freeze model, the model does not update the weights of the
neurons during backpropagation. In some cases, the freezing model will consider a
very efficient approach to the target model. In the freeze model, the pre-trained
model will use to rebuild with some changes. The top layers are removed from the
pre-trained model that was trained on 1,000 classes, and new dense or fully con-
nected layers are added to the trained new target model. The freezing model is a
good strategy to train a new model for a similar problem. Most of the time, the
accuracy increases with the freeze approach, and sometimes it is not applicable to
increase accuracy. The proposed pre-trained model is VGG19 and freezes with new
dense layers. In this paper, the model accuracy with other matrices is good as
compared with other pre-trained models. The structure of the freezed model is
shown in Figure 8.3.
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8.3.5 Fine-tune model
As with like freeze model, the fine-tuned model can also work for a similar pro-
blem. In TL techniques, fine-tune method is popular for updating the weights of the
neurons. In this technique, the model weights are updated during backpropagation.
In this approach, the model will change the pre-trained model weights and can
improve the accuracy of the problem. The pre-trained model consists of five con-
volutional layers for feature extraction, with some dense layers at the top of the
model architecture. During fine-tune process, the model updates all the pre-trained
convolutional block weights and trained target model with new fully connected
layers. In fine-tune concept, the researchers can update some layers and can freeze
some layers for better results. Using this method, many problems can be solved
with high accuracy and are not applicable to all types of problems. It depends upon
the nature of the problem. The researchers used both techniques of TL, but most of
the problems can increase their accuracy through fine-tune approach. In this
research, we have also used this approach for the security-based human action
recognition problems. The model architecture is shown in Figure 8.4 and the
experimental results are shown in the next section.

8.3.6 Pre-trained model followed by a new classifier
In TL, the pre-trained models are already existing and openly available. These pre-
trained models are deep networks and are used for similar problems. When we
reuse pre-knowledge for a new task, it is called knowledge adaptation. Therefore,
many pre-trained architectures are available. The researcher uses these pre-trained
models for similar problems. Many researchers use these pre-trained networks as a
features’ extraction machine, and some researchers freeze and fine-tune these
models for classification problems. Adding new dense or fully connected layers to
the top of the pre-trained model will work for the target task, but here some
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researchers use the pre-trained model as just a descriptor to extract all key features
from the target dataset. After features extraction using a pre-trained model, all the
features are fed into a new ML classifier. In this technique, using deep repre-
sentation followed by any classifier can result in better accuracy for specific action
classification problems. Hence, all the mentioned techniques have their accuracy
level, it depends upon the nature of the problems. The pre-trained convolutional
blocks are followed by any classifier as shown in Figure 8.5, and the experimental
result is shown in the next section.
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8.3.7 Pre-trained CNNs implementation
Our objective is to train AI-based computer vision models to identify human
abnormal actions through a camera: the models used for the purpose are ResNet50,
VGG16, and VGG19. We will then use XAI to better understand and compare each
model’s detection (or “decision”) technique to boost confidence. We used Keras to
create these models and used the scikit-learn classification report to compute the
metrics. We will go over the XAI techniques used in computer vision applications
and how they differ from the approaches used in object recognition. We divide
explanation techniques into two categories: visual and textual explanation.

8.3.7.1 Visual explanations
The most popular method of XAI in healthcare visual analysis is the visual
explanation, also known as saliency mapping. Saliency maps reveal which aspects
of an image are most significant for making a decision. The majority of saliency
mapping techniques are based on backpropagation, although some are based on
perturbation or multiple instance learning [11,66].

8.4 Experimental result

8.4.1 Human action dataset
There are many different actions performed by a human, but here in this research,
we have only focused on some specific actions which are human fall, human punch,
and human kick. The dataset which is used for these specific actions is HMDB51.
This benchmark dataset is freely available on the Internet and consists of 51 dif-
ferent human actions. It is a large 3GB dataset. Finally, I used the same dataset for
the proposed research, but I worked only on actions: human fall, punch, and kick.
The actors in this dataset are random and have no restrictions. Both males and
females are involved in the proposed actions. All the action consists of several
videos without fixed time length. Video frames will be considered the input
instance to the model after pre-processing. The dataset is very challenging, there is
no restriction on fixed background, different genders with different dresses, and
color intensity. One of the major challenges of the dataset is a moveable camera.
There is no fixed camera to shoot each record on the same angle, but actions are
generally recognized from any angle. The actions are recorded from different
angles. Hence, for these challenges in the dataset, we proposed a security-based
XAI in the healthcare system to get high accuracy with the explanation. The input
samples of the dataset are overcome only for the purpose to train a model on a PC.
Some of them as shown in Figure 8.6. Using the DL approach, the model needs
huge dataset samples for better accuracy. The DL model generally does not work
well with a small dataset. DL with a small dataset can cause an overfitting problem.
Therefore, we proposed a TL technique to retrained pre-trained model with the said
dataset, and no problem if the dataset is small. Besides these actions, I have also
trained the same model for human fall detection. Human fall is also a very serious
issue in the healthcare system. The proposed model will also recognize human falls.
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For these specific actions, I have followed the TL techniques in which the pre-
trained model is used called VGG19. The model is freezed and trained with new
dense layers. The pre-trained model works as a features extractor while the dense
layers are fine-tuned. So from the experimental results, it is found that the model
accuracy is average, approximately 75%, and val_accuracy is approximately 86%,
which is considered good for real-world application because val_accuracy is more
than the model accuracy. This model is also compared with other state-of-the-art
pre-trained models called vgg16 and resnet50. See explanation in the next topics.

The experimental results of the dataset are examined and confirmed that the
best approach for getting high accuracy is a freezing pre-trained model to recognize
real-world human actions for healthcare security. Different approaches are applied
to the dataset for getting high accuracy, but the freezing model approach confirmed
that the accuracy is high as compared with other existing techniques. For experi-
mental results, we used only three known pre-trained models (VGG16, VGG19,
and ResNet50) as a base architecture for feature extraction. All the pre-trained
model accuracy is good, but VGG19 improves the model accuracy as high as
compared to other models. VGG19 model has been freezed for the new target
model. The dataset, which is used to recognize human actions, is challenging, but
the accuracy of the model using this dataset is increased, and good for the recog-
nition task. The experimental results confirm that the accuracy of the model is high
on the said dataset using the VGG19 pre-trained model architecture. For more
explanation, the VGG16 and ResNet50 are also evaluated, first these models were
freezed, fine-tuned, and then evaluated with a new classifier, but the accuracy of
these models was not high as required for a recognition problem in terms of
security. Finally, the VGG19 model improves the target model accuracy and

kick punch

punch

punch

punch punch punchkick kick

kick

falling

falling

falling falling falling

Figure 8.6 Dataset action samples
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considers the source model for building the target model. All the experimental
accuracy is shown in Table 8.1.

Table 8.1 compares different approaches.

8.4.2 ResNet50 visual explanations
ResNet-50 is as its name suggests 50-layer deep CNN. It can distinguish between
1,000 different object classes. As a result, the network has a large number of
detailed feature representations for images. The ResNet50 model is used as a
starting point in TL to train the target model for classification tasks. Here we will
train the model for human abnormal action recognition in the healthcare system. In
this research, first we used the ResNet50 model architecture for features extraction
and we freeze the model, after evaluating this model, we confirmed that this
model’s accuracy was about 80%, which is high in terms of the human action video
dataset. This model was evaluated on three different approaches, such as freezing
the model, fine-tuning the model, and adding any new classifier after features
extraction. All the approaches consider good and explainable using RestNet50 as
shown in Table 8.1, we also used other pre-trained networks to explain further for
better understandability. Using the freeze model, the confusion matrix of the actual
and predicted labels is given in Figure 8.7.

The learning curve of training and validation accuracy and loss are shown in
Figure 8.8.

8.4.3 VGG16 visual explanations
K. Simonyan and A. Zisserman proposed the VGG16 CNN and in ImageNet, a huge
dataset with over 14 million images separated into 1,000 classes, the model achieves
92.7% test accuracy. This is a well-known model. Features are retrieved from the
video footage using the VGG16 pre-trained model and then passed to a new classi-
fier named RF. The accuracy of this deep representation with the RF classifier is not

Table 8.1 Comparison of TL extraction approaches

Models Freeze model Fine-tune model RF classifier Model accuracy

VGG16 � ⨯ ⨯ 0.72
VGG16 ⨯ � ⨯ 0.32
VGG16 � ⨯ � 0.65
ResNet50 � ⨯ ⨯ 0.80
RestNet50 ⨯ � ⨯ 0.37
ResNet50 � ⨯ � 0.60
VGG19 � ⨯ � 0.68
VGG19 ⨯ � ⨯ 0.39
VGG19 � ⨯ ⨯ 0.72

Note: The bold values indicate the highest accuracy using three different approaches for one model. For
example, VGG19 is a model and analyzed for three different approaches (freezed, finetune and model
with RF classifier).
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good because the traditional classifier is used with deep representation. So in TL,
two different approaches were used to get high accuracy using the VGG16 model
freezing model and fine-tuning the model. As compared to the ResNet50 pre-trained
model, the VGG16 does not improve accuracy and the experiment confirmed that
VGG16 is not performed well in this case. Using the VGG16 freeze model, the
accuracy is about 72%, and the confusion matrix of the true label and predicted
labels with learning curves is given in Figures 8.9 and 8.10.

8.4.4 VGG19 visual explanations
VGG19 is a 19-layer VGG variant that consists of 16 convolution layers, 3 dense or
fully connected layers, 5 MaxPool layers, and 1 SoftMax layer. VGG is available in
a number of different versions, including VGG11, VGG16, and others. VGG is a
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successor to AlexNet, however, it was developed by a different Oxford group
known as the Visual Geometry Group. It builds on and improves on some of its
predecessors’ concepts, and it employs deep convolutional neural layers to improve
accuracy. VGG is a deep CNN that is used to solve classification problems in
simple words. The Vgg19 model has 16 convolution layers and 3 fully connected
layers. For the proposed system, the VGG19 model is freeze and the first top three
layers are removed. For the target model, we add a new fully-connected layer for
training purposes. VGG19 models are also evaluated on three different approaches
for better results. The approaches are used for security-based action recognition
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problems. The model is explained and evaluated using the freeze model, fine-tune
model, and adding a new classifier after features extraction through convolutional
layers. The above experiments confirmed that the VGG19 freezed model is the best
in terms of accuracy. The model accuracy of the VGG19 freezed model is about
72% as same as VGG16, but this model is also considered best in terms of
val_accuracy, which is about 86%. From all the matrices, it is understood that this
model is best as compared to the previous different pre-trained models. Finally, the
proposed pre-trained model for this research is VGG19 and the technique used for
this research is the freezing model, which is a TL technique for security-based
human action recognition in the healthcare system. For more explanation, the
confusion matrix actual and predicted labels with the learning curve as shown in
Figures 8.11 and 8.12.

For the learning curve of training and validation accuracy and loss, see
Figure 8.12.

From experimental results, the learning curve for VGG19 is very smooth as
compared with the other two models. It is also observed from the learning curves
that other two models are not very smooth as VGG19. The performance of VGG19
is outstanding for training data as well as this model is also considered good.
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From the previous work, it is understood that the VGG19 model accuracy for
the proposed actions has been evaluated. However, comparing the present model to
other state-of-the-art pre-trained models in terms of each action, the accuracy is
critical. As we know that the other pre-trained models are ResNet50 and VGG16 in
this case, which are already trained on millions of training parameters with good
accuracy. For more explanation of the proposed research, VGG16 and ResNet50
are also evaluated for the same proposed actions. The human actions accuracy in
each model is shown in Figures 8.13 and 8.14, and Table 8.2.

It is also well observed that the VGG16 and ResNet50 models are good for the
kick action, but the overall performance of these models shows us that these models
are not as good as VGG19.

We compare the VGG19 with the other two models for more explanation.
After the complete analysis of these three models, it is observed that the model
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accuracy of the RestNet50 is high as compared to the VGG19, while the model
accuracy of the VGG16 is low, but the validation accuracy of all the models is not
high than the VGG19 as shown in Table 8.3 and Figure 8.15.

8.4.5 Final discussion
After lots of experiments and details explanations, the VGG19 pre-trained model
is considered the proposed model for security-based human abnormal action
recognition. All the experiments confirm that the accuracy of the proposed model
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Table 8.2 Actions accuracy on different models

Actions accuracies Falling Kick Punch

VGG19 90% 85% 50%
VGG16 85% 100% 45%
ResNet50 75% 100% 60%

Table 8.3 Models accuracies

Model names Model accuracy Validation accuracy

VGG19 72% 86%
VGG16 72% 80%
ResNet50 80% 75%
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is high and also the accuracy of each action consider best. Initially, other pre-
trained networks are also considered to retrain such as VGG16, and RestNet50 to
explain the internal mechanism and performance of the models for users, but the
accuracy of these models has not as high as VGG19, as it is already visually
explained. All the methods applied to the pre-trained network are practical. The
VGG19 model is freezed and considered the final model for the proposed
research. The demo samples of the proposed security-based system are given in
Figure 8.16.

8.5 Conclusion and future scope

Security-based abnormal human action recognition in real time is a very challen-
ging task. Human actions cannot easily classify and recognize using complex
datasets. So in this research, the proposed videos dataset is very challenging in
terms of dynamic background, intensity variation, and different actors (male and
female, young and old). For better results, it is followed that the proposed dataset
as well as the techniques which are followed in this research considered best to
overcome these key challenges, these challenges are generally a common problem
in every complex video dataset. The researchers can easily implement the same
dataset with new techniques for better performance. The proposed model is trained
on a local system and then compared to other state-of-the-art pre-trained networks
using XAI to visually describe the models’ internal performance. In this research,
VGG16, ResNet50, and VGG19 pre-trained models are explained visually in terms
of performance, these pre-trained network architectures are deep NNs and all these
models come under the black box of AI. Explaining the DL model is also the main
objective of XAI. Hence, the complete analysis and matrices of all these pre-
trained models using XAI confirmed that the VGG19 model is considered the best
for security-based XAI in the healthcare system.

For future work, there are also some other challenges in the proposed research:
the first challenge is the recognition of human abnormal action with new input
samples. The second challenge is the model performance to recognize human
abnormal action with different camera angles or locations. The mentioned chal-
lenges are achieved by this research, only the third challenge is still under obser-
vation for future work in the research community. The third challenge is, if a person
touches another person’s shoulder, head, or hair, then what will the model respond.
This is a genuine problem for researchers in the field of AI specifically to recognize
human abnormal actions.
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Explainable dimensionality reduction model
with deep learning for diagnosing

hypertensive retinopathy
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Abstract

Artificial intelligence (AI) is a division of computer science that pacts with the
formation and training of algorithms that attempt to mimic human intellect.
Diabetic retinopathy is the major cause of eyesight loss worldwide. AI-based
technologies have recently been employed to diagnose and assess diabetic retino-
pathy. Early identification allows for adequate therapy, preventing eyesight loss.
Machine learning techniques can extract features from images and determine the
existence of diabetic retinopathy. In computer-assisted medical image analysis for
the identification of illnesses like hypertension, diabetes and diabetic nephropathy,
and arteriosclerosis, automatic retinal picture segmentation is a crucial problem.
The identification of retinal vessels allows for the primary discovery of diabetic
retinopathy, the main cause of visual detachment. AI and dimensionality reduction
techniques like linear discriminant analysis (LDA) with deep learning such as
convolutional neural network (CNN), artificial neural network (ANN), and recur-
rent neural network is further recommended. Conventional identification of these
retinal blood vessels is a time-consuming procedure that can be automated. In this
study, the use machine learning algorithm LDA for the classification of the image
with deep learning methods CNN, ANNs, and multi-layer perceptron for further
classifications were used in the diagnosing of hypertensive retinopathy (HS). The
data was first classified using LDA before being passed into CNN, ANN, and
Resnet and results were obtained with the accuracy of 86.00%, 84.32%, and
43.29%, respectively, yet ANN required the shortest time to run, at 2.50 sec.
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9.1 Introduction

The layers of the retina that include axial structures, such as bipolar cells and
photoreceptors, have less backscatter than the layers that contain nerve fibers and
plexiform structures, both of which are organized in linear patterns. The inner
retina (IR), which is comprised of the retinal nerve fiber layer, the inner plexiform
layer, the inner ganglion cells, and the outer retina (OR), which is composed of the
outer plexiform and photoreceptor layers, are both taken into consideration in this
work. The IR and the outer retina (OR) are the two primary layers of the retina.
Because it is possible to calculate the thickness of the entire retina by measuring the
thickness of the layers of the retina, doing so will be a very effective method for
identifying retinal disorders. They serve as the primary distinguishing qualities in
therapeutic applications [1].

The ailment known as hypertension can manifest itself in several different
ways within the human body. The damage to the retina of the eye that results from
this condition is brought on by excessive blood pressure. Hypertensive retinopathy
(HS) is the medical term for the damage that occurs to the retina as a result of high
blood pressure. The retina is the primary component of the eye that is responsible
for converting incoming stimuli into nerve signals and then transmitting those
signals to the brain. The injury to the retina will eventually result in the loss of
eyesight or possibly even blindness. Therefore, to alleviate this issue, several
computerized systems that assist ophthalmologists in examining eye patients have
been developed and implemented [2].

A systemic change in the arterial structure of the blood arteries in the retina is a
symptom of HR, a disorder that is brought on by high blood pressure. HR is a
disruption that can cause vision loss. Untreated high blood pressure symptoms are
the leading cause of heart attacks in people. This accounts for the vast majority of
all heart attacks. Cotton wool patches, retinal bleeding, and constriction of the
arteriolar blood vessels are some of the symptoms of HR. Because of these vari-
ables, it is necessary to recognize the signs and symptoms of HR as soon as possible
to more accurately target prevention and therapy. Deep learning strategies and
Boltzmann machines are being utilized in the creation of a system that will aid in
the initial diagnosis of the HR stage. To evaluate the classification of HR with deep
neural networks (DNN) and Boltzmann machines, the proposed method uses retinal
image parameters including the artery–vein diameter ratio (AVR) and changes in a
location with the optic disk (OD). This is done to ensure that the classification of
HR is accurate. We went with this approach because, according to the findings of
previous studies, DNN models were superior to Boltzmann machines when it came
to accurately recognize patterns in images. Boltzmann machines are typically used
for learning neural networks since they entail rapid iteration. The creation of an
original system for the primary discovery of the HR phase, as well as an evaluation
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of the effectiveness and accuracy of the projected methodologies, are the antici-
pated goals of this study. Additionally, the assessment of the efficacy and accuracy
of the projected methodologies is also a goal [3].

There is a type of potentially fatal disease known as HR, which is instigated by
high blood pressure in the retina. This condition can lead to impairment of the
blood vessels in the eyes, damage to the nerves in the eyes, and even blindness in
extreme cases. The quantity and dimensions of the data can be decreased using a
technique that is known as “dimensional reduction,” which is important for pro-
cessing photos quickly and effectively [4].

Both principal component analysis (PCA) and the picture resize tool found on
MATLAB were developed to achieve reduction rates of 96.875% and 99.032% of
the original image, respectively. The backpropagation neural network (BNN)
learning model that was proposed in this study has several distinguishing char-
acteristics, including the number of layers, the number of nerve cells in the con-
cealed layer, and the learning rate. There is a connection between the design of the
BNN model, the model’s performance, and its learning rate. According to the
findings of the research, the learning model has an architecture consisting of
8 layers, 128 nerve cells in the input layer, 1 neuron in the output layer, and 258,
128, 64, 32, 8, and 2 neurons in each hidden layer. Its learning rate is 0.001%. The
accuracy levels for learning can be found to be 88.46%, and the accuracy levels for
testing can be found to be 86.36% accordingly [5].

Currently, there are hardly any electronic systems intended to identify HR.
However, those systems primarily fixated on feature extraction utilizing approa-
ches grounded on deep learning models (DLMs) or human intervention. DLMs
have a hard time defining generic features for HR detection since custom features
necessitate elaborate image processing techniques. Not only that, but even when
employing deep-feature techniques the kind utilized by state-of-the-art HR diag-
nostics systems the classification accuracy still falls short. To deal with these
issues, a HR-specific system (DenseHyper) was developed by adding a trained
features layer (TF-L) and a dense feature transform (DFT) layer (DFT-L) to the
deep residual learning (DRL) procedures. This is done to recognize the HR. The
DenseHyper system is made up of a variety of multilayer dense architectures that
integrate TF-L and convolutional neural networks (CNNs) to offer specialized
features using DFT-L after learning features from a variety of lesions. These
architectures are part of the DenseHyper system. An approach known as DFT,
which is based on learning, was used in the development of the DenseHyper system
to improve classification precision. Four online sources and one private source of
data are gathered to evaluate the DenseHyper system and make comparisons to
other systems. There were 4,270 photographs of the retina’s fundus analyzed sta-
tistically to prove the DenseHyper system’s efficacy. The area under the receiver
operating curve (AUC), sensitivity (SE), specificity (SP), and accuracy (ACC) were
used as performance indicators (AUC). When compared to contemporary research
practices, the results were statistically significant. A 10-fold test of cross-validation
resulted in an average standard error of 93%, standard performance of 95%, area
under the curve (AUC) of 0.96, and accuracies of 95%. According to the
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experimental findings, the DenseHyper system can be put to use to make an
accurate diagnosis of HR [6].

This study develops a model using an image analyzer, Recursive feature
elimination, and deep learning methods CNN, artificial neural network (ANN), and
recurrent neural network (RNN) in diagnosing HR from retinal images.

9.2 Overview and related works

9.2.1 Hypertension
The most important risk factor that may be modified to reduce all-cause mortality
and morbidity around the world is systemic arterial hypertension, which is also
connected with an improved likelihood of developing cardiovascular disease
(CVD). Although proper management of hypertension can reduce the overall
burden of disease and mortality, less than half of those who have the condition are
aware that they have it, and many more are aware but are not treated or are
managed incorrectly. This is even though treating hypertension correctly can
lower the overall burden of disease and mortality [7]. Hypertension is a critical
and pricey problem that affects the public’s health. It is a substantial contributor
to the development of CVD, although it can be altered. Based on randomized
controlled trials, lowering blood pressure may lower the chance of having a
stroke, diseases connected with coronary arteries, congestive heart failure, end-
stage renal disease, peripheral vascular disease, and overall humanity. Even at a
blood pressure of just 115/75 mm Hg, there is a persistent danger of getting cer-
tain hypertension-related issues. This risk increases with higher blood pressure
readings. Despite the inherent dangers to one’s health that are associated with
hypertension that is not under control, the vast majority of individuals still receive
insufficient therapy for their elevated blood pressure. In the United States, nearly
one in three people have high blood pressure, and each year, two million new
cases of the condition are identified. An additional 28% of people existing in the
United States are affected by prehypertension, while 7% are completely ignorant
that they even have hypertension. More than one billion individuals around the
world are affected by hypertension, and it is anticipated that number will rise to
1.56 billion by the year 2025. Its death rates are the highest in the world, and the
number of years of life lost due to disability is the second highest in the world. It
has been demonstrated through randomized controlled trials that lowering one’s
blood pressure lowers the hazard of having coronary artery disease, stroke, per-
ipheral vascular disease, congestive heart failure, end-stage renal disease, as well
as death [8].

9.2.2 Machine learning
Using a method of data analytics known as “machine learning,” computers may
be instructed to learn new things from their experiences, just like persons and
other animals do. Machine learning algorithms use various computational
methods to “learn” information nonstop from the information. These algorithms
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do not rely on an equation as a model as traditional modeling techniques do.
When there are more examples available for learning, the algorithms improve in
terms of both their ability to adapt to their surroundings and their overall quality.
Deep learning is a subfield of machine learning that emphasizes extremely
complex problems [9].

Research in machine learning focuses on grasping and implementing “learn-
ing” processes, which are processes that use the information to improve perfor-
mance on a given set of responsibilities. This is a subfield of computer science. It is
generally measured to be a factor of artificial intelligence (AI). Algorithms that use
machine learning construct a model by constructing it from samples of data, which
are sometimes referred to as training data. This model is then used for predictions
or judgments without specified instruction. Machine learning algorithms are put to
use in a wide variety of application sectors, with speech recognition, computer
vision, e-mail filtering, and medicine, where it is tough or infeasible to design
outmoded algorithms that are proficient in doing the necessary tasks [10].

Although not all machine learning involves taking lessons from statistics, a
subset of it does, and it is the part that focuses on how computers can make pre-
dictions. Computational statistics is closely tied to machine learning. The study of
mathematical optimization provides several useful tools, theoretical frameworks,
and application domains, all of which are of help to the focus of machine learning.
Data mining which focuses on unsupervised learning for investigative information
investigation is a ground of study that is analogous to cloud computing. Some bids
of machine learning use data and neural networks in a manner that is very com-
parable to the way the neurons in a living brain communicate with one another.
When it comes to finding solutions to challenges faced by businesses, one name for
machine learning is predictive analytics [11].

Machine learning allows computer programs to complete tasks without having
those duties specifically written into the program. Computers can learn specific
tasks by analyzing the data that is accessible to them. For basic tasks that are
delegated to computers, it is conceivable to construct algorithms that educate the
device on how to carry out all of the steps that are necessary to handle the issue at
hand; the computer does not need to learn anything to carry out these algorithms. It
may be interesting for a human to physically construct the necessary algorithms to
complete more complicated tasks. It may prove to be more successful in practice to
aid the machine in building its algorithm than having a computer programmer
specifically explain each necessary step [12].

In AI, machine learning refers to the process of teaching computers to carry out
tasks for which there is no one, best answer. When many different responses could
be given, one tactic that could be utilized is to acknowledge some of the correct
answers as being correct. After that, the computer can utilize these examples as
training data to perfect the algorithms that decide the correct responses. Both
unsupervised learning and reinforcement learning are examples of approaches that
are used in machine learning. Unsupervised learning can reveal patterns that were
previously hidden or structures that were thought to be intrinsic to the input data.
Reinforcement learning represents the other approach.
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9.2.3 Related works
A method that uses the fundus image along with the input from a CNN to identify if
there are indications [6]. The DRIVE image dataset is utilized to validate the pro-
posed system, and the experimental outcomes indicate that the proposed method
has an accuracy of 98.6%. The accuracy of the training increases proportionately
with the iterations numbers used, so increasing the number of iterations results in a
higher accuracy level. However, there is a need to progress the accuracy by
including a blood vessel of the retina as an input feature of a CNN and by classi-
fying not only two classes, which are regular and indications of HR, the classifi-
cation ranking is based on four rankings. This will allow for a more accurate
diagnosis of HR.

A strategy for determining AVR was proposed, in which first the vessels would
be segmented by the use of the filtering approach, and then the ocular disk would
be detected to regulate the Region of Interest [2]. A neural network is used to
determine the AVR, which is then used to categorize the blood vessels as either
arteries or veins. MATLAB R2014a.t is used in the execution of the work that was
proposed. However, a comparison of these results with some earlier results reveals
that the diagnostic accuracy of the neural network results for HR is slightly higher
than that of the previous results.

BNNs were utilized as a method for accomplishing the task of locating the
retinal fundus [13]. Before the identification process, pre-processing steps includ-
ing the green channel, contrast limited adaptive histogram equalization (CLAHE),
contextual elimination, morphologic close, thresholding, and linked component
analysis were carried out. Feature extraction was performed with the help of zon-
ing. The results of the study show that the approach proposed can detect the retinal
fundus with an accuracy rate of 95% when using a maximum epoch of 1,500. This
work benefited from solid research, but it did not include any examples of
implementation.

An algorithm that initially extracts the blood vessels from the retinal image
that has been preprocessed has been proposed [14]. To determine whether or not the
pixels that have been detected belong to the blood vessel class, gray level and
moment-based features are retrieved and analyzed. The change in intensity, along
with color information, is utilized to determine whether the vessel in question is an
artery or a vein. The arteriovenous (AV) ratio is measured using the vessel width
estimate method and using this ratio, the several phases of HR can be diagnosed.
Photographs of the retina were taken from the VICAVR record and were combined
with images received from the Deepam eye facility in Chennai. Twenty-five of the
photos were considered to be normal, while the remaining 76 were considered to be
examples of HR.

However, in some extremely few instances, there is a concern with the
disease being incorrectly identified as something else. It is possible to further
increase the classification rate by introducing methods that efficiently detect the
localized narrowing of retinal vessels as well as the right-angled crossing of those
vessels.
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Mean fractal dimension, tortuosity index, and arteriole-to-venule ratio can all
be quantitatively evaluated simultaneously and without the need for an operator
with the method that has been provided [15]. Both HR and cerebral autosomal
central artery with subcortical infarctions and leukoencephalopathy, two conditions
that are known to be associated with abnormalities in the retinal vasculature, were
treated with this method (CADASIL). The findings substantiated the efficacy of our
methodology in locating and estimating the severity of retinal vascular irregula-
rities. Participants who had HR or CADASIL had altered aorto-venule ratios, tor-
tuosity indices, and mean fractal dimensions as compared to controls of the same
age and gender. Dependability among raters was quite high across all three criteria
(intraclass correlation coefficient 85%). The technique provides an easy and
extremely reproducible method for distinguishing between compulsive disorders
that are categorized by abnormalities in the morphology of retinal vessels. These
diseases are characterized by changes in the appearance of the vessels in the retina.
Our method offers the advantages of simultaneity as well as independence from the
operator. In addition, the integral of the warp as well as the number of maneuvering
shifts that occur along the passage of the vessel are both reflected in TI as it is
calculated by the Cioran program. It would appear that the number of directional
changes is the most important component. This is since the integral’s value, which
is the AUC that represents the vessel pathway, did not offer statistically important
findings.

A novel HR (HYPER-RETINO) framework has been established as part of this
research. This framework assigns a grade to HR based on one of five levels [16].
The HYPER-RETINO system is built using HR-related lesions that have been pre-
trained. To create this HYPER-RETINO system, several steps had to be carried out,
including preprocessing, the discovery of HR-related abrasions through semantic
and instance-based segmentation, and the implementation of Dense Net planning to
classify the stages of HR. In general, the HYPER-RETINO method identified five
categories of HR by locating the limited regions in the input retinal fundus
descriptions that corresponded to each grade. A 10-fold cross-validation test was
performed on 1,400 images of HR, and the results showed an average of 90.5%
sensitivity, 91.5% specificity, 92.6% accuracy, 91.7% precision, Matthew’s corre-
lation coefficient of 61%, 92% F1-score, and 0.915 area-under-the-curve. The
results of the experiments show that the HYPER-RETINO approach can be used to
accurately detect different phases of HR, proving its relevance in this regard. To the
best of our knowledge, there have only been a select few frameworks given in the
past that are based on deep learning (DL) models and are designed for the two
stages of recognition (HR versus non-HR). These systems have been evaluated
using relatively small datasets and did not involve any pre-processing processes. As
a result of this, it is challenging to utilize them as a screening approach for the
determination of the degree to which HR is present.

A process for the diagnosis of HR that makes use of PCA and BNNs [17]. The
image of the retina was obtained from the STARE database, which divides its data
into learning and testing in a proportion of seven to three. As a method for reducing
the dimensions of fundus images, PCA has been successful in achieving a 99.9%
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reduction in the amount of raw fundus image data, which reduces the amount of
computing load required for neural network training. In this research, the back-
propagation neural network, or BNN, was given as the major classification tech-
nique. This was accomplished by specifying the parameters of the algorithm,
learning from the data, and then evaluating the data. Based on the BNN output
result, the model was able to classify retinal images into one of two categories:
typical retina and retina with high blood pressure. The outcome of the model that
was proposed demonstrated that the testing accuracy can reach 86.36%. The
learning approach that was proposed has an advantage over the other ways in that it
can reduce the amount of image data by up to 99.9%, which enables it to use a very
small amount of period and computation properties in comparison to those used by
the other approaches. Because a clinical diagnosis is essential and has a substantial
influence on the sequence of treatment that is administered to a patient, the accu-
racy of the model that has been proposed still needs to be improved.

Cross-sectional learning was carried proposed to investigate a process for
gauging retinal vessel distances based on ethereal sphere ocular rationality imaging
for the diagnosis of chronic HR [18] (SD-OCT), the artery-to-vein ratio (AVR),
central retinal vein diameter (CRVD), and central retinal artery diameter were all
measured. This was done to investigate a technique that could be used (CRAD). In
this study, there were a total of 119 participants, each of whom had one of their 119
eyes examined. There were 63 subjects in the normotensive group, each of whom
had one of their 63 eyes examined, and there were 56 subjects in the hypertensive
group, each of whom had one of their 56 eyes examined. Both the CRAD (t = 2.14,
P = .04) and the AVR (t = 2.59, P =.01) demonstrated a noteworthy gap among the
two clusters. The cut-off points of 0.75 were determined with the use of the receiver
operating characteristic (ROC) curve (AUC 0.786; 95% poise interval, 95% CI
0.70–0.87). According to multivariate logistic regression analysis, patients who had
high systolic blood pressure (odds ratio OR 4.39; P =.048), patients who were male
(OR 4.15; P =.004), and patients who smoked (OR 5.80; P =.01) were more likely
to have an AVR of less than 0.75. According to the Bland–Altman plots, the two
technicians who worked in the CRAD, CRVD, and AVR each produced measure-
ments with a minor mean bias in their results. In conclusion, employing SD-OCT
provides a method that is accurate, reproducible, and practical for measuring the
sizes of the retinal blood vessels. It is useful in determining whether or not HR has
progressed to the chronic stage. SD-OCT is utilized to quantitatively evaluate ret-
inal hemorrhages, hard exudates, cotton-wool spots, and optic disc edema. SD-
OCT will also be applied to differentiate the acute stages of HR from those of other
illnesses. Standardizing categorization based on antihypertensive medication is
something that we are going to give some thought to further examine the influence
that diverse antihypertensive drug groupings have on retinal vascular variations as
measured by SD-OCT.

It has been demonstrated that an automated approach for the early diagnosis of
HR is beneficial for both ophthalmologists and patients [19]. An automatic
approach for the identification of HR utilizing the AV ratio is presented in this
research. The proposed system is composed of a brand-new method for classifying
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blood vessels as either arteries or veins through the utilization of a new feature
vector and a hybrid classifier. In addition to that, this research proposes an inno-
vative way to compute vessel width, which may be utilized while measuring AV
ratio. Using the AV ratio that has previously been determined, the system deter-
mines whether or not the fundus image contains HR. In evaluating their method,
two digital fundus image records were adopted, namely VICAVR and DRIVE,
which are both open to the public. The findings from our experiments demonstrate
that our proposed algorithm is sound. However, additional effort and investigation
are required for this study.

Fundus images were reconstructed, and a model for classifying cases of HR was
built using Restricted Boltzmann Machines (RBM). To add to this, the dataset known
as Messidor was used for this study [20]. The results of the studies show that the
model achieved a 99.05% accuracy rate in classifying images into one of nine cate-
gories according to the severity of HR. The goal of this study is to use RBM to create
a classification scheme for HR. According to the experimental data, the model has a
high rate of accuracy (99.05%) while reconstructing images, which shows that it can
generalize image input into one of nine output classes well. But as it is still a picture,
the output model must be combined with other layers like SoftMax to achieve the
class label output. Building a Hypertension Retinopathy Classification Model is next
on our list of things to investigate. We will use a hybrid of RBMs and CNNs to refine
our classification results and produce a more reliable class label.

A new HR (Dense Hyper) system has been developed to recognize the HR
based on a suggested TF-L and DFT-L to the DRL techniques. Dense Hyper is the
name for this structure [21]. Several distinct multilayer dense architectures com-
bine to form the Dense Hyper system. A CNN is combined with TF-L to generate
these structures, which can then learn characteristics from a large dataset of lesions.
Next, DFT-L is utilized to create domain-specific features. The Dense Hyper sys-
tem’s classification accuracy was enhanced by the use of a DFT method that was
learned during development. The Dense Hyper system is evaluated and compared
using information gathered from four different online and one offline sources. To
further illustrate the efficacy of the Dense Hyper system, a statistical analysis of
4270 retinal fundus images is conducted utilizing sensitivity (SE), specificity (SP),
accuracy (ACC), and area under the receiver operating curve (AUC) measures. The
results gained were substantial, especially when compared to the results produced
using the most modern and cutting-edge research methods. Average results for
standard error (SE), predictive power (SP), and AUC (0.96) were obtained from a
10-fold cross-validation test (AUC). Evidence from these tests shows that the
Dense Hyper system can be used to reliably diagnose HR. As a result, the Dense
Hyper system for HR detection will benefit in the not-too-distant future from the
addition of a larger dataset of retinography images that have been compiled from a
wide range of sources. It is likely that, in addition to deep features, hand-crafted
features will need to be incorporated into the model to increase its classification
accuracy of the model.

A total of 4,000 fundus pictures [22], comprising both photos with and without
fundus abnormalities, were employed in an investigation of continuous neural
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networks. This was done so that CNN could analyze fundus images for signs of
macular degeneration and diagnose hypertension and arteriosclerosis in patients.
To improve the performance of the convolutional neural network used in the deep
learning structure, this article based its data preparation efforts on Turkey. As a part
of training the DLM, these data sets were mixed with the local data sets. Additional
data sets based on Turkey were also generated for this research as part of an effort
to integrate the data globally, which can assist in standardizing the results and
enhancing the accuracy. This equipment is used in the diagnosis of retinal vascular
degeneration, such as fundus vascular disease and macular edema disease. The
findings have been used to improve HR diagnosis and classification.

This basic understanding formed the basis for the application of the research.
The author also discusses the constraints that are placed on the system. The
requirement for sustained economic viability over the long term stands out as the
most significant limitation among them. The fact that all of the categorized images
were obtained from single imaging equipment is another restriction of the system
that has been proposed. A considerable restricting effect is caused as a part of the
extension of the system as a result of the fact that during the training of the system,
different imaging equipment was not utilized.

The conventional method of enhancing retinal images, known as Contrast-
Limited Adaptive Histogram Equalization (CLAHE), yields a result that is con-
tingent on the user’s selection of the clip limit (CL) and the number of sub-images
(N) [23]. Adaptively Clipped-CLAHE (AC-CLAHE) and Fully Automated-
CLAHE (FA-CLAHE) are the names given to the modified versions of CLAHE
that were proposed by the study to eliminate the problems that are caused by these
limiting variables. To improve the contrast between retinal landmarks and lesions
on the retina, the proposed methods were evaluated and found to be successful. The
new technology can be utilized directly in hospitals and at remote places as support
to doctors for the screening of diabetic and HR. This allows for the inspection of
the tiny details that are located on the retina. This issue is resolved by fully pro-
grammed auto-CLAHE, in contrast to AC-CLAHE, which still retains its sub-
jectivity as a result of the choice of a fixed number of sub-pictures. It is important
to evaluate the suggested adaptive CLAHE methods in terms of quantitating quality
measures such as entropy, global contrast, and absolute mean brightness error in the
context of the future work scope for this project.

To test for HR, an algorithm has been developed for the identification of AV
nicking in fundus pictures [24]. Within the scope of this investigation, the input
fundus images have been pre-processed by employing green channel extraction and
the histogram technique to achieve improved contrast. Utilizing the butylated
hydroxytoluene (BHT) approach, blood vessels have been isolated from the images
that have been pre-processed. After that, the center line was taken from the blood
vessels that had been segmented. Through the utilization of the crossing number
method, we were able to identify places of crossover in the center-line extracted
image. The computation of the distance between the crossover and the termination
point is what’s used to accomplish the removal of spurious. According to the value
of intensity that is lowest, veins have become distinct. Finally, the thickness of the
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vessel was measured in the AV crossing places. The normal AV crossing has an
average thickness of 11, while AV nicking has an average thickness of 16.
Therefore, the thickness of the vessels in a normal AV crossing at the crossover
area is significantly less than the thickness of the vessels in an AV nicking. The
vessel thickness is what allows for the detection of normal AV crossings as well as
AV nicking in retinal fundus images. In the future, there will be a greater emphasis
on using visuals.

An effective and speedy method for removing the retinal vasculature has been
presented in this paper [25]. To complete the segmentation process, the RGB color
space is broken down into three planes, and in the first stage, only the green plane is
analyzed and processed. Increasing contrast can be accomplished by first applying
a sigmoid function, and then excluding the backdrop from the image. In the final
step, hysteresis thresholding and morphological processing are used to extract
vessels to enhance the fine features in the image that was produced. Producing
promising accuracy and other metrics is one way to minimize the impact of a
tradeoff between the accuracy of segmentation and the amount of time used by the
segmentation algorithm. The algorithm is validated and assessed using the images
of the retinal fundus contained within databases such as STARE and DRIVE. The
created findings were assessed and compared to other state-of-the-art work, and
they showed to be superior and exceeded the other work in the majority of
instances. The proposed method does have one drawback, and that is the fact that
during the hysteresis thresholding stage, changing the lower threshold value, which
can be anywhere from 1 to 12 in value, can alter the results. Our work will be able
to be expanded in the future by the automatic selection of lower thresholds that
produce the greatest results.

This chapter demonstrates how to use a fundus image of the retina and a fractal
analysis method to detect HR at an early stage. The fractal analysis relies on the
fractal dimension and lacunarity as independent variables, while the ensemble
Random Forest and the k-fold cross-validation serve as classification and validation
strategies, respectively [26]. Accuracy, positive predictive value (PPV), negative
predictive value (NPV), sensitivity, specificity, and AUC are all metrics used to
evaluate a test’s efficacy (AUC). The test’s 10-fold cross-validation statistics
showed an accuracy of 88.0%, a positive predictive value of 84.05, a negative
predictive value of 92.0%, a sensitivity of 91.3%, a specificity of 85.19%, and an
AUC of 88.25%. The best results can be achieved with lacunarity while using a box
size of 22. The results of the study suggest that the AUC generated by utilizing
fractal analytic approaches for HR early diagnosis is in the good to excellent range.

In this study, we improved and segmented the retinal vasculature, which is
required for quantifying measurements of the AV ratio based on its physical
properties including width and length (AVR). The NEI and the NIH have funded
this study [27]. To enhance retinal fundus images, the tophat transform is used, and
iterative thresh-holding is used to segment the blood vessels. Fifty digital fundus
photos from the public MESSIDOR dataset are used to test the efficacy of the
proposed technique. HR can be measured quantitatively through the detection of a
narrowing of the retinal artery–vein ratio compared to normal images. When
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compared to regular pictures, this ratio serves as a useful yardstick. Patients with
HR on the MESSIDOR dataset showed an AV ratio of 0.203–0.495 after applying
the proposed methodology. The usual range for this ratio was discovered to be
between 0.62 and 0.73. This kind of dataset was not done in the past. The stages of
HR can be estimated by measuring the AV ratio. It is feasible that in the following
investigations, an automatic classification of blood vessels will be applied. To
determine the clinical usefulness and reliability of our approach, it is possible to
conduct evaluations on a broad group of photos collected from people whose AVR
ranges are substantially more diverse.

Developed methods for identifying significant retinal vessels and dissecting
them into arteries and veins for A/V ratio determination have been implemented
[28]. The photos utilized in this study were from the DRIVE database. For the sake
of developing and evaluating vessel detection algorithms, we have compiled a
database with 20 unique examples. The database’s reference standard for vascular
segmentation served as a starting point, and from there, the principal arteries and
veins were selected manually for the superior and inferior temporal regions,
respectively. The black top-hat transformation and the double-ring filter are used to
identify blood vessels in the retina. The A/V ratio was calculated with a focus on
the large vessels that ran from the optic disk to the temporal regions. These blood
vessels were chosen out of the ones that were taken out. Image features were
extracted from blood vessel segments located between a quarter and one optic disc
diameter from the disc periphery. Linear discriminant analysis (LDA) was used to
classify the target segments in the training examples as either arteries or veins.
Then, the selected parameters were used on the target segments in the test instan-
ces. In the 20 test cases, the arteries and veins were correctly classified in 30 out of
40 pairs, which is a 75% success rate. The outcome can be utilized in the compu-
terized process of calculating the AV ratio. The vessel segmentation is an area that
needs to be worked on further in upcoming research.

A probabilistic neural network (PNN) for the diagnosis of HR using images of
the retinal fundus [29]. In the proposed method, the image processing and feature
extraction techniques employed before the identification procedure are called box
counting and invariant moments, respectively. According to the findings of the
trial, the method that was suggested was successful in identifying HR with an
accuracy that reached one hundred percent. It has been suggested that future studies
should make use of an adequate image processing method so that the object seg-
mentation process, in particular the identification of retinal vascular structures, can
be improved. In addition, the utilization of additional training data is recommended
to improve the precision of the testing data. In addition, a wide variety of methods
for the extraction of features can be put into practice. The technique can be eval-
uated alongside deep learning in forthcoming studies by utilizing the same types of
research information.

Among the most significant blood arteries in the retinal picture, from which
arterial and venous blood can be extracted mechanically. Using the graphical vas-
cular tree derived from retinal scans, this article proposes an automated approach
for artery and vein categorization [30]. The proposed method distinguishes the
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graphical retinal network by classifying each graphical node as an endpoint, an
intersection point, or a distinct point node. Each visual connection is tagged as
either an artery or a vein. The final step in the process involves not only structural
features but also intensity-based characteristics to properly categorize arteries and
veins. The publicly available DRIVE database has been used to validate this
method’s findings. An automated retinal image analysis package will be studied
further. This will provide several metrics that can aid in the early diagnosis of
systemic diseases like diabetes, hypertension, and vascular disorders, including
AVR, branching angles, vessel tortuosity, and fractal dimensions.

9.3 Materials and methods

This study proposes to develop a model using an image analyzer, recursive feature
elimination, and deep learning methods CNN, ANN, and RNN in diagnosing HR
from retinal images.

9.3.1 Data description
The dataset adopted for this study was obtained from the Kaggle repository (https://
www.kaggle.com/code/meenavyas/retinopathy-detection). Kaggle is a platform for
developers to get data and framework which is crowdsourced. This dataset was
discovered by searching for “retina images” on the Kaggle platform. This dataset of
retina images will be analyzed using CNN, ANN, and RNN to accomplish the
evaluation performance metrics; processing time, false positive rate, negative pre-
dictive value, false discovery rate, precision, false negative rate, accuracy, sensi-
tivity, Matthews correlation coefficient, specificity, F1 score, and average recall
[31]. Table 9.1 shows the dataset and features.

The dataset contains images of hypertensive samples which entails healthy,
proliferate, moderate, and severe. The proposed model uses a convolutional neural
network, the dataset comprises retina descriptions, and they are trained using ANN,
CNN, and Resnet models to predict the model with a better performance result.

9.3.2 Data preprocessing:
This technique is adopted for changing and cleaning data. The process of cleaning
and changing data is done to make the dataset suitable for analysis. Feeding an
unprocessed dataset into a system reduces the accuracy of the results. The method
of preprocessing adopted in this system of the neural network is LDA.

Table 9.1 Number of samples and features
of the retina image dataset

Samples Features

1,500 4
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9.3.2.1 LDA
For feature extraction and dimension reduction, a well-known method is LDA. It
has been extensively employed in a variety of applications, including face recog-
nition, image retrieval, categorization of microarray data, and more. To achieve
maximum discrimination, data are projected onto a lower-dimensional vector space
with the proportion of the between-class distance to the within-class distance
exploited. Applying the Eigen decomposition to the scatter matrices will make it
simple to calculate the best projection (transformation) [32].

9.3.2.2 Convolutional neural network
Convolution involves a method of scheming the combination of two functions
combined while one indicator is reversed. Let’s take the two functions as x and y
they are passed over each other, it states the sum of their overlay. This system is
used for the combination of two components. With signal o, it rotates 180� on the
horizontal axis. And then flipped across x and y while multiplying and maintaining
the values [33].

9.3.2.3 ANN
They are a type of non-parametric prediction tool that mimics the linked nature of
the biological nervous system by using a network of artificial neurons. It is possible
to employ a data processing unit based on a connection technique for different
kinds of pattern categorization and recognition. This neural network is used to
perform complex functions. It can be used in classification, identification, pattern
recognition, speech, control systems, visions, and control systems and it is used to
solve difficult problems for computers or human beings [34]. Algorithm 9.1 shows
ANN pseudocode.

Algorithm 9.1 Artificial neural network source [35]

1: process ANN (Input, Neurons, Reiteration)
2: generate input record
3: Record with the conceivable mutable groupings ! Input
4: for input =1 to end the input do
5: for neurons =1 to 20 do

Train ANN
6: ANN- Loading  save maximum test R2

7: end for
8: end for
9: ANN- Loading save top forecasting ANN dependent on inputs

10: end for
11: return ANN- Loading
12: end procedure
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9.3.2.4 ResNet
He et al. put forth ResNet in 2015 [36]. ResNet is made to optimize the network
layer because hierarchical networks have a lot of redundant components. The
completion of the identity mapping and ensuring that the identity layer’s input and
output are identical are the two goals of ResNet. The person through training, the
network’s layer is automatically determined. ResNet altered multiple layers of a
block of the old network remain.

9.3.2.5 Research tool
The Python implementation for this study is created in a Jupyter Notebook envir-
onment. To complete this research, a 16 GB RAM and a 64-bit system, Intel�
coreTM, 2.60 GHz processor was used.

9.4 Results and discussions

On the Jupyter and Google Collaborator platform, LDA to pre-process the data. In
this part, we provide the findings from our investigation using the proposed model.
This necessitated separating the information into a training set and a test set. This
research applies a HR model using deep learning algorithms such as CNN, ResNet,
and ANN.

9.4.1 Importing the dataset
To run the code in Jupiter, the dataset has to be imported into the environment.
Figure 9.2 shows the imported loaded dataset.

  Data 

Filter
LDA/

Standard 
Scaler

   
CNN
ANN

RESNET
   Results 

Figure 9.1 Proposed model

Figure 9.2 Imported dataset
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9.4.2 Resizing and converting the images to array
When the images have been imported into the environment, they come in different
shapes and sizes, so the next step was to resize all the images into a unique shape to
be able to work with it and then put all the images in an array.

9.4.3 Data splitting
Splitting data into train and test sets is common in machine learning. For the
respective algorithm, the data was separated into training and testing subsets. To fit
the model and conduct testing, the training set was used as a basis for evaluation.

When the data has been split into the train and test data, the data generator tool
was used to perform data augmentation on the images.

9.4.4 Pre-processing the data with LDA
To achieve better accuracy, the dataset was pre-processed with the LDA, and the
needed data was retained to achieve better accuracy and performance.

9.4.5 Training the ANN model with and without LDA
When the image has been pre-processed and divided into the train and test, the
training data is therefore passed into the ANN model for training.

9.4.6 Plotting the scattered plot and confusion matrix for
the ANN model with and without LDA

After the model has been trained, it is custom for us to plot the scattered plot and
confusion matrix to enable us to visually evaluate the performance of the model. The
scattered plot and confusion matrix is shown in Figures 9.3–9.9.
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Figure 9.4 Confusing matrix for ANN model with LDA (TP=54, FP=26, TN=134,
FN=26)
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When the image has been pre-processed and split into the train and test, the
training data is therefore passed into the CNN model for training.

When the image has been pre-processed and split into the train and test, the
training data is therefore passed into the Resnet model for training.

In this study, LDA is used for the classification of the image with deep learning
methods CNN, ANNs, and ResNet for further classifications. Evaluation measures
such as sensitivity, specificity, precision, accuracy, and F1 score were used to
assess the confusion matrices obtained. The performance measures of each of the
classifiers with and without LDA are shown in Table 9.2.
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Figure 9.5 Confusion matrix for ANN model without LDA (TP=11, FP=8,
TN=36, FN=15)
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Figure 9.6 Confusion matrix for CNN model with LDA (TP=28, FP=5, TN=61,
FN=5)
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9.4.7 Comparison with previous works
Several trials were carried out in this study, and the results are shown in Table 9.2.
CNN outperformed the other models with 86.42% accuracy; however, ANN took
the shortest time to execute at 2.50 sec and Resnet took the longest amount of time
and gave the lowest accuracy of 46.66%.

Table 9.3 displays the comparison of the results gained from various works.
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Figure 9.7 Confusion matrix for CNN model without LDA (TP=14, FP=6,
TN=34, FN=6)
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Figure 9.8 Confusion matrix for ResNet model with LDA (TP=14, FP=24,
TN=52, FN=24)
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Table 9.2 Performance measures

Performance
measures (%)

CNN ANN RESNET CNN þ LDA ANN þ LDA RESNET
þ LDA

Sensitivity 70.00 42.31 37.50 84.85 67.50 36.84
Specificity 85.00 81.82 68.75 92.42 83.75 68.42
Precision 70.00 57.89 37.50 84.85 67.50 36.84
Negative predictive

value
85.00 70.59 68.75 92.42 83.75 68.42

False positive rate 15.00 18.18 31.25 7.58 16.25 31.58
False discovery rate 30.00 42.11 62.50 15.15 32.50 63.16
False negative rate 30.00 57.69 62.50 15.15 32.50 63.16
Accuracy 73.29 63.64 36.43 86.42 84.20 46.66
F1 score 49.30 64.30 37.50 84.85 67.50 36.84
Matthews correlation

coefficient
55.00 26.21 6.25 77.27 51.25 5.26
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Figure 9.9 Confusion matrix for ResNet model without LDA (TP=12, FP=20,
TN=44, FN=20)

Table 9.3 Comparison of the findings

Authors Techniques Results

[37] PCA and BNN 96.875% and 86.36%
[38] AVR with neural network 93.9%
[39] Dense hyper system 95%
[40] CNN 98.6 %
[41] DSF-Net, DSA-Net 97.26% and 97.25%
[20] RBM 99.05%
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The purpose of this study was to create a HR detection model from a publicly
available dataset utilizing DMLs such as CNN, ANN, and RESNET with and
without LDA. The training set (80%) was used to find the optimal combinations of
variables to generate a successful predictive model, while the testing set (20%) was
utilized to offer an overall analysis of the model fit on the training dataset. Using
LDA as a preprocessor before feeding the data into CNN, ANN, and RESNET
yielded the best accuracy of 86%; other evaluation outcomes were also acquired
and displayed in the findings.

9.5 Conclusions

When it comes to the human body, hypertension is a condition that can take many
forms. Due to excessive blood pressure, the retina of the eye might be damaged.
HR is a term used to describe retinal damage brought on by high blood pressure.
The retina is the primary structure in the eye responsible for converting visual
information into nerve signals for transmission to the brain. Retinal injury can
cause permanent vision impairment or blindness. So many automated devices have
been developed to aid ophthalmologists in their examinations.

This study developed a model using an image analyzer, LDA, and deep
learning methods CNN, ANN, and ResNET in diagnosing HR from retinal images
and to analyze and evaluate the performance of the developed model. The dataset
used adopted available at https://www.kaggle.com/code/meenavyas/retinopathy-
detection. In summary, the study involved getting the dataset from the Kaggle
repository and passing it through the LDA to pre-process the data furthermore the
unprocessed data was passed raw to the algorithms as well as the data that has been
pre-processed through the LDA algorithm.

The testing set (20%) was used to offer an objective assessment of the final
model fit on the training dataset, while the training set (80%) was used to discover
the best combinations of variables that will produce a successful predictive model.
The data was first passed through LDA before being passed into CNN, ANN, and
ResNET and results were obtained with the accuracy of 86%, 84%, and 48%,
respectively which was later compared to the results obtained in the related works.

This study aids in detecting HR. The study was based on a Kaggle dataset. The
model was first created using deep learning techniques like CNN, ANN, and
ResNET, and then processed via LDA. Several trials were carried out in this study,
and the results are shown in the table. CNN outperformed the other models with
86% accuracy; however, ANN took the shortest time to execute at 2.50 sec. In
conclusion, this study can be adopted for predicting HR.

This study recommends that for further investigation, more data should be used
for training the model as it will enable the algorithm to train better and gain better
accuracy. It is important to remember that the goal of developing a system for
diagnosing HR is to enhance its accuracy. To increase the model’s precision, future
studies should broaden the model’s field of application. Also, future researchers
could investigate using a larger dataset to improve the model’s accuracy. This study

Explainable dimensionality reduction model with deep learning 279



would also suggest that alternative methods, such as graphical neural networks be
used to improve the results.
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Chapter 10

Understanding cancer patients with
diagnostically influential factors using

high-dimensional data embedding

Ameer Sohail Syed1, Hajderanj Laureta1,
Kun Guo2 and Daqing Chen1

Abstract

Analysing breast cancer data is a long-established research topic from both medical
diagnosis and data modeling perspectives. Enormous predictive models have been
employed in modeling breast cancer data, e.g., predicting a patient’s survival rate
given certain medical circumstances and a patient’s demographics. However, these
predictive models tend to take a black-box approach to the modeling and therefore
can hardly provide any explainable results to be applied for diagnostic purposes, in
particular, if neural network-based models are utilised. On the other hand, identi-
fying diagnostically influential factors with exploratory descriptive models has
been proven difficult due to the high dimensionality of breast cancer data under
consideration. For instance, the breast cancer data provided by SEER, The
Surveillance, Epidemiology, and End Results Program, typically has more than 100
dimensions of numeric and categorical data types and could expend to about some
1,000 dimensions for analysis if orthogonal (one-hot) encoding is applied. Hence,
effectively interpreting and understanding high-dimensional data becomes crucial
in modelling cancer data, and it is because of this that dimensionality reduction
algorithms and manifold learning algorithms have been studied intensively and
many relevant algorithms are available, with each having pros and cons of its own.
In this chapter, a comparative study is presented aiming at providing visualized,
explainable insights in breast cancer survival rate analysis and identifying critical
influential factors that strongly determine the likelihood of a patient’s survival.
Two dimensionality reduction algorithms are considered in this study for compar-
ison purpose: one is a typical and popular t-distributed stochastic neighbor
embedding (t-SNE) algorithm and another is a relevant new same degree dis-
tribution (SDD) algorithm. The relevant experiments have demonstrated that based
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on the same embedding performance assessment metrics, the SDD algorithm can
achieve much better data embedding results which could be impossible or difficult
if t-SNE is used. Furthermore, using the reliable embedding results from SDD,
meaningful and explainable factors have been identified that reflect crucially the
similarities of the patients who have survived and the diversities of the patients
who, unfortunately, have died. Clusters of patients who survived are clearly
recognizable in a two-dimensional embedding space, whereas the embedded points
of patients who died are significantly scattered in the space. The entire package of
the codes used for the analysis is available for replication.

Keywords: Breast cancer survivability; t-SNE; Same degree distribution algo-
rithm; Dimensionality reduction; Visualization; Data embedding; classification

10.1 Introduction

Cancer is one of the most deadly diseases and the number of patients diagnosed
with cancer has been increasing year by year, although slowly. Because of its
mysterious nature and depending on the way it spreads out, most people by the time
they have diagnosed with cancer, it is almost in the last stages and the disease could
have completely invaded body organs. As such, unfortunately, many patients have
passed away [1]. The success stories of cancer survivors are occasional and the cure
for the treatment is very far from the human-beings [2].

There are over 200 different types of cancer but only 13 of them are pre-
dominant [3]. Cancer often called as malignant neoplasm happens due to alterations
in genetics of somatic cells, while some of the alterations do happen due to her-
editary origins. Several biological agents, such as viruses, bacteria, and parasites,
can exacerbate a carcinogenic process in humans in addition to the different che-
mical and physical (ionising radiation, UV light) carcinogens. A number of studies
have been conducted to describe cancer cells. Hanahan and Weinberg provided the
most significant characterization of cancer cells [4]. Many possible risk factors,
including nutrition, lifestyle, smoking, drinking, viral infection, and others, have
been identified with the goal of reducing the occurrence of cancer. Among them,
the strongest link between smoking and lung cancer was discovered [2]. According
to estimates, 20% of all breast cancer cases globally are caused by preventable risk
factors like obesity, inactivity, and alcohol consumption. By encouraging a healthy
lifestyle, the spread of the disease might be reduced [5].

There are many screening tests as well as the clinical tests that patients need to
go through for their effective treatment and we are very sure one of the risk factors
is genetics but it is not the genetics all the time. The clinical findings’ reports
include more than 60–70 findings and doctors do have a very big challenge as to get
an understanding about the disease and how is it going to behave like. An increase
in clinical trials and screening tests over the past few decades have reduced the
mortality rate but still there is lot undiscovered and new risk factors are being
added to the list National Cancer Institute (NCI) every year [6].
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Although analysing breast cancer data has been a long-established research topic,
models applied are mainly predicative models, e.g., predicting the likelihood of a
patient’s survival given certain medical circumstances and a patient’s demographics.
However, these predictive models usually take a black-box approach to the modelling
and therefore can hardly provide any explainable results to be applied for diagnostic
purposes, in particular, if neural network-based models are utilised. On the other hand,
identifying diagnostically influential factors with descriptive models has been proven
difficult due to the high dimensionality of breast cancer data under consideration.

This chapter presents a case study of using dimensionality reduction algo-
rithms to create explainable insights in breast cancer survivability analysis and to
identify critical influential factors that strongly determine the likelihood of a
patient’s survival. Two dimensionality reduction algorithms are used in this study
for comparison’s purpose:

● The typical t-distributed stochastic neighbor embedding (t-SNE) [7].
● The same degree distribution (SDD) algorithm [8].

The breast cancer data from The Surveillance, Epidemiology, and End Results
Program (SEER, https://seer.cancer.gov/data/) has been used in this study. The data
typically has more than 100 dimensions of numeric and categorical types and can
become about some 1,000 dimensions for analysis if one-hot (orthogonal) encoding
applied.

It has been demonstrated in the study that based on the same embedding per-
formance metrics, the SDD algorithm can achieve much better data embedding results
which would be impossible or difficult if t-SNE is used. Furthermore, using the reli-
able embedding results from SDD, meaningful and explainable factors have been
identified that reflect crucially the similarities of the patients who have survived and
the diversities of the patients who, unfortunately, have died. Clusters of patients who
survived are clearly recognizable in a two-dimensional embedding space, whereas the
embedded points of patients who died are significantly scattered in the space. To the
best knowledge of the authors’, this study is the first one of this kind.

The remaining of the chapter is organised as follows. Section 10.2 provides a
literature review of the relevant work with conclusions. Section 10.3 focuses on the
state-of-the-art of the unsupervised dimensionality reduction algorithms, in particular,
the SDD algorithm. The methodology of this study is discussed in Section 10.4,
including the analytical procedure, the data used, the performance metrics applied for
dimensionality reduction, and data pre-processing. In Section 10.5, the experiments of
the study are discussed and the relevant environment settings and codes are explained.
The results of the experiments are examined with essential findings and insights
provided, and finally in Section 10.7 end with conclusion and future works.

10.2 Literature review

The research so far till the date has always given lot of emphasis on building
predictive models such as classification models. A large variety of datasets from
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different regions and people diagnosed with different types of cancer are available
and lot of papers in the recent years have published the built models with different
accuracies. The problem here is that there is not a really good understanding about
the features or risk factors that the doctors can really learn from this. There is
always going to be a better model with classification and it is also possible to build
a own classifier and tune it with regards to the data but there is very little progress
in the way the data is made to speak by itself as there is an ocean of information
hidden inside it. There is a large gap at the pace at which the research is being done
to build a better classification model or prediction model than really understanding
about the data and giving some insights with the use of Artificial Intelligence. In
short, the study on SEER data or any large data had given less emphasis on unsu-
pervised learning and search for something unknown from the vast data available.

For example, the latest paper submitted at the international conference on
Orange technologies used the SEER data set to build classification models [9]. The
above models were used and there is quite a good trade-off between sensitivity and
specificity following each year work. It is more like a prediction system that based
on the rules and hyper parameters tuned based on the data fed built the model
(Table 10.1).

A recent paper published at the Iranian Biomedical Engineering conference
used the PCA techniques on Wisconsin Diagnostic dataset with 569 records. The
same work was done as the earlier but the accuracies are different as the data is
different and the model as well.

Table 10.2 from the above paper shows few techniques that reduce the data
into two-dimensional space but the question arises that does the data presented in
two dimensions after reduction actually represent its originality because every time
a dimensionality reduction technique is applied on a data there is some data loss in
different forms and the data we get is not the exact same as that in high-
dimensional space. Indeed this is one of the good models but there have been better
dimensionality reduction algorithms than PCA and they outperform PCA in many
aspects and one such method is t-SNE and we had used our own algorithm which
did perform quite better than t-SNE during the simulation of this data.

t-SNE is one of the best dimensionality reduction techniques at present and
there are various modified versions of it and tuned for speed convergence to work
around with large datasets. t-SNE solves the crowding problem that many other
dimensionality reduction algorithms face and it can locate the structure and usually
does whenever other dimensionality-reduction methods have been unable to.

Table 10.1 Classification models accuracy on SEER dataset [9]

Year Main author Model Accuracy Sensitivity Specificity

2020 Ming-Huan Zhang ANN 76.8% 77.7% 76.4%
2017 Shi-Chao Xin ANN 73.18% 59.64% 83.54%
2017 Zhi-Gang Huang C5.0 87.26% 75.22% 92.98%
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Even the stochastic neighbouring has the crowding problem i.e., the reduced
two-dimensional space. A huge number of applications and research have been
done on various kinds of data whether it is image compression, microwaves fil-
tering. Dimensionality reduction is used basically to visualize high-dimensional
data in two-dimensional space. The catch here is to check the similarity between
the patients who have passed away and also look into patients who survived then
look upon the attributes where they are more similar in for further research or make
conclusions from it.

These models are definitely a good prediction models but there is really a little
information that a doctor or researchers can learn something new about the features
or the risk factors, as an increase in understanding of risk factors means the deeper
the understanding of the environment of cancer disease, it may give a new direction
to work on and build the medicines so we can narrow down the disease based on
some factors and develop better medicines accordingly so we can further improve
the survival rate.

In conclusion, from the previous works, it is very clear that the research has
emphasised a lot on predictive modelling, there was no work done on descriptive

Table 10.2 Various feature selections and there accuracies [13]

Feature
selection
method

Number
of
features

Accuracy Sensitivity Specificity F1-
score

Kappa

PCA 8
4
2

97.2%�2.1%
96.3%�1.8%
94.2%�3.0%

98.3%
97.5%
96.9%

95.3%
94.3%
89.6%

97.8%
97.1%
95.4%

0.93
0.92
0.87

Factor
analysis

8
4
2

97.2%�2.0%
95.4%�3.8%
91.6%�5.6%

99.2%
97.5%
95%

93.9%
92.0%
85.8%

97.8%
96.4%
93.4%

0.94
0.90
0.82

Incremental
PCA

8
4
2

96.7%�2.0%
96.1%�1.5%
94.6%�3.0%

98.3%
97.2%
96.9%

93.9%
94.3%
90.6%

97.4%
96.9%
95.7%

0.93
0.92
0.88

ICA 8
4
2

82.8%�4.0%
72.6%�4.9%
66.3%�1.7%

99.7%
100%
100%

54.3%
26.4%
9.30%

87.9%
82.1%
78.8%

0.59
0.31
0.12

SVD 8
4
2

97.2%�2.1%
96.3%�1.8%
94.2%�3.0%

98.3%
97.5%
96.9%

95.3%
94.3%
89.6%

97.8%
97.1%
95.4%

0.93
0.92
0.87

Kernel PCA 8
4
2

94.0%�2.4%
92.8%�3.5%
84.7%�4.5%

97.8%
99.4%
97.2%

87.7%
81.6%
63.7%

95.4%
94.5%
88.9%

0.87
0.84
0.65

Feature
importance

8
4
2

97.4%�2.4%
97.0%�2.2%
94.5%�2.3%

98.6%
98.3%
96.6%

95.3%
94.8%
91.0%

97.9%
97.6%
95.7%

0.94
0.94
0.88
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modelling and there was no change in shift of the aim behind researches were
carried out. It was more like tunnel vision where lots of flavours of predictive
modelling techniques were developed.

10.3 Dimensionality reduction methods

This section introduces various unsupervised dimensionality reduction algorithms,
in particular, the SDD algorithm [10]. Generally speaking, there are two main
approaches for reducing the dimensionality: one is the Projection and another is the
manifold learning.

10.3.1 Projection
Generally, not all the dimensions are spread in all the dimensions; many tend to be
very close to each other. Let us look at the figure below. If we project these points
perpendicularly in an imaginary plane downwards by connecting them with lines,
then we have just reduced the data from 3D to 2D. But projection technique is not
always the best; many times, points tend to overlap over one another and this does
not carry any significance. The picture on the left shows the 3D representation of
the data and the picture on the right shows the actual data that we would want to
visualise.

10.3.2 Manifold learning
The below Swiss roll dataset is an example of manifold learning to put it in
simple, manifold learning is any 2D image that can be twisted or bent in high-
dimensional space. It is one of the popular approaches for dimensionality reduction
of non-linear data.

Sample data points in 3D space New 2D points after projection
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10.3.3 PCA
One of the most often used procedures for reducing the number of linear dimen-
sions is principal component analysis (PCA). The data is transformed using a
projection-based technique that projects the data onto a set of perpendicular axes.
When data from a higher-dimensional space is mapped to data into a lower-
dimensional space, PCA requires that the variance or spread of the data in the
lower-dimensional space be as little as possible. Despite the entire efficacy that
PCA offers, it might be challenging to comprehend the principal components when
there are a lot of variables. PCA works best when variables are related to one
another linearly. PCA is also sensitive to significant outliers. An oldest technique
that has received much investigation is PCA. Numerous modifications of basic
PCA exist that address its drawbacks, including kernel PCA, and incremental PCA.

10.3.4 t-SNE
t-SNE is a new method invented by Maaten et al. in 2008 [7]. It can capture the
local data structure of the high dimension and reveal the global structure such as the
presence of clusters on some degrees. t-SNE is a non-linear dimension reduction
approach that computes the conditional probability using Gaussian distribution.

10.3.5 SDD
The SDD [10] is a new non-linear dimensional reduction approach that captures
both the global and the local data structures. SDD determines which degree of
distribution can best capture data structure. Large distances tend to cause very little
effect on degree distributions while it is contradictory on the small distances.
Kullback-Leibler is the loss function used in SDD to approximate the degree-
distribution in the low-dimensional space with the degree-distribution in the high-
dimensional space:

C1 ¼
X

i6¼j
pdegm

log
ðpdegm

Þij

ðqdegm
Þij

 !
(10.1)

Swiss roll data in 3D space Unrolled swiss roll data
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where degm is the degree of degree-distribution m, m = 1: n. SDD intends to
minimize the cost function C1 as (10.2):

loss1 ¼ min C1ð Þ (10.2)

where

pdegm

� �
ij ¼

1 þ dis xi; xj

� �� ��degm

X
k 6¼l

1 þ dis xk ; xlð Þð Þ�degm
(10.3)

qdegm

� �
ij
¼ 1 þ dis yi; yj

� �� ��degm

X
k 6¼l

1 þ dis yk ; ylð Þð Þ�degm
(10.4)

and dis �; �ð Þ represents the Euclidean distance.

Algorithm. SDD

Require: Input X 2 RN�D, number of iterations H, learning rate h, momentum a,
number of degree-distributions n, degree degm, and initial low-dimensional data
Y 0 ¼ y1; y2; . . . ; yN 2 N 0; 10�4I

� �
.

Step 1: Compute similarities in high-dimensional space pdegm
using (10.3).

Step 2: Compute the similarities in high-dimensional space qdegm
using (10.4).

Step 3: Compute the gradient @C1
@yi

, where C1 is defined as (10.1).
Step 4: Minimize the objective function (10.2) using gradient descent optimisation
algorithm:

Y h ¼ Y h�1 þ h
@C1

@yi
þ a Y h�1 � Y h�2

� �

Output: Low-dimensional space representation Ybestdegm
.

10.4 Methodology

High-dimensional data visualisation is a critical step in studying high-dimensional
data. As a result, lowering dimensionality is an important stage in data analytics.
The ideal dimensionality reduction strategy for visualisation is one that preserves
both the global and local data structures.

Data structure can be effectively captured by SDD with a significant portion of
small and medium distances. In contrast, it performs worse in datasets with a high
proportion of big distances because there are so many samples in the degree-low
distribution. In data where short and medium distances predominate, SDD
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outperforms benchmark approaches for structure capture including t-SNE and
Isomap [10]. The one degree distribution used in the studies generated the best low-
dimensional data representation in terms of retaining structure. We have demon-
strated that one degree distributions can effectively capture data structure.

10.4.1 Procedure
The data preprocessing steps include converting the original data to one hot-
encoded columns, dealing with the missing data. The dimensionality reduction and
clustering is performed in the below experiment with t-SNE and SDD algorithms,
then the patient ID is mapped to the original database into excel to find the patterns.
The steps involved in data preprocessing are summarised in the Figure 10.1 below.

10.4.2 Data used
The raw data used is the SEER breast cancer which has 798k records with 133
variables and predominantly of categorical type.

Table 10.4 gives all the variables contained in the data. Refer to the original
document, available at https://seer.cancer.gov/data-software/documentation/seer-
stat/nov2019/TextData.FileDescription.pdf.

10.4.3 Performance assessment metrics
There are several performance assessment metrics as discussed below.

1. Kendall’s Tau (t): A non-parametric correlation coefficient calculated using
the rankings of x and y is Kendall’s t and it is distribution-free. Second, it does
not assume that x and y be linearly related, making it usable to both discrete
random and continuous variables. Kendall’s Tau produces value range between
0 and 1 where 0 means no relationship and 1 for perfect relationship, in some
instances, can also produce a negative value, the negative sign has no sig-
nificance and can be discarded. There are various versions of Tau formula.

2. Sheppard diagram: A Shepard diagram examines the spacing between your
data points before and after you change them. For data reduction methods like
PCA, MDS, or t-SNE, Shepard diagrams might be employed.

3. Spearman’s Rho (r): A non-parametric test called Spearman’s Rho is used to
assess how strongly two variables are related; a value of r = 1 denotes a perfect

Load SEER breast 

cancer data

Conduct data pre-

processing: cleaning, 

orthogonal encoding, 

normalization

Determine target data for 

analysis

Embed data into 2-

dimensional space using 

selected algorithms 

Examine embedded data: 

clusters, similarities, 

diversities

Identify diagnostically 

curtail factors to generate 

insight with given context

Raw data

Explainable 

knowledge

Figure 10.1 Block diagram of proposed approach

Cancer patients with diagnostically influential factors 293



positive correlation, while a value of r = �1 denotes a perfect negative
correlation.

4. Co-ranking matrix: It is a tool used to assess the performance of dimensionality
reduction.

Multiple metrics from the above can be chosen depending upon the task needed to
be assessed. Kendall’s Tau has been used throughout the experiments as the per-
formance metric to assess the quality of dimensionality reduction.

10.5 Experiments

Table 10.3 provides the information about the dataset and the working
environment setup.

In the experiments, we are interested in these following questions:

1. Is there any similarity between patients who survived and how do they look
like in 2D space?

2. What is the difference in risk factors between survived patients and patients
who have died?

3. Compare unsupervised t-SNE and unsupervised SDD and find which algorithm
best replicates the high-dimensional data into low dimensional space.

Libraries overview:
Pandas is used to create and manage tables, while numpy for numerical calcula-
tions. Scipy is a scientific python library that consists of statistics and other suite
built in it to measure and use packages like Kendall’s tau for comparison. The Sk-
Learn Library consists of all the algorithms that we need, basically we will make
use of t-SNE and our own algorithm which will be using as a class. The visuals are
going to be generated with the help of matplotlib and seaborn, seaborn library
offers more flexibility and gives us the ability to make changes and we prefer for
customization. And visuals are very important as part of this experiment. It is
highly recommended to create an environment in python using Anaconda and then

Table 10.3 Tools used and the environment setting

Tools used Python 3.9.1, Tableau, and SAS Miner

OS Windows 10
Dataset name SEER
Access link How to request access to SEER Data – SEER

datasets (cancer.gov)
Rows and columns count 798,625,133
Data types Categorical and integers
Python Libraries Pandas, Sci-kit Learn, numpy, scipy, matplotlib,

seaborn
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start using it. A tip is to use multicore tsne instead of the regular tsne or the cuda
library if nvidia graphics card is present to enable faster computations.

We have to first load the entire dataset into python, so we performed the
following steps in order. The important steps in the data preprocessing are the
treatment of missing values and handling outliers.

Few commonly used preprocessing functions of pandas

1. Dataframe.shape – to check for the number of rows and columns.
2. Dataframe.info() – to check for the data types and get a glance of null values.
3. Dataframe.isnull().sum(axis=1) – to check for missing values along the

column side.
4. Dataframe.dropna(axis=1) – to drop missing values.
5. There is no direct function to detect outliers, prefer using scatter plots or box

plot and remove outliers accordingly.
6. One hot encoding – from sklearn.preprocessing import OneHotEncoder then

create an instance of it and one hot encode the categorical data.

Note that the following approach is applicable to any dataset and if the
objectives are same for the comparison of data points purposes.

The SEER data set was pre-processed and it consisted of 291,761 records and
63 categorical features. The features were one hot encoded and the resulting data
had 160,000 records and 947 features. For the demonstration in regards to the scope
of the chapter, we have conducted the following experiments as in Table 10.4 [11].

For the two experiments that were conducted, the highest difference found was
low with 42% when the experiment was conducted with 500 samples. The con-
fidence of difference similarity grew in the case of 1,000 samples experiment to
75%. This might be due to fact that the algorithm needed more data to generalize
well. This experiment can be repeated with more samples all the way on the entire
dataset but training the entire dataset requires very large computational power and
it is hard to do it with a single machine. As the subset of 1,000 samples included the
previous 500 samples as well we investigated in the 1,000 samples plot and looked
into the older patients from the previous experiment and we found that patients who
appeared together in the former experiment, they appear still together in the latter
experiment as well.

Table 10.4 The data originality percentages of t-SNE and SDD

Algorithm
(unsupervised)

Number of
samples

Data originality after
reduction (%)

t-SNE 500 58.8
SDD 500 72.9
t-SNE 1,000 56.1
SDD 1,000 72.9
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The code for the SDD can be found in the references below please copy paste
the code as the algorithm has yet to be submitted to the sklearn [11]. The use of ray
library is optional it has been used here just to speed up the loading process. The
magic functions are used as needed. As we will be using randomly 500 and 1,000
records for the experiment to pick the samples, we will be using random library.
The seed value has been set to 10; we will make use of indexing to pick the records.
First we will be generating random numbers and use those numbers to pick the
records with the indexes. So each time, the simulation is run, it will generate the
same exact results and gives the same samples output if the seed value is not set,
then each time the simulation runs, the results will be different because the ran-
domly selected records will be different. Here in this simulation below, I have
generated 5,000 random numbers and then picked equal proportions of patients
who have survived and passed away. The experiment procedure is the same for the
1,000 patients as well but the limit will get changed to 1,000 in the next run.

We have combined both the data frames dead and alive for the dimensionality
reduction. The best value of the list with the highest correlation will tell us the best
k value where the data represents the best high-dimensional data. Once we find the
best k value, then we will be running the SDD again with the best degree of free-
dom found at. Then we can move into plotting once we have the reduced 2D data.
We have created a new column where we have mapped the data and then created a
unique label to each patient from the index we picked up the records initially, this
list of id will be the key to compare patients and look them into the 2D space on
the map.

A total of 5 clusters were visible but the density was quite less meaning that it
is quite noisy but this algorithm adds support to fact that the patients who have
survived are indeed quite similar with each other. We have noted down the points
of the clusters when we investigated the yellow points that were close together. We
did find that many factors were similar but the results were not strong and that did
not give any significance as there was very little that we could make use of from it.

First, when we look at the picture of SDD implementation, we can see that the
yellow points in each cluster are very near to each other like a group while the blue
points are spread out like they are quite present everywhere. A total of five clusters
with high density were visible. The distance separation between the clusters was
quite significant. There was very little disorder in points among the patients who
survived while in the case of patients who died, there was large noise (lot of disorder
between points). When we further investigated the yellow points and mapped them
back to the original data, we found some similarity among them in many factors.

A good visual tool to display data that is grouped is Tree map. The Tree map
below shows the people who had survived had the following factors in common
with percentage showing the highest similarity they were common together in, the
larger the size of rectangle that means they are largely common together.

We looked at the patients who have died and were still close together to those
who survived and we did find through their records that they were indeed much
similar like the factors were same but they had some risk factors as opposite to that
of patients survived and that might be the reason why they have passed away.
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One strange thing to notice is that there are risk factors like adjusted AJCC
value (_0_ADJM_6VALUE) which shows 100% in both patients who have died
and passed away. What exactly has happened then? Well these factors really do not
tell us anything significant because the dataset has majority of positive value for
these factors and no matter what the record is the _0_ADJM_6VALUE is always
going to be positive either patient has passed away or survived. The next step
would be to store the similarity of both survived and passed away and check for
factors where there is a large difference.

The tree maps did give us some information but it is still not much clear what
exactly are the factors, whereas the risk factors were found after the difference and

(a)

(b)
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Figure 10.2 Patients representing in 2D space by using SDD

Reduced space 41% error-rescaled [TSNE]
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when presented using the radar chart. The area for the patients died is quite large
the factors are vast but when we look at the pink area cross section, the points are
very sharp and clear that the cancer site 3 and site 5 are among the patients who
survived and none of the patients had regional lymph nodes (Figure 10.5).

To summarise, the cluster points that were seemed together in SDD imple-
mentation were also seen together in the t-SNE cluster points but due to error rate
being quite high t-SNE was not able to group all the patients together but did
capture some similarity. Again, the factors contributing to these similarities were
checked between SDD and t-SNE and factors found in t-SNE were present in the
SDD as well but the SDD algorithm gave us little more information.

The next experiment consisted of 1,000 samples which included the previous
500 samples from the previous experiment. When we look into the graph, we notice

Similarity percentage factors

survived

Similarity percentage factors 

died
Risk factors found

Figure 10.4 Block diagram illustrating how risk factors were found
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Figure 10.5 The pink region shows the distinct attributes where patients survived
exhibit while the blue region belongs attributes of patients who
passed away (sample size = 500)
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that t-SNE has formed clusters well, indeed with less representation of originality
with 44% error, t-SNE still was able to create groups of patients together but the
results with SDD were quite more informative. The SDD algorithm was able to
generalize very well when compared with t-SNE. The samples that were close
together in the previous experiment were still together in this experiment as well.

A total of 6 clusters were visible; the density was decent it means that there
was very little noise among the data reduced, this experiment still points and adds
support to answer our question that survived patients are indeed quite similar with
each other and that is the reason why they always appear very near to each other in
the reduced space while it is not the case with the patients who have passed away.
But there are few clusters of blue points as well and upon inspection, these points

(a)

(b)
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had some similarities among them but vastly the dominant tightly packed clusters
are of yellow points that are those of who survived. We have noted down the points
of the clusters when we investigated the yellow points that were close together; we
did find many factors that were similar in but the results were not strong it means
that the similarity percentage was less which is not bad but we will not be much
confident about it and that did not give any significance as there was very little that
we could make use of from it.

The SDD simulation produced clusters as well and the survived patient clusters
are very tightly packed. We have randomly picked up 100 samples from the graph
above and studied the survived patients and we found high similarity percentage
when compared with the previous experiment. This might be due to an increase in
the number of records and the algorithm was able to generalise well. The tree map
for the two categories of labels is being shown below; the experiment followed the
same procedure like the previous one.

30 FACTORS WHERE SURVIVED PATIENTS AND PASSED AWAY ARE HIGHLY
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Figure 10.8 The pink region shows the distinct attributes where patients survived
exhibit while the blue region belongs attributes of patients who
passed away (sample size = 1,000)
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10.6 Discussion of results

‘All happy families are alike, but every unhappy family is unhappy in its own way’
(Leo Tolstoy and Anna Karenina, 1878) [12]. The Anna Karenina principle meant
that happy families share a common set of attributes for the reason behind their
happiness whilst in the case of unhappy families, it can be any attribute which
causes unhappiness in their life. We found this concept to be aligned and fits in the
scenario of the cancer patients as well. We saw in both the experiments that the
yellow points (survived) appeared always close together while blue points (died)
appeared quite scattered and the points on the graph appeared quite noisy and had
their own factors. The clinical findings among the patients who survived were quite
similar and many of the patients shared some common characteristics. While it was
not the same in the case of patients who passed away. From the 947 one hot
encoded factors, we narrowed down the list to 30 factors based on the similarity
threshold. This narrowed down list will help to study only the few findings more
elaborately and lot of time will be saved and burden on the researchers will be
decreased as well and we can speed up the process and focus on working with
important clinical risk factors instead of looking at all the factors.

In the following discussion, several influential variables will be focused and exam-
ined closely based on the experiments results. Table 10.5 shows each of such variable
with their meaning and the code used after one-hot encoding for a quick look-up.

Remark 1: It has been found that these five distinct tumour sites (_0_CS3SITE,
_0_CS5SITE, _0_CS6SITE, _987_CS4SITE, _987_CS5SITE) were predominant
in both the experiments. The first two sites are predominant among patients who
survived while the remaining three are predominant among patients who have died.
These sites might be added to new risk factors list and a strong emphasis and
further research can be conducted to find out what is special about this site that is

Table 10.5 Influential variables with their original meaning

Attribute code Meaning

_0_CSMETSDX No distant metastasis
0 NO_SURG Surgery performed

_0_CSLYMPN No involvement of Lymph nodes
_0_CS5SITE Test not done
_3_CSRGEVAL Microscopic examination of regional node
_0_EOD10_PN All nodes examined are negative
_0_CS3SITE Tumour site
_0_CS4SITE Regional lymph nodes negative
_987_CS4SITE Not applicable CS Lymph nodes not coded
_987_CS5SITE Tumour site
_0_CS6SITE Test not done
_0_SURGPRIF No systematic therapy/surgical procedures
_4_HST_STGA Distant neoplasm
_70_ DAJCCSTG Stage of cancer
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why survived patients at those two specific sites are able to make out and this
experiment also asks for why majority of people who died who had tumour at the
three other sites have less mortality.

Among the survived patients, 80% patients had tumours at site _0_CS5SITE
while the patients who passed away had less than 0.2% tumours at this site. This
indicates that if a patient is diagnosed with cancer and has tumour at this sites, then
there is a very good chance that the treatment might be successful and they might
survive. Fifty-six per cent of survived patients had tumours at site _0_CS3SITE
while the patients who passed away had less than 0.1% tumours at this site. The
patients had low mortality rate at tumour location of _0_CS6SITE, 61% of patients
died off while less than 2% of survived patients had tumours at this site. The
_987_CS5SITE,_987_CS4SITE attributes had 80% of patients’ similarity who
passed away while less than 2% of patients who survived had tumours at this site.
By comparing the results of tumours against a new patient, we can expect how the
treatment of the patient would go like and predict the chances of mortality and
further study can be done to find more about the location sites so we can gain
deeper understanding of the tumour sites.

Remark 2: With regard to _0_NO_SURG, it has been found that among the patients
who have survived 98% of them had a surgery after diagnosis while the patients
who died never underwent a surgery after being diagnosed. The mortality rate does
even depend on this factor from the following result. Among the patients who have
died, 39.7% had one surgery in their life time after diagnosis. It is highly recom-
mended to follow the clinical advice and get surgery done if it is suggested.

Remark 3: Lymph nodes, _0_CSLYMPHN, have shape of beans, they are widely
found across the body and specially at the lymphatic pathways where they filter the
lymph before it goes into the blood. Among the patients who have survived, 81% of
them did not have any lymph node involvement with the disease while they were
diagnosed while patients who died had more than one lymph node involved with
the disease at their time of diagnosis. This is another risk factor which has sig-
nificant contribution for predicting the chances of mortality.

Remark 4: Age does not really say much, from the results of the data, there is no
pattern to catch up as there are few cases where age is quite high but still patients
were able to survive and patients with age less than 40 still pass away. Even race
does not give any significance and has any importance with relation to the disease
no matter what the race, it has no impact in high or low mortality.

Remark 5: The historic stage A, 4_HST_STGA, showed us that patients who died
had excessive growth in tissues and the growth had spread out to the other organs of
the body as well. This indicates that the extent up to which the neoplasm has spread
across the body has very strong impact if the cancer cells have started to invade
other organs, the mortality gets very high and among the patients who died, 56.8%
of them had gone through this stage and they passed away.

Remark 6: In relation to variable _0_SURGPRIF, while the patients if they ever had
a tumour in life and who never got it destroyed or undergone tissue removal are
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more prone to die and this was the case here observed in our experiment as 64.7%
of the patients who died never got there first tissue removed or destroyed. This
really does stress on the importance of screening and negligence in treatment can
cause major mishappening. Proper screening and immediate treatment play a key
role. Once the patient finds a tissue or abnormal growth they may need to get rid of
the primary tumour as soon as possible as there is very high chance the cells will
start to divide and spread to regional parts of the organs first and then start invading
other distant organs as well and this may become fatal.

Remark 7: In relation to _0_CSMETDX, all the patients who survived never had
metastasis; metastasis is the movement of cancer cells first from where they were
formed to nearby parts of the organs or the body. The movement can be through
lymph nodes or through the blood or any other means. While among the patients
who had died, the results are contradicting this means that metastatic cells do play a
part in determining the survival chances of the patient. If the cells are not meta-
static, then there is a 75% chance that the patients can survive because there are
25% cases of patients who died despite they have not had metastatic cells but still
they passed away.

Remark 8: This finding is related to _70_DAJCCSTG and supports the fact that at
the advanced stages of cancer, people cannot make it and pass away among the
patients who have died, 53.4% of them were at the fourth stage of the cancer while
22.7% patients data from the died category about the stage is unknown. While we
look into the patients who have survived 34% of the patients were at the stage 0 and
31% at stage 1 and 21% at stage 2 of the disease, this is the reason why patients
among who survived were able to fight the cancer. Once the disease progresses into
the advanced stages, the mortality rate tends to get high.

Remark 9: Examined with the variable _0_EOD10_PN, 58% of the patients who
had survived when they got examined during the diagnosis had their regional
lymph nodes tested negative, well the number is not large but on the contrary basis,
surprisingly 59% of the people who had died never got there nodes examined. We
exactly do not know was there difference in treatment as why these patients lymph
nodes were not examined by the pathologists as this could also be a trigger or point
to look at as a risk factor. If in case the patients were examined and the treatment
would have started, may be the patients could have survived.

To summarise the points mentioned above, while the patients who survived
showed us something in similar that we discussed above, we narrowed down the
scope of the investigation into the findings to 30 from 947 variables or findings and
then we found some uniqueness in tumour sites in patients who survived and passed
away. We found that lymph nodes play a huge role as they spread quite across the
body and we also found that if the cancer cells start spreading to the nearby regions
or organs, then the chances of survival gets very low. Excessive growth in tissues
can also be a warning sign and proved to be fatal while patients who survived had
less growth of tissues in nearby part of region of body. Metastasis is also an
important factor once the cancer cells start to move into blood stream or get in
movement through lymph nodes, the case might get complicated and it increases the
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complexity of survival. Screening is very important, we also saw people who sur-
vived were at initial stages of the cancer while they were diagnosed, the people who
were at advanced or later stages could not make it. If necessary, it is very important
to get the tissue removed or the tumour to be removed as in the cases where people
who survived got their tissue or tumours destroyed initially while it was not the case
with the patients who passed away. And lots of surgeries happening are also a bad
sign; this might be an indication that the cells or the disease has started invading
other parts and eventually patients who got multiple surgeries after diagnosis could
not make it. Well the age and race had no effect on the disease.

This experiment was successfully completed with our SDD algorithm. This
algorithm proved very helpful as we were able to derive a good number of findings
from with the help of it.

10.7 Concluding remarks and future work

This study presents a comparative case study demonstrating how to use high
dimensionality reduction algorithms like SDD to effectively embed data in a 2D
embedding space to create insight into the data. Diagonally influential factors have
been identified in relation to the likelihood of a breast cancer’s survival. The pro-
cedure applied is valid and efficient. It has been shown that SDD is much more
effective in dimensionality reduction than t-SNE, and therefore, it deserves further
research effort in the future.

It is our intention to extend SDD to multiple degrees distribution in order to
obtain better data embedding performance. In addition, conducting dimensionality
reduction with data from our domain, such as lip-reading and micro facial expression.
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The use of ray library is optional. It has been used here just to speed up the loading
process. The magic functions are used as needed. As we will be using randomly 500
and 1,000 records for the experiment to pick the samples, we will be using random
library. The seed value has been set to 10. We will make use of indexing to pick the
records. First, we will be generating random numbers and use those numbers to pick
the records with the indexes. So each time the simulation is run, it will generate the
same exact results and give the same samples output. If the seed value is not set, then
each time the simulation runs, the results will be different because the randomly
selected records will be different. Here in this simulation below, I have generated
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5,000 random numbers and then picked equal proportions of patients who have sur-
vived and passed away. The experiment procedure is the same for the 1,000 patients
as well but the limit will get changed to 1,000 in the next run.

Combine both the data frames dead and alive for the dimensionality reduction.
We will be using unsupervised techniques so we will be dropping the target column
and store the target in the variable y which will be used later for the purpose of
plotting. It is always a good habit to store the original dataframe and use the copy of
dataframe for the simulation purposes.

The magic function time returns the cell runtime and then we are calculating
the spatial distance in X matrix and then running a for loop over the SDD class and
then reducing the dimensionality and storing all the correlation values in a list. The
best value of the list with the highest correlation will tell us the best k value where
the data represents the best high-dimensional data.
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Once we find the best k value, then we will be running the SDD again with the
best degree of freedom found at. Then we can move into plotting once we have the
reduced 2D data. We have created a new column where we have mapped the data
and then created a unique label to each patient from the index we picked up the
records initially. This list of id will be the key to compare patients and look them
into the 2D space on the map.

The same applies for t-SNE. We are running t-SNE with a step size of 5 and
appending the values of correlation to a list.

We are using the figure size of 11,7 and have applied some customization to
make the visuals more appealing. We have exported the pictures with 1,080 dpi.
We have the ability to set the font size and use hue and palette as required. The
same applies for TSNE. We are running the TSNE with a step size of 5.
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Chapter 11

Explainable neural networks in diabetes
mellitus prediction

Solomon Chiekezi Nwaneri1, Chika Yinka-Banjo2,
Ugochi Chinomso Uregbulam1, Oluwakemi Ololade

Odukoya3 and Agbotiname Lucky Imoize4,5

Abstract

Artificial Intelligence (AI) has been widely applied in healthcare for several pur-
poses, especially in disease prediction enabling physicians to more accurately
diagnose patients’ conditions. Results generated by traditional AI models are dif-
ficult to justify due to the opaqueness of the models. Thus, making it difficult for
physicians to trust the results and use them in real-life practice. Recent advance-
ments in explainable AI (XAI) have made the results more reliable, making it
possible for physicians to embrace AI in clinical practice. Explainable deep neural
network (xDNN) is a machine learning technique that can enhance diabetes mel-
litus disease prediction and explain the results. This chapter focuses on using
explainable neural networks in diabetes mellitus prediction. It provides valuable
insights on key steps and techniques for diabetes mellitus prediction using
explainable neural networks (xNNs). In particular, the sequence for implementing
the model using R programming software was discussed. In order to demonstrate
the implementation of xNNs in diabetes mellitus prediction, the Pima Indian dia-
betes mellitus datasets were used. The model was assessed based on accuracy,
sensitivity, specificity, precision, recall, and F1 score. Additionally, the chapter
discussed the different methods of implementing explainability in XAI’s and pro-
vided a clear illustration using the variable importance tool in R. The results
revealed the effect of each variable on the overall model. We found that the
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variable importance varies with the network architecture. Overall, diabetes pedi-
gree functions are the least important predictor of diabetes mellitus in the model.

Keywords: Artificial Intelligence; Diabetes mellitus; Explainable neural
networks

11.1 Introduction

The recent advances in Artificial Intelligence (AI) have reasonably transformed
healthcare systems, particularly the process of clinical decision-making. In clinical
practice, decision-making is vital as it is a major determinant of the effective diag-
nosis and treatment of patients. In the pre-AI era, this was very difficult and required
a great deal of experience garnered from many years of clinical practice. Computers
can now be programmed to reason like humans to perform previously difficult or
even impossible tasks for traditional machines, given the large volumes of data they
can handle [1]. Despite these outstanding solutions, there is a general reluctance to
embrace the use of AI systems in real-life situations. Genuine efforts have been
made to improve user acceptability and transparency. The need to address these
challenges necessitated innovations in the field of explainable AI (XAI). The concept
of XAI is novel as it comes with new features that enable it to generate explainable
results [2]. Explainability or interpretability is generally defined as the degree to
which a human can understand the cause of a decision [3]. With XAI’s, users can
now understand and trust the results created by machine learning algorithms [4].

Explainability has become necessary in providing convincing evidence to
experts and regulatory bodies that the results generated by AI models are reliable
and justifiable. Unlike the inner workings of conventional AI systems considered
complex and difficult to understand, XAI’s are usually more transparent to users
with no black boxes, making it easier for clinicians to trust their results [5]. One
example of XAI is the explainable deep neural network (xDNN) which provides a
transparent means of classifying complex networks from a wide range of inputs.
This classification is essential because it creates a means to solve the problem of
lack of explainability in traditional DNNs [6]. Traditional DNNs consist of several
neurons with the capacity to mimic the human brain [7]. When fed with input data,
DNNs have an internal opaque architecture that trains the input data, thus, producing
results with reasonably high levels of clarity. The inability of the results to be
explained due to black boxes in traditional DNNs often affects the levels of con-
fidence an average user has on the results. With xDNNs, the understanding of the
user regarding reasons for specific results from a deep neural network (DNN)
training model is guaranteed. Various approaches have been used in explainable
deep learning models to enhance decision-making [8]. One approach uses explain-
able neural symbolic learning (X-NeSyL), combining deep learning and domain
expert knowledge [9]. X-NeSyL comprises three key stages summarized as:

1. Processing of symbolic representation.
2. Classification of an object by its detected parts is usually done using the

explainable part-based classifying network architecture (EXPLANet).
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3. Ensuring that model aligns its output with symbolic explanations using tools
such as Shapley Additive explanation (SHAP) [10].

The healthcare sector has benefitted immensely from innovations in AI,
especially in enhancing clinical decision-making. Applications of AI in healthcare
are well reported [11,12]. Clinical decisions are usually difficult to make, even with
the most experienced physicians. With clinical decision support systems, clinicians
make better diagnostic decisions by combining clinical knowledge with patient
information [13,14], expressing the need to go beyond XAI and focus on causa-
bility to attain a level of explainable medicine. One of the several diseases that
xDNNs can be used to predict is diabetes mellitus.

Diabetes mellitus is a metabolic disease characterized by high plasma glucose.
There are generally three types of diabetes mellitus: Type 1, Type 2, and gesta-
tional diabetes. While in Type 1 diabetes mellitus, the pancreas is unable to pro-
duce insulin, Type 2 diabetes mellitus is associated with impaired glucose
regulation caused by insulin resistance and dysfunctional pancreatic beta-cells
[15,16]. Gestational diabetes mellitus (GDM) is associated with pregnancy and is
the most common medical complication in pregnant women [17,18]. Type 2 dia-
betes mellitus is pervasive not just in developed countries but in developing
countries. The global prevalence and incidence of diabetes mellitus are quite pro-
blematic, particularly with the high level of ignorance about the disease in many
communities [19]. According to [20], 537 million adults between 20 and 79 suffer
from DM. The most common risk factors for diabetes mellitus include genetics,
obesity, advanced age, hypertension, tobacco use and diet [17,21,22]. Prolonged
uncontrolled diabetes mellitus is usually associated with several medical compli-
cations such as cardiovascular diseases, kidney failure, stroke, amputation, blind-
ness and, in some cases, death [23]. Early identification and detection of DM,
followed by glycemic control, are crucial to preventing complications [24].

Hence, researchers are working on predicting the chances of people developing
diabetes mellitus before its onset using AI [23,25]. However, the models are not
explainable. This chapter focuses on the application of xNNs in predicting diabetes
mellitus. This would help to improve the diagnosis of the disease by providing a
pathway for readers to understand the methods and strategies for using xNNs to
predict the disease. Moreover, since the model reveals the level of importance of
each predictor, it will help readers to understand the impact of each predictor.
Furthermore, the concept of DNNs was exhaustively discussed.

11.2 Related work

AI applications in disease prediction have been well reported [25–30]. Predictive
models are vital tools for the pragmatic management of diabetes mellitus [19]. The
most common AI models widely used include NNs, [27], logistic regression
[31,32], decision tree [33], support vector machines [34], and random forest [35].
Many AI algorithms were applied singly or combined with other algorithms [31]. In
some studies, ensemble models were developed by combining two or more AI
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models to obtain better results than the individual models [36]. In [19], the authors
applied improved K-means clustering and logistic regression models for diabetes
mellitus prediction. Larabi-Marie-Sainte et al. [37] did a comparative analysis of
the following machine learning classifiers; RepTree, Lazy, Rules, Functions, and
Bayes, which were tested on the Pima Indian Diabetes Dataset and obtained the
highest classification accuracy of 74.48%.

Deep learning has become popular, especially with the rapid advancements in
the speed and functionality of modern computers. Indeed, deep learning is seen to
be computationally intensive [38]. The minimum requirements for any computer
running a deep learning program include graphics processing units (GPUs), large
memory ( � 8 GB), and high computational speed. Often, DL is preferred to tra-
ditional machine learning techniques because of its better performance [39].
Consequently, there is a growing interest by researchers in medical applications of
DL such as liver cancer diagnosis [40,41], breast cancer [42], detection of acute
intracranial hemorrhage (ICH) to support expert radiologists [43], prediction of
mental disorders [44], and diabetic retinopathy [45]. In some cases, deep learning
algorithms have performed better than human experts in medical image analysis
[46]. The prediction of diabetes mellitus using various deep learning algorithms has
continued to generate research interest. Improved performance in artificial neural
network models trained using an artificial backpropagation scaled conjugate gra-
dient neural network (ABP-SCGNN) algorithm to predict diabetes mellitus has
been demonstrated by [47]. The persistent memory of recurrent neural networks
(RNNs) has been utilized in deep learning algorithms because it can overcome the
vanishing gradient problem. The vanishing gradient problem is generally char-
acterized by a drastic reduction in the value of the gradient of multilayer networks
to abysmally small values that are too difficult to train. In Rhee et al. [48], RNN
long short-term memory network performed better than conventional networks.

Jang et al. [49] proposed explainable diabetic retinopathy (ExplainDR) clas-
sification model, leveraging neural-symbolic learning. Linden et al. [50] developed
an explainable multimodal neural network architecture for predicting the time-
dependent risk of six common comorbidities of epilepsy patients based on admin-
istrative claims data. In [51], the authors compared the performance of DNNs,
extremely gradient boosting (XGBoost), and random forest in predicting Type 2
and found DNN to outperform the other algorithms.

Despite notable advancements in the application of DNNs in medical science,
there are limited data sources for DNNs and challenges of knowledge repre-
sentation [46]. The major limitation of machine learning models is the difficulty in
interpreting complex models [52]. Chetoui and Akhloufi [45] proposed an
explainable deep learning algorithm for detecting diabetic retinopathy (DR) on
retinal fundus images. Diabetic retinopathy (DR) is a significant complication of
diabetes mellitus, which causes damage to the retina. Using neural symbolic
learning methods, the authors achieved a high-level neural representation. Results
showed higher classification rates using this deep learning neural network pre-
diction method than other methods. El Rashidy et al. [18] proposed a medically
intuitive and cost-effective solution that focused on early predicting gestational
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diabetes mellitus by implementing deep learning algorithms. In another study,
Mpreno-Sanchez [53] proposed explainable classification models for chronic
kidney disease using ensemble tree classifiers. By using two different explain-
ability approaches, the study yielded the explainability of the results. To the best
of our knowledge, using XDNNs is an emerging subject that needs further
investigation.

11.3 Methodology

11.3.1 Key implementation requirements and strategies
for xDNNs

The implementation of DNN and NN models is generally achieved using various
techniques and strategies. The software tool and programming languages used for
the implementation are of critical importance. The most common programming
languages used for DNN implementation are Python, R programming, C++, Java,
and MATLAB. There are also many commercially available DNNs, such as Deepy
and NVIDIA Deep Learning software. The user is at liberty to implement the
xDNN in any of the aforementioned programs. The R programming language was
chosen in this chapter to implement the xDNN model. The use of R programming
has several benefits. It is an open-source programming language which is very
easy to use.

Before the implementation of xDNNs, the choice of the type of learning is
paramount. The three learning techniques for DNNs consist of three types:

1. Supervised DNN—A learning technique that provides a target or set of
examples for the network to learn from Ref. [54].

2. Unsupervised DNN—This learning technique has no target values as learning
is without the support of a teacher [55].

3. Hybrid DNN—A learning technique that combines both the features of both
supervised and unsupervised learning.

For illustration purposes in this chapter, the supervised DNN was used to
implement the xDNN. In order to achieve this, target values are included while
training the DNN to help the model learn by examples. In this case, the target
values are assigned a value of 1 for diabetic patients and 0 for non-diabetic patients.
The model is trained using machine learning learnable parameters and hyperpara-
meters. An important hyperparameter is the learning rate a, which determines
the rate at which the other parameters are updated. The learning rate ranges
between 0 and 1.

Another important strategy for training an xDNN is to optimize the loss
function. Optimization is an important phenomenon which is common in any dis-
cipline. When a DNN is optimized, the motive is to train the network to minimize
the difference in values between the target output and the desired output. Thus,
optimization of DNNs is necessary to minimize the loss function and enhance the
accuracy of the classification algorithm. The variety of optimization algorithms in
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DNN demonstrates the need to improve the performance of the training algorithm.
The loss function is generally determined by key evaluation metrics such as mean
squared error (MSE), mean absolute error (MAE), binary cross entropy, and many
others based on the criteria set by the investigator. Eq. (11.1) shows the MSE:

MSE ¼ 1
N

XN

i¼1

T � Að Þ2 (11.1)

where N is the number of observations; T is the target values; A is the actual values.
The traditional optimization algorithms frequently used for DNNs are Gradient

Descent and Stochastic Gradient Descent. These optimization algorithms are
widely used in healthcare for disease prediction. For instance, Nawaz et al. [56]
proposed an intelligent cardiovascular disease prediction model empowered with
Gradient Descent Optimization. The gradient descent algorithm in DNNs and
conventional neural networks should be convex and differentiable. Computation of
the gradient descent algorithm is an iterative process as shown in Eq. (11.2):

pnþ1 ¼ pn � arf pnð Þ (11.2)

where pn is the initial point; pnþ1 is the Next point; a is the learning rate:
Other examples include Adaptive moment estimation (Adam) optimizer,

Adagrad, Stochastic Gradient Descent, Root Mean Square Propagation (RMSProp),
and Stochastic Gradient Descent with Momentum. The Adam optimizer was used
in this study of the different optimization algorithms. The Adam optimizer was
proposed in [57] as an optimization algorithm. Having been developed from the
AdaGrad and the RMSP algorithm, the Adam optimizer combines the strengths of
both algorithms, which makes it very suitable for implementing xDNNs [58,59]. To
derive the Adam optimization algorithm, the aggregate gradient (mt) is calculated
at time t and the sum of squares of past gradients considering the exponential decay
rates b1; b2, learning rate a, as indicated in Eqs. (11.3) and (11.4):

mt ¼ b1mt�1 þ 1 � b1ð Þ � gt (11.3)

The exponential moving average is updated as:

vt ¼ b2vt�1 þ 1 � b2ð Þ � g2
t (11.4)

However, the results are usually biased. Therefore, to enhance the quality of
the optimization results, a bias-corrected mt and vt are added in (11.5) and (11.6),
respectively:

bmt ¼ mt

1 � bt
1

(11.5)

bvt ¼ vt

1 � bt
2

(11.6)
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The Adam optimizer is iteratively computed by updating the general equation as:

wtþ1 ¼ wt � bmt
affiffiffiffibvt

p þ e

� �
(11.7)

11.3.2 DNN architecture
The architecture for DNN has been broadly classified into unsupervised pretrained
networks, convolutional neural networks (CNNs), recurrent neural networks, and
recursive neural networks [60]. The CNN architecture is widely utilized in com-
puter image analysis. The architecture of CNNs is similar to the organization of the
visual cortex in the brain [61]. The CNN is based on the mathematical theory
of convolution. DNNs generally consist of several layers, including multiple
hidden layers.

11.3.3 Activation function
Activation functions provide the driving force for DNNs as they are designed to
boost the power of the network, adding nonlinearity to the network. Activation
functions may be classified as linear or non-linear. Common activation functions
include sigmoid, linear, rectified linear unit (ReLU), Tanh, and Smish activation
functions [44,62]. While binary step, linear activation functions, sigmoid, Tanh,
ReLU, and its variants are the most prominent non-linear activation functions. The
choice of activation function is critical to the efficiency of DNN. In recent times,
most DNNs have been designed using ReLU activation functions. The ReLU
activation function is a very efficient activation function developed to solve the
vanishing gradient problem. The ReLU activation function is given by:

f xð Þ ¼ max 0; xð Þ (11.8)

11.3.4 Procedures for xDNN model implementation
The xDNN model was implemented in R software (version 4.2.1). Figure 11.1
displays a flowchart for the xDNN model implementation.

All the libraries required for the xDNN model implementation were installed.
The libraries include keras, tensorflow, mlbench, dplR, corrplot, and shapr.
Afterwards, the diabetes datasets were loaded. The dataset used in this study is the
PIMA Indian diabetes dataset obtained from the University of California Irvine
(UCI) machine learning repository [64]. The dataset consists of 768 data samples of
Indian women living in Arizona. Table 11.1 shows the basic characteristics of
PIMA Indian datasets. It has nine attributes (9) and one (1) output. The input fea-
tures include plasma glucose concentration, body mass index, age, diabetes pedi-
gree function, triceps skin food thickness, diastolic blood pressure, 2-Hour Serum
Insulin, and number of times pregnant. The status of the subject, whether diabetic
or not diabetic, is the only output feature. There are 268 instances of diabetic
patients and 500 cases of non-diabetic patients. All the data are numeric values
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comprising integer and floating-point values. Table 11.2 describes the attributes
and data type representation in python.

Data exploration is performed after loading the datasets. This is necessary to
determine if multicollinearity exists among the variables. Multicollinearity was
determined using correlation. Figure 11.2 displays the correlation between the
variables.

Data exploration is followed by data preprocessing. This involves cleaning and
normalization of data. Data cleaning involves the removal of outliers and fixing the
issues of missing values. There are diverse approaches to addressing missing
values, including deletion or replacement of missing values with the mean value of
each variable. Data normalization was done using the min–max normalization. For
each variable d, the normalized value dn is calculated as:

dn ¼ d � min dð Þ
max dð Þ � min dð Þ

� �
(11.9)

Implementing xDNNs comes with challenges, such as overfitting and under-
fitting the models. These are addressed by splitting data into training and
testing sets. Another technique is the process of k-fold cross validation. In recent
studies on the application of xDNNs in healthcare, k-fold cross validation was
used [65–68]. There are several deep learning libraries for implementing xDNN,

Start

Load diabetes datasets

Data exploration and pre-

processing

Splitting of data into

training/testing sets

Deep Neural Network

Prediction

Output with explanation

Stop

Figure 11.1 Flow chart for the xDNN model
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Table 11.1 Review of related studies

Authors/references Problem type Remarks

Wu et al. [19] Diabetes mellitus Improved K-means clustering and logistic
regression models were developed for
diabetes mellitus prediction with no provi-
sion for explainability

Larabi-Marie-Sainte
et al. [37]

Diabetes mellitus Reviewed trends in diabetes mellitus pre-
diction and carried out a case study
involving unpopular machine learning
classifiers. No provision was made for the
explainability of the machine learning
classifiers

Rhee et al. [48] Type 2 diabetes
mellitus

A deep learning system for the prediction of
diabetes mellitus was developed with no
provision for explainability

Jang et al. [49] Diabetic
retinopathy

The authors developed a diabetic retinopathy
classification model by proposing a human-
readable symbolic representation

Moreno-Sanchez [53] Chronic kidney
disease

Developed an explainable classification
model for chronic kidney disease using
various ensemble trees

El Rashidy et al. [18] Gestational
diabetes mellitus

Developed a framework for the continuous
monitoring of gestational diabetes mellitus.
The study combined data finding metho-
dology and xDNNs

Sadeghi et al. [51] Type 2 diabetes
mellitus

The authors developed diabetes mellitus risk
models in the presence of class imbalance
using DNNs, extremely gradient boosting
(XGBoost) and random forest

Table 11.2 Characteristics of Pima Indian Dataset [64]

S. no. Attributes Descriptions and
attribute values

Data type in
Python

1 Number of times pregnant (NTP) Numerical values Integer value
2 Plasma glucose concentration (PGC) Numerical values Integer value
3 Diastolic blood pressure (DBP) Numerical values (mm Hg) Integer value
4 Triceps skin food thickness (TSFT) Numerical values in mm Integer value
5 2-Hour Serum Insulin Numerical values in (muU/ml) Integer value
6 Body Mass Index (BMI) Numerical value in (kg/m)2 Float values
7 Diabetes pedigree function (DPF) Numerical value Float values
8 Age Numerical values Integer value
9 Diagnosis of Type 2 diabetes

disease
Yes=1
No=0

Integer value
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Table 11.3 Results: comparison of optimization algorithms

Optimizer Loss MAE
Adam 0.206 0.415
rmsprop 0.173 0.335
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such as keras, tensorflow, deepnet, deepr, H2O, and darch. In some healthcare-
related studies, these tools have been shown to be immensely beneficial [69].

11.3.5 Model parameters and hyper-parameters
A sequential deep learning model consisted of eight neurons in the input layer, one
hidden layer, and an output layer. The model was implemented using a number of
parameters and hyper-parameters. These include 100 epochs, a batch size of 32,
and Relu activation function.

11.3.6 Evaluation and explainability metrics
The model evaluation metrics determined are accuracy, sensitivity, specificity, precision,
recall, and F1-measures from the true positive (TP), the true negative (TN), the false
positive (FP), and the false negative (FN) as shown in Eqs. (11.10)–(11.15), respectively:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(11.10)

Sensitivity ¼ TP
TP þ FN

(11.11)

Specificity ¼ TN
TN þ FP

(11.12)

Precision ¼ TP
TP þ FP

(11.13)

Table 11.5 Performance metrics for DNN in R

Performance metrics Values (%)

Accuracy 75.11
Sensitivity 51.19
Specificity 88.97
Precision 72.88
Recall 51.19
F1 score 60.14

Table 11.4 Confusion matrix for the DNN model

0 1
0 129 41
1 16 43
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Recall ¼ TP
TP þ FN

(11.14)

F1 Score ¼ 2 � Precision � Recall

Precision þ Recall
(11.15)

Model explainability is generally achieved with different approaches and
libraries. One of the approaches is the determination of variable importance.
This would help to know the impact of each variable on the model. Another
technique is the use of common explainability tools like the Shapley additive
explanations (SHAP), and the Local Interpretable Model Agnostic Explainer
(LIME). LIME has been used for a number of medical applications [70–72].
Magesh et al. [70] utilized LIME to provide explainability from a machine
learning model designed to detect early Parkinson disease by from DatSCAN
images.

Table 11.6 Results of the 8–2–1 neural network model

Parameters Values

Error 38.35
Reached.threshold 0.010
steps 23,765
Intercept.to.1layhid1 9.04
Pregnancies.to.1layhid1 �1.05
Glucose.to.1layhid1 �6.36
BloodPressure.to.1layhid1 �3.13
SkinThickness.to.1layhid1 4.29
Insulin.to.1layhid1 �4.16
BMI.to.1layhid1 �5.64
DiabetesPedigreeFunction.to.1layhid1 �3.39
Age.to.1layhid1. 1.10
Intercept.to.1layhid2 �8.38
Pregnancies.to.1layhid2 3.01
Glucose.to.1layhid2 24.8
BloodPressure.to.1layhid2 �26.66
SkinThickness.to.1layhid2 36.17
Insulin.to.1layhid2 �38.2
BMI.to.1layhid2 3.22
DiabetesPedigreeFunction.to.1layhid2 4.37
Age.to.1layhid2 52.94
Intercept.to.2layhid1 �0.73
1layhid1.to.2layhid1 �8.43
1layhid2.to.2layhid1 8.80
Intercept.to.Outcome �4.28
2layhid1.to.Outcome 6.47
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11.4 Results and discussion

11.4.1 Results for DNN models
A comparison between the optimization algorithms in Table 11.3 revealed that
Rmsprop performed better than Adam optimizer and was chosen for the model. The
confusion matrix for the model is shown in Table 11.4. The performance metrics
for DNN in R are presented in Table 11.5.

11.4.2 Results for neural network models
A neural network model was implemented using 8–2–1 architecture consisting of
eight neurons in the input layer, two neurons in the hidden layer, and one neuron
in the output layer, as shown in Figure 11.5. Results of the model are shown in
Table 11.6.

Explainability is demonstrated by the graphical display of the variable
importance of the various diabetes mellitus predictors as shown in Figure 11.6
with the level of importance on the x-axis and the predictors on the y-axis.
Glucose is the most important predictor of diabetes mellitus, followed by BMI
and pregnancy. Skin thickness is the least important predictor of diabetes mel-
litus in the model.

There is a considerable difference in the contribution of each predictor in the
8–2–1 and the 8–2–2–1 network architecture. In Figure 11.7, the age was the most
important predictor, followed by glucose and skin thickness.
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Pregnancies
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Insulin

Blood Pressure

Skin Thickness

–250 –200 –150
Importance

–100 –50 0

Diabetes Pedigree Function

Figure 11.6 Variable Importance of features for 8–2–1 architecture
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11.5 Conclusion and future scope

Explainability in deep learning models has become necessary in recent times,
particularly in healthcare systems where the reliability of results from deep learning
models is important. In this chapter, we have discussed explainable neural networks
in diabetes prediction. A general definition of explainability and the benefits of
explainable deep learning algorithms were provided. The literature was exhaus-
tively examined for related works to highlight the recent trends in research on the
topic and identify knowledge gaps. Different approaches and tools for imple-
menting explainability were discussed. In conclusion, xDNNs have been shown to
reveal the impact of the different variables considered as risk factors for diabetes
mellitus. We found that the variable importance varies with different network
architectures. Future work will examine the proposed neural network-based models
in XAI for accurate disease prediction.
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Abstract

The heart is the single most important organ in the human body. Patients, professions,
and medical systems are all bearing the brunt of heart failure’s devastating effects on
contemporary society. Since cardiac arrest may well be demonstrated as a better
understanding or conceivably go unobserved, particularly in the vast population of
clients that have other cardiovascular disorders, the true prevalence of heart failure is
likely to be underestimated, accounting for only 1–4% of all hospitalized patients as test
procedures in developed nations. A person with heart failure has a heart that is unable to
circulate sufficient blood through the body, but the term “heart failure” does not explain
why this happens. The clinical picture is confusing since there are several possible
causes of heart problems, many of which are diseases in and of themselves. Many cases
of heart failure can be avoided if the underlying medical conditions that cause them are
identified and treated promptly. The study and prediction of cardiac conditions must be
precise because numerous diseases have been connected to the cardiovascular system.
The resolution of this problem requires intensive online research on the relevant topic.
Since incorrect illness prognoses are a leading cause of death among heart patients,
learning more about effective prediction algorithms is crucial.

This research utilizes K-nearest neighbor (KNN) and artificial neural network
(ANN) to assess cardiovascular diseases using data collected from Kaggle. The
highest accuracy (96%) was achieved by ANN trained with the standard scalar.
Medical experts, specialists, and academics can all benefit greatly from this study.
Based on the results of this study, cardiologists will be able to make more knowl-
edgeable decisions about the inhibition, analysis, and handling of heart disease.
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12.1 Introduction

As the largest cause of death worldwide, cardiovascular disease (CVD) is a critical
health concern no matter its form. CVD is not just one disease but a collection of
disorders that affect the cardiovascular system (the heart and blood vessels).
Diseases affecting the cardiovascular system and the central nervous system rank
the highest in prevalence. The majority of persons who will acquire a kind of CVD
may already have symptoms by the age of 35, according to a famous cardiologist
[1]. These diseases typically afflict persons in the future (with prevalence drasti-
cally cumulative around the 30–44 age range).

When plaque shapes up in the veins and blocks plasma movement to the heart,
this is called a heart attack. Excessive cholesterol, smoking, high blood pressure,
extreme alcohol consumption, high blood sugar, insufficient physical activity, and
a hypertensive heart are all risk factors for developing CVD [2].

Death from cardiovascular causes has surpassed all others in recent decades,
both in high-income nations and in poorer ones. The mortality rate can be lowered
through the early diagnosis of heart disorders and the constant monitoring of
patients by medical professionals. Unfortunately, due to the additional intelligence,
time, and expertise required, 24-hour medical consultation and the precise diag-
nosis of heart disorders are not currently options for patients [3].

To improve the accuracy with which heart illnesses may be predicted, this
research makes use of machine learning methods. Essential features are selected
using a standard scaler technique.

Since cardiac issues have such a high death rate, many lives can be spared if they
are detected and treated promptly by utilizing the tools developed for heart ailment
forecast. Data mining and machine learning are tools for sifting through mountains of
information and distilling it into usable insights. The term “data mining” is used to
describe the process of extracting non-trivial meaning from datasets by uncovering
latent, previously unknown, and potentially useful information. Massive amounts of
healthcare data are collected by the healthcare business every year, and these data can
be mined for insights using a variety of data mining methods. This information can
subsequently be put to use in a diversity of fields, in the medical, marketing, and
financial sectors. In the medical field, treating cardiovascular illness is a crucial but
challenging endeavor that calls for haste, efficiency, and the right kind of automation.
Heart disease prediction systems have been examined, and it has been shown that
varying amounts of medical characteristics and risk variables have been applied
using various data mining approaches.

Removing valuable data from huge amounts of information is essential in the
healthcare sector. Predicting outcomes and obtaining a deeper understanding of
medical data are two areas where data mining and machine learning are rapidly
emerging as crucial professions. The World Health Organization (WHO) intellects
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that 17 million persons yearly lose their lives due to CVD. Accurate predictions
of cardiovascular illnesses can be made utilizing data mining techniques.
The prediction can aid doctors in making more informed diagnoses by providing
answers to difficult questions about heart disease [4].

Medical experts, specialists, and researchers can learn a great deal from this
study. Because of this research, cardiologists will be able to make more knowl-
edgeable results on the inhibition, analysis, and handling of heart disease. Using
deep learning strategies including ANN, CNN, and KNN, this research aims to
detect and forecast heart problems. To do this, researchers compiled data from a
wide range of sources and applied predictive analytics to cut down on cases of heart
disease. This research creates a standardized scalar approach to data pre-processing
using ANN, CNN, and KNN for predicting cardiac disorders.

12.2 Overview of the literature

12.2.1 Heart diseases
Coronary artery disease (CAD) is a complex process that narrows the coronary
arteries, leading to heart disease (HD). The three most frequent kinds of IHD are
angina, myocardial infarction (MI), and heart failure (HF), all of which are con-
nected but have distinct clinical manifestations.

Approximately 31% of all fatalities worldwide in 2012 were attributed to
CVDs, conferring to the WHO. It is projected that 7.4 million of these demises
were brought on by IHD. The incidence of IHD was identified as the main cause of
mortality worldwide in 2012, accounting for 13.2% of all deaths. In 2012, IHD was
the main cause of mortality in both middle- and high-income nations, accounting
for around 45% of demises in middle-income nations and 37% in high-income
republics, respectively. Heart disease is a foremost source of death and disability
worldwide. HD exerts a gigantic economic drain on patients, in addition to redu-
cing their health-related quality of life (HRQOL) and life expectancy. Costs asso-
ciated with HD patients’ medical care were $851 million in 2004, placing them
third most expensive out of seven major disorders. “A state of total psychological,
physical, and societal welfare, and not only the absenteeism of ailment,” as stated
by the WHO. Changes in the incidence and severity of diseases should be included
when gauging health and the effects of health treatment. Improved HRQOL can be
used as a proxy for overall well-being in an evaluation.

Many different conditions affecting the heart are collectively referred to as
“heart disease.” The most prevalent kind of heart ailment in the United States is
CAD, which limits the blood supply to the heart. Heart Disease and Stroke
Figures in 2021 appraise a statement from the American Heart Association, states
that a decrease in blood movement can lead to a heart attack [5].

Someone in the United States suffers a heart attack every 40 sec on an average.
The average rate of death in the United States due to heart disease is higher than one
person every 60 sec. There are an estimated 720,000 annual new heart attacks and
335,000 annual recurrences in the United States, according to the study. On an
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average, a man will have his first heart attack at the age of 65.6 years old, while a
woman will be 72.0 years old [6].

A human heart will beat 2.5 billion times during its lifespan, distributing
millions of gallons of blood to all parts of the body. Oxygen, fuel, hormones, and
other substances, along with a wide variety of cells, are carried by this constant
flow. It also helps get rid of metabolic waste. When the heart stops beating, life
support systems collapse almost instantly. Incredibly, the heart can stay beating for
so long and for so many people, given how hard it works all the time. However, it
can falter for a variety of reasons [7], including a poor diet and lack of exercise,
smoking, illness, and unfortunate genes.

The development of atherosclerosis is a serious health concern. Atherosclerosis is
the hardening and narrowing of arteries due to a buildup of cholesterol-rich plaque.
The coronary blood vessel, which delivers plasma to the heart, and other arteries in the
body can be impeded by these plaque pockets. When a portion of the panel breaks off,
it can cause a heart attack or a stroke [8].

A stroke occurs when a clot in a cerebral artery grazes off body fluid supply to
the brain. Heart disease occurs when the heart is incapable to pump sufficient blood
to the body’s tissues and organs. Initial symptoms can include a rapid heart rate,
difficulty breathing, discomfort in the chest, abrupt confusion, nausea, swollen feet,
and a cold sweat. Cardiovascular ailment is a broad term relating to the variability
of situations disturbing the heart and blood containers, and it is quite common as
individuals’ age. However, it is not inevitable. When adopted at an early age, a
healthy lifestyle greatly reduces the probability of emerging vascular ailment. High
blood pressure and high cholesterol are both perilous features of CVD, but they can
be prevented with healthy lifestyle choices and medication. Drugs, treatments, and
devices can help keep a damaged heart functioning. Those who suffer from heart
disease have an abnormality involving the cardiovascular system (such as coronary
heart disease, arrhythmia, or heart-valve defect).

A heart valve ailment happens when the heart’s valves do not function normally.
Naturally, occurring heart valves are delicate and smooth structures. They control how
the heart’s blood is pumped from one chamber to the next. Furthermore, they stop
blood from re-entering the heart from the atria.

CAD, strokes, temporary ischemic attacks (TIAs), peripheral artery ailment,
and aortal ailment are the key types of cardiac ailment.

12.2.2 Machine learning
Algorithms developed for use on computers that can learn from their own experience
and incorporate new information into their operation are the focus of machine
learning research. They classify it under AI. The field of machine learning focuses on
the study of algorithms that may be programmed to learn and improve on their user
data and previous examples. They classify it under AI. In data science, it refers to a
technique that uses programming to construct analytical models automatically. It is a
subfield of AI that seeks to automate as much of the learning, pattern recognition,
and decision-making processes as possible. Applications, where it would be
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impractical or impossible to build traditional statistics which is focused on making
predictions using computers, include e-mail filtering and computer vision, two areas
where machine learning methods are widely employed. Results for huge datasets can
be predicted using machine learning methods. Prediction systems can benefit greatly
from the application of machine learning, an AI method.

Supervised, unsupervised, and reinforcement learnings are types of machine
learning algorithms.

Supervised learning: Supervised learning requires labeled or known data for
training. Learning is supervised or geared toward productive action because the
data is already known. Once the data is prepared, the machine learning method
helps train the model. Large amounts of data are needed to adequately grasp the
patterns and enable effective prediction of test data. By comparing the training
outputs to the actual ones and making adjustments to the algorithms based on the
discrepancies, the method can be refined [9].

Supervised machine learning is the evolving algorithms that can use the
information provided by an outside source to form general hypotheses and then
predict new data. A compact model of the circulation of class labels in terms of
predictor attributes is the goal of supervised learning. The resulting classifier is
applied to testing instances where predictor feature values are identified but class
label values are unidentified [10].

An algorithm is used to discover the association among a set of input (x) and
output (Y) variables (Y=f ) (X )

The objective is to get close enough to the mapping function so that new data
may be used to reliably predict the output variables (Y) (X). Supervised learning is
the procedure of teaching an algorithm how to learn from a given dataset; in this
case, the training data set. As the algorithm iteratively processes the training data, it
makes predictions that are then corrected by the instructor, who knows the right
answers. The learning process concludes when the algorithm performs to the
desired standard. Once the model has been trained on identified data, new results
can be generated by feeding in unknown input [11].

Today, the most popular supervised learning algorithms include random forest,
polynomial regression, K-nearest neighbors (kNNs), linear regression, decision
tree, Naive Bayes, and logistic regression [12].

In classification, a supervised learning strategy is used to assign labels to new
observations based on the labels assigned to the training data. The software learns
from a collection of observations and then uses that knowledge to categorize new
observations into one of many groups. Predicting a class label is an example of
supervised learning. The detection of spam in electronic messages is a shining
illustration of the success of categorization machine learning. There are primarily
different types of categorization, and these are [13]; linear classification methods
include, for instance, logistic regression and support vector machine (SVM).

Naive Bayes, decision tree, and random forest classification are all forms of
non-linear classification [14].

Mathematical methods known as regression allow data scientists to make
predictions about a continuous outcome ( y) given the values of one or more
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predictor variables (x). The reason why linear regression is so popular is that it can
be easily implemented in the context of prediction and forecasting. Predicting a
number label is an example of supervised learning. Linear, logistic, polynomial,
support vector, decision tree, random forest, ridge, and Lasso Regressions are just a
few of the many forms of regression that can be performed [15].

In unsupervised learning, the data used for training purposes has never been
seen by a human being and is therefore unlabeled. The term “unsupervised” refers
to the inability to guide the algorithm’s input with the benefit of prior knowledge.
The machine learning algorithm is fed this information to train a model. For the
machine learning method to work, the model must be trained using the information
that will eventually be used as input [16]. A trained model is one that actively
searches for patterns and then takes action based on what it finds.

In contrast to supervised methods, unsupervised machine learning can process
data that has not been labeled. Since no human effort is needed to make the dataset
machine-readable, significantly larger datasets can be processed by the program.
Relational data modeling is a type of challenge wherein a model is used to either
define or extract relationships within a dataset. Due to the lack of labels, it is unable
to build anything transparent. Without any guidance from humans, the program can
abstractly perceive relationships between data pieces. Partial least squares, singular
value decomposition, Fuzzy means, K-means clustering, hierarchical clustering, a
priori, and principal component analysis are currently utilized as unsupervised
learning techniques [17].

How humans learn from data in their daily lives is a major inspiration for the field
of reinforcement learning. It has a learning mechanism based on trial and error that
can adapt to new situations. Outputs that are deemed unfavorable are “punished,”
while those that are deemed desirable are bolstered. Through the application of the
psychological concept of conditioning, reinforcement learning places the algorithm in
a working setting with an interpreter and a reward system. Every time the algorithm
completes an iteration, the result is sent to an interpreter who determines whether or
not the result was useful. In this class of challenges, an agent is placed in its natural
environment and tasked with figuring out how to best interact with it. Positive and
negative reinforcement are two distinct types of reinforcement learning [18].

CNN: An example of an artificial neural network (ANN) is a CNN. To
accomplish both generative and descriptive tasks, they rely on deep learning,
making them a subfield of artificial intelligence (AI) [19].

CNN is a type of deep learning model used to evaluate data with a grid form,
such as photographs. With inspiration from the visual brain of animals, CNN is
programmed to robotically and adaptively learn longitudinal orders of qualities,
beginning with basic features and progressing to more complex ones. The three
categories of layers (or “structure blocks”) that make up a typical CNN are con-
volution, pooling, and fully linked [20].

ANN: Synonymous with the word “neural network,” an ANN is a mathematical
model that is biologically inspired and consists of a collection of artificial neurons
that are connected. The architecture has three layers: an input layer, a transition
layer(s), and an output layer(s). For computation, it employs a connectionist model.
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This method is a highly advanced analytical technique, capable of modeling
exceedingly complex non-linear functions. Multilayer perceptron (MLP) is a famous
ANN architecture (MLP). The input layer, the output layer, and the hidden layer are
its three components. It takes data from the output layer and feeds it into the input
layer. As a result, we may tell it to add as many hidden layers as we like to the
model. The MLP is widely recognized as a highly effective function estimate for
classification and forecasting issues. Given the right parameters, MLP is capable of
efficiently learning non-linear functions of arbitrary complexity and precision.
Nonlinear neurons (perceptrons) are the building blocks of the MLP, which consists
of many layers of neurons coupled via a feed-forward architecture.

Interesting patterns and new insights can be mined from massive datasets using
data mining techniques. For the resolution of investigation and decision-making,
medical data mining techniques have been increasingly applied. In poor and
middle-income countries, CVD was responsible for almost 80% of deaths. Big,
unstructured data sets on heart disease are generated by the healthcare industry
every year.

12.2.3 Related work
A CNNs model was proposed as part of the Cardio-Help system [21] to predict
CVD in persons. For early HF prediction, the suggested method uses CNN and is
concerned with temporal data modeling. The heart disease dataset was developed,
and the results were encouraging when compared to cutting-edge approaches.
Experiment results achieve better results in terms of evaluation metrics. There is a
97% success rate with the proposed method.

It was suggested [22] that researchers compile and report on results from
analyses of different categorizations of learning models used for predicting cardi-
ovascular disease. The review focuses on three main areas: CVD classification
approaches. Performance measures, datasets, and tools used to report accuracy,
prediction, and category of these approaches are also gathered and stated.

An innovative deep learning model using 1D CNN for classification between
healthy and non-healthy individuals with a balanced dataset was suggested [23],
which aims to overcome the restrictions of conventional machine learning methods.
Multiple scientific parameters are utilized to determine a patient’s risk profile,
which is useful for making an early prognosis. To prevent overfitting, the proposed
model employs several regularization procedures. The proposed model obtains
over 97% training accuracy and over 96% test accuracy on the dataset. The effec-
tiveness of the proposed model is demonstrated through in-depth comparisons to
other machine learning techniques utilizing multiple performance metrics.

Prognosis prediction using recurrent neural networks (PPRNNs) [24] suggest
the use of deep recurrent neural networks (RNNs) to predict high-risk prognosis
from patient diagnostic histories, like that of language models. To learn from
patient diagnostic code sequences and predict the existence of high-risk illnesses,
the proposed PP-RNN uses several RNNs. Our findings also imply that our pro-
posed technique has the potential to improve upon previous efforts.
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It looked into several different methods for silent heart attack predicting [25],
including machine learning algorithms and deep neural networks, but none of them
yielded satisfactory results. Deep learning techniques, in particular RNN, are pro-
posed as part of a heart attack prediction architecture for determining the severity
of a patient’s cardiovascular illness. Due to the findings of this study, the author has
decided to implement RNN and GRU to enhance the system’s ability to detect
silent heart attacks and provide the user with timely notifications. This method has
increased the accuracy of heart attack prediction to 92%, making it a reliable tool
for predicting even silent heart attacks.

Most of the article [26] is devoted to determining which types of patients are
more likely to acquire heart disease based on a variety of factors. To anticipate
whether patients are diagnosed with heart diseases based on the patient’s medical
history. Using several machine learning procedures, including logistic regression
and KNN, for classifying and predicting cardiac patients. A very useful method was
applied to regulate how the model may be utilized to progress the accuracy of heart
attack prediction in individuals. The proposed model’s strength was seen in its
ability to predict symptoms of heart disease in an individual, utilizing KNN and
logistic regression, with respectable accuracy after comparing with other classifiers.

The diagnosis of CVD by the use of data mining techniques was presented
[27], with only 14 parameters such as gender, age, BMI, down sloping, sugar, and
fat being used as examples.

Data from the UCI machine learning for heart disease were analyzed and
compared using a variety of machine and deep learning methods. The accuracy
target was met with 94.2% [28].

Strong pre-processing models, such as feature selection and clustering with
DBSCAN, were recommended in addition to HDPM via SMOTE and ENN algo-
rithm [29]. The XGBoost algorithm was also utilized for cardiac illness prognosis.
In some cases, the deployed model can achieve an accuracy of 99.4%.

The use of a deep neural network in a self-operating diagnostic model for the
detection of cardiac problem disease [30]. The classification of healthy and unwell
persons is greatly improved by the use of machine learning methods. A method for
predicting a patient’s risk profile based on aspects of their clinical data has been
created in this study. The proposed model is built utilizing both deep neural net-
works and the 2-statistical model. Lack of a proper fit or an excessive one is no
longer concern. The training and test data model performed exceptionally well.
Using DNN and ANN, analyze the performance of a model that can accurately
predict if a person has heart disease.

Based on a trained recurrent fuzzy neural networks (RFNNs), a genetic
approach for cardiac illness diagnosis was proposed [31]. This research proposes
utilizing genetically based trained RFNNs for cardiac disease diagnosis. The
Cleveland Heart Disease dataset from the University of California, Irvine (UCI) is
used for this investigation. Only 45 are used for the actual testing, while the
remaining 252 are used for training. The outcomes presented an accuracy of the
testing set was 98% with some other metrics that can be used to evaluate a test’s
efficacy. Upon inspection, it was decided that the outcomes were adequate.
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A high-quality heart disease prediction model that uses the unsupervised K-
means clustering method to identify outliers in healthcare data was proposed [32].
Most existing methods for anomaly detection focus on building profiles of typical
occurrences. But these models need a large enough sample of typical people to be
convincing. Our proposed model uses the Silhouette method to determine the best
possible value for K. As a next step, it intends to identify outliers that are more than
a predetermined distance from their respective clusters. Five of the most common
categorization methods KNN, random forest, SVM, Naive Bayes, and logistic
regression were adopted. The effectiveness of the proposed strategy is proved on a
benchmark dataset for CVD.

Using a genetic algorithm for feature selection, researchers at the University of
Toronto were able to create a heart disease prediction model based on 303 samples
from the Cleveland dataset. Through this process, they were able to collect seven
features that were then utilized to train models for heart prediction with four dif-
ferent machine learning strategies: SVM, MLP, jackknife (J48), and kernel (KNN).
The framework was further assessed by comparing its findings to those of models
built using the traditional feature selection techniques and by employing a 10-fold
cross-validation procedure. When the SVM was used in conjunction with the
genetic algorithm, it was shown to have an accuracy of 88.34%, up from 83.76%
when using the original dataset alone.

An evaluation and categorization of machine learning procedures for the ana-
lysis of cardiac disease were proposed [33], using four different datasets from
diverse locations. Several different classification methods, including KNN, deci-
sion tree NB, J48, SVM, JRip, AB, decision tree, and stochastic gradient descent
classifiers, were applied to establish the classification and prediction of cases of
heart disease. Results showed that using various classification algorithms for heart
disease classification improves accuracy, with KNN (N=1), JRip, and Decision tree
J48, all achieving above 98% accuracy in their respective classifications.
Extraction of features using the classifiers subset evaluator enhanced the perfor-
mance of KNN (N=1) and decision table classifiers. The feature selection technique
for CVD prediction improved when only 4 out of 13 features were included.

There was a suggestion [34] to compare the efficacy of six data mining tools
such as Weka, Orange, Knime, RapidMiner, MATLAB, and Scikit-Learn to clas-
sify heart disease with the Cleveland data comprising 297 annotations and 13 fea-
tures. In total, there are 164 healthy individuals and 139 individuals with CVD in
the dataset used for this study. Using these three performance indicators, a com-
parison of the accuracy, sensitivity, and specificity of the procedures available in
each instrument was evaluated. Based on the results, it was clear that Matlab’s
Artificial Neural Network model was the most efficient approach. After generating
a Matlab Receiver Operating Characteristic Curve, we made many suggestions for
the most appropriate tool to utilize according to the customers’ level of experience
with data mining.

Changing mislaid values with the mean through pre-processing was presented as
a method to determine cardiac disease presence or absence [35] using Naı̈ve Bayes,
SVM (linear and radial basis function), and KNN classifiers. A better preprocessing
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was used to increase the precision of predictions about cardiovascular illness. It helps
medical professionals establish if a patient has cardiovascular disease and, if so, what
stage of the condition they may be in. To prove the dependability of the outcomes,
several machine learning algorithms were tested utilizing accuracy, precision, f1-
score, and recall as performance measures. This research analyzed machine learning
algorithms based on a variety of performance metrics to improve their accuracy. In
the preprocessing phase, where data is missing, the average is substituted. The results
show how well the mean work as a stand-in for missing variables. Using SVMs and a
linear kernel, 86.8% accuracy in scoring was attained.

In the medical field, data science is used to foresee cardiac issues [36].
Numerous studies have been done on the topic, but more research is needed to
improve forecasting precision. This study examines numerous heart disease data-
sets to analyze experiments and show how accuracy can be improved. Algorithms
and techniques for selecting features are then discussed. The use of the Rapid
Miner instrument allows for the use of the decision tree, logistic regression, SVM,
Naive Bayes, and random forest algorithms for feature selection and enhancement.
Accuracy for several models such as the decision tree, random forest, logistic
regression, Naive Bayes, and the logistic regression support vector machine is
82.22%, 82.56%, 84.17%, and 84.85%, respectively. Naive Bayes and logistic
regression (SVM) are two methods utilized in this paper, and the results show that
the accuracy of both methods has improved.

12.3 Materials and methods

Feature extraction and classification are two of the main methods used in this
study’s dataset. In this research, we load data from an open source, process it with a
feature extraction method (standard scalar), which extracts the necessary data from
the dataset, and then classify it using deep learning algorithms (ANNs and Kernel
Naive Bayes). Finally, the results are compared using ANN and KNN algorithms
using performance evaluation. Figure 12.1 shows the proposed workflow.

Dataset was downloaded from the Kaggle repository (https://www.kaggle.
com/johnsmith88/heart-disease-dataset/version/2) for use in the study. Developers
and other technical specialists can use Kaggle, an online data science platform that
hosts a wide range of crowdsourced datasets and frameworks, to collaborate and
advance their work. Using the search term “heart diseases data set,” we were able to
locate the dataset.

 
 

Data   
Preprocessing

(Standard
Scalar) 

 Training 
and Testing  ANN

 / KNN
  Results 

Figure 12.1 Workflow
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The Cleveland, Hungary, Switzerland, and Long Beach V databases make up
this 1988 bundle of information. It has 76 properties, including the anticipated
attribute, but only 14 have been used in any of the published trials. If the patient has
a heart illness, that fact will be included in the “target” field. The value ranges from
0 (no disease) to 1 (severe disease). Attributes include age, sex, chest pain type
(4 values), resting blood pressure, serum cholesterol in mg/dl, fasting blood
sugar > 120 mg/dl, resting electrocardiographic results (values 0, 1, 2), maximum
heart rate achieved exercise-induced angina, old peak = ST depression induced by
exercise relative to rest, the slope of the peak exercise ST segment, the number of
major vessels (0–3) colored by fluoroscopy, thal: 0 = normal. Recently, real patient
information was scrubbed from the database and replaced with fictitious data.

The existence of the cardiac disease in the patient is what the “target” field is
tracking. It takes on the form of an integer, with 0 denoting the absence of disease
and 1 indicating the presence of illness. I plan to employ random forest, naive
Bayes, and SVMs to evaluate this dataset of people with heart disease.

12.3.1 Standard scalar
To standardize the range of functionality of the input dataset, many machine
learning models execute a standard scalar as a preprocessing step [37]. It standar-
dizes values by converting variance to a fixed value of 1.0 and disregarding the
mean. To calculate the standard score, z, for training sample x, we divide x by the
mean, u, of the training samples, which is zero if mean=False, and by the standard
deviation, s, which is one if std=False.

Each feature undergoes its centering and scaling by estimating the appropriate
statistics on the samples in the training set. When data is converted, the mean and
standard deviation are retained for analysis.

Many machine learning estimators need that a dataset is standardized; other-
wise, they may not perform as expected if the underlying features do not roughly
conform to the assumptions of normal distribution (e.g. Gaussian with 0 mean and
unit variance).

The RBF kernel of SVMs and the L1 and L2 regularizers of LMs are just
illustrations of components used in the optimal solution of a learning algorithm that
assume all features are symmetrical around 0 and have the same variance. For
example, if one feature’s variance is hundreds of times bigger than the rest, it could
overwhelm the objective function and prevent the estimator from learning as pre-
dicted from the other features. To preserve the sparsity structure of sparse CSR or
CSC matrices, this scalar can be applied to them with the with mean=False argument.

12.3.2 ANNs
Computable algorithms known as ANNs have been shown to mimic the learning and
problem-solving abilities of the human brain. The idea was to model the functioning
of biological systems made up of “neurons.” The inspiration for ANNs comes from
the structure and function of the central nervous systems of animals. The ability to
learn new things and recognize patterns are two of its many talents [25].
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For the sake of visualization, an ANN is best depicted as a directed graph with
artificial neurons serving as the nodes and the weights. Directional edges with
weights represent the connection between neuron outputs and neuron inputs. The
ANN takes in data from the outside world in the form of a vector representing a
pattern or an image. For each set of n inputs, a corresponding mathematical nota-
tion x(n) is written [38].

Then, each input is multiplied by its weight (these weights are the details
utilized by the ANNs to solve a specific problem). Commonly, the strength of the
connections between neurons within the ANN is described by these weights. A
compilation of all the weights used in the calculation is stored in the computer
system [39].

A set of transfer functions, or the activation function, is applied to some input
to produce a specific output. While there are a wide variety of activation functions,
most can be placed into two main categories: linear and non-linear sets of opera-
tions. Some of the most common activation functions are the binary, linear, and tan
hyperbolic sigmoidal sets.

12.3.3 K-nearest neighbor
K-nearest neighbor (kNN) is an abbreviation for this. This algorithm is used in
supervised machine learning. Statements of classification and regression problems
can both be solved using the procedure. With K, we signify the number of neigh-
bors of a new unknown variable that needs to be predicted or categorized [40].

The kNN method is widely used since it does not rely on the data having a
normal distribution or being homoscedastic. As a form of supervised machine
learning, kNN can be used for classification and modeling in numerous forest
mapping applications. It is also not too difficult to put together. To forecast the
value of an unknown pixel, we use the weighted observations of k plots established
from the training sample that is furthest from the projected pixel in the feature
space [41,42].

12.3.4 Performance metrics
Researching this topic requires a computer with at least 8 GB of RAM and a
2.30 GHz processor, running Microsoft Windows 10 (64-bit edition) or a later
version. For this study, we also used data from https://www.kaggle.com/john-
smith88/heart-disease-dataset/version/2.

Accuracy: A model’s accuracy is measured by how well it predicts future
values for a target variable given a set of historical values for those variables (the
“training data”). The accuracy of a classification algorithm is typically used as a
benchmark for its performance. Accuracy=((TP+TN))/((FP+FN)).

The degree of specificity is defined as the percentage of actual negatives that
matched the projection of a negative outcome. Which is true (or in the latter case).
more predicted false negatives A consequence of this is the potential for unintended
“positives,” or false positives. False positive rate is a word for this phenomenon.
Specificity=TN/((FP+TN).
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Specifically, precision is the fraction of correct predictions as a percentage of
all correct guesses (i.e., the number of true positives plus the number of false
positives). Precision=TP/((TP+FP)).

Sensitivity is a measure of how effectively a model can predict the real positive
results of the model for each available category. To put it another way, specificity
measures how well a model can predict the true negative of each available cate-
gory. We can calculate the sensitivity as TP/(TP+FN) [43].

12.4 Results and discussions

Discussion of the outcomes of the models’ implementations and evaluations form the
bulk of this chapter. The evaluation findings justify the study’s completion because
they show that the aims and objectives were met. The data was preprocessed using a
regular scalar technique. In this part, we provide the findings from our investigation
using the proposed model. By running it through a typical scalar preprocessor, we
were able to normalize the data. This necessitated separating the information into a
training set and a test set. In this study, we use deep learning techniques, including
KNN and neural networks, to simulate the effects of cardiac disease.

For pandas to be able to read the dataset, it must be imported into the envir-
onment. Df = PD.read CSV(“/content/heart.csv”) is the code to use for accessing
the data. The complete dataset is displayed in Figure 12.2.

Information is used to describe datasets in the software. The describe() func-
tion can be used to determine the mean, median, and standard deviation of a data
frame’s numerical values. In this data set, we estimated the number of occurrences,
the average, the standard deviation, and the minimum percentile (25th, 50th, 75th).
In machine learning, it is common practice to separate data into train and test sets.

Figure 12.2 Dataset
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Figure 12.3 Confusion matrix for KNN model without standard scaler (TP=126;
TN=217; FP=107; FN=10)
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Figure 12.4 Confusion matrix for KNN with standard scaler model (TP=138;
TN=122; FP=26; FN=22)

348 XAI in MDSS



0

283 1,800

0 1
Predicted Label

1,947 130

1,750

1,500

1,250

1,000

750

500

250

1

Tr
ue

 L
ab

el

Figure 12.6 Confusion matrix for ANN model without standard scaler (TP=157;
TN=140; FP=4; FN=7)

roc_auc_score for KNN:   0.8443428184281843
Receiver Operating Characteristic – KNN

1.0

0.8

0.6

Tr
ue

 P
os

iti
ve

 R
at

e

0.4

0.2

0.0

0.0 0.2 0.4 0.6
False Positive Rate

0.8 1.0

Figure 12.5 ROC curve for the KNN model



It was necessary to split the data into training and testing sets for each method.
Model fitting and testing were both performed using the training set as the foun-
dation for comparison.

After data is partitioned into a training set and a testing set, the former is used
to teach the latter. If you want to visually assess the efficacy of a classification
model, plot the confusion matrix. Here you can see the KNN model’s confusion
matrix, roc curve, and accuracy. Figures 12.3–12.8 show the confusion matrix and
ROC curve of the developed model.

KNN and ANN use a common scalar to classify the data in this analysis.
Standard scaler is also given into the classifiers along with the data.

The resultant confusion matrices were evaluated using evaluation methods
such as sensitivity, specificity, precision, accuracy, and F1 score. Metrics com-
paring each classifier’s performance with and without the addition of supplemen-
tary features. Table 12.1 shows the performance evaluation of the developed
models.

12.4.1 Comparison with previous work
This study included multiple experiments, the outcomes of which are displayed in
Table 12.2. With an accuracy of 96%, ANN easily beat out the other models.
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Figure 12.7 Confusion matrix for the ANN with standard scalar model (TP=157;
TN=140; FP=4; FN=7)
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Results from different works are compared in Table 12.2.
Data mining models SC with ANN were shown to be the most accurate pre-

dictors of cardiovascular illnesses, as shown in Table 12.1. Existing works such as
Nashif were used to inform the development of a heart disease prediction system that
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Figure 12.8 Scattered plot for the ANN model

Table 12.1 Performance metrics

Performance measures KNN ANN ANN+SC KNN+SC

Sensitivity 86.25 87.31 95.73 92.65
Specificity 82.43 93.26 97.22 66.98
Precision 84.15 93.74 97.52 54.08
Accuracy 84.42 90.07 96.43 74.57
F1 score 85.19 90.41 96.62 68.29

Table 12.2 Comparison of the findings

Reference Technique Results

[44] SVM 83.7%
[25] RNN 92%
[32] SVM 88%
[36] Random forest 82%
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achieved 95.8% accuracy in experiments. Standard scalar was used to find the
missing values in the dataset, and those missing values were then replaced with the
most suitable filter values. The results of previous research are shown in Table 12.2
and compared to the built model, demonstrating that a neural network has better
accuracy than other data mining techniques. Heart disease is fatal because it can
cause heart attacks and other potentially fatal complications. The suggested approach
aims to reduce this by identifying the most effective model across the two datasets
where gold-standard methods for cardiac disease prognosis have been tested.

12.5 Conclusions

Machine learning techniques such as KNN and ANN were used to diagnose heart
conditions in this research. If you had like access to the dataset used for this study,
you may get it here: https://www.kaggle.com/johnsmith88/heart-disease-dataset/
version/2. With heart disease being the field’s “goal,” it is clear that this patient is
suffering from a cardiac condition. If the value is 0, no disease is present; if it is 1,
the disease is present. After running the data through a normal scalar, we fed it into
KNN and ANN, and we got accuracy rates of 84%, 96%, and 88%, respectively,
which we compared to those of comparable research.

The heart is an essential organ. Heart conditions necessitate higher precision
and accuracy in diagnosis and analysis. More study is needed to determine whether
or not they can be detected in real-time. Using a dataset of heart disorders, this
work presents a reliable and early prediction of these conditions. Several machine
learning algorithms are needed to implement the proposed methodology. Kaggle
data is used in this endeavor. The model was constructed using an advanced
learning algorithm, like ANN or KNN, and fed data using the standard scalar
algorithm. The purpose of this study is to provide a summary of the methods and
results used.

It is crucial to stress that the goal of the methods used in creating a model for
predicting cardiac disease is to enhance it. The scope of this model might be
expanded by using a more comprehensive dataset, which is why I propose doing
just that in future research. Among these algorithms, the ANN algorithm has the
highest accuracy, hence it should be used.
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Abstract

The dreaded coronavirus (COVID-19) disease traceable to Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has killed thousands of peo-
ple worldwide, and the World Health Organization (WHO) has proclaimed the
viral respiratory disease a human pandemic. The adverse flare of COVID-19 and
its variants has triggered collaborative research interests across all disciplines,
especially in medicine and healthcare delivery. Complex healthcare data collected
from patients via sensors and devices are transmitted to the cloud for analysis and
sharing. However, it is pretty difficult to achieve rapid and intelligent decisions on
the processed information due to the heterogeneity and complexity of the data.
Artificial intelligence (AI) has recently appeared as a promising paradigm to
address this issue. The introduction of AI to the Internet of Medical Things (IoMT)
births the era of AI of Medical Things (AIoMT). The AIoMT enables the
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autonomous operation of sensors and devices to provide a favourable and secure
environmental landscape to healthcare personnel and patients. AIoMT finds suc-
cessful applications in natural language processing (NLP), speech recognition, and
computer vision. In the current emergency, medical-related records comprising
blood pressure, heart rate, oxygen level, temperature, and more are collected to
examine the medical conditions of patients. However, the power usage of the low-
power sensor nodes employed for data transmission to the remote data centres
poses significant limitations. Currently, sensitive medical information is trans-
mitted over open wireless channels, which are highly susceptible to malicious
attacks, posing a significant security risk. An insightful privacy-aware energy-
efficient architecture using AIoMT for COVID-19 pandemic data handling is
presented in this chapter. The goal is to secure sensitive medical records of
patients and other stakeholders in the healthcare domain. Additionally, this chapter
presents an elaborate discussion on improving energy efficiency and minimizing
the communication cost to improve healthcare information security. Finally, the
chapter highlights the open research issues and possible lines of future research
in AIoMT.

Keywords: Artificial Intelligence; Medical information; Internet of Medical
Things; AIoMT; COVID-19 pandemic data management; Energy-efficient
devices; Wireless sensor nodes; Security and privacy schemes

13.1 Introduction

The new pandemic disease SARSCoV-2, currently known as COVID-19, has
infected the whole world. The virus originated in Wuhan, China, in late December
2019. Since then, it has emerged as the world’s fastest-spreading contagious epi-
demic, posing a new threat to global public health. A COVID-19 epidemic has
shown and highlighted the present organizations’ shortcomings. The COVID-19
disease is unparalleled, having affected the lives of millions of people worldwide
and crippled the economy. World Health Organization (WHO) has released
detailed technical guidelines to all nations on diagnosing and managing patients
based on the middle east respiratory syndrome (MERS) and severe acute respira-
tory syndrome (SARS) illness experiences. The WHO and its international colla-
borators have cooperated to speed up the establishment of critical health procedures
and devices. The committee concluded that new COVID-19 diagnostics, treat-
ments, and vaccinations are necessary to maintain healthy systems. This epidemic
has created many research challenges and possibilities that our society can and
must address to prepare for the current and future crises [1]. Medical practitioners
and researchers are now searching for innovative tools to test for and limit the
outburst of the unpredictable pandemic in this global health crisis [2]. As noted by
[3], it is critical for healthcare providers and public health officials to monitor viral
infections to ensure appropriate patient isolation and real-time containment mea-
sures. The COVID-19 epidemic has caused devastation, and a rapid remedy for the
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disease will be a therapeutic medication with a history of use in patients to address
the present pandemic.

Hence, the pharmaceutical sector is seeking innovative, cutting-edge technol-
ogy to detect, manage, and limit the outbreak of COVID-19 disease [4]. The dis-
tinctive combination of IoMT and other techniques has been widely deployed in
several countries to combat COVID-19, protect the front-line employees, boost
efficacy by minimizing the detrimental impact of the pandemic on human lives, and
lower death tolls. IoMT technologies are becoming more diversified and common
and have appeared as key enablers for preventing, forecasting, and monitoring new
virulent illnesses such as COVID-19. Cloud-based remote health tests, AI, wear-
able health-monitoring devices, and wireless body area networks (WBANs) are all
used in IoMT as a health-monitoring structure to offer real-time supervision [5,6].
It is interesting to note that significant advancements ranging from technology and
applications to security have been made, amplified by the quick and broad
deployment of IoMT throughout the world. An enormous count of ongoing studies
demonstrates that integrating security measures with technology can lead to the
adoption of secure IoMT applications. Furthermore, when novel IoMT frameworks
mix with Blockchain, Big Data, and AI, more feasible options become available
[7]. Using IoMT functional components such as analytics, data collecting, and
storage, transmission, it is beneficial to create timely detection mechanisms to
restrict the spread of virulent illnesses such as the COVID-19 pandemic.

Sophisticated computational research such as AI and Internet-of-Things (IoT)
promise technological enablers to address key clinical concerns related to COVID-
19 in this situation [8,9]. Interestingly, the recent advancements in AI via the dis-
tinctive interplay of machine learning (ML) algorithms (reinforcement learning and
extreme learning machine) and deep learning (DL) models, blockchain technology,
integration of IoT in wireless communication networks, big-data analytics, cloud
computing, and Industry 4.0 can yield lasting solutions to combat the dreaded
pandemic. In addition, these technologies can aid the diagnosis, treatment of dis-
eases, and prevention of their spread. These interconnected technologies may help
with real-time data collection from people in distant areas utilizing decision making
based on big-data analytics and AI IoT; interpreting, processing, predicting; data
backup employing cloud computing; and secure data networks utilizing blockchain
technology [10,11]. AI, Big Data, and IoT are three connected study disciplines that
significantly influence the design and implementation of better-customized
healthcare infrastructures. Most importantly, the IoT has revolutionized health-
care procedures and spawned a sustainable evolution known as the IoMT.

Hitherto, the excruciating outburst and divergence of medical data had pre-
sented a major bottleneck to data access, information processing, security and
privacy in the IoMT. Fortunately, with the widespread deployment of tetherless
connectivity, ultra-high reliability, and medical informatization based on 5G-and-
beyond networks, the IoMT has attracted fast-growing interest in maximizing the
accuracy and productivity of electronic equipment in the healthcare industry. By
integrating the existing healthcare services and medical resources, researchers are
helping to create an efficient digital healthcare system [12,13]. Essentially, the
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IoMT is a practical embodiment of the medical industry’s IoT technology and the
heart of digital medical transformation. More so, when hybridized with network
communication devices, mobile terminals, and other accessories, the IoT technol-
ogies (IoMT) such as sensor technology, positioning technology, and radio fre-
quency identification (RFID) infrastructure can be adapted in the medical field to
achieve high-quality medical staff–patient–medical interaction. Thus, spurring
automation, intelligence and digitalization of the healthcare environment [14]. The
IoMT also finds application in virtually all elements of the healthcare industry,
including but not limited to remote monitoring, signs monitoring, identity identi-
fication, and waste and equipment monitoring. The ability to process, evaluate, and
make rapid decisions on gathered medical data in real-time is critical since it
directly affects the health and well-being of patients. Furthermore, because medical
data concerns patients’ privacy, it is paramount to protect sensitive data and patient
privacy data. The IoMT technologies are shown to actively fill this gap by ensuring
the remote availability of the patients’ real-time physiological data (blood pressure,
glucose level, heart rate, body temperature, oxygen level, ECG, etc.) alongside the
psychological data (expression, speech, etc.) to healthcare providers [11].

Besides, the unprecedented demand for intelligent frameworks necessitates a
sophisticated data processing mechanism, which stimulates the deployment of AI-
enabled Internet of Medical Things (IoMT) in the healthcare field. AI is undoubt-
edly one such parallel technology that can aid in the fight against this pandemic
through numerous approaches, namely notification, population screening, medical
assistance, and infection control directions. Moreover, as revealed in Ref. [15], the
state-of-the-art can potentially enhance planning, medication discovery, therapy and
reported results for the COVID-19 patient, being an evidence-based medical tool.

AI-enabled technology also finds practical application in field design, where
learning-prediction models dimensioned to perform quick virtual screening are
designed to show consistent outcomes effectively. Drugs that can potentially treat
rare diseases like COVID-19 can be quickly screened using AI-based technologies.
This technology can prove helpful in the COVID-19 scenario via medical aid,
thanks to technical developments in AI combined with greater processing capacity.
AI can swiftly discover medicines to combat new diseases like COVID-19 using a
drug discovery approach. AI will have numerous helpful uses in various industries,
ranging from agriculture, banking, medical procedures, and military operations,
after it has been wholly developed within electronic systems, mainly by minimizing
human activity in vitally difficult cases [16]. Depicted in Figure 13.1 is a dia-
grammatic illustration of IoMT in a practical environment. Advanced diagnostic
techniques and devices are adapted to collect patient vitals transmitted over the
Internet to the IoMT applications where advanced regimens are performed. The
information is forwarded to a medical centre for health practitioners to act on.
Finally, a timely response is forwarded to the patient in concern.

Therefore, it is critical to exhaustively characterize smart healthcare systems
based on IoT to effectively combat the dreaded COVID-19 outbreak in the era of
sophisticated digital technologies. This paper presents a comprehensive discussion
on the deployment of AI in conducting remote screening and monitoring for
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COVID-19 symptoms. Further, novel applications of AI-enabled IoMT to address
the global issues in this domain are considered. The possibility of adapting ML and
image/signal processing approaches for monitoring various vital indicators,
including cough, oxygen saturation, blood pressure, heart and respiratory rates,
cough, and using basic cameras and no specialist equipment is demonstrated. It is
envisaged that patients would be considerably more conscious of their vital signs
due to this model, resulting in a higher overall quality of life.

13.2 Related work

The research on IoMT architecture has recently garnered considerable attention
from academia and industry. Ref. [4] proposed the cognitive IoMT to mitigate the
widespread problem of the COVID-19 virus. The proposed model depicts an
innovative application of the cognitive radio (CR)-based IoT dimensioned to serve
the healthcare industry. Oniani et al. [17] extensively surveyed various applications
of IoMT in the medical domain. Specifically, an in-depth analysis of different
devices and techniques employed in therapeutic and diverse areas to collect clinical
data, conduct analysis, and diagnosis is presented. In addition, a brief introduction
to the application of AI methodologies in medical IoT is presented. Guo et al. [18]
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characterized the performance of an insightful AI-based semantic IoT (AI-SIoT)
hybrid service infrastructure to support intelligent services by incorporating het-
erogeneous IoT devices. Also, real-time application scenarios alongside the
opportunities and challenges associated with the proposed model were discussed.

Mohanty et al. [19] provided a comprehensive survey of research trends in AI-
based drug repurposing to combat the virulent pandemic. The superiority of the AI
approach in enhancing drug discovery is validated. The survey also revealed that,
based on a handful of the old medicines in patients, they might be easily used to
treat COVID-19 patients if they proved to be efficacious against SARS-CoV-2.
Ref. [16] considered the distinctive combination of IoT and big data in the medical
domain. It addressed a variety of technologies that can lower total expenses for
chronic disease prevention or management. Some technologies investigated include
those that continually monitor health indicators, capture real-time health data, and
auto-administer treatments. The work [20] describes a privacy-aware, energy-
efficient framework for securing a patient’s medical information. The primary goal
of this article is to reduce communication costs to increase security features and
energy efficiency against unauthorized access. Joyia et al. [12] highlighted the
researchers’ contributions of IoT in the healthcare sector, its application, and future
difficulties of IoT in the context of medical services in healthcare. Ref. [21] pro-
posed integrating AI into IoT to realize a quicker, greener, smarter, and safer
model. The AIoT architecture was briefly introduced with regard to fog computing,
cloud computing, and edge computing.

Furthermore, current trends and recent advances in the state-of-the-art were
highlighted in the context of seeing, learning, reasoning, and acting. Some intri-
guing AIoT applications that have the potential to change our environment dra-
matically were also summarized. Finally, the difficulties of AIoT were discussed,
as well as some possible research possibilities. Finally, Sun et al. [13] critically
analyzed the beneficial interplay between IoMT, AI technologies, cloud comput-
ing, and edge computing. The paper provided a detailed evaluation of the rapid
processing and analysis of big medical data and the deployment of high-quality
medical resources while working within the limits of the current medical-related
equipment and medical environment.

13.3 IoMT for COVID-19 pandemic data management

The synergic deployment of IoT architectures in the healthcare industry has been
advocated as a highly promising technology to enable the digital administration of
medical information [22]. Thus, allowing healthcare personnel to focus on patients
rather than documenting and organizing a huge amount of tedious medical data,
allowing them to deliver better medical services. With an attendant rise in the
number of casualties associated with the virulent COVID-19 pandemic, the medical
field has exploited novel technologies and frameworks to combat the pandemic.
Emerging technologies have the potential to provide a cure for the global problem.
The IoMT, a practical incarnation of the IoT, can help with disease detection,
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monitoring, contact tracking, and control [23]. IoMT analyses data in the healthcare
sector by combining medical equipment and digital applications. It is becoming
known as mobile health to combat health crises. Smart healthcare has combined
sophisticated technology and new applications to create a potential COVID-
19 solution that offers treatment modalities for monitoring, screening, tracking, and
controlling disease transmission [24]. IoMT is well associated with providing
reliable online medical services according to the medical emergency. IoMT can
also be extended to provide intelligent medical platforms that connect or track
patients at various locations and relay the information to the telecare database.
Besides, the overwhelming outbreak of the dreaded virus worldwide makes it dif-
ficult to control the situation without access to real-time information. Figure 13.2
presents a pictorial illustration of advanced technologies dimensioned to provide
long-term solutions to the COVID-19 pandemic in this digital age of advanced
technology.

13.3.1 Architecture of IoMT
The ever-evolving nature and the recent successes in innovations, science, and tech-
nology have transformed the landscape of the medical environment dramatically.
Hence, this led to the design and development of smart medical devices and the
innovation of novel medical procedures. Furthermore, due to the advances in com-
munication technology, it is worth mentioning that various medical services have been
transformed into virtual systems and applications that may be accessed from a dis-
tance. As a springboard to improved public life, quality healthcare, and multifold
gains, the IoT and its integration into the medical field have appeared as a preferred
candidate. Thus, researchers and companies advocate IoMT applications as a highly
promising technology to realize cheaper and more accessible healthcare [5,25].

As alluded to earlier, the architecture of the IoT has been carefully examined in
academia, and the industry and certain components can be applied in developing
IoMT. The IoMT is a condensed version of IoT technology used in the health
sector. The three tiers of an IoT application architecture, namely the perception
layer, network layer, and transmission layer, are characterized in [13]. The
description of the concept of the architecture of IoMT is shown in Figure 13.3.
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The various health and governing agencies set testing policies at the local
level. Although this is not a generally followed method, it is a good example of a
policy that might be anticipated to be followed. Many countries, in particular, have
battled with poor testing rates [26], which presents a prime challenge in testing a
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substantial number of individuals. As a result, the testing flowchart delineated in
Figure 13.4 has gained widespread adoption in several countries to prioritize testing
for high-risk populations (those over 60 years old or with underlying medical
conditions such as immune system disorders, diabetes, lung or heart disease, as
defined by the WHO). In many situations, there has been a failure to comply with
quarantine, burdening the testing system with additional individuals to track down
and test. In the current situation, “flattening the curve” is critical to guarantee that
the number of cases remains within the capability of healthcare institutions [27].

13.3.1.1 Application layer
The application layer, the topmost layer of the IoMT architecture, is driven by
cloud computing platforms and provides customers with customized services such
as data analysis and storage. Basically, a cloud computing platform is deployed to
process and analyze data gathered from sensors, which is forwarded over the net-
work to end devices [21]. The application layer is composed of two levels, namely
medical information application and medical information decision-making
application.

Medical data management applications include inpatient treatment data man-
agement, patient and outpatient data management, medical equipment and material
information management, and so on. Patient, diagnosis and therapy, disease,
pharmaceutical information analysis, and so on are examples of medical informa-
tion decision-making applications [13].
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13.3.1.2 Network layer
The network layer is central to the operation of the IoMT framework. It is essen-
tially an integration of different networks such as the Internet, LANs, and various
devices such as gateways, routers, and hubs that are connected via innovative
technologies including but not limited to 5G mobile networks, Wi-Fi, Bluetooth,
and LTE. Like the application layer, the network layer can be decoupled into two
sublayers: network transmission and service layer. The former is at the heart of the
IoMT network and is analogous to the human brain and nerve centre. The network
transmission layer also facilitates instantaneous transmission of data information
obtained by the perception layer in a reliable and barrier-free manner via wireless
networks or insightful technologies [13,21].

13.3.1.3 Perceptual layer
The bottom layer of the IoMT framework, referred to as the perception layer,
comprises different devices, actuators, and sensors that gather data and forward
them to higher levels. The major emphasis and difficulty in the practical imple-
mentation of the IoMT framework stem from the perceptual layer, subdivided into
the data acquisition and access layers. The former is actualized using various kinds
of signal acquisition equipment and medical perception equipment to acquire the
data information of people and things and perform the perception and identification
of nodes in the IoMT. This layer adopts signal acquisition techniques, including
image recognition technology, graphic code, and RFID technology. Conversely, the
latter creates a connection between the data collected by the data acquisition sub-
layer and the network layer via several access techniques and limited-distance data
transmission mechanisms, namely Bluetooth, Wi-Fi, and ZigBee [13,21].

13.3.2 Applications of the IoMT in COVID-19 data
management

As previously stated, decades of smart healthcare research have resulted in a
steadily increasing use of IoMT. Rather than relying on traditional treatment
methods, this technique allows for substantial advancements in COVID-19 man-
agement. This problem, covering daily new cases, is being diagnosed, monitored,
tracked, and controlled in real-time [11]. Regarding COVID-19 emergency pre-
paredness, IoMT is used extensively in providing patients with online medical
services, adequate medical care, and self-testing at any location and quarantine
facility. As demonstrated in Figure 13.5, it may also be employed to create a well-
established medical platform for administering datasets valuable for healthcare and
government activities.

As illustrated in Figure 13.5, the IoMT enables intelligent medical treatment
and effective administration of people and things, resulting in improved quality of
health and lower medical costs. In the IoMT architecture, the level of security
provided by the identity recognition system is critical. The rapidly emerging field
of mobile medicine and telemedicine in correspondence with smartphones [28],
tablet computers, laptops, and other devices [29] can also be deployed in cases
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where patients do not have time to visit doctors or are unable to do so. The state-of-
the-art has also provided significant improvements in the medical field regarding
work efficiency, hospital business processes, and resource utilization. More speci-
fically, the various applications of IoMT in the health sectors are but not limited as
follows: prevention and control, reducing the workload of the medical industry,
screening and surveillance, contact tracing and clustering, rapid diagnosis, remote
monitoring of the patient, real-time tracking, etc. The descriptions of the mentioned
applications of IoMT in the context of medical services are well explained in [4]. In
addition, a pictorial representation of various applications of IoMT for combatting
the deadly COVID-19 disease is presented in Figure 13.6.

13.3.2.1 Screening and surveillance
In many countries, the COVID-19 epidemic has wreaked havoc on the healthcare
system. Healthcare workers are overworked and in danger of infectious diseases
from COVID-19 patients. It is difficult to screen and monitor the health status of an
enormous count of sick or vulnerable individuals. To achieve this objective, the use
of appropriate systems for real-time remote patient monitoring. The continuous
advancements in ML and DL, which depicts the fundamental AI technologies, have
increased the capability of imaging methods and may now be utilized to remotely
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execute numerous activities which could not be conducted without the physical
presence of a healthcare expert. IoMT can obtain thermal imaging-based face
recognition data at sensitive entrance points such as hotels, railway stations, air-
ports, and other locations for screening and surveillance reasons [15,30].
Automating surveillance of probable and confirmed cases may aid in controlling
infection transmission [11,31].

13.3.2.2 Contact tracing and clustering
Contact tracing is one possible approach to minimizing the outbreak of virulent dis-
ease. However, the technique is time-consuming and ineffective considering the large
number of people living in a locality. The process can be simplified if the location
history of the patient tested positive is obtainable in a database that healthcare
authorities can easily access. Therefore, the distinctive interconnection of healthcare
and medical units through IoT is critical to collating the number of positive instances
in real-time by location. The government may gain access to this information and
issue alerts for health checks in the impacted region, all of which can be done quickly
using an AI framework. Public authorities can also use zone clustering to enact
different social distancing and lockdown laws and regulations [31,32].

13.3.2.3 Real-time tracking
This technology allows for an overview of global updates on COVID-19 cases,
highlighting key data such as the current cases in various localities, the number of
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Figure 13.6 Various applications of IoMT for combatting the deadly
COVID-19 disease
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cured patients, and fatalities. Hence, AI may be used to model disease severity and
predicts disease activity, allowing health authorities and policymakers to make
better decisions and be better prepared for control [20]. More so, each person
connected to the IoMT network can access health care preventative measures,
treatment process updates, and government initiatives [11,30].

13.3.2.4 Prevention and control
Individual preparedness and prompt action by healthcare and governmental
authorities can aid in restricting the overwhelming outbreak of the pandemic. The
IoMT allows one to be aware of positive cases in the neighbourhood and to remain
attentive by utilizing certain applications [3]. The disease transmission is further
limited by geographical clustering areas mentioned above under contact tracing and
clustering [31].

13.3.2.5 Remote monitoring of the patient
Doctors and healthcare professionals are particularly vulnerable to the COVID-19
pandemic because it is extremely infectious. The IoMT enables medical personnel
to perform remote monitoring of a patient using fingertip medical data such as
glucose, pulse rate, blood pressure, temperature, electromyography (EMG), elec-
troencephalogram (EEG), electrocardiogram (ECG), heart rate, and breathing rate.
Wearable IoT sensors can collect clinical parameters data [33,34]. Due to the wide
Internet connectivity of the COVID-19 facilities, real-time medical data commu-
nication is feasible, saving cost, effort, and time. Particularly, the use of IoMT is
beneficial for the aged or individuals with numerous illnesses [11].

13.3.2.6 Rapid diagnosis
Many countries have mandated that travelers and probable patients be held in
quarantine even if they display no clinical symptoms, ensuring rapid identification
of critical cases. IoMT can yield multiple gains through specific network applica-
tions by enabling quick diagnosis for migrants with travel history. In these sce-
narios, AI-enabled visual sensors can be effectively deployed to analyze results
obtained remotely in a control room/service centre from computed tomography
(CT) scan or X-ray, allowing them to diagnose and confirm cases in less time. This
also allows for contact-free and early viral identification [32].

13.4 Reducing the workload of the medical industry

The scarcity of medical personnel in practically all nations of the world is alarming,
thus increasing the workload on the available healthcare workers. IoMT plays a
huge role in filling this gap by aiding with diagnosing, monitoring, and treating
patients. As mentioned in the remote monitoring of patients, the IoMT allows for
remote disease monitoring, which decreases effort even further. AI integrated with
IoT sensory data, modelling and forecasting of the infection are also aided by AI
[35,36]. Hospitals can also collaborate with blockchain firms to provide fast tele-
medicine consultations and medicines delivered to patients’ homes.
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13.4.1 Applications of AI-enabled IoMT
The scourge of the COVID-19 pandemic has overwhelmed the healthcare system of
many countries, and the shortage of healthcare workers exacerbates its impact. In
some regions, the healthcare workers are currently overstretched and at a significantly
higher risk of contracting the dreaded virus. It is difficult to screen and monitor the
health of a huge number of people who are vulnerable or sick. While expert medical
care and possibly admittance to the hospital are required for individuals with severe
symptoms, providing care at home is a successful method for individuals with mild
symptoms and individuals who have been isolated and are at risk of infection.
Achieving this objective is predicated on deploying appropriate systems and telehealth
technologies for remote patient monitoring. The continuous advancements in ML and
DL have increased the capability of imaging methods, allowing them to perform
various activities that could not be conducted without the physical presence of a
healthcare expert. The basic idea underpinning the introduction of IoMT is to max-
imize the quality of the healthcare industry via intelligent data collection and storage
from medical applications and devices. An excess supply of sensors, including but not
limited to blood pressure sensors, gyroscope sensors, electromyogram/electro-
encephalogram sensors, visual sensors, blood oxygen saturation sensors, carbon
dioxide sensors, humidity sensors, accelerometer sensors, temperature sensors, and
respiration sensors are adapted to monitor the symptoms of a patient in real-time [37].
These medical equipment keep track of their patient’s health status, which is later
forwarded to a therapist through cloud data mechanisms. The primary issue for IoMT
is regulating clinical applications that create a huge volume of medical data from
linked devices [38,39]. This motivated the AI-empowered IoMT to tackle the chal-
lenges in the health sector. Recent AI advancements have considerably improved
human lives, and further sophisticated AI-enhanced models are currently being
developed to assist humans in managing and overcoming this virulent bottleneck. ML,
expert systems, computer vision, and NLP are some of the most important AI tech-
nologies [40,41]. ML is the most important AI technique among them [42,43]. The
superiority of the ML technique over artificial diagnosis is demonstrated in terms of
effective disease forecasting and diagnosis, minimization of severe diseases associated
with artificial diagnosis, and high accuracy and efficiency. An expert system is an AI
system that includes image recognition and vast knowledge and expertise in certain
medical disciplines. With inspiration, pertinence, transparency, and adaptability, it can
substantially optimize the diagnostic and treatment process of a patient through exact
simulation of medical activity and the decision-making process of healthcare per-
sonnel. Implementing AI technology in medical care results in technological inno-
vation and a shift in medical service delivery [44]. Figure 13.7 shows the various
applications of AI-based IoMT in the health sector.

13.4.2 Applications of AI-enabled IoMT for drug repurposing
Drug repositioning is faced with numerous challenges, some of which include
the establishment of a specific medication-disease connection and diagnosing.
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A plethora of techniques such as experimental biological approaches, computa-
tional approaches (such as AI), and hybrid techniques have been developed to solve
this challenge. Among the proposed approaches, the potential of implementing
AI-based models for drug repurposing in a practical environment is quite high [45].
On the other hand, researchers have compared the SARS virus of 2003 and the
current COVID-19 virus and found some similar clinical manifestations and
symptoms. Thus, from the available data and clinical procedures on SARS,
insightful AI-based models and medication structures can be designed and devel-
oped to manage the pandemic [46]. AI and ML can help with this process by
quickly identifying effective medicines against COVID-19, removing any barriers
between scores of repurposed pharmaceuticals, clinical testing, and final drug
approval. Drug repurposing can be further optimized by exploiting DL approaches
in the age of big data. Drug repurposing based on AI is a less expensive, quicker,
and more effective method that can reduce clinical trial failures. Without going
through the first trials and toxicity assessments, the repurposed medication might
go straight to the advanced phase of trials. Though AI-assisted drug repurposing is
still in its early stages, it appears to be a viable strategy for creating possible
COVID-19 curative medicines. AI-powered medication repurposing might be
useful in the COVID-19 scenario, thanks to technical improvements in AI
combined with greater processing capacity.
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13.5 Privacy-aware energy-efficient framework using
AIoMT for COVID-19

The primary goal of this framework is to regulate data publication during the
diagnostic and therapeutic process. In this case, external users are restricted from
altering the storage options, such as changing privacy settings or publishing data.
On the other hand, authorized healthcare personnel have the authority to set aside
sensitive data to reveal the infection rate progressively. This framework manages
medical data to affect data sensitivity by categorizing the type of multimedia ele-
ments. Furthermore, significant energy savings between medical sensors can be
achieved, resulting in improved security of transmitted medical data [9]. The
technology also guarantees a dependable, effective, and trustworthy method of
monitoring patients’ physical activity, from the mobile sink to medical centres.
Medical data may be monitored on a patient’s body regularly to manage data
transfer to medical experts using intelligent technology. However, certain mal-
evolent nodes may attack the network architecture, rendering essential features like
integrity, user authentication, and data privacy unsatisfactory [20,47].

13.6 Open research issues

The concept of AI-enabled IoMT for healthcare applications is still in its infancy
[48]. While advantageous perspectives and significant progress have been realized
recently, significant bottlenecks and unresolved issues are mitigating the practical
deployment of the state-of-the-art. This section provides a holistic overview of
open research issues and exciting research trends for future work. The lines of
research requiring further investigation are highlighted as follows.

13.6.1 Security and privacy
IoMT-based solutions are expected to optimize medical procedures, improve people’s
health and convenience and ultimately minimize the financial implication for the
healthcare industry. However, it is unfortunate that involved users and stakeholders in
modern IoMT settings are less aware of the security threats and vulnerability to ran-
somware and other attacks. Information security control alongside the conventional
neat, physical walls deployed for security is insufficient against the underlying vul-
nerabilities [49,50]. The security challenge is further heightened by transmitting sen-
sitive data over the insecure internet and adopting interconnected heterogeneous
multimodal systems for e-health applications. Therefore, it is of paramount impor-
tance to protect the privacy and security of medical data against malicious nodes and
traffic. Specifically, core security and privacy controls are required to safeguard
cloud-connected databases and IoMT frameworks from malicious attacks, thus,
enhancing data privacy and integrity [51,52].

13.6.2 Energy efficiency
The design of energy-efficient devices while ensuring low latency communication and
timely response in chronic disease treatment/emergencies is critical for realizing
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IoMT in a practical environment [53,54]. IoMT applications are notable for high
speed and immediate delivery, thus, increasing the energy consumption and com-
munication overhead between biosensor nodes. The biosensor nodes, whose primary
objective is to collect healthcare data through various mechanisms such as mobile
devices, wearable bands, and implanted surgical devices and transmit the patient’s
information to remote centres, are quite limited concerning transmission power and
battery power [55,56]. Therefore, addressing these energy-related challenges is of
paramount importance. More specifically, developing energy-efficient devices, energy
management strategies, renewable energy resources, and energy-related trade-offs in
healthcare networks and facilities while ensuring immediate response and sustain-
ability are interesting areas worth investigating [57,58].

13.6.3 Integration of emotion-aware abilities
Designing and developing emotion-aware recognition frameworks is an interesting
approach to ensure healthy living and offer emotional solicitude during the dreaded
epidemic. Moreover, the emotional problems related to the outbreak are envisaged
to linger during the post-covid era for the elderly, young children, infants and
mentally ill persons. Confronting these emotional problems depends on intelligent
remote health monitoring, data gathering, information supervision and personalized
therapeutic solutions. Therefore, building insightful emotion-aware detection
modules is critical to effectively dealing with the challenge of emotional solicitude.
However, numerous challenges ranging from the available machine power factors,
multiple models, the types of big data, the way of the signal acquisition, the
environment, accuracy of the database, and pattern (images, voice, or video)
persist. Integrating emotion-aware abilities into IoMT systems is also a novel
difficulty and an interesting area worth investigating.

13.6.4 Interoperability
Lately, the rapid proliferation of IoMT technologies is overwhelming and is envi-
sioned to increase at a breakneck pace in the next few years. Due to the hetero-
geneity of IoMT solutions (data semantics, data structure, communication
protocols, network interfaces), interoperability is a prime challenge. It is critical to
exchange data without restrictions through a dynamic and connected interoper-
ability architecture. Thus, exploring the heterogeneity of various IoMT components
and incorporating IoMT-based frameworks in an interoperable environment is an
area worth investigating. Particularly, dynamic and homogenous models are
required to merge these sophisticated digital architectures.

13.6.5 AI in IoMT
AI-powered medical technologies are proliferating and transforming the medical
industry’s various features. AI-based solutions can be effectively deployed to
automatically capture patient information, provide advanced diagnostics and tai-
lored regimens, support intelligent-decision making, and predict future conditions
with quick delivery time using supervised or unsupervised learning. Although the
integration of AI in IoMT makes a compelling case to provide precision medicine
models, the research is still at a very early stage. Moreover, adopting ML and
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natural language processing (NLP) in the medical domain has numerous challenges
and is an exciting area worth considering.

13.6.6 Ethical issues
In addition to collecting health-related data in a surveillance environment, con-
veniently transmitting the same, and providing immediate response during emer-
gencies, different ethical issues must be addressed before successfully deploying
IoMT in a real-time environment. These ethical issues may range from the private
use of information, accessibility, property rights, and user awareness of attack risks
to the integrity of information. International legal bodies are responsible for
developing dynamic modifiable policy rules to enforce accountability and specia-
lized control of IoMT applications [59,60]. Overall, all stakeholders in the health-
care ecosystem should adopt ethical policies and regulations to safeguard massive
devices linked to all AIoMT platforms to ensure the security and privacy of sen-
sitive user data across all open communication channels [59–68].

13.7 Conclusion

The resultant impact of the COVID-19 pandemic on all segments of the human race is
particularly disruptive and detrimental. The unprecedented loss of human lives
worldwide, the significant constraint of economic activities and deepened poverty rate
have accentuated the development of insightful technologies. AI-based models and
ML frameworks have appeared promising technological enablers to manage virulent
diseases and transition to better solutions. This paper highlights the key benefits and
application areas of AIoMT in suppressing the COVID-19 pandemic and providing
improved healthcare. AIoMT is a potential technique for rapid diagnosis and
improved therapy and management while preventing the virus from spreading to
others and has found significant applications in these trying times. Many organizations
and government parastatals are adopting this technique to address the current health-
care concerns. Ultimately, this chapter brings to limelight, the need for innovative
research to address the critical pandemic plaguing the world with the COVID-19
virus. Hospitals will have fewer qualified personnel than necessary as the number of
COVID-19 patients grows. As a result, any new procedures must be automated and
need minimal engagement from medical experts, other than periodic monitoring. In
such scenarios, an intelligent centralized system monitors all vital signs. As used in
surveillance networks, a practical video summary might help give crucial insights into
future work. Once completely implemented, these approaches will benefit vulnerable
individuals in a pandemic situation like COVID-19 since they can detect symptoms
peculiar to the disease at an early stage. Due to the enormous benefits outlined above,
this field of research is envisioned to find even higher applications in the post-COVID
era and is an exciting area worth investigating.
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Chapter 14

A deep neural network for the identification of
lead molecules in antibiotics discovery

Michael Idowu Oladunjoye1, Olumide Olayinka Obe1 and
Olufunso Dayo Alowolodu2

Abstract

In this study, we develop a deep neural network (DNN) model, multi-layer per-
ceptron (MLP) to classify the molecules into “active” and “inactive” compounds
using a ligand-based virtual screening approach for the lead compounds identifi-
cation at the early stage of the antibiotic discovery. Lead identification as a major
part of virtual screening in the drug discovery process is mostly performed by the
quantitative structure–activity relationship (QSAR)-based method. The purpose of
applying an artificial intelligence (AI) method is to reduce the time and subse-
quently the costs that are always associated with the process. The MLP model has
several stacks of hidden layers and it used a back-propagation algorithm for the
training. The dataset of experimentally known bioactivities of the drug-like com-
pounds and their respective target was obtained from ChEMBL database. A bio-
logical target of an antibiotic, dihydrofolate reductase (DHFR), was searched from
the database to get its inhibitors’ chemical properties and the IC50 values on which
the classification was based. One set of the dataset was preprocessed and split into
two for the training and validating sets of 80% and 20% respectively. With this
approach, the compounds were successfully classified into the desired categories
and an accuracy of 0.74 was achieved.

Keywords: Multilayer perceptron; Binary classification; Lead identification;
Drug-likeness properties; Artificial intelligence

14.1 Introduction

Lead identification, as one of the virtual screening techniques, is the starting pro-
cess for drug discovery programs to evaluate a series of drug candidate molecules.
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The process can be carried out using a computational approach to reduce the usual
long time of processing and the inadvertent cost of the screening as a result of the
time. There are two categories of virtual screening methods namely, structure-
based and ligand-based [1]. The ligand-based virtual screening involves searching
for molecules of the same function, which starts with a set of a known compounds
with various experimental methods.

Over the past years, there has been a vast amount of available chemical and
biomedical data with their associated bioactivities as a result of modern experi-
mental techniques and storage methods from various pharmaceutical processes.
The availability of this data is a viable source to curate the needed data for the
training of the proposed model. The bioactivities of drug-like properties for the data
resources that provided the required information that is essential for the screening
to train a multi-layer perceptron (MLP) that can classify each molecule into its
biological activity. The model was built using the descriptors as the input values
and their bioactivities as their output.

The process adopted a ligand-based method because of the nature of the che-
mical data representation and measurements. A biological target of an antibiotic,
dihydrofolate reductase (DHFR), was searched from the ChEMBL database [2] to
get its inhibitors’ chemical properties and the IC50 values. The use of chemical
libraries is accepted as a useful for lead compound discovery [3].

The rules for the selection of compound drugs based on various numbers of
properties for their potency, solubility, distribution in the body, and toxicity have
been established. Such rules were derived from the calculated compounds’ char-
acteristics with the defined criteria that essentially consider the effectiveness and
safety of use [4]. Lipinski Rule of Five was established when the physicochemical
properties of some drugs and drug candidates in clinical trials were examined to
know if they share certain important characteristics [5]. The rule is to serve as a
guideline in identifying compounds that are likely to have the same physico-
chemical properties as successful drugs. The lead identification is mainly the
screening of molecular libraries to extract the compounds in the range of certain
measurements in millimolar according to the Lipinski Rule of five. The rule spe-
cifies the molecular weight of less than three hundred, the logP of less than three,
the hydrogen bond of less than three, and the rotatable bonds of less than three [6].
It focuses on small molecules and compounds that have reached phase II of the
clinical trials assuming that the compounds with poor permeability would not have
been included [7]. This assumption is duly followed when collecting the data for
the research.

Drug-likeness of a compound based on statistics of its physicochemical prop-
erties from the database has been used to determine the drug-likeness of other
compounds [8]. That is the known statistics can be used to select compounds from
screening libraries such as virtual libraries. The combination of the various rules
can also be part of the screening of compounds for new drugs [9]. The screening
exercise is generally known to be laborious and time-consuming; therefore, it can
be better handled with artificial intelligence (AI) techniques since there is an
abundance of drug solutions data to filter the compounds of similar properties.
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Also, we need to know that bacteria can cause different types of infections
ranging from unnoticed to very severe cases [10] and these infections may demand
new antibiotics. It is understood that the virtual screening process is cumbersome,
time-consuming, and costly, but the capabilities of AI methods can be explored to
solve these problems. The availability of data and the ability of some of the AI
methods such as a deep neural network (DNN) that can make sense of such data
have led to their application in the identification of lead molecules in the early stage
of antibiotic discovery [11]. Besides, so much data is to be screened to get the lead
compounds and such will need what will accelerate the speed of the search to as
quickly as possible get the target [12]. Therefore, the use of AI techniques cannot
be overemphasized considering their applicability as seen in various drug dis-
coveries and designs by various researchers to shorten the drug pipeline and reduce
cost. So, this study is expected to validate the capability of a trained DNN model,
MLP for the classification of lead molecules in the discovery of antibiotics.

14.1.1 DNN and its architecture
A DNN is simply a class of machine learning (ML) algorithms that use several
layers of hidden layers for the learning of data representations [13]. It is simply a
type of artificial neural network (ANN) that has more than one hidden layer of
connected artificial neurons that mimic the human central neural systems and is
generally made up of an input layer, hidden layers, and an output layer. In the early
stage of its development, there are three types, namely MLP, convolutional neural
networks (CNN), and recurrent neural networks (RNN), and are still popularly used
today for different applications [14]. The most basic type is the MLP model which
can be used for most problems [1]. Structurally, it is made up of the input, some
layers of nonlinear functions of a weighted sum (hidden layers), and the output
neurons that are fully connected from the prior one as in Figure 14.1.

Output unit

Input layer
Hidden layers (5 units) – ReLU activation function

Sigmoid activation

Figure 14.1 The MLP model structure generated during the program runtime
with an input layer, five hidden layers, and a binary output structure
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14.1.2 Lead identification techniques
A lead is not only a compound that exhibits potential activity against a target but
also has other useful properties of drug-likeness. The compounds have a molecular
weight of 300 or less in their basic form with other favorable properties. One of the
methods that are used traditionally for the identification of lead compounds at the
screening stage of drug development is the quantitative structure–activity rela-
tionship (QSAR) based model that compares the chemical structures of the com-
pounds by using the database of prior selected active compounds [15]. Mandlik
et al. [16] describe the model as how the physicochemical properties of a com-
pound and its structure relates to its biological activities. That is the relationship
between the structure of the molecule, the relevant physiochemical descriptors, and
its biological activity. Ivanciuc [17] considered a drug-likeness prediction based on
Lipinski’s rule of five as a simple version of QSAR that can classify sets of che-
mical compounds based on their biological activities as either active or inactive
toward a certain biological receptor.

14.2 Literature review

The use of AI methods in the identification of new lead compounds with the desired
bioactivities at minimized processing time and cost has been part drug development
pipeline [18,19]. ANNs and decision trees are various AI techniques that have been
used successfully to improve the speed of the screening exercise with reduced cost
[20–23]. Other numerous uses of neural networks include stock market predictions,
image classification, and self-driving cars among others [24–26]. These break-
throughs have led to the use of such technologies to increase the efficiency of drug
discovery. Their applications have become an important part of many drug dis-
covery programs and this was notable in the drug design that created a novel
anticancer drug [27].

Although the use of ANN for the extraction of information for the prediction of
molecular properties of drugs from a large dataset was considered poor because of
problems of over-fitting and model validation [28] while the application of deep
learning to a similar activity was proved better. This assertion was proved when a
deep CNN using a structure-based approach successfully predicted new active
molecules with no previously known modulators for targets [29]. Stokes et al. [30]
were inspired by the rapid emergence of antibiotic-resistant bacteria for the use of
the CNN model for antibiotic discovery. The study used a deep learning model
trained with data from ZINC15 to predict antibiotics using the structure-based
method. The process included wet laboratory experimentation for molecular
optimization.

The application of deep learning for drug development has been attributed to
the availability of a huge amount of chemical and biological data, and the devel-
opment of high-performance computers [31]. The opportunities in the big data era
have also been described as one of the success factors for the application of deep
learning in drug design [32]. The big data revolution has contributed to the
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exploration of the computational tools for the huge numbers of biochemical data in
numerous chemical libraries as a result of developments in science and technology
in drug discovery [33]. The successes of deep learning methods and their wide
applications to almost all domains based on their computational capabilities cannot
be overemphasized as motivating factors for their use in drug discovery.

The use of AI techniques with the ligand-based virtual screening option has
been demonstrated to facilitate virtual screening where there is little 3D informa-
tion about the receptor [34]. The applicability of the support vector machine
(SVM), decision tree, and KNN algorithms in the process was discussed with
positive assumptions.

For a classification problem on experimental medical data, the performance
metric of ANN was 0.9713 [35]. Similarly, an ANN model was explored for
behavioral science, and a satisfactory prediction success of 90% was recorded
against a statistical method [36].

During the COVID-19 pandemics, logistic regression, SVM, and random for-
est algorithms with QSAR modeling were explored to identify molecules that can
be used to block the multiplication of SARS-CoV-2 [37].

ML algorithms, support vector for regression to predict the activity of the
compound and random forest for classification with accuracy of 78% for the
regression and 92.2% accuracy for the classification indicating the effectiveness
methods [38]. Deep learning methods with genomic, phenotypic, and omics data-
bases were considered in study to reduce the risk of failure, cost of production, and
time of development of the drug [39].

Recently, Jacobs et al. [40] demonstrated the capability of a deep learning
model, character Wasserstein autoencoder (cWAE) that trained more than one
billion compounds within a few minutes whereas a previous state of the art took a
day for about one compound.

A new cascade transfer learning model type of deep learning was developed
and trained with a dataset that has similar characteristics to a corona virus database
to predict the efficacy of the lead compounds for the drug [41]. Pham et al. [42]
used a neural network-based method to represent the relationship between the
chemical structure and the gene, and also the relationships between genes to predict
the difference in their profile. The lead compounds generated when applied the
drug for the drug repurposing of COVID-19 were said to be consistent and incon-
gruent with the clinical. Kumari et al. [43] proposed a CNN that was considered to
be effective and efficient in its approach to virtual screening with an accuracy
of 0.86.

A ligand-based approach with a DNN predicted the inhibitory effect of SARS-
CoV proteases, potential toxicities, and bioactivity level successfully [44].
Similarly, a trained ANN with SMILES strings accurately classified compounds by
varying the number of neurons of hidden layer [45]. Various deep learning-based
models were considered for the generation a well-validated data that provides
information regarding the biological targets and their interactions with ligands [46].
Bartzatt [47] applied ANN for the prediction of an important molecular property of
an anti-EBOLA compound.
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A deep learning model was used for the prediction of an antiviral drug that is
commercially available for the coronavirus using a drug–target interaction [48]. The
model built was pre-trained to identify available drugs that could act on the cor-
onavirus protein. Also, laboratory data samples for the diagnosis of acute kidney
disease were used for the training of the multilayer perceptron model and discovered
that the process is more effective and faster than other methods in such diagnosis [49].
Table 14.1 summarizes some selected recent work discussed in this section.

Table 14.1 Recent works on the lead compound identification with DNNs

The related studies using DNN for drug discovery

Year Authors Method Achievement Limitations

2018 Bartzatt [47] ANN Prediction of an im-
portant molecular
property of an anti-
EBOLA compound

Molecular weight
prediction is not
enough to validate
the efficacy of drug
because it is not
universal for all
drug-like compounds

2020 Hofmarcher
et al. [44]

A ligand-based
approach with a
DNN

The model predicted
the inhibitory effect
of SARS-CoV pro-
teases, potential
toxicities and dis-
tance to known
actives

The method was lim-
ited by the predic-
tive capability of
the model as indi-
cated by the value
of area under the
curve (AUC) in the
range of 0.69–0.78

2020 Sharifi et al.
[49]

Multilayer
perceptron-ANN

Effective and faster
than other methods
in the diagnosis
of acute kidney
disease

The dataset of 140
observations may
be very few for the
model training and
evaluation

2020 Stokes et al.
[30]

Deep learning on
structure-based
methods

An antibiotic of broad
spectrum and more
molecules with dis-
tinct structures was
predicted using
ZINC15 database

It requires a high-
performance pro-
cessor and a huge
amount of money

2021 Hermansyah
et al. [38]

ML algorithms, sup-
port vector for
regression to pre-
dict the activity of
the compound and
random forest for
classification

The prediction of 0.78
for the regression
and 92.2% accuracy
for the classifica-
tion were achieved
indicating the
effectiveness of the
ML methods for the
identification of
the target inhibitor
for the disease

None was stated by
the authors but the
quality of data
may be difficult
to obtain

(Continues)
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Table 14.1 (Continued)

The related studies using DNN for drug discovery

Year Authors Method Achievement Limitations

2021 Yadav et al.
[45]

ANNs with SMILES
strings

The trained ANN
model classified the
compounds accu-
rately when it was
validated tested
with similar com-
pounds that were
not previously
trained with it

The performance is
determined by the
number of neurons
of hidden layers but
some limitations

2021 Zhuang et al.
[41]

Cascade transfer
learning

Prediction of the effi-
cacy of the lead
compounds for
drug discovery,
using COVID-19

The requirements of
obtaining a dataset
to train the deep
learning model

2021 Pham et al.
[42]

Neural network-based
method, DeepCE

Generation of novel
lead compounds
consistent with
clinical evidence

Developed for drug
repurposing of
COVID-19

2021 Kumari et al.
[43]

CNN Virtual screening with
an accuracy of 0.86

Structure-based
approach

2021 Jacobs et al.
[40]

cWAE More than one billion
compounds were
trained in a few
minutes compared
to the previous state
of the art which
took a day for a
million compounds

The source of data
may be difficult
to access and the
required systems
for implementation

2022 Pan et al.
[39]

Deep learning meth-
ods with genomic,
phenotypic, and
omics databases

The major contribu-
tions are to reduce
the risk of failure,
cost of production
and time of devel-
opment

The need for large and
high quality dataset
for the training of
the model, and the
lack of adequate
understanding of
the biological
values of the pre-
diction

2022 Nag et al.
[46]

Various machine
leaning/deep
learning-based
models were con-
sidered

The development of
methods and tech-
niques for the gen-
eration a well
validated data that
provides informa-
tion regarding the
biological targets
and their interac-
tions with ligands

The difficulties in
proper labeling of
the chemical de-
scriptors as a result
of to the lack of
information regard-
ing their bioactiv-
ities
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14.3 Materials and methods

The method consists of the collection of datasets of drug-likeness compounds
with their relevant features and molecular descriptors, and the development of
the model.

The collection of the dataset is a very crucial part of the set of active and
inactive compounds. ChEMBL database was the main source of the data. It is a
curated chemical database of bioactive molecules that have the properties of drugs
to obtain a drug-like compound with their physicochemical properties while their
molecular structures were used to generate their descriptors. The DHFR is the
potential protein target of which the compounds that bind it are curated. The sample
of the bioactivity data downloaded is as in Table 14.2.

The MLP a feed-forward back-propagation network uses the physicochemical
properties from which the molecular descriptors were calculated for input values
and bioactivity represented as value “0” for inactive and “1” for active compounds
as output.

Most drugs are to bind the protein (or enzyme) targets involved in disease. The
activities of molecules on their biological targets are measured by varieties of
measurements such as IC50, EC50, Ki, and the percent rate of inhibition. These
measurements, the physicochemical properties of the molecules, and other relevant
data were captured in the ChEMBL database. The sequence of the steps involved in
the data collection and pre-processing is illustrated in Figure 14.2.

14.3.1 Dataset preparation and preprocessing
The process will have all the anomalies corrected and get the data standardized.
The following methods were used in the pre-processing:

● Feature clipping: It seems the dataset contains extreme outliers and applying
feature clipping restricts some feature values with a range, especially
IC50_value column. For example, the amount needed to inhibit a target cannot
be zero and this can be corrected with the min–max method.

● Data normalization: This is the adjustment of numbers in each of the col-
umns uniformly in the range of 0–1. It normalizes a vector to have unity

Table 14.2 The raw data of compounds of similar structure and bioactivity

ChEMBL-id SMILES IC50-values

CHEMBL25817 CCc1cc(Cc2cnc(N)nc2N)cc(CC)c1O 1.200000e�07
CHEMBL277176 CC(C)(C)c1cc(Cc2cnc(N)nc2N)cc(C(C)(C)C)c1O 6.100000e�08
CHEMBL279455 CCCc1cc(Cc2cnc(N)nc2N)cc(CC)c1OC 4.400000e�08
CHEMBL23338 C/C=C/c1cc(Cc2cnc(N)nc2N)cc(OC)c1OC 9.300000e�08
CHEMBL4635593 Nc1nc(N)c2nc3c4cccnc4c4ncccc4c3nc2n1 5.800000e+00
CHEMBL4635593 Nc1nc(N)c2nc(-c3ccccc3)c(-c3ccccc3)nc2n1 5.800000e+00
CHEMBL443 Cc1cc(NS(=O)(=O)c2ccc(N)cc2)no1 4.700000e+00

388 XAI in MDSS



variance and zero means. It was applied to convert some of the features into
the ranges of 0 and 1 with the min–max method also. The equation for the
min–max method:

x0 ¼ ðx � xminÞ=ðxmax � xminÞ (14.1)

● Data standardization: This is achieved with the Z-score. The values are cen-
tered around the mean with a unit standard deviation. That the distributions
have mean = 0 and std = 1. It is used when contemplating a few outliers. The
features will be rescaled to reflect a normal distribution with m=0 and s=1 with
the equation below:

z ¼ x � m
s

(14.2)

The preprocessed data with the relevant features for the model training dataset
is as in Table 14.4.

The program development environment for the implementation of the work in
Python 3.7 and Jupiter notebook is installed through anaconda distribution. The
necessary library that allows the handling of the chemical structure such as rdkit

Curated 
bioactivity 

dataset

Target search

Data 
preprocessing

Bioactivity 
dataset created

Drop missing data
Drop duplicates
Label compounds 
according to 
bioactivity threshold

Manual search in 
website
Use of python library

ChEMBL
database

Web 
source

Data attributes:
LogP
Nos. of hydrogen
AP
IC50, etc.

•

•

•

•

•

Figure 14.2 The sequence of the steps involved in data collection and
pre-processing
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Table 14.3 ChEMBL bioactivity data for DHFR inhibitors

ChEMBL-id SMILES IC50 values MW LogP NHD NHA RB AP

CHEMBL25817 CCc1cc(Cc2cnc(N)nc2N)cc(CC)c1O 1.200000e�07 272.352 2.06220 3.0 5.0 4.0 0.600000
CHEMBL277176 CC(C)(C)c1cc(Cc2cnc(N)nc2N)cc(C(C)(C) . . . 6.100000e�08 328.460 3.53240 3.0 5.0 2.0 0.500000
CHEMBL279455 CCCc1cc(Cc2cnc(N)nc2N)cc(CC)c1OC 4.400000e�08 300.406 2.75530 2.0 5.0 6.0 0.545455
CHEMBL23338 C/C=C/c1cc(Cc2cnc(N)nc2N)cc(OC)c1OC 9.300000e�08 300.362 2.28210 2.0 6.0 5.0 0.545455
CHEMBL55911 Nc1nc(O)c(N=O)c(NCCCO)n1 3.500000e+01 213.197 -0.04340 4.0 8.0 5.0 0.400000
CHEMBL56063 Nc1nc(O)c(N=O)c(NCCCS(=O)(=O) . . . 11.800000e+01 337.361 1.43820 3.0 9.0 7.0 0.521739
CHEMBL443 Cc1cc(NS(=O)(=O)c2ccc(N)cc2)no1 4.700000e+00 253.283 1.36602 2.0 5.0 3.0 0.647059



was installed also. The numerical and data handling libraries come with the
installation of the anaconda distribution. These helped in the calculation of the
molecular properties that are necessary for the development of the ML model.

14.3.2 Model development
This study uses MLP neural network model that contains more than one stack of
hidden layers and the back-propagation algorithm to implement the binary classi-
fication. It learns a function f xð Þ : Rm ! R

o with a training dataset: m is the
number of dimensions for the input and o is the number of dimensions for the
output. So, with a set of features X ¼ x1; x2; � � � ; xm and a target y, the model will
learn with a non-linear function for either classification or regression.

The MLP network units are a structurally organized sequence of layers where
each unit is connected to all the units in the next layer. The stacking of the layers is
because of expressive efficiency to express the same function more compactly and
efficiently.

Consider the following notations:

L hidden layers, with H1;H2; . . . ;HL hidden units

W i
k;j : Weight in layer i, from kth unit in the previous layer to jth unit

Define W i
j ¼ W i

o;j;W i
1;j; � � � ;W i

Hi�1;j

� �T

Define X D ¼ x1; x2; � � � ; xDð Þ
For i � 1 define hi ¼ hi

1; hi
2; � � � ; hi

Hi

� �

ai
j ¼

XLi�1

k¼1
wi

k;jX
i�1
k ¼ W i

j
T

X i�1 (14.3)

Applying an activation function gives this:

hi
j ¼ ∅i ai

j

� �
(14.4)

Table 14.4 The preprocessed data with the relevant features for the model
training dataset

MW LogP AP RB NHA NHD IC50 values B-Classes

0.125781 0.153846 1.0 0.137931 0.114286 0.125000 0.000000 0.0
0.169531 0.307692 0.0 0.068966 0.114286 0.125000 0.000000 0.0
0.147656 0.230769 1.0 0.206897 0.114286 0.083333 0.000000 0.0
0.147656 0.153846 1.0 0.172414 0.142857 0.083333 0.000000 0.0
0.256250 0.000000 0.0 0.310345 0.257143 0.208333 0.000002 1.0
0.256250 0.000000 0.0 0.310345 0.257143 0.208333 0.000001 1.0
0.139844 0.076923 1.0 0.172414 0.171429 0.083333 0.000000 0.0
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For an MLP of four layers, we have:

f xð Þ ¼ w4T∅3 w3T∅2 w2T∅1 w1T
x

� �� �� �
(14.5)

The following equation represents the stacks of fully connected MLP network
that receives connections from all the units in the previous layer:

h1
i ¼ ∅1

Xn

i¼1

w1xi þ b1

 !
¼ wi

1
T x

h2
i ¼ ∅2

Xn

i¼1

w2hi þ b2

 !
¼ wi

2
T

x

..

.

hn�1
i ¼ ∅n�1

Xn

i¼1

wn�1hn�2 þ bn�1

 !
¼ wi

n�1
T

x (14.6)

Eq. (14.7) represents the final output:

y ¼ ∅n

Xn

i¼1

wnhn�1 þ bn

 !
(14.7)

Each notation refers to various parts of the network, that is (h1
i ::.h

n�1
i are the

hidden layers). The activation functions ∅ to be applied can be Rectified linear
Unit (ReLU) but for the output neurons, sigmoid activation is preferred being a
binary classification.

14.3.3 Model evaluation
The evaluation of binary classification is often done with a contingency table called
a confusion matrix. It visualizes and summarizes the model performance with two
dimensions of rows and columns divided into four parts namely True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN). The numbers of
correctly predicted data are represented by TP and TN while the numbers of data
are predicted incorrectly as FP and FN. The overall performance of the model is
expressed as the accuracy and is calculated as in Eq. (14.10). Thus:

Sensitivity ¼ True Positives
True Positives þ False Negatives

(14.8)

Specificity ¼ True Negatives
True Negatives þ False Positives

(14.9)

Accuracy ¼ True Positives þ True Negatives
Total Numbers of Samples

(14.10)
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The system architecture for the MLP classification model for lead molecules
identification is as in Figure 14.3.

14.4 Results and discussion

We developed an MLP neural network to classify the lead compounds into active
and inactive compounds with the physiochemical properties of the molecules for
the inhibition of the enzyme, dihydrofolate reductase (DHFR). The structure of
each molecule obtained from the database is represented with its simplified mole-
cular input line entry system (SMILES) string format that can be read into a Pandas
dataframe (Table 14.2). During the program implementation, the SMILES strings
were converted into rdkit object to enable us calculate the relevant set molecular
descriptors as in Table 14.3.

The rdkit was used to compute the molecular weight, LogP and number of
rotatable bonds (RB). The aromatic proportion (AP) was calculated with the ratio
of the number of aromatic atoms to the total number of heavy atoms generated with
the rdkit. Lipinski’s rule of five was applied to select the relevant features of eight
descriptors for the input into the model and the target feature, bioactivity class was
created with the IC50 value (inhibition rate) of all “active” entries set to “1” and all
the “inactive” set to “0.”

Our proposed MLP architecture for the work is as in Figure 14.1 with eight
input features followed by four hidden layers and the output layer that receives the
active or inactive compound class. All units in hidden layers are activated with the
ReLU. The activation function transforms the negative numbers to zero and leaves
the others as they were after evaluating the values. The output layer is implemented
with the sigmoid activation function being a binary classification method.

There is only one dataset of 2,591 compounds preprocessed and split into two
separate datasets for the training and validating sets of 80% and 20%, respectively.

Molecular weights,
Toxicity, solubility
 etc.

Feature
Extraction:

Training
Data

•

Testing
Data

•

Feature
attribution

•

•

Molecular
Description
calculation

Data
Splitting:
70:30 ratio

Active
Compound

•

Inactive
Compound

•

OutputModel BuildingData Preparation
Input: 

Ch EMBL Data

Preprocessing:

Normalisation•

Standardisation•

Figure 14.3 The overall MLP model pipeline for the identification of lead
molecules
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The model validated 519 compounds being 20% of the whole dataset and the
results of the evaluation representing the TP, FP, TN and FN are as in Figure 14.4.

The MLP classifier model achieved 0.80 sensitivity which means how well the
model predicts the positives and 0.66 specificity meaning how well a model pre-
dicts negatives.

Figures 14.5 and 14.6 are plotted to review and visualize the performance of the
model. The loss on the training dataset decreases across both datasets as represented in
Figure 14.5. Figure 14.6 represents consistently increased accuracy with each epoch
on both datasets. The small gap between the training and test datasets indicates that
there is no over-fitting and the model performs very well on both data. The model
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achieved a training accuracy of 0.76 while the validation accuracy is 0.74, which
means that the model has good fitting. The AUC score is 0.81 (Figure 14.7),
indicating that the model is accurate because the value is close to one.

Lead identification is a product of virtual screening that is usually classified
into two types: ligand-based and structure-based screening. The classifier model
built, MLP on ligand-based approach where molecules that have same activities are
identified, is to shorten the usual long time of the process. The validation accuracy
0.74 has proved that the application of the model for the identification of lead
compound at the screening stage of the antibiotic development is desirable. The
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identified active compounds can be improved upon during their synthesis to avoid
the problems that were associated with the prior similar molecules to enhance
their potency.

14.5 Conclusion

The MLP neural network model was built on the QSAR approach to identify lead
compound using a dataset obtained from a chemical library, ChEMBL. The study
adopted a ligand-based virtual screening method because of the nature of the che-
mical information and measurements. The compounds were obtained with their
SMILES codes that were used to calculate their molecular descriptors. The input
for the model includes the physicochemical properties based on Lipinski’s rule of
five and their molecular descriptors desirables for the antibiotics drugs with their
bioactivities values. This dataset was preprocessed by cleaning, transforming, and
organizing the raw data to the acceptable form suitable for the model.

In conclusion, choosing the DNN model for the lead identification was a result
of its known capability for handling the complex patterns and nonlinear relation-
ships of the dataset. This technique has proven effective in the classification of the
molecules based on the combined desirable properties of drug-likeness into either
“active” or “inactive” to shorten the screening period with an accuracy of 0.74.
Therefore, the use of AI-based approach for lead compounds identification in the
early stage of antibiotic discovery using biochemical data will be of immense
leverage for antibiotic discovery and development.
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Chapter 15

Statistical test with differential privacy for
medical decision support systems

Yuichi Sei1, Akihiko Ohsuga1 and Agbotiname
Lucky Imoize2,3

Abstract

Several statistical testing methods have been employed to offer accessible analysis
regarding medical data for medical decision support systems (MDSSs), with the Chi-
squared test among the most widely used option. Critics have noted, however, that
presenting such data risks exposing individual attribute values. This chapter will
demonstrate how the findings of statistical analysis can inadvertently reveal individual
attribute values. It will then show how advanced differential privacy systems, such as
those utilized by companies including Google and Apple, can be used to protect
individual attribute values while conducting extremely precise Chi-squared tests.

Keywords: Explainable artificial intelligence; Medical data; Differential
privacy; Chi-squared test

15.1 Introduction

In the fields of medicine and pathology, it is essential that data analysis methods
provide insights that are accessible to human researchers [1–3]. While statistical
methods have occasionally been misapplied, their properties are generally easy to
comprehend, making them an essential part of medical data analysis [4].

Genes are analyzed by examining a range of gene groups [5,6]. Single
nucleotide polymorphisms (SNPs) are genomic variations that occur at a single-
base position in DNA. This can involve at least three groups in certain circum-
stances. To work out if SNPs can be deemed different to a significant degree, the

1Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-
Communications, Japan
2Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos,
Nigeria
3Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
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Chi-squared (c2) test is one of the leading forms of statistical analysis employed.
Researchers and government agencies consistently collaborate in sharing their
results to aid future research.

Risk of disease and factors affecting genetic disorders are among the pieces of
sensitive, personal information that can be contained in a genome. There is only a
0.1% difference in each person’s genome in terms of their individual attributes, with
99.9% of all human genomes being identical. The difference between people at a
single location in a DNA sequence is represented by an SNP. Genome-wide asso-
ciation studies (GWASs) are a technique for determining the statistical link between
SNPs and illnesses. This uses the Chi-squared test to identify SNPs corresponding to
specific diseases. For instance, Homer et al. discovered that if an attacker is aware of
the victim’s SNPs and the total allele frequency of a particular illness group, he may
be able to determine whether the victim belongs to that group [7].

Due to the growing availability of affordable genotyping services, it is realistic
to assume that an attacker would know the victim’s SNPs, with only a tiny blood
sample needed [8,9]. It is also possible to determine the allele frequency of group
SNP values using fundamental statistical information including p-values and Chi-
squared values, as proposed by Wang et al. [10]. Therefore, when publishing SNP
datasets containing Chi-squared values, anonymization techniques should con-
sistently be implemented [10–12].

Data sharing forms an essential part of genomic research [13]. Techniques to
ensure that privacy is protected should therefore be implemented on GWAS results
to avoid information leaks. While existing research utilizes noise to a significant
degree to ensure privacy protection as it relates to GWAS results, we aim to retain
the same level of protection without the same level of reliance. Simply put, we can
use privacy-preserving Chi-squared testing that matches the privacy protection of
prior research while making GWAS results more functional.

While other approaches have also been applied to recent GWAS results, such as
mixed linear model-based methods, Chi-squared testing remains the most important and
widely used technique [14–18]. This also applies to recent studies relating to COVID-19,
highlighting the importance of further research into Chi-squared testing [19–24].

The Kruskal–Wallis test and the Wilcoxon test have also been used in relation
to GWAS [25,26]. For these techniques, differential privacy approaches have been
suggested by Couch et al. [27], highlighting the importance of addressing such
methods in future research.

In privacy circles, e-differential privacy [28], which has been studied in great
depth [29–32], is the dominant privacy metric. Methods by which to share Chi-
squared values while remaining within the limits of e-differential privacy have been
proposed by a number of researchers, including [11,33,34]. The major limitation of
these approaches, however, is that they are only capable of being used in relation to
2 2 or 2 3 contingency tables, while SNPs based on an I J contingency table are
required. Prior research has assessed greater degrees of freedom within contingency
tables [12,35], but such approaches have proven inaccurate, especially in cases
containing sample sizes limited to several hundred samples of fewer [36–38].

Due to measures like the General Data Protection Regulation (GDPR), gaining
access to sensitive information remains extremely challenging and patient
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biomedical data cannot be distributed unless consent has been provided [39]. In
terms of rare diseases, gaining access to sensitive data is even more challenging
[40,41], as is accumulating large sample numbers for new diseases, like COVID-
19, that require rapid analysis. Individuals may offer their sensitive information in
the absence of any form of privatization, but this is not typically the case [42,43].
Several researchers have considered the use of contingency tables larger than 2 � 3
[44–46], highlighting the importance of the issue regarding private Chi-squared
tests for large contingency tables with small samples.

In this chapter, we introduce the proposed method RandChiDist for obtaining the
differential private Chi-squared values of I � J contingency table with a low sample
size and evaluate the method through experiments on a real data set. The RandChiDist
method is based on the contingency table and combines minimized Laplace noise and
true Chi-squared values and controls the ratio of Type I errors such as false positives.
Both synthetic and real datasets are used in the evaluation process, including two
genomic datasets. As well as strictly reducing Type I error ratios, RandChiDist also
cuts down on Type II errors, such as false negatives, to a greater degree than existing
approaches for controlling Type I error ratios. While a number of alternative
approaches are superior to RandChiDist in terms of cutting down the frequency of
Type II errors, these methods are incapable of controlling Type I error ratios.

RandChiDist determines the global sensitivity of the Chi-squared value with
respect to the Chi-squared test and can add noise based on that value. Based on the
Laplace mechanism theorem [28], the resulting required noise is minimized.

The purpose behind this chapter can be summed up thus.* While Chi-squared
testing is used across a range of data analysis processes, including SNP identifi-
cation in relation to specific diseases, the publication of Chi-squared values can
compromise privacy. As a result of the challenges regarding the collection of large
samples for rare and new diseases, we propose a chi-squared testing algorithm with
differential privacy for sample numbers of less than 1,000.

We present the subsequent sections of this chapter: Section 15.2 outlines the
chi-squared hypothesis test and differential privacy, as well as describing related
work. Section 15.3 introduces our system. Section 15.4 details the simulation
results. Section 15.5 examines the experimental results and discusses the need to
study large contingency tables constructed from small samples. Section 15.6 sums
up the overall findings.

15.2 Related work

15.2.1 Chi-squared hypothesis test
A contingency table consisting of I rows and J columns was considered. ½i; j�
indicates the ith row and jth column’s cell. V i;j denotes cell ½i; j�‘s value. W i;j

indicates the expected value of cell ½i; j�.

*An earlier version of the chapter appeared in Ref. 47.
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Let mi ¼
P

jV i;j, sj ¼
P

iV i;j, and n ¼Pimi ¼
P

jsj. An example of a con-
tingency table is shown in Table 15.1.

The following equation represents the Chi-squared value:

c2 ¼
XI

i¼1

XJ

j¼1

Ui; j (15.1)

where Ui;j ¼
W i;j � V i;j

� �2

W i;j
; W i;j ¼ sj � mi

n
: (15.2)

The level of significance a (the likelihood of a Type I error) and the null
hypothesis H0 were both calculated in advance. Chi-squared was determined
according to (15.2), while the Chi-squared distribution table was used to determine
whether to reject H0. The probability density function of the Chi-squared dis-
tribution is represented by c2

v , with v degrees of freedom. The percentage point
Pðc2

v > xÞ ¼ a for multiple combinations of v and a is presented in the Chi-squared
distribution table.

15.2.2 Privacy model
The widely accepted standard regarding privacy metrics over recent history has
been e-differential privacy [28, 39–50].

The privacy level is represented by e, with higher values indicating lower
privacy levels. Neighboring databases are deemed to represent two databases,
diverging by one record maximum. The definition of e-differential privacy is as
follows:

Definition 1 (e-differential privacy): T and T 0 represent neighboring databases.
The randomized mechanism A meets the e-differential privacy if the following
holds:

PðAðTÞ 2 Y Þ � eePðAðT 0Þ 2 Y Þ; (15.3)

for any Y � RangeðAÞ and any neighboring databases.

Table 15.1 Case–control analysis

SNP1 and SNP2 allele type combinations

(M,M) (M,m) (m,M) (m,m) Total
Case V1;1 V1;2 V1;3 V1;4 m1

Control V2;1 V2;2 V2;3 V2;4 m2

Total s1 s2 s3 s4 n

M: major; m: minor.
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Theorem 1 is satisfied by the Laplace mechanism [28], which contributes noise
generated using a Laplace distribution. By defining the concept of global sensi-
tivity, this mechanism can be delineated.

Definition 2 (Global sensitivity): Let f be a function f : T ! R
d, where T is a

domain of databases. If f satisfies T and T 0 for any neighboring databases

Df ¼ max
T ;T 0

jjf ðTÞ � f ðT 0Þjj1; (15.4)

Df is the global sensitivity of f .

Theorem 1 (Laplace mechanism [28]): Let A be a randomized mechanism that
outputs f ðTÞ þ LapðDf =eÞ, where LapðvÞ returns independent Laplace random
variables with the scale parameter v. A realizes e-differential privacy.

Differential privacy can be used not only for MDSS but also for text [51],
voice [52], images [53], etc. In addition, this chapter assumes a scenario in which
there is an entity holding raw data, and that entity uses differential privacy to
provide statistical information about that raw data to a third party. On the other
hand, a technology called local differential privacy has been proposed, and there
exists a scenario in which each individual processes raw data using local differ-
ential privacy technology and aggregates the processed data.

In addition, differential privacy and local differential privacy tend to protect
privacy too strongly and reduce data usefulness. Therefore, several concepts that
relax differential privacy have been proposed. However, in the case of handling
extremely important personal data such as genomic information, strong protection
is required, so in this chapter, normal differential privacy is used.

15.2.3 e-Differentially private Chi-squared test
A contingency table like Table 15.2 applies to chi-squared testing. It can be pre-
sented as Table 15.3, with Tables 15.2 and 15.3 being equivalent. Databases like
the ones shown in Table 15.3 for privacy-preserving Chi-squared testing were
utilized. With the exception of one record, Tables 15.3 and 15.4 contain the same
data, making them neighboring databases.

Table 15.2 A contingency table

Condition C1 Condition C2

Group G1 19 31
Group G2 22 28
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As shown by Yu et al. [11], the global sensitivity of the Chi-squared value is

DY ¼ n2

m1m2
1 � 1

max fm1;m2g þ 1

� �
; (15.5)

when 2 � 3 contingency is considered and m1 and m2 are published.
As shown by [33,34], if m1 ¼ m2, the Chi-squared value’s global sensitivity

can be calculated as

DF ¼ 4n

n þ 2
: (15.6)

DF and DY are of only use in 2 � 2 and 2 � 3 contingency tables.
A unit circle mechanism capable of achieving a high level of accuracy was put

forward by Kakizaki et al. [54,55], but this approach only applies to 2 � 2 con-
tingency tables. In addition, the differential private results of the Chi-squared test
based on a given significance level a were published, but the differential private
Chi-squared values could not be presented. Therefore, data holders who wish to
make Chi-squared test results private at multiple a values (e.g., a¼ 0:05; 0:001)
would have to independently implement the privatization measure multiple times.
In accordance with the composition theorem [56], the privacy level that results
from a privacy mechanism outputting K times based on e-differential privacy is

Table 15.4 Example of a neighboring database of
Table 15.3

ID Group & Condition

0 G1 & C2

1 G2 & C1

[rgb]0.9, 0.9, 0.9 2’ G1 & C2

... ...
99 G1 & C2

Table 15.3 A raw database

ID Group & Condition

0 G1 & C2

1 G2 & C1

2 G2 & C2

... ...
99 G1 & C2
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therefore Ke. From a data analysis perspective, the publication of p-values is
crucial [57].

The studies detailed above were all conducted on the basis that mi (i¼ 1;. . .; I)
does not constitute sensitive information and that privatization schemes are not
required for the sharing of such values.

A number of approaches regarding arbitrary contingency tables were put for-
ward by Gaboardi et al. [12]. A relatively simple method is to avoid adding Laplace
noise to the Chi-squared value and instead add it to the contingency table’s each
cell, making the global sensitivity of 2. This method will henceforth be referred to
in this paper as RandCell. It is also known as SNPpval, after its proposition by
Jonson and Shmatikov [58]. RandCell yields many false positives because of the
size of the Chi-squared value. To counter this, a number of approaches were put
forward by Gaboardi et al. These include PrivIndep, MCIndep with Gaussian
mechanism, and MCIndep with Laplace mechanism. The latter of these demon-
strated the best performance and will be outlined in detail in this chapter. For
brevity, this method will henceforth be referred to as MCIndep.

MCIndep compares Chi-squared values by randomly generating many con-
tingency tables using the mi and sj of that with added Laplace noise. If the Chi-
squared value of the contingency table to which RandCell added Laplace noise is
greater than the upper 100 � a% of the Chi-squared values of the generated con-
tingency table, we can say that the original contingency table rejected H0. Relaxing
the e-differential privacy as the privacy metric has also been proposed as an
alternate method [59]. This chapter focuses on e-differential privacy, while the
application of our method to ðe; dÞ-differential privacy is an area of potential future
research.

A number of theorems regarding differentially private Chi-squared testing
were put forward by Sei et al. [60]. However, this study offered no in-depth proofs
regarding their equations, nor any Chi-squared test experiments.

A range of Chi-squared test algorithms for differentially private Chi-squared
testing of independence based on local differential privacy were recently proposed
by Gaboardi et al. [35] (LocalNoiseIND, LocalExpIND, and LocalBitFlipIND).
The first of these three was developed by Kifer and Rogers [61]. The best per-
forming of the three across most parameter settings was LocalExpIND. All three
approaches can be applied to arbitrary contingency tables, assess local privacy
models, and assume the lack of a trusted entity. This chapter assumes that all the
raw data belongs to a trusted entity.

The sample complexity bounds regarding e-differentially private tests for dis-
tinguishing between two distributions were determined by Canonne et al. [62].
Differentially private change-point detection was also applied in this study.
Unlike our approach, which is designed for nonparametric settings, this study
was designed for a parametric setting in which the two distributions are
perfectly known.

An algorithm designed to privately test the closeness of two distributions was
developed by Csail et al .[63]. This method can also be used to test two random

Statistical test with differential privacy for MDSSs 407



variables’ independence, though no privacy-preserving Chi-squared testing
approach is outlined.

e can alter differentially private hypothesis testing accuracy. This was
demonstrated by Liu et al. [64], whose approach for calculating an appropriate
value for e is also valuable for calculating our method’s e value. This chapter is not
concerned with his goal, however.

A differentially private hypothesis testing approach to Kruskal–Wallis and
other important tests was developed by Couch et al. [27]. However, this approach is
designed for ordinal or interval scale data, not nominal scale data.

Prior approaches regarding arbitrary I � J contingency tables have per-
formed relatively poorly in terms of accuracy. This is especially true in cases
involving small population samples. Section 15.4 presents an overview of these
approaches.

15.2.4 Adversarial model
In an adversarial model, the server aims to disclose Chi-squared test results to
potential hackers. While the attacker follows server protocols and is therefore
regarded as a semi-honest entity, they may nonetheless attempt to gain access to
Chi-squared test results and identify personal information. Moreover, the attacker
may have some knowledge about a person’s SNPs and other attribute values. We
assume that the attacker is attempting to extract sensitive information about that
individual from the published Chi-squared value.

15.2.5 Other privacy models
In this chapter, we focus on differential privacy because it is considered the de facto
standard privacy model in this field. However, many other privacy models exist.
This section will briefly review them.

Today, many researches employ the privacy model known as k-anonymity
[65], which was first proposed for use when releasing medical data. The model
assumes that there is an attribute set that the attacker may know (which are called
quasi-identifiers) and an attribute set that the attacker does not know, respectively.
These unknown attribute values are called sensitive attributes, and the original
database is anonymized so that the attacker cannot know the sensitive attribute
values of a person. The k-anonymity algorithm can be used to guarantee that an
attacker with background knowledge about quasi-identifiers has less than 1=k
chance of correctly guessing a person’s record when looking at the database after
anonymization.

k-Anonymity requires there to be k or more records with multiple identical
quasi-identifiers. This is because an attacker with knowledge about the quasi-
identifier values about a given user is assumed and is intended to protect privacy
against such an attacker. However, as the number of quasi-identifiers increases,
k-anonymity cannot be satisfied without abstracting each quasi-identifier value to a
considerable extent. Therefore, there is the possibility that the data may become
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entirely useless following anonymization. Therefore, with it being desirable to
satisfy k-anonymity in regard to a combination of an arbitrary number of quasi-
identifiers m, a privacy model moderating k-anonymity was proposed. This is
called km-anonymity [66].

Although k-anonymity and km-anonymity can prevent identity disclosure, the
sensitive attributes of candidate records do not necessarily differ. It is sometimes
possible for all candidate records to possess the same sensitive attributes. Therefore,
among groups of records where all quasi-identifiers are identical, l-diversity was
proposed as a privacy model, showing that more than l types of sensitive attributes are
present [67]. More accurately, this is called Distinct l-diversity, but other models such
as Entropy l-diversity and ðc; lÞ-diversity also exist.

The privacy models described above are models for discussing whether an
attacker, aware that some User A is present in the anonymized database, can learn
of User A’s sensitive attribute values upon viewing the anonymized database.
However, whether User A is present in a database or not may also be private
information. For example, when tabulating a database of users suffering from rare
diseases, being able to determine an individual’s presence in that database can be
considered a leak of private information. Moreover, where there is a tabulated
database of users with test scores above the average, proving one is not present in
that database may also be problematic. Therefore, a privacy model, [68] d-
presence, (d ¼ ðdmin, dmaxÞ) has been proposed as a model of whether an attacker
who does not know whether User A is present in a database when looking at the
anonymized database is able to assume the presence of User A with a degree of
confidence equal to or greater than dmin and less than dmax. Therefore, it is thought
that there are a certain number of users in the world with exactly the same quasi-
identifier values.

ðr1; r2Þ-privacy has been proposed [69,70] as a privacy model measuring the
extent to which an attacker’s prior and posterior knowledge about a user’s sensitive
attributes changes when that given user’s anonymized information is disclosed. In
regard to what sensitive attributes an attacker knows about User A, prior knowledge
is known only with a confidence level r1; however, by viewing the anonymized
data where User A’s sensitive attributes can be known with a confidence level
greater than r2, ðr1; r2Þ-privacy is considered to be infringed upon.

15.3 Proposed algorithm

15.3.1 Outline
The global sensitivity of the I � J contingency table’s Chi-squared value is required
for the RandChiDist method. This is because the RandChiDist approach involves
adding Laplace noise to the Chi-squared value generated from a contingency table.
Section 15.3.2 provides an outline of how to calculate global sensitivity.

Determining whether or not to reject H0 is done by using the Chi-squared
distribution table. We need a modified Chi-squared distribution table, however,
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because noise is added to the Chi-squared value in the RandChiDist method.
Section 15.3.3 outlines how this can be calculated, with the modified table used to
accept or reject H0. Binding Type I errors at most a is considered a constraint that
must be satisfied.

Table 15.5 provides an overview of the main notations.

15.3.2 Global sensitivity of Chi-squared value
As in other studies, we assume that the data analyzer is also provided with mi

(i ¼ 1;. . .; I). Contingency tables T1 and T2, generated from neighboring databases,
are considered. Because these databases are similar, the contingency tables differ
only by two cells. T2‘s cell ½a; k� is 1 greater than T1‘s cell ½a; k�. T2’s cell ½a; l� is
one less than T1’s cell ½a; l� (s.t. l 6¼ k).

The databases collected in Definition 1 only include those that satisfy the
values of mi as the values of miði ¼ 1;. . .; IÞ are publicly available. The maximum
potential Chi-squared value difference across tables T1 and T2 is therefore
calculated.

Based on Theorem 1, adding Laplace noise with global sensitivity means that
RandChiDist satisfies differential privacy. We therefore propose RandChiDist as
follows:

DR ¼

ðmz þ mhÞn
mzð1 þ mhÞ J � 3

n2

mzðn � mz þ 1Þ J ¼ 2;

8>>>><
>>>>:

(15.7)

where

z ¼ argmin
i

mi and h ¼ argmin
i6¼z

mi; (15.8)

to the original Chi-squared based on (15.2). The following theorem is obtained.

Theorem 2: RandChiDist realizes e-differential privacy.

Table 15.5 Notations

n Number of records in database
I Number of rows of a contingency table
J Number of columns of a contingency table
mi Total observed value of ith row
sj Total observed value of jth column
½i; j� Cell of ith row and jth column
V i;jðTÞ Observed value of cell ½i; j� in a contingency table T
W i;jðTÞ Expected value of cell ½i; j� in a contingency table T
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Proof: Let V i;jðTÞ represent cell ½i; j�’s observed value in contingency table T , and
let c2ðTÞ represent the T ’s original Chi-squared value. We consider neighboring
databases T1 and T2, which satisfy the following equations:

Va;kðT2Þ ¼ Va;kðT1Þ þ 1

Va;lðT2Þ ¼ Va;lðT1Þ � 1;

(
(15.9)

where k; l 2 1;. . .; Jg and k 6¼ l.
Based on Proposition 2, giving the value a, T1 and T2 that satisfy the following

constraints maximize the difference between the T1’s Chi-squared value and the
T2’s Chi-squared value (see Figure 15.1) when J is greater than 2:

Va;kðT1Þ þ 1 ¼ Va;kðT2Þ ¼ ma (15.10)

Va;lðT1Þ � 1 ¼ Va;lðT2Þ ¼ 0 (15.11)

Vb;l T1ð Þ ¼ Vb;l T2ð Þ ¼ mb; where b 6¼ a (15.12)

V i;k T1ð Þ ¼ 0; where i 6¼ a (15.13)

V i;l T1ð Þ ¼ 0; where i 6¼ a; b (15.14)

V i;j T1ð Þ ¼ V i;j T2ð Þ ¼ arbitrary values that satisfy the constraint (15.15)
X

j

V i;j ¼ mi; where i; j½ � 6¼ a; k½ �; a; l½ �; and b; l½ �: (15.16)

Regarding constraint (15.16), the sum of the kth column of T2 (i.e., sk of T2) is
understood to be equal to ma. Ui;jðTÞ represents Ui;j in (15.2) for database T .
Symbol b denotes any integer from 1 to I and does not denote a. Symbol l denotes

0 0

ma-1 1

0 0

0 mb

0 0

0 0

0 0

0 0

ma 0

0 0

0 mb

0 0

0 0

0 0

T1 T2Total

m1

ma

m3

mb

m5

m6

mI

Total s1 sk sl sJ Total s1 sk+1 sl –1 sJ

Total

m1

ma

m3

mb

m5

m6

mI

Figure 15.1 Neighboring databases that maximize the difference between the T1’s
Chi-squared value and T2’s Chi-squared value for contingency
tables where J � 3
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any integer from 1 to J and does not denote k. Satisfying the constraint (15.16), the
calculation used to work out difference between chi-squared values of tables T1 and
T2 is as follows:

X
i

ðUi;kðT2Þ þ Ui;lðT2Þ � Ui;kðT1Þ � Ui;lðT1ÞÞ

¼ Ua;kðT2Þ þ
X
i6¼a

Ui;kðT2Þ þ Ub;lðT2Þ þ
X
i 6¼b

Ui;lðT2Þ

¼ �Ua;kðT1Þ �
X
i 6¼a

Ui;kðT1Þ � Ua;lðT1Þ � Ub;lðT1Þ �
X
i6¼a;b

Ui;lðT1Þ

¼
ma

ma

n
� ma

� �2

ma
ma

n

þ
X
i 6¼a

ma
mi

n

� �2

ma
mi

n

þ
mb

mb

n
� mb

� �2

mb
mb

n

þ
X
i 6¼b

mb
mi

n

� �2

mb
mi

n

�
ðma � 1Þma

n
� ðma � 1Þ

� �2

ðma � 1Þma

n

�
X
i6¼a

ðma � 1Þmi

n

� �2

ðma � 1Þmi

n

�
ðmb þ 1Þma

n
� 1

� �2

ðmb þ 1Þma

n

�
ðmb þ 1Þmb

n
� mb

� �2

ðmb þ 1Þmb

n

�
X
i 6¼a;b

ðmb þ 1Þmi

n

� �2

ðmb þ 1Þmi

n

¼ ðma þ mbÞn
mað1 þ mbÞ

(15.17)

0 m1 m1

ma-1 1

0 m3 m3

0 m4

0 m5

0 m6

0 mI

m4
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mI

0

0
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0

0

0

0

T1 Total T2 Total

m1

ma ma

m3

mb

m5

m6

mI

m1
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m3
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m5
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mI

Total Totalsk sk+1 sl -1sl

Figure 15.2 Neighboring databases that maximize the difference between the T1’s
Chi-squared value and T2’s Chi-squared value for contingency
tables where J ¼ 2
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Consequently, global sensitivity is represented by (15.17), based on a and the
value of J being greater than 2. When J is greater than 2 and a is not given, global
sensitivity is represented by (15.7), based on Proposition 1.

Neighboring databases meeting the constraints detailed below will maximize
the difference between the T1’s chi-squared value and T2’s chi-squared value from
Proposition 3 when J¼ 2 and a is given (see Figure 15.2):

Va;kðT1Þ þ 1 ¼ Va;kðT2Þ ¼ ma (15.18)

Va;lðT1Þ � 1 ¼ Va;lðT2Þ ¼ 0 (15.19)

V i;kðT1Þ ¼ V i;kðT2Þ ¼ 0 for all i except for i ¼ a (15.20)

V i;lðT1Þ ¼ V i;lðT2Þ ¼ mi for all i except for i ¼ a (15.21)

Satisfying the constraint (15.21), the differences between the Chi-squared
values of tables T1 and T2 can be calculated as
X

i

ðUi;kðT2Þ þ Ui;lðT2Þ � Ui;kðT1Þ � Ui;lðT1ÞÞ

¼ Ua;kðT2Þ þ
X
i6¼a

Ui;kðT2Þ þ Ua;lðT2Þ þ
X
i 6¼a

Ui;lðT2Þ

� Ua;kðT1Þ �
X
i6¼a

Ui;kðT1Þ � Ua;lðT1Þ �
X
i 6¼a

Ui;lðT1Þ

¼
ma

ma

n
� ma

� �2

ma
ma

n

þ
X
i 6¼a

ma
mi

n

� �2

ma
mi

n

þ
ðn � maÞma

n

� �2

ðn � maÞma

n

þ
X
i 6¼a

ðn � maÞmi

n
� mi

� �2

ðn � maÞmi

n

�
ððma � 1Þma

n
� ðma � 1ÞÞ2

ðma � 1Þma

n

�
X
i 6¼a

ðma � 1Þmi

n

� �2

ðma � 1Þmi

n

�
ðn � ma þ 1Þma

n
� 1

� �2

ðn � ma þ 1Þma

n

�
X
i 6¼a

ðn � ma þ 1Þmi

n
� mi

� �2

ðn � ma þ 1Þmi

n

¼ n2

maðn � ma þ 1Þ :
(15.22)

Eq. (15.7) represents the global sensitivity when J is equal to 2 and a is not
given, as n2=ðmaðn � ma þ 1ÞÞ decreases when ma decreases.

DR is identical to DY when using a 2 � 3 contingency table. DR is identical to DF

when using a 2 � 3 contingency table.
Propositions 1 and 2, which were used in to prove Theorem 2, are

described below.
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Proposition 1: DR in (15.7) is maximized when the minima (15.8) are satisfied.

Proof: By differentiating (15.7) with respect to ma, we obtain

� mbn

m2
að1 þ mbÞ : (15.23)

By differentiating (15.7) with respect to mb, we obtain

� ðma � 1Þn
mað1 þ mbÞ2 : (15.24)

To maximize (15.7), ma and mb from (15.23) and (15.24) should therefore be
minimized.

Let y represent the minimum value of mi, and let yþ f represent the second
smallest value of mi, where f � 0 and i¼ 1;. . .I . If ma is y and mb is yþ f, (15.7)
can therefore be expressed as

nðyþ fÞ
yð1 þ yþ fÞ : (15.25)

If ma is yþ f and mb is y, (15.7) can then be expressed as

nðyþ fÞ
ð1 þ yÞðyþ fÞ : (15.26)

As (15.25) is always greater than or equal to (15.26), the value of DR in (15.7)
is maximized when (15.8) is satisfied.

Proposition 2: If J � 3 and a value of a is given, the difference between the T1’s
Chi-squared value and T2’s chi-squared value is maximized by neighboring data-
bases with (15.16).

Proof: While many neighboring databases satisfy (15.9), we prove that neighboring
databases satisfying the constraints (15.16) provide the most significant difference,
dðT1; T2Þ, between c2ðT1Þ and c2ðT2Þ when J � 3. mi is assumed to be a fixed
value for all i values.

V i;jðT1Þ is written as V i;j for simplicity. Based on Lemma 1, Va;k should max-
imize dðT1;T2Þ. Due to the constraints (15.27), Va;k’s value consequently becomes
ma � 1.

Based on (15.9), the constraints are as follows:

Va;kðT1Þ � ma � 1 and 1 � Va;l: (15.27)

Based on Lemma 2, dðT1;T2Þ should be maximized for all i values except
i ¼ a by making V i;k zero.

Based on Lemma 3, dðT1;T2Þ should be maximized by minimizingVa;l. Due to
the constraints, Va;l’s value therefore becomes 1 (15.27).

Based on Lemma 4, Vm;l (m 6¼ a) should be mm and V i;l for all i, except for
i ¼ a, and i ¼ m should be zero to maximize dðT1;T2Þ.
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By replacing m in Lemma 4 with b, we can consequently maximize dðT1; T2Þ
when tables T1 and T2 satisfy the constraints (15.16).

Lemma 1: Va;k should be maximized to accordingly maximize dðT1;T2Þ. Va;r

should also be adjusted for all r to satisfy ma

Proof: We have

dðT1;T2Þ ¼ c2ðT2Þ � c2ðT1Þ (15.28)

¼ Ua;kðT2Þ � Ua;kðT1Þ þ
X
i 6¼a

ðUi;kðT2Þ � Ui;kðT1ÞÞ (15.29)

þUa;lðT2Þ � Ua;lðT1Þ þ
X
i 6¼a

ðUi;lðT2Þ � Ui;lðT1ÞÞ (15.30)

¼ �2 þ ma

n
þ nð�V2

a;k þ sk þ 2skVa;kÞ
maskð1 þ skÞ þ

X
i 6¼a

m2
i skð1 þ skÞ � n2V2

i;k

minskð1 þ skÞ
(15.31)

þ2 � ma

n
þ nðV2

a;l þ sl � 2slVa;lÞ
maðsl � 1Þsl

þ
X
i6¼a

n2V2
i;l � m2

i ðsl � 1Þsl

minðsl � 1Þsl
: (15.32)

By differentiating (15.32) with respect to Va;k , we obtain

nðVa;k � skÞ2ð1 þ 2skÞ
mas2

kð1 þ skÞ2 þ
X
i 6¼a

nV2
i;kð1 þ 2skÞ

mis2
kð1 þ skÞ2 ; (15.33)

because we have

@sk

@Va;k
¼ 1: (15.34)

As (15.33) is always � 0, (15.32) increases as Va;k increases.
We can therefore conclude that Va;k should be increased to maximize

dðT1;T2Þ. Consequently, we have Va;k ¼ ma � 1.

Lemma 2: V i;k should be minimized to maximize dðT1;T2Þ. V i;r should also be
adjusted to satisfy mi for all rfor all i values, with the exception of i ¼ a.

Proof: We focus on m 2 1;. . .; Ig such that m 6¼ a. By differentiating (15.32) with
respect to Vm;k , we obtain

nðVa;k � skÞðVa;k þ sk þ 2skVa;kÞ
mas2

kð1 þ skÞ2 (15.35)

þ nVm;kðVm;k þ 2skVm;k � 2skð1 þ skÞ
mms2

kð1 þ skÞ2 þ
X
i 6¼a;m

nV2
i;kð1 þ 2skÞ

mis2
kð1 þ skÞ2 ; (15.36)
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because we have

@sk

@Vm;k
¼ 1: (15.37)

Let Q ¼Pi6¼a;mV2
i;k=mi. By solving Eq. (15.36)¼ 0 for Q, we obtain

mmðsk � Va;kÞðVa;k þ sk þ 2skVa;kÞ þ maVu;kð2sk � Vu;k þ 2skðsk � Vu;kÞ
mammð1 þ 2skÞ :

(15.38)

The value of (15.38) is greater than zero. The value of (15.36) is less than 0
when Q¼ 0 in (15.36).

Therefore, (15.36) is less than zero when Q is less than (15.38). In much the
same way, (15.36) is greater than zero when Q is greater than (15.38). The value of
Vm;k should therefore either be minimized or maximized to maximize (15.32).
Based on this observation, V i;k should either be reduced to zero or maximized to mi

for all i except for i ¼ a to maximize (15.32).
Based on Lemma 1, Va;k ¼ ma � 1 is what we have. Consequently, when

V i;k¼ 0 for all i except i ¼ a, sk ¼ ma � 1 is what we have. dðT1;T2Þ is therefore

�2 þ ma

n
þ n

ma
þ 1

n

X
i 6¼a

mi þ Ua;lðT2Þ � Ua;lðT1Þ þ
X
i6¼a

ðUi;lðT2Þ � Ui;lðT1ÞÞ:

(15.39)

When V i;k ¼ mi for all i except i ¼ a, however, sk ¼Pimi � 1 ¼n � 1.
dðT1; T2Þ in this case is

�2 þ ma

n
þ n

ma
þ
X
i 6¼a

mi

n
� ðn � maÞ2

maðn � 1Þn þ
X
i6¼a

mi

n � n2
: (15.40)

By subtracting (15.40) from (15.39), we obtain

ðn � maÞ2

maðn � 1Þ þ
X
i 6¼a

mi

n � 1
: (15.41)

V i;k for all i except i ¼ a should be zero based on (15.41) always being more
than zero.

Lemma 3: Va;l should be minimized to maximize dðT1;T2Þ accordingly. To satisfy
ma, Va;r for all r except r ¼ k; l should also be adjusted.

Proof: By differentiating (15.32) with respect to Va;l, we obtain

nðVa;l � slÞ2ð1 � 2slÞ
maðsl � 1Þ2s2

l

þ
X
i 6¼a

nV2
i;lð1 � 2slÞ

miðsl � 1Þ2s2
l

; (15.42)
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because we have

@sl

@Va;l
¼ 1: (15.43)

Eq. (15.32) increases as Va;l decreases based on (15.42) always being less than
zero.

Lemma 4: Vm;l (m 6¼ a) should be maximized to maximize dðT1; T2Þ. Accordingly,
for all r except r ¼ k; l, Vm;r should be adjusted to satisfy mm. Furthermore, V i;l

should be minimized for all i except i ¼ a and i ¼ m. Accordingly, for all r except
r ¼ k; l, V i;r should be adjusted to satisfy mi.

Proof: By differentiating (15.32) with respect to Vm;l ðm 6¼ aÞ, we obtain

nðsl � Va;lÞð2slVa;l � Va;l � slÞ
maðsl � 1Þ2s2

l

(15.44)

þ nVm;lðVm;l � 2sl � 2slVm;l þ 2s2
l Þ

mmðsl � 1Þ2s2
l

(15.45)

þ
X
i6¼a;m

nV2
i;lð1 � 2slÞ

miðsl � 1Þ2s2
l

; (15.46)

because we have

@sl

@Vm;l
¼ 1: (15.47)

Let Q ¼Pi6¼a;mV2
i;l=mi. We have Va;l ¼ 1 from Lemma 3. By solving (15.46) = 0

for Q, we obtain

mmðsl � 1Þ2 þ maVu;lð2slðsl � Vm;l � 1Þ þ Vm;lÞ
mammð2sl � 1Þ : (15.48)

Eq. (15.48) is always greater than zero. When Q ¼ 0 and Va;l ¼ 1 in (15.46),
(15.46) can be expressed as

nðmmðsl � 1Þ2 þ maVm;lð2slðsl � Vm;l � 1Þ þ Vm;lÞÞ
mammðsl � 1Þ2s2

l

� 0: (15.49)

Thus, Eq. (15.46) is greater than zero when Q is less than or equal to (15.48).
Eq. (15.46) is less than zero when Q is greater than Eq. (15.48), Therefore, the
value of Vm;l should either be reduced to zero or maximized to mm to maximize
Eq. (15.32).

The value of Vm;l should therefore either be minimized or maximized to
maximize dðT1;T2Þ. For example, x ¼Pi6¼mV i;l. If Vm;l is maximized, such as
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(Vm;l ¼ mm), then dðT1; T2Þ is

2 � ma þ mm

n
þ mmn

mm þ x � 1
� n þ mammn

maðmm þ xÞ (15.50)

þ
X
i 6¼a;m

V2
i;ln

miðmm þ x � 1Þðmm þ xÞ �
mi

n

 !
: (15.51)

When Vm;l is minimized, however, (i.e., Vm;l¼ 0), dðT1;T2Þ is

2 � ma þ mm

n
� n

max
þ
X
i 6¼a;m

V2
i;ln

2 � m2
i ðx � 1Þx

minðx � 1Þx : (15.52)

If (15.52) is subtracted from (15.51), we therefore obtain

mmnð�1 þ mm þ x þ maxÞ
maxð�1 þ mm þ xÞðmm þ xÞ �

X
i 6¼a;m

nmmV2
i;lð�1 þ mm þ 2xÞ

miðx � 1Þxðmm þ x � 1Þðmm þ xÞ : (15.53)

The second term of (15.53) is zero when I¼ 2. Eq. (15.53) is therefore always
greater than zero and Lemma 4 stays true when I¼ 2.

Considering situations where I � 3, we assume that V i;l is zero for all values of
i except i ¼ a and i ¼ m. The second term of (15.53) is zero in this case, while the
first term of (15.53) is greater than zero. We can consequently say that (15.53) is
always greater than zero. Therefore, for all values of i except i ¼ a and i ¼ m, Vm;l
should be maximized to mm when V i;l is zero.

Focusing on v so that v 2 1;. . .; Ig and v 6¼ a; m, when Vv;l is maximized to mv

we prove that Eq. (15.53) always represents � 0. Furthermore, when I¼ 3, the
second term of (15.53) is minimized. We therefore obtain

ð15:53Þ � � ðma � 1Þmmn

mað1 þ mvÞð1 þ mv þ mmÞ< 0; (15.54)

because x ¼ mv þ 1.
Thus, with the exception of i 6¼ a; m, each V i;l for all i should be minimized to zero.
When I � 3, Lemma 4 also holds based on this observation.

Proposition 3: Neighboring databases satisfying the constraints (15.21) maximize
the difference between the Chi-squared values of tables T1 and T2 when J equals 2
and a is given.

The proof can be conducted in a way comparable to Lemma 2.

15.3.3 Differentially private hypothesis testing
The anonymized Chi-squared value of an original table can now be determined,

c2	 ¼ c2 þ LapðDR=eÞ; (15.55)

where c2	 is the anonymized Chi-squared value.
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Based on the definitions of both Laplace distribution and Chi-squared dis-
tribution, a Chi-squared value’s probability density function possessing v degrees
of freedom with Laplace noise added and global sensitivity D can be presented thus

gv;D;eðxÞ ¼
ð1
m¼�1

Lm;bðxÞZvðmÞdm; (15.56)

where

b ¼ D=e; (15.57)

Lm;b xð Þ ¼

exp � x � m
b

� �

2b
x � m

exp � m� x

b

� �

2b
otherwise;

0
BBBBBB@

1
CCCCCCA

(15.58)

and

Lv uð Þ ¼
2�v=2exp �u=2ð Þu�1þv=2

G v=2ð Þ x > 0

0 otherwise;

0
@

1
A (15.59)

where Gðv=2Þ represents the v=2 gamma function, that is,

Gðv=2Þ ¼
ð1

0
xv=2�1e�xdx: (15.60)

RandChiDist rejects H0 when the significance level is set to a if the Chi-
squared value that is calculated using (15.2) and Laplace noise, as well as the scale
DR=e, is equal to or exceeds a. This is calculated based on the following equation:

ð1
x¼t

gv;D;eðxÞ ¼ a: (15.61)

Finally, the c2	 value determined using (15.55) was compared with the t value
determined using (15.61). RandChiDist rejects null hypothesis H0 when c2	 is
greater than or equal to t. In all other instances, it fails to reject the null hypothesis.

Algorithm 1 displays the RandChiDist algorithm.

Algorithm 1. Algorithm of RandChiDist

Input: Privacy parameter e, Original cross table T , Significance level a
Output: Differentially private Chi-squared test result
1: Obtain original Chi-squared value based on (15.2)
2: Obtain global sensitivity DR based on (15.7)
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3: c2	⇐c2 þ LapðDR=eÞ
4: Obtain value of t from (15.61)
5: ifc2	 � t then
6: Output “reject the null hypothesis H0”
7: else
8: Output “fail to reject the null hypothesis H0”
9: end if

RandChiDist determines and produces an anonymized version of the p value as
follows:

ð1
x¼c2	

gv;D;eðxÞ: (15.62)

By implementing an arbitrary a that compares (15.62) and a, a Chi-squared
hypothesis test can therefore be conducted.

15.3.4 Complexity analysis
A complex range of OðI � JÞ arises from calculating the original Chi-squared. The
two largest values of mi ði¼ 1;. . .; IÞ are required to determine global sensitivity
DR, making OðIÞ the computational complexity. An integration, like a Monte Carlo
integration, is required to determine (15.61) and (15.62). The cross table does not
influence computation complexity, and this approach can be determined at great
speed [71].

In terms of our algorithm, the computational complexity is therefore
OðI � J þ MÞ, with M representing the integration’s computational complexity.

15.4 Evaluation

As outlined in Section 15.2, a number of methods, including RandChiDist,
RandCell, MCIndep, and LocalExpIND were compared.

LocalExpIND has a wider application than RandChiDist because the former
was designed specifically for local privacy. This privacy model is an area of
interest to be considered for future research.

Furthermore, we also considered the RandChi method, which uses global
sensitivity DR and does not use the private Chi-squared distribution table’s value to
clarify the impact of obtaining the differentially private Chi-squared distribution
table’s value (as described in Section 15.3.3).

The source codes for both these approaches can be found as follows: https://
uecdisk2.cc.uec.ac.jp/s/qasHCJerBNJW8Sa.

When performing multiple Chi-squared testing, Bonferroni’s corrected
threshold should be used [72]. While many Chi-squared tests were conducted in
this chapter, each is considered to be independent, and so Bonferroni’s corrected
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threshold was not applied for comparison purposes. The average results of every
independent Chi-squared test are presented in this chapter. It should be noted that a
number of prior studies also declined to use Bonferroni’s corrected threshold
[11,12,33–35,54,55].

The n values varied between 100 and 900. The a values ranged from 0.005 to
0.05 and the e values were between 0.01 and 10. The parameters of MCIndep were
set based on [12].

15.4.1 Significance results
Confirmation that RandChiDist assures a minimum significance of 1 � a was
established based on significance evaluation. Using a multinomial distribution with
probabilities of 0.25, 0.25, 0.25, and 0.25, 1,000 2 � 2 contingency tables were
generated randomly to assess if each method fails to reject the null hypothesis H0 as
the output. The results using an e value of 0.1 are presented in Figure 15.3, with the
significance determined to be around 1 � a.

For RandChiDist, MCIndep, and LocalExpIND, significance levels for any n,
e, and a values were maintained at approximately 1 � a. When e was less than 1,
values much lower than 1 � a were recorded for both RandCell and RandChi.

Using a multinomial distribution with probabilities of 1=16;...; 1=16 on ran-
domly generated 4 � 4 contingency tables, identical experiments were performed.
The results with e¼ 0:1 are presented in Figure 15.4. For RandChiDist, MCIndep,
and LocalExpIND, the significance values were around 1 � a, much like the 2 � 2
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Figure 15.3 Significance results of 2 � 2 contingency tables. The dashed lines
show 1 � a. The value of e was set to 0.1
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Figure 15.4 Significance results of 4 � 4 contingency tables. The dashed lines
show 1 � a. The value of e was set to 0.1
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contingency tables. The significance values were less than 1 � a for both RandCell
and RandChi. This was particularly true when e was lower.

In RandCell, where a Laplace noise is added to every cell, a higher number of
cells increases the likelihood of at least one Laplace noise becoming very large. In
large contingency tables, this leads to small significance results and a high volume
of false positives. Conversely, cell values with noise can be below five or negative
if the Laplace noise has a large negative value. Using the rule of thumb, RandCell
fails to reject the null hypothesis in this instance. Consequently, when n is large, the
4 � 4 table results for RandCell are smaller compared to for 2 � 2 tables.

Table size n does not produce large variations in RandChi’s significance
results because the global sensitivity, based on equation (15.8), also remains similar
regardless of either n or table size.

15.4.2 Power results
Next, the power of each method was calculated. For parameters a, e, and n, the values
were the same as in the significance experiments, though 2 � 2 contingency tables
were generated randomly based on a multinomial distribution with probabilities
of ð1=4 þ 0:01; 1=4 � 0:01; 1=4 � 0:01; 1=4 þ 0:01Þ and ð1=4 þ 0:15; 1=4 � 0:15;
1=4 � 0:15; 1=4 þ 0:15Þ. These contingency tables are referred to as Tables A and B.
To calculate if RandChiDist can be successfully applied to unbalanced tables, another
probability set ð0:3 þ 0:15; 0:3 � 0:15; 0:2 � 0:15; 0:2 þ 0:15Þ was also implemented
(referred to as Table C). Using on a multinomial distribution with probabilities of
ð1=12 þ 0:07; 1=12 � 0:07; 1=12; 1=12; 1=12 � 0:07; 1=12 þ 0:07; 1=12;. . .; 1=12Þ,
3 � 4 contingency tables were randomly generated to determine if each approach suc-
cessfully rejected the null hypothesis H0 (referred to as Table D). The results for e¼ 0:1
are presented in Figure 15.5.

The findings of the multinomial distribution experiment with Table A show
that the empirical power of Non-private ranged from 0 to 0.2, which is extremely
low. RandChiDist performs marginally better than other privacy-preserving algo-
rithms, though all such algorithms capable of controlling Type I errors fail to
achieve high empirical power.

Regarding other multinomial distributions, MCIndep also has low empirical
power in relative terms. This method rapidly produced an output failing to reject H0

after producing a large volume of contingency tables from the original and
detecting at least one cell with a value lower than five. MCIndep is therefore likely
to produce this output even if all the cells in the target contingency table have
values that are close to five.

RandCell and RandChi generated high empirical power, but in both cases,
empirical significance was lost in the process. MCIndep’s empirical power
remained high under certain circumstances; namely, a high volume of samples and
uniformly distributed data. Increased empirical power based on fewer samples was
achieved by RandChiDist.

Type I errors should be avoided in hypothesis testing that involves chi-squared
tests, and the a value (e.g., 0.05) is changed to adjust the probability of errors.
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When the empirical significance is lower than 1�a, the algorithm is useless, even
with high empirical power. While for RandCell and RandChi, empirical power was
higher than for RandChiDist, the empirical significance values of the first two were
both above 1�a. This means that they often fail to limit Type I errors. RandChiDist
can therefore be said to outperform both RandCell and RandChi. Of all the
approaches that can control Type I errors (RandChiDist, MCIndep, and
LocalExpIND), the highest power is produced by RandChiDist.
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Figure 15.5 Empirical power results with e ¼ 0:1
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15.4.3 Results of real datasets
There were two genomic datasets used.† The Human Genome Diversity Project
genotype dataset (HGDP) [73] is the first of them. This has 1,244 records left
behind after deleting the 2,834 SNPs with uncertain values. The second piece of
data is the genotype dataset from the International Haplotype Map Project
(HapMap), which was previously used by [74] 1,853 SNPs and 420 full data are
included.

†https://web.stanford.edu/group/rosenberglab/hgdpsnpDownload.html (accessed May 26, 2017).
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Figure 15.6 Results of the HGDP genotype datasets. (a)–(c) represent false
positive rate and (d)–(f) represent false negative rate
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(f) α = 0.05.

Figure 15.7 Results of the HapMap genotype datasets. (a)–(c) represent false
positive rate and (d)–(f) represent false negative rate
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Contingency tables with four columns and rows were produced randomly for
both datasets to be used in the linkage disequilibrium analysis. When values were
established that were less than five, another contingency table was made based on
the rule of thumb. Then, before using privacy-preserving methods, the initial con-
tingency tables were subjected to standard Chi-squared testing. Before determining
the mean rates of false positives and false negatives, Chi-squared testing was car-
ried out 100 times on the contingency tables generated.

The results for the HGDP genotype and HapMap genotype datasets are shown
in Figures 15.6 and 15.7, respectively. In most of the parameter settings described in
this chapter, RandChiDist performed better than both MCIndep and LocalExpIND.

15.5 Discussion

Both RandCell and RandChi failed to limit the Type I error ratio, based on the
results RandChiDist, MCIndep, and LocalExpIND, by contrast, successfully con-
trolled the number of false positives. Of these three methods, the fewest number of
Type II errors was recorded by RandChiDist.

Data analyzers will calculate the significance level a in advance when testing a
hypothesis. In other words, a true null hypothesis with a probability that is not above a
will be rejected. False data interpretations stem from high false-positive rates, which
occur when the true null hypothesis is rejected with a probability that is higher than a.
RandChiDist therefore presents the best method for avoiding false interpretations.

When it comes to non-private Chi-squared testing, multiple methods can be
implemented. Section 15.2.1 presents the most basic approach. The global sensi-
tivity of the Chi-squared value of the simplest Chi-squared testing is determined in
both RandChi and RandChiDist, with the minimum amount of noise added based
on the Laplace mechanism theorem (Theorem 1).

RandCell, on the other hand, adds noise to each value of every cell based on its
global sensitivity. This accumulation of noise can therefore grow to be very large in
volume. As outlined in Section 15.2, MCIndep offers an alternate non-private Chi-
squared testing method. After removing the parameters of the underlying multi-
nomial distribution generating the samples, this approach produces more than 1=a
contingency tables. The accuracy of MCIndep is low when working with a small
number of samples, however, due to poor accuracy regarding the estimated para-
meters of the underlying multinomial distribution. A third approach, LocalExpIND,
works on the assumption that there is no trusted entity and that each piece of data is
individually anonymized. The total volume of noise in this method is high because
noise is added to every data point.

According to Sharpe, Chi-squared hypothesis testing should be avoided for
contingency tables larger than 2�2 if possible [75]. As Sharpe conceded, however,
there are times when this is not possible and, according to the American
Psychological Association, around Chi-squared tests for contingency tables larger
than 2�2 account for around 30% of such tests. GWAS and a range of other personal
database tests are among those to involve Chi-squared hypothesis testing [76–78].
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Several works [44–46,79–81], meanwhile, have involved contingency tables with
sizes greater than 2�3. Obtaining differentially private Chi-squared values for
contingency tables larger than 2�3 therefore represents a topic of great importance.

The approach presented in this paper can be applied to both GWAS and
additional small-sample forms of private data analysis. One such example is
COVID-19 patients, who have been analyzed through Chi-squared testing. For
example, based on an a of 0.05, with n = 403, the number of patients who died was
100 while the number of patients who recovered was 303 [82].

COVID-19 patients with and without an acute pulmonary embolism were
studied by Poyiadi et al. [83]. A total of n = 328 patients were studied based on Chi-
squared testing, again with a being 0.05. In another case, Jacob et al. [84] studied
COVID-19’s influence on sexual activity based on 868 samples. These works
highlight both the demand for small sample size testing and how challenging the
accumulation of large sample numbers is in scenarios demanding fast analysis.

It is assumed that data holders will publish both mi and the differentially pri-
vate Chi-squared value. Broadly speaking, accurate interpretation of Chi-squared
values requires both mi and a sample size [85]. In instances where every mi is large,
small Chi-squares values can still be generated, even if the differences between two
datasets are tiny [86]. This highlights how valuable mi is for data analysis.

A range of other forms of information can also be delineated just from the
publication of mi. V i;j for all j are known to be lower than or equal to mi, for
example. That said, even when the values of both mi and the Chi-squared value are
known, we still cannot know each value of V i;j, nor which value of (V i;j or V i;j0) is
greater for any j or j0. As the method proposed in this paper uses differential privacy
to protect Chi-squared values, reconstructing the original cross table is therefore
not an option. As far as we are aware, the idea that publishing mi could create
privacy issues has not been put forward by any prior researchers.

In this chapter, we assume a scenario in which the entity holding the raw data
provides a third party with a Chi-squared value calculated from the raw data with an
error based on differential privacy. There are also scenarios in which the entity
holding the raw data stores the data on an external cloud, rather than on a server it
owns. This also has the effect of preventing information leakage in the event of an
attack on its own server. However, when the cloud that manages data is an external
third party, there is a risk that information in the cloud may be leaked either inten-
tionally or inadvertently. In the future, it will be necessary to have an information
management agent that manages information in consideration of privacy. However, an
increase in the time required for data retrieval and other processing on the cloud must
be avoided. Therefore, it will be necessary to guarantee data security and to perform
operations such as searches at high speed on the cloud managed by a third party.
Consider, for example, retrieval. As a simple mechanism, data and keywords for
search can be encrypted and registered in the cloud. The user sends the encrypted
keywords to the cloud, and the cloud returns a set of data that matches the keywords.
However, in this case, the cloud can calculate the frequency of occurrence of each
keyword and identify which keywords have more or less keywords in common among
the data. As a result, the risk of the cloud administrator being able to guess the
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contents of the encrypted keywords increases. It is possible to address this issue by
utilizing methods that use secret computation and the Bloom Filter [87]. There are
several other privacy issues in the use of data for MDSS. It is hoped that these issues
will be carefully resolved one by one in the future.

This chapter did not cover deep neural networks. Deep neural networks make it
possible to analyze data with high accuracy. Conventionally, models learned by
deep neural network techniques are black boxes and lack the explanatory power to
explain why such outputs are produced. However, many techniques have now been
proposed to enhance the explainability of deep neural networks. On the other hand,
there are privacy risks associated with the use of deep neural networks. For
example, there are techniques that infer the data used for training based on a
learned model. Especially in the field of MDSS, privacy protection for deep neural
network models must be strictly considered because learning is performed using
sensitive information. The concept of differential privacy used in this chapter is
also effective from this perspective [88].

15.6 Conclusion

Statistical analysis differs from machine learning analysis in that it is easier for
humans to understand how it works and the results. The Chi-squared test is widely
used in data analysis such as GWAS. We proposed the RandChiDist method to
obtain differentially private Chi-squared values in contingency tables. It is easy to
perform accurate statistical analysis if the number of samples required for data
analysis is large; existing privacy-preserving Chi-squared test methods such as
MCIndep are suitable when the number of samples n is large, but when n is small,
RandChiDist outperforms existing methods.

Assessing additional datasets and applying our approach to further hypothesis
testing methods represent future research goals. This chapter also focused on the
Chi-squared test. However, the same approach could be used for other statistical
tests. It is hoped that more research will be developed to derive statistical test
results that satisfy differential privacy from small data samples.
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Chapter 16

Automated decision support system for
diagnosing sleep diseases using machine

intelligence techniques

Santosh Kumar Satapathy1, Bidita Khandelwal2,3,
Amik Garg4 and Akash Kumar Bhoi3,4,5

Abstract

Sleep is one of the human health’s most vital yet often underrated components.
Sleep studies are crucial for unearthing various abnormalities associated with sleep,
widely prevalent in today’s world and bound to increase over the years. An
increasingly rapid lifestyle makes short sleeping hours surprisingly too common.
Sleep deprivation can heavily impact humans and their quality of life. Diagnosing
sleeping issues accurately during the initial stages is one of the significant chal-
lenges faced by the medical community. Sleep stage scoring is the primary step in
detecting sleep abnormalities or dividing a person’s entire sleep duration into dif-
ferent categories according to muscle movements, brain activity, eye movements,
etc. Polysomnography is the scientific test that records these human activities
during sleep through electrodes connected to patients. A hypnogram that results
from this test is the graphical form of the sleep scoring done by technicians. For
ages, this process has been carried out manually, which is frequently prone to error,
requires ample time, effort, and training, and is susceptible to inter-scorer differ-
ences. Therefore, it is essential to devise an automated system for sleep staging.
This experimental study involves machine learning techniques to classify the dif-
ferent sleep stages. The reported results proved that the proposed sleep staging
model was well performed for the five-class classification task with improved
accuracy using the ensemble learning classification model.
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16.1 Introduction

Sleep is known scientifically as a natural, reversible, and repetitive condition of
diminished receptivity to external stimulus in conjunction with complicated and
anticipated physiological changes. It is one of the most vital components central to
human functioning. However, in keeping up with the rapid pace of today’s civili-
zation, a growing number of people have become habitual of sacrificing sleep and
falling victim to numerous sleeping conditions that have the potential to lead to far
more dangerous consequences if not addressed early on.

An increasing amount of data, primarily from the Western populations, point to
a drastic decrease in the average length of sleep and an increased occurrence of
sleep irregularities [1]. About 62% of the adult population worldwide have reported
continued dissatisfaction with their sleep quality due to various factors (Philips
Global Sleep Survey, 2019). Statistics show that insomnia affects about 38–40% of
older adults, and about 15–30% of males and 10–30% of females have been diag-
nosed with Obstructive Sleep Apnea (OSA) [2,3]. Insufficient sleep has become a
pervasive problem in modern society. It is now a global public health crisis fre-
quently underestimated and overlooked and has a relatively sizeable economic
aftermath. An absence of sufficient sleep over long durations can lead to many
physiological and psychological dysfunctions. Moreover, timely detection of sleep-
related illnesses can serve as an early signal to various underlying health issues
before their aggravation. Reduced sleep has been associated with 7 out of 15 pri-
mary causes of death in the United States, including vehicular accidents, hyper-
tension, cerebrovascular disorders, and cardiovascular diseases [4]. Moreover,
problems in falling asleep, as well as daytime drowsiness and exhaustion, impact
even wider sectors of the community, creating a significant encumbrance when it
comes to sickness and death, besides considerable societal costs in industrialized
countries by adversely affecting its human capital, from taking toll of its healthy
citizens to reducing their capacity of contributing to the nation’s social and eco-
nomic welfare [5]. The correct diagnosis and treatment of sleeping disorders have
thus become of supreme importance in a world plagued by the lack of sleep.

Sleep stage classification is often the first and foremost step toward identifying
and addressal of potential sleep-related issues. The quality of a patient’s sleep can
often be evaluated by analyzing the pattern obtained by segmenting his entire sleep
duration into stages, each of which possesses characteristics unique to its classifi-
cation. Known as the current gold standard for measuring sleep objectively, poly-
somnography is the scientific technique that takes in raw physiological data by
utilizing several surface electrodes which take note of a multitude of physiological
and behavioral changes during sleep, ranging from brain dynamics which are
tracked by electroencephalography (EEG), to eye movements measured by elec-
trooculography (EOG), to the varying heart rate evaluated by electrocardiography
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(ECG). Muscle activity is taken care of by electromyography (EMG) [6]. As per the
American Academy of Sleep Medicine, sleep is conventionally classified into two
predominant categories, i.e., the Rapid Eye Movement (REM) stage and the Non-
Rapid Eye Movement (NREM) stage. NREM further comprises N1, N2, and N3. A
thorough analysis of the graphical representation of sleep stages plotted against
time, known as a hypnogram, helps provide clinicians insight into a person’s sleep
quality and is used to observe anomalies, serving as the preliminary aid in recog-
nizing sleep-related sleep disorders. The brief diagnosis steps of different sleep-
related disorders are presented in Figure 16.1.

This method of categorization to identify sleep dysfunctions has been around
for years. However, to date, the task of segmenting sleep duration into stages
continues to be performed manually, as was the case in earlier days. This tech-
nique of conducting sleep study is often prone to error, owing to the complete
reliability of a human practitioner, which is based on unrealistic expectations
regarding accuracy and detail. Being solely dependent on the visual pattern
detection by a human specialist makes sleep stage classification extremely time-
consuming, laborious, and subjective [7]. The process also requires a large staff
of highly trained sleep technicians, which is not always available, leading to
significant mismatches in the diagnosis results if compared. Several studies have
looked into inter-rater dependability and found that scorer correspondence is far
from optimal [8].

Sleep Disorder Detection Method

Clinical Procedures

Self Assessments Sleep Diaries Hardware Devices

Contact Device Contactless Device

Self Assessment Procedures

Polysomnography Test

MSQ PSD

NSF

NHLBI

Wrist Band Microphone

Video camera

Accelerometer

Ankle Band

Chest Band

Head Band

PSQI

SDQ

SACS

SEMSA

Home Sleep Test

Wakefullness Test

Multiple Sleep Latency Test

CPAP Test

Figure 16.1 Pictorial representation of differential diagnoses of sleep-rel
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The advent of machine learning (ML) [1–52] has opened up the possibility of
automatizing sleep stage classification with a vision to establish common classifi-
cation standards and eliminate the human tendency for error through better cate-
gorization algorithms and more time-efficient methods. Advances in computerized
scoring to the point of its actual feasibility in real-life scenarios can lead to a
revolutionary future for the effective and efficient diagnosis and treatment of sleep-
related illnesses, mainly reducing the complexity and inaccuracy of the whole
procedure [9]. While several ML approaches have been employed for this purpose,
and significant study is still being conducted on account of the gravity and scope of
this subject in modern times, it remains a challenge to achieve the same results
through artificially designed models as those obtained by highly trained clinicians
performing the study. Several factors are responsible for this, ranging from the right
choice of ML algorithms to the method employed to extract features from the
sample data. Handcrafted features and the establishment of mathematical models
often make automatization trickier [10]. The abrupt and unprecedented transitions
between sleep cycles frequently result in hazy feature extractions, which might
result in an incorrect evaluation. Moreover, the pattern of human brain impulses is
much more complex than the current human ability to comprehend, leading to
information loss and contributing to the complexity of feature extraction through
ML techniques [11].

As a counter approach to manual feature extraction, which requires a lot of
experimentation and expertise to figure out the optimal features possessing the
most excellent weightage, researchers nowadays are resorting to the application of
deep learning (DL) algorithms [53–83] involving neural networks to classification
models, which make them capable of automatic feature extraction, and able enough
to deduce and tune the essential features from the supplied data alone without
human intervention. However, as sound as a DL model may theoretically seem,
several shortcomings hinder its applicability to practical scenarios. One of the
significant drawbacks of using a DL model is that it requires a massive volume of
data to perform better or even at par with other technologies. This limits its usage in
medicine to a great degree since medical data is often scarce, as most of it is never
made public. Additionally, DL models are complicated to train by their complexity
and high computing requirements leading to a cumbersome cost to the end-users.
Therefore, it is paramount to build a sufficiently accurate model based on ML
approaches that can be practically implemented in the current diagnosis.

Therefore, this research aims to demonstrate the findings of an experimental
study incorporating ML techniques to resolve the traditional problem of sleep stage
classification. For this work, we have carried out several trials involving various
algorithms and datasets to decide upon the best possible method and verify the
accuracy of the approach across a wide variety of situations. Random Forest (RF)
[9], K-nearest neighbors (KNN) [10], decision tree [12], and support vector
machine (SVM) [14] are some significant classifiers on which our proposed model
has been tested. Sufficient training on a wide variety of sleep data from patients
suffering from various disorders and healthy subjects has allowed the model
to become experienced enough in detecting a host of sleep abnormalities.
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This review-based research thus aims to inspire multiple opportunities for future
work involving ML and DL in sleep medicine and to open up avenues for new
experimentation by progressing from the results achieved herein. Upcoming sec-
tions of the paper entail a comprehensive discussion and analysis of the approach
adopted and its observed superiority, the results obtained, and the scope of further
improving upon this work.

16.2 Related work

Huy Phan et al. [4] proposed a DL approach and followed a method called an end-to-
end framework for having a particular segment-to-segment sleep staging. The two
networks are used named SeqSleepNet+ and DeepSleepNet+ were used in this study,
and both networks are upgraded versions of SeqSleepNet and DeepSleepNet,
respectively. Three datasets were used for testing: Sleep-EDF-SC, Sleep-EDF-ST,
and Surrey-cEEGrid. The purpose of using three different datasets was to cover all
data from different sections to obtain optimized results. The results of such different
datasets are knowledge transfer and better accuracy. The accuracy obtained on Sleep-
EDF-SC, Sleep-EDF-ST, and Surrey-cEEGrid datasets signifies that SeqSleepNet+
out-performs DeepSleepNet+ by 1.7 %, 6.6 %, and 17.3 %, respectively.

Nico Surantha et al. [5] studied sleep stage classification using MIT BIH
polysomnographic dataset. The dataset consists of multichannel physiologic signals
recorded during the sleep period. The dataset contains recordings of over 80h, each
with ECG signals. Three algorithms were used to carry out the study: extreme
learning machine, SVM, and integration of ELM with PSO. The preprocessing of
the dataset was done in all methods, and feature extraction was carried out. For
training purposes, 70% of the dataset was considered, while 30% for the testing.
ELM and PSO algorithms surpassed ETM and SVM algorithms, and the accuracy
obtained for ELM and PSO algorithms is 82.1%, 76.77%, 71.52%, and 62.66% for
two classes, three classes, four classes, and six classes, respectively.

Emadeldeen Eldele et al. [6] proposed an architecture named Attnsleep, which
uses a DL algorithm and single-channel EEG signal to classify sleep stages. The
architecture is mainly divided into two modules: multi-resolution convolutional
neural network (MRCNN) and adaptive feature recalibration (AFR). MRCNN is
used to extract features based on low to high frequencies, and by modeling the
interdependencies between the components, the AFR can increase the quality of the
extracted features. The second module, TCE, uses a multi-head focus approach to
identify the temporal connections between derived parts. Three different datasets
were used to perform the research: Sleep-EDF-20, Sleep-EDF-78, and SHHS, and
the accuracy obtained by Attnsleep were 84.4, 81.3, and 84.2, respectively.

G. Naveen Sundar et al. [7] performed the study using a DL approach and ML
algorithms for sleep stage classification using EEG signals. The dataset used in the
study is the PhysioNet Sleep-EDF dataset which contains the data of 197
Polysomnograms. The PSG is sleep recordings performed at 100Hz. The data pre-
processing helps extract EEG signals of 30sec from EEG epochs. The technique
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used in this approach is called CNN-BiLSTM-CRF, and the accuracy obtained is
90.7% which is far better than AlexNet, ResNet, GGNet, and LeNet. The F1 score
obtained is 90.6%, while precision and recall are 90.5% and 92.7%, respectively.

Chandra Bhushan Kumar et al. [8] proposed a model named as SCL-SSC for
sleep stage classification. The method is divided into two parts first is feature
learning, and the second one is feature classification. W and N2 sleep stages are
challenging to categorize. They used a weighted softmax cross-entropy loss func-
tion to overcome the problem, and an oversampling technique was applied to the
dataset. The datasets used are Sleep-EDF sleep 2013 and 2018, which are available
openly. The model obtained an accuracy of 94.1% with a Kappa score of 0.9197.
They also got an F1 score of 92.64%.

Cong Liu et al. [9] obtained EEG signal of a single channel driven by data.
They used EEMD to decompose EEG epochs and extracted numerous features
from signals and decomposed IMFs. After removing the data, the model was
trained using the XGBoost algorithm. The testing was done using a five-fold cross-
validation technique on the Dreams, Sleep-EDF, and SHHS databases. Their out-
puts showcased that the four-class classification obtained 86.4%, 93.1%, and 87.5%
accuracy for three databases, respectively, and the five-class sort obtained 83.4%,
91.9%, and 85.8% for all three datasets, respectively. They also observed that EEG
signals could be recorded by placing dry electrodes on the forehead instead of
prefrontal derivations.

Liangsheng Zhang et al. [10] considered EEG data into sub-datasets using the
bootstrap sampling method and a sample array. L2 norm based for weight opti-
mization of ensemble classifier was integrated with the decision by weighted fusion
of ensemble classifier. This method was assessed on public databases, and the
comparison was made with the results of general classification techniques. The two
datasets obtained 88.80% and 86.53% accuracy, respectively, the highest of all the
classification methods. Also, the standard deviation of the ensemble classification
method was the lowest.

Ozal Yildirim et al. [11] presented a technique of DL utilizing PSG signals,
and by using EEG and EOG signals, the one-dimensional CNN model was devel-
oped. The model results were tested on two famous public datasets: Sleep-EDF and
Sleep-EDFX. The performance was calculated for two to six sleep classes classi-
fication problems and accuracy obtained were 98.06%, 94.64%, 92.36%, 91.22%,
and 91.00% for Sleep-EDF dataset and 97.62%, 94.34%, 92.33%, 90.98%, and
89.54% for Sleep-EDFX dataset. The results for Sleep-EDFX were the highest, and
they claimed that the proposed model was ready for use in clinical conditions
and could be evaluated with huge PSG data.

Geetika Kaushik et al. [12] showcased a unique approach to analyzing the
capability of the Hjorth parameter for detecting seizures utilizing EEG signals. For
the decomposition of EEG, TQWT is applied to different subbands at distinct
levels. Activity, mobility, and complexity are some Hjorth parameters analyzed
over decomposed parameters. The dataset used to validate the methodology was
proposed by the University of Bonn in Germany. The outputs showcased that
estimation of Hjorth characteristics is efficient and suitable for automated sleep
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stage classification. Also, evaluating this method on various combinations gave a
very high classification accuracy. The state-of-the-art approaches were also com-
pared with the proposed methodology, where this method stood out with the highest
efficiency.

Farideh Ebrahimi et al. [13] reviewed an automated sleep stage classification
technique by cardiorespiratory signals. The proposed review identifies specific
essential points that need to be considered to improve sleep staging accuracy. Four
central points were highlighted via analysis. First, the 30-sec epoch of the signal
does not carry enough information for feature extraction; the minimum length of
the call should be 4.5min if 30sec epoch is considered. Second, the delay in time
should be regarded as between cardiorespiratory signals and signals from the cen-
tral nervous system. Third, the ECG signal data could help increase the efficiency
of sleep staging, and lastly, CNN and LSTM should be used to structure the model
for better accuracy.

Huafeng Wang et al. [14] kept the importance of sleep for human beings’
neural and physiological development and his team suggested a multiscale dual
attention network (MSDN) for better extraction of features automatically using a
single direction of CNNs. The network was found to be reliable with complex EEG
signals well. Sleep EDF and its expanded version were used to train the model. Out
of 197 subjects, 157 were used for training, while 40 were used for validation and
testing purposes—two techniques, k-fold cross validation where k=20 and hold-out
validation, were used in the algorithm. The accuracy obtained was 90.35% and
88.38%, respectively. It was also observed that when the model was trained and
tested by the expanded version of the Sleep-EDF database, it showed better accu-
racy and efficient performance. The result’s betterment was “more the data; more
the model can learn all the features.”

Sarun Paisarnsrisomsuk et al. [15] suggested a CNN model with higher accuracy
and efficiency than previous works and research. In the suggested model, by obser-
ving the responses of the CNN’s inner layers, it was observed that the CNN filters are
used for extracting the salient features (time and frequency domain) from both the
signals. The dataset used two EEG and one EOG signal per training epoch. The
overall accuracy attained by the model is 81%. The accuracy of this model was quite
more than the model proposed in the previous works of sleep staging using CNN.

Mehdi Abdollahpour et al. [2] thinking about the need for faster, more accu-
rate, and automated sleep stage classification, developed a model using high-level
convolutional layers. The dataset utilized was Sleep-EDF and Sleep-EDF expanded
version. The Sleep-EDF dataset consists of two EEG signals and one EOG signal
per subject. The convolutional network was used to extract features from these
signals of the dataset. Two sets are created: one consists of parts just from EEG and
another consists of features combined of EEG and EOG, which are then converted
into horizontal visibility graph (HVG). It was observed that transfer learning has
substantially increased the accuracy and made the whole training process faster.
The precision attained was 98.77%, and Cohen’s kappa coefficient was 0.899.
Various classifiers like SVM, logistic regression (LR), and RF were also used. The
highest accuracy was TLCNN, and the lowest was SVM, around 97.35%.
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Nicola Michielli et al. [4] performed the study using single-channel EEG signals
available in the Sleep-EDF dataset. The main aim of this study is to make recognizing
sleep disorders automated and adversely increase the accuracy and performance of
models for all six stages. The proposed methodology suggests an architecture con-
sisting of novel cascaded RNN and LSTM. Around 55 features were invented by the
model using RNN. Both time and frequency domain parts were excavated. Two fused
RNN and LSTM networks were used. The first structure attained an accuracy of
90.8% for 4-class categorization, and the other structure’s performance was 83.6%
for 2-class categorization.

16.3 Experimental dataset

For experimental purposes, in this study, we have acquired the sleep recordings from
ISRUC-Sleep public repository. The set of sleep experts combined recorded the sleep
behavior of the different categories of subjects and the entire recording were done at
the Hospital of Coimbra University (CHUC) [25]. The different subgroups of record-
ings are contained. One hundred subjects’ recordings were acquired in subgroup-I, who
were suffered little bit sleep problems, 8 subjects’ recordings were obtained in
subgroup-II, mainly the subjects were affected with different sleep-related disorders.
Finally, in subgroup-III, only 10 healthy controlled subjects were collected. For this
experimental work, we used only subgroup-I of the ISRUC-Sleep dataset. A brief
description of the ISRUC-Sleep dataset is given in Table 16.1. Table 16.2 provides
information about the different physiological signals and channels. Table 16.3 presents
recorded sleep epochs from the different sleep stages. Details of the study subjects are
given in Table 16.4. Figures 16.2 and 16.3 show a sample signal collected from a sleep
disorder subject engaged in a single session of sleep data recording; Figure 16.1 pre-
sents a sample EEG signal that indicates the sleep behavior of a matter affected by a
sleep problem that engaged in two different recording sessions. This study includes
three categories of subjects. One is affected by sleep problems and engaged in one
sleep data recording session. The subjects in the second category also had sleep dis-
orders but engaged in two data recording sessions. Finally, the third category consists
of healthy subjects. We obtained the EEG channel C3-A2 signals of 6 subjects. The
stage annotations are also provided in the data repository according to AASM rules.
The sleep epochs are labeled W, N1, N2, N3, and R for a wake, N-REM1, N-REM2,
N-REM3, and REM, respectively. Unscored ages were not considered for further
analysis. Each epoch has a length of 30sec. For the sleep behavior analysis, we pre-
sented the samples of all EEG signals extracted from a different sleep stages category
of subjects. The sleep EEG signals change according to the sleep stage of the subject.

Every stage of sleep is characterized by unique behavior in a sleeping brain,
such as low amplitude, mixed frequency, or sawtooth waveforms, low amplitude
muscle movements, and rapid eye movements. The behavior of EEG signals is
complex since they are not periodic and also due to the continuous changes of
amplitude, frequency, and phase range observed according to the sleep stage. Some
characteristics of the different sleep stages are represented in Figures 16.4 and 16.5.
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Table 16.1 Summary information with recent research developments

References Classifier Signal No. of
classifica-
tion
levels

Results
(%)

[36] Least square support
vector machine
(LS-SVM)

EEG2 channels Six 96%

96.74%
[65] Ensemble learning

algorithm
EEG1 channel Five 96.67%

[65] RF EEGEEG+EOG+EMGEEG
+EOG+EMG
+ECG8 channels

Five 76.05%
85.30%

86.24%
[19] CNN EEGEOG4 channels Five–Two 91.00%

91.22%
92.36%
94.64%
98.06%
89.54%
90.98%
92.33%
94.34%
97.62%

[70] RF+ Hidden Markov
Model (HMM)

EEG1 channel Five–Two 77.01%
79.12%
86.04%
95.47%
72.79%
78.48%
85.77%
92.43%

[71] One-dimensional
convolutional
neural network

EEG2 channels Five 92.66%

[72] RF EEGEOGEMG3 channels Five 92%
[73] RNN EOGR–R interval (RR)

signals2 channels
Five 84.4%

74.3%
[74] SVM EEG1 channel Five 90%
[75] Bagged Trees EEG1 channel Five–Two 79.90%

82.08%
88.22 %
96.48%
81.65%
84.68%
90.54%
96.18%
89.54%

(Continues)
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Table 16.1 (Continued)

References Classifier Signal No. of
classifica-
tion
levels

Results
(%)

90.98%
92.33%
94.34%
97.62%

[76] CNN EEG+EOG+ECG+EMG4-
channels

Five 93.7%

82.8%
[77] RNN EEGEOGEMG15 channels Five 89.9%

88.7%
[78] RNN EEG1 channel Five 83.7%

EEG+EOG2 channels 83.9%
[79] Convolutional neural

network
EEG1 channel Five 93.58%

93.16%
[80] KNN EEG1 channel Six 93.57%
[81] Temporal Convolu-

tional neural net-
work

EEG2 channels Five 85.39%

82.46%
[82] Bootstrap aggregating

(bagging)
EEG1 channel Five 89.39%

90.66%
94.09%
94.17%
97.50%
87.41%
88.73%
90.14%
92.00%
96.78%

Table 16.2 ISRUC-sleep subgroup-I dataset structure

Recorded signals Channel information

Electro_Eencephalogram EEGC3-A2, EEGC4-A1, EEGF3-A2, EEGF4-A1, EEGO1-A2,
EEG O2-A1

Electro_Ocoulogram EOGLOC-A2, EOGROC-A1

Electro_Myogram EMGChin, EMGLeft leg, EMGRight Leg
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Table 16.3 Sleep epochs information

Patient ID/subgroups WA N-1 N-2 N-3 RE

Sub-1(SG-I) 164 64 174 232 119
Sub-2 (SG-I) 232 73 227 148 75
Sub-9 (SG-I) 73 144 316 137 85
Sub-16 (SG-I) 129 126 281 121 98

Table 16.4 Percentage of epochs per individual sleep stages

Patient ID Wake (%) N1 (%) N2 (%) N3 (%) R (%)

Sub-1 22.00 8.40 23.07 30.80 15.73
Sub-2 30.80 9.60 30.13 19.60 9.87
Sub-9 9.6 19.06 42 18.13 11.2
Sub-16 17.07 16.67 37.33 16.00 12.93
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Figure 16.2 Sleep behavior of the subject-16

Table 16.5 Medical history of the subjects

Patient ID Age Gender Disease

1 63 Male Depression
2 51 Restless leg syndrome
9 62 Cheyne–Stokes
16 51 No
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16.4 Proposed automatic sleep stage detection method

This chapter proposes an improved and robust sleep staging framework using
single-channel EEG signals based on ML techniques. Mainly, in existing studies,
there are two significant concerns such as (i) lack of available generalized classi-
fication models and (ii) misclassified the N1 and REM sleep stages due to similar
characteristics of the sleep stages. This work addressed these issues with improved
sleep staging classification accuracy. In this proposed model, we have considered a
novel framework by obtaining an ensemble learning algorithm for five-class clas-
sification problems. Mainly the whole proposed methodology is carried out into
four phases: The block diagram of the proposed sleep staging model is presented in
Figure 16.6.

16.5 Classification

16.5.1 SVM
A separating hyperplane can be defined as

f xð Þ ¼ wi:xi þ b (16.1)
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where xi the set of training is sample features and wi 2 Rn is the weights for one
each feature is vector and b is a scalar bias.

The hyperplane H0 contains information on regions of vectors xi,which satisfied
the equation f xð Þ ¼ 0, H1 and H2 are the two hyperplanes, which are placed parallel
to H0, which defined the information on f xð Þ ¼ 1 and f xð Þ ¼ �1, respectively [24].

H1 ¼ wi:xi þ b ¼ þ1 (16.2)

H2 ¼ wi:xi þ b ¼ �1 (16.3)

The distance between H1 and H2 is called the margin. The margin of a separ-
ating the hyperplane is d þ þ d�. The pictorial representation of the two-state
classification model are presented in Figure 16.7. The separating distance width (d)
between H1 and H2 is

d ¼ w þ xþ þ b � 1ð Þ � w � x� þ b þ 1ð Þ (16.4)

Table 16.6 Retrieved features

Feature type Feature names Feature order

Time domain Mean Fet_1
Maxi Fet_2
Mini Fet_3
Sta_Dev Fet_4
Median Fet_5
Var Fet_6
Zero-Crossing Rate Fet_7
75 percentile Fet_8
Sig_Skew Fet_9
Sig_Kurt Fet_10
Sig_Acti Fet_11
Sig_Mobi Fet_12
Sig_Comp Fet_13

Frequency domain Rel_Spect_Pow_d Fet_14
Rel_Spect_Pow_q Fet_15
Rel_Spect_ Pow_ a Fet_16
Rel_Spect_ Pow_ b Fet_17
Pow_Rat _d/b Fet_18
Pow_Rat_ d/q Fet_19
Pow_ Rat_ q/a Fet_20
Pow_ Rat_ q/b Fet_21
Pow_Rat_ a/b Fet_22
Pow_ Rat_ a/d Fet_23
Pow_Rat_ (q+a)/(a+b) Fet_24
Band_pow_d Fet_25
Band _pow_q Fet_26
Band_pow_a Fet_27
Band_pow_b Fet_28
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d ¼ w: xþ � x�ð Þ (16.5)

d ¼ 2
kwk (16.6)

The optimal hyperplane is the particular hyperplane for which the margin of
separation d is maximized.

The optimal separating hyperplane H� that maximizes the margin:

w�; b�ð Þ ¼ argmaxw;b min
i2 1;2;3;......:;Nf ghw;jxiiþb

kwk2
(16.7)

In general, the sleep recordings are affected by some outliers recordings.
Sometimes it may cause wrong interpretation. The consideration of outliers may
decrease the size of the margin, then the solution may not considerable so well and
the sample patterns may not be any longer linear separable. For considering these
outliers, we can soften the rules of decision boundaries by considering a slack
positive variable 2i for each training vector. Thus we can modify the equations in
the following way:

w � xi þ b � 1 � 2i for yi ¼ þ1 (16.8)

w � xi þ b � �1 þ 2i for yi ¼ �1 (16.9)

To overcome the trivial solution of large 2i, we consider the a penalty cost in
the objective function and now the equations become

Support

vectors

Hyperplanes

Maximum

margin

Support

vectors
d+

H
1

H
0
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Figure 16.7 Representation of two-state classification
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Minimize
1
2
kwk2 þ c

XL

i¼1

2i

 !
subject to yi w:xi þ bð Þ � 1 � 2i 8 i

(16.10)

where c is denoted as penalization constant, which controls the slack variable 2i,
when the value of c increases. Less training errors are allowed, but these changes
may occur degradation of performance on the generalization capacity. In this sce-
nario, the classifier is called a soft margin classifier. Similarly, it is treated to be a
hard margin classifier with value of c = 1.

To address the optimization problem, we used the concept of Lagrange mul-
tipliers ai, which provides for finding the maxima and minima value of a function
subjects to its constraints. The one important things with related to SVM classifier
is that, maximum training patterns lie on the outside margin and the optimal values
of ai are zero. Only those training sample points are considered that lie inside the
margin with non-zero and each non-zero ai indicates that corresponding xi is a
support vector. The optimization solution has the form:

w ¼
X

aiyixi b ¼ yk � wT xk for any xk such that ak 6¼ 0 (16.11)

Then the classification functions in the form of:

f xð Þ ¼
Xk

i¼1

aiyixi
T x þ b (16.12)

where k denotes the number of support vectors

f xð Þ ¼
Xk

i¼1

aiyi∅ xð Þ �∅ xið Þ þ b (16.13)

The dot product of input vectors is substituted by a kernel function

K xi; xj

� � ¼ ∅ xið Þ �∅ xj

� �
(16.14)

The primary role of the kernel function is to measure the similarity between
two sample data points.

In this research work, we have used radial basis function (RBF) as the kernel
function for our proposed two-state sleep stages classification. Finally the equation
of the SVM algorithm for binary classification with wake and sleep labels to each
feature vector xi through the following equation:

y xð Þ ¼ sgn
Xk

i¼1

aiyiK x; xið Þ þ b

 !
(16.5)

16.5.2 Random Forest (RF)
The RF is most effective for classification tasks in different applications. It has
been proven to be quite successful and influential accuracy level, achieving an
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unparalleled accuracy among other classification algorithms [29]. The algo-
rithm votes in each step in the predictive results, and finally selects the most
highly voted predictive result as the final prediction result.

16.5.3 Gradient boosting decision tree (GBDT)
GBDT is a boosting technique that combines individual decision trees [30]. It
supports an ensemble learning process for managing weak learners and converts
those weak learners to strong learners in further iterative rounds. The sample used
in each classifier is related to the learning results of the previous layer. During each
round of classification, the errors are minimized in the decision tree, and the errors
are further minimized through combinations of individual decision trees in a series.
Each iteration focuses on minimizing error and finally constructing a highly effi-
cient, accurate model.

16.5.4 eXtreme gradient boosting (XGBoost)
XGBoost is an improved version of gradient boosting decision tree (GBDT)
[31]. The main advantages of XGBoost are that it supports linear classifiers and
adds a regularization concept to the cost function, which helps to control the
complexity of the model. Though it supports parallel processing, the algorithm
performs very quickly. This algorithm provides more flexibility to the users,
who can set the optimization and evaluation criteria. This algorithm is good at
managing missing values and executing pruning operations, which can effec-
tively prevent overfitting.

16.5.5 Stacking ensembling learning
The stacking approach is one of the special architecture in an ensemble learning
technique. The main principle of this technique is to build a base classifier and
meta-classifier that integrates multiple classification models [32]. The base layer is
a collection of multiple classifiers that combined results the average prediction.
Then, the meta-classifier model is trained based on the output of the base layers;
finally, the meta-classifier predicts the final decision with regard to multiple clas-
sifications. The base levels of this algorithm contain different classification algo-
rithms, so it is also referred to as an ensemble learning stacking algorithm. It
usually supports heterogeneous learning systems.

16.6 Experimental discussion

In this study, we have used three different feature selection algorithms such as
Relief weight(ReF), Fisher Score(FiS), and online streaming feature selection
(OSFS) for the purpose of screening the most relevant features. The final selected
features using three algorithms are presented in Table 16.7. The selected features
were classified through the obtained three base classifiers such as RF, GBDT, and
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XGBoost algorithms. First, we executed three individual experiments with con-
sidering the three base layer classification algorithms. Afterwards, the output of the
predicted results from the base-layer classifier is fed into the meta-layer classi-
fier. The final decision was taken with subject to sleep staging from the meta-
level layer. Finally, we also made a comparative analysis in between the obtained
base classifiers and the stacking ensemble learning results. All the experiments
were compiled using MATLAB 2019b version software. In this work, we per-
formed five- to two-classes classification problems. To analysis the effectiveness
of the proposed framework, we considered a set of performance indexes like
accuracy (Acc) [33], sensitivity (Sen) [34], precision (Pre) [35], and F1score
(F1sc) [36].

16.6.1 Feature screening results

16.6.2 Sleep staging performance with ISRUC-Sleep
subgroup-I dataset

Tables 16.8, 16.9, and 16.10 present the two-class to five-class classification
results based on the three base-layer classifiers such as RF, GBDT, and
XGBoost algorithms, respectively. The graphical representation of the confu-
sion matrix for five-class classification problems using the RF classification
algorithms and with FiS, ReF, and OSFS selection algorithms are shown in
Figures 16.8, 16.9, and 16.10.

The reported confusion matrix for the five-class task using the GBDT classifier
is shown in Figures 16.11, 16.12, and 16.13, respectively.

The results of the confusion matrix for five-class are presented in
Figures 16.14, 16.15, and 16.16, respectively.

Table 16.7 Selected features SG-I dataset

Selection algorithm Screened features with order

FiS Fet_18,Fet_8,Fet_13,Fet_10,Fet_5,Fet_15,Fet_17,Fet_4,Fet_1,
Fet_14,Fet_9,Fet_11,Fet_7,Fet_2,Fet_19,Fet_23,Fet_16,Fet_24,
Fet_22,Fet_26,Fet_12,Fet_25,Fet_3,Fet_21,Fet_20,Fet_6,
Fet_28,Fet_27

ReF Fet_8,Fet_18,Fet_5,Fet_14,Fet_10,Fet_9,Fet_1,Fet_4,Fet_13,
Fet_15,Fet_7,Fet_6,Fet_3,Fet_11,Fet_2,Fet_22,Fet_16,Fet_24,
Fet_17,Fet_26,Fet_27,Fet_25,Fet_21,Fet_28,Fet_23,Fet_19,
Fet_12,Fet_20

OSFS Fet_1,Fet_5,Fet_6,Fet_7,Fet_8,Fet_9,Fet_10,Fet_12,Fet_13,
Fet_14,Fet_15,Fet_17,Fet_18,Fet_23,Fet_28,Fet_2,Fet_11,
Fet_3,Fet_4,Fet_16,Fet_24,Fet_25,Fet_19,Fet_20,Fet_21,
Fet_22,Fet_26

Automated decision support system 453



Table 16.10 Accuracy results with XGBOOST classifier

Feature screening algorithm Two-class Three-class Four-class Five-class

FiS 99.82% 98.77% 98.16% 94.45%
ReF 99.41% 98.82% 98.29% 94.54%
OSFS 99.65% 97.89% 97.45% 94.36%

Table 16.8 Classification accuracy results for two-five class classification
problems using an RF classifier

Feature selection algorithm Two class Three class Four class Five class

FiS 99.42% 98.14% 98.46 97.66%
ReF 99.11% 98.92% 98.19% 97.53%
OSFS 99.10% 98.97% 98.37% 97.26%

Table 16.9 Accuracy performance with GBDT classifier

Feature screening algorithm Two class Three class Four class Five class

FiS 99.42% 98.94% 98.12% 96.21%
ReF 99.22% 98.89% 98.22% 95.76%
OSFS 99.01% 97.69% 96.70% 95.2%
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Figure 16.8 Confusion matrix representation: with selected features from FiS
algorithm and RF classification model
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16.6.3 Automated decision on sleep staging using the
ensemble learning stacking algorithm

Algorithm Ensemble Learning Stacking Algorithm

Input: Training Data TD ¼ x1; y1ð Þ; � � � ; xi; yið Þ; � � � ; xn; ynð Þgf ;
Base-level ML based classifier L1; � � � ;L3;
Meta-level classifier L.
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Figure 16.9 Confusion matrix: ReF algorithm and RF classification model
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Figure 16.10 Confusion matrix: OSFS algorithm and RF classification model
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Output: Sleep Staging Classification result.

1. For each model m¼1; � � �;3 do:
2. Use the training dataset TD to train a base-level ML classifier Hm ¼ Lm TDð Þ:
3. end
4. Generate a new dataset TD

0
.

5. For each individual i¼1; � � �;n do:
6. For each model m¼1; � � �;3 do:
7. Use base-level ML learning algorithm Hm to classify the training

samples Xi and return the predicted estimate Pim ¼ Hm Xið Þ.
8. end
9. Combine the predicted estimates from 3 base-level ML classification algo-

rithm Pi ¼ pi1; pi2; � � � ; pi3ð Þ
TD

0 ¼ TD
0 [ Pi; yið Þf g

10.
11. end
12. Use the new dataset TD

0
to train the meta layer classifier H

0 ¼ LðTD
0 Þ.

13. Input a test sample Xi and generate sleep staging classification result
H xð Þ ¼ H

0
h1 xð Þ; h2 xð Þ; � � � ; h3 xð Þð Þ.

The reported sleep staging performance using stacking ensemble learning
model is presented in Table 16.11. The confusion matrix for the five-state classi-
fication problem is presented in Figures 16.17, 16.18, and 16.19 for the RF, GBDT,
and XGBoost classifiers, respectively.
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Figure 16.11 Representation of confusion matrix: selected features using FS
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456 XAI in MDSS



From Table 16.12, it has been observed that the accuracy of the proposed
model is 98.93% with the FiS algorithm. Similarly, for precision, the model
resulted 98.34%, sensitivity as 98.71%, and F1-score as (98.03%). The recall and
precision results for the individual sleep stages with FiS, ReF and OSFS screening
algorithms using the proposed stacking model are shown in Figures 16.20 and
16.21, respectively. Finally we also made a brief comparative analysis with the
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Figure 16.13 Representation of confusion matrix: selected features using OSFS-
selected features and GBDT classifier
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Figure 16.16 Confusion matrix: OSFS-selected features and XGBOOST
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Figure 16.17 Confusion matrix: FS-selected features and stacking ensemble
learning algorithm

Table 16.11 Sleep staging classification performance using stacking model using
SG-I subgroup dataset

Feature selection algorithm Two-class Three-class Four-class Five-class

FiS 99.27% 99.02% 98.98% 97.93%
ReF 99.12% 98.42% 97.68% 97.34%
OSFS 98.97% 98.39% 97.61% 96.86%
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Figure 16.18 Confusion matrix: ReF-selected features and stacking ensemble
learning algorithm
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Table 16.12 Performance evaluation of sleep staging using stacking ensemble
learning model

Performance metrics SG-I dataset (five-class)
FiS ReF OSFS

Acc 98.93% 98.11% 96.96%
Pre 98.34% 97.66% 96.45%
Sen 98.71% 97.74% 96.42%
F1-Sc 98.52% 97.70% 96.43%
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stacking model
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stacking model
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other similar published research works based on different traditional ML and DL
techniques is presented in Table 16.13.

16.7 Conclusion

Improper sleep causes several disturbances in both physical health and mental
conditions. Sleep is essential for our life to maintain activities smoothly.
Sometimes it also affects the disorder toward the secretion of hormones. Such
continuous sleep deprivation may lead to different types of sleep-related diseases.
Currently, it has been found across global that sleep problems increase, and their
impact seriously puts in our health. Some researchers came forward and analyzed
sleep-related irregularities and their causes. Primary investigations through differ-
ent surveys by different sleep laboratories have found that significant types of sleep
disorders occurred due to improper sleep patterns. To analyze the sleep irregula-
rities, the sleep experts initially observed the sleep behavior by following the edited
sleep standards by R&K and AASM through new automated sleep staging. In this
chapter, mainly, we have focused how the best way to discriminate and capture the
changes in characteristics over the individual sleep stages. We have also executed
one experimental work by considering different categories of the subjects affected
by different types of sleep-related problems. On the other hand, this chapter also
provides basic information about the behavior of the sleep stages, their character-
istics, and the challenges of manual inspection. Finally, it focuses on automated
sleep staging using ML techniques.

Table 16.13 Comparative analysis with the existing state-of-the-art works

Studies Classification models Classification accuracy

[56] SVM 93.97%
[57] 86.75%
[59] RF 75.29%
[60] StackedSparse Auto-Encoders (SSAE) 82.3%
[61] SVM 83.33%
[63] 92.04%
[64] Gaussian kernel-based SVM 87.45%
[65] Stacking Model 96.6
[66] SVM 91.5%
[19] RF 95.31%
[68] 97.8%

Proposed work Ensemble Stacking Model (SG-I) Fisher Score (FiS)
98.93%
ReliefF weight (ReF)
98.11%
OSFS
96.96%

462 XAI in MDSS



References

[1] Panossian L.A. and Avidan A.Y. Review of sleep disorders. Medical Clinics
of North America. 2009;93:407–425.

[2] Abdollahpour M., Rezaii T.Y., Farzamnia A., and Saad I. Transfer learning
convolutional neural network for sleep stage classification using two-stage
data fusion framework. IEEE Access. 2020:8:180618–180632.

[3] Satapathy S.K., Loganathan D., Narayanan P., and Sharathkumar S.
Convolutional neural network for classification of multiple sleep stages from
dual-channel EEG signals. Soft Computing. 2020;24:1–16.

[4] Michielli N., Acharya U.R., and Molinari F. Cascaded LSTM recurrent
neural network for automated sleep stage classification using single-channel
EEG signals. Computers in Biology and Medicine. 2019;106:71–81

[5] Surantha N., Lesmana T.F., and Isa S.M. Sleep stage classification using
extreme learning machine and particle swarm optimization for healthcare
big data. Journal of Big Data. 2021;8:14.

[6] Eldele E. An attention-based deep learning approach for sleep stage classi-
fication with single-channel EEG. IEEE Transactions on Neural Systems
and Rehabilitation Engineering. 2021;29:809–818.

[7] Naveen Sundar G., Narmadha D., Amir Anton Jone A., Martin Sagayam K.,
Dang H., and Pomplun M. Automated sleep stage classification in sleep
apnoea using convolutional neural networks. Informatics in Medicine
Unlocked. 2021;26:100724.

[8] Kumar C.B. SCL-SSC: Supervised Contrastive Learning for Sleep Stage
Classification, 2022. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.
17711369.v1.

[9] Liu C., Tan B., Fu M., et al. Automatic sleep staging with a single-channel
EEG based on ensemble empirical mode decomposition. Physica A:
Statistical Mechanics and its Applications. 2021; 567:125685. ISSN0378-
4371, https://doi.org/10.1016/j.physa.2020.125685.

[10] Zheng L., Feng W., Ma Y., et al. Ensemble learning method based on tem-
poral, spatial features with multi-scale filter banks for motor imagery EEG
classification. Biomedical Signal Processing and Control. 2022;76:103634.
ISSN 1746-8094. https://doi.org /10.1016/j.bspc.2022.103634.

[11] Yildirim O., Baloglu U.B., and Acharya U.R. A deep learning model for
automated sleep stages classification using PSG signals. International
Journal of Environmental Research and Public Health. 2019;16(4):599.
https://doi.org/10.3390/ijerph16040599.

[12] Geetika K., Pramod G., Rishi R.S., and Ram B.P. EEG signal based seizure
detection focused on Hjorth parameters from tunable-Q wavelet sub-bands.
Biomedical Signal Processing and Control. 2022;76:103645. ISSN 1746-
8094, https://doi.org/10.1016/j.bspc.2022.103645.

[13] Ebrahimi F. and Alizadeh I. Automatic sleep staging by cardiorespiratory
signals: a systematic review. Sleep Breath. 2022;26:965–981. https://doi.org/
10.1007/s11325-021-02435-814.

Automated decision support system 463



[14] Huafeng W., Chonggang L., Qi Z., et al. A novel sleep staging network
based on multi-scale dual attention. Biomedical Signal Processing and
Control. 2022;74:103486. ISSN 1746-8094, https://doi.org/10.1016/j.bspc.
2022.103486.

[15] Paisarnsrisomsuk S., Sokolovsky M., Guerrero F., Ruiz C., and Alvarez S.A.
Deep Sleep: Convolutional Neural Networks for Predictive Modeling of
Human Sleep Time-Signals, KDD’18 Deep Learning Day, London, UK,
2018, pp. 1–10.

[16] Diykh M., Li Y., and Wen P. EEG sleep stages classification based on time
domain features and structural graph similarity. IEEE Transactions on
Neural Systems and Rehabilitation Engineering. 2016;24(11):1159–1168.

[17] Gunnarsdottir K.M., Gamaldo C.E., Salas R.M.E., Ewen J.B., Allen R.P., and
Sarma S.V. A novel sleep stage scoring system: combining expert-based rules
with a decision tree classifier. In: 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), 2018.

[18] Sriraam N., Padma Shri T.K., and Maheshwari U. Recognition of wake-sleep
stage 1 multichannel EEG patterns using spectral entropy features for
drowsiness detection. Australasian Physical & Engineering Sciences in
Medicine. 2018;39(3):797–806.

[19] Memar P. and Faradji F. A novel multi-class EEG-based sleep stage classi-
fication system. IEEE Transactions on Neural Systems and Rehabilitation
Engineering. 2018;26(1):84–95.

[20] Da Silveira T.L.T., Kozakevicius A.J., and Rodrigues C.R. Single-channel
EEG sleep stage classification based on a streamlined set of statistical fea-
tures in wavelet domain. Medical & Biological Engineering & Computing.
2016;55(2):343–352.

[21] Wutzl B., Leibnitz K., Rattay F., Kronbichler M., and Murata M. Genetic
algorithms for feature selection when classifying severe chronic disorders of
consciousness. PLoS One. 2019;14(7):e0219683.

[22] Zhu G., Li Y., and Wen P.P. Analysis and classification of sleep stages based
on difference visibility graphs from a single-channel EEG signal. IEEE
Journal of Biomedical and Health Informatics. 2014;18(6):1813–1821.

[23] Braun E.T., Kozakevicius A.D.J., Da Silveira T.L.T., Rodrigues C.R., and
Baratto G. Sleep stages classification using spectral based statistical moments
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Chapter 17

XAI methods for precision medicine in medical
decision support systems

Abasiama Godwin Akpan1, Flavious Bobuin Nkubli2,
Jeremiah Chinonso Mbazor3, Geofery Luntsi4 and

Offiong Udeme5

Abstract

Over the last couple of years, explainable artificial intelligence (XAI) has witnessed
tremendous development evidenced by growing research interest in the area. This
could be attributed to the increasing role of machine learning, especially deep learn-
ing. While these models are highly accurate, they lack explainability and interpret-
ability. There has been limited application of AI systems in vital fields such as
precision medicine due to the aforementioned vagueness. The aim of the study is XAI
for precision medicine in medical decision support systems (MDSS). The authors
outline through an organized examination of literature the application of XAI in
MDSS, thus highlighting the several benefits of the use of XAI as reported in the
literature such as enhanced decision confidence in precision medicine. The opportu-
nities and challenges of explainable models in MDSS were discussed. Guidelines for
the implementation of XAI in MDSS have been recommended in this study while
highlighting some of the opportunities and challenges.

Keywords: Artificial intelligence; XAI; Precision medicine; MDSS;
Explainability.

17.1 Introduction

The application of artificial intelligence (AI) can lessen the effect of soaring rates
of chronic diseases and healthcare costs and increase life expectancy [1]. In
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medical applications, AI is an integral part of medical decision support systems
(MDSS), helping medical practitioners in the analysis of ailment and healing
results. The earliest AI methods were by far understandable; modern societies have
experienced an increase in obscure systems, for example, deep neural network
(DNN) [2]. Most recent AI models designed with machine learning (ML) and deep
learning (DL) are considered by most researchers as “black-box” due to their
complex underlying structures, non-linear nature, and lack of interpretability and
explainability to medical experts. This vagueness has created the need for
explainable artificial intelligence (XAI) architectures [3].

Trust and acceptance of ML models can be enhanced among clinicians by the
use of less vogue method. Transparency of methods becomes the best means, which
is, accepting how a representation functions as it creates a result [2]. Closely related
to explainability is trust since it is based on humans’ understanding of the func-
tioning of AI systems. Hence, DNN algorithms should present an explanation for
their outcomes, showing the internal workings [4]. By making clear typical features
that resulted in the prediction, interpretable models can give details of an exact
prediction for a particular patient. In this paper, various jargon for explainability
are used [5]. Explainability is interchangeably used to describe interpretability and
explainability in studies [6]. In [7], they argued that on the one hand, XAI helps in
learning transparency. On the other hand, ML algorithms function by learning
models from historical data [8]. Barredo Arrieta [2,9,10] opined that an ML model
produces results based on biased.

In this paper, we take the meaning of XAI according to [11], which defines
XAI as a means to produce explainable models. This definition is chosen based on
the fact that the purpose of explainability is viewed from a user’s standpoint. To
address challenges related to decision or classification, in different areas, there are
several artificial neural network-based designs at different levels. In this discussion,
we use the term DNN in place of all these designs or architecture. The practical
success of DL models results from a blended proficient learning computing set of
rules in addition to vast parametric space. This makes DNN complex models [12].
Conventionally, the possible features of lesions on medical images are reviewed by
the doctor manually. This approach takes much of the doctor’s time and attention
that could have been devoted to patient care for a physician who is required to go
through a series of images from just a particular patient examination. However,
over the years there has been increased interest in AI-enabled information extrac-
tion from images, and medical diagnostics among others [13]. Encouraging out-
comes have been recorded in other fields including the medical field too where the
performance of reinforcement-based learning techniques and DL techniques that
were trained on very large data sets performed better than humans in terms of
efficiency [14].

17.1.1 Contributions of the current study
AI has become efficient and is applied in receptive situations with major human
insinuations; hence trust is crucial [13]. Medical practitioners should be
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knowledgeable, reproduce, and control or influence a machine-generated decision-
making process on the spot. Hence, there is a growing need to enhance the
understanding of decisions originating from ML algorithms that could be repro-
duced in the context and settings of real-world applications, especially in precision
medicine. Therefore, there is a need for systems that promote an easy-to-understand
and explain decisions made, with results that can be re-traced on demand.
Healthcare professionals work with varied and diverse data sources most of which
are unstructured and complex; thus, XAI has the potential to enhance the use of AI
and ML in healthcare delivery, thereby promoting trust and transparency within the
healthcare system. Therefore, the ability of ML models to justify their decisions
will enhance their trust within the healthcare community. Therefore, for ML
models to be trusted, their decisions should be justifiable. Rather than the black-box
model’s decisions which are more intuitive for humans, explanation supports pro-
vided by ML models help to make easy decisions made by black-boxes. A major
contribution of this study is that it has provided a viewpoint and insight into
potential areas of XAI for precision medicine.

17.1.2 Chapter organization
This chapter is organized into the following sections: Section 17.1 focuses on XAI
methods for precision medicine in MDSS. In Section 17.2, a literature review of the
application of XAI in MDSS is undertaken. In Section 17.3, the opportunities and
challenges of explainable models in MDSS were discussed. In Section 17.4, we
proposed guidelines and the conclusion.

17.2 Related works

17.2.1 Measurement of XAI in precision medicine
Although the field of XAI can add to dependable AI, it has its restrictions [15].
Some measures that can create trustworthy AI in precision medicine are as follows:

(i) Reporting data quality: Ideally, most healthcare data are not tailored toward
research and are prone to errors and biases, or may be incomplete in some
cases. Therefore, data quality and mode of data collection are equally
important as explainability because it allows understanding of the outcome
model [16].

(ii) External validation: The apprehension of less robust models can be solved
through external validation. A paucity of standardized data sets impedes the
replication of a prediction model on a data set.

(iii) Regulation: Different approaches to regulating AI exist. The initial step is to
ensure AI systems meet pre-defined standards or requirements. Even though
it is hard to get a complete series of verifiable standards or principles that
makes sure the AI system is compliant in terms of law, ethics, and robustness
rather than the control of the system, we can take charge of the process of
development by ensuring that standard guidelines for development are
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adhered to. Although it might not be easy to understand the development
process as it is also not easy to make a judgment about the quality of a model
on the basis of all desired endpoints, this calls for accountability on the part
of the professionals [17–19]. On the basis of the system explained the con-
ceptual framework is presented in Figure 17.1.

17.2.2 Concept of explainability and interpretability
Explainability and interpretability are used interchangeably. Doshi-Velez and Kim,
as affirmed by [21], define it as a level of human knowledge concerning a particular
decision. Based on [22], interpretability is typically associated with perceptions
concerning results of a given method.

XAI methods are designed to produce outcomes that are transparent. Research
in the area of XAI is exploring different ways in which the characteristics of
autonomous AI systems could be understood by humans [21]. In image recognition
tasks or pattern recognition tasks, for example, a particular dominant pattern in the
image (input) could be a deciding factor for why a system decided that a typical
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object is made up of an image. Some models do not show the internal logic and the
underpinning principles that can be understood by humans. Hence, ML interpret-
ability does not lead to explainability, but is often used synonymously [23,24].
Tonekaboni et al. [25] aver that for an AI system to be explainable, the task model
will be inherently interpretable. In line with [25], Markus et al. [16] differentiated
different definitions of interpretability as listed in the following:

(i) Description based on operational aspect – Here, the input object and output
object are proven to be correct [26].

(ii) Definitions based on the descriptive assessment of the user – Here, users play
a vital role.

(iii) Descriptions based on the latent property – Here, it is a group of factors that
are manipulatable, influencing the complexity of a model.

17.2.2.1 Explainability in healthcare
Models developed with AI modalities will interact with the acceptance and adop-
tion of healthcare experts and patients [27]. For a meaningful adoption of AI in the
real medical world, practitioners need to be involved in the discussion to support
the widespread acceptance and adoption of these solutions [28].

17.2.2.2 Artificial intelligence (black-box) predictions for
precision medicine

The major concerns about decisions made by ML models in healthcare are if such
decisions should be trusted and in what context are those decisions made by ML
and DL? The principles that lead to these are:

(i) Transparency: The transparency of a model is based on the understanding
[21]. Easy to understand ML models; for example, models built using linear
regression are likely to be more transparent, and hence, intrinsically more
interpretable as a result of their simple structure.

(ii) Interpretability: This is the ability of a model to provide meaning or repre-
sentation that is easy to understand by humans. Doshi-Velez and Kim
stressed, as reported in [21], that models should be domain specified [11,29].

(iii) Explainability: This concept is related to the system’s dynamics and internal
logic of the ML.

17.2.2.3 Explanation models in precision medicine
Markus et al. [16] listed three kinds of explanation models in precision medicine as
follows:

(i) Model-based explanations: This method uses a model to explain the
task model. These are categorized under explainable modeling and post
hoc explanations. The basis of explainable modeling is to build an inher-
ently interpretable task model for the user. Here, the task model is used
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as explainable modeling. It is important to note that explainable modeling
ensures that the process of decision-making by the model is fully
transparent.

(ii) Attribution-based explanations: This method quantifies the clarifying ability
of the data set and uses the same to clarify the task model. The attribution-
based explanation models are also referred to as feature importance, rele-
vance, or influence methods [25,30].

(iii) Example-based explanations: By selecting examples from the data sets or by
creating new examples in the data sets, for example, by carefully choosing
prototypes or models from which other models could be developed; taking
note of prominent examples for the model output, or making a counterfactual
explanation [31].

17.2.2.4 Explanation of AI (XAI) methods in precision
medicine

Explanation AI (XAI) methods in precision medicine are as follows:

(i) Local interpretable model-agnostic explanations (LIME): This was antici-
pated by [32] to aid experts’ clarification at all points. The method predicates
the behavior of a classifier around the cases to be explained. Initially, LIME
uses the perturbation method to produce results from the original data. But in
python and R languages, it has different approaches [32,33]. This method can
interpret one prediction result. The method is useful and simple, but it has
disadvantages. LIME relies on unstable interpretations – where various
interpretations can be given for the same prediction. To solve this problem,
LIME was improved to DLIME.

(ii) Shapley additive explanations (SHAP): This method of explanation tries to
improve the understanding of AI outcomes for clinical usage through the
calculation of the vital values in individual characters of predictions. It
functions for all models but less in giving assumptions on model categories.
It generates approximated values than the exact values. Its algorithm is
derived from [34] and the objective is to use game concept value.

(iii) Contextual importance and utility (CIU): This type of XAI method in pre-
cision medicine also uses the utility of characters to elucidate the outcome of
the representation [54]. The CIU method is composed of two evaluation
approaches; thus
(a) Contextual importance (CI): This evaluation approach estimates the

total vital part in the recent context.
(b) Contextual utility (CU): For a given output class, CU makes provision

for a judgment or opinion about the favourability or otherwise of the
current feature. The fact that the CIU cannot make an intermediate
surrogate model is what differentiates it from the LIME and SHAP.
Therefore, CI and CU provide explanations and interpretations based
on the features contributed by participating data set.
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17.2.2.5 Recent works in XAI for precision medicine

S/N Citations Purpose Findings

1. [35] The authors argued on an
interpretable decision tree

Diagnosis for radiological
review

2. [36] The authors used a color map overlay
with a conventional imaging device

Creation of production for
understandable ailment
risk

3. [37] Authors suggested medically
understandable ConvNet architecture

It provided a region of interest

4. [38] Authors used visualizations for their
explanations to anesthesiologists

Highlights of vital features

5. [39] Authors used a self-attention approach Predicting the acuity score
6. [40] Authors employed attention models Attention scores are high
7. [41] Authors deployed the GAN method

to prepare a model with mode
data

High robustness

8. [42] Authors showed an ML-based forecast
of metadata

DL and random forest-based
metadata were the bench-
marks

9. [43] Authors attained stability by mounting
a blended system

Identification of patients with
lofty peril of death

However, XAI studies in MDSS provide avenues for future research as follows:

(i) Patient-in-the-loop XAI ML: Caywood et al. in [4] explained that in precision
medicine patient-in-the-loop and decision-making in concurrent exist.
Domain experts use ML decisions to arrive at a final decision on a detailed
and exact scenario [35–37,43].

(ii) Accuracy vs. explainability: A clear tradeoff exists between prediction
accuracy and the lucidity of algorithms. In [11], ML routines such as ana-
lytical accuracy and explainability are the least explainable. The balance is
by mounting a blended system to optimization [43].

(iii) Robustness of DL with data augmentation (DA): Cook in [4] explained that
DA provides a means to solve issues of fewer data sets for the training of ML
model [51,52].

17.2.2.6 Explainable AI in ML
In [53], a lead is presented for explainability based on DL with the uniqueness of its
structure and basic methods for interpretable DL. Choo and Liu [21] provided
useful ideas on recent issues in interpretable DL. Their works highlighted the
possibilities of DL systems, including generative models driven by the user, pro-
gress in the area of visual analytics, reduced use of training data sets, improved
robustness of AI, and inclusion of external human intelligence. The studies by Hase
and Bansel [55] provide a clear and accurate estimate of the effect of explanations
on the simulatability across a wide spectrum of data domains and explanation
techniques.
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17.2.2.7 Medical decision support systems
MDSS composed of intelligence agents that avail medical practitioners, patients,
and others with vast understanding and filtered clinical data to enhance healthcare
[56]. MDSS are prepared with a range of applications, for example, patient ana-
lysis, predicting medicinal, recommendation of patient medicinal options, and
personalized patient care based on level of risk. It can better the safety of patients,
quality of care delivered, and efficiency of healthcare. MDSS are based on exist-
ing knowledge and rely on medical or clinical procedures and understanding, but
non-knowledge-based MDSS uses ML [56]. MDSS that are ML-based identify
patterns in medical data that are historical and use the same to develop predictive
models with the ability to predict medical outcomes that are based on new inputs
provided.

Table 17.1 List of XAI methods in precision medicine [4]

S/N Authors ML model XAI methods

1. [44] MAC Post-hoc
2. [43] K-Means R-group gradients
3. [4] SVM Post-hoc
4. [37] CNN Post-hoc
5. [40] RNN Post-hoc, attention mechanism, visual
6. [39] GRU Post-hoc, attention mechanism, visual
7. [36] FCN Post-hoc, visual
8. [45] SRM Transparent, visual
9. [46] Weighted K-nearest neighbor Transparent, visualization

10. [42] Neural network Post-hoc
11. [4] XGBoost SHAP
12. [4] Gaussian process regression Transparent, global
13. [4] Decision tree Transparent, visual
14. [16] Generalized linear regression

model
Transparent, rule-based

15. [47] Multi-scale CNN Post-hoc, visual
16. [30] Random forests ensemble SHAP
17. [38] DNN Post-hoc
18. [48] Deep CNN (DCNN) Post-hoc
19. [4] DNN Post-hoc
20. [4] SVM Post-hoc
21. [41] Linear SVM Transparent
22. [49] CNN LIME
23. [44] MAC Post-hoc
24. [43] K-means R-group gradients
25. [4] SVM Visual
26. [37] CNN Visual
27. [40] Recurrent neural network-CNN Post-hoc, attention mechanism, visual
28. [39] RNN Post-hoc, attention mechanism, visual
29. [36] FCN Post-hoc, visual
30. [50] Probabilistic/Bayesian framework Transparent
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17.2.2.7.1 Structure of MDSS
The fundamental principles of the design of MDSSs have changed over time. A
variety of qualities of MDSSs are related to medical effectiveness, functionality,
error prevention, acceptability, portability, and cost-effectiveness. MDSS can be
characterized under the following contexts:

(a) Context axes
(i) Inpatient setting

(ii) Outpatient setting
(b) Clinical task

(i) Diagnostic assistance
(ii) Therapy assessment and consult

(iii) Drug prescribed amount or ordering
(iv) Test selection.
(v) Alerts and reminders

(vi) Information retrieval
(vii) Image recognition and interpretation

(viii) Prevention
(ix) Screening
(x) Professional laboratory equipment

(xi) Persistent ailment administration
(c) Understanding axes

Understanding aspect composed of basis, superiority, and the set up of the
MDSS’s awareness and information.

(i) Scientific knowledge basis
(ii) Data source

(iii) Data source intermediary
(iv) Data coding
(v) Data customization

(vi) Update mechanism
(d) Decision support (DS) axes

One of the most important aspects of MDSS is to address a decision-
making process that is suitable.

(i) Reasoning method: Rule-based systems, neural networks, Bayesian
network, model-based systems, logical condition, data mining and ML,
genetic algorithm

(ii) Clinical urgency
(iii) Recommendation explicitness
(iv) Response requirement

(e) Information delivery axes
(i) Delivery format

(ii) Delivery mode
(iii) Action integration
(iv) Explanation availability

(f) Workflow axes

XAI methods for precision medicine in MDSS 479



MDSS is a process and an intervention of expertise that will act as a disruption.
Synergistic systems with institutionalized process are expected to witness superior
practice and confirm to be more successful in optimizing the routine of practitioners.

17.2.2.7.2 Benefits of MDSS
The possible benefits of MDSS in precision medicine are categorized into three
extensive categories:

(i) Improved patient safety.
(ii) Improved quality of care.

(iii) Improved efficiency of health.

Modern studies propose that MDSS features are vital to the systems [12]:

(i) MDSS should give DS.
(ii) DS for decision-making should be provided at the time and point of need. This

should be simplified in such a way that the clinician’s normal pattern of work
and patient care is not interrupted and less cumbersome to enhance acceptance.

(iii) The DS ought to be integrated with a bigger system that is previously a
component of the experts’ specialized regular practice.

(iv) Systems that are useful are better than traditional systems.
(v) Recommendations are supposed to be made by systems rather than just

highlighting a patient’s assessment.
(vi) A provision should be made for MDSS to demand that clinician note down

irregular procedures based on the system’s advice or recommendation.
(vii) New data should rather be acquired automatically by systems.

(viii) The system should be user-friendly, for example, with speed.
(ix) Instance and occurrence of prompts are imperative.
(x) Data or information presentation on MDSSs should not be too loaded or too

scanty. Researchers are also recommended that blinking icons should be
used for important tasks or that interactions should be arranged based on
the urgency of need.

(xi) DS outcomes should be made available to both experts and patients.
(xii) Overall, factors from the organization such as the availability of computers

at the caring point and the technological perfection of MDSS architecture
are critical to development [25]. Markus et al. [16] suggest that MDSS’s
effectiveness remains largely constant when systems proposals are declared
more robustly while supporting facts to these are timely and its expansion
takes into consideration clinical-specific data. Likewise, when recommen-
dations or suggestions are made more detailed and exact, the effectiveness
and functionality remain unaltered. Interestingly, the MDSSs did not
achieve the desired outcome as soon as confined experts were integrated
into the system cycle [26]. In summary, when MDSSs are developed, cer-
tain factors, software, and content should be considered. Key areas of
consideration are hardware availability, enough technical know-how, and
guidance on how to use the system, the extent of incorporation of the sys-
tem into the process, and the suitability of the medical information needed.
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17.3 Explainable models in MDSS: opportunities and
challenges

XAI representation ought to be designed in alliance and contribution from diverse
experts from different professions such as sociology, management science, art,
psychology, and medical science [32]. Even though XAI can help with recognizing
challenges of information, the case posed by formless medical information
becomes an impediment to the growth of intelligent systems that are useable. The
problem posed by unstructured medical data in the development of useable AI has
been discussed with solutions proposed by previous research [33]; some of which
include:

(i) Exchange of data between different sources should be enhanced provided
that appropriate safeguards for data privacy are ensured.

(ii) Data mining techniques should be considered to elicit vital clinical infor-
mation that perhaps could have been captured in free text.

(iii) To build up and amass statistics for medical usage, a controlled development
process that uses AI should be used. Also, the problem of data availability
and heterogenicity might be overcome by using the least available data and
information that is simple to begin the design of the structure [57].
Requirements that specific domain should be given consideration as well as a
detailed knowledge of the functions of the structure, its routine and under-
standability of the present systems, extent and the characteristics of the
explanations needed [58]. In addition, it has been recommended by [58] that
unexplainable methods should be used at the point of need and that priority
should also be given to the use of understandable algorithms over multi-
faceted procedures that requires the function of post-hoc models. In addition,
factors such as morals, equality, and safety with knowledgeable skills must
be taken into consideration at the stage of choosing the type of explainable
model [58]. Further study is required to establish the performance metrics of
the model [58]. Recent researches have shown that a greater part of research
aimed at prejudiced dimensions, for example, expert contentment, decency,
recognition, and confidence in the model [58]. While important insight into a
user’s experience can be obtained through subjective assessment, the general
lack of authenticated and dependable assessment metrics exists. Several
quantitative metrics for the evaluation of the properties of explainability for
different explanation types have been summarized in a previous study [59].
The authors noted that certain properties such as lucidity, extensive, and
wholeness are inadequate in terms of suitable metrics, and so is the category
of understanding that is hinged on examples. They also expounded on clin-
ical research for the assessment of ML clarification. Therefore, a conclusion
from that study could be paraphrased thus as: “the assessment of ML clar-
ification is a diverse research topic.” It is also not possible to define an
implementation of evaluation metrics, which can be applied to all explana-
tion methods. The system causability scale was introduced by Holzinger
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et al. [5] as a means to measure the quality of explanations. Another study
established inaccurate ML proposals as the main element that influence
experts and causes the accuracy of decisions to be low, while interpretation
reveals to be lacking in tackling depending on a model that brings out
decisions that are untrue [60]. The authors observed that interpretable
approaches must be chosen on the foundation of the clinician’s previous
understanding of the model and with preceding knowledge by professing
higher utility from the proposal made by ML.

17.4 Conclusion

The past years have witnessed tremendous development in XAI, evidenced by
growing research interest in the area. This could be a result of the increasing role of
ML, especially DL. While these models are highly accurate, they lack explain-
ability and interpretability. There has been limited application of AI systems in
vital fields such as precision medicine due to the aforementioned vagueness. In this
methodical analysis, we based our study on methods and techniques of XAI
employed in ML systems applied within the healthcare setting. For ease of com-
prehension, we further organized and discussed extant literature by proposing and
presenting a theoretical structure for the purpose of classification of XAI models.
The emphasis in literature based on this study seems to be more on interpretability
of the model as the basis for ML methods together with the use of transparency
systems, for greater accuracy. Findings from previous studies show greater
emphasis on the interpretability of a model as a pre-condition for ML models for
better precision. This is following the use of post-hoc and transparent systems.
While reports in previous studies try to stress the importance of equilibrium
between understandability and correctness, facts abound in study reports of pro-
jects’ understandability above correctness. This study identifies further study
opportunities that could be improved upon paramount among which are aspects of
patient-in-the-loop model, the toughness of DL with DA, and the tradeoffs linking
correctness and understandability. Also, other study opportunities associated with a
variety of detailed scenarios, processes, and practices in the area of XAI remain.
Some restrictions of the present study are:

(i) A shortlist of query terms was used.
(ii) The literature review was limited to Internet searches only. While this is

consistent by way of reviewing, given that a summary of models in the
medical domain, is an all-encompassing review that will require broadening
the assessment to other sources of citation such as grey literature among
others, other opportunities abound to possibly improve the categorization
structure to discuss processes and practices at the point of a construct.

Finally, XAI is an important and growing area of AI study, especially in the
medical and healthcare domains. The spread and acceptance of these methods
within the medical and healthcare community will not only depend on their
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efficacy but also on their being able to provide explanations that are meaningful to
users within the clinical settings. A viewpoint on the recent development and
impending areas of study in XAI is the areas of MDSS has been provided based on
the projected categorization structure and the findings from the methodical review
of the literatures.
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Chapter 18

The psychology of explanation in medical
decision support systems

Vitalis Afebuame Iguoba1 and Agbotiname Lucky Imoize2,3

Abstract

Today, an important role is being played by artificial intelligence (AI) in
healthcare systems. Many targeted healthcare applications such as medical
diagnostics, patient monitoring, and learning healthcare systems are now
available with the aid of AI software programs. Clinical decision-making is
enabled by AI algorithms and software. The predictive analysis of the AI algo-
rithms is aided by a computerized predictive analysis flowchart that enables it to
separate, organize, and check for patterns from complex data and draw a con-
clusion with some degree of probability, which will enable the healthcare ser-
vice provider to make a quality decision within a short time. The AI algorithm
does not make the final decision going by the existing legal frameworks at the
various jurisdictions but rather they are used as supporting tools for diagnosis or
a screening tool, instead of doing the usual medical tasks being done by the
doctor in a hospital setting. Many studies in the literature are available today on
research with patients’ electronic health records deployed by AI-assisted data
analysis and learning tools. They use an electronic secure computer which does
the records keeping instead of the traditional way of paper records. AI appli-
cations are being surged by the recent advancement in machine learning (ML),
and the improvement of AI applications in health solely depends on the success
in designing the AI algorithm, which is called ML. Only a proper and good
algorithm design can guarantee the set goals for AI systems. The autonomous
system that can perceive, learn, decide, and act on its own will only be possible
by continued advances in AI algorithms known as ML. Autonomous machines
are simply self-operating machines, which can carry out their assigned task
without human intervention. However, the machine’s inability to explain their
decision and action taken by them to human users has posed a big limitation to

1Department of Electrical Engineering, Dangote Cement PLC, Nigeria
2Department of Electrical and Electronics Engineering, University of Lagos, Nigeria
3Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
Ruhr University, Germany



their adoption and effective use. The deployment of more intelligent, autono-
mous, and symbiotic systems will provide a good solution to the challenges
being faced in the healthcare system. Thus, this chapter presents the psychology
of explanation in medical decision support systems (MDSS). The psychological
perspectives on explanation in healthcare systems with a binocular focus on
MDSS are highlighted.

Keywords: Machine learning (ML); Artificial intelligence (AI); Explainable
AI (XAI); Psychology of explanation; Clinical decision support system
(CDSS); Electronic health records; Medical decision support system (MDSS)

18.1 Introduction

The understanding of trust and effective management in an emerging generation of
artificial intelligence (AI) can be broadly defined as the branch of computer science
that deals with computational approaches and techniques which allow or enable the
machine to perform tasks that usually require some level of human intelligence [1].
There is no doubt that the application of AI tools will aid the doctor in making
quality and reliable decisions without error. These AI systems make good medical
decisions and sometimes even give a better medical judgment than humans. This
medical study is aimed at examining the usefulness of AI in healthcare, data gen-
eration and data analysis using AI systems, and diagnosis and treatments that AI
systems can offer to the user [2]. Over the years, there has been a remarkable
improvement in computing capability and large user data, especially during the
COVID-19 pandemic. The growth and development of AI systems applications
across various industries will be determined by the optimization of the AI algorithm
[3]. The healthcare industries are quite slow in the adoption and application of AI
as compared to other industries. Several policies have been proposed by the
Chinese government. Such policies include the next-generation AI development
plan and the three-year guidance for the Internet plus the AI plan being a targeted
plan to promote the development of AI in practice [4]. Due to the nature of
healthcare settings which are lifesaving by doctors and their inherent medical
knowledge, the physician is allowed to work independently and autonomously.
Having this in mind, medical practitioners cannot be persuaded by hospital man-
agers and IT firms, and this poses a big challenge for the adoption and use of these
new technologies. The doctors are not attracted to AI systems due to their limited
knowledge of the systems. Therefore, the adoption of IT by doctors is an important
topic that needs to be influenced by other stakeholders. Pinpointing the factors
affecting IT adoption is difficult due to the peculiar characteristics of AI and
healthcare settings [5]. The factors that affect the adoption of electronic medical
records (EMR) include the physicians’ understanding, caregiver identities, and
perceived government influence on caregivers. However, the adoption of AI in the
healthcare sector is being observed to have limited studies [3].
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The stage at which a decision is being made is termed the adoption of AI in
healthcare [6]. Healthcare is being revolutionized by AI [7]. To analyze links
between prevention or treatment approaches for sand patient outcomes seems to be
the main of AI in healthcare. Making healthcare more effective and efficient, cost-
saving, and time for diagnosis and disease management is the goal of AI applica-
tions in healthcare [8].

The two most rising computer technologies include value-based medical
healthcare and digital innovation being driven by blockchain and AI. Differently,
both technologies deal with data handling, and secured storage and sharing of data
being provided by the blockchain, while the use of insights to generate value from
data and the analysis of the data is being done by AI. The physician and caregivers
are being supported by an IT tool known as a clinical decision support system
(CDSS) which enhances patient care by providing specific medical information about
the patient. Specific medical advice is being given to the patient by using CDSS on
various items from the patient medical health data [9,10]. The communication
mechanism, knowledge base, and inference engine are all components of CDSS [11].

The clinical assistance tools are grouped into two, namely: knowledge and
non-knowledge-based. Group of compiled data and rules like if–then statements are
used by knowledge-based CDSS. While non-knowledge-based CDSS systems
adopt a type of AI instead of using knowledge-based, the patient clinical data are
being figured out by the system, allowing it to learn from experience. Data security
and ownership should be the focal point of healthcare systems [12]. The intellig-
ibility of the system behavior is a critical factor as this will enable the end user to
ascertain the mode of operation of the MDSS. This information will aid the phy-
sician in judgment to know whether the system has performed its intended purpose
or failed to perform its intended purpose. This is the basis for the physician to
determine the reliability of the system.

The purpose of explaining the way intelligent systems reason has been studied.
The various works done in this domain have the concept of reasoning by the types
of explanations, such as detailed suggestions on why the system made certain
suggestions and the confidence that such suggestions are correct. From the previous
work we have seen that giving proper explanation can increase users’ under-
standing of the system’s functionality [13]. An automated system such as MDSS is
frequently misused or disused by the user. According to neural-induced mesench-
ymal stem cells, in 2020, the global market size of explainable AI was 3.5 billion
USD, and its growth is expected to reach 21 billion USD in 2030.

18.1.1 Categories of AI
Basically, the design of intelligent machines can be categorized into four depending
on the capacity of the computer system or device.

18.1.2 Artificial narrow intelligence
This is called “Weak AI” or “Narrow AI” – Any AI systems that can perform its
intended designed tasks alone and such an approach is termed artificial narrow
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intelligence. Repetitive task performance is their hallmark; examples are Siri,
Google Translate, and IBM’s Watson.

18.1.3 Artificial broad intelligence
This is called “Broad AI” – an AI technique that is responsible for the decision-
making when performing the task with two or more narrow AI being combined. An
example is self-driving vehicles.

18.1.4 Artificial general intelligence
This is called “Strong AI” or “Deep AI” – the intellectual tasks performed by a human
being allowed to be also performed by a machine are termed strong AI. Self-aware and

Table 18.1 Main definitions of AI terms

AI terms Definition

AI [33] Performing an assigned task as a human or even better than a
human by a machine, especially computer systems that mimic
human intelligence is termed AI. AI is making machines
behave like a human. This is achieved by developing an
algorithm that studies large data sets to establish a pattern. This
data can either be structured or unstructured. The two key
components of AI are machine learning (ML) (algorithm) and
analytical tool for data analysis.

ML [33,34] This is the branch of AI whose function is to build systems that can
learn or improve the performance of a task based on the existing
data. Large data sets are studied to establish a pattern. This data
set could be structured or unstructured. ML is simply an
algorithm like a flowchart. It studies data and establishes patterns
from it. The growth and success of AI solely depend on the
design of proper and good algorithms with an accurate data set.

Big data [35] Data samples that are too large to analyze appropriately by the
usual AI technique termed big data. However, another technique
like deep neural networks (such as deep learning) is applicable.
The data sets are generated from the required area in which the
AI tool is to be used. When the correct data are not generated it
means the use of such AI tool will be catastrophic.

Neural networks [36] These are interconnected neurons being arranged hierarchically
in layers to learn and perform highly complex tasks from data
set using a series of an algorithm. They are arranged in layers
based on the required task they are to perform.

Deep learning [37] A highly complex type of deep neural network with more than
three layers being required to estimate the optimal values of
parameters for large data is termed deep learning. When the
data sample is not too large, decision trees or support vector
machines find essential applications.

AI model, AI algorithm,
or AI tool

The building block of the AI model for a particular application is
called an algorithm, while the output from the ML algorithm is
termed the AI model.
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the theory of mind are available. They also interact in the same manner as humans. By
emotion and with prior knowledge being able to strategize and make a plan.

18.1.5 Artificial super-intelligence
The ability to exceed the human intelligence quotient is aided by hypothetical
approaches.

Rules-based AI uses previously validated information (such as clinical guidelines,
risk calculators, and published studies) to set up a series of clinically accepted weights
or decision steps that lead to a prediction, diagnosis, or recommendation.

Data-based AI, popularly known as machine learning (ML), is trained using
sets of labeled input data (called “training data”) and uses computer program pro-
cesses to derive relationships between the inputs and the so-called “labels.”

Logic-based AI: The logical statements and the current state goals are repre-
sented by the knowledge of agent statements. The specific goals being obtained by
logical deduction of these statements and appropriate computational decisions are
used as well [14]. The medical decision support systems (MDSS) used a kind of AI
ML, to learn from experience to establish clinical data. However, since the process is
based on ML the reasons for their conclusions cannot be ascertained or explained.

Knowledge-based AI: The inference engine and knowledge-base compo-
nents characterized the category of AI, and new decisions are inferred by the
inference engine. Declarative, procedural, heuristic structural, or metal knowl-
edge is being used to represent the state of the world of knowledge-based while
the inference engine technique consists of rule-based, model-based, and case-
based reasoning for generating new knowledge [15]. The key distinction between
machine autonomy and intelligent autonomy is being considered in deciding
systems’ level of intelligence. In general, models with good features with respect
to accuracy and performance do not usually have a good explanation. It covers
psychological theories of explanation, and the explanation of AI intelligent
operation is given in Figure 18.1.

Natural Intelligence
Data-Driven

AI

AI Driven by

Information

Knowledge-

Driven AI

Wisdom Knowledge Information Data

Figure 18.1 Comparison of efforts, precision, and explainability level in AI
approaches
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18.2 Recent development of XAI in MDSS

Recently, blockchain technology [16] has greatly impacted healthcare, apart from
other applications in Bitcoin and Ethereum, supply chain, and Internet of Things
and healthcare information technologies (HIT), computer-aided decision support
system (CAD), computerized physician order entry system (CPOE), electronic
health record (EHR), e-prescription software, and the most recent being AI-
enhanced HIT has a more “computational superiority,” than the former systems.
Improved safety, better quality, and personalization provided by AI-assisted HIT
hold great promise for the healthcare industry. The main challenging factor is the
inability to implement the outlined HIT results of the extensive studies over the
past three decades in real-world medical practice [17].

The limitations of this empirical research are the use of AI in healthcare is still
at the infant stage. The medical field is a sensitive area because it deals with human
life and health problems. Its adoption and application will be slow until the tech-
nology is fully matured. The algorithm is the bedrock of AI, and proper under-
standing and learning of this algorithm will be an emerging family of technologies
that build on ML and computation statistical techniques [3]. The reduction of risks
and harmful conditions is termed safety in healthcare. AI-based applications have
been key for risk minimization [18]. Figure 18.2 shows the market value of XAI
in MDSS.

From 1990 to date, deep learning concepts and foundations have recorded
progressive convolutional neural networks, and the accompanying recurrent neural
networks, convolutional neural networks, deep reinforcement learning, and adver-
sarial generative networks have recorded a tremendous breakthrough. Explanations
of the decisions and actions of the system to human users have been insufficient.

25

20

15

10

5

0
2021

4.4
5.5

6.6
7.8

9.2

10.9

12.8

15.2

17.9

21

2022 2023 2024 2025

Years

M
ar

k
et

 v
al

u
e 

in
 b

il
li

o
n
 U

S
D

2026 2027 2028 2029 2030

Figure 18.2 The market value of XAI in MDSS

494 XAI in MDSS



The autonomous and symbiotic systems posed enormous challenges for the US
Department of Defense. The systems are becoming smarter on daily basis. The
explanation of AI or ML algorithm is necessary to serve as a preview that human-
like AI will come shortly [19].

The smart contract and ledger constitute blockchain technology [16, 20]. They
both deal with and analyze all the input from the blockchain, and output generate
which are usually hash [21]. In this section, the major area of AI applications can be
divided into four practices: (1) clinical; (2) research; (3) public health; and (4)
administrative. A summary explanation of these four areas of practice is provided
in the next section and a summary of the current developments and applications of
AI in these four areas is also provided. An automated system like MDSS is either
misuse or disused. Because the outcome of a CDSS tool is sometimes wrong, it will
be a catastrophe for a user to over-rely on their outcome [13]. Figure 18.3 shows
stages of the deployment of AI.

18.2.1 AI in clinical practice
Healthcare data systems have been developed due to the COVID-19 pandemic, and
this is related to the way and way data management and control are being done.
Several tasks such as generating data, access, and storage of patients’ medical
information and several automating role functions such as image analysis (like
radiology, ophthalmology, dermatology, and pathology) are being played by AI. It
also performs signal processing such as electrocardiogram, audiology, and elec-
troencephalography. It can also be used in test and image analysis. In combination
with other medical data, AI can produce clinical workflows.

The following sections deal with the possible application of AI in specific
areas of medicine that are not regularly reported, e.g., nephrology and personalized
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medicine [9,22]. World Health Organization said cardiovascular diseases result in
more than 18 million deaths. The goals of XAI in healthcare include precision
medicine, prediction, image analysis, and smart robots [12]. A key summary
explanation of XAI in MDSS is given in Figure 18.4.

18.2.2 AI in biomedical research
Biomedical research has derived numerous benefits from AI-derived clinical
applications, with recent development making AI applications promising in clinical
knowledge retrieval. For instance, a ML algorithm ranks search mainstream med-
ical knowledge resources [23].

18.2.3 AI for public and global health
The importance of AI in public health can never be overemphasized. The science
and art of preventing disease, prolonging life, and promoting health through
organized efforts are frequently used in that it is of society, organizations, public
and private, communities and individuals. Several experiments with relevant AI
solutions are ongoing within several public health areas. Prevalence disease or
high-risk demographics are being identified by AI applications. AI applications
can be used to generate both environmental and occupational using the data
generated by sensors and robots, patients’ potential contact, and quality medical
service [23].

18.2.4 AI in healthcare administration
Blockchain technology is known for transaction cost saving and its deployment in
healthcare will provide the following: speed up some healthcare processes and
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Figure 18.4 The benefits of XAI in MDSS
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reduce transaction costs following data-handling standards, including privacy,
security [24], transmission, exchange, content, and terminology, and due to the
peculiarity of the blockchain technology XAI is also used to speed up some
healthcare processes.

Many interesting AI applications in healthcare administration are also avail-
able. AI application in this domain is less revolutionary compared to patient care.
The use of AI is somewhat less potentially revolutionary in this domain as com-
pared to patient care; for instance, an average US nurse spends 25% of work time
on regulatory and administrative activities [25].

18.3 Potential benefits of XAI in MDSS

Developing AI systems with interpretability will be beneficial to the users.
Investing in explainability will reduce pressures like regulation, accountability, and
ethics.

18.3.1 Radiology
Significant AI development has been experienced by radiology. Medical image
quantification is used by radiologists in imaging AI technologies. Without much
human supervision, deep network models can be deployed to enable automatic
localization and delineate the boundaries of anatomical structures or lesions.
Priorities and track findings are provided by AI application; this mandate early
attention and serves as a guide for radiologists to focus on images with abnorm-
ality. An example of such a tool is “cvi42.” The Canadian company Circle CVI has
been adopted in over 40 countries as a commercialized cardiovascular imaging
platform. AI technique has also been useful in image processing techniques called
radiomics, although the concept is not readily understood. The aim is to extract
quantitative information from diagnostic and treatment planning images. Recently,
many studies dealt with the performances of deep learning software and radi-
ologists in the field of imaging-based diagnosis.

Magnetic resonance imaging, computed tomography scan, and X-ray are
allowing medical personnel to visualize human internal parts with the aid of
medical imaging techniques [12].

18.3.2 Early diagnosis
This deals with the combination of two important ML algorithms, such as principal
component analysis and the genetic fuzzy finite-state machine principle being
applied. The detection ability is based on movement pattern recognition [26, 27].
The goal of AI is to design systems that can deal with the diagnosis and treatment
of diseases. A good example is MYCIN which emerged in 1970 at Stanford for
diagnosing blood-borne bacterial infections. Although were not adopted for clinical
practice, their performance was not better than human diagnosticians, and as such,
they were poorly integrated into the healthcare system medicine, and hepatology is
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not left out of the steadily progressing AI research in many areas of life. The
diagnosis of multiple types of liver disease, most of which are life-threatening, is
done by ML models. The accuracy of the recently designed AI neural network for
diagnosing is 97.2%.

18.3.3 Emergency medicine
Patient management has benefited immensely from AI emergency medicine at dif-
ferent levels. It provides a quality improvement for patient prioritization during triage
and is vast in analysis. The adoption and application of AI in healthcare will enable
the doctor to understand which area needs more priority in terms of attention. AI in
emergency medicine has a total of 150 studies as reviewed by the recent scoping.

18.3.4 Risk prediction
Risk prediction focuses on assessing the likelihood of individuals experiencing a
specific health condition. Analysis of the generated data will enable the AI system
to predict using the probability principle the risks ahead for a certain individual
given their current health condition. This will enable such individuals to target how
to receive specific medical interventions. This system is currently built on regres-
sion analysis and the subsets of the available medical data.

18.3.5 Chatbots
Chatbots tend to improve primary healthcare and triage by being powered by AI.
Immediate conversational responses and connections are given to patients via
chatbots. When implemented chatbots tend to improve the overall patient outcomes
and cost savings, in terms of embarking on an unnecessary medical trip.

In Figure 18.5, the application of XAI in MDSS is given. The field of surgery
has been revolutionized by AI technology in the capacity of collaborative robots.
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Figure 18.5 Applications of XAI in MDSS
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18.3.6 Virtual nursing assistance
24/7 virtual nursing assistants are being operated by AI systems. The quick medical
response to patients tells the best healthcare setting that will meet their needs. It
provides the opportunity for the healthcare workers to monitor their patients, and
proper interactions between the doctor and the patient, and it can monitor treatment
updates and efficiency. The medical status of the patient can be checked through AI
and voice [28]. The importance of AI in MDSS is given in Figure 18.6.

18.3.7 Precision medicine
AI in healthcare has provided precision medicine known to the users. Cheap gen-
ome sequencing and the large data being gathered are the building blocks. Deep
learning and supercomputing are being used for precision medicine.

18.3.8 Administrative workflow assistance
Automation of AI applications in healthcare administrative workflow is one of the
most innovative AI applications in healthcare recently. It enables care providers to
decide on urgent tasks, aiding the medical doctor and nurses, and also saving costs.

18.4 Key challenges of XAI in MDSS

CDSS and ethics is being known to have substantial literature. Most of the avail-
able literature does not give much information on deep and complex functionalities
and issues affecting AI-driven systems [17]. Key challenges of XAI in MDSS are
given in Figure 18.7 [9].

18.4.1 Patient harm due to AI errors
Despite the advancement in ML and data analysis, AI-incorporated clinical systems
used in healthcare may still fail, their use may be questioned in terms of the end users
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safety concern, and the algorithm implemented in AI could lead users to errors in the
following ways: (1) false negative appearing as wrong diagnoses, (2) unrequired
treatment resulting from the false positive, and (3) making the wrong intervention due
imprecise diagnosis, or lack of priority of task in emergency sections.

Assuming the needed large-scale data sets are available to the AI developers
with detailed quality training, the following could still be the major source of
errors. First, AI tools are seriously affected by noise in the input data during
application. For instance, ultrasound scanning – used for imaging modality in
clinical practice – is readily prone to scanning errors due to noise. Second, the
data set shift resulted from AI misclassifications. Lastly, faulty or erroneous
predictions of AI algorithms occur as a result of unexpected change patterns; for
example, an AI tool designed to handle a population density of a health facility of
100 persons is now deployed in another hospital setting with a population density
of 500.

18.4.2 Misuse of medical AI tools
The risk for human error and human misuse is not being left out in most health
technologies, including the application of AI in medical science. Having a good AI
design with an accurate and robust algorithm, their usage outcomes solely depend
on the way and manner the end user used such an AI system. Proper and correct
usage of these AI tools will determine the outcome, and being a medical profes-
sional doesn’t make one know medical AI tools. The user must understand the
mode of operation of the AI tool, to know where and when to use it. Only AI tools’
proper usage void of human errors with a suitable application can guarantee the
desired result [23].
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18.4.3 Risk of bias in medical AI
AI developers want to design AI algorithms that possess fairness and equity.
Despite the progressive advancement of AI in medical research and healthcare
delivery, inequalities and inequities in medical care exist within most countries
of the world. The contributing factors include gender (sex; male or female), age,
ethnicity, income, education, and geographical location. An important role is
being played by human biases. This is the perception people have generally about
certain situations and people. For example, its believed that women are weak
vessels because of their nature, when a female is having several medical com-
plaints of pain, after some time the doctor may start relating her weakness to the
complaint. These issues are also applicable to AI design. However, future AI
applications could embed with this concern not being implemented, enumerated,
and controlled [23].

18.4.4 Lack of transparency
Despite the massive improvement of AI applications in the medical field, trust and
adaptability become a big challenge as the existing algorithms are seen by indivi-
duals and experts as complex and obscure technologies because the technology is
difficult to understand.

Much attention is being given to the recent AI algorithm designed by Google
for breast cancer screening due to its performance, speed, and robustness required
for breast cancer screening. The performance was more than expected. The big
question is how the developer arrived at this algorithm; our concern should not
only focus on the success of the AI application and its benefits, but we must also
consider the steps and procedure that was followed to arrive at it, otherwise the
world will be in confusion due to transparency issues in AI applications. With the
clarity of the AI, tool transparency issues of explanations are almost completely
solved [29].

It is very necessary and important to consider the issues of explanation in AI
tool applications in the medical field. The consideration before AI concludes that
any approach is very important. Unfortunately, readily available AI tools have big
issues with explanations due to their lack of transparency. The absence of trans-
parency will lead to a great lack of trustworthiness, especially in a sensitive area
like the medical field which deals with human life. Hence the adoption of AI tools
in this area without trust is almost impossible.

Traceability and explainability being used in AI transparency are closely
linked. The distinct levels of transparency in terms of the decision taken in the
application of AI – explainability while the transparency of usage process and
development – traceability. In the real world, there is no availability of traceability
for AI tools used in healthcare systems. In providing an “AI passport” for doc-
umentation of vital information of an algorithm, a traceability tool is required to
monitor the usage of the algorithm when deployed. Finally, there is an urgent to
enact some regulatory frameworks regarding this issue [23].
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18.4.5 Privacy and security issues
Healthcare is being increasingly widespread with the development of AI solutions.
The recent COVID-19 pandemic shows that it is a risk for a lack of data privacy,
confidentiality, and protection for patients. This could be a big repercussion
because exposure of patient data will violate the rights of such a citizen, especially
when the information is used for another purpose instead of medical gains. Because
AI uses large data sets, privacy and security associated with such data are
imperative. Due to the sensitivity of medical data, there must be detailed consent on
it, and the patient must be given the necessary information and informed decision
before sharing personal health data. Creating awareness for a patient and the
patient’s response to this demand is very important in the healthcare industry. The
Helsinki Declaration which was formalized and has grown to live with humankind
birthed digital technology. This informed consent deals with ethical issues, pro-
tection of the patient from harm, and respect for autonomy. The patient may not be
able to understand how their data are being used at various levels. The development
of opaque AI algorithms seems to have been violated and there is a consent limit on
how autonomously and how power is shared in decision-making between patients
and clinicians [23].

18.5 The future of XAI in MDSS

The importance of the adoption and implementation of AI systems in healthcare
can never be over-emphasized, as this technology will provide a lot of benefits to
the end users. AI system application has changed the entire narrative of the
healthcare system. Apart from the information management offered by the tech-
nology, it has also impacted the administrative system, diagnosis, and treatments of
patients in healthcare. At the moment, there is a clear drift of doctors from their
usual traditional procedures to the use of AI chatbots that is developing an AI form
of doctor, this AI formwork in collaboration with the doctor. The collaboration of
patients and AI from the doctor is being studied by a digital healthcare organization
in the United Kingdom.

The traditional way of medical procedures is gradually evolving to innova-
tive AI methods of accurately diagnosing and quality treatments, and thus the
technology is becoming more popular through developments of ML algorithms
and large data analysis. Some of the outcomes have already been tested and
implemented in real-time applications. The adoption of ML in XAI will provide a
tremendous improvement in MDSS, in terms of error-free medication prescrip-
tion, eliminating the adverse effect of drug events and other emanating errors
medical from the medical process. Continuous clinical trials will give birth to
innovative pharmaceutical industries, clinical trials involve failure and success,
and the AI tool will help to discover more efficient drugs. Delivery of targeted
drugs and vaccines to certain places was actualized during the Coronavirus
pandemic, and it can also be used for drug delivery to a geographic area with a
prevalence of diseases.
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18.6 The research trend of XAI in MDSS

The XAI in MDSS in healthcare has revealed innovations and prospects for quality
healthcare delivery. The area of consideration of this research includes pharma-
ceutical, targeted drug delivery, virtual nursing assistance, automated diagnosis,
precision medicine, and healthcare data system optimization. The optimization of
ML algorithms and data analysis tools will be the turning point for the AI system.
According to Dr Joseph Rieger, “The news that Babylon Health has raised near
£50M to build an AI doctor” is a good and innovative development for the
healthcare industry; in London, research and trials are on the way to make this
Babylon’s tech as a replacement for the non-emergency 111 number-CTO of
Fujitsu EMEIA. Due to the prevalence of lung disease in China, innovative design
by inferring vision is used at Shanghai Changzheng Hospital in China for radi-
ological services The infer vision is an AI innovative design very effective for the
diagnosis of lung disease. The machine has interoperability characteristics and high
operating speed. The constraints of time and accuracy during diagnosis are elimi-
nated by inferring vision. The existing study on medical reasoning indicated that
inexperienced physicians solely depend on their knowledge of pathophysiology in
conducting diagnoses [13].

The CDSS interoperability challenges were reviewed. However, the EHRs pro-
vided new cloud system architecture and new standards, which have good flexibility
of connection with other systems [30]. With the emergence of CPOE and CDSS, the
burden on healthcare providers, pharmacists, and nurses to double-check orders has
drastically reduced. Initially, the medical personnel does this task, but the task is now
better handled by AI tools which produce a better performance than humans. The
CDSS created the impression that verifying the accuracy of order is not a task [29].

18.7 The future directions and recommendations

AI tools application will impact healthcare positively, and this progress is con-
nected to ML because ML and large data set analytics tools are the capability that
produces precision medicine, diagnosis, disease prevention administrative work-
flow, and improved quality healthcare delivery [25]. The proper evaluation using
the right analytical tools is very important. During the data analysis, it is possible to
decide the data that is needed and the considerations in choosing such data. Without
a proper data study, the desired pattern cannot be established. In the near when deep
learning and AI will reach the same level (to become single), at this level AI will
produce machines that will be more intelligent than a human. The two-point issues
open new a link for further study.

The CDSS tool has provided many benefits for the medical doctor such as
improved decision making, elimination of errors in treatment procedures, the
adverse effects of drugs, and false diagnoses. However, for the doctor, persistent
use of such an AI tool will develop too much trust in such a CDSS tool as con-
tinuous use will make him bring about familiarity. However, the effect of this over-
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reliance on the CDSS tool by the user is an issue that needs to examine critically by
a further study [30–32].

18.8 Conclusions and future scope

An extensive AI legal framework should be put in ML to handle structured data sets
(the medical information and images) and NLP that deals with the collection of
unstructured data. Suitable algorithms with real data generated from the healthcare
system will provide proper illness analysis and recommendations of the best treatment
method for the doctors. Despite the AI innovations are essential and considered to
transform the pharmaceutical and therapeutical industry, their implementation in the
real world has a confrontational barrier. Due partly to the absence of rules and reg-
ulations for their operation, these regulations will deal with the issues of safety of their
end users. In order to achieve the proper functionality of the system, AI frameworks
are needed, starting from the phase of medical examination to management. After the
AI is put into use, a continuous data supply is needed to optimize its operation.
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