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Abstract

This investigation is undertaken to explore the impact of non-linear thermal ra-

diation on the development of Magnetohydrodynamic mixed convective, laminar,

steady flow inside an enclosure having a square cylinder. The working fluid is

a mixture of aluminum oxide nanoparticles and water, referred as nanofluid. As

thermal boundary conditions of the cavity, two verticals surfaces are adiabatic

whereas two horizontal walls are kept at different temperature Th and Tc. The

upper surface carry low temperature (Tc) and is moving with constant speed, the

bottom wall is maintained at high temperature (Th), and the central square cylin-

der is fixed at average temperature. The non-dimensional governing equations are

simulated with the help of finite element method based on the Galerkin weighted

residual technique. In particular, the biquadratic finite element space is utilized

for velocity, temperature approximations while discontinuous linear element is em-

ployed for the pressure component. Picard iteration technique is implemented to

linearize the discretized non-linear system of equations and then Gaussian elimi-

nation method is adopted to solve the associated linear subproblem. The compu-

tational study is demonstrated and analyzed by means of isotherms, streamlines,

and some useful plots.
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Chapter 1

Introduction

Heat transfer is the process in which energy transfers from one place (or system)

to another place due to the temperature differences of both places (or systems).

Phenomena of heat transfer is classified into three groups i.e., conduction, con-

vection and radiation. In the literature review, it has been observed that energy

transfer in the base fluid through convection is acquiring the center of attraction

of many researchers due to its wide applications in various engineering processes

[13, 21, 33]. Convection is further classified into three sub-groups; Free or nat-

ural convection (occurs because of temperature difference which cause variation

in densities), forced convection (motion of fluid is created artificially) and mixed

convection (occurs due to both buoyancy and shear forces collectively play their

role).

1.1 Mixed Convection in an Enclosure

The latest technology impact have intensified interest on the mixed convection

flows in the cavities with the purpose of quantitative understanding of engineer-

ing applications. From the last few decades mixed convection flows in the driven

enclosure is under consideration due to its applications like heat transfer in solar

ponds [13], float glass production [33], etc. For the simulation of Navier-Stokes

1



Introduction 2

problem driven enclosure phenomena have been widely used as a benchmark case.

[41].

Computational study of influence of fixed length of heaters on combined convection

in an enclosure having porous media has been investigated by Öztop [29]. Results

showed that the position of heaters is very important in the heat transport and

temperature gradient. Amiri et al. [4] numerically analyzed the combined impact

of thermal and mass transport in a driven enclosure. The computational study

was conducted for pertinent non-dimensional parameters with various ranges for

example, Lewis number, 1 ≤ Le ≤ 50, Richardson number, 4 × 10−4 ≤ Ri ≤ 10

and buoyancy ratio parameter, −100 ≤ N ≤ 100 to examine the mass and heat

transport mechanism. Combined convection in a rectangular cavity with contin-

uously moving horizontal plate has been discussed by Waheed [42]. Simulations

of heat transport phenomena through combined convection in an enclosure with

numerous values of Ri and Pr have been performed by Cheng [15]. Saha et al.

[36] have simulated the combined convection in a driven enclosure with a wavy

lower surface. Set of governing equations of physical problem has been solved with

the help of GFEM. Baker et al. [7] have studied the combined convection in an

enclosure coupled with internal heat generation. It was noticed that rate of heat

transfer rate reduced by adding the heat generation.

1.1.1 Impact of Nanofluid on the Mixed Convection Flows

Mixed convection of nanofluids confined in the different geometries have gained

the attention of many researchers. Fluid like engine oil, water and ethylene glycol

have shown the poor properties for the heat transport. For the enhancement of

the heat transfer characteristics of such fluids, researchers used micro and macro

solid particles ([43]) with the base fluid (water, engine oil and ethylene glycol)

by enhancing the heat conductivity of the base fluid. The suspension of metallic

nanoparticles in the base fluid has been classified as a recent class of heat transfer

fluids. Choi [16] initially used the nanoparticles of high thermal conductivity in
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the base fluid to enhance the heat transport phenomena. Literature review re-

vealed that the mixed convection in lid-driven enclosures poured with nanofluid

has great significance among the researchers due to its various practical applica-

tions like lubrication technologies [21], chemical processing equipment [31], etc.

The numerical simulation for the combined convection in a tilted square enclo-

sure poured with nanofluid whose upper wall was moving with constant speed

have been analyzed by Abu-Nada and Chamkha [1]. It has been illustrated that

the inclination angle and volume fraction of nanoparticles have the great impact

on the flow field and heat transport. Arani et al. [5] performed the numerical

simulation for the mixed convection in an enclosure filled with copper nanofluid

with sinusoidal heating on vertical surfaces. This work explained that for different

values of Ri clockwise vortex was generated in an enclosure while enhancing of

the volume fraction of copper nanoparticles have positive impact on heat transfer.

Analysis on laminar two-dimensional effect of combined convection in an enclosure

using nanofluid with moving wall has been performed by Zeghbid and Bessaih [44].

Ahmed et al. [3] discussed the mixed convection in a cavity with double moving

surfaces and filled with of micropolar nanofluid under the influence of discrete heat

source.

1.1.2 MHD Effect on the Mixed Convection Flows

Magnetohydrodynamics (MHD) deals with the impact of magnetic field and heat

transport in fluid flow. MHD mixed convection has been the subject of many

authors due to its widespread applications such as electromagnetic casting, using

liquid-metals for cooling of the nuclear reactor and plasma casting [26, 32]. Com-

bined convection under the effect of magnetic field with various thermal and flow

boundary conditions in the different geometries has been discussed in the litera-

ture.

Öztop et al. [30] analyzed the mixed convection flow in an enclosure with corner

heaters under the impact of magnetic field using FVM. Bansal and Chatterjee [9]
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have discussed the impact of magneto-convective on the heat transport phenomena

in a vertical cavity poured with nanofluid and having rotating circular cylinder.

Recently [6, 14, 17, 19] illustrated mixed convection in an enclosure under the

influence of magnetic field. Bakar et al. [6] have extensively studied the MHD

combined convection in a square enclosure. This work reveled that the convective

flow become weaker by enhancing the magnetic field strength. combined convec-

tion in an enclosure poured with ferrofluid and having horizontal porous layer in

the presence of inclined magnetic field was explored numerically by Gibanv et al.

[17]. Numerical study of effect of inclined magnetic field on mixed convection in

an enclosure together with volumetric heat generation performed by Hussain et

al. [19] and GFEM has been used for the numerical simulation.

1.1.3 Flow around the Obstacle with the Mixed

Convection

From the literature review, it has been noticed that the numerous studies based on

combined convection in cavities have been taken into account for different types

of geometries and boundary conditions. Mixed convection in an enclosure having

internal blockages of various shapes getting the noteworthy attention of scientists

and researcher from the recent years due to its frequently encountered applica-

tions [20]. Rahman et al. [34] performed the numerical simulation of the steady

mixed convective flow in a cavity having circular cylinder in the presence of mag-

netic field and Joule heating. Two-dimensional laminar combined convection in

a driven enclosure having a hollow circular obstacle numerically investigated by

Billah et al. [10] for several values of the governing parameters. Results showed

that the flow and heat transfer can be controlled by the hollow circular cylinder.

Numerical simulation on combined convection in an enclosure having hot square

cylinder have been conducted by Islam et al. [20] with various position of internal

blockage.

Bansal and Chatterjee [9] investigated the influence of heated revolving circular

obstacle in their study and results found that the direction of rotating cylinder
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has no significant change on thermal parameters and fluid flow. The computa-

tional study on combined convection in an enclosure with upper moveable surface

and having three hot triangular cylinders have been done by Boulahia et al. [11].

Maximum heat transfer was noticed when triangular blocks were arranged verti-

cally at the left side of cavity. Addini and Nassab [2] also elaborated the effect

of heated square cylinder in their research. Karbasifar et al. [24] performed the

computational study on the mixed convection in a tilted driven enclosure with hot

elliptical cylinder.

1.1.4 Impact of Non-Linear Thermal Radiation on the Mixed

Convection

Thermal radiations is important in the implementation of an innovative energy

system and carry a lot of significance. The emerging radiations from the hot sur-

faces and working fluid lead to the production of thermal radiation in inter-state

of the system. Literature review revealed that the thermal radiation has great im-

portance in high temperature and space technology applications [40]. It provides

significant role in controlling polymer processing industry by using heat transfer

process [38].

Addini and Nassab [2] have extensively studied on the of mixed convection and

radiation effects on heat transport phenomena in an enclosure having hot square

block. FVM was adopted for the numerical simulation of the governing equations.

Mehmood et al. [28] performed the computational study on MHD combined con-

vection in an enclosure poured with nanofluid and having porosity coupled with

non-linear thermal radiation and their conclusion showed that the higher stream

function value has been noticed with an increment of non-linear thermal radia-

tions. Mixed convection in an enclosure having an inside inclined heater together

with thermal radiation have been investigated by Hamici and Sadaoui [18].
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1.2 Thesis Contribution

The main purpose of the present work is to explore the mixed convection in a

square enclosure having uniformly heated square cylinder poured with alumina-

water nanofluid coupled with the non-linear thermal radiations under the impact

of magnetic field. The set of dimensionless governing equations have been solved

by using GFEM. In particular bi-quadratic element (Q2) and P1
disc(linear ele-

ment) are used for velocity, temperature, and pressure components respectively.

Impact of the pertinent non-dimensional parameters were discussed with the help

of streamlines, isotherms, and graphs.

1.3 Thesis Outline

This thesis is composed of following chapters:

Chapter 2 demonstrates some important definitions, basic governing laws and

provides the overview of the solution methodology which will be used to analyze

the modeled problem.

Chapter 3 provides the details of numerical analysis of research paper of Mehmood

et al. [27] in which investigations have been carried out for the steady, MHD mixed

convection flow having square blockage. GFEM has been adopted for the non-

linear PDEs. Results are compiled through graphs, isotherms, and streamlines.

Chapter 4 extends the work of Mehmood et al. [27] for the influence of non-

linear thermal radiations. The set of governing PDEs is discretized with Q2/P
disc
1

element. Numerical results are discussed for various physical parameters such as

Ri, Ha, Rd, Nr and also their effect is illustrated by MATLAB graphs, isotherms

and streamlines.

Chapter 5 summarizes the overall analysis performed in this thesis and suggests

few directions for the further scope of this thesis.



Chapter 2

Fundamental Concepts and Basic

Equations of Flow

In this chapter we discuss the laws, definitions relating to the fluid dynamics

[8, 35] and dimensionless parameters [25]. Moreover, the methodology (FEM [23])

used for the numerical simulation of given problem is compiled along with a toy

problem.

2.1 Important Definitions

Definition 2.1.1. (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” Fluid comprises

of the states of matter and include gases, liquids and plasma.

Definition 2.1.2. (Fluid Mechanics)

“Fluid mechanics is defined as the science that deals with the behavior of fluids

at rest or in the motion, and the interaction of fluids with solids or other fluids at

the boundaries.”

It is further divided into two branches;

7
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• Fluid Dynamics

• Fluid Statics

Definition 2.1.3. (Fluid Dynamics)

“The study of fluids in motion, where pressure forces are also considered that

branch of science is called fluid dynamics.”

Newton’s second law of motion for accelerating bodies is used to represent the

equation of fluid dynamics, ∑
F = ma

Definition 2.1.4. (Fluid Statics)

“Fluid statics deals with problems associated with fluids at rest. Fluid statics is

generally referred to as hydrostatics when the fluid is a liquid and as aerostatics

when the fluid is a gas.”

Newton’s second law for non-accelerating bodies is used to describe the basic

equation of fluid statics, i.e ∑
F = 0

Definition 2.1.5. (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid.”

Definition 2.1.6. (Kinematic Viscosity)

“It is the ratio between the dynamic viscosity and density of fluid.”

ν =
µ

ρ

Definition 2.1.7. (Nanofluid)

“Nanofluids are engineered colloids made of a base fluid and nanoparticles (1−100)

nm. Nanofluids have higher thermal conductivity and single-phase heat transfer

coefficients than their base fluids [12].” Metals, oxides, carbides, or carbon nan-

otubes are the typical nanoparticles which are used in nanofluids and oil, ethylene

glycol and water are the examples of common base fluids.
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2.2 Classification of Fluids

Definition 2.2.1. (Ideal Fluid vs Real Fluid)

“A fluid which is incompressible and is having no viscosity, is known an ideal

fluid.” Practically no ideal fluid exists. Whereas, “A fluid, which possess viscosity,

is known as real fluid.” Real fluids are compressible.

Definition 2.2.2. (Ideal plastic fluid)

“A fluid, in which shear stress is more than the yield value and shear stress is

proportional to the rate of shear strain (or velocity gradient), is known as ideal

plastic fluid. Printers ink and other thixotropic substance are the examples of real

plastic fluids.”

Definition 2.2.3. (Newtonian Fluid vs non-Newtonian Fluid)

“A real fluid, in which the shear stress is directly, proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” In Newtonian fluids,

water, light-hydrocarbon oils, Benzine , Silicone oil etc are comes. On the other

hand, “A real fluid, in which the shear stress is not proportional to the rate of
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shear strain (or velocity gradient), is known as a Non-Newtonian fluid.” Slurries,

Pastes, Plaster etc are considered as non-Newtonian fluid.

2.3 Flow and its Types

Flow is relating to the movement of material. The fluid flow is classified as

Definition 2.3.1. (Steady vs Unsteady Flow)

“Steady flow is defined as that type of flow in which the fluid characteristics like

velocity, pressure, density, etc. at a point do not change with time.” Mathemati-

cally representation of steady flows is,

∂P ∗

∂t
= 0

On the other side, “Unsteady flow is that type of flow, in which the velocity, pres-

sure and density at a point changes with respect to time.” Thus, mathematically
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it is written as
∂P ∗

∂t
6= 0

here any property like pressure, velocity or density are represented by P ∗.

Definition 2.3.2. (Uniform flow vs non-Uniform Flows)

“Uniform flow is defined as, a flow in which the velocity at any given time does not

change with respect to space (i.e., length of direction of the flow).” Mathematical

expression for uniform flow

(
∂V

∂s

)
t=constant

= 0

“Non-uniform flow is that type of flow in which the velocity at any given time

change with respect to space.” It is written as

(
∂V

∂s

)
t=constant

6= 0

change of velocity and length of flow in direction s are represented by ∂V and ∂s

respectively.

Definition 2.3.3. (Laminar vs Turbulent Flow)

“Laminar flow is defined as, in which the fluid particles move along well-defined

paths or stream line and all the stream lines are straight and parallel. Thus

the particles move in laminas or layer gliding smoothly over the adjacent layer.”

Whereas,

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to the movement of fluid particles in a zig-zag way, the eddies formation

takes place which are responsible for high energy loss.”

Definition 2.3.4. (Compressible vs Incompressible Flow)

“The flow in which the density of the fluid changes from point or in other words

the density (ρ) is not constant for the fluid.”

ρ 6= constant
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“An incompressible flow, in which the density is constant for the fluid flow.”

ρ = constant

2.4 Modes of Heat Transfer and Related Prop-

erties

Definition 2.4.1. (Heat)

In thermodynamics, “Heat is defined as the form of energy that is transferred

across the boundary of a system at a given temperature to another system (or

the surroundings) at a lower temperature by virtue of the temperature difference

between the two systems.”

Definition 2.4.2. (Conduction)

“Conduction is the transfer of heat from one body at a higher temperature to

another body in physical contact with it at a lower temperature. The conduction

process takes place at the molecular level and involves the transfer of energy from

the more energetic molecules to those with a lower energy level.”

Mathematical expression for conduction phenomena.

Q̇ = −kA(dT/dx).
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Definition 2.4.3. (Convection)

“Convection, relates to the transfer of heat from a bounding surface to a fluid in

motion, or to the heat transfer across a flow plane within the interior of the flowing

fluid.” Mathematically convection can be written as,

Q̇ = hA(Ts − T∞).

Natural Convection

“If the fluid motion occurs as a result of the density difference produced by the

temperature difference, the process is called free or natural convection.”

Forced Convection

“If the fluid motion is induced by a pump, a blower, a fan, or some similar device,

the process is called forced convection.”

Mixed Convection

“When heat transfer occurs due to the combination of free convection and forced

convection is known as mixed convection.” Nuclear technology and some aspects

of electronic cooling is the example of mixed convection.

Definition 2.4.4. (Radiation)

“Radiation, or more correctly thermal radiation, is electromagnetic radiation emit-

ted by a body by virtue of its temperature and at the expense of its internal energy.

Medium is not necessary for heat transfer through radiation.”

Definition 2.4.5. (Joule Heating)

“Joule heating is the energy dissipation that occurs with an electric current flowing

through a resistor.”

Definition 2.4.6. (Thermal Diffusivity)

“It measures the ability of material to conduct thermal energy relative to its ability

to store thermal energy means how fast or how easily heat can penetrate an object

or substance.” It’s mathematical form is

α =
k

ρCp
.
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Definition 2.4.7. (Thermal Conductivity)

“Under the heat transfer conditions, the effectiveness with which a material con-

duct heat is considered as a thermal conductivity.” In the case of solid, free

electrons are responsible for the thermal conductivity of material, for liquid and

gases it is due to lattice vibrational wave. Thermal conductivity of pure metals

are higher than the other materials.

2.5 Dimensionless Parameters

Definition 2.5.1. (Hartmann Number)

Hartmann number first introduced by Hartmann and defined as,

“ The ratio of the induced electrodynamic (magnetic) force to the hydrodynamic

force of the viscosity.”

It is a dimensionless number used in Plasma. It’s mathematical form is

Ha = B0L̃

√
σ

µ

Definition 2.5.2. (Prandtl Number)

“This number expresses as the ratio of the momentum diffusivity (viscosity) to

the thermal diffusivity.”

German physicist, Ludwig Prandtl first gave the idea of this number and can be

expressed as,

Pr =
ν

α

Definition 2.5.3. (Reynolds Number)

The physical interpretation of Reynolds number is,

“The ratio of the fluid inertia force to that of molecular friction (viscosity).”

Mathematically it can be written as,

Re =
ρVL̃

µ
=

VL̃

ν

where, V represents the velocity of fluid.



Fundamental concepts and basic equations of flow 15

Definition 2.5.4. (Eckert Number)

“It expresses the ratio of kinetic energy to a thermal energy change.”

It named after Ernst R.G Eckert in the early 1950s, it can be expressed as,

Ec =
V2

Cp(Th − Tc)

Definition 2.5.5. (Grashof Number)

Another dimensionless parameter is Grashof which defined as,

“It expresses the buoyancy-to-viscous forces ratio and its action on a fluid. It

characterizes the free non-isothermal convection of the fluid due to the density

difference caused by the temperature gradient in the fluid.”

German engineer Franz Grashof introduced this number and mathematically,

Gr =
gβ(Th − Tc)L̃3

ν

here, velocity is represented by V.

Definition 2.5.6. (Richardson Number)

Richardson number is a non-dimensional parameter named after Lwis Fry Richard-

son (1881− 1953), Ri defined as, “It is the ratio of the buoyancy term to the flow

shear term.” It’s mathematical form is

Ri =
g∇ρ

ρ(∇V)2

V is velocity of fluid. Ri also expressed as the combination of Grashof number to

Reynolds number.

Ri =
Gr

Re2

Definition 2.5.7. (Nusselt Number)

“It expresses the ratio of the total heat transfer in a system to the heat transfer

by conduction.” Mathematically,

Nu =
Q̃conv

Q̃cond

=
h∆T

k∆T
L

=
hL

k
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If, Nu � 1, more effective heat transfer through convection. Nu = 1, fluid is

stationary and all the heat transfer is by conduction.

2.6 Fundamental Equations of Flow

Definition 2.6.1. (Continuity Equation)

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity.” This equation reflects

the fact that mass is conserved. Mathematically it can be write as

∂ρ

∂t
+∇. (ρ V) = 0.

where, V is velocity of fluid.

For steady case rate of time will be constant, so continuity equation becomes

∇. (ρ V) = 0.

In the case of incompressible flow, density does not variate so continuity equation

can be re-write as,

∇. V = 0.

Definition 2.6.2. (Law of Conservation of Momentum)

It is based on the momentum principle, which states that,

“The net force acting on a fluid mass is equal to the change in momentum of flow

per unit time in that direction.” Mathematically this law can be written as

ρ
DV

Dt
= ρ f +∇. T , (2.1)

For Navier-Stokes equation

T = −pI + τ, (2.2)
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where τ is a tensor and it can be written as,

τ = µ
(
∇V + (∇V)t

∗)
, (2.3)

In the above equations, D
Dt

denotes material time derivative or total derivative, ρ

denotes density, V denotes velocity of fluid, Cauchy stress tensor represented by

τ , f is the body forces, p is the pressure and t∗ is transpose of matrix. Matrix

form of Cauchy stress tensor is

τ =


σxx τxy τxz

τxy σyy τyz

τzx τzy σzz

 , (2.4)

For two-dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

∇V =


∂u
∂x

∂v
∂x

0

∂u
∂y

∂v
∂y

0

0 0 0

 , (2.5)

(∇V)t
∗

=


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 , (2.6)

Substituting Eqs. (2.5) and (2.6) into Eq. (2.3) and then in Eq. (2.2) it is found

that:

Txx = −p+ 2µ
∂µ

∂x
(2.7)

Txy = µ

(
∂ν

∂x
+
∂u

∂y

)
(2.8)

Using Eqs. (2.7) to (2.8) in Eq. (2.1), we get two-dimensional Naiver-Stokes equa-

tion for u component.

ρ
Du

Dt
= ρf

x
− ∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.9)
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Similarly, by repeating the above process for v component, we get

ρ
Dv

Dt
= ρf

y
− ∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.10)

Definition 2.6.3. (Law of Conservation of Energy)

The basic principle of conservation of energy is that, “Energy can neither created

nor destroyed, it can be transformed from one form to another form but total

amount of an isolated system remains constant i.e. energy is conserved over time.”

It is the fundamental law of physics which is also referred to as the first law of

thermodynamics.

The energy equation in two-dimensional for pure fluid can be written as,

(
u
∂T

∂x
+ v

∂T

∂y

)
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+

µ

ρCp
Φ̃ (2.11)

where Φ̃ is dissipation function.

2.7 Finite Element Method

The partial differential equations (PDEs) describe those problems which depend

on more then one variables like, space and time dependent problems. Most of those

PDEs can not be solved with analytical approach. Therefore, different discretiza-

tion methods based approximation can be constructed to tackle such equations.

One of the method for such approximations is“Finite element method”, which

was first discussed by Clough in 1960. In the early 1960s, engineers used the

method for the approximate solutions of problems in stress analysis, heat transfer,

fluid flow, electromagnetic potential, structural analysis, and mass transport. The

analytical solution of these problems generally requires the solution to boundary

value problems for partial differential equations. The finite element method for-

mulation of the problem results in a system of algebraic equations. The method

yields approximate values of the unknowns at the discrete number of points over

the domain.
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2.7.1 Galerkin Weighted Residual Technique

In numerical analysis technique, Galerkin methods considered as a class of meth-

ods which are used to convert a continuous operator problem (such as PDEs) to

a discrete problems. Main objective of this method is to achieve the weak formu-

lation which is equivalent to the method of variation of parameters to a function

space. In the Galerkin method of weighted residuals, the most common method is

FEM, which is used to calculating the global stiffness matrix. The main features

of FEM are listed below.

1. Construct a Variational/Weak Formulation

• To achieve the variational form of the given strong form first step is

multiply the differential equation with suitable weight (test) function

w̃ which satisfy the homogenous boundary conditions for the Dirichlet

boundary and then perform the integrate over the whole domain ( using

integration by parts or Green’s theorem)

• Enforce the Neumann boundary conditions on the boundary integrals

and Dirichlet boundary conditions on the trial function.

2. Formulate a Mesh and Basis Function

• For one-dimensional domain [a,b], a mesh is a set of points in the in-

terval of interest. say, x0 = a, x1, x2, ..., xM = b. Let hi = xi+1 − xi, i =

0, 1, 2, ...,M − 1.

• xi is called the nodal point or node.

• (xi, xi+1) is called an element.

• h = max
0≤i≤i+1

hi is the mesh size.

• Approximate the infinite dimensional trial and test spaces U and W by

the finite dimensional spaces Uh and Wh respectively.

Uh (finite dimensional spaces) ⊂ U (the solution space).
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• Since Uh has a finite dimension, we can find a set of basis functions,

ε1, ε2, ε3, ..., εM−1 ⊂ Uh that are linearly independent, i.e.

uh ≈
M−1∑
j=1

ajεj ⊂ Uh

where, εj is a basis function and aj are the unknown solution values at

the nodes

3. Linear System

• Computing the linear system of equations for the coefficients aj results

in approximate solution

uh ≈
M−1∑
j=1

ajεj

For the demonstration of Galerkin weighted residual formulation, the following

example is considered.

Example

Consider a 2D, steady poisson equation.

−∆ T = f, in Ω (2.12)

T = 0, on ∂Ω (2.13)

here f is known function and T is to be found, Ω is domain of the problem which

is open, bounded, and connected and ∂Ω is the boundary.

• The exact solution T of the Eq. (2.12) should be twice continuously differ-

entiable and satisfying Eq. (2.12). Let w̃ be a weight (test) function such

that w̃(x, y) = 0 on the boundary of the domain.

• To attain the weak formulation, weighted residual integral statement of the

Eq. (2.12) is

−
∫

Ω

w̃ ∆TdΩ =

∫
Ω

w̃fdΩ, (2.14)
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• Green’s theorem is used to get the first order derivatives from second order

derivatives. ∫
Ω

w̃
∂T

∂n
ds =

∫
Ω

∇w̃ ∇TdΩ +

∫
Ω

w̃ ∆TdΩ (2.15)

• Substitute Eq. (2.15) into Eq. (2.14), we gets

−
∫

Ω

∂T

∂n
ds︸ ︷︷ ︸

0

+

∫
Ω

∇w̃ ∇TdΩ =

∫
Ω

w̃fdΩ, (2.16)

homogeneous boundary conditions result in canceling the boundary integral,

so we obtained as ∫
Ω

∇w̃ ∇TdΩ =

∫
Ω

w̃fdΩ, (2.17)

• Elemental weak form is

∫
Ωe

∇w̃ ∇TdΩ =

∫
Ωe

w̃fdΩ, (2.18)

• In cartesian (2D) plane, Eq. (2.18) may be written as

∫
Ωe

(
∂w̃

∂x

∂T

∂x
+
∂w̃

∂y

∂T

∂y

)
dΩ =

∫
Ωe

w̃fdΩ, (2.19)

• Approximate the solution over an element as

T e =
M∑
j=1

T ej ε
e
j(x, y) (2.20)

where εj is a basis function and Tj are the solution values at nodes.

• Substituting the approximate solution from Eq. (2.20) into the weak form

(Eq. (2.19))

∫
Ωe

[(
M∑
j=1

T ej
∂εej
∂x

)
∂w̃

∂x
+

(
M∑
j=1

T ej
∂εej
∂y

)
∂w̃

∂y

]
dΩ =

∫
Ωe

w̃fdΩ, (2.21)
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• By using GFEM we choose a weight function, w̃ = εei to get the following

ith equation of elemental system

∫
Ωe

[(
M∑
j=1

T ej
∂εej
∂x

)
∂εei
∂x

+

(
M∑
j=1

T ej
∂εej
∂y

)
∂εei
∂y

]
dΩ =

∫
Ωe

εeifdΩ,

(2.22)

M∑
j=1

[∫
Ωe

(
∂εej
∂x

∂εei
∂x

+
∂εej
∂y

∂εei
∂y

)
dΩ

]
︸ ︷︷ ︸

Ke

T ej =

∫
Ωe

εeifdΩ︸ ︷︷ ︸
F e

. (2.23)

• The Eq. (2.23) can be written in the compact form as

[Ke] {T e} = {F e} (2.24)

here, [Ke], {T e}, {F e} represents the elemental stiffness matrix, vector

of elemental nodal and elemental force vector respectively.

• The following global system can be obtained, when the elemental systems

are assembled.

[K] {T} = {F} (2.25)



Chapter 3

Simulation of MHD Mixed

Convection Nanofluid Flow in a

Cavity with an Obstacle

In this chapter, we are interested to investigate the mixed convection in a driven

enclosure having an isothermally heated square cylinder filled with an alumina-

water nanofluid under the impact of magnetic field. For this purpose, first we

transform the dimensional governing equations into the non-dimensional coupled

PDEs. Then these non-dimensional governing equations are discretized using the

GFEM. The impact of different parameters are analyzed with the help of stream-

lines, isotherms and MATLAB graphs. This chapter provides the detailed review

of [27].

3.1 Problem Formulation

The system to be investigated is a lid-driven square enclosure with an isothermal

heated block placed in the center of the cavity. Physical situation is demonstrated

by a schematic diagram of given problem as shown in Figure 3.1.

23
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Figure 3.1: Schematic diagram of the physical problem

The length and width of the square cavity is L̃ and 0.25L̃ is the size of central

square cylinder. The upper surface of square enclosure is moving in its own plane

with uniform velocity UL while other walls of cavity are at rest. Temperature of

lower and upper surfaces of the cavity are maintained as Th and Tc where Th > Tc

while the side walls are kept adiabatic. Whereas uniform average temperature

(Th+Tc
2

) is maintained for the central square cylinder. A constant magnitude of

magnetic field B0 is imposed in the positive x direction perpendicular to the ver-

tical adiabatic walls. The induced magnetic field which is produced due to the

motion of electrically conducting fluid is ignored as compared to the external mag-

netic field. The nanofluid which is under investigation is assumed to be steady,

incompressible, Newtonian and laminar. Moreover, viscous dissipation, the in-

duced electrical fields and thermal radiation in the energy equations are ignored

[6, 30], whereas Joule heating is taken into account while modeling the energy

equation [34]. The gravitational acceleration is acting towards the negative y di-

rection. Thermo-physical properties of aluminium particles are kept constant (see

Table 3.1) and Boussinesq approximation has been adopted for the buoyancy term

in momentum equation.
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Physical Properties H2O Al2O3

Cp(JKg
−1K−1) 4179 765

k(Wm−1K−1) 0.613 40
β(K−1) 21× 10−5 0.85× 10−5

σ(Ωm−1) 0.05 1× 10−10

ρ(kgm−3) 997.1 3970

Table 3.1: Thermophysical properties of Al2O3 and H2O.

The Governing Equations

Under on the aforementioned assumptions for the proposed problem, the dimen-

sional steady form of continuity, momentum, and energy equation together with

boundary conditions are given below [27].

• Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0, (3.1)

• u Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρnf

∂p

∂x
+
µnf
ρnf

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.2)

• v Momentum Equation:

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρnf

∂p

∂y
+
µnf
ρnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+

(ρβ)nf
ρnf

g (T − Tc)−
σnfB

2
0

ρnf
v

(3.3)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

σnfB
2
0

(ρCp)nf
v2 (3.4)

Dimensional Boundary Conditions

The dimensional form of the boundary conditions on each wall of the square cavity

and the inside blockage is given as:
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• On the top wall:

u(x, y) = UL, v(x, y) = 0, T = Tc

• On the lower wall:

u(x, y) = 0, v(x, y) = 0, T = Th

• On the vertical walls:

u(x, y) = 0, v(x, y) = 0,
∂T

∂x
= 0

• On the blockage inside the cavity:

u(x, y) = 0, v(x, y) = 0, T =
1

2
.(Th + Tc)

Effective Properties of Nanofluid

Properties of the nanofluid are attributed to the properties of nanoparticles and

the base fluid. Various correlations have been suggested and utilized for the sim-

ulations of nanofluids in the literature. The correlations used in this thesis are

given by [27]

• Effective Density:

ρnf = ρf + φρf

• Thermal Diffusivity:

αnf = knf .
1

(ρcp)nf

• Electrical Conductivity:

σnf
σf

=
[
1 + 3 (σ − 1)φ.{(σ + 2)(σ − 1)φ}−1

]
, σ =

σs
σf
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• Specific Heat:

(ρCp)nf = (φ+ 1) (ρCp)f + φ(ρCp)s

• Coefficient of Thermal Expansion:

(ρβ)nf = (φ+ 1) (ρβ)f + φ(ρβ)s

• Thermal Conductivity:

knf = kf .

[{
ks + 2kf + 2φ (kf − ks)
ks + 2kf − 2φ (kf − ks)

}−1
]

• Dynamic Viscosity:

µnf =
µf

(1− φ)2.5

Non-Dimensional Equations

With the help of following dimensionless parameters:

X =
x

L̃
, Y =

y

L̃
, U =

u

UL
, V =

v

UL
, θ =

T − Tc
Th − Tc

, P =
p

ρnfUL
2 ,

Re =
ULL̃

νf
, Gr =

gβf (Th − Tc)L̃3

ν2
f

, Ha = B0L̃

√
σf
µf

, P r =
νf
αf

,

Ri =
Gr

Re2
, Ec =

UL
2

(Cp)f (Th − Tc)
.

the governing Eqs. (3.1) to (3.4) are transformed to the dimensionless equations:

∂U

∂X
+
∂V

∂Y
= 0, (3.5)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (3.6)
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U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs

ρfβf
φ

)
θ − ρf

ρnf

σnf
σf

Ha2

Re
V, (3.7)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

V 2. (3.8)

Dimensionless Boundary Conditions

The associated boundary conditions are reduced as follows:

• On the upper surface:

U(X, Y ) = 1, V (X, Y ) = 0, θ = 0

• On the lower surface:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1

• On the vertical surfaces:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂X
= 0

• On the blockage inside the cavity:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 0.5

Physical Quantities of Interest

Apart from the flow and the temperature gradient in the enclosure, one of the

basic physical quantity of interest is the local and average Nusselt number, where
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Nu is determines as the ratio of rate of heat transfer of convection to conduction.

Local Nu can be computed using relation given below

Nu = −knf
kf

(
∂θ

∂Y

)
|Y=0.

Nuavg is given by

Nuavg =

∫ 1

0

Nudx.

3.2 Solution Methodology

FEM is used to solve the system of coupled nonlinear partial differential Eqs. (3.5)

to (3.8) along with associated boundary conditions. To achieve this task, first we

establish the variational form of the governing non-dimensional equations and then

approximate the solution implementing the GFEM. The main steps involved in

this method are further explained.

3.2.1 Weak/Variational Formulation

Variational form of the non-dimensional governing dimensionless partial differ-

ential equations means converting them into integral form, by multiplying the

equations with suitable weight function and then performing integration over the

whole domain. The strong form of the governing equations can be re-written as:

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ ∆1

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (3.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ ∆1

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ ∆2θ −∆3V, (3.10)
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∂U

∂X
+
∂V

∂Y
= 0, (3.11)

U
∂θ

∂X
+ V

∂θ

∂Y
= ∆4

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+ ∆5V

2. (3.12)

where ∆i’s in the above equations are given by

∆1 =
1

Re

ρf
ρnf

1

(1− φ)2.5
, ∆2 = Ri

ρf
ρnf

(
1− φ+

ρsβs

ρfβf
φ

)
, ∆3 =

ρf
ρnf

σnf
σf

Ha2

Re
,

∆4 =
αnf
αf

1

RePr
, ∆5 =

Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

.

In order to obtain the weak or variational form, we multiply both sides of the

momentum and energy equations with test function w̃ ∈ W and multiply both

sides of continuity equation with test function q̃ ∈ Q, then integrate over the whole

computational domain (Ω). Here W and Q are the test spaces, W = [H1(Ω)]3

refers to the test space for the velocity components (U, V) and temperature (θ),

Q = L2(Ω) refers to the test space for pressure component. Thus the weak formu-

lation of Eqs. (3.9) to (3.12) are given as follow;

Find (U, V, θ) ∈W and P ∈ Q such that,

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w̃dΩ +

∫
Ω

∂P

∂X
w̃dΩ−∆1

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w̃dΩ = 0,

(3.13)∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w̃dΩ +

∫
Ω

∂P

∂Y
w̃dΩ−∆1

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w̃dΩ

−∆2

∫
Ω

θw̃dΩ + ∆3

∫
Ω

V w̃dΩ = 0, (3.14)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
q̃dΩ = 0, (3.15)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w̃dΩ−∆4

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w̃dΩ−∆5

∫
Ω

V 2w̃dΩ = 0.

(3.16)
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for all (w̃, q̃) ∈W×Q

For the Galerkin discretization, infinite dimensional test and trial spaces are ap-

proximated by the finite dimensional test and trial spaces that is

W ≈Wh and Q ≈ Qh

In the next step, we use Green’s theorem to lower the order of derivatives for the

trial function.

∆1

∫
Ω

(
∂Uh
∂X

∂w̃h
∂X

+
∂Uh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
w̃hdΩ

−
∫

Ω

∂w̃h
∂X

PhdΩ = 0, (3.17)

∆1

∫
Ω

(
∂Vh
∂X

∂w̃h
∂X

+
∂Vh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
w̃hdΩ

+ ∆3

∫
Ω

Vhw̃hdΩ−
∫

Ω

∂w̃h
∂Y

PhdΩ−∆2

∫
Ω

θhw̃hdΩ = 0, (3.18)

∫
Ω

∂Uh
∂X

q̃hdΩ +

∫
Ω

∂Vh
∂Y

q̃hdΩ = 0, (3.19)

∆4

∫
Ω

(
∂θh
∂X

∂w̃h
∂X

+
∂θh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
w̃hdΩ

−∆5V

∫
Ω

Vhw̃hdΩ = 0 (3.20)

where

Uh =
n∑
j=1

Ujζj, Vh =
n∑
j=1

Vjζj, θh =
n∑
j=1

θjζj, Ph =
m∑
j=1

Pjψj

represent the FEM approximate trial functions. Similarly,

w̃h =
n∑
i=1

w̃iζi , q̃h =
m∑
i=1

q̃iψi

denote the approximated test functions.

Substituting these approximations for the trial and test functions in the Eqs. (3.17)

to (3.20), the discretized system matrix can be written as
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
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


︸ ︷︷ ︸

A∗


U

V

P

θ


︸ ︷︷ ︸
U∗

=


F 1

F 2

F 3

F 4


︸ ︷︷ ︸
F ∗

(3.21)

where A∗ is block matric, U∗ is block vector and F ∗ denotes the associated block

vector for the R.H.S. In block matrix,

K11
ij = ∆1

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K22
ij = ∆1

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K44
ij = ∆4

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K13
ij =

∫
Ω

(
∂ψj
∂X

)
ζidΩ, K23

ij =

∫
Ω

(
∂ψj
∂y

)
ζidΩ, K31

ij =

∫
Ω

(
∂ζi
∂X

)
ψjdΩ

K32
ij =

∫
Ω

(
∂ζi
∂X

)
ψjdΩ, K24

ij = ∆3

∫
Ω

ζjζidΩ, K42
ij = −∆5 V

∫
Ω

ζjζidΩ,

K12
ij = K14

ij = K21
ij = K33

ij = K34
ij = K41

ij = K43
ij = 0

Velocity and temperature components are discretized by Q2 element having 3rd

order accuracy and P disc
1 element of 2nd order accuracy in L2−norm respectively

is used for the discretization of pressure component. The discretized non-linear

partial differential equations linearized by using picard iteration method and then
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Gaussian elimination method has been used to solved the related linearized sys-

tems. The convergence of solution is assumed when the relative residual for each

dependent variable fulfils the following stoping criteria.

| Υn+1 −Υn

Υn+1
|≤ 10−6

where Υ denotes the dependent variable U , V , P , θ and n represents the number

of iteration.

Grid Generation and Refinement

First of all, the coarsest mesh with four cells at level ` = 1, which is further refined

into small cells by joining the midpoints of opposite faces of current cell denoted

by the following ` = ` + 1 can be achieved by dividing each cell into further four

new cells elaborated in Figure 3.2

Figure 3.2: Pattern of grids on space mesh level = 1,2,3 (from left to right)

3.3 Code Validation

Table 3.2 represents the code validation for the mixed convection flow where it

can be seen that result have very good agreement with published results in the

literature. In the addition, Table 3.3 demonstrates comparison of the Nuavg ob-

tained the present study and the numerical results found in the literature [20] for

a particular case of mixed convection in an enclosure having isothermal cylinder.
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Re Present

Study

Ref.

[26]

Ref.

[39]

Ref.

[36]

Ref.

[45]

Ref.

[1]

Ref.

[37]

Ref.

[22]

100 2.03 − 2.05 2.01 − 2.09 − 1.94

400 4.07 4.08 4.09 3.97 4.14 4.16 4.05 3.84

1000 6.58 6.48 6.70 6.28 6.61 6.55 6.55 6.33

Table 3.2: Comparison of present result with some above mentioned results

Nuavg Ri Present Study Ref. [20]

0.1 5.2223 5.6118

1.0 5.2339 5.6935

10 6.06844 7.9083

Table 3.3: Comparison of present result with the result of isothermal hot ob-
stacle in a cavity

Grid Independence Test

Table 3.4 shows the grid convergence test at different mesh level (`) to compute

the Nusselt number for Ha = 25, P r = 6.2, φ = 0.2, Ec = 10−4 and Re = 100

along with total number of all spaces degree of freedom (#DOFs) and number of

element (#EL) which are required for the definition of discreet velocity, pressure

and temperature with respect to used discretization.

` #EL #DOFs Nuavg(Ri = 1) Nuavg(Ri = 10)

3 64 1056 4.4599711 7.081795

4 256 4032 5.1383737 8.3907139

5 1024 15744 5.5082335 9.1507667

6 4096 62208 5.6700676 9.5341186

7 16384 247296 5.7415596 9.7194242

Table 3.4: Grid independence results for the proposed configuration.
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3.4 Results and Discussions

Here we examine the impact of magnetic field on the mixed convection in alumina-

water nanofluid poured with in the square enclosure having isothermal blockage

with standard values (Ec = 10−4, Ha = 25, φ = 0.2, P r = 6.2 and Re = 100).

These values have been taken in account unless different parameters values are

given and for the present study Ri = 1 (mixed convection), Ri = 0.1 (forced con-

vection) and Ri = 10 (natural convection) are used.

Figure 3.3 displays an impact of the different Ha on the isotherms and streamlines

for Ri = 0.1. At Ha = 0, in the absences of magnetic field clockwise recirculating

eddy above the obstacle near the upper edge of the enclosure has been sighted.

Most of the streamlines are highly distributed near the upper movable surface

indicating that velocity of fluid is high in this region while coarser distribution of

the streamline have been observed far away from the upper movable surface. As

magnetic field approaches to Ha = 25, the circulation of flow decreases which is

indicated reduction in the flow of fluid and mostly streamlines appears close to

the upper movable wall and above the central square cylinder. For Ha = 50 and

100, all streamlines are limited to the small portion like plume manner above the

square cylinder showing a drop-off in the fluid flows into the cavity, due to the

presence of magnetic field as Lorentz force is produced in the opposite direction

of flow.

At Ha = 0, when magnetic field does not play its role at that value isotherms

are assembled close to the lower edge and nearby square cylinder indicating that

temperature gradient is higher in this zone. Isotherms are shifted towards the left

side of upper adiabatic surface because of shear forces. Therefore, thermal bound-

ary layer occurs in this zone. A mild change has been noticed in the behavior of

isotherms and most of the isotherms becomes parallel to the heated lower surface

for Ha = 0.

Figure 3.4 demonstrates the influence of mixed convection mode for different val-

ues of Ha on the isotherms and streamlines. Shear flow is produced because the

upper moving surface while buoyancy-force is generated due to hot lower surface
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or isothermal square cylinder. Here both forces have equal impact on the temper-

ature distribution and flow field. When magnetic field has no effect at Ha = 0,

more streamlines are crowded together around the central blockage showing that

buoyancy-force is dominated in this zone. Moreover increasing the Ha = 25 from

Ha = 0, numbers of coarsely spreaded streamlines across the blockage is observed

comparatively less but that has been noticed more in case of forced convection

mode, which indicates the decrease of fluid velocity in the cavity. By increasing

the strength of magnetic field at Ha = 50 and 100, streamlines gatherings to the

upper surface and is limited to a small zone that shows velocity of flow is reduced.

The behavior of isotherm changes slightly in comparison to the case of Ri = 0.1

(forced convection).

Figure 3.5 illuminates the effect on isotherms and streamlines for the variations of

Hartmann number. At Ri = 10 natural or free convection occurs, here buoyancy-

force is leading over shear-force. In the absence of magnetic field, the streamlines

are almost equally spread and are slightly stretched obliquely to the upper right

edge because of the motion of upper surface, whereas movement of fluid occurs due

to the hot lower surface. circulation of rotating eddy becomes weak in the center

of the enclosure across the blockage which indicates a decline in the flow of liquid

in that zone. By increasing the magnetic field to Ha = 25, clockwise rotation

of eddy has been moved up to the square block that indicates the reduction in

flow. For Ha = 50, circulation of streamlines are coarsely across right, left and

the lower surface of the square cylinder has been noticed. At Ha = 100, most of

the streamlines are elongates near the upper wall above obstacle which shows that

the flow of fluid is decline in this area. The isotherms are strictly spaced close the

hot lower surface and across heated square block. Which indicates enlargement of

thin boundary layer and extreme temperature gradient over the lower surface and

the square cylinder.

Figure 3.6 exhibits the impact of Richardson’s number on isotherms and stream-

lines for Ec = 10−2. For the forced convection at Ri = 0.01, shear-driven flow is

leading in the enclosure and the most of the streamlines are restraint the upper

movable surface. Enhancement of Ri up to 1, buoyancy and shear forces play
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equal role so more streamlines notice near the lower surface. As raised up Ri from

1 to 10, the motion of fluids has been noticed in the enclosure across the square

cylinder because of the natural convection. Isotherms shift through non-adjacent

vertices of adiabatic walls and gathered across the uniformly heated square block

for Ri = 0.1. For mixed convection, the isotherms are crowded together near the

lower hot surface. In natural convection mode (Ri = 10), mostly isotherms be-

come parallel to the lower surface because of the influential forces of buoyancy.

Figure 3.7(a-b) exhibits the influence of Ec for different modes of convection on

Nuavg and θavg. As we considered limited fluctuation of Eckert number (Ec =

10−4, 10−3, 10−2), hence mild effect has been noticed in all the three cases of con-

vection. There is no change observed in Nuavg by increasing Eckert number in

Figure 3.7(a). Ec develop an intensification in average temperature in square en-

closure that can be viewed in Figure. 3.7(b).

Figure 3.8(a) and (b) illustrates the Nuavg and θavg as a function of different H for

Re = 1, 10, 100. Figure. 3.8(a) shows that Nuavg reduces by enhancing the mag-

netic field strength. It is due to the dominant of shear force under the influence

of magnetic field as compared to the buoyancy induced flow in the cavity. Fig-

ure. 3.8(b) delineates that increasing the Hartmann number average temperature

is slightly increased for Re = 0.1, 10 but for Re = 100 first reduction appears and

after some value it shows the large augmentation in θavg.

Figure 3.9(a-b) demonstrate the impact of various Ha on the Nuavg and θavg for

three regimes of convection at Ri = 0.1, 1 and 10. As enhancing the magnitude of

magnetic field for all three modes of convection (Ri = 0.1, 1, 10) causes to decline

the Nuavg which can be visualized from Figure 3.9(a). There is an improvement of

average temperature distribution in the enclosure with increasing the Hartmann

number which can be visualized from Figure. 3.9(b).

Figure 3.10(a) illuminate the impact of Ec on Nuavg as a function φ, which indi-

cates that Nuavg increases with enhancement of volume fraction of nanoparticles.

Effect of φ on average temperature distribution as a function of Ec is depicted in

Figure 3.10(b). It is noticed that by the growth of Ec, θavg is increasing.
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Figure 3.3: Streamlines (a) and isotherms (b) for different Ha at Ri = 0.1.
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Figure 3.4: Streamlines (a) and isotherms (b) for different Ha at Ri = 1.
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Figure 3.5: Streamlines (a) and isotherms (b) for different Ha at Ri = 10.
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Figure 3.6: Streamlines (a) and isotherms (b) for different modes of convection
at Ec = 10−2.
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Figure 3.7: Variation of Nuavg and θavg as a function of Ec for different Ri.

 Ha
0  25 50 100

N
u

a
v
g

1

2

3

4

5

6

7

8

9

10

11

12

Re=1
Re=10
Re=100

(a)

 Ha
0  25 50 100

θ
a

v
g

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52 Re=1
Re=10
Re=100

(b)

Figure 3.8: Variation of Nuavg and θavg as a function of Ha for different Re.
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Figure 3.9: Variation of Nuavg and θavg as a function of Ha for different Ri.
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Figure 3.10: Variation of Nuavg and θavg as a function of Ec and φ.



Chapter 4

Simulation of MHD Mixed

Convection Nanofluid Flow in a

Cavity with an Obstacle and

Non-Linear Thermal Radiations

Based on the literature review, many researchers have analyzed MHD mixed con-

vection in a cavity having obstacles of different shape. Previously, impact of

different physical parameters on the rate of heat transport have been observed

but in spite of all considered work, there is very rare information regarding MHD

on combined convection in an enclosure having obstacle coupled with non-linear

thermal radiations. The main purpose of this chapter is to extend the work of

Mehmood et al. [27] and perform the numerical simulation to analyze the effect of

non-linear thermal radiations on heat transfer phenomena and fluid flow through

isotherms and streamlines.

44
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4.1 Problem Description

The system to be explored is a two-dimensional, steady and laminar flow of New-

tonian and incompressible fluid in a driven enclosure with an isothermal square

obstacle together with non-linear thermal radiations. The viscous dissipation and

induced electric current are neglected in the present study [38] while Joule heating

coupled with non-linear thermal radiations are taken into account in the energy

equation. Physical model along with boundary conditions of proposed work is por-

trayed in Figure 3.1. The upper surface of the enclosure is moving with uniform

velocity UL along the positive x−axis. Temperature of lower and upper surfaces of

the cavity are maintained as Th and Tc where Th > Tc while the side walls are kept

adiabatic and uniform average temperature (Th+Tc
2

) is maintained for the central

obstacle. Thermo-physical properties of Aluminium particles are kept constant

(see Table 3.1). The basic fundamental laws utilized to solve the proposed flow

problem are the laws of conservation of mass, momentum, energy, which estab-

lish a set of coupled non-linear PDEs. In the present work non-linear thermal

radiations have been taken into account in the energy equation. Boussinesq ap-

proximation has been adopted for the buoyancy term in momentum equation and

radiative thermal heat flux is modeled on the basis of Rosseland approximation

[35]

qrx =
−4σ∗

k∗
∂T 4

∂x
=
−16σ∗

3aR
T 3∂T

∂x

qry =
−4σ∗

k∗
∂T 4

∂y
=
−16σ∗

3aR
T 3∂T

∂y

4.1.1 Dimensional Governing Equations

Under on the aforementioned assumptions for the proposed problem the dimen-

sional governing PDEs can be write as:
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• Continuity Equation:

∂u

∂x
+
∂v

∂y
= 0 (4.1)

• x Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρnf

∂p

∂x
+
µnf
ρnf

(
∂2u

∂x2
+
∂2u

∂y2

)
(4.2)

• y Momentum Equation:

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρnf

∂p

∂y
+
µnf
ρnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+

(ρβ)nf
ρnf

g (T − Tc)−
σnfB

2
0

ρnf
v

(4.3)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

σnfB
2
0

(ρCp)nf
v2 − 1

(ρCp)nf

(
∂qrx
∂x

+
∂qry
∂y

)
(4.4)

4.1.2 Dimensional Boundary Conditions

Dimensional boundary conditions on each wall of the cavity and isothermal block-

age for temperature field and velocity can be written as:

• On the top wall of square enclosure:

u(x, y) = UL, v(x, y) = 0, T = Tc

• On the bottom wall of square cavity:

u(x, y) = 0, v(x, y) = 0, T = Th

• On the vertical walls of square enclosure:

u(x, y) = 0, v(x, y) = 0,
∂T

∂x
= 0
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• On the blockage inside the cavity:

u(x, y) = 0, v(x, y) = 0, T =
Th + Tc

2

4.1.3 Non-Dimensional Analysis

The following non-dimensional parameter are used to reduces the governing Eqs

(4.1) to (4.4) into non-dimensional form as follows,

X =
x

L̃
, Y =

y

L̃
, U =

u

UL
, V =

v

UL
, θ =

T − Tc
Th − Tc

, P =
p

ρnfUL
2

Re =
ULL̃

νf
, Gr =

gβf (Th − Tc)L̃3

ν2
f

, Ha = B0L̃

√
σf
µf
, P r =

νf
αf

Ri =
Gr

Re2
, Ec =

UL
2

(Cp)f (Th − Tc)
, Rd =

4σ∗Tc
3

k∗kf
, Nr =

Th
Tc
.

The transformed non-dimensional governing equations can be expressed as follows,

∂U

∂X
+
∂V

∂Y
= 0, (4.5)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (4.6)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+Ri

ρf
ρnf

(
1− φ+

ρsβs

ρfβf
φ
)
θ − ρf

ρnf

σnf
σf

Ha2

Re
V, (4.7)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

{
αnf
αf

+
(ρCp)f
(ρCp)nf

4

3
Rd (θ(Nr − 1) + 1)3

}(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+
Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

V 2. (4.8)
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4.1.4 Boundary Conditions (Dimensionless)

The associated boundary conditions for dimensionless velocity and temperature

field along each side of square enclosure and heated obstacle are reduced as follows,

• On the top wall of cavity:

U(X, Y ) = 1, V (X, Y ) = 0, θ = 0

• On the bottom wall of cavity:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1

• On the left and right wall of cavity:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂X
= 0

• On the blockage inside the cavity:

U(X, Y ) = 0, V (X, Y ) = 0, θ =
1

2

Physical Quantities of Interest

Nusselt number is important for the analysis of flow of fluid and heat transfer, it

also tells the quality of heat transport phenomena rather than its quantity. Local

and average Nusselt number including the non-linear thermal radiation can be

obtained as follow,

Local Nusselt number is given by

Nu = −
(
knf
kf

+
4

3
RdNr3

)(
∂θ

∂Y

)
|Y=0.

Average Nusselt number is given by

Nuavg =

∫ 1

0

Nudx.
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4.2 Numerical Solution

GFEM has been adopted to discretized the set of coupled non-linear dimensionless

Eqs (4.5) to (4.8) subjected to associated boundary conditions.

4.2.1 Variational/Weak Formulation

The basic feature of FEM is to transform the strong form of non-linear PDE’s into

weak formulation. As strong form is not always give refine solution of concerned

problem and also makes stability issue so to overcome this difficulty variational

form is adopted. The main idea of variational form is to transform the set of

coupled non-dimensional equations by multiply with suitable test function and

then performed integration whole over the domain (Ω). Strong form can be re-

write as,

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ ∆1

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (4.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ ∆1

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ ∆2θ −∆3V, (4.10)

∂U

∂X
+
∂V

∂Y
= 0, (4.11)

U
∂θ

∂X
+ V

∂θ

∂Y
= ∆4

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+ ∆5V

2. (4.12)

where ∆i’s in the above equations are given by;

∆1 =
1

Re

ρf
ρnf

1

(1− φ)2.5
, ∆2 = Ri

ρf
ρnf

(
1− φ+

ρsβs

ρfβf
φ

)
, ∆3 =

ρf
ρnf

σnf
σf

Ha2

Re
,

∆4 =
1

RePr

{
αnf
αf

+
(ρCp)f
(ρCp)nf

4

3
Rd (θ(Nr − 1) + 1)3

}
, ∆5 =

Ha2Ec

Re

σnf
σf

(ρCp)f
(ρCp)nf

.
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In order to obtain the variational/weak formulation, first multiply both sides of

the momentum, energy, and continuity equation with test functions w̃ ∈ W and

q̃ ∈ Q respectively, after this integration is performed whole over the entire domain

(Ω). Thus the variational form of governing Eqs (4.11) to (4.12) can be read as

follow;

Find (U, V, θ) ∈W and P ∈ Q such that,

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
w̃dΩ +

∫
Ω

∂P

∂X
w̃dΩ−∆1

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
w̃dΩ = 0,

(4.13)∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
w̃dΩ +

∫
Ω

∂P

∂Y
w̃dΩ−∆1

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
w̃dΩ

−∆2

∫
Ω

θw̃dΩ + ∆3

∫
Ω

V w̃dΩ = 0, (4.14)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
q̃dΩ = 0, (4.15)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
w̃dΩ−∆4

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
w̃dΩ−∆5

∫
Ω

V 2w̃dΩ = 0

(4.16)

for all (w̃, q̃) ∈W×Q

In Galerkin approximation infinite dimensional spaces are discretized into finite

dimensional spaces,

W ≈Wh and Q ≈ Qh

In the next step, we use Green’s theorem to lower the order of derivatives for the

trial function.
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∆1

∫
Ω

(
∂Uh
∂X

∂w̃h
∂X

+
∂Uh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
w̃hdΩ

−
∫

Ω

∂w̃h
∂X

PhdΩ = 0, (4.17)

∆1

∫
Ω

(
∂Vh
∂X

∂w̃h
∂X

+
∂Vh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
w̃hdΩ

+ ∆3

∫
Ω

Vhw̃hdΩ−
∫

Ω

∂w̃h
∂Y

PhdΩ−∆2

∫
Ω

θhw̃hdΩ = 0, (4.18)

∫
Ω

∂Uh
∂X

q̃hdΩ +

∫
Ω

∂Vh
∂Y

q̃hdΩ = 0, (4.19)

∆4

∫
Ω

(
∂θh
∂X

∂w̃h
∂X

+
∂θh
∂Y

∂w̃h
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
w̃hdΩ

−∆5V

∫
Ω

Vhw̃hdΩ = 0. (4.20)

where

Uh =
n∑
j=1

Ujζj, Vh =
n∑
j=1

Vjζj, θh =
n∑
j=1

θjζj, Ph =
m∑
j=1

Pjψj

represent the FEM approximate trial functions. Similarly,

w̃h =
n∑
i=1

w̃iζi , q̃h =
m∑
i=1

q̃iψi

denote the approximated test functions.

Substituting these approximations for the trial and test functions in the Eqs (3.17)

to (3.20), the discretized system matrix can be written as
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
K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


︸ ︷︷ ︸

A∗


U

V

P

θ


︸ ︷︷ ︸
U∗

=


F 1

F 2

F 3

F 4


︸ ︷︷ ︸
F ∗

, (4.21)

where, A∗ is block matric, U∗ is block vector, and F ∗ denotes the associated block

vector for the R.H.S. In block matrix,

K11
ij = ∆1

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K22
ij = ∆1

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K44
ij = ∆4

∫
Ω

(
∂ζj
∂X

∂ζi
∂X

+
∂ζj
∂Y

∂ζi
∂Y

)
dΩ +

∫
Ω

(
n∑
j=1

Ujζj
∂ζj
∂X

+
n∑
j=1

Vjζj
∂ζj
∂Y

)
ζidΩ,

K13
ij =

∫
Ω

(
∂ψj
∂X

)
ζidΩ, K23

ij =

∫
Ω

(
∂ψj
∂y

)
ζidΩ, K31

ij =

∫
Ω

(
∂ζi
∂X

)
ψjdΩ,

K32
ij =

∫
Ω

(
∂ζi
∂X

)
ψjdΩ, K24

ij = ∆3

∫
Ω

ζjζidΩ, K42
ij = −∆5 V

∫
Ω

ζjζidΩ.

K12
ij = K14

ij = K21
ij = K33

ij = K34
ij = K41

ij = K43
ij = 0.

Q2 element having 3rd order accuracy in L2-norm is used to discretize the velocity

and temperature components where as to approximate the pressure term, P disc
1

element of 2nd order accuracy in the L2-norm is considered. The discretized

system linearized by using Picard method and then Gaussian elimination method

has been used to solved the related linearized systems.
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The convergence of solution is assumed when the relative residual for each depen-

dent variable fulfils the following criteria,

| Υn+1 −Υn

Υn+1
|≤ 10−6

where, Υ, denotes the dependent variable U , V , P , θ and n represents the number

of iteration.

4.3 Results and Discussion

Figure 4.1(a) to 4.3(a) illustrate the influence of radiation parameter Rd on the

streamlines for different modes of convection. Flow consists of main cell formed

above the blockage in forced convection and mixed convection regimes while in

free convection the main cell is noticed around the blockage. Almost same pattern

was noticed for all the streamlines for small values of Ri at 0.1, 1. Fluid flow is

observed in an enclosure due to the movement of upper surface. When the Rd

varies from 0.5 to 2, all the streamlines are densely distributed all over the blockage

and clockwise recirculation occurs near the top moving lid. Moreover core of the

vortex shifted towards the right side of upper wall of enclosure above the obstacle,

which indicate that the fluid velocity decreases in this regimes and overall heat is

transferred due to the convection.

In Figure 4.3(a) Richardson number raised up to 10, impact of moving wall is

decreases due to augmentation of buoyancy force (natural convection) which carry

great amount of energy from the hot lower wall. For different values of Rd from

0 to 2, all the streamlines are equally distributed all over the cavity and center

of rotating eddy is obliquely stretched around the blockage towards the top right

edge due to the upper moveable wall. Absolute values of maximum stream func-

tion increases which shows the denser flow in the enclosure is induced due to the

dominant of conduction.

Figure 4.1(b) to 4.3(b) depict the impact of Rd on isotherms for all three cases
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of convection (Ri = 0.1, 1, 10). For the forced (Ri = 0.1) and mixed convection

(Ri = 1) regimes, isotherms shows same behaviour in the cavity. Isotherms are

spread from left corner of cold upper surface towards the right corner of the hot

bottom surface of cavity. As Ri approaches to 10 (see figure 4.3(b)), now buoy-

ancy force plays its roles in the cavity. The boundary layer is relatively thick

and very small core region occurs such that the isotherms become almost parallel

to the hot bottom wall showing that most of the heat is transferred through the

conduction. It should be noted that the temperature gradient in the hot lower

surface and below the isothermal blockage are weakened with enhancing the ra-

diation parameter Rd from 0 to 2, for all different modes of convection. There is

an increase in the density due to ascending floating particles from the hot lower

surface of enclosure, which incur the change in resistance of the descending of the

fluid flow.

Figure 4.4(a) and 4.5(a) illustrate the effect of combined convection and natural

convection (Ri = 10) for different values of temperature ratio parameter Nr on

the streamlines. By augmenting the values of Nr there is no significant change

noticed on the streamlines. For Ri = 1, the bottom hot wall and upper moving

surface of cavity collectively takes part on the flow of fluid, so mostly streamlines

are gathered above the blockage and parallel to the top moving surface. Moreover

when buoyancy force (Ri = 10) is dominant on the flow and with the augmen-

tation of temperature ratio parameter streamlines are spread around the obstacle

overall in the cavity. Streamlines become parallel to the adiabatic vertical surfaces

due to raised up of Nr which shows the higher magnitude of flow in thin zone.

Figure 4.4(b) and 4.5(b) depict the impact of Nr on isotherms for two modes

of convection (combined and natural). For mixed convection (Ri = 1) with the

variation in temperature ratio parameter, a mild change has been noticed on the

isotherms, and isotherms gradually become parallel and converging towards the

hot bottom wall. In free convection (Ri = 10) with change in Nr, isotherms are

spread all over the cavity and shows that high thermal state of fluid, which is due

to the gravitational force. Temperature gradient enhanced showed that conduc-

tion mode is dominant.
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Figure 4.6(a) portray the influence of Rd on the Nuavg for all of the three regimes

of convection. Nvavg having direct relation with thermal radiation parameter.

Heat transfer is increased for all the case of convection but it is more highlighted

for Ri = 10. Figure 4.6(b) explained that θavg is increased with thermal radiation

but having opposite trend with the Richardson number.

Figure 4.7(a) and (b) illustrate that the average Nusselt number and average tem-

perature as a function of Ha for various value of Rd. Figure 4.7(a) shows that the

Nuavg is enhanced by increasing value of Rd but reverse trend is observed with an

increment in Hartmann number. As increasing Ha means that the Lorentz force is

enhanced and it reduces the speed of flow. Average temperature is an increasing

function of Rd while θavg decreases with raised up of Ha at a particular value

(Ha = 50) beyond this value opposite trend observed (see Figure 4.7(b)).

Figure 4.8(a) and (b) depict the effect of Nr on the average Nusselt number and

average temperature for different values of Ri(0.1, 1, 10). Nuavg are linearly in-

creasing with the augmentation of temperature ratio parameter Nr for all values

of Ri and temperature distribution is an increasing function of Nr but decline

with the enhancement of Ri in the cavity.

Influence of different physical parameters on Nuavg is displayed in Figure 4.9(a).

Increasing the values of Ha leads to the high resistance in the cavity which oppose

the flow and reduce the rate of heat transfer so Nuavg is decreasing function of Ha.

From Figure 4.9(b) it can be noticed that by enhancing the Ha (0 to 50), average

temperature falls in the cavity but after this an increment in the temperature has

been observed, whereas with an enhancement of Nr, enhances the thermal state

of fluid which is responsible for enhancement of temperature in the cavity.
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Figure 4.1: Streamlines (a) and isotherms (b) for different Rd at Ri = 0.1.



Simulation of MHD mixed convection nanofluid flow with radiations... 57

R
d

=
0.

5
R
d

=
1

R
d

=
1.

5

(a)

R
d

=
2

(b)

Figure 4.2: Streamlines (a) and isotherms (b) for different Rd at Ri = 1.
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Figure 4.3: Streamlines (a) and isotherms (b) for different Rd at Ri = 10.
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Figure 4.4: Streamlines (a) and isotherms (b) for different Nr at Ri = 1.
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Figure 4.5: Streamlines (a) and isotherms (b) for different Nr at Ri = 10.
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Figure 4.6: Variation of Nuavg and θavg as a function of Rd for different Ri.

 Ha
0  25 50 100

 N
u

a
v
g

0

5

10

15

20

25

30

35

Rd=0
Rd=0.5
Rd=1.0
Rd=1.5
Rd=2

(a)

 Ha
0  25 50 100

 θ
a

v
g

0.34

0.36

0.38

0.4

0.42

0.44

0.46 Rd=0
Rd=0.5
Rd=1.0
Rd=1.5
Rd=2

(b)

Figure 4.7: Variation of Nuavg and θavg as a function of Ha for different Rd.
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Figure 4.8: Variation of Nuavg and θavg as a function of Nr for different Rd.
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Figure 4.9: Variation of Nuavg and θavg as a function of Ha for different Nr.



Chapter 5

Conclusion

In this thesis, a two dimensional incompressible and steady MHD mixed convec-

tion flow under the leverage of non-linear thermal radiations is studied in a square

enclosure. Both the vertical walls of the cavity are adiabatic whereas the upper

surfaces exhibits the constant speed carrying the cold temperature and lower wall

is subjected to the hot temperature. Moreover uniformly heated square cylinder is

also kept in the middle of the enclosure. Fluid flow and heat exchange equations

were first transformed into non-dimensional equations by applying suitable trans-

formations and then discretized by using GFEM. The biquadratic element (Q2) is

used to discretized the velocity and temperature components and for pressure com-

ponents P1
disc is used. The influence of pertinent parameters such as Hartmann

number, Richardson number, Eckert number, Reynolds number and volume frac-

tion of nanoparticles (φ) on the heat transfer and fluid flow have been extensively

studied. The computational study of dimensionless temperature and velocity are

analyzed with the help of isotherms and streamlines respectively, while graphical

demonstration is also performed for the average Nusselt number.

In this study, the work of Mehmood et al. [27] is reviewed and extended with the

concept of non-linear thermal radiations to assimilate the energy equation. The

effect of thermal radiation parameter (Rd) and temperature ratio (Nr) on the heat

transport phenomena and flow have been examined through the streamlines and

isotherms. The average temperature and average Nusselt number are investigated

63
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and plotted for the appropriate values of the parameters using MATLAB.

From the present study that has been numerically analyzed the following worthy

points can be concluded,

• Increase in Nuavg and θavg in cavity have been pronounced with the augmen-

tation of nanoparticles of Al2O3 which shows that addition of nanoparticles

in base fluid increase the phenomena of heat transfer.

• Raised up of thermal radiation has great influence on the maximum stream

function values and mostly streamlines are spread in the cavity.

• Thermal radiation parameter and temperature ratio parameter both have

positive impact on average Nusselt number and average temperature hence

overall heat transfer rate is enhanced in the cavity.

• Nuavg is an increasing function of Ri which is more pronounced at Ri = 10

due to dominant of buoyancy force.

• Increment of Ha shows the reduction in the rate of heat transfer and fluid

flow due to the generation of Lorentz force in the opposite direction of flow.

• For certain values of Hartmann number, temperature gradient decline but

after Ha = 50 average temperature rises in the cavity, because the greater

values of Ha produces more resistance and temperature rises in the cavity.

5.1 Forthcoming Implementation

The study carried out in this thesis opens many gateways to new and innovative

research directions, for example,

• The impact of ferrofluid (Fe3O4) on fluid flow and heat transfer can be

investigated.

• Influence of porous media can be examined on the rate of heat transfer

phenomena.
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• Observing the influence of viscous dissipation incorporated into energy equa-

tion.

• Use of higher order finite element method for the spatial discretization.

• Analyzing the non-stationary behaviour of flow using the Galerkin discretiza-

tion scheme for temporal discretization.
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