
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

A MATLAB Tool for the Analysis

of Cryptographic Properties of

S-boxes

by

Fatima Ishfaq

A thesis submitted in partial fulfillment for the

degree of Master of Philosophy

in the

Faculty of Computing

Department of Mathematics

2018

file:www.cust.edu.pk
file:www.cust.edu.pk
file:fatimaishfaq88@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Fatima Ishfaq

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

To my father for his prayers and love, for giving me the determination to

overcome many trying moments to pursue my dreams.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

A MATLAB Tool for the Analysis of Cryptographic

Properties of S-boxes

by

Fatima Ishfaq

MMT153016

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Umar Hayat QAU, Islamabad

(a) Internal Examiner Dr. Dure Shehwar Sagheer CUST, Islamabad

(b) Supervisor Dr. Rashid Ali CUST, Islamabad

Dr. Rashid Ali

Thesis Supervisor

September, 2018

Dr. Muhammad Sagheer Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Mathematics Faculty of Computing

September, 2018 September, 2018

iv

Author’s Declaration

I, Fatima Ishfaq hereby state that my M.Phil thesis titled “A MATLAB Tool

for the Analysis of Cryptographic Properties of S-boxes” is my own work

and has not been submitted previously by me for taking any degree from Capital

University of Science and Technology, Islamabad or anywhere else in the coun-

try/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my M.Phil Degree.

(Fatima Ishfaq)

Registration No: MMT-153016

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “A MATLAB

Tool for the Analysis of Cryptographic Properties of S-boxes” is solely my research

work with no significant contribution from any other person. Small contribu-

tion/help wherever taken has been dully acknowledged and that complete thesis

has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of M.Phil Degree, the University reserves the right to with-

draw/revoke my M.Phil degree and that HEC and the University have the right

to publish my name on the HEC/University website on which names of students

are placed who submitted plagiarized work.

(Fatima Ishfaq)

Registration No: MMT-153016

vi

Acknowledgements

All praise be to Almighty ALLAH who has been bestowing me with His great

bounties and enabled me to complete my dissertation.

I would like to thank my affectionate teachers, Dr. Muhammad Sagheer, Dr.

Abdul Rehman Kashif, Dr. Shafqat Hussain, Dr. M. Afzal and Dr. Rashid Ali for

their excellent teaching and support during these years. I would like to express my

special gratitude to my supervisor Dr. Rashid Ali for his patience with me and

guidance. A more supportive and considerate supervisor I could not have asked

for. He was a big support and motivation in the difficult times as he encouraged

and helped a lot during research and writing of thesis. I feel really blessed and

proud to be his student.

I truly appreciate my mother for her love and continuous support, for without her,

I would not have finished my degree. I am grateful to my late father for all the

prayers, who always supported me in achieving my targets. I would like to thank

my sister for the motivation and my kids who are always been a sweet delight of

life and helped me to be a better human.

I have also had the good fortune to study with some wonderful people: Saba

Majeed, Urwa Aftab, Afsheen Nazar, Maria Qamar and Sumaira Bibi who helped

and encouraged me throughout my studies. Their friendships are what I will miss

the most and hope to keep forever. Especially, I would like to acknowledge Ms.

Saba Majeed and appreciate her friendship and contribution. My friend Zareen,

your support made all the difference and I can’t thank you enough for driving me

towards my goal always.

Finally, I am obliged to all the people who prayed for me, shared their knowledge

during my degree program and supported me.

“Once dust, you are now spirit. Once ignorant, now wise. He who has led you so

far, will guide you further.”

Rumi

viii

Abstract

Substitution boxes (S-boxes) are one amongst the crucial parts within a block

cipher and play an important role in their security for being the only non-linear

part of the system. Despite the fact that some old algorithms and S-boxes are still

in use these days as they possess theoretically known security parameters, there is

always a demand for a tool which can investigate the strength of an S-box and its

corresponding boolean functions cryptographic properties. A well built tool for the

analysis is also necessary when we want to create new S-boxes. Although in some

cases, the common properties of S-boxes are known because of their generating

algorithms but still we believe that an extensive investigation is required for all

cryptographic properties. In this thesis, we present a tool for the evaluation of

some key properties of Boolean functions and S-boxes suitable for cryptography.

The performance indexes of S-boxes are outlined and surveyed. The corresponding

numerical formulas for calculating them are discussed. Then, a code is established

in MATLAB software which can not only compute the required parameters for an

S-box but also for the boolean functions with large computational space GF (2n)

for 2 ≤ n ≤ 20. This tool provides an in depth approach of calculation process for

the user so we believe that this tool is very useful to support the researchers for

the analysis and designing of S-boxes to check the security of associated symmetric

encryption scheme.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract viii

List of Figures xi

List of Tables xii

Abbreviations xiii

Symbols xiv

1 INTRODUCTION 1

1.1 Substitution Boxes in Cryptography 2

1.2 Why We Study S-boxes? . 3

1.2.1 Classification of S-boxes . 4

1.3 Construction of S-boxes . 4

1.3.1 History of Design Criteria of S-boxes 5

1.4 Desirable Properties for Good S-boxes 7

1.5 Software Tools For S-box Analysis 8

1.6 Thesis Objective . 9

2 S-boxes and their Cryptographic Properties 12

2.1 Mathematical Background . 12

2.1.1 Galois Field . 12

2.1.1.1 Representation of Galois field elements 14

2.1.2 Boolean Functions . 15

2.1.2.1 Representation of Boolean functions 16

2.1.3 Properties of Boolean Functions 18

2.2 Substitution Boxes . 25

2.2.1 The Rijndael S-box (AES) 27

ix

x

2.2.1.1 Irreducible Polynomial 27

2.2.1.2 Affine Transformation 28

2.2.2 Properties of Cryptographically Strong S-boxes 30

3 MATLAB tool for the analysis of S-boxes 42

3.1 MATLAB tool . 42

3.1.1 How to use this MATLAB code? 45

3.1.1.1 Requirements . 45

3.1.1.2 S-box Analysis MATLAB Tool (SAMT.p) 45

3.1.1.3 Notation . 51

3.2 Analysis of different S-boxes by SAMT 53

3.2.1 AES S-box Analysis . 53

3.2.2 Guo Chen S-box properties 57

3.2.3 Faith and Ahmet S-box properties 61

3.3 Comparison of Results with SET-tool 65

3.4 Conclusion . 66

Bibliography 67

List of Figures

3.1 MATLAB Window with Editor space and Command window 46

3.2 MATLAB Path requirement . 47

3.3 Code file name in Command Window 48

3.4 MATLAB code Results . 51

xi

List of Tables

2.1 Roots of primitive polynomial in GF (23) 14

2.2 Elements of Finite Field GF (28) with irreducible polynomial m(u)
= u8 + u4 + u3 + u+ 1 . 15

2.3 Truth Table of XOR Boolean function 16

2.4 Truth Table of logical OR function 17

2.5 One Variable Boolean Functions . 17

2.6 Number of Boolean Functions . 17

2.7 Conversion in affine cipher . 19

2.8 Hamming distance between two functions f and g 21

2.9 Calculation of Hamming distances and Unexpected distances of f =
[1 0 0 1 1 0 0 1] . 22

2.10 Comparison of truth tables . 24

2.11 (4× 4) S-box . 26

2.12 Truth Table of XOR, AND functions 30

2.13 S-box fixed points . 41

2.14 S-box opposite fixed points . 41

3.1 AES S-box results with SET tool and SAMT 65

xii

Abbreviations

DES Data Encryption Standard

AES Advanced Encryption Standard

SPN Substitution Permutation Network

SAC Strict Avalanche Criterion

WHT Walsh Hadamard Transform

SET S-box Evaluation Tool

GF Galois Field

TT Truth Table

ANF Algebraic Normal Form

BIC Bit Independence Criterion

DD Dynamic Distance

xiii

Symbols

G Group

Z Set of integers

R Set of real numbers

Q Rational numbers

C Complex numbers

V Vector space

G∗ Multiplicative Group

p, q Prime number

Fp,Zp Finite field of order prime p

Fpk Finite field extension

xiv

Chapter 1

INTRODUCTION

Cryptography is the science of special techniques of secret writing which changes

original message into a coded message with an unreadable format for its transmis-

sion over the public networks in the presence of adversaries.

For this purpose, we need a system or procedure for converting data or messages

into secret codes. Such systems are known as Cryptosystems. These systems

are considered usually as mathematical techniques with specific computer pro-

grams; however, they also take into account the management of human behavior

e.g choosing passwords which are hard-to-guess, shut down the systems which are

unused, and of course not discussing sensitive procedures with outsiders. Thus a

good cryptosystems should meet Confidentiality, Integrity, Non Repudiation and

Authentication criteria.

A typical cryptosystem has five major components which are Planitext, Cipher-

text, Encryption Algorithm, Decryption Algorithm and Key.

Now if we consider the design criteria of a cryptosystem, the cryptography is

further divided into following two main categories:

1. Symmetric key cryptosystem

2. Asymmetric key cryptosystem

1

Introduction 2

Symmetric key cryptosystem in which sender and receiver share a common secret

key for both data encryption and decryption. It is also known as the secret key

cryptosystem. Examples are (DES) Data Encryption Standard [16] and (AES)

Advanced Encryption Standard [42]. We can consider merits of symmetric key

cryptosystem as simple to use, easy to implement and fast speed while demerits

are key management and security issues.

For enhancing cryptosystem’s security, in 1976 White Field Diffie and Martin

Helman [42] proposed the idea for encrytion and decryption of data known as

Asymmetric key cryptosystem or public key cryptosystem. This cryptosystem

uses two keys, the key used for data encryption is different from the key used for

data decryption. Thus the encryption key is shared publicly, known as Public

Key and the decryption key is kept secret by the owner, known as Private Key.

Examples are RSA cryptosystem [43], El.Gamal cryptosystem [18], Elliptic curve

cryptosystem [7].

1.1 Substitution Boxes in Cryptography

A symmetric key cryptosystem is further categorized as either by stream cipher or

block cipher. A block cipher will convert a whole block of plaintext into a block of

ciphertext using the secret key at a time whereas stream cipher encrypts one bit

or byte of data at a time. Thus a block cipher has two basic parameters, Block

size and Key size.

The block ciphers are designed on the basis of Shannon’s theory of confusion and

diffusion which is also implemented in Substitution-Permutation networks(SPN)

[28]. Such networks are basically consist of a number of mathematical operations

which are linked together. It takes as input a block of palintext, a key and apply

many rounds of Substitution-Box (S-box) or Permutation-Box (P-Box) to

get desired cipher text. For decryption process the inverse S-box or P-box is

used in reverse order with the same key. The examples of SPN are the Data

Introduction 3

Encryption Standard (DES) [16] and Advanced Encryption Standard (AES) [42]

cryptosystems.

S-boxes are basically vectorial boolean functions expressed as look-up tables. An

S-box takes in a small block of bits and substitute them by another block of bits.

This substitution should be one-to-one to make decryption effective. Generally,

S-box takes m input bits and convert them into n output bits. So an (m × n)

S-box can be considered as a look-up table with 2m words of n bits each. The

length of the output can be the same as the length of the input as in AES or it

can be different as in DES. An S-box should be designed in such a way that each

output bit will depend on every input bit for making cryptosystem strong.

1.2 Why We Study S-boxes?

The only nonlinear part of a SPN as a cryptosystem is the S-box because S-boxes

are composed of highly nonlinear Boolean functions. Without them, adversaries

would compromise the system with ease.

Why should we allocate time to study S-boxes while we can use them

directly?

Actually, there are three main reasons for studying the S-box design.

1. Critical to Block Ciphers

If you are not studying S-box design criteria then you are bound to adopt

an important part of block ciphers just like a black box with no real under-

standing of what is their design and how it is affecting the whole system.

2. Designing New Ciphers

For designing a new cipher, S-box design is the most significant area because

it is the only nonlinear part of the system. So basically a cipher strength

depends on this part. As with advancement of cryptography, hackers are

Introduction 4

also developing new methods of attacks, so S-box design should be secured

in advance to guarantee cipher security.

3. Need of Developing Private S-boxes

Interest and awareness in this topic was increased especially when back-doors

are used by the adversaries to generate keys for certain ciphers such as AES

[42], therefore, every organization and especially governments want to have

a secure system only applicable to their organization with an extra security

layer which is possible only if they design their individual S-boxes for their

specific system.

1.2.1 Classification of S-boxes

There are three sub classifications of S-boxes.

1. Straight S-box

A straight S-box takes input and gives output of the same size. The well

known AES [42] is an example of such S-box. This is the easiest and most

common form of S-box design.

2. Compressed S-box

An S-box which takes in more input bits but puts out less bits. DES is a

good example of this type of S-box in which each block takes in 6 bits and

outputs 4 bits block.

3. Expanded S-box

This S-box takes in less input bits and puts out more bits. One can construct

such S-boxes by duplicating some of the output or input bits.

1.3 Construction of S-boxes

There are many defined methods for making good S-boxes. Some examples are

twofish [45], DES [16], AES [42], and GOST [13] etc.

Introduction 5

Researchers and Cryptographers proposed many approaches and methods for the

construction of a strong S-box. The security arguments of symmetric encryption

algorithms are basically depending on the properties of S-boxes and so they are

really crucial in cryptography.

In this scenario a main question arises that, can we suggest some S-boxes are better

than others?. Obviously answer is Yes, so the main focus was to investigate those

measures which would differentiate between bad and good substitutions, and for

those techniques which would construct good substitutions. Cryptanalysis attacks

depend on the weakness of cryptosystem so new attacks produce a demand for the

new security parameters.

1.3.1 History of Design Criteria of S-boxes

We consider briefly some key points in the evolution of design criteria of good

S-boxes.

1. Feistel, H. [19] introduced the Avalanche effect. If we had a box with 128

input and output bits, any analyst than need to deal with 2128 or more than

1038 possible digit blocks for frequency analysis of system. As the input

moved through successive layers, the pattern of 1’s generated was improved

and resulted in an uncertain avalanche. In the end the final output had, on

average, half 0’s and half 1’s, so all inputs were potentially involved in all

outputs.

2. Kam, J. and Davida [26] gave the idea of Completeness. They were

interested in specific structure called Substitution-Permutation (S-P) cipher.

“Completeness of a cryptographic transformation hold if each cipher text

bit must depend on all of the output bits”.

3. Gordon and Retkincount [21] presented the randomly chosen S-boxes

which had linear relationships.

Introduction 6

4. Webster and Tavares [54] worked again on the concept of avalanche and

completeness of S-boxes and gave us Strict Avalanche Criterion (SAC).

“Avalanche effect was defined as an average of one half of the output bits

should change whenever a single input bit was changed in system”.

Strict Avalanche criterion was defined as “each output bit should change

with a probability of one half whenever a single input bit is complemented”.

5. Pieprzyk and Finkelstein [39] debated first time on the non-linearity of

randomly chosen S-boxes.

6. Forre [20] connected Walsh Spectrum with SAC for making the calculations

easier.

7. Meier and Staffelbach [32] formulated the concept of Perfect Non-

linearity and then narrated this as an important factor of diffusion process

which creates SAC.

8. Pieprzyk and Finkelstein [39] worked on the the design and construction

of non-linear permutations which generate S-boxes.

9. Lloyd [41] investigated the relationship between some important criteria of

S-boxes such as SAC, Balance, and Correlation Immunity.

10. Adams [1] suggested the use of bent function in S-boxes to get high non-

linearity and other criteria.

11. Daemen et.al [15] presented The correlation matrix of a boolean

mapping which was supposed to be the best natural demonstration for

the right understanding and explanation of linear cryptanalysis technique

and procedure.

12. Youssef and Tavares [57] not only gave the expected probability of select-

ing an affine S-box out of a wide range of S-boxes but also argued about

the leakage of those particular facts and figures which contributed when we

chose functions randomly.

Introduction 7

13. Zhang and Zheng [46] studied SAC and Propagation criterion. They

merged these concepts and introduced a Global Avalanche Criterion(GAC).

1.4 Desirable Properties for Good S-boxes

The desirable properties of an S-box are its design simplicity, fast encryption and

decryption speed and resistance against known cryptanalysis attacks. The criteria

of a good S-box will encounter most of the standards set by the National Institute

of Standards and Technology. Some important are

1. S-box is Balanced.

2. S-box has high Non-Linearity.

3. All linear combinations of S-box columns are bent.

4. All entries in the XOR table are 0 or 2.

5. S-box satisfies Bit Independence Criteria.

6. S-box satisfies Strict Avalanche Criteria.

7. S-box has Correlation Immunity.

8. The set of weights of rows has a binomial distribution with mean n/2. [17]

9. Each column has hamming weight 2n−1.

Nevertheless, it is impossible to achieve all criteria to their best in a single S-

box. Their disagreeing nature limits us to compromise some of the criteria. For

example, correlation immunity conflicts with high non-linearity and maximum

non-linearity also conflicts with balance. It will depend on the applied problem

that which criteria we want to achieve and on which we can negotiate.

Introduction 8

1.5 Software Tools For S-box Analysis

For studying the properties of S-box, some tools are available. A brief description

of such tools is given below:

1. Boolfun Package in R

R is the free open source Mathematical software used for computing statis-

tics. It works on various Windows, UNIX and Mac OS platforms, while the

standard version of R does not support the evaluation of Boolean functions

but it is possible to load a package named as Boolfun [29] which provides

functionality related to the cryptographic analysis of Boolean functions.

2. SageMath

SageMath library [49] is the free open source Mathematics tool which con-

tains a module called Boolean functions and an S-box. With this tool we can

check the algebraic properties and calculate different cryptographic proper-

ties related to linear approximation matrix and difference distribution table

for S-boxes and Boolean functions.

3. VBF

VBF stands for Vector Boolean Function Library. Alverez-Cubero and Zuf-

firia [3] presented this tool for the analysis of vector boolean functions that

are used to evaluate the cryptographic properties of S-boxes.

4. SET

Stjepan Picek [37] and team presented this tool for the evaluation of crypto-

graphic properties of Boolean function and S-boxes. SET stands for S-box

Evaluation Tool. It is a free open source Mathematics tool which is simple

and easy to use. It works in VS(visual studio).

Introduction 9

1.6 Thesis Objective

As S-box plays a significant role in SPN cryptography so it is imperative to check

different properties of an S-box which are used to determine the strength of system.

An S-box is constructed strongly to gain protection against linear and differential

crypt-analysis attacks. Non-linearity, Low number of fixed points and opposite

fixed points, high algebraic degree, SAC and BIC are considered as important

properties of a good S-box.

Different tools and techniques are available to check the desired properties of S-

boxes but all other software are either not easily available or the user is unable

to investigate the calculation of required parameters for every boolean function

also. The available tools do not provide an in depth approach for the evaluation of

non-linearity of an S-box. Hence user can not understand and check that how by

changing the input entries of an S-box, alteration of results at different steps will

transpire through boolean functions. For example, if we change one input entry in

some considered S-box, by this tool we can check the change in dynamic distance

at all entries of the S-box.

S-box Analysis MATLAB Tool (SAMT) is established in MATLAB language

which provides a great space for efficient calculation and relaxed programming with

many built in commands for user ease.

SAMT is developed for the analysis of cryptographic properties of boolean func-

tions and the S-box providing a large computational space in GF (2n) for 2 ≤ n ≤

20. The properties which can be evaluated are:

1. Fixed points of S-box

2. Opposite Fixed points of S-box

3. Bijective

4. Hamming weight of all boolean functions

5. Balanced

Introduction 10

6. Non-linearity of all boolean functions

7. Average non-linearity of all boolean functions

8. Almost Bent non-linearity value

9. Perfect non-linearity value of boolean functions

10. Non-linearity of S-box

11. Maximum non-linearity value for given Galois field

12. Differential Branch Number

13. Dynamic Distance Table

14. Dynamic Distances of Boolean functions

15. Desired Avalanche value for boolean function

16. Avalanche value of Boolean functions

17. Boolean functions results which satisfy Avalanche Effect

18. Avalanche Effect Percentage of S-box

19. Dependence Matrix of S-box

20. Desired SAC of a boolean function

21. SAC values of boolean functions

22. Autocorrelation function of all boolean functions

23. Sum of Squares Indicator of boolean functions

24. Absolute Indicator of boolean functions

25. BIC non-linearity criterion of S-box

Introduction 11

Some parameters are already defined for user consideration and guidance in SAMT,

e.g the desired bent value for boolean functions, maximum non-linearity value of

an S-box in given Galois field and desired Avalanche value for a boolean function.

All properties calculated by this tool are labeled properly for user understand-

ing. User can check the calculated values of every important property of boolean

functions also which are basically constructing the S-box.

User can request for this MATLAB tool file on following emails.

rashid.ali@cust.edu.pk

fatimaishfaq88@gmail.com

The rest of the thesis is systematized as follows

• Chapter 1 provides necessary information on the S-boxes importance in

cryptography, their structure, construction, design criteria and softwares

available for their properties analysis.

• Chapter 2 We explore more in the context of Cryptography, introduce the

Galois field, boolean functions, their general properties and how they are

responsible for the construction of strong S-boxes. Different cryptographic

properties were also explained according to the general design criteria of S-

boxes. We then reviewed the scheme for the construction of S-box of AES

with primitive polynomial x8 + x4 + x3 + x + 1 because we considered this

S-box as a basic example for the designed tool verification.

• Chapter 3 We presented the tool in MATLAB which was basically designed

for the calculation of different desired properties of an S-box according to

linear and differential cryptanalysis such as non-linearity, fixed points, SAC

and BIC etc. AES S-box and some other S-boxes were checked for their

properties by this tool and the results were presented.

Finally we suggest some future work that could be done to improve this tool

for evaluation of more properties of S-boxes.

Chapter 2

S-boxes and their Cryptographic

Properties

In this chapter we introduce and explain the basic definitions from group theory

that will be used in the understanding of S-Boxes such as Galois fields and Boolean

functions. Then we include some important crytographic properties of S-boxes

which are considered inevitable for their strength analysis.

2.1 Mathematical Background

First some basic concepts of group theory are presented to understand the reason

behind the construction and performance of the S-boxes.

2.1.1 Galois Field

A field consists of a finite number of elements is called Galois field or finite field

with order as a prime or a power of prime. For a given prime number q, the set of

integers {0, 1, 2, 3, ...q − 1} forms a field of order q so is called prime field GF (q)

and also the field of residue classes modulo q. For two elements a, b ∈ GF (q),

a = b in GF (q) means the same as a ≡ b mod q.

12

S-boxes and their Cryptographic Properties 13

An extension of a prime field is called an Extended finite field or Galois field

GF (qn) with n a positive integer number [34].

From the cryptographic point of view, we mostly focused in the cases:

• GF (q), n = 1

• GF (qn), q = 2

Definition 2.1.1 (Polynomial over GF (q))

An expression which consists of variables and coefficients that satisfy certain op-

erations is called a Polynomial. All the elements of a finite field can be written

in the form of polynomials of degree less than n, with coefficients from GF (q) as

a1 + a2x+ a3x
2 ++ anx

n−1

or by vector

[a1 a2 a3 an]

where ai are the coefficients from GF (q), x is its variable also known as indeter-

minate. The degree of polynomial is the highest power of x with largest value of

n such that an 6= 0.

Definition 2.1.2 (Irreducible Polynomial)

A polynomial m(x) with integer coefficients is said to be irreducible if it is an irre-

ducible element of the polynomial ring, means it cannot be factorized as a product

of two polynomials of lower degree. Otherwise it is called reducible polynomial

[25].

Example 2.1.3 The polynomials x2 + 1, x2 + x are reducible polynomials over

GF (2) and x2 + x + 1, x3 + x + 1 are irreducible polynomials over GF (2) [27].

There are 30 irreducible polynomials of degree 8 with coefficient in GF (2).

Irreducible polynomials are important as polynomial multiplication in GF (qn) is

performed over modulo an irreducible polynomial.

S-boxes and their Cryptographic Properties 14

Definition 2.1.4 (Primitive Polynomial)

An irreducible polynomial of degree n over GF (q) is said to be a primitive poly-

nomial that divides any a(x) = xm + 1 where m = qn − 1, but not divides any

such a(x) with smaller m [4].

There exist n different roots of a primitive polynomial with degree n in GF (qn)

where the order of all roots is qn− 1, therefore, if r is such a root, then rq
n−1 = 1.

Example 2.1.5 The polynomial m(x) = x3 + x + 1 is a primitive polynomial

of degree 3 in GF (23). If there exists a smallest positive integer t = 7 such that

m(x) = x3 + x+ 1 divides xt − 1 = x7 + 1 as

x7 + 1 = (x3 + x+ 1)(x4 + x2 + x+ 1)

So if r is the root of x3 + x+ 1, then r7 = 1. The powers of r in GF (23) are given

in the table below:

Decimal Roots polynomials

0 r0 1

1 r1 r

2 r2 r2

3 r3 r + 1

4 r4 r2 + r

5 r5 r + 1 + r2

6 r6 r2 + 1

7 r7 1

Table 2.1: Roots of primitive polynomial in GF (23)

Thus different powers of r can represent all the elements of GF (23).

2.1.1.1 Representation of Galois field elements

The elements of GF (qn) can be represented by polynomials of degree less than n

with coefficients from GF (q).

Example 2.1.6 Finite field GF (28) consists of 256 elements and is used in ad-

vanced encryption standard (AES) which was created by using a fixed irreducible

polynomial m(u) = u8 + u4 + u3 + u+ 1.

S-boxes and their Cryptographic Properties 15

Thus each element of GF (28) is a polynomial of defree less than 8. The multipli-

cation of polynomials is reduced modulo m(u).

Equivalently these elements can be represented by 8-bit binary number or 2-digit

hexadecimal numbers or a positive integer from 0 to 255 inclusive.

For the finite field GF (28), both the polynomial and binary representations are

given below:

Decimal Polynomial Binary Hexadecimal

0 0 00000000 00

1 1 00000001 01

2 u 00000010 02

3 u + 1 00000011 03

4 u2 00000100 04

5 u2 + 1 00000101 05

6 u2 + u 00000110 06

7 u2 + u + 1 00000111 07

8 u3 00001000 08

9 u3 + 1 00001001 09

10 u3 + u 00001010 0A

. . . .

. . . .

. . . .

255 u7 + u6 + u5 + u4 + u3 + u2 + u + 1 11111111 FF

Table 2.2: Elements of Finite Field GF (28) with
irreducible polynomial m(u) = u8 + u4 + u3 + u + 1

2.1.2 Boolean Functions

A function f : GF (2n)→ GF (2) is called a Boolean function if it has the possible

n tuples (v1, v2, . . . , vn) ∈ GF (2n) as input and produce only one of the two output

bits {0, 1} ∈ GF (2) [9, 48].

For example, the ith coordinate function f(v1, v2, . . . , vn) = vi is a Boolean func-

tion.

S-boxes and their Cryptographic Properties 16

2.1.2.1 Representation of Boolean functions

A Boolean function f : GF (2n)→ GF (2) can be uniquely written in two different

forms.

1. Truth Table, TT

A truth table represent the possible outcome of a boolean function in a

tabular form in which the first two columns correspond to possible inputs

and the last column present the operation being performed.

Example 2.1.7 Consider boolean function f is XOR function of two vari-

ables x1 and x2, represented as:

x1 x2 XOR

1 1 0

1 0 1

0 1 1

0 0 0

Table 2.3: Truth Table of XOR Boolean function

We can view a boolean function f as a binary vector f of size (2n× 1), with

the entries f(x) indexed by the vectors x ∈ GF (2n).

For example, the above boolean function can be represented as f = [0 1 1 0]>.

2. Algebraic Normal Form (ANF)

The most used representations in cryptography is ANF of a boolean function.

An ANF of a boolean function f : GF (2n)→ GF (2) is a polynomial of the

following form: [47]

f(x1, x2, . . . xn) = a0⊕

a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn⊕

a1,2x1x2 ⊕ . . .⊕ an−1,nxn−1xn⊕

. . .

a1,2,...nx1x2 . . . xn

S-boxes and their Cryptographic Properties 17

where a0, a1, . . . a1,2,...n ∈ {0, 1}n. It was conventionally studied by researchers

for the analysis of boolean functions. This ANF plays an important part in

the analysis of boolean functions and S-boxes.

Example 2.1.8 Consider the “logical OR” boolean function represented

as:

x1 x2 x1 ∨ x2

1 1 1

1 0 1

0 1 1

0 0 0

Table 2.4: Truth Table of logical OR function

The ANF of “logical OR” boolean function is represented as:

f(x1, x2) = x1 ⊕ x2 ⊕ x1x2

How many boolean functions can be defined for certain number of vari-

ables?

For one variable 4 boolean function can be defined as

x(variable) false x not x true

0 0 0 1 1

1 0 1 0 1

Table 2.5: One Variable Boolean Functions

The total number of boolean functions can be counted by formula 22n where n is

the number of variables. So for n = 1 we get 221 = 4.

For two variables as n = 2 we get 222 = 16 boolean functions and so on.

Number of Variables Number of Boolean functions

0 22
0

= 21 = 2

1 22
1

= 22 = 4

2 22
2

= 24 = 16

3 22
3

= 28 = 256

4 22
4

= 216 = 65536

n 22
n

Table 2.6: Number of Boolean Functions

S-boxes and their Cryptographic Properties 18

2.1.3 Properties of Boolean Functions

In cryptography, boolean functions are considered as a vital part for designing

the substitution boxes so it is very important to study and choose them wisely

satisfying certain crytographic properties for making cryptanalysis difficult for

adversaries [38].

Definition 2.1.9 (Linearity of a Boolean Function)

A boolean function f : GF (2n) −→ GF (2) is considered to be linear if and only if

it can be written in the form of linear combinations defined as

f(x1, x2,, xn) = c1x1 ⊕ c2x2 ⊕cnxn

where ⊕ is the XOR operation [12]. The linear combination of two boolean func-

tions f(x), g(x) is defined as

(f ⊕ g)x = f(x)⊕ g(x)

Among the 22n boolean functions on n variables, there are exactly 2n linear func-

tions.

Definition 2.1.10 (Affine Function)

A boolean function f : GF (2n) −→ GF (2) composed of a linear function and a

constant is called an Affine function [48, 58]. It can be expressed as

f(x1, x2,, xn) = c1x1 ⊕ c2x2 ⊕cnxn ⊕ c0

Affine Cipher uses a boolean function over modulo M . It is a simple substitution

cipher which can be broken easily because of its less security. This cipher performs

addition and multiplication using the function given below

f(x) = (Ax⊕ C) mod M

where A and C constitute the key used for encryption. For an input, the key will

be applied and then we take the modulus M . For the encryption, we assign the

following conversion of English alphabets to numbers.

S-boxes and their Cryptographic Properties 19

A 0 N 13

B 1 O 14

C 2 P 15

D 3 Q 16

E 4 R 17

F 5 S 18

G 6 T 19

H 7 U 20

I 8 V 21

J 9 W 22

K 10 X 23

L 11 Y 24

M 12 Z 25

Table 2.7: Conversion in affine cipher

Consider the following example.

Example 2.1.11 Let the encryption function is

f(V) = (5V ⊕ 2) mod 26

suppose the plaintext message is “LEO” then

L = f(11) = 5 mod 26

E = f(4) = 22 mod 26

O = f(14) = 20 mod 26

The ciphertext message is “FWU”.

The decryption function is

V = [f(V)− 2] ∗ 5−1 mod 26

5−1 = −5 mod 26

F = −5 ∗ [5− 2] mod 26 = 11 = L

W = −5 ∗ [22− 2] mod 26 = 4 = E

U = −5 ∗ [20− 2] mod 26 = 14 = O

S-boxes and their Cryptographic Properties 20

So we get the plaintext message “LEO”.

Definition 2.1.12 (Hamming Weight and Hamming Distance)

The number of non-zero digits in a binary sequence is called its Hamming weight.

It is denoted by H(w) or Hwt or wt, where w ∈ GF (2n).

For example

w = 111001 then H(111001) = 4.

Hamming distance between two functions

f(v), g(v) : GF (2n) −→ GF (2)

is defined as [55]:

d(f, g) = H(f(v)⊕ g(v))

Here,

f(v)⊕ g(v) = f(v0)⊕ g(v0)⊕ f(v1)⊕ g(v1)⊕ . . .⊕ f(v2n−1)⊕ g(v2n−1)

where v = (v0, v1, . . . , v2n−1) ∈ GF (2n)

It is considered as the number of inputs where the functions differ or how many

bits need to be changed in truth table of f to get g [58].

Example 2.1.13 Consider two Boolean functions

f(x) = 0 1 0 1 0 1 1 1

g(x) = 0 1 1 0 1 1 1 0

d(f, g) = 4

Example 2.1.14 Consider two Boolean functions

f(v) = v1v2v3 and g(v) = v1 ⊕ v2 ⊕ v3

with input bits v1, v2, v3. Hamming distance of these boolean functions is

S-boxes and their Cryptographic Properties 21

d(f, g) = H(f(v)⊕ g(v))

= H(v1v2v3 ⊕ v1 ⊕ v2 ⊕ v3) .

i vi = v1v2v3 (f ⊕ g)(vi)

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 1

5 1 0 1 0

6 1 1 0 0

7 1 1 1 0

Table 2.8: Hamming distance between two functions f and g

Thus Hamming distance of f and g is 3.

Definition 2.1.15 (Bijection)

Bijection is a mapping in which each input bit mapped to exactly one and unique

output bit making it a one-one and onto correspondence.

For a boolean function f : GF (2n) −→ GF (2), n be the possible input bits such

as {0, 1}n there exist a unique output bit, every output vector should appear once.

Definition 2.1.16 (Walsh Hadamard Transform)

A measure of similarity or correlation between the boolean function

f : GF (2n) −→ GF (2)

and all linear functions a · x or linear combinations is known as Walsh Hadamard

Transform of f , denoted by WHTf [8]. It is defined as

WHTf (a) =
∑

(−1)f(x)⊕a·x ∀ x, a ∈ GF (2n)

where a · x =
∑

i aixi is the inner product of vectors a and x.

The Walsh Hadamard transform is also called Walsh transform or Walsh Fourier

transform.

We explain further that we calculate this similarity of boolean function by consid-

ering Hamming distances. Hamming distance or expected distance is calculated

S-boxes and their Cryptographic Properties 22

by counting the bit positions which are different in the truth table of two boolean

functions while the unexpected distance is the amount of change by which this

distance differs from our expectation.

The expected distance of a boolean function f : GF (2n) −→ GF (2) with an affine

function an is defined as

ED(f) =
2n

2

and the difference from this value will be considered as unexpected distance.

Example 2.1.17 Consider all possible affine functions and all boolean functions

f : GF (23) −→ GF (2), then we construct a truth table for affine functions.

Consider a boolean function f = [1 0 0 1 1 0 0 1].

Its expected distances will be calculated with respect to all affine functions in

truth table.

By above formula

ED(f) =
2n

2
=

23

2
= 4

We calculate unexpected distances considering the difference between Hamming

distance and ED(f). Calculated values are presented in the following table:

Affine functions truth table Hamming distance Unexpected distance

1 1 1 1 1 1 1 1 1 4 0

x0 0 1 0 1 0 1 0 1 4 0

x1 0 0 1 1 0 0 1 1 4 0

x1 + x0 0 1 1 0 0 1 1 0 8 4

x2 0 0 0 0 1 1 1 1 4 0

x2 + x0 0 1 0 1 1 0 1 0 4 0

x2 + x1 0 0 1 1 1 1 0 0 4 0

x2 + x1 + x0 0 1 1 0 1 0 0 1 4 0

Table 2.9: Calculation of Hamming distances and Unexpected distances
of f = [1 0 0 1 1 0 0 1]

The Walsh transform of f is the maximum absolute value of all unexpected dis-

tances. WHTf = 4.

S-boxes and their Cryptographic Properties 23

There is a close relation between Walsh transform and Walsh Hadamard Matrix

and both are used for cryptographical analysis of S-boxes.

Definition 2.1.18 (Walsh Hadamard Matrix)

“Walsh Hadamard matrix is defined as a (n× n) matrix, for n being a particular

natural number, with all entries +1 or −1 such that its all rows and columns are

orthogonal i.e their dot product is zero. It means that every two different rows have

matching entries in exactly half of their columns and mismatched entries in the

remaining columns. It is a consequence of this definition that the corresponding

properties hold for columns as well as rows” [23].

The Hadamard matrices of dimension 2n are given by the recursive formula.

The lowest order of Hadamard matrix is 2.

H(21) =

1 1

1 −1



H(22) = H(4) =

H(2) H(2)

H(2) −H(2)

 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


and in general we get

H(2n) =

H(2n−1) H(2n−1)

H(2n−1) −H(2n−1)


The coefficients calculated on the basis of Walsh Hadamard matrix are used for

WHTf .

We explain this with an example.

S-boxes and their Cryptographic Properties 24

Example 2.1.19 Consider Walsh Hadamard Matrix of order 8.

H(8) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


We define a mapping T : {1,−1} −→ {0, 1} from Hadamard matrix to 3-variable

boolean functions. Results of this mapping are shown in the form of a truth table

with the truth table of affine functions.

TT of Walsh Hadamard matrix mapping TT of Affine functions

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

Table 2.10: Comparison of truth tables

This table shows that all the values are same except the first entry of table which

is assigned because of constant. Thus Walsh Hadamard matrix generate the same

results as by Walsh transform.

S-boxes and their Cryptographic Properties 25

Example 2.1.20 Consider the Walsh transform calculated in Example 2.1.17

for f = [1 0 0 1 1 0 0 1]. With Walsh Hadamard matrix we get:

[
1 0 0 1 1 0 0 1

]
×



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1



=
[
4 0 0 4 0 0 0 0

]
The first value 4 will be ignored as it is the Hamming weight of function.

Thus WHTf = 4. We can see the result is same as calculated by Walsh transform.

2.2 Substitution Boxes

Consider a function F : Vn
2 −→ Vm

2 for some positive integers n and m where V2 is

the finite field with two elements. Such functions F with given boolean functions

f1, f2,fm are defined as

F (v) = (f1(v), f2(v),fm(v))

at every v ∈ Vn
2 , called the coordinate functions of F . Such (n×m) functions are

called vectorial boolean functions or S-boxes.

Thus a function S : GF (2n) −→ GF (2m) which takes n-bits as input to produce

m-bits as output is called an (n×m) S-box, defined as

v = S(u) = (f1(u), f2(u), . . . , fm(u)) ∈ GF (2m) ∀u ∈ GF (2n)

S-boxes and their Cryptographic Properties 26

where fi corresponds m-variable boolean functions.

Example 2.2.1 For example consider a 4 × 4 S-box that takes 4 input bits to

produce 4 output bits. The first column of table represent input for S-box which

is the Galois field GF (24) and S-box is given in the second column.

GF(24) S-box f1 f2 f3 f4

0 9 1 0 0 1

1 13 1 0 1 1

2 10 0 1 0 1

3 15 1 1 1 1

4 11 1 1 0 1

5 14 0 1 1 1

6 7 1 1 1 0

7 3 1 1 0 0

8 12 0 0 1 1

9 8 0 0 0 1

10 6 0 1 1 0

11 2 0 1 0 0

12 4 0 0 1 0

13 1 1 0 0 0

14 0 0 0 0 0

15 5 1 0 1 0

Table 2.11: (4× 4) S-box

In this table S-box entries are shown in binary format, where each column represent

a boolean function fi for 1 ≤ i ≤ 4 of S-box. S-box properties depend on the all

boolean functions which are used for constructing it.

Different S-boxes can be considered for the checking of MATLAB code performance

but for analysis and confirmation of results produced by this MATLAB tool, we

consider the AES S-box [42] as our main example. In fact, this is probably the

most widely studied cipher at present for improving the strength of S-boxes to

enhance the security parameters. Before we delve deeply into the properties of

S-boxes, consider some of the mathematics in constructing the S-box design.

S-boxes and their Cryptographic Properties 27

2.2.1 The Rijndael S-box (AES)

In 2001 Vincent Regimen and John Daemon gave a more complicated algorithm

called Rinjindael, which was named as Advanced Encryption Standard [42]. It

was a symmetric block cipher and used a key of 128 | 192 | 256 bits to encrypt

128 bit data, having a block of 16 bytes. The purpose of this S-box was to gain

the non-linearity.

AES S-box was taken as, m = n = 8 and all operations were performed in the

Galois field GF (28). With this S-box one byte was replaced by another byte by

various rounds of AES encryption algorithm.

2.2.1.1 Irreducible Polynomial

In AES, S-box was constructed with a specific irreducible polynomial in Galois

field GF (28) which is x8 + x4 + x3 + x+ 1

In hexadecimal, this is 11B and in binary, it is 100011011

This is important to remember that any irreducible polynomial can be used for

generating S-boxes but why we used an irreducible polynomial instead of any

polynomial, the reason is that Rijndael was creating basically diffusion with a

nonlinear permutation function.

Why only this irreducible polynomial was chosen?.

Can we say it has some special characteristics that can make it more worthy for

cryptography?.

For getting answers of these questions, consider the words of the developer of AES

who states that while considering the multiplication in GF (28), this polynomial

m(x) = 11B was by chance the first one in the list of irreducible polynomials of

degree 8. So it means at that particular time it was just a chance to consider this

polynomial but it was proved to be a very good decision later with further study

in AES with other irreducible polynomials.

S-boxes and their Cryptographic Properties 28

2.2.1.2 Affine Transformation

This concept was originally introduced in graphics for transformation in graphs.

In general, an affine transform is composed of linear transformations (rotation,

scaling) and a translation (or shift). As we can see that moving pixels in different

directions is quite similar to moving entry values at different locations in a matrix,

so this concept was applied to matrices in AES.

For the AES (0 × 1F) is the affine matrix, the whole process can be shown in

matrix form as:

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1



×



u0

u1

u2

u3

u4

u5

u6

u7



⊕



1

1

0

0

0

1

1

0



=



v0

v1

v2

v3

v4

v5

v6

v7


This affine transformation basically shows multiple rotations of the byte and ad-

dition is the XOR operation.

Example 2.2.2 For an input 0 × 53 in AES, we first find its inverse, which is

0× CA.

“The input bits are multiplied with the bits of a given row and so on. Finally, all

bits are XORed against each other within that row and we get transformed bit for

S-boxes and their Cryptographic Properties 29

that row [30].



v0

v1

v2

v3

v4

v5

v6

v7



=



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1



×



0

1

0

1

0

0

1

1



⊕



1

1

0

0

0

1

1

0





v0

v1

v2

v3

v4

v5

v6

v7



=



1 · 0⊕ 0 · 1⊕ 0 · 0⊕ 0 · 1⊕ 1 · 0⊕ 1 · 0⊕ 1 · 1⊕ 1 · 1⊕ 1

1 · 0⊕ 1 · 1⊕ 0 · 0⊕ 0 · 1⊕ 0 · 0⊕ 1 · 0⊕ 1 · 1⊕ 1 · 1⊕ 1

1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 0 · 0⊕ 0 · 0⊕ 0 · 0⊕ 1 · 1⊕ 1 · 1⊕ 0

1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 1⊕ 0 · 0⊕ 0 · 0⊕ 0 · 1⊕ 1 · 1⊕ 0

1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 0 · 0⊕ 0 · 1⊕ 0 · 1⊕ 0

0 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 0⊕ 0 · 1⊕ 0 · 1⊕ 1

0 · 0⊕ 0 · 1⊕ 1 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 0⊕ 1 · 1⊕ 0 · 1⊕ 1

0 · 0⊕ 0 · 1⊕ 0 · 0⊕ 1 · 1⊕ 1 · 0⊕ 1 · 0⊕ 1 · 1⊕ 1 · 1⊕ 0





v0

v1

v2

v3

v4

v5

v6

v7



=



1

0

1

1

0

1

1

1



S-boxes and their Cryptographic Properties 30

Studies showed that S-boxes generated by using affine transformations gave max-

imum non-linearity.” Further work in this field was proposed by [5, 6, 14, 35].

2.2.2 Properties of Cryptographically Strong S-boxes

Substitution boxes are a crucial part in the science of cryptography so we study

some desirable properties for a cryptographically strong S-box.

1. Balanced

A boolean function S : GF (2n) −→ GF (2) is called balanced if the output

set contains equal number of ones and zeros in the corresponding truth table.

Example 2.2.3 We provide a comparison of balanced and unbalanced

functions. Consider two boolean functions, XOR and AND defined as:

S1 = ⊕ : GF (22) −→ GF (2)

S2 = · : GF (22) −→ GF (2)

They define following truth table for two variables x1 and x2.

x1 x2 x1 ⊕ x2 x1 · x2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 2.12: Truth Table of XOR, AND functions

Third column has equal number of zeros and ones representing “XOR” func-

tion which is balanced while fourth column presents “AND” function which

is not balanced.

2. Bijective

A boolean function S : GF (2n) −→ GF (2) is bijective if and only if all linaer

combinations of columns are balanced. To check the bijective property of

an (n × n) S-box a method was introduced in [50] which states that “The

S-boxes and their Cryptographic Properties 31

bijective property is satisfied if for the boolean functions fi (for 1 ≤ i ≤ n)

of S-box, this condition holds

Hwt(
n∑

i=1

cifi) = 2n−1 (2.1)

where ci ∈ {0, 1} for (c1, c2, . . . , cn) 6= (0, 0, . . . , 0) and Hwt is the Hamming

weight” [56].

Condition (2.1) in fact, guarantees that every boolean function fi and all

their combinations are balanced.

Consider the S-box presented in Table 2.11. Note that all boolean functions

have Hwt(fi) = 8 for 1 ≤ i ≤ 4, so fi are balanced. Thus the given S-box is

balanced and bijective.

3. Non-linearity

The Non-linearity, NL(f), of any boolean function

f : GF (2n) −→ GF (2)

is defined as the number of bits which must be changed in the truth table

to get the closest affine function [40].

We measure non-linearity of a boolean functions using Walsh transform or

Walsh Hadamard matrices. Distances to linear functions can be computed

easily which are exactly the same as computed by Walsh transform which

we have discussed in Example 2.1.17 .

For an S-box S : GF (2n) −→ GF (2m) such that

S(u) = v for v ∈ GF (2m);u ∈ GF (2n)

non-linearity can be calculated as: [10]

NLS = 2n−1 − 1

2
max |W (u, v)|

S-boxes and their Cryptographic Properties 32

where W (u, v) is Walsh transform defined as:

W (u, v) =
∑

x∈GF (2n)

(−1)v·f(x)⊕u·x

Here we use notation W (u, v) intead of WHTf since it is defined for a vec-

torial boolean function S. Walsh Spectrum can be defined as:

WS = {W (u, v) : u ∈ GF (2n), v ∈ GF (2m)}

Non-linearity is the minimum Hamming distance between all boolean func-

tions v · f and all affine functions u · x where “·” is the inner product in

respective Galois field.

Example 2.2.4 Consider S-box S : GF (24) −→ GF (2) in Table 2.11. We

calculate Walsh transform for one entry (0, 0, 0, 0) of S-box as:

W ((0, 0, 0, 0), (1, 0, 0, 1)) =
∑

x∈GF (24)

(−1)(1,0,0,1) · f(x) ⊕ (0,0,0,0) · x

By considering all entries of S-box, we calculate

W ((0, 0, 0, 0), (1, 0, 0, 1)) = (−1)(1,0,0,1)·(1,0,0,1) ⊕ (0,0,0,0)·(0,0,0,0)

+ (−1)(1,1,0,1)·(1,0,0,1) ⊕ (0,0,0,1)·(0,0,0,0)

+ (−1)(1,0,1,0)·(1,0,0,1) ⊕ (0,0,1,0)·(0,0,0,0)

+ . . .

+ (−1)(0,0,0,0)·(1,0,0,1) ⊕ (1,1,1,0)·(0,0,0,0)

+ (−1)(0,1,0,1)·(1,0,0,1) ⊕ (1,1,1,1)·(0,0,0,0)

Similarly we can calculate the Walsh transform value for each entry of an

S-box and calculate non-linearity by defined formula.

If we know the non-linearities of all boolean functions which are constructing

S-Box, the minimum of these will be the non-linearity of that S-box.

S-boxes and their Cryptographic Properties 33

We can calculate non-linearity by Walsh Hadamard matrix also.

Example 2.2.5 Consider a boolean function S : GF (24) −→ GF (2). For

one boolean function of S-box, let

f =
[
0 0 1 1 1 0 1 0

]
8× 8 Hadamard Matrix is

H(8) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


We then calculate Wlash spectrum value by multiplying f and H(8) and get

f ×H(8) =
[
4 2 −2 0 0 −2 −2 0

]
Minimum absolute value is 2. So we get

NLf = 23−1− | 2 |= 2

We will not consider the first element 4 because this is the Hamming weight

of boolean function f .

The maximum non-linearity in GF (2n) is

(a) for n = even is 2n−1 − 2
n
2
−1

(b) for n = odd is 2n−1 − 2
n−1
2

S-boxes and their Cryptographic Properties 34

A boolean function f is called perfect nonlinear if the function

f (x⊕ a)⊕ f (x)

is balanced for all a ∈ GF (2n) where a 6= 0.

4. Bent Functions

S-Boxes are required to be composed of highly nonlinear boolean functions.

We can define different boolean functions with great non-linearity value but

bent functions are basically a special kind of boolean functions which have

maximum non-linearity.

Bent functions are defined by Walsh transform as

f̂(s) =
1√
2n

∑
u∈GF (2n)

(−1)f(u)⊕s.u

Thus a boolean function f which can attains maximum non-linearity is called

Bent function [38].

Example 2.2.6 By maximum non-linearity criterion, we know that in

GF (22), the function with non-linearity 1 is bent.

NL(f) = 2n−1 − 2
n
2
−1

22−1 − 2
2
2
−1 = 2− 1 = 1

Clearly bent functions are not linear and not affine but bent functions are

a special type of boolean function which have highest Strict Avalanche Cri-

terion (SAC) [24] and Bit Independence Criterion (BIC) [53] which will be

explained later.

MATLAB code (SAMT) which we present here will calculates maximum

non-linearity for given Galois field and compare it with the calculated non-

linearity of given S-box so user can check also that how many boolean func-

tions are bent in the given S-box.

S-boxes and their Cryptographic Properties 35

5. XOR Table

For an S-box S : GF (2n) −→ GF (2m), we consider two elements

u ∈ GF (2n) and v ∈ GF (2m)

then the XOR table entry corresponding to (u, v) is given by [33]:

XOR(u, v) = # { x ∈ GF (2n) : S(x)⊕ S(x⊕ u) = v }

where “#” denotes the cardinality of set.[31].

Example 2.2.7 We build every possible pair (p1, p2) that can be given

to the S-box. For example consider the AES S-box and take (00, 00) and

calculate the XOR of every pair (p1 ⊕ p2) ∈ GF (2n) which will be 00.

Now look the transformed values in S-box (c1 = S(p1), c2 = S(p2)) which is

(63, 63) and calculate the (c1 ⊕ c2) ∈ GF (2m) which gives (00).

Then increment this value in the row (p1 ⊕ p2) and the column (c1 ⊕ c2) to

reflect basically that this input difference lead to this output difference.

This table would be too complex as for AES it would be a 256× 256 table.

In XOR table, all entries should be 0 or 2 which is theoretically the best

possibility. All the values are even and they should be as small as possible

for having good resistance against differential attacks. The XOR value for

an S-Box is the highest XOR table entry.

6. Dynamic Distance

“The Dynamic Distance (DD) of order j for a boolean function [22]

f : GF (2n) −→ GF (2)

is defined as:

DDj(f) = max
1≤wt(d)≤j

1

2

∣∣∣∣∣∣2n−1 −
∑

x∈GF (2n)

f(x)⊕ f(x⊕ d)

∣∣∣∣∣∣

S-boxes and their Cryptographic Properties 36

where d ∈ {0, 1}n.

It provides a measure for other dynamic properties such as SAC which will

be satisfied if DD has small integral value and closer to zero”.

For calculating Dynamic distances DD1, we consider specific matrix d ∈

GF (2n) whose each entry should have hamming weight 1.

Example 2.2.8 Consider the example of S-box presented in Table 2.11 in

GF (24) −→ GF (24) and matrix d as

d =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


Calculated dynamic distances of boolean functions are [4 4 4 2].

For AES S-box, S : GF (28) −→ GF (28), this matrix d is defined as

d =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


For S(u) = v, first calculate u ⊕ d for each entry of all boolean functions

with every entry of this matrix d then we calculate

f(u)⊕ f(u⊕ d)

It will finally contribute to calculate the DD for S-box.

S-boxes and their Cryptographic Properties 37

7. Avalanche Effect

If by changing a single input bit, half of the output bits changed then this

is called Avalanche effect. [24]

Consider a boolean function f : GF (2n) −→ GF (2) and choose a pair of

n-bit plaintext vectors X and Xj which is dissimilar to X only in jth bit.

Their corresponding output bits are f(X) and f(Xj) which are different at

least in i bit. Taking XOR of output bits, we get:

Vj = f(X)⊕ f(Xj)

Each Vj containing n-bits are called avalanche variables. If the above pro-

cedure is repeated for 1 ≤ j ≤ n times and for each j, half of the variables

are equal to 1, then we said that f has a good avalanche effect.

8. Strict Avalanche Criterion

This criterion states that by changing one input bit, each output bit will

change with probability of one half. To satisfy the criterion basically the

boolean function should has a 50% dependency on each of its input bits.

SAC can be measured using the hamming weight of boolean function. Recall

that the hamming weight of a specific binary vector is the occurrence of 1

in that vector. Therefore, if you have an input of 8 bits with three 1 and an

output of four 1, the hamming weight of the output is 4. A boolean function

satisfies the SAC or not, can be checked by measuring the hamming weights

of the input and output values and then comparing them.

For an S-box S : GF (2n) −→ GF (2m) where S(u) = v,

Difference Distribution vectors of each boolean function can be calculated

as:

SAi(f) =
∑

u∈GF (2n)

f(u)⊕ f(u⊕ di)

where d matrix is defined in the same way as for calculating Dynamic Dis-

tance.

S-boxes and their Cryptographic Properties 38

A boolean function f satisfies the SAC if this condition holds

SAi(f) = 2n−1

If the value of dynamic distance DD is a small integer close to zero, S-box

satisfies the SAC.

In this way presented MATLAB code will calculate the SAC for each boolean

function of S-box and a Dependence matrix will be computed showing all

these values for the user.

9. Bit Independence Criterion

The Bit Independence Criterion (BIC) is another desirable property for de-

signing strong S-boxes. As we increase the independence of bits with each

other, it gradually harder to guess the design of system. It also shows that

all variables should be independent pairwise for a specific set of avalanche

vectors which are produced by single plaintext bit transpose [53].

“To measure this criterion in an S-box S : GF (2n) −→ GF (2m), the correla-

tion coefficient is needed between the jth and kth components of the output

string, which is called the avalanche vector Aei.

A bit independence parameter corresponding to the effect of ith input bit

change on the jth and kth bits of avalanche vector is defined as [52]

BIC(aj, ak) = max
1≤i≤n

| corr(aeij , aéik) |

BIC criterion for an S-box function f is

BIC(f) = max
1≤j,k≤n

BIC(aj, ak) for j 6= k

BIC(f) takes the values in [0, 1] and in the worst case it is equal to 0”.

For any boolean function f , consider two output bits of an S-box f(r) and

f(s) where r 6= s, the S-box satisfies the BIC, if f(r) ⊕ f(s) is a highly

nonlinear function and come closer to satisfy the SAC [11].

S-boxes and their Cryptographic Properties 39

10. Differential Branch Number

Differential branch number of an S-box S : GF (2n) −→ GF (2m) is calculated

by the formula: [44]

BN = min
u1,u2 6=u1

[wt(u1 ⊕ u2) + wt(S(u1)⊕ S(u2))]

where u1, u2 ∈ GF (2n).

MATLAB code presented in thesis calculates all possible XORs between the

Galois field GF (2n) entries and then all possible XORs between the S-box

entries. Finally calculate their hamming weights and compute the minimum

value.

For a bijective S-box the Differential branch number is at least 2.

The avalanche effect of any S-box is directly proportional to the branch

number so it should be maximized for attaining best cryptographic properties

which enhance the resistance of system against differential attacks.

11. Algebraic Degree

An algebraic degree is related with the non-linearity measure [2]. “For a

boolean function f : GF (2n) −→ GF (2), it is defined as the number of vari-

ables in highest order term with non-zero coefficients and can be expressed

as

deg(f) = n− 1

Higher algebraic degree is considered better than the lower.”

“The algebraic degree of a function is largest number of inputs appearing in

any product in its algebraic normal form (ANF).

For example, x1 ⊕ x2 has degree 1 so it in linear and x1 ⊕ x1x2x3 has defree

3” [12].

The Boolean functions whose algebraic degree do not exceed 1 are called the

affine functions.

S-boxes and their Cryptographic Properties 40

12. Absolute Indicator and Sum of Square Indicator

Derivative of a boolean function f : GF (2n) −→ GF (2) with respect to a

point b is defined as:

Df (b) = f(x)⊕ f(x⊕ b)

On the basis of above defined derivative, Auto-correlation (AC) of a boolean

function f can be defined on all b ∈ GF (2n) as:

∆f (b) =
∑

(−1)f(x)⊕f(x⊕b) where x ∈ GF (2n)

The absolute indicator of boolean function f is defined as the maximum

absolute value of AC except the origin, which can be expressed as [51]

∆f = max
b∈GF (2n),b6=0

| ∆f (b) |

The Sum of square indicator [51] of boolean function f also derived from AC

and can be expressed as

σf =
∑

b∈GF(2
n)

(∆f (b))2

13. Fixed and Opposite Fixed Points

Consider an S-box S : GF (2n) −→ GF (2m) and for u ∈ GF (2n)

A point is called fixed point of S-box if

S(u) = u

A point is called opposite fixed points of S-box if

S(u) = u′

where u′ is complement of u.

S-boxes and their Cryptographic Properties 41

Example 2.2.9 Consider a 2× 2 S-box with 2 boolean functions

GF(2) Binary format GF(2) S-box Binary format S-box

0 00 1 01

1 01 3 11

2 10 2 10

3 11 0 00

Table 2.13: S-box fixed points

In this example “2” is a fixed point of S-box.

Example 2.2.10 Consider now

GF(2) Binary format GF(2) S-box Binary format S-box

0 00 1 01

1 01 2 10

2 10 3 11

3 11 0 00

Table 2.14: S-box opposite fixed points

In this example “1” is the opposite fixed point of S-box.

Any S-box without fixed and opposite fixed points is considered to be better

against differential cryptanalysis attacks as compared to those who have

fixed and opposite fixed points.

MATLAB code compares bit wise each input byte with every byte of the

given S-box to check the fixed points and then compare the complement of

each input byte for opposite fixed points in the same manner. It counts those

points and show the results.

Chapter 3

MATLAB tool for the analysis of

S-boxes

The focus of this thesis is to develop a tool for calculating some desired crypto-

graphic properties of S-boxes in any Substitution-Permutation Network. An S-box

is utilized to provide the only nonlinear part of the cryptosystem so its strength

enhances the security of whole system.

User can request for this MATLAB tool file on following emails.

rashid.ali@cust.edu.pk

fatimaishfaq88@gmail.com

3.1 MATLAB tool

This tool is designed in MATLAB software for not only the S-box but also for the

boolean functions which are basically constructing that S-box. Any S-box defined

as S : GF (2n) −→ GF (2n) for 2 ≤ n ≤ 20 can be checked with this tool so it

really provides a large space regarding Galois fields for the analysis.

The hardest challenge for designing this tool is the choice of certain properties

which we consider important for the analysis of an S-box. We try to cover some

42

MATLAB tool for the analysis of S-boxes 43

properties which play a critical role in linear and differential cryptanalysis. As

this MATLAB code compute values for the all boolean functions as well, so we

consider the non-linearity SAC and BIC as the most important paramenters of

an S-box. Thus user can have an in depth investigation of all these properties

contribution regarding each boolean function of S-box.

Results of cryptographic properties of an S-box which are evaluated by this tool

are briefly described below.

Fixed points of S-box Number of fixed points in S-box will be shown.

Opposite Fixed points of S-Box Number of opposite fixed points will be shown.

Bijective Result will be shown as S-box is bijective or S-box is not bijective.

Hamming weight of all boolean functions Hamming weights of all boolean

functions will be shown in a row.

Balanced Result will be shown as S-box is balanced or S-box is not balanced.

Non-linearity of all boolean functions Non-linearity of all boolean functions

will be shown in a row.

Average Non-linearity of all boolean functions Code will add non-linearities

of all boolean functions and take the average.

Almost Bent Non-linearity value According to given Galois field, almost bent

non-linearity value will be calculated.

Perfect Non-linearity value of boolean functions Perfect non-linearity of all

boolean functions will be shown in a row.

Non-linearity of S-Box Non-linearity of S-box will be shown.

Maximum Non-linearity value for given Galois field Code will calculate the

maximum non-linearity which can be achieved in given Galois field.

Differential Branch Number As a single output value, differential branch num-

ber for provided S-box will be shown.

MATLAB tool for the analysis of S-boxes 44

Dynamic Distance Table First MATLAB code will generate all vectors in given

Galois field with hamming weight 1. Dynamic distances of each boolean

function will be calculated with every such vector. These results will be

shown in the form of a matrix so user can check every boolean function

contribution independently.

Dynamic Distances of Boolean functions Dynamic distance of a boolean func-

tion is the maximum of its all calculated values with every vector defined

above. Thus dynamic distances of all boolean functions will be shown in the

form of a row.

Desired Avalanche value for boolean function The desired avalanche effect

value will be calculated for any given Galois field.

Avalanche value of Boolean functions Avalanche values of all boolean func-

tions will be calculated and a matrix will be shown where each column gives

calculated results for one boolean function.

Boolean functions results which satisfy Avalanche Criterion Total num-

ber of results from above matrix which satisfy avalanche criterion will be

shown.

Avalanche Criterion Percentage of S-box According to the number of re-

sults satisfying avalanche criterion, percentage avalanche effect for complete

S-box will be calculated.

Dependence Matrix of S-box Dependence matrix for given S-box will be shown

represeting each boolean function as its column.

Desired SAC of a boolean function Desired value for a boolean function to

satisfy SAC is n× 2n−1.

SAC values of boolean functions SAC results produced by every boolean func-

tion will be added and shown in a row.

Sum of Squares Indicator of boolean functions Sum of square indicator of

all boolean functions will be presented in a row.

MATLAB tool for the analysis of S-boxes 45

Absolute Indicator of boolean functions Absolute indicator of all boolean

functions will be shown in a row.

BIC Non-linearity criterion of S-box A matrix will show BIC non-linearity

of all boolean functions constituting S-box.

3.1.1 How to use this MATLAB code?

For new users of MATLAB software we refer them to MATLAB help

https://www.mathworks.com/help

which can provide a necessary guide for using the software efficiently. We are also

providing here a brief detail for the new users so that they can use the tool without

even extensive study of MATLAB.

3.1.1.1 Requirements

The basic requirements for using the MATLAB tool are:

1. A desktop computer or laptop with working windows 8 or Linux.

2. Installed MATLAB software with at least 2GB RAM.

3. Code file S-box Analysis MATLAB Tool (SAMT.p) saved in MAT-

LAB directory. This particular file with extension “.p” can be run through

MATLAB only. This file can also be saved in any folder where user has his

already saved work of MATLAB and has pre-defined MATLAB path.

3.1.1.2 S-box Analysis MATLAB Tool (SAMT.p)

For using the SAMT.p file, user need to follow these steps.

MATLAB tool for the analysis of S-boxes 46

1. First start MATLAB software and wait till it shows the command “Ready”

in MATLAB window.

2. Now user can view two partitions showing “Editor space” and “Command

Window” where user can see any code descripition in Editor space and can

check the obtained results in Command Window.

Figure 3.1: MATLAB Window with Editor space and Command window

3. Open particular folder where all MATLAB files are stored with code file

SAMT.p

4. User will click on “Run” command for defining the MATLAB execution

path.

MATLAB tool for the analysis of S-boxes 47

5. A box will appear by MATLAB for confirming the path to start required

calculation. User will click “Add to Path” for confirming the path. MAT-

LAB then change its path to the specific directory of computer where user

had saved the tool file.

Figure 3.2: MATLAB Path requirement

6. Write code file name in Command Window without any extension and press

enter.

MATLAB tool for the analysis of S-boxes 48

Figure 3.3: Code file name in Command Window

7. In Command Window, first command will appear as

Type the value of n =

Code requires the value of n for the specific Galois field GF (2n) in which

user wants to enter the S-box. Thus user can type any value of n from 2 to

20 and press enter.

8. Second command will appear as

Data Type (Hexadecimal = 1 and Decimal = 2) =

User can input the S-box entries either in decimal or hexadecimal formats

only. The values of S-box should be entered in decimal format for 2 ≤ n ≤ 7

according to MATLAB input requirement. MATLAB code will convert them

into binary numbers for its further execution process.

MATLAB tool for the analysis of S-boxes 49

User will write “1” for entering the Hexadecimal values if he wants to use

the n ≥ 8 in Galois field GF (2n) and then press enter.

User will write “2” if entering the Decimal values for the n ≥ 2 according to

his S-box in Galois field GF (2n) and then press enter.

9. Third command will appear as

Enter the values of S-box =

User can either copy and then paste the values of S-box in this space from

a text file where he had already written or stored the values or he can write

the S-box entries directly here.

User need to input the values in a specific style because MATLAB software

can read the Decimal and Hexadecimal values in a particular format which

we explain here with examples so that user can understand these systems

conversion in MATLAB.

For Hexadecimal format one entry, let a, has to be enclosed in commas with

brackets (′a′).

Example 3.1.1 For example, enter the value in Command Window of

MATLAB usinga bulit-in-command and press enter.

hexToBinaryV ector (′ 7c ′)

MATLAB will show the result in binary number: 1 1 1 1 1 0 0

or if user write this value and enter.

hexToBinaryV ector (′ 7c ′ , 8)

it will give the binary result with 8 bits as: 0 1 1 1 1 1 0 0

Now consider AES S-box for entering in Hexadecimal format, user will write

each entry, let a, enclosed in commas ′a′ separate them by ; and enclose by

MATLAB tool for the analysis of S-boxes 50

brackets [] as follows: (but will not write the conversion “hexToBinaryVec-

tor”)

[′ 63 ′ ; ′ 7c ′ ; ′ 77 ′ ; . . . ; ′ 6f ′ ; ′ 30 ′ ; ′ 01 ′]

Code will accept 256 entries for AES S-box, convert them into binary format

and start execution.

For Decimal format consider following examples.

Example 3.1.2 For entering a single entry in decimal format, write this

in Command window using MATLAB built-in-command and enter

de2bi(161)

MATLAB will show an 8 bit result as: 1 0 0 0 0 1 0 1

Now for entering a complete S-box in the decimal format, user will write them

in commas, separated with space enclosed by brackets () in the following

way. (but will not write the conversion “de2bi”)

(′ 161 85 129 224 . . . 207 177 48 205 68 60 1 ′)

Code will accept 256 entries, convert them into binary format and start

calculation.

10. When code completes its execution for given S-box, results will appear in

the Command window mentioning all the properties.

11. Code will also provide bent value for a boolean function, maximum non-

linearity value for given Galois field, desired avalanche effect for boolean

functions and desired SAC value for a boolean function. Thus user can

compare given S-box results with desired values in particular Galois field.

MATLAB tool for the analysis of S-boxes 51

Figure 3.4: MATLAB code Results

12. As we consider all properties discussed above are important for the analysis

of an S-box, so code will calculate all these properties.

13. MATLAB code execution process is fast enough as it calculates all result for

AES S-box in less than 1 minute.

3.1.1.3 Notation

For programming, we consider S-box as a boolean function

S : GF (2n) −→ GF (2n)

As an input, a file that contains all elements of GF (2n) (according to given input

of n) will be automatically generated by the code for considering the domain of

function S. In the MATLAB code, following notations are used:

MATLAB tool for the analysis of S-boxes 52

Z Set of elements GF (2n), representing domain of S-box.

F Set of elements of S-box.

fixp Fixed points of S-box.

opfixp Opposite fixed points of S-box.

WS Wlash spectrum of boolean functions.

WH Walsh Hadamard transform of boolean functions.

HW Hamming weight of boolean functions.

NLf Non-linearity of boolean functions.

AvgNL Average of non linearities of all boolean functions.

BentNL Bent non-linaerity value of a boolean function.

PN Perfect non-linearity value of boolean functions.

NLS Non-linearity of S-box.

MaxNL Maximum non-linearity value of boolean function.

DBN Differential branch number of S-box.

e The matrix containing all vectors with hamming weight 1.

DD Dynamic distance table

DDf Dynamic diatances of boolean functions.

ACf Avalanche effect value of S-box entries.

NfAC Number of entries in S-box which satisfy Avalanche criterion.

PAC Avalanche criterion percentage value of S-box.

DM Dependence matrix of S-box.

SAC Desired SAC value.

MATLAB tool for the analysis of S-boxes 53

SACf SAC values of boolean functions.

SSI Sum of Squares Indicator of Boolean functions.

AI Absolute Indicator of Boolean functions

BICNL BIC Non-linearity criterion of S-box

3.2 Analysis of different S-boxes by SAMT

We analyze the properties of some S-boxes with SAMT and presented the obtained

results.

3.2.1 AES S-box Analysis

AES [42] S-box represented in hexadecimal format for the MATLAB code will be

written in the following way.

“[′63′;′ 7c′;′ 77′;′ 7b′;′ f2′;′ 6b′;′ 6f ′;′ c5′;

′30′;′ 01′;′ 67′;′ 2b′;′ fe′;′ d7′;′ ab′;′ 76′;

′ca′;′ 82′;′ c9′;′ 7d′;′ fa′;′ 59′;′ 47′;′ f0′;

′ad′;′ d4′;′ a2′;′ af ′;′ 9c′;′ a4′;′ 72′;′ c0′;

′b7′;′ fd′;′ 93′;′ 26′;′ 36′;′ 3f ′;′ f7′;′ cc′;

′34′;′ a5′;′ e5′;′ f1′;′ 71′;′ d8′;′ 31′;′ 15′;

′04′;′ c7′;′ 23′;′ c3′;′ 18′;′ 96′;′ 05′;′ 9a′;

′07′;′ 12′;′ 80′;′ e2′;′ eb′;′ 27′;′ b2′;′ 75′;

′09′;′ 83′;′ 2c′;′ 1a′;′ 1b′;′ 6e′;′ 5a′;′ a0′;

′52′;′ 3b′;′ d6′;′ b3′;′ 29′;′ e3′;′ 2f ′;′ 84′;

′53′;′ d1′;′ 00′;′ ed′;′ 20′;′ fc′;′ b1′;′ 5b′;

′6a′;′ cb′;′ be′;′ 39′;′ 4a′;′ 4c′;′ 58′;′ cf ′;

′d0′;′ ef ′;′ aa′;′ fb′;′ 43′;′ 4d′;′ 33′;′ 85′;

′45′;′ f9′;′ 02′;′ 7f ′;′ 50′;′ 3c′;′ 9f ′;′ a8′;

MATLAB tool for the analysis of S-boxes 54

′51′;′ a3′;′ 40′;′ 8f ′;′ 92′;′ 9d′;′ 38′;′ f5′;

′bc′;′ b6′;′ da′;′ 21′;′ 10′;′ ff ′;′ f3′;′ d2′;

′cd′;′ 0c′;′ 13′;′ ec′;′ 5f ′;′ 97′;′ 44′;′ 17′;

′c4′;′ a7′;′ 7e′;′ 3d′;′ 64′;′ 5d′;′ 19′;′ 73′;

′60′;′ 81′;′ 4f ′;′ dc′;′ 22′;′ 2a′;′ 90′;′ 88′;

′46′;′ ee′;′ b8′;′ 14′;′ de′;′ 5e′;′ 0b′;′ db′;

′e0′;′ 32′;′ 3a′;′ 0a′;′ 49′;′ 06′;′ 24′;′ 5c′;

′c2′;′ d3′;′ ac′;′ 62′;′ 91′;′ 95′;′ e4′;′ 79′;

′e7′;′ c8′;′ 37′;′ 6d′;′ 8d′;′ d5′;′ 4e′;′ a9′;

′6c′;′ 56′;′ f4′;′ ea′;′ 65′;′ 7a′;′ ae′;′ 08′;

′ba′;′ 78′;′ 25′;′ 2e′;′ 1c′;′ a6′;′ b4′;′ c6′;

′e8′;′ dd′;′ 74′;′ 1f ′;′ 4b′;′ bd′;′ 8b′;′ 8a′;

′70′;′ 3e′;′ b5′;′ 66′;′ 48′;′ 03′;′ f6′;′ 0e′;

′61′;′ 35′;′ 57′;′ b9′;′ 86′;′ c1′;′ 1d′;′ 9e′;

′e1′;′ f8′;′ 98′;′ 11′;′ 69′;′ d9′;′ 8e′;′ 94′;

′9b′;′ 1e′;′ 87′;′ e9′;′ ce′;′ 55′;′ 28′;′ df ′;

′8c′;′ a1′;′ 89′;′ 0d′;′ bf ′;′ e6′;′ 42′;′ 68′;

′41′;′ 99′;′ 2d′;′ 0f ′;′ b0′;′ 54′;′ bb′;′ 16′]”

Results retrieved about AES S-box properties by SAMT are as follows:

1. Fixed Points of S-box = 0

2. Opposite Fixed Points of S-box = 0

3. S-Box is Bijective

4. Hamming weight of all Boolean functions

[
128 128 128 128 128 128 128 128

]

5. S-box is Balanced

MATLAB tool for the analysis of S-boxes 55

6. Non-linearity of all Boolean functions

[
112 112 112 112 112 112 112 112

]

7. Average Non-linearity of all Boolean functions = 112

8. Almost Bent Non-linearity value = 120

9. Perfect Non-linearity of all Boolean functions

[
124 144 132 120 136 132 140 128

]

10. Non-linearity of S-box = 112

11. Maximum Non-linearity value for given Galois field = 120

12. Differential Branch Number = 3

13. Dynamic Distance Table



0 6 2 6 8 6 2 2

4 0 6 2 0 8 2 4

0 4 0 8 4 0 2 2

6 0 4 0 6 4 4 4

4 6 0 0 2 6 0 6

4 4 6 4 4 2 2 6

2 4 4 4 2 4 4 4

2 2 4 2 4 2 8 2


14. Dynamic Distances of Boolean functions

[
6 6 6 8 8 8 8 6

]

15. Desired Avalanche value for Boolean function = 128

MATLAB tool for the analysis of S-boxes 56

16. Avalanche value of Boolean functions

128 116 124 116 144 116 132 132

136 128 116 124 128 144 124 120

128 136 128 144 120 128 132 132

140 128 136 128 116 120 136 136

136 140 128 128 132 116 128 116

136 136 140 120 120 132 132 116

124 136 136 120 132 120 136 136

132 124 136 124 136 132 144 132


17. Boolean functions results which satisfy Avalanche Criterion = 43

18. Avalanche Criterion Percentage of S-box = 67.1875

19. Dependence Matrix of S-box



0.5000 0.4531 0.4844 0.4531 0.5625 0.4531 0.5156 0.5156

0.5313 0.5000 0.4531 0.4844 0.5000 0.5625 0.4844 0.4688

0.5000 0.5313 0.5000 0.5625 0.4688 0.5000 0.5156 0.5156

0.5469 0.5000 0.5313 0.5000 0.4531 0.4688 0.5313 0.5313

0.5313 0.5469 0.5000 0.5000 0.5156 0.4531 0.5000 0.4531

0.5313 0.5313 0.5469 0.4688 0.4688 0.5156 0.5156 0.4531

0.4844 0.5313 0.5313 0.4688 0.5156 0.4688 0.5313 0.5313

0.5156 0.4844 0.5313 0.4844 0.5313 0.5156 0.5625 0.5156


20. Desired SAC of a Boolean function = 1024

21. SAC values of Boolean functions

[
1008 1020 1048 1040 1024 1032 1040 1060

]

22. Sum of Squares Indicator of Boolean functions

[
133120 133120 133120 133120 133120 133120 133120 133120

]

MATLAB tool for the analysis of S-boxes 57

23. Absolute Indicator of Boolean functions

[
32 32 32 32 32 32 32 32

]

24. BIC Non-linearity criterion of S-box



0 112 112 112 112 112 112 112

112 0 112 112 112 112 112 112

112 112 0 112 112 112 112 112

112 112 112 0 112 112 112 112

112 112 112 112 0 112 112 112

112 112 112 112 112 0 112 112

112 112 112 112 112 112 0 112

112 112 112 112 112 112 112 0



3.2.2 Guo Chen S-box properties

“An extended method for obtaining S-boxes based on three-dimensional chaotic

Baker maps” [11].

S-box presented in this paper for the MATLAB code in decimal format is given

below.

(′161 85 129 224 176 50 207 177 48 205 68 60 1 160 117 46 130 124 203 58 145 14

115 189 235 142 4 43 13 51 52 19 152 153 83 96 86 133 228 136 175 23 109 252

236 49 167 92 106 94 81 139 151 134 245 72 172 171 62 79 77 231 82 32 238 22 63

99 80 217 164 178 0 154 240 188 150 157 215 232 180 119 166 18 141 20 17 97

254 181 184 47 146 233 113 120 54 21 183 118 15 114 36 253 197 2 9 165 132 204

226 64 107 88 55 8 221 65 185 234 162 210 250 179 61 202 248 247 213 89 101

108 102 45 56 5 212 10 12 243 216 242 84 111 143 67 93 123 11 137 249 170 27

223 186 95 169 116 163 25 174 135 91 104 196 208 148 24 251 39 40 31 16 219

214 74 140 211 112 75 190 73 187 244 182 122 193 131 194 149 121 76 156 168

222 34 241 70 255 229 246 90 53 225 100 30 37 237 103 126 38 200 44 209 42 29

MATLAB tool for the analysis of S-boxes 58

41 218 71 155 78 125 173 28 128 87 239 3 191 158 199 138 227 59 69 220 195 66

192 230 198 26 159 6 127 201 144 206 98 33 35 7 105 147 57 110′)

MATLAB tool compute following results:

1. Fixed Points of S-box = 0

2. Opposite Fixed Points of S-box = 1

3. S-box is Bijective

4. Hamming weight of all Boolean functions

[
128 128 128 128 128 128 128 128

]

5. S-box is Balanced

6. Non-linearity of all Boolean functions

[
100 100 104 100 106 106 102 106

]

7. Average Non-linearity of all Boolean functions = 103

8. Almost Bent Non-linearity value = 120

9. Perfect Non-linearity of all Boolean functions

[
144 128 144 124 140 140 140 128

]

10. Non-linearity of S-box = 104

11. Maximum Non-linearity value for given Galois field = 120

12. Differential Branch Number = 3

MATLAB tool for the analysis of S-boxes 59

13. Dynamic Distance Table



0 2 0 14 8 2 0 8

2 10 4 6 10 4 6 6

0 2 0 4 4 2 2 4

10 4 4 2 6 0 4 4

0 6 8 6 6 4 2 4

2 6 0 2 2 4 8 2

8 2 4 8 2 2 2 2

4 6 6 0 10 4 6 6


14. Dynamic Distances of Boolean functions

[
10 10 8 14 10 4 8 8

]

15. Desired Avalanche value for Boolean function = 128

16. Avalanche value of Boolean functions

128 132 128 156 144 132 128 144

132 148 136 116 108 120 116 140

128 132 128 120 136 124 132 136

148 136 120 132 140 128 136 120

128 140 112 140 116 120 132 136

124 116 128 124 132 120 112 132

112 132 120 112 124 124 132 124

136 140 116 128 108 136 116 116


17. Boolean functions results which satisfy Avalanche Criterion = 38

18. Avalanche Criterion Percentage of S-box = 59.3750

MATLAB tool for the analysis of S-boxes 60

19. Dependence Matrix of S-box



0.5000 0.5156 0.5000 0.6094 0.5625 0.5156 0.5000 0.5325

0.5156 0.5781 0.5313 0.4531 0.4219 0.4688 0.4531 0.5469

0.5000 0.5156 0.5000 0.4688 0.5313 0.4844 0.5156 0.5313

0.5781 0.5313 0.4688 0.5156 0.5469 0.5000 0.5313 0.4688

0.5000 0.5469 0.4375 0.5469 0.4531 0.4688 0.5156 0.5313

0.4844 0.4531 0.5000 0.4844 0.5156 0.4688 0.4375 0.5156

0.4375 0.5156 0.4688 0.4375 0.4844 0.4844 0.5156 0.4844

0.5313 0.5469 0.4531 0.5000 0.4219 0.5313 0.4531 0.4531


20. Desired SAC of a Boolean function = 1024

21. SAC values of Boolean functions

[
1092 1016 1036 1060 1024 988 980 996

]

22. Sum of Squares Indicator of Boolean functions

[
199552 201856 181120 222976 196096 170368 202240 192640

]

23. Absolute Indicator of boolean functions

[
64 64 64 72 64 72 72 80

]

MATLAB tool for the analysis of S-boxes 61

24. BIC Non-linearity criterion of S-box



0 102 104 102 106 104 100 102

102 0 104 100 106 102 106 100

104 104 0 104 108 108 102 100

102 100 104 0 108 100 100 108

106 106 108 108 0 106 98 100

104 102 108 100 106 0 104 102

100 106 102 100 98 104 0 102

102 100 100 108 100 102 102 0



3.2.3 Faith and Ahmet S-box properties

“A method for designing strong S-Boxes based on chaotic Lorenz system” [36].

S-box presented in this paper is given below in decimal format of MATLAB.

(′60 215 166 47 119 212 85 136 117 65 238 242 182 39 229 143 31 129 128 218 8

27 99 45 241 179 187 73 237 138 15 203 227 205 216 144 202 49 130 254 131 81

148 178 127 121 221 133 13 230 92 48 188 199 58 116 44 43 137 153 34 112 231

103 67 204 211 206 152 118 96 57 77 126 74 50 244 253 164 226 6 10 36 38 94 98

59 184 115 170 232 7 162 68 150 248 72 167 159 177 105 142 56 93 114 192 249

90 84 102 154 222 134 125 141 183 185 169 87 189 156 155 217 197 201 89 2 9

228 186 240 173 195 104 100 101 29 33 252 236 18 193 26 213 250 55 176 95 20

146 17 1 219 139 79 132 194 61 14 207 53 62 180 255 63 174 69 35 32 42 28 4 124

19 75 23 147 80 54 200 158 165 120 140 190 11 220 157 210 106 145 107 239 40

246 91 243 5 151 111 214 37 25 233 82 86 21 245 76 172 22 78 122 198 30 224 168

209 225 110 64 181 251 208 88 71 235 109 51 108 161 0 191 223 247 171 149 196

66 113 123 41 3 70 163 175 135 16 12 234 97 83 160 24 52 46′)

MATLAB code compute these results:

1. Fixed Points of S-box = 1

MATLAB tool for the analysis of S-boxes 62

2. Opposite Fixed Points of S-box = 1

3. S-box is not Bijective

4. Hamming weight of all Boolean functions

[
128 128 128 128 128 128 128 128

]

5. S-box is Balanced

6. Non-linearity of all Boolean functions

[
104 104 102 104 102 106 100 104

]

7. Average Non-linearity of all Boolean functions = 103.2500

8. Almost Bent non-linearity = 120

9. Perfect Non-linearity of all Boolean functions

[
128 148 132 120 112 124 120 132

]

10. Maximum Non-linearity value for given Galois field = 120

11. Non-linearity of S-box = 104

12. Differential Branch Number = 3

MATLAB tool for the analysis of S-boxes 63

13. Dynamic Distance Table



6 6 4 0 4 4 8 6

4 2 6 2 2 0 6 2

6 4 4 2 6 4 4 6

6 2 10 2 4 0 2 4

6 4 6 2 4 4 10 8

2 6 2 4 2 0 4 0

0 0 4 6 2 4 4 12

0 0 8 4 6 2 2 10


14. Dynamic Distances of Boolean functions

[
6 6 10 6 6 4 10 12

]

15. Desired Avalanche value for Boolean function = 128

16. Avalanche value of Boolean functions

116 140 120 128 136 120 144 116

120 124 116 124 124 128 140 124

116 136 136 124 140 136 136 116

140 132 148 132 120 128 124 136

140 120 140 132 120 136 148 112

132 140 132 136 132 128 120 128

128 128 136 116 132 120 136 152

128 128 144 136 116 124 124 108


17. Boolean functions results which satisfy Avalanche Criterion = 39

18. Avalanche Criterion Percentage of S-box = 60.9375

MATLAB tool for the analysis of S-boxes 64

19. Dependence Matrix of S-box



0.4531 0.5469 0.4688 0.5000 0.5313 0.4688 0.5625 0.4531

0.4688 0.4844 0.4531 0.4844 0.4844 0.5000 0.5469 0.4844

0.4531 0.5313 0.5313 0.4844 0.5469 0.5313 0.5313 0.4531

0.5469 0.5156 0.5781 0.5156 0.4688 0.5000 0.4844 0.5313

0.5469 0.4688 0.5469 0.5156 0.4688 0.5313 0.5781 0.4375

0.5156 0.5469 0.5156 0.5313 0.5156 0.5000 0.4688 0.5000

0.5000 0.5000 0.5313 0.4531 0.5156 0.4688 0.5313 0.5938

0.5000 0.5000 0.5625 0.5313 0.4531 0.4844 0.4844 0.4219


20. Desired SAC of a Boolean function = 1024

21. SAC values of Boolean functions

[
1020 1000 1040 1060 1048 1048 1048 1008

]

22. Sum of Squares Indicator of Boolean functions

[
182272 187264 182272 212992 190720 173056 208384 206464

]

23. Absolute Indicator of boolean functions

[
64 72 80 64 56 56 80 64

]

MATLAB tool for the analysis of S-boxes 65

24. BIC Non-linearity criterion of S-box



0 106 104 102 104 106 108 102

106 0 104 100 104 102 108 104

104 104 0 106 104 102 104 102

102 100 106 0 100 100 104 102

104 104 104 100 0 102 106 104

106 102 102 100 102 0 104 104

108 108 104 104 106 104 0 106

102 104 102 102 104 104 106 0



3.3 Comparison of Results with SET-tool

The results calculated by SAMT were compared with the results obtained by

SET-tool for the S-box of AES.

Properties of S-box SET-tool SAMT

Balanced yes yes

Bijective yes yes

Fixed points 0 0

Opposite fixed points 1 0

Non-linearity 112 112

Sum of square indicator 133120 133120

Absolute indicator 32 32

SAC not satisfied not satisfied

Non-linearity boolean functions not available calculated

Perfect Non-linearity boolean functions not available calculated

Differential Branch Number not available 3

Dynamic distances boolean functions not available calculated

Avalanche effect boolean functions not available calculated

Avalanche effect percentage not available 67%

Dependence Matrix of S-box not available calculated

BIC Non-linearity not available 112

Table 3.1: AES S-box results with SET tool and SAMT

MATLAB tool for the analysis of S-boxes 66

3.4 Conclusion

S-boxes and boolean functions play an important role in many algorithms of sym-

metric key cryptography. Often, we use some already known and widely used

S-boxes or at least the logics behind them are reused (as in the case Rakaposhi

Boolean function which use the same irreducible polynomial as AES) but there

is always a requirement for the use of new S-boxes or Boolean functions. Hence

we believe this tool can help cryptographic researchers to analyze the behavior of

S-Boxes at a deeper level. With this MATLAB code, user will be able to execute

desired properties not only for complete S-box but also for its all boolean func-

tions. SAMT also provides a large space with respect to Galois field GF (2n) for

2 ≤ n ≤ 20 so it will be a great tool in future for analysing bigger S-boxes than

in present use GF (28). MATLAB is a user friendly software and it provides a big

space of built in functions and routines which can be used as a part of this code

where required.

There are some aspects that we want to investigate in the further development of

this tool. First one is to add more relevant cryptographic properties.

1. XOR Table

2. Algebraic Immunity

3. Correlation Immunity

These properties would make further enhancement in the analysis. We consider

also an improvement in the execution speed of the code where we want to achieve

the minimum time for the calculation of all properties of an S-box in GF (2n) for

n ≥ 8. This tool will be designed in such a way that it can analyze the properties

of S-boxes with different input and output Galois fields.

Bibliography

[1] C. M. Adams, “On immunity against biham and shamir’s differential crypt-

analysis”. Information Processing Letters, 41(2):77–80, 1992.

[2] M. Ahmad, D. Bhatia, & Y. Hassan, “A novel ant colony optimization based

scheme for substitution box design”. Procedia Computer Science, 57:572–580,

2015.

[3] J. A. Alvarez-Cubero & P. J. Zufiria, “A c++ class for analysing vector

boolean functions from a cryptographic perspective”. In Security and Cryp-

tography (SECRYPT), Proceedings of the 2010 International Conference on,

pages 1–9. IEEE, 2010.

[4] E. R. Berlekamp, “Factoring polynomials over finite fields”. Bell System

Technical Journal, 46(8):1853–1859, 1967.

[5] P. Bhadauriya, F. Suthar, & S. Chaudhary, “A novel technique for secure

communication in cryptography”.

[6] J. Blömer & J. P. Seifert, “Fault based cryptanalysis of the advanced encryp-

tion standard (aes)”. In International Conference on Financial Cryptography,

pages 162–181. Springer, 2003.

[7] E. Brow. “Algebraic geometry”, 2010.

[8] C. Carlet, “Boolean functions for cryptography and error correcting codes”.

Boolean Methods and Models, 2006.

67

Bibliography 68

[9] C. Carlet, “Vectorial boolean functions for cryptography”. Boolean models

and methods in mathematics, computer science, and engineering, 134:398–

469, 2010.

[10] C. Carlet & C. Ding, “Nonlinearities of s-boxes”. Finite fields and their

applications, 13(1):121–135, 2007.

[11] G. Chen, Y. Chen, & X. Liao, “An extended method for obtaining s-boxes

based on three-dimensional chaotic baker maps”. Chaos, Solitons & Fractals,

31(3):571–579, 2007.

[12] J. A. Clark, J. L. Jacob, S. Maitra, & P. Stănică, “Almost boolean func-

tions: The design of boolean functions by spectral inversion”. Computational

Intelligence, 20(3):450–462, 2004.

[13] N. T. Courtois, “An improved differential attack on full gost”. In The New

Codebreakers, pages 282–303. Springer, 2016.

[14] J. Daemen & V. Rijmen, “The design of Rijndael: AES-the advanced encryp-

tion standard”. Springer Science & Business Media, 2013.

[15] J. Daemen, R. Govaerts, & J. Vandewalle, “Correlation matrices”. In In-

ternational Workshop on Fast Software Encryption, pages 275–285. Springer,

1994.

[16] W. Diffie & M. E. Hellman, “Special feature exhaustive cryptanalysis of the

nbs data encryption standard”. Computer, 10(6):74–84, 1977.

[17] I. R. Dragomir & M. Lazăr, “Generating and testing the components of a

block cipher”. In Electronics, Computers and Artificial Intelligence (ECAI),

2016 8th International Conference on, pages 1–4. IEEE, 2016.

[18] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms”. IEEE transactions on information theory, 31(4):469–

472, 1985.

[19] H. Feistel, “Cryptography and computer privacy”. Scientific american, 228

(5):15–23, 1973.

Bibliography 69

[20] R. Forrié, “The strict avalanche criterion: spectral properties of boolean func-

tions and an extended definition”. In Conference on the Theory and Applica-

tion of Cryptography, pages 450–468. Springer, 1988.

[21] J. Gordon & H. Retkin, “Are big s-boxes best?”. In Workshop on Cryptog-

raphy, pages 257–262. Springer, 1982.

[22] H. Heys et al., “Selected Areas in Cryptography: 6th Annual International

Workshop, SAC’99 Kingston, Ontario, Canada, August 9-10, 1999 Proceed-

ings”, volume 1758. Springer Science & Business Media, 2000.

[23] K. J. Horadam, “Hadamard matrices and their applications: Progress 2007–

2010”. Cryptography and Communications, 2(2):129–154, 2010.

[24] I. Hussain & T. Shah, “Literature survey on nonlinear components and chaotic

nonlinear components of block ciphers”. Nonlinear Dynamics, 74(4):869–904,

2013.

[25] P. D. Johnson Jr, G. A. Harris, & D. Hankerson, “Introduction to information

theory and data compression”. Chapman and Hall/CRC, 2003.

[26] J. B. Kam & G. I. Davida, “Structured design of substitution-permutation

encryption networks”. IEEE Transactions on Computers, (10):747–753, 1979.

[27] A. Kapoor. “Customizable public key infrastructure and development tool

for same”, Oct. 27 2009. US Patent 7,610,484.

[28] L. R. Knudsen & M. Robshaw, “The block cipher companion”. Springer

Science & Business Media, 2011.

[29] F. Lafitte, “The boolfun package: Cryptographic properties of boolean func-

tions”. 2012.

[30] S. A. Mahadevan, “Low power implementation of an AES 128-bit encryption”.

The University of Texas at San Antonio, 2015.

Bibliography 70

[31] P. P. Mar & K. M. Latt, “New analysis methods on strict avalanche criterion

of s-boxes”. World Academy of Science, Engineering and Technology, 48(150-

154):25, 2008.

[32] W. Meier & O. Staffelbach, “Nonlinearity criteria for cryptographic func-

tions”. In Workshop on the Theory and Application of of Cryptographic Tech-

niques, pages 549–562. Springer, 1989.

[33] S. Mister & C. Adams, “Practical s-box design”. In Workshop on Selected

Areas in Cryptography, SAC, volume 96, pages 61–76, 1996.

[34] K. Moeen, “Progressive product reduction for polynomial basis multiplication

over GF (3m)”. PhD thesis, 2016.

[35] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, &

E. Roback, “Report on the development of the advanced encryption stan-

dard (aes)”. Journal of Research of the National Institute of Standards and

Technology, 106(3):511, 2001.

[36] F. Özkaynak & A. B. Özer, “A method for designing strong s-boxes based on

chaotic lorenz system”. Physics Letters A, 374(36):3733–3738, 2010.

[37] S. Picek, L. Batina, D. Jakobović, B. Ege, & M. Golub, “S-box, set, match: a

toolbox for s-box analysis”. In IFIP International Workshop on Information

Security Theory and Practice, pages 140–149. Springer, 2014.

[38] S. Picek, D. Jakobovic, J. F. Miller, L. Batina, & M. Cupic, “Cryptographic

boolean functions: One output, many design criteria”. Applied Soft Comput-

ing, 40:635–653, 2016.

[39] J. Pieprzyk & G. Finkelstein, “Permutations that maximize non-linearity and

their cryptographic significance”. North-Holland, Amsterdam, 1989.

[40] B. Preneel & A. BRAEKEN, “Cryptographic properties of boolean functions

and s-boxes”. Technical report, Technical report, Katholieke Universiteit

Leuven, 2006.

Bibliography 71

[41] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, & J. Vandewalle,

“Propagation characteristics of boolean functions”. In Workshop on the The-

ory and Application of of Cryptographic Techniques, pages 161–173. Springer,

1990.

[42] V. Rijmen & J. Daemen, “Advanced encryption standard”. Proceedings of

Federal Information Processing Standards Publications, National Institute of

Standards and Technology, pages 19–22, 2001.

[43] R. L. Rivest, A. Shamir, & L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems”. Communications of the ACM, 21

(2):120–126, 1978.

[44] S. Sarkar & H. Syed, “Bounds on differential and linear branch number of

permutations”. In Australasian Conference on Information Security and Pri-

vacy, pages 207–224. Springer, 2018.

[45] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson,

T. Kohno, & M. Stay, “The twofish teams final comments on aes selection”.

AES round, 2, 2000.

[46] J. Seberry, X.-M. Zhang, & Y. Zheng, “GAC: The Criterion for Global

Avalanche Characteristics of Cryptographic Functions”. University of Wol-

longong. Department of Computing Science, 1994.

[47] N. Sklavos & X. Zhang, “Wireless security and cryptography: specifications

and implementations”. CRC press, 2007.

[48] M. Stanek, “On cryptographic properties of random boolean functions”. Jour-

nal of Universal Computer Science, 4(8):705–717, 1998.

[49] W. Stein, “Sage mathematics software”. http://www. sagemath. org/, 2007.

[50] G. Tang, X. Liao, & Y. Chen, “A novel method for designing s-boxes based

on chaotic maps”. Chaos, Solitons & Fractals, 23(2):413–419, 2005.

Bibliography 72

[51] Y. Tarannikov, P. Korolev, & A. Botev, “Autocorrelation coefficients and

correlation immunity of boolean functions”. In International Conference on

the Theory and Application of Cryptology and Information Security, pages

460–479. Springer, 2001.

[52] I. VERGİLİ & M. D. Yücel, “Avalanche and bit independence properties for

the ensembles of randomly chosen n\times n s-boxes”. Turkish Journal of

Electrical Engineering & Computer Sciences, 9(2):137–146, 2001.

[53] Y. Wang, K.-W. Wong, C. Li, & Y. Li, “A novel method to design s-box

based on chaotic map and genetic algorithm”. Physics Letters A, 376(6-7):

827–833, 2012.

[54] A. Webster & S. E. Tavares, “On the design of s-boxes”. In Conference on the

theory and application of cryptographic techniques, pages 523–534. Springer,

1985.

[55] Y. Wei & E. Pasalic, “On the approximation of s-boxes via maiorana–

mcfarland functions”. IET Information Security, 7(2):134–143, 2013.

[56] G. Xu, G. Zhao, & L. Min, “A method for designing dynamical s-boxes based

on discrete chaos map system”. In Communications, Circuits and Systems,

2009. ICCCAS 2009. International Conference on, pages 876–880. IEEE,

2009.

[57] A. Youssef, S. Tavares, S. Mister, & C. Adams, “Linear approximation of

injective s-boxes”. Electronics letters, 31(25):2165–2165, 1995.

[58] Y. Zheng, “Systematic generation of cryptographically robust s-boxes”. 1993.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 INTRODUCTION
	1.1 Substitution Boxes in Cryptography
	1.2 Why We Study S-boxes?
	1.2.1 Classification of S-boxes

	1.3 Construction of S-boxes
	1.3.1 History of Design Criteria of S-boxes

	1.4 Desirable Properties for Good S-boxes
	1.5 Software Tools For S-box Analysis
	1.6 Thesis Objective

	2 S-boxes and their Cryptographic Properties
	2.1 Mathematical Background
	2.1.1 Galois Field
	2.1.1.1 Representation of Galois field elements

	2.1.2 Boolean Functions
	2.1.2.1 Representation of Boolean functions

	2.1.3 Properties of Boolean Functions

	2.2 Substitution Boxes
	2.2.1 The Rijndael S-box (AES)
	2.2.1.1 Irreducible Polynomial
	2.2.1.2 Affine Transformation

	2.2.2 Properties of Cryptographically Strong S-boxes

	3 MATLAB tool for the analysis of S-boxes
	3.1 MATLAB tool
	3.1.1 How to use this MATLAB code?
	3.1.1.1 Requirements
	3.1.1.2 S-box Analysis MATLAB Tool (SAMT.p)
	3.1.1.3 Notation

	3.2 Analysis of different S-boxes by SAMT
	3.2.1 AES S-box Analysis
	3.2.2 Guo Chen S-box properties
	3.2.3 Faith and Ahmet S-box properties

	3.3 Comparison of Results with SET-tool
	3.4 Conclusion

	Bibliography

